Chemistry below graphene: Decoupling epitaxial graphene from metals by potential-controlled electrochemical oxidation

Irene Palacio, Gonzalo Otero-Irurueta, Concepción Alonso, José I. Martínez, Elena López-Elvira, Isabel Muñoz-Ochando, Horacio J. Salvagione, María F. López, Mar García-Hernández, Javier Méndez, Gary J. Ellis, José A. Martín-Gago.

Abstract

While high-quality defect-free epitaxial graphene can be efficiently grown on metal substrates, strong interaction with the supporting metal quenches its outstanding properties. Thus, protocols to transfer graphene to insulating substrates are obligatory, and these often severely impair graphene properties by the introduction of structural or chemical defects. Here we describe a simple and easily scalable general methodology to structurally and electronically decouple epitaxial graphene from Pt(111) and Ir(111) metal surfaces. A multi-technique characterization combined with ab-initio calculations was employed to fully explain the different steps involved in the process. It was shown that, after a controlled electrochemical oxidation process, a single-atom thick metal-hydroxide layer intercalates below graphene, decoupling it from the metal substrate. This decoupling process occurs without disrupting the morphology and electronic properties of graphene. The results suggest that suitably optimized electrochemical treatments may provide effective alternatives to current transfer protocols for graphene and other 2D materials on diverse metal surfaces.

© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The two-dimensional atomic structure of graphene is responsible for a wide assortment of superior properties combined in a single material [1,2]. In particular, its excellent charge-carrier mobility makes graphene a promising candidate for the construction of more efficient electronic devices. However, although the fabrication of a graphene-based fast transistor was announced in 2009 [3], this technology has not yet advanced to serial production status. One of the limiting factors for the step from basic research discoveries to real devices is the structural and chemical quality and reproducibility of the graphene sheet. From a technological perspective, Chemical Vapour Deposition (CVD) is undoubtedly the most convenient methodology to produce inexpensive, large area graphene sheets, but this process has the unavoidable requirement of a metallic surface, usually Cu or Ni, which quenches the electronic and optical properties of graphene, making the transfer to other substrates a necessary requirement to overcome this drawback. Several efficient transfer protocols have been developed [4,5], but even the best of these strategies induces significant structural and chemical defects (such as oxide groups) that impair the properties of graphene and subsequently limit the scope of its potential applications.

Over recent years there has been a major effort to develop new methodologies both to improve transfer efficiency or to avoid the transfer process altogether [6–9]. Among these methodologies, electrochemical detachment of the graphene layer has recently acquired some relevance [10–12]. For instance, there are voltammetric studies using the so-called “bubbling method” to decouple graphene from Pt and Ir [13,14] or the electrochemical detachment of graphene from Ru by hydrogen intercalation [15]. These protocols are essentially based on weakening the graphene-metal interaction by an electrochemically driven bubbling
processes. These methodologies usually lead to efficient detachment of single layer graphene. However, they differ from the present case where the voltammetric electrochemical protocols are not employed to remove the graphene layer, but rather to induce oxidation of the supporting metal substrate, as a method to avoid subsequent physical transfer via PMMA, or other polymers. There have been many attempts to induce decoupling without removal of the layer in the past. Simple immersion in water for some hours in the case of Gr/Cu has been reported to lead to the formation of an oxide, leading to decoupled graphene flakes [8]. Also, insertion of atomic or molecular layers between the graphene and the supporting substrate from gases or adatoms has been reported to be an effective method for decoupling or modifying the properties of the graphene layer [16–18]. However, such intercalated atoms can be removed at relatively low temperatures in reversible processes that lead to unstable interfaces, with possible etching processes occurring at higher temperatures [17,18]. To improve these aspects, other protocols have explored the idea of direct oxidation of the interface between the metal support and the graphene layer. Lizzit et al. and others have employed thermal treatments under an oxygen atmosphere to decouple graphene from metals [19–22].

Currently, the most effective methodology for growing perfectly ordered and pure graphene takes advantage of the catalytic properties of a metal, in well-controlled ultra-high vacuum (UHV) environments, to thermally decompose either hydrocarbons or organic molecules [23,24]. As well as several advantages (scalability, powerful in situ characterization, highly epitaxial and impurity-free), the strong coupling between the metal substrate and the graphene layer is a recurring drawback [25]. The work presented shows that by an inexpensive and easily scalable electrochemical process, highly perfect graphene samples epitaxially grown in UHV on metal surfaces can be decoupled by controlled oxidation that takes place exclusively on the metal surface with minimal disruption of the graphene morphology or structure. By a combination of experimental techniques and theoretical methods, the decoupling of high-quality epitaxial graphene on the tens-of-micrometer scale from a Pt(111) substrate by the gentle intercalation of submonolayer hydroxide on the Pt surface is demonstrated. This methodology could represent a significant step towards the use of readily grown graphene on both single-crystal and polycrystalline noble metal surfaces for practical applications avoiding transfer processes. To illustrate the universality of the process, graphene was also successfully decoupled from Ir(111).

