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Resumen

Introducción.  El  cáncer  de  vejiga   es  una  enfermedad  compleja.  Los  estudios  de
asociación de todo el genoma (GWAS), han identificado variantes comunes asociadas con
el riesgo de desarrollar cáncer de vejiga. Sin embargo, la implicación de las variantes
raras aún no se ha explorado. Aquí exploramos la contribución de los SNP de codificación
rara al componente genético del desarrollo de cáncer de vejiga.

Material y Métodos. Toda la secuenciación del exoma se realizó en el ADN germinal de
104 individuos (68 casos/36 controles) que participaban dentro del estudio EPICURO para
cáncer  de  vejiga.  Los  sujetos  fueron  seleccionados  siguiendo  un  diseño  de  fenotipo
extremo con  el  fin  de  potenciar  el  componente  genético.  Solo  las  variantes  con  una
frecuencia de alelo menor <0.01 y buena calidad de imputación (info > 0.3) se analizaron
utilizando  tres  métodos  de  colapso:  Burden  test,  SKAT y  SKAT-O,  en  función  de  los
genes. Priorizamos los genes identificados por los tres métodos  después de realizar la
corrección por pruebas múltiples.

Resultados.  Un número total  de 93,867 variantes raras anotadas en ~ 14,700 genes
finalmente se incluyeron en el  análisis. Burden test identificó 184 genes, mientras que
SKAT  y  SKAT-O  identificaron  169  y  197  genes,  respectivamente,  con  119  genes
identificados  por  los  tres  métodos.  Curiosamente,  dos  de  ellos,  LIG1 y  ERCC1,  se
asociaron previamente con neoplasias de vejiga. Además de ellos, se identificaron nuevos
posibles genes de susceptibilidad. Después de anotarlos en las vías de KEGG, los más
relevantes  fueron:  "Reparación de escisión de nucleótidos",  que tiene otros  genes de
susceptibilidad a cáncer de vejiga como XPC y XPD, también se relacionó con cáncer de
vejiga en un análisis de grupo anterior, "Regulación del citoesqueleto de actina", que tiene
FGFR3, otro gen de susceptibilidad para cáncer de vejiga, y "Estrecha unión", que tiene 3
posibles genes de susceptibilidad encontrados en nuestro análisis.

Conclusiones. La gran cantidad de genes seleccionados por los tres métodos sugiere
que las variantes raras heredadas en muchos genes contribuyen al riesgo de desarrollar
cáncer de vejiga. Hasta donde sabemos, este es el primer estudio que investiga el papel
de las variantes raras en la susceptibilidad genética al cáncer de vejiga.

Palabras Clave: Cáncer, Vejiga, MAF, Rare, Burden, SKAT, SKAT-O, SeqMeta.
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Abstract Key

Background. Bladder cancer (BC) is a complex disease. Genome-wide association studies have

identified common variants associated with BC risk. However, the implication of rare variants has

not  been explored yet.  Here we explored the contribution  of  rare coding SNPs to the genetic

component of BC development.

Methods.  Whole exome sequencing was conducted in germline DNA from 104 individuals  (36

controls/68 cases) participating in the Spanish Bladder Cancer/EPICURO study. Subjects  were

selected following an extreme phenotype design in order to potentiate the genetic component. Only

those variants with a minor allele frequency <0.01 and good quality of imputation (info>0.3) were

analyzed using three collapsing methods (Burden test, SKAT and SKAT-O) on a gene-basis. We

prioritized the genes identified by the three methods, after multiple testing correction.

Results. A total number of 93,867 rare variants annotated on ~14,700 genes were finally included

in the analysis. The Burden test identified 184 genes, while SKAT and SKAT-O identified 169 and

197 genes, respectively, with 119 genes being identified by the three methods. Interestingly, two of

them, LIG1 and ERCC1, were previously associated with bladder neoplasms. In addition to them,

novel possible susceptibility genes were identified. After annotated them in KEGG pathways, the

most relevant ones were: “Nucleotide excision repair”, which has other BC susceptibility genes as

XPC and XPD, also reported to be associated with BC in a previous pool analysis, “Regulation of

actin cytoskeleton”, which has  FGFR3,  another susceptibility  gene for BC, and “Tight junction”,

which has 3 possible susceptibility genes found in our analysis. 

Conclusions. The large  number  of  genes  selected  by  the  three  methods  suggests  that  rare

inherited coding variants across many genes contribute to BC risk. To our knowledge, this is the

first study investigating the role of rare variants on the genetic susceptibility to BC.

Words: Cancer, Bladder, MAF, Rare, Burden, SKAT, SKAT-O, SeqMeta.
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1. INTRODUCTION

Bladder cancer (BC), ranks first among urinary carcinomas, representing 50% of the cases, ahead

of other conditions such as kidney and renal pelvis cancer or that of ureters and other urinary

organs [Siegel et al., 2017].

Figure 1 shows the worldwide incidence of bladder cancer. It is estimated that there are about

429,000 new cases/year worldwide, which rank the bladder carcinoma as the ninth most common

cancer, for both sex combined, ahead of non-Hodgkin lymphoma, leukemia, pancreatic cancer or

kidney cancer [Ferlay et al., 2015]. In the European Union (EU), 124,000 people are diagnosed of

BC each year and, by 2030, the annual incidence of this cancer is projected to increase to 219,000

two-fifths of this as a consequence of the ageing of the European population [GLOBOCAN 2012].

Figure 1. Worldwide incidence of bladder cancer

Within the new cases per year, 330.000 (76.9%) correspond to men, with a male:female ratio  of

3.5:1, worldwide [Ferlay et al., 2015]. 

In Spain,  bladder  cancer ranks fifth among the most  frequent  tumors diagnosed in 2015,  with

21.093 cases, and a male-female ratio higher than that found worldwide, and which stands at 4.8:1

[SEOM, 2017].
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Figure 2. Number of new cases/deaths by sex, in different cancers in Spain.

Bladder cancer poses an economic burden to the EU, costing €4.9 billion in 2012 [Leal et al.,

2016]. The five most populous countries including Spain, account for 73% of all costs, resulting in

€3.6 billion. In particular, the BC health care cost for the EU health care systems was estimated as

€2.9 billion in 2012, representing 59% of the total economic burden. In Spain, the annual health

care  costs  of  BC were  equivalent  to  €61  per  every  10  citizens,  a  higher  cost  than  the  one

estimated for the whole EU (€57 per every 10 EU citizens) [Leal et al.,  2016].   Another figure

showing the importance of BC as an economic burden for the Spanish public health care system is

that it represents >4% of all total cancer costs, whereas its counterpart in other European countries

account for 2% of the total costs.

Planning urologic care systems requires a good knowledge of BC epidemiology. In this regard, BC

is  a  paradigm  of  complex  disease,  and  results  from the  interplay  between  both  genetic  and

environmental effects.

Many studies have determined that smoking is the main risk factor for BC [Samanic et al., 2006]

[Guillaume et al., 2014], with an attributable fraction of approximately 50% of the cases [Jankovic

et al., 2007], since there is a direct relationship between the development of UBC and the content

of aromatic amines such as B-naphthylamine and the polycyclic aromatic hydrocarbons of tobacco

[Burguer et al., 2013].
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Occupational  exposure  to  these  aromatic  amines  and  polycyclic  aromatic  hydrocarbons  are

another of the most important risk factors for BC [Burguer et al., 2013], with up to 20% of UBCs

being associated with exposure to these components in industrial areas. Furthermore, there are

other less determinant factors such as diet and environmental pollution.  

Regarding genetic factors, it has been found that the risk of BC is two-fold higher in first-degree

relatives of patients diagnosed with BC [Burguer et al., 2013].  Although familial aggregation of BC

has been described, no high-penetrance allele/gene has been identified so far explaining these

familial  clusters.  Genome-wide  association  studies  (GWAS)  have  shed  some  light  on  the

deciphering  of  the genetic  susceptibility  of  BC.  So far, 24 loci  distributed in  19 regions of  14

chromosomes (see Figure 3) have been identified according to GWAS catalog [Welter et al., 2014]

[Figueroa et al., 2016] explaining ~12% of the familial risk. This fact along with the low incidence of

BC and the  nonexistent  cost-effective  measures,  make impracticable  to  establish  a  screening

strategy for BC in asymptomatic adults, based only on genetics information [Moyer, VA. 2006]. 

