
 information

Article

Software-Driven Definition of Virtual Testbeds to
Validate Emergent Network Technologies †

David Muelas * ID , Javier Ramos and Jorge E. López de Vergara ID

High Performance Computing and Networking Research Group, Departamento de Tecnología Electrónica y de
las Comunicaciones, Escuela Politécnica Superior, Universidad Autónoma de Madrid, Francisco Tomás y
Valiente, 11, 28049 Madrid, Spain; javier.ramos@uam.es (J.R.); jorge.lopez_vergara@uam.es (J.E.L.d.V.)
* Correspondence: dav.muelas@uam.es; Tel.: +34-914-972-291
† This paper is an extended version of our paper published in XIII Jornadas de Ingeniería Telemática (JITEL

2017), Valencia, Spain, 27–29 September 2017, “Definición de Testbeds Virtualizados Utilizando Perfiles de
Actividad de Red”.

Received: 9 January 2018; Accepted: 21 February 2018; Published: 24 February 2018

Abstract: The lack of privileged access to emergent and operational deployments is one of the
key matters during validation and testing of novel telecommunication systems and technologies.
This matter jeopardizes the repeatability of experiments, which results in burdens for innovation and
research in these areas. In this light, we present a method and architecture to make the software-driven
definition of virtual testbeds easier. As distinguishing features, our proposal can mimic operational
deployments by using high-dimensional activity patterns. These activity patterns shape the effect of
a control module that triggers agents for the generation of network traffic. This solution exploits the
capabilities of network emulation and virtualization systems, which nowadays can be easily deployed
in commodity servers. With this, we accomplish a reproducible definition of realistic experimental
conditions and the introduction of real agent implementations in a cost-effective fashion. We evaluate
our solution in a case study that is comprised of the validation of a network-monitoring tool for
Voice over IP (VoIP) deployments. Our experimental results support the viability of the method and
illustrate how this formulation can improve the experimentation in emergent technologies.

Keywords: network virtualization; software-defined networks; reproducible experimentation;
virtual testbeds; performance evaluation; network behavior replication; voice over IP

1. Introduction

The advent of novel telecommunication technologies and applications is posing an accelerated
evolution of the behavior of current operational networks [1]. As a result, classic network simulation
tools, such as OMNeT++ or ns-3, cannot successfully suit emergent scenarios on many occasions.
Moreover, these simulation tools are not intended to generate realistic network load or traffic traces,
with complex applications in execution that generate data. Consequently, their applicability is severely
restricted during the evaluation of algorithms, architectures or applications that require this type of
data. This is particularly notorious for research in disruptive infrastructures or novel management
paradigms; e.g., Internet of Things (IoT), fog computing or Software-Defined Networking (SDN) [2].
These challenges motivate the exploration of novel approaches that overcome the limitations of such
widespread experimentation tools.

In this regard, physical testbeds arise as one of the most popular alternatives to network simulation
tools. There is a wide variety of experimental platforms that offer several hardware resources and grant
different access privileges to users; see, for example, the reviews in [3–5]. Nonetheless, while physical
testbeds provide an invaluable resource, they also present several issues during experimental processes.
For instance, huge deployments present scalability issues and high expenditures, and differences in

Information 2018, 9, 45; doi:10.3390/info9020045 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0002-1121-6734
https://orcid.org/0000-0002-1121-6734
http://dx.doi.org/10.3390/info9020045
http://www.mdpi.com/journal/information

Information 2018, 9, 45 2 of 16

access policies and privileges may constrain the reproducibility. Furthermore, the usual lack of control
of the underlying infrastructure can induce additional uncertainty in the results.

In line with these facts, many recent research efforts have tried to exploit the opportunities that
Network Function Virtualization (NFV) brings. Unsurprisingly, the flexibility and reduced cost of this
approach are key aspects that explain such interest. As a matter of fact, several tools have transformed
how network elements are operated and defined following this trend. On the one hand, many vendors
(for instance, see [6,7]) are including virtual nodes in commercial network equipment to ease the
introduction of complex network functions inside switching or routing elements. In this light, network
functions are abstracted as software pieces that run on top of hypervisors and that can access network
traffic traversing the equipment. On the other hand, several solutions extend the virtualized elements
in general-purpose Operating Systems (OS), to provide abstractions of network elements. For example,
Mininet [8,9] is a platform that allows the instantiation of virtual switches with OpenFlow support by
using network namespaces of GNU/Linux systems. Its easy operation, open source orientation and
modest requirements have converted Mininet into one of the reference tools for reproducible research
in SDN.

Following the philosophy that inspired this latter approach, we present an architecture and
method to generate complex synthetic activity profiles that mimic the macroscopic behavior of
operational networks. As distinguishing features, our solution: (i) is able to reproduce non-stationary
dynamics, which can be easily defined in terms of typical behavior baselines; and (ii) relies on open
source software elements that can be deployed on commodity hardware. Additionally, we present
empirical evidence of the viability of such an approach.

Our proposal aims to define risk-free testing environments with low expenditures, which can
substantially improve experimental processes in the networking scope. Furthermore, this approach
can bring even more advantages if applied to the study of emergent scenarios, as researchers usually
face severe difficulties when accessing them; see, for example, the situations related to the study of
wireless sensor networks reviewed in [3]; or the experiences related to experimentation with SDN
testbeds compiled in [10–12].

