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A B S T R A C T

The theoretical description of observables in attosecond experiments requires
a good representation of the system’s ionization continuum. For polyelectronic
molecules, however, this is still a challenge, due to the complicated short-range
structure of correlated electronic wave functions. Whereas quantum chemistry
packages (QCP) implementing sophisticated methods to compute bound elec-
tronic molecular states are well-established, comparable tools for the continuum
are not widely available yet. To tackle this problem, we have developed a new
approach, XCHEM, that by means of a hybrid Gaussian-B-spline basis (GABS),
interfaces existing QCPs with close-coupling scattering methods.

We illustrate the performance of the GABS hybrid basis for the hydrogen atom
by solving both the time-independent and the time-dependent Schrödinger equa-
tion for a few representative cases. The results are in excellent agreement with
those obtained with a purely B-spline basis, with analytical results, when avail-
able, and with recent above-threshold ionization spectra from the literature. In
the latter case, we report fully differential photoelectron distributions which offer
further insight into the process of above-threshold ionization at different wave-
lengths.

To illustrate the viability of the XCHEM approach, we report results for the
multichannel ionization of the helium atom and of the hydrogen molecule that
are in excellent agreement with existing accurate benchmarks.

We also present a theoretical study of the multichannel photoionization of Ne
in the vicinity of the autoionizing states lying between the 2s22p5 and 2s2p6 ion-
ization thresholds. The calculated total photoionization cross sections are in very
good agreement with absolute measurements and with independent benchmark
calculations performed at the same level of theory. From these cross sections, we
have extracted resonance positions, total autoionization widths, Fano profile pa-
rameters and correlation parameters for the lowest three autoionizing states of
1Po symmetry. The values of these parameters are in good agreement with those
reported in earlier theoretical and experimental work. We have also evaluated par-
tial photoionization cross sections, and, from them, partial autoionization widths
and Starace parameters for the same resonances, not yet available in the litera-
ture. We have found that the three lowest resonances preferentially decay into
the 2p−1εd continuum rather than into the 2p−1εs one, in agreement with pre-
vious expectations, and that in the vicinity of the resonances the partial 2p−1εs
cross section can be larger than the 2p−1εd one, in contrast with the accepted idea
that the latter should amply dominate in the whole energy range. With the ma-
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trix elements obtained within XCHEM, we used the two-photon finite-pulse model
for resonant transitions to compute the side bands modulation, and reproduce a
very recent RABITT experiment in Ne with very good agreement.

These findings, together with the versatility of QCPs to describe a broad range
of chemical systems, indicate that this is a valid approach to study the ionization
of polyelectronic systems in which correlation and exchange symmetry play a
major role.
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R E S U M E N

La descripción teórica de los observables en los experimentos de attosegundo, re-
quiere de una buena representación del continuo de ionización del sistema. Para
moléculas polyelectrónicas, sin embargo, esto es aún un reto debido a la compli-
cada estructura a corto radio de la función de onda electrónica producto de la
correlación. Mientras que los códigos de química cuántica (QCPs) cuentan con
métodos sofisticados para calcular los estados ligados, no existen herramientas
equivalentes para calcular el continuo electrónico. Para resolver este problema,
hemos desarrollado un nuevo método, XCHEM, que a través de una base híbrida
de gaussianas con B-splines (GABS), combina QCPs con métodos close-coupling
para describir la dispersión electrónica.

Mostramos el desempeño de la base GABS para el átomo de hidrógeno, re-
solviendo la ecuación de Schrödinger dependiente y no dependiente del tiempo
para varios casos representativos. Los resultados comparan muy bien con otros
obtenidos solo utilizando B-splines, fórmulas analíticas y otros cálculos recientes
publicados en la literatura.

Para ilustrar las capacidades del método XCHEM, también reportamos resulta-
dos para la ionización multicanal del átomo de helio y la molécula de hidrógeno,
que muestran un acuerdo excelente comparando con los resultados obtenidos
con otros códigos muy precisos utilizados como referencia.

También presentamos un estudio teórico de la fotoionización multicanal del
átomo de Ne cerca de las resonancias que se encuentran entre los umbrales the
ionización 2s22p5 y 2s2p6. Las secciones eficaces de fotoionización comparan muy
bien con valores experimentales y otros cálculos teóricos realizados con el mismo
nivel de correlación electrónica. De dichas secciones eficaces, se extrajeron las
energías de las resonancias, sus anchos, el parámetro de Fano y el de correlación,
estando en correspondencia con los valores medidos reportados en la literatura.
Además, se calcularon las secciones eficaces parciales, y de ellas, los parámetros
de Starace y los anchos parciales, no reportados aún en la literatura. Con los
elementos de matrix calculados, usamos el two-photon finite-pulse model for
resonant transitions para calcular la modulación de las bandas laterales en un
experimento RABITT muy reciente, obteniendo muy buenos resultados.

Estos resultados, junto a la versatilidad de los QCPs para describir un gran
número de moléculas, apuntan a que el método XCHEM resulta válido para es-
tudiar la ionización the sistemas polyelectrónicos, en los que la correlación elec-
trónica juega un papel fundamental.
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Part I

I N T R O D U C T I O N





1
I N T R O D U C T I O N

1.1 atomic and molecular dynamics triggered by ultrashort

light pulses

Advances in generating controlled few-cycle laser pulses and novel ultrashort ex-
treme ultraviolet (XUV) and X-ray sources, from free-electron laser (FEL)-based to
attosecond high harmonic generation (HHG)-based facilities, have opened com-
pletely new avenues for imaging and controlling electronic and nuclear dynam-
ics in molecules, with exciting applications in physics, chemistry and biology
[1, 2, 3, 4, 5, 6, 7, 8]. The advent of x-ray free-electron lasers (XFEL) [9], has ex-
tended the domain of inquiry to non-linear processes promoted by intense ioniz-
ing radiation (> 1015 PW/cm2), while advances in the technology of table-top HHG
sources of femtosecond and sub-femtosecond extreme ultraviolet (XUV) pulses
have opened the way to observe the dynamics in the attosecond time scale [10],
a whole new branch of science devoted to the study of electronic motion at its
natural timescale [11]. Recently, attosecond technology has been incorporated in
FEL [12, 13, 14] to generate intense XUV pulses with high spatial and temporal
coherence as well as short duration, with which matter can be interrogated in the
non-linear regime in a time-resolved way [15]. Finally, HHG technology has now
reached the water window (3-4 nm wavelength) [16], thus making it possible to
study ultrafast correlated processes in biological samples in their natural media.

The common feature to all these light sources is their ability to ionize a
molecule by absorption of just a single photon. Thus, theoretical studies devoted
to understand ultrafast phenomena induced by such energetic electromagnetic
radiation must necessarily deal with the problem of describing the ionization con-
tinuum. This also applies to ultrafast dynamics induced by IR or visible pulses in
which the probing step leads to ionization of the system [17, 18, 19, 20] Although
description of the ionization continuum is rather straightforward for atomic sys-
tems, for which a large number of accurate computational tools are available
[21, 22, 23, 24, 25], this is not the case for molecules, for which the number of
available codes is much scarcer and often limited to study ionization under sig-
nificant restrictions, e.g., by assuming a single-active electron (SAE) or a mean-
field approximation [26, 27, 28]. However, electron correlation, a hallmark of elec-
tronic motion in bound atomic and molecular systems [29], plays an even more
prominent role when absorption of XUV and X-ray light leads to emission of
photoelectrons [24, 25, 30]. In ionization, correlation gives rise to salient features
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4 introduction

such as Auger resonances [31, 32, 33], associated to the formation of transiently
bound, often multiply excited configurations [34, 35], whose decay is due to the
coupling between different ionization channels (configuration interaction in the
continuum) [36], and satellite peaks associated to orbital relaxation [37, 38, 39]
and to the failure of the SAE approximation [40, 41]. Multiply-excited autoioniz-
ing states, shape resonances, and collective excitations play a fundamental role in
the chemistry of the interstellar medium, in the highest layer of the earth atmo-
sphere [42], as well as for most of the processes leading to radiation damage [43].

Nowadays most of these ultrashort light sources can be combined with so-
phisticated detection techniques like cold-target recoil-ion mass spectrometry
(COLTRIMS) [44], velocity-map imaging (VMI) [45], time-of-flight photoelectron
spectrometry [46], and high-resolution XUV spectrometry [47], allowing for the
study of photoelectron emission from atoms, molecules and surfaces with a
level of detail that would have been unthinkable only two decades ago. In ad-
dition to FELs and HHG generated pulses, third-generation synchrotron facil-
ities [48, 49, 50, 51] allow one to measure the ionization spectrum of atoms
and molecules in stationary conditions with much higher resolution than before,
across a wide energy range. This can also be done in association with synchro-
nized laser pulses [52].

1.1.1 Theoretical approaches

Although a plethora of theoretical methods is available to accurately describe
the ionization continuum of atoms (see, e.g., [21, 22, 23, 24, 25] and references
therein), this is not the case for molecules, for which existing methods are usu-
ally designed to describe specific problems, usually in regions of the photoelec-
tron spectrum where autoionization and electron correlation play a minor role.
In contrast, for bound molecular states, electron correlation can be accurately
handled by using a variety of quantum chemistry packages (QCP) based on ab
initio methods [53, 54, 55, 56, 57, 58, 59]. With proper adjustments, these methods
can also provide an accurate description of molecular resonances (hole, shake-up
and multiply excited states), for which electron correlation is even more impor-
tant [60, 61, 62, 63]. So, extending the applicability of these codes to the ionization
continuum of molecules seems the natural way to proceed in order to get a simi-
lar good description of electron correlation in the continuum region of the molec-
ular spectrum. However, in general, this is a very challenging task. Indeed, most
QCPs make use of Gaussian or Slater-type basis functions centered on the vari-
ous atomic locations, which is advantageous to accelerate convergence in compar-
ison with single-center expansions but turns into a serious disadvantage when
dealing with the electronic continuum. This is because Gaussian and Slater-type
functions decrease exponentially and therefore are not appropriate to describe
the oscillatory behavior of the continuum wave function in the asymptotic region
(which is essential to impose the proper boundary conditions of scattering states).
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The problem cannot be solved by just increasing the number of basis functions,
since this procedure rapidly runs into linear dependencies, thus allowing for the
description of typically no more than one or two radial oscillations[64, 65, 66, 67].
For Gaussian functions, the standard in most QCPs due to their easiness for the
evaluation of multi-center two-electron integrals, the situation is worse than for
Slater functions, since they decrease more rapidly.

Previous work [34, 68, 69, 70, 71, 72] has shown that continuum states of
simple diatomic molecules can be accurately described by using more appro-
priate functions, such as B-splines [73, 69, 74] or finite-element discrete-variable-
representation functions (FE-DVR) [75]. However, extension of these methods to
larger molecules would be very involved, since, e.g., an efficient evaluation of bi-
electronic integrals and consideration of molecular symmetry would require the
implementation of new algorithms, mimicking the path that standard QCPs have
followed for decades.

It is therefore clear that theoretical efforts aimed at improving the descrip-
tion of ionization processes in molecules are necessary and timely to provide
the support that these sophisticated experiments require. Current quantum-
chemistry multiconfigurational methods have nowadays reached a considerable
level of sophistication in the treatment of ground and electronically bound excited
states [76], and are able to account for electron correlation with a great level of
accuracy. The variational principle is at the heart of conventional multi-reference
calculations, however, it cannot be applied as such to the calculation of states
embedded in the ionization continuum. For this reason, systematic inclusion of
correlation in the ab initio description of autoionizing and scattering states in
polyelectronic molecules remains a challenge. A common approach used by sev-
eral authors [77, 78, 27, 51, 28] to describe the electronic continuum in molecules
makes use of the static-exchange approximation (SEA) [79, 80], in which the cou-
pling between continuum states associated to different parent ions is neglected.
The SEA meets the minimal requirements for the treatment of the continuum,
and hence it is often used as the starting point of more sophisticated treatments
based on the close-coupling (CC) approximation [81], where inter-channel cou-
pling is included. In this sense, the SEA can be regarded as the equivalent for
ionization of what Hartree-Fock is for the description of bound states. The SEA
is adequate to describe primary photoemission from valence shells or core or-
bitals in which the photoelectron emerges with energies of the order of ∼10 eV
or more, since in these conditions the SAE picture still holds. However, the SEA is
not appropriate to describe ionization processes in which more than one electron
participates, e.g., autoionization arising from multiply-excited states, ionization
with simultaneous excitation of one or more of the remaining electrons (shake
ups), etc.

Another important requirement for the description of the electronic continuum
is to disentangle, across a continuous range of energies, the asymptotic distribu-
tion of the ejected electron associated to any given molecular parent ion. This
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can be done by augmenting the parent-ion states with electrons distributed in a
large set of orbitals capable of reproducing the periodic oscillations characteristic
of asymptotically-free states. The primitive Gaussian functions normally used in
QCPs rapidly exhibit numerical linear dependencies that prevent the description
of more than a few radial oscillations, and hence they are not well suited to de-
scribe a free electron except for the smallest energies and in a short radial region.
This limitation can be partially circunvented going beyond usual Gaussian Type
Orbitals (GTOs), by using Polynomial Spherical GTOs (PSGTO) [82, 83], but the
continuum wave function quality still worsens when the photon energy increases
and not only the outermost valence shells are involved in the photoionization.
Radial basis suitable for this task, such as B-splines [69, 74] and finite-element
discrete-variable-representation functions (FE-DVR) [75], have been employed in
ad-hoc codes for the electronic continuum of small systems [34, 68, 69, 70, 71, 72],
mainly for diatomic molecules. These codes, however, are not easy to extend to
more complicated molecules, and their treatment of short-range electronic corre-
lation is still rudimentary if compared with standard QCPs.

The single photoionization of an atomic or molecular species A by means of
the absorption of one photon γ,

Ai + γ→ A+
a + e−~kσ

, (1.1)

converts the initial state |i〉 of the N-electron target to one of the energeti-
cally accessible states of the parent ion |a〉 of the (N − 1)-electron parent ion,
Ea − Ei ≤ h̄ωγ, and liberates a photoelectron with asymptotic linear momentum
~k and spin projection σ. This process, therefore, involves the transition from a
bound to a scattering state of the N-electron system. This latter circumstance
remains true irrespective of whether the single ionization event involves the
exchange of one or several photons, possibly with different frequencies, or of
whether these photons come in the form of pulses rather than in stationary con-
ditions. Although more complex fragmentation processes, such as multiple ion-
ization and dissociative ionization, may follow valence and inner-valence ioniza-
tion of atomic and molecular species with XUV light, single ionization with (or
without) electronic excitation normally dominates. Furthermore, multiple ioniza-
tion processes tend to take place through a sequence of single ionization steps
when this mechanism is permitted. Therefore, single ionization can describe a
broad range of phenomena. In the present work we will limit our attention to
this process.

The interaction between matter and radiation is mediated by a one-body op-
erator. To a first approximation, therefore, photoionization amplitudes can be
estimated already at the SAE level. In polyelectronic targets, the interaction
of the photoelectron originating from a given orbital and the other electrons
in the system can be described in terms of an effective potential [84, 85], or
within the Hartree [86], Hartree-Fock [87, 88, 89, 90, 25], or DFT approxima-
tions [91, 92, 51, 28]. This approach normally yields accurate photoelectron dis-
tributions at high photoelectron energies, but fails to reproduce experiments at
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energies a few eV above the ionization thresholds, where exchange and corre-
lation effects are important [93, 92]. It has been recently shown that antisym-
metry needs to be taken explicitly into account to obtain qualitatively reliable
results [94]. Shape resonances are also normally not well reproduced, and SAE
approaches, of course, cannot account for processes associated to interchannel
coupling, such as inelastic scattering and autoionizing states, particularly when
the latter are populated through multiple excitations from the ground state.

The first few correlated bound electronic states of atoms and molecules, and
the radiative transitions between them, can be computed quite accurately with
existing QCPs. Correlated states in the electronic continuum, on the other hand,
are much more challenging to obtain for three reasons. First, as mentioned above,
they require the representation of oscillatory electronic wave functions up to large
distances, which is challenging for the Gaussian basis sets used in QCPs. Second,
the calculation of bound and scattering states requires different algorithms. For
bound states, the energy is an unknown quantity that is determined through
diagonalization, and degeneracy is an issue only for selected subsets of the con-
figuration space. For ionization states, on the other hand, energy is given and, as
a rule, each level is multiply or, possibly, infinitely degenerate. Simply restricting
the hamiltonian to a finite basis and diagonalizing it, therefore, is not an option.
Third, the scattering states required to reproduce given experimental conditions
must fulfill well defined asymptotic boundary conditions.

The common practice in most theoretical approaches is to limit the Hilbert
space to a subspace of configurations accounting for the most relevant dynamics
of the photoionization problem. This can be realized by dividing the position
space in two regions: an inner one, in which the target and parent-ion states lie,
and an outer one, which contains the appropriate asymptotic solutions of the scat-
tering states. The main differences among the available implementations based
on this space partition lie in the theory level employed to compute the wave func-
tion in the inner part, and how it matches the long-range part of the wave func-
tion in the outer region. To compute the target and parent-ion states, any of the
tools accounting for electron correlation in bound states can be used, e.g., multi-
configuration Hartree-Fock (MCHF), configuration interaction (CI), coupled clus-
ter, etc (see [95, 96, 97]).

To overcome the above limitations, we have developed an approach that
matches the capability of state-of-the-art techniques for the calculation of corre-
lated excited states, provided by widely available packages such as MOLCAS [53],
MOLPRO [54], Columbus [55, 56], Dalton [57], GAMESS [58] and Gaussian [59],
with well-established techniques for the description of the electronic continuum.
We do so by using a hybrid Gaussian-B-spline basis (GABS) [98]. There are other
approaches based on a similar philosophy, in which a short-range part repre-
sented by GTOs is complemented with other functions more appropriate for the
scattering description, like Finite Element (FE) representation of the radial coor-
dinate [94, 99], Discrete Variable Representation (DVR) [100, 101, 102], and plane
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waves [30]. Other efforts have been made within the framework of Density Func-
tional Theory (DFT), using for instance a multicenter expansion in B-splines [91].
We want to notice that there is another research group that use a formalism very
similar to ours, merging available QCPs with scattering methods, although they
use the R-matrix formalism to solve the scattering problem ([103, 104]). Their
basis functions is also a hybrid one Gaussian and B-splines basis, but their Gaus-
sian functions are regular GTOs whereas we use PSGTOs, which gives us more
flexibility by reducing the maximum orbital angular momentum needed in the
single-center expansion around the center of mass of the system. In fact we use
(as will be apparent later in the thesis) the PSGTOs functions to connect the poly-
centric GTOs functions with the B-splines. Other groups have implemented the
calculation of integrals involving B-splines and GTOs, but this has the inconve-
nient that, it is computationally very costly. Despite the existence of all these
models, ours has its own advantages. Increasing the number of electrons for a
fixed number of scattering channels does not make the computational cost of the
full dimensional problem significantly higher. This means that the effort made
to compute the helium atom would be similar to that needed to compute the
water molecule for instance. Although this points to the fact that the computa-
tion of very small systems would not be very efficient, our real target, small and
medium-size molecules, would be easily achievable without serious penalties.
Another benefit of our implementation is the capability to obtain from a multi-
channel scattering problem either time independent observables, e.g., resonance
energies and widths, or time dependent ones, expanding for the latter the wave
function in the box of eigenstates, a very convenient way to carry out the time
propagation and to extract observables from it. An additional advantage is that
resonances, like doubly excited states, arise naturally from the close-coupling ex-
pansion without the need of an ad hoc inclusion, if one of them plays a key role
in the dynamics. Our model can also support core holes, which will be the object
of future studies.

1.2 motivation and outline of the thesis

The main objective of this thesis is to introduce a new formalism, XCHEM, that will
allow us to compute accurately the molecular continuum states for the single-
ionization problems. This new approach is based on the merging of available
QCPs with state-of-the-art scattering numerical methods. The QCPs provide us
with the low lying bound spectrum of the system and the parent-ion states,
which can be computed with a high level of electronic correlation thanks to
the sophisticated quantum chemistry methods that have been implemented in
those computational packages. The matching of the short-range radial domain
with the long-range domain for the ejected electron, is achieved using the hybrid
Gaussian-B-splines (GABS) basis.
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Hence, we focus on the test of every component of the XCHEM method to ensure
the reliability of its results. First we study the photoionization of the hydrogen
atom, triggered by different kinds of ultrashort pulses, using the GABS basis
to understand better its performance. The other benchmark systems were the
He atom and the H2 molecule, for which we study the photoionization cross
sections and the resonance parameters of several resonant series. This is the first
step towards more complex systems, because in both cases the parent ions left
behind have only one electron.

The next system we studied, the Ne atom, permitted us the study a real poly-
electronic system (polyelectronic parent ions) for which a large mount of data
had been published. Therefore, we used this published results together with in-
dependent atomic codes to asses the quality of XCHEM results. After checking
throughout the thesis that the observables computed with XCHEM gave very good
results, we aimed to compute new parameters not available in the literature yet,
for the Ne photoionization of Ne. Specifically, the Starace parameters and the par-
tial widths for the decay of the 2s2p63p, 2s2p64p and 2s2p65p resonances to the
2s22p5εs and 2s22p5εd scattering channels. We have also applied a two-photon
transition perturbative model, in which matrix elements computed with XCHEM

have been used to reproduce the modulation of the side bands in a RABITT ex-
periment.

This thesis is structured as follows. In Chapter (2), we give an overview of the
ab initio methods used to compute the molecular (and atomic) electronic bound
spectrum, which will be useful to calculate the parent-ion states we included in
our CC expansions. Chapter (3) focuses on the time-independent scattering the-
ory for molecules, where we highlight the seek of the multichannels scatttering
wave function in form of a CC expansion, and the properties of the scattering
S matrix to compute the properties of the autoionizing states. Chapter (4) gives
an overview on the photoionization theory. We explain in this chapter the theory
behind the one- and two-photon absorption processes, also when a discrete state
is embedded in the continuum. The theoretical foundations of the Reconstruction
of Attosecond Bursts by Interference of Two-photon Transitions (RABITT) spec-
troscopy is provided. In Chapter (5), we explain the XCHEM approach, through
which we merge the QCPs with the scattering methods to compute accurate scat-
tering states. We give the basis and space partitioning details, together with the
explanation of several methods we have implemented to compute numerically
the scattering wave function. Chapter(6) shows the results we obtained using the
GABS basis to study the photoionization of the hydrogen atom, perturbatively
and solving the time-dependent Schrödinger equation (TDSE) in the presence
of different attosecond pulses. Chapter (7) shows the performance of the XCHEM

method for the photoionization and multichannel scattering problem for differ-
ent systems: He, H2 and Ne. We focused on the computation of the resonances
parameters as well as the cross sections, and for Ne, we reproduced part of a very
recent RABITT experiment. Finally in Chapter (8), we give the conclusions of the
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thesis and some perspectives to continue with this work. Throughout this thesis,
unless otherwise stated, we will use atomic units.



Part II

T H E O R E T I C A L M E T H O D S





2
M O L E C U L A R E L E C T R O N I C S T R U C T U R E A B I N I T I O
M E T H O D S

The Schrödinger equation is the keystone of the quantum chemistry because it
gives access to the complete information of the system via the wave functions.
Electrons play the key role on the chemical properties of a given molecular sys-
tem, but if the molecule is not isolated, after its excitation through an external
perturbation, or when the molecule is in contact with a heat reservoir, the nuclei
can be excited as well, and this excess energy be transferred to its degrees of
freedom, that makes the molecule to vibrate, rotate, or undergo fragmentation
processes. In such a situations, not only the electronic dynamics is relevant, the
nuclear motion is important too. Then our aim is to find an approximate solution,
as accurate as possible, of the Schrödinger equation. Let’s consider the general
case of a molecule made up of M nuclei and N electrons, the full non-relativistic
time-independent Hamiltonian is given by:

H(r, R) =
N

∑
i=1

(
− 1

2
∇2

i −
M

∑
A=1

ZA
RAi

)
+

N

∑
i>j=1

1
rij
− 1

2MA

M

∑
A=1
∇2

A +
M

∑
A>B=1

ZAZB
RAB

,

(2.1)
where rij = |ri− rj|, ri and rj being the position of the i-th and j-th electrons (with
respect to the center of mass), respectively, RA is the position of A nucleus and
MA is the ratio of the mass of nucleus A to the mass of an electron. The first three
terms n the right-hand-side of Eq. (2.1) correspond to the electronic Hamiltonian
Helec(r; {RA}) and depends parametrically on the nuclei positions:

Helec(r; {RA}) =
N

∑
i=1

(
− 1

2
∇2

i −
M

∑
A=1

ZA
RAi

)
+

N

∑
i>j=1

1
rij

. (2.2)

Since nuclei are much heavier than electrons (MA � 1), they move more slowly.
Hence, it would be a good approximation to consider the electrons moving in the
field of fixed nuclei. This is the Born-Oppenheimer approximation, and within
this approximation, the kinetic energy of the nuclei can be neglected and the
repulsion between them can be considered constant. Actually, for the purposes of
this thesis, we are not interested in the nuclear motion, we use the fixed nuclear
approximation (FNA). Then we will focus on the electronic Hamiltonian (2.2)
plus the nuclei repulsion term, that only adds a constant value to the electronic
energy.

13
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Besides the spatial coordinate, to completely describe an electron it is necessary
to specify its spin ζ. We denote the spatial and spin coordinates collectively by
x (x ≡ {r, ζ}). The wave function of the N-electron system is then a function of
these variables: Ψ(x1, . . . , xN) ≡ Ψ(X). If the N electron were independent, we
could look for a solution of Eq. (2.2) of the form of molecular orbitals products
(Hartree products):

Ψ(X) =
N

∏
i=1

φi(xi), (2.3)

(note that we have dropped the parametric dependence on the nuclei positions,
which is implicitly assumed), but the presence of the bielectronic terms make
this solution to fail, unless these interaction are averaged and accounted as an
effective potential. Furthermore, the Hartree products do not satisfy the Pauli
exclusion principle, which states that since electrons are fermions, the electronic
wave function has to be antisymmetric by exchange of two electrons. This is
solved writing Ψ(X) as a Slater determinant

Ψ(X) =
1√
N!

∣∣∣∣∣∣∣∣∣∣∣

φ1(x1) φ2(x1) . . . φN(x1)

φ1(x2) φ2(x2) . . . φN(x2)
...

...
...

...

φ1(xN) φ2(xN) . . . φN(xN)

∣∣∣∣∣∣∣∣∣∣∣
, (2.4)

which enforce the antisymmetrization of the wave function. The normalized
Slater determinants can be written in a more compact notation, only showing
the diagonal components of the determinant an assuming the electrons to be
labeled in order x1, x2, . . . , xN :

Ψ(X) = |φiφj · · · φk〉 (2.5)

2.1 the hartree-fock approximation

This is usually the first step towards more accurate approximations and is equiv-
alent to the molecular orbital approximation, in which electrons are assumed to
occupied some definite orbitals. Following this picture, the ground state of the
N-electron system is described by a single Slater determinant

|Ψ0〉 = |φ1φ2 · · · φN〉. (2.6)

According to the variational principle, the best wave function of this functional
form is the one which gives the lowest possible energy

E0 = 〈Ψ0|Helec|Ψ0〉 (2.7)

The integral from Eq. (2.7) can be further simplified using the Slater-Condon
rules. These rules permit to reduce the integral of N-electron wave functions con-
structed as Slater determinants into sums over integrals of individual molecular
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orbitals. It follows that for a one-body operator, the matrix elements for two wave
functions differing by more than two orbitals vanish. The wave function (2.6) is
optimized (E0 minimized) through the choice of the spin orbitals, and the op-
timal set of spin orbitals is determined by solving iteratively the Hartree-Fock
equation. These are eigenvalue equations of the form

f (1)|φi〉 = εi|φi〉, (2.8)

where f (1), called the Fock operator, is an effective one-electron operator given
by

f (i) = −1
2
∇2

i −
M

∑
A=1

ZA
RAi

+ VHF(i), (2.9)

where VHF(i) is the average potential experienced by the i-th electron due to
the presence of the other electrons. This way, the electronic repulsion terms are
replaced by a mean field, and the complicated many-electron problem by a one-
electron problem. The procedure to solve Eq. (2.8) is called the self-consistent-
field (SCF) method, and the basic idea behind it, is making an initial guess for the
spin orbitals in order to calculate the average field VHF(i), solve the eigenvalue
equation and from the new set of spin orbitals start the process again until some
convergence criteria is met (the mean field no longer changes). Using a basis set
of K spatial functions, leads to a set of 2K spin orbitals, and then solving the
Hartree-Fock equations we obtain N occupied spin orbitals and 2K − N virtual
ones. The Hartree-Fock potential is given by

VH(1) = ∑
i=1

(Ji(1)− Ki(1)), (2.10)

where the first term in the right-hand-side corresponds to the energy due to the
Coulomb interaction between an electron in spin orbital i and an electron in spin
orbital j

Ji(1)|φj(1)〉 = 〈φi(2)|
1

r12
|φi(2)〉|φj(1)〉, (2.11)

and the second term in Eq. (2.10) corresponds to the exchange energy which is a
pure quantum effect arising from the exchange of two electrons:

Ki(1)|φj(1)〉 = 〈φi(2)|
1

r12
|φj(2)〉|φi(1)〉. (2.12)

The energy of an occupied spin orbital εi, represents the amount of energy (with
opposite sign) that is required to remove an electron from that spin orbital. In the
Hartree-Fock approximation, the total energy of the system departs from the ac-
tual energy by an amount which is given exclusively by the electronic correlation
Ecorr:

Ecorr = Eexact − EHF, (2.13)

where Eexact corresponds to the exact energy of the system and EHF to the
Hartree-Fock energy obtained with a complete basis set. Part of this correlation is
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due to the Coulomb interaction which makes the electrons repelling each others.
In fact, the electron creates a Coulomb hole around its position because this elec-
trostatic repulsion reduces the probability to find another electron in the same
region of the space. Although the Coulomb correlation is the largest contribu-
tion to the electron correlation, it is not the only one. Indeed, because it implies
that two fermions of same spin cannot occupy the same position simultaneously,
the Pauli exclusion principle accounts for the correlation between electrons of
same spin. Then, any electron create a second type of hole, called Fermi hole. It
is common also to distinguish the electron correlation into dynamic and static
correlation. The former arise from the fact that the electrons are not moving inde-
pendently (the motion of one affects all the others). It is associated with instant
correlation between electrons, mainly between opposite-spin electrons. The static
correlation refers to the situation where a single Slater determinant is not suffi-
cient to describe the ground state (e.g., when the ground state is degenerate).

2.2 configuration interaction

It has been observed that the system is better described when the total wave
function is expressed as a linear combination of determinants, in particular when
there are degenerate states. The additional determinants beyond the Hartree-Fock
wave function, correspond to electronic configurations in which electrons are pro-
moted into virtual orbitals, hence, such a determinants represent excited states.
The configuration interaction (CI) method exploits this idea, allowing the elec-
trons to move more freely since they can occupy virtual orbitals. In this scheme,
the total wave function is written as:

|Φ0〉 = c0|Ψ0〉+ ∑
i

∑
α

cα
i |Ψiα〉+ ∑

i<j
∑

α<β

cαβ
ij |Ψ

αβ
ij 〉+ . . . , (2.14)

where the latin letters i and j are the occupied spin orbitals in the reference
Hartree-Fock wave function, and the greek letters α and β are the virtual spin or-
bitals. The number of indexes determines the order of the excitation (e.g., double
excitations Ψαβ

ij : an electron in the i-th (j-th) orbital is promoted to the virtual α-th
(β-th)orbital). The CI calculation can take advantage of the symmetry properties
of the system since it is known that only states of same symmetry will couple.
Then, the linear combination in (2.14) can be reduced to a basis of states with the
same spatial and spin symmetry, also called configuration state functions (CSFs).
According to the Slater-Condon rules, Hamiltonian matrix elements between de-
terminants that differ by more than two spin orbitals are zeros. Then, the Hartree-
Fock determinant Ψ0 only couples with doubly-excited states Ψαβ

ij (because due
to the Brillouin’s theorem we have 〈Ψ0|H|Ψα

i 〉 = 0) and the singly-excited states
Ψα

i with some singly-, doubly- and triply-excited states. The expansion coeffi-
cients in Eq. (2.14) can be determined by solving HΦ0 = EΦ0. The configuration
interaction method does not contain approximations and exact solutions to the
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total wave function can be found if all the configurations are taken into account.
Such situation is referred as a full CI calculation. Unfortunately this is very costly,
because the number of determinants required in the expansion grows factorially
with the number of electrons and orbitals. Then the CI expansion needs to be
truncated to a certain order of excitations, good enough o describe the problem of
interest. For a large number of scenarios, including single- and double-excitations
is sufficient.

2.3 complete active space self consistent field method

The multiconfigurational self-consistent field (MCSCF) method is a CI method
where, besides the coefficients in the determinant expansion, the spin orbitals
are also optimized by using an iterative like self consistent field procedure. Obvi-
ously, the SCF procedure is much more complex and harder to converge than the
Hartree-Fock method. By including the orbital optimization in the SCF, the MC-
SCF allows the spin orbitals to be partially occupied and then to describe quasi-
degenerating effects which are part of the non-dynamical correlation. However,
the relaxation of this orbital does not permit to recover any dynamical correlation
which depends mainly on the number of CSFs included.

In a more general aspect, the computational cost and accuracy of a MCSCF
calculation is determined by the choice (number and type) of the electronic con-
figurations used in the linear expansion. This basis of configurations constitutes
the active space and has to be defined manually for each calculation. It is the main
disadvantage of the method since the choice of the active space cannot always be
deduced from simple chemical considerations and often requires practical expe-
rience. A very common option is the complete active space (CAS), which divides
the included orbitals in two categories: the inactive and the active ones. The form-
ers are fixed to a specific occupation number (0 or 2) while the active spin orbitals
are used to generate all possible CSFs. The number Ns of singlet CSFs is given by
the combination of N electrons in K basis functions:

Ns =
K!(K + 1)!

