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Abstract

In the context of machine learning methods, regularization has become an established

practice to control overfitting in the modeling process and to induce structure into the

resultant models. At the same time, the flexibility of the regularization framework has

provided a common point of view embracing classical and established learning models, as

well as recent proposals in the topic. This richness comes from its appealing simplicity,

which casts the learning process into a composite optimization problem formed by a

loss function and a regularizer; different models are obtained through the selection of

appropriate loss and regularizer functions.

This elegant modularity, however, does not come at no cost, as an adequate optimization

algorithm must be applied or devised in order to solve the resultant problem. While

general purpose solvers are directly applicable out–of–the–box in some settings, they

usually produce poor results in terms of efficiency and scalability. Further, in more

complex models featuring non-smooth or even non-convex loss or regularizer functions,

such approaches easily become inapplicable. Consequently, the design of appropriate

optimization methods becomes a key task for the success of a regularized learning pro-

cess.

In this thesis two particular cases of regularization are studied in depth. On the one

hand, the well established and successful Support Vector Machine model is presented

in its different forms. A careful observation at the current algorithmic solutions to

this problem shows that correcting hidden deficiencies and making a better use of the

gathered information can lead to significant improvements in running times, surpassing

state of the art methods. On the other hand, a class of sparsity-inducing regularizers

known as Total–Variation is studied, with wide application in the fields of signal and

image processing. While a variety of approaches have been applied to solve this class of

problems, it is shown here that by taking advantage of their strong structural properties

and adapting suitable optimization algorithms, relevant improvements in efficiency and

scalability can be obtained as well. Software implementing the developed methods is

also made available as part of this thesis.



Resumen

En el ámbito de los métodos de aprendizaje automático, la regularización se ha conver-

tido en una práctica habitual para controlar el sobreajuste en el proceso de modelización,

aśı como para inducir una estructura en los modelos resultantes. Al mismo tiempo, la

flexibilidad otorgada por este marco de regularización permite abarcar bajo un punto

de vista único tanto modelos de aprendizaje estándar en el área como propuestas re-

cientes. Esta riqueza está fundamentada en su simplicidad, que convierte el problema

del aprendizaje en un problema de optimización compuesto por una función de pérdida

más un regularizador. La selección apropiada de diferentes funciones de pérdida y reg-

ularizadores permite, por tanto, obtener toda una serie de modelos diferentes para cada

situación.

Esta elegante modularidad, no obstante, no está exenta de un coste, puesto que debe

aplicarse o diseñarse un algoritmo adecuado para resolver el problema de optimización

resultante. A pesar de que existen métodos estándar de optimización capaces de re-

solver directamente tal problema en muchos de los casos, generalmente estos métodos

tienen malos resultados en términos de eficiencia y escalabilidad. O lo que es peor, si la

función de pérdida o el regularizador resultan ser funciones no diferenciables o no con-

vexas, dando lugar a modelos más complejos, tales métodos suelen ser completamente

inaplicables. Por tanto, el diseño de algoritmos de optimización adecuados a los modelos

elegidos resulta ser una pieza clave en el éxito del proceso de aprendizaje regularizado.

En esta tesis se estudian en profundidad dos casos particulares de regularización. En

primer lugar, las Máquinas de Vectores de Soporte se presentan en sus diferentes formas,

las cuales son consideradas como modelos bien establecidos en el área. Mediante una

observación detallada de los algoritmos que resuelven este problema se detectan defi-

ciencias ocultas en los mismos, y se proponen formas de corregirlas mediante un mejor

uso de la información manejada por tales algoritmos, obteniendo mejoras significativas

en tiempos de ejecución. En segundo lugar se estudia la clase de regularizadores cono-

cida como de Variación Total, los cuales han sido ampliamente utilizados en los campos

de procesado de señal y de imagen para producir modelos de parámetros dispersos. A

pesar de que ya se han analizado múltiples formas de abordar esta clase de problemas,

en esta tesis se demuestra que haciendo uso expĺıcito de sus propiedades estructurales y

adaptando algoritmos de optimización apropiados pueden conseguirse mejoras relevantes

en eficiencia y escalabilidad. Como parte de esta tesis se incluyen también programas

implementando las soluciones algoŕıtmicas aqúı desarrolladas.
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Chapter 1

Introduction

“I almost wish I hadn’t gone down that rabbit-hole

and yet – and yet – it’s rather curious, you know, this sort of life!”

Alice

During the last decades computer technology has experienced extraordinary advances.

Computers, initially following their name in the most literal sense, consisted in just

machines to perform mathematical computations. The complexity of their components

and use made them only reachable to devoted experts and for very specific calculating

purposes, thus being not so different to industrial machinery. This early use of computers

is utterly striking when compared to their situation nowadays: computers are ubiquitous,

being present in almost every office and home. Current mobile phones, television, music

and video players, and even credit cards also make use of digital computation as their

keystone component. And even though the complexity of the circuitry forming this

technology has increased exponentially, their use is now widespread, having produced

an undeniable change in societies all over the world.

Two main factors can explain this tremendous change in the field. The first one are

the incredible improvements realized in microchip technologies, which have restlessly

augmented the computational power of hardware at an exponential rate year after year

since the early 70’s by incrementing the number of transistors contained in a Central

Processing Unit (CPU). This trend was already predicted in 1965 by Intel co-founder

Gordon E. Moore in what came to be known as Moore’s law [1]. This empirical law

states that every two years, the number of transistors in a CPU approximately doubles.