To accomplish such objectives, our solution makes use of software-driven configurations for
agents in charge of the generation of network traffic in virtual testbeds. These virtual testbeds can
be easily deployed in commodity servers using any virtualization technique, following the same
principles that guide NFV. In this manner, this design decomposes the definition of a virtual testbed
into a topology instantiation, a description of the macroscopic behavior of the network and a software
definition of the traffic flows that agents generate. Therefore, our solution can help open access to
software-driven testbeds where the experimental conditions are formally described.

The evaluation of our proposal is two-fold. On the one hand, we analyze the activity patterns
that it generates in a use case for the validation of a passive network monitoring tool for Voice over IP
(VoIP) traffic analysis. On the other hand, we qualitatively compare the outcomes of this process with
other alternatives, as previous tools cannot be directly compared to ours. In such a manner, we present
robust evidence of the advantages that our proposal brings.

The rest of this paper is organized as follows. In Section 2, we present a review of several related
works. To do so, we consider several matters that motivate our study and methodological approach;
a review of the technologies that make our approach feasible; and summarize some previous solutions
for synthetic network load generation. Section 3 includes the description of our proposal, both in
a general version and with some adaptations to mimic VoIP deployments. Section 4 presents the
results of our experimental evaluation and discuss the implications of our proposal. Finally, Section 5
highlights the main conclusions and findings of our work.

2. Related Work

This section is devoted to previous results that motivate and support our proposal. To do so,
we have structured our review into three parts. The first part considers results that expose the

Information 2018, 9, 45 3 of 16

importance that testing in realistic scenarios deserves. The second one describes several technologies
that have been used to deploy virtual network elements in commodity servers, thus enabling the
development of frameworks and solutions similar to ours. Finally, the third encompasses works that
have explored the synthetic generation of network traffic. They can be considered the grounding of
our solution and, at the same time, a complementary toolbox that can be enhanced with our method.

2.1. Background

The evaluation of novel methods, algorithms and tools in the networking scope requires the
availability of testbeds that fairly represent the actual operation of infrastructures. Otherwise, the results
of their deployment may be far from the ones achieved in the controlled scenarios.

This is particularly critical when the experimental setups themselves hide potential error conditions.
An illustration of such a matter is reported in [13], where the authors showed that high performance
capture engines suffer from traffic timestamping errors that cannot be detected when the evaluations
are restricted to their typical worst-case scenarios.

However, the validation of new solutions in operational networks is a challenging process, given
the importance that these infrastructures have for companies. In this light, the introduction of dynamics
that mimic their behavior in experimental setups can mitigate the shortcomings of isolated testing,
while keeping the risk of failure in operational environments low.

Additionally, validation in such environments usually entails hard restrictions related to data
disclosure and protection. Taking into account the review in [14], we summarize different ethical issues
for research in ICTs in Table 1. While these issues are linked to one or more aspects for the protection
of individuals, they can dramatically limit the repeatability of results.

Remarkably, these aspects can be avoided when using synthetic datasets that do not included
data directly gathered from users. In fact, we claim that a macroscopic replication of the behavior may
suffice in many cases where real data are used; e.g., experimental processes in which the methodology
focuses on the performance of protocols or technologies related to services with hard anonymity
constraints such as the case of VoIP [15]. Hence, the restrictions related to ethical issues can be relaxed
if only a description of such behavior is needed and disclosed.

Table 1. Ethical issues for research in ICTs.

Ethical Issue Research Design Aspects

Privacy Boundaries to preserve anonymity of underlying individuals and definition of
safeguards and actor(s) in charge of this protection.

Accuracy Guarantees related to the gathered information and definition of who is
responsible for these guarantees.

Property Owner(s) of both artifacts and collected information.

Access Definition of authorizations and conditions for actor(s) making use of gathered
information and designation of responsibilities related to this use.

To face these matters, our solution provides fine-grained data and exploits virtualization elements to
improve scalability, reduce cost and minimize the impact of ethical issues on network experimentation.

2.2. Enabling Technologies

The exploitation of virtualization platforms for network testing has been explored since the
popularization of virtual machines. For example, works such as [16,17] studied the suitability of
the use of such elements for the evaluation of multimedia applications. Nonetheless, while these
results share some common principles with our proposal, the technological characteristics of
the proposed solutions are far from the current trends in network virtualization and emulation.

Information 2018, 9, 45 4 of 16

For these reasons, the applicability of these previous proposals may be currently limited, which
motivates the development of novel techniques and tools.

Particularly, the exploitation of lightweight virtualization technologies and NFV [18,19] has
arisen as a promising field of innovation in the study of computer networks [20]. We summarize the
capabilities of several approaches in Table 2. They provide different levels of isolation among the
threads corresponding to each virtualized network element, with a consequent cost in terms of resource
consumption. Table 2 also includes some examples of platforms making use of each virtualization
approach, which have been selected for illustrative purposes given their popularity among researchers.

Table 2. Summary of enabling technologies and platforms for the definition of virtual testbeds.

Virtualization Key Features Platforms

Virtual
Machines (VMs)

• Each host is a VM and executes its own OS.
• OS may differ among hosts.

• VNX (Virtual Networks
over linuX)

• VM managers

Containers
• Each host is represented with one or more containers.
• Host processes are isolated, but OS kernel is not virtualized.

• Docker
• VNX
• IMUNES (Integrated

Multiprotocol Network
Emulator/Simulator)

Namespaces
• Each host is represented with a namespace/cgroup (control

group to limit, account and isolate usage of resources).
• Each host instantiates its processes, but processes are not isolated.