However, it is necessary to identify those risk groups and prioritize the allocation of public funds for

research [Leal et al., 2015]. 

Figure 3. Ideogram localizing the GWAS identified common genetic susceptibility variants in the chromosome
bands. From the Phenotype-Genotype Integrator (PheGenI) after searching for urinary bladder neoplasm. [López
de Maturana et al., 2017]

The  most  relevant  genetic  factors  in  terms  of  conferring  risk  are  the  slow  acetylator  N-

acetyltransferase 2 (NAT2) and the glutathione S-transferase mu 1 (GSTM1) null genotypes, well

established  risk  factors  for  BC [García-Closas  et  al.,  2005].   These  variants  confer  individual

susceptibility to exogenous carcinogens, mainly those present in tobacco, since both enzymes are

involved in the detoxification of such carcinogenss [Burguer et al., 2013]. In a combined analysis,

the association between BC risk and GSTM1 deletion was stronger in never smokers (OR=1.75),

and progressively weaker in former (OR=1.55) and current smokers (OR=1.25); on the other hand,

10



the association between NAT2 and BC risk was limited to cigarette smokers (OR=1.24) [Rothman

et al., 2010]. 

 

Genome-wide  association  studies  have  been  proven  to  be  useful  tools  to  identify  genetic

associations between common variants and disease [Manolio et al., 2009]. Regarding BC, all the

genetic associations found to date through candidate gene approaches or GWAS, correspond to

low penetrant  variants that  appear  frequently  in  the population  (e.g.,  common variants,  with a

frequency of the minor allele larger than 5%) (See Figure 4). However, little is known about the

contribution of rare variants to BC genetic susceptibility.  Rare variants (MAF <0.5%) are known to

play an important role in human diseases and their study could offer an explanation about the

variability and risk of suffering certain diseases, as BC [Seunggeung et al., 2014]. The rare allele

model assumes that there are many rare alleles of large effect, so the disease would be due to

rare variants of high penetrance [Gibson, 2015]. In the case of rare variants, GWAS are not useful

to detect associations with rare variants, because common variants do not capture the genetic

variation due to rare variants [Gibson, 2010].

Figure  4.  Genetic  susceptibility  genes  associated  with  urothelial  bladder  cancer  in  the  GWAS  catalogue
displayed according to their minor allele frequency (x-axis) and effect size (y-axis).  [López de Maturana et al.,
2017]

Next generation sequencing (NGS) technologies are parallel-sequencing approaches that generate

billions of short sequence reads at a modest cost. In recent years, NGS has been a revolution in

the field of genomics, allowing genome-wide sequence data to be generated quickly and cost-

effectively with high accuracy [Jiekun et al., 2015]. These short reads are aligned to a reference

genome given  the possibility  to  identify  and genotype sites  where sequenced  individuals  vary

[Seunggeung et al., 2014]. The continuous decrease in the price of this technique, has made of
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NGS a powerful and indispensable tool in the genetic association studies, by enabling a more

complete assessment  of  the role of  low-frequency and rare genetic  variants in  complex traits.

However, the detection of rare variants in sequencing-based approaches is challenging.   First,

performing NGS in a large sample of  individuals  is  costly. In  order  to minimize this  limitation,

various alternative strategies have been proposed: targeted sequencing, exome sequencing, low-

depth WGS, and extreme-phenotype sampling.

The  second  challenge  relates  to  the  limited  power  of  classical  statistical  tests  to  detect  rare

associations with rare variants. Mainly due to their low frequency, the proportion of the genetic

variation explained by these low frequent variants is likely to be small, unless their effect is very

large, impairing their detection with classical statistical approaches. 

Because the number of rare variants is much greater than that of common ones, stricter levels of

significance could be required, reducing statistical power [Seunggeung et al., 2014]. In order to

overcome these limitations, novel statistical methods have been recently developed, that instead of

testing each rare variant individually, they collapse them, and evaluate their joint effect on a gene

or  biologically  relevant  region  basis,  increasing  the  power  when  there  is  association  with  the

disease.  [Seunggeung  et  al.,  2014].  The  aggregation  tests  developed  so  far  differ  on  the

assumptions  about  underlying  genetic  model,  and  therefore,  their  power  depends  on  the true

genetic  model,  which  in  real  data  is  likely  to  be  unknown.  According  to  their  assumptions,

aggregation  methods  can  be  categorized  as:  burden  tests,  adaptive  burden  tests,  variance-

component  tests,  combined  burden  and  variance-component  tests,  and  the  exponential-

combination (EC) test [Seunggeung  et al., 2014].

Specifically, some of the most used methods for the analysis of rare variants are: Burden test [Li et

al.,  2008],  Sequence Kernel  Association  Test  (SKAT) [Wu et  al.,  2011],  and Sequence Kernel

Association test-Optimized (SKAT-O) [Wang, 2016].

Here we explored for the first time the contribution of rare coding SNPs to the genetic component

of BC development using the current statistical methods for the analysis of rare variants, and a

whole exome sequencing approach (WES).
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2. OBJETIVES

The overall aim of this project is to explore and compare the performance of the current statistical

methods for the analysis of rare variants in assessing the contribution of rare coding SNPs to the

genetic susceptibility of BC using a WES-based approach.

The specific objectives are:

1) To identify  the  statistical  methods  currently  available  for  the  association  analysis  of  rare

variants with risk.

2) To implement  these methods in  real  data (exome sequencing data in  BC) to identify  rare,

putatively functional, protein-coding variants associated with BC.

13



3. MATERIAL AND METHODS

3. 1. Study population

Here we used the resources of the SBC/EPICURO study, a retrospective hospital-based case–

control study conducted in 18 hospitals in five Spanish areas (Asturias, Barcelona metropolitan

area, Vallès/Bages, Alicante and Tenerife) during the years 1998 to 2001. [García-Closas M et al.,

2005].

Figure 5. Distribution areas of EPICURO study

The inclusion criteria for cases were: age between 21-80 years old, current diagnosis of urinary

bladder  transition  cell  carcinoma,  histologically  confirmed,  and classified  as  such by the 1998

system  of  the  World  Health  Organization  (WHO)  and  the  International  Society  of  Urological

Pathology [Epstein et al., 1998].

The controls  were patients  admitted in  the participating  hospitals  for  other  pathologies,  whose

diagnosis were not related to the known risk factors of BC. Controls were matched to a case for to

age (in categories of 5 years), sex, ethnicity and region. The informed consent of the participants

was obtained in accordance with the Institutional Review Board of the US National Cancer Institute

and the Ethics Committees of each participating hospital. 

Blood samples were requested for DNA extraction and information about  risk factors (smoking

habit, cancer history, family history of cancer  and environmental exposure) , was collected trough

personal interviews conducted by trained monitors. Subjects were also categorized according to

their smoking habit in: never smokers; smoked less than 100 cigarettes in their lifetime; occasional

smokers; smoked at least one cigarette per day for less than 6 months; former smokers if they had

smoked regularly but stopped smoking more than one year before the study inclusion date, and

current smokers, if they had smoked regularly within a year of the inclusion date [Samanic et al.,

2016].
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For the current project, those patients selected following an extreme phenotype design were used,

in  order  to  accentuate the genetic  component  in  UBC,  and assuming that  rare  variants  were

enriched  among thoses cases.  Given the binary  nature  of  the  phenotype data,  subjects  were

selected according to their  age at  diagnosis/recruitment (<50 years),  first-degree relatives with

cancer, and non-tobacco consumption. Ccontrols were >70 years old and heavy smokers (more

than 21 cigarettes/  day) individuals  without  bladder and family cancer.This design was already

used in a previous study, improving the classification performance of yet-to-be observed data using

a multimarker model  [López de Maturana et al., 2014]. Finally, data from 104 patients (68 cases

and 36 controls) were used in the analysis.