Figure 1.1 1 presents a chart of this predicted trend together with factual evolution

of microprocessors during the last decades: up to now the law has been surprisingly

1Image extracted from Wikipedia: http://en.wikipedia.org/wiki/File:Transistor_Count_and_

Moore%27s_Law_-_2008.svg

1

http://en.wikipedia.org/wiki/File:Transistor_Count_and_Moore%27s_Law_-_2008.svg
http://en.wikipedia.org/wiki/File:Transistor_Count_and_Moore%27s_Law_-_2008.svg
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Figure 1.1: Number of transistors for a series of CPU models during the last decades.
The dashed line represents the predictions by Moore’s law.

accurate. Surprisingly, not only because of it being a mere empirical law, but also

because such growth in technology is completely unprecedented.

The second factor of the generalization of computers corresponds to the more theoretical

side of computation, which has had strong implications in the applications of computers,

and ultimately, in the way they are used. Computer science has produced methods

and algorithms to make use of the available hardware technologies in order to solve

complex computing problems, devising ways to store, manage, and process data, and

studying human-computer interaction aspects to improve their usability and their ability

to aid humans in technical tasks. This has, thus, extended the use of computers to

countless applications, including word processing, accounting, multimedia, gaming, etc.

Probably the most outstanding example of a categorical jump in the usage possibilities

of computers was made by the invention of the Internet, which unleashed a genuine

technological revolution and completely changed the concepts of information search and

telecommunications.
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Undoubtedly, the recent advances in computer technology have given a wondrous new

shape to the world. However, and in spite of this, all the processing power of the most

recent processor fades when compared to the abilities of the best computing device cre-

ated by nature: the human brain. Counting up to around 85 billion adaptive processing

units in the form of neurons, the brain is able to address easily extremely complex tasks

such as learning, motion planning, language processing and image recognition, tasks only

clumsily approachable by state–of–the–art methods in computer science. All of these

problems share a common attribute: they cannot be easily defined in an exact, formal

mathematical way. Formally defining the complete structure of a language is a daunting

task, hardly able to take in consideration subtleties such as ironies. Computer-controlled

robotic arms and cameras have already been developed, but making such contraption

learn to play ping–pong by sheer observation seems an insurmountable challenge. The

reason of this is simple: regardless of how much microprocessor technology or com-

puter science have evolved, computers remain being machines to perform mathematical

computations, making them perfect candidates to solve tasks reducible to mathematical

problems, but poor approaches to work on more fuzzily defined problems.

Because of this, the field of computer science known as artificial intelligence has

pursued ways to imitate human intelligence through the use of computers. The question

is, however, how to define human intelligence. The famous Turing test [2] proposed

a way to determine whether a computer shows true intelligence: a human maintains a

conversation with a computer program, and if the human cannot determine whether he is

actually talking to another human or to the computer program itself, then that program

can be regarded as intelligent. Still, this definition of intelligence is also ambiguous and

controversial, and so up to now a formal satisfactory definition of intelligence has not

been attained. Because of this and the limitations of computers, most of the successful

research in the field of artificial intelligence has been focused on solving more specific

and well-defined problems, such as finding the shortest path between two points in a

predefined environment, or planning strategies for games with set rules – for instance

chess. Therefore, artificial intelligence algorithms generally address such problems by

analyzing the rules or properties defining the problem, and then planning strategies

aimed at solving them effectively, so that they might appear as “intelligent” solutions

for an observer.

An alternative approach to such problems is given by machine learning, which can

be regarded as a branch of artificial intelligence. Instead of having a predefined set of

rules defining the problem, what machine learning proposes is to collect data on different

strategies or inputs tried on the problem and the outcomes obtained, intending then to

discover what characterizes a good solution. More specifically, the problem is treated

as a black–box system producing an output y depending on an input x, following
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unknown and not necessarily deterministic rules. What machine learning does then is

trying to build a model which approximates the behavior of the system by just observing

a number of input–output examples. For instance, in the tic–tac–toe game a machine

learning approach would be oblivious to the actual rules of the game, just requiring

to collect data on a number of plays and their outcome (player’s choices and winner),

building then a model that captures the knowledge on when a set of player’s choices

leads to victory or defeat. This knowledge could then be used to produce an artificial

tic–tac–toe player performing winning strategies similar to the ones observed. Because

of this, what the computer actually does is learning how to solve a particular problem

by observation. This approach to problem-solving certainly seems more natural when

compared to the way humans or other living beings deal with their everyday life, in

contrast to a classic artificial intelligence approach. It also tries to imitate the adaptive

process of natural learning, which is performed in the brain owing to the plasticity of

its neurons.

Of course, collecting data on the problem is only part of the solution; the rest of the re-

sponsibility is placed on the learning algorithm. Since computer hardware completely

lacks the adaptability of brain neurons, the algorithm must be the adaptive component

performing the learning task, adjusting itself to the system being studied and producing

an appropriate model. Such algorithm should be able to infer (approximately), from the

limited set of gathered data, how the inputs to the system produce their outputs. As de-

tailed later on in the text, this can be done by selecting a general, flexible model, which

is then adjusted using the available data to produce similar outputs as the system under

study for the same set of inputs. The relevant point is that this adjustment procedure,

known as the training of the model, can be expressed in formal mathematical terms,

and is therefore computable. Or, in other words, the abstract problem of “learning”

can be put down into a form appropriate to be solved by computers, hence allowing

machines to learn.