• Mininet
• Maxinet

Reported use cases (such as those presented in [21,22] for Mininet, [23] for IMUNES (Integrated
Multiprotocol Network Emulator/Simulator) or [24,25] for VNX (Virtual Networks over linuX) show
the suitability of this type of tool for the study of operational networks, as long as certain accuracy
loss in the results is acceptable [1,26]. Moreover, studies such as [11,12] expose how these tools can
enhance the experimentation in emergent network environments.

All these results motivate the analysis of the possibilities offered by network emulation
platforms, in order to access controlled environments that are able to represent trustworthy future
network deployments.

2.3. Synthetic Network Load Generation

Despite the opportunities that they offer, the automatic generation of network load in scenarios
defined on network virtualization and emulation platforms is still a challenging issue, as it must
be representative of the scenarios under test. We have selected the works in [27–30], as they are
representative examples of existent synthetic traffic-generation systems. Such approaches make use of
parameters extracted from traffic traces to provide realistic traffic flows.

In [27], the authors defined a method for generating connections with similar statistical
characteristics to those present on real network traffic. In [28], a comprehensive survey on network
traffic load generation is presented. Such a survey motivates the architectural design decisions that are
relevant for this type of system, some of which share ideas with the solution presented in this work.
Recently, the work in [29] analyzed the characteristics of data flows extracted from specific sources,
and [30] described the implementation of a high-performance IP generation solution based on FPGAs.

The evaluation of such solutions proved that the characteristics of synthetic traffic can be
statistically indistinguishable from real traffic. However, our proposal focuses on replicating the
dynamics of macroscopic network activity [31,32] using agents to generate fine-grained datasets. Hence,
our approach starts with the analysis of active connections, in order to define complex aggregated
behaviors. This feature eases the evaluation of new protocols and tools, by generating synthetic traffic
based on the observed activity of real applications. Thus, our proposal offers a novel functionality that

Information 2018, 9, 45 5 of 16

enriches the aggregated behavior of the generated network load and that, to the best of our knowledge,
is not included in any previous tool.

3. Formulation of the Method for the Generation of Network Activity

As stated before, our solution uses software agents that emulate the activity of users to generate
realistic network activity automatically. This feature allows us to split the definition of virtual testbeds
into: (i) the topological specification of interconnected elements; (ii) a control plane for the activity of
the agents in charge of traffic generation; and (iii) the specific characteristics of such traffic.

Figure 1 illustrates our architecture proposal, which follows this approach. The functional
elements that appear in the architecture include a control node that configures and activates the
traffic-generation agents in the remaining nodes. Finally, an additional capture and analysis node is
included to analyze the global aggregated behavior. This design ensures that both configuration and
activity generation are related only to a single application. In another case, the proposed architecture
can be replicated as many times as needed for each different application that has to be included in
the testbed, and a further aggregation of the resulting traffic can be performed. In the following,
we describe how we derive control policies to activate specific traffic-generation agents that produce
packets aiming at the usefulness in a wide set of situations.

Figure 1. Diagram of the architecture of our proposal.

3.1. General Traffic-Generation Model

First of all, to generate the traffic activity, our method requires that the following basic hypothesis
are met:

• A baseline for the temporal evolution of the number of active connections exists.
• A characteristic process for the creation of new connections per time unit exists and can be

adjusted using its expected value.
• The distribution of the connections’ duration does not change over time.

The first hypothesis entails that there exists a high-dimensional baseline, which can be defined
with a function F(t), t ∈ T ⊂ R. T is the compact set that represents the time domain of the baseline;
e.g., a daily period. This hypothesis emphasizes that a somehow stable network activity pattern must
exist if network dynamics have any invariants. In fact, sustained changes in such invariants may point
to changes in the usage of the network [33], which contradicts the idea of representing the operational
state of an infrastructure.

Information 2018, 9, 45 6 of 16

Nonetheless, in our setup, this baseline can be inferred from the behavior of a real network [31,32]
(i.e., to replicate it) or can be fixed to adapt testing scenarios to specific situations under test; we will use
the latter approach in our case study. This dual orientation makes the repetition of trials in scenarios
that mimic an operational situation of interest easier; but also the introduction of custom patterns to
complement benchmarks.

Regarding the connections’ duration, our model considers that it is the time period in which
the connection is active on the network. In other words, queuing effects are not considered, so it
equals the duration of the network flow from the standpoint of a passive element that receives all the
traffic. Additionally, from the third hypothesis, we can infer that the expected value for the connection
duration (W) must be constant.

Using F(t) and W, we want to define an approximation to the expected value for the new
connection process in order to modulate the activity of the testbed and adjust it to the expected
dynamic. Following the proof of Little’s law [34], we use a decomposition of the compact T in a
succession of compacts {Ti} such that its union is T and they are pairwise disjoint. As W is constant,
it is possible to define the expected number of new connections based on Equation (1):

λ(t) =
∑t∈Ti

F(t)
W

, ∀t ∈ Ti (1)

The new connection process A(t), t ∈ T is adjusted in such a way that Equation (2) holds:

E[A(t)] = λ(t), ∀t ∈ T (2)

Finally, the control node configures a random number of new connections between the hosts
present in the virtual topology. Such a random number is generated using the process adjusted in each
time step. The new connections are activated, established and maintained in an autonomous way by
the load-generation nodes.

