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DE OBJETOS ROBADOS Y

ABANDONADOS EN SECUENCIAS DE
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Abstract

In this work, we present an exhaustive analysis of a video-surveillance system aimed at the de-

tection of abandoned and stolen objects. A formalization of the problem is presented, followed

by a description of the different stages of analysis required for the detection, focusing our atten-

tion on the discrimination of stationary regions between abandoned and stolen objects. For this

stage, we propose three new discrimination methods based on active contours adjustments, and

a discriminator based on extracting color contrast information. Additionally, fusion schemes are

studied to combine information from multiple discriminators. These novel approaches are then

evaluated and compared against state-of-the-art approaches on an heterogenous dataset.

Resumen

En este Proyecto, se presenta un análisis exhaustivo de un sistema de videovigilancia cuyo

objetivo es la detección de objetos robados y abandonados. Se presenta una formalización del

problema, seguida de una descripción de las distintas etapas de análisis requeridas para detección;

centrando nuestra atención en la discriminación de regiones estáticas entre objetos abandonados

y robados. Para esta etapa, proponemos tres nuevos métodos de discriminación basados en

ajustes de contornos activos, y un discriminador basado en la extracción de información el

contraste de color. Adicionalmente, se estudian distintos esquemas de fusión para combinar la

información proveniente de múltiples clasificadores. Posteriormente, los métodos propuestos son

evaluados y comparados con discriminadores existentes, sobre un conjunto de datos heterogéneo.
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Chapter 1

Introduction

1.1 Motivation

Nowadays, the demand for automatic video-surveillance systems is growing as a consequence of

increasing global security concerns [5]. Traditionally, the monitoring task is performed by human

operators who have to simultaneously analyze information from different cameras. A reduction of

efficiency is expected as operators have to process large amounts of visual information generated

by these cameras. For this reason, real-time automatic video interpretation is emerging as a

solution to aid operators in focusing their attention on specific security-related events.

In this situation, the detection of abandoned and stolen objects has become one of the

most promising research topics especially in crowded environments such as train stations and

shopping malls. For example, a useful application of abandoned object detection could be to

detect unattended packages in a subway station. For stolen object detection, an interesting

application could be the monitoring of specific items in an office, showroom or museum. This

detection aims to provide a continuous supervision of the information captured by the camera so

that the appropriate actions can be taken. Figure 1.1 shows some examples of these application

scenarios.

In general, the detection of abandoned and stolen objects is achieved by developing a system

that comprises the following analysis stages: foreground segmentation, stationary region de-

1



Figure 1.1: Examples of abandoned (left) and stolen (right) objects.

tection, blob classification and stolen/abandoned discrimination. Firstly, moving objects (fore-

ground) are differentiated from the background of the scene in the foreground segmentation

stage. Then, stationary regions are detected by analyzing foreground objects over time. Each

detected region is then classified by type (person, group of people, luggage, ...). For those regions

classified as stationary objects, additional analysis is performed in order to determine whether

the object has been abandoned or stolen from the scene.

Each stage in the system has different challenges that affect their performance. Changes in

lighting conditions and non-stationary backgrounds may result in incorrect foreground segmen-

tation, hindering the detection of objects of interest. Moreover, in crowded environments where

occlusions are more frequent, static regions may not correctly be detected, and object tracking

becomes more complex as it has to cope with an increased number of objects and interactions.

Blob classification may be affected by the variability of object appearance in the video sequences.

Furthermore, since potential abandoned or stolen objects may have arbitrary shape and color,

specific object recognition methods can not be applied. Finally, low-complexity algorithms have

to be employed if real-time alarms are required.

Many methods have been proposed for abandoned and stolen object detection. Examples in-

clude approaches that focus on the stabilization of the image sequence from a moving camera [6],

based on the static foreground region detection [7], based on blob classification (e.g., people vs.

objects) [3] or discriminating static regions between abandoned and stolen [8]. These approaches

yield acceptable results in simple scenarios where objects of interest can accurately be detected.

2



However, this is not always valid for complex situations in which a performance decrease is

expected. In particular, the discrimination of stationary regions between abandoned and stolen

objects has not been fully explored under different characteristics of the video sequence.

1.2 Objectives

The main objective of this project is the study of the last stage of analysis of a video-surveillance

system that is capable of detecting abandoned and stolen objects in video sequences. This stage is

in charge of determining whether stationary objects correspond to abandoned or stolen objects.

The goal of this project is to improve an existing system currently in development at Video

Processing and Understanding Lab at Universidad Autónoma de Madrid (VPU-Lab).

The above-mentioned goal can be further specified in the following general objectives:

1) Study of the state of the art

For each of the aforementioned stages of analysis, the related literature is reviewed. Special

emphasis is given to the study of the different techniques for the discrimination between

abandoned and stolen objects.

2) Study of the existing abandoned and stolen object detection system in VPU-Lab

A comprehensive study of the existing video analysis system provided by VPU-Lab is

performed, with the aim of identifying challenges in the detection of objects of interest

and the discrimination between abandoned and stolen. An evaluation of the existing

discrimination approaches is carried out.

3) Design and implementation of new single-feature approaches for abandoned and stolen

discrimination

Novel approaches based on single features are developed to discriminate stationary regions

between abandoned and stolen objects, with the aim of providing additional robustness in

those cases in which existing approaches have shown weaknesses.

4) Design and implementation of new multi-feature approaches for abandoned and stolen

3



discrimination

Classical fusion schemes are studied and evaluated with the aim of combining information

from the available approaches in the VPU-Lab system and the proposed ones for the

discrimination task.

5) Generation of an evaluation framework

This framework consists on an evaluation using both manually annotated and real data.

Manual data is generated by annotating video sequences from publicly available data sets.

For real data, an automatic process is applied to the video-surveillance system of the VPU-

Lab for generating such data from video meta-data files. Furthermore, data is grouped

into different categories with varying degrees of complexity.

6) Comparative evaluation of improvement achieved with the proposed approaches

The performance of the proposed discriminators and the fusion schemes is compared

against the existing approaches provided by VPU-Lab to identify their advantages and

drawbacks.

1.3 Document Structure

The document is structured as follows:

� Chapter 1. This chapter presents the motivation, objectives and structure of this docu-

ment.

� Chapter 2. In this chapter, the problem is presented by first identifying the informa-

tion that needs to be extracted from the video sequence, followed by an overview of the

most relevant approaches for each processing stage. Then, this chapter focuses on the

discrimination between abandoned and stolen objects.

� Chapter 3. This chapter describes the base-system for abandoned and stolen object de-

tection provided by the VPU-Lab. The approaches employed in the abandoned and stolen

discrimination stage are described in detail.
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� Chapter 4. In this chapter, we describe the single-feature proposed approaches for the

abandoned and stolen discrimination task.

� Chapter 5. In this chapter, different combination schemes are described and employed for

the fusion of the available approaches for discrimination.

� Chapter 6. This chapter presents the dataset used for training and testing, the evaluation

metrics and the experimental results. Furthermore, a comparison against other state-of-

the-art approaches is performed.

� Chapter 7. This chapter summarizes the main achievements of the work, discusses the

obtained results and provides suggestions for future work.

� Appendix

– A. Introduction to Support Vector Machines.

– B. Extraction of real foreground masks from annotations of abandoned and stolen

objects.

– C. Publications produced within this project.
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Chapter 2

Related work

2.1 Introduction

The detection of abandoned and stolen objects in video surveillance comprises different stages

of analysis, ranging from low-level stages (e.g., segmentation at the pixel level) to high-level pro-

cessing (e.g., event recognition by analyzing stationary objects). Prior to this detection, these

two events have to be clearly defined in order to determine what kind of information needs to be

extracted from the video sequence. In this chapter, we study how this problem has been formal-

ized. Then, we overview the different stages of analysis for the detection of objects of interest:

foreground segmentation, stationary region detection and object classification. This study allows

to understand the limitations of existing video-surveillance systems for abandoned and stolen

object detection. Finally, we concentrate this literature review on the existing approaches and

available datasets for the discrimination between abandoned and stolen objects.

The rest of this chapter is organized as follows. In section 2.2, the formalization of the

abandoned and stolen object detection problem is presented. In section 2.3, the different stages

for stationary object detection are overviewed: foreground segmentation (subsection 2.3.1), sta-

tionary region detection (subsection 2.3.1) and object classification (subsections 2.3.3). Finally,

section 2.4 presents a comprehensive study of the different approaches for the discrimination

task and section 2.5 describes the data sets employed in the work presented in this document.
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2.2 Problem statement

In an automated video analysis system in which the goal is the detection of abandoned and stolen

objects, different considerations have to be made regarding the definition of the two events. We

can distinguish between three types of information that allow us to determine whether any of

these two events have occurred in a video sequence. They are:

� Contextual information: regards the nature of the object of interest (people, luggage,

...) as well as its interaction with the environment and other objects in the scene.

� Spatial information: describes the location of the object of interest and its distance to

other objects or people.Temporal information: considers the motion parameters (such

as trajectory and speed) that allow to determine if an object has remained stationary for

a certain amount of time.

By combining these three sources of information, we can then define specific rules for the aban-

doned and stolen object events. In PETS 2006 1, these events were specified as follows:

� Abandoned object: an object belongs to a person that enters the scene until they become

separated (contextual rule), and it is considered abandoned when it remains at a certain

distance from its owner (spatial rule) for a certain period (temporal rule). Figure 2.1 (first

row) shows an example of this definition.

� Stolen object: all objects belonging to the background of the scene are susceptible of

being removed (contextual rule). An object is considered stolen if it is away from its

location (spatial rule) for a certain amount of time (temporal rule), or when the person

that takes the object is no longer in the scene (contextual rule). Figure 2.1 (second row)

shows an example of this definition.

The main implication of these definitions is that in order to perform abandoned and stolen

object detection, a video analysis system has to be able to detect stationary foreground regions

1Ninth IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (http://www.
cvg.rdg.ac.uk/PETS2006/index.html)
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Figure 2.1: Example of abandoned (first row) and stolen (second row) object event definitions.

in the scene and classify them according the possible object categories that may appear in the

video sequence (e.g., luggage and people). Once candidate objects are detected, features are

extracted to discriminate between the abandoned and stolen events.

2.3 Detection of objects of interest

As previously stated, only stationary objects in the scene are considered for the abandoned and

stolen event discrimination. These objects of interest share common characteristics:

� They belong to the foreground of the scene (foreground segmentation)

� They remain stationary for a certain period of time (stationary object detection)

� They are generic objects (object classification: people, group of people, luggage...)
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Figure 2.2: Common stages of analysis for the detection of objects of interest.

In a typical visual analysis system, these characteristics are independently analyzed by different

processing modules, as depicted in figure 2.2. In the following subsections, we survey the most

relevant approaches found in the literature for each stage of analysis.

2.3.1 Foreground segmentation

The first step in many computer vision applications involves the localization of objects of interest

within a scene by distinguishing between the pixels that belong to the foreground (stationary or

moving objects) from those pixels that compose the background of the scene. The most widely

employed approach for this task is background subtraction (BGS), where each incoming video

frame is compared against a model of the scene’s background. This model must be an accurate

representation of the background scene in the absence of foreground objects, and should be

able to take into account changes of the environment, such as as illumination changes. The

main differences between most BGS methods found in the literature lie on how the background

model is obtained and updated, and the distance measure employed to compare incoming frames

against the model.

BGS techniques have been classified in the literature according to different criteria. In

[9], a distinction is made between recursive and non-recursive methods. Recursive methods

maintain a single model of the background that is updated with each new frame, whereas

non-recursive methods estimate the background from a buffer of the N previous frames in the

sequence. A different classification is proposed in [10], distinguishing between predictive and

non-predictive. Predictive approaches model the input as a time series and recover the current

input based on past observations, while non-predictive methods estimate the background by

building a probabilistic model neglecting the order of the input observations. More recently, the
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Background model Current frame Binary foreground mask

Figure 2.3: Foreground segmentation example

authors of [11] have proposed a more comprehensive classification, in which the spatial scope of

the background model is taken into account at pixel, region, or frame level.

The most widely used approaches found in the literature work at the pixel level. Some

simple approaches model the background as the average of past frames; or by computing the

median at each pixel location in a buffer of past N previous frames. Many authors model

each pixel with a probability density function. In [12], background pixels are modeled with

a Gaussian distribution. Pixels with low probabilities are more likely to belong to moving

foreground objects. Mean and variance for each pixel are typically updated in a running average

fashion. More robust approaches model pixels with multimodal distributions. Currently, the

Gaussian Mixture Model (GMM) proposed by [13] is widely employed because of its ability

to handle background variations, such as gradual lighting changes and repetitive motion (e.g.

swaying trees). In [14], a non-parametric method is proposed where pixels are modeled with

using Kernel Density Estimators constructed from the past N frames. A popular method that

maintains a single model for the entire frame rather than for each pixel is Eigenbackgrounds

[15], based on eigenvalue decomposition. Principal component analysis is performed on a set of

training frames. The best principal components are selected to build the eigenspace. Incoming

frames are then back-projected from the eigenspace, which serves a model for the background

for that particular frame.

Two important applications of background modeling are background initialization and back-

ground maintenance [Wallflower]. In most cases, the initialization is assumed to be performed

when the scene is clear of foreground objects. This requirement, however, is often impossible
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to satisfy. For analysis over long periods of time, BGS methods must be able to cope with

changes in the environment in order to avoid incorrect segmentation. Different key issues have

been identified in the literature [16, 11], that affect the performance of BGS and therefore, they

should be taken into account:

Changes in illumination: They can alter the appearance of the background significantly. If

the update scheme fails to reflect these changes in the background model, it will most

likely result in background pixels being incorrectly labeled as foreground.

Moving objects in the background: When an object that belongs to the background is re-

moved, the position occupied by it will be classified as foreground, as well as the object

itself as it moves in the scene. The model will have to be adapted to this background

change. However, if this is done too quickly, the removed object may not be correctly

identified as a stationary region in a posterior analysis. Therefore, there exists a trade-off

between the rate at which the background is updated, and the ability to detect objects of

interest (and events).

Stationary objects in the foreground: This is similar to the previous case, as motionless

objects and people may be incorporated into the model as it is updated. It is often difficult

to avoid stationary people from being incorporated into the model, and this is especially

problematic when there are stationary people in the initial background. In addition, if the

presence of stationary objects is reflected too quickly in the background model, it will be

more difficult to identify an abandoned object.

Multimodal backgrounds: In some cases, backgrounds and not completely stationary and

have specific types of motion that should not be classified as foreground, such as swaying

trees and waves in water’s surface. Robust BGS methods have to take these situations

into account, and correctly classify those instances as background.

Shadows and reflections: While these two situations are different in nature, they both may

produce problems in posterior stages if they are identified as part of the foreground mov-

ing objects. For example, shadows adjacent to moving objects can interfere with object
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classifiers or detectors that rely on different geometrical features. Most approaches in

the literature deal with shadow removal by performing post-processing operations on the

foreground masks obtained in the segmentation stage.

Incorrect foreground segmentation has a negative impact in the posterior analysis leading to the

detection of abandoned and stolen objects. Illumination changes or reflections often result in false

positives, which subsequently results in background regions being detected as either abandoned

or stolen objects. If cast shadows are detected as part of stationary objects, a discriminator that

relies on color features may give a wrong detection, as the detected area will share color features

with the background. If foreground objects remain stationary, they eventually become part of

the background model. Therefore, the update rate of the model should be taken into account

when deciding the minimum time a region has to be stationary to be detected as abandoned or

stolen. As a conclusion, the detection of abandoned and stolen objects is heavily related with

the foreground segmentation stage. Thus, the update rate of the background model, the analysis

of multimodal backgrounds and the post-processing operations should be taken into account for

developing effective abandoned and stolen object detection systems.

2.3.2 Stationary object detection

After the foreground segmentation process, the following step is to determine which objects in the

scene have remained stationary. Most approaches found in the literature rely on object tracking

to perform the stationary object detection using the previously computed foreground maps

(known as blob-based tracking). In this case, tracking consists on establishing a correspondence

between blobs2 in consecutive frames. By accurately determining the position of the same

object in the image sequence, motion parameters such and speed and trajectory are obtained.

This information can then be used to determine which foreground regions have not moved,

for example, by analyzing their speed. Object tracking approaches, however, present many

challenges in crowded environments and therefore, their expected accuracy is low. In these

2In this document, we consider a blob as a connected region extracted from a binary mask that represents the
foreground pixels of the scene.
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scenarios, high populated sequences make difficult to extract isolated blobs from the foreground

mask. Additionally, the computational cost increases as the system has to keep track of a high

number of objects. For these reasons, tracking-based approaches are generally not suitable for

its application in crowded environments.

According to a recent survey [2], non-tracking based stationary object detection approaches

can be classified depending on the type of analysis performed: based on the accumulation of

foreground masks; and based on the properties of the background subtraction model. In [17],

an approach based on the accumulation of foreground masks is proposed. In this algorithm, a

confidence map that indicates the presence of stationary foreground objects is computed. For

each pixel, a counter is maintained. The counter is updated with every new foreground mask,

increasing its value if the pixel is highlighted as foreground, and decreased if it belongs to the

background. When the counter hits a predefined threshold, the pixel is considered to belong

to a stationary object. In [1], an approach based on sub-sampling the sequence of foreground

masks is proposed. In this approach, the sequence of foreground masks for the past 30 seconds

is sub-sampled; taking advantage of the fact that, at lower frame rates, stationary objects are

more likely to be found in the same position. Once the samples have been taken, a simple binary

AND operation will produce a binary mask that depicts stationary objects. A method based

on the properties of the BGS model is proposed in [18]. In this method, GMM is employed to

model the background. This approach performs the detection by observing the transition states

between the different Gaussian modes for each pixel. When a new object enters the scene, new

modes are created for its pixels. As the object remains stationary, these newly created modes

are assigned a higher weight. The detection of stationary objects is performed by combining

this information with a set of spatio-temporal rules.

2.3.3 Object classification

The goal of this stage is to classify the detected stationary regions between objects and people.

Hence, this stage is considered as a two-class discrimination problem (people vs. objects),

as regions not detected as people can simply be classified as generic objects. This stage is
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Figure 2.4: Example of the stationary object detection method proposed in [1], figure taken
from [2]

important, as it allows us to exclude stationary people from further analysis; while at the same

time obtaining information from the performers of the actions.

People detection presents several challenges. The large variability in appearance makes

difficult to accurately characterize the entire class by using a single feature. In addition, the

variety of poses and articulations that a person may adopt results in complex silhouettes that

are difficult to model. Occlusions and interactions between people should also be taken into

account, as a single blob may contain more than one person or nearby objects.

According to [19], two broad types of people detection approaches are predominant, depend-

ing on whether they rely on contours (silhouettes) or regions. In most cases, a model of people

features is first trained prior to the classification. In the literature, a variety of human model-

ing schemes can be found: silhouettes [20], articulations [21], volumetric models [22]. In some

cases, detecting body parts [23], as opposed to full body models, may be enough to perform the
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Figure 2.5: Examples of features of object classification [3]

classification. For example, in [24], skin and face detection are used to detect people.

Furthermore, specific object classifiers are also used to perform an accurate categorization of

the stationary regions. For example, [3] proposed a four-class classification problem: trolley, bag,

person and group of people. For the classification, primitive geometric features are employed,

such as corners, lines and circles. Additionally, other features such as area, compactness (ratio

between the area of the bounding box and the area of the region), aspect ratio and SIFT features

are considered. Features are modeled statistically and machine learning classifiers are employed

for solving the classification problem. Figure 2.5 shows an example of the proposed features.

However, one of the main limitations of these approaches is the need of prior information about

the appearance of the scene objects as it is not be available in real world conditions.

2.4 Discrimination of abandoned and stolen objects

In this section, we provide a comprehensive survey of different discrimination approaches found

in the literature to distinguish between abandoned and stolen objects. As explained in the

preceding sections, the objects of interest are those foreground regions that have been classified

as both stationary and non-people by the previous stages of analysis.

Some approaches in the literature simplify the problem by assuming that only object in-
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sertions are allowed in the scene [6, 25, 26]. While this may be a valid assumption in certain

constrained scenarios, such as the detection of unattended luggage in airports, it does not take

into account possible foreground artifacts generated by the background subtraction technique

such as ghosts produced by the motion of stationary parts of the scenario (or moving objects that

have remained stationary for a long period of time). Therefore, these approaches are expected

to fail in the real world conditions.

Few techniques have been proposed that deal with the discrimination problem. Among these,

we can classify them according to the features employed between edge-based, color-based, and

hybrid.

Stolen/abandoned 

object discrimination
Extracted objects of 

interest stolen

abandoned

Figure 2.6: Stolen/abandoned discrimination analysis stage

2.4.1 Edge-based approaches

Edge-based approaches rely on inspecting the edge energies around the stationary region bound-

aries. This energy is assumed to be high when an object has been added to the scene, and low

when an object has been removed. For example, in [27], the change in edge energy is analyzed.