This thesis presents the results obtained in the research of a series of topics in the field

of machine learning, more specifically, on some of the models and methods in regular-

ized learning. This first chapter provides an overview of the thesis, beginning with a

more detailed introduction to machine learning and regularized learning, following then

with the Support Vector Machine and Total–Variation regularization models, on which

this thesis has focused. At the end of the chapter the contributions of this thesis are

enumerated together with some indications to navigate through the rest of the chapters,

where the work done is presented in full detail.
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Collect data Choose features Choose model Training Validation

Figure 1.2: Design cycle of a machine learning solution.

1.1 Machine learning at a glance

Most of the times a machine learning approach is used to address a particular problem, a

design cycle such as the one shown in Figure 1.2 is adopted [3]. Since machine learning is

data-driven, the first step is always to collect data from the system under study, in the

form of a set of input patterns xi, i ∈ [1, . . . , N ], with their associated system outcomes

or targets yi, i ∈ [1, . . . , N ]. The particular form of these patterns and targets depends

on the system, as they might have been collected as numerical data, text, graphs, or

any kind of structure. Because of this, most of the times a preprocessing of such data

is performed to cast them into vectors, such that xi ∈ RD. This is done by choosing

relevant features that could explain the behavior of the system and can be expressed

as scalars. This representation eases the following steps, although models using other

forms of input patterns abound as well. How to choose relevant features is an extensive

research topic, depending both on knowledge of the system being modeled and also on

numerical approaches to find well-performing features.

A common and key assumption about the data is that they are independent and

identically distributed (i.i.d) random variables. This implies that all the data patterns

gathered have been generated from the same probability distribution and, in particular,

that other possible patterns in the system to model also follow this distribution. If this

assumption is met, adapting the model to the available data provides some guarantees

on its performance over new data patterns. More details on this are given later on in

Section 1.2.

After processing the data, the next step is selecting an appropriate model. One simple

example of such would be a linear model, which assumes that the system behaves

linearly, and takes the form

ŷ = f(x) = w · x+ b,

that is, for a particular input x the model predicts that the output of the system will be

ŷ, and this estimate of the output is computed by weighing each of the input variables

xj , j ∈ [1, . . . , D] with a weight vector w, and then adding an independent bias term

b. θ = {w, b} represents the parameters of this model, which should be adjusted so that

the output estimates result similar to the actual system outputs, i.e. ŷi ' yi ∀i. To
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Loss function Formula

Squared Error
∑

i (f(xi)− yi)2 = ‖f(x)− y‖22

Absolute Error
∑

i |f(xi)− yi| = ‖f(x)− y‖1

Maximum Error maxi {|f(xi)− yi|} = ‖f(x)− y‖∞

Classification Error card ({sign(f(xi)) 6= yi}) = ‖sign(f(x))− y‖0

Logistic loss
∑

i log
(
1 + e−yif(xi)

)
Hinge loss

∑
i max {1− yi(w · xi + b), 0} =

∑
i |1− yi(w · xi + b)|+

Table 1.1: A sample of popular choices for the loss function. f(x) represents the
vector resulting from applying the model function f(·) over each input pattern xi, and
sign(z) returns −1 if z ≤ 0, +1 else. Compact formulations using a norm are also shown

when possible.

do so, as part of the model selection a choice of a loss function L(θ) must be made

as well. The purpose of this function is to measure how accurately a particular choice

of the model parameters θ represents the system under study. A classical example of

loss function is given by the squared error loss, presented in Table 1.1. Since the loss

grows when the model produces inaccurate outputs, the problem of learning the best

model parameters can be written as the optimization problem

min
θ
L(θ),

that is, finding the model parameters θ producing a loss as small as possible. This

procedure is known as training the model, since it is at this step where the model

learns and adapts itself to the data. Following the previous example of a linear model

and employing the squared error loss produces the optimization problem

min
w,b

∑
i

(w · xi + b− yi)2 ,

which is widely known as the linear least squares method for fitting an unknown

function g only known through a set of observations {xi, g(xi)} ∀i ∈ [1, . . . , N ]. That is,

this popular method is nothing but learning a linear model f(·) for the system g(·) by

using a squared error loss.

The choice of the loss function to use depends on the problem or system to model.

Table 1.1 presents a selection of representative loss functions. This variety comes from
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either functions adequate for specific tasks or from different assumptions of the noise

present in the system. For instance, the already mentioned squared loss assumes that

such noise follows a gaussian distribution, that is, the observed outputs yi relate to

the real outputs of the system g(xi) as yi = g(xi) + ni, where ni is a random draw

from a gaussian distribution with unknown mean and variance. If such assumption

is met, minimizing the squared loss results in the well-known maximum likelihood

estimator (MLE) [4], hence handling noise appropriately. Other loss functions make

different assumptions on the noise, and so their suitability depends on the actual noise

distribution of the system being studied.