3.2. Specific Traffic-Generation Model for VoIP Devices

To adapt the general model previously presented to the VoIP traffic-generation scenario, let us
consider the classic telephony model. In such a model, the number of new connections A(t) follows a
Poisson distribution for which Equation (3) holds:

A(t) ∼ Poi(λ(t)), t ∈ T (3)

and the duration of connections follows an exponential distribution for which Equation (4) holds:

SC ∼ Exp(1/W(t)), t ∈ T (4)

for all the connections C created at time t.
Regarding the connections, two data flows must be generated for each direction of a VoIP call: one

corresponding to the signaling and another corresponding to the multimedia data. The combination
of signaling and multimedia transport protocols has been selected in such a way that represents
common environments both in domestic and enterprise networks. Particularly, the signaling protocols
used are the Session Initiation Protocol (SIP) [35] and the Skinny Client Control Protocol (SCCP) [36].
The multimedia transport protocol selected is the Real-time Transport Protocol (RTP) [37] using the
payload type corresponding to the G.711 codec [38].

4. Experimental Evaluation

In what follows, we provide a complete description of the hardware, proof of concept
implementation and activity profiles considered during the execution of our experiments. After that,

Information 2018, 9, 45 7 of 16

we report the results obtained during the deployment of these elements in our case study. The software
used for the load generation is available by request for any person interested in its use or modification.

4.1. Methodology

Let us now focus on the methodological aspects of our tests. All the experiments have been
executed in a Commodity Off-The-Shelf (COTS) server equipped with two Intel Xeon E5-2620 processors
with six cores per processor with an operation frequency of 2.10 GHz and 32 GB of RAM memory.
To avoid uncontrolled effects produced by hardware virtualization, hyper-threading characteristics
have been disabled. The server operating system is Ubuntu 14.04.01 with a 4.4.0-45 Linux kernel.
For illustrative purposes, Mininet [8,9] Version 2.2.2. (available at https://github.com/mininet/mininet)
with the default configuration has been used for all the tests.

The diagram of the virtual testbed is presented in Figure 2. This diagram displays all the links for
data transmission (configured without any further limitation, such as packet loss or delay) and the
logical structure of control and configuration connections. The deployments that we used during the
experimental evaluation of the method included 150 hosts, as our intention was to replicate a Local
Area Network (LAN). Only one host includes the agent that activates traffic generation agents, and one
virtual switch (Open vSwitch) interconnects the remaining elements. Finally, one host receives all the
traffic and runs an instance of VoIPCallMon [39,40], to detect and analyze the generated traffic; in fact,
this setup was used during the validation of this tool before deploying it in a network with a similar
activity pattern.

Figure 2. Virtual topology defined for the experimental setup in the case study.

4.2. Resource Consumption

Before running the networks emulated during the case study, we evaluate the viability of such
an approach by stressing a virtual network deployment. We focus on two key resource consumption
metrics, namely percentage of CPU used and memory occupancy (Figures 3 and 4). These resources
define hard boundaries in terms of the number of processes that can be instantiated and executed on
the hardware system.

https://github.com/mininet/mininet

Information 2018, 9, 45 8 of 16

We monitor them in environments with low and high network activity (using ping or iperf in
hosts, respectively) and varying the number of hosts: from 10–1500. With this experimental setup,
we cover all the situations that may arise in the case study in the following sections.

For the percentage of CPU used, we note that during the first stages of virtual topology instantiation
(denoted as “Mininet + No ping”) CPU consumption is below 25%. Interestingly, this consumption is
mainly produced by the initialization and interconnection of virtual switches in the topologies.

In the scenarios with low network activity (i.e., executing ping in the hosts), CPU load
substantially decreases as packet sending and reception (hence, the instructions and system calls
in the hosts) are low; specifically, ping is sending one packet per second.

However, in the case of high network activity (i.e., executing iperf in the hosts), the percentage
of CPU used reaches 100% in many cases, as a result of network transmissions with a traffic rate near
10 Gb/s. Unsurprisingly, in these cases, the effect of adding further hosts is much more significant
than in the low network activity scenarios. This is a direct consequence of the interaction among the
number of elements and the activity in each one of them.

●●

●

●

●

●

●● ●

● ●
●

●

●

●●●

●

●●●

●

●

●
●●

●

●

●

●

●● ●

● ●
●

●

●

●●●

●

●●●

●

●

●

0

10

20

0.00 0.25 0.50 0.75 1.00
Proportion of experimental time

C
PU

 u
se

d
(%

)

Mininet + No ping Mininet + ping No Mininet + No ping

●
●

●
●

●
●

10
50

100
500

1000
1500

(a)

● ● ● ● ● ● ●

●

● ●

●

● ● ● ● ● ● ●

● ●

● ● ● ●

● ● ●

●

● ●

● ●
●

●

● ●

●

●

● ● ● ● ●
● ●●●●● ● ●

●

●

●

●●●●●
●

●●●●●●●●

● ● ● ● ● ● ●

●

● ●

●

● ● ● ● ● ● ●

● ●

● ● ● ●

● ● ●

●

● ●

● ●
●

●

● ●

●

●

● ● ● ● ●
● ●●●●● ● ●

●

●

●

●●●●●
●

●●●●●●●●

0

25

50

75

100

0.00 0.25 0.50 0.75 1.00
Proportion of experimental time

C
PU

 u
se

d
(%

)

Mininet + iperf Mininet + No iperf No Mininet + No iperf

●
●

●
●

●
●

10
50

100
500

1000
1500

(b)

Figure 3. Percentage of used CPU in terms of number of hosts, 10 switches. (a) Low network activity;
(b) high network activity.

Memory consumption presents similar patterns: during the instantiation of virtual topologies,
the percentage of used memory grows with the number of active hosts. However, the consumption is still

Information 2018, 9, 45 9 of 16

moderate even for the biggest topology size: 1500 hosts. In particular, it is below 16% in all the experiments
and does not reach 10% of the total memory when no processes are executed in the virtual hosts.

