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Venimos de la larga noche

Los invisibles, hombres y mujeres libres
Por nuestros abuelos...

T. Mejias

Somos la alegria que regresa,

el dia de la furia en primavera.

La vida fue un ensayo hasta ahora.
I. Serrano



Introduction: summary and
conclusions

Singularities are object of study in many areas of Mathematics. They usually entail
a difficulty for many results which are in general valid when singularities do not
appear. From a geometric point of view, the singular points of a variety are those
where the dimension of the tangent space is greater than the dimension of the variety
itself. From an algebraic point of view, singular points correspond to multiple roots
of polynomials. In Commutative Algebra, singular points correspond to non-regular
local rings. An algebraic variety is called singular if it has singular points.

The problem of Resolution of Singularities inquires whether a singular variety can be
approximated in some way by a non-singular one. More precisely, given an algebraic
variety defined over a field k , by a resolution of singularities of X we mean a proper
and birational morphism

X <X, (1)

where X' is a nonsingular variety. It is often asked also that 7 defines an isomorphism
outside of the singular locus of X:

X\ Sing(X) = X'\ 7~ }(Sing(X)).

The problem of Resolution of Singularities consists then on deciding whether such
a morphism can be found for any singular variety X. A positive answer to this
question would open the door to extending many results of algebraic geometry, which
are only known for nonsingular varieties. But in addition it would enable the proof
of some results, for instance, in motivic integration or positivity. As an example,
some Lojasiewicz-type inequalities are proven via resolution of singularities.

It is known that a resolution of singularities can be found whenever X is defined
over a field of characteristic zero. This is a theorem due to H. Hironaka [41]. When
it comes to fields of positive characteristic, some partial results are known (due to
S. Abhyankar, J. Lipman, V. Cossart-O. Piltant, A. Benito-O. Villamayor or H.
Kawanoue-K. Matsuki among others), but the general case is still an open problem.



INTRODUCTION: SUMMARY AND CONCLUSIONS

The answer that Hironaka gave to the problem in characteristic zero is that a reso-
lution of the singularities can be found for any variety X, and that it can be defined
as a sequence of blow ups at certain smooth closed centers:

X8 X (2)

However, the proof of Hironaka is existential: it does not give a procedure to define
such a sequence. After his result, other approaches have appeared, some of them
being constructive, such as those from O. Villamayor, [77], [78], E. Bierstone-P.
Milman [9]. See also S. Encinas-O. Villamayor [33], S. Encinas-H. Hauser [32], J.
Wilodarczyk [84] and J. Kollar [57].

Constructive Resolution of Singularities pursues the design of an algorithm which,
for any X, determines univocally the construction of a birational map as in (1),
given by a sequence of blow ups carefully chosen, as in (2). The algorithm must be
able to choose, for each variety X, a smooth closed subset Y C X which is the best
center to blow up, according to some established criterion, oriented to concatenate
blow ups which lead, eventually, to a resolution of the singularities of the present
variety.

For the design of such an algorithm, we use invariants attached to the points of
X. These invariants must distinguish between different kinds of singularities. Their
study is already interesting for the design of the algorithm, but furthermore, they
may also give some insight into the resolution phenomenon, in order to solve the
problem for more general fields. Common invariants for this task are the Hilbert-
Samuel function and the multiplicity.

The multiplicity of X at a point n € X is given by an upper semicontinuous function
(see [22]):

mult(X): X — N
n — mult(X)(n) = mult(Ox ),

where mult(Ox ;) stands for the multiplicity of the local ring Ox , at the maximal
ideal. In the particular case in which X is defined as the zeroset of a polynomial f
in the affine space, the multiplicity of X at the origin is the order of f.

Since the multiplicity function is upper semicontinuous, it defines a stratification of
X into locally closed sets

Zm ={ne X :mult(X)(n) =m} C X.

This stratification is an example of how invariants distinguish between different
singular points of X. For instance, the singular points of X are given by the closed

set Upp>2 Zm-

The problem of Resolution of Singularities is one motivation for the definition of
invariants of singular points of varieties, and it is also connected to many other
approaches to the study of singularities: from algebra, geometry or topology, for
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instance. However, the study of singularities is also interesting from the point of
view, for example, of the classification of varieties.

Arc spaces are also oriented to the study of singularities of algebraic varieties. They
have shown themselves useful in the study of geometrical and topological properties
of varieties, as one can see in the works of Denef-Loeser, Ein, Ishii, Mustata, Reguera
and Yasuda among many others.

The main motivation of this thesis is the study of arcs from the point of view of
Constructive Resolution of Singularities. We have investigated possible connections
between invariants of singularities that are given in terms of the arc spaces of vari-
eties, and the information that one can use for defining algorithms of resolution. Let
us introduce now the actors involved in this study, before stating the main results.

Arcs and singularities

Suppose that X is an algebraic variety over a field k. An arc (a K-arc) ¢ in X
centered at a point £ € X is a morphism

@ : Spec(K[[t]]) — X

for some field K D k, mapping the closed point of Spec(K|[[t]]) to &. If X = Spec(B)
is an affine variety over a field k, an arc can be regarded as a homomorphism of
rings

o B — KI[[t]].

We call ¢((t)) € X the center of the arc p. If K =k, then a K-arc in X centered
at a closed point £ € X describes a germ of a curve inside of X containing &.

The arc space of a variety X over a field & is a scheme (not of finite type) representing
the functor from k-schemes to sets given by

Y A Homy, (Y Xspece) Spec(k{[1]). X )

whose K-points, for a field K D k, are the K-arcs in X ([8]). The arc space of X
can be constructed as the inverse limit of the schemes of m-jets of X for m € N.

There is a strong connection between arc (and jet) spaces and Hasse-Schmidt deriva-
tions. This is certainly useful to understand how one can give equations defining arc
spaces. There is also a relation between arcs and valuations: all arcs in X define a
valuation in a certain subvariety of X, and any valuation on the field of fractions of
Ox gives an arc in X. This relation is also a motivation for the study of arc spaces
and is a key fact, for instance, for the Nash problem ([69)]).

Many authors have contributed to the understanding of arc and jet spaces by study-
ing their structure, properties, connection with singularities, etc., see for instance
[56], [38], [60], [26], [52], [45], [73], [49], [50], [59], [24].

Some invariants of varieties defined through their spaces of arcs and of jets have al-
ready been studied (see for instance [26], [30], [76], [25], [29], [51]), but here we focus

vii



INTRODUCTION: SUMMARY AND CONCLUSIONS

our research on the definition of invariants which can be connected to Constructive
Resolution of Singularities.

Our main object of study, framed in the context of arc spaces, is the Nash multiplicity
sequence. Given a variety X defined over a field £ and given an arc ¢ in X, the
Nash multiplicity of ¢ is a non-increasing sequence

mo=>m1 > ...2mp=mp] =...>1

of positive integers attached to the center of ¢ (which is a point in X'). This sequence
can be regarded as a refinement of the multiplicity of X at & = ¢((t)): it is, in some
sense (see Remark 2.7.3), the multiplicity of X at & along the direction given by .

The Nash multiplicity sequence was first defined for arcs in germs of hypersurfaces by
M. Lejeune-Jalabert in [58], and later generalized by M. Hickel in [40] for arbitrary
codimension. It can be constructed as follows: Let us assume, for simplicity, that
X = Spec(B) is affine, let £ be a point in X, and let ¢ be an arc in X centered at
&. Consider the graph of ¢,

I'o=¢"®i: B K[t] - K|[[t]],

which is additionally an arc in Xo = X x A! centered at the point & = (£,0) € Xp.
These elements determine completely a sequence of blow ups at points:

Spec(K[[t]]) (3)
1N Iy
o
X=X x Al < X T X,
§o = (£,0) & . 13

Here, 7; is the blow up of X; 1 at &_1, where & = Im(T;) N W[l(&,l) for i =
1,...,1,...,and I'; is the (unique) arc in X; centered at & which is obtained by lifting
'y via the proper morphism 7; o ... o m. The element m; of the Nash multiplicity
sequence corresponds to the multiplicity of X; at &; for each i = 0,...,[,.... Note
that mg is nothing but the multiplicity of X at &.

We will refer to a sequence of blow ups as in (3) as the sequence of blow ups directed
by . Note that, before the first blow up, X is multiplied by an affine line. Assuming
that X is a singular variety, this implies that X has non-isolated singularities. Note
also that in (3) we are only blowing up closed points of X(. Hence, a sequence of
blow ups directed by an arc in X can never define a resolution of the singularities of
Xo. Moreover, the maximum multiplicity cannot decrease along the sequence either,
because the multiplicity function is upper semicontinuous (and it cannot increase
either, see [22]). Still, if we choose £ such that mult(X)(£) = mo > 1, and ¢ is not
contained in the stratum of multiplicity greater than or equal to mg of X:

UizmoZi = {n € X - mult(X)(n) > mo}

viii



the Nash multiplicity sequence will eventually decrease (see [58]): indeed, if the
generic point of ¢ is contained in the stratum of multiplicity m; of X, the Nash
multiplicity sequence will stabilize at the value m;. The reason for this phenomenon
is that at some step, say r, the center &, of the transform I',. of the graph I'g in X
is no longer contained in the stratum of multiplicity mg of X,

(Zy)me = {n € X, : mult(X,)(n) =mo}.

If we choose ¢ € Max mult(X) = {n € X : mult(X)(n) = max mult(X)}, where
max mult(X) is the highest multiplicity in X, then (Z,),,, is in fact the subset
Max mult(X,) because of the previous discussion.

In [58], M. Lejeune-Jalabert defines the Nash multiplicity sequence of an arc in
a germ of a hypersurface relating it to the understanding and the computation of
Artin’s 8 funcion. In the last part of Section 2.7, we explain roughly the idea behind
the sequence from this point of view.

Invariants from arcs

For our work, we will be interested in considering those arcs whose center is a point
of Max mult(X'), but whose generic point ¢((0)) is not contained in this subset. The
latter condition guarantees that their Nash multiplicity sequence is not constant. It
is reasonable to think of a notion of contact of an arc ¢ with Max mult(X), based
on how many blow ups directed by ¢ it takes to separate ¢ from this subset.

Given a variety X, a point £ € Max mult(X) and an arc ¢ in X centered at £, we
define the persistance of ¢ in Max mult(X), and denote it by px ,, as the number of
blow ups as in (3) which must be performed before the Nash multiplicity sequence
decreases for the first time (see Definition 3.1.1). Whenever the generic point of ¢
is not contained in Max mult(X), the persistance of ¢ is a natural number:

PX,p = Mingen {m; < mo}.

Both, the Nash multiplicity sequence and the persistance of ¢ are invariants of
(X, ¢,&). If we consider the minimum of the px , for all arcs ¢ in X centered at &,
this is an invariant for (X, &). It turns out that these invariants are strongly related
to constructive resolution, in a way that we will specify later. To study them, we
use what we call local presentations for the multiplicity and Rees algebras.

We also construct here another invariant, which turns out to be a refinement of px .,
and which we call the order of contact of ¢ with Max mult(X) and denote by
TX,p € @21‘

This invariant is computed as the order of a certain Rees algebra (see Definition
3.2.16), and it turns out that
Pxp = [rxp].

In principle, none of these invariants have any relation with any resolution of singu-
larities of X.

X



INTRODUCTION: SUMMARY AND CONCLUSIONS

The main tools used for the definition of rx , and the conclusions concerning it
are Rees algebras and their resolution, which have been widely developed by O.
Villamayor, S. Encinas, A. Bravo, A. Benito, R. Blanco, M. L. Garcia-Escamilla
and C. Abad in [34], [36], [80], [5], [10], [13], [16], [82], [1], [2].

The order of an arc ¢* : Ox¢ — K][[t]] is the largest positive integer n such that
@*(Mg) C (t"), where M¢ C Ox ¢ is the maximal ideal. The quotient

_ TX,p
X = 4
r 2 or 1( ) ) ( )

which is also an invariant, is sometimes more interesting than the invariant rx .,
because it avoids the influence of the order of the arc. For instance, it assigns the
same value to different parametrizations of the same germ of curve.

Constructive resolution and invariants

A constructive resolution is an algorithm that chooses, for any variety X, a closed
subvariety Y C X to be the center of a blow up that will, after iterating the process,
lead to a resolution of the singularities of X (see [34]). The choice of Y is given by
an upper semi-continuous function F' defined on varieties

F(X)=Fx:X — (A,>) (5)
whose highest value, max F'x, determines a closed smooth subset
Max Fx :={{ € X : F(§) =max Fx} C X.

The subset Max Fx will be the center of the first blow up m : X’ — X in the
construction of a resolution of singularities of X. After this blow up, a new function

Fy = Fxr: X' — (A, >)
may be defined, satisfying

Fie(m'(€) = Fx(¢) ifeex\ 2
Fy(€) < Fx(¢) if ¢ =m(¢) € Z.

Then Max F% will be the center of the second blow up m : X" — X', and the
process can be iterated: we define an upper semicontinuous function F' )(g) = Fyq for
each ¢ > 1, and Max F)((Z) C X@ will be the center of the blow up mi41 - X0+
X@_ In addition, each F' may be constructed in a way such that it is constant
if and only if X* is smooth. In that case, a resolution of the singularities of X is
achieved after finitely many iterations. We call these F the resolution functions.
To construct resolution functions we use invariants. The mission of an invariant
of singularities is to assign a value to each singular point, so that different singular
points can be compared through this value. One way to define resolution functions
is to assign to each point & a string of invariants F*(¢). Following the methods in



[82], we will take the multiplicity as the first coordinate of this string. This means
that we will keep our attention on the points of X where the multiplicity function
reaches its highest value, since those are the points for which the first coordinate of
the resolution function will be maximum. We write:

Max mult(X) :={n € X : mult(X)(n) > max mult(X)} =
={n e X : mult(X)(n) = max mult(X)},

which is a closed subset of X. However, this set is not necessarily smooth, so it
cannot be chosen as the center of the first blow up. Hence, we need to add more
invariants to construct the resolution function. As the second invariant, we will
use ordéd) (X), Hironaka’s order in dimension d = dim(X) (see [15], and also [2]).

The invariant ordéd) (X) will be the first one in our resolution functions which can

distinguish between points of maximum multiplicity of X.

Before stating the main results, let us give an impression of what this order in
dimension d means, introducing at the same time one of the fundamental tools
involved in this thesis: Rees algebras.

Local presentations and Rees algebras

When one is interested in studying the worst singularities of a given variety X, it is
useful to have some equations describing them as a subset of some smooth scheme
V. Assume that we are given an upper semicontinuous function F, and that we
want to keep track of how the subset Max Fxy C X where Fx reaches its highest
value behaves under a sequence of blow ups

X=X, & x,2.. 80X

with “good” centers. For certain functions F', this can be done locally, and we call
it a local presentation: for £ € Max F'x, a local presentation of X for F' at £ consists
of a local (étale) immersion X < V for some smooth scheme V', a set of elements
{f1,..., fr} € Oy and weights {ni,...,n,} C N such that, in a neighborhood of ¢:

e The closed subset
Max Fx ={ne X : Fx(n)=max Fx} C X CV

equals
eV y(fi)zn,i=1,...,r} CV,

where v, (f;) denotes the order of f; in the local regular ring Oy/;

e There is a transformation rule for the f; so that the previous condition on
equality of sets is preserved by any sequence of blow ups:

V=& & 8y
X:XQ(—X1<—...%X1,

where the center of m; is a smooth closed subset Y;_; C Max F, , for i =
1,...,1, as long as max F'x = max Fx, = ... = max Fx, ,.

X1



INTRODUCTION: SUMMARY AND CONCLUSIONS

In the particular case in which F' is the multiplicity function, this is possible (see
[82]).

Rees algebras are a convenient tool to manipulate local presentations, and see how
sequences of blow ups transform them. A Rees algebra over a regular Noetherian
ring R, or over V = Spec(R), is a finitely generated R-algebra

G = @en[W' C RW],

for some ideals I} C R, satisfying Iop = R and I;I; C I;1;. A Rees algebra over V
defines a closed subset of V' in a very natural way, which we refer to as the singular
locus of G:

Sing(G) ={n € V : vy(f) > nforany fW" € G}.

Assume that we are given a local presentation for the multiplicity of a variety X at
a point £ € Max mult(X):

X‘—)V, {fl,...,fr}COMg, {nl,...,nr}CN,

for some smooth V, with dim(V) = n > dim(X). Then, we can attach the Rees
algebra
Gx = Oyel AW™, ..., W] (6)

to the multiplicity of X locally in an (étale) neighborhood of £. The singular locus
of Gx will be exactly the subset Max mult(X) C X C V. Rees algebras extend to
sheaves of Rees algebras in the obvious way.

In the line of the transformations of local presentations by blowing up, there is a
notion of transformation of Rees algebras. Given a Rees algebra G over V and a
blow up V' — V with center a regular closed subset Y C Sing(G), a new Rees
algebra G’ can be defined over V’'. Moreover, there is a notion of resolution of Rees
algebras, meaning a sequence of blow ups

Vo &y & 8y,
Go+— G — ...+ G,

where 7; is a blow up at a regular closed center Y;_; C Sing(G;—;) fori =1,...,[,
and such that Sing(gG;) = 0.

A resolution of a Rees algebra attached (as in 6) to the multiplicity of a variety
X over k induces a sequence of blow ups in X that leads to a simplification of the
multiplicity of X.

By means of Rees algebras attached to the multiplicity of a variety X at a point
¢ € Max mult(X), we can define an invariant:

ordg(G) = inf pyyneg {Vigf) } .

This is the most important invariant for the construction of a resolution of G.

Xii



It can be proven that, if dim(X) = d and Gx is a Rees algebra over V attached to
the multiplicity of X locally in an (étale) neighborhood of X, there exists a Rees
algebra ggf) over a smooth scheme V(%) of dimension d such that finding a resolution
of the algebra Gx in dimension n > d is somehow equivalent to finding a resolution
of gﬁ?). Then, Hironaka’s order in dimension d can be computed as the order of this
Rees algebra:

ord{” (X) = ord{” (G ).

This invariant is intrinsic to the variety and does not depend on the choice of the
Rees algebra (see [16], [2]).

Main results

Fixed a variety X over a field k of characteristic zero and a point £ € Max mult(X),
one can consider the set

Dxe={rxel,. (7)

where ¢ runs over all arcs in X centered at & which are not totally contained in
Max mult(X) (see (4)). This set is a new invariant of X at . It can be proven that
®x ¢ has a mimimum (which is again an invariant of X at £). Moreover:

Theorem 1. Let X be a variety of dimension d over a field k of characteristic zero.
Let & be a point in Max mult(X). Then,

d .
Ordé )(X) =min(Px ).

This means that one can read the invariant ordéd) (X) in the space of arcs of X.
Indeed, given ¢ : Spec(K|[[t]]) — X, centered at &, one can consider the family of
arcs given as @, = @ o1, for i > 1, where i} : K[[t]] — K[[t"]] maps t to t". It can
be proven (see Corollary 4.3.4) that

= 1 va‘p”'L

"X T ord(p) %

I

and hence

n—oo  n

@ (x) — 1 . PX.on
ordg *(X) = infy, <ord(<p) - lim ) ,

where ¢ runs over all arcs in X centered at £ which are not contained in Max mult(X).
This shows that the invariant ordéd) (X) not only is independent of the choice of a
particular Rees algebra attached to the multiplicity of X locally in a neighborhood
of ¢ as it was said already, but also does not need Rees algebras to be defined. It
is certainly intrinsic to the variety since (as the formula shows) it can be expressed
in terms of the space of arcs of X, and in some sense a natural invariant to be
considered.

Additionally, the invariant 7x , suggests a classification of arcs in X centered at
¢ according to their order of contact with Max mult(X). Among all arcs in X

xiii



INTRODUCTION: SUMMARY AND CONCLUSIONS

centered at £, those with minimum rx , give us the invariant ordéd) (X), and also
are separated from the subset Max mult(X) faster than the rest, via the sequence
of blow ups as in (3).

A further investigation of the invariant ®x ¢ has given a criterion based on it to
decide whether a point in the subset Max mult(X) is isolated in this set or not:

Theorem 2. Let X be a variety over a field k of characteristic zero, and let £ be
a point in Maxmult(X). Then £ is an isolated point of Max mult(X) if and only if
the set ®x ¢ is upper bounded.

This has a consequence in terms of the Nash multiplicity sequence: under the hy-
potheses from the theorem, £ is an isolated point of Max mult(X) if and only if one
can find an upper bound, D(X, ), such that for any arc ¢ in X centered at £ and not
totally contained in Max mult(X), the number of blow ups which are needed before
the Nash multiplicity sequence decreases for the first time (normalized by ord(yp)),
is at most D(X, ). In some sense this means that, if £ is contained in a component
of Max mult(X) of dimension at least 1, then the contact of the arcs centered at £
with this set can be arbitrarily strong, while for isolated points of Max mult(X) this
contact is somehow limited.

Moreover, under some conditions on X and &, we can compute the supremum of
the set ®x ¢. These conditions involve another resolution invariant: the 7 invariant
(see [5]). If the n-dimensional Rees algebra Gx has maximum 7 invariant at &, that
is, 7gx & = n — 1, then it can be proven that finding a resolution of Gx is equivalent

to finding a resolution of a 1-dimensional algebra g§§). In this case, the invariant

ordéd) (X) gives no interesting information for the constructive resolution of X if

d > 1. The most interesting one is ordél)(X) = ordg(gg(l)). We have the following
result:

Proposition 3. If X has maximum 7 invariant at &, then:
sup(@x ) = ordM (X
sup(®x,¢) = ordg ' (X).

The results of this thesis are collected in:

e Bravo, A. and Encinas, S. and Pascual-Escudero, B., Nash multiplicities and
resolution invariants, Collectanea Mathematica 68 (2017), 2, 175-217;

e Pascual-Escudero, B., Nash multiplicities and isolated points of mazximal mul-
tiplicity, arXiv:1609.09008 [math.AG].

Contents

Along the first two chapters, we shall give the preliminary concepts and results
needed for the development of our work, which will be exposed in the last three
chapters.

Xiv



The first chapter starts with a brief introduction to the problem of Resolution of
Singularities. We introduce afterwards the notion of multiplicity, which will be
fundamental along the whole work. The rest of the chapter is dedicated to developing
the basics on Rees algebras, one of the main tools that we will use. We expose there
all the concepts and results related to Rees algebras that will be necessary later, and
finally show their connection with constructive resolution and the invariant ordéd)X .

The second chapter is devoted to arc spaces and their relation with singularities.
We introduce the schemes of arcs and m-jets of an algebraic variety, and illustrate
their construction by means of Hasse-Schmidt derivations. We will also show some
properties and results regarding the structure of arc and m-jet spaces, specially those
related to the singularities of varieties, as well as the relation of arcs and valuations.
This chapter includes also the definition of the Nash multiplicity sequence.

In the third chapter, we define the invariants derived from the Nash multiplicity
sequence which will be the center of our results. We also give there the construction
of the algebra of contact of an arc ¢ with the set Max mult(X). This algebra will
be an essential element for the proof of Theorems 1 and 2.

Chapter 4 contains the results connecting the invariants defined in Chapter 3 with
Constructive Resolution of Singularities, having Theorem 1 as the central piece. The
content of this chapter will appear in [11].

Finally, Chapter 5 is dedicated to the relation between ®x ¢ and the isolation of
points of Max mult(X), anticipated by Theorem 2. We also explain there the con-
ditions under which we can give sup (®x¢). This part of the work can be found in
[71].

XV



Introduccién: resumen y
conclusiones

Las singularidades son objeto de estudio desde diversas ramas de las Matemaéticas.
Normalmente suponen un obstaculo para la aplicacién de muchos resultados que son
conocidos cuando no aparecen singularidades. Desde un punto de vista geométrico,
los puntos singulares de una variedad son aquellos donde la dimensién del espacio
tangente es mayor que la dimensién de la propia variedad. Desde el punto de vista
algebraico, los puntos singulares corresponden a raices multiples de polinomios. En
Algebra Conmutativa, los puntos singulares se corresponden con anillos locales no
regulares. Una variedad algebraica se dice singular si tiene puntos singulares.

El problema de Resolucion de Singularidades plantea la pregunta de si una variedad
singular puede aproximarse de algiin modo por una no singular. Mas concretamente,
dada una variedad algebraica definida sobre algtin cuerpo k, cuando hablamos de una
resolucién de singularidades de X nos referimos a un morfismo propio y biracional

X <& X, (1)

donde X’ es una variedad no singular. Con frecuencia se suele pedir también que 7
defina un isomorfismo fuera de los puntos singulares de X:

X \ Sing(X) = X'\ 7~ !(Sing(X)).

El problema de Resolucién de Singularidades consiste en decidir si se puede encontrar
un morfismo asi para cualquier variedad singular X. Tener una respuesta afirma-
tiva abriria la posibilidad de extender muchos resultados de la geometria algebraica
que sélo se saben ciertos para variedades no singulares. Ademads permitiria probar
algunos resultados en campos como la integracién motivica y la positividad. Por
ejemplo, algunas identidades de tipo Lojasiewicz se prueban utilizando resoluciéon
de singularidades.

Actualmente, se sabe que la resolucion de singularidades existe para X siempre que
esta sea una variedad definida sobre un cuerpo de caracteristica cero. Este resultado
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es un teorema de H. Hironaka [41]. Para cuerpos de caracteristica positiva se conocen
algunos resultados parciales (gracias a S. Abhyankar, J. Lipman, V. Cossart-O.
Piltant, A. Benito-O. Villamayor y H. Kawanoue-K. Matsuki entre otros), pero el
caso general es todavia un problema abierto.

La respuesta que dio Hironaka al problema en caracteristica cero es que para cualquier
variedad X se puede encontrar una resolucion de singularidades, definida como una
sucesion de explosiones en centros cerrados y lisos:

X8 x & X, 2)

Sin embargo, la prueba de Hironaka es existencial: no da ningiin procedimiento que
permita definir una sucesién de explosiones asi. Posteriormente han ido apareciendo
otros resultados, algunos de ellos constructivos, como los de O. Villamayor, [77],
[78], E. Bierstone-P. Milman [9]. Ver también S. Encinas-O. Villamayor [33], S.
Encinas-H. Hauser [32], J. Wlodarczyk [84] and J. Kollar [57].

La Resolucion Constructiva de Singularidades pretende diseniar un algoritmo que,
para cualquier variedad X, determine de forma univoca la construccién de un mor-
fismo birracional como en (1), dado por una sucesiéon de explosiones, como en (2),
escogidas con cuidado. El algoritmo debe ser capaz de escoger, para cada variedad
X, un subconjunto cerrado ¥ C X que sea el mejor centro para una explosion,
de acuerdo con algun criterio establecido, orientado a concatenar explosiones que
formen una resolucién de singularidades de X.

Para el disefio de un algoritmo con esta propiedad, utilizamos invariantes asociados
a los puntos de X. Estos invariantes deben ser capaces de distinguir entre difer-
entes tipos de singularidades. Su estudio es interesante para el disefio del algoritmo,
pero también proporcionan informacién sobre el fenéneno de resolucién, que puede
ayudar a resolver el problema en contextos mas generales. Algunos invariantes ha-
bitualmente usados para este fin son la funcién de Hilbert-Samuel y la multiplicidad.

La multiplicidad de X en un punto n € X viene dada por una funcién semicontinua
superiormente (véase [22]):
mult(X): X — N
n +— mult(X)(n) := mult(Ox ),
donde mult(Ox ;) es la multiplicidad del anillo local Ox ,, en el ideal maximal. En

el caso particular en el que X se define como el conjunto de ceros de un polinomio
f en el espacio afin, la multiplicidad de X en el origen es el orden del polinomio f.

Puesto que la multiplicidad es una funcién semicontinua superiormente, define una
estratificaciéon de X en conjuntos localmente cerrados

Zm={ne X mult(X)(n) =m} C X.

Esta estratificacién es un ejemplo de cémo los invariantes hacen distincion entre
puntos singulares de X. Por ejemplo, los puntos singulares de X son los del cerrado

Um22 Zm
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El problema de Resolucién de Singularidades es una motivacion para la definicion de
invariantes de los puntos singulares de las variedades, y ademaés tiene conexién con
otros métodos de estudio de las singularidades, por ejemplo desde el punto de vista
del algebra, de la geometria o de la topologia. Sin embargo, el estudio de invariantes
de las singularidades también es interesante, por ejemplo, en la clasificacién de
variedades.

Los espacios de arcos también surgen como herramienta para el estudio de las sin-
gularidades de variedades algebraicas. Han resultado utiles para la comprension de
algunas propiedades geométricas y topologicas de las variedades, como muestran los
trabajos de Denef-Loeser, Ein, Ishii, Mustata, Reguera y Yasuda entre otros.

La motivacion principal de esta tesis es el estudio de los arcos desde el punto de
vista de la resolucién constructiva de singularidades. Hemos investigado posibles
conexiones entre invariantes de singularidades que surgen en términos del espacio de
arcos de una variedad y la informacion que se suele usar para definir algoritmos de
resolucién. A continuacién presentaremos los elementos involucrados en este estudio
para después enunciar los principales resultados obtenidos.

Arcos y singularidades

Supongamos que X es una variedad algebraica definida sobre un cuerpo k. Un arco
(K-arco) ¢ en X centrado en un punto £ € X es un morfismo

¢ : Spec(K[[t]]) — X,

para algin cuerpo K D k, que lleva el punto cerrado de Spec(K|[[t]]) a . Si X =
Spec(B) es una variedad algebraica afin sobre un cuerpo k, un arco se puede ver
como un homomorfismo de anillos

©*: B — K[[t]]-

Llamamos a ¢((t)) € X el centro del arco ¢. Si K = k, entonces un K-arco en
X centrado en un punto cerrado £ € X describe el germen de una curva en X que
contiene a £.

El espacio de arcos de una variedad X sobre un cuerpo k es un esquema (no de tipo
finito) que representa el funtor de k-esquemas a conjuntos dado por

Y+ Homy, (Y Xspectiy Spec(kl[H]), X)

cuyos K-puntos para un cuerpo K D k son los K-arcos en X ([8]). El espacio de
arcos de X se puede contruir como el limite inverso de los esquemas de m-jets de
X, para m € N.

Hay una conexién muy estrecha entre los espacios de arcos y de jets y las derivaciones
de Hasse-Schmidt, que resulta especialmente 1til para comprender como se pueden
dar ecuaciones que describan los espacios de arcos. También hay una relaciéon entre
los arcos y las valoraciones: todos los arcos en X describen una valoracién en alguna
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subvariedad de X, y cualquier valoracién en el cuerpo de fracciones de Ox da un
arco en X. Esta relaciéon también es una motivacién para estudiar los espacios de
arcos, y de hecho es clave, por ejemplo, en el problema de Nash ([69]).

Muchos autores han contribuido a comprender los espacios de arcos y de jets estu-
diando su estructura, propiedades, su conexién con las singularidades, etc. (véase
por ejemplo [56], [38], [60], [26], [52], [45], [73], [49], [50], [59], [24]).

Ya se han estudiado también algunos invariantes de una variedad definidos por medio
de sus espacios de arcos y de jets (por ejemplo en [26], [30], [76], [25], [29], [51]),
pero aqui nos centramos en la definiciéon de invariantes que tengan una relaciéon con
la resolucién constructiva de singularidades.

Nuestro principal objeto de estudio dentro del contexto de los espacios de arcos es
la sucesion de multiplicidades de Nash. Dada una variedad X definida sobre un
cuerpo k y dado un arco ¢ en X, la sucesion de multiplicidades de Nash de ¢ es una
sucesién no creciente de enteros positivos

mo>m1 > ...2mp=mp] =...>1

asociada al centro de ¢ (que es un punto en X). Esta sucesién se puede entender
como un refinamiento de la multiplicidad de X en & = ¢((t)): en cierto sentido
(véase Remark 2.7.3) es la multiplicidad de X en £ a lo largo de la direccién dada
por .

La sucesién de multiplicidades de Nash fue definida en primer lugar por M. Lejeune-
Jalabert en [58] para arcos en un germen de una hipersuperficie, y fue generalizada
més tarde por M. Hickel en [40] para variedades de codimensién arbitraria. Se
puede contruir de la siguiente forma. Asumimos primero, por simplicidad, que
X = Spec(B) es afin. Sea £ € X un punto, y ¢ un arco en X centrado en &.
Consideramos el grafo de ¢,

If=¢*®i: Be K[t]| » K|[[t]],

que es ademés un arco en Xg = X x Al centrado en el punto & = (¢£,0) € X. Estos
elementos determinan completamente una sucesién de explosiones en puntos:

Spec(K[[t]]) (3)
Ty Iy Iy
Xo=X x Al < X <2 X,
€0 = (67 0) gl ce fl

Aqui, m; es la explosion de X;_; con centro &_1, donde & = Im(I';) N Wi_l(fi_l)
para i = 1,...,1,..., y I'; es el (nico) arco en X; centrado en § que se obtiene
levantando el arco I'g por medio del morfismo propio 7; o...om;. El elemento m; de
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la sucesién de multiplicidades de Nash serd la multiplicidad de X; en &; para cada
1=20,...,1,.... En realidad mg es exactamente la multiplicidad de X en &.