2. Methods

2.1. UHV graphene preparation and in situ characterization

An UHV system with a base pressure of 1×10^{-10} mbar, equipped with an Omicron room temperature Scanning Tunnel Microscope (STM) and an Omicron Low Energy Electron Diffraction (LEED), Pt(111) and Ir(111) surfaces were cleaned by repeated cycles of argon ion sputtering and annealing in an oxygen atmosphere ($T = 1200 \text{K}$ for Pt(111) and 1373K for Ir(111)) and $P_{\text{O}_2} = 5 \times 10^{-8}$ mbar). In order to avoid any residual oxygen on the surface, several extra cleaning cycles were carried out without oxygen. The pressure during the last annealing cycle was lower than 7×10^{-10} mbar. STM and LEED were used to assess the cleanliness of the surfaces. The graphene layer was grown by decomposition of fullerenes (Sigma-Aldrich, 99% of purity) at high temperature (1150 K) following our calibrated protocols to ensure saturation coverage [24,26]. Some samples were grown by thermal decomposition of ethylene with similar results. WSxM software was used for data acquisition and analysis [27].

2.2. Electrochemical treatment

An electrochemical cell with a 3-electrode setup was used [28]. A platinum wire (99.99% purity) served as the auxiliary electrode. All potentials are quoted with respect to the Ag/AgCl reference electrode. The area of the working electrode (Pt(111) or Ir(111)) that was exposed to the solution was 0.33 cm2 in all experiments. Cyclic voltammetry experiments were performed with an Autolab PGSTAT 30 potentiostat from Eco-Chemie. The electrolyte employed was 0.1 M HClO$_4$ and the scan rate was 0.05 V s$^{-1}$.

2.3. Atomic force microscopy (AFM)

AFM measurements were performed ex situ at room temperature and ambient conditions employing a Nanotec AFM with a P/LI dynamic measurement board. AFM images were recorded in dynamic amplitude modulation (AM) and contact modes. WSxM software was used for images and curves acquisition and processing [27]. Aluminium coated silicon cantilevers (Budget Sensor $k = 3 \text{ N/m}, v_0 = 70 \text{ kHz}$) were used.

2.4. Scanning electron microscopy (SEM)

The SEM micrographs were recorded on a FEI Nova NanoSEM 230 microscope. The micrographs were measured at 25,000x magnification and using a VCD detector, which is a backscatter electrons detector for high contrast images at low potentials.

2.5. Raman

Raman measurements were undertaken ex situ in the Raman Microspectroscopy Laboratory of the Characterization Service in the Institute of Polymer Science & Technology (CSIC) using a Renishaw InVia Reflex Raman system (Renishaw plc., Wotton-under-Edge, U.K.) comprising a grating spectrometer with a Peltier-cooled charge-coupled device (CCD) detector, coupled to a confocal microscope. All spectra were processed using Renishaw WinR E 3.4 software. The Raman scattering was excited using an argon ion laser wavelength of 514.5 nm. The laser beam (laser power at the sample $= 1 \text{ mW}$) was focused onto the sample with a 50x (N.A. = 0.75) microscope objective, and multiple scans were accumulated at an exposure time of 10s.

2.6. X-ray photoemission spectroscopy (XPS)

XPS measurements have been carried on in two different systems, in both of them using a hemispherical analyzer SPECs Phoibos 100 MCD-5 in UHV systems at a base pressure in the range of 10^{-10} mbar. A twin anode (Mg and Al) X-ray source was operated at a constant power of 300 W using Mg K$_\alpha$ radiation ($\text{hv} = 1253.6 \text{ eV}$) and monochromatic Al K$_\alpha$ radiation ($\text{hv} = 1486.6 \text{ eV}$).