Regarding the effect of network activity, we note that ping exerts an almost undetectable change
in memory consumption, while iperf causes a higher additional consumption of memory: around
12% in the most intensive scenario. Interestingly, memory occupancy in the intervals of highest activity
does not present a clear relation to the number of active hosts.

These experiments show that the (i) CPU use is highly linked to network activity and processes
in virtual hosts and (ii) memory consumption depends mainly on the number of instantiated hosts.
In this light, the instantiation of a virtual topology with up to 1500 hosts and 10 switches does not
require more than 20% of the total memory in our server and that moderate to medium network loads
will not saturate CPUs. Therefore, these results prove that our proposal can run on top of Mininet in a
general-purpose server.

●●
●

●

● ● ●

●

●

● ● ● ●

●

●

●

●

●●●●●●●

●●
●

●

● ● ●

●

●

● ● ● ●

●

●

●

●

●●●●●●●
92

94

96

98

0.00 0.25 0.50 0.75 1.00
Proportion of experimental time

Fr
ee

 m
em

or
y

(%
)

Mininet + No ping Mininet + ping No Mininet + No ping

●
●

●
●

●
●

10
50

100
500

1000
1500

(a)

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●

●
● ● ●

● ● ●

●

● ● ● ● ●

●

●

●

● ● ● ● ● ● ● ● ●
●●●● ● ●

●

●

●●●●●●●●●●●●●●●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●

●
● ● ●

● ● ●

●

● ● ● ● ●

●

●

●

● ● ● ● ● ● ● ● ●
●●●● ● ●

●

●

●●●●●●●●●●●●●●●

84

88

92

96

0.00 0.25 0.50 0.75 1.00
Proportion of experimental time

Fr
ee

 m
em

or
y

(%
)

Mininet + iperf Mininet + No iperf No Mininet + No iperf

●
●

●
●

●
●

10
50

100
500

1000
1500

(b)

Figure 4. Percentage of free memory in terms of number of hosts, 10 switches. (a) Low network activity;
(b) high network activity.

4.3. Measured Network Activity

In our case, the objective is to study the functionality and stability of VoIPCallMon when monitoring
a local VoIP network in realistic situations. Needless to say, gaining access to a real VoIP telephone
network for the evaluation of a monitoring system is challenging, as a result of the consequent personal

Information 2018, 9, 45 10 of 16

data disclosure, which raises privacy and access issues as stated in Section 2.1. For this reason, we set
the requirement of 50 concurrent calls in the maximum activity period, and the generated traffic was
tuned to show the typical activity pattern of an enterprise network; that is, with a busy period located
near 12 noon, a fast increment during the opening and some spurious connections outside of the
working hours.

Hence, our goal is to apply the previously-defined method to generate 24-h activity profiles
that mimic such deployments. To generate this pattern, we preset two different profiles of the daily
concurrence of connections based on previous VoIP monitoring experiences. This evaluation highlights
the flexibility of our method, in terms of its generality in mimicking different dynamical profiles,
and depicts two typical activity trends for VoIP networks: offices with a narrower activity period,
e.g., administrative services, and with a wider one, e.g., call centers, respectively.

The first profile is parametrized by four temporal points:

• Activity starting time: 6 a.m.
• Activity end time: 8 p.m.
• Busy hour (H1): 12 p.m.
• Transition from mid-afternoon to close period (H2): 5 p.m.

Additionally, we fix the concurrence at H1 and H2 to follow the expected number of connections.
With these points, we define a piecewise function that follows the defined profile, and we transform it
to obtain the new connection (new calls) pattern as shown in Figure 5a.

0.0

0.1

0.2

0.3

0.4

0.5

0.00 0.25 0.50 0.75 1.00
Proportion of experimental time

In
te

ns
ity

 o
f t

he
 c

re
at

io
n

of
 c

on
ne

ct
io

ns

(a) Intensity of the creation of connections.

0

20

40

60

0.00 0.25 0.50 0.75 1.00
Proportion of experimental time

N
um

be
r

of
 a

ct
iv

e
co

nn
ec

tio
ns

(b) Active connections.

Figure 5. Analysis of generated load. (a) represents the intensity models for new connections;
(b) represents the resulting connections: average activity in 5 min is displayed with a gray line.

Information 2018, 9, 45 11 of 16

The second profile depends on two temporal moments:

• High activity (H1): 12 p.m.
• Low activity (H2): 3 a.m.

These two values are related to high and low activity periods, respectively. As with the first
profile, in this case, we also fix the concurrence values in such moments and obtain the pattern depicted
in Figure 6a.

Using the method described in Section 3, we generate activity that replicates the profile for an
activity day, and we analyze the aggregate traffic received using VoIPCallMon. The traffic generation is
performed using the Scapy Python library due to its simplicity for building network packets. Scapy
eases the generation of SCCP packets, as it is a proprietary VoIP signaling protocol implemented in
Cisco terminals. On the other hand, the generated calls used the G.711 codec for audio transmission,
generating a packet every 20 ms of samples. Based on real traffic analysis in enterprise networks,
we have selected 100 s as the average call duration, which is expectable in office environments.

Figures 5b and 6b represent the trajectories (i.e., realizations of the underlying stochastic process)
detected by this tool, corresponding to the first and second profile respectively. The activity fairly fits
the requirements in both cases, as the average activity (presented as a gray line inside the cloud of
points) manifests.

0.0

0.1

0.2

0.3

0.4

0.5

0.00 0.25 0.50 0.75 1.00
Proportion of experimental time

In
te

ns
ity

 o
f t

he
 c

re
at

io
n

of
 c

on
ne

ct
io

ns

(a) Intensity of the creation of connections.