Nos referiremos a una sucesién de explosiones definida como en (3) para un arco
w como la sucesion de explosiones dirigida por p. Notese que antes de la primera
explosion hemos multiplicado la variedad X por una recta afin. Por lo tanto, si X
era una variedad singular, X tendra singularidades no aisladas. Noétese también
que en (3) todas las explosiones tienen como centros puntos cerrados. Entonces una
sucesion de explosiones dirigida por un arco en X nunca induce una resolucién de
singularidades para Xy. Ademas la méaxima multiplicidad de Xy no puede tampoco
disminuir a lo largo de esta sucesién de explosiones, porque la funcién multiplicidad
es semicontinua superiormente (y tampoco puede crecer, véase [22]). Aun asi, si
escogemos un punto £ tal que mult(X)(§) =mp > 1 y ¢ no es un arco en el cerrado
de multiplicidad mayor o igual que mg de X,

Uz’ZmoZz’ = {7] e X: mult(X)(n) > mo},

la sucesién de multiplicidades de Nash decrece en algin momento (véase [58]). De
hecho, si el punto genérico de ¢ estd contenido en el estrato de multiplicidad m;
de X, entonces la sucesién de multiplicidades de Nash estabiliza en el valor m;. La
razén es que en algin paso, digamos r, el centro &, del arco I'; levantado a X, de
I'p no estara contenido en el estrato de multiplicidad mg de X,

(Zr)mo = {n € Xy : mult(X;)(n) =mo}.

Si escogemos § € Max mult(X) = {n € X : mult(X)(n) = max mult(X)}, donde
max mult(X) es la maxima multiplicidad de X, entonces (Z;)m, es el subconjunto
Max mult(X,), como consecuencia de la discusién anterior.

En [58], M. Lejeune-Jalabert define la sucesion de multiplicidades de Nash de un
arco en un germen de una hipersuperficie relaciondndola con la comprensién del
célculo de la funcion S de Artin. En la dltima parte de la Seccién 2.7 se explicara
brevemente la idea que hay detras de esta definicién.

Invariantes definidos por arcos

Para nuestro trabajo consideraremos arcos centrados en puntos del subconjunto
Max mult(X), pero cuyo punto genérico ¢((0)) no esta contenido alli. Esto ultimo
garantiza que su sucesién de multiplicidades de Nash no es constante. Es razonable
pensar en una nocién de contacto de un arco ¢ con Max mult(X) basada en cudntas
explosiones dirigidas por ¢ son necesarias hasta que su punto cerrado se separa de
este subconjunto.

Dados una variedad X, un punto £ € Max mult(X) y un arco ¢ en X centrado
en ¢, definimos la persistencia de ¢ (en Max mult(X)), y la denotamos por px .,
como el nimero de explosiones en (3) que son necesarias para que la sucesién de
multiplicidades de Nash decrezca por primera vez (ver Definicién 3.1.1). Siempre
que el punto genérico de ¢ no esté contenido en Max mult(X), la persistencia de ¢
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es un numero natural:
PX,p = Minen {m; < mo} .

Ambos, la sucesién de multiplicidades de Nash y la persistencia de ¢ son invari-
antes de (X, ¢,&). Si consideramos el minimo de los px,, para todos los arcos ¢ en
X centrados en ¢, este es un invariante para (X, ). Resulta que estos invariantes
estan fuertemente conectados a la resoluciéon constructiva, de un modo que se es-
pecificard mas adelante. Para estudiarlos, utilizamos presentaciones locales para la
multiplicidad y algebras de Rees.

También construimos otro invariante, que resulta ser un refinamiento de px ., y que
llamamos orden de contacto de ¢ (con Max mult(X))y denotamos por

TX,p € QZL

Este invariante se calcula como el orden de una cierta algebra de Rees (ver Definicién
3.2.16), y resulta satisfacer

Pxp = [Txp]-

Obsérvese que, en principio, ninguno de estos invariantes tiene que ver con una
resolucién de singularidades de X.

Las herramientas principales utilizadas para la definicién de rx , y para las conclu-
siones acerca de ellos son las dlgebras de Rees y su resolucién, los cuéles han sido
desarrollados con detalle por O. Villamayor, S. Encinas, A. Bravo, A. Benito, R.
Blanco, M. L. Garcia-Escamilla y C. Abad en [34], [36], [80], [5], [10], [13], [16], [82],

[1], [2].
El orden de un arco ¢* : Ox ¢ — K][[t]] es el entero positivo méas grande n tal que
@*(Mg) C (t"), siendo Mg C Ox ¢ el ideal maximal. El cociente

_ X,
X = 4
r 12 or 1( ) Y ( )

que también es un invariante, es a veces mds interesante que el propio ry o, puesto
que evita la influencia del orden del arco y asigna, por ejemplo, el mismo valor a
distintas parametrizaciones del mismo germen de curva.

Resolucién Constructiva e invariantes

Una resolucion constructiva es un algoritmo que elige, para cualquier variedad X,
una subvariedad cerrada Y C X como centro de una explosién que llevara, tras iterar
el proceso, a una resolucion de las singularidades de X (véase [34]). La eleccién de Y
viene dada por alguna funcién semicontinua superiormente F', definida en variedades

F(X)=Fx: X — (A,>) (5)
cuyo maximo valor, max F, determina un cerrado liso

Max Fy :={{ € X : F(§) =max Fx} C X.
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El subconjunto Max Fx sera el centro de la primera explosién 7 : X’ — X en la
construcciéon de una resoluciéon de singularidades de X. Después de esta explosion,
se puede definir una nueva funcién

F‘% = Fx X — (A,Z)
que satisfaga

Fye(m'(€) = Fx(¢) ifeex\ 2z
Fy(€) < Fx(¢) if ¢ =m(¢) € Z.

Entonces Max F% serd el centro de la segunda explosién mg : X" — X', y el proceso
)

se puede iterar: definiremos una funcién semicontinua superiormente F' )(g = Fyu
para cada ¢ > 1, y Max F)(g) C X ser4 el centro de la explosion i1 X(1+1) —
X @ Ademds, cada F' se puede construir de manera que sea constante si y sélo si
X' es lisa. En ese caso se alcanzard una resoluciéon de singularidades de X tras un
nimero finito de iteraciones. Llamamos a estas F? funciones de resolucion. Para
construir funciones de resolucién usamos invariantes. La misién de un invariante
de singularidades es asignar un valor a cada punto singular, de modo que podamos
comparar distintos puntos singulares por medio de estos valores. Una forma de
definir funciones de resolucién es asignar a cada punto £ una cadena de invariantes
F(£). Siguiendo los métodos de [82], tomaremos como primera coordenada de esta
cadena la multiplicidad. Eso significa que centramos nuestra atencién en los puntos
de X donde la funcién multiplicidad toma su valor méas alto, porque seran también
aquellos donde la primera coordenada de la funcién de resolucién tomard su valor
maximo. Escribimos:

Max mult(X) :={n € X : mult(X)(n) > max mult(X)} =
={n € X : mult(X)(n) = max mult(X)},

que es un subconjunto cerrado de X . Sin embargo este conjunto no es necesariamente
liso, asi que no podemos escogerlo como centro de la primera explosién. Por lo tanto
necesitaremos anadir mas invariantes para construir nuestra funcién de resolucion.

Como segundo invariante utilizaremos ordéd) (X), el orden de Hirnaka en dimension

d = dim(X) (véase [15] y [2]). El invariante ordéd) (X) serd la primera coordenada de
nuestras funciones de resoluciéon que distinga entre puntos de maxima multiplicidad.

Antes de exponer nuestros resultados vamos a dar una idea de lo que significa este
orden en dimensién d, aprovechando para presentar una de las herramientas funda-
mentales para esta tesis: las dlgebras de Rees.

Presentaciones locales y algebras de Rees

Cuando a uno le interesa estudiar las peores singularidades de una variedad X dada,
es util tener ecuaciones que describan esos puntos como un subconjunto de algtun es-
quema liso V. Supongamos que tenemos una funciéon semicontinua superiormente F,
y que queremos observar cémo se comporta a lo largo de una sucesion de explosiones

X=X, & x,2.. &8 X
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(a cuyos centros les pediremos unas ciertas propiedades) el subconjunto Max Fx C
X de puntos donde Fx alcanza su valor més alto. Para ciertas funciones F' esto
es posible localmente, y llamamos a estas ecuaciones una presentacion local: dado
¢ € Max Fx, una presentacién local de X para F (o asociada a F') en £ consiste
en una inmersién local (étale) X < V para algun esquema liso V', junto con un
conjunto de elementos {f1,..., fr} C Oy y pesos {ni,...,n,} C N tales que, en un
entorno de &:

e El subconjunto cerrado
Max Fx ={ne X : Fx(n)=max Fx} C X CV

es igual que
meV:iv(fi)>n,i=1,...,r} CV,

donde v, (f;) denota el orden de f; en el anillo local regular Oy,;

e Hay una regla de transformacién para las f; de modo que la condiciéon anterior
se preserva por sucesiones de explosiones:
V=V &y & 8,
X=Xpg¢+— X1+ ...— X|,
donde el centro de m; es un subconjunto liso cerrado Y;—; C Max Flx, , para
t=1,...,l, siempre y cuando max F'xy = max Fy, = ... =max Fy, ,.
En el caso particular en el que F' es la multiplicidad, esto es posible (véase [82]).

Las algebras de Rees son una herramienta apropiada para manipular las presenta-
ciones locales y ver como se transforman por sucesiones de explosiones. Un dlgebra
de Rees sobre un anillo Noetheriano R, o sobre V' = Spec(R), es una R-dlgebra
finitamente generada

G = ®en;W' C RIW],

para algunos ideales I; C R con las propiedades Ip = R e I;1; C I;y;. Un algebra
de Rees sobre V' determina de forma natural un subconjunto cerrado de V que
llamaremos el lugar singular de G:

Sing(G) = {n € V : v,(f) > n paratodo fW" € G}.

Supongamos que tenemos una presentacién local para la multiplicidad de una var-
iedad X en un punto £ € Max mult(X):

X =V, {fl,...,fr} COV,g, {nl,...,nr}cN,

para algiun medio ambiente liso V, con dim(V) = n > dim(X). Entonces podemos
asociarle un algebra de Rees

Gx = Oy AW™, ..., W] (6)
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a la multiplicidad de X localmente en un entorno (étale) de £. El lugar singular de
Gx serd exactamente el subconjunto Max mult(X) C X C V. La nocién de élgebra
de Rees se extiende a haces de dlgebras de Rees de la manera obvia.

En la linea de las tranformaciones de presentaciones locales por explosiones, hay una
nocion de transformaciéon de dlgebras de Rees. Dada un algebra de Rees G sobre
V y una explosiéon V' — V que tenga como centro un subconjunto cerrado y liso
Y C Sing(G), se puede definir una nueva dlgebra de Rees G’ sobre V'. Ademés
existe una nocion de resolucion de dlgebras de Rees que consiste en una sucesién de
explosiones

Vo & 8y

Go«— G1+— ...« G,
donde 7; es una explosién en un centro cerrado y liso Y;—1 C Sing(G;_1) para i =
1,...,1, tal que Sing(G;) = 0.

Una resolucién de un algebra de Rees asociada a la multiplicidad de una variedad
X definida sobre un cuerpo k (como en (6)) induce una sucesién de explosiones en
X que conlleva una bajada de su maxima multiplicidad.

Utilizando un algebra de Rees asociada a la multiplicidad de una variedad X en un
punto £ € Max mult(X), podemos definir un invariante:

Vs(f)}'

ordg(g) = inffwneg {

Este es el invariante mas importante para la construccién de una resoluciéon de G.

Se puede probar que, si dim(X) = d y Gx es un algebra de Rees sobre V' (dim(V) =
n) asociada a la multiplicidad de X localmente en un entorno (étale) de X, entonces
existe un algebra de Rees ggﬁ) sobre un esquema liso V(@ de dimensién d tal que
encontrar una resolucion del dlgebra en dimensién n > d, Gx, equivale de algin
modo a encontrar una resoluciéon del dlgebra en dimensién d, Qg(d). Entonces, el
orden de Hironaka en dimensién d se puede calcular como el orden de esta ultima
algebra:
ord{? (X) := ord{” (6.

Este invariante es intrinseco a la variedad y no depende de la eleccion del algebra
de Rees (véase [16], [2]).

Resultados principales

Fijada una variedad X sobre un cuerpo k de caracteristica cero y un punto & €
Max mult(X), consideramos el conjunto

Pxe={rxel,, (7)

donde ¢ recorre todos los arcos en X centrados en £ que no estdn totalmente con-
tenidos en Max mult(X) (véase (4)). Este conjunto es un nuevo invariante de X en
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&. Se puede probar que ®x ¢ tiene un minimo (que es de nuevo un invariante de X
en §). Ademads:

Teorema 1. Sea X una variedad de dimension d sobre un cuerpo k de caracteristica
cero. Sea & un punto en Max mult(X). Entonces,

d .
ordé )(X) =min(Px ).

Esto significa que es posible leer el invariante ordgd) (X) en el espacio de arcos de
X. Ademas, el invariante 7y , sugiere una clasificacién de los arcos en X centrados
en ¢ de acuerdo con su orden de contacto con Max mult(X). De entre todos los
arcos en X centrados en §, aquellos para los que el valor de rx , es minimo nos dan
el invariante ordéd)(X ), v también se separan de Max mult(X) més rdpido que los
demas durante la sucesién de explosiones en (3).

Esto significa que el invariante ord\? (X)) se puede leer en el espacio de arcos de X.
De hecho, dado un arco ¢ : Spec(K[[t]]) — X centrado en £, podemos considerar
la familia de arcos dada por ¢, = ¢ o, para i > 1, donde @} : K[[t]] — K][[t"]]
lleva t a t™. Se puede probar entonces (véase el Corolario 4.3.4) que

_ 1 i PXoen

TX#’:Ord(SD) nh—>n;>lo n

y por lo tanto

(d) . L PXen
ord; " (X) = infy (ord(gp) Jim - ),

donde ¢ recorre todos los arcos en X centrados en £ y no contenidos totalmente en
Max mult(X). Esto demuestra que el invariante ordéd) (X) no sédlo es independiente
de la eleccion de un algebra de Rees particular asociada a la multiplicidad de X
localmente en un entorno de £ como ya hemos dicho, sino que ni siquiera necesita
a las algebras de Rees para su definicion. Es realmente intrinseco a la variedad ya
que (como demuestra la féormula) puede expresarse en términos del espacio de arcos

de X y por lo tanto, de algiin modo, es un invariante natural a considerar.

Una investigaciéon mds profunda del invariante ® x ¢ nos da un criterio para decidir
cudndo un punto de Max mult(X) es aislado en dicho subconjunto:

Teorema 2. Sea X una variedad definida sobre un cuerpo k de caracteristica cero,
y sea & un punto en Max mult(X). Entonces & es un punto aislado de Max mult(X)
si y solo si el conjunto ®x ¢ estd acotado superiormente.

Esto tiene una consecuencia en términos de la sucesién de multiplicidades de Nash:
bajo las hipétesis de teorema, £ es un punto aislado de Max mult(X) si y sélo si
se puede encontrar una cota superior D(X,¢) tal que para cualquier arco ¢ en X
centrado en & que no esté totalmente contenido en Max mult(X), el nimero de ex-
plosiones necesarias hasta que la sucesién de multiplicidades de Nash decrece por
primera vez (normalizado por ord(y)), es como mucho D(X,€). En cierto sen-
tido, esto significa que & estd contenido en una componente de Max mult(X) de
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dimension al menos 1, entonces el contacto de los arcos centrados en £ con este
subconjunto puede ser arbitrariamente grande, mientras que para puntos aislados
de Max mult(X) este contacto estd limitado.

De hecho, bajo ciertas condiciones de X y &, podemos calcular el supremo del con-
junto @ x ¢. Estas condiciones involucran otro invariante de resolucion: el invariante
T (véase [5]). Si el dlgebra de Rees en dimensién n, Gx, tiene invariante 7 maximo en
&, es decir, si 7g, ¢ = n — 1, entonces se puede probar que encontrar una resolucion
de Gx es equivalente a encontrar una resolucién de un algebra de Rees en dimension
1, g&”. En este caso, el invariante ordgd)(X ) no proporciona informacién interesante
para la resolucién constructiva de X si d > 1. El invariante més interesante serd

ordél)(X ) :=ordg (g&l)), y se tiene el siguiente resultado:

Proposiciéon 3. 57 X tiene invariante T mdzimo en &, entonces
D) =ordM (X
sup(®x,¢) = ordg ' (X).
Los resultados de esta tesis se recogen en los siguientes trabajos:

e Bravo, A. and Encinas, S. and Pascual-Escudero, B., Nash multiplicities and
resolution invariants, Collectanea Mathematica 68 (2017), 2, 175-217,;

e Pascual-Escudero, B., Nash multiplicities and isolated points of mazximal mul-
tiplicity, arXiv:1609.09008 [math.AG].

Contenidos

A lo largo de los dos primeros capitulos revisaremos los conceptos y resultados
preliminares necesarios para el los resultados enunciados anteriormente, que seran
desarrollados en los tres ultimos capitulos.

El primer capitulo comienza con una breve introduccién al problema de Resoluciéon
de Singularidades. Introducimos a continuaciéon la nocién de multiplicidad, que
resultarda fundamental a lo largo de todo el trabajo. El resto del capitulo estd
dedicado a las definiciones y resultados béasicos de la teoria de las dlgebras de Rees,
una de las principales herramientas que usaremos maéas adelante, y por ultimo se
muestra su conexién con la resolucién constructiva y el invariante ordgd)X .

El segundo capitulo esta dedicado a los espacios de arcos y su relacion con las singu-
laridades. Introducimos los esquemas de arcos y de m-jets de una variedad algebraica
e ilustramos su construccion mediante las derivaciones de Hasse-Schmidt. También
mostramos alli algunas propiedades y resultados relacionados con la estructura de
los espacios de arcos y de m-jets, especialmente aquellos relacionados con las singu-
laridades de variedades, asi como la relacién entre los arcos y las valoraciones. Este
capitulo incluye también la definiciéon de la sucesiéon de multiplicidades de Nash.

En el tercer capitulo definimos los invariantes derivados de la sucesién de multipli-
cidades de Nash que seran el centro de nuestros resultados. También se hace alli

xxvii



INTRODUCCION: RESUMEN Y CONCLUSIONES

la construccion del algebra de contacto de un arco ¢ con el conjunto Max mult(X).
Este algebra sera un elemento esencial en la prueba de los Teoremas 1 y 2.

El capitulo 4 contiene los resultados que conectan los invariantes definidos en el
capitulo 3 con la Resolucién Constructiva de Singularidades, siendo el Teorema 1 su
pieza central. El contenido de este capitulo aparece en [11].

Por tltimo, el capitulo 5 trata la relacién entre ®x . y los puntos aislados de
Max mult(X), que ya anticipamos en el Teorema 2. También se explican alli las
condiciones bajo las cuales podemos calcular sup (®x ¢) explicitamente. Esta parte
del trabajo se puede encontrar también en [71].
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Chapter 1

Rees Algebras and Resolution of
Singularities

1.1 Resolution of singularities

Let X be a reduced scheme of finite type over a field k. A resolution of singularities
of X consists of a proper birational morphism together with a new regular scheme
of finite type:

X 5 X.

Sometimes, it is also asked that 7 defines an isomorphism outside of the singular
points of X, that is
X'\ 77 1(Sing(X)) = X \ Sing(X)

and such that the exceptional locus 7~ !(Sing(X)) is a set of hypersurfaces with
normal crossing support.

In [41], Hironaka proved that, if X is defined over a field of characteristic zero,
then a resolution of the singularities of X can always be found and, moreover, it
can be achieved through successive blow ups at regular closed centers. His proof is,
however, existential, and does not give an answer to the question of how to find such
a sequence of blow ups, leading to a resolution.

Outside of the zero characteristic hypothesis things get even more complicated, and
the general problem is still open, although some partial positive results are known
for schemes of dimension 2 ([3], [61], [62], [6], [55]) and 3 ([21],[19],[20]).

If we stay in the zero characteristic case, the problem of constructive resolution
studies the design of an algorithm that, for each X, provides a choice of centers to
define a sequence of blow ups that yield a resolution of its singularities. There is not
a unique resolution of singularities of a given scheme, but it is possible to establish
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1. REES ALGEBRAS AND RESOLUTION OF SINGULARITIES

a criterion that makes a decision for each X, attending to some designed rules, and
satisfying some compatibility conditions. Results in zero characteristic fields were
given by [77],[78], [9].

To study the changes that blow ups perform in the varieties and to obtain the data
that the algorithm will use for choosing the successive centers, it is necessary to
codify the complexity of the singularities. One uses equations for this task, which
describe, as a subset of a smooth ambient space, the varieties that appear along the
sequence of blow ups in some specific sense that we will explain here. However, this
codification is not simple if one expects being able to compare the equations before
and after a blow up. Still, a set of equations with a “good behavior” S, describing in
a smooth ambient space V the worst singularities of X in some way, can be carefully
chosen. This means that after a blow up

VZEen
X +— X

one can obtain, by performing a transformation of S, a set of equations S’ describing
the worst singularities of X7 in the same sense. Furthermore, expressing S’ in terms
of S allows us to measure the improvement of the singularities by . Such a set of
equations is what we call a local presentation.

The idea of local presentations appears already in basic objects, pairs, and idealistic
exponents (see [42], [77], [34]), and they are also the motivation for the use of Rees
algebras in the problem of Resolution of Singularities.

This first chapter is introductory, focused on this relation of Rees algebras with the
study of algorithmic Resolution of Singularities. We will first introduce one of the
invariants used for constructive resolution, which will be particularly interesting for
our results: the multiplicity. We will explain how to describe the singularities of a
given variety X via local presentations attached to the points of worst multiplicity,
and then give some basic definitions and results about Rees algebras, the tool which
will help us to deal with these local presentations. We will show how we can use
them in resolution of singularities, and finally we will introduce some other invariants
used in constructive resolution that can be computed via Rees algebras.

1.2 Multiplicity

Let R be a local noetherian ring, and let M be its maximal ideal.

Definition 1.2.1. [44, Theorem 11.1.3] Let J C R be an M-primary ideal. Let M
be a finitely generated R-module of dimension d. The Hilbert-Samuel function of R
for J, M is defined as the map

Hp(J,M): N — N
n—s NM/J"M),
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where A\(M/J"M) denotes the length of M/J"M as an R-module. That is, the
length of any maximal chain of submodules

Myc...C My=M/J"M,

which is always finite as long as M) is artinian [31, Theorem 2.13] (See [44] or [31]
for more details.)

For a fixed R, and for J, M as above, there exists a polynomial approximating the
Hilbert-Samuel function (see [31, Proposition 12.2] or [44, Theorem 11.1.3]): there

exists

d—1

Prnm(x) = age® + ag12"" + ... + ap € Qlz]

satisfying P ja(n) = Hg(J, M)(n) for n large enough. The degree of this polyno-
mial is d = dim(M) < dim(R), and moreover, the multiplicity of M at J appears
as

Hg(J, M
en(Ji M) = ag - d! = Tim TREADM)

n=co0 nd

- d!,

which is an integer. We shall denote er(J) := er(J, R).

Definition 1.2.2. We call e(R) := er(M) the multiplicity of the local ring R.
We present here some useful properties of the multiplicity:

Proposition 1.2.3. [/4, Chapter 11]

1. Assume that J, I C R are M-primary ideals such that J = I (where I denotes
the integral closure of the ideal I in R) . Then, for any finitely generated
R-module M,

er(I, M) =egr(J,M).

Moreover, if R is also formally equidimensional, then the converse is also true
if we set M = R, that is:

J=1<%er(l) =cr(J).
In particular, for any M-primary ideal I C R,
er(I, M) > e(R),
and the equality holds if and only if I is a reduction of M.

2. For any M-primary ideal J, JR is an M-primary ideal, where M is the
mazximal ideal at the completion R, and

er(J,R) = ez(JR).

In particular,
e(R) =e(R).
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3. Suppose that R is a regular ring and let f € M. If we denote A= R/ f, then

e(4) = vr(f)

is the order of f in the local reqular ring R.

Remark 1.2.4. There is also an iterative definition of er(J) which is useful for
computations. Assume that R is Cohen Macaulay and of dimension d. Then, for

any system of parameters (z1,...,24) C R, if we denote J = (z1,...,24), then
_ e/ - (R/(za)) if d > 1,
el {)‘(R/(xl)) if d=1.

(We refer to [39, Definition 1.2] or [44, Proposition 11.1.9] for the general formula.)
In particular, if R is a noetherian local ring of dimension d with maximal ideal M
which is also Cohen Macaulay, and if I = (x1,...,24) is an M-primary ideal, then

er(I) = AN(R/I).
(See [44, Proposition 11.1.10].)

Ezample 1.2.5. o If Ay = klx,y]/(«* — ¢*), then e((A1)zz) = 2. One can
compute this using Remark 1.2.4 or the last property in Proposition 1.2.3.

Note that e((A1)z7) = €(41) 2 (F) < €ay) 55, ()

e For Ay = klx,y,2]/(x*—2°,y°—2"), we have e((A2) 3 5.7) = 6 = €4z 55 (),
by Remark 1.2.4.

Definition 1.2.6. Given a variety X over a field k, the multiplicity function for X
is defined as

mult(X): X — N (1.1)
n — mult(X)(n) := e(Ox,y)-

We will sometimes denote mult,(X) : mult(X)(n).

Ezample 1.2.7. e The curve X; = V(22 — y3) C Spec(k[z,y]) has multiplicity 2
at the origin and multiplicity 1 at any other point.

o Let X3 = V((2? — y*)? + 2%) C Spec(k[z,y,2]). The multiplicity of X3
is 2 along the curve defined by (22 — y3,2) (this corresponds to computing
e((klz,y, 2]/ ((2* = y*)* + 2%)) (22—43,))), and 1 everywhere else in X3.

e Consider now the surface X4 = V(2% — 3322) C Spec(k[z,y, z]). It reaches its
maximum multiplicity, namely 3, along the curve V(z,y), has multiplicity 2 at
every point of V(z, z) except from the origin, and multiplicity 1 at any other
point.
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o Let X5 = V(2%y® — 23s%) C Spec(k[z,y, z,5]). The multiplicity is maximal
at the origin, mult00)(X5) = 5. Along the line defined by V(z,y,s),
but outisde of the origin, X5 has multiplicity 4. The multiplicity is 3 along
V(y, zs)\V(z,y,s), and it is 2 along V(z, zs)\ V(x,y, s). Outside of V(zy, zs),
the multiplicity is 1.

Let us discuss here the notion of multiplicity at a point from a more geometric point
of view, assisted by the following Corollary of a Theorem of Zariski:

Theorem 1.2.8. /85, Chapter VIII, Theorem 24, Corollary 1] Let A be a local
noetherian domain, let M be the maximal ideal, let k be the residue field, and K
the quotient field. Let B D A be a finite extension such that no element in A is a
zero divisor in B. Let L = K ®4 B, let Q1,... 9, be the mazximal ideals of B, and
k; their respective residue fields. Assume that the localized rings Bg, have the same
dimension as A fori=1,...,r. Then

ea(M)-[L:K]= Y epy (MBg,)-[ki:k].
1<i<r

Suppose that R is a localization of the coordinate ring B of an algebraic variety of
dimension d. That is, let B be a k-algebra of finite type for an infinite field k. Assume
that for any system of parameters x1,...,z4 in R, A = k[z1,...,24] C B is finite as
a module (that is, that any system of parameters gives a Noether normalization for
B). Write I = (x1,...,24) C A, and consider the finite projection

Spec(B) — Spec(A4),
induced by the K-morphism

p:A—B
r,—x, 1=1,...,d.

After localizing at I C A, we have a finite morphism
pr:Ar — S =B®jAj.

Let M C Aj be the maximal ideal, and let M1,..., M, C S be the maximal ideals
of the semilocal ring S. Theorem 1.2.8 yields

[L:K] =Y ey, (IBm,) - [ki: K],

where K is the quotient field of A, and L = K ®4 S. Then R = By, for some
t=1,...,r, and

e(R) <[L: K],

that is, the rank of the fibre over a general point gives an upper bound for the
multiplicity of R. For any choice of z1,...,24 € R, one has eg(IR) < e(R). But
for a sufficiently general projection the equality holds (see the discussion in [44, p.
221]). This is an example of what we will understand as a transversal projection.
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If R is a complete local ring, the same construction can be made: for any choice of
a system of parameters x1,...,z4 in R, A = k[[x1,...,24]] C R is finite as a module
(a Cohen subring exists for any choice of the parameters, see [44, Theorem 4.3.3]).
Assume that k = C. Geometrically, the multiplicity of X at n corresponds to the
smallest rank over the generic fiber of all possible local morphisms (X,7) — (C%,0)
(see [63]).

Ezample 1.2.9. Let X7 be as in Example 1.2.7, defined over & = C. Consider the
following projections:

e The projection
Pz : Spec(Clz, y]/(2® —y?)) — Spec(Cla])

has generic rank 3. That is, for any zg € A}, p;1(zo) = {(wo,mg/g)}. Hence,
the multiplicity at the origin is at most 3.

e The projection
py : Spec(Clz, yl/ (2 — y*)) — Spec(Cly))

has generic rank 2. For any yg € Alc, p;l (yo) = {(yg/ 2, Yo) }, so the multiplicity
at the origin is at most 2. The ideal generated by 7 in C[xz,y]/(2? — ¢?) is a
reduction of the maximal ideal (Z,7), so it gives exactly the multiplicity at
(0,0). This is a transversal projection.

Multiplicity, local presentations and Resolution of Singularities

For the achievement of a resolution, we will be interested in measuring the singu-
larities of X (see Section 1.5), and keeping track of the evolution of this measure
after blowing up. For this task, we start by considering functions which stratify
the varieties into locally closed strata, matching up points which share the same
complexity. To this end, we use functions defined on varieties

F(X)=Fx: X — (A,>) (1.2)

where (A, >) is a well ordered set. The sets {n € X : Fx(n) > n} will be hence closed
for each n € A. As we said, we want to keep track of the evolution of the strata
when we perform blow ups.

One possible measurement of the complexity of the singularities is given by the

multiplicity:

Proposition 1.2.10. [68, Theorem 40.6] Let R be a local ring, and assume that its
completion R is equidimensional and that is has no embedded primes. Then R is
reqular if and only if e(R) = 1.

6
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Theorem 1.2.11. [22], [70] Let X be a scheme of finite type over a perfect field k.
Then

1. The multiplicity function, as defined in (1.1), is an upper semicontinuous func-
tion.

2. If 1 : X' — X is the blow up at a smooth equimultiple center Y (that is,
all points in' Y have the same multiplicity), then for any n € X' we have
mult(X)(7(n)) = mult(X")(n).

See also [1], [2] and [82, Theorem 6.12] for alternative proofs.

Hence, a reasonable strategy would be focusing on the points of X where the multi-
plicity is greater than 1, and performing monoidal transformations transformations
until we reach a variety X' satisfying e(Ox,) = 1 for all n € X'. In fact, the
feasibility of this strategy was already asked by Hironaka in [41]. A positive answer
in given by Villamayor in [82].

To perform this program, it is necessary to describe the subset of worst singularities,
in this case of points of maximum multiplicity, in a way that is consistent along the
resolution process. This is a motivation for local presentations:

Definition 1.2.12. Let X be a d dimensional scheme of finite type over a perfect
field k. Let F' be an upper semicontinuous function defined on X as before. A local
presentation of F for X at { € Max Fx is a local (étale) immersion X < v =
Spec(R) in a smooth scheme of dimension n > d, and a set of elements { f1,..., f»} in
R together with a set of integers {ni,...,n,} such that, in an (étale) neighborhood
of &,

Max Fy = Ni_,; {77 cev® . vy(H;) = nl} ,

where Hj is the hypersurface defined by f; in V(™ and vn(H;) denotes the order of
H; atn, for i = 1,...,r. Moreover, this condition must be preserved by blow ups at
regular closed centers contained in Max F'x. That is, if

VZEen
X<—iX1

is a blow up at a regular closed subset ¥ C Max F'x C X, then
Max Fx, = Nj_; {17 € Vl(n) vy (HY) = nl} , (1.3)
as long as max Fx, = max Fx (here H] is the strict transform of H; by m for

i=1,...,r). If max Fx, < max Fx, then the set on the right hand side of (1.3)
must be empty.

Ezample 1.2.13. In [82], it is proven that a local presentation can always be found
for Fix = mult(X). For simplicity, assume that X = Spec(B) and that { €

7
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Max mult(X). Then, it is possible to construct, maybe in an étale neigborhood
of X, a finite morphism
B:X — V@ =Spec(9)

of generic rank m = mult¢(X), where S is a smooth k-algebra. Then, one can con-
sider a presentation for B over S, that is, a finite set of integral elements 01, ...,60,_4
over S, such that

B=S[b,...,0,_4].

It can be shown that, for ¢ = 1,...,n — d, the element f; is the minimal polynomial
of #; in the quotient field L of S. Moreover, f; has the form

-1

filzi) =z + ajp,—120 " 4.+ aip,

where a;; € S for j =0,...n; — 1. Hence f;(x;) € Sa;] for i =1,...,n —d. Then
B = S[z1,...,24_g]/I for some I D (f1,..., fn—d), and there are surjective maps

S[(l)l, . ,xn,d] — S[xl, .. .,.Iin,d]/(fl, cey fn,d) — B.
This induces an immersion
X = Spec(B) = V™ = Spec(S[z1, ..., n_d])

Then, it can be shown that the local embedding X < V(™ together with the set
{fi,ni},—1 ,_4 form a local presentation for the multiplicity of X at & (see [82,
7.1]).

-----

1.3 Rees Algebras

We already explained why local presentations are useful to describe closed sets that
are of interest in resolution on singularities. Le us now introduce Rees algebras as the
main tool that we will use to manipulate local presentations. The main references
here are [80] and [36]

Definition 1.3.1. Let R be a Noetherian ring. A Rees algebra G over R is a finitely
generated graded R-algebra

G =@ nw' c Rw]
leN

for some ideals I; € R, [ € N such that Iy = R and I;1; C I;4;, VI,j € N. Here,
W is just a variable in charge of the degree of the ideals I;. That is, if G is a
Rees algebra over R, there exist some fi,..., f, € R and positive integers (weights)
ni,...,n, € N such that

G =RIAW™, ... iW"]. (1.4)

Note that this definition is more general than the (usual) one considering only alge-
bras of the form R[IW] for some ideal I C R, which we call Rees rings.