For abandoned objects, a higher average edge energy is expected, suggesting that the object has

been inserted. Conversely, this energy is expected to be lower when the object has been removed

from the scene (stolen objects). Similar approaches are described in [28, 29]. They propose the

use of the canny edge detector inside the bounding box of the detected stationary object in

both the background and the current frame. If edge presence is stronger in the current frame,

the object is classified as abandoned, otherwise, the object is classified as stolen. In [30], the

SUSAN edge operator is applied on the current image and the foreground binary mask, and are

then compared by a proposed matching technique. Figure 2.7 shows an example of edge-based

approaches: in the current frame, strong edges indicate that an object has been abandoned.

Weak edges in the current frame indicate that the background has been uncovered due to a
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Figure 2.7: Examples of extracted edges for abandoned and stolen objects

stolen object. However, these assumptions only hold true for simple backgrounds with weak

edges.

2.4.2 Color-based approaches

Color-based approaches employ the color information in the regions delimited by the boundaries

of the stationary region and its bounding box. These approaches exploit the assumption that the

color features of the object are different enough from those of its surrounding. When the object

is removed, the portion of the background uncovered is expected to have similar color properties

than its surroundings. In [31], two Bhattacharya distances are computed between the color

histograms of the internal (in the current frame) and the external (in the background frame)

regions. The difference between these distances is then thresholded to perform the classification.

In a similar fashion, a color-richness measure is proposed in [32] to count the number of colors

(histogram bins above a threshold), and then the same comparison as in [31] is performed.

Moreover, [33] proposed the use of image inpainting to reconstruct the hidden background

and compare it against the external region using color histograms. In [34], the color information

within and outside the stationary region is compared using segmentation techniques.

2.4.3 Hybrid approaches

Hybrid approaches combine information from both edge and color. In [8], using two detectors

(color and edge-based), a probabilistic model is built for each algorithm in each class (abandoned
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and stolen). The discrimination is performed by computing the average probability of belonging

to each class; the object is classified as the class for which it obtained the highest average

probability. Another approach proposed in [35], combined the information of different features

related to edge energy, color contrast and shape to build a generative model to perform the

classification.

In conclusion, the different techniques found in the recent literature use either edge or color

information to perform the abandoned/stolen discrimination. Although these approaches work

well for simple scenarios, they have difficulties in complex scenarios as they do not consider the

possibility of occlusions or complex backgrounds (e.g., high textured backgrounds). In addition,

these approaches rely on the precision of foreground object detection, and they may perform

poorly in complex scenarios.

2.5 Existing datasets

Several public datasets are available for abandoned and stolen object detection in video. Ad-

ditionally, they are widely used in the field of video surveillance to assess the performance of

different processing modules (e.g., foreground segmentation, tracking). Figure 2.8 shows sample

frames from the most representative datasets. They are:

� PETS 2006

URL: http://www.cvg.rdg.ac.uk/PETS2006/data.html

This dataset consists on different examples of left-luggage events, with increasing scene

complexity in terms of nearby people. A total of 6 left-luggage events in a railway station

are recorded by four cameras positioned at different angles (28 videos in total). Videos from

this data set are between 1 and 2 minutes long, with standard PAL resolution (768x576

pixels, 25fps).

� PETS 2007

URL: http://www.cvg.rdg.ac.uk/PETS2007/data.html

This dataset contains 8 examples of abandoned luggage at an airport. Each event is
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recorded by four different cameras. Additionally, a background training sequence is pro-

vided. Complexity is defined with the following criteria: loitering, stolen luggage and

abandoned luggage. Video sequences have been recorded in a dense, crowded scenario.

Videos are between 2 and 3 minutes long, with standard PAL resolution (768x576 pixels,

25fps).

� AVSS 2007 (iLids dataset)

URL: http://www.eecs.qmul.ac.uk/~andrea/avss2007_d.html

This dataset has 3 sequences containing abandoned object events at an underground sta-

tion, with 3 complexity levels: easy, medium, and hard, defined in terms of the density of

the crowd. Each sequence is about 3.5 minutes long, with PAL resolution.

� CVSG: A Chroma-based Video Segmentation Ground-truth

URL: http://www-vpu.eps.uam.es/CVSG/

In this dataset, different sequences have been recorded using chroma based techniques for

simple extraction of foreground masks. Then, these masks are composed with different

backgrounds. Provided sequences have varying degrees of difficulty in terms of foreground

segmentation complexity. Sequences contain examples of abandoned objects and objects

removed from the scene.

� ViSOR: Video surveillance online repository

URL: http://www.openvisor.org/

This dataset is classified in different categories including outdoor and indoor events (human

actions, traffic monitoring, cast shadows. . . ). A total of 9 abandoned-object sequences are

included, recorded in an indoor setting. These are low-complexity sequences. Videos are

around 10 seconds long and are provided at 320x256@25fps resolution.

� CANDELA project

URL: http://www.multitel.be/~va/candela/abandon.html

This dataset contains 16 examples of abandoned objects inside a building lobby, with

different interactions between object owners. Videos are around 30 seconds long, provided
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CVSG ViSOR CANDELA

CANTATA WCAM

Figure 2.8: Frame samples from selected datasets

at 352x288 resolution. Despite the simplicity of the scenario, the low resolution and the

relatively small size of objects present challenges for foreground segmentation.

� CANTATA Left-objects dataset

URL: http://www.multitel.be/~va/cantata/LeftObject/

Videos from these dataset contain examples of left objects. A total of 31 sequences of 2

minutes have been recorded with two different cameras. Some videos include a number

of people leaving objects in the scene (abandoned objects) and other videos show people

removing the same objects from the scene (stolen objects). Videos are provided at standard

PAL resolution, compressed using MPEG-4.
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Chapter 3

Base system

3.1 Introduction

The work presented in this document starts from a video analysis system for abandoned and

stolen object detection provided by the Video Processing and Understanding Lab [8]. This

system is designed to work as part of a video-surveillance framework capable of triggering alarms

for detected events in real time. This requirement imposes limits on the time complexity of the

algorithms used in each of the analysis modules. The system’s block diagram is depicted in

Figure 3.1.

After the initial frame acquisition stage, a foreground mask is generated for each incoming

frame at the Foreground Segmentation Module. This foreground mask consists on a binary image

that identifies the pixels that belong to moving or stationary blobs. Then, post-processing

techniques are applied to this foreground mask in order to remove noisy artifacts and shadows.

After that, the Blob Extraction Module determines the connected components of the foreground

mask. In the following stage, Blob Tracking Module tries to associate an unique ID for each

extracted blob across the frame sequence. This information is analyzed by the Static Region

Detection Module, in order to determine which blobs have become stationary (i.e., their velocity

is zero). These blobs are then classified as objects or people by the Object Classification Module.

Finally, blobs that have been classified as stationary objects are analyzed to discriminate whether
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Figure 3.1: Block diagram of the existing video analysis system for abandoned and stolen object
detection.

they correspond to abandoned or stolen objects.

In the remaining sections of this chapter, we firstly present, in section 3.2, the Foreground

Segmentation Module. Then, we overview the Blob Tracking Module and the Stationary Object

Detection Module in sections 3.3 and 3.4, respectively. In section 3.5, the framework for the

discrimination of stationary objects between abandoned and stolen is described in detail.

3.2 Foreground segmentation module

The purpose of the Foreground Segmentation Module is the generation of binary masks that

represent whether pixels belong to the background or foreground (moving or stationary blobs).

Based on the BackGround Subtraction (BGS) segmentation technique, a background model is

created and then updated with the incoming frames. This initial mask then undergoes noise and

shadow removal operations in order to obtain the final foreground mask for the current frame

and perform connected component analysis for blob extraction. Figure 3.2 depicts the block

diagram of the Foreground Segmentation Module.

3.2.1 Background subtraction

The background subtraction technique employed in this system is based on the one proposed

in [36]. The background model is initialized with the average value of a short sequence of
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Figure 3.2: Block diagram of the Foreground Segmentation Module.

training frames that do not contain foreground objects. This model is adaptively updated to

consider slow changes in global illumination conditions using a running average method [37].

Then, the distance to the background model is calculated for each incoming frame. It consists

on the squared difference between the two images (background and current), calculated around

a square window for each pixel. Finally, foreground segmentation is computed by thresholding

this distance according to the following equation.:

F (I[x, y])⇐⇒
W∑

i=−W

W∑
j=−W

(|I[x+ i, y + j]−B[x+ i, y + j]|)2 > β (3.1)

where W is a square window centered in each pixel, I is the current frame, B is the back-

ground model and β is the threshold for foreground segmentation.

3.2.2 Shadow removal

Shadows cast by objects and people are often misclassified as being part of the foreground due to

their significant difference with the background model. Hence, high-level stages of analysis, that

take as valid the data from the foreground masks (e.g., blob contour), will also be affected when

adjacent shadows are wrongly considered as part of the object and therefore, their performance

is decreased.

A shadow removal technique is applied to the foreground mask for removing those pixels

that belong to shadows produced by moving or stationary entities (e.g., objects and people).

For this purpose, the Hue-Saturation-Value (HSV) color space is used, as it allows us to explicitly
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(a) (b) (c)

Figure 3.3: Foreground mask at different stages: initial foreground mask (a), after shadow
removal (b) and after noise removal (c)

separate between chromaticity and intensity, as suggested in [38].

To perform shadow removal, the system employs the technique proposed in [39]. This ap-

proach takes advantage of the fact that for cast shadows, the change in chromaticity (hue and

saturation) between the current and background image is not significant. The ratio intensity

between both images is also computed, to detect intensity changes that are likely due to the

presence of shadows. To classify a pixel as part of a shadow, the following decision function is

used:

SP (x, y) =


1 if α ≤ IV (x,y)

BV (x,y) ≤ β ∧DS ≤ τS ∧DH ≤ τS

0 otherwise

(3.2)

where SP (x, y) is the foreground mask that highlights pixels that belong to cast shadows

at coordinates (x, y); I and B are the current frame and the reference background respectively;

subindexes H, S and V indicate the channel in the HSV color space; and DS and DH denote the

chromatic difference between the current frame and background for both channels.

The final foreground mask with removed shadows is obtained by performing logical XOR

operation on SP and the mask generated by the preceding module. An example of shadow

removal is shown in Figure 3.3b.
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Algorithm 3.1 Opening by reconstruction of erosion

1) Start with image X

2) Obtain marker image Y , by eroding Y with structuring element B.

� Y = X 	B (erosion)

3) Initialize H1 to be the marker image Y and proceed iteratively:

� D = Hk ⊕B (dilation)

� Hk+1 = D ∩X
� Stop condition: Hk+1 = Hk

3.2.3 Noise removal

Additionally, morphological operations are performed on the resulting foreground mask for re-

moving noisy artifacts. In particular, a combination of erosion and reconstruction operations

known as “Opening by Reconstruction of Erosion” is applied as described in [40]. Its purpose is

to remove small objects (in our case blobs due to noise), while retaining the shape and size of

all other blobs in the foreground mask.

Morphological reconstruction involves an image X (the foreground mask to be processed), a

marker Y and a structuring element B. In the selected approach, the marker Y is first calculated

by performing the erosion operation on X, and the final mask is then obtained by performing

dilation iteratively. The procedure is described in Algorithm 3.1.

The size and shape of the structuring element will determine the artifacts that will be removed

from the foreground mask. In Figure 3.3c we can see an example of the described operation

applied to a noisy foreground mask with a 3x3 squared structuring element.

3.2.4 Blob Extraction

After applying background subtraction and post-processing the obtained foreground mask, the

Blob Extraction Module labels each isolated groups of pixels in the mask using Connected Com-

ponent Analysis. The implemented algorithm uses 8-connectivity as the criteria to determine if

pixels belong to the same connected region. It works as described in Algorithm 3.2.
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Algorithm 3.2 Connected component labeling using 8-connectivity condition

For each pixel p of the foreground mask, the values of neighboring pixels in the west, north-west,
north and north-east positions are analyzed; and is labeled according to the following rules:

� If all four neighbors have a value of 0, assign a new a label to p, else

� If there is only one neighbor with a value of 1, assign its label to the p; else

� If more than one neighbor have a value of 1, assign one of the labels to p, and store the
equivalence between neighboring labels in a table.

On a second pass, the table is used to merge neighboring labels.

After the labeling process, some very small regions may be detected. These may be due to

noise that was not correctly eliminated by the Noise Removal Module, or due to residual artifacts

as a result of incorrect segmentation. In order prevent higher level modules from analyzing these

regions, the ones below a certain area (in pixels) are discarded.

3.3 Blob Tracking

This module performs tracking of the blobs extracted by the previous module. This is done

by estimating the correspondence of blobs between consecutive frames (current and previous

frames). A match-matrix MM is used to quantify the likelihood of correspondence between

blobs in the previous and current frame. For each pair of blobs, the values of this matrix are

computed using the normalized Euclidean Distance between their blob centroids and their color.

It is calculated as follows:

MMnm =

√(
∆X

Xdim

)2

+

(
∆Y

Y dim

)2

+

√(
∆R

255

)2

+

(
∆G

255

)2

+

(
∆B

255

)2

(3.3)

where each row n corresponds to blobs in the previous frame and each column m to the

number of blobs in the current frame. ∆X and ∆Y are the differences in the X and Y directions

between the centroids in the past and previous frame, normalized to their maximums values,

Xdim and Y dim (the frame dimensions). ∆R, ∆G and ∆B are the differences between mean

R, G and B color values, also normalized to the maximum value (255 for 8-bit RGB images).
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Then, the correspondence for each blob m is defined as the index i (i = 1....n) that presents

minimum value MMim.

3.4 Stationary object detection

In order to perform the detection of abandoned and stolen objects, only stationary blobs that

correspond to objects, as opposed to people, are considered. Stationary blobs are first detected

using the results of tracking analysis. These blobs are then classified using simple geometric

features to discriminate between people and generic objects.

3.4.1 Stationary blob detection

Motion data generated by the Blob Tracking Module is used to determine which blobs have

remained stationary for a certain amount of time. The detection is performed by analyzing

blobs’s speeds as they move around the scene. Firstly, the speed of the blob is calculated as

follows:

BlobSpeed =
√
v2
x + v2

y (3.4)

where v2
x and v2

y are, respectively, the difference between the current and previous blob

centroids in x and y directions.

Then, if a blob’s speed remains close to zero for a period of time, it is detected as a stationary

region. In this system, this period was chosen to be 2 seconds, equivalent to 50 consecutive frames

for 25fps video data.

3.4.2 Object classification

This task is performed by combining the information from two simple geometric features, in

order to discriminate between people and generic objects.

1) Bounding box aspect ratio

The ratio between the dimensions of the blob’s minimum bounding rectangle, or bounding
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aspect ratio = 0.5591

aspect ratio=0.7561

compactness = 0.3817

compactness = 0.7144

Figure 3.4: Object classification examples

box, is used to determine if it belongs to a person. This ratio (width/height) is modeled

with a Gaussian distribution with mean µ and standard deviation σ. For people, these

values were determined to be µ = 0.3 and σ = 0.2 from a training sequence.

2) Compactness

Compactness is defined as the percentage of pixels inside the blob’s bounding box that

correspond to foreground pixels (value 1 in the binary mask). It has been observed that

blobs showing a compactness value lower than 70− 75% can be classified as people.

These to measures are then combined using Bayesian inference to perform the classification.

Examples of these measures for people and objects are shown in figure 3.4.

3.5 Abandoned and stolen object discrimination

Stationary foreground objects extracted by the preceding modules will be analyzed in order

to determine the nature of the event that has occurred (removed or abandoned object). As

depicted in Figure 3.5, we can distinguish two distinct processing stages. First, desired features

are extracted from the foreground mask, the reference background, the current frame and the

location of the static object; as detected by lower level analysis modules. Based on the extracted

features, a likelihood measure (score) is then generated for each object. Based on the score or
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Figure 3.5: Stolen/abandoned object discriminator

set of scores, a classifier will then assign each object to a class (stolen or abandoned).

As described in section 2.4, we can distinguish between color-based and edge-based methods

for the abandoned and stolen discrimination task . In this system, detectors of both classes

are available. In subsection 3.5.1, the feature extraction is described for color-based and edge-

based methods. Later on, the subsections 3.5.2 and 3.5.3 describe, respectively, the model for

computing the likelihood of each method and the hybrid discrimination scheme.

3.5.1 Features

3.5.1.1 Color histogram detector

The color histogram detector is a variation of the work proposed in [31]. This approach is based

on measuring the color similarity between the regions delimited by the foreground mask (internal

and external regions of the blob bounding box) in both the background and the current frame.

The assumption is that in the current frame, stolen objects show a higher color similarity (in

the current frame) between these two regions than abandoned objects. Analogous reasoning is

applied to the background frame and therefore, abandoned objects present high color similarity

between these regions in the background frame. By combining the similarity measure on both

images (current and background), the robustness of the detector is increased.

For each candidate object, the bounding box dimensions are increased by a factor of 1.5,

centered in the object. The region inside the bounding box is extracted from the foreground

mask, the current frame and the background, as shown in the first row of Figure 3.6. We can

further consider that two regions are delimited by the foreground mask inside the bounding box:
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R2

R1

(a) (b) (c)

H1 H2 H3

Figure 3.6: First row: Bounding-box in foreground mask (a), current frame (b) and background
(c). Second row: Color histograms: R1 in background frame (H1), R2 in current frame (H2),
R2 in background frame (H3).

R1 (foreground pixels with value zero) and R2 (foreground pixels with value 1).

To obtain the color similarity measures, the color histogram of the hue channel in the HSV

color space is computed for pixels belonging to the R1 and R2 regions in the background and

the current frame. Thus, three histograms are computed and normalized:

� H1: histogram of R1 in the background frame.

� H2: histogram of R2 in the current frame.

� H3: histogram of R2 in the background frame.

A fourth histogram (R1 in the current frame) could be used, as described in [31]. In this

implementation, however, H1 is used for both comparisons, as it was seen that it provides

robustness in those cases in which nearby moving objects and shadows are present in R1.

Histogram similarity (between H1 and H3, and H1 and H2) is then computed employing the

Bhattarcharyya distance:

Dbat(Hi, Hj) = − ln

√∑
x∈X

Hi(x)Hj(x)

 (3.5)

where Hi and Hj are the histograms being compared, and x is the number of histogram bin.

Since the histograms are first normalized, Dbat is a value between 0 and 1. The color histogram

detector score (SCH) is then computed as follows:
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SCH = Dbat(H1, H3)−Dbat(H1, H2) (3.6)

3.5.1.2 Gradient detectors

Two detectors are available based on comparing the values of the image gradient along the

contour of the object (as obtained from the foreground mask) in the background and current

frame images. The implemented approaches are similar to the one described in [30]. The main

differences lie on the inclusion of a contour adjustment stage, the gradient operator employed

(Sobel instead of SUSAN edge detector), and a scheme to remove redundant information the

analyzed gradient image.

The first step is to extract the contour of the object from the foreground mask. The Sobel

operator is applied to the current image I and the background B to obtain an estimation of their

gradient images, GI and GB. The initial contour is then adjusted in the current image so that it

correctly fits the actual object boundaries. This is done in order to correct defects in the contour’s

shape that may have been caused by an imprecise segmentation process. Then, redundant

information is removed from the current image gradient by subtracting the background gradient

image. The gradient difference image is computed as follows:

Gdiff =


GI −GB if (GI −GB) ≥ 0

0 otherwise

(3.7)

This operation eliminates those gradient points that are present on both images (redundant

information), as we assume that they belong to the background and they generally fall outside

of the object boundaries. Only positive values in the gradient difference are taken into account.

For abandoned objects, Gdiff will highlight the object’s edges; for stolen object, edges uncovered

by the removal of the objects will be highlighted.

The high gradient detector analyzes pixel values in the gradient difference image, along the

adjusted contour, that are above a certain threshold (τGH). For each pixel, this condition is

checked inside a small neighborhood. Conversely, the low gradient detector accounts for pixel
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values that are below a threshold (τGL). A small window around each contour pixel is used to

analyze these conditions.

The adjusted contour is a set of N points C = {p1,...,pN}, specified by their coordinates

(x, y). For each pixel in the contour, we consider a small window of neighboring pixels W (x, y)

of size KxK centered in position (x, y). The test conditions of both detectors for contour pixels

are defined as follows:

fGH(x, y) =


1 if {p ∈W (x, y) | Gdiff (p) ≥ τGH} 6= Ø

0 otherwise

(3.8)

fLH(x, y) =


1 if

∑K2

i=1Gdiff (Wi) ≤ τLH ·K2

0 otherwise

(3.9)

The score generated by each detector is then defined by the following equation:

SGH =
1

N

∑
C

fGH(x, y) (3.10)

SGL =
1

N

∑
C

fGL(x, y) (3.11)

The selected thresholds are τGH = 220 and τGL = 30. For abandoned objects, a high number

of contour pixels are expected to meet the high-gradient test condition, obtaining scores close

to 1.0. Conversely, low scores (close to 0.0) will be generated by the low-gradient detector.