(N
2 )!(

N
2 + 1)!(K− N

2 )!(K− N
2 + 1)!

(2.15)

This number Ns can be is considerably reduced by considering the molecular
symmetry. The choice of the active space depends as much on the molecule as on
the problem to be studied. The multireference configuration interaction (MRCI)
is formally equivalent to the standard CI except that it makes use of a MCSCF
wave function as reference instead of the Hartree-Fock one. Thus, a preliminary
MCSCF calculation has to be performed.

The CASSCF step represents an additional computational effort but the use
of better reference determinants can make the convergence faster in the MRCI.
Despite of this, CASSCF/MRCI is rather expensive compared to other ab initio
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methods. Its use is limited to rather small systems. A further limitation comes
from the fact that most of the commercial programs that implement the method
do not give the possibility to choose explicitly the electronic configurations to be
included in the CI expansion. Due to this technical limitation and to the varia-
tional principle, the system will always decay to the lowest energy state of spec-
ified symmetry. Then, optimization of higher energy states of same symmetry is
a nontrivial task.



3
S C AT T E R I N G T H E O RY

3.1 the close coupling method

In this chapter we will consider the time-independent multichannel scattering
theory, for the inelastic collision of an electron with a molecular ionic target

A+
a + e−~kσ

→ A+
b + e−~k′σ′ . (3.1)

A common procedure to build a complete set of scattering states at a given en-
ergy E is the close-coupling approach (CC). In CC, the configuration space is
expressed in terms of the linear combination of antisymmetrized products of
bound states of the parent ion A+ and states of the asymptotically free electron
with a well defined angular momentum [105]. Indeed, when separated by large
distances, the parent ion and the electron do not interact and these states are
therefore sufficient to enumerate all the possible initial or final single-ionization
states of the system. When the parent ion and the electron are spatially close,
they can exchange energy, angular momentum, and spin in an interaction that
can be represented as a collision. To improve the description of these short-range
interactions, the CC expansion is normally complemented with a set of localized
N−-electron functions:

ΨΓ
αE(XN) = Â

M

∑
β=1

ΥΓ
β(XN ; r̂NζN)

FΓ
βα(rN)

rN
+

m

∑
γ=1
ℵΓ

γ(XN)cγα, (3.2)

where α labels the linearly independent solutions of the Schrödinger equation.
XN ≡ x1, · · · , xN , with xi ≡ riζi, ri and σi being the electron position and
spin coordinates, respectively. The scattering states satisfy the time-independent
Schrödinger equation

HNΨαE = EΨαE, (3.3)

where E is the total energy and HN is the N-electron Hamiltonian in the FNA
defined by

HN =
N

∑
i=1

(
− 1

2
∇2

i −
M

∑
k=1

ZA
RAi

)
+

N

∑
i>j=1

1
rij

+
M

∑
A>B=1

1
RAB

, (3.4)

which describes the collision of an electron with a molecule having nuclei with
nuclear charge numbers ZA, low enough not to consider relativistic effects. The

19
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origin of coordinates can be taken to be the center of mass of the system, and
we have written rij = |ri − rj| where ri and rj are the vector coordinates of the
i-th and j-th electrons, respectively; and Rki = |Rk − ri|, Rk being the vector
coordinate of the nucleus k. It is useful to define HN in terms of the (N − 1)-
electron Hamiltonian HN−1, in order to define the scattering amplitudes:

HN = HN−1 −
1
2
∇2

N −∑
k

Zk
RkN

+
N

∑
i=1

1
riN

, (3.5)

The label Γ in Eq. (3.2) comprehends those conserved quantum numbers corre-
sponding to the eigenvalues of the operators that commute with the Hamiltonian,
and the irreducible representation belonging to the molecule point group sym-
metry. In the electrostatic approximation the conserved quantum numbers in the
molecular case are the total spin S and its projection onto the z direction, Σ. The
channel functions ΥΓ

β(XN ; r̂NσN) are obtained by coupling the target eigenstates
Φb (HN−1Φb = EbΦb) with the spin-angle functions of the scattered electron to
form eigenfunctions of the square of the total spin angular momentum operator
and its z-component

ΥΓ
β(XN ; r̂NζN) = ∑

Σbσ

CSΣ
SbΣb , 1

2 σ
Φb(XN)Y`m(θN , φN)χ 1

2 σ(ζN), (3.6)

where Y`m(θN , φN) are the spherical harmonics describing the angular distribu-
tion of the scattered electron, χ 1

2 σ(ζN) are electron spin functions and Ce f
ab,cd are

Clebsch-Gordan coefficients. The reduced radial functions FΓ
βα(rN) in Eq. (3.2) de-

scribe the radial motion of the scattered electron in the β channel, and satisfy cer-
tain asymptotic boundary conditions (see next section) that fully determine the
ΨαE solutions of the scattering problem. The ℵΓ

γ(XN) functions are antisymmetric
,L2 integrable, and are assumed to decrease rapidly with the distance from the
center of mass. The ℵΓ

γ(XN) functions represent the short-range electronic correla-
tion effects, which may not be suitably described by a finite CC expansion. These
functions could also give rise to spurious resonances when multiconfiguration
target states are used, in which case special care is needed [106].

To obtain accurate scattering amplitudes we must include in the first expansion
on the right-hand side (RHS) of Eq. (3.2) all the target states of physical interest:
both the initial and final parent-ion eigenstates corresponding to the scattering
amplitude of interest, as well as all other target eigenstates that are expected to
play an important role as intermediate states.

Substituting ΨΓ
αE(XN) in the Schrödinger equation (3.3), and projecting onto

the channel functions ΥΓ
β(XN ; r̂NσN), and onto the short-range N-electrons func-

tions ℵΓ
γ(XN), we obtain a system of close-coupling equations〈

ΥΓ
β(XN ;r̂N σN)

rN
|(HN − E)|ΨΓ

αE(XN)〉 = 0, β = 1, · · · , M

〈ℵΓ
γ(XN)|(HN − E)|ΨΓ

αE(XN)〉 = 0, γ = 1, · · · , m,
(3.7)
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which can be cast in the form of second-order integrodifferential coupled equa-
tions for the FΓ

βα(rN) reduced radial functions, subject to the orthogonality con-

straints 〈FΓ
βα(r)|Pn`α

(r)〉 = 0 for all n. The orthogonality constraint ensures that
the reduced radial functions are orthogonal to all the orbitals Pn`α

(r), used to
construct the target states:

( d2

dr2 −
`β(`β + 1)

r2 + 2
(∑k Zk − N − 1)

r
+ k2

β

)
FΓ

βα(r),

= 2
M

∑
γ=1

λmax

∑
λ=1

dΓ
βγλFΓ

γα(r), r ≥ R0, β = 1, · · · , M. (3.8)

For rN > R0, the radial distance beyond which all the parent-ion states are negli-
gible, the long-range potential coefficients dΓ

βγλ are given by

dΓ
βγλ = 〈

ΥΓ
β(XN ; r̂NσN)

rN
|

N−1

∑
k=1

rλ
k Pλ(cos θkN)|

ΥΓ
γ(XN ; r̂NσN)

rN
〉, (3.9)

where θkN is the angle between the unit vectors r̂k and r̂N, and Pλ(cos θ) are the
Legendre polynomial.

3.2 asymptotic boundary conditions

To uniquely specify the scattering solutions ΨΓ
αE(XN), we need to define the

asymptotic boundary conditions satisfied by the reduced radial wave functions
FΓ

βα(rN). The M second-order differential equations (3.8) support in general 2M
linearly independent solutions. However, the requirement that the total wave
function is bounded

|FΓ
βα(r)| < ∞ r → ∞; FΓ

βα(r) ∼ aβαrlβ+1 r → 0; α, β = 1, . . . , M, (3.10)

aβα being some normalization factors. The previous condition reduce the number
of linearly independent solutions to the number of open channels M0 at energy
E. For simplicity let’s assume all channels are open, then the asymptotic bound-
ary conditions satisfied by the M linearly independent solutions of (3.8) can be
written in the form

FΓ
βα(r) ∼

1√
kβ

[
sinΘβ(r)δβα + cos Θβ(r)KΓ

βα

]
, r → ∞, (3.11)

where
Θβ(r) = kβr +

Z
kβ

ln 2kβr− `βπ/2 + σ`β
(kβ), (3.12)

Z is the charge of the molecular parent ion and σlβ
is the Coulomb phase

σ` = arg Γ(` + 1 + iγ). In Eq. (3.11), the factor k−1/2
β normalizes the ingoing
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spherical wave to unit flux, which implies that the M×M-dimensional KΓ
βα ma-

trix is symmetric. This matrix can be computed from the following system of
integral equations [107]

KΓ
βE′αE −VΓ

βE′αE(E) = ∑
γ 6=β

∑
∫

dεVΓ
βE′γε(E)

P
E− ε

KΓ
γεαE, (3.13)

where P refers to the principal part and the effective potential VΓ
βE′αE(E) is de-

fined by
VΓ

βE′αE(E) ≡ 〈ΥΓ
βE′(XN ; r̂NσN)|HN − E|ΥΓ

αE(XN ; r̂NσN)〉. (3.14)

The system of equations (3.13) can be solved, for instance, using the Kohn varia-
tional principle [108]. We will refer to the stationary scattering solution with the
asymptotic boundary condition (3.11) as ΨΓP

αE(XN). Other important matrices in
the scattering formalism the SΓ

αβ and TΓ
αβ matrices, can be expressed in terms of

the KΓ
αβ mentioned above. The scattering SΓ

αβ matrix corresponds to reduced ra-

dial functions uΓ±
βα (rN) for the N-th electron following the asymptotic behaviour

(ΨΓ±
αE (XN) for the total wave function) [109, 110]

uΓ+
βα (r) =

√
2

πkβ

[
e−iΘβ(r)δβα + eiΘβ(r)SΓ

βα

]
, r → ∞,

uΓ−
βα (r) =

√
2

πkβ

[
eiΘβ(r)δβα + e−iΘβ(r)S∗Γ

βα

]
, r → ∞. (3.15)

Thus the scattering wave function ΨΓ−
αE behaves asymptotically as a combination

of incoming spherical waves for all open channels (α, β, and γ in Figure 5.1) and
an outgoing spherical wave in channel α

〈ΨΓ−
αE′ |ΨΓ+

βE 〉 = δ(E′ − E)SΓ
αβ(E)

〈ΨΓ±
αE′ |ΨΓ±

βE 〉 = δ(E′ − E)δαβ (3.16)

In terms of the KΓ
αβ matrix it takes the form:

SΓ
αβ =

I− iπKΓ
αβ

I + iπKΓ
αβ

. (3.17)

The same reduced radial functions in Eq. (3.15) can be obtained using the TΓ
αβ

matrix by making the transformation

TΓ
αβ =

1
2iπ

(I− SΓ
αβ) (3.18)
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Figure 3.1: Sketch of the incoming boundary conditions that must fulfil the scattering wave function
ΨΓ−

αE (see text for notations).

3.3 analytic properties of the s matrix

From the first equation in 3.16, it is easy to show that the Sαβ matrix (from now
on we drop the Γ superscript for the sake of simplicity) is unitary:

(Sαβ)
†Sαβ = Sαβ(Sαβ)

† = I. (3.19)

This condition implies that the eigenvalues coming from the Sαβ matrix diagonal-
ization has module one

Sαβ = Ue2i∆U†, (3.20)

where e2i∆ = e2iφα δαβ is a diagonal matrix storing the eigenvalues (the number 2
is introduced by convenience). The φα(E) phases are called either eigenphases or
scattering phase shifts, result from the short-range departure of the polyelectronic
potential, from the Coulomb potential. Hence, the eigenphases are very sensitive
to the electronic correlation. In the vicinity of an isolated resonance the Sαβ matrix
can be written as [111, 112, 113]

Sαβ(E) = S(E)0
αβ −

i
√

ΓαΓβ

E− Er +
iΓ
2

, (3.21)

where Er and Γ are the resonance energy and width respectively, Γα is the partial
width describing de decay of the resonance into the α channel of S(E)0

αβ, which is
a background matrix slowly varying with the energy E, as well as the eigenphases
φ0

α(E) arising from its diagonalization

O†S(E)0
αβO = e2iφ0

α δαβ. (3.22)
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Figure 3.2: Total phase shift and eigenphases of 1Po symmetry, for the two channels scattering
problem in Ne, around the 2s2p63p resonance. (see 7.2 for details).

The total width Γ is the sum over all the partial widths Γ = ∑µ Γµ. Resonances
are poles of the S(E)αβ matrix. If we apply to the S(E)αβ matrix a similarity
transformation using the matrices that diagonalize S(E)0

αβ, we obtain

O†S(E)αβO = eiφ0
α
[
δαβ −

i
√

ΓαΓβ

E− Er +
iΓ
2

]
eiφ0

β . (3.23)

If the determinant is taken at both sides of Eq. (3.23) it yields

e2i ∑µ φµ =
[
e2i ∑µ φ0

µ
]E− Er − iΓ

2

E− Er +
iΓ
2

, (3.24)

which implies that the total phase shift, built up from the sum over all the
eigenphases φ(E) = ∑µ φµ(E), experiences a variation of π when going from
well below to well above the resonance (see Figure 3.2), and fulfills the analytical
form [113]:

φ(E) = φ0(E) + arctan
(

Γ
2(Er − E)

)
, (3.25)



3.4 autoionizing states 25

where φ0(E) is the background of the total phase φ0(E) = ∑µ φ0
µ(E). From the fit

of the computed total phase to Eq. (3.25), the resonance energy and width can be
determined. The individual eigenphases fulfill the equation [112]:

2(E− Er) =
M

∑
µ=1

Γµ cot(φ0
µ − φµ(E)). (3.26)

3.3.1 Levinson-Seaton Theorem

For an electron moving in a modified potential V(r) , which beyond a distance
ra is described by the attractive Coulomb potential −Z/r, the energy eigenvalues
can be expressed in terms of the quantum defect µn [114]:

En = − Z2

2(n− µn)2 . (3.27)

The quantum defect is a measure of how different is the potential V(r) with
respect the the Coulomb one, in the short-range radial domain. This departure
from the Coulomb potential behaviour is also responsible for the scattering phase
shift δ(E), hence, it is to be expected that in the energy limit in which the bound
spectrum transform into a continuum spectrum, the quantum defect and the
scattering phase shift exhibit some continuity across threshold. In fact this known
as the Levinson-Seaton theorem, and states that [115]

lim
n→∞

πµn = lim
E→0

δ(E). (3.28)

Figure 3.3 illustrates the Levinson-Seaton theorem for the He atom in 1Se using
different levels of theory for the calculation: SAE, SEA and fully correlated. It
can be seen the fulfillment of the Levinson-Seaton theorem for every case. Such
plots are useful to optimize the effective potential to be used in SAE computa-
tions [116].

3.4 autoionizing states

3.4.1 A discrete state in the continuum

Let’s consider a time-independent hamiltonian H given by the sum of a reference
hamiltonian H0 and of a perturbation V [36]

H = H0 + V (3.29)
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Figure 3.3: Quantum defect (times π) and scattering phase shifts vs the energy relative to the first
ionization threshold in helium atom (-2 a.u.), for total 1Se symmetry. The results under three different
levels of theory are shown: SAE (black), SEA (magenta) and fully correlated (blue) (see [117] for
details).

If H0 has a discrete ground state |0〉 with energy E0, a set of continuum states
|E〉 starting from a certain threshold Eth > E0, and a second bound state |a〉 with
energy Ea > Eth, then

H0|0〉 = E0|0〉, H0|a〉 = Ea|a〉, H0|E〉 = E|E〉 ∀E ≥ Eth, (3.30)

where the eigenstates of H0 are normalized as

〈0|0〉 = 〈a|a〉 = 1, 〈E′|E〉 = δ(E′ − E) ∀E ≥ Eth, (3.31)

We assume that the only effect of the perturbation potential V is to couple the
state |a〉 to the continuum states, and all the other matrix elements of V are zero

VaE = 〈a|V|E〉 = 〈E|V|a〉∗. (3.32)

Due to this coupling, |a〉 is not stationary, and will eventually decay in the contin-
uum to which it is coupled. Let us indicate with |ψE〉 an eigenstate with energy
E of the complete hamiltonian (different from the ground state), then

(E− H)|ψE〉 = 0, (3.33)

which implies that

〈a|E− H|ψE〉 = 0,

〈E′|E− H|ψE〉 = 0, ∀E′. (3.34)
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If we expand ψE on the basis of the interacting states

|ψE〉 = bE|a〉+
∫

cε,E|ε〉dε, (3.35)

and plug this expansion in the system (3.34), using the properties of the H0 and
V operators, we get the set of equations

(E− Ea)bE −
∫

Vaεcε,Edε = 0,

−VE′abE + (E− E′)cE′ ,E = 0, ∀E′. (3.36)

The previous homogeneous system have a solution which is determined only up
to a multiplicative constant, which is fixed by the requirement that the solution
is normalized as 〈ψE|ψE′〉 = δ(E− E′). From the second equation in 3.36, we can
say with certainty that the value of cE′ ,E for E′ 6= E is

cE′ ,E =
VEa

E− E′
bE, ∀E′ 6= E. (3.37)

While the bE coefficient is a regular function, the set of coefficients cE′ ,E are not to
be treated as simple functions. Since they were introduced under the sign of an
integral, they should be rather regarded as distributions. For these reasons, we
can expect that cE′ ,E comprises a delta function, since any solution of the form

cE′ ,E = VEa
P

E− E′
bE + f (E)δ(E− E′) (3.38)

is valid as well, where P stands for the principal value. In order to get a solution
different from the trivial one (bE = 0), the function f (E) must not be zero. Fur-
thermore, we are free to use any other determination of the (E− E′)−1 expression
since, by means of the formula

1
E− E′ ± i0+

=
P

E− E′
1∓ iπδ(E− E′), (3.39)

they all amount to just a different choice for the function f (E). Here we will
choose the following convention

cE′ ,E =
VEa

E− E′ + i0+
bE + δ(E− E′). (3.40)

This is the choice that leads to a normalized wave function. Replacing this expres-
sion in the first equation in (3.36) we obtain

[
E−

(
Ea + P

∫ VaεVεa

E− ε
dε− iπ|VaE|2

)]
bE = VaE. (3.41)

We can define an energy shift ∆a(E) and an energy width Γa(E) associated to the
state |a〉 as

∆a(E) = P
∫ VaεVεa

E− ε
dε, Γa(E) = 2π|VaE|2, (3.42)
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and hence we can introduce the complex resonance energy

Ẽa(E) = Ea + ∆a(E)− i
Γa(E)

2
. (3.43)

Finally, Eq. (3.41) can be solved as

bE =
VaE

E− Ẽa
(3.44)

and therefore
cε,E = δ(E− ε) +

VεaVaE

(E− ε + i0+)(E− Ẽa)
. (3.45)

Substituting the equations above in Eq. (3.35) we get the final real continuum
states of the system

|ψE〉 = |E〉+
(
|a〉+

∫
dε|ε〉 Vεa

E− ε + i0+
) VaE

E− Ẽa
(3.46)

If we isolate the principal part in the integral over the continuum function,
Eq. (3.47) can be transformed into

|ψE〉 = |E〉
E− ẼR

a
E− Ẽa

+ |ã〉 VaE

E− Ẽa
, (3.47)

where ẼR
a = <(Ẽa) is the real part of the complex resonance energy. The state |ã〉

is referred to as the dressed resonance, and is given by

|ã〉 = |a〉+ P
∫

dε|ε〉 Vεa

E− ε
. (3.48)

For energies that are far away from the resonance, E − ẼR
a (E) � Γa(E)/2, the

new continuum states essentially coincide with the old ones, |ψE〉 ' |E〉. It is
therefore convenient to express the perturbed states in terms of a normalized
distance from the position of the resonance

ε(E) ≡ E− ẼR
a (E)

Γa(E)/2
. (3.49)

Using this notation, the perturbed continuum states become

|ψE〉 = |E〉
ε

ε + i
+ |ã〉 1

πVEa(ε + i)
. (3.50)

The quantities Ẽa(E) and Γa(E) are not simple parameters because they de-
pend on the energy E. However, if the interaction matrix element VaE changes
smoothly enough in a large energy interval across the original energy Ea of the
unperturbed state, we can approximate both ∆a(E) and Γa(E) with their values
at E = Ea. Under these assumptions, ε is simply a linear function of the energy.
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In particular, the energy distribution of the original unperturbed state |a〉 is a
Lorentzian profile peaked at the shifted energy ẼR

a

dPa

dε
= |〈ψE|a〉|2 =

1
π(ε2 + 1)

,
∫ dPa

dε
dε = 1. (3.51)

If at the time t = 0 the system is prepared in the state |a〉, the wave function is
readily written

|Ψa(t)〉 =
∫

dE|ψE〉e−iEt〈ψE|a〉, (3.52)

and the probability that the wave function is still in the state |a〉 at any given time
t is

Aa(t) = 〈a|Ψa(t)〉 =
Γ

2π

∫
dE

e−iEt

|E− Ẽa|2
= e−iẼat, (3.53)

where the last equality was obtained under the assumption that the resonance
is sufficiently far from threshold, |ER

a − Eth| � Γ, enabling the extension of the
integration to the whole energy interval. For positive times, the integral can be
enclosed in the lower complex energy plane and the Cauchy’s residue theorem
applied easily.

The probability of finding the system in the state |a〉 at time t, is

Pa(t) = |Aa(t)|2 = e−Γt. (3.54)

This is a very important result: |a〉 decays exponentially with lifetime τ = 1/Γ.

3.4.2 Resonances as eigenstates of the quenched Hamiltonian

Resonances, can also be obtained as (non normalizable) eigenfunctions of the
Hamiltonian fulfilling purely outgoing boundary conditions, known as Siegert
states [118]. Siegert states have complex eigenvalues E = Er− iΓ/2, where Er is the
resonance energy (sometimes call position) and Γ the resonance width (inverse
of the lifetime) [119], and they diverge exponentially for r → ∞. Despite these
properties, Siegert states can still be obtained numerically with a diagonalization
of the Hamiltonian in an L2 basis using complex scaling (CS) and exterior com-
plex scaling (ECS) methods, in which the coordinate r is continued outside some
scaling radius R into the complex plane by a θ angle rotation following a straight
path [120, 121]. An alternative way to enforce outgoing boundary conditions in
a basis that does not represent divergencies, is to introduce in the Hamiltonian a
complex absorbing potential (CAP) [122, 123]

VCAP(r) = −iηW(r), (3.55)

where W(r) is a smooth monotonic positive function that vanishes at the origin
and η is a real positive number setting the strength of the potential. After adding
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Figure 3.4: Eigenvalues of the HQ of Ne using VCAP(r) = −i4.426 · 10−4Θ(r − R)(r − R)2, with
R = 150 a.u. in a box of 200 a.u.. Bound states eigenvalues remain in the real axis, those of the
continuum states are rotated around the ionization thresholds defining rays, and the corresponding
to the resonances have also an imaginary component and do not belong to the aforementioned rays
(see 7.2 for details on the Ne calculations). The real part of the energy is referenced with respect the
ground state.

the CAP to the Hamiltonian (quenched Hamiltonian HQ = H + VCAP), the di-
vergence of the wave function is absorbed by the CAP and the wave function
becomes square integrable. CAPs are also very useful to avoid the wave-packet
reflexions at the edge of the box when solving the TDSE numerically.

Since HQ is non-Hermitian, the eigenvalues coming from its diagonalization
are complex in general (see Figure 3.4), and the eigenvectors are not orthogo-
nal like in Hermitian matrices. In contrast with with Hermitian matrices HQ has
different right (CR) and left (CL) eigenvectors:

QHCR = CRE,

CL
†QH = ECL

†,

CL
†CR = I. (3.56)

Whereas complex coordinate rotations are known to be equivalent to non-
multiplicative complex potentials [122], multiplicative CAPs are not perfect ab-
sorbers, which means that they permit to enforce outgoing boundary conditions
only in the limit of very small values of η and increasingly large absorption
ranges. On the other hand, the simplicity of CAP, together with the possibility
to combine them with state-of-the-art-methods to treat the electronic correlation,
starting the complex absorption at some radius R, is the real strength of the
method. It is worth to clarify that in Figure 3.4, several eigenvalues with zero
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Figure 3.5: Eigenvalues of the 2s2p63p resonance of Ne (see 7.2), computed using different CAP
strengths V(n)

CAP(r) = −iηn ·Θ(r− R)(r− R)2, where ηn = ε(δn − 1)/(δ− 1), ε = 10−5 and δ = 1.47.

imaginary part show up, when it should be rotated as the rest of continuum
states, but this is due to the fact that this bound states belong to symmetries for
which no channels are open (not defined in the CC expansion). To obtain accu-
rate resonance energies with the CAPs method requires to carry out convergence
tests varying the η parameter [124]. A practical criteria to determine the opti-
mized CAP strength is to analyze the trajectories of the Siegert energies E(η)
in the complex plane, and identify the η values around which the density of
E(η)-points has a maximum (see Figure 3.5), what leads to the condition [125]:

|η dE
dη
|η=η0 = minη |η

dE
dη
|, (3.57)

In an infinite basis, the RHS of Eq. (3.57) would be zero, other value higher than
that is consequence of having a finite basis. One of the most common choices for
W(r) are of the form:

W(r) = Θ(r− R)(r− R)n, (3.58)

where Θ(r− R) is the Heaviside step function. This definition, with n = 2, is the
one we used in the computation of the Siegert energies.





4
P H O T O I O N I Z AT I O N C R O S S S E C T I O N

Many processes in the interaction between matter (atoms/molecules) and radia-
tion can be treated in terms of the exchange of a finite number of photons, often
at the level of the lowest-order perturbation theory (LOPT)

A + ∑
i

niγωi ε̂i → A∗ + ∑
i

n′iγω′i ε̂
′
i
. (4.1)

In order to derive the amplitudes of multi-photon processes in general, the start-
ing point is the time-dependent Schrödinger equation (TDSE)

i
∂ψ(t)

∂t
= H(t)ψ(t). (4.2)

To find a perturbative solution to Eq. (4.2), the time-dependent Hamiltonian is
partitioned in a time-independent reference, or field-free part, and in an interac-
tion part

H(t) = H0 + H′(t). (4.3)

In the dipole approximation, where the spatial variation of the external field
across the system is neglected, and in velocity gauge, the time-dependent inter-
action operator is

H′V(t) = −~A(t) ·∑
i

qi~pi
mic

, (4.4)

where qi, mi and ~pi are the charge, mass and canonical momentum of the i-
th particle, and c is the speed of light. It is possible to convert the interaction
term H′V(t) from the velocity to the length form, with the Göppert-Mayer gauge
transformation, which results in

H′L(t) = −~E(t) ·∑
i

qi~ri. (4.5)

To derive the perturbative solution of the TDSE, it is convenient to change repre-
sentation from the Schrödinger picture to the interaction picture. This is achieved
by applying the following unitary transformation to the wave function

ψI(t) = eiH0tψ(t), (4.6)

which leads to the equation

i
∂ψI(t)

∂t
= H′I(t)ψI(t), H′I(t) = eiH0tH′(t)e−iH0t. (4.7)

33
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In the interaction representation the reference hamiltonian has formally disap-
peared from the TDSE equation. In absence of external perturbations, therefore,
any state is stationary. We can find an iterative solution to Eq. (4.7), by taking the
time integral on both side that equation from an initial time t0 to a final time t,
what gives

ψI(t) = ψI(t0) +
1
i

∫ t

t0

H′I(t1)ψI(t1)dt1. (4.8)

In this expression, which is exact, we still have the unknown wave function ψI(t)
under the integration sign on the RHS of Eq. (4.8). However, we can replace the
unknown quantity with the whole RHS evaluated at t = t1 we get

ψI(t) = ψI(t0) +
1
i

∫ t

t0

H′I(t1)ψI(t0)dt1 +
(1

i
)2
∫ t

t0

∫ t1

t0

H′I(t1)H′I(t2)ψI(t2)dt2.

(4.9)
The same procedure can be repeated as many times as wished, leading to the
Dyson series:

ψI(t) = U(t, t0)ψI(t0) =
∞

∑
n=0

U(n)(t, t0)ψI(t0), (4.10)

where

U(n)(t, t0) = (
1
i
)n
∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ tn−1

t0

dtn H′I(t1)H′I(t2) · · ·H′I(tn). (4.11)

The radiative transition amplitude between two eigenstates of the field-free hamil-
tonian H0, an initial state |i〉 and a final state | f 〉 is given by

A f←i = 〈 f |U(t, t0)|i〉. (4.12)

Using the perturbative expansion in Eq. (4.10), we can write the transition ampli-
tude as a sum of terms

A f←i = A(0)
f←i +A

(1)
f←i +A

(2)
f←i + · · · , A(n)

f←i = 〈 f |U(n)(t, t0)|i〉. (4.13)

4.1 one-photon amplitude

The first non-vanishing amplitude is the one that is linear in the perturber H′(t).
If |i〉 and | f 〉 are two non-degenerate states, then

A(1)
f←i =

1
i

∫ t

t0

dt1〈 f |H′I(t1)|i〉 =
O f i

i

∫ t

t0

dt1eiω f itF(t), ω f i = ω f −ωi, (4.14)

where F(t) is the pulse profile. Then the one-photon amplitude is proportional
to the Fourier transform (F̃(ω) = 1/(2π)

∫
dte−iωtF(t)) of the field:

A(1)
f←i =

√
2π

i
O f i F̃(ω f i). (4.15)
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In the case of a monochromatic square pulse with duration T

F(t) =

F0 cos(ωt + φ) =
( F∗ω

2 eiωt + Fω
2 e−iωt), t ∈ [− T

2 , T
2 ],

0, otherwise,
(4.16)

where Fω = F0e−iφ, the Fourier transform is

F̃(ω f i) =

√
π

2

{
Fω

sin[(ω f i −ω)T/2]
π(ω f i −ω)

+ F∗ω
sin[(ω f i + ω)T/2]

π(ω f i + ω)

}
. (4.17)

The function δT(ω) ≡ sin(ωT/2)/(πω) is a well known representation of the
Dirac delta distribution δ(ω) in the limit T → ∞. Taking this limit, the transition
probability is thus proportional to the exposure time T and is given by

P(1)
f←i =

πT
2

F2
0 |O f i|2[δ(ω f i + ω) + δ(ω f i −ω)]. (4.18)

We can define a transition rate as the transition probability per unit time. For one-
photon processes, therefore, it is proportional to the intensity of the radiation. In
the dipole approximation and velocity gauge (F0 = A0/c and O = ε̂ · ~P), we have
for the absorption process

W(1)
f←i =

P(1)
f←i

T
=

πA2
0

2c2 |〈 f |ε̂ · ~P|i〉|
2δ(ω f i −ω). (4.19)

The cross section is defined as the ratio between the rate with which the final state
is populated to the incoming flux of photons Φγ = ωA2

0/(8πc), which results in

σf←i =
4π2

cω
|〈 f |ε̂ · ~P|i〉|2δ(ω f i −ω). (4.20)

The cross section has the dimension of an area and does not depend on the laser
intensity anymore. The delta function in Eq. (4.20) indicates that the cross section
is a distribution rather than a normal function; therefore, it is really meaningful
only when convoluted with smooth test functions. Indeed, in a real experiment
we observe at best very sharp peaks in a spectrum, not literal delta functions. In
the case in which the final state is a continuum state |ψE〉, normalized as a delta
function 〈ψE′ |ψE〉 = δ(E′ − E), the square of their matrix elements with discrete
states is to be interpreted as a density in energy:

dσf←i

dE
=

4π2

cω
|〈ψE|ε̂ · ~P|i〉|2δ(E−ωi −ω). (4.21)

Since the delta function in this case just expresses the conservation of total energy,
it is customary to provide the cross section to the continuum in integral form,
recovering the dimension of an area:

σf←i =
4π2

cω
|〈ψE|ε̂ · ~P|i〉|2. (4.22)
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4.2 two-photon amplitudes

Let’s consider now the second order term in the Dyson expansion (4.10)

A(2)
f←i = −

∫ t

t0

dt1

∫ t1

t0

dt2eiω f t1 F(t1)F(t2)〈 f |Oe−iH0(t1−t2)O|i〉e−iωit2

= −∑
j
O f jOji

∫ t

t0

dt1eiω f jt1 F(t1)
∫ t1

t0

dt2eiωjit2 F(t2) (4.23)

Using the same square pulse defined in Eq. (4.16), and taking the limits t0 → −∞
and t→ ∞, the transition amplitude for the absorption of one photon from pulse
1 followed by one photon absorption from pulse 2 reads

A(2)
f←i = −

Fω2

2
Fω1

2 ∑
j
O f jOji

∫ ∞

−∞
dt1ei(ω f j−ω2)t1

∫ t1

−∞
dt2ei(ωji−ω1)t2 . (4.24)

The derivation of the expressions for the other second-order processes: two-
photon emission, one absorption and one emission and vice versa, is straightfor-
ward. The second integral in Eq. (4.24) can be easily solved using the parametric
integral ∫ t

−∞
dτeiωτ = lim

η→0+

∫ t

−∞
dτei(ω−iη)τ =

ieiωt

−ω + i0+
, (4.25)

where (x + i0+)−1 is another important and ubiquitous distribution in physics.
Introducing Eq. (4.25) in Eq. (4.24) we get

A(2)
f←i = −2iπ

Fω2

2
Fω1

2
〈 f |OG+

0 (ωi + ω1)O|i〉δT(ω f i −ω1 −ω2), (4.26)

where we have introduced the retarded resolvent operator

G+
0 (E) = (E− H0 + i0+)−1. (4.27)

If the two photon frequencies ω1 and ω2 differ, we have to consider also the
process in which the photon with ω2 is absorbed before the photon with ω1, then
the total two-photon absorption amplitude is

A(2)
f←i = −2iπ

Fω2

2
Fω1

2
[〈 f |OG+

0 (ωi + ω1)O|i〉+
+〈 f |OG+

0 (ωi + ω2)O|i〉]δT(ω f i −ω1 −ω2) (4.28)

4.2.1 Application to the RABITT technique

The RABITT technique (Reconstruction of Attosecond Bursts by Interference of
Two-photon Transitions) is an interferometric two-photon spectroscopy that per-
mits to characterize the temporal profile of attosecond pulse trains (APT). In this
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technique, the APT is realigned, with a controllable time-delay (τ), to a weak
replica of the IR pulse used to generate it. The energy of the high-order harmon-
ics (HH) in the train is generally sufficient to ionize a rare gas. In absence of the
IR radiation, this results in the production of photoelectrons with kinetic energy
E = (2n + 1)ω − Ip, where Ip is the atomic ionization potential. This process is
well described by the one-photon ionization equations given in 4.1. Due to the
presence of the IR field, however, two photon transitions corresponding to the
absorption of one XUV photon and to the exchange of one IR photon can also
take place. As a result, photoelectron signals at 2nω− Ip, the so-called side-bands
(SB), also appear. The same SB 2n can be reached either through the absorption
of one photon from the HH 2n− 1 (ω2n−1) and of one IR photon, or through the
absorption of one photon from the HH 2n + 1 (ω2n+1) and the stimulated emis-
sion of one IR photon. The interference between these two inequivalent quantum
paths results in oscillations of the intensity of the SBs as a function of the time
delay, with the characteristic frequency equal to twice that of the IR. By measur-
ing the dephasing between the oscillations of consecutive SBs, it is possible to
reconstruct the whole temporal profile of the APT.