Rees algebras can be defined over Noetherian schemes as follows:

8
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Definition 1.3.2. Let V be a noetherian scheme over a field k. A Rees algebra on
V' is a sheaf of finitely generated graded Oy -algebras

G=pLw

>0

where the I; C Oy are sheaves of ideals satisfying Iy = Oy and I;I; C I;;; for all
l,j € N. That is, there exists a covering of open affine subsets {U;} C V such that

G(Ui) = P L(U)W' C Oy (U;)[W]
>0

is a Rees algebra over Oy;,.

Definition 1.3.3. Let G; and Go be two Rees algebras. We denote by G; ® Go
the smallest Rees algebra containing both. If Gy = R[fiWW™, ..., f,W"] and Gy =
R[gyW™ ... ggW™], then

gl © g2 = R[flwnla .. '7f7”WnT791Wm17 e 7ngml]'

If G5 = R'[gpaW™, ..., ggW™], where R’ C R is a subring, by abuse of notation we
will sometimes denote by G ©® G5 the Rees algebra G; ©® Ga, where G is the extension
of G5 to a Rees algebra over R.

In what follows, we will assume k to be a perfect field. We will specify characteristic
zero when needed. We will also assume R to be a smooth k-algebra, or V to be a
smooth scheme over k. We will often work locally: for many computations, we will
assume that we fix a point and an open subset of V' containing it, so that we can
reduce it to the affine case, V = Spec(R).

One can attach to a Rees algebra a closed set as follows:

Definition 1.3.4. Let G be a Rees algebra over V. The singular locus of G, Sing(G),
is the closed set given by all the points £ € V' such that v¢(l;) > I, VI € N, where
ve(I) denotes the order of the ideal I in the regular local ring Oy¢.

Proposition 1.3.5. (/36, Proposition 1.4]) For any Rees algebra over R,
G =R[AW™, ..., W],
the singular locus of G can be computed as
Sing(G) = {¢€ € Spec(R) : ve(fi) > ni, Vi=1,...,7}.

Note that the singular locus of the Rees algebra on V' generated by fiW"t, ... f,Wn"r

does not coincide with the usual definition of the singular locus of the subvariety of
V defined by fi,..., fr.

Corollary 1.3.6. Let Gi and Go be two Rees algebras over V', then

Sing (G1 ® Ga) = Sing(G1) N Sing(G2).



1. REES ALGEBRAS AND RESOLUTION OF SINGULARITIES

Definition 1.3.7. We define the order of an element fW™ € G at £ € Sing(G) as

ordg (fW") = ngif)

We define the order of the Rees algebra G at & € Sing(G) as the infimum of the
orders of the elements of G at £, that is

orde(G) = inf {Ordf (7 } .

>0 l

Theorem 1.3.8. [36, Proposition 6.4.1] Let G = R[f1W™ ..., f,W"™] be a Rees
algebra over R and let £ € Sing(G). Then

orde(G) = min {orde(fIV™)}

Transformations and resolutions of Rees algebras

As we will soon show, Rees algebras are a convenient tool for handling local pre-
sentations. There is a notion of transformation of Rees algebras which eases the
task of finding a local presentation for a variety after blowing up, in terms of a local
presentation of the initial variety.

Definition 1.3.9. Let G be a Rees algebra over V. A closed set Y C V is a
permissible center for G if it is a regular subvariety contained in Sing(G).

Definition 1.3.10. Let G be a Rees algebra on V. A G-permissible (monoidal)
transformation

V&,

is the blow up of V' at a permissible center Y C V for G. We denote then by G; the
(weighted) transform of G by 7, which is defined as

G =P 1. W',
leN
where
Iy =10y, - I(E)™ (1.5)

for [ € N and E the exceptional divisor of the blow up V +— Vj.

Let V' = Spec(R), and let G = R[fiW",..., f,W""] be a Rees algebra over V.
Then, < fyW"™ > Oy, is an element in the total transform of G, and the weighted
transform of G by 7 is locally generated by {fi W™ ,..., f,1W"}, where f; ;W™
is a weighted transform of f;W™ by 7 for i = 1,...,r (see [36, 1.6]). That is, a
generator of the principal ideal

I(E)™"(fi)Ov;-

10



1.3. Rees Algebras

Definition 1.3.11. Let G be a Rees algebra over V. A resolution of G is a finite
sequence of transformations

1 T2 ™

V=W Vi Vi (1.6)
G = Go Gi G

at permissible centers Y; C Sing(G;),i =0, ...,l—1, such that Sing(G;) = ), and such
that the exceptional divisor of the composition Vy +— V] is a union of hypersurfaces
with normal crossings. Recall that a set of hypersurfaces {Hy, ..., H,} in a smooth
n-dimensional V' has normal crossings at a point £ € V' if there is a regular system
of parameters x1,...,z, € Oyg¢ such that if £ € H;, N...N H;,, and £ ¢ H) for
Le{l,...;r}\ {i1,...,is}, then Z(H;;)¢ = (x;,) for ij € {i1,...,is}; we say that
Hi, ..., H, have normal crossings in V if they have normal crossings at each point
of V.

A pair (V,FE) is a couple given by a smooth scheme V' and a set of hypersurfaces
with normal crossings E. A permissible transformation for (V, E) is a blow up

(Vv E) <1 (VLEl)

at a regular closed center Y C V' which has normal crossings with £. The transform
will be a new pair (Vq, By = {E, H}), where H; = 7~ }(Y). A basic object is a triple
(V,G, E) where (V, E) is a pair and G is a Rees algebra over V. A transformation

(‘/7 gaE) @ (VlaglaEl)

is permissible for (V,G, E) if it is a permissible transformation for G in the sense of
Definition 1.3.10 and the center of 7 has normal crossings with E. A resolution of
a basic object (V,G, F) is a sequence of permissible transformations

(V,G,E) & (Vi,G1,E1) & (Va,Go, Bo) & ... 2 (V1, G, Ey) (1.7)

where Sing(G;) = 0.

We mention here a few examples that may help getting an overall impression of the
use of Rees algebras in resolution of singularities.

Ezxample 1.3.12. Resolution of singularities of a hypersurface: Consider a
hypersurface X C V. Then I(X) is locally principal. Set G = Oy [I(X)W?], where
b is the maximum multiplicity of X. Then Sing(G) = {n € V : mult,(X) = b} =
Max mult(X). A resolution of the basic object (V,G,E = {0}) as (1.7) gives a
simplification of the points of multiplicity b of X, that is, the induced sequence
X +— X; will be such that X; has maximum multiplicity strictly smaller than b,
because
Sing(G;) = {n € Vi : mult,(X;) = b} = 0.

Hence, if one can resolve this Rees algebra, then one can resolve the singularities of
X by iterating this process until X, is such that its maximum multiplicity is 1.

11



1. REES ALGEBRAS AND RESOLUTION OF SINGULARITIES

Ezample 1.3.13. Resolution of G = Oy [I(X)W]: Let V be a smooth scheme over
a field of characteristic zero. Let now X C V be a closed reduced equidimensional
subscheme, defined by I(X) C Oy. Let G = Oy [I(X)W]. By Theorem 1.3.16, one
can construct a resolution of the basic object (V,G, E = {0}). Let us show now how a
resolution of singularities of X can be obtained: For any ¢ € {1,...,1}, the transform
I(X)® of I(X) in Oy, defined by I(X)® := I;; as in (1.5), is supported in the
exceptional locus (which has normal crossings) as well as in the strict transform of
X by V +— V;. The condition Sing(G;) = 0 implies that, for some j € {1,...,1},
the strict transform X;_; of X in V;_; is a connected component of the center of
the transform ;, and hence is permissible. In particular, this implies that X,;_; is
regular and has normal crossings with the exceptional divisor E;_;. Therefore

V=V 1< SER, 7 (1.8)
u u U U
X =X, X, .. X;

is a resolution of singularities of X (see [35, proof of Theorem 1.5] for a precise proof
of this result in the language of basic objects).

Ezample 1.3.14. Log-resolution of ideals: A Log-resolution of an ideal I on a
smooth scheme V' is a proper birational morphism of smooth schemes, say V! — V,
so that the total transform of I, IOy, is an invertible ideal in V'’ supported on
smooth hypersurfaces having only normal crossings. A resolution of

(V.G = RIW], E = {0})

gives a Log-resolution of I. In [36], Encinas and Villamayor proved, by using Rees
algebras, that for two ideals with the same integral closure, one obtains the same
algorithmic Log-resolution.

Resolution functions and local presentations

In [41], H. Hironaka proves resolution of singularities of varieties over fields of char-
acteristic zero by showing that the maximum value of the Hilbert Samuel function
can be lowered after a sequence of blow ups at suitable regular centers. To this end,
he used the following main idea: let X be an algebraic variety over a (perfect) field
k, let max H(X) be the maximum value of the Hilbert Samuel function on X, let
Max H(X) be the maximum stratum of this function, and let £ € Max H(X). Then
in some (étale) neighborhood of ¢ there is an immersion of X in some smooth V and a
Rees algebra G attached to Max H(X) in some sense that will be explained later (see
Example 1.3.17 below; see also [42]). Then he shows that a resolution of G induces
a sequence of blow ups over X that ultimately leads to a lowering of max H(X). To
conclude, he proves that such resolution exists when the characteristic is zero:

Theorem 1.3.15. [/1] Let k be a field of characteristic zero, and let R be a smooth
k-algebra. Given a Rees algebra G over R, there exists a resolution of G.

12



1.3. Rees Algebras

The proof of the previous result is existencial. The following theorem says that,
in fact, resolution of Rees algebras can be constructed; i.e., given a Rees algebra G
on a smooth V defined over a field of characteristic zero, there is a procedure that
indicates how to actually construct a sequence of blow ups that leads to a resolution.
See [77], [78] and [9], and see also [34] for a later reformulation.

Theorem 1.3.16. [34, Theorem 3.1] Let k be a field of characteristic zero, and let
R be a smooth k-algebra. Given a Rees algebra G over R, it is possible to construct
a resolution of G.

Ezample 1.3.17. Let X be a variety over a perfect field k. Let H(X) be the following
version of the Hilbert-Samuel function on X:
H(X): X — (NN Q)
& = HX)(E) = Hoy(Me(n)),en s

where NV is ordered lexicographically. This is an upper semicontinuous function!.
Let max H(X) and Max H(X) denote the maximum value of H(X) in X and
the closed subset of points where H(X) reaches this value respectively. Pick £ €
Max H(X). Then (see [42]), it is possible to find, locally in an étale neighborhood
of £, an immersion of X in a smooth scheme V and equations fi,..., f, such that
I(X) =< f17--'7f7’ >,

Max H(X) = Mi—;Max H({f; = 0}),

and such that this condition is preserved by blow ups at smooth centers contained
in Max H(X), in terms of the strict transforms of X and of the f;. Let us translate
this into the language of Rees algebras: let G = Oy ¢[fiWH, ..., f,WH], where p;
is the maximum order of f; for ¢ =1,...,7. Then

Sing(G) = Max H(X),

and this condition is preserved after permissible blow ups. Resolving the Rees al-
gebra G is equivalent to making max H(X) decrease after a finite sequence of blow
ups. (See [41],[43], [42].)

Ezample 1.3.18. Let X be a variety over a perfect field k. For any £ € Max mult(X),
Example 1.2.13 shows how to find a local presentation for the multiplicity of X in
an (étale) neighborhood of £. The Rees algebra

Gx = Sz, ...,z |[AW™, ..., LIV"] C Oy [W]
for {f1,..., frin1,...,n,} as there is such that
Sing(Gx) = Max mult(X),

and that this is preserved by permissible transformations. A resolution of this Rees
algebra induces a simplification of the multiplicity of X.

! Actually, the Hilbert-Samuel function has to be modified in order to be semicontinuous (see
[7]). We use here this modification of the Hilbert-Samuel function.

13



1. REES ALGEBRAS AND RESOLUTION OF SINGULARITIES

In section 1.2, we introduced local presentations as a way of describing with equations
the set C' of the worst singularities of a variety. The previous examples show that
Rees algebras appear as an appropriate language to represent such a set of equations
and weights, and allow us to describe how certain transformations of a variety X
affect C', via well defined transformations of the associated Rees algebra (see (1.5)).
It is very important to understand to which extent a given algebra can represent
a given closed set C. It is clear that all this construction would not be useful
if different presentations lead to different simplifications of the singularities under
the same transformations. This induces us to consider an identification of Rees
algebras (of local presentations) which have a compatible behavior under permissible
transformations. In addition, we expect this presentations to also behave well up to
smooth morphisms and restriction to open subsets of X. Let us give some definitions
here that will play a role in the construction of such an identification on the set of
Rees algebras over a given scheme V.

Definition 1.3.19. A local sequence on a smooth scheme V over a field k is a
sequence of morphisms

V=t & &y,

where each ¢; is either a blow up at a regular center or a smooth morphism, such
as an open immersion or a projection from a product by an affine line.

Definition 1.3.20. Let G be a Rees algebra over Oy . A G-local sequence over V is
a local sequence on V as in Definition 1.3.19,
V="V Zl Vi Z2 Z v, (1.9)
G=G~—— G~ ...~——G,,

such that whenever ¢; is a blow up, it is in particular a blow up at a permissible
center Y;_1 C Sing(G;—1) C V;_1, and then G; is the transform of G;_1 by the rule in
Definition 1.3.10; if ¢; is a smooth morphism, then G; is the pullback of G;_1 by ¢;
(see [13, Definition 3.2]).

Definition 1.3.21. Let G be a Rees algebra over V| and consider a G-local sequence
over V as in (1.9). This sequence determines a collection of closed sets, namely
{Sing(G), Sing(G1), ..., Sing(G,)}. We will refer to this collection (or branch) of
closed sets as the one defined by or attached to the sequence (1.9). If we consider
all possible G-local sequences over V| we obtain a tree of closed sets for G, which we

denote by Fy(G) (see [13, Section 3]).

Hironaka uses this kind of constructions to obtain resolution invariants.
Definition 1.3.22. Let I be an upper semicontinuous function defined on varieties.
An Fx-local sequence is a local sequence on X (Definition 1.3.19) such that, whenever

¢; is a blow up, the center is contained in Max F'x, .

14



1.3. Rees Algebras

Definition 1.3.23. (see [16, Definition 28.4]) An upper semicontinuous function
F defined on varieties as (1.2) is said to be representable via local embeddings if,
for each X and each £ € X, in an étale neighborhood of £, we can find a closed
immersion X < V and a Rees algebra G over Oy such that

1. The Rees algebra G satisfies:

Sing(G) = Max Fy; (1.10)
2. Any Fx-local sequence
X=Xp+ X1+ ...« X, (1.11)
such that
m =max Fx = max Fx, = ... =max Fx,_, > max F¥, (1.12)

induces a G-local sequence of Rees algebras over V/

V=W« V...V, (1.13)
X=X X1 ...« X, (1.14)
G=Go G+ ... G, (1.15)

such that for i =1,...,r,
with Sing(G,) = 0 if and only if max Fx, < m.

3. Any G-local sequence over V induces an F'x-local sequence as (1.13) satisfying
(1.16).

Theorem 1.3.24. ([42]) The Hilbert-Samuel function is representable for any va-
riety X wvia local embeddings. Thus, for each point £ € X we can find, in an étale
neighborhood of §, an immersion of X into a smooth scheme V and an Oy ¢-Rees
algebra Gx such that Sing(Gx) = Max H(X) and this identity is preserved by Gx-
local sequences over V' as long as the mazximum value of the Hilbert-Samuel function
of X does not decrease.

Theorem 1.3.25. (/82, Proposition 5.7 and Theorem 7.1]) The multiplicity func-
tion is representable via local embeddings for X. That is, for each point £ €
Max mult(X), we may find (in an étale neighborhood of €) an immersion of X
in a smooth V', and a Rees algebra Gx over V such that Sing(X) = Max mult(X),
and that this condition is preserved by Gx -local sequences over V while the mazximum
multiplicity does not decrease.

Therefore, just as for the Hilbert-Samuel function in Example 1.3.17, we can attach
a Rees algebra G to mult(X) so that resolving G is equivalent to decreasing the
maximum value of mult(X).

15
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Ezample 1.3.26. e Let R = k[x,y]. The Rees algebra G; = R[(2® — y?)W?]
represents the multiplicity of X; from Example 1.2.7 in Spec(k[z, y]).

e Consider now R = k[z,y,2]. The Rees algebra Go = R[(z* — 2°)W?, (y3 —
2YYW3] represents the multiplicity of Xo = V(22 — 2°,y3 — 2*) C Spec(R).

e The Rees algebra G5 = R[((x? — y3)? + 22)W?] represents the multiplicity of
X3 C Spec(R) as in Example 1.2.7, where R = k[z,y, 2] again.

e The Rees algebra over R = k[z,y, 2] given by G4 = R[(x®—1432%)W3] represents
the multiplicity of X, from Example 1.2.7 in Spec(R).

e The Rees algebra over R = k[z,y, z] given by Gg = R[(2® —2y2? —yz3+2°)W3]
represents the multiplicity of Xg = V(23 — zyz? — y2® + 25) C Spec(R) locally
at the origin.

e The Rees algebra Gy = R[(zy — 2*)W?] for R = k[z,y, 2] represents the mul-
tiplicity of X190 = V(zy — 2*) C Spec(R).

Weak equivalence

Given an upper semicontinuous function F' as in (1.2) which is representable via
local embeddings, the choice of a Rees algebra satisfying the properties of Definition
1.3.23 is not unique. Note that, when we construct a Rees algebra G attached to
Max F(X) at a point £ € X, we are considering this closed set as a closed set of
the ambient space V. However, there are many possible choices for the immersion
X — V, as well as for a Rees algebras over V. Therefore, given two possible choices
of Rees algebras, G and G’ over V, attached to a fixed point £ € Max F(X), it would
be desirable to compare the algorithmic resolution of G to that of G’, and vice versa.
To deal with this problem, we need to use the following notion of weak equivalence
of Rees algebras.

Definition 1.3.27. [13, Definition 3.5] We say that two Oy-Rees algebras G and H
are weakly equivalent if:

1. Sing(G) = Sing(H),
2. Any G-local sequence over V
G=Go<+—G1¢— ...« G,
induces an H-local sequence over V
H=Ho+— Hi+—...—H,
and vice versa, and moreover the equality in 1. is preserved, that is

3. Sing(G;) = Sing(H;) for j =0,...,r.
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1.3. Rees Algebras

This is an equivalence relation, and preserves properties of the Rees algebras that
will be necessary for the correct definition of some invariants used in resolution, as
we will see along the rest of this chapter.

The following concepts and results give a flavor of what this equivalence relation
means and provide tools to compare different algebras under it. First, it is interesting
to take into account that Rees algebras with the same integral closure have the same
resolution invariants:

Theorem 1.3.28. ([54, Proposition 5.2.1]) Let R be a normal excellent (noetherian)
domain, and let G be a Rees algebra over R. The integral closure of G C R[W] as a
ring is also a Rees algebra over R.

Definition 1.3.29. Two Rees algebras are integrally equivalent if their integral
closure in Quot(Oy )[W] coincide. We say that a Rees algebra over V, G = @;>o ;W'
is integrally closed if it is integrally closed as an Oy -ring in Quot(Oy )[W]. We denote
by G the integral closure of G.

Remark 1.3.30. [36, Proposition 5.4] If G; and G are two integrally equivalent
Rees algebras over R, then they are weakly equivalent.

If we apply differential operators to a Rees algebra, the resulting algebra is also a
Rees algebra and it is weakly equivalent to the original one:

Given a k-algebra A, a differential operator on A of order s is a k-linear map D :
A — A such that for any a € A the map

[a,D] = a-D(e) — D(a-e)
is a differential operator on A of order s — 1 if s > 0, and an A-linear map if s = 0.

Definition 1.3.31. A Rees algebra G = @lZOIlWl over V is differentially closed
(or a Diff-algebra) if there is an affine open covering of V', {U;} such that for every
D e Diff"(U;) and h € I;(U;), we have D(h) € I;_.(U;) whenever | > r, where
Diff"(U;) is the locally free sheaf of k-linear differential operators of order r or less.
In particular, I;;; C I; for [ > 0. We denote by Diff(G) the smallest differential
Rees algebra containing G (its differential closure). (See [80, Theorem 3.4] for the
existence and construction.)

Remark 1.3.32. ([80, proof of Theorem 3.4], [13, Remark 4.2]) If G is a Rees
algebra over a smooth V, locally generated by a set {f1W"™, ..., f,WW""} C G, then
Diff(G) is (locally) generated by the set

{D(fiyW™~*:D eDiff*, 0<a<n;, i=1,...,r}.

If G is differentially closed, then every I; contains the information of the singular
locus of G:

Proposition 1.3.33. [80, Proposition 3.9] Let G = @;>o;W! be a differential Rees
algebra. Then, for any | € Z>o, Sing(G) = V(I;).
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Remark 1.3.34. [13, Section 4] A Rees algebra G and its differential closure Diff(G)
are weakly equivalent. This is a consequence of Giraud’s Lemma (see [37]).

Ezample 1.3.35. o Let R = k[z,y| as in 1.3.26, with char(k) = 0. Consider
G1 = R[(z* — y?)W?]. Then
Diff(G1) = RzW, 5" W2, 42 W],

e Consider now R = k[z,y, 2] as in 1.3.26, the differential closure of the Rees
algebras described there are, respectively,

Gy = R[(z* — 2°)W?,(y° — 2" )W?] = Diff(Ga) = R[zW,yW, 2*W?, 2°W? 2*W],
Gs = R[((2* = y°)* + 2*)W?] = Diff (Gs) = R[zW, (2° — ay®)W, (y° — 2*y*)W],
Gy = R[(2® — y>22)W3] — Diff(Gy) =R[azW, y2>W, 3 W, 32 2 W, 2 22 W2, 2 W2,
22w,
Go = R[(2® — ayz? — y2® + 25)W3] = Diff(Gs) = R[(z,yz, 22)W, (y22, 22 ) W2, yz3 W3],
Gr = R[(zy — 2" )W?] — Diff(G;) = R[2W,yW, 2>W, 2*W?].

Theorem 1.3.36. [13, Theorem 3.11] Let Gy and Gy be two Rees algebras over V.
Then G1 and G2 are weakly equivalent if and only if Diff(G;) = Diff (Ga).

In [2, Chapter 5], results in this direction in the more general context of certain
classes of regular excellent schemes are developed.

Finally, this equivalence relation satisfies the compatibility properties that we asked
for their use in Resolution of Singularities:

Corollary 1.3.37. Let Gi and Go be two weakly equivalent Rees algebras over V.
Then for all n € Sing(G1) = Sing(G2), we have ord,G; = ord,Gs.

The importance of this result relies on the fact that, given a Rees algebra G and
¢ € Sing(G), then ord¢G is the most important invariant for the construction of a
resolution of G (over a field of characteristic zero). In fact:

Corollary 1.3.38. Let G and Gy be two weakly equivalent Rees algebras. Then a
constructive resolution of G1 induces a constructive resolution of Go and vice versa
(see [16, Remark 11.8]).

Remark 1.3.39. Let X be a variety, and fix an immersion X < V. Any two local
presentations of X attached to the multiplicity or to the Hilbert-Samuel function
are weakly equivalent by definition, and therefore Corollary 1.3.37 applies: fixed an
immersion for X, the order of a Rees algebra attached to a local presentation at any
point of its singular locus does not depend on the local presentation, and neither
does the resolution. This gives an answer to the problem of compatibility of Rees
algebras over V.
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Moreover, for different choices of the immersion of X into a smooth V', resolution
invariants can be proven to only depend on X. For a discussion on identification of
local presentations with different immersions and results about invariants, we refer
to [16].

1.4 Elimination

In the following examples one can observe that, in some cases, the relevant infor-
mation regarding the simplification of the multiplicity of a variety X (@ < V() can
be reflected in a lower dimensional smooth variety. In order to explain this idea,
we will use the concept of elimination, introduced by Villamayor in [80]. We will
explain some of the main ideas along this section.

We assume here that all varieties we consider are defined over a field of characteristic
Z€ero.

Example I: Hypersurface case

Ezample 1.4.1. Let S be a regular d-dimensional k-algebra of finite type, with d > 0.
Let V(™ = Spec(S[x]), where n = d + 1. Consider the natural injective morphism

and the induced smooth projection
v 2y @ = Spec(S). (1.17)

Let X be a hypersurface in V™, X = Spec(S[z]/f(z)), where f is a polynomial
in z of degree b > 1 with coefficients in S. Let £ be a point in the closed set of
multiplicity b of X. We are going to assume that the maximal ideal M) of § (n) in
S[z] is given by < x, z1, ..., zq > for a regular system of parameters {z1,..., 24} in
S. The image £@ of £ by the projection (1.17) is defined by the maximal ideal
M@ =< 21,...,24 >. Then, the Rees algebra gg?) over S[z]

G = Diff(S[][fW"]) C S[x][W]
represents the multiplicity function on X ¢ V(" locally at £™).
Let us suppose that, in addition, f has the form of Tschirnhausen:
f@) =24+ By_oa® 2+ ...+ Biz' +... + By € S[z], (1.18)

where B; € S fori =0,...,b— 2.

The following lemma shows that for X as in Example 1.4.1, the meaningful part of
f € S[z] (regarding the maximum multiplicity) is given by the coefficients B;, which
are already in S.
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Lemma 1.4.2. Let X be given by f as in (1.18). Then
G\ = S[a][xW] © Diff (S[x][By_aW?,..., BW"™ ... ByW?)).

Proof. In order to compute the differential closure of S[z][fW?], let us start by
computing the (b — 1)-th derivative of fIW? with respect to z, from where it follows
that zW € QE?). Therefore fng = be—(:L'W)b € QE?) and, if we consider zW and
foW? among the generators of gg?), there is no need to include fW?. To continue,
we compute the (b — 2)-th derivative of foW? with respect to x obtaining, up to
a nonzero constant, By_oW? € QE?). Just like in the previous step, it is possible
to verify that fsWb = £, — (B,_oW?2)(aW)?=2 € G, and that fW" can be
generated by =W, By_oW? and f3W?. By iterating this argument, one concludes
that the set consisting of W and B;W?~* for i = 0,...b — 2 is contained in gﬁ?)
and, in addition, the differential closure of the S[z]-Rees algebra generated by this
set corresponds exactly to ggﬁ). O

Remark 1.4.3. For X = V(f) C Spec(S[z]) as above, X has multiplicity b =
max mult(X) at a point £ € X if and only if for all i = 0,...,b — 2, the order of B;
at £(@ e Spec(S) is greater or equal than b — i.

Remark 1.4.4. Since the generators of S[z][B,_oW?2,..., B;W*~t ... BoW?| are
elements in S[WW], they also generate a Rees algebra H(? over S. This algebra is
already differentially closed with respect to x. Then, the algebra Q’E?) from Lemma
1.4.2 can be written as

G\ = Diff(S[z][aW] @ HD).

The S-Rees algebra (49 already tells us if £ € X is a point of maximum multiplicity
of X or not, by Remark 1.4.3. Moreover, we will see that finding a resolution of
the S[z]-Rees algebra Qggl) is equivalent to finding a resolution of the S-Rees algebra
#(@. This reduces the problem (in dimension n) of decreasing the multiplicity of
X = V(f) € V™ to solving a problem in a d-dimensional smooth scheme V(%)

Ezample 1.4.5. Instead of (1.18), suppose now that f is of the form
f(z) =a® + Dy_12" '+ ...+ D' + ...+ Dy € S[al, (1.19)

where D; € S, Dy—1 # 0 and v¢(D;) > b—i fori = 0,...0 — 1. After a suitable

Dy
b

change, namely T = x + , we obtain

f(x)=f(&) =2"+ By 23" 2+ ...+ By € S[#], B; €S, ve(B;) >b—i.
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1.4. Elimination

Remark 1.4.6. By means of the Weierstrass preparation Theorem ([85, Chapter
VII]) when X is locally a hypersurface we obtain, maybe after considering an étale
extension, that X is given locally by some f as in (1.18) (see [79, 1.1 and Proposition
1.8] and Example 1.4.5). Hence, for (local) hypersurfaces defined over fields of
characteristic zero, we may assume to be under the hypotheses of Lemma 1.4.2, up
to étale extension.

Example II: General case

Ezample 1.4.7. (See [82, 7.1]) Let X be a variety of dimension d over a perfect field
k of maximum multiplicity b, and let £ € X be a point in Max mult(X). We have,
after possibly replacing X by an étale neighborhood of £, a smooth k-algebra .S, of
dimension d, and a finite and transversal projection

Bx : X — Spec(S) = V@ (1.20)

over a smooth variety of dimension d. By transversal we mean a finite projection of
generic rank b = max mult(X). It can be shown that Sy induces a homeomorphism
between Max mult(X) and its image ([16, Appendix A], [82, 4.8]), and an injective
finite morphism

S — B=S[b1,...,0nh_q] = Slx1,...,2h—q]/I1(X).
As a consequence, we have a local immersion of X in a smooth n-dimensional space
v = Spec(S[z1, ..., Tn—d])
in a neighborhood of €.

As we already explained when we discussed local presentations attached to the mul-
tiplicity in Section 1.2 (see Examples 1.2.13 and 1.3.18), there exist f1,..., fn—q €

I(X) C S[x1,...,2y—q] such that for some positive integers by, ...,b,_q the Rees
algebra
G\ = Diff (O ([AW™, .., faeaW 1)) (1.21)

represents mult(X) : X — N locally at £. In addition, for j =1,...,n —d,
fj € S[l‘J] (1.22)

is the minimum polynomial of §; over the quotient field of S (it can be proven that
its coefficients are actually in S, see [82, 7.1] for more details). Forany j = 1,...n—d
the following diagram commutes:

S[%l,...,l‘n_d] 4>S[.7}1,... 7$n—d]/ fl,... 7fn—d) —B——=0 (1.23)

| i

Sla;] Slz;1/(f)
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1. REES ALGEBRAS AND RESOLUTION OF SINGULARITIES

Due to (1.22) and Remark 1.4.6, if char(k) = 0, we can perform changes of variables
for all of the z; as in 1.4.5 in order to obtain an expression as in (1.18) for each of the
fj- We will therefore assume that, when we consider a local presentation attached
to the multiplicity for X as (1.21), the f; have the form of Tschirnhausen:

file)=a®+ BY,at2 4 .+ BYa 4.+ BY) € Sal,
and similarly to Remark 1.4.4:
G = Difi(S[a1, ..., 20 d[t1 W, .., 20 aW]) O HD @ . 0 H D,
(d)
J

1.4.2. As we will see, a resolution of Hgd) ©...0 7—[7(10? 4 leads to a simplification of
the multiplicity of X.

where each H ;" is the S-algebra generated by the coefficients of f; as in Lemma

Let us formalize the ideas from Examples 1.4.1 and 1.4.7 next.

Elimination algebras

Given an n-dimensional smooth scheme of finite type V(™ and a Rees algebra G
over V(™ which we will refer to as a pair from now on, one may wonder if it would
be possible to find a new pair (V("_e), g (”_e)) of dimension n—e < n, as in Examples
1.4.1 and 1.4.7, so that a resolution of G("—¢) induces a resolution of g("), since the
first one could be easier to find. This can be done for suitable values of e, limited
by the invariant 7 of an algebra G at a point £ € Sing(G):

Definition 1.4.8. By the tangent space of V™ at £ we mean the spectrum of the
graduate ring of the local ring Oy ) ¢ at &, grpy, (Oym ¢), that is,

Spec(k(§) & M/ M; @& MZ/MED ..).

Let W) = @lZOIlWl be a Rees algebra over V(™) The tangent cone Cg(n)ﬁ of g
at £ is the subset of the tangent space of V(™) at & defined by the homogeneous ideal
Igm) ¢ C gtp (Opm ) generated by the class of [; in /\/lé/./\/llgJrl for all I > 1 (see
[5, Section 4] for details).

One may consider now the largest linear subspace Eg(n)7§ C Cg(n)’f which acts on
the tangent cone of G at ¢ by translations.

Definition 1.4.9. The invariant 75() ¢ is the codimension of L)  in the tangent
space of V(™ at £. One can prove that this also corresponds to the minimum number
of variables which are needed to define the tangent cone of G at &, that is, the
minimum number of variables needed to define the ideal Igwm) o C gty ) (Ov(n)i) (see

[18, Appendix II, p. 100]).
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1.4. Elimination

It can be shown that, if X is defined over a field of characteristic zero and G is
assumed to be differentially closed, then .Cg<n)7§ = Cg(m@ and 7g() ¢ is the codimen-

sion of the smallest regular subvariety containing Sing(g (")) in a neighborhood of &
(see [5, Remark 4.5]).

The 7 invariant does not vary under weak equivalence:

Theorem 1.4.10. /5, Remark 4.5, Theorem 5.2] Let G and G2 be two Rees algebras
over V™ and assume that they are weakly equivalent. Then, for any € € Sing(G1) =
Sing(G2), we have 7g, ¢ = Tg, ¢.

Consider now a Rees algebra G over V(™ and let ¢ € Sing(G"™), with Tgm ¢ = 1.
Assume that there exists a smooth projection

g:vm -y (1.24)

inducing a homeomorphism between Sing(G™) and 3(Sing(G™)) in a neighborhood
of £&. The idea here is to explore whether one can define a Rees algebra G(»—1)
over V(™1 via the projection § such that finding a resolution of G is somehow
equivalent to finding a resolution of G, It turns out that this is possible by
asking for a few technical conditions on /.

Definition 1.4.11. Assume that G is such that Tgm ¢ = 1. Then a projection /3
as in (1.24) is transversal to G at € if the intersection of ker(df) and the linear
space Eg(n)i is just the origin, where df is the map induced by § on the tangent

spaces. Is can be shown that if 3 is transversal to G at &, then it is transversal to
G™ in a neighborhood of ¢ (see [14, Remmark 8.5]).

