ARTÍCULO

Temporary Contracts across Generations: Long-term effects of a labour market reform at the margin

Miguel Á. Maloa,*, Begoña Cueto b

a Departamento de Economía e Historia Económica, Universidad de Salamanca, Salamanca, Spain
b Departamento de Economía Aplicada, Universidad de Oviedo, Oviedo, Spain

Received December 2012; accepted February 2013

Abstract We analyse the impact of a labour market reform at the margin (an easier use of temporary contracts launched in Spain in 1984) across generations. As this type of reforms applies to new entrants into the labour market (or, in general, new hired workers), we use a regression discontinuity design to estimate a long-lasting effect on the mean temporary employment rates for generations entering into the labour market compared to those already in the labour market. The results show a relatively small impact related to the reform at the margin. By educational levels, the estimated effect of the reform at the margin on the mean temporary employment rate is close to zero for those with university level education for both genders.

Contratos temporales de generación en generación: los efectos a largo plazo de una reforma del mercado laboral en el margen

Resumen Analizamos el efecto de una reforma del mercado laboral en el margen (un uso más sencillo de los contratos temporales iniciado en España en 1984) de generación en generación. Como este tipo de reformas atañe a los que se incorporan por primera vez al mercado laboral (o, en general, a los nuevos trabajadores), utilizamos un diseño de discontinuidad de regresión para calcular el efecto a largo plazo en las tasas medias de temporalidad laboral para las generaciones que se incorporaron al mercado laboral tras la reforma respecto a los que ya se encontraban en él. Los resultados muestran un efecto relativamente pequeño en relación con la reforma en el margen. Por niveles de formación, el efecto estimado de la reforma en el margen sobre la tasa media de temporalidad laboral es cercana a cero para las personas de ambos sexos con nivel universitario.

*Corresponding author.
E-mail address: malo@usal.es (M.Á. Malo).

© 2012 Asociación Cuadernos de Economía. Published by Elsevier España, S.L. All rights reserved.
1. Introduction

In the 1980s, all Western countries implemented different labour market reforms in order to increase labour market flexibility and, thereby, employment (Barbieri & Sestito, 2008; Blanchard & Landier, 2002; Booth et al., 2002; Dolado et al., 2002; Holmlund & Storrie, 2002). Everywhere, these reforms were implemented as gradual and/or partial changes of the institutional framework of the labour market. One type of this partial or gradual reform was the flexibility at the margin, i.e., affecting only new entrants into the labour market and those moving to new jobs.

Temporary and fixed-term contracts are probably the most important type of flexibility at the margin. Originally, they decrease hiring costs, but at the same time they are also characterised by much lower dismissal costs. Temporary contracts usually have low or even null severance payments, and very low administrative costs linked to the end of the contract, in contrast to an open-ended contract. Many European countries have promoted, under different regimes, the use of temporary and fixed-term contracts, but Spain is the most prominent example. While, at the beginning in the 1980s, the proportion of wage and salary workers with a temporary contract (the temporary employment rate, TER) was around 10 per cent, and concentrated on construction and tourism industry (Fina et al., 1989), in the mid 1990s it rose to 33 per cent and affected all economic activities (Toharia & Malo, 2000; Dolado et al., 2002), remaining around 30 per cent even after the implementation of different labour market reforms aimed at decreasing this rate in 1994, 1997 and 2006. In addition, the widespread use of temporary contracts were not mainly linked to temporary work agencies, as they were forbidden until 1994. In fact, the TER was above 30 per cent when these agencies began their activity, and nowadays they manage around 16 per cent of the total gross flow of temporary contracts (Amuedo-Dorantes et al., 2008). On the above grounds, Spain is probably the most appropriate country to study any topic related to temporary contracts.

Previous research on temporary work has focused on the effects of fixed-term contracts on training provision, work injuries, or on specific groups such as young people, women or low-skilled workers. Although some authors have analysed the relevance of different workers’ characteristics (such as age) of temporary workers (for example, Kahn, 2007), to our knowledge there is no previous research on the relevance of temporary contracts on long-term working trajectories using a generation approach. We will apply this approach to analyse the impact of the labour market reform fostering temporary contracts on working lives from a long-term perspective, using generations (defined as birth cohorts) as the main unit of analysis, and the aggregate temporary employment rate of different generations at different ages as the dependent variable. In these terms, this article adds to the current interest in the long-term effects of flexibility in two-tier labour markets, originated by labour market reforms at the margin in different countries (Boeri, 2009). Therefore, we will determine whether there is a long-term impact on the temporary employment rate of different generations according to their different exposure to the labour market reform at the margin easing the use of temporary contracts by companies.

Probably, the most demanding challenge is how to evaluate the impact of a labour market reform at the margin. After the implementation of such reform all individuals are exposed to be hired using a temporary contract. At first sight, there is not any ‘non-treated’ group as the exposure is complete for young generations entering into the labour market after the legal change, and the exposure is partial (not zero) for older generations already in the labour market when the reform was implemented. Therefore, the labour market reform at the margin potentially affected the working lives of all individuals. Note, that our research will not compare working lives of individuals affected by the reform with a counterfactual of the working lives of individuals not affected by such reform. Such comparison is impossible, because we only observe the ‘real world’ with the implementation of this change in labour market regulation. What we can compare is the working lives of those entering into the labour market, after the implementation of this legal change, with the working lives of those already in the labour market before the reform. In this vein, we will focus on estimating the long-term impact (if any) of the labour market reform at the margin of 1984 on the mean TER of younger cohorts, along their observed working lives. Therefore, we are looking for a sort of ‘temporary contracts trap’ (or ‘long-term precariousness’) for younger generations consisting of a relatively higher TER throughout their lives. This is relevant because a higher TER can negatively affect critical life events, such as relevant delays in leaving the family home, declining fertility rates, lower probability of being eligible for a mortgage, poorer career prospects, higher risk of unemployment, etc. According to this rationale, we present a regression discontinuity design to isolate whether there is a long-run effect of the labour market reform at the margin implemented in 1984 on younger cohorts (i.e., on those cohorts entering into the labour market after such implementation), compared to older cohorts already in the labour market when the legal change was implemented. Our results will be disaggregated by educational level and gender.