What should be stressed now is that the choice of loss function modifies the optimization

problem to solve in order to learn the model parameters. While in the case of the squared

loss a solution can be found analytically, for instance the optimization of the hinge loss

requires to make use of a numerical optimization algorithm. This in turn implies that

the training phase of the model will require more or less computational effort depending

on the loss choice made, but also on the way the resulting optimization problem is

solved. More efficient optimization algorithms will result in reduced training times.

This is relevant because the size of the optimization problem scales with the size of the

available data, and in large-scale settings where hundred of thousands or millions of

data patterns are available it might be unfeasible to complete the training when a poor

optimization algorithm is used. Also in on–line settings where a model must be trained

on–demand with recently received data in a predefined amount of time, efficiency of the

training procedure is paramount to ensure applicability of the model.

It must be mentioned that non-linear models, in contrast to the already introduced

linear model, are also possible. Non-linear models are characterized for performing

non-linear operations on their input variables, thus producing more complex and richer

approximations to the system being modeled. However the way these non-linear oper-

ations are made is not predefined, hence giving rise to a wide variety of strategies to

approach non-linearity. In this thesis non-linear models are approached using the kernel

trick technique, which is presented later on in Section 2.1.2.

The final step in the design cycle is validation. The model is tried out on a different

set of data than the one used for training, and its quality is measured by again making

use of a loss function. If poor results are obtained, this might be due to a bad data

collection, a failure to identify relevant features, a bad choice of the model or even

a poor solution to the optimization problem posed by the training. Therefore these

previous steps should be revised and repeated again as many times as necessary until

good enough results are obtained in validation. How long it takes to obtain good results
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depends on the particular application, but a good practice is to compare against other

approaches solving the same or a similar problem.

Up to this point machine learning has been discussed from a general perspective. How-

ever, in practice several subfields of machine learning address different kinds of problems

or tasks, adapting the design steps above to the particular task being addressed. Prob-

ably the most common task in machine learning is that of pattern classification [3].

This assumes that each pattern can be given a label, so that the pattern can be thought

as belonging to a particular group or class. For example, an experienced medical doctor

is able to classify his patients as healthy or ill by looking at the numerical results from

a blood test. It would be desirable then to have an automatic method able to perform

this intelligent decisions as well, e.g. for supporting decisions of less-experienced doctors.

From a machine learning point of view, the experienced medical doctor is the system

to be imitated, its inputs being the blood tests reports and its outputs the decisions on

how to classify the patients. The key difference with the previous general setting is that

the outputs are limited to yi ∈ {healthy, ill}, which could be represented numerically as

yi ∈ {−1, 1}. That is, outputs are limited to belong to a fixed set.

While in principle any kind of model, and in particular of loss can be used for the

classification setting, some of them work better. For instance, using a squared error loss

is probably not the best choice for a binary classification problem like the one above,

as a model producing ŷi ' −0.8 and ŷi ' 0.7 for every healthy and ill patient is not

really worse than another producing exactly ŷi = −1 and ŷi = 1 for healthy and ill,

since in both cases the values of ŷ already give a perfect guess about the class of each

patient. Because of this, using the classification error as shown in Table 1.1 would

be a better loss choice. Unfortunately, this loss is extremely difficult to optimize since

it reduces to the hard L0 norm (more details about norms in Section 1.2). Therefore,

this loss is usually only employed for validation, where there is no need to solve an

optimization problem. For training, a surrogate loss approximating the classification

error is preferred, such as the logistic or the hinge losses.

Figure 1.3 shows an example of a classification problem. The resulting model constitutes

a separating hyperplane, since when validating the model every data point x such

that w · x + b > 0 is assigned to the positive (+1) class, whereas any data point such

that w ·x+ b < 0 is assigned to the negative (−1) class. Since the problem only has two

inputs, this is visually appreciated as a line splitting the inputs space R2 into two parts,

one for each class.

Another frequent task addressed in machine learning is regression or function approx-

imation, where the outputs yi might take any value in R. In this setting those loss
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Figure 1.3: An example of a classification problem. Input variables are blood pressure
an erythrocytes density, while the output is whether the patient is healthy or ill. Blue
dots stand for data from healthy patients, red for ill ones. A linear model producing

the separating hyperplane marked in gray is able to correctly classify patients.
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Figure 1.4: An example of a regression problem. A linear model finds a linear
function minimizing the squared error of the data.

functions designed for classification are no longer useful, and thus squared error, abso-

lute error or maximum error losses (Table 1.1) are put into use. When using a linear

model, the linear function minimizing such loss function over the data will be the result

of the training procedure. An example is depicted in Figure 1.4.

Other tasks of application in machine learning depend on the way the targets yi are

provided. To name a few: in semi–supervised learning [5] the targets are only
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Ground truth Training dataTraining data Model

Ground truth Training dataTraining data Model

Figure 1.5: Example of overfitting due to excessive model complexity (first row) and
noisy data (second row).

known for a subset of the input patterns. Clustering [3] tries to construct clusters or

groups without any kind of target information, using just input values and similarity

measures between patterns such as distances. Multi–task learning [6] solves a number

of problems at once, making use of hidden relationships to improve each of the individual

models. In spite of this diversity, all of them follow the design cycle above, and a correct

choice of model and loss function is critical.

This thesis focuses on the tasks of classification and regression when approached with

a particular family of models. Before introducing them, though, a brief review of the

topic of regularization is mandatory.