Definition 1.4.12. Assume that ord¢(G™) = 1 and that ¢ is not contained in a
component of Sing(G™) of codimension 12. Then a smooth projection 3 as in (1.24)
is G -admissible if it is transversal to G(™ in a neighborhood of ¢ and differentially
closed with respect to 8, meaning with respect to the relative differential operators
Diﬂlv(n)/vmq).

Such an admissible projection can be found whenever ord¢ (G (”)) = 1 or, equivalently,
whenever Sing(G(™) is locally contained in a regular subvariety of V(™) of dimension
n — 1, and additionally G(™ is differentially closed with respect to A and € is not
contained in a component of codimension 1 of Sing(G(™). In fact, there are many
projections which are suitable for this role.

Let G be a differential Rees algebra over V(™) (with respect to Diffy, ) Jvin—e) at

least), and let £ € Sing(G(™) be a closed point. For some e > 1, assume that a
smooth projection
B:vm _ yn—e (1.25)

2In case & is contained in a component Y C Sing(g(”)) of codimension 1, then it can be proven
that Y is a smooth component, and elimination is not useful in that case (see [14, Lemma 13.2])
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1. REES ALGEBRAS AND RESOLUTION OF SINGULARITIES

can be constructed by repeating e times the previous process. This can be done for
all e satisfying Tgm ¢ = € > 1. It can be proven that this projection will induce a

homeomorphism between Sing(G™) and its image 3(Sing(G™)) in a neighborhood
of £ (see [80, Definition 4.10, Theorem 4.11] and [16, 16.1]). A projection S defined
this way will be G _admissible.

Definition 1.4.13. [80] We define the elimination algebra of G(™ with respect to /3
in (1.25) as
Ggn—e) — g n Oy n-o

up to integral closure.

For a complete description of the properties asked to the projections, and of elim-
ination algebras, we refer to [14], [16, 16 and Appendix A], [82] and [80, Theorem
4.11 and Theorem 4.13].

To discuss the behavior of elimination algebras under blow ups, we need some im-
portant properties. Let us start with the following:

Theorem 1.4.14. (/80, Theorem 4.11], [14, Theorem 9.1],[16, 16.7]) Let G be a
Rees algebra over V™ | and let §: V) — V(=€) be ¢ G _admissible projection
as in (1.25). Then

B(Sing(¢™)) c Sing(G"9).

If V(") s defined over a field k of characteristic zero or if G™ is differentially closed,
then both closed sets are equal.

Remark 1.4.15. Another important property of a G(™)-admissible projection as in
the Theorem is that, if Y C Sing(G™) is a regular closed subset, then 3(Y) is a
regular closed subset of Sing(G("~¢)) (see [14, 8.4]). The converse is also true. This
means that any permissible center Y € V(™ for G(™ induces a permissible center
B(Y) c Ve for G("=¢) (see [80, 6.7] and [79, Lemma 1.7]).

It can be proven that any G(™-permissible transformation

v Vl(")

yields a commutative diagram

ym 7 y® (1.26)
ﬂl iﬁl
Vv (n—e) 72(”_6) Vl(nfe)

)

where 31 might be defined only in an open subset of V", but this set will necessarily

contain Sing(gﬁn)) so, to ease the notation, we will write Vl(n) meaning this open
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1.4. Elimination

subset. Moreover, ) is g{n)—permissible (see [14, Theorem 9.1]). It is important
to observe that, although we will normally have a differentially closed Rees algebra
g<n>, the transform Q%n) by 7 needs not to be differentially closed. However, it can

be checked that g}”) will be differentially closed with respect to 31 (meaning with

respect to the differential operators Diffvl(") /Vf"’e))'

In addition, the transform of G("~¢) by 7("~¢) is exactly the elimination of Q%n) by
B1 (see [80, 6.9] and [14, Theorem 9.1]). As a consequence,

B1(Sing(6™)) C Sing(G\" )

by Theorem 1.4.14, having an equality between both sets over fields of characteristic
Z€ero.

These facts lead to the following properties of elimination:
1.4.16. Properties

1. Any G™-local sequence over V(" induces a G("~¢)-local sequence over V(*—¢)
and a commutative diagram

g = g g . G\" (1.27)
v — Vo(n) V1(n) AR
| N .|
y(n—e) — Vo(n—e) - Vl(n—e) -~y
g9 =g g g
where Q’i(n_e) is an elimination algebra of QZ»(n) for i = 0,...,r, and the 5;

are smooth G(™-admissible projections, and Bi(Sing(gZ-(n))) C Sing(gi(n_e)).
Moreover, over fields of characteristic zero, each ; induces a homeomorphism
between Sing(g(n)) and Sing(gi(n_e)).

i

2. Any G("=¢)-local sequence over V(*~¢) induces a G(™-local sequence over V(%)

and a commutative diagram as above where gl.(”*e)
of gf") for i = 0,...,r, and with §; smooth G(™-admissible projections, and
Bi(Sing(gi(n))) - Sing(gi(nfe)) for all @ = 1,...,r (having homeomorphisms
between Sing(gi(")) and Sing(gi(nfe)) if the characteristic of the base field is
7Z€ero).

is an elimination algebra

3. Under the characteristic zero hypothesis, properties 1-2, together with the fact
that 3 induces a homeomorphism on Sing(G(™) characterize the elimination
algebra G(=¢) up to weak equivalence.
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1. REES ALGEBRAS AND RESOLUTION OF SINGULARITIES

4. Also for fields of characteristic zero, any resolution of G(™ induces a resolution
of G("=¢) and vice versa.

5. For any two elimination algebras G("~¢) and G(n=e) of g(n), given by admissible

projections V() & V(=€) and v i> V(n—e) respectively, we have the
same order at the image of £ (see [80] and [14, Theorem 10.1]). That is, for

any diagram
V()
) 1%

7(n—e)

V(n—e

where 8 and 3 are G(™-admissible projections, we have
ordﬁ(g)g(”_e) = ordﬁ(g)gu(”_e).

Let us define
ordén_e) (Q(”)) = ordﬁ(g)g(”*e)

for any elimination algebra G(n—¢) of G(") of dimension (n — e) via some ad-
missible projection 3, which is an invariant for G at €.

In particular, given X € V(™ and a Rees algebra G(™ representing the multiplicity
of X, as in Example 1.4.7, we wish to find a Rees algebra in dimension d = dim(X)
which is an elimination algebra of G™). The reason for this will be explained in
Section 1.5. The following theorem guarantees that this is possible:

Theorem 1.4.17. Let X C V™ be a d-dimensional variety over a field of charac-
teristic zero, and G a Rees algebra over V™ representing the multiplicity of X
locally in an (étale) neigborhood of & € Max mult(X). Then it is possible to find,
in an (étale) neighborhood of &, a smooth projection f3 : v — v inducing an
elimination algebra Q(d) of Q(”). Moreover, the order? ordéd) (g(">) = ordﬁ(g)g(d)
does not depend on the choice of the embedding or of the algebra G(™.

Proof. This fact follows from [16, Section 21, Theorem 28.8, Theorem 28.10 and
Example 28.2].
O

Ezample 1.4.18. Let us suppose that X is a hypersurface of dimension d, and
consider the Rees algebra g§?’ representing the multiplicity of X, as in Example
1.4.1. There is a Rees algebra gﬁ?) over S, the elimination algebra of gﬁ;‘), given by

G\ = Diff(S[2][fW’]) N S[W] (1.28)

3For simplicity, we will sometimes write £ when we refer to the image of €™ by most of the
maps we use here. In particular, we will often write orde meaning ord, () or ord, (.
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1.4. Elimination

describing the image by (1.17) of Max mult(X). For a description of this elimination
algebra see Lemma 1.4.20 below.

Remark 1.4.19. Let us go back to Example 1.4.5. It can be checked that g§§’) is
invariant under translations of the variable x (see [79] and [80]), and hence the S[z]-
Rees algebra generated by fW° € S[z][W] and the S[i]-Rees algebra generated
by fW e S[Z|[W] give equivalent elimination algebras Diff(S[z][fW?]) N S[W]
and Diff(S[z][fW?]) N S[W] respectively. As a consequence, we may reduce the
hypersurface case to the case of Example 1.4.1.

Lemma 1.4.20. Let X be given by f as in Example 1.4.1. Then the elimination
algebra of Qg?) relative to (1.17) is (up to integral closure):

G\Y = Diff(S[By_sW?,..., BW" ... ByW")). (1.29)
Proof. Considering the expression given by Lemma 1.4.2, (1.29) follows from the

facts that B; € S for i = 0,...,b — 2, and that G("=¢ = g n Oy (n—e) for any
1<e<n-—d. O

Ezample 1.4.21. If we go back to examples in 1.3.26 and considering the differential
closure of the algebras representing the multiplicity of the corresponding varieties,
already computed in Example 1.3.35, we note that, if char(k) = 0, then

e For G;, the projection given by Spec(k[z,y]) — Spec(k[y]) gives an elimina-
tion algebra

Gi") = kly)ly* W, y*W] = Diff (k[y] [y 7).
e For G the projection Spec(k[z,vy, z]) — Spec(k[z,y]) induces an elimination

G5V = klz,y)[(® — xy®)W, (y° — 2*y*)W] = Diff (k[x, y][(2* — *)*W?)).

e For Gy, the projection Spec(k[z,y, z]) — Spec(k[y, z]) gives the elimination
G = Kly. 2|y W, W2 W,y 22 W2, 2 a2 422 WP) =
= Diff (k[y, 2][y*2*W?]).
e For Gg, the projection Spec(k[z,y, z]) — Spec(k[y, z]) gives the elimination

G = kly, =l[(yz, )W, (y=2, W2, (yz2)W?] =
=Diff (k[y, 2][2°W?, (—yz> + 2>)W?)).
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e Finally, for G7, the projection Spec(k[z,y, z]) — Spec(k[y, z]) gives the elim-
ination

G = K[y, |[yW, 2*W] = Diff (k[y, 2] [yW, 27 W2]).

In this case, we can also consider the projection Spec(k[z,y, z]) — Spec(k[z]),
which gives the elimination

G\ = k[2][2W].

Remark 1.4.22. Going back to Example 1.4.1, one can check that gg?) is the
smallest S[z]-Rees algebra containing W and Qg?). By abuse of notation, we will
simply write

gy = Slal=w] © G,
meaning that we extend both algebras to Rees algebras over the same ring and apply
© afterwards (see Definition 1.3.3).

Lemma 1.4.23. Let X be a hypersurface given by f as in Example 1.4.1. Let Q’g?)
be the elimination algebra of gﬁ? as in (1.28). Then for £ € Sing(ggl)),

ordg(GY) = _min { I(/;(_BZ; } . (1.30)

This follows from the fact that ordg(ggg)) = ordg(Diff(gg?))) for any £ € Sing(gg?))
(see [10, Proposition 3.11]). We include the proof here since it will help us to know
which terms are important for computing the orders of the algebras in Chapter 3.

Proof. By the expression of QE?) given in Lemma 1.4.20, it is clear that it is enough to
prove that, for any i, the element B;W®~% has lower order than any of its derivatives
in £&. The element B;W*~ has order

ve(Bi)

b—1i’

ordé(B;WP™%) =
while for any diferential operator D’ of order j < b — i:

. o B;) — j
ordg (DY (B;)WP=77) > Vg(.).j,
i

We only need that, for any pair of positive integers A > A,

A A—k
Il i
A~ A -k

as long as k < A'. O

Remark 1.4.24. Let X be a hypersurface given by f as in Example 1.4.5. Then
the result in Lemma 1.4.23 can be applied after a variable change.
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Ezample 1.4.25. If X is as in Example 1.4.7, for any i € {1,...,n —d}, fi € S[z;] is
the equation of a hypersurface H; in a scheme of dimension e = d + 1, Spec(S|[z;]).
Let us recall, that there is a commutative diagram

¢ R=S[z1,...,@n-a] —> S[z1, ..., 20-al/(f1,. .., fo-a) —= B ——>10
i) S[ai] Sl /(£:)
(1.31)

By Remark 1.4.22:
Gi;) = Diff(S[a ] [F;W"]) = Sl [ W] © Gl .
By extending this algebra to Oy @) ¢, we obtain
") = Diff(O W) =0 W] oGy
gHi 1 ( V("),g[fl ]) V<">,§[5Uz ] © ng .
Hence, (1.21) can be written as
G = g};? ©...0 Q}}id = Oy elt1W, ..., 20 gW] O g}ffl) ®...0 gngd

But also, by (1.31),

GV =69 o.. 068 (1.32)
= Sla1][a1 WO .. © Sn_d)[Tn_aW] © G, (1.33)

Thus, there is an easy expression for the elimination algebra of gg?) relative to the
projection
Spec(S[z1, ..., xn_g]) = V™ — V@ = Spec(S)

namely
¢ -¢o.. . 06¥ (1.34)

An explanation of this elimination can be found in [16, Remark 16.10]. The elimina-
tion algebra gﬁ?) will be differentially closed (see [81, Proposition 5.1]). See Section
1.5 for the role of gg?) in algorithmic resolution.
FEzample 1.4.26. For the example X5 in 1.3.26, one can see that

Diff(G2) = Diff (k[z, 2][(«? — 2”)W?]) © Diff (k[y, 2][(y* — =) W?])
gives the following elimination algebra via the projection

Spec(k[z,y, z]) — Spec(k[z])

29



1. REES ALGEBRAS AND RESOLUTION OF SINGULARITIES

G$M =k[2][2W3, 23W2, 22W) = Diff (k[2] [P W2, 2*W?]) =
= Diff (k[2][z°W?]) ® Diff (k[2][z*W?]).

There is a different approach to attaching a d-dimensional Rees algebra to the max-
imum multiplicity of a variety: given X of dimension d defined over a perfect field
and ¢ € Max mult(X), there is a canonical choice of an Ox-Rees algebra of dimen-
sion d attached to the multiplicity of X locally in a neighborhood of £. This is a
Rees algebra over X, and does not depend on the choice of an immersion up to
integral closure (see [1, Definition 5.1 and Theorem 5.3]). However, note that this
is not a Rees algebra over a smooth scheme, but over a singular one, and does not
represent the multiplicity of X in the sense of Definition 1.3.23.

1.5 Constructive resolution and invariants

As it was already mentioned in the beginning of this chapter, given X there is not
a unique resolution of its singularities. However, one can decide a criterion to find a
particular one, by making some choices. A constructive resolution (or an algorithmic
resolution) is an algorithm that stratifies each variety attending to the value that
some upper semicontinuous function takes at each point. There are many possible
choices for these functions (resolution functions), and each one gives a constructive
resolution. Fixed an algorithm, it must satisfy some compatibility properties, which
give a unique resolution of singularities for each variety. These properties include:

o If X7 and X5 are two varieties over a field £ and X3 & X5 is an isomorphism
of varieties, then the resolution provided by the algorithm for each of them
must be compatible with ¢.

e A resolution of a variety X must induce a resolution in any open subset U C X.

Moreover, the resolution provided by the algorithm for any variety X must be com-
patible with algebraic action of groups on X (equivariance) (see [78]).

For the construction of an algorithm of resolution [34], consider a well ordered set
(A,>) and an upper semicontinuous function defined on varieties F(X) = Fy,
Fx : X — (A, >) such that for any X, Max Fx C X is a closed and smooth
subset, and Fx is constant on X if and only if X is smooth. Set Max F'x as the
center of the first blow up X &~ X;. The function Fx must satisfy Fx (£) > Fx, (¢)
whenever ¢ = m1(¢’) € Max Fy. Given a variety X, the algorithm will give us a
sequence of blow ups by iterating the process, that is,

X =X, &8 X, & &8 X,
with 7; being the blow up at Max Fly, , for¢=1,...,r.
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Invariants

When it comes to the construction of the resolution function, we use invariants of the
varieties in order to assign a value (in fact, a set of values) to each point reflecting
the complexity of the singularities. Example 1.3.17 and Theorem 1.2.11 give upper
semicontinuous functions which are often useful for this construction.

As a first coordinate of the resolution function F'x, we can consider the Hilbert-
Samuel function or the multiplicity at each point. In particular, we will be inter-
ested in considering the multiplicity. However, Max mult(X) is not necessarily a
regular subset (see X3 in Example 1.2.7), so it is necessary to refine Fx by adding
more coordinates. We will compare the values of F'x at different points using the
lexicographical order, and this first coordinate will allow us to focus already on the
stratum of maximum value of the multiplicity in X.

To each § € Max mult(X), we know that we can attach a local presentation and an
algebra gg?) for the multiplicity.

Definition 1.5.1. Given a Rees algebra G = @iZOIiWi, Hironaka’s order at £ €
Sing(G) is ord¢(G). If G is, in particular, a Rees algebra representing the multiplicity
of X locally in a neighborhood of &, then this order is defined at all points of
Sing(G) = Max mult(X).

We will take this order as the second coordinate of F'x. Weak equivalence of Rees
algebras ensures that this order does not depend on the choice of the presentation
for the multiplicity of X (on the Rees algebra attached to the multiplicity of X),
see Corollary 1.3.37.

Hironaka’s order is the most important invariant in constructive resolution, and all
other invariants derive from it.

If X is a d-dimensional variety, then it can be shown that there are suitable ad-
missible projections to smooth (n —i)- dimensional schemes V(=% and elimination
algebras G"=9 i =1,... n—d. For the following coordinates, we will use the orders
ordggg?ﬂ) of the eliminations as in 1.4.16 (6), for i =1,...,n —d (see 1.4.17):

Fx(¢) = (multe(X), ordeG{”, ord{™ g{", ..., ord VgL, ordglY, .. ).

(1.35)

These invariants behave well under weak equivalence of Rees algebras, so they are
really invariants. More precisely:

Remark 1.5.2. Two weakly equivalent Rees algebras G and G’ over V share their
resolution invariants and hence the constructive resolution of each of them induces
the constructive resolution of the other one. This follows from the fact that all
invariants that we consider for the construction or the resolution functions derive
from Hironaka’s order function ([13, 10.3],[34, 4.11, 4.15]) together with Corollary
1.3.37. In particular, this is the case for Rees algebras coming from different local
presentations once we have fixed an immersion (see 1.3.38).
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1. REES ALGEBRAS AND RESOLUTION OF SINGULARITIES

Among the orders in (1.35), the next theorem will tell us that ordéd) gg?) is the first
interesting one, since all the previous are necessarily equal to 1, and therefore this
will be the coordinate we will focus on for our results.

Theorem 1.5.3. [16, 16.7] Let X be a d-dimensional variety, and let (V™) G™)
be an n-dimensional pair attached to X at a point & € Max mult(X). Then for any

e < n—d we have ordén_e)(](”) =1.

Thus, F'x can actually be constructed as
Fx(€) = (mult(X),ord" g, ... (1.36)

It follows from 1.4.16 that ordéd)gg?) = Ordg(ggg)) does not depend on the choice

of the elimination algebra Qg?). It neither depends on the immersion, by Theorem
1.4.17. For this reason, we will sometimes use the notation

d
ord{?(X),

which does not depend on the particular choice of the Rees algebra attached to the
maximum multiplicity, neither on the embedding. In fact, it can be proven that a
resolution of the Rees algebra Qg?) induces a sequence of blow ups on X such that

max mult(X) decreases, so gﬁ?) is strongly related to the set Max mult(X).

Indeed, a different approach to the definition of this invariant, via projections, can
be found in [2, Chapter 7]. There, given X of dimension d, for a suitable projection
of generic rank m = max mult(X) over a smooth scheme V(? of dimension d over
a field of characteristic zero, a Rees algebra G over V(@ is constructed ([2, Lemma
7.2.1]), so that it represents the maximum multiplicity in the following sense:

1. B induces a homemorphism between Max mult(X) and Sing(G);

2. Any G-local sequence on V induces a compatible mult(X)-local sequence ; :
X, — X, 1fori=1,...,7r, Xg = X, and compatible finite dominant mor-
phisms of generic rank k 3; : X; — V;, fori=1,...,r, Vo = V:

Xo X1 ... X,
\LB \Lﬁl iﬁr
Vo Wi . Vr
3. Moreover, for i = 1,...,r, §; defines a homeomorphism between Max mult(X;)

and Sing(G;).

Our main result (Theorem 4.0.1) will show that, over fields of characteristic zero,
this invariant, ordéd) gg?), can be obtained from the arcs in X through &.

32
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FEzample 1.5.4. In Examples 1.4.21 and 1.4.26, we already computed some elimina-
tion algebras, which show the invariant ordgd) (X) for the corresponding varieties:

e For X; = V(22 — y3) as in 1.4.21, ordél)(Xl) =3/2.

For Xo = V(22 — 2% y® — 2%) as in 1.4.26, ordél)(Xg) =4/3.

For Xy = V(23 — 4322) as in 1.4.21, ordéQ) (X4) =5/3.

For Xg = V(23 — 2y2? — y23 + 25) as in 1.4.21, ord?) (X¢) =4/3.

For X7 = V(zy — z*) as in 1.4.21, ord?) (X7)=1.
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Chapter 2

Arc Spaces and Singularities

In the origin of the concepts of arc and jet spaces is the study of singularities of va-
rieties by J. F. Nash ([69]). Later, many mathematicians have studied these objects
from different points of view. Along this chapter, we will introduce jets and arcs,
and point out how the spaces of arcs and jets happen to be the schemes representing
interesting functors ([50],[8]). Then, we will show how they can be constructed from
Hasse-Schmidt derivations ([83]), and afterwards stop at some properties of their
topology ([56], [69], [45], [46], [28], [50]). We will also show the natural connection
between arc spaces and valuations ([46], [24]). We list some results about the re-
lation of singularities to the properties of their arc and jet schemes, due to various
authors ([67], [48], [49]). The last section is devoted to introducing the Nash mul-
tiplicity sequence ([58], [40]), which will be the base of the new invariants that we
shall define in Chapter 3.

2.1 Jet and Arc Schemes

Let X be a scheme of finite type over a field k.

Definition 2.1.1. For any k-algebra A and a fixed m € N, an m-jet in X is a
morphism
Ym : Spec(A[t]/t™ ) — X.

An arc in X is a morphism
a : Spec(A[[t]])) — X.

The center of an m-jet ~, respectively of an arc «, is the image by vy, resp. «, of
the closed point of Spec(A[t]/(t™*1)), resp of Spec(A[[t]]), that is,

Ym ((t)) C X, resp.
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2. ARC SPACES AND SINGULARITIES

a((t)) C X.

We will sometimes refer to an m-jet or an arc with center at £ € X as an m-jet or
an arc through &.

Any jet v, in X = Spec(B) corresponds to a ring homomorphism

Yt B — A/ (")
x— o (x) =ag+ art + ... + apt™.

Similarly, an arc in X corresponds to a ring homomorphism

o* 1 B — Al[t]]

xr— o’ (z) = Zaiti.
1€N

We will often use these expressions to give examples.
Definition 2.1.2. We define the order of an arc ¢ in X through ¢ € X,
¢ Oxe — K[[1]]

as the largest positive integer n such that ¢(My) C ("), where M is the maximal
ideal of the local ring Ox ¢, and denote it by ord(y).

Proposition-Definition 2.1.3. Let X be a scheme of finite type over k. For a
fized m € N, consider the functor from k-schemes to sets mapping

y Imy Homy (Y X Spec(k) Spec(K[t]/tm+1),X).

This functor is representable by a scheme of finite type over k ([50, Proposition
2.2]). We call this scheme the scheme of m-jets of X, and we denote it by L, (X).

For any field extension K D k, the K-points of £,,(X) are the morphisms

Ym : Spec(K[t] /™) — X.

Ezamples 2.1.4. For a given X, we have:
o Lo(X)=X.

e L1(X) = {l:lis alinear form through some point { € X} = [J¢c x {tangent space of X at {}.

For every p > m, there exists a truncation morphism
A[t] /P — A[t] /¢!
and an induced projection
Tpm  Lp(X) — L(X). (2.1)
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2.1. Jet and Arc Schemes

That is, each p-jet on X gives, by truncation, an m-jet via

Spec(Alt] /tp+1)

|

Spec(A[t]/t™+1)

X (2.2)

The projections 7, ,,, for m < p, give a projective system that allows us to define:

Definition 2.1.5. The space of arcs of X is the inverse limit

:@EmX

meN

Theorem 2.1.6. [8, Corollary 1.2] The space of arcs L(X) of X represents the
functor from the category of k-schemes to the category of sets given by

Y ~25 Homy, (Y %z Spf(Z[[1]]), X) -

The space of arcs of X is a scheme, which is not of finite type, and whose K-points
for any field extension K D k are the morphisms

a : Spec(K[[t]]) — X.

We shall use the same name for « as a K-point of £(X) and for it as a morphism.

The truncations A[[t]] — A[t]/t™T! for each m € N induce natural projections
Txm : L(X) — Lin(X). (2.3)

Remark 2.1.7. Every arc in X gives an m-jet for all m € N via the truncation
Tx,m. However, not every m-jet is the truncation of an arc. The conditions under
which an m-jet can be lifted to an arc are a consequence of Artin approximation
theorem ([4]).

Of special interest will be the projection

TFX:7T_)(70:,C(X) — X
a— «o(0),

where 0 denotes the closed point of Spec(A[[t]]). Note that a(0) C X is the center
of  in X.

Ezample 2.1.8. Consider the n-dimensional affine space over k,
= Spec(k[z1,...,xy]).
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2. ARC SPACES AND SINGULARITIES

The m-jet scheme of A} for a fixed m € N is

L (A}) = Spec(k[a:go), 20 $§1)7 o ,:Ugm), .. ,x(m)}),

A K-valued point of £,,,(A}), say
Ym = (ago), a0 ,agm), aMmy e Knm
corresponds to a homomorphism of rings
k[, @] — K[t/ (T
T;—> ago) +a£1)t+...+agm)tm, i=1,...,n.
In a similar way, a K-valued point
a= (ago), a0, agl), al)) ) e L(AD)
corresponds to a homomorphism
o klxy, ... 2, — K[[t]]
T; —> Zagj)tj, 1=1,...,n.
jeN

Let a be an arc in Spec(B), a* : B — K][t]]. Then the preimage of the ideal (¢) is
a prime ideal P in B. This prime corresponds to the center of a.

2.2 Jets and Arcs via Hasse-Schmidt derivations

In order to understand the jet and arc spaces of affine algebraic varieties, we can
consider the equations defining them as subsets of affine spaces (infinite dimensional
affine spaces in the case of arcs). To see how these equations arise, we introduce
now Hasse-Schmidt derivations. For more details about the constructions described
along this section, we refer to [83].

Definition 2.2.1. Let A be a ring and let B and R be A-algebras, with f : A — B.
Fix m € NU {oo}. A Hasse-Schmidt derivation of order m from B to R over A is

a sequence
(Do, D1,...,Dp)

where
Dy:B— R
is a homomorphism of A-algebras and for i =1,...,m,

is a homomorphism of abelian groups, satisfying
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2.2. Jets and Arcs via Hasse-Schmidt derivations

1. For any a € A, D;(f(a)) =0,
2. For any x,y € B, D;(zy) = Zj—i—k:i D;(z)Dy(y).

From now on, when we consider a Hasse-Schmidt derivation of order m, this m can
be either a natural number or infinity.

Remark 2.2.2. If D = (Dy, ..., D,,) is a Hasse-Schmidt derivation of order m from
B to R over A, then R can be seen as a B-module via Dy, and:

e D : B — Ris a derivation over A.

e Foralli=1,...,m, D;: B— R is a differential operator of order at most 7.
That is, an A-linear map such that for any b € B, [b, D;] =b-D;(e)—D;(b-e) :
B — R is a differential operator of order at most ¢ — 1 if ¢ > 0, or a B-linear
operator if ¢ = 0. Indeed, it is easy to see that D is, since for any b € B,

[b,Dl] (C) =b- Dl(C) — Dl(bC) = —Dl(b) -cVec e B,

so [b,D1] : B — R is a differential operator of order 0, and for any n =
2,...,m, under the assumption of D,,_; : B — R being a differential operator
of order n — 1, we have that [b, D,] : B — R is also a differential operator of
order n — 1 for any b € B:

n

[b, Dy] (¢) = b Dp(c) — Dn(b-c) =b-Dy(c) = > Di(b)Dp_i(c) =
=0

= iDi(b)Dn_i(c) Ve e B.
i=1

Ezample 2.2.3. Let A be a ring and let B and R be A-algebras with char(R) = 0
and R C B. Assume that D : B — R is a derivation over A. Then the sequence
(Do, ..., Dy,), where

1 .
_Di = TDI
2!

for i =0,...,m, is a Hasse-Schmidt derivation of order m from B to R over A.

Ezample 2.2.4. Let D = (Dy,...,Dy;,) be a Hasse-Schmidt derivation from B to R
over A of order m, and let » € R. Then D’ = (Dy,..., D, ) where

DgzriDi for 1=0,...,m

is also a Hasse-Schmidt derivation from B to R over A of order m. To see this, note
that D, = Dy, and that the D} are homomorphisms of abelian groups, and satisfy
that

1. for any a € A, Di(f(a)) = r'D;(f(a)) =0, and
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2. ARC SPACES AND SINGULARITIES

2. for any z,y € B,

Dj(xy) = r'Di(xy) = > /T Dj(@)Dr(y) = Y (W D;j())(r*Dily)) =
Jjt+k=i Jjt+k=i
= Y Di(z)Di(y).
Jjt+k=i

Definition 2.2.5. Given a ring A and an A-algebra B, f : A — B, let By, =
Blz',2",...,2(™)],cp. Let us define for i = 0,...,m

di: B — HSE 4 = B /I
z— 2,

where [ is the minimal ideal containing the sets

$1={@+y? -2 —y®:2yeB} ,

i=1,....m
_ () .
Sy = {f(a) rac A}@':L...,m’
Sy = {(a:y)(i) - Z aDyk) 2y € B} :

The quotient by the elements in S7 guarantees that the d; are group homomorphisms,
and the quotient by the elements in Sy and S5 respectively guarantee that the
conditions (1) and (2) from Definition 2.2.1 hold. Hence,

(doy---ydm)

defined in this way is a Hasse-Schmidt derivation of order m from B to B,, over A.
We call it the universal derivation. Note that m can be infinity here.

Ezample 2.2.6. Let A=k, B = k[z,y] and
R=klzo=zyo=y,m1 =21 =y, ma=2" =9, .. ,am =2, yp, = y™]/I
as above. Let us compute dy, di and do for 2 — y® € B:

do(2* — y*) = do(2?) — do(y*) = do(x)do(x) — do(y)do(y®) =

= do(x)do(x) — do(y)(do(y)do(y)) = do(x)* — do(y)® =

.2 3_ .2 3
=Ty~ Y =T —Y

di(2® — y°) = di(2?) — di(y°) = 2do(2)dy (x) — do(y)d1(y®) — di(y)do(y*) =
= 2do(z)d1 (x) — do(y) (2do(y)d (y)) — di(y)do(y)* =
= 2zox1 — 2y5y1 — y1yg = 22(2) — 3y*(Y)
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2.2. Jets and Arcs via Hasse-Schmidt derivations

dy(2® — y?) =dy(2?) — da(y®) =
= [2do(@)da(w) + di (@)dr ()] — [do(y)da(y?) + di (y)da (v)+
dao(y)do(y)] = [2do(2)da () + d (2)2] — [do(y) (2do(y)da (y)+
di(y)?) + di (y)(2do(y)da (v)) + da(¥) (do()?)]| = 2202 + 23—
2u5y2 — Yoyt — 2yoyi — Yov2 = 2x(z") + (2')? = 347 (y") — 3y(y')*.

Remark 2.2.7. With the setting from Definition 2.2.1, note that HS”BI/A is a B-
algebra, and also an A-algebra via f. Indeed, it is a graded algebra with

deg(d;(z)) =i Vx € B.

Remark 2.2.8. With the setting from Definition 2.2.1, let ¢ : ¥ — R be a
homomorphism of A-algebras and (Dy, ..., D,,) a Hasse-Schmidt derivation of order
m from B to R’ over A. Then, it induces a Hasse-Schmidt derivation of order m
from B to R over A:

(poDy,...,00Dy,): B— R.

Let us denote by Der’y (B, R) the set of Hasse-Schmidt derivations of order m from
B to R over A. We have a covariant functor Der’} (B, e) from the category of A-
algebras to the category of sets given by

R +—— Der’} (B, R).

On the other hand, given a Hasse-Schmidt derivation of order m from B to R over
A, (Dy,...,Dy,), there exists a unique A-algebra homomorphism

¢:HSE, — R

such that (Do, ..., Dy,) = (¢ ody,...,¢ody). That is, there exists a unique ¢ such
that for ¢ = 1,...,m the diagram

B Di R
e

HSE/A

(2.4)

commutes. Note that any element & € HSE/ 4 is the class of an element @ e
Blz© = 2,2/ 2", ..., 2(™)],cp, for some z € B. It is enough to set

¢ B[x(i)]a:eB,z‘eZZO — R

29— Dj(x)
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2. ARC SPACES AND SINGULARITIES

and define ¢ as the map induced by ¢ for the quotient of B[x(i)]xeg’iezm by the
ideal I in Definition 2.2.5. It is well defined since the definition of Hasse-Schmidt
derivations guarantees that the D; are such that I is contained in the kernel of ¢
defined as here.

We may conclude, by replacing R’ in Remark 2.2.8 by HS% /4 and (Do, ...,Dy,) by
the universal derivation, that the map

HomA(HSgL/A, R) — Der’} (B, R) (2.5)
(;5}_) (¢Od05"°7¢odm)
is bijective:

Theorem 2.2.9. The B-algebra HS?/A together with (do,...,d) represent the
functor Der'} (B, e).

Definition 2.2.10. Note that HSEL/A is a B-algebra. It is the algebra of Hasse-
Schmidt derivations of B/A of order m.