The sum of the two-photon transition amplitudes to the SBs is readily written
by applying the formulas we derived earlier in this section

A(2)
2nω(E) = {Fω2n−1 FωM2n−1 + Fω2n+1 F∗ωi

M2n+1}δT(E−ωi − 2nω), (4.29)

where for the sake of brevity, we called the two-photon transition matrix elements
for the absorption of the 2n − 1 and of the 2n + 1 harmonics as M2n−1 and
M2n+1, respectively:

M2n−1 = 〈E|O[G+
0 (ωi + ω) + G+

0 (ωi + ω2n−1)]O|i〉 (4.30)

M2n+1 = 〈E|O[G+
0 (ωi −ω) + G+

0 (ωi + ω2n+1)]O|i〉. (4.31)

The integral transition rate to the sideband, therefore, is given by

W (2)
2nω =

1
T

∫
dE|A(2)

2nω(E)|2 =
π

8
|Fω2n−1 FωM2n−1 + Fω2n+1 F∗ωi

M2n+1|2 (4.32)

The argument of the two-photon integrals is generally called atomic phase, ϕAt
n =

arg(Mn). If we use the APT as a reference to define the temporal scale, and thus
keep it fixed with respect to the time delay τ, then the phases of the harmonics
field amplitudes do not change with the time delay, while the phase of the IR,
which we can here assume to be very long, is linear with the time delay:

Fω2n−1 = |Fω2n−1 |e−iφ2n−1 , Fω2n+1 = |Fω2n+1 |e−iφ2n+1 , Fω = |Fω |e−i(φIR+ωτ).
(4.33)

Inserting these dependences in the expression for the transition rate to the side-
band, we get

W (2)
2nω ∝ |Fω2n−1 FωM2n−1|2 + |Fω2n+1 F∗ωM2n+1|2 +

+ 2|Fω2n−1 Fω Fω2n+1 F∗ωM2n−1M2n+1| cos(2ωτ −Φ2n), (4.34)
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where
Φ2n = φ2n+1 − φ2n−1 − φIR + ϕAt

2n−1 − ϕAt
2n+1 (4.35)

Thus, the phase of the SBs are equal to the phase difference between consecu-
tive harmonics minus the IR phase and minus the difference between the atomic
phases. If the properties of the ionization continuum do not change much across
the energy span of few ω’s, as it is generally the case for rare gases in the energy
region far from the ionization threshold, on the one side, and far from autoioniz-
ing states, on the other side, then the two-photon integralsM2n−1 andM2n+1 are
similar both in absolute value and in phase. In particular, the atomic phase can be
accurately linearized across the whole energy interval:ϕAt

2n−1− ϕAt
2n+1 ' 2ω∂ϕAt

E /∂E.

Both the absolute value of the IR phase and the (typically small) value of the
atomic phase change are a single unknown constant. If these constants are known,
then the individual differences φ2n+1− φ2n−1 can be determined and, from these,
by means of an inverse discrete Fourier transform, the envelope of the whole
train can be determined in absolute terms. If one is not particularly interested
in knowing exactly where the APT is located within the IR pulse (and, hence,
whether the maxima in the sidebands correspond to attosecond pulses at the
zeros or at the maxima of the IR field) the absolute value of the IR phase or the
energy derivative of the atomic phase are not particularly relevant. Even without
knowing them, from all the values of Φ2n−Φ2n−2, it is still possible to determine
the average shape of the envelope of an attosecond pulse in the train, and in
particular its duration.

4.3 cross section near an autoionizing state

Let’s consider a radiative transition from the ground state |0〉 to the new contin-
uum, mediated by the operator O = ε̂ · ~P (velocity gauge). As we have seen in
the previous sections, the cross section to the continuum is given by

σE =
4π2

cωγ
|〈E|O|0〉|2. (4.36)

In the case in which the discrete state and the continuum interact (see 3.4.1), the
transition amplitude becomes

〈0|O|ψE〉 = O0E
ε

ε + 1
+

O0ã

πVEa(ε + i)
. (4.37)

In the special case in which the transition amplitude to the unperturbed contin-
uum is exactly zero O0ã = O0a, and then

σE =
4π2

cωγ
· Γa/(2π)

(E− ẼR
a )

2 + (Γa/2)2 . (4.38)
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In other words, the interaction with the continuum blurred the bound state (the
delta function becomes a Lorentzian), and |a〉 acts like a door-state to an other-
wise dark continuum. In the more general case, in which the radiative transition
to the unperturbed continuum does not vanish, we can factor out the continuum
transition amplitude:

〈0|O|ψE〉 = O0E
ε + q
ε + i

, (4.39)

where the new parameter q has been introduced [126]

q =
O0ã

πVEaO0E
. (4.40)

This quantity is real, provided that the two radiative transition amplitudes have
the same phase, which is always the case for linearly polarized fields and targets
whose Hamiltonian is invariant under time reversal. The cross section has the
form of the famous Fano profile:

σE = σbg(E)
(ε + q)2

ε2 + 1
. (4.41)
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I N T E R FA C E B E T W E E N Q U A N T U M C H E M I S T RY A N D
S C AT T E R I N G M E T H O D S : T H E X C H E M A P P R O A C H

5.1 the xchem close coupling

To describe a single-ionization scattering state it is convenient to distinguish be-
tween two radial ranges: a short range, ri < R0, where all N electrons are within
a fixed radius R0 from the conventional center of the parent ion and a long range,
rN > R0, where one and only one electron (e.g., the N-th) is located beyond R0,
that is ri<N < R0. Indeed, if the boundary value R0 is large enough, the eigen-
states of the parent ion are negligible whenever ri > R0. As a result, the complete
single-ionization wave function in the second region is well represented by the
close-coupling (CC) ansatz

rN > R0, Ψ−αE(x1, . . . , xN) =
1
N ∑

β

NβEΥβ(x1, . . . , xN−1; r̂N , ζN)
u−β,αE(rN)

rN
, (5.1)

where xi denotes the position and spin coordinates of electron i, r̂N and ζN are
the angular and spin coordinates, respectively, of electron N, Υα is a spin-coupled
channel function (see below), NβE is a normalization factor that ensures the cor-
rect asymptotic behavior, and u−β,αE(r) is the radial function that describes the
continuum electron, which is asymptotically given by Eq. (3.15)

In the present work, the spin-coupled channel function Υα is given by the an-
tisymmetrized parent ion function Φa coupled to the N-th electron spin function
χ, and multiplied by the spherical harmonic Y`m, which expresses the angular
distribution of the N-th electron,

Υα(x1, . . . , xN−1; r̂N , ζN) =
2S+1[Φa(x1, . . . , xN−1)⊗ 2χ(ζN)]Σ Y`m(r̂N)

= ∑
Σaσ

CSΣ
SaΣa , 1

2 σ
2Sa+1Φa,Σa

2χσ(ζN) Y`m(r̂N). (5.2)

In Eq. (5.2) S is the total spin of the system, Σ its z projection, Sa and Σa are the
corresponding values for the parent ion, σ is the z component of the electron
spin, and CSΣ

SaΣa , 1
2 σ

is a Clebsh-Gordan coefficient. For the sake of clarity, the spin

multiplicity of both the parent-ion and continuum-electron components, 2Sa + 1
and 2, respectively, have been indicated as prefixes of the corresponding wave
functions. The channel index α corresponds to the set of indexes (S, Σ, a, `, m),

41
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while the parent-ion index a defines entirely the state of the parent ion, except for
its total spin projection. We will be mostly interested in spin-free Hamiltonians.
Therefore, the total spin S and spin-projection Σ will be constant parameters
across the whole scattering calculation.

Due to the natural asymptotic separation between a finite number (or a de-
numerable set) of channel functions Υα(x1, . . . , xN−1; r̂N , ζN) and the radial wave
function of an electron in the continuum, in a scattering perspective we describe
the complete function as a linear combination of “extended” channel functions
Ῡαi and of localized short-range N-electron states ℵi:

Ψ−αE = ∑
i
ℵici,αE + ∑

β
∑

i
Ῡβicβi,αE. (5.3)

The extended channel functions Ῡαi are defined as

Ῡαi = Nαi Â Υα(x1, . . . , xN−1; r̂N , ζN) ϕi(rN) (5.4)

where {ϕi} is a set of radial functions suitable to describe the continuum and Â
is the antisymmetrizer

Â =
1

N! ∑
P∈SN

(−1)p P , p = parity of P , (5.5)

with P the standard permutation operator that belongs to the space of N-particle
permutations, SN . The channel functions Υα are assumed to be already totally
antisymmetric with respect to the permutation of the first N − 1 parent-ion elec-
trons

∀P ∈ SN−1, P Υα(x1, . . . , xN−1; r̂N , ζN) = (−1)p Υα(x1, . . . , xN−1; r̂N , ζN).
(5.6)

The antisymmetrizer for N particles Â(N) can be written in terms of that for N− 1
particles, Â(N−1):

Â(N) =
1
N

(
1−

N−1

∑
i=1
PiN

)
Â(N−1), (5.7)

where PiN denotes the permutation operator between particles i and N. There-
fore, the extended channel functions can also be written as

Ῡαi =
Nαi
N

(
1−

N−1

∑
i=1
PiN

)
Υα(x1, . . . , xN−1; r̂N , ζN) ϕi(rN). (5.8)

We use three different kinds of functions to build the N-electron basis: i) a set
of localized Gaussian functions {GL

i (x1)} as provided by the quantum chemistry
packages (QCPs) (for molecules, they would be located at the different atomic
positions –multi-center expansion), ii) a set of diffuse even-tempered Gaussian
functions {GM

i (x1)} and iii) a set of B-splines functions {Bi(x1)} starting at
r = R0. Basis functions defined in ii) and iii) constitute the so called GABS ba-
sis, {GM

i (x1)} ∪ {Bi(x1)} (for molecules, these functions would be located at the
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Figure 5.1: Sketch of the radial space partition and the basis functions used to describe the wavefunc-
tions on it. (see text for details).

center of mass –single-center expansion). The GM
i (x1) functions are in principle

defined in the whole interval r ∈ [0, ∞). However, due to their fast exponential
decrease, there is a distance R1 (R1 > R0) beyond which the overlap with the
B-splines is negligible (see [98] for details). The region (r ∈ [R0, R1]) where both
subsets overlap guarantees a smooth transition from the outer to the inner region,
thus providing great flexibility to the GM

i (x1) functions in the short-range region,
because B-splines compensate the deficiencies of the GM

i (x1) functions in repro-
ducing the rapid oscillations of the diffuse states (Rydberg and continuum states).
From R1 on, B-splines take over the full description of the wave function. This is
how the inner part of the space partition matches almost perfectly the outermost
part, in contrast with methods that make use of a rigid boundary to divide the
two regions [21]. The typical thickness of the R1 − R0 transition region is tens of
a.u..

5.2 the gabs basis

The GABS basis is a mono-centric basis comprising a set of Gaussian functions
and a set of B-splines whose support starts from a given radius R0 (see Fig. 5.2).
Due to their fast-descent character, the Gaussian functions are numerically negli-
gible beyond a radius R1 > R0. Functions expressed in the GABS basis, therefore,
are represented by purely Gaussian functions in the short range, i.e., r < R0,
by a combination of Gaussian and B-spline functions in the intermediate region,
R0 < r < R1, and by purely B-spline functions thereafter. As shown in the next
section, the simultaneous presence of Gaussian and B-splines in the intermediate
region enhances greatly the flexibility of the Gaussian functions in the innermost
region as well.
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Figure 5.2: (Color online) Plot of the radial part of some Gaussian (solid lines) and B-spline (dashed
lines) representatives of the mono-centric GABS basis set as a function of the distance from the origin.
The first B-spline node is located at R0 =10 a.u. The basis defines three characteristic regions: (i)
r ∈ [0, R0], where only Gaussian functions are present, (ii) r ∈ [R0, R1], where Gaussian and B-spline
functions overlap, and (iii) r ∈ [R1, Rbox] where the Gaussian functions are negligible.

The Gaussian spatial basis functions with angular momentum ` and projection
m are defined as

G`m
αK(~r) = Nα`

gαK`p(r)

r
X`m(r̂), (5.9)

where
gαK(r) = rK`p+1e−αr2

, (5.10)

K`p = ` + 2p, with p = 0, 1, . . . , pmax, and (K`p)max ≡ Kmax is a fixed param-
eter that defines the maximum orbital angular momentum, `max, the basis can
represent. The lower bound on K ensures that gαK(r) ∼ r`+1 is regular at the
origin.

The X`m functions (m ≥ 0) are symmetry adapted spherical harmonics, also
known as real spherical harmonics [127], defined in terms of the spherical har-
monics Y`m as

X`0 = Y`0,

X`m =
1√
2

(
Y`m + (−1)m Y`−m

)
,

X`−m =
1

i
√

2

(
Y`m − (−1)m Y`−m

)
. (5.11)

Notice that the present definition of symmetry adapted spherical harmonics dif-
fers from other ones found in the literature (XS

`m), by a phase XS
`m = (−1)m X`m.
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The symmetry adapted spherical harmonics allow us to work with the same point
groups employed in the QCPs for the short-range part of the wavefunctions. We
have implemented the Abelian groups: C1, Cs, C2, Ci, C2v, C2h, D2 and D2h (see
Appendix A).

Finally, NαK is a normalisation factor

uαK(r) = NαK gαK,
∫ ∞

0
dr u2

αK(r) = 1. (5.12)

Normally, we will use for all orbital angular momenta a single set of even-
tempered exponents {α1, α2, . . . , αNα}, generated from the two parameters α and
β according to the geometric series [128, 67],

αn = α βn−1. (5.13)

There are thus N`
G = Nαb(`max − `)/2 + 1c such states for each angular mo-

mentum ` (bxc is the largest integer n such that n ≤ x). Extended Gaussian
basis sets are notoriously plagued by large linear dependencies which can easily
disrupt numerical accuracy. For this reason, numerically redundant linear com-
binations must be eliminated from the set before it can be used in calculations.
To do so, for each orbital angular momentum `, we diagonalize the overlap ma-
trix S`

αK,βK′ = 〈G`0
αK|G`0

βK′〉 and exclude those eigenfunctions whose eigenvalue is

more than MG
S times smaller than the largest eigenvalue where MG

S is a given
maximum condition number (in our case, MG

S = 106). We refer to the N`
G remain-

ing eigenstates as to the preconditioned Gaussian basis {|G`m
1 〉, |G`m

2 〉, . . . , |G`m
N`
G
〉}.

Splines are piecewise polynomials with maximum degree k − 1, C∞ every-
where, except at the positions given by a fixed non decreasing set of nodes
{ti}i=1,2,...,n where they are at least Ck−νi−1, νi being the so-called multiplicity
of the node [73]. The splines that vanish below the smallest and above the largest
node form a linear space with dimension n− k. B-splines are those n− k elements
of the latter space whose support is limited to k consecutive intervals (or, alter-
natively, whose support comprises k + 1 consecutive nodes, when counted with
their multiplicity). The B-splines of order k, {Bk

i }i∈{1,2,...,n−k}, have the following
explicit iterative expression [73],

B1
i (x) = θ(x− ti) · θ(ti+1 − x),

Bk
i (x) =

(x− ti) Bk−1
i (x)

ti+k−1 − ti
+

(ti+k − x) Bk−1
i+1 (x)

ti+k − ti+1
,

(5.14)

where θ(x) is the Heaviside step function θ(x) = 1 if x > 0; θ(x) =
0 otherwise. In the following, we shall assume that the first and last nodes are k
times degenerate, while the other nodes are non degenerate. The use of B-splines
in atomic and molecular physics calculations has been reviewed in [74]. When
using B-splines, a large k value is desirable because higher-order polynomials
give rise to better accuracy. If k is too large, however, linear dependencies start
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to be an issue for B-splines as well [129]. For calculations conducted in double
precision, k = 7 is found to be a good compromise. When the first node t1 is
located at a finite radius R0, it is advisable to exclude the first three B-splines to
ensure C2 regularity of the wave function.

Preconditioned Gaussian functions and B-splines are separately well condi-
tioned basis sets. When considered together, however, numerical linear depen-
dencies may arise since the two sets overlap over an extended radial region, this
issue being more pronounced when the `max parameter in the Gaussian basis
is large. To prevent numerical instabilities, the spline space is purged from the
elements that contribute most to the numerical over-completeness of the GABS
basis. We do so by diagonalizing the projector P̂G that defines the preconditioned
Gaussian space in the basis of B-splines (for simplicity, we drop the angular mo-
mentum indexes)

〈B|P̂G |B〉 = SbgS−1
gg Sgb = OΛO†,

Λij = λiδij, O†O = 1,
(5.15)

where

Sgg = 〈G|G〉, Sbg = 〈B|G〉, Sgb = S†
bg, (5.16)

|G〉 = ( |G1〉, |G2〉, . . . , |GNG 〉
)

(5.17)

|B〉 =
(
|B1〉, |B2〉, . . . , |BNB〉

)
(5.18)

We exclude from the basis the eigenfunctions whose eigenvalue differs from 1 less
than an assigned threshold εB

P (in our case, εB
P = 10−8). The remaining eigenstates

form a preconditioned B-spline basis that will be called {|B`1〉, |B`2〉, . . . , |B`NBp
〉}.

This procedure is carried out separately for each orbital angular momentum,
since the set of Gaussian functions depends on `. We will use the symbol χ`

n (or
χn, if the angular momentum is clear from the context) to indicate the elements
of the resulting regularized GABS basis, {χ`

n} = {G`i } ∪ {B`j }. As anticipated at
the beginning of this section, although the support of the Gaussian functions is
in principle the whole [0, ∞) semi-axis, in practice the Gaussian functions are
negligible beyond a certain radius R1. As a consequence, the B-splines whose
support is located beyond R1 already belong to the null space of the projector
and can be kept unchanged throughout the regularization procedure. This means
that, beyond a certain index, the regularized GABS functions are pure B-splines.
In particular, local operators expressed in this part of the GABS basis retain a
sparse character (see Fig. 5.3).

5.3 parent ions

The parent-ion wave functions are calculated using multi-configurational meth-
ods, i.e. the wave function of every parent ion, a vector in the Configuration
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Figure 5.3: (Color online) Typical structure of an operator matrix in GABS representation. Shaded
and white areas represent blocks containing nonzero and zero elements, respectively.

Interaction (CI) picture, is represented by a linear combination of Configuration
State Functions (CSFs) as

|Φa(x)〉 = ∑
i

cia |2Sa+1
q Ξi(x)〉 , (5.19)

where |2Sa+1
q Ξi(x)〉 represents an (N − 1)-electron CSF with multiplicty 2Sa + 1

and symmetry q. These CSFs can be related to Slater determinants using the
Graphical Unitary Group Approach (GUGA) [130], avoiding the possibility of
spin contamination, so that the eigenfunction a can be converted into combina-
tions of Slater determinants (Di), as

|Φa(x)〉 = ∑
i

c′ia |Di(x)〉 , (5.20)

where the orbitals included in the Slater determinants are constructed as a linear
combination of localized Gaussian functions

φL
i (x1) = ∑

j
RL

jiG
L
j (x1), (5.21)
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being RL
ji the expansion coefficient for the orbital i in the localized Gaussian

basis function GL
j . It is important to remember that Gaussian basis functions are

centered on the different nuclei of the molecule, which requires the evaluation
of polycentric integrals to calculate the properties of the system. For reasons that
will become apparent later, in the latter equation we have included a superscript
L to explicitly indicate that all these functions are localized.

The optimization of the orbitals and CI vectors can be done using standard
quantum chemistry methods. Specifically, we use the Complete Active Space Self
Consistent Field (CASSCF) where the orbitals are divided into inactive, active
and virtual subspaces. The inactive and virtual orbitals are doubly occupied and
empty, respectively. The active orbitals define the so-called active space and the
CI vector is constructed in the CSF basis considering all possible configurations
for the electrons in this reduced set of orbitals, i.e. a full CI calculation inside
the active space. To allow for the description of different parent ions with the
same set of orbitals, parent-ion states are obtained by using the state-average
formalism, SA-CASSCF [131]. The orbitals are calculated, imposing symmetry
constrains, using the QCP MOLPRO [54], that allows one to average states of dif-
ferent symmetries. This set of orbitals is then transformed to make it compatible
with the MOLCAS [132] code, and the CI vector of Eq. (5.19) is recalculated pre-
serving the symmetry constraints. The required matrix elements, Hamiltonian
and multipoles up to 5th order between the parent ions, are calculated using
the RASSI module of MOLCAS. Finally, in order to further manipulate the elec-
tronic wave function, the CI vector is transformed into a linear combination of
Slater Determinants using the GUGA table provided by MOLCAS, thus leading
to parent-ion wave functions in the form given by Eq. (5.20).

5.4 augmentation

In order to calculate the augmented states, the virtual orbitals of the parent
ion (defined as linear combinations of the localized Gaussian functions centered
at the atomic positions) are removed, while the auxiliary set of Gaussian func-
tions belonging to the GABS basis and located on the center of mass is added,
i.e. we follow a strategy similar to that usually employed to describe Rydberg
states [133]. As explained above, these Gaussian functions will help us to repro-
duce the electronic continuum close to the nuclear environment by creating a
set of mainly monocentric orbitals that will connect the localized ones at short
distances with B-spline functions at long distances.

The monocentric orbitals, φM, are constructed by removing linear dependen-
cies and orthogonalizing them to the localized orbitals φL:

φM
i (x1) = ∑

j
RM

ji GM
j (x1) + ∑

j
ajiφ

L
j (x1), (5.22)
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where RM
ji are the linearly independent components of the orbital i in the mono-

centric Gaussian functions GM
j , and aji contains the contribution of the localized

orbital j to fulfill the orthonormalization requirements. For the sake of clarity, we
have dropped all indexes but one in the definition of the monocentric Gaussian
functions given in Eq. (5.9) and we have explicitly added the superscript M to
emphasize the monocentric character of these functions.

The augmentation procedure is carried out for all chosen parent-ion states
over all possible orbitals, both localized (φL

i , Eq. (5.21)) and monocentric (φM
i , Eq.

(5.22)),
|Φ̄ai(x)〉 = a†

i |Φa(x)〉 , (5.23)

where Φ̄ai describes the parent ion a augmented in the orbital i. This augmen-
tation is easy to implement when the parent ions are described in the basis of
Slater determinants (see equation (5.20)) as

|Φ̄ai(x)〉 = ∑
j

c′jaa†
i |Dj(x)〉 . (5.24)

This function is then projected into a basis with a well defined spin, using the
GUGA table of the parent ion with an extra electron, to obtain the augmented
state defined in Eq. (5.27):

|Ῡaug
αi (x)〉 = ∑

k
c′′kαi |2S+1

q Ξk(x)〉 , (5.25)

where the elements c′′kαi are given by

c′′kαi = ∑
j

c′ja 〈2S+1
q Ξk(x)| a†

i |Dj(x)〉 , (5.26)

and we have used the fact that α ≡ (S, Σ, a, `, m). Finally, all the properties be-
tween the different augmented parent ions, i.e. the Hamiltonian, overlap and
dipole matrices, are obtained with the RASSI module of MOLCAS.

In summary, the key ingredients of XCHEM are the following: i) the space par-
tition and the basis functions selection for its representation (GABS+multi-center
Gaussian expansion), ii) the disjoint support of B-splines from the parent-ion
wave functions included in the CC expansion, and iii) the interface of MOLCAS
with scattering methods, which allows us to include electron correlation at the
same level as that provided by ab initio QCPs for bound states.

5.5 equivalence between the scattering and the augmented

states

QCPs can provide an accurate description of the parent-ion states. To account
for the additional continuum electron, these states must be supplemented with
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additional one-electron functions, which can be done in practice by using the so
called augmented states, defined as

Ῡaug
αi = P̂SΣ â†

i`αmασΦa,Σa (5.27)

for an orbital with well defined `α, mα quantum numbers, where PSΣ is the pro-
jector on the functions with total spin S and spin projection Σ, â†

i`mσ is the creator
of an electron in the spin-orbital φi(x) = φi(r)Y`m(r̂)2χσ(ζ), and Φa,Σa is a parent-
ion state with well defined total spin projection Σa. For simplicity in the notation,
the `, m and σ quantum numbers are implicit in the i index used to denote a
particular spin-orbital φi(x). The creator operator is defined on the space of spin-
orbitals occupation-number vectors as

â†
i |n1, n2, . . . ,

i
0, . . .〉 = (−1)∑i−1

j=1 ni |n1, n2, . . . ,
i
1, . . .〉, (5.28)

â†
i |n1, n2, . . . ,

i
1, . . .〉 = 0. (5.29)

Furthermore, the spin-orbital occupation-number vectors are identified to Slater
determinants as

〈x1, x2 . . . , xN |n1, n2, . . .〉 =
√

N! Â
∞

∏
i=1

φ
ni
i (xNi ), Ni =

i

∑
j=1

nj. (5.30)

What is the exact relation between the augmented states and the extended chan-
nel functions introduced in the preceding subsection? In the close-coupling for-
malism, the anti-symmetrization of the product of an (N − 1)-electron determi-
nant |φk1 · · · φkN−1 | times a given spin orbital φi is

Â|φk1 · · · φkN−1 |φi =
1√
N
|φk1 · · · φkN−1 φi|. (5.31)

Whenever the appended spin-orbital follows all the occupied spin-orbitals in the
determinant (as it is always the case when augmenting a parent ion with a virtual
orbital), the following relation holds:

ÂΦaφi =
1√
N
(−1)N−1 â†

i Φa. (5.32)

Using the definition of the augmented states and of the extended channel func-
tions, it is therefore easy to derive the following relation:

Ῡaug
αi = (−1)N−1

√
N

Nαi
CSΣ

SaΣa , 1
2 σ

Ῡαi. (5.33)

5.6 numerical methods to compute the scattering states

From the equations provided in the CC section (5.1) and in the appendix, the
Hamiltonian (B.9) and overlap (B.3) operator matrices can be computed, and us-
ing these, the scattering states obtained. The block structure of the operators is
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shown in Figure 5.4. The ℵj functions represent the Ne-electron localized states
(obtained using a polycentric Gaussian expansion), the ΥαGM

j ones involve the
parent-ion wave functions augmented with the monocentric Gaussian set (which
are related to the extended channel functions as explained in section 5.4), and
the ΥαBk functions represent the extended channel functions with B-splines Bk
for the outer electron. In this notation, α runs over all channels included in the
CC ansatz. The blocks that cross the wave functions exclusively expanded in
terms of Gaussian functions are computed with the QCPs. To compute the other
matrix elements, the equations given in the appendix have been used. Taking into
account that, by construction, there is a disjoint support between B-spline func-
tions and the polycentric Gaussian functions, the blocks corresponding to this
interaction are zero. At a given distance, the operator mediated integral between
B-splines and the monocentric Gaussian functions is negligible, and hence, from
that distance on, these blocks will be zero as well. This last feature together with
the fact that B-spline functions have a compact support lead to sparse matrices,
whose structure can be exploited when operating with them. The zero blocks in
Figure 5.4 are represented by a white background.

To compute the scattering solution Ψ−αE, we require (Ĥ− E)Ψ−αE to vanish when
projected onto the N basis functions that are zero at the box boundary (i.e., the
farthest grid point used in the definition of the B-spline basis). If the CC expan-
sion includes M channels Υβ that are open at the energy E, the corresponding
components of Ψ−αE generally do not all vanish at the box boundary and they
must therefore include the last B-spline in the box. These two requirements lead
to a N × (N + M) homogeneous system of linear equations which has M non-
trivial solutions:

(H− ES) ·Ψ = 0. (5.34)

To solve (5.34) using the methods we will explain below, we require the left-hand
matrices to contain linearly independent rows and columns. In general, the oper-
ator blocks coming from QCPs exhibit linear dependencies. The blocks in which
the bras correspond to a parent ion augmented with monocentric Gaussian func-
tions and the kets correspond to a parent ion coupled with B-splines or vice versa
can also have linear dependencies, because several of the Gaussian functions can
be represented by linear combinations of B-splines. But the blocks in which both
the bras and kets involve B-splines are linearly independent, due to the effective
completeness of this basis [129] and the order set in the computation of these
polynomials (k < 15). To go from the original operator matrix to the conditioned
one Op → Õp, we need to build the conditioning matrix Pcon that makes the
transformation:

Õp = PT
conOpPcon. (5.35)

The conditioning matrix Pcon only transforms the square block Op
′ in Op, con-

taining the QC matrix elements and the rows and columns in which there is
a non-negligible overlap between monocentric Gaussian and B-spline functions
(see Figure 5.4). To find this transformation, the Ne-electron overlap sub-matrix in-
volving the same functions as Op

′ is diagonalized, S′ = OΛOT, and those eigen-
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Figure 5.4: Matrix structure of the Hamiltonian operator. See text for notations. Shaded areas
represent matrix blocks containing non-zero matrix elements. The QC block is obtained from the
QCPs. The remaining matrix elements are evaluated by using the equations given in the Appendix.

vectors whose eigenvalues are lower than some threshold removed (O → Õ,
Λ→ Λ̃), leading to

Pcon =

[
ÕΛ̃−

1
2 0

0 1

]
. (5.36)

After conditioning the overlap and the Hamiltonian matrices, the system of linear
equations (5.34) transforms into:(

H̃− ES̃
)
· Ψ̃ = 0, (5.37)

where the new solutions Ψ̃ are related to the original ones by Ψ = PconΨ̃. Once
the system of linear equations (5.37) is free from linear dependencies, we set to
zero the M rows containing the B-splines that do not vanish at the end of the
box (coincides with the number of channels). This is necessary in order to get the
non-trivial solution of the system of equations.
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5.6.1 LU factorization and null space of U matrix

This method is based in the LU factorization of the matrix associated with the
homogeneous system of linear equations:

H̃− ES̃ = LU =


l11 0 · · · 0

l21 l22 · · · 0
...

. . .
...

ln1 ln2 · · · lnn




u11 u12 · · · u1n

0 u22 · · · u2n
...

. . .
...

0 0 · · · unn

 , (5.38)

where the matrices have the dimension n = N + M. Due to the LU factorization,
the system (5.37) is equivalent to finding the null space of the matrix U.

U · Ψ̃ =



u11 u12 · · · u1N · · · u1n

0 u22 · · · u2N · · · u2n
...

...
. . . · · · ...

0 0 · · · uNN · · · uNn

0 0 0 · · · 0 u(N+1) (N+2) · · · u(N+1) n

0 0 0 0 · · · 0 · · · u(N+2) n
...

...
...

...
...

...
. . .

...

0 0 0 0 0 0 · · · 0



·



Ψ̃11 Ψ̃12 · · · Ψ̃1M

Ψ̃21 Ψ̃22 · · · Ψ̃2M
...

...
. . .

...

Ψ̃N1 Ψ̃N2 · · · Ψ̃NM

−1 0 · · · 0

0 −1 · · · 0
...

...
. . .

...

0 0 · · · −1


= 0. (5.39)

As we have set to zero M rows, we have the same number M of degrees of
freedom in the solution, which will be cleared later by the asymptotic fitting of
the solutions to the Coulomb wave functions that represent the scattering states
at long distances (see 5.6.4). There will also be M matrix elements in the diagonal
of U that will be zero, which allows us to solve the system by back-substitution:

uNNΨ̃Nj = uN(N+j)

u(N−1)(N−1)Ψ̃(N−1)j + u(N−1)(N)Ψ̃Nj = u(N−1)(N+j)

... (5.40)
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We will refer to this method as HSLE.