0

20

40

60

0.00 0.25 0.50 0.75 1.00
Proportion of experimental time

N
um

be
r

of
 a

ct
iv

e
co

nn
ec

tio
ns

(b) Active connections.

Figure 6. Analysis of generated load. (a) represents the intensity models for new connections;
(b) represents the resulting connections: average activity in 5 min is displayed with a gray line.

Information 2018, 9, 45 12 of 16

Additionally, we monitor the Average Call Duration (ACD) in the system as it may be used as
a QoS parameter. The results along a trajectory are presented in Figure 7a,b, for each of the activity
profiles. As expected, the ACD converges to the specified value in the model construction (100 s) in
the periods of higher load, with higher variation in low activity ones.

0

100

200

300

400

0.00 0.25 0.50 0.75 1.00
Proportion of experimental time

A
C

D
 (

s)

(a) ACD behavior along a daily trajectory.

0

200

400

600

0.00 0.25 0.50 0.75 1.00
Proportion of experimental time

A
C

D
 (

s)

(b) ACD behavior along a daily trajectory.

Figure 7. Analysis of the Average Call Duration (ACD). (a,b) represent the ACD for the first and second
profiles, respectively.

Furthermore, by simulating different trajectories over the domain T, we can observe that activity
in equivalent instants in different realizations of the dynamic shows a stable behavior adapted to
the previously-defined parameter; Figure 8 illustrates such idea over 20 s of the busy period of
40 trajectories, showing boxplots for each day and the mean function. The variation of the mean
function is explained by the standard deviation of the new connection-generation process; equal to the
mean, due to the properties of the Poisson distribution.

Information 2018, 9, 45 13 of 16

●●●

●●

●

●●

●●

●

●

●

●

● ●

●

●●●

●

30

40

50

60

0 10 20 30 40
Daily trajectory index

N
um

be
r

of
 a

ct
iv

e
co

nn
ec

tio
ns

Figure 8. Evolution of the connections in 30 s of the busy period, 40 trajectories. Each boxplot shows
the values for the same day, and the red dashed line shows the mean function.

4.4. Qualitative Comparison with Other Methods

We have shown that our method is able to generate activity for users from a macroscopic definition
of network behavior. In other words, it can be applied to replicate network behaviors once their activity
patterns are extracted from aggregated real measurements. As a result, our proposal can substitute
other approaches during experimental processes.

Remarkably, the specific design of our solution provides some distinguishing qualitative features
when comparing with other state of the art testing approaches. We have synthesized some key aspects
in Table 3, which puts together the general capabilities, risks, ethical issues and cost of each approach.
In this table, we denote with the symbol “-” aspects that depend on specific situations or conditions.

Table 3. Qualitative comparison of testing approaches.

Capabilities Risks Expenditures

Approach Realistic
Behavior

Fully
Customizable

Network Traffic
Available

Risk of Critical
Failure

Light Ethical
Constraints Cost

Operational network 3 7 3 High 7 Low
Real traffic traces 3 7 3 Low 7 Low
Hardware testbed 7 - - None 3 High

Network simulation - 3 7 None 3 Low
Our proposal 3 3 3 None 3 Low

As major outcomes of our case study, the application of our solution surpassed the absence of
the access to both VoIP networks and traffic traces because of ethical and privacy issues. Additionally,
it made feasible the testing of a monitoring tool that needs to capture network traffic, thus improving
the results obtained via simulations. Finally, our solution did not incur the high economic cost of
an equivalent hardware testbed, as the execution of the virtual testbed only required a COTS server
instead of deploying hundreds of phones and VoIP gateways.

Information 2018, 9, 45 14 of 16

5. Conclusions

Along this work, we have presented a proposal for the generation of network load that replicates
the behavior of an operational deployment. Such a proposal can improve the development of
experimental studies that require network traffic and activity, by enabling the definition of virtual
testbeds making use of macroscopic characteristics. Therefore, our proposal relaxes the ethical concerns
related to information disclosure and can help to improve the repeatability of a broad variety of
experimental setups.

The technical viability of our proposal is rooted in the feasibility of virtualizing network elements
and functions. The software-driven configuration of agents connects the activity in the network
elements with high-dimensional profiles that represent specific scenarios. We have shown how such an
approach performs in a commodity server when implemented using Mininet. The figures of resource
consumption support the viability of this solution.

To validate the improvements that our proposal provides, we have reported the results of a case
study to evaluate a real monitoring tool for VoIP analysis in a virtual testbed. We have illustrated
the traffic generated when two different activity profiles are configured, showing how the measured
network activity fits them.

Additionally, we have qualitatively compared our proposal with other widespread approaches.
The results of this comparison highlight the gain that our solution brings to the experimentation in the
networking scope.

The results in this paper can foster the development of tools to evaluate other emergent scenarios
in risk-free and easily reproducible environments while keeping expenditures low. In this light,
our future work lines aim to extend the presented case studies to other applications and scopes. We are
currently exploring some promising areas in the study of multimedia transmissions in scenarios
with drones and IoT nodes; by deploying virtual topologies with activity trends that reflect typical
multimedia transmissions from nodes and monitoring elements such as we did in the presented
case study. Additionally, we are also adding support for the integration of SDN elements and traffic
engineering tools such as the tc command of GNU/Linux systems, to make the development of
complex scenarios with a realistic traffic load easier, which is generated following our proposal.