We use micro-data from the Spanish Labour Force Survey (LFS) from 1987 to 2010. To focus on generations, we will use the micro-data from the Spanish LFS to provide a novel picture of information by generation groups (i.e. birth cohort groups) throughout their life cycles. For this purpose, we use artificial (synthetic) cohorts’ methodology, widely used in Demography and Epidemiology. We use this data aggregation in descriptive and econometric analyses.

We will show that, at a descriptive level, it is obvious that younger cohorts have a higher temporary employment rate at the beginning of their working careers, but according to their characteristics (educational level and gender) some of them have relatively faster declines in such rates. On the other hand, some workers experience a higher job mobility irrespective of their generation (such as workers with a low educational level). Older cohorts have a higher percentage of workers with low education levels, and when these workers lose their jobs they are also more relatively ‘exposed’ to a positive long-term effect on their mean temporary employment rate throughout their working career (as they have a higher probability of being re-hired under the new legal regulation). In fact, the TER of older generations with a low education level increased very rapidly just after the implementation of the legal reform. The regression
discontinuity analysis shows that the long-run increases in the TER are rather low, especially for those with a university education level, and even more so if they are females. Therefore, although the observed differential in mean TER throughout the life cycle is the largest for younger cohorts of people with a university degree for cohorts closer to the discontinuity, such differences are not only linked to the reform at the margin but to differences between these cohorts.

2. Background

The extensive use of fixed-term and temporary contracts in Spain stems from the 1984 labour market reform intended to foster employment and providing more flexibility to firms (Dolado et al., 2002; Toharia & Malo, 2000). The legal reform in 1984 established a new type of temporary contract that allowed firms to hire employees performing regular activities. Previously, temporary contracts existed, but they were mainly used for seasonal activities, such as in agriculture or tourism firms, or for economic activities with a very specific task, as in the building sector, where many contracts are limited to the construction of the specified building, road, etc. (Fina et al., 1989).

The 1984 reform was implemented amidst the international debate on labour market flexibility and, in the Spanish case, it was a response by the recently elected Socialist government to the pressures applied by employers, who would in fact have preferred a more sweeping reform (Dolado & Malo de Molina, 1985; Toharia & Malo, 2000). Although the trade union UGT (which was very close to the Socialist Party) originally supported this legal reform, later, this union, jointly with the other main union (CCOO) heavily criticized this reform for increasing job instability and spreading temporary contracts to all industries. This legal reform led to a fast (and unexpected at that time) increase in the TER, reaching 30 per cent by the beginning of the 1990s, and affecting women more, who reached rates slightly below 40 per cent in 1992 (see Figure 1).

In legal terms, the change was ‘small’ as there was only the introduction of a new type of contract available for employers and, therefore, not affecting current employees, but only job seekers expecting to be hired. However, the legal change was relevant because it allowed a much easier use of this type of temporary contract as it was possible to hire workers for permanent tasks in the firm on a temporary basis. This was a remarkable novelty as regards the traditional foundations of the Spanish Labour Law.

As this was a legal change implemented by a new government (with a political ideology markedly different from the previous government), and changing key concepts of Spanish Labour Law (in other words, ‘innovating’ in a way difficult to predict at that time), this legal reform can be considered as exogenous in terms that workers and employers could not anticipate this legal change in order to delay or to anticipate a relevant amount of key decisions affecting the working lives of different generations in the long term. Here, manipulation by workers means that, for example, individuals enrolled in university anticipating the legal reform would quit their studies in order to be hired before the reform in order to decrease the risk of being hired with a temporary contract instead of an open-ended contract. This is not plausible because the expected returns of pursuing in university studies were higher than the alternative of being

1. Later, many authors (for example, Dolado et al., 2002) linked this extensive use of temporary contracts by firms with the wide gap in firing costs compared to open-ended contracts. Although the next labour market reforms tried to partially close this gap, de facto the firing costs gap has remained almost unchanged (García-Martínez & Malo, 2007).
hired for a non-university job before the reform. In addition, the high TER reached later, and its negative side effects were not anticipated by any researcher, labour practitioner, policy maker, etc. On the side of firms, it is possible to argue that some employers postponed hiring decisions in order to use a temporary contract for vacancies related to permanent tasks instead of using open-ended contracts before the reform. However, such manipulating behaviour must have been very limited to immediately before the legal change, and without any relevant impact on working lives of different generations of workers. As mentioned before, this legal change did not follow long years of social and political debate. In fact, it was a change taken by a new government in the first part of its first four-year legislature, and affected Labour Law in a way not easy to anticipate, as the reform broke a key principle of the Spanish Labour Law tradition. On the above grounds, we will consider this reform at the margin as a discontinuity in terms of a regression discontinuity design.

The spread of temporary contracts was so huge that negative effects became visible in the 1990s. Many authors have stressed that such a huge proportion of temporary and fixed-term contracts on total wage and salary workers has different unintended and worrying effects: (a) on economic performance as less probability of participating in training (Albert et al., 2005), a lower growth in productivity (Bentolila & Dolado, 1994), or higher injury rates (Guadalupe, 2003); (b) on the postponement of starting a family, and fertility (Adsera, 2004; Ahn & Mira, 2001; McGrath & Keister, 2008); and (c) on working lives being longer and a more precarious period of labour market integration (OECD, 1998).