Analogous reasoning can be applied to stolen objects. To take advantage of this duality, a

combination of both detectors is proposed by generating the following score:

SGRD = SGH − SGL (3.12)
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Figure 3.7: Gradient detectors example for an abandoned object

3.5.2 Evidence model

In order to obtain a likelihood for performing the discrimination into abandoned or stolen ob-

jects, two evidence measures (one for each class) are derived from the detector’s score. The score

is assumed to follow a Gaussian distribution of mean µ and standard deviation σ. These two

parameters are obtained from a training set consisting of abandoned and stolen objects in dif-

ferent scenarios. Given a detector score x, the evidence measures are defined as values between

0.0 and 1.0, the latter when the score is equal to the mean, as shown in the following equation:

Eµ,σ(x) = e
−(x−µ)2

2σ2 (3.13)

Two evidence measures EU and ES (for unattended and stolen, respectively) are obtained for

each detector, computed from the scores SCH (color histogram detector), SGH , SGL (gradient

detectors).

3.5.3 Hybrid abandoned and stolen object discrimination

The final evidences EU and ES are obtained by combining the evidences provided by the three

detectors using a fusion scheme, as described in [8]. EU and ES are computed as shown in Eq.

3.14 and 3.15. Only evidence measures with a value above a certain significance threshold ρ are
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Figure 3.8: Classification by fusing evidence data

considered.

EU =
H(EGH,U − ρ)EGH,U +H(EGL,U − ρ)EGL,U +H(ECH,U − ρ)ECH,U

H(EGH,U − ρ) +H(EGL,U − ρ) +H(ECH,U − ρ)
(3.14)

ES =
H(EGH,S − ρ)EGH,S +H(EGL,S − ρ)EGL,S +H(ECH,S − ρ)ECH,S

H(EGH,S − ρ) +H(EGL,S − ρ) +H(ECH,S − ρ)
(3.15)

where H is the Heaviside step function. In this system, a significant threshold ρ = 0.7 was

selected. To avoid indetermination, in case all evidence measures fall below the significance

threshold, the arithmetic mean of the three measures is taken as the final evidence value.

Finally, the candidate object is classified as stolen if ES > EU , or abandoned if EU > ES .

This discrimination scheme is depicted in figure 3.8.
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Chapter 4

Single-feature discrimination for

abandoned and stolen objects

4.1 Introduction

As described in chapter 3, the discrimination between abandoned and stolen objects is per-

formed by using gradient and color information, respectively, at pixel and region level. The

results reported in [8] have shown that these approaches present limitations for the analysis

of real sequences with intermediate or high complexity. In this chapter, we propose two novel

approaches for this discrimination task using the contour of the blob. Firstly, a discrimination

approach based on active contours is defined to compare the contour adjustments performed on

the current frame and the background image. Then, a color-based discrimination approach is

also presented, based on measuring the average pixel color contrast along the initial contour,

between points that are inside and outside the object boundaries (as opposed to the color-based

analysis at region level of the base system).

The rest of the chapter is organized as follows: the approach based on active contours is

described in section 4.2. Subsection 4.2.1 details the proposed scheme, while the remaining

subsections describe the different active contour techniques that have been tested. The color-

based approach is described in section 4.3. Subsection 4.3.1 overviews the discrimination scheme
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whilst subsection 4.3.2 describes the pixel color contrast feature employed.

4.2 Based on active contours

Active contour models consist on a deformable spline that is driven towards object boundaries

through the minimization of an energy measure. This measure consists on boundary (edge) or

region energy terms, or a combination of both. When a contour adjustment is performed around

the boundaries of abandoned or stolen objects, it has been observed that the obtained contours

in the background image and the current frame differ significantly. By exploiting this fact,

we compute a similarity measure by comparing the adjusted contours with the initial contour

extracted from the foreground mask.

According to [41], active contours models can be classified as either parametric or geomet-

ric, considering whether their contour representation is explicit or implicit (using level sets).

Moreover, we can further differentiate between approaches based on boundaries (edge informa-

tion) or regions (color, texture). In the presented work, we have tested the most representative

approaches of each category.

4.2.1 Overview of the discrimination scheme

The block diagram of the proposed approach for discriminating abandoned and stolen objects

based on active contours is depicted in Figure 4.1. It starts from the initial contour of the static

object, at time t, defined as the set of points CIt = {p1, . . . , pi, . . . , pN}, where pi represents the

x, y coordinates of the ith contour, and N is the total number of contour points. It is obtained

as follows:

CIt = h (Ft, Mt) (4.1)

where Ft and Mt are the current frame and foreground mask at time t, and h(·) denotes

the contour extraction technique. In our approach, h(·) consists on point-scanning the result

of applying the Canny edge detector to the Mt mask. The contour indicates the boundaries of

the inserted (i.e., abandoned) or removed (i.e., stolen) object, as detected by the Foreground
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Figure 4.1: Scheme for abandoned and stolen object detection by active contours adjustment.

Segmentation Module.

Then, the regions enclosed by the stationary object’s bounding box are extracted from the

current frame and the background image, followed by a fitting process is performed on the

initial contour CIt , by applying an active contours algorithm. Thus, two adjusted contours are

obtained:

CEFt = f
(
Ft, C

I
t

)
(4.2)

CEBt = f
(
Bt, C

I
t

)
(4.3)

where f(·) denotes the contours adjustment technique; Ft and Bt are the current and back-

ground frames; and CEFt and CEBt are the adjusted contours in those frames, respectively. For

abandoned objects, the adjusted contour will be attracted to object boundaries in the current

frame, and thus it is expected to be largely similar to the initial contour. Conversely, the contour

is expected to undergo significant deformations when adjusted using the background frame, due

to the absence of object boundaries. In most cases, this uncovered area does not have strong

edges and the contour tends to shrink or disappear. For stolen objects, the results are the

opposite.

After that, a similarity measure is defined to quantify the deformation against the initial

contour. For this purpose, we have decided to use the Dice’s coefficient [42], which is defined as
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Figure 4.2: Examples of contour adjustments for abandoned objects (left) and stolen objects
(right).

follows:

d(C1, C2) =
2 |A1 ∩A2|
|A1|+ |A2|

(4.4)

where C1 and C2 represent two contours and A1 and A2 are the regions enclosed by them;

|A1 ∩A2| is their spatial overlap (in number of pixels) and |A1| and |A2| represent their areas

(in number of pixels). We then obtain two similarity measures (dFt and dBt ), by comparing the

two adjusted contours CEFt and CEBt with the initial contour CIt . The values of dBt are expected

to be close to 0.0 for stolen objects, and 1.0 for abandoned objects; with dFt getting opposite

values. Afterwards, a score is obtained by combining both distances as follows:

St = dFt − dBt (4.5)

Finally, the discrimination is performed by thresholding the final score St:

D =


abandoned if St > th

stolen if St ≤ th
(4.6)

The applied threshold, th, is obtained from training data. Figure 4.2 shows examples of the

contour adjustment for abandoned and stolen cases.
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4.2.2 Parametric, edge-based active contours

The first algorithm we have considered is the classic active contours model [43], or snakes. Start-

ing from the initial blob contour CIt = {p1, . . . , pN}, the adjustment is performed by iteratively

minimizing an energy function E that is composed of the following terms:

E =

N∑
i=1

αiEcont + βiEcurv + λiEimag (4.7)

where N is the number of contour points, Econt is the continuity energy, Ecurv is the curvature

(i.e., smoothness) energy, Eimag is the external energy (e.g., image edges), and αi, βi, λi ≥ 0 are

the weights given to each energy. These energies are defined as:

Econt = ‖pi − pi−1‖2

Ecurv = ‖pi−1 − 2pi + 2pi+1‖2 (4.8)

Eimag = gradient(It)

With each iteration, points that minimize the defined energy functional are search inside a

window of size W ×W around each contour pixel.

4.2.2.1 Edge map

One of the main disadvantages of this approach is the fact that the initial contour has to be

located close to the desired boundaries in order to achieve an accurate adjustment. However, this

condition only holds true in adjustments performed on the current frame (for abandoned objects),

or the background frame (for the stolen case). In the opposite scenario, it was observed that

performing a contour adjustment in the absence of nearby strong boundaries generally resulted in

adjusted contours that were largely similar to the initial one, reducing the discriminative power

of the computed detector score. Additionally, we found the algorithm to be highly sensitive

to local maxima in the gradient image (Eimag in Eq. 4.8), stopping the curve evolution at

those points. These local maxima points can be due to noise in the gradient image, as well as
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redundant edge information that is present in both the background image and the current frame.

For these reasons, we need to build an edge map that highlights the edges of the object in

the analyzed image, removing other irrelevant information to prevent the contour from stopping

its evolution. For this purpose, different schemes have been considered for computing the edge

map. First, the gradient of the image is computed using a gradient or edge operator, followed

by an operation to remove redundant information:

1) Sobel operator

In this case, the Sobel operator [44] is employed to obtain an approximation of the image

gradients (background and current frame). Since the Sobel operator is only defined for

single-channel (gray scale) images, we have also considered an scheme to consider gradient

data from all three channels.

� Gray-scale image: The 3-channel image is first converted to gray scale before applying

the gradient operator.

� RGB image: Sobel operator is applied separately to the three RGB image channels.

The image gradient is then computed by taking the maximum of the single-channel

gradients for each position of the three maps.

2) Canny edge detector

The Canny edge detector [44] produces a binary map that highlights the edges in the

image, by thresholding the values of the image gradient. In this case, the image gradient

is obtained by applying the Sobel operator. First, we apply the Canny edge detector to

each RGB channel. These are then combined using the OR logical operation.

Once the gradient of both images are obtained, redundant information is removed by sub-

tracting the two gradients. From the gradient of the image under analysis (the one in which the

contour adjustment is performed), we subtract the gradient of the other image (current frame

or background) to remove edge data that is present in both images. This is the same scheme

applied in the gradient detectors (section 3.5.1.2):
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Eimag = Gdiff =


G1 −G2 if (G1 −G2) ≥ 0

0 otherwise

(4.9)

where G1 is the gradient of the image under analysis, and G2 the gradient of the other image

and Gdiff is their thresholded difference. This difference is then used as the external energy

(Eimag) in Eq. 4.8.

In our approach, we have found the Canny edge detector produced the best results. The

detector described in subsection 3.5.1.2 employs the gradient approximated with the Sobel op-

erator. Since our goal is to get a contour that should be considerably deformed when the object

is not present, a binary edge map provides a more suitable alternative as it eliminates the effects

due to the possible local minima (opposed to the map with 256 levels obtained by the Sobel op-

erator). A comparison between contour adjusments on an abandoned object is shown in Figure

4.3. If we generate Gdiff with Sobel operator, the adjusted contour on the background image

is still too similar to the initial one. The deformations obtained employing a binary edge map

ultimately lead to a better decision score.

4.2.3 Geometric active contours

Geometric active contour models have been proposed [45] to solve some of the limitations present

in the parametric approaches. These models are based on curve evolution and geometric flows

(Partial Difference Equations, PDE), and evolve the curve towards the desired boundaries by

means of average curvature motion. The contour is represented as the zero level set φ−1(x, y) =

{(x, y) | φ(x, y) = 0} of a scalar function φ(x, y), commonly referred as the level set function.

In variational level sets approaches, the curve evolution is by driven by the minimization of an

energy functional defined in the level set domain [41]. These allow the incorporation of additional

information into the energy functions, such as region or shape-prior information.

The main advantage of geometric models is the ability to adapt to topology changes, allowing

contours to split and merge. Additionally, these approaches eliminate the necessity to initialize

the contour very close to the desired object boundaries.
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Figure 4.3: Contour adjustment comparison using the Sobel gradient operator (rows 2&3), and
Canny edge detector (rows 4&5). Both operators combine information from all color channels.

4.2.3.1 Geometric, region-based active contours

Among the existing region-based active contour models, we have selected the widely referenced

work described in [46]. Derived from the Mumford-Shah energy functional for segmentation [47],

piecewise constant functions are defined considering the intensity means of the different regions

delimited by the contour. The energy functional is defined as follows:

E = λ1

∫
in(C)

|I(x, y)−min(C)|2 dxdy + λ2

∫
in(C)

|I(x, y)−mout(C)|2 dxdy + µL(C) + αA(c)

(4.10)

where min(C) and mout(C) area the mean intensity values of the internal and external regions
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delimited by the contour; L(C) is the length of the contour; A(C) is the area enclosed by the

contour; and λ1, λ2, α and µ are fixed positive parameters. Then, a minimization problem is

considered:

min
min,mout,C

E(min,mout, C) (4.11)

To compute this minimization, level set optimization is jointly performed with the estimation

of mean intensity values attempting to recover two regions such that |min(C)−mout(C)| is

maximum, assuring regularity properties for these measures. This model overcomes certain

limitations of traditional parametric approaches, as it can detect objects with smooth boundaries

(weak gradients) and it is more robust to noise in the image. Moreover, the initial contour can

be placed at a higher distance from the object boundaries than the parametric approaches, while

still attaining correct results.

4.2.3.2 Geometric, edge-based active contours

Extending the geometric approaches based on level sets, an edge-based approach is proposed in

[41] that eliminates the need to re-initialize the level set, overcoming the limitations of previous

re-initialization schemes that involve moving the zero level set away from its original location,

resulting in inaccurate extracted contours. A new energy term is included to force the level

set function to be close to a signed distance function. Thus, the proposed energy functional is

defined as follows:

E(φ) = Em(φ) + µP(φ) (4.12)

where Em(φ) is the external energy that adjusts the zero level set to the image boundaries;

P(φ) is the internal energy that penalizes the deviation of the level set function awayφ away

from a signed distance function; and µ is a fixed positive parameter to control the influence of

the internal energy. The external energy, Em(φ), is composed of two terms:
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Figure 4.4: Contour adjustments for an abandoned object, performed on the current frame (row
1) and the background image (row 2). (a) Initial contour and adjustments using approaches (b)
PE, (c) GR and (d) GE.

Em(φ) = λLg(φ) + νFg(φ) (4.13)

where Lg(φ) is the length of the zero level curve of φ; Fg(φ) is the speed of curve evolution;

g is an edge indicator function (obtained from the image); and λ > 0 and ν are the parameters

that weight the energy contributions. Parameter ν is of particular interest, as it can be used to

control the curve evolution, causing its expansion (ν > 0) or shrinking (ν < 0), based on the

position of the initial contour relative to the object boundaries (outside or inside the object).

We take advantage of this behavior in the current frame (for stolen objects) and the background

frame (for abandoned objects), driving the evolution of the contour and causing it to shrink, due

to the lack of nearby edges. In the opposite situation, where the object is present, the initial

contour is already close to the object boundaries. An example of contour adjustment using the

three described approaches is shown in Figure 4.4.

4.2.3.3 Edge indicator

The edge indicator function highlights the edges in the image, and is obtained by first applying a

Gaussian filter to the image, and then applying the gradient operator to the result. It is defined

as follows:
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g(x, y) =
1

1 + |∇Gσ ∗ I|2
(4.14)

where G is a Gaussian kernel with standard deviation σ; and I is a single channel image;

and x, y are pixel coordinates. To accommodate information from the color channels, different

approaches have been tested:

1) Gray-scale image conversion: I is obtained by converting the RGB image to gray-scale.

2) Single channel extraction: I is obtained from one of the three image channels.

3) A method to compute the gradient from all three color channels is described in [48], as

proposed in [49]. The edge indicator is defined as:

g(x, y) =
1

1 + Λ2
(4.15)

where x, y are pixel coordinates, and Λ is the largest eigenvalue of the following matrix

gij :

(gij) =

 1 +R2
x +G2

x +B2
x RxRy +GxGy +BxBy

RxRy +GxGy +BxBy 1 +R2
y +G2

y +B2
y

 (4.16)

where R, G and B represent the pixel values of the respective channels after convolution

with a Gaussian kernel, and Cu denotes the first order partial derivative of the C channel

with respect to the u variable.

In our tests, we have observed that some edge information is lost when the color image is first

converted to gray scale to compute the edge indicator (method 1), obtaining the best results

using only the Red channel (method 2). While method 3 combines information from all color

channels to calculate the edge indicator, no significant improvements were seen during the tests

performed.
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4.3 Based on pixel color contrast

4.3.1 Overview of the discrimination scheme

This detector is based on measuring the average color contrast along the boundaries (contour) of

the detected objects, as proposed in [50]. First, the contour CIt is extracted from the foreground

mask as described in Eq. 4.1. The average contrast between points inside and outside the

detected region is computed, on the current frame and the background images. These contrast

measures are computed as follows:

AFPCC = z
(
Ft, C

I
t

)
(4.17)

ABPCC = z
(
Bt, C

I
t

)
(4.18)

where z(·) denotes the technique for contrast analysis; Ft and Bt are the current and back-

ground frames; and ABPCC and AFPCC , are the contrast results in those frames, respectively.

For increasing robustness, color information from all channels is employed to compute the

averages. Finally, the two average measures are subtracted to generate a final score SPCC , as

follows:

SPCC = ABPCC −AFPCC (4.19)

The proposed scheme for this detector is depicted in Figure 4.5.

4.3.2 Boundary Spatial Color Contrast

First, the contour is extracted from the foreground mask. For each pixel in the contour, segments

of length 2L + 1, normal to the contour’s curve, are defined. The values of the pixels on both

ends of the segment, points PI and PO, are then compared. This comparison is performed by

defining a small window of size M ×M centered in those pixels. The scheme is depicted in

Figure 4.6. The distance measure between the two endpoints, Boundary Spatial Color Contrast,
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Figure 4.5: Scheme for abandoned and stolen object detection using color contrast features.

is defined for each boundary pixel as follows:

BSCC(F ;CIt ; i) =

∥∥W i
O(t)−W i

I(t)
∥∥

√
3 ∗ 2552

(4.20)

where WO and WI are the average color values computed in the M ×M neighborhood of

points PI and PO (in the RGB color space) for the ith contour pixel from the CIt contour in the

F frame (that could be either the current or background frame). This measure is only defined

for those boundaries pixels for which PI , PO and the pixels inside their neighborhoods fall inside

the image boundaries (considering as non valid those pixels that fall outside image boundaries).

The average BSCC value along the analyzed contour pixels is then expressed as follows:

z
(
F, CIt

)
=

1

Kt

Kt∑
i=1

BSCC(F ;CIt ; i) (4.21)

where Kt is the total number of analyzed pixels with valid values, and BSCC is the spatial

color contrast measure for the ith pixel. This function computed on both the current frame and

the background (as shown in Eqs. 4.17 and 4.18), and combined to obtain the detector’s score

(as shown in Eq. 4.19). ABPCC is expected to have a value close to 0.0 for abandoned objects, and

a higher value for stolen objects, due to the contrast between the object and its surroundings;

with AFPCC getting opposite values in the same situations.
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Figure 4.6: Pixel color contrast detector: (a) static foreground object, (b) analyzed points along
the boundary and (c) analyzed contour point.
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Chapter 5

Multi-feature discrimination for

abandoned and stolen objects

5.1 Introduction

As explained in section 2.4, the problem of discriminating stationary objects between abandoned

and stolen objects has been modeled as a classification problem. So far, we have employed

simplistic approaches to perform classification based on extracted features obtained from the

foreground mask, current frame, and background image. In section 3.5.3, the fusion scheme

employed in the base system is presented, combining information from different features us-

ing an evidence (Gaussian) model. For the proposed detectors, single-feature discrimination is

performed by thresholding the obtained scores (feature values).

In the presented work, we have tested different Machine Learning (ML) techniques to com-

bine information from different detectors to perform the discrimination between abandoned and

stolen objects. ML techniques assign a set of observed features to a category, by previously

training a method from a set of data instances for which correct classification is known.

Firstly, we describe the motivations for multi-feature fusion in section 5.2. In section 5.3 we

describe the general structure of a multi-feature classifier. In the following sections, the three

ML techniques that have been tested are described: Näıve Bayes (section 5.4.1), Support Vector
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Figure 5.1: Levels of information fusion in a visual system [4]

Machines (section 5.4.2), and K-nearest neighbor (section 5.4.3).

5.2 Motivation for multi-feature fusion

As explained in section 2.4, we have described the discrimination of objects of interest between

abandoned and stolen as a classification problem. Based on the information extracted at the

Stationary Object Detection stage, features are extracted from the background and the current

frame, and combined into a single likelihood measure (score). The final decision is then provided

by a classifier based on the observed score, or set of scores from different extracted features.