5.6.2 Matrix inversion method

If we remove in the matrix
(
H̃− ES̃

)
the M rows containing the B-splines that do

not vanish at the end of the box, and permute the columns containing those func-
tions in order to be placed in the last M columns, Eq. (refeq:HSLEConditioned)
can be written in blocks as [

A B
] [ Ψ̃N

−I

]
= 0, (5.41)

where the matrix A with N × N dimension is Hermitian, because the last B-
splines in the box are placed in B. Matrix Ψ̃N = {Ψ̃ij}; i = 1, ..., N; j = 1, ..., M
(see Eq. (5.39)) and I is an M × M identity matrix. The matrix A is invertible
because it is free of linear dependencies and it is Hermitian. Then a solution can
be found in the form

Ψ̃N = A−1B (5.42)

Although this solution is straightforward it scales poorly with the matrix size
(number of scattering channels and basis functions in the CC), because it requires
a matrix inversion for every energy of interest. This limitation could partly be
circumvented by exploiting the sparse structure of the matrices (thanks to B-
splines,) using parallel routines for the matrix inversion. We will refer to this
method as INVM.

5.6.3 Eigenstates as a basis for the scattering states

This method requires to compute the full Hamiltonian spectrum for the system
confined to the box:

HΦ = ESΦ, (5.43)

where E is a diagonal matrix with the eigenvalues (energies) and Φ the matrix
of eigenvectors (the columns represents the eigenstates). To do so, we start from
the pristine Hamiltonian and overlap matrices, without applying the (5.36) con-
ditioner, in order to do it in a more general and independent way, Diagonalizing
this time the full overlap matrix, and removing the eigenvectors whose eigenval-
ues are lower than some defined threshold, the new overlap matrix free of linear
dependencies results in

S = OΛO†. (5.44)

The thresholds used to remove the linear dependencies in order to compute the
eigenstates are typically higher (remove more eigenvectors) than those only used
to condition the matrices for the scattering calculations, typically the values are
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10−5 and 10−8 respectively, for the Λii/max(Λii) ratio. From this spectral resolution
of the overlap, a new conditioner matrix can be built T = OΛ−

1
2 (a rectangular

matrix), allowing to transform Eq. (5.43) in:

HQ = EQ, (5.45)

where the new conditioned Hamiltonian is H = T†HT and the relation between
the old and new eigenvectors is Φ = TQ. Since Q is orthogonal, from the spectral
resolution (5.44) it is easy to show that

Φ†SΦ = I. (5.46)

Using this relation, the Hermitian matrix A = [H− ES]N×N in Eq. (5.41) can be
expressed in terms of the Φ eigenstates:

A = ΦΦ†AΦΦ† = Φ(Φ†SΦE− E)Φ† = Φ(E− E)Φ†, (5.47)

and then the same Eq. (5.42) of the INVM method can be used with A−1 =
Φ(E− E)−1Φ†. This way the matrix inversion is straighforward, provided the
full spectrum of the Hamiltonian in the box is available, which could penalize
the computation. We will refer to this method as SPEC.

5.6.4 Normalization of scattering states

The radial monoelectronic function coupled to the parent ions in the scattering
solution (see Eqs. (5.3) and (5.4)) appears as a linear combination of orbitals con-
taining both Gaussian and B-spline functions

φβα(r) = ∑
i

Nβi ϕi(r)cβi,αE (5.48)

and is asymptotically fitted to a combination of regular, F(r), and irregular, G(r),
Coulomb functions [134]

φβα(r) = aβαFβ(r) + bβαGβ. (5.49)

From this fit, we can compute the scattering matrix S(E, E
′
) for the elastic colli-

sion, S(E)δ(E− E
′
) =

〈
Ψ−E | Ψ+

E′

〉
(see 3), as

S =
A + iB
A− iB

, (5.50)

where Aβα =

√
πkβ

2 aβα and Bβα =

√
πkβ

2 bβα, being kβ the momentum relative
to the threshold defined by the β-parent ion. Using these matrices, we can also
obtain the correct scattering wave function with incoming boundary conditions
through:

Ψ−αE = ∑
β

ΨβE · (Aβα + iBβα)
−1, (5.51)
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Figure 5.5: One of the Ne eigenphases of 1Po symmetry, in the energy region below the 2s2p6np
resonant serie, obtained using three different numerical implementations to compute the scattering
states: HSLE (black), INVM (green) and SPEC (red) (see text for details).

where ΨβE are the solutions of (5.34). The eigenvalues of S have the form e2iθα ,
where θα (α = 1, .., M) are the so called phase-shifts or eigen-phases [135, 136],
which can be used as a sensitive observable to check the accuracy of the cal-
culation of the multichannel continuum by comparing them to independently
established benchmarks.

In Figure 5.5, the performance of the three methods explained before: HSLE
( 5.6.1), INVM ( 5.6.2) and SPEC ( 5.6.3) is shown, plotting one of the eigen-
phases of the Ne multichannel scattering problem below the 2s2p6np resonant
serie (see 7.2 for more details). The results using HSLE and INVM methods are
indistinguishable. For the SPEC method we used a larger threshold to prevent
numericals instabilities in the eigenvalues of the bound states. As a consequence,
more basis functions were removed, thus decreasing the flexibility of the basis in
the continuum.



Part III

R E S U LT S





6
G A B S B A S I S P E R F O R M A N C E : H Y D R O G E N AT O M I N A
L A S E R F I E L D

6.1 spectral resolution of the hamiltonian

Different choices for the conditions fulfilled by the state functions at the box
boundary lead to different sets of eigenvalues and eigenstates of the Hamiltonian.

confined eigenstates One possible choice is to require that all the wave
functions vanish at the box boundary. With either a purely B-spline basis or,
owing to the fast-descent character of the Gaussian functions, with the hybrid
GABS basis, such condition is ensured by excluding the last B-spline from the
basis set. In the following, we will add a bar on top of a basis-set symbol (e.g., χ̄)
to indicate that the last B-spline is excluded. If this is the case, the Hamiltonian
is an hermitian matrix which can be diagonalized by solving the generalized
secular problem

H̄C̄ = S̄C̄Ē, Ēij = Ēiδij, C̄†C̄ = 1, (6.1)

where
S̄ = 〈χ̄|χ̄〉, H̄ = 〈χ̄|H|χ̄〉. (6.2)

We will indicate the confined (or box) eigenstates as |φ〉 = |χ̄〉C̄. The confined
bound states that do not get close to the box boundary approximate the first
terms of the Rydberg series of the unconstrained Hamiltonian, while the positive-
energy states represent a discrete selection of the generalized continuum eigen-
states of the unconstrained Hamiltonian, up to a certain energy Emax, after which
the quality of the states starts to deteriorate. The basis of the box eigenstates of
the Hamiltonian so obtained is equivalent to the original basis and offers some
advantages when solving the TDSE numerically (see section 6.3).

physical eigenstates By requiring that the wave function vanishes at the
box boundary, one is needlessly crippling the flexibility of the B-splines and of
the hybrid basis alike. In fact, if the last B-spline is included, the basis is perfectly
capable to represent, within the box, any eigenfunction of the Hamiltonian that
is regular at the origin and whose energy does not exceed Emax [74]. To see this,

59
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let us look for a generic eigenfunction with energy E (which, in principle, can
even be complex) in the following form

|ψE〉 = |χ̄〉cE + |BN〉bE, (6.3)

where with BN we indicate the last B-spline of the basis set. If E belongs to the
box spectrum {Ē1, Ē2, . . .}, the solution is a box eigenstate and the coefficient
of the last B-spline is zero, bE = 0. In the other cases, we can derive the other
coefficients in terms of bE by solving the (n− 1)× n homogeneous linear system

〈χ̄| E− H |ψE〉 = 0, (6.4)

which, under the given hypothesis, has exactly one solution,

|ψE〉 ∝ |χ̄〉Ḡ0(E)〈χ̄|H − E|BN〉bE + |BN〉bE, (6.5)

Ḡ0(E) = (ES̄− H̄)−1. (6.6)

The expression (6.5) provides valid scattering solutions for any E ∈ [0, Emax],
which are as accurate as the discretized-continuum eigenstates obtained from
the diagonalization of the Hamiltonian in the box (a similar treatment to the one
presented here can be found, e.g., in [137]). To ensure that the analytic continua-
tion ΨE of ψE to the whole [0, ∞) real semi-axis fulfills the condition

〈ΨE|ΨE′〉 = δ(E− E′), (6.7)

the value of bE must be determined by matching, at the box boundary, the re-
duced radial part u`E(r) of the wave function,

ψE`m(~r) =
u`E(r)

r
Y`m(r̂), (6.8)

(` is the formerly implied angular momentum) with a linear combination of the
analytical regular F`(γ, ρ) and irregular G`(γ, ρ) Coulomb functions with the
same energy [134],

u`E(r) =

√
2

πk

[
cos δ F`(γ, ρ) + sin δ G`(γ, ρ)

]
, (6.9)

where k =
√

2E, γ = −Z/k, ρ = kr, and δ is the phase shift. When comparing
with an ionization experiment, we need to evaluate the transition amplitudes to
the detector eigenstates ψ−

EΩ̂
, i.e., the states that have a well defined asymptotic

energy E and direction Ω̂ in the far future. These are the scattering states which
fulfill incoming boundary conditions [138], and have the following expression,

ψ−
EΩ̂

= ∑
`m

ψE`mY∗`m(Ω)e−i(σ`+δ`−`π/2), (6.10)

where σ` is the Coulomb phase shift [139] and δ` the scattering phase shift (see
Chapter 3 for details).
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In the case of negative energies, only those solutions to Eq. (6.5) whose an-
alytical extension is regular at r → ∞ represent valid bound eigenstates. This
property can be ensured by requiring that the logarithmic derivative of the ra-
dial part of ψE match that of the eigenfunction of the Coulomb problem with the
same (negative) energy and that is regular at infinity,

u′`E(r)
u`E(r)

=

[
e−ρρ`+1U(`+ 1− Z/κ, 2`+ 2, 2ρ)

]′
e−ρρ`+1U(`+ 1− Z/κ, 2`+ 2, 2ρ)

, (6.11)

where κ =
√
−2E, ρ = κr, U(a, b, z) is the confluent hypergeometric function of

the second kind [134], and both the LHS and RHS of (6.11) are to be evaluated
for r = Rbox (see App. E for an outline of the derivation). The boundary condi-
tion (6.11) constitutes an implicit equation for the allowed bound energies En`.
If the Hamiltonian coincides with that of an hydrogenic ion, the solutions are of
course En` = −Z2/2n2. If the Hamiltonian differs from that of the hydrogen atom
by a short-range spherically symmetric potential, the boundary equation (6.11)
still has infinite roots which can easily be found numerically and which repre-
sent all the bound energy levels of the system. Once the values of the bound
states energies are known, it is possible to apply the same procedure used for
the scattering states to find an accurate representation, within the box, of any
unconfined bound state. To find the proper normalization for the bound states
derived with this technique, however, it is necessary to separately evaluate the
truncated integral of the regular solution of the Coulomb problem that extends
the numerical wave function to infinite radii,

I`E(Rbox) =
∫ ∞

Rbox

u2
`E(r)dr. (6.12)

6.2 dipole transition matrix elements

Dipole transition matrix elements are a necessary ingredient of both perturbative
and non-perturbative radiative transitions. In the next section we will compare
the reduced dipole transition matrix elements between selected eigenstates ψE`m
of the field-free Hamiltonian,

〈ψE`‖O(g)
1 ‖ψE′`′〉 = ∑

mm′µ

C`m
`′m′ ,jµ√
2`+ 1

〈ψE`m|O(g)
1µ |ψE′`′m′〉, (6.13)

where Ccγ
aα,bβ is a Clebsch-Gordan coefficient [140], evaluated in different numeri-

cal basis as well as analytically, for three gauges g, length, velocity, and accelera-
tion,

O(l)
1µ = r1µ, O(v)

1µ = p1µ, O(a)
1µ = Z

r1µ

r3 . (6.14)
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The off-shell dipole transition matrix elements in different gauges between physi-
cal eigenstates are related to each other through the identities

i(E− E′)〈ψE`‖O(l)
1 ‖ψE′`′〉 = 〈ψE`‖O(v)

1 ‖ψE′`′〉, (6.15)

(E− E′)〈ψE`‖O(v)
1 ‖ψE′`′〉 = i〈ψE`‖O(a)

1 ‖ψE′`′〉. (6.16)

While the Hamiltonian is particularly sensitive to the rapidly-varying parts of
the wave function, due to the presence of the kinetic energy operator, the kernels
in (6.14) put a higher emphasis on the wave function at either short or long range.
The agreement between matrix elements across different gauges and numerical
representations, therefore, is an alternative valuable measure of the wave function
quality beyond the numerical fulfillment of the secular equation.

If the continuum-continuum transitions are evaluated between box eigenstates
instead of physical states (i.e., if the radial integrals are truncated at r = Rbox),
Eq. (6.16) needs to be modified,(

E− E′
)
〈ψE`‖O(v)

1 ‖ψE′`′〉r∈[0,Rbox]
=

= i〈ψE`‖O(a)
1 ‖ψE′`′〉r∈[0,Rbox]

+

+
i
2

√
2`′ + 1 C`0

`′0,10
d u`E

dr
(Rbox)

d u`′E′

dr
(Rbox).

(6.17)

Furthermore, while Eq. (6.15) remains valid even when considered between box
eigenstates, the transition matrix elements themselves do differ from those eval-
uated between scattering states. In App. C we derive and discuss at length the
above equations. In the next section, we will use them to frame the results of our
calculations.

6.3 time-dependent schrödinger equation

To compute the effects of intense linearly-polarized radiation pulses on a bound
state φ0 of a hydrogen atom, we solve the TDSE,

i∂tψ(t) = H(t)ψ(t); ψ(t0) = φ1s, (6.18)

by expanding the time-dependent wave function ψ(t) in the basis of the box
eigenstates of the field-free Hamiltonian, obtained from either the GABS or the
purely B-spline basis,

ψ(t) = ∑
i `

φi` ci`(t), (6.19)

where axial symmetry, m = 0, is assumed throughout. In the present work, be-
yond the field-free electrostatic term H0, the complete Hamiltonian comprises the



6.4 bound and continuum states of hydrogen 63

time-dependent interaction with the external fields H′(t) in the dipole approxi-
mation,

H(t) = H0 + H′(t), (6.20)

H0 =
p2

2
− Z

r
, (6.21)

H′(t) =

{
α~A(t) · ~p velocity gauge
~E(t) ·~r length gauge

, (6.22)

where ~A(t) and ~E(t) are the vector potential and the electric field of the external
radiation, respectively. The TDSE is integrated numerically by propagating the
solution on a time-grid ti = ti−1 + dt,

ψ(t + dt) = U(t + dt, t)ψ(t), (6.23)

where U(t + dt, t) is a second-order split exponential propagator,

U(t + dt, t) ≡ e−iH0
dt
2 e−iH′(t+ dt

2 ) dte−iH0
dt
2 . (6.24)

As the wave function is expressed in a spectral basis, the action on ψ of the two
outer exponential factors on the RHS of (6.24) is trivial. The most time-consuming
step of the propagation (6.23) is the evaluation of exp[−iH′(t + dt/2)dt] on ψ.
Here, we carry it out by representing the exponential operator on the trun-
cated Krylov basis generated by the repeated action of H′(t + dt/2) on the
exp[−H0dt/2]ψ(t) state. In the conditions examined in the present work, where
fields with only moderate intensities are contemplated, this representation con-
verges rapidly with respect to the size NK of the Krylov space, which can gener-
ally be truncated to NK ≤ 5. Such a fast convergence is a consequence of the fac-
torization between the H0 and the H′ action achieved with the splitting in (6.24).

The bound state population Pn` and the asymptotic energy-resolved and an-
gularly resolved photoelectron distribution d2P(E, cos θ)/dE d cos θ are obtained
by projecting the wave packet, at any time after the external pulse is over, on a
complete set of bound and scattering eigenstates of the field-free Hamiltonian,
computed with the techniques described in Sec. 6.1,

Pn` = |〈ψn`0|ψ(t)〉|2 , (6.25)

d2P(E, cos θ)

dE d cos θ
= 2π

∣∣∣〈ψ−E,Ω̂
|ψ(t)〉

∣∣∣2 . (6.26)

6.4 bound and continuum states of hydrogen

In this section we illustrate the accuracy of the GABS basis from the perspective
of the spectral resolution of the field-free electrostatic hamiltonian of hydrogen
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Table 6.1: Energies for the first 6 bound s and p hydrogen states, obtained using the B-splines basis
and two purely Gaussian basis.

n Analytical B-splines Gaussiana Gaussianb

` = 0, 1 ` = 0 ` = 1 ` = 0

1 −0.5 −0.50000000 −0.49996942 * −0.49993963

2 −0.125 −0.12500000 −0.12499618 −0.12500000 −0.12499244

3 −0.0(5) −0.05555556 −0.05555436 −0.05555552 −0.05525990

4 −0.03125 −0.03125000 −0.03110496 −0.03111820 −0.01909004

5 −0.02 −0.02000000 −0.01593253 −0.01612874 0.04060086

6 −0.013(8) −0.01388889 0.00422693 0.00368341 0.14949865

a `max = 20
b `max = 2

by comparing the results with the analytical ones and with those obtained using
both a purely B-spline basis and a purely Gaussian basis. We use B-splines of
degree k = 7 defined on a uniform grid with node spacing ∆r = 0.5 a.u. up to a
maximum radius Rbox = 1000 a.u., and Nα = 22 Gaussian exponents αn = αβn−1

for the even tempered Gaussian basis, with α = 0.01, β = 1.46.

In table 6.1, we report the energies for the bound s and p hydrogen states with
principal quantum number n ≤ 6, obtained by using two different values of `max,
`max = 2 and `max = 20.

As anticipated, B-splines provide essentially exact results for all the states con-
sidered, while the quality of the eigenvalues obtained with the Gaussian func-
tions deteriorates already for n = 4, due to their inability to reproduce the many
oscillations Rydberg satellites have. Extending `max from 2 to 20 improves sig-
nificantly the energy of the third and fourth states. Even with the larger even-
tempered basis, however, the results still remain well off mark from the n = 5
state on. In the calculation with the Gaussian functions, the error on the energy
of the ground state is one order of magnitude larger than for the first excited
state. This circumstance is peculiar to s orbitals and is due to the well known dif-
ficulty Gaussian functions have in reproducing the cusp condition at the origin.
Indeed, the energies of the 2p and 3p states reported in Table 6.1 are two orders
of magnitude more accurate than those of the 2s and 3s ones computed with the
same basis.

Table 6.2 reports the energy of several bound hydrogen states computed with
three GABS bases that differ for the value of `max and for the position of the first
B-spline node.



6.4 bound and continuum states of hydrogen 65

Table 6.2: Energies for the first 15 s and p bound hydrogen states, obtained in three different GABS
basis.

n Analytical `max = 20, R0 = 10 a.u. `max = 2, ` = 0

` = 0 ` = 1 R0 = 5 a.u. R0 = 10 a.u.

1 −0.5 −0.49997191 * −0.49994231 −0.49994092

2 −0.125 −0.12499648 −0.12500000 −0.12499278 −0.12499261

3 −0.0(5) −0.05555451 −0.05555556 −0.05555241 −0.05555337

4 −0.03125 −0.31249561 −0.03125000 −0.03124909 −0.03124907

5 −0.02 −0.01999977 −0.02000000 −0.01999954 −0.01999952

6 −0.013(8) −0.01388876 −0.01388889 −0.01388862 −0.01388861

7 −0.01020408 −0.01020400 −0.01020408 −0.01020391 −0.01020391

8 −0.0078125 −0.00781245 −0.00781250 −0.00781239 −0.00781238

9 −0.00617284 −0.00617280 −0.00617284 −0.00617276 −0.00617276

10 −0.005 −0.00499997 −0.00500000 −0.00499994 −0.00499994

11 −0.00413223 −0.00413221 −0.00413223 −0.00413219 −0.00413219

12 −0.00347(2) −0.00347221 −0.00347222 −0.00347219 −0.00347219

13 −0.00295858 −0.00295857 −0.00295858 −0.00295855 −0.00295855

14 −0.00255102 −0.00255101 −0.00255102 −0.00255064 −0.00255063

15 −0.00(2) −0.00222221 −0.00222222 −0.00221182 −0.00221182

In s symmetry, all three GABS bases give excellent values across the bound
spectrum with errors, for n ≥ 2, of the order of ∼ 10−6 or lower, irrespective of
`max. The energy of all the p orbitals is accurate to eight decimal digits. We can
better understand the origin of GABS good performance by looking at the con-
tribution of B-splines and Gaussian functions to the radial part of the eigenstates
computed with the hybrid basis. Fig. 6.1 shows these quantities for the 7s and
15s states, with the corresponding radial orbitals obtained with the B-spline basis
as a reference.

The plots in Fig. 6.1 illustrate two distinctive features of the GABS basis. Firstly,
B-splines complete the Gaussian basis in the outer region. As a result, the basis
can represent the oscillatory behavior of highly excited bound states there. Sec-
ondly, B-splines effectively counterbalance any value that the diffuse Gaussian
functions can take in the intermediate region. As a result, the diffuse Gaussian
functions acquire larger flexibility in the inner region as well.

The conclusions above apply to the states in the continuum as well. In
Fig. 6.2(a), we compare the radial part of the analytical ψsE generalized eigen-
function for E = 0.1 a.u. with the corresponding numerical quantity computed
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a function of

√
r, computed with B-splines (dots) and GABS (solid line). For the latter case, the

Gaussian component (dashed line) and the B-spline component (dashed-dotted line) are separately
shown.

with the unconstrained-continuum method described in Sec. 6.1 using the GABS
basis. The two curves are indistinguishable to the naked eye. We quantify the
numerical error in Fig. 6.2(b) for three different energies: E = 0.1 a.u., 1 a.u.,
and 4 a.u. In the outer radial region (R1 ≥ 55 a.u.), where only B-splines con-
tribute significantly to the wave function, the numerical error is of the order of
10−10, 10−7, and 10−4 for the three considered energies, respectively. In the inter-
mediate radial region, between ' 20 a.u. and ' 40 a.u., where both the diffuse
Gaussian functions and the B-splines contribute to the wave function, the abso-
lute representation error has a plateau of the order of 10−7 for E ≤ 1 a.u. At
higher energies the error is dominated by the larger B-spline asymptotic error.
Finally, in the short-range region, where the wave function is represented only
in terms of Gaussian functions, for the two smallest energies the absolute error
has a plateau of the order of 10−4, i.e., comparable to the asymptotic B-spline
representation error for E = 4 a.u. In contrast to the behavior observed in the
intermediate region, the error in the short-range region is always dictated by the
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Gaussian functions. As a result, at the third larger energy, the error there becomes
of the order of few percent units.

The quality of continuum wave functions, therefore, depends crucially on the
location R0 where the transition between the inner and the intermediate region
takes place. A more comprehensive characterization of the quality of the contin-
uum hydrogen s wave functions is provided in Fig. 6.3 in the form of the phase
shift as a function of the excess energy up to E = 5 a.u., for several values of R0:
5 a.u., 10 a.u., 15 a.u., 20 a.u.. The phase shift is a sensitive probe of the accuracy of
a continuum wave function. Ideally, since in the current case we are not consider-
ing the influence of potentials other than Coulomb’s, the phase shift with respect
to the analytical regular Coulomb function should be identically zero. Immedi-
ately above threshold, the phase shift is smaller than 10−4 rad for all four values
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of R0. For the smallest value of R0, the phase shift remains essentially unaltered
up to E = 2 a.u., to increase exponentially thereafter as a function of the energy
up to ' 10−2 rad at E = 5 a.u.. As soon as the error in the phase shift is of the
order of unity, virtually any information on the potential is lost. As R0 increases,
the energy at which the phase-shift error starts blowing up decreases. Fig. 6.4
quantifies approximately the maximum energy that can be represented as a func-
tion of the value of R0, for a given constraint on the maximum error on the phase
shift. As the figure illustrates, the maximum reliable energy value decreases lin-
early with R0. Finally, Fig. 6.5 illustrates the impact of the `max parameter on the
asymptotic phase shift of the continuum wave functions. For R0 = 10 a.u., a large
`max value is essential to achieve a good function quality up to 5 a.u.. Reducing
`max to 2 dramatically deteriorates the accuracy in this energy interval. For the
smaller radius R0 = 5 a.u., on the other hand, either values of `max lead to an
accuracy comparable to that obtained for R0 = 10 a.u. with `max = 20.

6.5 radiative transitions

Beyond energy, the other observable needed to describe the time-evolution of a
system under the influence of external fields is the dipole operator. It is essential,
therefore, to assess the accuracy of the dipole matrix elements in the hybrid basis.

In Table 6.3 we compare the analytical reduced matrix elements |〈ψ‖p1‖ψ′〉|
for a few selected dipole transitions between bound hydrogenic states with those
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obtained numerically with B-splines, with GABS functions in the three gauges of
length, velocity and acceleration, as well as, in velocity gauge, for two additional
representative pairs of the `max and R0 parameters. The transitions matrix ele-
ments computed with the B-splines are exact for all six tabulated decimal digits.
In the case of the GABS basis, the s− p transitions are generally affected by an
error of the order of 10−5 a.u. for all three gauges, which is ascribable to the cusp
representation problem mentioned in the last section. Indeed, the numerical p− d
and d− f transitions are in agreement with the analytical results within one part
in a million. Finally, the last column shows that the accuracy of the bound-bound
transition matrix elements is preserved even employing a much smaller value for
`max. Since the representation of Rydberg states is expected to be at least as ac-
curate as that of the continuum states immediately above the threshold opening,
this observation is in agreement with the small value of the phase shift close to
threshold reported in Fig. 6.5 for all the three choices of R0 and `max.

In Fig. 6.6 we compare the absolute value of some selected bound-continuum
reduced dipole matrix elements in velocity gauge, obtained using the GABS basis,
with the analytical results (see App. E). The agreement is generally very good,
with errors of the order of one part in ten thousands up to E = 2 a.u.. At low
energies, the largest errors arise when s orbitals are involved, while for the p− d
transitions the errors is smaller than one part in a million up to E = 1 a.u. With
the current choice of parameters, the error in the matrix element starts to increase
progressively above E = 2 a.u., reaching the level of a few percent for E =
5 a.u.. The agreement between the dipole matrix elements in length, velocity and
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acceleration gauge is illustrated in the representative case of the transition from
the 1s orbital in Fig. 6.7. The relative difference between gauges is comparable
to or smaller than the relative error of the velocity results with respect to the
analytical value (see Fig. 6.8). This means that the gauge agreement is consistently
preserved in the whole energy range examined here.

As in the case of the phase shift, the accuracy of the bound-continuum dipole
matrix elements depends crucially on the parameters of the basis (see Fig. 6.8).
For R0 = 10 a.u., few monomial exponents (`max = 2) are sufficient to attain
acceptable accuracy up to 1 a.u.. Larger monomial expansions, however, are es-
sential to achieve good accuracy at larger energies. With `max = 20, the transition
matrix elements with the larger Gaussian box have the same accuracy as those
obtained with R0 = 5 a.u., and an absolute error below 1% up to 4 a.u..

In the dipole matrix elements examined so far, at least one of the wave func-
tions is localized near the origin. To be able to represent multi-photon transi-
tions and non-perturbative effects, however, accurate continuum-continuum ma-
trix elements are needed as well. In Fig. 6.9 we compare the analytical results for
|〈ψ`E‖p1‖ψ`′E′〉| taken from the literature [141] with those obtained numerically
using the GABS basis in the length, velocity and acceleration gauges for three
representative initial discretized-continuum states with E ' 1, 2, and 3 a.u.

A few comments are in order. First, since the integration domain of the numer-
ical transition integrals is limited to the box, the length and the velocity gauge
agree with each other but differ qualitatively from the acceleration matrix ele-
ment. On the other hand, the latter gauge, which has a fast decreasing kernel, is
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Table 6.3: Several bound-bound radiative transitions obtained via the analytical formula, using the
B-splines basis and the GABS bases.

Trans. Analyt. B-splines GABS1
a GABS2

b GABS3
c

Len Vel Acc Vel Vel

1s-2p 0.483850 0.483850 0.483859 0.483855 0.483852 0.483860 0.483860

2s-3p 0.212834 0.212834 0.212847 0.212844 0.212843 0.212855 0.212855

3s-4p 0.132935 0.132935 0.132946 0.132943 0.132945 0.132952 0.132952

2p-3d 0.466297 0.466297 0.466297 0.466297 0.466297 0.466297 0.466297

3p-4d 0.260048 0.260048 0.260048 0.260048 0.260048 0.260048 0.260048

3d-4 f 0.430680 0.430680 0.430680 0.430680 0.430680 * *

a `max = 20 and R0 = 10.
b `max = 2 and R0 = 5.
c `max = 2 and R0 = 10.

in excellent agreement with the analytical result. Furthermore, while in length
and velocity gauge the matrix elements oscillate wildly with respect to either
continuum-energy indexes, the matrix element in the acceleration gauge, a part
for the characteristic peak on-shell, is everywhere a smooth function of the energy
index. The discrepancy between length and velocity, on the one side, and acceler-
ation, on the other side, is readily explained: we are neglecting the contribution
to the integral of the part of the wave function outside the quantization box (see
App. C and D). Indeed, the oscillations in, say, the velocity gauge matrix element
can be shown to depend on the size of the quantization box. In fact, as the size
of the box is increased, the velocity matrix elements are expected to converge
weakly to the acceleration value (i.e., their integrals with any smooth test func-
tions converge to the same value as Rbox → ∞). The acceleration gauge does not
suffer from this dependence thanks to the fact that its kernel decreases rapidly
with the electronic radius. The three gauges can thus be reconciled by estimating
analytically the contribution to the length and velocity matrix elements coming
from the region outside the quantization box (see App. D). This is what we have
done in Fig. 6.10 for the illustrative case of the velocity gauge. As the picture
shows, the outer contribution to the matrix elements, which is actually calculated
in length gauge and converted to velocity gauge afterwards (see App. D), exactly
cancels the original fast oscillations, leading to a matrix element that is a smooth
function of one of the continuous energy indexes, in excellent agreement with the
analytical result. The residual small discrepancies still visible in the plot are due
to the approximations made in the analytical estimate of the outer contribution
to the transition integral.

In conclusion, all the principal field-free and perturbative one-photon observ-
ables for the hydrogen atom can be reproduced with very high accuracy in a
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wide energy range with a hybrid basis in which the wave function is represented
in a radial region as large as 10 a.u. in terms of Gaussian functions alone.

It is worth stressing here that, as shown in [142], inclusion of the contribu-
tion from outside the box is essential to correctly evaluate above-threshold multi-
photon ionization cross sections in length and velocity gauges in the framework
of perturbation theory. This is so because, at a given photon energy, perturbation
theory requires the evaluation of only those continuum-continuum dipole matrix
elements that involve the electron continuum state compatible with that photon
energy. In contrast, when seeking for solutions of the TDSE, inclusion of the
contributions from outside the box is not necessary provided that all continuum-
continuum matrix elements are consistently evaluated in the same box and the
electronic wave packet does not reach the boundaries of the box before projection
onto physical eigenstates is performed (see also the discussion in [143]). Thus, in
the following section, where results from solving the TDSE are presented, the
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continuum-continuum dipole matrix elements will not include the corrections
from outside the box.

6.6 time-dependent results

The ultimate test of the viability of the GABS basis for the description of laser-
driven processes is to use it to reproduce fully differential photoelectron observ-
ables in non-perturbative conditions by solving the TDSE numerically. In this
section, we examine the photoelectron distribution for the above-threshold ioniza-
tion (ATI) [144] of the hydrogen atom from the ground state under the influence
of single, intense, comparatively long ultraviolet pulses,

H(1s) + nγUV → H+ + e−~k , (6.27)

for which recent independent data to compare with are available. The methodol-
ogy used to solve numerically the TDSE and to extract the asymptotic differential
photoelectron observables at the end of the interaction was described in Sec. 6.3.
We conduct the simulation using a purely B-spline basis, which is known to pro-
vide good reference results [145], as well as a GABS basis, with R0 = 10 a.u. and
`max = 20. For both basis, the angular expansion of the wave function is truncated
at ` ≤ 10. To assess the accuracy of the solution, we use the same laser parame-
ters employed in two recent works, one by Rodríguez et al. [146] (ω = 0.35 a.u.,
I = 1.4 · 1013W/cm2, 30-cycle cos2-envelope electric laser pulse) and the other
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one by Grum-Grzhimailo et al. [147] (ω = 0.114 a.u., I = 1014W/cm2, 20-cycle
cos2-envelope electric laser pulse). It should be noted that we conduct the simula-
tion in velocity gauge starting from the definition of the external vector potential
as

~A(t) = ẑ A0 cos2
(

πt
τ

)
cos(ωt + ϕ) θ(τ/2− |t|), (6.28)

where ϕ is the carrier-envelope phase (CEP), τ is the pulse duration (twice the
full width at half maximum of the intensity profile), and θ(x) is the Heaviside
step function. This way, the external electric field, given by ~E = −c−1∂t ~A(t),
automatically integrates to zero, as it should [148]. On the other hand, in [146] a
parametrization for the electric field similar to (6.28) is used instead,

~E(t) = ẑ E0 cos2
(

πt
τ

)
sin(ωt) θ(τ/2− |t|). (6.29)

This latter expression differs from the one that can be derived from our definition
(6.28) of the vector potential, due to the time-dependence of the pulse envelope.
Furthermore, Eq. (6.29) is applicable in principle only for zero CEP, since the
field must integrate to zero [148]. Having said that, for long pulses such as those
considered in this and their work (20-30 cycles), the difference between the two
parameterizations is negligible and affects only minor details of the photoelectron
spectra.

short wavelength In our first simulation, which reproduces the results by
Rodríguez et al., the laser angular frequency is ω = 0.35 a.u.. Fig. 6.11 compares
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several scattering states by truncating the radial integral at Rbox. Three representative energies for the s
state are shown: 1 a.u. (first peak), 2 a.u. (second peak), and 3 a.u. (third peak). The numerical results
are compared with the exact analytical result in velocity gauge (full squares). For the quantization
box considered, the acceleration gauge has already converged to the analytical results. On the other
hand, the truncated length and the velocity matrix element are in excellent agreement with each other
but differ from the analytical results for a rapidly oscillating term, which results from the neglected
contribution to the exact transition integral that comes from the radial region beyond the box radius.

the ATI spectra obtained using GABS and B-splines with the corresponding quan-
tity digitized from [146].