In the two following decades, different legal changes in 1994, 1997 and 2006 have tried to decrease the aggregate TER of the Spanish economy. In 1994, the legal regulation of fixed-term contracts was restricted, and in 1997 some kinds of temporary contracts were abolished. Moreover, a new permanent contract with lower severance pay for dismissed workers was created, although it was not applicable to all the new employees, and financial subsidies for employers using permanent contracts were launched (Toharia & Malo, 2000). These financial subsidies were changed in 2006 (see Toharia et al., 2005 or Toharia & Cebrián, 2007).

However, in general, all these reforms have had partial but small effects on the aggregate TER and it has remained around 30 per cent. Only very recently, since 2007, we can see a slow decreasing change, providing descriptive evidence that the legal reform implemented in 2006 slightly decreased average TER (especially in the private sector and in small firms; Malo & González-Sánchez, 2010). Nevertheless, the relevant decrease observed in 2008 is not related to any policy, but with the severe employment adjustment due to the current economic recession (heavily focused on temporary contracts and in the construction sector at the beginning, and soon extended to the rest of the economy).

As regards the effects of temporary contracts on labour trajectories, previous research focuses on the analysis of transitions from temporary to permanent employment (Alba, 1998; Amuedo-Dorantes, 2000; Güell & Petrongolo, 2007; Hernández, 2003; Toharia et al., 1998). The main finding of these analyses is that fixed-term contracts contribute to a high level of transitions between jobs, even for temporary to permanent jobs. On the other hand, descriptive evidence from administrative longitudinal records does not seem to show a ‘long-term trap’ in general, although several specific and small groups might remain in temporary employment for a long time (Toharia & Cebrián, 2007).

Anyway, temporary contracts are mainly concentrated on new entrants, dominated by young people (everywhere, and not only in Spain; see, for example, Khan, 2007). Older people (those already in the labour market before the labour market reform was implemented) will have temporary contracts when they are re-hired after a dismissal or when they have a delayed entry (or re-entry) into the labour market. This situation for older workers is usually more common for those with lower education levels and for women with an intermittent working career due to family reasons.

The unequal generational allocation of temporary contracts (and their costs and benefits) has been interpreted as an implicit intergenerational agreement (Garrido, 1996). While temporary contracts (and short-term unemployment) are concentrated among young people who remain in their parents’ home, open-ended contracts and job security is concentrated among male breadwinners. Thus, since the 1980s, parents (mainly husbands) were working under permanent contracts with a relatively higher employment security. They paid taxes to finance unemployment benefits and they provided direct financial support to their sons and daughters who were enrolled in the education system or with temporary contracts in the labour market. The result was a drastic change in the organisation of Spanish families, with a very important postponement of family formation for young people, and a decrease in the fertility rate below 1.3, which is usually known as a lowest-low fertility rate (Billari & Kohler, 2004; Garrido & Malo, 2005).

This unequal distribution of job instability and unemployment by generations linked to adaptations and changes in family organisation would be behind the ‘social peace’ of Spanish society, although the unemployment rate has been relatively high since the 1980s compared to other OECD countries (Garrido, 1996; Toharia & Malo, 2000). However, a relevant cost of this ‘social peace’ has been a high aggregate TER linked with many structural problems in the Spanish economy (Toharia et al., 2005).

3. Database and main variables: generation, age and education level

We used data from the Spanish LFS5 for the period 1987-2010, launched by the Spanish Statistical Office

3. The exception was males aged 30-45 years old with unemployment spells below one year, but in 2001 it was extended to other workers.

4. For instance, Kugler et al. (2002) observe that the reform in 1997 seems to have had a positive net effect on permanent employment for young men and women, but not for older men.

5. Slightly below 30 per cent when considering exclusively the private sector (Dolado et al., 2002).

6. In Spanish Encuesta de Población Activa, or EPA in short.
(Instituto Nacional de Estadística) following EUROSTAT standards that are based on International Labour Organisation recommendations on labour market statistics. The Spanish LFS covers the population residing in private households. The sample size in each quarter is approximately 65,000 households (around 200,000 individuals).

The LFS has information regarding the personal and labour characteristics of individuals (sex, age, employment status, employment characteristics of the main job, labour status, previous work experience, search for employment, etc.). In the second quarter of 1987 a question was added in order to capture the type of contract of the individual. Therefore, our empirical analysis begins with 1987 and it finish with 2010, and all observations correspond to the period following the implementation in 1984 of a labour market reform at the margin allowing a much easier use of temporary contracts. Therefore, these data do not allow any before-after analysis of this labour market reform, but we can observe what happens for different groups (here, generations) throughout their working lives after the reform. Specifically, we can compare long-term results (in terms of their temporary employment rate) of generations entering into the labour market after the implementation of the 1984 reform with generations already in the labour market when such reform was implemented.

As we want to focus on generations, we define artificial (synthetic) cohorts and we follow them for the whole period covered by our database (1987 to 2010). For artificial or synthetic cohort analysis, it is not necessary to follow the same individuals over time. It is enough to simply observe a representative sample of individuals with the same characteristics over time (as the LFS does). For example, in the survey of year 1 we have a representative picture of individuals aged 20-25. In the survey of year 2 we have a representative picture of individuals aged 21-26. As the sample of the survey is partially renewed, the interviewees are not exactly the same group in both years. However, they are equivalent from a statistical perspective, because in each year the sample is designed to give a proper representation of population. If we define groups of individuals according to their birth cohort in the first available year, we can follow this group until the last available year (in our case, over 23 years, from 1987 to 2010).