According to [4], we can distinguish between four levels of data fusion, as shown in Figure 5.1.

At the data level, different data sources are fused, such as the three color channels to provide color

information, or an additional infrared channel. The feature level merges the output of different

extracted features, by combining features into a single measure, or by adaptively selecting the

best discriminating features. At the classifier level, decisions are made based on one or more of

these combined features. Finally, in the combination level we include techniques that combine

the decision from different classifiers.

This analysis can be applied to our problem, as fusion of information is being performed at
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Figure 5.2: Fusion levels in the stolen/abandoned discrimination problem

all stages. At the data level, the information from the three color sensors is combined to obtain

a single image. At the feature level, we extract relevant edge or color information from the

background image and the current frame. The extracted features (color histogram distances,

average edge energy, contour similarity measures and average color contrast) from these two

images are then combined onto a single value by subtracting them, obtaining a robust discrim-

inating value (score). At the classification level, we have proposed a simple scheme based on

applying a decision threshold to a single score. In this chapter, we explore different classification

schemes to overcome certain limitations observed in the single-feature approaches.

5.2.1 Observed limitations of single feature discrimination

In our tests, we have found that in non-ideal conditions, the discriminators not always generate

a score with enough discriminative power, resulting in some cases in wrong classification.

� Imprecision. All detectors of the detectors rely on accurate background-foreground seg-

mentation. Inaccurate foreground masks can be obtained due to one of the following

reasons: camera noise, sudden changes in illumination, insufficient background model ini-

tialization and update or inadequate parameters. While the employed techniques (Chapter

3) take these issues into account, there still may be inaccuracies in the foreground masks.

� Uncertainty. As opposed to imprecision, it depends on the stationary object being ob-
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served, rather than on the mechanism employed to detect stationary objects. In some

cases, color data may not be sufficient enough to obtain a good measure, due to the object

sharing similar color properties than its surroundings (camouflage effect). For edge-based

detectors, there may be problems due the presence of strong edges near the object bound-

aries that belong to the background (and the uncovered background in absence of the

object). Objects that present these problems generally obtain scores near the decision

threshold.

The described discriminators (base system and proposed discriminators) deal with imprecision

in a variety of ways. For example, the gradient-based approaches perform a contour adjustment

prior to the analysis to try to match the contour to the actual object boundaries. The similarity

measure used in the proposed active contours detectors has shown robustness as long as the

two adjusted contours are sufficiently different. The proposed color contrast detector analyzes

the difference between points distant from the contour, allowing for some margin of error in the

foreground mask. Uncertainty, however, cannot be solved using single-feature approaches, and

there is a need for fusing the data from multiple features. For example, there may be instances

in which gradient-based discriminators fail to produce a good discriminative score due to strong

edges in the background. In those cases, a color-based approach may produce a better measure

if the color properties of the object and the background are different.

5.2.2 Advantages of multi-feature fusion

For these reasons we explore different classification schemes based on multiple inputs, to over-

come the limitations observed in single-feature approaches. This way, the system is capable of

compensating errors when one of the detectors produces erroneous measurements. According to

[4] and [51], we can expect the following advantages from the fusion of multiple data (features).

1) Robustness and reliability. The system is able to provide a correct decision even if one of

the detectors fails.

2) Increased confidence. The decision of one detector can be confirmed by the others, therefore
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therefor increasing the confidence of the classifier’s decision.

3) Dimensionality expansion. If we consider single features as dimensions in a space, the com-

bination of different features results in a higher dimensional space, better discrimination

results may be obtained.

4) Adaptability. As we have explained, the detectors provide better results under certain

conditions. If these conditions can be evaluated online, a selection mechanism can be put

in place to employ the detectors that are known to produce the best results under those

conditions, increasing the overall robustness of the system.

5.3 Structure of the multi-feature discriminator

Under the aforementioned considerations, we have studied different ML classification techniques

for the multi-feature discrimination task. In ML, the classification task is commonly known

as supervised learning. The goal of such classifier is to produce (“learn”) a decision rule from

training data, so that future observations can be attributed to a a group or class. The classifier

typically maintains a model, and the parameters of this model are determined from the training

data.

For each stationary object detected by the preceding modules, we first obtain the score values

from the available edge-based and color-based detectors. Then, a previously trained classifier

performs the decision between abandoned and stolen based on a combination of the obtained

scores. The proposed scheme is shown in Figure 5.3.

More formally, we can characterize a classifier as function f that maps a vector of K input

features (feature vector) ~xi = (xi1, xi2, . . . , xiK) to a class label ci ∈ {i = 1, . . . , C}. In our

particular case, the extracted features are the scores obtained by the available detectors, and

ci = {abandoned, stolen}. Prior to the classification, the classifier’s parameters are initialized

based on training data. The training data consists on a set of N samples for which correct

classification is known. They are denoted as:
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Figure 5.3: Scheme of the proposed multi-feature discriminator

D =
{

(~xi, ci) | ~xi ∈ RK , ci ∈ {abandoned, stolen}
}N
i=1

(5.1)

Then, the function f to predict the classes for the test data is defined as follows:

ci = f(~xi,M) (5.2)

where ~xi is the feature vector under test and M represents the parameters of the selected

combination (or classification) scheme. For a more readable notation, we have omitted M and

the subindex i and, therefore, used f(~x) instead of f(~xi,M) in the following sections.

5.4 Selected combination techniques

In this section, we describe the selected techniques for multi-feature discrimination of abandoned

and stolen objects. They are: Näıve Bayes (NB), Support Vector Machine (SVM) and K-Nearest

Neighbor (KNN). These are widely studied ML techniques for the classification task.

NB [52] is a popular technique that performs classification that predicts the output classes

based on the probabilistic properties observed in the training data (probabilistic classifier). This

approach assumes that input features are conditionally independent, resulting in a classifier with

low computational complexity that scales very well for a high number of attributes. The NB
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Figure 5.4: Scheme of Näıve Bayes classifier using normal distributions

has proven effective in a variety of applications, competing with more sophisticated classification

schemes.

In the SVM [53] classification scheme, the training data is represented as points in space.

It is a very popular technique due to its ability to map input features into an arbitrarily large

space in which linear separability is achievable. The algorithm tries to find an hyperplane that

separates the two classes by solving an optimization problem. The solution is obtained with

independence of attributes dimensionality, and it is completely characterized based on a subset

of the input data (called support vectors).

The KNN [54] algorithm is a simple technique that requires no specific training phase. In

spite of its simplicity, it has shown to provide good results with negligible computational cost.

However, the entire training dataset is required for the classification, as opposed to a reduced

set of parameters employed by other approaches.

5.4.1 Näıve Bayes

In the NB technique, the Bayes rule is used to calculate the conditional probabilities of a class

label ci given an instance of features ~x = {x1, . . . , xK}:

P (ci | ~x) =
P (~x | ci)P (ci)

P (~x)
(5.3)

where P (ci | ~x) is referred to as the a posteriori probability (or posterior) that an object

belong to class ci given a feature vector ~x. The classification is performed by assigning a
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data instance ~x to the class for which it has the highest posterior probability conditioned on

the values of the input features (maximum a posteriori hypothesis). We can then express the

classifier function as follows:

f (~x) = argmax
i
P (ci | ~x) (5.4)

This equation involves maximizing Eq. 5.3. Class prior probabilities P (ci) and class condi-

tional probabilities P (~x | ci) are estimated from training data. The estimation of class priors is

straightforward. For abandoned and stolen discrimination, class priors are assumed to be equal

(0.5).Estimating the class conditionals, however, entails high computational costs. In a NB clas-

sifier, it is assumed that the attributes x1, . . . , xn are statistically independent (class conditional

independence). While this assumption does not generally hold true, it dramatically simplifies

the computation of the class conditionals P (~x | ci), as they can be decomposed into the product

of class conditional densities P (xk | ci), which can be easily estimated from the training data.

Under the independence assumption, we can obtain the class conditionals as follows:

P (~x | ci) =

K∏
k=1

P (xk | ci) (5.5)

Under the independence assumption, we can write Eq. 5.4 as follows:

f (~x) = f(x1, ..., xK) = arg max
i
P (ci)

K∏
k=1

P (Xk = xk | ci) (5.6)

The denominator P (~x) can be ignored, as it is constant for both classes and does not influence

the decision. The class conditionals P (~x | ci) have to be separately estimated for each class. A

common approach is to assume that these densities follow a normal distribution, with mean µk

and standard deviation σk. Other approaches, such as Kernel Density Estimation, may be used

to model the class conditional densities if the features do not follow a normal distribution.
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5.4.2 Support Vector Machines

The Support Vector Machine technique (SVM) provides a way to classify instances of data

inputs based on a model obtained from a set of training samples. Each training sample ~x (with

K attributes) is represented as a point in the RK space (data space), and belongs to one of two

categories yi ∈ {+1,−1}. The goal is to build a decision function from the training data.

In the simplest scenario, we consider the samples in the data space to be linearly separable,

i.e., we can draw decision boundaries that separate the training samples in the data space.

Formally, we say that there exist infinite hyperplanes that separate the training samples. Given

an hyperplane that linearly separates the two categories, characterized by its equation:

~w · ~x+ b = 0 (5.7)

where ~w is the normal vector to the hyperplane and b
‖w‖ determines the offset from the origin.

We can define a classifier function f as follows:

f(~x) = sign (~w · ~x+ b) (5.8)

To minimize the classification error, the goal is to find an hyperplane such that its distance

to the nearest samples from both classes is maximized (maximum margin classifier). The goal

is to determine ~w and b so that the margin between the two classes is maximized. Figure 5.5

shows an example of a separating hyperplane and the margin ρ. Geometrically, we can express

the margin ρ as:

ρ =
2

‖~w‖
(5.9)

The problem can be expressed as an optimization problem, that consists on maximizing 1
‖~w‖ ,

or equivalently, minimizing ‖~w‖, subject to the following constraint condition:

yi (~w · −→x + b) ≥ 1 (5.10)
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Figure 5.5: Maximum margin hyperplane and support vectors

This formulation is equivalent to a quadratic optimization problem, and the solution for ~w

is a linear combination of all training points, weighed by the αi solutions (Lagrange coefficients)

of the optimization problem:

~w =
n∑
i=1

αiyi~xi (5.11)

where n is the total number of training points; b is expressed as b = yk − ~w·~xk, for any ~xk

such that αk = 0. For points other than the support vectors, the αi coefficients equal zero.

Therefore, the solution is uniquely identified by a linear combination of a subset of the training

points, called the support vectors (the ones that lie on the margin). The discriminant function

f is finally expressed as:

f(~x) = sign

(
b+

n∑
i=1

αiyi(~xi · ~x)

)
(5.12)

where ~xi are the training points. As can be seen in this equation, the solution depends only

on the coefficients and the inner products between the support vectors and the input data. This

implies that the solution can be obtained irrespective of the number of dimensions, as long as

we can compute the inner product between vectors. Taking advantage of this fact, if the data in

the input space is non linearly separable, a non-linear transformation φ : Rn → F can be applied

to map the input data to a higher dimensional space F (feature space) in which separability is
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ϕ : R n → F

Figure 5.6: Non-linear transformation example

achieved. Figure 5.6 shows an example of such a transformation.

After applying the non-linear transformation, the solution can be found by solving the

quadratic optimization problem previously described. The resulting discriminant function is

then expressed in terms of a kernel function K that characterizes the inner product in the

feature space:

f(~x) = sign

(
b+

n∑
i=1

αiyiK(~xi, ~x)

)
(5.13)

Additionally, to account for noisy data (misclassified samples) in the training set, a slack

variable ξi ≥ 0 can be added to the constraint condition (Eq. 5.10), making the inequality easier

to satisfy:

yi (~w · −→x + b) ≥ 1− ξi (5.14)

The optimization problem becomes:

min
~w,ξi

1

2
‖w‖2 + C

n∑
i=1

ξi (5.15)

where C is a cost parameter that penalizes the sum of all ξi.

A more detailed explanation of the SVM technique can be found in Appendix A.
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5.4.3 K-Nearest Neighbor

The K-Nearest Neighbor technique (KNN) is a simple technique that allows classification without

any statistical knowledge of the data distribution, and can work with an arbitrary number of

classes. In this technique, no specific training phase is required, as the decision is based only on

the distance between the input vector and the training samples.

In the simplest case, the KNN technique will assign an input vector ~x the class to which its

closest neighbor belongs to (nearest neighbor rule). This is the particular case of k = 1. For

larger values of k, the most common class among the closest k training points will be assigned.

For continuous-valued attributes, Euclidean distance is generally employed. It is defined as

follows:

d (~xi, ~xj) =

√√√√ P∑
p=1

(xip − xjp) (5.16)

where ~xi and ~xjare two feature vectors. Then, k is usually determined heuristically (e.g.,

with cross-validation). Larger values of k help to reduce the effect of noise in the classification.

When dealing only with two possible classes, as in the case for abandoned and stolen objects, it

is more convenient to select an odd value for k. For each feature vector to be classified ~x, this

decision is determined as follows:

f (~x) = argmax
ci∈C

K∑
k=1

δ
(
ci, f̂ ( ~xk)

)
(5.17)

where ci represents the classes to identify (C = abandoned, stolen), f̂ ( ~xk) defines the classes

of the k-nearest neighbors of ~x and δ (a, b) is a function that is equal to 1 if a = b and equal

to 0 in other case (i.e., if the class under test and the classes of the neighbors are the same

or different). Since we are only dealing with two possible classes (abandoned and stolen), it is

more convenient to select an odd value for k, in order to avoid indetermination. A classification

example is shown in Figure 5.7. The test case (green triangle) is assigned to the blue class if

k = 3 (inner circle), but it is assigned to the red class if k = 7 (outer circle).
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Figure 5.7: KNN classification example

63



64



Chapter 6

Experimental validation

6.1 Introduction

In this chapter, we present the results of the proposed approaches (chapters 4 and 5) and compare

them against the base system (chapter 3). This evaluation is performed on the discrimination

module without considering if the system was able to detect the stationary object (see definition

of abandoned and stolen object in section 2.2). For this purpose, we have manually annotated

the sequences of the dataset. Moreover, we have performed the evaluation on real data by

automatically generating the foreground data to consider the effect of non-accurate masks.

The rest of this chapter is organized as follows. In section 6.2, we describe the experimen-

tal setup in terms of the selected sequences (subsection 6.2.1), performance measures (subsec-

tion 6.2.2), implementation issues (subsection 6.2.3) and parameter selection (subsection 6.2.4).

Then, sections 6.3 and 6.4 present the results of, respectively, the proposed single-feature and

multi-feature discriminators.
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Figure 6.1: Examples of video sequences with abandoned (1) and stolen (2) objects, from all
three categories (C1, C2, C3).

6.2 Setup

6.2.1 Dataset

We have selected a content set with video sequences from the PETS20061, PETS20072, AVSS20073,

CVSG4, VISOR5, CANDELA6, CANTATA7 and WCAM8 public datasets. For performance

evaluation, we have divided these sequences into three categories according to the background

complexity in terms of the presence of edges, multiple textures and objects belonging to the

background near the objects of interest. Examples of video sequences from the three categories

are shown in Figure 6.1. Category 1 includes low complexity situations, such as well defined ob-

jects placed over a solid homogenous background. Medium-complexity situations have included

in category 2. High-complexity scenarios include situations such as poorly-contrasted objects

placed in non-homogenous backgrounds with strong edges near the objects of interest.

1http://www.cvg.rdg.ac.uk/PETS2006/
2http://www.cvg.rdg.ac.uk/PETS2007/
3http://www.avss2007.org/
4http://www-vpu.eps.uam.es/CVSG
5http://www.openvisor.org/
6http://www.multitel.be/~va/candela/abandon.html
7http://www.multitel.be/~va/cantata/LeftObject/
8http://wcam.epfl.ch/

66

http://www.cvg.rdg.ac.uk/PETS2006/
http://www.cvg.rdg.ac.uk/PETS2007/
http://www.avss2007.org/
http://www-vpu.eps.uam.es/CVSG
http://www.openvisor.org/
http://www.multitel.be/~va/candela/abandon.html
http://www.multitel.be/~va/cantata/LeftObject/
http://wcam.epfl.ch/


For each sequence, we extract a number of frames containing stationary foreground regions

that correspond to abandoned or stolen objects. For determining these stationary regions, we

have followed the criteria described in the definitions of section 2.2. In particular, we have

considered an object as abandoned or stolen if its foreground blob remains in the same position

for 15 seconds. The duration of these events (the framespan for which we extract video frames)

is considered as 150 frames, and one of every 10 frames is extracted for the evaluation. For

some sequences in which it not possible to extract such quantity of data (i.e., not enough frames

for stationary detection or short sequences), we only extract the foreground mask of the object

of interest. Since we are only evaluating the last step of the system, this extraction has no

influence in the final results as we are only interested in the foreground mask of such object for

the discrimination task.

For each extracted frame, we elaborate the foreground masks that show the regions to be

analyzed by the discriminators. Two datasets have been constructed using the same content

set: one with manually annotated foreground masks (Annotated data), and the other with

automatically generated foreground masks (Real data). The rationale behind this decision is the

fact that in realistic settings, the foreground masks are not accurate in most of the cases. In

some scenes, the background model may not correctly represent the actual background, resulting

in imprecise object segmentation. This has an impact on the performance of all detectors, as

they all rely on the boundaries obtained from the foreground mask. For this reason, we evaluate

the discriminators on these two datasets. Table 6.1 summarizes the number of annotations

(blobs) for each category, for manually annotated and real data. The higher number of real

data annotations is explained by incorrect segmentation in some cases, where the mask of a

foreground object splits into one or more connected components. The generation of these two

datasets is explained as follows.

Annotated data A total of 89 videos have been annotated, extracting frames according to

the specified criteria. For each frame, a foreground segmentation mask is manually produced,

highlighting only those regions in which the event has occurred. The background frame is also
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Table 6.1: Dataset description.

Category
Number of annotations (blobs)

ComplexityAnnotated sequences Real Sequences
Abandoned Stolen Abandoned Stolen

C1 771 442 756 863 Low

C2 666 316 794 397 Medium

C3 595 174 852 660 High

All 2032 932 2402 1920

extracted. Since the analysis is limited to the regions indicated by the foreground mask (and

their surroundings), for the background frame we simply take a frame that shows the analyzed

area before the event occurs. An example of a manually annotated foreground mask is shown

in Figure 6.2 (left) for an abandoned object.

Real data For each video sequence, a video metadata file has been elaborated, employing the

ViPER Toolkit Ground truth authoring tool9. These metadata files are stored in XML format,

and contain event information such as event nature (stolen, abandoned, ...), coordinates and

bounding box. Employing this information, foreground masks are automatically generated by

the base analysis system (chapter 3), only around the regions of interest as specified in the file

metadata files. The detailed procedure is explained in Appendix B. An example of a foreground

mask obtained by this procedure is shown in Figure 6.2 (right), for an abandoned object.

As discussed in chapter 5, we can distinguish between two types of problems that affect a

correct detection: uncertainty and imprecision. By evaluating the performance of all detectors

on the annotated dataset, we artificially reduce the imprecision, making us able to determine the

scenarios in which detectors are unable to provide a discriminating measure. In contrast, the

tests performed on the real dataset allow us to evaluate the ability of the detectors to cope with

imprecision, as well as providing performance measurements on a more realistic scenario. Both

datasets are available at http://www-vpu.eps.uam.es/ASODds.

9http://viper-toolkit.sourceforge.net/docs/gt/
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Background Extracted Frame

Foreground mask (annotated) Foreground mask (automatically generated)

Figure 6.2: Examples of extracted frames and foreground masks.

6.2.2 Performance metrics

Two metrics have been selected for evaluating and comparing the performance of the proposed

approaches: predictive accuracy and ROC analysis. Furthermore, we have performed the train-

ing and test phases following a K-fold cross validation method. They are described as follows:

Predictive accuracy Given a trained classifier and an appropriately labeled data set, the

most intuitive way to assess the classifier’s performance is it’s predictive accuracy, i.e. the pro-

portion of samples that are correctly classified. Conversely, the accuracy error is the proportion

of misclassified samples.When there are only two possible classes (usually denoted as positive

and negative), the confusion matrix depicts the four possible classification outcomes (Table 6.2).

In our experiments, we compare all discriminators by using the accuracy measure. It can be

computed as follows:

accuracy =
TP + TN

TP + TN + FP + FN
≈ #correctly classified samples

#total samples
(6.1)
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Table 6.2: Layout of the confusion matrix.