Acknowledgments: This work has been partially funded by the Spanish Ministry of Economy and Competitiveness
and the European Regional Development Fund under the projects TRÁFICA (MINECO/FEDER TEC2015-69417-
C2-1-R) and RACING DRONES (MINECO/FEDER RTC-2016-4744-7).

Author Contributions: David Muelas and Javier Ramos designed the model, system architecture and experimental
setup, analyzed the results, and wrote the paper. Jorge E. López de Vergara offered background knowledge,
part of the literature review and supervision of the results and paper writing.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pediaditakis, D.; Rotsos, C.; Moore, A.W. Faithful Reproduction of Network Experiments. In Proceedings
of the Tenth ACM/IEEE Symposium on Architectures for Networking and Communications Systems
(ANCS ’14), Los Angeles, CA, USA, 20–21 October 2014; pp. 41–52.

2. Xia, W.; Wen, Y.; Foh, C.H.; Niyato, D.; Xie, H. A Survey on Software-Defined Networking. IEEE Commun.
Surv. Tutor. 2015, 17, 27–51.

3. Horneber, J.; Hergenröder, A. A Survey on Testbeds and Experimentation Environments for Wireless Sensor
Networks. IEEE Commun. Surv. Tutor. 2014, 16, 1820–1838.

4. Goel, U.; Wittie, M.P.; Claffy, K.C.; Le, A. Survey of End-to-End Mobile Network Measurement Testbeds,
Tools, and Services. IEEE Commun. Surv. Tutor. 2016, 18, 105–123.

5. Tsai, P.W.; Piccialli, F.; Tsai, C.W.; Luo, M.Y.; Yang, C.S. Control frameworks in network emulation testbeds:
A survey. J. Comput. Sci. 2017, 22, 148–161.

6. NFX250 Network Services Platform. Available online: https://www.juniper.net/us/en/products-services/
sdn/nfx250/ (accessed on 23 February 2018).

https://www.juniper.net/us/en/products-services/sdn/nfx250/
https://www.juniper.net/us/en/products-services/sdn/nfx250/

Information 2018, 9, 45 15 of 16

7. Arista 7500E Series. Available online: https://www.arista.com/en/products/7500-series (accessed on
23 February 2018).

8. Lantz, B.; Heller, B.; McKeown, N. A network in a laptop: Rapid prototyping for Software-Defined Networks.
In Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks, Monterey, CA, USA,
20–21 October 2010; ACM: New York, NY, USA, 2010; pp. 1–6.

9. Yan, J.; Jin, D. VT-Mininet: Virtual-time-enabled Mininet for Scalable and Accurate Software-Define Network
Emulation. In Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined Networking Research
(SOSR ’15), Santa Clara, CA, USA, 17–18 June 2015; pp. 1–7.

10. Handigol, N.; Heller, B.; Jeyakumar, V.; Lantz, B.; McKeown, N. Reproducible Network Experiments Using
Container-based Emulation. In Proceedings of the 8th International Conference on Emerging Networking
Experiments and Technologies (CoNEXT ’12), Nice, France, 10–13 December 2012; pp. 253–264.

11. Lantz, B.; O’Connor, B. A Mininet-based Virtual Testbed for Distributed SDN Development. SIGCOMM Comput.
Commun. Rev. 2015, 45, 365–366.

12. Baldesi, L.; Maccari, L. NePA TesT: Network protocol and application testing toolchain for community
networks. In Proceedings of the 12th Annual Conference on Wireless On-demand Network Systems and
Services (WONS), Cortina d’Ampezzo, Italy, 20–22 January 2016; pp. 1–8.

13. Moreno, V.; del Río, P.M.S.; Ramos, J.; Garnica, J.J.; García-Dorado, J.L. Batch to the Future: Analyzing
Timestamp Accuracy of High-Performance Packet I/O Engines. IEEE Commun. Lett. 2012, 16, 1888–1891.

14. Myers, M.D.; Venable, J.R. A set of ethical principles for design science research in information systems.
Inf. Manag. 2014, 51, 801–809.

15. Meeran, M.T.; Annus, P.; Alam, M.M.; Moullec, Y.L. Evaluation of VoIP QoS Performance in Wireless Mesh
Networks. Information 2017, 8, 88.

16. Bachmeir, C.; Tabery, P.; Uzumcu, S.; Steinbach, E. A scalable virtual programmable real-time testbed for
rapid multimedia service creation and evaluation. In Proceedings of the 2003 International Conference on
Multimedia and Expo (ICME ’03), Baltimore, MD, USA, 6–9 July 2003; Volume 3, pp. 257–260.

17. Fuertes, W.; López de Vergara, J.E. An emulation of VoD services using virtual network environments.
Electron. Commun. EASST 2009, 17, doi:10.14279/tuj.eceasst.17.224.220.

18. Han, B.; Gopalakrishnan, V.; Ji, L.; Lee, S. Network function virtualization: Challenges and opportunities for
innovations. IEEE Commun. Mag. 2015, 53, 90–97.

19. Mijumbi, R.; Serrat, J.; Gorricho, J.L.; Bouten, N.; Turck, F.D.; Boutaba, R. Network Function Virtualization:
State-of-the-Art and Research Challenges. IEEE Commun. Surv. Tutor. 2016, 18, 236–262.

20. Peach, S.; Irwin, B.; van Heerden, R. An overview of linux container based network emulation. In Proceedings
of the European Conference on Information Warfare and Security (ECCWS), Munich, Germany, 7–8 July 2016;
pp. 253–259.

21. Raza, M.; Chowdhury, S.; Robertson, W. SDN based emulation of an academic networking testbed.
In Proceedings of the 2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE),
Vancouver, BC, Canada, 15–18 May 2016; pp. 1–6.