Whole exome sequencing was conducted in germline DNA from these patients. WES provides

coverage  of  about  95%  of  the  exons,  which  contains  85%  of  mutations  causing  disease  in

Mendelian  disorders  throughout  the  genome  [Rabbani  B  et  al.,  2014].  In  addition,  another

advantage of the WES is that can be applied to moderate numbers of samples due to its lower

price with respect to the complete genome.

3. 2. Whole exome sequencing workflow

Figure 6, shows the WES workflow used to generate the files, I used as starting point in this TFM

(process 6 of  the workflow).  Briefly, DNA samples  were sequenced using the Illumina TruSeq

exome  enrichment  kit  at  the  University  of  Uppsala  (Sweden),  within  the  framework  of

EXOMxPRED project.  Reads were aligned to the human reference sequence (hg19) using the

Burrows-Wheeler Aligner tool (BWA2) and the resulting binary alignment map (BAM) files were

used to call single-nucleotide variants (SNVs) across all samples, i.e., multi-sample calling.

The VCF files generated were then processed in the Genetic and Molecular Epidemiology Group

(GMEG),  Spanish  National  Cancer  Research  Center  (CNIO)  using  a  pipeline  developed  by  a

previous Master student, Laura Leroi, to ensure the quality of the variant calling. The quality control

procedure was applied at both sample and SNP level to ensure the quality of SNPs genotypes.

Those with bad quality (e.g., SNPs with read depth < 10 and those which did not pass the tests of

base sequencing quality, strand bias or tail distance bias) were considered as missing, and then

imputed  using  a  strategy  of  pre-phasing  of  the  target  dataset  implemented  in  the  framework

IMPUTE2 plus SHAPEIT2 in the GMEG (CNIO). The imputation was performed combining the

samples with WES information with the rest of individuals included in the SBC/EPICURO study that

were genotyped with the 1M Illumina array [Rothman et al, 2010].

These imputed files were the initial files that were used in this TFM, from which we selected the

autosomal chromosomes.
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Figure 6. Data generation and processing Workflow

3. 3. Annotation

To perform the annotation of the SNPs we used the Genome Reference Consortium Human Build

37 (GRCh37), also known as hg19, available in Biomart, Ensemble (https://www.ensembl.org).

The database Ensembl Genes 91, and the dataset Human genes (GRCh37.13) were selected and

the output was saved in the file ensembl_allGenes.bed

The annotation was made by the script  ‘annotateVCF_ENSgenes.sh’, which is  shown below.

First, I sorted the file ensembl_allGenes.bed by chromosome position and compressed the file.

I used tabix tools to index and convert it into a VCF file. This VCF file was used as input of vcf-

annotate (http://vcftools.sourceforge.net/perl_module.html) to perform the gene annotation.

#!/bin/bash

sort -k1,1V-k2,2n-V ensembl_allGenes.bed > sorted_ensembl_allGenes.bed

bgzip sorted_ensembl_allGenes.bed-c > sorted_ensembl_allGenes.bed.gz

tabix -s 1 -b 2 -e 3 -f sorted_ensembl_allGenes.bed.gz

for chr in $(seq 1 22); do

  awk 'BEGIN{FS="\t"; OFS="\t" {print $2,$3,$1,$4,$5,".",".","gene="$8,"."}' 

EPICURO.${chr}/info.QC.only.SNP.EPICURO.${chr}.snpEff.p.SAL.SAL10_2.vcf.txt | 

sed '1d' | awk 'BEGIN{print 

"#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT"}; {print}; ' > 

~/tfm_Alba/annotateVCF/chrom${chr}_vars.vcf;

done

for chr in $(seq 1 22); do
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  cat /home/amfernandez/tfm_Alba/annotateVCF/chrom${chr}_vars.vcf | vcf-annotate

--annotations sorted_ensembl_allGenes.bed.gz --columns CHROM,FROM,TO,INFO/GENE –

description key=INFO,ID=GENE,Number=1, Type=String, Description='Gene Name' 

> ./gene_annotated_output${chr}.vcf

done

  Script ‘annotateVCF_ENSgenes.sh’

3. 4. File Edition

The information needed to pursue the first objective of this TFM was stored in the following files: 

A) Info.QC.only.SNP.EPICURO.$.snpEff.p.SAL.SAL10_2.vcf (where $ corresponds to

each autosomal  chromosome). This  is  one of  the  output  files  obtained after  applying  the QC

pipeline to the WES data from the individuals with extreme phenotypes (see the WES workflow in

previous section for more details). It has the following format:

Figure 7. Info file from WES.

Where, 

 Name: Corresponds to the SNP id. For those SNPs without rs number, a unique id was

assigned.   

 Chr: Is the chromosome where each SNP is located.

 Pos: Corresponds to the SNP position in the chromosome.

 Ref: Is the reference allele.

 Alt: Corresponds to the alternative allele.

 Tri_all:  To know whether if the variant has 2 different alternate base

 TiTv_Type: Indicates the type of the variation, where Ti corresponds to a transition and Tv

to a tranversion.

 Gene: The name of the gene overlapping this position in HGNC gene symbol format, which

was obtained after the annotation performed in CNAG.

 Effect : Effect of this variant from snpEff. See http://snpeff.sourceforge.net/

 Effect_lvl: Effects  categorized  by  'impact'.   For  more  details,  please  see

http://snpeff.sourceforge.net/
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 Morphism: Type of polymorphism: singleton (S), monomorphic (M), and polymorphic (P).

 DP: This number indicates the total read depth for this position.

 Call_Rate: Percentage of genotype calls in the vcf file for this variant.

 MAF: Indicates the Minor Allele Frequency.

 GMAF:  Is  the  Global  Minor  Allele  Frequency provided by  CNAG using 1000 Genomes

database.

 Variant_Type: Rare, low frequency or common polymorphism.

B) Info.$.chr.inf. This is one of the output files obtained after the imputation procedure (see

previous section for more details). It contains the following information:  name of the SNP (snp_id),

position (rs_id), major allele (a0), minor allele (a1), expected frequency of the alternative allele

(exp_freq_a1),  imputation  quality  measurement  1  (info),  imputation  quality  measurement  2

(certainty), (type;  3 types: 0, SNP only in the reference, 2: SNP both in the reference and in our

study),  3:  SNPs appearing  only  in  our  study),  imputation  quality  measurement  3  (info_type0),

imputation quality measurement 4 (concord_type0), imputation quality measurement 4 (r2_type0).

C)  imputed_dosages.$.chr.dsg. Output file from the imputation procedure. It contains the

SNP  genotypes  of  all  the  genotyped  individuals  in  SBC/EPICURO  study  (1127  cases/1090

controls), including the individuals with extreme phenotypes. It contains the genotypes resulting

from  the  imputation  (each  column  corresponded  to  an  individual)  from  the  6th  column;

corresponding the first 5 fields to the [–, First name, Position, Most likely nucleotide, Alternative]

Figure 8. Genotype file

D)  laura_leroi.xls. This  file  contains  the  information  regarding  the  ID  of  the  extreme

phenotype  individuals,  needed  to  extract  their  epidemiological  information  from

(idsCVinformation.Rdata).

E)  idsCVinformation.Rdata. It  contains the epidemiological information of the 2217 cases

and controls  from the SBC/EPICURO study, including the ones with extreme phenotypes.  The

header of the data is as follows:

[id, region, age, gender, smoking status, CV folds, caco, casecontrol]

F) epicuro.samples. Input file used in the imputation procedure containing the order and the

IDs of the individual whose genotypes were imputed. It contains 1127 cases and 1090 controls,
including the ones showing extreme phenotypes.
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Following, Figure 9 shows graphically the file processing to extract the information needed for the

rare variant analysis.