Observed classification
Predicted classification

abandoned(+) stolen(-)

abandoned(+) True positive (TP) False Negative (FN)

stolen(-) False positive (FP) True negative (TN)

ROC curves Another common way of assessing and comparing the performance of classifiers

is the Receiver Operator Characteristic (ROC) graph. In a ROC graph, the performance of a

classifier is represented as a point inside the unit square. The point (0,1) corresponds to the

case of perfect classification. For classifiers that base their decision by applying a threshold

to a probability or confidence value (such as the score measures produced by the described

detectors), a different point in the ROC space can be computed for each possible threshold.

This way, we obtain a curve (ROC curve) rather than a single point to evaluate the performance

of the classifier. To reduce the comparison to a single value, the area under the ROC curve

(AUC) is generally used. It measures how discriminatory the classifier is, that is, its ability to

correctly classify unseen instances. A point in the ROC graph is depicts the true positive rate

(TPR) against the false positive rate (FPR). These are computed as follows:

TPR =
TP

TP + FN
≈

#positives correctly classified

#total positives
(6.2)

FPR =
FP

FP + TN
≈

#negatives incorrectly classified

#total negatives
(6.3)

Cross-validation Given that training sets are incomplete representations of the real world,

classifiers generally perform well when tested against the training set, but may perform poorly

for unseen data. This phenomenon is known as over-fitting. Once the performance metrics have

been selected, it is important to correctly determine how well they perform when classifying

unseen data. Among the different training schemes found in the literature, we have selected the

K-fold cross validation [55] method. It splits the entire dataset into K equally sized, disjoint

partitions (or folds). Only one fold is used for testing in each iteration while the remaining folds
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are used for training. Then, K iterations of training and testing are performed by choosing a

different fold for testing. In our experiments, we have used a value of K = 10 and provided the

mean and standard error results of the 10 evaluations.

6.2.3 Implementation

For the parametric-edge based active contours approach, we have used the implementation of

the OpenCV 2.2 C++ API library10 (released Dec. 2010). Given a set of points (initial contour)

and an edge-map, the included method cvSnakeImage()11 iteratively performs the adjustment.

For the geometric region based approach, we employed an existing Matlab implementation by

S. Lankton12; adapting the code to account for those cases in which the contour completely

disappears. The geometric edge-based algorithm has been entirely implemented in OpenCV by

porting the author’s Matlab code13.

6.2.4 Parameter selection

We have selected specific parameters for the approaches under evaluation. They are:

6.2.4.1 Single-feature approaches

Discriminators of the base system The color histogram discriminator does not require

parameters. For the gradient detectors, thresholds τGH = 220 (high gradient) and τGH = 30

(low gradient) are used; and a neighboring window of size K = 5 is employed. For the contour

adjustment based on snakes, we use the parameter values α = 1.0, β = 1.0, γ = 2.0.

Parametric, edge-based active contours As detailed in subsection 3.5.1.2, the three

energy terms are weighed by parameters α, β and γ (in a window size W ). The optimal

parameters have been determined by subjectively comparing their effect on abandoned and

stolen samples. The criteria was to find a set of parameters such that the adjusted contour

10http://opencv.willowgarage.com/
11http://opencv.willowgarage.com/documentation/motion_analysis_and_object_tracking.html
12http://www.shawnlankton.com/2008/04/active-contour-matlab-code-demo/
13http://www.engr.uconn.edu/~cmli/
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in absence of the object of interest shrinks considerably. We found the algorithm to be more

sensitive to the parameters as the window size increased. For small values of W , the adjusted

contours were found to be largely similar to the initial ones in all situations. For large values of

W (≥ 7), contours are considerable deformed regardless of the presence of nearby objects. These

two situations would cause the detector’s scores to lack discriminative power. Therefore, a value

of W = 5 has been selected. By visually inspecting the adjustments for values of α, β and γ

between 0.0 and 3.0, the optimal values have been determined to be α = 0.97, β = 1.30, γ = 0.52.

The stop condition (number of iterations) is set to 1000.

Geometric, region-based active contours We have opted to use the default values

proposed by the authors. The parameters that weigh the different energy terms are λ1, λ2, µ

and α. Additionally, we have parameters h (step space) and ∆t (time step) from the numeric

approximation to the PDE equation. The default values are: λ1 = 1, λ2 = 1, µ = 1.0, α = 0.0,

h = 1.0 and ∆t = 0.1. The number of maximum iterations has been set to 200.

Geometric, edge-based region contours For this discriminator, the energy terms are

weighed by the parameters λ, µ and ν. Additionally, we have the time step parameter ∆t for

the PDE equation. Parameter ν is of special importance because it controls whether the either

shrinks or expands towards nearby edges. For these parameters, we have used the proposed

default values [41],λ = 5.0,µ = 0.04, ν = 1.5, ∆t = 5; with a maximum of 200 iterations.

Boundary pixel color contrast detector This detector has two parameters: length

of the segment L and size of the neighboring window M , as detailed in section 4.3. In these

experiments, we have used L = 5, M = 3.

6.2.4.2 Multi-feature approaches

Naive Bayes (NB) The fusion scheme of the base system, and the NB classifier are proba-

bilistic classifiers, that is, their decision is based on the probabilistic models of the input data.

In the base system, a Gaussian distribution is employed. For the NB classifier, we have deter-
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mined that modeling the class conditionals with normal distributions may result in a reduction

in accuracy, as the we have observed the input features for all classifier do not follow a nor-

mal distribution. This has been confirmed by performing the Lilliefors test [56] on the scores

obtained from all detectors, for each class. For this reason, we have decided to employ Kernel

Density Estimators (KDE) for the probabilistic modeling of the NB classifier.

Support Vector Machine (SVM) For the SVM classifier we employ the publicly available

libsvm library [57]. A radial basis kernel function is used to map input data into the feature

space, and the soft-margin optimization problem is solved.. Default values for all parameters

are used, as detailed in the documentation.

K-Nearest Neighbor (KNN) For the KNN classifier, we have determined the k parameter

heuristically, obtaining best results when k=9.

6.3 Single-feature evaluation

In this section, we evaluate the performance of the discriminators described in chapter 4: para-

metric edge-based active contours (PE), geometric region-based active contours (GR), geometric

edge-based active contours (GE) and pixel-color contrast (PCC). Moreover, we compare them

against the discriminators of the base system: Color Histogram (CHIST), High-Gradient (GH),

Low-Gradient (GL) and Combined Gradient (GRD). Results are presented for the annotated

and real data.Additionally, a computational cost comparison is presented.

6.3.1 Annotated data

A summary of the results is shown in Table 6.3 and Figure 6.3. The observed results of each

discriminator are discussed as follows.

Color histogram discriminator (CHIST) Given accurate foreground masks, it performs

generally well on all categories. As mentioned in chapter 3, CHIST computes the color histogram
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Table 6.3: Single-feature discrimination results for annotated data. (Key. ACC:accuracy,
AUC:Area Under Curve).

(a) Base system single-feature discriminators

C1 C2 C3 ALL
Discrim. ACC AUC ACC AUC ACC AUC ACC AUC
CHIST .864±.031 .933±.020 .819±.031 .959±.016 .947±.035 1.0±.0 .870±.018 .941±.013
GH .892±.026 .973±.009 .837±.040 .925±.033 .804±.058 .932±.038 .852±.018 .940±.015
GL .965±.016 .997±.002 .911±.013 .961±.012 .872±.044 .990±.009 .923±.010 .982±.004
GRD .955±.012 .995±.002 .883±.040 .960±.015 .871±.046 .985±.013 .910±.019 .977±.006

(b) Proposed single-feature discriminators

C1 C2 C3 ALL
Discrim. ACC AUC ACC AUC ACC AUC ACC AUC

PE .999±.002 1.0±.0 .979±.014 .993±.006 .978±.018 .995±.007 .988±.008 .996±.002
GR .962±.014 .996±.002 .920±.037 .971±.016 .942±.025 .987±.010 .943±.012 .985±.006
GE 1.0±.0 1.0±.0 .999±.003 1.0±.0 1.0±.0 1.0±.0 1.0±.001 1.0±.0
PCC 1.0±.0 1.0±.0 .991±.008 .999±.001 1.0±.0 1.0±.0 .997±.002 1.0±.0
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Figure 6.3: ROC analysis for single-feature discrimination on annotated data.
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Hue Channel

Uncompressed frame Quantization noise around edges

RGB image

Figure 6.4: Examples of problematic scenarios for the color histogram discriminator of the base
system (CHIST).

distances between the two areas delimited by the foreground mask inside the bounding box.

Hence, its discrimination relies completely on the ability of the foreground mask to separate the

object from its surrounding background. Some problems have been observed due to quantization

noise introduced by the video compression scheme. In some cases, it causes color information to

“leak” beyond object boundaries. We have seen that this problem affects smaller objects, which

explains why it performs poorly on category 1 (low complexity); as this category includes mostly

small objects. Additional problems have been observed due to the fact that the color histograms

are only computed on the Hue channel of the HSV color space. The effectiveness is reduced when

there is not enough contrast between the object and the background in this channel. Figure 6.4

shows examples of objects affected by noise around the edges after compression (first row), and

low contrast in the Hue channel (second row).

Gradient discriminator For GH, a contour pixel satisfies the condition if any pixel in its

neighborhood is above a predefined threshold. For GL, the condition is satisfied if the average

gradient value inside the neighborhood is below a threshold. As observed in Table 6.3, GL

shows very good results for blobs of both classes. By using a window-based approach instead

pixel-based one, GL has shown to provide better results than GH. Due to the imbalance of the

obtained scores for GH (Figure 6.5), the combined score (GRD) does not improve the results
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Figure 6.5: Scores of the single-feature discriminators of the base system for the annotated data

of GL. Both discriminators, however, are affected by the presence of strong edges near the

object boundaries that can be attributed to the background, as this causes the discriminators

to produce a score that would correspond to objects from the opposite class. Figure 6.6 shows

an example of a wrong detection due to a background with strong edges.

Active contours discriminators Tested on annotated sequences, the three proposed active

contour discriminators outperform the base-system ones. PE has been effective in all cases,

attaining perfect classification for all blobs in the annotated data set. As can be seen in Figure

6.7, the decision thresholds used on the obtained scores stay close to zero for the three dis-

criminators. We have observed that for the same blob across different frames (same foreground

mask), GR and GE produce similar scores. In the scores of Figure 6.7, we notice how scores for
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Figure 6.6: Examples of problematic scenarios for the gradient-based discriminators of the base
system (GH, GL and GRD).
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Figure 6.7: Scores of the proposed single-feature discriminators for the annotated data
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Initial contour

(current frame)
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(current frame)

Initial contour

(background)

Adjusted contour

(background)

Figure 6.8: Example of contour problematic adjustments for a stolen object using the GE
discriminator.

the same blob in different frames tend to group around the same score value. For static objects,

small changes between frames are attributed to noise (camera noise, compression noise...). This

has not been observed for the PE discriminator, which seems to be more vulnerable to noise.

The same can be inferred about the base-system discriminators, as scores for the same blob at

different times tend to scatter across the entire range. Like with the gradient discriminators,

the edge-based discriminators PE and GR produce uncertain scores (near the 0.0 value) in those

cases with strong edges in the background. An example of adjustments on a highly-textured

background is shown in Figure 6.8.

Pixel color contrast discriminator PCC has proven very robust in situations in which

the other discriminators have shown weaknesses. The grouping observed in the scores graph

(Figure 6.7) suggests that all effects due to noise are mitigated. Noise is eliminated from the

final measure by averaging the color values inside the MxM neighborhood. The most important

drawback, however, is that the obtained score is not very reliable on very small objects (of the

order of parameter L).

6.3.2 Real data

A summary of the results is shown in Table 6.4 and Figure 6.9. The observed results for each

discriminator are discussed as follows.
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Table 6.4: Single-feature discrimination results for real data. (Key. ACC:accuracy, AUC:Area
Under Curve).

(a) Base sytem discriminators

C1 C2 C3 ALL
Discrim. ACC AUC ACC AUC ACC AUC ACC AUC
CHIST .755±.035 .845±.026 .712±.055 .858±.036 .848±.025 .910±.019 .777±.024 .856±.019
GH .918±.024 .964±.017 .791±.039 .867±.025 .743±.041 .792±.030 .821±.022 .879±.014
GL .970±.020 .995±.004 .817±.029 .902±.032 .825±.030 .919±.026 .877±.016 .947±.013
GRD .963±.015 .995±.003 .815±.025 .907±.027 .841±.025 .915±.023 .879±.014 .944±.011

(b) Proposed discriminators

C1 C2 C3 ALL
Discrim. ACC AUC ACC AUC ACC AUC ACC AUC

PE .882±.026 .949±.015 .768±.031 .821±.030 .806±.027 .905±.022 .824±.020 .90±.016
GR .857±.018 .945±.010 .80±.031 .839±.037 .748±.042 .845±.027 .803±.020 .882±.015
GE .960±.010 .996±.002 .952±.027 .984±.012 .929±.016 .954±.009 .947±.011 .981±.004
PCC .967±.014 1.0±.0 .943±.013 .987±.006 .951±.013 .996±.002 .954±.009 .994±.001
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Figure 6.9: ROC analysis for single-feature discrimination on real data.
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Figure 6.10: Scores of the single-feature discriminators of the base system for the real data

Color histogram discriminator For the CHIST, we can see a decrease in accuracy of roughly

10% as compared to Table 6.3. This is explained by the fact that the CHIST completely

relies on correct segmentation to obtain the correct histograms. If region R1 covers part of the

background, or if R2 contains part of the object (in the current frame), the three extracted

histograms may be too similar, and the discriminator is incapable of producing a discriminative

measure.

Gradient discriminators The reduction in accuracy for the gradient discriminators is not

as significant as with other discriminators. This can be primarily attributed to the contour

adjustment operation applied to the initial extracted contour, as it drives the contour to match

the actual boundaries, as well as the small neighboring window in which the analysis is performed.
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Figure 6.11: Scores of the proposed single-feature discriminators for the real data

We can conclude that these discriminators are less affected by imprecise segmentation with a

˜5% decrease.

Active contours discriminators For real data, we can observed that the accuracy of the

PE and GR discriminators is greatly reduced due to incorrect segmentation. As explained in

section 4.2.2, the final contour adjustment obtained by the PE algorithm greatly depends on

where the contour is initialized. This is further confirmed by analyzing the score results (Figure

6.11), noting the scatter across the entire range. A similar problem can be observed for the

GR discriminator. Among all evaluated discriminatores, the GR shows the steepest decrease in

accurance when evalauted on the real dataset. In contrast, the GE has shown robustness against

incorrect foreground segmentation. We can attribute this to the fact that the adjusted contour
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generally tends to shrink unless the object boundaries are nearby. This is usually the case, even

for inaccurate foreground masks. We have observed, however, that if the foreground mask is

initialized inside a uniformly colored object, the contour tends to shrink or even disappear. When

this happens in both the current frame and the background the resulting is score is very close to

0.0. This problem is more evident for smaller blobs, as the contours tend to quickly disappear

in both images. This explains the presence of scores with value 0.0 (Figure 6.11), that in the

vast majority of cases correspond with very small foreground masks due to over-segmentation.

Pixel color contrast discriminator This discriminator is the least affected incorrect seg-

mentation. We could explain this by taking into consideration that the measures are taken at

a distance from the corresponding contour pixel (parameter L), and averaged inside a small

window (parameter M), which leave the discriminator a margin to overcome segmentation in-

accuracies. As mentioned before, this discriminator is unable to produce a score for very small

blobs, which explains the number of blobs with score 0.0 shown in Figure 6.11.

6.3.3 Computational cost comparison

Table6.5 shows the obtained computational costs of all the evaluated discriminators. Maximum

and minimum values correspond to large and small objects, respectively. As it is shown, base

system discriminators have a lower computational cost than the proposed active contours ones.

This is due to the complexity of the employed active contours algorithms, and the fact that

the adjustments are performed on both the current and background frame images, as opposed

to a single adjustment in the gradient difference image for the gradient discriminators. Among

all evaluated discriminators, PCC has shown the lowest computational cost, improving existing

approaches, due to the simplicity of the performed analysis (average color contrast).

6.4 Multi-feature evaluation

In this section, we evaluate the performance of the discriminators described in chapter 5: Naive

Bayes (NB), Support Vector Machine (SVM) and K-Nearest Neighbor (KNN). Moreover, we
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Table 6.5: Comparative computational cost

Time (ms)
CHIST GH GL GRD PE GR * GE PCC

Min. 5.67 0.15 0.14 0.29 2.30 96.89 20.78 0.19
Max. 44.57 133.80 255.78 354.33 1401.80 8207.50 1187.10 8.66
Avg. 23.23 28.35 57.14 84.61 234.47 901.40 246.39 1.78

Note: times for the GR discriminator are given for the Matlab implementation

compare their performance against the fusion method of the base system (FUS).

6.4.1 Feature selection

For the multi-feature classification stage, we must select a subset of scores from discriminators

to train all classifiers. Feature selection is performed mainly for two reasons: to increase the

classification’s accuracy and to reduce the computational cost of the training and classification

phases. This is achieved by selecting only relevant features (with low uncertainty) to increase

accuracy, and removing the redundant ones (to decrease the dimensionality). Dimensionality

reduction based on techniques such as Principal Component Analysis (PCA) that analyze the

correlation between features may reduce redundant information, but they do not take into

account the relation between attributes and classes, and fail to produce discriminative features

[58]. The obtained correlation coefficients for the scores produced by all discriminators are shown

in Table 6.6. As it can be seen, the GRD discriminator has a high-valued correlation with the

GH and GL detectors. This is explained by the fact that the GRD score is merely a combination

of the other two scores, and is therefore highly redundant.

We have decided to train the the described classification schemes with the scores produced by

the following discriminators: CHIST, GH, GL, PE and GE and PCC. The GRD discriminator

is discarded for redundancy reasons, as it is merely a combination of other two discriminators

that produce more relevant scores. The active contours GR discriminator is discarded as it does

not provide a sufficiently discriminative measure (low AUC) as the other discriminators.

Due to the reduced amount of selected features, we have deemed it unnecessary to perform

further reductions of dimensionality. The study and application of different feature selection

algorithms is beyond the scope of this work.

83



Table 6.6: Correlation coefficients between discriminators scores

CHIST GH GL GRD PE GR GE PCC
CHIST 1.00 -0.37 0.46 -0.44 0.49 0.42 0.58 0.61
GH -0.37 1.00 -0.81 0.94 -0.49 -0.33 -0.59 -0.63
GL 0.46 -0.81 1.00 -0.96 0.63 0.49 0.80 0.81
GRD -0.44 0.94 -0.96 1.00 -0.59 -0.44 -0.74 -0.77
PE 0.49 -0.49 0.63 -0.59 1.00 0.52 0.71 0.66
GR 0.42 -0.33 0.49 -0.44 0.52 1.00 0.64 0.60
GE 0.58 -0.59 0.80 -0.74 0.71 0.64 1.00 0.83
PCC 0.61 -0.63 0.81 -0.77 0.66 0.60 0.83 1.00

Table 6.7: Multifeature-feature discrimination results. (Key. ACC:accuracy).

(a) Results for annotated data

C1 C2 C3 ALL
Discrim. ACC ACC ACC ACC

NB 1.0±.0 1.0±.0 1.0±.0 1.0±.0
SVM 1.0±.0 1.0±.0 1.0±.0 1.0±.0
KNN 1.0±.0 1.0±.0 1.0±.0 1.0±.0
FUS .902±.030 .818±.051 .805±.037 .850±.022

(b) Results for real data

C1 C2 C3 ALL
Discrim. ACC ACC ACC ACC

NB .997±.005 .961±.011 .952±.018 .972±.008
SVM .994±.007 .982±.011 .946±.019 .974±.006
KNN .997±.004 .978±.010 .983±.008 .987±.003
FUS .737±.052 .556±.034 .665±.052 .662±.025

6.4.2 Annotated data

As can be seen in Table 6.7a, the described classification techniques are able to correctly classify

100% of samples in this data set. This is to be expected, as the GE discriminator already achieves

perfect classification on its own. The FUS classifier, however, fails to improve the acurracy of

any of the other discriminators.

6.4.3 Real data

Table 6.7b shows the accuracy measures obtained on the real dataset. The performance of NB

and SVM is similar, improving the accuracy of the best discriminator (PCC) by about 3%. KNN,

in spite its simplicity, provides the better results, correctly classifying over 98% of samples.
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Chapter 7

Conclusions and future work

7.1 Summary of work

In this project, a comprehensive study has been carried out for abandoned and stolen objects

detection; focusing our attention in the discrimination of stationary regions between these two

events. This task aims to determine whether stationary foreground objects are due to abandoned

or stolen objects. Few approaches in the literature deal with the discrimination problem directly;

among them, we can distinguish between color-based and edge-based detectors depending on the

type of extracted information.

The contributions of this work can be summarized as follows:

� Design and implementation of novel single-feature discrimination techniques.