2.7. Computational modelling

Density Functional Theory (DFT)-based calculations were performed by using the efficient plane-wave code QUANTUM ESPRESSO [29]. The calculations account for an empirical efficient van der Waals (vdW) R–6 correction (DFT + D approach) [30,31] to add dispersive forces to conventional density functionals. For this purpose, we have used the revised version of the generalized gradient corrected approximation of Perdew, Burke, and Ernzerhof (GGA) to account for the exchange-correlation effects (XC) [32]. Within this atomistic simulation package the Kohn-Sham equations are solved using a periodic-supercell geometry. Rabe-Rappe-Kaxiras-Joannopoulos (RRKJ) ultrasoft pseudopotentials [33,34]
have been used to model the ion-electron interaction in the H, C, O and Pt atoms. For all the systems analyzed in the present work the Brillouin zones (BZs) have been sampled by means of: i) $[8 \times 8 \times 1]$ monkhorst-Pack grids [35] for the structural and lattice optimizations, and ii) $[64 \times 64 \times 1]$ monkhorst-Pack grids for the electronic structure calculations (such a highly-dense k-point grid discretization turns into necessary to electronically reproduce the graphene Dirac-cone). The one-electron wave-functions are expanded in a basis of plane-waves with energy cut-offs of 400 and 500 eV for the kinetic energy and for the electronic density, respectively, which have been adjusted to achieve sufficient accuracy to guarantee a full convergence in total energy and density.

Both structure and lattice have been simultaneously fully-optimized for all the systems involved in the present study (see the supplementary information for further details): clean Pt(111) and Pt$_n$(OH)$_m$@Pt(111) surfaces, and Gr/Pt(111) and Gr/ Pt$_n$(OH)$_m$@Pt(111) interfaces (with ratios $m/n = 1/8, 1/4, 1/2, 5/8, 3/4$ and 1 ML homogeneous intercalated-OH content). Note that in this notation $m/n = 1/2$ equals 1 ML of Pt$_2$OH).

Structural and lattice optimizations, as well as electronic structure calculations, have been performed for rectangular (6 x 2) and (4 x 2) Pt(111) unit cells for Gr/Pt(111) and Gr/ Pt$_n$(OH)$_m$@Pt(111) interfaces, respectively, to mimic the extended Pt(111) surface and an infinite covering SLG sheet with a 0$^\circ$ rotation between Pt substrate and Gr. The choice of this rectangular lattice to perform the calculations has been made to get access, from the configurational point of view, to the most homogeneous intercalated-OH coverages possible according to previous literature [36]. In order to verify the reliability of the results obtained with this rectangular lattice we have examined a ($\sqrt{3} \times \sqrt{3}$)R30$^\circ$ graphene commensurate with the Pt(111) substrate similar to that previously reported by our group [24] obtaining equivalent results, which justifies the validity of our choice.

3. Results and discussion

Epitaxial graphene was grown on Pt(111) following the procedure described elsewhere [24,26,37]. STM images clearly show that a single-layer high quality graphene (Gr) sheet covers the whole Pt(111) surface. Fig. 1a shows a representative STM image of a wide scanned area as well as the standard LEED pattern taken at 75 eV (inset) obtained for Gr on Pt(111) [23,26]. In the image, various morphological features such as a wrinkle, nanobubbles and grain boundaries can be observed, as have been previously reported for these materials [38,39]. More details on these features are provided in the supplementary information. Moreover, high-resolution STM images, like that presented in Fig. 1b and acquired on atomically flat terraces, show atomic resolution at the Gr layer and the presence of a moire superstructure, a clear indication of single layer Gr growth [26]. Thus, both STM and LEED results clearly indicate the high quality of the graphene layer produced, and employed in the subsequent experiments.

After in situ characterization, the samples were removed from the UHV preparation chamber and characterized ex situ using Raman spectroscopy, XPS, AFM and SEM. Subsequently, electrochemical oxidation was applied followed by full characterization of the modified systems employing the same aforementioned techniques in order to confirm the integrity of the graphene layer and to study the nature of the decoupling process.

Electrochemical oxidation is much less invasive than thermal oxidation and has been widely studied for different metallic surfaces by cyclic voltammetry [40]. In fact, the voltammetric profile for metals, such as single-crystal platinum surfaces in non-adsorbing electrolytes, is well established and presents a characteristic shape [41]. All studies point out that the Pt(111) electrode is electrochemically oxidized in a complex process involving several pH dependencies and oxidation steps, between 0.6 V/reversible hydrogen electrode (RHE) and the onset of O$_2$ evolution at about 1.5 V [42]. However, there are some discrepancies about the origin and nature of the species involved in the complex voltammetric shape [43,44]. The aim of the present work was to expose the metal surface, covered by a homogeneous graphene layer, to a voltammetric oxidation cycle that oxidizes the metal interface below the graphene layer.