It is not very difficult to observe a relation between Hasse-Schmidt derivations and
m-jets. Let us develope here the tools to connect them for any variety. The first
clue is given by the following Lemma:

Lemma 2.2.11. Let A, f : A — B be as before and let R be an A-algebra and
fit m € N. Let D = (Dy,...,Dp) : B— R be a Hasse-Schmidt derivation over

A of order m. It is possible to define a homomorphism of A-algebras from B to
R[t]/ ™) as follows:

¢: B — R[t]/(t™1)
x+—— Do(x) + Di(x)t + ...+ Dp(z)t™.
Moreover, there is a bijection
Der'} (B, R) — Homa(B, R[t]/(t™)) (2.6)

Proof. The definition of the D; guarantees that the defined map is a homomorphism
of A-algebras, and the map in (2.6) taking each higher order derivation to the ho-
momorphism constructed in this way is obviously injective, since the coefficients of
the image polynomial for each element in B are determined by the derivation. To
see that it is surjective, let

p: B — R[t]/(t™)
x— p(x) = a(()x) + ag‘r)t +...+ a%)tm,
and then define
pi:B— R

CC'—>QOZ(CU) :ai ’
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2.2. Jets and Arcs via Hasse-Schmidt derivations

for i = 0,...,m. It is clear that g is a homomorphism of A-algebras, since it can
be seen as the composition of two homomorphisms of A-algebras: ¢y = ¢ o z, where
z: R[t]/t"™ — R maps t to 0 and is the identity on R. It is as well easy to check
that the @; for i = 1,...,m are homomorphisms of groups so, to see that

(¢0y---rom): B— R

is a Hasse-Schmidt derivation over A of order m, it only lasts to observe that, for
1=1,....,m,

e since ¢ is a homomorphism of A-algebras, for all a € A one has ¢(f(a)) =
a-o(l) =a. But
p(f(a)) = po(f(a) +d_wilf(@)t' =a+) 01,
i=1 i=1

so pi(f(a))=0foranya € A, i=1,...,m;
e for any z,y € B, if p(z) = 37" a;t’ and ¢(y) = 1" bit’, then
p(zy) = p(2)p(y) = (Z aiti> <Z biti> =D | 2 a1
=0 i=0 i=0 \i=j+k
and hence ¢;(zy) = 35— aibk = Xizjir 05 (@)er(y)-
0

Corollary 2.2.12. The bijections in (2.5) and (2.6) lead to a new bijection through
the universal derivation:

Hom(HSE 4, R) — Hom(B, R[t]/t"*1) (2.7)
¢ — Vg,
for any A-algebra R, given by
g : B — R[t]/(™)
& — ¢(do(z)) + ¢(di ()t + . .. 4+ O(dp(x))t™.

Assume that X = Spec(B) is an affine scheme over k = A, and let R = k. The
previous bijection assigns to each homomorphism ¢ from HSE/ 4 to R a Hasse-
Schmidt derivation, by composing ¢ with the universal one, and then an m-jet v,
mapping each x € B to ¢(do(x)) + ¢(di(z))t + ... + ¢(dm(z))t™.

Remark 2.2.13. If R in Corollary 2.2.12 is also a B algebra, say
ALy B %R
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2. ARC SPACES AND SINGULARITIES

| Hom4(HSE, 4, R) || Der'} (B, R) | Homa(B, R[t]/t™) |
¢ HSE,, — R D:B—R ¢: B — R[]/t"T
D = (Dy,...,Dn)
o([20]) = Di(@) | D) =(ag”,....ai)) | el@) = Xrgalt
= (¢pody(x),...,podn(x)) = Yizo Di()t"
= >0 o(di(x))t’

Table 2.1: Correspondence

then (2.7) induces a bijection
Homp(HS 4, R) — {7 € Homa(B, R[|/t") : 207 = g},

where z : R[t]/t™! — R is the identity on R and maps t to 0. Note that any
¢ € Homa(HS}, 4, R) which happens to be also a homomorphism of B-algebras
must satisfy ¢ o dyg = g (by the correspondence in the table above). But the image
of such a homomorphism by (2.7) is a ring homomorphism

= pody(x)+t-q,

where ¢ € R[t]/t™! so necessarily z o y(x) = ¢ o do(z) = g(z) for all x € B, and
hence zo~vy = g.

Let us go back to the B-algebras HSZ;/ 4 for each m € N. Via the truncation
morphisms in (2.1) we have, for 0 < m < p < oo, homomorphisms of graded B-
algebras fp, p:

fm.p

HSY) 4 HSY, (2.8)
B

satisfying fp,m = Id for any m € NU {oo}, and

fmp = fep© fmk
for any 0 < m < k < p < co. They give a direct system, and we denote
meN

This fact gives rise to analogous bijections to (2.5), (2.6) and (2.7) for the con-
text of arcs and Hasse-Schmidt derivations of infinite order. More precisely, each
commutative diagram
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2.2. Jets and Arcs via Hasse-Schmidt derivations

where D = (Dg, Dq,...) € Dery (B, R), d is the universal derivation of B/A, and ¢
is a homomorphism of A-algebras, corresponds to a homomorphism

oy« B — R[[t]]
r — ZDi(:U)ti = z:qb(alz(:zi))tZ
ieN i€N

That is, every Hasse-Schmidt derivation of B/A corresponds to an arc in Spec(B).

Fundamental exact sequences

Similarly to what happens for the module of first order differentials, one can con-
struct exact sequences which yield interesting properties of the algebras of Hasse-
Schmidt derivations. These will be exact sequences of A-algebras. Let

ALy B 9% ¢

be a sequence of ring homomorphisms. Fix m € NU {oc}. Consider the A-algebras

of Hasse-Schmidt derivations of order m of B/A, C'/A and C/B (via h = go f)
respectively: HS%, 4, HS¢y, and HSZ) 5. Note that both HSg, and HS¢y 5 are
quotients of the same C-algebra

C[x(i)]mec;i:L...,m
as in Definition 2.2.5, by ideals I/4 and I¢,p respectively,
Ic/ja Clgp C CleMpeciizt, .m-

The difference between both ideals is due to the difference {g(b) : b € B\ A} between
the generating sets So from Definition 2.2.5 for HSZ}/A and HS”01/3.

Theorem 2.2.14. [83, Theorem 2.1] (First fundamental exact sequence) The se-
quence of graded C-algebras

0 — (HSE,4)"HSE 4 — HSE , — HSE 5 — 0, (2.9)

where (HS’];,Z/A)+ is the irrelevant ideal, is exact.

Theorem 2.2.15. [83, Theorem 2.2] (Second fundamental exact sequence) Assume
that B -2 C is surjective, and denote I := Ker(g) C B. The sequence

0— J— HSE/, — HSZ y — 0,

where J := (x(i))xg;i:o,m,m C HS’E‘/A, s exact.
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2. ARC SPACES AND SINGULARITIES

Base changes

We will show now how HSQ/Y can be constructed for an arbitrary morphism of
schemes X — Y. The following result ensures that a sheaf HS'¢ Iy of Ox-algebras
can be defined by gluing the algebras of Hasse-Schmidt derivation of open affine
subsets of X and Y. We will afterwards work locally on affine subsets, knowing that
the jets and arcs schemes of affine schemes can be glued together to define the jet
and arc schemes of the glued scheme.

Theorem 2.2.16. [83, Theorem 4.3] Let f : X — Y be a morphism of schemes,
and let m € NU {oo}. Then, there exists a quasi-coherent sheaf HSY )y of Ox-
algebras such that:

1. For each

Spec(A) CY and
Spec(B) C f~!(Spec(A)),

open affine subsets, we have an isomorphism of B-algebras

® 45+ (D(Spec(B), HSY y)) — HSJ .

2. The pair
(HS%Y, ((I)A/B)A,B>

formed by the sheaf of Ox-algebras and the collection of isomorphisms in 1.
is unique up to unique isomorphism.

This is a consequence of two localization properties that Lemmas 2.2.17 and 2.2.18
below provide.

Assuming that Y is affine, Y = Spec(A), take Spec(B) C X. The first localization
property that we have is:

Lemma 2.2.17. Let f : A — B be an injective ring homomorphism, and fix
m € NU{oo}. Let S C B be a multiplicative subset. Then there is an isomorphism

S_IHS}Q/A 2, HSS 154
induced by the map
B[x(i)]xeB,i:L...,m — S_lB[y(i)]yGS”Buizlmm'

Proof. This lemma is a consequence of the fact that the localization map B —
S~1B is formally étale. The fact that it is formally unramified gives, first, a chain
of ring homomorphisms

Homp (HSE1 5/, R) — Homp (S7'B, R[1]t™+") = Homp (57" B, R)
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2.2. Jets and Arcs via Hasse-Schmidt derivations

for any B-algebra R. For the first isomorphism one only needs Corollary 2.2.12,
and the second one is given by ¢ — z o ¢, where z maps ¢ to 0 and is the identity
in R, which is obviously surjective, and whose injectivity comes from the formally
unramification of S™!'B over B. Hence,

Homp (HSE”AB/B,R> =~ Homp (S*lB,R)

for any R, so necessarily HS¢" 1 5 /B = S~!B. From this, we will show that the map
S_lHSE/A — HSg 1 /4 Is surjective.
Since

A—B—S'B

is exact, the first fundamental sequence (2.9) given in this case a sequence of graded
S~!B-algebras

+
0— (HS}),) HSZ 14 — HSE 150 — HSE 150 — HSZ 1y — 0. (2.10)
I
S1B

By looking at the part of degree 0, we have
0—0-—HS 15, =5"'B—S'B—0,

while the parts of degree ¢ for each i > 0 give us exact sequences
L\ it i
0 — (Sl ) HSGp 4 — HSk1p4 — 0 — 0. (2.11)

Let us prove that W is surjective by showing that it is surjective in each degree
1=0,...,m. It is clear for degree 0, since

STHSR 4 = ST'B=HSG 15,4

Assume that it is true for every degree smaller than i. Now, any element vy €
. . +

Hng_lB/A is a finite sum 5 ap, where ag € (HS?/A) , B € HSIS_lB/A for some
[ <i, by (2.11). We may actually assume that v = a - 3, where 8 = d;(z) for some
[ < i and some x € B. This implies that o € HSE/Z 4> SO « is necessarily the image
of some & € S‘lHSjBT/lA by induction hypothesis. Therefore - 8 = ¥(& - ) lies in
the image of SleSE/Xl by ¥, as we wanted to prove.

To prove the injectivity of W, let us show that, in fact, there is a section

E: STHSE s — HSG 14,
satisfying =Z o W = id. This is equivalent to showing that
Homg-15(HSg-15/4, R) — Homg-15(S™'HS} 4, R)
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2. ARC SPACES AND SINGULARITIES

is surjective for any S~!B-algebra R, say

B ! R

S~'B
and then replacing R by S_IHS%?/A. But note that
Homg-15(S™'HSE, 4, R) = Homp(HSE 4, R).

Moreover, by Remark 2.2.13, finding ¥ is equivalent to having a map

Homg-15(HSg-15/4, R) {7 € Homu (S71B, R[] /t™ ") : 204/ = g}

E

Homp(HS 4, R) {Homy (B, R[t]/t" ) : zoy = f}

Since S~ B is formally smooth, any v : B — R[t]/t™*! is the image by ¥ of some
7'+ S71B — R[t]/t™*! via the diagram

S™1B —— RJ[t]/t"t!

|

= R[t]/tm'H

which proves the surjectivity of U and, as a consequence, the injectivity of U. [

The property described by Lemma 2.2.17 is functorial in S, and gives the gluing
condition that we need to construct HS'y n% if Y is affine. Now let Y be any scheme,

take Spec(A) C Y and Spec(B) C f~!(Spec(4)).

Lemma 2.2.18. /83, Lemma 4.1] Let f : A — B be a ring homomorphism, and
fizr m € NU{oo}. Let S C A be a multiplicative subset such that f factors through
S—YA. Then, there is an isomorphism

Proof. The hypothesis on f implies that the elements f(s) € B are invertible in B
for all s € S, via

A / B

S A

S—1A
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2.2. Jets and Arcs via Hasse-Schmidt derivations

Note now that

B[x(i)]zGB,i:O,...,m
Ip/s-14

B[x(i)]xGB,i:O,...,m
Ip/a

and HSTB!L/SflA —

)

HS%L/A -

where Ig/g-14 D Ip/a, being the difference generated by the elements of the form
(f(s7'a))@ for some s € S, a € A and i € {0,...,m}. However, we will see that in
fact both ideals coincide. Let us show that for any ¢ = 0,...,m, and for any a € A
and s € S, (f(s 'a)) € Ig/4. We proceed by induction:

o (f(s))© = f(s7'a) = f(s~')f(a), and note that f(a) € Ip/4 and that f(s)
is invertible in B. Then, necessarily f(s™'a) € Ip/a.

e Assume (f(a'a))t~V e Ig/a. Then (f(ss71a)® = f(a)® € Ip 4. But

(f(ss_la))(i) = Z (f(s))(j)(f(s_la))(k) =
i=j+k
= > (FE)D(fF(s7 )P + F(s)(f (s a) D,

i=j+k,k<i

where (f(s7'a))® ¢ I/ for all k < i, and f(s) is an invertible element in
B. Hence, (f(s7'a))® ¢ Ipya.

O

This property is functorial in S, and the combination of both lemmas give the
following commutative diagram for any multiplicative sets T C B and S C A such
that A — B factors through S—!'A:

TﬁlHSTg/A I TﬁlHSg/SflA

| l

HS]n;L*lB/A —— HSTle/SflA

These gluing properties yield the construction of the sheaf HS'y¢ nE which allows us
to define the jet schemes of arbitrary schemes.

Definition 2.2.19. Let X — Y be any morphism of schemes. The scheme of
m-jet differentials of X over Y is defined as

Jn(X/Y) := Spec(HSY,y ),

where HS?/Y is a sheaf of algebras, so Spec(HSQ/Y) is constructed by gluing
affine schemes. If X = Spec(B) and Y = Spec(A), then J,,,(Spec(B)/Spec(4)) =

Spec (HS%L/A) .
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2. ARC SPACES AND SINGULARITIES

For X — Y, the morphisms fy,, : HSE, 4 — HSB/A in (2.8) for A — B can be
glued together, and there exist graded homomorphisms of O x-algebras

for 0 < m < p < oo, and
HSY)y = lim HSY )y
meN
These induce morphisms of schemes
Tpan : p(X)Y) — Ju(X/Y), p>m,
satisfying 7, m = Id for any m € NU {oo}, and
Tp,m = Tk,m © Tp.k
forany 0 <m < k <p < oo.

Definition 2.2.20. The scheme of arc differentials of X over Y is defined as

J(X/Y) = lim J(X/Y).
meN

Examples

FEzample 2.2.21. Let Y = Spec(k), and let X C A} = Spec(k[z1,...,2,]) be an
affine variety over k defined by X = V(f) for some f € k[z1,...,z,]. The m-jet
scheme of X, for a fixed m € N, is given as

S R B N o)
L (X) = Spec
) ( (frdi(f),-- - dm(f))
The arc space of X is
k:[xgo),...,x%o),a:’l,...,x’ .
L(X) = Spec ns .
) ( (f,da(f),-.)

Let us go back to Example 2.2.6. For X1 = V(22 — %) C Spec(k[z,y]), we have

Lo(X1) = X1 = Spec (k[m,y]) ,

(22 = y%)
_ klz,y, o', y]
£1(X1) = Spec ((x? — %, 2(2') — 3y2(y')>) !
B y k[m, n x/7 y/7 x//, y//]
£2(X1) - Sp ((mQ _ y3’ 2x(x’) _ 32/2(?/), 21.(33//) + (QJI)Q _ 3y2(y//) _ 3y(y/)2)> ’

x,y, 2y 2y 2y

k|
L3(X1) = Spec [ (22 — 3P, 22(2') — 3y° (y) ( )+($’)2—3y2(y”)—3y(y’)27
2a(a’) + 2(2")(2") — 3y*(y"") — 62(y) (") — (¥/)?)
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2.2. Jets and Arcs via Hasse-Schmidt derivations

Ezample 2.2.22. Let Y = Spec(k) and let Xg = V(zy — 23) C Spec(k[x,y, z]). Then

B k[m,y,z,xl,y/azl]
L1(Xg) = Spec ((xy — 23 2(y) + (2)y — 322(2/))> )

klx,y,z, 2,y 2" 2"y, 2"]
(zy — 2%, 2(y) + (2')y — 322(¢),
z(y") + (&) (Y) + (2")y — 32°(2") — 32(2")?)

EQ (Xg) = Spec

k:[a:,?(y’ Z7 x/éy/, 2/7)x//7(:y”,)2 I/N, y///), ZNI]

— Soec xy — 27, 2(y') + x’y—SzQ(

£a(Xs) = Sp wly) + () + (& )y —32(") = 5a(
(") + @) ") + @) W) + @)y — 3227 -

)

62(2)(z") — (')?)

Ezample 2.2.23. Let Y = Spec(k) again and let now X9 = V(zy—=z°) C Spec(k[z,y, z])

In this case K] |
T, 2
ﬁo(Xg) = Xg = SpeC ((:Cy—yZQ)) y
k[':v?y? z? x’?y’)’zl] )
Xo) =
£106) = Spee (o )

klx,y,z, o',y 2" 2" 4", 2]
L2(Xg) = Spec (zy — 2%, 2(y) + (¢')y — 22(),
z(y") + (@) () + (2")y — 22(2") = (+)?)

k[x y7z :L,/,2y/ Z/ x//’y//’zll,x ,y// Z///]

— Spec (zy — 2% a(y) + (2')y — 22(2"),
Fal o) =5 2(3) + (@)) + ()~ 22()
o(5") + @) + (@) + @)y - 22()

()%,

—2(z")(z"))

Ezample 2.2.24. Let us consider now the m-jets for X which are centered at the
origin. The arcs satisfying this condition for the previous examples correspond to

the following:
e For X, the 1-jets with center the origin (0,0) are
k’ !0
Spec< I:x7y7x7y]>’
(z,y)

the 2-jets centered at (0,0) are

Spec <k[$, y, ', y’,:v”,y”]>
(z,y, (2")?) ’
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2. ARC SPACES AND SINGULARITIES

and the 3-jets with the same property are

Spec (k['r? y? x/ﬂ y/7 xl,? y”? "E,//7 y,/,] )
(@, y, ('), (v)?)

The k-3-jets of X will correspond then to morphisms:

V5 ¢ klz,y] — k[t]/t*
x — at® + b3
y — ct + dt* + et?,

where a,b, c,d, e € k and either ¢ or d must be zero.

e For Xg, the 1-jets with center the origin (0,0,0) are

(k[I) Y, z, xlv y,) Z,] )
Spec )
(z,9,2)

the 2-jets with center the origin are

k[m7 y7 Z? xl? y/7 2/7 wl/? y//7 z//]
Spec AV ,
(@,y, 2, (@) (y))

and for the 3-jets we have
/ / / ! /! " " "
k[$7y7z?x7y7z7x 7y ?Z 7'%. 7y Y

Spec ( al > .
(@,y,2, (&) (W), (@)(y") + (@) () — (2')%)
e As for Xg, the 1-jets with center the origin are
Spec (k[w,y,zax’vy’,2’1> 7
(z,9,2)
the 2-jets through the origin are given by
k / / / ! /! "
Spec< [$7y7z7$7ly7’z’7x 7y/722: :I)7
(z,y,2, (@) () — (¢)?)

and the 3-jets

k[]} y z x/ yl ZI x// y// z// wl// yI// ZI”]
RN e N T R e R eI ),

Remark 2.2.25. Let X = Spec(B) be a variety over a field k, and consider the
map

Spec (

mx LX) — X
a— a(0),

mapping each arc to its center. This corresponds to a ring homomorphism:
B — HS?(O/Spec(k)

where, for any point (arc) o of £(X) corresponding to a prime ideal Qo € HST g ec (1)
the preimage by this ring homomorphism is the prime ideal in B defining the center
of the arc «.
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2.3 Structure of Arc spaces

The distinction between thin and fat arcs arises in the study of constructible subsets
of jet spaces and cylinders ([28]). It is related to the connection between arcs and
valuations, and helpful in the study of the components of arc spaces of varieties.

Definition 2.3.1. Let X be an irreducible k-scheme of finite type. An K-arc « in
X is fat if & does not factor through any proper closed subscheme Z C X. That is,
a : Spec(K[[t]]) — X is fat if for no proper closed subscheme Z C X, a € L(Z).
Equivalently, « is fat if a(n) € X is the generic point of X, where 7 is the generic

point of Spec(K[[t]]). That is, if Im(«r) = X. An arc which is not fat is called thin.

Fat and thin arcs, as points of the arc space, induce a notion of fat and thin subsets
of the same space:

Definition 2.3.2. An irreducible (not necessarily closed) subset C' C L£(X) is thin
if there exists a proper closed subset Z C X such that C' C £(Z). An irreducible
C C L(X) is fat if it is not thin.

Proposition 2.3.3. [47, 2.19] An irreducible, not necessarily closed, subset C C
L(X) with generic point v € C' such that v D C' is fat if and only if v is a fat arc.

Ezample 2.3.4. Consider X19 = V((2? — y®)? — 2%) C Spec(Clx,y, z]). The C-arc ¢;
given by
()OT : (C[x7y7 Z] — C[[t“
13
Y t2
z—0
is a thin arc, since it factors through the subvariety Z = V(2?2 — ¢3,2) C X19. On
contrary, the C-arc ¢
(P; : C[l’,y, Z] — (C[[t]]
x> 263
Y= t2
2 > /3t

does not factor through Z.
Ezample 2.3.5. The arc in X; = V(2? — 3®) C Spec(k[z,y]) given as!

(0" (x), " (y)) = (t*,1%)

is fat.

'Let us use this abbreviate notation from now on.
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2. ARC SPACES AND SINGULARITIES

Ezample 2.3.6. Consider X; = V(22 — y?) C Spec(k[z,y, 2]). Any k-arc of the form

(" (), 0" (), 0" (2)) = (1*,1%, ),

for a € k is thin, while the k(x)-arc

(" (), 97 (y), ¥"(2))

where y is transcendent over k, is fat.

%, %),

Proposition 2.3.7. [46, Proposition 2.5] Let X be a variety over C, and let « :
Spec(K][[t]]) — X be a K-arc. Then « is fat if and only if the induced ring homo-
morphism o* : Ox o) — K[[t]] is injective.

The following property lets us study arcs through the resolution process:

Proposition 2.3.8. [46, Proposition 2.5] Let X and Y be two varieties over k, and
let o : Y — X be a proper birational map. If o € L(X) is a fat arc, then « lifts to
an arc o € L(Y).

2.4 Arcs vs. valuations

Let X be a reduced scheme of finite type over an algebraically closed field k. For any
field extension K D k, an arc a : Spec(K][[t]]) — X defines a ring homomorphism

ba : Ox a0) — N U {oo}
fr— ordia™(f).

This homomorphism can be extended to a valuation in the function field of X if and
only if the image of the generic point of Spec(K[[t]]), a(n) is dense in X. That is, if
and only if « is a fat arc in X. To make this precise, let us start by a more general
concept to that of valuation (from [75]).

Definition 2.4.1. Let R be a k-algebra. A (discrete) semi-valuation v in R is a
map
v:R— NU{oo}

satisfying:
L. o(fg) = v(f) + v(g) for any f,g € R,
2. v(f +g) = min{v(f),v(g)} for any f,g € R,
3. v(0) = 0o and
4. v(\) =0 for any X € k \ {0}.
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Note that condition (3) does not exclude other elements g € F', g # 0 from verifying
v(g) = oo. The set

a ={f € R:v(f) =00} 2 (0)

is a prime ideal called the home of v. If a, = (0), then v is a (discrete) valuation.
This is always the case, for instance, if R is a domain. The semi-valuation v gives a
valuation in Frac(R/a,).
The set

Co={f€R:v(f)>0}

is also a prime ideal, called the center of v.

Indeed, if v is a semi-valuation in X, then it is a valuation in Y C X, defined by the
home of v. Let O, C K = Frac(Oy) be the valuation ring of v, and let k, = O, /C,
its residue field. Then we have

Ox Oy Ou—> Oy —2= ko [[1] (2.12)
Ay A

which, for each choice of A, gives an arc a, . Hence, there is not a unique arc
attached to each semi-valuation.

Conversely, any arc « : Spec(K|[[t]]) — Spec(R) induces a semi-valuation

Vo : R — NU {00}
a — vo(a) = ordia™(a)

via

Vo

NU {oc0}

R
K[[t]]

Remark 2.4.2. Each choice of A in (2.12) gives an arc. However, note that all
possible arcs arising from v in this way give rise to the same semi-valuation.

Proposition 2.4.3. [/6, Definition 2.6],[24, 3.1] An arc « € L(X) is fat if and
only if the induced semi-valuation

Vo K(X)" — Z
a — ord;a(a)

1s a valuation.

This last proposition is a consequence of Proposition 2.3.7. For this reason, fat arcs
are also called wvaluative arcs.
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2. ARC SPACES AND SINGULARITIES

2.5 Properties of jet and arc spaces

Let us show here some properties of the schemes of arcs and jets that will lead to
important results about singularities. The proofs and related results can be found
in [50], [46], [47] and [23], among others.

Proposition 2.5.1. Let f : Y — X be a morphism of schemes of finite type over
a field k. Then, for any m € N, finduces morphisms between the respective schemes
of m-jets

and between the schemes of arcs
LYy L= c(x).

Proof. 1t suffices to note that the composition with f gives, for any m-jet 7, (resp.
arc ) in Y, an m-jet 7, (resp. arc /) in X, via the diagram

Y ! X

Y
WT(Q) (@)
Spec(K[[t]])

O]

Remark 2.5.2. If f : Y — X is proper and birational, the fat arcs in Y are in
bijection with the fat arcs in X via f,, as a consequence of Proposition 2.5.1 and
Proposition 2.3.8.

Proposition 2.5.3. [50, Proposition 3.2] Let f : Y — X be a proper birational
morphism of schemes over k. Say that there exist closed subsets U C X and V C Y
such that Y \'V = X \ U via f. Then fo induces a bijection from L(Y )\ L(V) to
LX)\ LU).

Proposition 2.5.4. [50, Proposition 3.3] Let f : Y — X be an étale morphism of
schemes of finite type over k. Then, for all m € N,

Em(Y) = Em(X) XX Y

and
LY)ZL(X)xxY.

Proposition 2.5.5. [50, Proposition 3.4] Let X and Y be schemes of finite type
over k. Then, for all m € N,

Lon(X xXY) = L(X) x Lin(Y)

and
LX xY)=L(X)xLY).
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Proposition 2.5.6. [50, Proposition 3.5] Let X and Y be schemes of finite type
over k. If f Y — X is an open (resp. closed) immersion, then the induced
morphisms between their respective schemes of m-jets for all m € N and between
their respective schemes of arcs are also open (resp. closed).

Remark 2.5.7. Having f : Y — X surjective does not imply that f,, or fo are
surjective. Similarly, if f is closed, f,, and f. do not need to be closed.

Theorem 2.5.8. [69] The set of arcs of a variety X, defined over a field of char-
acteristic zero, with center inside of the singular locus of X has a finite number of
irreducible components.

The following result from Kolchin ([56]) has been deeply studied, specially in order
to understand the irreducible components of the space of arcs, for example, with the
focus on the Nash problem:

Theorem 2.5.9. [56, Chapter IV, Proposition 10] Let k be a field of characteristic
zero. If X is a variety over k, then L£(X) is irreducible.

Remark 2.5.10. Irreducibility of £(X) is not guaranteed if X is a variety over
a field k of positive characteristic. The theorem is also false for £,,(X), even if

char(k) = 0.

Theorem 2.5.11. [45, Corollary 3.3] If k is a field of arbitrary characteristic and
X is a toric variety over k, then L(X) is irreducible.

A large number of works explore the properties of arc and jet spaces of varieties,
many of them focused on their singularities. Examples of this can be found in [38],
[72], [60], [45], [73], [74], [65], [64], [53], [27], [59], [66]. Other applications of arc and
jet schemes are shown, for instance, in [17].

2.6 Arcs and Singularities

Jet and arc spaces give some information about the singularities of varieties. We
expose next a few results in this direction, to give a flavour of the interest in the tools
developed along this chapter in the study of singularities. Afterwards, we will focus
on some specific information that one can extract form the arc space of a variety: the
so called Nash multiplicity sequence, around which the results of this thesis attend.
We will show that it is actually connected to invariants of constructive resolution.

Theorem 2.6.1. [67, Theorem 0.1] Let k be an algebraically closed field of char-
acteristic zero, and let X be a complete intersection variety defined over k. Then
L (X) is irreducible for all m > 1 if and only if X has rational singularities.

The following results from S. Ishii relate smoothness of a variety X to the smoothness
of its jet schemes:
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2. ARC SPACES AND SINGULARITIES

Theorem 2.6.2. [48, Corollary 1.2] Let k be a field of arbitrary characteristic. Let
X be a scheme of finite type over k. Then X is smooth if and only if L,,(X) is
smooth for some m € N.

Theorem 2.6.3. Let X be a scheme of finite type over an algebraically closed field
k. Then:

1. If char(k) = 0, then X is nonsingular if and only if there exist m,m’ € Zxq
with m < m' such that the truncation morphism Ty m Ly (X) — Ly (X)
is flat. ([48, Theorem 1.3])

2. If char(k) > 0 and X is reduced, then X is nonsingular if and only if there
exist m,m' € Zso with m < m’ such that the truncation morphism Ty m,
Ly (X) — Ln(X) is flat. ([48, Theorem 1.4])

In [49], some geometrical properties of m-jets L,,(X) are shown to imply the same
properties of X:

Theorem 2.6.4. [/9, Section 3] Let X be a variety over a field k. Then
1. Ly (X) reduced for some m € N = X reduced.

2. L(X) connected for some m € N < L, (X) connected for any m € N & X
connected.

3. Ly(X) irreducible for some m € N = X irreducible.
4. Ly (X) locally integral for some m € N = X locally integral.

5. Lin(X) locally integral and normal for some m € N = X locally integral and
normal.

6. L(X) locally complete intersection for some m € N = X locally complete
intersection.

Moreover, when it comes to the complexity of the singularities of X, we have

Theorem 2.6.5. [49, Theorems 3.10 and 3.11] Let X be a variety over a field k of
characteristic zero. Then:

1. The existence of m € N such that L,,,(X) has at worst canonical/terminal/log
terminal singularities implies that X has at worst canonical/terminal/log ter-
minal singularities.

2. The existence of m € N such that L,,,(X) has at worst log canonical singular-
ities implies that X has at worst log terminal singularities.

In the same work, flatness of morphisms of schemes is also studied through flatness
of the induced morphisms of jet schemes:

Theorem 2.6.6. [/9, Theorem 4.1] Let X and Y be two schemes over a field k,
and let f: X — Y be a morphism of schemes. If the induced morphism of m-jet
schemes fu : Lin(X) — L,(Y) is flat for some m € N, then f is also flat.
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2.7 The Nash multiplicity sequence

In [58], M. Lejeune-Jalabert introduced a sequence of positive integers attached to
an arc in a germ of a hypersurface at a point, and she called it the Nash multiplicity
sequence. This sequence is non increasing:

mo2>my > mg>...2>2myg > 1

and stabilizes for some k£ € N.

Later, in [40], M. Hickel generalized this sequence for varieties of higher codimen-
sion. The way in which he constructs the sequence, involves a sequence of blow ups
determined by the chosen arc. For this construction, Hickel works with arcs inside
of a germ of a variety at a point (analytic context). We will work with arcs inside
of a local neighborhood of the variety at the point (local algebraic context). We
will explain now this construction carefully, to show the computation of the Nash
multiplicity sequence from this local algebraic point of view.

Let X@ be an irreducible algebraic variety of dimension d over a perfect field k.
Let & be a point contained in Max mult(X (d)), the closed set of points of maximum
multiplicity of X (4.2 For simplicity, we will assume that & is a closed point. This
will allow us to consider the blow up at &, since £ is a smooth center in this case.
In case one wants to consider non closed points, one needs just to localize X at &
before performing the sequences that we will construct in this Section.

Consider the product of X (9 with an affine line. We have a surjective morphism

X@ 2 x D — x (@) o pl (2.13)
given by the projection onto the first component. Let us write & = (§,0), which is
a point in XédH) dominating .

Consider the blow up of X" at &, which we will denote by 1. We will write
deﬂ) for the transform of XédH) under 7. After performing this blow up, we can
choose a new point &; € X}dﬂ), and call w9 the blow up of X{dﬂ) at £1.

Next, we will establish a criterion for the choice of each & € X i(dﬂ)

that we can perform a sequence of blow ups at points in this way.

using an arc, so

(X ) " (X ) T (T ),
(2.14)
Let ¢ € £(X@) be an arc in X (9 through &. That is, we have a local homomorphism
of local rings
@ Ox@e — K{[t]]
Mg — (t"),

2Note that we can always assume this situation for any £ € X, since one can always consider a
neighborhood of ¢ where this is true.
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2. ARC SPACES AND SINGULARITIES

for some positive integer n or, equivalently, a morphism ¢ : Spec(K[[t]) — X (@,
mapping the closed point to €. This, together with the inclusion map i : k[t] — K|[[t]]

gives an arc I’y in X0(d+1) through &
* PRI
I'y: OX(()d+1),§0 — K[[t“
M§0 — <t>

where I'y is the morphism given by the universal property of the fiber product:

3%

(2.15)

(X, €) xj Spec(K[t]) = (X, &) — Spec(Kt])

|

(XD ¢) Spec(k).

Note that I'g is in fact the graph of ¢.
Consider the blow up m of X(()dH) at &. The initial Nash multiplicity of X at
£ is defined as

m = mgy = mult, (X(()dﬂ)) = multg(X(d)),
where the last identity follows from the faithful flatness of (2.13).