The spectra obtained with GABS and B-splines are in excellent agreement
down to the tiniest detail, indicating that the solution of the TDSE is accurate.
The main peaks are in excellent agreement also with the results from the litera-
ture. Minor departures between the current prediction and the literature are visi-
ble only in the background signal, which is six orders of magnitude smaller than
the dominant peak signal. We attribute these discrepancies to the different pa-
rameterizations (6.28,6.29) of the external pulse employed in the two simulations.
As anticipated, these differences are entirely negligible to all practical purposes.
At least two photons are needed to ionize the atom, with the first excitation step
being close to the 1s− 2p resonance. As a consequence, the ATI process is reso-
nantly enhanced, resulting in secondary peaks in the ATI spectrum, as discussed
in [146]. In particular, the first shoulder that is visible at E = 0.225 a.u., on the
upper-energy side of the first ATI peak, and the two peaks at E ' 0.29 a.u. and
E ' 0.32 a.u. are due to the components of the two-photon transition that are res-
onant with the 2p, 3p and 4p states, respectively. This can be realized by looking
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Figure 6.10: Absolute value of the reduced velocity-gauge hydrogen dipole matrix element
〈ψEp‖Ov

1‖ψEs 〉 from three s scattering states (E = 1, 2, 3 a.u.) to several p scattering states eval-
uated as the sum of two contributions (thin solid line): the first contribution is the numerical radial
integral shown in Fig. 6.9, which is computed with the GABS basis and truncated at Rbox, and the
second contribution is the confined boundary correction (CBC) term derived in App. C. The agreement
between the numerical result and the exact analytical result (thick solid line) is excellent.

at the finite-pulse version of the lowest-order two-photon transition amplitude
for this process

A(2)
E`←1s = −i

∫
dωF̃(−ω)F̃(E1s + ω− E)×

×〈E`|OG+
0 (E1s + ω)O|1s〉,

(6.30)

where
F̃(ω) = F [F](ω) =

1√
2π

∫
dtF(t)e−iωt, (6.31)

O is the transition operator in either the length or the velocity gauge, and F(t)
the corresponding E(t) or αA(t) fields. Eq. (6.30) is valid for non-resonant as well
as for resonant transitions (in contrast to the equivalent expression for monochro-
matic fields), provided that Rabi oscillations, ac-Stark shifts and depletion of the
ground state population can be neglected. In the present case, the laser central
frequency ω = 0.35 a.u. is detuned with respect to the 1s − 2p transition by
δ = ω − ω2p1s = −0.025 a.u. (we introduce the notation ωij = Ei − Ej). At peak
intensity F0, the variation of the ground-state population ∆P1s due to Rabi oscil-
lations is ∆P1s = [1 + (δ/Ω0)

2]−1 = 0.26, where Ω0 = |F0O2p,1s| ' 0.015 a.u.
Therefore, the system remains mostly in the ground state; hence, Eq. (6.30) is
expected to provide meaningful guidance for a qualitative interpretation of the
first group of peaks in the ATI spectrum. Quantitative predictions, of course,
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Figure 6.11: ATI photoelectron spectrum from hydrogen ground state due to a 30-cycle cos2 laser
pulse with ω =0.35 a.u. and I = 14TW/cm2. The present results, computed by solving the TDSE
using either a purely B-spline basis (dots) or the GABS basis (solid line), are compared with the
spectrum obtained under similar conditions by Rodríguez et al. [146]. See text for more details.

require a separate numerical solution of the TDSE for at least the 1s and the
np essential states [146]. Indeed, the population transfer between the 1s and
the 2p state is small but not negligible. Furthermore, the effective Rabi period

TΩ = 2π/
√

δ2 + Ω2
0, which is strongly modulated across the laser pulse, is com-

parable to the duration of the pulse itself. As a consequence, the amplitude of
the 2p state undergoes a sharp isolated variation which manifests in the spec-
trum as a broad feature around the resonant 2p peak, rather than in the form of
the Autler-Townes doublet that characterizes complete Rabi oscillations.

Keeping in mind these caveats, let us go back to Eq. (6.30). To disentangle the
resonant component from the non-resonant one, we split the retarded resolvent
in an off-shell part GP

0 and an on-shell part,

G+
0 (ω) = GP

0 (ω)− iπδ(ω− H0),

GP
0 (ω) =

P
ω− H0

.
(6.32)

The two-photon transition amplitude (6.30) then splits into a corresponding
principal-value term A(2,P)

E←1s and an on-shell term A(2,r)
E←1s,

A(2)
E←1s = A

(2,P)
E←1s +A

(2,r)
E←1s. (6.33)
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The principal-value component of the transition amplitude,

A(2,P)
E`←1s = −i

∫
dωF̃(−ω)F̃(E1s + ω− E)×

×〈E`|OGP
0 (E1s + ω)O|1s〉,

(6.34)

is responsible for the main peak in Fig. 6.11, at E = 0.2 a.u.. This is obvious for
the contribution of the virtual states, i.e., those |εp〉 states in the expansion of
GP

0 (E1s + ω) whose energy ε is far from E1s + ω0, where ω0 is the central angular
frequency of the pulse,

P
∫

dωF̃(−ω)F̃(E1s + ω− E)
OE`,εpOεp,1s

E1s + ω− ε
'

'
OE`,εpOεp,1s

E1s + ω0 − ε

∫
dωF̃(−ω)F̃(E1s + ω− E) =

=
OE`,εpOεp,1s

E1s + ω0 − ε

√
2π F [F2](E1s − E).

(6.35)

Though less evident, the same is true for the asymmetric principal-value contri-
bution of the non-virtual excitations. Numerical tests show that the characteristic
positions and widths of the latter are comparable to those of the virtual contribu-
tions.

The picture qualitatively changes for the on-shell contribution to the transition
amplitude A(2,r)

E←1s. Each term in the eigenstate expansion of this component is

simply half the product between the first-order transition amplitudes A(1)
j←i to go

(i) from the ground 1s state to the resonant np state and (ii) from the resonant np
state to the final state in the continuum,

A(2,r)
E`←1s =− π ∑

n
OE,npOnp,1s F̃(ω1snp)F̃(ωnpE`) =

=
1
2 ∑

n
A(1)

E`←np · A
(1)
np←1s

(6.36)

where
A(1)

f i = −i
√

2πF̃(ωi f )O f i. (6.37)

The on-shell part of the two-photon transition amplitude is responsible for the
shoulder at E = 0.225 a.u. and for the peaks at E ' 0.29 a.u. and E ' 0.32 a.u.,
which correspond to the 2p, 3p and 4p resonant states, respectively. Notice that
the amplitudes of these peaks have the characteristic F [F](Enp − E) profile of
one-photon transitions; in particular, they are narrower than the non-resonant
two-photon peak amplitude, which is instead proportional to F [F2](E1s − E),
i.e., to the Fourier transform of a temporally compressed pulse. Finally, the sec-
ond shoulder, starting at E ' 0.25 a.u., is the incipient signature of the wide
feature with which the non-perturbative 1s− 2p transition, mentioned earlier in
this section, manifests in the spectrum.
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Figure 6.12: Normalized photoelectron angular distribution corresponding to the 1st and 2nd ATI
peaks in Fig. 6.13(a), computed here by solving the TDSE in either a B-spline or a GABS basis, and
compared to the results obtained by Rodríguez et al. [146] in similar conditions.

In Fig. 6.12 we compare the angular distribution of the electrons in the region
of the first and second ATI peaks with those reported by Rodríguez.

Again, the agreement between the two calculations is excellent, confirming the
accuracy of the observables obtained with the hybrid GABS basis. As expected,
the angular distribution has a lobe structure consistent with a complex linear
combination of s + d amplitudes, for the first ATI peak, and p + f amplitudes,
for the second ATI peak. In both cases, the two amplitudes are neither in phase
nor in anti-phase, hence the lack of proper nodes in the spectrum, except, in
principle, for θ = 90◦ for the second ATI peak (even in this case, though, interfer-
ence from the long-range tail of the nearby ATI peaks prevents the photoelectron
distribution to attain zero).

To gain further insight in the angular distribution, we show in Fig. 6.13(a)
the doubly-differential photoelectron spectrum as a function of both the electron
energy and the cosine of the ejection angle. To the best of our knowledge, such
fully differential representation of the photoelectron distribution has not been
reported before. Rodriguez’s 2D differential distribution.

While the regions corresponding to the ATI peaks visible in Fig. 6.13(a) have
approximately a uniform lobe structure (three, four and five maxima for the two-
, three- and four-photon peaks, respectively), at a closer inspection of the fully
differential plot, three additional aspects emerge. First, the ATI peaks along the
polarization axis (cos θ = ±1) are slightly shifted to lower energies with respect
to the photoelectrons ejected orthogonal to the field polarization (cos θ = 0). Sec-
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a b

Figure 6.13: Doubly differential photoelectron distribution d2P/dE d cos θ for the process described
in Fig. 6.11 (left panel) and Fig. 6.15 (right panel).

ond, the characteristic three-maxima angular distribution associated to the first
group of peaks is slightly more pronounced for the dominant peak (E ' 0.2
a.u.) than for the two shoulders associated to the resonant 1s → 2p → E` transi-
tion (E ' 0.225 a.u. and 0.27 a.u.). Third, the three-maxima structure in the first
group of peaks is interrupted in a narrow interval around E ' 0.25 a.u. where
the two dips are less pronounced. As it turns out, this is because the energy
E = 0.25 a.u. coincides with the position of the first side peak of F [F2](E1s − E)
(cmp. Eq. (6.35)). The presence of secondary peaks is a typical characteristics of
the Fourier transform of any pulse with a compact support; the symmetric coun-
terpart is clearly visible at E = 0.15 a.u.. The side peak amplitude is in anti-phase
with respect to that of the dominant peak. As a consequence, when interfering
with the resonant component, it cancels part of the angular modulation, resulting
in a more isotropic distribution. This peculiar phenomenon, which would not be
visible if the external pulse had, say, a Gaussian envelope, illustrates well how
special care is needed when assigning spectra generated using pulses that have
a structured Fourier transform to start with.

The change of the angular distribution with energy is highlighted in Fig. 6.14

where we plot the normalized photoelectron angular distribution at six rep-
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Figure 6.14: Normalized photoelectron angular distribution for several selected energies in Fig. 6.13(a).
The energies 0.225, 0.294 and 0.319 a.u. correspond to the 2p, 3p and 4p resonances respectively.

resentative energies, E = 0.2 a.u (main peak of the non-resonant transition),
E = 0.225 a.u. ( 2p resonant peak), E = 0.2456 a.u. (side peak of the non-resonant
transition, which corresponds to the least pronounced dips in the spectrum),
E = 0.25 a.u. (intermediate energy at which the dips are pushed towards smaller
angles from the polarization axis), E = 0.27 a.u. (second shoulder, presumably
associated to the non-perturbative 2p resonant transition), E = 0.294 a.u. and
E = 0.319 a.u. (3p and 4p resonant peaks, respectively). Notice that, starting from
E ' 0.27 a.u., the symmetry of the photoelectron distribution is progressively bro-
ken. This is more dramatic for the weakest peak, the one corresponding to the res-
onant 3p transition, for which the maxima in the upward direction is higher than
that in the downward direction, while the opposite is true for the two minima.
This behavior is most likely due to the interference between the weak resonant
two photon amplitude and the tail of the non-resonant three-photon amplitude,
which have opposite parity [149].

long wavelength As a second example, we test our simulations against the
results reported by Grum-Grzhimailo et al. [147] for ionization with a 20-cycle
pulse with angular frequency ω = 0.114 a.u. and peak intensity I = 1014 W/cm2.
In this case, five photons are needed to achieve ionization. As Fig. 6.15 shows,
the agreement between the data digitized from [147] and the present calculations
with GABS and the purely B-spline basis is again excellent. The photoelectron
peaks obtained with either of the two latter basis are actually slightly shifted to
lower energies with respect to those reported in [147]. Since a similar shift in the
position of the peaks for high-intensity pulses was already observed in [147] as a



82 gabs basis performance : hydrogen atom in a laser field

0.0 0.1 0,2 0.3

electron energy (a.u.)

0

0,5

1

1,5

2

p
ro

b
ab

il
it

y
 d

en
si

ty
 (

a.
u

.)

[80]
GABS basis
B-splines basis

1s + 5ω 1s + 6ω 1s + 7ω

Figure 6.15: ATI photoelectron spectrum from hydrogen ground state due to a 20-cycle cos2 laser
pulse with ω = 0.114 a.u. and I = 0.1 PW/cm2. The present results, computed by solving the TDSE
using either a purely B-spline basis (black dots) or the GABS basis (solid line), are compared with the
spectrum obtained under similar conditions by Grum-Grzhimailo et al. [147] (light full squares). See
text for more details.

consequence of changing the field parameterization from Eq. (6.28) to Eq. (6.29),
we assume that the shift we observe here is due to a similar effect.

The most striking features of the spectrum shown in Fig. 6.15 are: (i) the multi-
peak structure of each n-photons ATI signal and (ii) the fact that the position
of the dominant peak in each group is shifted to lower energies by as much as
0.07 a.u. with respect to the nominal values n ωUV− E0, the latter value rather ap-
proaching the upper limit of each peak subgroup. This phenomenon was first ob-
served around 30 years ago by Bardsley et al. [150] and the mechanism at its basis
was identified and described by several authors shortly thereafter [151, 152, 153].
Since essentially the same phenomenon has recently received renewed interest,
in association with the use of intense ultra-short extreme ultraviolet pulses [154],
in the following we briefly summarize the rationale of the underlying mechanism
and contextualize our results with reference to the original [153] and latest [154]
works on the subject. When a discrete state ψ interacts with a moderately intense
laser pulse, and as long as the laser does not resonantly couple ψ to other dis-
crete states, the energy of ψ (i.e., the cycle-averaged rate of its phase modulation)
changes by a quantity ∆Eac

ψ called ac-Stark shift. For a monochromatic field with
amplitude E0 and angular frequency ω, the ac-Stark shift ∆Eac

1s of the ground state
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of hydrogen is given, to the lowest order of perturbation theory, by the solution
to the following equation

∆Eac
1s =

E2
0

4
M1s 1s(E1s + ∆Eac

1s , ω), (6.38)

where
Mii(E, ω) = 〈i| z

[
G+

0 (E + ω) + G+
0 (E−ω)

]
z |i〉. (6.39)

The ac-Stark shift of the ground state can thus be either positive or negative
depending on whether ω is, respectively, smaller or larger than the excitation
energies ωεp 1s to the group of (discrete or continuum) |εp〉 states that are most
strongly coupled to the ground state. The energy of the states in the continuum
is affected by the ac-Stark effect as well. In this case, the ac-Stark shift is approx-
imated reasonably well by the ponderomotive energy ∆Eac

E` ' Up = E2
0/4ω2, a

positive quantity. Now, a careful treatment of time-dependent perturbation the-
ory (see, e.g., Chap. 3 in [155]) shows that, in the absence of intermediate resonant
states, the absorption of n photons γω from an initial state |i〉 to populate a fi-
nal state | f 〉 takes place provided that the ac-Stark shifted energies of the two
dressed states differ by nω, Ẽ f = Ẽi + nω. In the case of ionization of atomic hy-
drogen from the ground state, this means that the field-free energy E of the final
continuum state |E`〉 populated by the absorption of n photons is approximately
given by

E ' E1s + nω + ∆Eac
1s −Up. (6.40)

This last equation is justified on the assumption that, when the external field
switches off, the population of a dressed state follows the state adiabatically. In-
cidentally, such assumption is not justified if the photoelectron leaves the laser
focus before the pulse is over. In this latter case, the electron is accelerated by the
gradient of the ponderomotive potential that is present along the cross section of
the laser beam, thus acquiring the dressing energy once and for all, instead of
returning it to the field. When the light that dresses the system and induces the
multi-photon transition comes in the form of a short pulse, the amplitude E0 of
the electric field associated to it changes with time, E0 = E0(t),

~E(t) = ε̂E0(t) sin(ωt + φ(t)). (6.41)

For example, in the case of the parametrisation (6.29) mentioned in the last sec-
tion, the carrier is modulated by a cosine-square envelope

E0(t) = E0 cos2
(

πt
τ

)
θ(τ/2− |t|). (6.42)

In these conditions, the energy E of the final state that is populated by means of
the absorption of n photons from the hydrogen ground state changes across the
pulse as well,

E(t) ' E1s + nω +
E2

0(t)
4

[
M1s 1s(E1s, ω)− 1

ω2

]
(6.43)
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Figure 6.16: Schematic illustration of the dynamic-interference mechanism underlying the appearance
of the multi-peak substructure in the non-resonant multi-photon photoelectron signals when an atom
is ionized with intense isolated ultra-short pulses. The external pulse induces an ac-Stark shift of the
energy levels of the atom. Depending on the value of the time-dependent intensity of the laser, the
pulse promotes at different times transitions to laser-dressed states that are adiabatically connected
to field-free states with different energies, thus resulting in a global shift of the photoelectron signal.
Two temporally separated amplitudes contribute to each final energy. The phase difference acquired
by the first amplitude with respect to the second one in the intermediate time lapse can give rise to
either constructive or destructive interference thus resulting in a peak or a zero in the photoelectron
spectrum, respectively. See text for more details.

(for simplicity, we disregard the dependence ofM on the first energy entry).

This phenomenon is qualitatively illustrated in Fig. (6.16): as the external oscil-
lating field becomes more and more intense, the energy of any state gets shifted
by a quantity that follows the laser-intensity profile and which reaches its maxi-
mum in correspondence with the peak of the pulse envelope. As the intensity of
the pulse decreases again, and eventually vanishes, the energies of the dressed
states return to their original field-free value, thus traversing for a second time,
in the opposite direction, all the intermediate energies. As a consequence, for a
symmetric pulse centered at t = 0, the probability amplitude to each possible
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final energy ε, A(n)
ε←1s, receives two contributions: one at a time −tε and another

one at a time tε, where E(tε) = ε (see Fig. 6.16),

A(n)
ε←1s = A

(n)
ε←1s(−tε) +A(n)

ε←1s(tε). (6.44)

Indeed, for t = ±tε, the n−photon transition from the ground state is resonant
with the dressed state that is adiabatically connected to the field-free state with
energy ε. The two amplitudes A(n)

ε←1s(±tε) have comparable magnitude, but not
the same phase. This is because, in the time interval ∆t = 2tε elapsed from the
first transition to the second one, the amplitude of the final excited state acquires
an additional phase with respect to the ground state, which is approximately
given by ∆φε ' 2nωtε (in this latter formula, we made the simplifying assump-
tion that the ac-Stark shifts are small when compared with the total transition
energy nω). The two amplitudes, therefore, will interfere destructively whenever
2nωtε = (2k + 1)π, thus giving rise to a node in the photoelectron spectrum,

P(n)
ε←1s ' 4

∣∣∣A(n)
ε←1s(tε)

∣∣∣2 cos2 (nωtε) . (6.45)

The transitions taking place close to the center of the pulse, and which thus lead
to the population of the final continuum state whose energy lies farther from the
field-free resonant condition, interfere all constructively. As a result, in the pho-
toelectron spectrum we observe a dominant peak at the maximally shifted final
energy, accompanied by several other peaks with progressively smaller intensi-
ties and whose energy positions approach the value predicted by the field-free
resonance condition E = E1s + nω.

For ω = 0.114 a.u., both terms in parenthesis on the RHS of (6.43) are neg-
ative. In our simulation, at peak intensity, the ac-Stark shift of the ground and
continuum states have the following approximate values,

∆Eac
1s = −0.003 a.u., Up = 0.055 a.u. (6.46)

A closer look at Fig. 6.15 reveals that the displacement of the largest peak with
respect to the nominal position in the weak-field limit is ' −0.051 a.u. for the
first groups of signals (five-photon absorption) and ' −0.049 a.u. for the second
one (six-photon absorption). While both values are in qualitative agreement with
the prediction ∆Emax = ∆Eac

1s −Up = 0.058 a.u., a couple of observations are per-
tinent nonetheless. Firstly, the observed shift changes from one group of peaks to
the other. This is not unexpected since the photoionization cross section changes
rapidly close to the threshold and the ac-Stark shift of continuum states, which
is an order of magnitude larger than the ac-Stark shift of the ground state, may
also change significantly in this energy range. In fact, the variation in the energy
shift in the continuum is comparable to the ac-Stark shift of the ground state
itself. Secondly, due to the short duration of the pulse, the displacement of the
maximum in the spectral profile is arguably smaller than the one that would be
obtained with a monochromatic laser with the same peak intensity.
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The appearance of a peak substructure in the photoelectron signal for the ab-
sorption of a fixed number of photons from a short pulse has also been recently
observed by Demekhin and Cederbaum [154] in the context of the ionization of
the hydrogen atom by an energetic (ω ' 2 a.u.) intense pulse (I= 5 · 1015W/cm2),
in the region of one-photon absorption. In this case, the photoelectron signal
gives rise to a group of peaks that are shifted at higher energies with respect to
the nominal position of the peak in the weak-field limit, rather than at smaller
energies as in the case discussed in this paper. This is because, for ωUV ' 2 a.u.,
the ac-Stark shift of the ground state is (i) positive and (ii) larger than the pon-
deromotive shift experienced by the final continuum states.

In Fig. 6.13(b), we report the fully differential photoelectron distribution corre-
sponding to the spectrum shown in Fig. 6.15, computed with the GABS basis.

When compared with the analogous spectrum in Fig. 6.13(a), obtained with
a higher laser frequency and lower pulse intensity, it is apparent that the struc-
ture is more complicated. Here, the correspondence between the number of dips
in the angular distribution and the number of absorbed photons is not visible
anymore. Indeed, the first group of peaks, comprised between the threshold and
E ' 0.08 a.u., which results from the absorption of five photons, counts at most
four local maxima. Furthermore, the downward energy shift of the signal for the
photoelectrons ejected along the polarization axis with respect to those ejected
perpendicularly to it, which was barely visible in Fig. 6.13(a), is here much more
pronounced. This effect, which is clearly visible for the two absolute maxima
in the group of peaks comprised between E ' 0.09 a.u. and E ' 0.2 a.u. (the
first group of peaks is truncated by the threshold opening) constitutes an addi-
tional aspect of the dynamical-shift effect that cannot be detected in a 2D plot like
Fig. 6.15. The spectral lines that are most dramatically distorted by this effect are
the weakest ones within each group, i.e., at E ' 0.07 a.u. and E ' 0.19 a.u., which
are also the ones closer to the nominal weak-field positions of the ATI peaks. A
final peculiar aspect that we would like to highlight in Fig. 6.13(b) is the appear-
ance of isolated narrow dips in the transition probability, e.g., for (E, cos θ) '
(0.03 a.u., ±0.7), (0.02 a.u., ±0.75), (0.125 a.u., ±0.9). This phenomenon is asso-
ciated to the fact that the transition amplitude beneath the photoelectron distri-
bution is complex, rather than real. As a result, the loci of zeros in the (E, cos θ)
domain of its real and imaginary components are curves that generally intersect
at isolated points only. Symmetry nodes, like those at θ = 90◦ for the absorption
of an odd number of photons, are a notable exception.
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P H O T O I O N I Z AT I O N O F P O LY- E L E C T R O N I C S Y S T E M S
U S I N G X C H E M

7.1 one-electron parent ions

7.1.1 Photoionization of He

The helium atom is an extensively studied system for which accurate indepen-
dent ab initio codes are available [117].

The parent-ion states of He+ were obtained by performing a formally SA-
CASSCF calculation of 5 states, where the active space consists of one electron
and 5 orbitals: 1s, 2s, 2px, 2py and 2pz. For this computation we used a modi-
fied version of the aug-cc-pV6Z [156] basis set, where only the s and p expan-
sions were considered. In this way, the well known hydrogen-like orbitals were
obtained for n = 1 and n = 2 shells. The orbitals were optimized with the MOL-
PRO package under D2h symmetry constraints (2 states for symmetry Ag and 1

state for the symmetries B1u, B2u and B3u) and exported to MOLCAS to follow
the augmentation procedure using two different GUGA tables: CAS(1,5) for the
case of the parent ions and CAS (2,7) for the case of the augmented parent ions.

For the monocentric GABS basis, B-splines of order 7 were used starting at
R0 = 10 a.u., in a box of 400 a.u., with a uniform grid of 0.5 a.u. separation
between consecutive nodes. The Gaussian functions were generated using for the
αi exponents in (5.9) an even-tempered set of 22 elements, whose minimum and
maximum elements are α1 = 0.01 and α22 = 28.28. The other parameter of the
Gaussian subset, Kmax, which defines the maximum angular momentum these
functions can represent, was set to Kmax = 3 (see 5.2).

Using this GABS basis, we defined three different CC expansions (5.1), with
total multiplicity 2S + 1 = 1 (see Table 7.1). The first one (CC1) contains two
helium parent ions, He+(1s) and He+(2s), while the second and the third CC
expansion (CC2 and CC3) have the extra parent ion He+(2p), and are intended
to build up the channels with symmetries 1Se and 1Po, respectively.

We used the CC1 expansion to estimate the Hamiltonian spectrum in the
box. Several of its Rydberg state energies converging to the N = 1 threshold

87
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Table 7.1: CC expansions used for the helium atom computations. For each angular momentum, the
projection m takes all the possible values.

CC1
a CC2 CC3

Configurations
1s⊗ X`m

2s⊗ X`m

1s⊗ X00

2s⊗ X00

2p⊗ X1m

1s⊗ X1m

2s⊗ X1m

2p⊗ X00, X2m

a ` = 0, 1, 2.

(-2 a.u.) are shown in Table 7.2. As a reference, an ab initio code relying exclu-
sively on B-splines and resembling the same correlation level imposed by the
CC1 expansion, was used. This independent method is virtually exact for the
non-relativistic He, provided that no further limitations to the electronic corre-
lation are assumed [117]. The agreement is very good, due to the fact that the
Rydberg states’ oscillations, dominant in the middle and long range, are mainly
reproduced by the B-splines, whereas the short range part is described by the
Gaussian subset, exhibits only few oscillations.

Following the procedures explained in the previous sections, we computed for
the CC2 and CC3 expansions the scattering matrix S, and hence the eigenphases.
Figure 7.10 shows the calculated scattering phase-shifts, θ(E) [see Eq. (3.25)], in
the vicinity of the first two resonances of the 1Se and 1Po series below the N = 2
threshold (−0.5 a.u.). In this energy region, there is only one open channel for
each symmetry, although there are interactions among all the channels used in
the CC expansions. The presence of the resonances is clearly indicated by the
jumps of π in the total phase-shift. By fitting the calculated phase-shifts to Eq.

Table 7.2: Energies (in a.u.) of several Rydberg states converging to the N = 1 ionization threshold
of He (-2 a.u.), obtained by using B-splines only (reference calculation) and the CC1 expansion given
in Table 7.1.

State B-splines CC1

1s5s −2.021053 −2.021047

1s3d −2.019996 −2.019996

1s4p −2.019821 −2.019814

1s6s −2.014493 −2.014486

1s4d −2.013887 −2.013879

1s5p −2.013785 −2.013777

1s7s −2.010582 −2.010574

1s5d −2.010203 −2.010195
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Figure 7.1: Total phase-shift energy dependence in units of π. The two top panels and the two bottom
panels show the first two resonances for the 1Se and 1Po series, respectively, below the N = 2 (-0.5
a.u.) threshold. Herrick’s notation [157] has been used to label these doubly excited states N(K, T)A

n .
Three of the eigenphases have been shifted in energy to better visualize the comparison of the resonant
profile with the benchmark. Eref and Γref correspond to the reference values.

(3.25), we have extracted the corresponding energy positions and autoionization
widths. As can be seen, the agreement with the results of the reference calcula-
tions is very good. For the energies, the maximum absolute deviation is quite
small: 0.002 a.u.. For the widths, the error is smaller than 6%, except for the first
resonance of the 1Se series, for which it is ∼ 20%.

In the energy region between the N = 2 and N = 3 thresholds, several channels
are open for the CC2 and CC3 expansions, as can be seen in Figure 7.2. This time
no resonances can be seen because we are not including any configuration with a
parent ion beyond the N = 2 threshold. Again the calculated phase-shift curves
compare very well with the reference ones. Only for those profiles corresponding
to the channels in which the parent ion is left in the He+(1s) state, deviations
from the reference results are larger than 5%. This is due to the fact that, in
this channel, the energy of the continuum electron is high (>1.5 a.u.) and the
chosen GABS basis is not flexible enough to provide an accurate representation
of the corresponding rapidly oscillating continuum orbital. This situation is easily
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Figure 7.2: Multichannel scattering total phase-shifts above the N = 2 (-0.5 a.u.) threshold. The top
panel shows the channels with even symmetry and the bottom panel those with odd symmetry.

solvable by improving the GABS basis, e.g., by increasing the number of K’s in
the subset of monocentric Gaussian functions.

Figure 7.3 shows the photoionization cross section below the N = 2 threshold,
obtained by using Eq. (7.5) and the CC3 expansion. The calculated spectrum
exhibits pronounced peaks corresponding to the resonances belonging to the
1Po series, which display the characteristic Fano line shapes [36]. Figure 7.3 also
shows the comparison between our results in velocity gauge and those from the
reference calculations in velocity and length gauges. The agreement between the
two gauges within the benchmark, and between the benchmark and our results
again is very good.

7.1.2 Photoionization of H2

To test our model in a molecular target, we have chosen the simplest multielec-
tronic molecule, H2, for which one can compare with accurate benchmark calcu-
lations [34, 68].

In the calculations of the parent ion H+
2 , several states were obtained by using

the CASSCF methodology with an active space of 1 electron in 7 orbitals and the
s and p functions from the aug-cc-pV6Z basis set [158]. The states included in
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Figure 7.3: Cross section from the He ground state. The inset shows the region where the first
resonances appear, having the characteristic Fano profile.

the parent-ion calculation were 2 for the symmetry Ag (1sσg and 2sσg), and 1 for
each of the symmetries B3u and B2u (2pπu), B1u (2pσu), B2g and B3g (3dπg). The
orbitals obtained for these states are shown in Fig 7.4. As explained in section 5.3,
the orbitals were optimized with the MOLPRO package using D2h symmetry
and exported to MOLCAS to follow the augmentation procedure. In this case the
GUGA tables employed were a CAS(1,7) for the parent ion and a CAS(2,9) for
the augmented states. For the GABS basis we used the same parametrizaton as
for the helium atom (see previous section), except for the fact that this time the
box length is 200 a.u..

In Table 7.3, the energies for the first three 1Σ+
g and the first two 1Σ+

u states of
H2 at equilibrium distance (R = 1.4 a.u.) are shown, for five different computa-

Figure 7.4: The orbitals included in the active space of the H+
2 parent ion, from left to right: 1sσg,

2sσg, 2pσu, 2pπu and 3dπg. The sphere defining the region in which B-splines are not present is also
shown.
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Table 7.3: The upper part shows the energies for the first three 1Σ+
g and the first two 1Σ+

u states
of H2 at equilibrium distance. The lower part shows the dipoles computed in velocity gauge along the
internuclear axis, between the 1Σ+

g and the of 1Σ+
u states.

MRCIS XCHEM1
a XCHEM2

b XCHEMc B-splinesd

Energy (a.u.)
1Σ+

g −1.1674 −1.1380 −1.1650 −1.1650 −1.1725

−0.6908 −0.5682 −0.6905 −0.6905 −0.6911

−0.5717 −0.0185 −0.6263 −0.6263 −0.6259

1Σ+
u −0.7047 −0.5156 −0.7040 −0.7040 −0.7045

−0.6159 0.0163 −0.6280 −0.6279 −0.6279

Dipole (a.u.)

1(1Σ+
g )− 1(1Σ+

u ) 0.4546 0.3643 0.4537 0.4530 -

1(1Σ+
g )− 2(1Σ+

u ) 0.3105 0.0296 0.2145 0.2201 -

2(1Σ+
g )− 1(1Σ+

u ) 0.0370 −0.1722 0.0382 0.0382 -

2(1Σ+
g )− 2(1Σ+

u ) 0.1956 0.0140 0.1465 0.1468 -

3(1Σ+
g )− 1(1Σ+

u ) −0.1088 −0.0452 −0.1713 −0.1724 -

3(1Σ+
g )− 2(1Σ+

u ) −0.1595 0.0037 −0.0083 −0.0129 -

a Only polycentric Gaussian basis.
b Polycentric and monocentric Gaussian basis.
c All Gaussian plus the B-splines.
d Independent method relying exclusively on B-splines.

tional schemes. In the Multireference Configuration Interaction (MRCI), besides
those active orbitals depicted below to obtain the parent-ion wave functions, the
3sσg, 3pπu, 3pσu and 4dπg were added to obtain the first bound states of the neu-
tral H2 . Using this approach only single excitations were allowed. Three other
results are computed following the XCHEM formalism and using three different
approximations: i) using only the multi-center Gaussian expansion, ii) using the
multi-center and single-center Gaussian expansion and iii) adding the B-splines
to the previous approximation. The other computation was done using exclu-
sively B-spline functions according to the methods described in [34, 68]. The
lower part shows the dipoles computed in velocity gauge along the ẑ direction
(the internuclear axis), between the 1Σ+

g and the of 1Σ+
u states. These results show

that the low lying states are not affected by the addition of the B-splines in the
XCHEM formalism, and that the accuracy of its computation is equivalent to those
obtained by standard QC methods.
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Table 7.4: First three 1Σ+
u resonances energies and widths (in a.u.), for several internuclear distances.

The results obtained with the (7.1) CC expansions are compared with accurate reference calculations
(see acknowledgements). Numbers in parentheses represent power of ten.