Individuals are assigned to cohorts based on year of birth, from 1921 to 1995, each cohort consisting of 5 birth years. Later, in the econometric analysis, we will restrict ourselves to 12 generations, beginning with the 1926-30 birth years and ending with 1981-1985. We apply this restriction because we observe the oldest generations only at the end of their labour trajectory while for the youngest ones we only observe their first steps into the labour market. We aggregate data into cells considering age (in 5 years intervals), education level (3 levels), birth cohort, and year. We use this aggregation for men and women separately. As we are not interested in seasonal changes of TER, we only take the second quarter of each year (as it is the trimester less affected by seasonality).

As regards age variable, this consists of five-year groups from 25-30 to 56-60. Note, that below 25 we would have many individuals enrolled in the education system (especially for those with university level) and after 60 years early retirements become relatively frequent. Focusing on ages from 25 to 60, we observe individuals with a higher attachment to the labour market. With education level, we consider three levels: up to the mandatory level, secondary level (post-mandatory secondary education and vocational training), and university level. We use only three levels in order to have enough observations in the corresponding cells, particularly for the lowest level. Finally, we have, for each gender, a dataset of 1,020 cells when restricting to 12 birth cohorts. Each cell is weighted using the weights provided by the LFS which are coherent for different years when using artificial cohorts (Garrido & Chuliá, 2005). Weights are used in descriptive and econometric analyses.

In Figures 2 and 3 we show the TER of the different generations for each age group (for males and females, respectively). Cohorts younger than those born in 1961-1965 (and, therefore, entering into the labour market once the 1984 reform was implemented) have the highest peaks in the TER. These cohorts have a TER above 70 per cent until they are 22-26 years old. The rate decreases considerably until they are 30-34 years old. In this age group the TER becomes rather stable at a level of around 30 per cent (slightly higher for women than for men).

The incidence of temporary contracts by gender shows that women have a slower decreasing pattern in TER. In addition, female older cohorts born before 1956 suffered a clear increase in TER immediately after the reform (notice that the first observation year for these cohorts is 1987). These differences are consistent with the higher TER observed with the cross-sectional data in Figure 1.

The level of education plays a major role in the labour market. It is well-known that a higher level of education leads to a greater probability of employment and the opportunity to secure better jobs. In this sense, in cross-sectional data, those with a university degree show a lower TER than the rest of the population (Dolado et al., 2002; Toharia et al., 2005). Figure 4 shows the TER for the two extremes of education up to the mandatory level and

7. Foreign nationals are included in the resident population if they have lived or intend to live in Spain for more than one year.
8. There is an implicit assumption in this reasoning: there is not any external shock adding new individuals to the birth cohorts. However, in Spain, the proportion of foreign immigrants has grown significantly since 2000, changing the composition of population living and working in Spain. In order to maintain the homogeneity of our birth cohorts throughout the whole time period, we restrict the analysis to Spanish individuals who were born in Spain. We exclude those not born in Spain because a non-negligible proportion of immigrants from Latin America are eligible for double nationality, which they usually apply for when they have the right to do so.
9. In fact, figures for the second quarter are the closest to the mean of the corresponding year.
10. We have 1,020 cells instead of 4,140 (=4×24 years × 12 cohorts × 5 years intervals × 3 educational levels) because we cannot follow all cohorts in all covered years. In fact older cohorts are mainly observed in the first part of the period while younger cohorts are mainly observed in the second part. This is also the reason for leaving aside the oldest and the youngest cohorts, and to restrict the dataset to 12 cohorts.
11. In Figure 2, 3 and 4, successive five-year age groups overlap in order to have smoother shapes.
Figure 2 Temporary employment rate by generation (as five years birth cohort groups) and by age group, for males. Source: LFS.

Figure 3 Temporary employment rate by generation (as five years birth cohort groups) and by age group, for females. Source: LFS.
Figure 4. Temporary employment rate by birth cohort and age group for two education levels, by gender. Source: LFS.
university (both by gender). For men and women the TER is much higher and remains higher for longer periods for individuals up to mandatory education level in all cohorts. The difference is especially intense for older cohorts: while those with university level have a TER below 10 per cent when they are over 35 years old, those up to mandatory education level deal with rates over 20 per cent even at the end of their working careers. For cohorts born after 1956-60 we see that, in the case of those with a university level, there is a relatively rapid decrease in their TER, from 80 per cent when they are 16-20 years old to below 30 per cent when they are 30 years old. Those up to mandatory education level experience the same high TER at the beginning of their employment trajectories but we do not observe the same decrease over time; on the contrary, these cohorts exhibit a relatively higher TER during their whole life cycle. So fixed-term contracts are the main way of entering the labour market for young cohorts, independently of their level of education; the difference is that those with university studies improve their employment situation (in terms of job stability) rapidly while those with the lowest levels of education do not. By gender the general pattern by education level is quite similar, although with a higher TER in each education level and a slower decrease as age increases, especially for those women up to the mandatory education level.

4. Econometric analysis

4.1. A regression discontinuity design

We will estimate the impact of the labour market reform at the margin on the average TER throughout the working life on different generations using a regression discontinuity design (RDD). Following Lee and Lemieux (2010), we use the framework of treatment effects literature to present the main characteristics of the RDD.

Let us consider an individual i (or a unit as a birth cohort) and two potential outcomes for this individual: $Y_i(1)$ if the individual or the unit is treated and $Y_i(0)$ otherwise. Of course, the causal effect of the treatment will be the difference $Y_i(1) - Y_i(0)$. However, the basic problem is that we cannot observe both results because an individual is only observed as treated or not treated. The empirical strategy consists of focusing on average effects of the treatment over two populations, treated and non-treated groups. The empirical strategy is quite similar, although with a higher TER in each education level and a slower decrease as age increases, especially for those women up to the mandatory education level.