Fig. 2a shows the voltammograms of the clean Pt(111) surface and the graphene covered Pt(111) surface after applying an electrochemical protocol in 0.1 M aqueous HClO$_4$ that consists of an anodic potential scan from 0.36 to 1.05 V followed by a cathodic potential scan from 1.05 to 0.7 V (0.6 V for clean Pt(111)). A scan rate of 0.05 V s$^{-1}$ was selected to control the oxidation reaction kinetics and the anodic potential was varied to obtain the optimal conditions for decoupling graphene from Pt, avoiding side reactions such as the evolution of CO$_2$ and O$_2$, or the creation of defects in the graphene network. The shape of the voltammograms clearly indicates that an oxidation reaction has taken place, and the charge required for oxide formation can be obtained by integrating the oxidation peak. For the clean Pt(111) surface (grey curve in Fig. 2a) the oxidation charge is 101.5 μC cm$^{-2}$, which corresponds to the formation of about 1 ML Pt$_2$OH (as it will be shown below). The presence of the monolayer of graphene delays the oxidation process.
The O1s XPS spectra of Pt(111) and Gr/Pt(111) samples confirm the oxidation of the platinum surface after the electrochemical treatment. Fig. 2 shows the O1s core-level peaks of a clean Pt(111) and graphene covered Pt(111) surface after the treatments represented by the voltammograms of Fig. 2a. The best fit are also included. In both cases, the less intense green component (at 531.7 eV for the Pt sample and at 532.1 eV for the Gr/Pt sample) can be assigned to hydroxide species adsorbed on the surface [48] and the blue curve (at 532.7 eV for Pt and 532.8 eV for Gr/Pt) to the OH covalently bonded to the Pt surface. Surprisingly, the ratio between each component is similar for both samples. The assignment of the binding energies (BE) to the chemical species is clear. The more intense blue component appears with a binding energy that is intermediate to those reported for OH and water, both adsorbed on the platinum surface [49,50]. Spectra recorded after subsequent annealing of these two surfaces up to 973 K reveal that this is the only remaining component, thus it cannot be assigned to any adsorbed species but rather to one covalently bonded to the surface (see Fig. 2c,e). Moreover, the possible formation of a pure PtO or PtO2 can be dismissed since the reported binding energies for the O1s are significantly lower, around 530 eV [51]. In the case of the Gr/Pt sample a new component appears at 529.9 eV (yellow peak), which can be ascribed to residual C=O species [48] that disappear upon annealing (Fig. 2e). The Pt4f core level lineshape is discussed in the supplementary information.

Contrary to previous assumptions in the literature of metal-oxygen formation (PtO or PtO2), the XPS results here show that the voltammetric profile is related to the reversible formation of hydroxide from the electrochemical dissociation of water [49]. The chemical reaction at the electrode surface would be then:

$$H_2O + (+) \rightarrow OH_{ad} (+) + H^+ + 1e^- \tag{1}$$

where (+) represents a free Pt(111) adsorption site.

In a second step the OH_{ad} reacts with the free platinum adsorption sites to form the hydroxide species. With the experimental conditions used in the electrochemical process, our results support the formation of an incomplete Pt_{x}OH layer underneath graphene.

Prior to and subsequent to the aforementioned electrochemical treatment, the samples were characterized ex situ using Raman microspectroscopy, XPS and AFM. Fig. 3a shows representative ex situ Raman spectra of graphene on Pt recorded before and after electrochemical decoupling of graphene from the Pt surface. The Raman data obtained are, in a first instance, puzzling and do not adjust to general interpretations found in the scientific literature. Before the decoupling process, no evidence of the G and 2D bands characteristic of free-standing graphene was observed (see Fig. 3a, black curve), and only two sharp bands at 1556 and 2331 cm^{-1} could be seen, corresponding to atmospheric O2 and N2, respectively [52]. Several previous Raman studies of Gr on Pt substrates have appeared in the literature. Kang et al. [53] reported that the graphene D, G and 2D bands could only be observed very weakly, at 1355, 1605 and 2720 cm^{-1}, respectively, and this behaviour was ascribed to unexplained strong Pt-metal interaction related with an electronic hybridization between the graphene Dirac cone states and platinum d-orbitals [54]. However, it should be noted that the Pt-G interaction is considered to be “weak” because the π-bands at the Dirac points are conserved, slightly shifted with respect to pristine graphene, and the XPS core-level shifts are small [23,55] with respect to other transition metals. Whilst, as in our case, the complete absence of spectral features from graphene is surprising, this phenomenon has been previously reported [54,56,57]. Indeed, a detailed study of the effect of metal substrates on the Raman spectra of CVD graphene showed that the Raman features of Gr on Pt are strongly suppressed when compared to other metallic substrates such as Cu, Au and Ag. Evidence suggested that quenching of the Raman bands on metal surfaces can be associated, in most cases, to electromagnetic screening from reduced optical fields arising from substrate electromagnetic anti-resonance [57]. On the other hand, it has also been described that the intensity of the Raman signal on Pt can be intimately associated with the growth method, as demonstrated recently by Yao et al. [58] who observed a
near-ideal band structure of Gr grown with a very low carbon concentration under very high annealing conditions.