1.2 Regularization

While the goal in any machine learning application is to build a model as accurate as pos-

sible, quite often the available data are scarce, not providing a thorough representation

of every aspect of the system under study. Even more, the data are usually affected by

noise, its cause being inaccuracies in the data collection process or a non-deterministic

behavior of the system. These effects, present in any real-world machine learning prob-

lem, contribute to the difficulty of building an appropriate model, and what is more,

can lead to an undesirable effect: overfitting.

Overfitting is better understood by taking a look at the simple but revealing example

in Figure 1.5. The real function of inputs and outputs followed by the system (ground

truth) is a simple parabola, nevertheless a regression model fails to fit it properly. In
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the first case (top line) the constructed model is providing a much more complex ap-

proximation – in terms of non-linearity – of the system than the real ground truth,

thus producing inaccurate predictions for regions where training data were unavailable.

Conversely, in the second case (bottom line) the model is also fitting a parabola, though

the noise in the measurements of training data leads to an inaccurate model.

Two lessons can be learned from this situation. First, striving to find a perfect fit of

noisy training data might produce undesired results. Noise can blur the ground truth

of a system in a way that the relationship between explanatory features and targets

might seem different than what it really is. To place complete trust in the data under

this situation can therefore lead to unrealistic models. Second, the training process will

ignore those areas of the input space devoid of or lacking enough data, as any changes of

the model in them will produce none or little impact in its performance over the training

set. The model is hence free to roam in these unpopulated areas, and thus will tend to

generate well-behaved solutions near the training points, but any kind of behavior away

from them, which can result in more complex models, especially if non-linearities in the

model are allowed.

To understand the perils of this complexity, it must be realized that while simple models

such as straight lines or parabolas are governed by a reduced set of parameters, the be-

havior of complex models such as higher order polynomials is ruled by a larger parameter

set. Intuitively, a larger number of parameters to adjust involves a harder training task

as well as a higher probability of producing a wrong fit. This intuition popularly takes

form as the well known Occam’s Razor, which states that when a phenomenon can

be explained by several hypothesis, the simplest of them is more likely to be correct.

Though this statement lacks of formal justification in general, it finds a realization in

the field of classification models through statistical learning theory, also named after

its authors as Vapnik–Chervonenkis (VC) theory [7–9]. This field of knowledge studies

the theoretical properties of machine learning methods for pattern classification, formal-

izing the concept of classifier complexity as the Vapnik–Chervonenkis dimension

(VC dimension).

Definition 1.1 (VC dimension). Given a binary classification model f ruled by a set

of parameters θ, f is said to shatter a set of points (x1, · · · , xN ) if for every possible

assignment of labels to these points there exists a choice of θ such that f incurs in no

classification error. Following this, the VC dimension h of f is given as the maximum

number of data points that can be shattered by f .

The usefulness of the VC dimension shows up when supposing that the true relationship

between inputs x and outputs y is given by some probability distribution P (x, y),
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so that the available training data are in fact a random draw from this distribution. It

would be desirable, thus, to minimize the expected error over all possible outcomes from

this distribution. This notion of expected error corresponds to the risk of the model

[10], and is defined as

R[f ] =

∫
1
2 |sign(f(x))− y| dP (x, y).

For a binary classification problem, i.e. y ∈ {−1,+1}, the loss employed here equals the

classification error in Table 1.1. The problem is that, of course, the distribution P is

not known (otherwise the problem would be already solved), and so only the empirical

risk can be evaluated

Remp[f ] =
1

N

N∑
i=1

1
2 |sign(f(xi))− yi| ,

which is the classification error in the training data set. With these definitions and the

measure of complexity given by the VC dimension, the following theorem results [10, 11]

Theorem 1.2. Suppose a probability distribution P (x, y) producing the data, and a

training set of N patterns identically and independently distributed (i.i.d) drawn from

P . Then, if the model has VC dimension h < N , with probability of at least 1 − δ the

following holds 2:

R[f ] ≤ Remp[f ] +

√
h ln(2N

h + 1)− ln(4
δ )

N
.

In other words, a probabilistic upper bound on the error of the model for unseen data can

be given, which depends on the error over the training data but also on the complexity

of the model. The more complex the model is, the larger this upper bound results.

Therefore, better guarantees on the error for unseen data (i.e. a test set) are obtained

by refraining from producing complex models.

Regularization appears as a technique to control the complexity of the resulting model

during the training process, as well as to adjust the amount of confidence placed on the

training data and thus reduce the impact of noise. Regularization can be formally defined

by modifying the training optimization problem as

min
θ
L(θ) + λr(θ) (1.1)

2The probabilistic uncertainty comes from the fact that the training set is subject to randomness,
since it is a random draw of N patterns from the P (x, y) distribution.
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Regularizer Notation Formula

Lp or lp norm ‖θ‖p (
∑

i |θi|p)
1/p

lpp ‖θ‖pp (
∑

i |θi|p)

Block Mixed p, q norm ||θ||p,q
(∑

a (
∑

b |θab|p)
q/p
)1/q

Total–Variation TVp(θ)
(∑N

i=2 |θi − θi−1|p
)1/p

Indicator function ιC(θ)