In an RDD the randomisation between treated and non-treated observations (the so-called ‘unconfoundedness’ assumption; Rosenbaum & Rubin, 1983) is trivially satisfied if the discontinuity separating treated and non-treated groups is really exogenous and individuals can not manipulate their assignment into the treated and non-treated groups. In fact, as Lee (2008) formally shows, RDD does not assume randomisation, but it is a consequence of the inability of an agent to precisely manipulate the assignment variable near the discontinuity cut off. Following Lee and Lemieux (2010), when the variable used to assign the treatment is above a well defined threshold, the treatment dummy is always equal to 1. When the assignment variable is below the threshold, the treatment dummy is always equal to 0. Therefore, conditional on the assignment variable, there is no other variation in the dummy treatment variable and, as the cut off defining the threshold is exogenously determined, it is not correlated with any other factor.

Formally, considering that c is the cut off in the assignment variable Z, we only observe $E[Y_i(1)|Z]$, for example, to the right of the cut off (the treatment group) and $E[Y_i(0)|Z]$ to the left of the cut off. Defining as c the bandwidth around the cut off, the average causal effect of the treatment at the cut off c is the following:

$$\lim_{c \to 0} E[Y_i(1)|Z = c + e] - \lim_{c \to 0} E[Y_i(0)|Z = c + e] = E[Y_i(1) - Y_i(0)|Z = c]$$

In other words, we can estimate the average causal effect of the treatment defined by the discontinuity c if Z (and any other factor) is continuous and therefore the group of those right below the cut off (the non-treatment group) is a valid counterfactual for those right above the cut off (the treatment group). A consequence of this reasoning is that randomisation in RDD is only strictly guaranteed in the vicinities of the cut off (Imbens & Lemieux, 2008; Lee & Lemieux, 2010). Therefore, a crucial issue is the size of the bandwidth around the cut off. However, a closer approach to the threshold has costs, because it will decrease the number of cases included in the estimations and, therefore, the precision of estimated coefficients might be much lower (standard errors will be larger). On the other hand, including cases far from the cut off will improve precision (standard errors will be smaller), but at the risk of losing ‘unconfoundedness’.

When including more individuals far from the threshold, the likelihood of having variables other than the cut off affecting the outcome variable will be higher. The length of the bandwidth in the assignment variable is a common problem in RDD. The classical solution consists of estimating models with different bandwidths and including some covariates as controls in the estimations. Some authors (Imbens & Kalyanaraman, 2009) propose strictly quantitative methods to estimate the optimal bandwidth.

How do we confront these usual concerns of RDD in this research? First, as we explained at the beginning of the second section, the labour market reform at the margin implemented in 1984 was fully exogenous. Therefore, the key issue is how to define the cut off in meaningful terms of our research, that is, whether there are systematic differences in TER along the life cycle for generations entering into the labour market after the 1984 reform as regards to those generations already in the labour market before the reform.

The cut off is defined according to the assignment variable to the ‘treatment’. Therefore, the assignment variable is the age in 1984. As we are interested in results aggregated by birth cohort, our assignment variable is the mean age for each cell (by age group, cohort, education level and year). The simplest definition of the cut off is the minimum legal age for working, which is 16. Therefore, individuals of less than 16 years in 1984 were fully exposed to the effects of
the reform (a wider use of temporary contracts by firms) during their whole working lives. On the other hand, individuals over 16 years were potentially in the labour market when the reform was implemented, and therefore they would be only affected if they lost their jobs or they have a delayed entry into the labour market.

Nevertheless, we must acknowledge that those following secondary level education and university education will have a delayed entry into the labour market as regards the minimum legal age to participate into the labour market in 1984. Therefore, we will estimate separate models for these individuals, changing the cut off and considering the most common age for finishing the corresponding education levels: 18 years for secondary education and 23 years for university education.12 Individuals usually enter into the labour market after the implementation of the labour market reform (being less than 16, 18 or 23 years) and 0 the opposite.

Figures 5 and 6 show the TER considering the assignment variable for the full sample and by education levels for both genders, with different cut offs (16, 18 and 23 in 1984). In all of them, the picture is rather different on both sides of the cut off. Maybe, the most remarkable difference is the higher dispersion for younger individuals, especially for those with university level. However, for those up to the mandatory education levels, observations with only a bit more than 16 years in 1984 have a dispersion rather similar to those entering in the labour market after 1984. In addition, in all cases for much older generations, the concentration is in rather lower TER. For both genders, the picture is similar, although dispersion is larger for women, irrespective of the education level. Therefore, the visual examination of the outcome variable provides a first approach to the eventual effects of the discontinuity (the labour market reform at the margin of 1984) on the outcome variable (TER).

As regards the bandwith in the assignment variable (mean age), we have chosen a definition in terms of birth cohorts, as this is more meaningful for our analysis than simply considering an interval of some years above and below the corresponding cut off. This will allow link the results more directly with the differences between generations. Anyway, we will check different possibilities including more or less

12. Therefore, we are considering 5 years as the normal period for finishing university studies. In 1984, university studies usually lasted 5 years, with two main exceptions. On the one hand, some degrees lasted 3 years (the so-called Diplomaturas). On the other hand, physicians, architects and some engineers lasted 6 years. While the cut-offs of 16 and 18 are clear, there is more room for heterogeneity defining 23 years old in 1984 as the cut off for ending university studies and being exposed to the effects of the labour market reform at the margin.
briefly across generations, beginning with estimations including all generations.

The econometric specification will be the following:

\[Y_{ac} = \beta_0 \text{AGE1984}_a + \beta_1 \text{AGE1984}_a \times \text{AGE}_c + \beta_2(1-\text{AGE1984}_a)\times \text{AGE}_c + \alpha X_{ij} + \epsilon_{ac} \]

where \(a \) denotes age group, \(c \) corresponds to birth cohort, \(j \) is education level, and, finally, \(t \) is time (year). All these variables and the aggregation procedure were described in Section 3.