               Figure 9. File processing 

Since it was used an extreme phenotype design strategy and not all the individuals included in the

SBC /EPICURO study had their  exome sequenced,  I  needed to extract  the genotypes of  the

sequenced SNPs after the imputation.
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First,  I  extracted the positions  of  the SNPs from the file     Info.QC.only.SNP.EPICURO.

$.snpEff.p.SAL.SAL10_2.vcf,   then  I  selected  the  rows  containing  that  positions  in  the

imputation files, and finally, I saved them into the file position.txt.

This was done in bash, using the following script: 

#!/bin/bash

for i in {1..22};

do

sed '1d' /local/comun/WES_extreme_EPICURO/EPICURO.$

{i}/info.QC.only.SNP.EPICURO.${i}.snpEff.p.SAL.SAL10_2.vcf.txt |cut -f3 > 

/home/amfernandez/TFM_Alba/positions.txt

 Script ‘to_extract_geno_info_exomes_FAST.sh’

Then, I selected both the information and genotypes of the SNPs that were sequenced from the 

imputation files: Info.$.chr.inf and imputed_dosages.$.chr.dsg.  

fgrep -w -f /home/amfernandez/TFM_Alba/positions.txt 

/local/comun/EPICURO_imputed_by_MAF/chr${i}/Info.chr${i}.inf > 

/home/amfernandez/TFM_Alba/SNPs_EPIC_info_exomes${i}.txt

fgrep -w -f /home/amfernandez/TFM_Alba/positions.txt 

/local/comun/EPICURO_imputed_by_MAF/chr$i/imputed_dosages.chr${i}.dsg  > 

/home/amfernandez/TFM_Alba/SNPs_EPICURO_genotypes_exomes${i}.txt

   Script ‘to_extract_geno_info_exomes_FAST.sh’

The output files were: 1)  SNPs_EPIC_info_exomes${i}.txt, which contains the information

of  the WES  SNPs,  and 2)  SNPs_EPICURO_genotypes_exomes${i}.txt, with  the  SNP

genotypes.

Since the imputation files contain the genotypes for all the individuals of SBC/EPICURO, I needed

to extract  the genotypes of the individuals  with extreme phenotypes. To do so,  I  used the file

epicuro.samples to extract the corresponding columns in the genotype file, taking into account

that the genotypes start in the field 6. Since the selected individuals were in the first 104 rows, the

first  109  columns of  SNPs_EPICURO_genotypes_exomes${i}.txt were  saved  as

basedatosdefchr${i}.txt, using the code:

#!/bin/bash

for i in {1..22};

do
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  echo $i

    cut -d " " -f 1-109 

/home/amfernandez/tfm_Alba/SNPs_EPICURO_genotypes_exomes${i}.txt > 

/home/amfernandez/tfm_Alba/basedatosdefchr${i}.txt

done

    Script ‘basedatosdefchr.sh’

Then, I extracted the epidemiological information for the subsample with WES data and saved it in
the  file  ext_phen_ids.txt.  To  do  so,  I  used  laura_leroi.xls and

idsCVinformation.Rdata as  input  files,  and  merged  them  by  patient  ID  in  R,  using  the

following script:

install.packages('xlsx')

library('xlsx')

laura <-read.xlsx('/local/comun/TFM_Alba/___Laura Leroi.xlsx',1) 

load('/local/comun/TFM_Alba/idsCVinformation.RData')

ext_phen <- merge(laura,all.ids.summary,by.x='ID_Patient',by.y='id') 

write.table(ext_phen1,'/home/amfernandez/tfm_Alba/ext_phen1.txt',quote=FALSE,row

.names=FALSE,col.names=TRUE

write.table(ext_phen1$ID_Patient,'/home/amfernandez/tfm_Alba/ext_phen_ids.txt',q

uote=FALSE,row.names=FALSE,col.names=FALSE)

Script ‘ext_phen.R’

 

3. 4. 1 Filtering of Variants

Only variants with a good imputation quality (info>0.3), polymorphic (i.e.,  whose genotype would

vary in the set of cases and controls) and with minor allele frequency <1% were considered.

Rare variants filtering was done in R.

First, I loaded the necessary files

for(i in 1:22){  
geno_exomes<- 
read.table(file=paste0('/home/amfernandez/tfm_Alba/basedatosdefchr',i,'.txt'),st
ringsAsFactors=FALSE)
rownames(geno_exomes)=geno_exomes$V2
geno_exomes1<-geno_exomes[,c(6:109)]
info_exomes_impute <-
read.table(file=paste0('/home/amfernandez/tfm_Alba/SNPs_EPIC_info_exomes',i, 
'.txt'), header=FALSE,stringsAsFactors=FALSE)
rownames(info_exomes_impute)=info_exomes_impute$V2

Then, I discarded the monomorphic:

geno_exomes1$monomorphic='NO'

21



for(j in 1: (dim(geno_exomes1)[1])){
  if (sum(geno_exomes1[j,1:104])/104 ==2) geno_exomes1$monomorphic[j]='YES2'
  if (sum(geno_exomes1[j,1:104])/104 ==0) geno_exomes1$monomorphic[j]='YES0'
  if ((min(geno_exomes1[j,1:104]) == max(geno_exomes1[j,1:104])) & 
min(geno_exomes1[j,1:104]) ==1) geno_exomes1$monomorphic[j]='YES1'
}
no_monomorphic <-geno_exomes1[which(geno_exomes1$monomorphic == 'NO'),]
no_monomorphic$ID <- rownames(no_monomorphic)
no_monomorphic_data.frame <- data.frame(V2=rownames(no_monomorphic), 
no_monomorphic)

After that, I filtered the variants by MAF:

info_exomes_impute$variant=rep('YES',length(info_exomes_impute$V6))
for(k in 1: (length(info_exomes_impute$V6))){
  if (info_exomes_impute$V6[k] <=0.05|info_exomes_impute$V6[k] >=0.95) 
info_exomes_impute$variant[k] ='LOW'
  if (info_exomes_impute$V6[k] <=0.01|info_exomes_impute$V6[k] >=0.99) 
info_exomes_impute$variant[k] ='RARE'
  if (info_exomes_impute$V6[k] >0.05 & info_exomes_impute$V6[k] <0.95) 
info_exomes_impute$variant[k] ='COMMON'
}
table_MAF <- table(info_exomes_impute$variant
info_exomes_impute_rare<-
info_exomes_impute[which(info_exomes_impute$variant=='RARE'
info_exomes_impute_rare_no_monomorphic <- 
info_exomes_impute_rare[rownames(info_exomes_impute_rare) %in% 
no_monomorphic$ID,]

Finally, I filtered out those with bad imputation quality (info<0.3):

info_exomes_impute_rare_no_monomorphic_info <- 
info_exomes_impute_rare_no_monomorphic[which(info_exomes_impute_rare_no_monomorp
hic$V7>=0.3),]

Script ‘scriptTFM’.R

3. 5. Statistical Methods

The most popular approach in GWAS is to test each SNP individually and then prioritize those

meeting  a  stringent  significance  level  (p<0.05)  after  adjusting  for  multiple  testing.  However,

individual SNP analysis in rare variant studies is seriously underpowered, due to the extremely low

MAF  or  rare  variants.  Instead  of  testing  each  variant  individually,  novel  statistical  methods

comprising aggregation tests have been developed recently. They evaluate cumulative effects of

multiple  genetic  variants  in  a  gene  or  region  of  interest,  increasing  the  power  when  multiple

variants in the group are associated with a given disease or trait [Seunggeung et al., 2014]
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Aggregation tests involve two steps: first, to  identify all  rare variants within a sequenced (sub)-

region (e.g., gene, regulatory region...) which passed the quality control filtering, and then, to test

the joint effect of rare variants while adjusting for covariates [Thornton et al., 2015].