{
0 if θ ∈ C
+∞ otherwise

Table 1.2: A sample of popular choices for the regularizer function.

where the new term stands r for a regularizer which penalizes the complexity of the

model, and λ is the regularization parameter whose value determines whether more

importance is given to the regularizer or to the loss function. Similarly to the loss func-

tion, a wide range of options have been presented in the literature for the regularizer,

a number of them with remarkable success. Some of these regularizers are briefly pre-

sented in Table 1.2. The most common of them is recognized as the Lp norm, even more

for the specific choices of p = 1 or p = 2, which imposes a complexity penalty for every

model parameter different from zero. In fact, by selecting the squared error loss and the

L1 regularizer for a linear model, the resulting expression

min
θ=(w,b)

‖Xw + b− y‖22 + λ‖w‖1. (1.2)

can be recognized as the well-established Lasso model [12], which modifies the complex-

ity by reducing the number of features used by the model. Note how the bias b is not

included in the regularizer, since it does not make use of the input features.

Another extended model is produced by applying an l22 regularizer to the same loss,

min
θ=(w,b)

‖Xw + b− y‖22 + λ‖w‖22,

which is known as the Regularized Least Squares model [4].

More complex forms of regularization like block mixed norms or Total–Variation

are employed to impose certain structural properties in the resulting model parameters

θ, and find success in those situations where exploitable prior information about the
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problem is available. More details about these are presented in Section 1.3. Also, in

some settings optimizing an lpp regularizer is easier than an Lp norm, and so such variants

are sometimes preferred.

Special attention must be paid to the indicator function regularizer, which provides a

mean to cast constrained optimization problems as unconstrained ones and vice versa,

as

min
θ

L(θ) + λ ιC(θ) ≡

{
minθ L(θ)

s.t. θ ∈ C
.

The rationale behind this transformation is simple: as long as L(θ) takes a finite value

for some choice of θ, the minimum of the problem cannot be any θ /∈ C, as for those the

value of the objective function turns out to be +∞. Therefore, constraining the search

space to θ ∈ C leaves the minimum unchanged. Similarly, removing then the indicator

function from the objective doest not change the minimum, since it only takes the value 0

in the constrained region. Combining the indicator function with other regularizers such

as the Lp norm produces constrained versions of them which, depending on the context,

might result in more approachable optimization problems. For example, applying the

indicator function over the L2 norm produces

min
θ

L(θ)

s.t. ‖θ‖2 ≤ λ,

i.e. finding the parameters minimizing the loss function constrained to an euclidean ball

of radius λ. This particular problem frequently appears as an intermediate step in the

context of Trust Region methods [13], and so efficient solvers are available for it.

More insights into this problem are given in Chapter 4.

1.3 Inducing structure through regularizers

While the basic reason for regularization is to avoid the dangerous overfitting effect,

regularization can also be used to impose structure into the parameters of the resulting

model. By structure it is understood that the model parameters are influenced, either

in a direct or indirect way, to present certain properties of interest in the resulting

model. Guaranteeing these properties might benefit the exploitation of the model or
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even its accuracy if prior information about the system to be modeled is available.

Thus, regularization can also be interpreted as including in the model a prior over

the parameters [4], that is, assuming a particular distribution of the model parameters

before taking the data into account, and modifying it only if such data suggests a different

distribution. In regularization the strength of such modification is ruled by the value of

the regularization parameter λ.

Probably the most well-known example of structure is sparsity, and can be defined

as the number of model parameters with a value of zero after the training procedure,

card({θi = 0}). Sparsity is a desirable property in on–line settings, where for a given

entry the model must be able to produce an output under strict time constraints. Sup-

posing, for example, a linear model ŷ = w ·x+ b, a sparse w allows to compute the same

output as ŷ =
∑

i|wi 6=0wixi + b, hence reducing the number of floating point operations

needed and therefore the computational time required by the model.

The aim of the already introduced Lasso model (Equation 1.2) [12] is precisely the

construction of a sparse linear model, and for this purpose an L1 regularizer is employed.

Indeed, Lp regularization is able to induce sparsity for some choices of p. A clear

intuition about this fact can be obtained by taking a glance at the contour lines for

different Lp regularizations shown in Figure 1.6. For any choice of p, the Lp regularization

can be seen as penalizing the distance from the parameter vector to the origin, measured

using an Lp norm. In this way, L2 regularization penalizes the euclidean distance to the

origin, thus producing spherical contour lines.

The shape of these contour lines is notably changed as the value of p tends to 1

or ∞. On the one hand for the L∞ case the regularizer turns out to be ‖θ‖∞ =

limp→∞ (
∑

i |θi|p)
1/p = maxi(|θi|), implying that only the largest parameter is penalized,

as is seen in Figure 1.6(d). This regularization approach is severely prone to produce

non-sparse models, as the rest of parameters are allowed to take any value in the range

[0,maxi(|θi|)] without modifying the value of the regularizer; the values minimizing the

loss function will then be chosen.

On the other hand, the L1 regularizer produces larger output values in those situations

where a number of parameters deviate from zero. This fact is observed in the contour

lines of Figure 1.6, where the red point results in larger penalties for smaller p. Con-

versely, the green point shows exactly the same penalty under any norm. The reason

is that the smaller the norm the more contracted the regions become where more than

one parameter differ from zero. Therefore, an L1 regularization fosters the sparsity of

the final model.
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Figure 1.6: Contour plots for different choices of the Lp norm regularizer. Reference
points (−1, 0) (green) and (0.5, 0.5) (red) are shown as well to stress the different amount

of penalty imposed by each norm.