After blowing up X(()dH) at & (as in 2.14), the valuative criterion of properness

ensures that we can lift I'y to a unique arc in X de), which we will denote by I';.

Now I'y maps the closed point of Spec(K][[t]]) to some closed point & € X1(d+1).
Furthermore, & € Ey = 7r1_1(§0) and & € Im(I';). This point & will be the center
of the blow up ms. We iterate this process: for ¢ = 1,...,r, let I'; be the lifting

of the arc I';_1 € L(X(ﬁ_l)) through &;_1 by the blow up 7; of Xi(ﬁrl) with center

(2
&i—1. Then I'; is an arc in L(Xi(dﬂ)) through a point &; in the exceptional divisor
E;i =m; (&)

Definition 2.7.1. We will say that the sequence of transformations at points chosen
in this way is the sequence directed by ¢ (or that the blow ups themselves are directed
by ¢), meaning that £, = (¢(0),0) = (£,0) and & = Im(I;) N E; fori=1,...,7r:

1

(XédJrl)’gO) I S (X§d+1>’§1) (Xﬁd“),&)

o] o -]

(Spec(K[[t]]), 0) =<———— (Spec(K][[t]]), 0) (Spec(K[[t]]), 0).
(2.16)
(d+1

For this sequence, the multiplicity of X, ) at &, will be the i-th Nash multiplicity,
my;.

T2 T
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2.7. The Nash multiplicity sequence

The sequence mg, m1, ..., m, is non-increasing, because the blow up at regular equi-
multiple centers does not increase the multiplicity (see [40, Theorem 4.1] or [22]),
and it eventually decreases whenever the generic point of the initial arc ¢ is not
contained in Max mult(X).

Theorem 2.7.2. [58, Theorem 5] Let ¢ be an arc in X centered at §. The limit of
the Nash multiplicity sequence of ¢ at & is the multiplicity of X at the generic point
of Im(p) C X.

That is, if the generic point of ¢ is contained in the stratum of X of multiplicity m’
but not totally contained in any stratum of multiplicity greater than m’, then the
sequence stabilizes at the value m/. Therefore, for our purpose, we need to choose
arcs whose generic point is not contained in the set of points of highest multiplicity
of X.

Thus, we can find some r so that for the diagram above the sequence of Nash
multiplicities is such that mg = ... = m,_1 > m,. This integer r will be an object
of interest for us (see 3.1).

To conclude this chapter, let us give an idea about how the Nash multiplicity se-
quence is defined in [58]:

Consider a hypersurface given by V(f) = X ¢ V(™ = Spec(k[z1,...,2,]) locally
in a neighborhood of a point £ € X. Assume that f has order mg (hence X has
multiplicity mg at ). Then, as we showed in Example 2.2.21, the m-jet space of X
is given, for m € N, as

»Cm(X)ZSpec<k[x1 U A PTI ]))

while the arc space of X is

. k[x(lj),...,xg)]j20>
LX) = Spec ( (d;(f))s>0 ’

for d; f as in Definition 2.2.5. Note that

dmf € k[xgo), oz ,xgm), i)

for any m € N, so each d,, f is an equation of £(X) in Spec (k:[:ngj), el :L‘%j)]jzg) in
the variables (mgo), e ,33510), e ,l'gm), e ,x%m)). Any K-arc in X can be described
by

©" L k[zr, .. 2] — K[[t] (2.17)

T;+—> Z a,-,jtj,
j=0

for some a; ; € K,7=1,...,n,j > 0. In order to be an arc in X, ¢ must satisfy an

infinite set of equations:
flarp,...,anp0) =0,
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2. ARC SPACES AND SINGULARITIES

(dmf) ((ai,j>i:1,...,n;j:(],...,m) — 07 Vm 2 0,

f(z alyjtj, ey Z an,jtj) =0.

j=0 j=0

as a consequence of

However, the following idea can be interesting: one can start by looking at the
equations defining m-jets, and then find equations for (m + 1)-jets preserving the
previous conditions, repeating this process and obtaining jets of higher order at each
iteration. With this idea, one can consider the equations of the m-jets in X which
can be lifted to arcs in X, less conditions can be enough. The Nash multiplicities
give some information in this direction.

To begin with, assuming that £ is the center of the arcs we are considering, we
deduce the equations

20 = =20 =0, (2.18)

Observe now that d; f involves the variables 2/, ..., 2}, but, as a consequence of 2.18,
dif=...=dmy—1f=0
identically. Hence, to obtain a first condition on ,...,z] we need to go as far as
dp, f. How far we need to look in order to obtain a full set of equations determining
the possible values of o, ..., 2} so that ¢ is a 1-jet in X which can be lifted to an
arc in X, depends on X.
In Example 2.2.21, where
f = :I:Q - y3a
if
20 = 40

is asked, then dy f = 0, so it gives no conditions for z/,3’. From dyf we obtain

and dsf yields

Computing d4f we obtain also
(@) (") + (2")* = 3(y")*(y") = 0.

In [58], M. Lejeune-Jalabert proved that the set

pl(X) = {(alyl, .. .,an’l) e K™ 3(,0 € £(X), Y1 = 7TX’1((,D) = (al’lt,. .. ,an’lt) (S El(X)},

where mx 1 is as in (2.3), satisfies
p1(X) C Ur<pcmoHmo s
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2.7. The Nash multiplicity sequence

for certain locally closed subsets H,,, , C K". Each of them is defined by a finite
set of polynomials arising from the action of differential operators up to a certain
order on the homogeneous parts of f up to a certain degree. More precisely: recall
that we are considering f € k[z1,...,z,], and let f be its image in the completion

k[xl,...,xn]g,

flxy,. ... xp) = Z filxy, ... xp)

>m
for fi(z1,...,2,) a homogeneous polynomial of order i, i > m. Then H,y, , is
defined as the set of points of K™ where the polynomials arising from applying to
the homogeneous parts of degree m + j for j up to u — 1 differential operators of
order up to u—j—1 (including order 0) are zero, while those coming from differential
operators of order y — j are not:

Hpop={a€ K" :Difpmij(a) =0V |I|+j < p}
\{a € K" : Difryj(a) 0V 1| +j = p, j < p},

where the Dy are the usual differential operators in k[z1,...,z,], of order |I|. Ob-
serve that the Hy,, , are disjoint. The result in [58] asserts that any a € pi(X) is
thus contained in a H,y,, ,, for some 1 < 1 < myg. For a fixed arc ¢ in X centered at
¢ as in (2.17), the 1-jet @1 = mx.1(p)

o1 k[, .. xn] — K[[t]]
T; — ai71t,

the second term of the Nash multiplicity sequence m; is the integer such that
(@11, an,1) € Hpym,. Similarly, the third term mg is prescribed in some way by
the order of the equations determining mx 2(¢) as a 2-jet, and the same happens for
m; as an i-jet, 1 > 2.

Remark 2.7.3. The Nash multiplicity sequence can be regarded as a refinement of
the usual multiplicity function in the following sense:

From a general point of view, for a given arc ¢ € L(X) centered at &, each m; is
determined by the cancelation of a certain set of polynomials in

Ko,...,a®,...,a0,. .. )]

which arise from applying certain differential operators to f. In the case of my,

these polynomials are the coefficients in azgo), e 7%(10) of the powers of ¢ in

0 0
Fa? + g2l ),
where ygo)’ . ,y7(10) are variables. Note that the previous expression is nothing but
the Taylor expansion of f at £. If ¢ is as in (2.17), then mg will be such that the co-
efficient in mgo), ey :L‘%O) corresponding to t"0~! is 0 when evaluated in ay g, . . ., @n0,
but the one corresponding to ¢™° is not. This is a condition in the 0-jet mx () = &,
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2. ARC SPACES AND SINGULARITIES

and hence a condition in X, which turns out to be the same condition for X to have
multiplicity equal to mg at &.

Indeed, the usual differential operators applied to f define a stratification of X into
locally closed sets:

X = Ui<usmHy,

where

Hy={ae X :Dif(a) =0V |I| < p}
\{a€ X :Drf(a) =0V |I| = pu}

is the subset of X given by the points of multiplicity equal to u.

The stratification of p1 (X)) given by U1<,; <o (H g, NP1(X)) induces a stratification
of 7T1(£(X)) C [:l(X),

m(L(X)) = Ut<pm<po Hpou C L1(X)
into locally closed subsets:

Huo s =11 € L1(X) : FJp € LX), o1 =7x1(p) = (a10 + ar,1t, ..., an0 + an1t)
(GL[), . ,amg) S HH07 (a171, e aml) S HHOle}

Similarly, the results in [58] induce, for each i > 1, a stratification of mx ;(L(X)) C
L;(X) into locally closed subsets:

mx,i(L£(X)) = Ui<p<..<poHpo,s € Li(X)

These stratifications are defined in terms of the cancellation of certain differential
operators applied to f:

L(X) = mx (£(X)) = UrgpsmHy = X = Lo(X)

TX,1

Tx,1(L£(X)) = Ut<ps <o Huo . € L1(X)

TX,i

Tx,i(L£(X)) = Ur<p,<..<po Hpsoyn C Li(X)
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2.7. The Nash multiplicity sequence

Given ¢ € L£(X), the sequence (my, ..., m;) indicates in which stratum of 7x ; (£(X))
is mx () contained. That is:

L(X) 2 1y, (£(X))
Y — 71'X,i(SD) € %mo,...,mi

Therefore, one can consider the Nash multiplicity sequence (mq, ..., m;,...) of ¢ as
the multiplicity of the arc space £(X) along the direction given by the arc .

Among the applications of this sequence, Lejeune-Jalabert describes a relation with
the Artin S8 function. In the particular case of irreducible plane curves, an expression
for the Nash multiplicity sequence in terms of the Puiseux pairs attached to the curve
is given (see [58, Appendix]).

In Section 3.1, we compute the Nash multiplicity sequence for some examples.
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Chapter 3

New invariants for Singularities

From the point of view of singularities, the results exposed in Chapter 2 reveal
some of the motivation for the study of arc and jet spaces. The Nash multiplicity
sequence, defined in section 2.7, is a construction which also reflects in some way
the complexity of the singularities of an algebraic variety. Along this chapter, we
define some invariants attached to points of maximum multiplicity which arise from
this sequence. To do this, we observe how the Nash multiplicity sequences attached
to different arcs centered at a singular point (of maximum multiplicity) behave.

The main invariants defined here for a fixed X, a point { € Max (X) and an arc in
X centered at £ are the persistance of the arc (Definitions 3.1.1 and 3.1.2), and the
order of contact of the arc with the maximum multiplicity locus (Definitions 3.2.16
and 3.2.18). For the computation of the latter one, in Section 3.2 we construct the
algebra of contact, a Rees algebra which is deeply related to the first steps of the
Nash multiplicity sequence, in a sense that will be explained later. In Section 3.3,
we will show that both invariants are strongly connected. We also define a set of
rational numbers (Definition 3.2.20) which is an invariant for X and &, collecting all
the information of the orders of contact of all arcs in X through £. This set will be
useful for the interpretation of the results in the last two chapters, where we collect
the conclusions from the study of these new invariants and their connections with
constructive resolution of singularities.

From now on, we shall use the same notation for an arc (mostly ¢) either if we mean a
point of the arc space, the morphism of schemes or the induced ring homomorphism.
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3. NEW INVARIANTS FOR SINGULARITIES

3.1 The Nash multiplicity sequence and the
persistance of an arc

Along this section, X will always be a variety over a field k of characteristic zero,
and we will always choose arcs whose generic point is not contained in the subset of
maximum multiplicity of X. That is, ¢ will typically be chosen as an arc in X not
factoring through Max mult(X):

v e L(X)\ L(Max mult(X)).

Definition 3.1.1. Let ¢ be an arc in X through £ € Max mult(X). We denote by
pXx,e the minimum number of blow ups directed by ¢ which are needed to lower the
Nash multiplicity of X at {. That is, px, is such that

m=mgo=...=Mpy 1> Mpx,-

We will call px ., the persistance of ¢ in X. We denote by px(§) the infimum, over
all arcs in X centered at &, of the number of blow ups directed by the arc which are
needed to lower the Nash multiplicity at £ for the first time:

px : Max mult(X) — N

— = min ,
e px(© = _ i {ox}

which is a function taking values in N as a consequence of Theorem 2.7.2.

To keep the notation as simple as possible, px , does not contain a reference to the
point &, even though it is clear that it is local. However, the point is determined by
© as its center, so it is implicit, although not explicit, in the notation. Similarly, we
may refer to px(€) as px once the point is fixed.

Let us define normalized versions of px,, and px in order to avoid the influence of
the order of the arc in the number of blow ups needed to lower the Nash multiplicity.
To understand the motivation for this, we refer to Example 3.2.1.

Definition 3.1.2. For a given arc ¢ in X, we will write

5 _ PXe
Xoe ord(p)’

and similarly, we will denote

px : Max mult(X) — Q

— D = inf 0 .
Soox@) = b Aexel

However, computing this number without performing the sequence of blow ups is not
simple a piori. In the following section we show how this problem can be translated
into a problem of resolution of Rees algebras.
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3.2. Order of contact

3.2 The order of contact of an arc with the stratum of
maximum multiplicity

Let X be a d-dimensional variety over k. As it was already explained in Section 1.2,
locally in an étale neighborhood U of each point { € X, we can find an immersion

U — V(™ and a Rees algebra g@ over Oy ) ¢ such that
Sing(G%) = Max mult(X), (3.1)

and so that the equality is preserved by Qﬁ?)—local sequences over V(™ as long as the
maximum multiplicity does not decrease (see [82]). In other words, the multiplicity
is represented by this Qg?) (see Definition 1.3.23). Let us recall that ggg‘) can be
chosen to be differentially closed (see 1.21), by just choosing an appropriate repre-
sentative of the weak equivalence class. For simplicity of the notation, we will also
write X for this neighborhood U, from now on.

Let us choose a point £ € Max mult(X). If we go back to (2.13), after the product
X(d) A,lc we also have an immersion, and thus a commutative diagram

v Pyt = )« pl (3.2)

J Pl (at1)

X@ 0 xlD _ x(d) AL

In particular, p is a local sequence on V(™ and preserves (3.1). Thus, the smallest

O

-Rees algebra contaning Qg?) (the extended algebra) represents the func-

tion mult(XédH) ). We will refer to this algebra as the OV(”“) go—Rees algebra QE?OH).
0 )

VO(n+1) £o

Fix an arc ¢ € £L(X) through & not factoring through Max mult(X). The sequence
of blow ups at points directed by ¢ defined in (2.16) induces a sequence! of blow

(n+1),
ups for V :
(V) g) L& (Vi gy) T2 (WY g
w1l ety j ol atn) ol s
(X, go) ! (XY ) : T (XY e

N

(Spec(K[[t]]), 0) <—L—— (Spec(K[[t]]), 0) T (Spec(K[[t]])., 0).
(3.3)

Let us give a few examples of how to compute the Nash multiplicity sequence:

!For simplicity of the notation, we will often identify the points &; in X,L.(d+1)

in Vi("-H).

with their images
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3. NEW INVARIANTS FOR SINGULARITIES

Ezample 3.2.1. Let X = V(2% — y%) C Spec(k[z,y]) = V@), as X; from Example
1.2.7. Choose a k-arc ¢ € L(X) as the k-homomorphism
¢ : k[z,y] — K[[t]]
et

yb—>t2.

Note that ¢ is centered at the origin £ = (0,0). We will denote VO(?’) = V@ x Al
and X(()Q) = XM x A'. Let us construct here the Nash multiplicity sequence for ¢

at £. Let us denote by Vi(g) an affine chart of the transform of VZ(E’% by m;, which will
be the most interesting for us:

1

Va? = Spec(k(x, y, w])

XP =V(@? - ) —— XY 5 V(a} — i) =—— X 5 V(2§ — yiud)

After a linear change of coordinates, we may assume that

3

V2(3) ‘/3(3)

X 5 V(@3 — (2 + 1)Pwd) <—— X5 5 V(ad — (ysws +1)%)

Iy = (t,0,t) I's = (1,0,1)
& = (0,0,0) & =(1,0,0)
mo = 2 mg =1

The Nash multiplicity sequence is in this case

m0:2:m1:m2>m3:1:m4:...,
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3.2. Order of contact

so the persistance of ¢ in Max mult(X) is
PX,po = 3.
On the other hand, for the k-homomorphism

o+ K[z, y] — K[[t]

x> 18
Y tt
and for
@3 : k[z,y] — K[[t]]
x it
y — 19,
we have

respectively. However, note that these three arcs define the same curve in X, and
that

PXp = PXp1 = PXpa = 3/2-

Exvample 3.2.2. Let X = V(2® — zy2? — y2® + 2°) C Spec(k[z,y, 2]) as Xg from
Example 1.3.26 and choose ¢ € £(X) given by the k-homomorphism

o klz,y, 2] — K[[t]
z > t2
Y= t?
z—t.

The Nash multiplicity sequence for ¢ at & = p((t)) = (0,0,0) is
mpy=3>m =2>mo=1=mg=...

and
pX,t,p =1

Example 3.2.3. Let X = V(2% —432?) C Spec(k[z, v, 2]), as X, from Example 1.2.7.
Let ¢1 € L(X) be given by the k-homomorphism

1t k[x7y7 Z] — k[[t]]
x> t3
Yyt

2 13
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3. NEW INVARIANTS FOR SINGULARITIES

The Nash multiplicity sequence for ¢1 at £ = ¢1((¢)) = (0,0,0) is
mo=3=mp=ma>mg=1=my=...
If we choose 2 € L£(X) instead, also centered at (0,0,0), as the k-homomorphism

Y2 1 /{[.’L',y, Z] — k[[t]]
x>0
yr—>t3

2z t3,
then the Nash multiplicity sequence is
mpy=3=mi=Mmo=mMmz3=Myg >m5=1=mg=...
We have
PX,p =35

ﬁXv‘PQ = 5/3

Example 3.2.4. Let X = V(zy — 2%) C Spec(k[z,y, 2]) as X7 from Example 1.3.26
and choose the k-arc in X with center at £ = (0,0,0) given by

P1 . k[.fC,y, Z] — k[[t“
Tt
yr—>t3
z+—t.

The Nash multiplicity sequence of ¢ at & is in this case as simple as
mo=2>m;=1=mg=...

and
Pxp = L
If we choose the k-arc 9, also centered at £ = (0,0,0) and given by
P2 k[z,y, 2] — K[[t]
z 12
Y= t2

Z—=t,
the Nash multiplicity sequence is
mog=2=m; >me=1=m3=...

and
ﬁX#p? =2.
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3.2. Order of contact

Remark 3.2.5. Let ¢ : B — K][t]] be a K-arc for an n-dimensional local regular
ring B, with center £ € Spec(B), and let K D k. Then ¢ is determined by the
images of a regular system of parameters {yi,...,y,} of B at £&. This follows from
the fact that ¢ is continuous and factorized by the completion map B — Eg:

B

yi\\
Be —2= K{[1)
yi — @(ys)

Algebra of contact
Consider now the ring Oy @) @k K[[t]], and the localization at & = (&, 0):2

0: Opmin ¢ = (O e @ Kl[t]])eo, (3.4)

and let us denote P
‘/O(n+ ) — SpeC(OV(">,E Rk K[[t]])fo

and ~ (da1
X(() + SpeC(Ox(d)’g @k K[[t]])¢,-

Observe that the morphism ¢ is faithfully flat.

Let us choose a regular system of parameters

Y1,---3Yn € OV("),@
so that {y1,...,yn,t} is a regular system of parameters in (Oy ) ¢ @k K[[t]])g,-
Let ¢ be an arc in X (and in V() through ¢ € Max mult(X) defined by the
K-morphism
¢ : Oy ¢ — K[[t]]

Yi > @y, for i=1,....n

Now I'y can be described by the images of ¢ and the classes 7; of the y; in O XD g0
0 )

fori=1,...,n:
Tp: OXédH),EO — K][t]]

Ui — o) = ¢y, i=1,...n
t—t.

2We use the same notation ¢ for the image of £ € X@ in VO We will also write £ instead of
o € VO("H) sometimes.
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3. NEW INVARIANTS FOR SINGULARITIES

There is a k-morphism
Lo : (Op ¢ @k K[[t]])g, — K[[1]

which is completely determined by the images of the 7; and t. Since 'y is in addition

an arc in Xo, the map O, (a+1) e K{[t]] factorizes through (Ox ) (@ K[[t]])g, —
0 s B

K([[t]]. For simplicity, we shall denote such morphism by Iy. The following commu-
tative diagram provides an overview of the situation:

Oy ¢ Opin ¢, (Oym ¢ @k K[[t]])e,

! } |

Ox@ ¢ Oyarn ) (Oxw ¢ @k K[[t]]e

Yi

(3.5)

Note that Ty is an arc in Xédﬂ) defining a curve Cp in \70 , given by the equations

(n+1)

h1:y1*90y1:Ov""hn:yniwynzoa (36)

where ¢,, € K[[t]] for i = 1,...,n. The curve Cj is a smooth curve and the h;
defining it are elements in a local regular ring, so C is a complete intersection. It
is the closure of the image of

Ty : Spec(K[[t]) — Vo™,

induced by T'y. With other words, Cj is the closure of the generic point of T'y. We
get an analogous diagram to that in (3.3):

Vi) ) — 2 () gy — 2T (" ) (3.7)

j 1| ¢ (d+1) ﬁQ‘XédJrl) ﬁ-’r|X”(‘d+1)

(XY ) =————— (X gy

j\ 7Tl'l cl \J\ 77"2 C2 ﬁ'r Cr

(Co, &o) (C1,61)

(XS )

(Cr, &)
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3.2. Order of contact

where we can see that the preimage E; of &_1 by 7; always intersects C; at a single
point. This point is &;, the center of the blow up ;4.

Let us look now at the closed set Cy C VO(HH) defined by the graph of the arc . We
can find an (Oy ) ¢ @k K[[t]])¢,-Rees algebra gfo”“) representing Cp in the sense of
Definition 1.3.23. That is, QS(O"H) will satisfy

Sing(g;n+l)) =Cy C ‘70(""‘1),

and for any local sequence as in (1.9), Sing(gg?fl)) =C; C YZ(”H), where Cj is the
transform of C;_; (the strict transform by ¢; if it is a blow up at a smooth center,
or the pullback if ¢; is a smooth morphism). It can be shown that, for the equations
in 3.6:

g((anrl) — OVO("“)»&) [MW,. .., h,W]. (3.8)
Consider now the closed set
Zy=CopN {7} € Xédﬂ) : multn(XédJrl)) = m} C %(nﬂ). (3.9)
For any local sequence
pint) m et m2 T ) (3.10)
we define Z; as the closed set
Zi=Cin {ne XY sl (X[Y) = m}, (3.11)
fori=1,...,r, where C; is the transform of C;_; by m; and Xi(dﬂ) is the transform

of Xi(ﬁrl).

Remark 3.2.6. Note that, when X is multiplied by an affine line in (3.2), each
point in the set of multiplicity m = max mult(X) becomes a whole line of points
of multiplicity m in Xy. Any sequence of blow ups directed by an arc ¢ € L(X)
centered at a point of multiplicity m consists only of closed point blow ups, so
such a sequence will never give a resolution of singularities for Xy. Moreover, the
upper-semicontinuity of the multiplicity function guarantees that it will not make
the maximum multiplicity of X decrease either. Therefore, none of the sets whose
intersection defines Z; in (3.11) can be empty. Hence, Z, = () implies necessarily
that the arc I', no longer intersects the subset of points of multiplicity m of X,..

Definition 3.2.7. Let us suppose now that one can find an (Oym) ¢ ®% K[[t]])¢,-
Rees algebra H whose singular locus is Zj, and such that this is preserved by local
sequences as in (3.10) (and in particular for sequences of blow ups of XédH) directed
by ¢). We will say that such an algebra, if it exists, is an algebra of contact of ¢
with Max mult(X).
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3. NEW INVARIANTS FOR SINGULARITIES

Remark 3.2.8. Lowering the Nash multiplicity of X at &, m, is therefore equivalent
to resolving this H, and consequently px , as in Definition 3.1.1 is the number of
induced transformations of this Rees algebra H which are necessary to resolve it (see
Definition 1.3.11).

Remark 3.2.9. Note that, by the way in which it has been defined, the algebra of
contact of ¢ with Max mult(X), if it exists, is unique up to weak equivalence (see

2])-

Denote

gty =gt o gl (3.12)

where Qggjﬂ) is the extension of gg?) to (Oym) ¢ @k K[[t]])g, (see (3.2) and (3.4)) and
Q’c(pnﬂ) is as in (3.8). Note that gé,”“) and ggg)“) are differentially closed (relative
to p* 0 d) by definition.

Ezample 3.2.10. We produce here an algebra as in (3.12) for some examples:

e Consider X; C Vy = Spec(k[z,y]) from Example 1.2.7. Using the computa-
tions in Example 1.3.35 and ¢, @2 and 3 as in Example 3.2.1, we obtain
®3) —()- 2 31172 43 ) _
G =Op W,y W,y W 0 Kl — W, (g — )71
= Oy, [eW.y* W,y W2, W, (y — )W,

G o = O W WP W2 W, (y — £ W),
g((igl)()v<ﬁ3 - OVO [(IIVV, y2W’ y3W27 t9W7 (y - tﬁ)W]

respectively.

e Consider now Xg = V(2% — zy2? — yz3 + 2°) C Vy = Spec(k[z,y,2]), as in
Example 3.2.2, together with the arc ¢ used there. We have

4
g(()g)e)o,so :OVO[(a@, yz, 22)W, (y22, 2)W2, y23W3e
E[[t]][(z — 2,y —t%, 2 —t)W] =
= 0\70[(337 Yz, Z27 t27 Yy— t27 = t)W7 (y'zQa 23)W27 yzgwg]‘

o Let X4 C Vy = Spec(k|[x,y, z]) be as in Example 1.2.7, and consider ¢; and
9 from Example 3.2.3. Then

Gy o1 = Onl@ 2 P2,y — 1,2 = YW (422, P2 W2, (522 )W)
0

and

985)4)07@2 = Oy [, 522, 9 422,80,y — 0,2 = )W, (y*2%, ° ) W2, (v°2*) W),
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3.2. Order of contact

e Let now X7 = V(zy — z*) C Vy = Spec(k[z,y, z]) and ¢1, 2 be as in Example
3.2.4. We obtain

4) M. 2 3 _
GUL ., = Og e W, yW, 22W, W, £5W, (= — )W)
and
G = Op [t W,y W, AW, W, (2 — W],

(X7)0)901

Remark 3.2.11. Note that if Sx : X — Spec(S) = V(@ is a finite morphism as

n (1.20) then after the natural base extension, X (d+1) V(dJr ) is also a finite
morphism. We will need this fact in the proof of Proposmon 3.2.12 below.

Proposition 3.2.12. Let X be a variety, let £ be a point in Max mult(X), and
let ¢ be an arc in X through £&. Then the Rees algebra gg?(:j) from (3.12) is an

algebra of contact of ¢ with Max mult(X). Moreover, the restriction Qg(lg o of the
same Rees algebra to the curve Cy defined by  is also an algebra of contact of

+ )

with Max mult(X). In particular, resolving g Xo.p U equivalent to resolving Qg(lg’@.

Proof. By definition of G )? J:i ,
oy (00°0) = 7 (6077) .7, (0°)

(see Definition 1.3.21). Then, ggg)tj )is an algebra of contact of ¢ with Max mult(X)

(n+1) +1)

as long as G XT; represents Max mult(X,) and gé,” represents Cy in the sense of

Definition 1.3.233. For the latter, see (3.8). For the first assertion, we may assume

locally that we are in the situation of Example 1.4.7, and with the notation there
we have now that

S K([t]] C B®g K[[t] = S[01,. .., 0h—d] @ K[[t]]

is a finite extension of rings satisfying the properties in [82, 4.5], and therefore the
argument in [82, Proposition 5.7] is also valid for them: ¢ € Max mult(X,) if and
only if orde f; > m; for i = 1,...,n — d, so the f; are also the minimal polynomials
of the 0; over L @ K]{[t]], where L is the quotient field of S.

On the other hand, by [13, Proposition 6.6]

e (957],) = 7o (05) 7 60).

Xo

3 Although gg)“) is not a Rees algebra over a k-algebra of finite type, one can check that the
properties in Definition 1.3.23 still hold.
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3. NEW INVARIANTS FOR SINGULARITIES

since ngnoﬂ) is differentially closed and Cj is smooth. Hence, it is clear that the
g(fl +1) defines the same tree of closed sets as Q(n+1). In addition,

)
(+1

Rees algebra

to Cy defines the very same tree, since

_(cV) ) .~ (n+1) n+1 _
‘FV() (gXo,tp) '_'FVO (gXO ‘CO © gfp ) Co) -

_ ]:’VO (g(n-l-l)‘ >ﬂf (g(n+1)‘co> — fCo (g(ﬁ-ﬁ-l)

Xo

the restriction of Gy

co) ’

and the proposition is proved.

O]

Let us show now how to compute the algebra g§§0) - that appears in the last Propo-
sition.

Definition 3.2.13. Let G be a Rees algebra over V(" given as
G=0pm W, ... g W%]
locally in a neighborhood of £&. Then, for any arc ¢ € L’(V(”)) through &, we define
p(9) = K[[tlllp(g) W, ..., p(g) W] C K[[t]][W].

Remark 3.2.14. We may define the image by I'g of the Rees algebra g X ) from

(3.12). This image happens to be the restriction of the algebra g;*sj to the

curve Cy defined by ¢, and the proof of Proposition 3.2.12 shows that if g n+1 =

O, (1) [giWer, ..., gsWE], then
0

G0, =To(G0 ) = K(Mllp(g) W, . ... olgs) W] = p(GY),

since [g(h;) = 0 for i = 1,...,n. Hence, sometimes we will denote Q%(p by go(gg?b)).

Ezxample 3.2.15. For the examples in 3.2.10, we obtain the following restrictions:

e For X,
o 5
G %y = FIEIEW,
(1) B ;
Q(Xl)m% = k[[t]][e"W],
1) _ .
(F1)onps = FIEIEW].
e For X67
(1) e
G %a), o = FIENEW, W],
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e For X, and ¢,

(1) _ 5
g(X:4)0,<p1 - k[[t]][t W],
while for @9
(1) _ 5
G %)y r = FIANEW].
e For X7 and ¢,
(1) _
G0y, or = RNV,
and for o
1) B )
G %aygpn — FULNEW]

Order of contact

Our goal now is to define an invariant for X, £ and ¢ using the algebra of contact of
¢ with Max mult(X). However, Proposition 3.2.12 shows that it would also make

sense to define it from the restriction Qggg o to Cpy. Indeed, from the way in which

n+1
Gy

has order 1 itself at all points of its singular locus. In fact, gf;”

is constructed, we know that it has elements of order 1 in weight 1, and hence

1)

has order one (see

(3.8)). On contrary, the order of g§§3 ,, will be much more interesting, as we will see
in Proposition 3.3.1.

Definition 3.2.16. Let X be a variety, and let ¢ be an arc in X through ¢ €
Max mult(X). We define the order of contact of ¢ with Max mult(X) as the order?
at & of the restriction nglg » to Cy of the algebra of contact of ¢ with Max mult(X),
and we write

rx.p = ordg(GY) ) € Q.

We denote by rx the infimum of the orders of contact of Max mult(X) with all arcs
in X through &:

—  inf () R.
X7 pekx) {ord(6,)] €

Remark 3.2.17. We have defined an invariant rx , for the pair (X, ¢) and another
invariant rx for X: by Hironaka’s trick (see [34, Section 7]), it can be shown that
rx,, depends only on X, £ and ¢, not on the choice of the algebra of contact (which
is not unique). For the same reason, rx depends only on X and on the point & we
are looking at.

4As we have done before, we will write £ for the image of & under most of the morphisms we
use, as long as the identification between both points is clear.
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3. NEW INVARIANTS FOR SINGULARITIES

Definition 3.2.18. Normalizing rx , and rx by the order of the respective arcs we
define: O
Ord£ (gXo ,Lp)

ord(e)

orde (%) )
v = inf B, SO
& wel&m{ ord(e)

€Q,

TX,p =

and

Ezample 3.2.19. For the examples in 3.2.15 we obtain the following:

e For X; = V(22 — 4) C Spec(k[x,y]) and p(z,y) = (t3,t2), pa(z,y) = (£5,1%)
and p3(x,y) = (t2,1°%), we obtain

X1, = 3, TX1,00 = 6, X103 = 9,

while
?X17(P = FXI)SOZ = F)(17303 = 3/2’

so Tx, is at most 3/2.

e For X5 = V(23 — 2y2? — y2® + 2°) C Spec(k[z,y, 2]) and ¢ = (t2,t2,t), the
order of contact is
TXop = 3/2 = Txg,p-

Hence, Tx, < 3/2.
e For X4 = V(23 — y32%) C Spec(k[z,y, 2])
TXap1 = 3 = TXy 01
where 1 = (t3,t,13). For @9 = (7,13, 13),
"X, 00 = 9, TX400 = 5/3,
so Tx, <5/3.
e For X7 = V(zy — 2*) C Spec(k|[z,y, 2]) and o1 = (¢,13,1),
TXrp1 = L= TX7,01

while for @9 = (2,12, 1)
X701 = 2= X701

In this case, necessarily ¥x, = 1.

Definition 3.2.20. Let us denote
Oxe={Txe}, CQo, (3.13)

where ¢ runs over all arcs in X through &.
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Remark 3.2.21. Fixed X and £ € Max mult(X), the set ®y ¢ is an invariant of X
at & In some way, this set of rational numbers reflects how difficult it is for arcs
centered at £ to separate from the subset of maximum multiplicity. This will be
explained in the next section. The infimum of this set

Tx = inf (I)X,§

is also an invariant of X at £. In Chapter 4 we will show that this invariant is
strongly related to constructive resolution. This is one of the main results of this
work.