We estimate this regression using OLS, and we report results with robust standard errors, clustered when possible by birth cohort (defined as 5 year intervals as described in previous sections). In addition, we estimate different models by gender and three education levels (up to the mandatory level, secondary education and university level). The left hand side variable, \(Y \), is the TER.

Our primary interest focuses on \(\beta \), as the coefficient of \(\text{AGE1984} \), which is having a specific age for working in 1984 (the year the reform at the margin was implemented). As we explained before, we will use these different ages in 1984 (16, 18 and 23) for different education levels. As the above expression shows (see second and third terms), the assignment variable (defined as mean age in each cell centred at the corresponding cut off) can have a different form above and below the cut off age.

We have considered a reduced set of covariates\(^\text{13}\) (\(X \)): a set of dummies of the education levels considered, a linear time trend, and step dummies for 1994, 1997 and 2006. The expected effect of education is a decrease in the TER when education level increases. The rationale is, that with a higher education level, workers are potentially more productive and more valuable for firms and, therefore, more

\[\text{Figure 6} \quad \text{Temporary employment rates by education level with the corresponding cut offs (females only).} \]

\(\text{All (females)} \)

\(\text{Up to mandatory (females)} \)

\(\text{Secondary education level (males)} \)

\(\text{University education level (males)} \)

\(\text{birth cohorts in estimations, beginning with estimations including all generations.} \)

\(\text{The econometric specification will be the following:} \)

\(\text{where} \ a \text{denotes age group,} \ c \text{corresponds to birth cohort,} \ j \text{is} \)

\(\text{education level, and, finally,} \ t \text{is time (year). All these} \)

\(\text{variables and the aggregation procedure were described in} \)

\(\text{Section 3.} \)

\(\text{We estimate this regression using OLS, and we report} \)

\(\text{results with robust standard errors, clustered when possible} \)

\(\text{by birth cohort (defined as 5 year intervals as described} \)

\(\text{in previous sections). In addition, we estimate different} \)

\(\text{models by gender and three education levels (up to the} \)

\(\text{mandatory level, secondary education and university level).} \)

\(\text{The left hand side variable,} \ Y \), \(\text{is the TER.} \)

\(\text{Our primary interest focuses on} \ \beta \), \(\text{as the coefficient of} \)

\(\text{AGE1984, which is having a specific age for working in 1984} \)

\(\text{(the year the reform at the margin was implemented). As we} \)

\(\text{explained before, we will use these different ages in 1984} \)

\(\text{(16, 18 and 23) for different education levels. As the above} \)

\(\text{expression shows (see second and third terms), the assign-} \)

\(\text{ment variable (defined as mean age in each cell centred at} \)

\(\text{the corresponding cut off) can have a different form above} \)

\(\text{and below the cut off age.} \)

\(\text{We have considered a reduced set of covariates}^{\text{13}} \ (X): \text{a set} \)

\(\text{of dummies of the education levels considered, a linear time} \)

\(\text{trend, and step dummies for 1994, 1997 and 2006. The} \)

\(\text{expected effect of education is a decrease in the TER when} \)

\(\text{education level increases. The rationale is, that with a} \)

\(\text{higher education level, workers are potentially more} \)

\(\text{productive and more valuable for firms and, therefore, more} \)

\(\text{covariates are usually included in RDD. However, note that as} \)

\(\text{‘unconfoundedness’ is granted around the threshold of the assignment variable covariates should be redundant, as treated and} \)

\(\text{non-treated individuals would be randomly selected considering} \)

\(\text{any observable and non-observable variable (Imbens & Lemieux, 2008; Lee & Lemieux, 2010). However, covariates are included to} \)

\(\text{control some remaining heterogeneity for some particularly relevant variables, such as educational level, time trend and before-after} \)

\(\text{regulation changes in our case. Anyway, covariates should not have a discontinuity around the threshold (Lee & Lemieux, 2010).} \)

\(\text{For the education level, we have checked this continuity assumption with our data using graphs. They are available upon request.} \)

\(\text{13.} \)
suitable to sign an open-ended contract. We introduce step dummies in the three years as previously mentioned to control for effects related with the legal regulation changes of these years, as some of them tried to affect the relative use of temporary contracts (as we explained in the second section). However, these dummies are only controls and they are not a proper evaluation for the effects of such reforms.

A common issue in RDD is that the results can be sensitive to the specification of the model. This is the reason why some authors propose the use of non-parametric models when using an RDD (Lee and Lemieux, 2010). We have estimated some non-parametric models and we will comment on these results later.14

Finally, as behaviour and outcomes of men and women in the labour market are markedly different, models have been estimated separately by gender.

4.2. Results and discussion

We have two sets of results. The first one (Table 1) shows the estimations including all generations and clustering by 12 birth cohorts. The second one (Table 2) includes the results considering only the closest cohorts to the corresponding cut off, but without clustering (because of the small number of clusters).

Now, we comment on Table 1. The upper panel corresponds to males. Considering the 16 years cut off, the impact of the reform of 1984 ranges from an increase of 3.9 percentage points (pp) in TER for the full sample and for those with lower education level to an increase of 3.9 pp in TER for those with lower education level. The effect is stronger for secondary and university level for the

14. The non-parametric results are not included in the text, but they are available upon request.
18 years cut off: a TER increase of 4.1 pp and 5.6 pp, respectively. Finally, the threshold of 23 years shows a smaller impact of 3.3 pp on the TER of males with university level. Therefore, in general the reform increased the job instability of cohorts entering into the labour market after the reform. To have a reference point to evaluate the PHDQLQJRIWKHVHFRHIÀFLHQWVLWZRXOGEHXVHIXOWRKDYH another look at Figure 1. This Figure shows that the observed TER for all the men was around 30 percent for the most part of the decades of 1990s and 2000s. Therefore, although the estimated effects are not negligible (and for the 18 years cut off of university males it reaches 5.6 pp) they do not seem particularly large. A remarkable feature of these results is that the lowest education level does not show a clearly higher effect and it is even lower than the other two education levels. Both types of results are not contradictory. While having up to the mandatory education level increases TER to 14.2 pp compared to the other two education levels, younger cohorts up to the mandatory level have a TER 3.9 pp higher than older cohorts up to the mandatory education level. In a complementary way, although the university level is related to a lower TER (and higher job stability) compared to being below the secondary level, younger cohorts with university level have a higher TER than older cohorts with a university degree. In other words, they have greater job instability than their older counterparts.