Radical changes were observed in the ex situ Raman spectra obtained from the electrochemically treated samples (see Fig. 3, red upper trace) where the characteristic features of graphene are now clearly observed; the G-band, corresponding to a doubly degenerate (iTO and LO) phonon mode (E2g symmetry) at the Brillouin zone centre, appears at around 1605 cm⁻¹; the disorder-induced D band, due to the six-atom ring breathing modes arising from a iTO phene layer with the oxygen atoms beneath. Since in our case the graphene interacts with hydroxyl molecules instead of oxygen atoms the expected shift will be very low (of the order of the experimental resolution). Three new components appear weakly at 285.1, 286.5 and 288.5 eV and are assigned to C-OH, C-O and C=O respectively [37,48,67]. This shift has been related to the interaction of the graphene with the oxygen atoms beneath. Since in our case the graphene interacts with hydroxyl molecules instead of oxygen atoms the expected shift will be very low (of the order of the experimental resolution). Three new components appear weakly at 285.1, 286.5 and 288.5 eV and are assigned to C-OH, C-O and C=O respectively [37,48,67].

It should be pointed out that due to our particular growth mode, many different rotational domains can appear [26] that can lead to an increase in the D band intensity, which are not, in principal, associated to a more defective graphene surface. On the other hand, the 2D band is quite symmetrical in all cases consistent with a monomodal spectral response corresponding to SLG, and the FWHM varies between 50 and 70 cm⁻¹. Such large line broadening is always observed in all cases when graphene is grown in UHV on Pt, Ir and other transition metals [54,63] and is most likely to be associated with increased stresses. This unusual behaviour in the Raman spectra has been reported previously for epitaxial graphene grown in UHV conditions [57], and it has been suggested that the interaction C-Pt may be strong at discreet atomic positions of the moiré superstructures, where covalent bonding may induce a rupture of the sp² hybridization into sp³. These points are also known to be interacting channels that may be responsible for the increase in the Raman D peak and the broadening of the FWHM and blueshifts in the G and 2D Raman peaks [26,37,64] on decoupling the graphene sheet from the metal surface.

Fig. 3b,c shows the XPS results of the C1s core-level peak of graphene before and after electrochemical oxidation. The fit of the sp² C1s peak was performed using a Doniach-Sunjić line shape using an asymmetry parameter of 0.068 [65]. The remaining components were fitted using Gaussian-Lorentzian lines. Before treatment (Fig. 3b) the C1s peak has one main component associated to sp²-graphene at 284.1 eV. The small feature at 284.7 eV is assigned to sp³ bonds [66,67], that in our case arise principally from the grain boundaries of the different rotational graphene domains typical of this type of graphene synthesis [26,68]. In the C1s peak after treatment (Fig. 3c) the main sp² component remains unaltered, confirming that no sample damage was induced. A shift towards lower binding energies of the sp³ component has been previously reported for oxygen intercalated below graphene [22,69]. This shift has been related to the interaction of the graphene layer with the oxygen atoms beneath. Since in our case the graphene interacts with hydroxyl molecules instead of oxygen atoms the expected shift will be very low (of the order of the experimental resolution). Three new components appear weakly at 285.1, 286.5 and 288.5 eV and are assigned to C-OH, C-O and C=O respectively [37,48,67] arising from contamination. Since the sample was removed from UHV to undertake both the ex situ characterization and the electrochemical treatment, these contaminant signals are clearly expected in a highly surface sensitive technique such as XPS, and the contamination could be easily removed by gentle annealing, or even by scanning with an AFM tip (see supplementary information; figure S2.1).

The AFM images, acquired in air before and after electrochemical oxidation, indicate that the main morphological features of the Gr layer are preserved (Fig. 4a and d). Figure 4a shows the surface of the Gr/Pt sample before treatment, and apart from the typical surface monoatomic steps, the main features consist of large graphene wrinkles and some bumps randomly scattered along the surface. The presence of these long wrinkles are the evidence for the presence of graphene, as they are one of its main distinctive characteristic features in SPM analysis, and are formed due to distinct thermal expansion of the graphene and the substrate material. The presence of these wrinkles is also confirmed by SEM images that show graphene patches of the order of microns (see supplementary information; figure S3.1). Except for a slight
roughening of the steps, the main morphological features of the graphene grown in UHV are preserved after sample exposure to ambient conditions (compare STM images in Fig. 1a and AFM image in Fig. 4a). The sample after electrochemical treatment is shown in Fig. 4d. Wrinkles of similar length are still visible; thus, the electrochemical oxidation process does not appear to disrupt the Gr morphology.