22. Rong, R.; Liu, J. Distributed mininet with symbiosis. In Proceedings of the 2017 IEEE International
Conference on Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–6.

23. Fontes, R.D.R.; Mahfoudi, M.; Dabbous, W.; Turletti, T.; Rothenberg, C. How Far Can We Go? Towards
Realistic Software-Defined Wireless Networking Experiments. Comput. J. 2017, 60, 1458–1471.

24. Lentisco, C.M.; Aguayo, M.; Bellido, L.; Pastor, E.; De-Antonio-Monte, D.; Bolívar, A.G. A virtualized
platform for analyzing LTE broadcast services. In Proceedings of the 2015 European Conference on
Networks and Communications (EuCNC), Paris, France, 29 June–2 July 2015; pp. 512–516.

25. Moyano, R.F.; Cambronero, D.F.; Triana, L.B. A user-centric SDN management architecture for NFV-based
residential networks. Comput. Stand. Interfaces 2017, 54, 279–292.

26. Jimenez, J.M.; Martínez, J.O.R.; Rego, A.; Dilendra, A.; Lloret, J. Study of multimedia delivery over software
defined networks. Netw. Protoc. Algorithms 2015, 7, 37–62.

27. Weigle, M.C.; Adurthi, P.; Hernández-Campos, F.; Jeffay, K.; Smith, F.D. Tmix: A Tool for Generating Realistic
TCP Application Workloads in Ns-2. SIGCOMM Comput. Commun. Rev. 2006, 36, 65–76.

28. Botta, A.; Dainotti, A.; Pescapé, A. A tool for the generation of realistic network workload for emerging
networking scenarios. Comput. Netw. 2012, 56, 3531–3547.

https://www.arista.com/en/products/7500-series

Information 2018, 9, 45 16 of 16

29. Rygielski, P.; Simko, V.; Sittner, F.; Aschenbrenner, D.; Kounev, S.; Schilling, K. Automated Extraction of
Network Traffic Models Suitable for Performance Simulation. In Proceedings of the 7th ACM/SPEC on
International Conference on Performance Engineering (ICPE ’16), Delft, The Netherlands, 14 March 2016;
pp. 27–35.

30. Smekal, D.; Hajny, J.; Martinasek, Z. Packet generators on field programmable gate array platform.
In Proceedings of the 40th International Conference on Telecommunications and Signal Processing (TSP),
Barcelona, Spain, 5–7 July 2017; pp. 97–100.

31. Muelas, D.; López de Vergara, J.E.; Berrendero, J.R.; Ramos, J.; Aracil, J. Facing Network Management
Challenges with Functional Data Analysis: Techniques & Opportunities. Mob. Netw. Appl. 2017, 22,
1124–1136.

32. Muelas, D.; García-Dorado, J.; López de Vergara, J.E.; Aracil, J. Application of functional feature extraction
to the compression of network time series. In Proceedings of the 2017 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM), Lisbon, Portugal, 8–12 May 2017; pp. 592–595.

33. Mata, F.; García-Dorado, J.L.; Aracil, J. Detection of traffic changes in large-scale backbone networks: The case
of the Spanish academic network. Comput. Netw. 2012, 56, 686–702.

34. Little, J.D. Little’s Law as Viewed on Its 50th Anniversary. Oper. Res. 2011, 59, 536–549.
35. Rosenberg, J.; Schulzrinne, H.; Camarillo, G.; Johnston, A.; Peterson, J.; Sparks, R.; Handley, M.; Schooler, E.

RFC 3261: SIP: Session Initiation Protocol. Available online: https://www.rfc-editor.org/rfc/rfc3261.txt
(accessed on 23 February 2018).

36. Cisco Systems Inc. Cisco Unified Communications Manager System Guide; Chapter Understanding IP Telephony
Protocols; Cisco Systems, Inc.: San Jose, CA, USA, 2004.

37. Jacobson, V.; Frederick, R.; Casner, S.; Schulzrinne, H. RFC 3550: RTP: A Transport Protocol for Real-Time
Applications. Available online: https://tools.ietf.org/html/rfc3550 (accessed on 23 February 2018).

38. ITU-T. G.711: Pulse Code Modulation (PCM) of Voice Frequencies; International Telecommunication Union:
Geneva, Switzerland, 1988.

39. García-Dorado, J.L.; Santiago del Río, P.M.; Ramos, J.; Muelas, D.; Moreno, V.; López de Vergara, J.E.;
Aracil, J. Low-cost and high-performance: VoIP monitoring and full-data retention at multi-Gb/s rates using
commodity hardware. Int. J. Netw. Manag. 2014, 24, 181–199.

40. Muelas, D.; López de Vergara, J.E.; Ramos, J.; García-Dorado, J.L.; Aracil, J. On the impact of TCP
segmentation: Experience in VoIP monitoring. In Proceedings of the 2017 IFIP/IEEE Symposium on
Integrated Network and Service Management (IM), Lisbon, Portugal, 8–12 May 2017; pp. 708–713.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.rfc-editor.org/rfc/rfc3261.txt
https://tools.ietf.org/html/rfc3550
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Background
	Enabling Technologies
	Synthetic Network Load Generation

	Formulation of the Method for the Generation of Network Activity
	General Traffic-Generation Model
	Specific Traffic-Generation Model for VoIP Devices

	Experimental Evaluation
	Methodology
	Resource Consumption
	Measured Network Activity
	Qualitative Comparison with Other Methods

	Conclusions
	References