It is also worth noting that p ∈ [0, 1) choices are also possible, producing contour

plots such as the one shown in Figure 1.7 and thus promoting even sparser models.

In the limit case known as L0 norm where p → 0 the regularizer turns out to be

‖θ‖0 = limp→0 (
∑

i |θi|p)
1/p = card({θi = 0}), which is nothing but a measure of spar-

sity. Unfortunately this class of regularizers no longer fulfills the properties of a norm

3, and furthermore, produces non-convex optimization problems. Because of this, the

resulting problems are significantly harder to optimize, and so regularizers in the range

3In spite of this, the L0 regularizer is still generally named as L0 norm as a particular case of the Lp
norm.
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Figure 1.7: Contour plot for L0.5 regularizer. Reference points coincide with those
of Figure 1.6.

p ∈ [1,∞) are preferred. It should be noted in passing, though, that some works in

approximate L0 optimization have shown promising results [14].

More complex structural properties can be induced into the model parameters when

prior information is available. A good example of this is the block mixed p, q norm

(Table 1.2), in which the parameters of the model are partitioned in blocks, applying

an Lp norm over each block and then an Lq norm over the resulting values. Once

again, depending on the choices for the particular p and q norms being used a different

flavor of the regularizer is obtained, the most popular being group lasso [15], taking

p = 2, q = 1. This choice enforces sparsity among blocks while allowing non-sparse

coefficients inside blocks. As a result, full blocks of parameters tend to be zero or non-

zero as a whole, thus obtaining group-sparsity in the final model. This setting is of

special interest in, for instance, remote sensing applications where the available data is

gathered through a number of sensors, each of them providing several measurements.

Grouping these measurements by sensor will rule out from the model those sensors

producing non-essential information, hence reducing the number of data sources needed

by the model, which in turn can produce savings in hardware or communication costs.
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A regularizer of special interest for this thesis is the Total–Variation regularizer,

which is widely used in the context of DNA microarray data classification, and signal

and image processing. Instead of penalizing the value of each model parameter, TV

penalizes the differences in magnitude of consecutive coefficients. The reasons for using

this kind of penalty are given in full detail in Chapter 4, but for now it suffices to

say that this allows to encode prior knowledge about the problem, hence allowing to

obtain superior models in some areas of application. However, optimizing a model with

Total–Variation regularization is not straightforward, and so it is of interest to design

efficient optimization algorithms to do so. While proposals abound in the literature,

in this thesis methods outperforming the state–of–the–art are developed by making a

careful and explicit use of the structure of the resulting optimization problem.

Finally it must also be mentioned that in many applications several regularizers are

combined into the same model so as to join their strengths, defining then an optimization

problem in the form

min
θ
L(θ) +

∑
i

λiri(θ).

The tuning of the penalty parameters λi allows to configure the stress placed on each

regularizer, consequently adapting the structure of the resulting model. Successful mod-

els making use of this strategy are the elastic net [16], which makes use of an L1 + L2

regularizer, or the fused lasso [17], employing a TV1 + L1 regularization. Insights into

this model are given later on in Section 4.2.

1.4 Support Vector Machines

One of the most successfully applied regularization instances, as well as another point

of interest in this thesis, are the Support Vector Machines (SVM) [9, 10, 18]. From

the point of view of regularization the SVM model is the conjunction of a hinge loss and

a l22 regularizer applied to a linear model, resulting in

min
w,b

∑
i

|1− yi(w · xi + b)|+ +
λ

2
‖w‖22.

It is, however, more common to find its equivalent form

min
w,b

1
2‖w‖

2
2 + C

∑
i

|1− yi(w · xi + b)|+, (1.3)
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Figure 1.8: An example of a separating hyperplane obtained by the perceptron
model.

with C = 1
λ the penalty parameter.

This particular choice of the loss and regularizer functions is not fortuitous. On the

contrary, its motivation can be explained by following a geometric, intuitive reasoning.

To do so, it is needed to travel back to one of the classical machine learning models: the

perceptron.

First proposed by Rosenblatt [3, 19], the perceptron is an attempt to emulate the synap-

tic behavior of a neuron, able to generate an electric pulse when receiving a certain

pattern of inputs. This is modeled by assuming that the response of the neuron is a

simple linear combination of its inputs, ŷi = w · xi + b. By means of a training dataset,

the coefficients (w, b) are adjusted so that the neuron activates (ŷi > 0) for the desired

samples. From the viewpoint of machine learning the perceptron is a model aiming

to solve a classification problem by finding a separating hyperplane able to attain zero

classification error, i.e.

findw,b s.t. (w ·Xi + b)yi ≥ 0 ∀ i.

Of course, and as pointed out by the famous work of Minsky and Papert in [20], such

thing is only feasible for those problems which are linearly separable in nature, an

example of such being shown in Figure 1.8. For problems requiring a non-linear model

the perceptron fails to find an acceptable solution, or even a solution at all due to the

non-convergent behavior of its associated training algorithm. In order to solve these

drawbacks the perceptron was extended to emulate several layers of neuronal activity,

each neuron able to generate a non-linear combination of its inputs. The result of this

effort was the Multilayer Perceptron (MLP) model [3], arguably one of the most

applied methods in the history of machine learning. It is, however, a different extension

of the perceptron that leads to the SVM model.
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Figure 1.9: An example of a maximum margin separating hyperplane.