A generic approach based on active contours have been defined for the discrimination

task. It measures the difference between the adjustments performed on the background

and current images. For this analysis, three relevant active contours techniques have been

studied and employed. Hence, three approaches have been proposed based on the active

contour technique. Later on, a color-based approach has been presented, that computes

the average pixel value contrast (along the contour of the object under analysis) between

the detected stationary region and its surroundings, in all color channels.

� Study of different classification methods for multi-feature discrimination. Three
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widely employed machine learning techniques have been considered for multi-feature dis-

crimination task, with the goal of improving efficiency by using information from different

discriminators. In particular, Naive Bayes, Support Vector Machine and K-Nearest Neigh-

bor techniques have been selected for the multi-feature discriminator.

� Elaboration of two datasets for abandoned and stolen object detection. Two

datasets have been created for the evaluation of the discrimination task using the same

content set. It can be also used for the assessment of complete systems for abandoned and

stolen object detection. The content set is composed of selected sequences from publicly

available video datasets. The first dataset containsmanual annotations of these sequences.

For the second dataset, a procedure to automatically generate foreground masks using

the video analysis system available at the VPU-Lab has been developed for acquiring real

data. This procedure extracts information from metadata files and automatically obtains

the desired information (masks, location,...) required for discrimination evaluation.

� Evaluation of existing and proposed discrimination approaches on the two

datasets. We evaluate the performance of all discriminators on annotated data (ideal

segmentation) and real data (coarse segmentation). The annotated dataset allows us to

evaluate the discriminative power of all approaches, enabling us to determine the scenarios

in which the discriminators show weaknesses. In realistic settings, we expect the foreground

masks to be imprecise as many challenges are present for the background segmentation

stage. With the real dataset, we are able to assess the performance of the different ap-

proaches in real scenarios, while observing how well they cope with imprecise foreground

segmentation.

7.2 Conclusions

By evaluating the performance of existing and proposed approaches on annotated sequences,

we have been able to identify key issues affecting the final discrimination. For the existing

color-based approach of the base system, we have concluded that it is particularly affected by
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noise, as the use of only one color channel has proven to be insufficient. The edge-based gradient

discriminators have shown poor performance on scenarios with highly textured backgrounds that

present high gradient information. In contrast, the four proposed approaches (three based on

active contours and the one based on color contrast at pixel level) have shown robustness in

these situations showing an accuracy close to 100% in most of the categories.

For the real dataset, we have observed a decrease in performance in all cases (as expected),

as all discriminators depend on the accuracy of the foreground mask to extract the desired

features. In particular, color-based approach of the base system has shown a noticeable reduction

of the accuracy when dealing with real data. On the other hand, two of the proposed methods

(Geometric edge-based active contours and Pixel Color Contrast) demonstrated high robustness

against non-accurate foreground segmentation, achieving excellent accuracy results on the real

dataset. The use of the active contour adjustment introduces an inherent ability to deal with

imperfect data. Furthermore, the combination of features from different discriminators increased

the final accuracy results. In our results, over 98% of all samples in the real dataset have been

correctly classified.

In conclusion, we can affirm that the proposed discriminators are suitable for their integration

into a video-analysis system for detecting abandoned and stolen objects, as they have shown

to be less dependent on the accuracy of the foreground mask produced by preceding processing

stages.

7.3 Future Work

In this project, we have identified key issues that affect the the discrimination problem.The

following lines of research can be considered:

� Multi-feature schemes have demonstrated an efficient way to combine information for in-

creasing the overall accuracy. However, these schemes require the use of multiple discrim-

ination techniques. This introduces a high computational cost in the system that reduces

its ability to operate in real time. For this reason, more efforts should be put towards
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developing procedures for determining when the discriminators are operating as expected.

In order words, we suggest to infer which discriminators would provide the most discrimi-

native measure and avoid to use (and execute) the worst ones. For example, the gradient

detectors have shown weaknesses when the region outside the foreground mask contains

strong edges in both the background frame and the image. In this situation, a color based

detector would be able to provide better results. Within the multi-feature framework,can

be used for two objectives: to reduce the overall processing time and to increase the con-

fidence in the discrimination results. If further fusion schemes are used, better results can

be obtained by selecting only those features we know are relevant for a particular object.

� A more exhaustive evaluation should be carried out in environments with dense crowds,

where the presence of nearby objects may have an impact on the extracted features. For

extending the current dataset, new challenging situations should be considered such as

high complex backgrounds, multimodal backgrounds, high textured objects and different

compression levels of the video sequence.

� As observed in the results of the performed experiments, the discrimination task obtained

very high accuracy within the employed datasets. This fact suggest that the complexity

of the abandoned and stolen object detection depends on the modules devoted to the

extraction of the object of interest. In particular, we have noticed that the main issue to

address is the Stationary Object Detection task as it presents many challenges that remain

unsolved.
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Appendix A

Support vector machines

The Support Vector Machine technique (SVM) provides a way to classify instances of data

inputs based on a model obtained from a set of training samples. Each training sample ~x (with

n attributes) is represented as a point in the Rn space (data space), and belongs to one of two

categories yi ∈ {+1,−1}. The goal is to build a decision function from the training data.

Linearly Separable case In the simplest scenario, we consider the samples in the data space

to be linearly separable; that is, we can draw decision boundaries that separate the training

samples in the data space. More formally, there exist infinite hyperplanes that can separate the

training samples, as shown in figure A.1 for the 2-dimensional case. An hyperplane is a set of

points that satisfies the following equation:

~w · ~x+ b = 0 (A.1)

where ~w is the normal vector to the hyperplane and b
‖w‖ determines the offset from the

origin. If an hyperplane separates the two categories, we can define the discriminant function f

as follows:

f(~x) = sign (~w · ~x+ b) (A.2)
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Figure A.1: Possible decision boundaries for linearly separable data in the 2-dimensional space

The goal is to find an hyperplane such that its distance to the nearest samples from both

classes is maximized, in order to minimize the classification error. This is done by maximizing

the margin around the separating hyperplane (maximum margin hyperplane). Assuming that

all training data has a distance of at least 1 unit (along the ~w direction) from the hyperplane,

we define the margin as the distance between the two parallel hyperplanes:

~w · ~x+ b = +1

~w · ~x+ b = −1 (A.3)

The samples that lie on the margin hyperplanes are called support vectors. Geometrically,

the distance between these two hyperplanes ρ is expressed as:

ρ =
2

‖~w‖
(A.4)

An example of a maximum margin hyperplane is shown in figure A.2. The goal is to determine

~w and b so that the distanceρ is maximized. Therefore, the problem consists on maximizing 1
‖~w‖ ,

or equivalently, minimizing ‖~w‖, subject to the following constraint:

yi (~w · −→x + b) ≥ 1 (A.5)
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Figure A.2: Maximum margin hyperplane and support vectors

This formulation is equivalent to a quadratic optimization problem, and the solution for ~w

is a linear combination of all training points, weighed by the αi solutions of the optimization

problem:

~w =

n∑
i=1

αiyi~xi (A.6)

where n is the total number of training points; b is expressed as b = yk − ~w·~xk, for any ~xk

such that αk = 0. For points other than the support vectors, the αi coefficients equal zero.

Therefore, the solution is uniquely identified by a linear combination of the support vectors.

The discriminant function f is finally expressed as:

f(~x) = sign

(
b+

n∑
i=1

αiyi(~xi · ~x)

)
(A.7)

Non separable data: soft-margin classifier A linear SVM cannot produce a discriminant

function if the training data is not linearly separable. When the data contains noise due to

misclassified samples, the optimization problem constraints can be relaxed to account for noisy

data. This can be done by adding a slack variables ξi ≥ 0 to the constraint condition (eq. A.5),

making the inequality easier to satisfy:

yi (~w · −→x + b) ≥ 1− ξi (A.8)
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ϕ : R n → F

Figure A.3: Non-linear transformation example

This allows a point that is on the wrong side of the hyperplane (or too close to it) to satisfy

the constraint, if the value of ξi is sufficiently large. The slack variable can be interpreted as the

degree of misclassification for that sample. To avoid all points from satisfying the constraint, a

cost parameter C is added to the formulation to penalize the sum of all ξi. The optimization

problem becomes:

min
~w,ξi

1

2
‖w‖2 + C

n∑
i=1

ξi (A.9)

subject to the constraint expressed in eq. A.8. The cost parameter C allows us to control

the constraints enforcement. The discriminant function is again:

f(~x) = sign

(
b+

n∑
i=1

αiyi(~xi · ~x)

)
(A.10)

where coefficients αi are the solutions to the quadratic optimization problem, and b can be

computed from the support vectors xi such that 0 < αi < C.

Non-linear case: Kernel trick In those cases in which a linear boundary is not enough to

separate the data, a non-linear transformation φ : Rn → F can be applied to map the input

data to a high-dimensional space F (feature space) in which the data is linearly separable, as

depicted in figure A.3.

The discrimination can then be performed with a linear discriminant function (eq A.2), by

100



considering input vectors ~x in the feature space φ(~x). However, this operation can be computa-

tionally costly when the feature space is high dimensional. Since the discriminant function relies

only on the inner products of vectors, it is not strictly necessary to represent each input vector

in the feature space, as long as the inner product can easily be computed. A kernel function is

a function that computes the inner product in some high-dimensional space. This is referred to

as the kernel trick, which allows us to compute the inner products in the feature space without

explicitly mapping input points.

The kernel-trick allows us to formalize the non-linear problem as a quadratic optimization

problem. For a given kernel function K, we would obtain a non-linear discriminant function of

the form:

f(~x) = sign

(
b+

n∑
i=1

αiyiK(~xi, ~x)

)
(A.11)
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Appendix B

Automatic generation of foreground

masks from video annotations

B.1 Introduction

Employing previously annotated data available at VPU-Lab, we have designed a module that

extracts foreground masks from frames that contain events of interest. Annotated data was

generated employing a tool from ViPER Toolkit1. Analyzing this data, foreground masks are

extracted from relevant frames around regions of interest.

Section B.2 details the structure of the meta-data annotations, and the process employed to

extract the foreground masks is explained in section B.3.

B.2 ViPER-GT

ViPER-GT2 is a tool for annotating videos with meta-data. Annotations are stored in separate

XML files that follow the ViPER file format specification. The file contains a header in which

a set of descriptors are predefined by the user. Descriptors contain information about specific

events or objects in the scene, and are characterized by a set of attributes. In VPU-Lab’s pre-

1http://viper-toolkit.sourceforge.net/
2http://viper-toolkit.sourceforge.net/products/gt/
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existing framework, four relevant event descriptors have been defined: GetObject, PutObject,

AbandonedObject, StolenObject. The first two descriptors correspond to people placing and

removing objects from the scene, respectively. Objects are considered abandoned or stolen when

a certain time has passed after the GetObject and PutObject events. Each descriptor is defined

by a unique ID and a time span (frame span), and four attributes as specified in table B.1.

Attributes Point and BoundingBox allow us to completely locate the event in the corresponding

frames.

Table B.1: Descriptor attributes

Attribute Description

Point x,y coordinates of the object’s centroid

BoundingBox bounding box coordinates (x,y) and dimensions (w,h)

DetectionScore double value

DetectionDecision Boolean value

The following is an XML sample code snippet for a stolen object:

<ob j e c t framespan =”266:328” id =”0” name=”Sto lenObject”>
<a t t r i b u t e name=”Point”>

<data : po int x=”251” y=”87”/>
</a t t r i bu t e>
<a t t r i b u t e name=”BoundingBox”>

<data : bbox he ight =”24” width =”22” x=”240” y=”74”/>
</a t t r i bu t e>
<a t t r i b u t e name=”Detect ionScore”>

<data : f v a l u e va lue =”1.0”/>
</a t t r i bu t e>
<a t t r i b u t e name=”Detec t i onDec i s i on ”>

<data : bvalue value=”true ”/>
</a t t r i bu t e>

</object>

B.3 Foreground mask extraction

A meta file interpreter module has been developed in C++ to be integrated with the visual

analysis system (Chapter 3), using the Xerces-C++ XML parser library3. The goal is to extract

3http://xerces.apache.org/xerces-c/
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frames and their foreground based on the information provided by the meta-data file. The

procedure is as follows: first, all instances of the AbandonedObject and StolenObject event

descriptors are extracted from the XML meta file, along with their BoundingBox and frame-

span attributes. For each extracted event, a C++ object is initialized with these attributes

which is then stored in an array structure. For each of these objects, a processing mask is

generated containing the bounding box rectangle. If more than one event occur in the same

time span, the masks are combined. The processing masks, along with their associated frame

spans, are then passed on to the Video Analysis system described in Chapter 3. The system

will process the video sequence, and the Foreground Segmentation module (section 3.2) will only

analyze those areas specified by the processing masks. If a frame contains an event of interest

(i.e., its frame number is associated with a processing mask), the frame is extracted along with

the foreground mask and the current background model. This procedure is detailed in figure

B.1.
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Figure B.1: Foreground masks extraction process
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Appendix C

Publications

Part of this work has produced the following publication:

� Luis Caro, Juan Carlos San Miguel, José M. Mart́ınez, “Discrimination of abandoned and

stolen object based on active contours”, in Proceedings of the 2011 IEEE International

Conference on Advanced Video and Signal based Surveillance, AVSS’2011, Klagenfurt,

Austria, September 2011 (in press).

Conferencia IEEE AVSS: Clasificación ERA B
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Abstract 

 
In this paper we propose an approach based on active 

contours to discriminate previously detected static 
foreground regions between abandoned and stolen. 
Firstly, the static foreground object contour is extracted. 
Then, an active contour adjustment is performed on the 
current and the background frames. Finally, similarities 
between the initial contour and the two adjustments are 
studied to decide whether the object is abandoned or 
stolen. Three different methods have been tested for this 
adjustment. Experimental results over a heterogeneous 
dataset show that the proposed method outperforms state-
of-art approaches and provides a robust solution against 
non-accurate data (i.e., foreground static objects wrongly 
segmented) that is common in complex scenarios.  
 

1. Introduction 
Nowadays, there is a growing video surveillance 

demand as a consequence of the increasing global security 
concern which turned into a massive system deployment 
[1]. Traditionally, the monitoring task is performed by a 
human operator who has to simultaneously process a huge 
amount of visual data. Therefore, a significant efficiency 
reduction is expected. Automatic video interpretation was 
proposed as a solution to overcome this limitation. 

In this situation, the detection of abandoned and stolen 
objects has become one of the most promising research 
topics especially in crowded environments such as train 
stations and shopping malls. It presents several challenges 
related to lighting conditions, object occlusions and object 
classification. Moreover, since these potential abandoned 
or stolen objects may have arbitrary shape and color, 
specific object recognition methods can not be applied. 

Many methods have been proposed for abandoned and 
stolen object detection  focusing on the stabilization of the 
image sequence from a moving camera [2], based on the 
static foreground region detection [3], based on blob 
classification (e.g., between people and object) [4] or 
dealing with the discrimination of the static regions 
between abandoned or stolen [5]. They yield acceptable 

results in simple scenarios where high analysis accuracy is 
expected.  However, this is not always valid for complex 
situations where a performance decrease may occur. 

In this paper, we propose an approach based on active 
contours for the discrimination of static foreground objects 
between abandoned and stolen. It provides a robust 
solution against non-accurate segmentations of stationary 
objects in the analyzed video sequence. Starting from an 
initially extracted contour, active contour technique is 
applied to check whether the object contour is present in 
the current or in the background image and thus, decide if 
the object has been abandoned or stolen. Three different 
active contour methods have been tested based on edge 
and region information. Finally, this proposal is evaluated 
over a heterogeneous dataset with sequences with varying 
complexity and compared against state-of-art approaches. 

This paper is structured as follows: section 2 discusses 
the related work; in sections 3 and 4 we overview the 
proposed discriminator and the selected active contours 
methods, experimental results are given in section 5, 
whilst section 6 ends the paper with the conclusions. 

2. Related work 
Abandoned and stolen object detection comprehends 

several tasks such as foreground extraction [2], static 
region analysis [3], blob tracking [6], blob classification 
(such as people [7] or baggage [8] recognition) and 
discrimination between abandoned or stolen objects. 

Focusing on the discrimination of static foreground 
regions between abandoned and stolen, some of the 
existing approaches simplify this problem by assuming 
that only object insertions are allowed (i.e., detection of 
stolen objects is forbidden) and, therefore, all static objects 
are abandoned objects [2][6][8]. However, this assumption 
does not provide solutions for common artifacts generated 
by the background subtraction technique (e.g., ghosts) 
limiting the potential application of these proposals. On 
the other hand, few approaches have been proposed for 
this discrimination. Among existing literature, we can 
classify them according to the nature of the employed 
features into edge-based, color-based and hybrid. 

Edge-based methods rely on inspecting the energy of 
the static region boundaries. It assumes that this energy is 

 
Discrimination of abandoned and stolen object based on active contours 

 
Luis Caro Campos, Juan Carlos SanMiguel, José M. Martínez 

Video Processing and Understanding Lab 
Escuela Politécnica Superior, Universidad Autónoma de Madrid, SPAIN  
E-mail: {Luis.Caro, Juancarlos.SanMiguel, JoseM.Martinez}@uam.es 

 
  
 



 

 

high in the current frame for abandoned objects and low 
for stolen objects. For example, [9] proposed a system that 
analyzes the change in edge energy, and determines that 
an object has been added to the scene if the energy in the 
current frame is significantly higher or lower. Similarly, 
[10][11] proposed to use a Canny edge detector inside the 
bounding box of the static region in both the background 
and the current frame, and then they are compared to 
determine whether the object has been removed from or 
added to the scene. Moreover, [12] described a matching 
method to compare the results of the SUSAN edge 
detection in the current frame and foreground mask.  

Color-based methods use the color information 
extracted from the internal and external regions delimited 
by the bounding box and the contour of the static region. 
In [7], two Bhattacharya distances are computed between 
the color histograms of the internal (in the current and 
background frames) and the external (in the background 
frame) regions. Discrimination is determined as the lowest 
distance. Similarly, a color-richness measure is proposed 
in [13] to count the number of colors (i.e., histogram bins 
above a threshold) and perform the same comparison as 
[7]. Moreover, [14] proposed to use image inpainting to 
reconstruct the hidden background and compare it against 
the external region using color histograms. Additionally, 
[15] compares color information within and outside the 
candidate static region by using segmentation techniques. 

Hybrid discriminative methods combine the previous 
approaches. For example, [5] fused two algorithms based 
on edge and color by building probabilistic models for 
each algorithm in both cases (abandoned or stolen). Then, 
the decision is given by the maximum average probability 
of each case. Furthermore, [16] combined several features 
related with the edge energy, color contrast and shape into 
a classifier by using generative models for them. 

In conclusion, the different techniques found in the 
recent literature use either edge or color information to 
perform the abandoned/stolen discrimination. Although 
these methods work well for simple scenarios, they have 
difficulties in complex scenarios as they do not consider 
the possibility of occlusions or complex backgrounds (e.g., 
high textured backgrounds). In addition, these methods 
rely on the precision of foreground object detection, and 
they may perform poorly in complex scenarios. 

3. Discrimination based on active contours 
A new approach based on active contours is proposed 

for discriminating static objects between abandoned and 
stolen. Let the initial contour of the static object, at time t, 
be defined as	ܥ௧ூ = ଵ݌} .௜݌… .  :ே} and obtained as follows݌

௧ூܥ  = 	ℎ(ܨ௧,ܯ௧), (1) 
where		ℎ(. ) represents the contour extraction algorithm; ܨ௧ and ܯ௧ the current frame and foreground mask of the 

static object; ݌௜	is the x,y coordinates of the ith contour 

point and ܰ	 is the number of contour points. In our 
approach, ℎ(. ) is a simple point-scanning of the result 
after applying the Canny edge detector to the ܯ௧ mask. 
This contour indicates the boundaries of the inserted (i.e., 
abandoned) or removed (i.e., stolen) of the scene object. 

Then, a fitting process of the contour ܥ௧ூ	 is performed 
on the current and the background frame by using active 
contours. Thus, two adjusted contours are obtained. 

௧୉୊ܥ  = ,௧ܨ)݂  ௧ூ), (2)ܥ
௧୉୆ܥ  = ,௧ܤ)݂  ௧ூ), (3)ܥ
 
where	݂(. )		represents the contour adjustment method; ܨ௧ and ܤ௧ are the current and background frames; ܥ௧ூ is the 

initial contour; ܥ௧୉୊ and ܥ௧୉୆ are the adjusted contours in 
the current and background frames. For abandoned 
objects, the adjusted contour will be attracted to object 
boundaries in the current frame, and thus it will be similar 
to the initial contour. Conversely, the contour is expected 
to be deformed in the adjustment using the background 
frame as there are no object boundaries. In most cases, this 
uncovered area does not have strong edges and the contour 
may shrink or disappear. For stolen objects, the adjustment 
result will be the opposite; it will be attracted in the 
background frame and deformed in the current frame. 