Numerous region or gene-based multi marker tests have been proposed in recent years [Zheng-

Zheng et al.,  2015].  The most commonly used are: the Burden tests [Morgenthaler and Thilly,

2007]  [Li  and Leal,  2008]  [Madsen and Browning,  2009],  Variance-Component  Tests,  including

SKAT (Sequence Kernel  Association  Test)  [Wu et  al.,  2010,  2011],  and combined tests,  which

include SKAT-O (Sequence Kernel Association Test-Optimized) [Lee et al., 2012]

 Burden tests collapse rare variants in a genetic region into a single burden variable and

then regress the phenotype on the burden variable to test for the cumulative effects of rare

variants in the region. The score test for a weighted sum of genotypes has the form:

where  wj is  a weight  for  SNP  j  and  Uj  is  the score for  SNP  j. Weights can be used to

upweight rare variants as for example in [Madsen and Browning, 2009].

Then, we test a null hypothesis with a single parameter H0: Uj =0, corresponding to fitting a

simple logistic regression model.



SKAT, on the other hand, is a weighted sum of individual score statistics. It  aggregates the associations

between  variants  and  the  phenotype through a kernel matrix and can allow for

SNP-SNP interactions.

where wj is a weight and Uj is the score statistic for  the association between phenotype and

variant j. The weight can be flexibly chosen. 

 SKAT-O was proposed to test weighted averages of SKAT and burden tests. It has higher

power in a wide range of settings, and is more robust than SKAT and the burden tests. The

formula is:
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When ρ = 0,  this gives the SKAT test Qo =

When ρ = 1, it gives the burden test Qo =

[Seunggeun et al., 2012] [Voorman et al., 2011]

As it happens with other statistical methods, there is no single method that outperforms the rest in

the analysis of rare variants. Their performance depends on the genetic architecture (e.g., effect

directions and sizes) of each trait, which is unknown a priori. Burden tests are more powerful when

most of the variants in a region are causal and the effects are in the same direction, whereas SKAT

is more powerful when a large fraction of the variants in a region are non-causal or the effects of

causal variants are in different directions [Seunggeun  et al., 2012].

The following table summarizes the description, advantages and disadvantages of the different

statistical methods:

Description Advantage Disadvantage

BURDEN It collapses rare
variants

into genetic
scores

They are powerful when a large
proportion of variants are causal

and effects are in the same
direction

It loses power in the presence of
both trait-increasing and trait-
decreasing variants or a small

fraction of causal
variants

SKAT It tests variance of
genetic
Effects

It is powerful in the
presence of both trait-increasing
and trait-decreasing variants or a

small fraction of causal
variants

It is less powerful than
burden tests when most variants are
causal and effects are in the same

direction

SKAT-O It combines
burden and
variance-

component
tests

It is more robust with respect to
the percentage of causal variants

and the presence of both trait-
increasing and trait- decreasing

variants

It can be slightly less powerful than
burden or variance component

tests if their assumptions are largely
held is

computationally intensive

Table 1. Comparative statistical methods

Best powered test completely depends on the kind of causal variant.

3.6. Implementation: SeqMeta

For  the  implementation  of  the  selected  statistical  tests  we  chose  the  Software  Package

“SeqMeta”:  an R package for meta-analyzing region-based tests such as SKAT, SKAT-O, and

burden test in the study of rare variants (https://rdrr.io/cran/seqMeta/).
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The package can accommodate binary outcomes for unrelated individuals, as it is our case, and it

provides functions for conditional analyses.

To implement each test, we needed to follow 2 steps: (1) to calculate summary statistics for each

sequencing study and (2) to combine the summary statistics to perform gene-level  association

tests. [Tang et al., 2015]

3. 6. 1 prepScores

For the first step, we needed to run the function prepScores that returns an object that contains

information referring to the genes, our unit of aggregation, with their respective MAFs in an .RData

file as an output. This step is common for all methods, which are based on the output of this study

level analysis to carry out its analysis.

The prepScores function needs the following arguments:

prepScores(Z=Z, formula=NullModel, SNPInfo=SNPInfo, data=pheno)

where:

Z: Is a matrix in which the columns correspond to the SNPs, while the rows correspond to the

genotypes of the subjects.

formula: Is an object, adjusting for the possible covariates. 

SNPInfo: Is a data frame with two columns: Name of the SNP and the gene in which it is located.

data: Contains the phenotypic information. It must have the same number of rows as Z and it

must be in the same order (since they are the subjects).

Continuing with the previous script  Script ‘scriptTFM’, I adapted the files to create the different

objects that the function  prepScores needs.

First, I installed the package and loaded the SeqMeta library in R:

install.packages ('seqMeta')

library(seqMeta)

Then, I created the input objects needed to run the prepScores function.

 Get the genotype file, Z

We started with the variables defined above, in which we had applied the filtering of the variants

and created the Z object. We kept the columns referring to the genotypes and transposed them to

obtain the format that Z must have: individuals in  rows and SNPs in columns.

Z <-no_monomorphic[no_monomorphic$ID%in% 
rownames(info_exomes_impute_rare_no_monomorphic_info),]
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Z<-Z[, c(1:104)]

Z1<-t(Z)

 The formula

Here the outcome is the case/control (caco). The model was adjusted whit the covariates region,

age and gender

as.factor(caco)~as.factor(region)+ as.numeric(age)+ as.factor(gender)

 Get the SNP Info file, SNPInfo

To  obtain  the  SNPs  and  their  annotation  in  genes,  we  loaded  the  initial  file

info.QC.only.SNP.EPICURO.',i,'.snpEff.p.SAL.SAL10_2.vcf.txt that  contains  the

name of the gene harboring each SNP and merged it with the variable in which we have saved

only the SNPs that have passed the established filters. So we have a file that had two columns: the

variant and the gene where the variant was located.

for(i in 1:22){

snpinfo <- read.table(file= 
paste0('/local/comun/WES_extreme_EPICURO/EPICURO.',i,'/info.QC.only.SNP.EPICURO.
',i,'.snpEff.p.SAL.SAL10_2.vcf.txt'), header=TRUE,stringsAsFactors = FALSE) #

info_exomes_impute_Z <- info_exomes_impute[rownames(Z), ]

info_exomes_impute_Z←merge(info_exomes_impute_Z,snpinfo[,c('Pos','Gene')],by.x='
V3',by.y='pos')

rownames(info_exomes_impute_Z)=info_exomes_impute_Z$V2

SNPInfo<-info_exomes_impute_Z[,c('V2','Gene')]

colnames(SNPInfo)<-c("Name", "gene")}

 Get the data file

We uploaded our file with the phenotypic information

phenotypefile <- read.table(file= ('/home/amfernandez/tfm_Alba/ext_phen1.txt'), 
sep = "", header = TRUE)

data<- phenotypefile

Before applying the function prepScores,  I subset both Z and SNPinfo matrices into 2, one for

genes harboring a single SNP and another one to harbor two or more SNPs. Here, I focused the

analysis into the genes harboring 2 or more variants.

onevariant <- names(table(SNPInfo$gene)[table(SNPInfo$gene) < 2])
morethanonevariant<- names(table(SNPInfo$gene)[table(SNPInfo$gene)>= 2])

26



SNPInfo_unique <- SNPInfo[SNPInfo$gene %in% onevariant,]
SNPInfo_twoormore <- SNPInfo[SNPInfo$gene %in% morethanonevariant,]

Z1_unique <- Z1[,colnames(Z1) %in% SNPInfo_unique$Name]
Z1_twoormore <- Z1[,colnames(Z1) %in% SNPInfo_twoormore$Name]

Once all the necessary objects were obtain, we run the function prepScore to perform the study

level analyses:

Apply the 'prepScore' function

c1_twoormore<- prepScores(Z1_twoormore, as.factor(caco)~as.factor(region)
+as.numeric(age)+as.factor(gender), family = binomial(), SNPInfo = 
SNPInfo_twoormore, data = data)

The results were stored in the c1_twoormore (for genes with two or more snps), which is needed 

as input for performing the rare variants association tests.