For females (second panel of Table 1), the impact of the 1984 reform is only statistically significant for those with university level. For this group of women the reform increased their TER from 5.1 pp to 6.7 pp (23 years and 18 years cut off, respectively). Also for women, the reform increased job instability for younger cohorts compared to older cohorts of women with a university level, although they have more job stability than women below the secondary level (as the estimate in the first column shows). However, for the rest of

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Regression discontinuity results on the TER_{act} (weighted data and robust standard errors; 2 birth cohorts)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ALL</td>
</tr>
<tr>
<td>Males</td>
<td></td>
</tr>
<tr>
<td>Cut off: 16 years in 1984</td>
<td>0.0231</td>
</tr>
<tr>
<td>Cut off: 18 years in 1984</td>
<td></td>
</tr>
<tr>
<td>Cut off: 23 years in 1984</td>
<td></td>
</tr>
<tr>
<td>Age*(1–Cut off)</td>
<td>-0.0205</td>
</tr>
<tr>
<td>Age*(Cut off)</td>
<td>-0.0129</td>
</tr>
<tr>
<td>Educ1: Up to mandatory educ. level</td>
<td>0.1522</td>
</tr>
<tr>
<td>Educ2: Secondary level</td>
<td></td>
</tr>
<tr>
<td>Linear time trend</td>
<td>-0.0149</td>
</tr>
<tr>
<td>Reform 1994 (1=Yes)</td>
<td>0.0511</td>
</tr>
<tr>
<td>Reform 1997 (1=Yes)</td>
<td>-0.0581</td>
</tr>
<tr>
<td>Reform 2006 (1=Yes)</td>
<td>0.0070</td>
</tr>
<tr>
<td>Constant</td>
<td>0.4785</td>
</tr>
<tr>
<td>R2</td>
<td>0.8745</td>
</tr>
<tr>
<td>N</td>
<td>164714</td>
</tr>
<tr>
<td>Females</td>
<td></td>
</tr>
<tr>
<td>Cut off: 16 years in 1984</td>
<td>-0.0096</td>
</tr>
<tr>
<td>Cut off: 18 years in 1984</td>
<td></td>
</tr>
<tr>
<td>Cut off: 23 years in 1984</td>
<td></td>
</tr>
<tr>
<td>Age*(1–Cut off)</td>
<td>-0.0205</td>
</tr>
<tr>
<td>Age*(Cut off)</td>
<td>0.0040</td>
</tr>
<tr>
<td>Educ1: Up to mandatory educ. level</td>
<td>0.1105</td>
</tr>
<tr>
<td>Educ2: Secondary level</td>
<td>-0.0048</td>
</tr>
<tr>
<td>Linear time trend</td>
<td>-0.0122</td>
</tr>
<tr>
<td>Reform 1994 (1=Yes)</td>
<td>0.0321</td>
</tr>
<tr>
<td>Reform 1997 (1=Yes)</td>
<td>-0.0378</td>
</tr>
<tr>
<td>Reform 2006 (1=Yes)</td>
<td>0.0057</td>
</tr>
<tr>
<td>Constant</td>
<td>0.5242</td>
</tr>
<tr>
<td>R2</td>
<td>0.7930</td>
</tr>
<tr>
<td>N</td>
<td>118579</td>
</tr>
</tbody>
</table>

a, age group; c, birth-cohort (generation); EDUC3, University education level; j, education level; t, time (year).
Robust standard errors. Weighted data. All coefficients are statistically significant. Reform variables are step dummies (1=year of the reform onwards).
women, the reform does not create a significant difference in TER between younger and older cohorts.

As we explained in a previous section, the effects of the discontinuity should be also checked considering data around the cut off. Table 2 shows the results considering only 2 cohorts, 1961-65 and 1966-70, with the exception of individuals with a university degree considering the cut off of 23 years. For this last case, the two cohorts are 1956-60 and 1961-65, in order to have one cohort on both sides of the corresponding cut off. In these estimations, standard
errors are robust but they are not clustered by cohorts, as we are only considering two cohorts.15

The estimated effects shown in Table 2 are smaller than those reported in Table 1. Particularly for those with a university degree where the estimated effect is very close to zero (0.66 pp for men and 0.91 pp for women).16 For males, the effect is an increase of 2.38 pp for those up to the mandatory education level, and an increase from 3.37 to 3.62 pp for the secondary level (cut off of 16 and 18, respectively). For women, the estimated effect is negative, but rather small (~1.44 pp), and positive for the cut off of 18 years for those with secondary level (2.88 pp).

Using Figures 7 (males) and 8 (females) we can compare the observed change in mean TER for different cohorts with the size of estimated effects related to the labour market reform at the margin. The black vertical line divides cohorts considered in estimations for the two lower education levels and the grey vertical line does the same for the university level. For the lowest education level and secondary education, the observed difference in the mean TER between 1961-65 and 1966-70 cohorts is around the double the change closely linked with the labour market reform (for both genders). However, the observed difference in the mean TER between 1956-60 and 1961-65 for individuals with university education is slightly below 10 pp (for both genders) but the estimated change in TER comparing both cohorts attributed to the labour market reform at the margin is below 1 pp.