After that, a similarity measure is defined to quantify 
the deformation of the initial contour. We have decided to 
use the Dice coefficient [17], which is defined as follows: 

 d(Cଵ, Cଶ) = 2|Aଵ ∩ Aଶ||Aଵ| + |Aଶ| (4) 

 
where Cଵ,ଶ represent two contours, |Aଵ ∩ Aଶ| is their 

spatial overlap (in pixels); |Aଵ| and |Aଶ| represent the area 
(in pixels) of each contour. Thus, we obtain two distances 
(݀௧ி and ݀௧஻) from the comparison of the initial contour ܥ௧ூ 
with the adjusted contours ܥ௧ாி and ܥ௧ா஻. The values of ݀௧஻ 
will be close to 0.0 and 1.0 in case of, respectively, 
abandoned and stolen objects. Distance ݀௧ி will get 
opposite values. Afterwards, a score is obtained by 
combining both distances as follows: 

௧ݏ  = ݀௧ி − ݀௧஻ (5) 
  

Finally, the discrimination is performed by thresholding 
the final score ݏ௧ as follows: 

ܦ  = ൜ܾܽܽ݊݀݀݁݊݋ ݂݅ ௧ݏ > ݈݊݁݋ݐݏℎݐ ݂݅ ௧ݏ ≤  ℎ (6)ݐ

 
where th is the threshold applied for taking the 

abandoned or stolen decision, and is obtained from a 
training sequence. Figure 1 shows examples of the contour 
adjustments for abandoned and stolen cases. 



 

 

4. Selected active contour algorithms  
Up to this point, an approach for discriminating static 

foreground objects has been defined depending on a 
contour adjustment function	݂(. ). According to [18], 
active contours methods can be either parametric or 
geometric considering whether their contour 
representation is explicit [19] or implicit (using level sets 
[18][20]). Moreover, we can further differentiate between 
methods based on boundaries or regions. We have tested 
the most representative methods in our approach. 

4.1. Parametric active contours 

We first consider the classic active contour model [19]. 
Starting from an initial contour	ܥ = ଵ݌}  ே}, it݌…
iteratively minimizes a global energy function defined as:  

ܧ					  =෍ߙ௜ܧ௖௢௡௧ + ௖௨௥௩ܧ௜ߚ + ௜௠௔௚ேܧ௜ߣ
௜ୀଵ  (7) 

 

where N is the number of contour points, Eୡ୭୬୲ is the 
continuity energy, Eୡ୳୰୴ is the curvature (i.e., smoothness) 
energy, E୧୫ୟ୥ is the external energy (e.g., image edges) 
and α୧, β୧, λ୧ ൒ 0 are the weights of each energy. These 
energies are defined as: 

௖௢௡௧ܧ  = ௜݌‖ − ௖௨௥௩ܧ௜ିଵ‖ଶ݌ = ௜ିଵ݌‖ − ௜݌2 + ௜௠௔௚ܧ௜ାଵ‖ଶ݌2 = (௧ܫ)ݐ݊݁݅݀ܽݎ݃  (8) 

 

In our approach, we remove redundant edge data to 
compute the ܧ௜௠௔௚ energy (i.e., edges that are present in 
current and background images). First, we have applied 
the Canny edge operator to each RGB channel of the 
current and the background frame. Then, the channel edge 
maps are combined using the logical operation OR. 
Finally, edges that appear in the background and current 
frame are removed to obtain the relevant edge data. 

To achieve best results, parametric active contours 
algorithms such as this one require the initial contour to be 
initialized close to the true boundary. This holds true for 
abandoned objects, since the final contour is expected to 
be close to the initial contour. However, this limitation 
may be problematic when there are stolen objects. 
Although very simple to develop, traditional active 
contour models depend on the correct initialization.  

4.2. Geometric active contours 

Geometric active contour methods are proposed to solve 
the limitations of the parametric approaches by assuming 
an energy formulation invariant with respect to the curve 
parameterization. The contour is represented as the zero 
level set ߶ିଵ(0) = ,ݔ)} ,ݔ)߶|(ݕ (ݕ = 0} of a scalar 
function ߶(ݔ,  .usually referred as the level set function (ݕ
The evolution of this function is guided by an energy 
minimizing process.  

 
4.2.1 Geometric region-based active contours 

A natural extension to overcome limitations of 
boundary analysis is the processing of regions. Among 
existing region-based approaches, we have selected the 
widely referenced work described in [20]. Derived from 
the Mumford-Shah energy functional for segmentation 
[20], piecewise constant functions are defined considering 
the intensity means of the different regions delimited by 
the contour. These cost functions are defined as follows: 
ܧ  = ଵߣ න ,ݔ)ܫ| (ݕ − ݉௜௡(ܥ)|ଶ݀ݕ݀ݔ௜௡(஼)  (9)

ଶߣ+ න ,ݔ)ܫ| (ݕ − ݉௢௨௧(ܥ)|ଶ݀ݕ݀ݔ + (ܥ)ܮߤ + ௜௡(஼)(ܥ)ܣߙ  

 

where ݉௜௡(ܥ) and ݉௢௨௧(ܥ) are the mean intensity 
value of the internal and external regions delimited by the 
contour; L(C) is the length of the contour; A(C) is the area 
of the contour; ߣଵ, ߣଶ, ߙ and ߤ are fixed positive 
parameters. Then, a minimization problem is considered: 

 min௠೔೙,௠೚ೠ೟,஼ ܧ (݉௜௡,݉௢௨௧,   (ܥ

(10) 

 

To compute this optimization, level set optimization is 
jointly performed with the estimation of mean intensity 
values attempting to recover two regions such that 

Figure 1: Examples of the proposed discrimination approach for
abandoned (rows 1&2) and stolen (rows 3&4) objects.  (a)
Foreground mask, (b) initial contour and contour adjustment for
the (c) current and (d) background frames.  

(a) (b) (c) (d)



 

 

|݉௜௡(ܥ) − ݉௢௨௧(ܥ)| is maximum whilst assuring 
regularity properties for these regions. This model 
overcomes certain limitations of traditional parametric 
methods. It can detect objects with smooth boundaries 
(weak gradient) and it is more robust to noise. Moreover, 
contour initialization can be done at a higher distance from 
the real contour than the parametric approaches. 

 
4.2.2 Geometric edge-based active contours  

Extending the geometric methods based on level sets, 
[18] proposed an edge-based method to eliminate the re-
initialization of the level set method that moves the zero 
level set from its original location extracting wrong 
contours. A new energy term is included to force the level 
set function to be close to a signed distance function. 
Thus, the proposed cost function to be minimized is:  

 ℰ(߶) = 	ℰ௠(߶) +  (11) (߶)࣪ߤ
 

where ℰ௠(߶) is the external energy that adjusts the zero 
level set (i.e. contour) to the image boundaries;  ࣪(ϕ) is 
the internal energy that penalizes the deviation of the level 
set function from a signed distance function; ߶ is the level 
set function and 	ߤ is a fixed positive parameter to control 
the influence of the internal energy. The external 
energy,	ℰ௠(߶), is composed of two terms: 

 ℰ௠(߶) = λℒ௚(߶) +  ℱ௚(߶) (12)ߥ
  
where ℒ௚(߶) is the length of the zero level curve of ߶;  ℱ௚(߶) is the speed of the curve evolution; ݃ is a weight 

indicator function based on edges; λ > 0 and ߥ are the 
parameters to weight the energy contributions. 
Particularly, the parameter ν can be used to expand (ν >0) or shrink (ν < 0) the evolution of the contour 
depending on whether the initial contour is placed outside 
or inside the object. We can take advantage of this 
behavior in the case of stolen objects, driving the motion 
of the curve and causing it to shrink. Abandoned objects 
will not be affected since the initial contour is already 
close to the object boundaries. 

5. Experimental validation  

5.1. Setup 

We have carried out experiments using annotated and 
real data. The proposal has been implemented in C++ 
using the OpenCV image processing library1. Tests were 
executed on a P-IV (3.0GHz) with 2GB RAM. Moreover, 
we compare the versions of our proposal (PE[19], GR[20] 
and GE[18],) against the most popular methods based on 
edge energy (ED[12]) and color-histogram (CH[7]). 

 
1http://sourceforge.net/projects/opencvlibrary/ 

For the experiments with annotated data, we have 
selected several sequences from the PETS20062, 
PETS20073, AVSS20074, CVSG5, VISOR6, CANDELA7 
and WCAM8 public datasets. The annotations9 consist of 
the foreground binary masks of the abandoned or stolen 
objects. For performance evaluation, we have divided all 
the annotations into three categories according to the 
background complexity in terms of the presence of edges, 
multiple textures and objects belonging to the background. 
Table 1 summarizes the annotated content of the dataset. 
Finally, ROC curves are employed for the evaluation. 

To find the optimum parameters of the active contour 
algorithms, we have proceeded as follows. For the PE 
algorithm, different combinations for parameters		ߚ ,ߙ and ߣ were considered ranging from 0.0 to 3.0 (with a step size 
of 0.01). Optimal achieved configuration was		α =0.97, β = 1.30, λ = 0.52	. In addition, the optimal size of 
the search window was determined to be 5. For the GR 
algorithm, we have used the proposed default values for 
the following variables: ߣଵ = 1, ଶߣ	 = 1, ߥ = 0, ℎ = 1, and Δݐ = 0.1. The ߙ and ߤ were empirically defined (ߙ = 1.0 
and		ߤ = 0.05 ∙ 255ଶ). For the GE algorithm, we have 
used a slightly higher time step to reduce the iterations 
needed (Δݐ = 15). For parameters	ߣ,  best results ;ߥ	and	ߤ
were obtained with ߣ = 5, ߤ = 0.0133, ߥ = 1.8.  
5.2. Evaluation with annotated data  

A summary of the experiments is shown in Figure 2 and 
Table 2. As it can be observed, the proposed approach 
outperforms the state-of-art methods having higher AUC 
(Area under curve) values. The existence of complex 
backgrounds reduces the accuracy of the state-of-art 
methods as they assume low-textured background with 
little edge information. Our proposal is robust against this 
kind of complexity. Among the selected active contour 
methods, GE obtained the best results. For all methods, the 
contour is accurately adjusted when the object boundaries 
are present (i.e., current and background frames for, 
respectively, the abandoned and stolen cases). However, 

 
2http://www.cvg.rdg.ac.uk/PETS2006/ 
3http://www.cvg.rdg.ac.uk/PETS2007/ 
4http://www.avss2007.org/ 
5http://www-vpu.eps.uam.es/CVSG/ 
6http://www.openvisor.org/ 
7http://www.multitel.be/~va/candela/ 
8http://wcam.epfl.ch/ 
9Available at http://www-vpu.eps.uam.es/ASODds 

Table 1: Test sequences categorization. 
 

Category
Number of annotations 

Background complexity
Abandoned Stolen 

C1 841 252 Low 
C2 520 200 Medium 
C3 671 480 High 

Total 2032 932 - 



 

 

their results differ for the adjustment without boundaries 
(i.e., background and current frames for, respectively, the 
abandoned and stolen cases). For PE, the deformations are 
not substantial, unless the initial mask belongs to a small 
object. For GR, sometimes the adjustment turns into a 
contour expansion limited by its bounding box size. Thus, 
the similarity measure (Eq. 4) exhibits a lower bound for 
expansion cases that depends on the contour area and its 
bounding box. To decrease this bound, the bounding box 
size can be extended. However, the computational cost of 
the adjustment is increased. In our experiments, the 
bounding box was increased by a factor of 1.5 as a trade-
off between accuracy and time. GE overcomes this 
problem by allowing us to control the contour adjustment 
(expansion or shrinkage) with the selected value for 
parameter		ν. Thus, GE showed better results, as the 
contours shrink considerably or completely disappear. 

Table 3 describes the computational cost results. 
Maximum and minimum values correspond to, 
respectively, large and small objects. As it is shown, state-
of-art approaches have lower cost (as they perform simple 
operations) than the active contour ones. Among them, 
edge-based methods are faster than region-based methods 
as they consider local data (e.g., edges in a neighborhood) 
instead of global data (e.g., region statistics). Despite the 
higher cost of our approach, it should be noted that this 
analysis is not typically performed on a frame-by-frame 
basis and a slightly higher cost can be affordable. 

5.3. Evaluation with real data 

For the experiments with real data, we have selected 
some sequences of the above-mentioned datasets. A state-
of-art abandoned/stolen object detection system has been 
implemented to get real data (i.e., masks of static 
foreground objects) [5]. Figure 3 shows the obtained 
contour adjustments using real data and Table 4 their 
corresponding scores (incorrect scores are marked using 

bold font). While PE and GR are able to perform correct 
detection in most cases, GE still produces more accurate 
adjustments, leading to higher class separability (i.e., 
difference between the scores of the abandoned and stolen 
cases).  In addition, it can be seen that the Dice coefficient 
distance comparison between shapes produces satisfactory 
results even when the contour is attracted to nearby 
objects instead of shrinking or disappearing in those 
frames in which the object is not present (background 
frame for the abandoned case, and current frame for the 
stolen one), thus allowing the detectors to perform better 
in more complex scenes. 

6. Conclusions 
We have proposed a new approach for discriminating 

abandoned and stolen objects in video surveillance. It is 
based on adjusting the contour of candidate static 
foreground region to the current image and the reference 
background. Three different active contour strategies have 
been tested. Experiments on annotated and real data show 
that the proposed approach is significantly better than the 
state-of-art approaches. Geometric active contours based 
on edge information obtained the best results due to the 
more accurate adjustments obtained on images where the 
object is not present, making the contour disappear in 
many cases and adding robustness to the detector.  
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Table 4: Scores obtained for real examples 
 

 
PE GR GE ED CH࢙ ࢙ ࢙ ࡮ࢊ ࡲࢊ ࢙ ࡮ࢊ ࡲࢊ ࢙ ࡮ࢊ ࡲࢊ  

(1) 0.90 0.66 0.24 0.84 0.31 0.52 0.84 0.33 0.50 0.82 -0.15

(2) 0.37 0.70 -0.33 0.62 0.37 0.24 0.85 0.31 0.54 0.52 -0.18

(3) 0.88 0.68 0.20 0.79 0.42 0.37 0.85 0.55 0.29 0.22 -0.34

(4) 0.65 0.88 -0.22 0.68 0.74 -0.05 0.17 0.63 -0.46 0.29 0.15

(5) 0.70 0.82 -0.12 0.41 0.46 -0.05 0.36 0.80 -0.43 0 -0.06

(6) 0.75 0.90 -0.14 0.49 0.67 -0.17 0.27 0.80 -0.53 0.10 0.12

Figure 3: Real examples of abandoned (rows 1, 2 & 3) and stolen (rows 4, 5 & 6) objects. (a) Foreground mask, (b) initial contour 
and its adjustment in current frame ((c) PE, (d) GR and (e) GE) and background frame ((f) PE, (g) GR and (h) GE). 
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Appendix D

Introducción

D.1 Motivación

En la actualidad, existe un creciente interés en sistemas automáticos de videovigilancia como

consecuencia de la mayor preocupación que generan las cuestiones relacionadas con la seguridad

global. Tradicionalmente, la tarea de monitorización es llevada a cabo por personal que se

encarga de analizar de manera simultánea la información proveniente de múltiples cámaras.

Este hecho conlleva una reducida eficacia, debido a la gran cantidad de información generada

por estas cámaras. Es por este motivo que la detección automática de eventos en tiempo real

surge como una solución encaminada a facilitar que los operadores de monitorización puedan

encentrar su atención en determinados eventos de interés.

En este contexto, la detección de objetos robados y abandonados se ha convertido en uno

de los temas de investigación más prometedores, en especial para su aplicación en entornos

altamente concurridos, como estaciones de transporte y centros comerciales. Entre sus posibles

aplicaciones, podemos destacar la detección de paquetes sospechosos en estaciones de tren, o

la detección de objetos robados en oficinas, salas de exposición o museos. El objetivo de esta

detección es realizar una supervisión continua de la información capturada por la cámara, con

el fin de poder tomar las medidas oportunas. En la figura D.1, se muestran ejemplos de posibles

escenarios de aplicación.
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Figura D.1: Ejemplos de objetos abandonado (izda.) y robado (dcha.)

En general, para un sistema cuyo objetivo es la detección de objetos robados y abandon-

ados podemos destacar las siguientes etapas de análisis: segmentación de regiones de interés

(primer plano), detección de regiones estáticas, clasificación de objetos y discriminación entre

robo y abandono. En la primera etapa, se separan del fondo aquellas regiones de la imagen que

pertenecen al primer plano de la escena. Posteriormente, se determina cuáles de estas regiones

han permanecido estáticas temporalmente (seguimiento). Después, dichas regiones son clasifi-

cadas por tipo (persona, grupo de personas, equipaje. . . ). Para aquellas regiones clasificadas

como objetos estacionarios, se realiza una etapa de análisis adicional para determinar si el objeto

ha sido robado o abandonado.

En cada etapa de análisis, existen varios factores que limitan su rendimiento. Aśı por ejemplo,

los cambios en la iluminación y fondos no estacionarios pueden desembocar en una segmentación

inadecuada de regiones del primer plano, dificultando la detección de objetos de interés. En esce-

narios altamente concurridos donde son más frecuentes las oclusiones, se dificulta la detección de

regiones estáticas. En este tipo de escenarios, la elevada cantidad de objetos supone incrementar

el coste computacional de la etapa de seguimiento. La etapa de clasificación se ve afectada por

una alta variabilidad en la apariencia de los objetos y personas, que complica la aplicación de

métodos espećıficos de reconocimiento de objetos. Finalmente, el requisito de análisis en tiempo

real implica utilizar algoritmos de baja complejidad.

Varias técnicas han sido propuestas para la detección de objetos robados y abandonados.

Entre los ejemplos, podemos destacar aquellas técnicas que se basan en la estabilización de la

imagen proveniente de una cámara en movimiento [6]; las basadas en la detección de regiones
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estáticas [7], en la clasificación de blobs (personas u objetos) [3] o en la discriminación de re-

giones estáticas entre objetos robados y abandonados [8]. La aplicación de estas técnicas resulta

adecuada en escenarios en los que los objetos de interés pueden ser detectados con exactitud.

Sin embargo, esta suposición no es válida para escenarios más complejos; en particular, la dis-

criminación de regiones estáticas entre robo y abandono no ha sido lo suficientemente estudiada

para escenarios de diversa complejidad.

D.2 Objetivos

El principal objetivo de este Proyecto es el estudio de la última etapa de análisis de un sistema de

videovigilancia capaz de detectar objetos robados y abandonados, con la finalidad de introducir

mejoras a un sistema existente actualmente en desarrollo en el grupo de investigación Video

Processing and Understanding Lab (VPU-Lab) en la Universidad Autónoma de Madrid. Para

ello, se proponen los siguientes subobjetivos:

1) Estudio del estado del arte

Para las etapas de análisis anteriormente descritas, se realizará un estudio de las técnicas

más representativas en el estado del arte, haciendo especial hincapié en técnicas existentes

para la discriminación de regiones estáticas entre objetos robados y abandonados.

2) Estudio del sistema de detección de objetos robados y abandonados disponible en VPU-

Lab

Se realizará un estudio exhaustivo del sistema existente en VPU-Lab con el fin de identificar

los factores clave en la detección de objetos de interés y la discriminación entre robo y

abandono.

3) Diseño e implementación de nuevos discriminadores basados en la extracción de una única

caracteŕıstica

Se implementarán nuevos clasificadores entre robo y abandono basados en la extracción de

una única caracteŕıstica, con el fin de dotar de robustez al sistema para aquellos escenarios

en los que los métodos existentes presentan problemas.

117



4) Diseño a implementación de esquemas de fusión de varias caracteŕısticas

Se estudiarán y evaluarán esquemas clásicos de fusión con el fin de combinar la información

producida por los distintos discriminadores disponibles en el sistema de VPU-Lab, aśı como

los nuevos métodos propuestos.

5) Definición del entorno de evaluación

Para evaluar los distintos discriminadores, se han elaborado, a partir de secuencias de uso

público, dos conjuntos de datos de prueba: conjunto de datos anotados y conjunto de datos

reales. Para los datos anotados, la información necesaria se ha extráıdo manualmente. Para

los datos reales, se ha desarollado un proceso para extraer la información automáticamente

a partir de archivos con meta-datos, utilizando el sistema disponible en VPU-Lab.

6) Evaluación comparativa de la mejoras introducidas por los métodos propuestos

Se evaluará el rendimiento de los métodos de clasificación propuestos, aśı como de los

esquemas de fusión, y se compararán frente a los métodos existentes provistos por VPU-

Lab, con el fin de identificar sus ventajas e inconvenientes.