3.3 Relations between px, and rx

Along this chapter, we have defined two different but related invariants attached to
a variety X at a point £ € Max mult(X) and an arc ¢ € £(X) \ £(Max mult(X))
centered at £. The second one, the order of contact rx,, of ¢ with Max mult(X), is
the order of a Rees algebra representing a closed subset of Max mult(X) x A}, defined
by the graph of the arc. The first one, the persistance px,, of ¢ in Max mult(X),
is the number of blow ups at carefully selected points that are necessary to resolve
this algebra. It is a natural consequence that rx , is a refinement of px ,, although
they were defined in the opposite order. The following proposition shows that px .
may certainly be obtained from rx ..

Proposition 3.3.1. Let X be a variety, let € be a point in Max mult(X) and let ¢
be an arc in X through &. Then

Px,p = [TXp] - (3.14)

That is, the persistance of ¢ in X equals the integral part of the order of contact of
¢ with Max mult(X).

Proof. Since gg}g plsa Rees algebra over a smooth curve, it is defined over a regular
local ring O¢, ¢ of dimension one. If the maximal ideal of £ in O¢y ¢ is M¢ = (T)

for some regular parameter 71", then Qg(lo)m is necesarily generated by a finite set of
elements of the form T@W's where «,l, are positive integers. Observe also that

gﬁg o is integrally equivalent to a Rees algebra generated by JW?' for some principal
ideal J C Og,,, and some positive integer [, at least in a neighborhood of £ (see [13,

Lemma 1.7]). Therefore, we can suppose that Qg(lo)’(p = Oc, ¢[T*W']. In this case,
the order of gﬁégw at & will be given by

1 [0
Ordg(g,(xg,gp) = 7 .

By the transformation law (1.5), the first transform of g§§37¢ by blowing up at the
closed point is

1 o
G\ 1 = Ocy [T W,
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3. NEW INVARIANTS FOR SINGULARITIES

The order of the k-th transform will therefore be

a—Fk-1
l b

and the number py ., of blow ups needed to resolve Qg(lgﬁo must satisfy:
0<a—px,-l<l

But this implies
«
0 < 7 — PX,p < 17

which means that px,, is the integral part of ¢ = orde (nglg »), the order of contact

of ¢ with Max mult(X). O

Corollary 3.3.2. For any variety X,
px = [rx],
[rx] < px <Tx.

The proof follows solely from the definitions of rx, rx, px and px together with
Proposition 3.3.1, by means of algebraic manipulations of their integral parts.

Ezample 3.3.3. e For X; = V(22—y3) C Spec(k[z,y]) and ¢ = (#3,1?), we obtain
PX1p = 3

e For Xg = V(2® — 2yz? — y23 + 2°) C Spec(k[z,y,2]) and ¢ = (t2,¢2,t), the
persistance is
Pxep = [3/2] = 1.

e For Xy = V(2® — y322) C Spec(k[x,y, 2]), the persistance of 1 = (3,¢,¢%) in
the subset of maximum multiplicity is

PXa01 = 3,

and the persistance of @9 = (¢°,3,13),
PXagpz = O
e For X7 = V(zy — 2*) C Spec(kl[z,y, z]) and o1 = (¢,13,1),

PX7.01 = 1

and for @9 = (12,12,1)
PXrpr = 2-
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Chapter 4

The Nash multiplicity sequence
and Hironaka’s order in
dimension d

The invariants defined in Chapter 3 for any point of maximum multiplicity of a
variety (over fields of characteristic zero) codify information given by the arcs in the
variety. In particular, they all derive from the Nash multiplicity sequences of arcs
centered at each point. We already mentioned some properties and interpretations
of this sequence in Section 2.7 and Chapter 3. In the present chapter, we expose
some results which indicate that this information is strongly used in the construction
of resolution functions, when one studies resolution of singularities of varieties (see
Section 1.5). More precisely, we will see that for a d-dimensional variety X defined
over a field k of characteristic zero and a point £ € Max mult(X), the invariant

ordéd)X from Section 1.5 can be read in the arc space of X. Indeed, for
Tx =inf ® X6
as defined in Section 3.2, we have the following theorem:

Theorem 4.0.1. Let X be an algebraic variety of dimension d defined over a field
k of characteristic zero and let € be a point in Max mult(X). Then, the infimum 7x
is a minimum, and
Tx = ordéd)X € Q.
Equivalently, for every arc ¢ € L(X) through &,
TX,p = ordéd)X,
and in addition one can find an arc ¢g € L£(X) through £ such that

_ d
TX,p0 = ordé )X
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This is the main result in [11]. For the proof of Theorem 4.0.1, we proceed as follows:
we first prove it for a particular hypersurface, assuming the situation of Example
1.4.1, in Section 4.1. In Section 4.2, we show how to reduce the general case to the
previous one, and give the complete proof. We explain some consequences of this
results in Section 4.3 and give some examples in Section 4.4.

In what follows, when talking about an arc, we will denote both the morphism of
schemes and the ring homomorphism by ¢, to ease the notation.

Remark 4.0.2. Let X be as in Example 1.4.7, and let £ € Max mult(X). Let us
recall that we can find a transversal projection

Bx : X = Spec(B) —» Spec(S) = V@,

locally in an étale neighborhood of £. Let ¢ be an arc in X through £ which is not
contained in Max mult(X). We may project ¢ to an arc ©@ in V(@ through £@
via Bx, that is: @ = po B%. We obtain a commutative diagram

OX,f \QD
5] o S K

Oy @ gy

In particular, if Mg is the maximal ideal of { in Ox ¢ and M@ is the maximal
ideal of £(4) in Oy (a) g(a), note that o(Me) D o) (Mew), so

ord(¢p) = ordy(p(M)) < ordy (@ (M) = ord (). (4.1)

Let gg?) = Diﬁ((’)wn),g[ﬁwbl, ooy fn—aW?=d]) be a Rees algebra attached to the
maximum multiplicity of X locally in an (étale) neighborhood of £ as in (1.21).
Recall that diagram (1.31) yields a decomposition

oV =gV o ogit),

where H; = V(f;) C Spec(S[z1,...,2,_q]) and can also be regarded as a hypersur-

face in Spec(S|x;]) for i = 1,...,n — d. In order to express gp(gg?)) by means of

this decomposition, we may consider the projections of ¢ over the H;, that we shall
(e)

denote by ¢, ’, and which are actually arcs in the corresponding H; through g, (§),
because f; € I(X) fori=1,...,n—d:
B (4.2)
B, 7
(e) _ *
X ¢ =Py,
B% S[xz]/( i) = Ht“
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4.1 Hypersurfaces

Assume now that X is locally a hypersurface given, in an étale neighborhood of a
point &, by an equation as in (1.18). Using this expression, we will prove Theorem
4.0.1 for the particular case of Example 1.4.1 by dividing it into two theorems:
Theorem 4.1.10 states that ordéd)X is a lower bound for rx ., for any arc ¢ € L(X)
through £, and Theorem 4.1.12 shows that in fact we can find an arc such that the
equality holds. This implies that 7x is certainly a minimum.

For the proof of these two results, we will define diagonal arcs, which will help us

analyzing the orders of contact in terms of the order ordéd)X (see 1.4.16, 1 to 5, and
Theorems 1.4.17 and 1.5.3 and the discussion that follows).

Setting

Throughout this section, we will always be under the following assumptions:

Let X = X@ be a d-dimensional variety over a field k of characteristic zero. Let
b be the maximum multiplicity of X, and let £ € Maxmult(X). Let us suppose
that X at ¢ is locally a hypersurface, given by Ox ¢ = S[z]/(f) for a regular local
k-algebra S and a variable x, as in Example 1.4.1. As we did in (1.18), we assume
that f has an expression of the form

f@)=2"+Byoa’?+...+ Biz' +...+ By (4.3)

in some étale neighborhood of ¢ € X, with By,...By_o € S, and where we write
n = d+ 1 for the dimension of the ambient space V(™) = Spec(S[z]). Consider the
projection

B: VM — v = Spec(9)

(see Corollary 1.4.17), and let gﬁ?) be the elimination algebra of ov(n>7£[fwb] in
Ov(d>7§(d> induced by it, as the diagram shows:

g ggg)'i‘l) : gg:“l) (4.4)
) 5
Oy ¢ Oyt ¢, Oy ¢ @k K[[t]])e

' J J

Oy ¢ Oyt glasn) (Op ) ¢t © K[H]) giany
(d) (d+1) (d+1)
9x - gXo - gXo

where Qg?jl) is an elimination of QE?OH). We have the following expression:

G = Diff Oy ([fW]) = Oy laW] © G = (4.5)
=0y ¢[tW] © Diff (S[Bp_aW?, ..., BiW"™", ..., ByW"])
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(see Lemma 1.4.20).

Let ¢ be an arc in X through &, not contained in Max mult(X). Suppose that for a
regular system of parameters {z1,...,2q} € S such that M¢ =< z,21,...,24 >, ¢
is given by

p: Oxe — KI[t]]
T — ugt®?,
Zi — uitai,

as in (3.5), where ug, ..., uq are units in K[[¢]] and ao, ..., aq are positive integers.
This gives the following expressions for the algebra of contact of ¢ with Max mult(X)
(as in Proposition 3.2.12):

g(n-‘rl) DiH(OVO(”'+1) € [be]> ® Ov(n+1) £ [(x — ugt®)W, (z; — uit*)Wii=1,...,d] =

=0 [zW] @Q(d) [(x — ugt®™)W, (z; — wit*)W;i=1,...,d].

(4.6)

V(W+1) o V("+1),£o

Let us recall that Properties 1.4.16, 1-4, guarantee that Qg?) represents the subset
B(Max mult(X)) in V@, Consider then the elimination algebra Qg?;l) above. We
can construct an algebra of contact of (¥ = ¢ o g% with f(Maxmult(X)) by

an analogous construction to that in (3.12), using the fact that Qg?) represents
A(Max mult(X)). Then we obtain the Oy (a+1) ¢@+1)-Rees algebra

d+1) d+1) d+1)
gg(o o = ggz gfp(d) . (4.7)

Let ¢(@ (g(d ) be the restriction of G d+12d> to the image Céd) of Cp in V( +) , as in
Remark 3.2.14. Note that

(d)y _ 7(d) (5(d+1)
Sp(d)(gx )= Ly (gXMD(d))a

where
057 (O g @ K[t o — K1)
is induced by ¢@ : Oy e — K[[t]] as in (3.5). With this notation, we can write
G = Opn oW, W] 0.6 © 1Y =
=0 o [2W] © K[l W] © 6" 20
using (4.6) and (4.7), and hence

p(G%)) = K[[H][tW] © o@D (GP).

The order of contact of ¢ with Max mult(X) can now be computed as

rx.p = orde((G%")) = min {ag, orde (¢ (")) } . (4.8)
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Auxiliary results

The following Lemma shows that, in fact, o is not relevant in expression (4.8).

Lemma 4.1.1. Let X be as in the beginning of the section. Let £ € Max mult(X).
Then for any arc ¢ € L(X) through &:

orde (p(GP)) = orde (D (G)).

Proof. Assume that X is given by f as in (4.3). Let us suppose that ¢ is given
by (@z, a1y -1 0zy) = (uot®, urt®, ... ugt®), with ug, ..., uq units in K[[t]] and
ag, . .., g positive integers, and recall that, since p € L(X),

o(f)=¢ <xb + ZSBi:BZ) =0. (4.9)
=0
By (4.8), it suffices to prove that
ag > orde (D (GY))). (4.10)
On the other hand, from Lemma 1.4.20 and diagram (4.4) we know that
ggfj” = Diff(Op a1 car [B;Wbii=0,...,b—2]).

Denote

H = Oparn jarn[BWP ™ 1i=0,....b—2],
0 'S0

3

and note that @)
+
HC QXO ,

and that the inclusion also holds after restricting both algebras to Co(d). Thus
orde (¢ (H)) > orde (9D (GET)) = orde(#D (G)).
To finish, we will show that
ap > ordg(cp(d) (H)), (4.11)
which implies (4.10). Let us suppose that, on the contrary,

ordtgo(d) (Bi))

ag < orde (P (M) = I {b—@} '

That is,

@) (B,
Qg < <Ordt(gp,(B’))>a for i=0,...,6-2,
—1

or equivalently

(b—1i)ag < ordy (¢ D (B;))), for i=0,...,b—2. (4.12)
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Observe now that this implies

b—2
ordy(p(f — ")) = ord (> oD (B)uiti®0) >

0
>  min {ordt(gp(d)(Bi))) +i- ao} >b- .

i=0,...,b—2

But this contradicts (4.9), so necessarily (4.11) holds, concluding the proof of the
Lemma. O

We know now that we can just focus on the projection of X over S for the computa-
tion of the order of contact. For this, we need to know how the induced projections
of arcs (4.2) behave.

Definition 4.1.2. We say that an arc ¢ € [,(V(d)) through £@ e V(@ is a diagonal
arc if there exists a regular system of parameters {z1,...,z4} C Ov(d>,§(d>a units
uy,...,uq € K[[t]] and a positive integer « such that p(z;) = u;t® fori=1,...,d.

Remark 4.1.3. The following definition is equivalent to the previous one:
We say that an arc ¢ € E(V(d)) through (@ € V(@ is a diagonal arc if there exists
a regular system of parameters {z1,..., 24} C Oy £@ inducing a diagram

0 —— Ker(y) Oy (@) g (4.13)

SO

O (a+1) (a+1)
Yo <o

) -
o

0 ——Ker(Ty) —— (Ov(d),g @k K[[t]])¢,

0 — Ker(T'p)

where the ideal
Ker(T'g) = Ker(T'0) (O ¢ @k K[[t])g, C (Oya ¢ @k K[[t]])e,

is generated by elements of the form (ujz; — u;2;), where the u; € K[[t]] are units
forl=1,...,d.

Remark 4.1.4. Let ¢ and ¢’ be two arcs in £(V®) through ¢ € V(@ whose
respective graphs are I'g and I'. If ¢ is diagonal and Ker(T'g) = Ker(I'j), then ¢’ is
also diagonal. Moreover, since ¢ is given by ¢(z;) = u;t® for some regular system of
parameters {z1,..., 24}, where uy, ..., uq are units in K|[[t]] and « is some positive
integer, then ¢’ is given as ¢'(z;) = u;g'(t), i = 1,...,d, for some ¢'(t) € (t) C K|[[t]].

Lemma 4.1.5. Let X and V@ be as in the beginning of the section, let & €
Max mult(X) and let o'¥ be an arc in V9 through €@ = §(€) € V@, Then

orde (@D (GY))) = orde(GY) - ord(p'). (4.14)
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Proof. Suppose, contrary to our claim, that ordg(w(d) (gﬁ?))) < ordg(ggg)) - o, where
a = ord(¢@). Let ¢@ be given by ¢@(z) = u;t® for some regular system of

parameters {z1,...,z4} in Oy (a) g(ay, units ui, ..., ug € K|[t]] and positive integers
ai,...,aq > a. Then for some ¢W' € Qg?),
di (o@D
ordel @) _ 4o (¢ - @ (4.15)

l

But ord;(¢?(q)) > a - orde(g), and hence

ordy (0D (q)) Lo orde(q)

l = l ZO&-OI‘dg(QE?),

leading to a contradiction, and proving the Lemma.
O

Note that in the Lemma ¢@ is, in principle, any arc in £(V®) through &, not
necessarily the projection of an arc ¢ € £(X) through &.

Definition 4.1.6. Let G(9 be a Rees algebra over V(@) We say that an arc gp(d) €
L(V @) through ¢ is generic for G if

orde ( (690 GL15") | g ) = 0ra(e) - orde (),

If (@ is also diagonal, we say that it is diagonal-generic.

Remark 4.1.7. In the situation of Lemma 4.1.5, an arc for which (4.14) is an
equality is a generic arc for gﬁ?). This is a consequence of

(d+1) (d+1)
G goN) p@ | = = G0l

d
@ = @(d)(ggf))-
0

Note that such an arc can always be found by taking the following into account:

If ¢ € R for a regular local ring R with maximal ideal M, then we denote by ing(q)
the initial part of q at the closed point £, meaning the equivalence class of ¢ in
the quotient M™/M™ 1 where n is such that ¢ € M™ but ¢ ¢ M"+1. Therefore
ing(q) € grg,, = k'[21,...,24] is a homogeneous polynomial of degree n and k' is
the residue field of R at M.

Since k is infinite, it is possible to choose a diagonal arc ¢(@ in V(@ through ¢@ e
V@ given by (uit®, ..., uqt®) for some regular system of parameters {z1,..., 24}
and some positive integer o and units uj,...,uq € k such that there exists some
element ¢W'! € Qg?) satisfying %ﬁ(q) = ordg(gg)), and (ing(q))(u1, - .., uq) # 0. For
this arc,

ordt(go(d) (q)) = a-orde(q),

89



4. NASH MULTIPLICITY SEQUENCE VS. ordéd)X

and hence

d; (0@ .ord
(p(d)(ggg)) < or t(‘aol (Q))) _ a Orl f(q) _ a-ordg(ggf—l)),

but Lemma 4.1.5 forces the last inequality to be an equality.

Even though in this section we are always under the assumption of X being locally
a hypersurface, the following Lemma will be stated and proved for a variety of
arbitrary codimension, since no extra work is needed and this generality will be
necessary in the next section.

Lemma 4.1.8. Let X be a variety of dimension d over a field k, and consider a
transversal projection
Bx: X — V@

as in (1.20). Let g§§l) be the elimination via Bx of a Rees algebra le) attached
to the maximum multiplicity of X locally in an (étale) neighborhood of a point § €
Max mult(X). Let g?)(d) be a diagonal arc in V@ through €9 e V@ which is
diagonal-generic for g§?). Then it is possible to find an arc ¢ € L(X) through &
whose projection 'Y onto V49 wvia Bx is a diagonal arc, which is also diagonal-
generic for gﬁ?) and such that Ker(o@) = Ker(g®).

Proof. Consider a local presentation as in Example 1.4.7 attached to the multiplicity
of X at £. Let us recall that not every arc in V(fi,..., f,—q) is an arc in X, since

(fioeeos foea) CI(X) = X CV(f1,..., foq) C V.

Assume that (9 (z;) = u;t®, i =1,...,d for some units uy, . .., uq € K|[[t] and some
a € Zso. We need to choose an arc ¢ such that ¢ € L(V(f)) for all f € I(X), or
equivalently an arc such that Ker(¢) D I(X). Consider the following diagram

Ox.¢e = Oy ¢ [21,- -, Tp—al /I(X) Oy g@ (1, Tn—d]

Bx

Oy @ ¢

where % (induced by Sx) is a finite morphism. Let
P = Ker(ﬁ(d)) C Oy g@-

There is a prime ideal Q C Ox ¢ such that QN Oy ) ¢ = P. Note that Q is lifted
to a unique ideal Q" C Oy ) £@) [1,...,2,_g], with the property that I(X) C Q.
We have the following diagram

Q COxg Oxe/Q

A

P C Oy g —= Oy ¢ /P
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where the left vertical arrow is a finite morphism, forcing the right vertical one to
be also finite. Then, the two rings in the right side of the diagram have the same
dimension, and thus Q defines a closed set of dimension 1 in X: C. There is an arc
¢ (different from the morphism 0) in C' through £ and, locally in a neighborhood of
€, Q@ = Ker(p) C Ox(a) ¢ where moreover

Ker(p) N Oy ¢ia) = Ker(p@) = Ker(¢?W) = P,

so the projection of p onto V(@ (@ is diagonal by Remark 4.1.4. To see that it is

) orde(q) _
l

generic for g§? , note that there exists some element ¢W' € gg?) with

ordg(gggl)) for which (ing(q))(u1,...,uq) # 0. By passing to the completion of
(Opm ¢ @ K[[t]])¢, at its maximal ideal (see Remark 4.1.3) and by Remark 4.1.4

we also know that (@ = (u1g'(t),...,uqq (t)) for some ¢'(t) € (t) C K[[t]], which

implies that (@ is also generic for gg?).
O

Remark 4.1.9. The arc obtained in Lemma 4.1.8 is given (as in (3.5)) by
o =(91(t), s gn-a(t), uag (1), - -, uag (1)) (4.16)
for some g;(¢),...,gn—a(t), g’ (t) € (t) C K[[t]] and uy,...,uq € K[[t]], because
Ker() N Oy ¢y = Ker(p?) = Ker(o!?)

and (@ is diagonal (see Remark 4.1.4).

Results for hypersurfaces

Now we return to the particular case of Example 1.4.1. Now we have enough tools
to prove the following theorem:

Theorem 4.1.10. Let X be a variety of dimension d which is a hypersurface locally
at & € Max mult(X), given as in Example 1.4.1. For any ¢ € L(X) through &:

x> orde(GY)). (4.17)
Proof. Let ¢ = (upt®,...,uqt*) for some units ug,...,uq € K|[[t]] and some
ag,...,aq € Zso. Let us write & = ord(¢) = min{ay,...,aq}. From Lemma

4.1.5, for any diagonal arc ¢ in V(") through &, given as (Gpt®, ..., igt®)

o ordg(G{)) < orde (3D (G)).

It suffices to show that it is possible to choose units @; € K[[t]] for i = 0,...,d so
that

ordg (3D (G)) < orde (D (G)). (4.18)
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This, together with Lemma 4.1.1, would imply that

- 0rdg(0) < orde(¢(G1)) = onde((G)).

and complete the proof of the Theorem.

In order to prove (4.18), let us consider a finite set of generators of gﬁ?), { giWhi }

i=1,...,r
Since this set is finite and k is infinite, it is possible to choose units @1, ..., U € k

in a way such that
ing(gi)(d,...,aq) #0 for i=1,...,7.

Let A\; = ord¢(g;) for i =1,...,7r. As ing(g;) is a homogeneous polynomial,

ing (6 (g:) = N - ing(90) (qr, .., @)

and
ordy (@Y (g;)) = - ;.
On the other hand, observe that

PP (gi) € (t*N),

SO
ordy (@ (g:)) = @~ Ai = ordy (3 (g5)). (4.19)
Since (4.19) holds for all ¢ € {1,...,r}, and for some k € {1,...,r},
ordy (o (g d
t( lk ( )) zordg(cp(d)(g_g())),

it follows that

ordi (¢ (gr))) _ ordi(8 (g1))

> > orde (3@ (640)))
Ui Ui

orde (@ (G4¢)) =

concluding the proof of (4.18), and the proof of the Theorem.
O

To prove that there actually exists an arc giving an equality in (4.17), we will use
the following Lemma:

Lemma 4.1.11. Let X be as in Theorem 4.1.10, and let ¢ be an arc in X through
¢ € Max mult(X), where o(x) = g1(t) and ©(z;) = u;g'(t), u; a unit in K[[t]], for
i=1,...,d. Assume that ¢ is such that the projection o\ on V@ s a diagonal-
generic arc for gg?).l If ord(yp) = ords(g1(t)), then

?X#P = Ordg(gg?)) =1.

!We know that such an arc exists by Remark 4.1.9.
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Proof. Let us suppose that ¢'(t) = t* for some positive integer L, that is,
Pzg = uitL

fori=1,...,d. By Lemma 4.1.1,
o) d n d
r g(;((j&))) = ordg(@(d)(gg()))’

and since ¢(@ is generic for gﬁ?), Remark 4.1.7 yields

orde(p @ (G{)) = L - orde(G¥)). (4.20)
It suffices to prove that
ordy(g1(t)) > L orde(GY), (4.21)
since it implies
1< orde(6\) <7x, = L -orde(G5") <1, (4.22)

ordg(g1(t)) —

where we have used Theorem 4.1.10 for the second inequality and (4.20) together

with the definition of 7x ,, for the equality. Hence ordg (gﬁ?)) =Tx, = 1, concluding
the proof of the Lemma. In order to prove (4.21), let us suppose that our claim is
false, that is:

orde(g1(t)) < L- ordg(ggg)). (4.23)

Then, in particular,

~orde(B) < ord (o' (B;))

for ¢ =0,...,0—-2 (4.24)

where the first inequality follows from the same argument used in the proof of Lemma
4.1.1. Therefore

ordy (o' (Bi)) > ordy(g1(£)) (b - 7)

and

b—2
ords (p(f — 2%)) = ord, (Z w(d)(Bi)gl(t)i> >
i=0

> i {ordi( D (By) + - ordy(gn (1)) } >
> Z‘:g’n”i.,r%_Q {ord¢(g1(t))(b—14) +i-ordi(g1(t))} = b-ordi(g1(t)),

where (4.24) is needed for the second inequality. But this contradicts ¢(f) = 0 and
hence the fact that ¢ is an arc in X, so necessarily (4.21) holds, concluding the
proof. O
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Theorem 4.1.12. Let X be a d-dimensional variety over a field k of characteristic
zero which is locally a hypersurface in a neighborhood of £ € Max mult(X), and
assume that we are moreover in the situation of Example 1.4.1. Then there exists
some ¢ € L(X) through & such that

Tx.p = orde(GY). (4.25)

Proof. Pick a diagonal-generic arc for g§?) (see Remark 4.1.7 for the existence). By
Lemma 4.1.8 this arc can be lifted to an arc ¢ in X through ¢ whose projection (@
onto V(@ is diagonal generic for g§?). Remark 4.1.9 shows that ¢ is given (as in

(3.5)) by

(9(t),urg'(t), - - uag'(t)) (4.26)
for some g(t), ¢'(t) € K[[t]] and u1,...,uq € k. We only need to check that for such
an arc (4. 25) holds. Let N = ordt( (t)) Note that, since go(d) is generic for Qg?),
orde (¢ d)(gx ) = Ordg(gx ). By Lemma 4.1.1,

de(0(G™M)) = N - ordg(G? 4.27
orde(p(Gx ")) ordg(Gy')- (4.27)

Consider now two possible situations, depending on whether ord(yp) = ord¢(g(t)) or
not. If ord(yp) = ords(g(t)), then Lemma 4.1.11 implies

1= ordg(ggg)) =Tx,p

Otherwise ord(¢) = N, and from definition of 7x , and (4.27), we obtain

_ N -ord¢(G{))
e = TN

completing the proof. O

Remark 4.1.13. Under the assumptions of Theorem 4.1.12, let ¢ be the arc (4.26)
given by the proof of the Theorem. For this arc

ord(p) = N. (4.28)

To see this we observe that, since we have proved that 7x , = ordg(gg)), it follows
easily from (4.27) that:

@y _ . _orde(p(@¥))) _ N-orde(@¥) N
orde(G") =Txp = ord(y a ord(yp) = ord(p) 1
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4.2 The general case

As we have just done in the proof of Theorem 4.0.1 for the particular case of Exam-
ple 1.4.1, we will use that we can find, in an étale neighborhood of each point & of
X, a local presentation (as in Example 1.4.7) given by a collection of hypersurfaces
(presented as those in Example 1.4.1) and integers. We will assume that each of
these hypersurfaces is given by an expression as in Remark 1.4.6. As a consequence,
for any arc ¢ in X through £ we will be able to give an expression of the algebra
of contact of ¢ with Max mult(X) in terms of some algebras of contact of arcs with
hypersurfaces. This will lead to an easy formula for ry . With these tools, we

will prove in Theorem 4.2.4 that ordgggg) is again a lower bound for rx , for any
arc o, and that rx is also a minimum in this case in Theorem 4.2.6. They will be
consequences of Theorems 4.1.10 and 4.1.12 respectively.

Setting

Let X be a variety of dimension d, and let £ be a point in Max mult(X). As in
Example 1.4.7, we can find, in an étale neighborhood of £ a local presentation for X
attached to the multiplicity, meaning an immersion in V(") elements f; € Oym ¢ =
Oy @ ¢ [€1,...,2Zn_q] and positive integers b; for i = 1,...,n —d as in (1.22), such
that

G = DI Oy (AW, ..., freaWP1)) (4.29)
represents the function mult(X). Consider the differential closure of the OV&”“), g

Rees algebra generated by the f;, ggg)“). We already mentioned that f; is the mini-

mal polynomial of 6; and has coefficients in Oy (1) ¢, Where Ox ¢ = Oy @) ¢ [01,...,0h_dl,
and we can assume (by 1.4.5) that each f; has the form:

bi bi2
fi=a" + By p—22;" "+ ...+ Bpiyo € Oy ¢ [7i] C Opa gy [21,-- - Tn-dl,

where {z1,..., 24,1} is a regular system of parameters in O, @+ . and
0 »SO

§
{xlu -9y Tpn—d, 215 - - - 7Zd)t}

a regular system of parameters in (Oym) ¢ @k K[[t]])eo: By p—j € Oy g, and

where ord¢(Byyp,—j) > j for j=2,....b;,i=1,...,n—d.

We know from Example 1.4.7 that
G = Dff(Oyim ([IW, ..., fuaWind]) =
:DiH(OV(7b)7g[f1Wbl]) ©...0 Diff(OV(n)7§[fndeb"’d]),

where each Diff (Own)’g[ f;WP]) is the smallest differentially closed Oy ) ¢-Rees al-
gebra with the property of containing the algebra Diff(Oy, () £ [23][f;W?]), since
fi € Oy g(@[x;]. Therefore we can write

g\ = Diff (Oyw) g [e1][AWH)) @ . .. © Diff(Oya) gto)[@n—a) [fa_aW'=4]). (4.30)
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Observe that, for each f;, H; = {fi = 0} is a hypersurface in
vi"” = Spec(Oyw g [ai]),
where e = d 4+ 1. By Remark 1.4.22, the Rees algebra
e . . d
Gy, = Diff(Oyw) g [willfiW"]) = Oviw g lwilleiW] @ Gff)  (4.31)

represents mult(H;).

Remark 4.2.1. Using (4.30) we can rewrite g§?> in terms of the g}jj for i =
1,....,n—d:

gX _gH) "'QQSZ% -
= Oy g [21][11 W] © ng ©... 0Oy e [@n-dllen-aW] © ggz—d = 432

If one goes back to diagram (4.4), using the factorization

K[t]]
\ |
Oy ¢ =0

/

Oy ¢

(4.33)

V@ g [T

e+1 and g (e+1)

one can consider also the Rees algebras g induced by Ql(;z) over

OVi(,EH)va = OV()(d+1)7£(()d+1)[l'i] and (O ®k K[[ Deo respectlvely

(e)
Ve e

Consider now an arc ¢ € £(X) through &, and the OV(nH) so-Rees algebra of contact
0 >

of ¢ with Max mult(X), g ”+1 . Let us suppose that ¢ is given by
(SOJ»‘N M 7@0$n_da 90217 e 79024)

as in (3.5). At the same time, for i = 1,...,n — d, the projection of ¢ onto Vi(e) by
(4.33) is an arc ¢; given by

(Ps> Pars e s Pzq)
in £(H;). Therefore we can define

Gyt = Difi(Oyw ¢ @k K[[)e LW bW, hor—asa W, ... b W) = Gi5) © G+,
(4.34)
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where h; = x; — @y, fori=1,...,n—dand hy,_g15 = zj — ., for j=1,...,d, and
gén+l) :((')V(g)’5 Qr K[[t])e[MW, ..., hy W] = (4.35)
:((9‘/,(8)75 Rk K[[t“)ﬁo [hlI/V, hn—d—i—lm ceey hnW] ®...
© (Ov_(g),g R K[[tH)Eo [hn—dW’ hp—q W, ..., hnW] =
G5 6.0 05

Now we can use the result for hypersurfaces in Theorem 4.1.10 to assert that, for
1=1,....,n—d,
Ordé(%(gﬁ))) > orde (G
Tord(p) 2 ¢(Gn,)-
Note that
ord(¢) = min d{ord(goi)}. (4.36)

i=1,...,n—

The following is a key remark for the generalization of Theorem 4.1.10.

Remark 4.2.2. The Rees algebra Qgg)tpl) can be written in terms of the g}jj){;i, by
means of (3.12), (4.32), (4.35) and (4.34):
Get ) =gt o gt = (4.37)
d d n
= Ovo(n+1)’£(()n+1) [xﬂ/v, ... ,:rn,dW] ® gl(ql) ®... gé{iid ® g& +1) _

=gPo.. 007 odte. ogltl) =
—g9 oGt e... 069 ogkt) =

1 Pn—d

. (e+1) (6+1)
- ng,O#’l ©...0 an—d,oﬁﬂn—d'

After expressing the algebras g&’.‘o“) and Qgg:;) in terms of Rees algebras attached
to hypersurfaces as we have done in (4.32) and (4.37), it is easy to establish a relation
among the order of all Rees algebras involved in both cases, as the following Lemma
states:

Lemma 4.2.3. Let X be a d-dimensional variety, and let £ € Max mult(X):

1. Let gg?) and QSZ) be as in (4.29) and (4.31). Let ggf) and g}i) be respectively
the elimination Rees algebras associated to their projection over V@ . Then

¢ =6 o...0d) . (4.38)
and thus
orde(0)) = _min_{orde(Gi)} - (4.39)
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2. Let gﬁ?otj nd GV be as in (4.37) and (4.34). Let <p(g§?)) and gpl(ggz)) be

Hi o,
their restrictions to0 the curves defined by the arcs ¢, 1, ... pn_q TEspectively
(as in Proposition 3.2.12). Then
P(G)) = 01(G1) © - © pu-alGFp)_,). (4.40)
As a consequence
d g(") — : d . g(e) 4.41
orde(p(Gx")) = _min qorde(pi(Gy;)) g - (4.41)

Proof. Part (1) follows from the elimination of Qg?) associated to the projection
V) — V(D ysing the expression in (4.32). For (2), one must note, by looking

at the expression in (4.37), that the restriction of Q n+1 to the curve defined by ©®
equals the smallest algebra containing, for ¢ = 1,...,n — d, the restrictions Q Hi o0
of the 7

gi(‘;t)ls)o = OVO(”“),go [zW]© gl(ti) © gS(DeiJrl)

to the respective curves defined by the ¢;, since all the Rees algebras are differentially
closed. O

Results for the general case

Theorem 4.2.4. Let X be a variety as in the beginning of the Section, let & €
Max mult(X) and let ¢ be an arc in X through & with the notation used there. Then

o > orde(G\?). (4.42)
Proof. From (4.41) we obtain

—_— orde (0(GP)) _ ming—1,..n—d {Ol"dg(SOi(gS?))}
Xoe ord(yp) ord(yp) ’

For every i € {1,...,n — d}, Theorem 4.1.10 gives

orde (¢:(Gy;)))
ord(p;)
and this together with (4.36) and (4.39) implies

orde(¢i(95))) _ orde(i(Gis))

rde(Gy)),

> orde(G4)) > ord(G),

ord(p) T ord(p)
fori=1,...,n —d. As a consequence, we get
; (e)
mini—y_y—a {orde(pi(Gi;)) } W
— _ i > d
"X ord(p) orde(Gy"),
concluding the proof of the Theorem. O
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Remark 4.2.5. If k is a field of characteristic zero, it is always possible to find a

diagonal arc ¢(¥ which is diagonal-generic for g}_i) fori=1,...,n—d. As we did
in Remark 4.1.7, one needs only to consider for each i € {1,...,n — d}, an element
piWh € Q}i) such that ordg(ggi)) = %i(pi) and find units w1, ...,uq € k such that
ing(pi)(ui,...,uq) # 0 for i = 1,...,n —d. This is again possible because we are
considering a finite set of elements {p1, ..., p,—q} and an infinite field k. Now, the arc
@@ given by (u1t®,...,uqt®), where o is some positive integer, is diagonal-generic
for g}f,? foralli =1,...,n —d. In particular, @ is diagonal-generic for gg?) (this

follows from Lemma 4.2.3). By Lemma 4.1.8, @@ can be lifted to an arc ¢ in X
and the projection of ¢ onto V(@) is diagonal-generic for every gl(ﬁi)’ it=1,...,n—d,

as well as for Qg?) .