Definitively, these results as a whole do not support the view that the labour market reform at the margin has created a key difference between generations, leaving younger cohorts in a sort of ‘permanent trap’ of precariousness. On the contrary, our results show that in the worst case the reform might explain an increase in the mean TER of younger generations of slightly below 4 pp for cohorts with secondary level directly related to the implementation of the reform. Particularly in the case of people with university level, the observed differences in mean TER between cohorts are mainly related to differences in the characteristics of the cohorts, and not with the reform at the margin.

Finally, as a robustness check, we have estimated non-parametric models17 (not reported here, but available upon request). In these estimations, the bandwidths are narrower18 than those considered in estimations shown in Tables 1 and 2. The effect of the labour market reform at the margin is either non-significant or slightly negative (but always very close to zero) for the mandatory education level and the secondary level. For the university level, the estimated effect of the reform was positive and around 2 pp. Therefore, although non-parametric models provide results a bit different from those obtained with the linear models of Tables 1 and 2, they do not change the main conclusion for those with university level, as the effect of the labour market reform at the margin is very low compared to the observed difference shown in Figures 7 and 8. However, these non-parametric results do not compare different cohorts (as we wanted) but cells inside a specific narrower bandwidth around the corresponding cut off, and therefore they do not have an interpretation in terms of birth cohorts as the rest of our results.

5. Conclusions

In this research we have analysed the incidence of temporary employment across generations and the long-term impact of a labour market reform easing the use of temporary contracts by firms. Our data come from Spain where this type of labour market reform was implemented in 1984 and where the temporary employment rate has been among the highest in Europe in the last two decades. We evaluate the impact of this reform at the margin on different generations (defined as birth cohorts). As a reform at the margin only affects those entering (or re-entering) the labour market, we focus on the comparison of those entering into the labour market after the implementation of the reform at the margin and those already in the labour market in 1984. Therefore, we are not providing a comparison before-after the reform nor a counterfactual of what would have happened without such reform, but a comparison of workers at the margin and workers only at the margin if they lose their job or have a delayed entry into the labour market.

For this evaluation we use micro-data of the Spanish Labour Force Survey to define artificial or synthetic birth cohorts from 1987 to 2010. We follow for this period 12 birth cohorts (defined as 5 years groups). There are relevant observed differences by gender, as women usually have a higher TER throughout their working lives almost irrespective of their birth cohort. Descriptive differences by education level are remarkable. For those up to the mandatory education level, the TER increased relatively rapidly after the implementation of the reform for older cohorts (those already in the labour market in 1984), and for those entering after the reform at the margin the TER was initially relatively high and slowly decreases as age increases. For those with a university degree, TER remained almost unchanged for older cohorts after the reform, and although for younger cohorts the TER is very high at the beginning of their working life, it decreases at a faster pace as age increases.

Econometric estimations of the effect of the labour market reform at the margin are based on a regression discontinuity design. The discontinuity is the reform, as it can be considered as exogenous as regards the behaviour of workers and firms. We define the cut off as the entering age into the labour market by education level (16 for those up to the mandatory education level, 18 for those with secon-

15 Due to cell weighting, together with the lack of clustering, all coefficients in Table 2 are statistically significant. Therefore, the precision of estimations of Tables 1 and 2 are not strictly comparable.

16 Considering the other cut offs, the largest effect is for the cut off of 18 years (3.22 pp for men and 4.96 for women).

17 For our estimations we have used the ‘rd’ command for Stata developed by Nichols (2011). The ‘rd’ command allows estimating local linear regression models on both sides of the cut off, using a triangle kernel. In addition, we have also used the syntax programs provided by G. Imbens on his personal web page: (http://www.economics.harvard.edu/faculty/imbens/imbens.html), which is based on the notes by Fuji et al. (2009).

18 The default bandwidth of the command ‘rd’ is based on Fuji et al. (2009) to minimise MSE, or squared bias plus variance, in a sharp RD design.
The estimated impact on the mean TER for cohorts entering into the labour market after the legal change of 1984 is relatively small, and does not support the view that the reform has heavily affected younger generations and creating a long-term relevant increase in TER throughout their working lives. This is particularly not true for those with a university degree. Although, for those with university level, the observed difference between the cohort entering after the reform and the cohort already in the labour market is the largest one (around 10 percentage points), almost the whole difference is related to differences between both cohorts, and not with the discontinuity created by the labour market reform at the margin of 1984. In the vicinities of the cut off of 23 years in 1984, the effect directly related to the reform at the margin is 0.66 percentage points for males and 0.91 for females.

Of course, these results do not support whether this reform was ‘good’ or ‘positive’ for the welfare of individuals. That is a different question concerning a comparison of the observed results under the reform and a counterfactual scenario without such reform (or with a reform for all and not just at the margin). Our results are based on comparisons with data obtained after the implementation of the reform for all cohorts. Therefore, our regression discontinuity analysis stresses that observed differences in mean TER for different cohorts (especially for those with university level) are mainly associated with differences between cohorts entering after and before the implementation of the labour market reform at the margin of 1984, and not strictly with a heavy impact of the easier use of temporary contracts on younger cohorts.

Acknowledgments

We are highly indebted to Luis Garrido for the idea of using artificial cohorts’ methodology with the micro-data of the Labour Force Survey and to David Autor for providing insightful suggestions for improving our analysis. We also gratefully acknowledge comments from Kristine Brown, Carlos García-Serrano, Geoffrey Hewings, Maria Prada, and José-Ignacio Pérez-Infante. Part of this research was developed when Miguel A. Malo was at the NBER as visiting scholar, who acknowledges the corresponding financial help of the Spanish Ministry of Education. This research has also benefited from funds from the Spanish Ministry for Science (Research Project Reference: CSO2010-21004). Of course, all remaining errors are the authors’ own responsibility.

References