The major changes upon electrochemical oxidation can be appreciated in the $F(z)$ curves (Fig. 4b–e) where a typical curve (in black) and coloured area corresponding to > 100 experiments are represented. Before treatment (Fig. 4b and c) the $F(z)$ plot corresponds to a typical force curve [70] between a tip and a rigid substrate recorded in air, where, when approaching, the forward curve (Fig. 4b) manifests a jump to contact, followed by the characteristic linear increase of the force with tip-sample displacement. The backward curve (Fig. 4c) also shows the characteristic hysteresis due to adhesion forces [70].

However, $F(z)$ curves recorded after electrochemical treatment (Fig. 4e and f) show distinctive features. While the forward curves (Fig. 4e) are very similar to those acquired before the electrochemical oxidation, when withdrawing the tip the shape of the $F(z)$ curves changes dramatically. At the curve minimum a small v-shaped feature is observed that can be assigned to the initiation of the detachment from the rigid surface, which is followed by a long rounded-shaped feature that implies a smooth variation of the force with the displacement consistent with the presence of a soft membrane between the tip and the substrate. This must correspond to the displacement of the whole graphene layer that remains adhered to the AFM tip during retraction. Although it is observed that this process extends for 3 nm or more, the attraction between the tip and the graphene sheet produces a local deformation that separates the graphene layer from the substrate, thus the distance value between the decoupled graphene layer and the platinum surface appears to be larger than it actually is. Therefore, clearly the spectroscopic $F(z)$ analysis provides strong evidence to support that the electrochemical treatment employed structurally decouples the graphene from the Pt(111) substrate. The analysis of the AFM images as well as the mapping of the $F(z)$ curves, the charge transferred in the voltammogram and the Raman spectra (see supplementary information) performed over the whole surface, indicate graphene decoupling over most of the sample, approximately 80–90%, remaining anchored to the substrate only in some small areas, mainly near to the wrinkles (approx. 20-10%). In the areas adjacent to the wrinkles, due to their folded structure, the graphene is more intimately “attached” to the surface making it difficult for water to intercalate and thus even more difficult for decoupling to take place. Wrinkles are formed by differential thermal expansion during the cooling down process, as the metal contracts more than the graphene layer. They are one of the main drawbacks in the technological applicability of graphene and, unfortunately, are inherent to the formation of the graphene layer [71,72]. Therefore, these small coupled areas are inevitable.

Fig. 4. AFM characterization of a Gr/Pt(111) sample before and after the electrochemical treatment. Black lines correspond to a typical curve while the coloured areas represent >100 repeated curves. Arrows indicate the direction of the recorded plot. a) AFM image (1 x 1 μm2) measured ex situ in dynamic (AM) mode before the electrochemical treatment. Graphene wrinkles and platinum steps are visible. b) Force-distance plot in forward direction (approaching) showing the characteristic jump-to-contact from zero-force and the sloped straight-line of contact. c) Corresponding retracting curve (withdraw) where a higher force is achieved due to the adhesion force. d) AFM image (600 x 600 nm2) measured after the electrochemical treatment in contact mode. Graphene wrinkles and steps are present. e) Force-distance plot in forward direction showing a similar jump-to-contact. f) Force-distance plot in retracting direction showing a different behaviour: the adhesion force is reduced and a bump in the force is perceived. (A colour version of this figure can be viewed online.)
However, it should be stressed that at an atomic level there may also remain some local pinning points in the middle of the terraces, as electrochemistry indicated that oxygen coverage is as low as 0.25 ML, yielding a subtle interfacial chemical interaction [64].

To demonstrate that the decoupling of graphene by potential-controlled electrochemical oxidation is effective in other metals, we have repeated the experiments for a Gr/Ir(111) sample. Graphene was grown the same way. Fig. 5a shows an STM image of the Ir (111) sample completely covered by 1 ML of graphene exhibiting a typical moiré superstructure. In the inset a zoom in one of the terraces points out the high quality of the graphene layer. The electrochemical oxidation protocol applied to the samples was equivalent to the one of Pt(111), however in some aspects it is different since the substrate, and therefore the oxidation conditions, were also characterized with AFM and Raman (not shown) before and after the treatment to check the stability of the graphene layer. The behavior was found to be similar to that observed with the platinum sample. Finally the F(z) curves taken with the AFM before and after the treatment (Fig. 5c) show again the same behavior as that already discussed for the Gr/Pt(111) samples. In this case the horizontal part of the plot (backward direction, red plot Fig. 5c) is significantly larger, showing that the area of the decoupled graphene layer is larger and therefore the pulling distance is longer.