R Resonance Ere f Γre f E Γ

1.0 1 0.2853 8.74(−3) 0.2847 8.94(−3)

1.0 2 0.3708 1.89(−3) 0.3703 1.97(−3)

1.0 3 0.3808 2.71(−4) 0.3809 2.86(−4)

1.4 1 −3.592(−2) 1.54(−2) −3.602(−2) 1.45(−2)

1.4 2 4.237(−2) 3.58(−3) 4.206(−2) 3.89(−3)

1.4 3 4.794(−2) 6.21(−4) 4.792(−2) 5.88(−4)

2.0 1 −0.2926 2.55(−2) −0.2899 2.33(−2)

2.0 2 −0.2236 3.52(−3) −0.2225 1.39(−3)

2.0 3 −0.2212 3.94(−3) −0.2223 6.45(−3)

3.0 1 −0.4783 4.10(−2) −0.4673 3.67(−2)

3.0 2 −0.4238 2.80(−3) −0.4230 2.21(−3)

3.0 3 −0.4177 1.15(−2) −0.4170 9.73(−3)

To assess the quality of our results, we performed calculations in the fixed-
nuclei approximation for the first three 1Σ+

u resonances at several internuclear
distances, and compared them with those from an independent computation
based on a different formalism [34], which essentially leads to exact results. The
CC expansions used to build the 1Σ+

u channel from a collection of H+
2 parent-ion

states is

1sσg ⊗ X`0, ` = 0, 1, 2, 3

2pσu ⊗ X`0, ` = 0, 1, 2, 3

(2pπu)x,y ⊗ X`m, ` = 1, 2, 3, m = ±1 (7.1)

2sσg ⊗ X`0, ` = 0, 1, 2, 3

(3dπg)x,y ⊗ X`m, ` = 1, 2, 3, m = ±1.

The results for the resonance positions and widths are given in Table 7.4. As
can be seen, there is a good agreement for almost all the resonances. The larger
discrepancies show up for the second and third resonances at an internuclear
distance of 2.0 a.u., for which the resonance widths are ∼ 40% off. This differ-
ence can be explained by the fact that, in the vicinity of this internuclear distance,
the second and third 1Σ+

u resonances exhibit a sharp avoided crossing [34]. As a
consequence, tiny errors in the computed wave functions can lead to a different
mixing of the relevant configurations and hence to large errors in the correspond-
ing autoionization widths in this region. Apart from these two special cases, the
general trend is that the shorter the internuclear distance the better the accuracy,
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Figure 7.5: Photoionization cross section from the H2 ground state at equilibrium distance to the
1Σ+

u continuum. The reference does not include the resonances (only the background), meanwhile the
present computation does include the resonances, the first of which is shown.

which can be easily understood if one takes into account that we are using the
same monocentric Gaussian expansion for all cases, whose representation capa-
bility decreases for an increasing separation between the nuclei.

The photoionization cross section, obtained in velocity gauge, for an H2
molecule at the equilibrium distance R = 1.4 a.u. is given in Figure 7.5. Only
contribution from the 1Σ+

u continuum is shown. The calculated cross section in-
cludes contributions from doubly-excited states associated to our choice of the
parent-ion states given in Eq. (7.1). In the figure, we only show contribution from
the first resonance, which appears as a pronounced dip at around a photon en-
ergy of 1.13 a.u., in excellent agreement with earlier results obtained within the
fixed-nuclei approximation [69, 159]. Using the code of Ref. [34], we have also
performed nearly-exact all-B-spline reference calculations for the photoionization
non resonant background by including the same number of parent-ion states as
in Eq. (7.1). We notice that these reference calculations do not include the con-
tribution from the doubly-excited states. As can be seen, except for the obvious
absence of the resonance in the latter calculations, the agreement with our results
is excellent.
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7.2 poly-electronic parent ions : the photoionization of ne

The first unambiguous observations of resonant states in the photoionization
spectra of noble gases were reported in the 1960’s [160, 161, 162, 163] and the
unusual shape of the peaks observed in these experiments was explained by
Fano in his seminal 1961 paper [36] as resulting from the interaction of a discrete
state embedded in the continuum (see also [126]). Neon is the lightest noble
atom in which the remaining cation has a truly poly-electronic character, so that
photoionization dynamics is much richer than in helium. For this reason, neon
has been systematically used to test new many-body theoretical methods. More
recently, due to the recent advances in the generation of shorter and shorter
pulses and the possibility to track electron wave packet dynamics in real time,
there has been a renewed interest in this system [164, 165, 166, 167, 168] that calls
for additional theoretical effort.

the stock approach In order to test the performance of the XCHEM ap-
proach to describe Ne photoionization, we have compared our results with those
of independent numerical calculations performed with the STOCK code, for a few
selected cases in which we can guarantee that the same level of electron corre-
lation has been used. Details of the STOCK code can be found in [25]. Briefly,
the method relies exclusively on B-splines as a primary basis set, and instead
of explicitly imposing asymptotic boundary conditions as we do (see Eq. (3.15)),
it makes use of the exterior complex scaling (ECS) formalism [169, 120], which
ensures outgoing waves in the asymptotic region. For the bound states of the par-
ent ions, STOCK uses the Multiconfiguration Hartree-Fock method (MCHF) [96],
in which the atomic wave function is expanded as a linear combination of CSF:

|Ψ(x)〉 = ∑
i

ci |2S+1Ξi(x)〉 . (7.2)

In this method, both the coefficients {ci} and the radial functions {Rnl(r)} used
to expand the spin orbitals are varied to minimize the energy functional using a
wighted average of the non-relativistic energy of a selected number of parent-ion
states:

E[{ci}, {Rnl(r)}] = ∑
j

wj 〈Ψj(x)|H |Ψj(x)〉 . (7.3)

The MCHF problem is solved using the ATSP2K package [170]. The STOCK code
has been designed to describe atomic systems, so that it is computationally more
efficient than the XCHEM code to describe Ne photoionization. XCHEM goal is to
describe molecular systems in association with common QCPs, and hence it con-
templates the D2h point group (and its subgroups) but not SO(3). On the other
hand, in contrast with XCHEM, STOCK builds the CC expansion using as target
states each and every parent ion in the CASSCF. Therefore, for a computation
that includes electronic excitations of the target, the only way to have an equiva-
lent CC expansion with XCHEM is to include all parent-ion eigenstates, which is
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extremely expensive if we are only interested in describing ionization above the
lowest ionization thresholds and obtaining a good description of electron correla-
tion. Thus we have restricted the benchmarking with the STOCK code to the case
in which the parent ion states in the CC expansion are described by the reference
configuration (i.e., no further electronic excitations are allowed to optimize the
parent-ion wave functions).

computational details In our CC expansion, we have included two par-
ent ions corresponding to the configurations 1s22s22p5 (2Po) and 1s22s12p6 (2Se),
which after augmentation with the GSC

i (x1) and B-spline bases, leads to CI vec-
tors of about one million components (each component corresponds to a different
configuration) for the neutral system, for the case of maximum correlation (see
below). The wave functions representing the two parent ions were computed by
using different levels of correlation, depending on how the 9 electrons were dis-
tributed in the space defined by the atomic orbitals. In order to create a common
set of orbitals, valid for both parent ions, a State Average CASSCF calculation was
performed, optimizing with respect to the energetic average of the 2Se and the
(triply degenerate) 2Po states. We will show results for two levels of correlation:
i) minimal CI (MCI), in which the parent ion states are obtained using a CAS(7,4)
calculation. That is, including all configurations (subject to spin and symmetry
restrictions) obtained by seven electrons distributed over the 2s, 2px, 2py and 2pz
orbitals with the 1s orbital being doubly occupied always, and ii) extended CI
(XCI), in which the active space is extended from the MCI case, to allow also
occupation of 3p, 3d and 4s orbitals (i.e. a CAS(7,13) calculation).

At both MCI and XCI level, the parent ions are obtained using a cc-pVQZ
Gaussian basis set [171, 172]. The virtual orbitals that result from the calculation
are excluded from the augmentation procedure, since they are quite diffuse and
would overlap with the B-splines, in contrast with one of the XCHEM assumptions.

The GABS basis consists of B-splines of order k = 7 starting at R0 = 7 a.u.
with a node separation of 0.5 a.u. in a box of 200 a.u., and a set of Gaussian
functions (G`m

iK (~r) = Ni`rK` e−αir2
X`m(r̂)) with an even-tempered sequence of αi

exponents as that used in [173] and K` = ` + 2k values with `max = 3 and
kmax = 2. For the parent-ions we have considered, we only need a photoelectron
angular momentum up to ` = 2 to describe the 1Se and 1Po total symmetries. This
choice leads to the following powers of r according to the angular momentum:
K0 = 0, 2, 4, K1 = 1, 3, 5, and K2 = 2, 4, 6.

In Table 7.5, the energies of the parent ions used in the CC and the energies
of the lower four states of Ne with 1Se and 1Po symmetries are shown. The agree-
ment between the two independent computational schemes is very good. The
virial theorem was also successfully checked at XCI correlation level for the neu-
tral bound states.
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Table 7.5: Bound state energies comparison between STOCK and XCHEM , for different levels of
correlation. The top part shows the energy of the parent ions used in the CC expansion. The bottom
part shows the first four energies of the states with 1Se and 1Po symmetries. The ratio κ = −〈i|V|i〉/〈i|K|i〉,
where computed, is given in parentheses.

Ne+ energies (a.u.)

STOCK XCHEM

Corr. 2p−1 2s−1 2p−1 2s−1

MCI −127.8174 −126.7345 −127.8172 −126.7335

XCI - - −127.9927 −126.9970

Ne energies (a.u.)

1Se 1Po 1Se 1Po

MCI −128.5873 −127.9865 −128.5881 −127.9861

−127.9123 −127.8844 −127.9120 −127.8841

−127.8627 −127.8735 −127.8623 −127.8731

−127.8440 −127.8533 −127.8395 −127.8530

XCI - - −128.7709(1.9999) −128.1613(2.0002)

- - −128.0884(2.0002) −128.0597(2.0003)

- - −128.0381(2.0003) −128.0487(2.0003)

- - −128.0140(2.0000) −128.0285(2.0003)

7.2.1 Photoionization of Ne at MCI level

At this level of correlation we can compare, on an equal footing, the XCHEM

results with those obtained with STOCK, as explained in the previous section.
Figure 7.6 shows the eigenphases computed for the scattering channels with
1Se and 1Po symmetries using both approaches at the MCI level. For the former
symmetry, which is the same as for the ground state, the continuum above the
lowest ionization threshold corresponds to a state in which the 2s22p5 parent
ion is coupled with an outer electron described by a p-wave: 2s22p5εp. Above
the 2s2p6 threshold, a new continuum emerges for the same symmetry: 2s2p6εs.
For the 1Po symmetry, we have multiple channels both below and above the
2s2p6 threshold: 2s22p5εs and 2s22p5εd below the 2s2p6 threshold and the addi-
tional channel 2s2p6εp above. Below the 2s2p6 threshold, the continuum contains
a single resonance series: 2s2p6ns and 2s2p6np for the 1Se and 1Po symmetries, re-
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Figure 7.6: Eigenphases in units of π for the scattering channels of symmetry 1Se (top panel) and
1Po (botttom panel), computed using XCHEM (dashed lines) and STOCK (solid lines) at CIS level.
The region shown below the 2s2p6 ionization threshold (vertical line) extends from well below the
resonances up to the second resonance for the two resonance series 2s2p6ns and 2s2p6np.

spectively. The agreement between the XCHEM and STOCK eigenphases is excellent,
both in the resonant and non-resonant regions.

Notice the pronounced jumps in the phases when one goes through the reso-
nances. From Eq. (3.26), we obtain for the two open channels of 1Po symmetry:

Γ1

Γ2
= − tan(φν(Er)− φ0

1)

tan(φν(Er)− φ0
2)

, ν = 1, 2. (7.4)

Eq. (7.4) can be used to compute the Γ1/Γ2 ratio. Notice that, in contrast with the
total phase, the partial eigenphases experience a variation smaller than π radians
in the vicinity of the resonances. Figure 7.6 shows, however, that in the vicinity
of the 2s2p6np resonances, the 2s22p5εd eigenphase takes most of the π jump.
This indicates that the decay of these resonances to the 2s22p5εd continuum is
the dominant process, as expected by propensity rules [174].

The 2s2p6np resonant series also leaves its fingerprint in the photoionization
cross section in the form of Fano-like peaks, due to the interference between the



7.2 poly-electronic parent ions : the photoionization of ne 99

35 40 45 50 55
Photon energy (eV)

0

2

4

6

8

10

12

C
ro

ss
 s

ec
ti

o
n
 (

M
b
)

2s2p
6

XCHEM L
XCHEM V
STOCK L
STOCK V
Toffoli et al  L
Toffoli et al V

Figure 7.7: Total photoionization cross section from the ground state of Ne, computed using
XCHEM (dashed lines) and STOCK (solid lines) at CIS level, for lenght (L) and velocity (V)
gauges. Results from Toffoli et al [175], obtained by using the same level of correlation, are also shown
(dashed-dotted lines). The vertical line indicates the position of the 2s2p6 ionizaion threshold.

direct and resonance mediated ionization paths [36]. The partial photoionization
cross section corresponding to a channel µ is given by

σL
µ =

4π2(E− Eg)

c
|〈Ψ−µE|ε̂ ·∑~ri|Ψg〉|2

σV
µ =

4π2

c(E− Eg)
|〈Ψ−µE|ε̂ ·∑~pi|Ψg〉|2, (7.5)

where the superscripts L and V stand for the length and velocity gauges respec-
tively. The polarization of the incident light is ε̂, c is the speed of light and Eg the
ground state energy.

Figure 7.7 shows the total photoionization cross section (σ = ∑ σµ), computed
with XCHEM and STOCK at MCI level, for length and velocity gauges. Independent
theoretical results obtained by other authors, at the same level of correlation, are
also shown [175]. The results of XCHEM and STOCK in length gauge are indistin-
guishable to the naked eye. However, in the velocity gauge, the slopes of the
corresponding non-resonant backgrounds are different, while the position and
shape of the resonance peaks remain similar. Since both calculations were per-
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formed at MCI level, the difference in the background can only be explained by
differences in the basis functions used in those calculations: a hybrid Gaussian/B-
spline basis in XCHEM and a purely B-spline one in STOCK. As explained above, in
XCHEM, B-spline functions are only used beyond R0, which means that the short-
range part description of the continuum wave function is entirely described by
Gaussian functions. In contrast, in STOCK B-splines are used all the way from the
origin to the asymptotic region. B-spline functions provide more flexibility than
Gaussian functions, in particular, they can better describe the wave function cusp
at r = 0. Hence it is not surprising that discrepancies are only seen in the velocity
gauge, since it emphasizes the contribution of the short-range part of the wave
function. This is possibly the reason why, in the velocity gauge, the non-resonant
background of Ref. [175] (an all-B-spline calculation) is in better agreement with
STOCK than with XCHEM. Nevertheless, the resonant peaks predicted in [175] are
shifted around 2.2 eV to higher energies, thus suggesting a poorer representation
of electron correlation in the resonant states.

7.2.2 Photoionization of Ne at XCI level

Figure 7.8 shows the total cross sections again, but this time computed at the
XCI level with XCHEM. They are compared with the experimental values reported
in [176]. The comparison is made on absolute scale (no rescaling of either the cal-
culated or the measured cross sections). As can be seen, the agreement between
theory and experiment is very good. Also, the separation between the results
obtained in the length and velocity gauges is smaller than in Fig. 7.7, and more
uniform across the whole energy interval. Such improved gauge agreement is
a consequence of having used a larger number of excitations in the parent-ion
states. Another difference with Fig. 7.7 is that the resonant peaks are displaced
to lower energies, thus indicating a better description of electron correlation in
the resonant states. Interestingly, the XCHEM result computed in length gauge
is closer to the measured data than that obtained in velocity gauge. This fact
stresses once again that the quality of the wave functions in the short-range do-
main, though acceptable, is not as good as in the middle and long ranges, due to
the intrinsic limitations of the Gaussian expansion in the innermost region and
the poor short-range electronic correlation.

Let us now analyze in more detail the resonance structures observed in the
spectrum. For the multichannel case, the photoionization cross section near an
isolated resonance takes the form [126]:

σ(ε) = σa(ε)
(q + ε)2

ε2 + 1
+ σb(ε), (7.6)

where ε = 2(E−Er)
Γ is the reduced energy and q the Fano parameter. The smooth

functions of the energy σa(ε) and σb(ε), represent the contribution of the transi-
tions to the scattering states that do and do not interact, respectively, with the
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Figure 7.8: Total photoionization cross section from the ground state of Ne, computed using
XCHEM (solid lines) at the full CI level, for lenght (L) and velocity (V) gauges. Absolute cross
sections measured by Samson et al [176] are also shown (solid line with squares). The vertical line
indicates the position of the 2s2p6 ionizaion threshold.

discrete state in the continuum. Defining the two parameters σ0 = σa + σb (total
cross section background ) and ρ2 = σa

σa+σb
(0 ≤ ρ2 ≤ 1), Eq. (7.6) becomes:

σ(ε) =
σ0(ε)

ε2 + 1
(ε2 + 2ρ2qε + ρ2q2 + 1− ρ2), (7.7)

We have evaluated the resonance parameters by fitting the calculated total cross
section to this last formula. Notice that the usual single-channel Fano formula is
recovered when ρ2 = 1.

Table 7.6 shows the results obtained from the fit of the cross sections calculated
at full CI correlation level. We have extracted the energy Er, total autoinization
width Γ, profile parameter q and correlation parameter ρ2 for the lowest three
1Po resonances converging to the 2s2p6 ionization threshold. For consistency, en-
ergies and widths have also been evaluated by fitting the total scattering phases
to Eq. (3.25). All parameters have been evaluated by using results obtained in
both length and velocity gauge, and are compared with previously reported the-
oretical and experimental results (we do not compare the values of the total cross
section background because all measurements but those of [176] -see Fig. 7.8-
were reported in arbitrary units). It is worth noticing that among the four reso-
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nance parameters, q is the most sensitive one to the quality of the basis, because
it depends both on the coupling between the discrete state embedded in the
continuum and the non-resonant continuum components, and on the dipole cou-
pling between the ground and the modified discrete state (perturbed discrete
state due to the non-zero coupling with the non-resonant continuum). As can be
seen, values of the resonance energies are very close for the different computation
schemes (in percent), while ρ2, Γ, and q exhibit a higher dispersion.

Table 7.6: Resonance parameters for the lowest three 1Po resonances converging to the 2s2p6 threshold.
The XCHEM results at the full CI level (highlighted in bold) have been obtained in three different
ways: by fitting the total phase shift and by fitting the total cross sections obtained in length and
velocity gauges. The results are compared with theoretical and experimental values reported in the
literature. Uncertainties, where quoted, are given in parentheses, and experimental values are given in
italics for an easy identification.

Resonance Energy (eV) Width (meV) Fano q ρ2 = σa
σa+σb

2s2p63p 45.431a,b,c 15.0a,b −1.47b 0.79b

45.426d 15.1c −1.34c 0.77c

45.5442(50)e 13.3d −1.58(1)f 0.75(5)f

45.546(8)g 16(2)e −1.6(2)g 0.70(7)g

45.53397e 13(2)f,g −1, 59(1)f 0.72f

45.557f 13h −1.53(1)f 0.73f

49.725h 18.6(10)f −1.4h 0.77h,k

46.253i 34.9e −3.69i 0.514i

45.5655j 13.9i −0.34k 0.93k

45.538l 11.4j −1.16k 0.91k

11.7k −1.61k 0.76k

12.1k −1.30k

31.8l −1.32l

2s2p64p 46.942a,b,c 4.3a,b,c −1.26b 0.84b

46.945d 3.8d −1.67c 0.85c

47.1193(50)e 5.7(10)f −1.47(1)f 0.78(11)f

47.121(5)g 4.5(1.5)g −1.6(3)g 0.70(7)g

47.11092e 7h −1.88f 0.72f

47.111f 4.3f −1.82f 0.73f

51.318h 6.65e −1.35h 0.63h

47.397i 3.86i −3.95i 0.505i

Continued on the next page
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Continued from the previous page

Resonance Energy (eV) Width (meV) Fano q ρ2 = σa
σa+σb

47.1278j 5.28j −1.75k 0.76k

3.8k −1.46k 0.77k

2s2p65p 47.506a 1.6a,d −1.35b 0.86b,c

47.502b,c,d 1.7b,c −1.78c 0.6(2)f

47.6952(15)e 3.6(18)f −1.46(5)f 0.70(14)g

47.692(5)g 2(1)g −1.6(5)g 0.74f

51.894h 2.47e −1.9f 0.75f

47.687f 1.8f −1.87f 0.71h

47.69182e 3h −1.15h 0.502i

47.814i 1.62i −4.05g

47.6975j 2.61j

a XCHEM: fit of the total phase.
b XCHEM: fit of the total cross section in length gauge.
c XCHEM: fit to the total cross section in velocity gauge.
d XCHEM: eigenvalues of the HQ (see 3.4.2).
e Reference [177].
f Reference [178].
g Reference [163].
h Reference [179].
i Reference [180].
j Reference [181].
k Reference [182].
l Reference [183].

It is worth noticing that the other theoretical results shown in the table were
obtained by using very different levels of theory: the relativistic random-phase ap-
proximation (RRPA) together with the relativistic multichannel quantum-defect
theory (RMQDT) [179], the R-matrix method, sometimes combined with the
multichannel quantum-defect theory (MQDT) [177, 178, 181, 182], the time de-
pendent local density approximation (TDLDA) [180], and the time-dependent
configuration-interaction singles (TDCIS) [183]. Among all these theoretical stud-
ies, the one that resembles the most our level of theory is [182], in which besides
some computations with too little correlation, the authors also used the same par-
ent ions we do include in our CC expansion, whose wave functions are obtained
within the CISD level (singles and doubles) , allowing the excitations from the
reference configurations to the pseudo-orbitals: 3s, 3p and 3d. To this approach
correspond in Table 7.6, for the first resonance, the width of 11.7 meV, q parame-
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ters -1.6 (length gauge) and -1.3 (velocity gauge), and ρ2 parameters 0.76 (length
gauge) and 0.77 (velocity gauge); and for the second resonances, a width of 3.8
meV, q parameters -1.75 (length gauge) and -1.46 (velocity gauge), and the same
ρ2 values than for the first resonance. They don’t report the parameters for the
third resonance.

Considering the XCHEM results only, the Er, Γ and ρ2 parameters obtained from
the different fits agree very well to each other. For the Fano q parameter, differ-
ences between the results extracted from the length and the velocity gauges are
larger. The XCHEM resonance energies are 0.1-0.2 eV lower than the experimental
ones, and are comparable or even better than those obtained from other theo-
retical methods. The agreement with the experimental total widths is also quite
good: the computed values are within the experimental error bars or pretty close.
For the q parameters, apart from the gauge discrepancy mentioned above, the
agreement with the experimental values is quite acceptable.

From the partial cross sections, one can get information about the decay of the
resonances to the different open channels. As shown by Starace [184, 185], the
photoionization partial cross sections can be written as:

σµ(ε) =
σ0

µ(ε)

ε2 + 1
{ε2 + 2ε[q<(αµ)−=(αµ)] + 1

−2q=(αµ)− 2<(αµ) + (q2 + 1)|αµ|2}, (7.8)

where σ0
µ(ε) is the partial cross section background and αµ = <(αµ) + i=(αµ) is

the Starace parameter [184, 185]. The αµ parameters are not independent of each
other, they fulfill the following relation:

∑
µ

σ0
µ(ε)|αµ|2 = σ0(ε)ρ2, (7.9)

where σ0(ε) and ρ2 are the background and the correlation parameters, respec-
tively, appearing in the total cross section. Figure 7.9 shows the 2p−1εs and
2p−1εd partial cross sections around the 2s2p63p, 2s2p64p and 2s2p65p reso-
nances. As expected, the 2p−1εd channel clearly dominates the photoionization
process. Only when the partial cross section associated with the dominant chan-
nel undergoes a very pronounced dip in the vicinity of the resonances, the 2p−1εs
partial cross section takes over, but only in very narrow energy intervals.

It is easy to demonstrate that

Γν

Γµ
=

σ0
ν |αν|2

σ0
µ|αµ|2

, (7.10)

so, in principle, if we were able to extract the backgrounds σ0
µ and the Starace

parameters αµ by fitting the partial cross sections to Eq. (7.8), then we could get
the branching ratios from (7.10). The problem lies now on how to perform the
fitting. The partial cross sections, like the total one, are nonlinear functions of the
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Table 7.7: Starace parameters and branching ratios (Γµ/Γ) for the same resonances as in Table 7.6
. The coefficients C1µ and C2µ and its error bars (in brackets), obtained through the fitting to the
partial cross sections using (7.12), are also shown.

Res. µ C1µ C2µ Re(αµ) Im(αµ) Γµ/Γ

2s2p63p 2s22p5εs 2.451(0.009)a 4.151(0.014)a −0.770a −0.097a 0.046c

1.971(0.008)b 3.443(0.010)b −0.677b −0.079b 0.044d

0.049e

2s22p5εd −2.649(0.008)a 1.754(0.012)a 0.934a −0.045a 0.954c

−2.391(0.008)b 1.429(0.011)b 0.931b −0.051b 0.956d

0.951e

2s2p64p 2s22p5εs 1.352(0.009)a 2.200(0.010)a −0.453a −0.105a 0.022c

1.663(0.007)b 2.246(0.009)b −0.432b −0.111b 0.021d

0.021e

2s22p5εd −2.301(0.011)a 1.392(0.017)a 0.846a 0.085a 0.978c

−3.145(0.013)b 2.600(0.024)b 0.863b 0.132b 0.979d

0.979e

2s2p65p 2s22p5εs 1.798(0.041)a 2.493(0.052)a −0.536a −0.176a 0.025c

2.167(0.038)b 2.581(0.053)b −0.507b −0.180b 0.025d

0.024e

2s22p5εd −2.544(0.027)a 1.618(0.042)a 0.963a −0.028a 0.975c

−3.395(0.024)b 2.882(0.046)b 0.964b −0.018b 0.975d

0.976e

a Fit of the partial cross section in length gauge.
b Fit of the partial cross section in velocity gauge.
c Using Eq. (7.10) in length gauge.
d Using Eq. (7.10) in velocity gauge.
e Using Eq. (7.4).

fitting parameters, but extracting the resonance parameters from the partial ones
has two additional complications: (i) there are extra parameters, namely the αµ

and (ii) the αµ parameters belonging to different channels are not independent
(as shown by Eq. (7.9)). For this reason, for each partial cross section, we will fix
the parameters already obtained from the fit of the total cross section (Er, Γ and q)
and will only leave three free parameters: <(αµ), =(αµ) and σ0

µ. The parameters
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Figure 7.9: Partial photoionization cross sections computed using XCHEM at the full CI level and
in velocity gauge. The three panels a, b, c display the energy region around the 2s2p63p, 2s2p64p
and 2s2p65p resonances, respectively ([Er − 4Γ, Er + 4Γ]), which can decay into the 2s22p5εs and the
2s22p5εd continua.

must be determined by imposing simultaneously the condition given by Eq. (7.9).
Due to this additional condition, for many initial values of the αµ parameters
convergence is not reached or leads to absurd values. To double check the results
of this fitting procedure, we have also adopted the following procedure. We have
linearized Eq. (7.8), by introducing the new parameters C1µ and C2µ [186] defined
as

C1µ = 2[q<(αµ)−=(αµ)],

C2µ = 1− 2q=(αµ)− 2<(αµ) + (q2 + 1)|αµ|2, (7.11)

so that Eq. (7.8) results in

σµ(ε) =
σ0

µ(ε)

ε2 + 1
(ε2 + C1µε + C2µ). (7.12)

This way, only the positions and widths of the resonances are fixed. There is
one last and important thing to be taken into account, which is the boundary
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Figure 7.10: Computed and fitted 2s22p5εd partial cross section in length gauge, near the 2s2p64p
resonance. The fitting using (7.8) and (7.12) gives indistinguishable results for the bare aye and only
the last one is shown.

conditions for C1µ and C2µ. From Eq. (7.11), the αµ parameters are determined
from a quadratic equation, so that two roots are obtained:

<(αµ) =
qC1µ + 2±

√
4C2µ − C2

1µ

2(1 + q2)
,

=(αµ) =
q(2±

√
4C2µ − C2

1µ)− C1µ

2(1 + q2)
. (7.13)

From the fact that <(αµ) and =(αµ) must be real numbers, one obtains 4C2µ ≥
C2

1µ. This condition must be imposed during the fitting process in order to get
meaningful results, in other words, the partial cross sections have to be non-
negative. If for some scattering channel there is a very deep window resonance
(almost zero partial cross section), the numerical fitted curve could go below
zero to minimize the fitting error, giving unphysical values for the parameters.
Then one has to select the correct Starace parameter from the two solutions of
Eq. (7.13). For this we can use Eq. (7.9) to find the roots that better fulfill this con-
dition. Actually most of the roots rejected following this selection criteria imply
a correlation parameter ρ2 > 1, which is outside its validity range. Nevertheless,
if there are more than two roots that satisfy reasonably well Eq. (7.9), then we
cannot be certain about which one is correct and we need extra information to
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remove the ambiguity, for instance, by computing the branching ratios using an
independent method.

The results obtained for C1µ, C2µ, αµ and Γµ/Γ using the different methods are
shown in Table 7.7. The gauge invariance of the Starace parameters is worse than
that of partial widths Γµ but better than that of the q parameter. The values of the
partial widths obtained with different methods agree very well with each other.
These numbers confirm the known qualitative behavior: 95% of the decay of the
first resonance goes into the 2p−1εd channel, and 98% of the second and the third
resonances.

7.2.3 Effect of intermediate resonances in the modulation of the SBs in RA-

BITT experiments

So far, we have discussed one-photon single ionization processes only. However,
XCHEM can describe single-ionization states of arbitrary symmetry (up to D2h
as mentioned in the previous sections). In particular, the code can be used to re-
produce processes in which more than one photon is exchanged, including time-
resolved measurements, such as HHG and RABITT interferometric techniques.

In several past works, RABITT has been applied to extract photoemission delays
in the non-resonant continuum [187, 116]. Recent experimental efforts [188, 189]
however, have extended this technique to regions of the spectrum where reso-
nances are present. These experiments show that the presence of resonances sig-
nificantly modifies the standard RABBITT picture, and in this context, theoretical
support can help in the interpretation of the measured spectra.

A straightforward way to theoretically simulate RABITT spectra is to solve the
TDSE using pulses that reproduce as closely as possible the experimental con-
ditions (pulses duration, spectral shape, intensity, etc). Most of the experiments
however, employ pulses, some of them in the mid IR spectral domain, which
make computations unfeasible. On the other hand, due to the moderate intensity
of the pulses used in most experiments, which limits absorption to a single XUV
and a single IR photon, one can safely rely on perturbation theory.

Taking advantage of this fact, a recently proposed theoretical model [190, 191],
in combination with transition matrix elements obtained from ab initio stationary
calculations, has been able to reproduce RABITT spectra in He with an accuracy
similar to that resulting from solving the TDSE.

Very recently, new RABITT experiments have been carried out on Ne, in which
one of the harmonics of the XUV (HH 63) is resonant with the 2s2p63p autoion-
izing state [192] (see Figure 7.11). The experiment was performed using an IR
with an intensity of 3− 7 · 1011 W/cm2, pulse duration of 60 fs and wavelength in
the [1688, 1718] nm range. The XUV harmonics had a FWHM of 350− 400 meV.
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Figure 7.11: Experimental photoelectron spectrum for different wavelengths from 1688 nm to 1718
nm [192].

In this section we use the transition matrix elements computed within XCHEM to
feed the perturbative model and reproduce these experimental results.

two-photon finite-pulse model for resonant transitions We are
interested, in particular, in the process in which there is only one resonance in
the intermediate states, and no resonances in the final states. Taking this into
account, what is needed is to obtained an approximated analytical expression for
the two-photon transition matrix elements:

M2n±1
f←g (Eg + 2nωIR) = ∑

α
∑
∫

dε′
〈Ψ f E|O|ΨαE〉〈ΨαE|O|g〉

ENe+(2p−1) + ε′ − [Eg + (2n± 1)ωIR] + i0+
,

(7.14)
where g and f are the ground and the final state respectively, and ωIR is the IR
central frecuency. As pointed in the previous section, when a Ne electron is pro-
moted to the continuum by a photon absorption and below the 2s2p6 ionization
threshold, two channels of 1Po symmetry are open: 2s22p5εs and 2s22p5εd. To
apply the model, this intermediate channels has to be decoupled into a resonant
|Ψ1Po

R,E〉 and non-resonant |Ψ1Po

D,E〉 channel:

|Ψ1Po

R,E〉 = Cs,R|Ψ
1Po

s,E 〉+ Cd,R|Ψ
1Po

d,E 〉,
|Ψ1Po

D,E〉 = Cs,D|Ψ
1Po

s,E 〉+ Cd,D|Ψ
1Po

d,E 〉, (7.15)



110 photoionization of poly-electronic systems using xchem

where the coefficients Cs/d,R/D that makes this transformation possible need to
be determined (see below). Once the problem has been separated, Eq. (7.14) can
be expressed as:

M2n±1
f←g = M2n±1

f←D←g + M2n±1
f←R←g, (7.16)

where the energy dependences have been dropped for the sake of simplicity and
(see [190, 191, 193])

M2n±1
f←D←g = O f E,DEODE,gw(z∓f ),

M2n±1
f←R←g = O f E,REORE,g[w(z∓f ) + (βEa − ε−1

Ea )(q− i)w(za)], (7.17)

where the Faddeeva special functions w(z) = e−z2
er f c(−iz) incorporate the ef-

fect of using pulses of finite duration thorugh its argument. The a subindex
stands for the intermediate resonance, with q Fano parameter and reduced en-
ergy εEa = 2(Eg + 2nωIR − Er)/Γ. The parameter βEa measures the relative strength of
the transition from the intermediate resonance to the final continuum state. This
is a free parameter of the model and typically takes very small values [188].ODE,g
and ORE,g are the dipole transition matrix elements that couple the ground state
to the non-resonant and the resonant intermediate states, respectively. These ma-
trix elements have been computed using XCHEM (see below for details). O f E,DE
and O f E,RE are the dipole transition matrix elements between the intermediate
and final continuum states. They have been computed by approximating the ra-
dial parts of the continuum orbitals to spherical plane-waves and evaluating the
result in the on-shell region [191].