3. 6. 2 Burden test

We used the function burdenMeta, which takes as arguments:

 The result of the study level analyses c1_twoormore

 wts: we  used  a  continuous  weight  function  can  be  used  to  upweight  rare  variants

function(maf){1/(maf*(1-maf))} [Madsen and Browning, 2009].

 the SNPInfo object  SNPInfo_twoormore

out_burden.results=NULL

burden.results <- burdenMeta(c1_twoormore, wts = function(maf){1/(maf*(1-maf))},
SNPInfo = SNPInfo_twoormore)

out_burden.results <-rbind(out_burden.results, burden.results)

3. 6. 3 SKAT

We used the function skatMeta, which takes as arguments:

 The result of the study level analyses c1_twoormore.

 the SNPInfo object  SNPInfo_twoormore

out_skat.results=NULL

skat.results <- skatMeta(c1_twoormore, SNPInfo = SNPInfo_twoormore)

out_skat.results <-rbind(out_skat.results, skat.results)
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3. 6. 4 SKAT-O

Before running the SKAT-O analysis we needed to remove the SNP pairs in almost complete LD

(r2>0.95) in order to avoid numerical problems. Therefore, I programmed a function to: 1) calculate

the linkage disequilibrium (LD) in those genes with two variants, 2) remove the SNP pairs that were

in high LD r2> 0.95 and 3) we created the Z object and the SNPInfo again, after discarding one

SNP  of  each  pair  showing  extremely  high  LD.   To  do  so,  I  used  the  package  genetics

(https://cran.r-project.org). First, I converted the genotypes codified as dosages into the required

format: D/D, D/I and I/I. Then, I created objects of the form genotype, and calculated the LD with

the LD function.

genes_2SNPs=names(table(SNPInfo_twoormore$gene)
[which(table(SNPInfo_twoormore$gene)==2)])

calculateLD <- function(x){

  Z1_two=Z1_twoormore[,which(colnames(Z1_twoormore) %in%          
SNPInfo_twoormore$Name[which(SNPInfo_twoormore$gene==x)])]

  Gdata<-ifelse(Z1_two=="2","D/D",ifelse(Z1_two=="1","D/I","I/I"))

  names(Gdata)

  snp1<-genotype(Gdata[,1])

  snp2<-genotype(Gdata[,2])

  LD_snps<-LD(snp1,snp2)

  r2<-LD_snps$r**2

}

genes_2SNPs_LD<-
data.frame(cbind(genes_2SNPs,unlist(lapply(genes_2SNPs,calculateLD))),stringsAsF
actors = FALSE)

names(genes_2SNPs_LD)=c('gene','r2')

genes_2SNPs_LD_toskip<- 
genes_2SNPs_LD[which(as.numeric(genes_2SNPs_LD$r2)>0.95),]

SNPInfo_twoormore_skato <- SNPInfo_twoormore[-which(SNPInfo_twoormore$gene %in% 
genes_2SNPs_LD_toskip$gene),]

Apply the 'prepScore' function

c1_twoormore<- prepScores(Z1_twoormore[,which(colnames(Z1_twoormore) %in% 
SNPInfo_twoormore_skato$Name)], as.factor(caco)~as.factor(region)
+as.numeric(age)+as.factor(gender), family = binomial(), SNPInfo = 
SNPInfo_twoormore_skato, data = data)

Then, to carry out the analysis whit  SKAT, I used the function of  skatOMeta, which takes the

following arguments:

 The object c1_twoormore, output of prepScores function.
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 Rho: The values of ρ to be used in SKAT-O. By default is c(0,1), which computes SKAT

and the burden test, and reports the minimum p-value adjusted for multiple testing.

 skat.wts and burden.wts which gives the weights to be used in SKAT and the burden

test,  respectively. In our case,  the weigths used in the burden test  comes from a Beta

function of the MAF, with hyper parameters 1 and 25.

 The new SNPInfo object SNPInfo_twoormore_skato.

out_skato.results=NULL

skato.results <- skatOMeta(c1_twoormore, rho=seq(0,1,length=11), burden.wts = 
function(maf){dbeta(maf,1,25)}, SNPInfo = SNPInfo_twoormore_skato, method = 
"int")

out_skato.results <-rbind(out_skato.results, skato.results)

3. 7 Multiple testing correction

Once the p values were obtained after the application of the different statistical methods, it was

necessary to apply a multiple tests correction. Benjamini-Hochberg (B-H) procedure [Ghosh, 2012]

was chosen in order to avoid type I errors (false positives). Only those genes with an adjusted p

value <0.05 were prioritized for further analyses.

out_skat.results$p_adj<- p.adjust(out_skat.results$p, method="BH")

skat.results_adjust <- out_skat.results[which(out_skat.results$p_adj<0.05),]

out_burden.results$p_adj<- p.adjust(out_burden.results$p, method="BH")

burden.results_adjust <- out_burden.results  
[which(out_burden.results$nsnpsUsed!=0 & out_burden.results$p_adj<0.05),]

out_skato.results$p_adj<- p.adjust(out_skato.results$p, method="BH")

skato.results_adjust <- out_skato.results[which(out_skato.results$p_adj<0.05),]

3. 8 Manhattan plot

Once the adjusted  p-value was calculated for each tested gene, I plotted them against gene’s

chromosomal  position.  These  Manhattan  plots  were  done  with  ‘qqman’  (http://cran.r-

project.org/web/packages/qqman/).
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3. 9 Overlapping

I  prioritized those genes that  remained significant  after  multiple  testing  correction  in  the three

association  tests.  To do so,  I  used the  VennDiagram  package (https://cran.r-project.org) and

programmed a function to identify the significant genes identified with the three methods:

library('VennDiagram')
overlap <- function(y){
  overlap_totalbychr <- calculate.overlap(
  x = list(
  "skat" = skat.results_adjust$gene[which(skat.results_adjust$chr==y)],
  "burden" = burden.results_adjust$gene[which(burden.results_adjust$chr==y)],
  "skato" = skato.results_adjust$gene[which(skato.results_adjust$chr==y)]
)
)

  tabla<-data.frame(chr= y, skat=nrow(subset(skat.results_adjust,chr==y)),
  burden=nrow(subset(burden.results_adjust,chr==y)),
  skato=nrow(subset(skato.results_adjust,chr==y)),
  overlap=length(overlap_totalbychr$a5), 
burden.skat=length(overlap_totalbychr$a2), 
skat.skato=length(overlap_totalbychr$a4), 
burden.skato=length(overlap_totalbychr$a6))
  
}

Then, I calculated the Spearman’s correlation using the function in R  cor(data, method =

"spearman") between the ranking of genes obtained with the three tests: Burden, SKAT and

SKAT-O.

3. 10  DisGeNET

I used the R package DisGeNET [Piñero et al., 2016]  to find associations between the associated

genes  with  neoplasms.  DisGeNET  (http://www.disgenet.org)  is  one  of  the  largest  available

collections of genes and variants involved in human diseases and integrates data from expert

curated repositories, GWAS catalogues, animal models and the scientific literature. 

3. 11 Pathways Annotation

Genes that were identified by the three statistical methods were prioritized and then annotated in

pathways  using  KEGG:  a  database  resource  (http://www.genome.jp/kegg/)  that  provides

knowledge about genomes and their relationships to biological systems as well as their interactions

with the environment [Aoki-Kinoshita et al., 2007].