In order to shed some light on the structural and electronic decoupling process of graphene from the Pt(111) substrate as the intercalated-OH content increases in between the Gr/Pt interface, we have carried out a large battery of Density Functional Theory (DFT)-based calculations (see Methods).

After full structural and lattice relaxations this formalism yields lattice parameters for bulk fcc of platinum surface of 2.79 Å and for a free-standing graphene of 2.46 Å. Interestingly, the lattice optimization for the Gr/Pt(111) and Gr/Ptn(OH)m@Pt(111) interfaces (once formed) reveals an average 2D XY contraction of the Pt layers of around a 4% (from 2.79 to 2.68 Å) and a slight vertical Z expansion of around a 3% (from 2.79 to 2.87 Å), which permits to accommodate a perfectly commensurate SLG (single layer graphene) sheet with a maximum expansive strain of around 4% (from 2.46 to 2.55 Å), in good agreement with previous literature [75]. It is important to remark that an important amount of 12 and 9 Pt physical layers were necessary to obtain perfectly converged results in geometric and electronic structure for the Gr/Pt(111) and Gr/Ptn(OH)m@Pt(111) interfaces (see Fig. 6a–b, respectively). Under these conditions for the Gr/Pt(111) interface the graphene layer remains at a relatively large distance from the outermost Pt(111) layer of 3.31 Å, and retains a quite atomically flat surface with buckling < 0.05 Å, in agreement with reference [55].

Regarding the Ptn(OH)m@Pt(111) surfaces, the result of the relaxations reveals that in all cases the intercalated OH groups strongly bind to the Pt(111) surface, and are located at “on-top” Pt sites at an average distance from the Pt surface of 2.15 Å, yielding perfectly stable configurations where visible OH-OH dipolar interactions emerge to orientate the OH groups and maximize the surface energy (see Fig. 6b). Computed adsorption energies of the OH groups on the different Ptn(OH)m@Pt(111) surfaces for the previously mentioned (m/n) ratios range between 2.42 and 2.58 eV, are in excellent agreement with previous literature on similar configurations [36]. Moreover, Ferrighi et al. have very recently reported a viable DFT-based H2O on-surface dissociation mechanism on Cu(111) and Pt(111) in defective-Gr/Cu/Pt) interfaces, where one of the stable dissociation products are chemisorbed OH groups on the metal surfaces [76].

Fig. 6c shows the average Gr—Pt(111) surface perpendicular distance (in Å) as a function of the intercalated-OH coverage (in ML units). In the figure a significantly large jump can be seen in the Gr—Pt(111) distance from 3.31 to 4.98 Å between 0.05 ML and 0.125 ML, associated to the presence of the starting amount of OH groups chemisorbed on the Pt(111) surface that, from the experimental perspective, may be seen as the first formation stages of intercalated-OH chemisorbed groups. It is important to note that 0.125 ML of OH corresponds to the experimentally determined value of 0.25 ML of Pt2OH. Also, in Fig. 6c a continuously increasing trend in the Gr—Pt(111) surface perpendicular distance can be seen.