Theorem 4.2.6. Let X be a wvariety as in the beginning of the section and let
¢ € Max mult(X). There exists an arc ¢ € L(X) through & such that

TX,p = OI"dE (gg?)) (4.43)

Proof. By Remark 4.2.5, we can choose a diagonal arc which is diagonal-generic
for lel), e ,g}?j_d and Qg?). Let us denote it by @, We can lift (9 to an arc
¢ € L(X) through £. We know that ¢ is given (as in (3.5)) by

(91(t), -+ gn-a(t),urg'(t), ..., uag'(t))

for some ¢1(t),...gn—a(t),d' (t) € K|[[t]] and some u1,...,uq € k due to Remark

4.1.9. By Remark 4.2.5, go(d) is also generic for gf;?, i1=1,...,n—d. The proof will
be complete by showing that any arc of this form satisfies (4.43).

Let us denote N = ord(¢'(t)). As in (1.23), 8 factorizes through Op, ¢ for i =
1,...,n—d:

Oxw ¢ = Opw ¢z, ... 2n—a]/1(X) Ov g@[21, ..., Tn—d

|

On, e = Oy e [2i]/(fi)

Oy @ g
(4.44)
is, in particular, a lifting of aﬁ(d) to H;,

(d+1)

and hence the projection ¢; of ¢ onto V;
and the projection of each ¢; to V() ig gp(d), which is diagonal-generic for g};?. As
a consequence, the result of Theorem 4.1.12 holds for each H;, as well as Remark
4.1.13, and both together imply

ordg(@i(ggj)) = ord(¢;) - ordg(ggli)) =N- ordg(gg—?)
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fori=1,...,n—d. By (4.36) we also know that ord(¢) = N. From this, together
with Lemma 4.2.3, it follows that

~orde(p (gg?))) mini:l,...,n_d{ordf(gpi(ggi)))}
)

o ord(p N
. (d)
miNg=1,. .. n— { Ofds(g H; )} ) d d
- N T =l {Ordg(gé’i))} = ordg (),
which completes the proof. O

4.3 Consequences
The result in Theorem 4.0.1, proven along Sections 4.1 and 4.2 relates, for a given

X of dimension d over a field of characteristic zero, and any ¢ € Max mult(X),

d)

the invariant ordé X and the order of contact of the arcs in X centered at £ with
Max mult(X). However, as a consequence of this relation we may obtain some
conclussions for the persistance of these arcs too:

Theorem 4.3.1. Let X be a variety of dimension d. Let§ be a point in Max mult(X).
For any arc p in X through &,

PXp = [Ofdgggﬁl)} ~ord(¢p),
where gﬁ?) is the elimination algebra described in Example 1.4.25. Moreover,

{[ox.p]} = [ordeg{] -

min
PEL(X),p(0)=¢

One can find an arc g in X through & satisfying

ﬁX?@O = Ordggg?)

Proof. For the first formula we use Proposition 3.3.1 and Theorem 4.2.4

e = el = [y endto)] = [ 85 | ond(e) > foraed] -endte),

As a consequence,

(d)
rXe o ["xel _ pxe [Ordigx } cord(p) @
ord(¢p) - ord(p)  ord(p) = ord(p) - {OrdégX ] ‘

That is,
0 2 PXp 2 [ordgg }
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where we may take integral parts and then the minimums over all arcs in X through
&, obtaining

. _ . _ d
MiNger(x),p(0)=¢ {TX0]} > Mingerx),p0)=¢ 1ox 0]} > {Ofdég&)} =
Minge 2 (x),00)=¢ UTX.0)}

proving the second formula of the Theorem.

Finally, for the third formula, let us go back to the proof of Theorem 4.43. It allows
us to find an arc ¢ in X through ¢ satisfying rx ,, = ordgggg). This arc will be given
by (g1(t), .-, gn—a(t),urg'(t),...,uqg'(t)) for some ¢1(t),...,gn_a(t),q' (t) € K|[[t]]
and some ui,...,uq € k, and the projection gogd) given by (u14'(t),...,uqq (t)) will
be diagonal generic for Qg?). Let us choose g as the arc in X through £ given by

(g1(t"), s gna(t®), g (%), . .. uag' (")),
where b’ € Z~ is such that ordgggg) € % -Z~p, whose projection @éd) is also diagonal

generic for gﬁ?), so it is also valid for Theorem 4.43, having 7x ,, = ordgggg). In
particular, this implies that

FX»‘PO = ":X,(,Dl .

Note also that ord(pg) = ord(¢1) - . We have found an arc such that

TX,p0 = ordgggg) -ord (o),
and for which
"X po = [TX,apo] = PX,p0>

since ord(pg) € V' - Zg, concluding the proof. O

The following Corollary gives a characterization of ordéd)X in terms of the py ..

Corollary 4.3.2. Let X be a variety of dimension d. Let & be a point in Max mult(X).

Consider the subset C C L(X) of all arcs ¢ through & satisfying rx,, = ordéd)X.
Then:

ordéd)X = maxpec {Px,p} -

Proof. We know that C is nonempty by theorem 4.2.6 For any arc ¢ € C,

X = [Tx,p0) = {ordgggg) -ord(gp)] .
It follows that @
Pxw [ordggX -ord(go)]

ord(p) ord(e)
Now, the result is a consequence of this together with Theorem 4.3.1. ]

< ordeG\?.
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4. NASH MULTIPLICITY SEQUENCE VS. ordéd)X

For every arc ¢ € L(X) through &, we have the following relations:

Corollary 4.3.3. For X as in Proposition 3.53.1, and for every arc ¢ € L(X)
through &:

1. ’FX,QD 2 [)X#P
_ d
2. pxp = lordeG]
3. Since Tx,, > ordgggg) and Tx.p > px.p > [ordggg?)], two possible situations
= (d) )
can happen for px , and ord¢Gy’, namely:
o Fxp > ordeG\) > iy > [ordeGY]

X, 2 PX,p > Ol"dfgg?) > [Ordggg?)]

Proof. 1. Follows from the definitions of 7x , and px,, toghether with Proposi-
tion 3.3.1.

2. By Definition 3.1.2, Proposition 3.3.1, Theorem 4.2.4:

S PXe _ [rx ] S [Ordggg) -ordy]

P > [ordeg ).

ordp  ordp ordep

3. This is just an observation which follows from 1. and 2..
O

Finally, let us show how the persistance can recover the invariant ordéd) (X), proving

that it is intrinsic to the variety:

Corollary 4.3.4. For X as in Proposition 3.3.1, pick any arc ¢ : Spec(K][[t]]) —
X centered at €. Consider the family of arcs given as

n = P Oip

fori > 1, where i}, : K[[t]] — K][[t"]] maps t to t". Then

@y — ; 1 . PXpn
ord; ’(X) = infy, (ord(go) - lim. n) ,

where @ runs over all arcs in X centered at & which are not contained in Max mult(X).

Proof. The statement is just a consequence of

. . PX
rx, = lim —— = lim =%~
n—00 n n—00 n n—oo n,

and this follows from the fact that rx ,, = n-7x, (which can be deduced from the
definition of rx ). O
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4.4. Examples

4.4 Examples

Let us recover some examples from the previous chapters to show their invariants
and the relation among them. We will use the computations from Examples 1.5.4,
3.2.19 and 3.3.3

Ezample 4.4.1. e Let X; = V(22 — y3) C Spec(k[z,y]) from Example 1.2.7.
Using the arc ¢ = (t3,12), we observe that

ordg)Xl =3/2=Tx, 4 = Px,

o Let Xy = V(a3 — y32%) C Spec(k[z,y, z]) from Example 1.2.7. Using the arc
1 = (t3,,13), we have

ord? Xy = 5/3 < Ty = 3= Dx, -

The arc @9 = (t°,t3,13), gives the order in dimension d:

ord Xy = 5/3 = T, 00 = Dx,s -

o Let Xg = V(2% — zy2? — y2® + 2°) C Spec(k[z,y, 2]) from Example 1.3.26. For
the arc ¢ = (t2,12,t), we have

Txpe = 3/2 > ord?) Xg = 4/3 > Dy, , = 1 = [ord(? X .

e Let X7 = V(zy — 2*) C Spec(k[z,y, 2]) from Example 1.3.26. The arc ¢ =
(t,13,t) gives

2 _ _
ordé )X7 =1=Tx; 4 = DXy 01

On the other hand arc o = (t2,12,t) gives

2 ~ _
ordé )X7 =1 <Tx700 =2=Dx;,0,-
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Chapter 5

The Nash multiplicity sequence
for isolated points of maximum
multiplicity

Along this chapter, we study the isolation of points of maximum multiplicity of a
variety from the point of view of the invariants from Chapter 3. In this line, we prove
that the fact of being isolated for a point £ € Max mult(X) is related to how large
Tx,, (from 3.2.18) can be for the different arcs in the variety (which are centered at
€). This is proven in Theorem 5.0.1 and Corollary 5.2.2. For points with maximal
7 invariant, we give a precise upper bound for 7x , in Proposition 5.3.1. We state
here the central result:

Theorem 5.0.1. Let X be a variety over a field k of characteristic zero, and let
& be a point in Max mult(X). Then, & is an isolated point of Max mult(X) if and

only if
sup ®x ¢ < oo.

(See 3.2.20.)

Setting

Let us assume the setting from Section 4.2, that is:

Let X be a d-dimensional variety defined over a field k£ of characteristic zero. Let
¢ € Max mult(X) be a point of maximum multiplicity of X. Consider a local
presentation for the multiplicity of X, locally in an étale neighborhood of &:

X (@ /()
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5. NASH MULTIPLICITY SEQUENCE VS. ISOLATION

g\ = dift (OV<"),§ [lem’ o fnde(”_d)D

as in Example 1.4.7. Recall that we have a transversal projection Sy : X(@) — V(@)
inducing an elimination algebra gﬁ?) of g§?). For any K-arc ¢ in X centered at £ we
obtain an arc in V(% centered at Sx(€) (see Remark 4.0.2). We define it as in Re-
mark 3.2.5, by choosing a regular system of parameters {z1,...,Z,_q,21,...,24} C
OV(">,§- This is explained in the diagram:

¢ xc v

y

5 aSpec(KH])
ggf_l) V@

For the proof of Theorem 5.0.1 we will need some facts which are consequences of
the results from Chapter 4. The following Lemma collects them:

Lemma 5.0.2. Let X be as in Theorem 5.0.1 and let & be a point in Max mult(X).
Let ¢ be an arc in X through £. With the notation from Section 4.2:

1. rxp = ordy (@D (G\?Y)) and
2. ordy((x)) > ordy(0D(G\P)) fori=1,...,n—d.
Proof. Tt follows from (1.32) that
rxp = ordy(p(GY)) = mini—y g {ords(p{7(G4))} =
= min {ord;(¢(21)), .., ordy(p(wn—a)), orde(p ) (G)) } < ordi(p D (G)),

where e = d 4+ 1. On the other hand, for each i, by Lemma 4.1.1,

ordy (2 (G57))) = min {ordy (o) (), orde(p{” (GP)) } = ordi(pV (G1))), (5.1)

SO
TX,p = Milj=1__ pnd {ordt(wgd)(Gﬁ)))} :

But note that 91(5? C gﬁ?) and cp(d) = @ (see (1.31) and (4.2)). Thus,

(G = o D)) c (G
and
ords (91 (G)) = ordy (oD (G)). (5.2)
Consequently,
ordy (D (G)) = x> ordy (0D (G))),

proving 1. Now 2 is a consequence of (5.1), together with (5.2) and the fact that,
foralli=1,...,n—d,

(d)(

oD (i) = ol (@) = pl(as).
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5.1. Isolated points

5.1 Isolated points

In order to prove Theorem 5.0.1, let us divide it in two one side implications, re-
formulated in Propositions 5.1.1 and 5.2.1 respectively, in a way that will be more
convenient for their respective proofs. We first give a simple version of the proof of
the easier one:

Proposition 5.1.1. Let £ be an isolated point of Maxmult(X). Then there exists
a positive integer Q) € Z~q, depending only on X and &, such that for any arc ¢ in
X through &,

fX,cp < Q

Proof. Consider the graded structure of a Rees algebra gg?) representing the multi-
plicity of X in an étale neighborhood of &,

Qﬁ?) = EB@'Z()IZ'Wi C Opwm [W].

Since we assume QE?) to be differentially closed, the set Max mult(X) is determined
by the zeros of the ideal I; (see Proposition 1.3.33). Therefore, Max mult(X) being
of dimension 0 is equivalent to \/I; being a maximal ideal. This is also equivalent
to the fact that, for a (any) regular system of parameters {z1,...,Tn_q,21,--.,24}
in Ox ¢, I1 contains some ideal of the form

ai Apn—d _On—d+1 a
(A )
for some positive integers aq, ..., a,. Note that this implies that

G > Ox e[t W, ... 2l W, 2 W, 240 W),
Therefore,

0(G) 5 Ox @)W, ..., o(@ W, p(2I" W, ..., p(2m)W],

and

ordt(go(gg?))) <min {a; - ord(¢(x1)), ..., an_q - ordi(e(xn_q)),
ap—d+1 - orde(o(z1)), ..y an - ordi(p(zq))} -
Thus
’FX,QD < aj € Z>0

for any j € {1,...,n—d} such that ord(y) = ords(¢(z;)) orany j € {n—d+1,...,n}
such that ord(y) = ord¢ (v (zj—n+d))- O

The bound given by this proof is not optimal. In general, a rational number which
will be smaller than the integer given by the a;’s can be found, yielding an optimal
bound. Note that this rational number is an invariant of X at &.
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5. NASH MULTIPLICITY SEQUENCE VS. ISOLATION

Remark 5.1.2. For some arcs, we can say more about 7x ,: If ¢ is such that

ord(y) = orde((z;))

for some j € {1,...,n —d}, then

TX,p = 1.

Indeed,
a1:...:an,d:1

in the proof of Proposition 5.1.1, because 1, ...,T,—q € I1 (see (4.32)).

In the next section, a precise upper bound will be given under some special condition
over X at &, in terms of orders of elimination algebras. This condition is related

with the 7 invariant of gg‘) at & (see Definition 1.4.9).

5.2 Non isolated points

We prove now the most delicate implication of Theorem 5.0.1. To make the proof
easier to understand, we will deal separately with an easy case first, even though it of
course follows from the general one, which we prove afterwards. For the techniques
of resolution used in this proof, as well as definitions of strict and total transform
of an ideal, we refer to [12, Section 7] or [36].

Proposition 5.2.1. If € lies in a component of Max mult(X) of dimension greater
than or equal to 1, then for any q € Q, one can find an arc ¢ in X through & such
that

TX,p > (-

Proof. Since rx , = ord; (p(®) (ggf))) if p(4) = poB% (see Lemma 5.0.2), our strategy
here will be choosing an arc @@ in V(4 through £@ which gives ordt@(d)(gg?)))
large enough first, and then lifting it via Sx to an arc ¢ in X through &, proving
afterwards that it satisfies the statement in the Proposition.

Suppose first that there exists a smooth curve C C Max mult(X) containing &.
Then C = fx(C) € V@ is a smooth curve containing £(@ (see [82, Theorem 6.3]).
Assume that C' is defined by a prime ideal J C Oy () ¢@). Consider the family of

arcs 4,553) in V@ through ¢, for N € Z+, given by

2 : Oy ey — K1),

J—s N,
M gd) t.
This can be done because we may assume that, in this situation, J = (ya2,...,yq)
for some regular system of parameters {y,...,yq} of Ov<d>,§<d>- Then, such a family
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5.2. Non isolated points

of arcs could be constructed by just defining cﬁg\‘?)(yl) =t and @g{?) (y;) =tV for

j=2,...,d. For any N € N, the arc gbg\cfl) can be lifted to an arc ¢y in X through
§ satisfying rx ., > IV as follows:

Under the hypothesis d > 2, consider the ideal P = Ker(gég\c,l)) C Ov<d>,§(d>- There
exists a prime ideal Q in Ox ¢ dominating P. We have the following commutative
diagram:

Q C Oxge Ox.e/Q
ﬁﬁgT ,BX*T
p(d)
P C Ov(d) £ £ Ov(d) &) /P

where the vertical arrows are finite morphisms, and both rings on the right side are
1-dimensional. The ideal Q defines a curve. One can find a nontrivial arc

SEN : O)(?E/Q — K[[t”

in V(Q) through p(§). It induces another K-arc, where K is the residue field of
Ox¢/Q at u(§):
N =@nop: Oxe — K[[t]

in X through &, and a K-arc

o = ono By =@noBx o u D Oy ey — KI[t]

in V(@ through £@, with
Ker(ply) =P = Ker(y) = (32 — y¥, 52 — 5 : 2 < j < d) C Opiwy o).

Since C' C Sing(ggg)),
OrdC(IiOV(d)’g(d)) >1i Vi>0,

s0 1iOy @ o C JiOV(ﬂD,C' But note that J is a regular prime in Oy (a) ¢ defining
C, so IiOV(d),g(d) C J for all i > 0. Consequently,
(d)
gX - Ov(d> &) [JW],

and
(g ) d)((') @ ¢ [JW]).
(d)

Hence, for ¢’ constructed as above,
ordy (o (G1) = ordu(pY (Ovo e [TW])) = ordy(0} (7).

Using also Lemma 5.0.2 and the fact that ord(¢n) < 0rd(<p§3)) = ordt(cpg\(f) (Me@))
(see (4.1)), we arrive to

ordu(e) (G37) , ord(p(1)) , ords(plf(J)) _ _ord(}¢' ()
ord(en) T ordlen) T ord(eld)  ordi(lP (M)

va‘PN -
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5. NASH MULTIPLICITY SEQUENCE VS. ISOLATION

Assume that (pgf,l) (yj) = ujt® for j =1,...,d for some units u; in K[[t]] and some

aj € Z~qo. Then

DD ya —y) = 0= 0P (1) — oD (y1)N = ugt® —

4,05\6,[) (y2—yj) =0= gog\(f) (y2) — cpg\c,l) (yj) = uat™ — it for 2 < j<d.

Necessarily

uN N and

g = Q- N and
as =qy for 2<j<d,
SO
TX.on = Ordt(SO%)(J)) _ Wiz, .d toi) =2 =N
= ordt(@g\cfl)(Mf(d))) minj-1,..ateg) o

which, for a fixed ¢ € QQ, can be greater than ¢ by just choosing N big enough.

Suppose now that C C Max mult(X) is not smooth. As before, assume that C =
B(C) c V@) and denote J = I(C) C Oy ¢ - Consider the following sequence:

m d)

v = yh oyl m T (5.3)
U U U

cC = G ) o
d d d

€ - g

where ; is the blow up at the point fi(i)l, and §§d) € 77;1(51@1) NClfori=1,...,r,
and such that the strict transform C] of Cy by 7 = 71 0... 07, is a smooth curve

having normal crossings with the exceptional divisor at §,(»d). Such a sequence can
always be found, being an embedded desingularization of C'. Let us look now at
the total transform J, = J (’)V(d) of the ideal J by m, which will be, locally in a

neighborhood of 57(~d), of the form
Jo =M J],

where J] is contained in the ideal I(C!) defining the strict transform C/ of C in
Vr(d), and . is a locally a monomial. Let us choose a family of arcs @%?T in Vr(d)
through & for N € Zs such that @y (I(CL)) =tV and @) (1*(Mew)) = t* for
some a € Z~g constant, as we did for the case of C' smooth. For this, note that
locally in a neighborhood of fﬁd), one can consider a regular system of parameters

in Ov(d) £ given by
{90 =1(H1), 92, - - -, a}
so that I(Cl) = (92, .-, 7d), and moreover

T (Mew) = I(Hp)*
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5.2. Non isolated points

for a € N, where H; = 7, 1(£,_1) is the exceptional divisor of 7., because of the way

in which the centers of the m; are chosen. Consider @%’r given as

—(d
By Oyt o — K[t
ﬂl — T,
Uj — N, forj=2,....,d,

which satisfies the desired properties. Note that 7 induces a sequence of permissible
transformations of X via Bx:

X = X, e X,
i/ﬁx \Lﬂxr
v — VO(d) T Vl(d) UL Vr(d)

For each N € Z+, 9553)7, can be lifted to an arc in X, through &gd) via a diagram as
in the regular case:

QC Ox,e, ——>0x,6/9Q

BB}TT B}TT
e
PcCO ) 4>OVT(d)7§£d)/7D

V(D gl

where P = Ker(@g\g,l’)r) =9n (’)V(d) - As we did in the case of C' a regular curve,
we pick an arc

@N,T : OX'rygr/Q — K[[ﬂ]’
where K is now the residue field of Ox, ¢, /Q at u(§,). We obtain
PNy = @N,r op: OX,«,& — K[[t“,

so that Ker(@%%) = Ker(«pgg?r), where

d *
040, = v o B, Oy o — Kl

T

Note that Ker(gogffl?r) = (2 — 1, G2 — gj:2<j<d),so

ordi (¢ (52)) = orde(0y (57)) = N - orde(0), (1))
for 2 < 7 <d, and that

ord(pl)) = ordi(p) (1" (Mew))) = orde (9, (7)) = a - orde (0 (1)),

so necessarily

ordy (¢}, (1(C1)) :<1)mmj2 ..... ifordien i)} N
ordy (o) (1 (M) \@ mini:17,,,,d{ordt(go%’)r(gi))} a
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5. NASH MULTIPLICITY SEQUENCE VS. ISOLATION

Finally, we obtain
o Oxe — KI[t]]

by composing ¢y, o %, and we also obtain its projection to V() ag

d d *
905\/): .gV,)roﬂ— :

Note that the sequence of transformations in (5.3) is such that the multiplicity of
X; along the curve does not decrease along the process, and hence

C! C Bx,(Max mult(X;))

for i =0,...,r. As a consequence, it induces a sequence of permissible transforma-
tions of Rees algebras for g@ as in [80, Definition 6.1], since for all : = 1,...,r, m;

is a blow up at a regular closed subset of Sing(ggg)i_l):

V(d) _ ‘/O(d) st V'l(d) 2 o T ‘/T(d) (55)
QE?) = gg?,)o = @izo;W* gg?ﬁ e gg?,)r = ®iz0Lig W'

where
IiOVT(d) C Ly

for i > 0 (see (1.5)). In particular,
Qg?)OVT(d) = @iEO(I’iOVT(d))Wi C @iZOImWi.

Moreover,
e G0) = o (@010, )W) € GG,

SO
ordt(wg\?) (QE?))) > Ordt(@gg,)r(ggg,l))-

Since I(CY) is a regular prime in O @ defining a curve contained in Sing(ggg)r),

v
GE?,)T C Oy @I(CHW],
and hence
ordi (P (G)) = orde(0.(G)) = ordy (P (1(CL))). (5.6)
On the other hand,
ord(ipn) = ord (pn (M) < ords (93 (M) = ord(p') = ordy (o4 (7" (Mecw))).

This, together with Lemma 5.0.2, (5.4), and (5.6) implies, for each N € Z~y,
n d
_ ordy(on(GR)) _ ordy(pP(G) | ordu(eN, () N

TX,on = > > = —.
. ord(pw) ord('?) ord; (9 (7 (Mew)))) @

Again, it is clear that for a fixed ¢ € Q, we may choose N such that 7y, >¢q. [
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As was stated in the beginning of the section, Theorem 5.0.1 means, in terms of the
Nash multiplicity sequence, that £ is an isolated point of Max mult(X) if and only if
there exists an upper bound (not depending on the arc) for the number of blow ups
directed by any arc ¢ in X through £ which are needed before the Nash multiplicity
sequence decreases for the first time (normalized by the order of ¢):

Corollary 5.2.2. Let X be a variety over a field k of characteristic zero. A point
¢ € Maxmult(X) is an isolated point of Max mult(X) if and only if

PX,p
SuPy {ord«o)} =0

where the supremum is taken over all arcs ¢ in X through &.

Proof. The direct implication follows from Corollary 4.3.3. For the reverse one,
assume that sup,, {0%(7(’:;)} = q € Q¢ and get to a contradiction: for N = [¢g]+1 > g,
choose ¢, as in the proof of Proposition 5.2.1, so that it satisfies 7x ,_ , > N. This
implies

PXpan = [TXpan] = [V - 0ord(pan)] = N - ord(¢an).

But this is equivalent to

pX:‘PaN > N - Ord(goaN)

> =N>yq,
ord(¢an) ord(¢an)
yielding a contradiction. O
5.3 One particular case
Assume now that 7 M ="M= 1. Then, for some regular system of parameters

Gx
{1, 25_1,2} C R = Oy for gg?) differentially closed representing the multi-
plicity of X at &, we have

W, (W C g§?),

5(1)
and one can find an admissible projection V(™ =5 V(1) and an elimination algebra

g§§>. We may assume that, up to an étale extension, R = S'[z],...,z],_;], where S’
is a regular ring of dimension 1. Then

¢ = R&\W]o...0 Rz, ,W]oG{¥ (5.7)
where Qg(l) C S’[W]. Note that, in this situation:
orde(GF)) = 1 = ordeen 1 (GY V) = ... = 01d (GF)) < orden (G,
so ordg) (gg(”) is the first interesting resolution invariant in this case.

Under these hypotheses ¢ is an isolated point of Max mult(X), and hence Proposi-
tion 5.1.1 guarantees that ®x ¢ is upper bounded. It turns out that the additional

condition on Tg(n) yields an improvement of that result:
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5. NASH MULTIPLICITY SEQUENCE VS. ISOLATION

Proposition 5.3.1. If Tgm) ¢ =1 — 1, then for any arc @ in X through &:
X b

P < ordgn (GY),
and this bound is sharp.

Proof. We may assume first that min;,—; __,—1 {ord:(p(x}))} = ordi(¢(z})). By
(5.7), we obtain

rx,p < min {ords(ip(a4)), ordi(¢ V() } (5.8)

where o) is the projection of ¢ via the elimination map ng) : Spec(R) — Spec(5’).
Note that, either ord(yp) = ord;(¢(z})) or ord(yp) = ord;(p(z)). In the first case,

min {ordt(go(x’l)),ordt(@(l)(gg(l)))} <1
ordy(ip(x))) o

I<7x,<

which implies that

Tx,=1< Ord§(1)(g§)).
In the second case,

TR

’ ord: (¢ (2))

Note that ordt(cp(l)(gg(l))) > ordgm(gg(l)) ~ordy(p(2)) (see Lemma 4.1.5). But actu-
ally this inequiality is an equality here. This follows from the fact that g;” c S'[wW]
so, for all gW' € gQ’, we have that ord¢((g)) = ord;(g)-ord:(¢(2)). One only needs

to observe now that ¢<1)(g§§>) = K[[t][p(g)W' : gW! € g§)], and the equality is
clear. Hence

ordg) (Qﬁgl)) -ord(p(2))
ord((2))

To see that ordf(l) (ggg)) is a sharp bound, consider an r.s.p.

'FX,cp > = Ord£(1) (gg(l))

{x1,. ., Tp_a,21,--+,2d-1, 24} C R.

Since Tgm ¢ =M — 1, we may assume that
X

eIW, .o T W, 21Wo oo 2q A W € QE?)

We may choose an arc @@ in V(4 through Bx(¢) such that @@ (z4) = t and
@D (z) = ... = pD(zq_;) = t*, for some a € Zwg, a > ord£<1>(g§§)) > 1. This
arc can be lifted to an arc ¢ in X through &, for which

ordy(p D (G)) _ ordy(p D (G)) _

"X = ord(p) ord(p(@)
_mnin {Ordt(W(d)(zl))a - ordg (0D (z4-1)), ordt(w(l)(gﬁ)))}
- ord(p(@)
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by Lemma 5.0.2 and (4.1), where

oD = o B and oM = po (BY)".

Also,
Ker(go(d)) = Ker(gé(d)) = (20— 21y.-, 29 — Zd—1),

sofori=1,...,d—1 it is clear that
ordy (0D (2)) = a - ordy (o' (2q)) >
orde (G)) - ordi (91D (24)) = 0rdi (9D (GY)) > ordy (0 (z)).

Thus,
ordi (oM (G{))
ords (oD (zq))

Ordg(l) (g&l)) Z /FX,(p Z - Ordg(l) (ggfl))

O]

However, under the hypothesis of Proposition 5.3.1, sometimes it is possible to find
arcs such that ordg(ggg)) =1<7rx, < ordé(ggfl)). Let us show an example for this:

Example 5.3.2. Consider X < Spec(k[x,y, 2]) defined by the equation f = xy — 2°
and ¢ = (0,0,0) = Maxmult(X), and let ¢ be the arc defined by p(z) = t3,
p(y) =%, p(z) =t. Here

Gi¢) = Diff (ke y, 2][/W?]) = klallaW] © G’ = ke, y][eW,yW] © G,
where g@ = kly, 2][yW, 25W?2, 24W] and g§§) = k[2][z°W?, 24 W], so ordg(2) (gg?) =
1 and ord£<1)(g§})) = 5/2. Note that ord(p) = ords(p(z)) = 1. On the other hand,

rxe = ordy(p(GY))) = ordy(p? (61) =
= min {ord; (¢ (1)), ordy (¢ (G)) } = min {2,5/2} = 2,

Hence, for this example 1 < 7x , =2 < 5/2.

5.4 Examples

Let us end our discussion with a couple of illustrative examples for Propositions
5.1.1 and 5.2.1 respectively. The first one shows an isolated point of Max mult(X)
for which ®x ¢ is upper bounded by 3:

Ezample 5.4.1. Let X = {2?y3 — 235 = 0} — Spec(k[z,y, 2, s]) and let £ = (0,0,0,0) =
Max mult(X). We have

Gy = Diff(k[z,y, 2, s][(2%y* — 2*s)W?]) =
= k[z,y, 2, 8] [z W, yW, zsW, 22W, s*W, 23sW?, 25> W?2,

25 W3, 223W3, 232 W3, 233 W, z334W5].
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5. NASH MULTIPLICITY SEQUENCE VS. ISOLATION

Observe now that W, yW, z3W, s>W € ggf), and o(z)W, o(y)W, 0(2)3W, p(5)*W €
¢(g§?)). Then

rx < min{ordi(p(x)), ords(p(y)), 3 - ords(p(2)), 2 - ords(p(s))} -

If ord(¢) = orde(p(x)) or ord(yp) = ordi(¢(y)), then 7x, = 1. If ord(y) =
ord¢(¢(2)), then 7x, < 3, and if ord(¢) = ords(¢(s)), then 7x, < 2. In any
case

Fx.p < 3.

In the next example we construct, for a non isolated point of Max mult(X), a family
of arcs pn, N € Zo, for which rx ,, equals a polynomial in N, namely ¢(N) =
N + 2, showing that ®x ¢ is not upper bounded:

Ezample 5.4.2. Let now X = {2%y? — 2455 = 0}, and let £ = (0,0,0,0) again. Now
¢ € Maxmult(X). In this case,

G = Diff(k[x,y, 2, s][(a*® — 21°)W?)) =
= kl[z,y, 2, 8] [xW, yW, 2sW, s5W, 2s°W?2, 225W3, 235W1, 245W5].

Consider the following family of arcs through £ parametrized by N € Z~q:

on K[,y 2,8/ (@ = 21s%) — K[[t]]

T s $2N+2
Y — £2N+5
2 —t,

S — t2N+3.

Now
p(GY)) = K[[H][2N W]

and ord(pn) =1, so
Tx,, = 2N + 2,

which grows with N.
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...flota
mientras tanto esta nota en algun pentagrama leve
y al compds de ese breve sonido un planeta gira
y una planta respira y el aire caliente sube
y el vapor de una nube destila una gota
que oscila un instante reacia...

J. Drexler

Reinventem les ruines velles i evitem tornar a perdre
Perqué caiguen els gegants
Invertim la gravetat

Ara eres tu qui canviard la historia
Eres la llum que brillara en aquell parc
Ets com el fum entre la boira

Eres la veu que frena aquesta noria
La flama que incéndia el meu cos
Es el moment d’on neix Ueuforia... salvatge!

Smoking Souls
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