First, we added 'hsa:' to the genes list, with significant genes (to find into Homo sapiens):

#!/bin/bash
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sed 's/^/hsa:/g' gene_list_overlap > gene_list_overlap2 

Then we added wget http://rest.kegg.jp/get/ to the genes list with hsa:
sed 's/^/wget  http\:\/\/rest.kegg.jp\/get\//g'  gene_list_overlap2  >
nuevoscript.sh

We copy the results use the KEGG REST API to retrieve automatically KEGG ids genes, this will
download the KEGG info, including pathway (example with one of the genes).

wget http://rest.kegg.jp/get/hsa:CLCNKB

Finally, to extract the pathways used the following code.

grep PATHWAY  hsa*  -A  20  |  grep  -P  "  hsa[0-9]"  |  sed  's/^hsa://g'  >
genes2pathways.txt

Script ‘genes2pathway_Alba.sh’

Once I had the KEGG pathways, I selected the ones with the largest number of genes identified in

the rare variant analysis (with a number of genes equal to or greater than 2) and colored them

through the 'pathways' function of R.

library("pathview")

data(paths.hsa)

keggIDs  <-
c("hsa01100","hsa05131","hsa04810","hsa04740","hsa04530","hsa04014","hsa05231","
hsa05205","hsa05200",
"hsa05152","hsa04922","hsa04666","hsa04514","hsa04510","hsa04144","hsa04024","hs
a04015","hsa04010","hsa03420","hsa05418","hsa03420")

pathGenes  <-
c("ACADL","ARPC1A","CALML4","CHST6","CLDN6","CPSF3","CRLS1","CYP27B1","DIAPH1","
ERC1","ERCC1","HMGN1",
"LIG1","MPZ","MRPL1","NAPEPLD","NEDD4","OR2F1","OR2T8","PAK1","PLAUR","PMVK","RA
SGRP3","SIK1","SLC1A3","SLC22A5","SLC44A4","SLC9A3R1","SOCS5","TBX21","U2AF1L4")

read.table("~/top_pw_atleast2genes.txt", header=TRUE, row.names=1)

keggIDs <- rownames(pathgenes)

Then I plotted the KEGG pathways which where colored according to the number of SNPs per
gene.

i=0

for (keggID in keggIDs[20]) {

   i=i+1; print(paste0(i,"/",length(keggIDs)," ", keggID))

pv.out  <-  tryCatch({pathview(gene.data=allGenes  ,pathway.id=keggID,
species="hsa",  out.suffix="overlap",  kegg.native=TRUE,  cpd.idtype="kegg",
gene.idtype="SYMBOL")}

}

Script ‘pathview.R’
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4. RESULTS AND DISCUSSION

4. 1 Summary

Table 2 shows a descriptive summary of the study population used in this study. The categorization
of the tobacco habit was made by separating smokers and non-smokers, and within these, was
stratified into two levels: those who smoked 20-40 cigarettes a day and those who smoked > 40.

The controls were all males, older than 70 and heavy smokers. On the contrary, ~37% of the cases
were male, half of them were < 70 and all of them were non-smokers.

Table 2. Summary descriptive
by Case-Control

4. 2 SNPs data

Figure 10 displays the total number of SNPs that we handled during each step in the process of

variant calling, quality control, imputation and filtering of rare variant.

  Figure 10. Workflow with SNPs numbers
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After the variant calling, a total of 879,643 autosomal variants were available. Once, the INDELS

were  filtered  out  and  the  quality  control  procedure  was  applied  to  ensure  the  quality  of  the

genotypes, a total of 192,457 SNPs remained. After imputing the missing genotypes, and due to

the presence of multi-allelic SNPs, a total number of 193,391 SNPs were available. Then, 93,867

rare variants (MAF<0.01) with good imputation quality (info> 0.3), which represent the 48.54% of

the initial number of SNPs, were selected for the gene-based association analyses.

Supplementary Table 1’ (in the annex) shows the number of SNPs that remained after each filtering

step  by  chromosome.  Between  33.47%  and  60.46%  of  the  initial  SNPs  (after  imputation)  in

chromosomes 18 and 19 were polymorphic rare variants with good imputation quality.

4. 3 Gene-base analysis

Three aggregation tests on a gene basis were considered in this study: Burden, SKAT and SKAT-

O. In contrast to individual tests, aggregation tests evaluate cumulative effects of multiple genetic

variants in a gene or region, increasing power when multiple variants in the group are associated

with the disease of interest. Table 3 shows the summary statistic of the cumulative MAF of the

variants used as input for the three aggregation tests.

Cumulative MAF ranges from a minimum of 0.0096 to a maximum of 0.32, with a median of 0.019.

Table 3. cMAF summary statistic

4. 4 Burden results

4. 4. 1 burdenMeta function output

The output of the test was saved in an object with the following information: chr (chromosome in

which  the  gene  is  found),  gene (the  gene  name),  p (the  p-value  from  Burden  test),  beta (a

parameter  to  report  estimated  effects),  se (the  standard  error  of  beta),  cmafTotal (the  total

cumulative  minor  allele  frequency),  cmafUsed (cumulative  minor  allele  frequency  used),

nsnpsTotal, nsnpsUsed and nmiss (the number of missing SNPs).

Table 4 shows the output from the burden test:

Table 4. burdenMeta function results
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Once  the  multiple  test  correction  was  applied  using  Benjamini-Hochberg  method,  and  after

considering as significant only those genes with an adjusted p-value <0.05, a total of  184 genes

were remained.

Figure 11 represents the Manhattan plot obtained with the burden test. The 184 significant genes

(adjusted p<0.05) are highlighted in green. In addition, the top genes according to their p-value

were annotated.

4. 4. 2 Manhattan plot of burden test

Figure 11. Manhattan plot of Burden results

4. 5 SKAT results

4. 5. 1 skatMeta function output

Table 5 shows the output return with the SKAT method: 

Table 5. skatMeta function results

This output format is similar to that obtained with burdenMeta. As new parameters include Qmeta, 

the statistic score of SKAT.
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The number of significant genes (with an adjusted p-value< 0.05) obtained by skatMeta was 169.

The Manhattan plot for this output is shown in figure 12.

4. 5. 2 Manhattan plot of SKAT test

Figure 12. Manhattan plot of SKAT results

4. 6 SKAT-O results

4. 6. 1 skatOMeta function output

Finally, the results obtained from the skatOmeta function are shown in table 6:

Table 6. skatOMeta function results

The output of SKAT-O is very similar to that of skatMeta, but with two additional parameters pmin,

(the minimum p-value among the tests), and rho,  a parameter between 0 and 1,  which is also
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calculated in the function and represents the weight  given to the Burden test (being 1-rho the

weight  given to SKAT).

Similarly to to  Burden or SKAT approaches, only those genes with adjusted p-values below 0.05

were considered as significant.  SKAT-O was the method with the highest number of significant

genes returned, with a total of 197 genes.

The Manhattan plot with the genes identified by this method is shown in Figure 13.

4. 6. 2 Manhattan plot of SKAT- O test

     Figure 13. Manhattan plot of SKAT-O results

4. 7 Gene prioritization

The performance of  aggregation methods, which are based on varying assumptions about  the

underlying genetic model, depends on the true disease model. Because the true disease model is

unknown, we decided to prioritize those genes that were significant with the three methods. Figure

14 shows the Venn diagram representing the overlapping between the genes obtained with each

aggregation method. A good overlapping among the results of the three tests was obtained, with

119 genes identified by the 3 methods. SKAT and SKAT-O showed a very good overlapping (only 4

genes were detected by SKAT and not by SKAT-O, and 8 were detected with SKAT-O but not with

SKAT). On the other hand, Burden and SKAT showed the worst overlapping, since Burden test

identified 41 genes that were not identified by SKAT-O. Burden test was the method that identified

the largest number of genes that were not identified by the remaining two methods (39 genes).
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The  rankings  of  genes  obtained  with  the  three  methods  also  showed  a  good  agreement:

Spearman's correlation of the ranking obtained with the Burden test and that obtained with SKAT

was the lowest one (0.744). However, the ones obtained with Burden and SKAT-O, and those with

SKAT and SKAT-O were 0.82 and 0.89, respectively. These figures may suggest that, in general,

the  underlying  genetic  model  is  closer  to  the  one  assumed  by  SKAT (variants  with  different

directions and effects) than the one assumed by the Burden test.

Supplementary Table 2’ shows the number of significan genes obtained by chromosome, for each

method, and for the overlap.

Supplementary  Table  3’  shows the  p values of  the 3 methods for  each of  the 119 significant

overlapping genes, as well as a short description.