Fig. 5. a) Large STM image of Gr/Ir(111) (100 x 70) nm, 2 V, 62 pA. The whole Ir (111) is covered by 1 ML of graphene. The typical moiré is visible and also on the top left corner of the image a wrinkle. In the inset a zoom in one of the terraces, (8 x 8) nm, 0.03 V b) O1s XPS peak of the Gr/Ir(111) sample after the electrochemical treatment fitted with 3 main components (blue areas correspond to the hydroxides, green and yellow to the adsorbed species. c) F(z) curves of the samples (blue forward and red backward direction) before and after the treatment showing changes related with the decoupling of graphene. (A colour version of this figure can be viewed online.)
seen, from 4.98 to 5.25 Å for an increase in surface OH-content from 0.125 ML to 1 ML, respectively, which tends for the highest intercalated-OH coverages considered. The physical separation between the graphene and the surface from the 0 ML to the 1 ML case can be quantified as a global expansion of around 62% in the distance with respect to the Gr/Pt(111) interface (vertical green line). The distance between the oxygen atoms and Pt atoms is shown to be around 1.53 Å after inclusion of the OH layer, and a null charge doping of the graphene sheets and Pt(111) substrate. This can be effectively evaluated by calculating the Projected Density of States (PDOS) on graphene for several representative cases. Fig. 6d shows the PDOS on the graphene layer for the cases of free-standing SLG (black line), 0 ML (Gr/Pt(111); blue line) and 0.5 ML (Gr/PtOH; red line) as a function of the energy referred to the Fermi energy (in eV). Firstly, the PDOS profile for the case of 0 ML reproduces a very well-formed Dirac cone. Nevertheless, the profile morphology is still slightly changed from that obtained for free-standing graphene (black line). Importantly, the PDOS profile for the 0 ML case is not perfectly symmetrical with respect to the Fermi energy, exhibiting a slight p-doping level developed in the graphene layer, in excellent agreement with refs. [55, 58, 75, 77] and references therein. From the calculations, the shift of the Fermi energy between the free-standing graphene and the p-doped graphene case (0 ML) for the Gr/Pt(111) interface of the order of 0.17 eV is similar to those reported by Sutter et al. (0.3 ± 0.15 eV) [55], Khomyakov et al. (0.3 eV) [75], Yao et al. (0.06 eV) [58], and Ferrihgi et al. (0.5 eV) [76].

Nevertheless, by inspecting the PDOS profile corresponding to the case of 0.5 ML, it is clearly appreciated that in this case the Dirac-cone is formed by a perfectly symmetrical distribution of the density of states around the Fermi level, which indicates that the slight p-doping existing in graphene for the case of 0 ML has completely disappeared (theory predicts graphene p-doping vanishing even from the 0.125 ML case). This effect may be interpreted as the graphene, with an increasing OH underlayer, decouples electronically, showing a very good agreement with the PDOS profile corresponding to a canonical free-standing graphene layer (black line), in excellent agreement to that recently reported by Ferrihgi et al. [76].

4. Summary and perspectives

Summarizing all the experimental and theoretical information presented, we present an effective method to decouple epitaxial graphene from a metal substrate without removing the graphene layer, induced by an electrochemical protocol, and fully describe the decoupling mechanism. UHV graphene growth on transition metals results in a highly pristine single-layer graphene sheet coupled to the surface. This coupling is responsible for the slightly p-type doping of the graphene sheet and the absence of the characteristic G and 2D bands in the Raman spectrum. On removal of the sample from UHV environment the morphology does not change, as shown by AFM. Subsequently the sample is immersed into the electrolyte in an electrochemical cell, and water molecules spontaneously pass through the graphene layer via different structural defects and adsorb on the platinum surface. This spontaneous intercalation occurs in a similar manner to thermally induced intercalation experiments reported by other groups with small molecules. Finally, the application of the appropriate potential activates the reaction between H2O molecules and the metal surface, forming a single and stable Pt2OH overlayer, as revealed by charge analysis in the voltammograms and the XPS spectra. As a consequence, the interaction between the graphene sheet and the modified substrate is drastically diminished with respect to the initial state of Gr on Pt(111), leading to the physical separation of the Gr sheet from the surface, as demonstrated by AFM spectroscopic curves and corroborated by DFT calculations, and the emergence of the characteristic graphene peaks C, D and 2D in the Raman spectra. Ab initio calculations predict a variation in the distance from the Pt(111) surface of about 1.53 Å after inclusion of the OH layer, and a null charge doping of the graphene sheets and PDOS profiles show a similar behaviour to that of free-standing graphene.

Potential controlled electrochemical oxidation can be applied to
the oxidation/hydroxidation of the surface of many different metals. To date, the understanding of the nature of the reactions that occur under graphene and their optimisation as a graphene decoupling methodology are limited to Pt and Ir (this work and ref 54). However, by carefully controlling the values of electrochemical potential we believe that it should be possible to intercalate a discreet hydroxide (or oxide) layer between the graphene (or other organic) layer and most single crystal metals. Even polycrystalline metals could benefit from this decoupling approach. Clearly this is of great interest for those metals of broader technological impact, such as Cu, Ni, etc., although several difficulties may be encountered related to the innate presence of oxides on the surface.

5. Conclusions

The electrochemical oxidation of epitaxial graphene on Pt(111) and Ir(111) surfaces generates a sandwiched single-hydroxide layer that both structurally and electronically decouples graphene from the metallic substrate without the need for a transfer process. Further optimization of such relatively gentle methodologies applied under ambient conditions could be of considerable interest for avoiding transfer protocols in CVD graphene, opening a pathway to new concepts in the design and construction of graphene-based devices, whilst preserving to some extent the structural integrity of vacuum grown CVD graphene.

Author contributions

References