There are three possible final states for the Ne two-photon transition from the

ground state: |Ψ(−)1Se

Ne+(2p−1)⊗εp)〉, |Ψ
(−)1De

Ne+(2p−1)⊗εp)〉 and |Ψ(−)1De

Ne+(2p−1)⊗ε f )〉. Then the
final population of the SB is obtained by adding the probabilities of reaching
these three finals states. From the profile of the SB population vs time-delay, the
atomic phases can be extracted (see 4.2.1).

In order to apply the model we need to compute the coefficients Cs/d,R/D in
Eq. (7.15), to be able to compute the OD/RE,g dipoles. If the complex dipole transi-

tions from the ground state to the intermediate scattering states |Ψ(−)1Po

Ne+(2p−1)⊗εs)〉
and |Ψ(−)1Po

Ne+(2p−1)⊗εs)〉 near the resonance of interest (2s2p63p), are parameterized
as:

OµE,g(ε) = Aµ + Bµ
(qµ + ε)

ε + i
, (7.18)
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where qµ is a channel dependent Fano-like parameter and Aµ, Bµ are in general
complex numbers. Then we can define the normalized coefficients

Cs,D = − Bd(qd − i)√
|Bs(qs − i)|2 + |Bd(qd − i)|2

,

Cd,D =
Bs(qs − i)√

|Bs(qs − i)|2 + |Bd(qd − i)|2
,

Cs,R = −C∗d,D, Cd,R = C∗s,D, (7.19)

to decouple the intermediate states in the resonant and non-resonant components
appearing in Eq. (7.15). Making use of the previous definitions we can express
the resonant transition ORE,g as a Fano-like close form:

ORE,g(ε) = BR
(q + ε)

ε + i
, (7.20)

where BR = ∑µ(Aµ + Bµ)Cµ,R. We can also express the Fano q parameter in terms
of these coefficients:

q =
1

BR
[(Bsqs + iAs)Cs,R + (Bdqd + iAd)Cd,R], (7.21)

for which the imaginary part must cancel out in order to give a real number.

Figure 7.12 shows the results of the fitting using Eq. (7.18) in length gauge near
the 2s2p63p autoionizing states, allowing us to obtain the parameters presented
in Table 7.8. With these, the resonance Fano parameter computed using Eq. (7.21)
is q = (−1.477,−0.017), which have a very small imaginary component that
lies within the fitting errors. Comparing the real part with the value reported in
Table 7.6 for the same resonance and gauge (-1.47), it is clear that the result is
consistent.

It should be noted that, to recover the transition amplitude to continuum states
with the definite spherical symmetry character, we must combine several contin-
uum states computed by XCHEM in D2h symmetry. See Appendix (G) for details.

Comparing Eq. (7.18) with the expression provided by Starace [184]

OµE,g(ε) = O0
µE,g[1 + α∗µ

(q− i)
ε + i

], (7.22)

Table 7.8: Couplings parameters for the two-photon resonant transition model.

ODE,g BR Cs,D Cd,D

(0.1376, 0.3421) (0.5784,−0.3982) (−0.7727,−0.5949) (−0.1092,−0.1972)



112 photoionization of poly-electronic systems using xchem

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-6 -4 -2 0 2 4 6
ε

XCHEM As

Fitting As

XCHEM Ad

Fitting Ad

XCHEM OsE,g

Fitting OsE,g

XCHEM OdE,g

Fitting OdE,g

A
b
s
(O

μ
E
,g
)/

A
rg

(O
μ

E
,g
) 

(a
.u

./
ra

d
)

Figure 7.12: Computed and fitted dipole transitions around the 2s2p63p resonance and in length
gauge, from the ground state to the 2s2p6εs and 2s2p6εd scattering channels.

it is easy to show that the following relations hold:

O0
µE,g = Aµ + Bµ,

αµ =
B∗µ(qµ + i)

(Aµ + Bµ)∗(q + i)
. (7.23)

The equation above provides an extra way to compute the Starace parame-
ters, which gives for the two open channels: αs = (−0.761,−0.096) and αd =
(0.903,−0.0065). This is in very good agreement with the results shown in Ta-
ble 7.7: αs = (−0.770,−0.097) and αd = (0.934,−0.045).

Having checked that the parameters extracted from the fitting provides mean-
ingful results, we can use the model to compute the SB population vs time delay,
and from it, its phase (see 4.2.1). This results are shown in Figure 7.13, in which
the measure phase of SB 62 and SB 64 are shown together with the theoretical cal-
culation using the model (in this case a parameter βEa = 0.003 slightly improve
the theoretical result). The agreement for the SB 62 is quite good. In the case
of SB 64, on the other hand, we observe a big discrepancy, due to the presence
of a second intermediate resonance besides 2s2p63p. Indeed, HH 65 is in reso-
nance with 2s2p64p, as can be seen from Figure 7.11. The two-photon transition
model described above only accounts for one intermediate resonance. The same
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model, however, can be generalized to describe the effect of an arbitrary number
of ionizing states.
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C O N C L U S I O N S & P E R S P E C T I V E S

One of the main limitations of existing QCPs is their inability to describe the elec-
tronic continuum of molecules, which for many years has limited the study of
molecular ionization processes. In this work, we have merged existing QCPs and
state-of-the-art numerical scattering methods to overcome this limitation. The
new method follows the spirit of earlier close-coupling approaches, in which the
scattering wave function is expanded in a basis of channel states representing
a molecular cation in a given electronic state and a continuum electron satis-
fying the appropriate scattering boundary conditions. The electronic configura-
tion space is divided into a short-range region, where electronic configurations
are built in terms of Gaussian functions compatible with QCPs, and a long-
range region, where a single electron interacts with a finite number of correlated
molecular-ion states.The state of this electron is expressed in terms of the hybrid
basis GABS, which combines monocentric Gaussian functions with B-splines ap-
propriate to represent the continuum.

Our method takes advantage of existing ab initio quantum chemistry packages
such as MOLCAS and MOLPRO, putting their advanced machinery at our dis-
posal and facilitating its widespread use by chemical physicists. Other computa-
tional approaches combining ab initio quantum chemistry and scattering methods
are currently under development [100, 101, 102, 30, 94, 99], but at variance with
them, our method is able to include electron correlation and exchange in the
electronic continuum at the same level of accuracy as quantum chemistry does
for bound states. Another important advantage is that increasing the number of
electrons for a fixed number of scattering channels does not increase the com-
putational cost of the full dimensional problem significantly. In other words, the
effort made to evaluate the electronic continuum in, let’s say, H2, would be sim-
ilar to that required for a polyatomic molecule like water or acetylene. Finally,
the present method also allows us to describe ionization in many-electron atoms,
again taking advantage of many of the features that QCPs incorporate and that
are not so often available in atomic computational codes. We want to mention that
there is another research group that uses a formalism very similar to ours, merg-
ing QCPs with scattering methods [103, 104]. However their basis set, which also
comprises B-splines and Gaussian functions, only incorporates standard GTOs,
whereas, besides those functions, we include PSGTOs, which help us to reduce
the maximum orbital angular momentum, and to avoid the expensive integrals
between polycentric Gaussian functions and B-splines.
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One of the key ingredients of XCHEM is the basis set the matches the photo-
electron short-range radial domain with the long-range. To fulfil this we have
introduced a new hybrid Gaussian-Bspline basis (GABS) for the description of
the continuum that permits to achieve high electron energies while, at the same
time, preserving a purely Gaussian representation of the electronic wave func-
tion in a radial region large enough to encompass whole poly-electronic atoms
as well as small molecules. We have demonstrated that the hybrid GABS basis
can be used to compute with high accuracy all the observables associated with
the interaction of a single-active electron atom with external light pulses in a
wide energy range. In particular, we have reproduced with the GABS basis the
energies and transition amplitudes of the hydrogen atom as well as the fully dif-
ferential photoelectron distributions that result from the interaction of the atom
with strong ultra-short external laser pulses. All the results are in excellent agree-
ment with those obtained numerically from well-established B-spline basis, with
data taken from the literature, and with analytical predictions, when available. In
the analysis of the results from the solution of the time-dependent Schrödinger
equation for the hydrogen atom exposed to external pulses, we have presented
and discussed new fully differential photoelectron distributions of the hydrogen
ATI spectra obtained in the conditions reported in two recent works [146, 147]. In
particular, we contextualize the low-energy multi-peak structure of the ATI spec-
trum of hydrogen reported by Grum-Grzhimailo and co-workers [147] and the
dynamic interference mechanism highlighted recently by Demekhin and Ceder-
baum [154] within the theoretical framework outlined long ago by Cormier and
Lambropoulos [153]. In conclusion, the GABS basis has the benefit of the most
flexible numerical basis for the description of the continuum while at the same
time being expressed in terms of standard Gaussian functions in a large inner
radial region.

As a first step towards more complex systems, we have illustrated the per-
formance of the XCHEM method in the multichannel ionization of He and H2 by
comparing with results from nearly exact ad hoc computational methods available
in the literature for such simple systems.

Then, we have used the XCHEM approach to study multichannel photoioniza-
tion of Ne in the vicinity of the autoionizing states lying between the 2s22p5 and
2s2p6 ionization thresholds. This is the first application of the XCHEM approach
to the case in which the remaining cation is a multi-electron target. Comparison
with the results of independent benchmark calculations with the STOCK code, per-
formed at the same level of theory, demonstrates the good performance of our
approach. Our calculated total photoionization cross sections, obtained at the
XCI level, are also in very good agreement with the absolute ones measured by
Samson et al [176]. From these results, we have extracted resonance parameters,
namely, resonance positions, total autoionization widths, Fano profile parameters
and correlation parameters for the lowest three autoionizing states. These are in
good agreement with those reported in earlier theoretical and experimental work.
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We have gone a step further and evaluated partial photoionization cross sec-
tions, and, from them, partial autoionization widths and Starace parameters for
the lowest three resonances. Our results confirm earlier expectations that the res-
onances of 1Po symmetry converging to the 2s2p6 threshold are much more likely
to decay into the 2p−1εd continuum than into the 2p−1εs one [183], but we have
now quantified how much likely: 95% vs 5%, respectively, for the lowest reso-
nance, and 98% and 2% for the other two resonances. We have also shown that,
in very narrow ranges of the photoelectron energy, in the vicinity of the reso-
nances, the partial 2p−1εs cross section can be larger than the 2p−1εd one, in
contrast with the expectation that the latter should amply dominate in the whole
energy range.

With the matrix elements obtained within XCHEM, we used the two-photon
finite-pulse model for resonant transitions to compute the side bands modulation,
and reproduce a very recent RABITT experiment in Ne [192]. For the conditions
we considered in the model, only one intermediate resonance, the agreement
with the experiment was very good, setting XCHEM as a candidate method to
interpret attosecond experiments in novel gases and small molecules.

All these results show the capabilities of the XCHEM code to describe electron
correlation in the continuum and hence autoionization decay in multi-electron
systems, which is of crucial importance in the case of molecular targets and for
which the XCHEM code has been designed. In fact, the description of atomic sys-
tems with the XCHEM code is more challenging than that of molecular systems,
since one cannot use multi-center Gaussian expansions without compromising
spherical symmetry. In particular, it is hard to preserve the degeneracy of thresh-
olds, which implies that rather large powers of the Gaussian pre-exponential fac-
tors (K`) must be used to obtain an accurate representation of continuum states
in the short and middle ranges. This gives us confidence that the description
of resonant molecular photoionization with the XCHEM code should be rather
straightforward.

We are currently studying the ionization of more complicated systems, such as
N2, H2O and O2 using the XCHEM approach. Some preliminary results on this sys-
tems show a very good agreement when compare with independent bechmarks.

Several solutions could be adopted to improve the performance of our formal-
ism. One of the most straightforward ones would be to include part of the interac-
tion between the polycentric Gaussian functions describing the parent-ion states
and the B-splines. This could be done without computing numerically the whole
integral by expanding the asymptotic tail of the polycentric Gaussian molecular
orbitals in terms of the monocentric orbitals. In our method, the latter do interact
with B-splines, so provided these functions start at a distance at which the poly-
centric component of the molecular orbitals has only a tail, we would be able to
recover part of this neglected interaction.



120 conclusions & perspectives

One other straightforward research line to follow is to use XCHEM to solve
the time-dependent Schrödinger equation. For atoms and molecules in the fixed
nuclei approximation, a scheme similar to that explained in this thesis for the
photoionization of the hydrogen atom can be applied. Actually, we obtained few
preliminary results for He and Ne which are in good agreement with indepen-
dent computations and perturbative calculations. In order to include the nuclear
motion in molecules, we would have to implement the Feshbach partitioning
method, specially in the case in which the lifetime of the autoionizing states is
comparable to the time scale of the nuclear motion, or when in general disso-
ciative channels are energetically available, since one can no longer assume that
ionization occurs before the nuclei have time to move significantly. The XCHEM

code is able to handle such a partitioning without any major difficulty. However,
this should be done in a grid of nuclear geometries, so that the resulting poten-
tial energy surfaces can be used to evaluate the wave functions that describe the
nuclear motion.
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Una de las principales limitaciones de los QCPs existentes, es su incapacidad
para describir el continuo electrónico en moléculas, lo cual ha limitado por mu-
chos años el estudio de la ionización molecular. En esta tesis hemos combinados
QCPs con métodos numéricos numéricos avanzados para calcular los estados del
continuo, y así superar las dificultades anteriormente descritas. El nuevo método,
XCHEM, se basa en las aproximaciones the close-coupling (CC), en la cual la fun-
ción de onda del continuo es expandida en una base de funciones de canal, que
representan al catión molecular en un dado estado electrónico, donde además, el
electrón promovido al continuo satisface con las condiciones apropiadas de con-
torno para la dispersión. El espacio de configuraciones electrónicas está dividido
en una región de corto alcance, donde los electrones son descritos por funciones
gaussianas compatibles con los QCPs, y una región de largo alcance, en la cual
el electrón interactúa con un número finito de estados iónicos moleculares cor-
relacionados. Este electrón que escapa del sistema es descrito por la base híbrida
GABS, que está compuestas por gaussianas centradas den el centro de masas del
sistema y B-splines, funciones apropiadas para representar el comportamiento
oscilatorio del continuo.

El método XCHEM aprovecha la avanzada maquinaria de la química cuántica
que ha sido implementada en los paquetes computacionales MOLCAS y MOL-
PRO, para así facilitar la utilización de dicho método por parte de una comu-
nidad mucho más amplia de químicos-físicos que no necesariamente esté famil-
iarizada con los métodos de dispersión.

En la literatura existen otros modelos en desarrollo que combinan los métodos
ab initio de la química cuántica con los de dispersión [100, 101, 102, 30, 94, 99],
pero a diferencia de esos, el nuestro es capaz de incluir la correlación electrónica
en el continuo, al mismo nivel de precisión con que es tratada en los estados
enlazados. Otra ventaja importante de XCHEM es que aumentando el número de
electrones para un número fijo de canales de dispersión, no encarece el costo
computacional de manera significativa. Nosotros queremos resaltar que existe
otro grupo de investigación que usa un formalismo muy parecido al que hemos
desarrollado, combinando QCPs con métodos de dispersión y una base de fun-
ciones muy parecida la nuestra [103, 104]. A pesar de que también utilizan una
combinación de B-spline y gaussianas, para estas últimas solo utilizan las GTOs
que de manera estándar aparecen en los QCPs, mientras nosotros además de las
GTOs utilizamos las PSGTOs, que ayudan a reducir el máximo momento angu-
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lar orbital y evita el cálculo de las costosas integrales entre las B-splines y las
gaussianas poly-céntricas.

Las pruebas realizadas para la base GABS, uno de los componentes fundamen-
tales de XCHEM , a través del estudio de la ionización del átomo de hidrógeno
en presencia de diferentes pulsos the attosegundo, arrojaron muy buenos resul-
tados al comparar con valores analíticos y cálculos realizados por otros autores
utilizando métodos y bases diferentes. En particular, se han reproducido varias
distribuciones diferenciales del foto-electrón y espectros ATI.

Como un primer paso en el camino hacia el estudio de sistemas más comple-
jos, ilustramos el desempeño del método XCHEM en la ionización multicanal del
átomo de He y la molécula de H2 con núcleos fijos. El cual resultó ser muy bueno
al comparar los resultados obtenidos con otros calculados utilizando códigos in-
dependientes y virtualmente exactos.

También hemos utilizado XCHEM para estudiar la fotoionización multicanal del
átomo de Ne, en la región donde se encuentran varias resonancias convergentes
al 2s2p6 umbral de ionización. Esta constituye la primera aplicación del método
XCHEM para el caso en el que los cationes que se forman después de la ionización
tienen varios electrones. Las comparaciones efectuadas con los cálculos hechos
utilizando nuestro modelo y el código STOCK especializado en átomos, demostró
las excelentes capacidades de XCHEM . Aumentando el nivel de correlación elec-
trónica, fuimos capaces de obtener la sección eficaz de fotoionización con muy
buena precisión comparada con datos experimentales [176]. También extrajimos
los principales parámetros que caracterizan los estados autoionizantes: posición,
ancho, parámetro de Fano y el parámetro de correlación, y una vez más compa-
raban muy bien con otros resultados teóricos y experimentales.

Al haber comprobado el buen desempeño de XCHEM , entonces calculamos
nuevas magnitudes que no habían sido aún reportadas en la literatura, como
son los parámetros de Starace y los anchos parciales de decaimiento para las
tres primeras resonancias de simetría 1Po que convergen al 2s2p6 umbral de ion-
ización. Con los elementos de matrix calculados, usamos el two-photon finite-
pulse model for resonant transitions para calcular la modulación de las bandas
laterales en un experimento RABITT muy reciente [192]. Como en el modelo solo
consideramos la posibilidad de un estado intermedio resonante, cuando com-
paramos con el experimento bajo las mismas condiciones, el acuerdo es muy
bueno. Por lo que sitúa al método XCHEM como candidato para poder interpretar
y reproducir experimentos que se realizan con pulsos de attosegundo en gases
nobles y moléculas pequeñas.

Todos los resultados anteriormente expuestos, demuestran el buen desempeño
del código XCHEM a la hora de describir la correlación electrónica en el continuo,
y por tanto, el decaimiento por autoionización en sistemas polyelectrónicos, que
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es de importancia vital para los sistemas moleculares para los cuales XCHEM fue
diseñado.

En estos momentos, también estamos estudiando la ionización de otros sis-
temas más complicados, como N2, CO, H2O y O2. Los resultados preliminares
que se han obtenido indican un acuerdo muy bueno con resultados experimen-
tales publicados.

Varias cosas pueden aún hacerse para mejorar nuestro formalismo. Uno de los
más sencillos sería incluir parte de la interacción entre las gaussianas polycéntri-
cas y las B-splines. Esto podría hacerse, expandiendo la cola de la componente
polycéntrica de los orbitales moleculares en función de las gaussianas monocén-
tricas. De esta manera, si las B-splines empiezan a una distancia tal, que la compo-
nente policéntrica de os orbitales ya a empezado a decaer, entonces en principio
pudiera utilizarse la aproximación anteriormente expuesta.

Otra extensión del método que es evidente, es utilizarlos para resolver la TDSE.
Para átomos y moléculas en la FNA, se puede utilizar un esquema similar al
utilizado en la tesis para estudiar la fotoionización del hydrógeno. De manera
preliminar ya hemos obtenido varios buenos resultados para el He y el Ne in-
teractuando con pulsos ultracortos. Para poder incluir el movimiento nuclear,
habría implementar la partición de Feshbach, especialmente cuando el tiempo de
vida media de alguna resonance relevante en la dinámica sea comparable con los
tiempos característicos del movimiento nuclear. También permitiría estudiar otro
tipo de fenómenos como la fragmentación molecular.
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G R O U P S

Figure A.1: Constraints the symmetry adapted spherical harmonics have to obey in order to describe,
angularly, the different irreducible representations of the Abelian point group symmetries.
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B
M AT R I X E L E M E N T S B E T W E E N E X T E N D E D C H A N N E L
F U N C T I O N S R E P R E S E N T E D W I T H G A B S B A S I S F U N C T I O N S

The matrix element of a totally symmetric operator O between extended channel
functions is

Oαi,βj = 〈Ῡαi|O|Ῡβj〉 =
N∗αi Nβj

Ne
〈Υα ϕi|O

(
1−

Ne−1

∑
i=1
PiNe

)
|Υβ ϕj〉, (B.1)

where we have made use of the hermiticity and idempotency of the antisym-
metrizer (Â† = Â, Â2 = Â) and of the invariance of the operator O with respect
to permutations (∀P ∈ SNe , [O,P ] = 0 =⇒ [O, Â] = 0). If either ϕi or ϕj have
disjoint support from those of the parent ions, the permutation operators in (B.1)
can be dropped

Oαi,βj = 〈Ῡαi|O|Ῡβj〉 =
N∗αi Nβj

Ne
〈Υα ϕi|O|Υβ ϕj〉,

if ϕi(r) = 0 ∨ ϕj(r) = 0, ∀r < R0. (B.2)

In the latter condition, the overlap, mono-electronic and bi-electronic inter-
channel matrix elements (α = (a`αmα), β = (b`βmβ)) have simple expressions,
as given below.

Overlap matrix elements

Sαi,βj = 〈Ῡαi|Ῡβj〉 =
N∗αi Nβj

Ne
〈Υα|Υβ〉 〈ϕi|ϕj〉 =

N∗αi Nβj

Ne
δαβ sij (B.3)

where δαβ = δabδ`α`β
δmαmβ

and sij = 〈ϕi|ϕj〉.

Mono-electronic operators

These operators can be written as

T =
Ne

∑
i=1

t(i), (B.4)
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and the corresponding matrix elements

Tαi,βj =
N∗αi Nβj

Ne

(
Tab δ`α`β

δmαmβ
sij + δabt`αmαi,`βmβ j

)
, (B.5)

where Tab = 〈Φa|T|Φb〉 and t`mi,`′m′ j = 〈ϕiY`m|t|ϕjY`′m′〉. The matrix elements
Tab can be obtained from the QCPs.

Hamiltonian matrix elements

The total electrostatic hamiltonian is given by

H = K + Vee + Vne + Vnn, (B.6)

where K is the kinetic energy operator, Vnn = ∑
A,B>A

ZAZB/RAB is the nuclear

repulsion potential, Ven is the electron-nuclei interaction potential,

Ven = −
Ne

∑
i=1

Nn

∑
A=1

ZA
riA

, (B.7)

and Vee is the electron-electron repulsion potential,

Vee = ∑
i,j>i

1
rij

. (B.8)

The corresponding matrix element has the form

Hαi,βj =
N∗αi Nβj

Ne

[
Hab δ`α`β

δmαmβ
sij + δabδ`α`β

δmαmβ
k(`α)

i,j

+∑
`m
〈Y`αmα

Y`m|Y`βmβ
〉〈ϕi|r−`−1|ϕj〉Mmol,`m

ab

]
, (B.9)

where Mmol,`m
ab is the molecular transition multipole given by

Mmol,`m
ab = Mel,`m

ab + Mnuc,`m
ab , (B.10)

being Mel,`m
ab the electronic transition multipole,

Mel,`m
ab =

4π

2`+ 1
〈Φa|

Ne−1

∑
i=1

r`i Y`m(r̂i)|Φb〉 =
4π(Ne − 1)

2`+ 1
〈Φa|r`1Y`m(r̂1)|Φb〉, (B.11)

and Mnuc,`m
ab the nuclear transition multipole,

Mnuc,`m
ab = − 4π

2`+ 1
δab

Nn

∑
A=1

ZAR`
AY∗`m(R̂A). (B.12)
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The matrix elements Hab and Mmol,`m
ab are obtained from the QCPs. Notice that

the monopole term has the simple form

Mmol,00
ab =

√
4πδabQ, (B.13)

where Q is the total charge of the parent ion. Notice also that, in order for the scat-
tering theory to be applicable, the channels must be asymptotically decoupled,
i.e., the parent-ion states must diagonalize the Ne − 1 molecular hamiltonian

Hab = Eaδab. (B.14)

If we define the hydrogenic mono-electronic operator h as

h(`)i,j = k(`)i,j + Q〈ϕi|r−1|ϕj〉, (B.15)

we can rewrite the expression for the Hamiltonian matrix elements by explicitly
indicating the contribution of the multipoles with ` > 0 only

Hαi,βj =
N∗αi Nβj

Ne

[
(Ea sij + h(`α)

i,j ) δab δ`α`β
δmαmβ

+ ∑
`>0,m

〈Y`αmα
Y`m|Y`βmβ

〉〈ϕi|r−`−1|ϕj〉Mmol,`m
ab

]
. (B.16)

In the special case in which the target states does not have electrons, it may be
necessary to compute the nuclear multipoles explicitly. In the case of a proton
displaced by R along the z axis,

Mnuc,`m = −δm0

√
4π

2`+ 1
R`. (B.17)

In the case of the H2+
2 parent ion that results from the ionization of the H+

2 ion,
where the two protons are located at ±R/2 along the z axis, only even multipoles
differ from zero,

Mnuc,`=2j m = −δm0

√
4π

2`+ 1
R`

2`−1 , Mnuc,`=2j+1 m = 0. (B.18)

Other matrix elements

For completeness we also provide the expressions for the matrix elements of the
electron-nucleus and electron-electron interactions potentials. For the former, the
matrix element is given by

Ven
αi,βj =

N∗αi Nβj

Ne

[
Ven

ab δ`α`β
δmαmβ

sij + ∑
`m
〈Y`αmα

Y`m|Y`βmβ
〉〈ϕi|r−`−1|ϕj〉Mnuc,`m

ab

]
,

(B.19)
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where the integral of three harmonics has the following expression

〈YaαYbβ|Ycγ〉 =
√

(2a + 1)(2b + 1)
4π(2c + 1)

Cc0
a0,b0Ccγ

aα,bβ, (B.20)

and for the latter,

Vee
αi,βj =

N∗αi Nβj

Ne

[
Vee

ab δ`α`β
δmαmβ

sij + ∑
`m
〈Y`αmα

Y`m|Y`βmβ
〉〈ϕi|r−`−1|ϕj〉Mel,`m

ab

]
.

(B.21)
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D I P O L E T R A N S I T I O N G A U G E S

In this section we explore in detail how dipole transition matrix elements eval-
uated between eigenstates of either the unconstrained or the confined hydrogen
hamiltonian (physical and confined eigenstates, respectively, in the nomenclature
of Sec. 6.1), computed in different gauges, are related to each other. In the case of
the hydrogen hamiltonian,

H =
1
2

p2 − Z
r

, (C.1)

the following operator identities hold

[
H, r1µ

]
=

1
2

[
p2, r1µ

]
= −ip1µ, (C.2)[

H, p1µ

]
= −Z

[
1
r

, p1µ

]
= iZ

r1µ

r3 . (C.3)

As a consequence, if we indicate with ψE`m and ψE′`′m′ two generic eigenstates
of H with eigenvalues E and E′, respectively, we can easily derive the following
relations between the off-shell (E 6= E′) reduced transition matrix elements,

i(E− E′)〈ψE`‖O(l)
1 ‖ψE′`′〉 = 〈ψE`‖O(v)

1 ‖ψE′`′〉, (C.4)

−i(E− E′)〈ψE`‖O(v)
1 ‖ψE′`′〉 = 〈ψE`‖O(a)

1 ‖ψE′`′〉. (C.5)

These equations have two uses. First, the same off-shell transition matrix element
(say, the one in velocity gauge) can be computed in three different ways. Since the
kernels of the three transition operators (Eq. (6.14)) weighs differently the wave
function at short and long range, one can choose the form that weighs more the
region where the wave function is known to be computed with better accuracy.
Second, Eqs. (C.4,C.5) only hold when evaluated using exact eigenstates of the
hamiltonian. The discrepancy between the numerical realization of the RHS and
the LHS in (C.4,C.5), therefore, is a measure of the accuracy of the numerical
eigenstates.

Three further remarks are in order about the relations (C.4,C.5). First, as it has
already been pointed out, these relations permit to convert between each other
only off-shell matrix elements. In the on-shell case, where the two eigenstates are
necessarily either both bound or both in the continuum, the relations provide
only partial information. For example, they say that the transition matrix ele-
ments in velocity and acceleration gauge between degenerate bound states is
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exactly zero, but they don’t say anything about the finite value of the transition
matrix elements in length gauge between degenerate states (e.g., between the 2s
and the 2p states). Second, when evaluated between two continuum generalized
eigenstates and expressed in terms of a radial integral, the transition matrix ele-
ments in length and velocity gauge must be regularized with the inclusion of an
exponential extinction factor for the integral to converge in the first place. As a
consequence, Eqs. (C.4,C.5) are to be seen as relations between distributions. The
general expression of the velocity-gauge transition matrix element in terms of the
acceleration gauge is thus [194, 195, 196]

〈ψE`‖O(v)
1 ‖ψE′`+1〉 = iP

〈ψE`‖O(a)
1 ‖ψE′`+1〉

E− E′
+

+ F`E δ(E− E′),

where P indicates the principal part and F`E is a function that depends on the
asymptotic behavior of the radial part of two functions and must be determined
separately. In App. D we derive the explicit expression for F`E for the hydrogen
atom as well as in the presence of a short range potential. Third, the use of the
term "gauge" for the acceleration operator is admittedly an abuse of language. In-
deed, while the velocity and length gauges are related to each other by a unitary
transformation (Göppert-Mayer’s; see [197]), this is not the case for the accelera-
tion operator. In the present context, the latter should thus be regarded simply
as an alternative way to estimate the transition matrix element in velocity gauge.

When computing the transition matrix elements between box eigenstates, the
considerations above need to be modified. Indeed, in this case the hamiltonian
can be regarded as the limit of the hydrogen hamiltonian plus a step potential at
r = Rbox, with height V, for V → ∞,

H(V) =
p2

2
− Z

r
+ Vθ(r− Rbox), (C.6)

where we explicitly indicated the parametric dependence of H on V. As long as
we are interested in transition matrix elements between eigenstates with eigen-
values smaller than V, the relation (C.4) between velocity and length transition
matrix elements continues to apply as it does between bound states of the uncon-
strained hydrogen hamiltonian. In particular, the equivalence (C.4) holds in the
limit V → ∞, i.e., between box eigenstates. This is because the commutator (C.2)
is unaltered by the presence of an additional multiplicative term in the hamilto-
nian in coordinate representation. Notice, however, that while the positive-energy
box eigenstates can be normalized so to coincide, within the box, with the real
scattering states with the same energy, the transition matrix elements between
box eigenstates (i.e., where the radial integral is truncated at r = Rbox, where
all the box eigenstates vanish) does not coincide with the one evaluated between
scattering states; the contribution to the (regularized) transition integral from the
radial domain [Rbox, ∞) is finite and non-negligible [142]. The picture takes on a
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different perspective when the acceleration gauge is considered. In this case, the
RHS of (C.3) changes,

[
H, p1µ

]
= −Z

[
1
r

, p1µ

]
+ V

[
θ(r− Rbox), p1µ

]
=

= iZ
r1µ

r3 + i V
r1µ

r
δ(r− Rbox). (C.7)

This latter equivalence between the LHS and the RHS still holds for arbitrary
values of V, but the limit for V → ∞ of the new term on the RHS evaluated
between eigenstates of the hamiltonian that comprises the step potential does
not vanish and must be taken into account. If we indicate with ψE`m(r; V) =
r−1u`E(r; V)Y`m(r̂) a generic eigenstate of the hamiltonian that includes the step
potential, where the parametric dependence on V has explicitly been indicated,
and we assume V � E, then we can immediately write, for r ≥ Rbox,

u`E(r; V) ' N(E, V)e−κ(r−Rbox), (C.8)

u′`E(r; V) ' −κN(E, V)e−κ(r−Rbox), (C.9)

where κ =
√

2(V − E) and N(E, V) is a normalization constant. In the limit
V → ∞, if the wave function is to remain normalized, the wave function at
the box boundary must converge to zero while its derivative must converge to a
finite value. Therefore, we can choose the normalization so that the wave function
derivative coincides with its asymptotic value for any V � E,

u`E(r; V) ' −u′`E(Rbox, ∞)√
2(V − E)

e−κ(r−Rbox) ' (C.10)

' −u′`E(Rbox, ∞)√
2V

e−κ(r−Rbox), (C.11)

u′`E(r; V) ' u′`E(Rbox, ∞)e−κ(r−Rbox). (C.12)

Now we can compute the limit of the matrix element of the second term on the
RHS of eq. (C.7) (we assume radial wave functions to be real),

〈ψE`m|i V
r1µ

r
δ(r− Rbox)|ψE′`′m′〉 =

= i〈Y`m|
r1µ

r
|Y`′m′〉 ×

× VuE`(Rbox; V)uE′`′(Rbox; V) '

'
C`m
`′m′ ,1µ√
2`+ 1

i
2

√
2`′ + 1 C`0

`′0,10 ×

× u′`E(Rbox; ∞)u′`′E′(Rbox; ∞).