Below, Table 7 show the top 10 of the statistically significant genes.

Table 7. P-value and description of top10 significant genes

4. 7. 1 VennDiagram

The graphic representation of this overlap is shown in Figure 14.

Figure 14. Venn Diagram of significant genes by the three methods
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Supplementary  Table  3’  provides  detailed   results  of  the  significant  genes  by  chromosome,

obtained by each method, as well as those obtained by the total overlapping, or compared by pairs

of methods.

4. 7. 2 Gene disease-associations.

Twelve genes out of the 119 prioritized in the rare variants association analysis were previously

associated with other neoplasms according disgenetGene to function (see Table 8). Interestingly,

two of them LIG1 and  ERCC1were previously associated with bladder neoplasms.  Furthermore,

genes like  ANXA3 or  PLAUR,  were previously associated with prostate cancer, and others like

PAK1 or IL32 were linked to renal cell and kidney carcinomas, respectively. 

Gene Disease

PMVK Malignant neoplasm of skin, Skin Neoplasms

HOXD9 Colorectal Neoplasms, Mucinous Adenocarcinoma, ovarian neoplasm

ANXA3 Prostatic Neoplasms, ovarian neoplasm

HOXA2 Stomach Neoplasms

PAK1 Mammary Neoplasms, Renal Cell Carcinoma

MFGE8 Mammary Neoplasms, Liver Neoplasms, Experimental

IL32 Colonic Neoplasms, Sezary Syndrome, Kidney Neoplasm, Stomach Neoplasms

BCL7C Ependymoma

PLAUR Neoplasm Metastasis, Prostatic Neoplasms, Neoplasm Invasiveness

ERCC1 Non-Small Cell Lung Carcinoma, Stomach Neoplasms, Neoplasm Metastasis, melanoma,
Testicular Neoplasms, Uterine Cervical Neoplasm, Neoplasms, Germ Cell and Embryonal

Table 8. Identified genes associated with other neoplasm according to Disgenet

 4. 7. 3 Pathways annotation

The most frequent, annotated pathways of the 119 significant genes are presented in Table 9.
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Table 9. Most common pathways of significant genes

According to KEGG pathways,  the most interesting pathways are:

 “Nucleotide  excision  repair”,  which  has  other  BC  susceptibility  genes  as  XPC and  

XPD, previously found in a pooled association analysis [Stern et al., 2009]

 “Regulation of actin cytoskeleton”, which has other BC susceptibility genes as  FGFR3,  

previously found in GWAS. [López de Maturana et al., 2017]

 “Tight  junction”  which  has  3  posible  susceptibility  genes   found  in  our  analysis.  In  

particular, Claudin 6 gene is found expressed in several tumour cells, and the methylation 

of this gene may be involved in oesophageal tumorigenesis.

Figure 15 shows the nucleotide pathway excision repair, where we can appreciate the steps where

the ERCC intervenes on this route. 
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Figure 15.  Nucleotide excision repair pathway
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4. 7. 4 Variants in the 119 significant genes

The number of variants included in the 119 significant genes obtained from the superposition of the

3 methods was 510 SNPs.  

                             

Figure 16 shows, the number of SNPs that overlap in each of the 22 chromosomes.

 

Figure 16. Number of SNPs by Chromosome

4. 7. 5 Variant effect and impact

Table 10 shows the description of both the SNP effects and their impact, considering the initial

number of SNPs from which we started (93,867), as well as those found in the significant genes

(510)  found  with  the  three  methods.  Table  10  also  includes  a  description  of  the  effects.

Interestingly, none of the variants have a high effect among the ones that are harbored in the

significant genes. However, there are twenty-four with a moderate effect.
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Table 10. Effect and impact of variants
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5. SUMMARY 

To our knowledge, this work represents the first approach to decipher the role that rare variants

may have in the genetic susceptibility to BC. 

I applied the three most commonly used aggregation tests: Burden test, SKAT and SKAT-O to

identify genes harboring rare variants which are potentially associated with BC, by using a WES-

based approach, where the individuals were selected using an extreme phenotype design. 

Although some of the associations detected may be false positive results, especially due to the

limited sample size, the large number of significant genes obtained with the three methods after

multiple testing correction (119 genes) suggests that rare variants are likely to play a role in BC

development. Only twelve genes were previously associated with any neoplasms, and therefore,

most of the significant genes are novel susceptibility genes for BC. However, two genes identified

in this approach (LIG1 and  ERCC1 in the “Nucleotide excision repair” pathway)  were reported

previously  as  associated  with  BC,  which  supports  these  results.  Another  interesting  pathway

(“Regulation of actin cytoskeleton”) has three novel BC susceptibility genes identified in this study

in addition to the already known BC susceptibility gene FGFR3. These results add evidence to the

participation  of  these  two  pathways  through  both  common  and  rare  variants  in  the  BC

development. Another novel and interesting pathway identified here is “Tight junction”, with three

significant genes. Among them,  Claudin 6 gene is the most relevant one, as its methylation has

been  associated  with  tumorigenesis.  However,  as  it  happens  with  the  rest  of  the  novel  BC

susceptibility  genes identified in this study, their association with BC has to be validated in an

independent and larger population, through a targeted sequencing strategy.
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6. CONCLUSIONS

The conclusions of this work are:

 There is a good agreement between the ranking of genes according the their p-

value which were obtained with the three methods.

 The large number of genes selected by the three methods (119) suggests that rare

inherited coding variants across many genes contribute to bladder cancer genetic

susceptibility.

  Rare variants associated with bladder cancer susceptibility are both in pathways

already identified through GWAS and in novel pathways.
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Annex

Chr initial non_monomorphic rare info.0.3 Percentage 

1 18963 18694 9739 9736 51.34

2 14335 14146 6978 6978 48.68

3 11266 11139 5237 5237 46.48

4 8250 8122 3404 3404 41.26

5 8831 8738 3678 3678 41.65

6 11768 11689 4788 4788 40.69

7 9894 9790 4550 4549 45.98

8 6856 6766 2857 2857 41.67

9 8083 7986 3996 3996 49.44

10 8082 7960 3350 3350 41.45

11 12137 11918 6156 6155 50.71

12 10457 10318 4892 4892 46.78

13 3573 3517 1293 1293 36.19

14 6848 6759 3546 3546 51.78

15 6733 6626 3455 3454 51.3

16 8442 8312 4861 4861 57.58

17 10417 10269 6056 6055 58.13

18 3083 3020 1032 1032 33.47

19 13672 13574 8266 8266 60.46

20 4770 4726 2272 2272 47.63

21 2459 2432 1111 1111 45.18

22 4472 4441 2358 2357 52.71

Total 193391 190942 93875 93867 48.54

 Table 1’. Resume of number of SNPs by Chromosome
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Chr Burden SKAT SKATO
Total

Overlap
Overlap Burden-

SKAT
Overlap Burden-

SKATO

Overlap
SKAT-
SKATO

1 19 12 18 9 0 6 3

2 11 10 11 9 0 0 1

3 4 6 7 2 0 0 4

4 7 6 7 6 0 1 0

5 12 8 9 7 0 1 1

6 11 11 12 8 0 0 3

7 11 10 10 9 0 0 1

8 6 6 7 4 0 1 2

9 3 4 4 3 0 0 1

10 5 3 4 1 0 1 2

11 15 16 22 6 1 6 9

12 11 10 11 8 0 1 2

13 1 0 0 0 0 0 0

14 8 6 7 4 0 1 2

15 10 8 11 7 0 2 1

16 10 13 12 8 0 0 3

17 7 5 7 4 0 2 1

18 0 1 1 0 0 0 0

19 26 26 28 19 1 2 6

20 1 2 2 1 0 0 1

21 3 3 3 2 0 0 1

22 3 3 4 2 0 0 1

Total 184 169 197 119 2 24 46
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Table 2’. Number of significant genes by method          
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Table 3’. P-value and description of 119 significant genes
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