D.3 Organización de la memoria

La memoria de este Proyecto de Fin de Carrera consta de los siguientes caṕıtulos:

� Caṕıtulo 1: En este caṕıtulo se presentan la motivación y los objetivos de este Proyecto,

aśı como la estructura de la memoria.

� Caṕıtulo 2: En este caṕıtulo, se presenta primero una definición del problema, identificando

el tipo de información que es necesario extraer para realizar la detección y posteriormente

se describen las técnicas más representativas para cada etapa de análisis, poniendo énfasis

en la etapa de discriminación.

� Caṕıtulo 3: En este caṕıtulo se describe el sistema base para la detección de objetos

robados y abandonados, provisto por VPU-Lab. Los métodos utilizados para la etapa de

discriminación son descritos en detalle.
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� Caṕıtulo 4: En este caṕıtulo se describen los métodos propuestos para la discriminación,

basados en la extracción de una única caracteŕıstica.

� Caṕıtulo 5: En este caṕıtulo se describen los distintos esquemas de fusión para múltiples

caracteŕısticas.

� Caṕıtulo 6: En este caṕıtulo se describen los conjuntos de datos de prueba, las medidas de

rendimiento y los resultados experimentales. Se realiza también una comparación de los

métodos propuestos frente a los más significativos del estado del arte.

� Caṕıtulo 7: En este caṕıtulo se resumen las principales contribuciones de este Proyecto, a

partir de los resultados obtenidos. Adicionalmente, se presentan sugerencias para posible

trabajo futuro.

� Anexos:

– A. Introducción a Máquinas de Soporte Vectorial

– B. Extracción automática de máscaras de foreground para objetos robados y aban-

donados a partir de anotaciones

– C. Publicaciones
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Appendix E

Conclusiones y trabajo futuro

E.1 Resumen del trabajo realizado

En este Proyecto, se ha llevado a cabo un estudio exhaustivo del problema de detección de objetos

robados y abandonados, centrando nuestra atención en la discriminación de regiones estáticas

entre uno de los dos eventos. El objetivo de esta tarea es determinar si la región estática

detectada se debe a un objeto robado o abandonado. En el estado del arte, encontramos pocos

ejemplos que se centren en el problema de discriminación. Entre ellos, podemos distinguir entre

los basados en color y los basados en contorno, dependiendo del tipo de información extráıda.

Las contribuciones de este Proyecto pueden resumirse en los siguientes puntos:

� Diseño e implementación de nuevos métodos de discriminación basados en la

extracción de una única caracteŕıstica. Un método genérico basado en contornos

activos ha sido definido para etapa de discriminación. Este método mide la diferencia

entre los ajustes realizados tanto en el fondo de la escena como en la imagen actual. Para

este análisis, se han seleccionado y estudiado tres diferentes técnicas de contornos activos,

resultando en tres discriminadores distintos. Posteriormente, se presenta un discriminador

basado en color, que calcula el valor medio del contraste a nivel de ṕıxel (a lo largo del

contorno del objeto bajo análisis) entre la región estacionaria detectada y sus alrededores,

en los tres canales de color.
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� Estudio de diferentes técnicas de clasificación para la discriminación combi-

nando múltiples caracteŕısticas. Se han considerado tres métodos populares de apren-

dizaje artificial para la etapa de discriminación combinando varias caracteŕısticas, con

el objetivo de mejorar la eficiencia combinando la información proveniente de diversos

discriminadores. En particular, se han seleccionado las siguientes técnicas: Clasificador

de Bayes (Naive Bayes), Máquinas de Soporte Vectorial (Support Vector Machines), y

K-vecinos más cercanos (K-nearest neighbor).

� Elaboración de dos conjuntos de datos de prueba para la detección de objetos

robados y abandonados. Dos conjuntos de datos han sido elaborados para la evaluación

de distintos discriminadores utilizado el mismo conjunto de secuencias. También pueden

utilizarse para la evaluación de sistemas completos de detección de objetos robados y

abandonados. Para el conjunto de secuencias, se han seleccionado diversos v́ıdeos de

repositorios disponibles al público. El primer conjunto de datos de prueba consiste en

anotaciones manuales realizadas a los videos. Para el segundo conjunto, se ha diseñado

un procedimiento para generar máscaras de frente (foreground masks) utilizado el sistema

de análisis de video disponible en VPU-Lab. Este procedimiento extrae automáticamente

la información necesaria para la evaluación de los discriminadores, a partir de ficheros de

metadatos

� Evaluación de los métodos de discriminación existentes y propuestos sobre los

dos conjuntos de datos de prueba. Hemos evaluado el rendimiento de los distintos

discriminadores sobre datos anotados (segmentación ideal) y datos reales (segmentación

inexacta). El conjunto de datos anotados nos permite evaluar la capacidad discrimina-

toria de los distintos métodos, posibilitándonos determinar aquellos escenarios para los

que presentan problemas. En condiciones más realistas, un sistema de análisis de v́ıdeo

producirá máscaras de frente imprecisas, debido a los diversos problemas que afectan a

la etapa de segmentación. Con el conjunto de datos reales, hemos sido capaces de eval-

uar el rendimiento de los discriminadores en escenarios realistas, pudiendo determinar qué
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impacto tiene etapa de segmentación sobre la discriminación.

E.2 Conclusiones

Al evaluar el rendimiento de los métodos de discriminación propuestos y existentes en secuencias

anotadas, hemos sido capaces de identificar problemas clave que afectan a la etapa de discrim-

inación. Para el método existente basado en color, hemos concluido que es particularmente

sensible al ruido, y la utilización de un sólo canal de color ha resultado insuficiente. Los dis-

criminadores de gradiente (basados en análisis de bordes) han mostrado un bajo rendimiento en

escenarios con fondos con texturas que presentan una alta enerǵıa de gradiente. En contraste, los

cuatro métodos propuestos se han mostrado robustos ante estas mismas situaciones, obteniendo

un porcentaje de acierto cercano al 100% en la mayoŕıa de las categoŕıas.

Para el conjunto de datos reales, hemos observado, como cab́ıa de esperar, una reducción en el

rendimiento; al depender todos los discriminadores de la precisión de la máscara de foreground

para extraer la información deseada. En particular, el método basado en color del sistema

base ha presentado una notable reducción de su eficacia sobre el conjunto de datos reales.

Por otro lado, dos de los métodos propuestos (Contornos activos geométricos basados en la

información de borde, y Contraste de Color a nivel de Ṕıxel), han demostrado ser muy robustos

ante máscaras poco precisas, obteniendo excelentes resultados en este conjunto de datos. El

uso de ajustes con contornos activos conlleva la posibilidad de lidiar con una segmentación

inadecuada. Adicionalmente, la combinación de caracteŕısticas de distintos clasificadores ha

incrementado la tasa de detección en los resultados finales. En concreto, se ha obtenido una

tasa de detección por encima del 98% en el conjunto de datos reales.

En conclusión, podemos afirmar que los métodos propuestos para la discriminación son ade-

cuados para su integración en un sistema de análisis de v́ıdeo para detectar objetos robados

y abandonados, al haber demostrado ser menos dependientes de la precisión de la máscara de

foreground producida por las anteriores etapas de análisis.
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E.3 Trabajo futuro

En este Proyecto, hemos identificado los problemas clave que afectan a la etapa de discriminación.

En este contexto, las siguientes ĺıneas de investigación pueden ser consideradas:

� Los esquemas de fusión de distintas caracteŕısticas han demostrado ser una manera efi-

ciente de combinar la información para aumentar la tasa final de detección. Sin embargo,

estos esquemas requieren utilizar la información de varios discriminadores. Esto conlleva

un alto coste computacional en el sistema, y reduce su capacidad para operar en tiempo

real. Por este motivo, se deben concentrar más esfuerzos en el desarrollo de técnicas para

determinar si un discriminador está funcionado como debe. En otras palabras, sugeri-

mos deducir de antemano que método de discriminación proporcionará la mejor medida,

para evitar utilizar los que peores resultados ofrezcan. Por ejemplo, los discriminadores

de gradiente presentan problemas cuando la región que rodea al objeto de interés contiene

una alta enerǵıa de gradiente (bordes) tanto en la imagen de fondo como en la imagen

actual. En esta situación, un discriminador basado en color seŕıa capaz de proporcionar

mejores resultados. Para los esquemas de fusión, esto conlleva dos ventajas: reducir el

coste computacional (tiempo de procesamiento) e incrementar la confianza en los resul-

tados del discriminador final. Al utilizar esquemas de fusión, se pueden obtener mejores

resultados seleccionando sólo aquellas medidas que sepamos son relevantes para un objeto

en particular.

� Se debe llevar a cabo un análisis más exhaustivo en entornos altamente concurridos, donde

la presencia de objetos cercanos puede afectar a las caracteŕısticas extráıdas. Para extender

el conjunto de datos de prueba actual, situaciones más complejas han de ser tenidas en

cuenta, tales como fondos de alta complejidad, fondos multimodales, objetos con texturas

complejas, y distintas tasas de compresión para la secuencia de v́ıdeo.

� Como hemos podido observar en los resultados de los experimentos llevados a cabo, para

la etapa de discriminación se ha obtenido un alto rendimiento dentro de los conjuntos

de datos utilizados. Este hecho sugiere que la complejidad de la detección de objetos
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robados y abandonados radica principalmente en los módulos encargados de la extracción

de objetos de interés. En particular, podemos decir que la etapa de Detección de Objetos

Estacionaros presenta diversos problemas que siguen sin resolverse.
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Appendix F

Presupuesto

1) Ejecución Material

� Compra de ordenador personal (Software incluido)
2.000 ¤

� Alquiler de impresora láser durante 6 meses
260 ¤

� Material de oficina
150 ¤

� Total de ejecución material
2.400 ¤

2) Gastos generales

� sobre Ejecución Material
352 ¤

3) Beneficio Industrial

� sobre Ejecución Material
132 ¤

4) Honorarios Proyecto

� 1800 horas a 15 ¤/ hora
27000 ¤
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5) Material fungible

� Gastos de impresión
280 ¤

� Encuadernación
200 ¤

6) Subtotal del presupuesto

� Subtotal Presupuesto
32.774 ¤

7) I.V.A. aplicable

� 18% Subtotal Presupuesto
5.899,3 ¤

8) Total presupuesto

� Total Presupuesto
38.673,8 ¤

Madrid, Julio 2011

El Ingeniero Jefe de Proyecto

Fdo.: Luis Alberto Caro Campos

Ingeniero Superior de Telecomunicación
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Appendix G

Pliego de condiciones

Este documento contiene las condiciones legales que guiarán la realización, en este proyecto, de

un sistema basado en discriminar objetos estáticos entre abandonados o robados en secuencias

de v́ıdeo-seguridad. En lo que sigue, se supondrá que el proyecto ha sido encargado por una

empresa cliente a una empresa consultora con la finalidad de realizar dicho sistema. Dicha

empresa ha debido desarrollar una ĺınea de investigación con objeto de elaborar el proyecto.

Esta ĺınea de investigación, junto con el posterior desarrollo de los programas está amparada

por las condiciones particulares del siguiente pliego.

Supuesto que la utilización industrial de los métodos recogidos en el presente proyecto ha

sido decidida por parte de la empresa cliente o de otras, la obra a realizar se regulará por las

siguientes:

Condiciones generales

1) La modalidad de contratación será el concurso. La adjudicación se hará, por tanto, a la

proposición más favorable sin atender exclusivamente al valor económico, dependiendo de

las mayores garant́ıas ofrecidas. La empresa que somete el proyecto a concurso se reserva

el derecho a declararlo desierto.

2) El montaje y mecanización completa de los equipos que intervengan será realizado total-

mente por la empresa licitadora.
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3) En la oferta, se hará constar el precio total por el que se compromete a realizar la obra

y el tanto por ciento de baja que supone este precio en relación con un importe ĺımite si

este se hubiera fijado.

4) La obra se realizará bajo la dirección técnica de un Ingeniero Superior de Telecomunicación,

auxiliado por el número de Ingenieros Técnicos y Programadores que se estime preciso para

el desarrollo de la misma.

5) Aparte del Ingeniero Director, el contratista tendrá derecho a contratar al resto del per-

sonal, pudiendo ceder esta prerrogativa a favor del Ingeniero Director, quien no estará

obligado a aceptarla.

6) El contratista tiene derecho a sacar copias a su costa de los planos, pliego de condiciones y

presupuestos. El Ingeniero autor del proyecto autorizará con su firma las copias solicitadas

por el contratista después de confrontarlas.

7) Se abonará al contratista la obra que realmente ejecute con sujeción al proyecto que sirvió

de base para la contratación, a las modificaciones autorizadas por la superioridad o a las

órdenes que con arreglo a sus facultades le hayan comunicado por escrito al Ingeniero

Director de obras siempre que dicha obra se haya ajustado a los preceptos de los pliegos

de condiciones, con arreglo a los cuales, se harán las modificaciones y la valoración de las

diversas unidades sin que el importe total pueda exceder de los presupuestos aprobados.

Por consiguiente, el número de unidades que se consignan en el proyecto o en el presupuesto,

no podrá servirle de fundamento para entablar reclamaciones de ninguna clase, salvo en

los casos de rescisión.

8) Tanto en las certificaciones de obras como en la liquidación final, se abonarán los trabajos

realizados por el contratista a los precios de ejecución material que figuran en el presupuesto

para cada unidad de la obra.

9) Si excepcionalmente se hubiera ejecutado algún trabajo que no se ajustase a las condiciones

de la contrata pero que sin embargo es admisible a juicio del Ingeniero Director de obras, se
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dará conocimiento a la Dirección, proponiendo a la vez la rebaja de precios que el Ingeniero

estime justa y si la Dirección resolviera aceptar la obra, quedará el contratista obligado a

conformarse con la rebaja acordada.

10) Cuando se juzgue necesario emplear materiales o ejecutar obras que no figuren en el pre-

supuesto de la contrata, se evaluará su importe a los precios asignados a otras obras o

materiales análogos si los hubiere y cuando no, se discutirán entre el Ingeniero Director

y el contratista, sometiéndolos a la aprobación de la Dirección. Los nuevos precios con-

venidos por uno u otro procedimiento, se sujetarán siempre al establecido en el punto

anterior.

11) Cuando el contratista, con autorización del Ingeniero Director de obras, emplee materiales

de calidad más elevada o de mayores dimensiones de lo estipulado en el proyecto, o sustituya

una clase de fabricación por otra que tenga asignado mayor precio o ejecute con mayores

dimensiones cualquier otra parte de las obras, o en general, introduzca en ellas cualquier

modificación que sea beneficiosa a juicio del Ingeniero Director de obras, no tendrá derecho

sin embargo, sino a lo que le correspondeŕıa si hubiera realizado la obra con estricta sujeción

a lo proyectado y contratado.

12) Las cantidades calculadas para obras accesorias, aunque figuren por partida alzada en el

presupuesto final (general), no serán abonadas sino a los precios de la contrata, según las

condiciones de la misma y los proyectos particulares que para ellas se formen, o en su

defecto, por lo que resulte de su medición final.

13) El contratista queda obligado a abonar al Ingeniero autor del proyecto y director de obras

aśı como a los Ingenieros Técnicos, el importe de sus respectivos honorarios facultativos

por formación del proyecto, dirección técnica y administración en su caso, con arreglo a

las tarifas y honorarios vigentes.

14) Concluida la ejecución de la obra, será reconocida por el Ingeniero Director que a tal efecto

designe la empresa.
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15) La garant́ıa definitiva será del 4% del presupuesto y la provisional del 2%.

16) La forma de pago será por certificaciones mensuales de la obra ejecutada, de acuerdo con

los precios del presupuesto, deducida la baja si la hubiera.

17) La fecha de comienzo de las obras será a partir de los 15 d́ıas naturales del replanteo oficial

de las mismas y la definitiva, al año de haber ejecutado la provisional, procediéndose si no

existe reclamación alguna, a la reclamación de la fianza.

18) Si el contratista al efectuar el replanteo, observase algún error en el proyecto, deberá

comunicarlo en el plazo de quince d́ıas al Ingeniero Director de obras, pues transcurrido

ese plazo será responsable de la exactitud del proyecto.

19) El contratista está obligado a designar una persona responsable que se entenderá con el

Ingeniero Director de obras, o con el delegado que éste designe, para todo relacionado

con ella. Al ser el Ingeniero Director de obras el que interpreta el proyecto, el contratista

deberá consultarle cualquier duda que surja en su realización.

20) Durante la realización de la obra, se girarán visitas de inspección por personal facultativo

de la empresa cliente, para hacer las comprobaciones que se crean oportunas. Es obligación

del contratista, la conservación de la obra ya ejecutada hasta la recepción de la misma,

por lo que el deterioro parcial o total de ella, aunque sea por agentes atmosféricos u otras

causas, deberá ser reparado o reconstruido por su cuenta.

21) El contratista, deberá realizar la obra en el plazo mencionado a partir de la fecha del

contrato, incurriendo en multa, por retraso de la ejecución siempre que éste no sea debido

a causas de fuerza mayor. A la terminación de la obra, se hará una recepción provisional

previo reconocimiento y examen por la dirección técnica, el depositario de efectos, el inter-

ventor y el jefe de servicio o un representante, estampando su conformidad el contratista.

22) Hecha la recepción provisional, se certificará al contratista el resto de la obra, reservándose

la administración el importe de los gastos de conservación de la misma hasta su recepción

definitiva y la fianza durante el tiempo señalado como plazo de garant́ıa. La recepción
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definitiva se hará en las mismas condiciones que la provisional, extendiéndose el acta

correspondiente. El Director Técnico propondrá a la Junta Económica la devolución de la

fianza al contratista de acuerdo con las condiciones económicas legales establecidas.

23) Las tarifas para la determinación de honorarios, reguladas por orden de la Presidencia del

Gobierno el 19 de Octubre de 1961, se aplicarán sobre el denominado en la actualidad“Pre-

supuesto de Ejecución de Contrata” y anteriormente llamado ”Presupuesto de Ejecución

Material” que hoy designa otro concepto.

Condiciones particulares

La empresa consultora, que ha desarrollado el presente proyecto, lo entregará a la empresa

cliente bajo las condiciones generales ya formuladas, debiendo añadirse las siguientes condiciones

particulares:

1) La propiedad intelectual de los procesos descritos y analizados en el presente trabajo,

pertenece por entero a la empresa consultora representada por el Ingeniero Director del

Proyecto.

2) La empresa consultora se reserva el derecho a la utilización total o parcial de los resultados

de la investigación realizada para desarrollar el siguiente proyecto, bien para su publicación

o bien para su uso en trabajos o proyectos posteriores, para la misma empresa cliente o

para otra.

3) Cualquier tipo de reproducción aparte de las reseñadas en las condiciones generales, bien

sea para uso particular de la empresa cliente, o para cualquier otra aplicación, contará

con autorización expresa y por escrito del Ingeniero Director del Proyecto, que actuará en

representación de la empresa consultora.

4) En la autorización se ha de hacer constar la aplicación a que se destinan sus reproducciones

aśı como su cantidad.
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5) En todas las reproducciones se indicará su procedencia, explicitando el nombre del proyecto,

nombre del Ingeniero Director y de la empresa consultora.

6) Si el proyecto pasa la etapa de desarrollo, cualquier modificación que se realice sobre él,

deberá ser notificada al Ingeniero Director del Proyecto y a criterio de éste, la empresa

consultora decidirá aceptar o no la modificación propuesta.

7) Si la modificación se acepta, la empresa consultora se hará responsable al mismo nivel que

el proyecto inicial del que resulta el añadirla.

8) Si la modificación no es aceptada, por el contrario, la empresa consultora declinará toda

responsabilidad que se derive de la aplicación o influencia de la misma.

9) Si la empresa cliente decide desarrollar industrialmente uno o varios productos en los que

resulte parcial o totalmente aplicable el estudio de este proyecto, deberá comunicarlo a la

empresa consultora.

10) La empresa consultora no se responsabiliza de los efectos laterales que se puedan pro-

ducir en el momento en que se utilice la herramienta objeto del presente proyecto para la

realización de otras aplicaciones.

11) La empresa consultora tendrá prioridad respecto a otras en la elaboración de los proyectos

auxiliares que fuese necesario desarrollar para dicha aplicación industrial, siempre que no

haga expĺıcita renuncia a este hecho. En este caso, deberá autorizar expresamente los

proyectos presentados por otros.

12) El Ingeniero Director del presente proyecto, será el responsable de la dirección de la apli-

cación industrial siempre que la empresa consultora lo estime oportuno. En caso contrario,

la persona designada deberá contar con la autorización del mismo, quien delegará en él las

responsabilidades que ostente.
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