(C.13)

The increase of the barrier height, therefore, exactly compensates the decrease
of the wave function at the boundary. In the limit V → ∞, the last approximate
equality becomes an identity. In conclusion, even if the transition matrix elements
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in velocity and acceleration gauges, defined as in (6.14), do not satisfy the rela-
tion (C.5) when computed between box eigenstates unless the radial derivative of
at least one of them is vanishingly small at the box boundary, the conversion from
one gauge to the other can still be performed provided that the correction (C.13)
is taken into account,(

E− E′
)
〈ψE`‖O(v)

1 ‖ψE′`′〉r∈[0,Rbox]
=

= i〈ψE`‖O(a)
1 ‖ψE′`′〉r∈[0,Rbox]

+

+
i
2

√
2`′ + 1C`0

`′0,10 u′E`(Rbox)u′E′`′(Rbox).

(C.14)

Finally, if the box size is large enough, thanks to the r−2 behavior of the accel-
eration kernel, the acceleration matrix element between any two box eigenstates
does converge to those between the real eigenstates of the unconstrained hamil-
tonian,

lim
Rbox→∞

〈ψE`‖O(a)
1 ‖ψE′`′〉r∈[Rbox,∞) = 0 (C.15)

As a consequence, the contribution to the regularized velocity transition integral
from the [Rbox, ∞) radial domain, evaluated between the analytic extensions of
the box eigenfunctions, can be obtained, for large values of Rbox, from the correc-
tion in (C.13), (

E− E′
)
〈ψE`‖O(v)

1 ‖ψE′`′〉r∈[Rbox,∞) =

= − i
2

√
2`′ + 1C`0

`′0,10 u′E`(Rbox)u′E′`′(Rbox).
(C.16)

This last equation has two distinctive features that set it apart from similar cor-
rections available in the literature. First, it is a closed expression which, together
with the transition integral truncated to Rbox, provides a transition matrix ele-
ment which is as accurate as the one that can be obtained in the same box using
the acceleration gauge instead. This means that Eq (C.16) offers the opportunity
to extend to continuum-continuum transitions the stringent gauge-invariace test
employed for transitions from or to bound states, and thus provides an indepen-
dent way to assess the accuracy of the discretized continuum functions computed
numerically. Second, Eq (C.16) is only applicable to the fixed energies, for both
` and `′ angular momenta, that result from imposing box boundary conditions.
Cormier et al. [142] derived a perturbative expansion for the contribution to the
transition radial integral from the [Rbox, ∞] domain in the case of arbitrary ini-
tial and final continuous energies. In App. F we derive a different approximate
expression for the transition matrix element correction between arbitrary ener-
gies based on a perturbative expansion of the integral alternative to the one used
in [142].
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D
S I N G U L A R PA RT O F T H E D I P O L E M AT R I X E L E M E N T S
B E T W E E N C O N T I N U U M S TAT E S

As mentioned in App. C, the relation between continuum-continuum dipole tran-
sition matrix elements in velocity and acceleration gauges includes a singular
on-shell contribution,

〈ψE`‖O(v)
1 ‖ψE′`+1〉 = i

〈ψE`‖O(a)
1 ‖ψE′`+1〉

E− E′ + i0+
+F`Eδ(E− E′),

To evaluate the factor F`E, we start from the following well known formula [140]:

〈ψE`‖∇1
∥∥ψE′ ,`+1

〉
= −
√
`+ 1 × (D.1)

×
∫ ∞

0
dr u∗`E(r)

(
d
dr

+
`+ 1

r

)
u`+1,E′(r)

Where u`E(r) is a reduced radial function. Since we are interested in the singular
part of the integral, we can disregard the contribution to the integral from any
finite interval [0, R]. As a consequence, we can replace u`E(r) with its asymptotic
expression [139],

u`E(r) '
√

2
πk

sin θ`k(r), (D.2)

θ`k(r) = kr− γ ln 2kr− `π

2
+ σ` + δ`, (D.3)

and disregard entirely the term that comes from the operator r−1. As usual, in
Eq. (D.2), k =

√
2E, γ = −Z/k, σ` = arg Γ(` + 1 + iγ) is the Coulomb phase,

and δ` is the additional phase due to a possible short-range potential. For hy-
drogen Z = 1 and δ` = 0. What matters to evaluating the singular part of the
integral (D.1) is that the oscillations of the degenerate initial and final states are
in a fixed phase relation across the whole radial range. This is true indepen-
dently of the presence or not of the asymptotic logarithmic term in (D.2). In-
deed, it is sufficient to perform the change of variable r 7→ r′(r) = r− γ/k ln 2kr,
dr′ = [1− γ/(2k2r)]dr to realize that the logarithmic term can be safely ignored.
On the basis of these considerations, the factor F`E can be computed as

F`E =
∫ E+ε

E−ε
dE′ 〈ψE`‖O(v)

1

∥∥ψE′ ,`+1
〉
= (D.4)

=
2i
√
`+ 1

πk

∫ E+ε

E−ε
dE′

∫ ∞

R
dr sin θ`k(r)

d
dr

sin θ`+1k′(r),
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in the limit of ε→ 0+ and R→ ∞. To the purpose of evaluating its singular part,
the radial integral on the RHS in the last equation is equivalent to the following
expression

k
∫ ∞

0
dr sin(kr + σ` + δ` − `π/2)×

× cos(k′r + σ`+1 + δ`+1 − (`+ 1)π/2). (D.5)

It takes only few passages to show that the singular component of this last inte-
gral is

kπ

2
δ(k− k′) cos (σ`+1 + δ`+1 − σ` − δ`) , (D.6)

and, in conclusion,

F`E = i
√
`+ 1 k cos (σ`+1 + δ`+1 − σ` − δ`) . (D.7)

In the case of the hydrogen atom, δ` = 0 ∀`, and we can write

F`E = i
√
`+ 1
2

k
[

Γ(`+ 2 + iγ)
Γ(`+ 1 + iγ)

∣∣∣∣Γ(`+ 1 + iγ)
Γ(`+ 2 + iγ)

∣∣∣∣+ c.c.
]
=

= i
(`+ 1)3/2k
|`+ 1 + iγ| , (D.8)

where in the last passage we made use of the relation Γ (s) = (s− 1) Γ (s− 1).
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E
A N A LY T I C A L D I P O L E M AT R I X E L E M E N T S I N H Y D R O G E N

The equation for the reduced radial Coulomb problem of an electron in interac-
tion with a point charge Z is

ψk`m(~r) =
u`k(r)

r
Y`m(r̂) (E.1)[

d2

dr2 + k2 − `(`+ 1)
r2 +

2Z
r

]
u`k(r) = 0. (E.2)

For negative energies, we can set k = i
√

2|E| and obtain[
d2

dρ2 +
2γ

ρ
− `(`+ 1)

ρ2 − 1
]

y`k(ρ) = 0, (E.3)

where we have defined γ = Z/|k|, ρ = |k|r, and y`k(ρ) = u`k(r). The solution to
the latter equation that is regular at r → ∞ can be expressed as

y`k(ρ) ∝ e−ρ(2ρ)`+1U(`+ 1− γ, 2`+ 2, 2ρ), (E.4)

where U(a, b, z) is the confluent hypergeometric function of the second
kind [134],

U(a, b, z) =
Γ(1− b)

Γ(a− b + 1) 1F1(a; b; z) + (E.5)

+
Γ(b− 1)

Γ(a)
z1−b

1F1(a− b + 1; 2− b; z),

1F1(α; β; z) being the ordinary confluent hypergeometric function

1F1(α; β; z) =
∞

∑
j=0

(α)j zj

(β)j j!
,

(α)0 = 1, (α)n =
n−1

∏
j=0

(α + j).

(E.6)

Even in the presence of short-range potentials, (E.4) expresses the general asymp-
totic form that must be fulfilled by the bound states of the system. To deter-
mine the acceptable bound-state energies, the logarithmic derivative of (E.4) must
match, at a radius R beyond which the short-range potential is negligible, that
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of the degenerate solution that is regular at the origin. This is how we obtained
Eq. (6.11) in Sec. 6.1. The function U(`+ 1− γ, 2`+ 2, 2ρ) is irregular at the origin
except for integer values of γ, γ = n > `. In this latter case, U is proportional to
a Laguerre polynomial (Eq. 13.6.27 in [134])

U(−k, 2`+ 2, z) = (−1)kk! L(2`+1)
k (z), k ∈N0, (E.7)

and (E.4) thus identifies with an admissible bound state of the hydrogen-like
system. The reduced radial component un` of the normalized hydrogen bound
states ψn`m, with energy En = −1/2n2, angular momentum ` and projection m,
have the following expression [139]

un`(r) = Nn` r`+1 e−
r
n 1F1(`− n + 1; 2`+ 2; 2r/n) (E.8)

where the normalization factor Nn` is

Nn` =
1

(2`+ 1)!

√
(n + `)!

2n (n− `− 1)!

(
2
n

)`+ 3
2

. (E.9)

In the case of the continuum states, the reduced radial part of the wave function
ψE`m, normalized as 〈ψE`m|ψE′`m〉 = δ(E− E′), is [139]:

u`E(r) = C`E (2iρ)`+1 e−iρ
1F1(`+ 1− iγ; 2`+ 2; 2iρ) (E.10)

where

C`E =
e−

π
2 γ

i
√

2πk
Γ(`+ 1− iγ)
(2`+ 1)!

(E.11)

k =
√

2E, γ = −1/k, ρ = kr.

In the following, we will derive the analytical expressions for the reduced
dipole transition matrix elements, in length gauge, between arbitrary hydrogen
eigenstates

〈ψa`′‖r1‖ψb`〉 = ∏`
C`′0
`0,10

∫ ∞

0
u∗`′a r u`b dr, (E.12)

where ∏`1`2··· =
√
(2`1 + 1)(2`2 + 1) · · · and C`3m3

`1m1,`2m2
is a Clebsch-Gordan coef-

ficient. The expression for the corresponding quantities in the other two gauges
can be readily obtained using relations (C.4,C.5). We focus the attention on the
radial integral

O`′a,`b =
∫ ∞

0
u∗`′a r u`b dr, (E.13)

and consider the bound-bound (a, b = n′, n), continuum-bound (a, b = E, n) and
continuum-continuum (a, b = E′, E) cases separately. Thanks to the exponential
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decay with r of the bound-state wave functions, the first two cases do not pose
any regularization problem, so we cover those first,

O`′n′ ,`n = Nn′`′ Nn`

∫ ∞

0
dr r`+`′+3 e−r( 1

n +
1
n′ ) ×

× 1F1(`
′ + 1− n′; 2`′ + 2;

2r
n′
) ×

× 1F1(`+ 1− n; 2`+ 2;
2r
n
), (E.14)

O`′E,`n = C∗`′E Nn` (2ik)`
′+1

∫ ∞

0
dr r`+`′+3 eikr−r/n ×

× 1F1(`
′ + 1 + iγ; 2`′ + 2;−2ikr) ×

× 1F1(`+ 1− n; 2`+ 2; 2r/n). (E.15)

The integrals in Eqs. (E.14,E.15) are of the form [198]:

Js,p
β (α, α′) =

∫ ∞

0
dre−(h+h′) r

2 rβ−1+s
1F1(α; β; hr)

×1F1(α
′; β− p; h′r), (E.16)

which can be solved by applying repeatedly the well-known recurrence relations

Js,p
β (α, α′) =

(β− 1)
h

[
Js,p−1
β−1 (α, α′)− Js,p−1

β−1 (α− 1, α′)
]

(E.17)

Js+1,0
β (α, α′) =

4
h2 − h′2

{
2α′sJs−1,0

β (α, α′ + 1) +

+

[
1
2

β
(
h− h′

)
− hα + h′

(
α′ − s

)]
Js,0
β (α, α′) +

+ s
(

β− 1 + s− 2α′
)

Js−1,0
β (α, α′)

}
(E.18)

until the initial expression is entirely given in terms of J0,0
β integrals, and finally

compute :

J0,0
β (α, α′) = 2βΓ(β)

(
h + h′

)α+α′−β (h′ − h
)−α

×
(
h− h′

)−α′
2F1

[
α, α′; β;− 4hh′

(h′ − h)2

]
(E.19)

where 2F1(α, β; γ; z) is the Hypergeometric Function,

2F1(α, β; γ; z) =
∞

∑
j=0

(α)j (β)j zj

(γ)j j!
(E.20)
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Doing this we arrive to the following result:

O`+1n′ ,`n =
(−1)`−n′n′(n · n′)2`+4 (2`+ 3)!Nn′ ,`+1Nn`

2 (n2 − n′2) (n′ + n)n′+n+1 (n− n′)2`+3−n′−n

×
[(

n′ − n
)2

2F1(`− n′, `− n + 1; 2`+ 2;

− 4n · n′
(n′ − n)2 )−

(
n′ + n

)2
2F1(`− n′ + 2,

`− n + 1; 2`+ 2;− 4n · n′
(n′ − n)2 )

]
(E.21)

It is not necessary to compute O`n′ ,`+1n because all the bound-bound transitions
can be expressed only using O`+1n′ ,`n. For the continuum-bound transitions

O`+1E,`n =
i(−1)`−nn2`+4 (2`+ 3)!k`C∗`+1Nn`

2 (1 + k2n2)
n+2−iγ

(1 + ikn)2(`+2−n+iγ)

×
[
(1 + ikn)4

2F1(`+ iγ, `+ 1− n; 2`+ 2;

4ikn

(1 + ikn)2 )−
(

1 + k2n2
)2

2F1(`+ 2 + iγ,

`+ 1− n; 2`+ 2;
4ikn

(1 + ikn)2 )

]
(E.22)

O`−1E,`n =
(−1)`+1−nn2`+3 (2`+ 1)!k`−1C∗`−1Nn`

2 (1 + k2n2)
n+2−iγ

(1 + ikn)2(`+1−n+iγ)

×
[
(1 + ikn)4

2F1(`− 1− n, `+ iγ; 2`;
4ikn

(1 + ikn)2 )−

(
1 + k2n2

)2
2F1(`+ 1− n, `+ iγ; 2`;

4ikn

(1 + ikn)2 )

]
(E.23)

Due to the intrinsic relationship between the quantm numbers n and `: n ≥ `+ 1,
at least one of the parameters α, β in the hypergeometric functions 2F1(α, β; γ; z),
is equal to −q ; q = 0, 1, 2, .... Then from the definition (E.20), for this particular
case 2F1(α, β; γ; z) is transformed into a polynomial of degree q, which makes it
much more easy to compute.
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For the case of continuum-continuum transitions we use the result given
in [141]:

O`E,`′E′ = −Ck` Ck′`′ × (E.24)

× (−1)λi (2λs + 1)!

2xs (xi − xs)
2λs+2

(
k− k′

k + k′

) i
k′
(

k′ − k
k + k′

) i
k
×

×
[

2F1

(
λs + 1− 1

xs
, λi + 1− 1

xi
; 2λs;

−4kk′

(k− k′)2

)
−

−
(

k− k′

k + k′

)2

×

× 2F1

(
λs − 1− 1

xs
, λi + 1− 1

xi
; 2λs;

−4kk′

(k− k′)2

)]

where λs = sup (`, `′), λi = inf (`, `′), xs = −ik and xi = −ik′ if λs = `, xs = −ik′

and xi = −ik if λs = `′. The normalization constant Ck` is:

Ck` =
2`+1

(2`+ 1)!
k`−

1
2

[
∏`

s=1
(
s2 + k−2)

1− exp
(
− 2π

k
) ] . (E.25)
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F
A N A LY T I C A L A P P R O X I M AT I O N T O T H E O U T E R
C O N T I N U U M - C O N T I N U U M T R A N S I T I O N I N T E G R A L

As was mentioned in the text, the computation of the continuum-continuum re-
duced dipole matrix elements, using the radial basis, is done in a truncated in-
terval [0, R]. For the calculation using the velocity and length gauges, the lacking
interval [R, ∞) makes a non-negligible contribution. This contribution can be es-
timated analytically from the expression:

O`E,`′E′ |∞R = Ck`Ck′`′

∫ ∞

R
r`+`′+3eir(k+k′)

×1F1

(
`+ 1− i

k
; 2`+ 2;−2ikr

)
×1F1

(
`′ + 1− i

k′
; 2`′ + 2;−2ik′r

)
(F.1)

The Confluent Hypergeometric functions can be expanded for |z| → ∞ and for
the case − 3π

2 + δ ≤ arg z ≤ π
2 − δ, where 0 < δ� 1, as [199]:

1F1 (a; b; z) ≈ Γ (b)

[
ezza−b

Γ (a)

∞

∑
j=0

(b− a)j (1− a)j z−j

j!
+

e−iπaz−a

Γ (b− a)

∞

∑
j=0

(a)j (1 + a− b)j (−z)−j

j!


(F.2)

We truncate the previous summations for j = 2. Then using (F.2) in (F.1), if the
integral is regularized introducing in the subintegral part the parametric function
e−ξr, and computing the limit when ξ → 0+ once the integration is done, a closed-
form analytical correction can be obtained:

O`+1E,`′E′ |∞R ≈ Ck,`+1Ck′ ,` (2`+ 3)! (2`+ 1)!

(−2i)2`+3 k`+2k′`+1

×
[
I`
(
k, k′

)
+ I`

(
k,−k′

)
+

I`
(
−k, k′

)
+ I`

(
−k,−k′

)]
, (F.3)
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where the function I` (x, y) is

I` (x, y) = −
2
(

1
x + 1

y

)
D` (x, y)

i(x + y)
[G1 (x, y) + G2(x, y)]×

× e−i(xR+ 1
x ln |x|R)

Γ
(
`+ 2− i

x

) e−i
(

yR+ 1
y ln |y|R

)
Γ
(
`+ 1− i

y

) , (F.4)

the Gi (x, y) functions are:

G1 (x, y) = R +
1− i

(
1
x + 1

y

)
i(x + y)

+

+ i
(

1
x
+

1
y

) 1− i
(

1
x + 1

y

)
R(x + y)2

(F.5)

G2(x, y) = H1(x, y)

[
1−

1
x + 1

y

R(x + y)

]
+

H2(x, y)
R

(F.6)

and

D` (x, y) = e−iπ
[(

`+1− i
|y|
)
[1−θ(y)]+

(
`+2− i

|x|
)
[1−θ(x)]

]
(F.7)

Defining:

a = `+ 2− i
|x| ; b = 2`+ 4; d = −2i|x|

a′ = `+ 1− i
|y| ; b′ = 2`+ 2; d′ = −2i|y|

then

H1 (x, y) =



(b−a)(1−a)
d + (b′−a′)(1−a′)

d′ x > 0 ∧ y > 0
(b−a)(1−a)

d − a′(1+a′−b′)
d′ x > 0 ∧ y < 0

ba−a2−a
d + (b′−a′)(1−a′)

d′ x < 0 ∧ y > 0

−
(

a′(1+a′−b′)
d′ + a(1+a−b)

d

)
x < 0 ∧ y < 0
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Figure F.1: Absolute value of the reduced velocity-gauge hydrogen dipole matrix element
〈ψEp‖Ov

1‖ψEs 〉 from the s scattering state with E = 2 a.u. to several p scattering states evaluated as
the sum of two contributions: the first contribution is the numerical radial integral shown in Fig. 6.9,
which is computed with the GABS basis and truncated at Rbox, and the second contribution is, in
the case of the full circles, an analytical approximation to outer integral (AOI) in the radial domain
[Rbox, ∞), as detailed in this appendix, and in the case of the thin solid line, the confined boundary
correction (CBC) derived in App. C. The agreement between the numerical result corrected using CBC
for the out-of-the-box contribution and the exact analytical result (thick solid line) is excellent. The
deviations for the very off-shell transition using the AOI correction are attributed to the approximations
made.

H2 (x, y) =



(b′−a′)2(1−a′)2
2d′2 +

(b−a)2(1−a)2
2d2 +

(b′−a′)(1−a′)(b−a)(1−a)
d·d′ x > 0 ∧ y > 0

(b−a)2(1−a)2
2d2 +

(a′)2(1+a′−b′)2
2d′2 −

(b−a)(1−a)a′(1+a′−b′)
d·d′ x > 0 ∧ y < 0

(b′−a′)2(1−a′)2
2d′2 +

(a)2(1+a−b)2
2d2 −

(b′−a′)(1−a′)a(1+a−b)
d·d′ x < 0 ∧ y > 0

(a)2(1+a−b)2
2d2 +

(a′)2(1+a′−b′)2
2d′2 +

a(1+a−b)a′(1+a′−b′)
d·d′ x < 0 ∧ y < 0
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G
R E L AT I O N B E T W E E N D 2 h A N D S P H E R I C A L S C AT T E R I N G
C H A N N E L S I N T H E P H O T O I O N I Z AT I O N O F N E

The dipole operator couples the Ne ground state, which has 1 S e symmetry, with
the 1 P o continuum. Due to the spherical symmetry of the atoms, these scattering
states are triply degenerate with respect to the total magnetic quantum number
M : ( 1 P o ) M , M = − 1 , 0 , 1, and the photoionization cross sections from the
ground state along any of the directions: x̂ , ŷ and ẑ are the same. Therefore we
can focus on one of these direction, let’s say ẑ , that couples the ground state with
those of the continuum having ( 1 P o ) 0 symmetry.

The highest symmetry we are able to represent in the XCHEM formalism is that
corresponding to the D 2 h point group. In this representation the Ne ground state
has A g symmetry meanwhile the countinuum states that are couple through the
dipole along the ẑ direction have B 1 u symmetry. So if we are interested in ob-
taining the correct spherical scattering channels, we need to add appropriately
those coming from the D 2 h representation. For the total cross section this dif-
ference in symmetry representation is not important, because it is an invariant,
but for a partial cross section analysis for instance, we need to disentangle all
the contributions in terms of the ’physical channels’: spherical channels in the
atoms perspective, or C ∞ v channels for homonuclear diatomic molecules. In the
Ne case, we need to express the ( 1 P o ) 0 scattering states in terms of the channels
defined in our CC expansion having B 1 u symmetry. Below the N = 2 threshold
there are two channels with 1 P o total symmetry: 2 p− 1 ε s and 2 p− 1 ε d , while
for the D 2 h point group, the B 1 u channels are:

( 2 p− 1 ) z ⊗ {X 0 0 , X 2 0 , X 2 2 } → [ B 1 u ⊗ A g ] ,

( 2 p− 1 ) y ⊗ X 2− 1 → [ B 2 u ⊗ B 3 g ] , (G.1)

( 2 p− 1 ) x ⊗ X 2 1 → [ B 3 u ⊗ B 2 g ]

where X `m are the symmetry adapted spherical harmonics and represent the
spherical component of the asymptotic electron. The corresponding symme-
try product is given between brackets. From Eq. (G.1), the physical channel
( 2 p− 1 ε s ) 0 is easy to identify, because there is only one channel with an s-wave
electron: ( 2 p− 1 ) z ⊗ X 0 0 . Nevertheless, to build the ( 2 p− 1 ε d ) 0 channel, we
have to find the correct linear combination:

( 2 p− 1 ε d ) 0 = ∑
m

C 1 0
1 m , 2 m ( 2 p− 1 )m Y2 m , (G.2)
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where Y2 m are the standard spherical harmonics associated with ` = 2 , C 1 0
1 m , 2 m

the Clebsh-Gordan coefficients and ( 2 p− 1 )m the parent-ion wave function in
spherical components. The parent ions in the CC expansion are expressed in
terms of the cartesian components, they are related with the spherical ones by
the expressions:

(2p−1)1 = − 1√
2
[(2p−1)x + i(2p−1)y],

(2p−1)0 = (2p−1)z, (G.3)

(2p−1)−1 =
1√
2
[(2p−1)x − i(2p−1)y].

Substituting Eq. (G.3) and our definition of the Xlm functions in terms of the Ylm
in Eq. (5.11), into Eq. (G.2), we get:

(2p−1εd)0 =

√
3

10
[(2p−1)yX2−1 + (2p−1)xX21]−

√
2
5
(2p−1)zX20. (G.4)
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[22] Jonathan Tennyson. ElectronâĂŞmolecule collision calculations using the R-matrix method.
Phys. Rep., 491(2-3):29–76, June 2010. ISSN 03701573. doi: 10.1016/j.physrep.2010.02.001. URL
http://linkinghub.elsevier.com/retrieve/pii/S0370157310000451.

[23] Oleg Zatsarinny and Klaus Bartschat. The B -spline R -matrix method for atomic pro-
cesses: application to atomic structure, electron collisions and photoionization. J. Phys. B:
At. Mol. Opt. Phys., 46(11):112001, June 2013. ISSN 0953-4075. doi: 10.1088/0953-4075/
46/11/112001. URL http://stacks.iop.org/0953-4075/46/i=11/a=112001?key=crossref.
73520ee34d41ba97aca0972d8c6c0166.

[24] Luca Argenti, Renate Pazourek, Johannes Feist, Stefan Nagele, Matthias Liertzer, Emil Persson,
Joachim Burgdörfer, and Eva Lindroth. Photoionization of helium by attosecond pulses: Extrac-
tion of spectra from correlated wave functions. Phys. Rev. A, 87(5):053405, May 2013. ISSN 1050-
2947. doi: 10.1103/PhysRevA.87.053405. URL http://link.aps.org/doi/10.1103/PhysRevA.
87.053405.

[25] T. Carette, J. M. Dahlström, L. Argenti, and E. Lindroth. Multiconfigurational hartree-fock
close-coupling ansatz: Application to the argon photoionization cross section and delays. Phys.
Rev. A, 87:023420, Feb 2013. doi: 10.1103/PhysRevA.87.023420. URL http://link.aps.org/
doi/10.1103/PhysRevA.87.023420.

[26] Manohar Awasthi, Yulian V Vanne, Alejandro Saenz, Alberto Castro, and Piero Decleva. Single-
active-electron approximation for describing molecules in ultrashort laser pulses and its appli-
cation to molecular hydrogen. Phys. Rev. A, 77(6):63403, jun 2008. doi: 10.1103/PhysRevA.77.
063403. URL http://link.aps.org/doi/10.1103/PhysRevA.77.063403.

[27] E Kukk, D Ayuso, T D Thomas, P Decleva, M Patanen, Luca Argenti, E. Plésiat, A Palacios,
K Kooser, O Travnikova, S Mondal, M Kimura, K Sakai, C Miron, F. Martín, and K. Ueda. Effects
of molecular potential and geometry on atomic core-level photoemission over an extended
energy range: The case study of the CO molecule. Phys. Rev. A, 88(3):033412, September 2013.
ISSN 1050-2947. doi: 10.1103/PhysRevA.88.033412. URL http://link.aps.org/doi/10.1103/
PhysRevA.88.033412.

[28] D Ayuso, A Palacios, P Decleva, and F Martín. Dissociative and non-dissociative pho-
toionization of molecular fluorine from inner and valence shells. J. Electron Spectrosc. Re-
lat. Phenom., 195:320–326, 2014. ISSN 03682048. doi: 10.1016/j.elspec.2013.11.014. URL
http://linkinghub.elsevier.com/retrieve/pii/S0368204813002338.

[29] Christof Hättig, Wim Klopper, Andreas Köhn, and David P. Tew. Explicitly Correlated Electrons
in Molecules. Chem. Rev., 112(1):4, January 2012. ISSN 1520-6890. doi: 10.1021/cr200168z. URL
http://www.ncbi.nlm.nih.gov/pubmed/22206503.

153

http://www.nature.com/doifinder/10.1038/nchem.2006
http://www.nature.com/doifinder/10.1038/nchem.2006
http://pubs.acs.org/doi/abs/10.1021/jacs.6b02176
http://pubs.acs.org/doi/abs/10.1021/jacs.6b02176
http://www.springer.com/physics/atomic,+molecular,+optical+%26+plasma+physics/book/978-3-642-15930-5 http://link.springer.com/10.1007/978-3-642-15931-2
http://www.springer.com/physics/atomic,+molecular,+optical+%26+plasma+physics/book/978-3-642-15930-5 http://link.springer.com/10.1007/978-3-642-15931-2
http://linkinghub.elsevier.com/retrieve/pii/S0370157310000451
http://stacks.iop.org/0953-4075/46/i=11/a=112001?key=crossref.73520ee34d41ba97aca0972d8c6c0166
http://stacks.iop.org/0953-4075/46/i=11/a=112001?key=crossref.73520ee34d41ba97aca0972d8c6c0166
http://link.aps.org/doi/10.1103/PhysRevA.87.053405
http://link.aps.org/doi/10.1103/PhysRevA.87.053405
http://link.aps.org/doi/10.1103/PhysRevA.87.023420
http://link.aps.org/doi/10.1103/PhysRevA.87.023420
http://link.aps.org/doi/10.1103/PhysRevA.77.063403
http://link.aps.org/doi/10.1103/PhysRevA.88.033412
http://link.aps.org/doi/10.1103/PhysRevA.88.033412
http://linkinghub.elsevier.com/retrieve/pii/S0368204813002338
http://www.ncbi.nlm.nih.gov/pubmed/22206503


[30] Thanh-Tung Nguyen-Dang, Étienne Couture-Bienvenue, Jérémy Viau-Trudel, and Amaury
Sainjon. Time-dependent quantum chemistry of laser driven many-electron molecules. J.
Chem. Phys., 141(24):244116, 2014. ISSN 0021-9606. doi: 10.1063/1.4904102. URL http:
//scitation.aip.org/content/aip/journal/jcp/141/24/10.1063/1.4904102.

[31] Motomichi Tashiro, Kiyoshi Ueda, and Masahiro Ehara. Auger decay of molecular double
core-hole state. J. Chem. Phys., 135(15):154307, oct 2011. ISSN 00219606. doi: 10.1063/1.3651082.
URL http://www.ncbi.nlm.nih.gov/pubmed/22029313http://link.aip.org/link/JCPSA6/
v135/i15/p154307/s1{&}Agg=doi.

[32] Helena Aksela and Seppo Aksela. Photoionization and Auger decay in free atoms, molecules
and small clusters. Radiation Physics and Chemistry, 76:370–374, 2007. doi: 10.1016/j.
radphyschem.2005.10.043.

[33] Ji Cai Liu, Christophe Nicolas, Yu Ping Sun, Roberto Flammini, Patrick O’Keeffe, Lorenzo
Avaldi, Paul Morin, Victor Kimberg, Nobuhiro Kosugi, Faris Gel’mukhanov, and Catalin Miron.
Multimode resonant auger scattering from the ethene molecule. J. Phys. Chem. B, 115(18):5103–
5112, 2011. ISSN 15205207. doi: 10.1021/jp104228x.
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[103] ZdenÄŻk MaÅąÃ n and Jimena D Gorfinkiel. Towards an accurate representation of the con-
tinuum in calculations of electron, positron and laser field interactions with molecules. J. Phys.
Conf. Ser, 490(1):012090, 2014. URL http://stacks.iop.org/1742-6596/490/i=1/a=012090.

[104] Khrystyna Regeta, Michael Allan, ZdenÄŻk MaÅąÃ n, and Jimena D. Gorfinkiel. Absolute
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droth, A LÊijHuillier, and J M DahlstrÃűm. Measurements of relative photoemission time
delays in noble gas atoms. J. Phys. B: At. Mol. Opt. Phys., 47(24):245602, 2014. URL http:
//stacks.iop.org/0953-4075/47/i=24/a=245602.

[188] Marija Kotur, D Guenot, Álvaro Jiménez-Galán, David Kroon, E W Larsen, M Louisy, M Bengts-
son, M Miranda, J Mauritsson, C L Arnold, S E Canton, M Gisselbrecht, T Carette, Marcus J
Dahlström, Eva Lindroth, Alfred Maquet, Luca Argenti, Fernando Martín, and Anne L’Huillier.
Phase measurement of a Fano window resonance using tunable attosecond pulses Ât’. Nat.
Commun., 7:10566, 2015. URL https://www.nature.com/articles/ncomms10566.

[189] V. Gruson, L. Barreau, Á. Jiménez-Galan, F. Risoud, J. Caillat, A. Maquet, B. Carré, F. Lepetit,
J.-F. Hergott, T. Ruchon, L. Argenti, R. Taïeb, F. Martín, and P. Salières. Attosecond dynamics
through a fano resonance: Monitoring the birth of a photoelectron. Science, 354(6313):734–738,
2016. ISSN 0036-8075. doi: 10.1126/science.aah5188. URL http://science.sciencemag.org/
content/354/6313/734.

[190] Á. Jiménez Galán, L. Argenti, and F. Martín. Modulation of attosecond beating in resonant
two-photon ionization. Phys. Rev. Lett., 113(26):263001, December 2014. ISSN 0031-9007. doi: 10.
1103/PhysRevLett.113.263001. URL http://link.aps.org/doi/10.1103/PhysRevLett.113.
263001.

[191] Álvaro Jiménez-Galán, Fernando Martín, and Luca Argenti. Two-photon finite-pulse model for
resonant transitions in attosecond experiments. Phys. Rev. A, 93:023429, Feb 2016. doi: 10.1103/
PhysRevA.93.023429. URL https://link.aps.org/doi/10.1103/PhysRevA.93.023429.

[192] Private communication with the Pascal Salieres’ group at CEA Saclay (joint paper in prepara-
tion).

[193] Á. Jiménez Galán. Attosecond Spectroscopy of Autoionizing States. PhD thesis, Universidad
Autónoma de Madrid, 2015.

[194] Th. Mercouris, Y. Komninos, S. Dionissopoulou, and C. Nicolaides. Computation of strong-
field multiphoton processes in polyelectronic atoms: State-specific method and applications
to H and Li−. Phys. Rev. A, 50(5):4109–4121, November 1994. ISSN 1050-2947. doi: 10.1103/
PhysRevA.50.4109. URL http://link.aps.org/doi/10.1103/PhysRevA.50.4109.

[195] Theodoros Mercouris, Yannis Komninos, Stavroula Dionissopoulou, and Cleanthes A. Nico-
laides. Effects on observables of the singularity in the multiphoton freeâĂŞfree dipole matrix
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