A single look at the perceptron model is enough to realize that, if a solution to the prob-

lem exists, it is probably not unique. Indeed, any hyperplane able to correctly separate

both classes will be an optimal solution, and as such, as good as any other “separating”

choice of parameters. This assertion, though, proves to be wrong in practice. A clear

intuition of this fact is obtained by taking a look at another, also optimal, solution of

the perceptron model presented in Figure 1.9: this hyperplane seems to do a better job

at separating the classes, even though it achieves the same misclassification error as the

previous example. The reason for this is that in the first example the chosen hyper-

plane lies too close to some of the data points. If the data were noisy – and thus not

fully reliable – or a small disturbance in the model parameters took place, this choice

of parameters would be prone to errors in out-of-training data. Conversely, the second

example would present smaller sensitivity to these issues.

This intuitive idea is formalized under the concept of large margin classifiers [21].

Instead of finding any separating hyperplane, the model is modified to seek the clas-

sifier with largest margin among those solving the problem. The margin is defined as

the distance from the separating hyperplane to the nearest data point, which through

geometric arguments turns out to be

m = min
i

yi(w · xi + b)

‖w‖2
.

Seeking a classifier with large margin is desirable, since it is an effective way of controlling

the VC dimension of the model [10], and thus, avoiding overfitting (Section 1.2). Fol-

lowing these ideas the perceptron can be extended to seek the largest margin separating

hyperplane, as

max
w,b,m

m s.t.
yi(w · xi + b)

‖w‖2
≥ m ∀i,
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i.e. it is not only required that every point is correctly classified, but also to have a

distance to the separating hyperplane larger or equal to the margin. An equivalent and

more approachable form of this problem [18] is given by

min
w,b

1
2‖w‖

2
2 s.t. yi(w · xi + b) ≥ 1 ∀i,

where the margin does not appear explicitly, but is nevertheless maximized owing to the

minimization of ‖w‖22 while keeping every data point at an (unnormalized) distance of

1 from the hyperplane.

Only one more step is needed to arrive to the SVM model, and this step is once again

motivated by the possible presence of noise. Note that the present model requires for

every data point to be correctly classified as well as to meet the margin requirement.

These kind of models are sometimes known as hard margin classifiers as an opposite

to soft margin classifiers, which tolerate violations of the margin condition up to

a degree as a mean to produce a better model. Intuition again leads to think that a

soft margin classifier could behave better in some situations, e.g. it might well happen

that, even if the classification problem is linearly separable, this property is lost in the

training set due to noisy data. It is clear, though, that the ground truth is still linear,

and so must be the model. Following these ideas the previous model is adapted as

min
w,b,ξ

1
2‖w‖

2
2 + C

∑
i

ξi s.t. yi(w · xi + b) ≥ 1− ξi , ξi ≥ 0 ∀i, (1.4)

where a violation ξ of the margin constraints is allowed. Attention must be paid to

the fact that two different objectives are being pursued: obtaining a maximum margin

classifier while keeping these violations at bay. These objectives are balanced through

the penalty parameter C, which will be needed to be tuned according to the nature of

the problem at hand. Large values of C will place most of the weight of the model in

the shrinkage of the violations, thus approximating a hard margin classifier. On the

other hand small values of C will allow larger violations of the classification constraints

for the sake of a larger margin. An example of a solution obtained by this soft margin

perceptron is shown in Figure 1.10.

Equivalence between this last formulation and the SVM model in Equation 1.3 can now

be established by noting that, at the optimum of Equation 1.4, ξi = 0 if xi fulfills the

margin condition, while ξi = 1−yi(w ·xi+b) if it does not. Consequently the substitution

ξi = |1− yi(w · xi + b)|+ can be applied, thus obtaining Equation 1.3.
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Figure 1.10: The soft margin perceptron is able to find a good solution in a situation
where noise blurs the linearity of the data.

What can be extracted from this evolutionary trip from the perceptron to the SVM is a

collection of sound ideas that justify the use of a hinge loss + squared L2 regularizer as a

reasonable classification model: adaptability, margin maximization and noise tolerance.

These ideas, together with a number of useful extensions to be discussed later make

the SVM a solid choice for modeling classification, regression and novelty detection

problems, either for linear or non-linear data. A more thorough discussion of these

topics is presented in Chapter 2. Although a vast number of algorithms have already

been proposed in the literature to efficiently solve the optimization problems posed by

the SVM in each one of its forms, active research still continues to seek better methods

and approaches; this thesis also contributes to this field, as shown in Chapter 3.

1.5 Thesis contributions

As seen in the preceding sections, regularization presents a general framework for learn-

ing that prevents overfitting and allows to induce structure in the resulting model pa-

rameters. Under this general framework the particular models of the Support Vector

Machine and the Total-Variation regularization take place, both of them being well es-

tablished in their areas of application. It is, however, from the point of view of the

optimization problems posed by these models where research interests remain active,

seeking more efficient, scalable or practical algorithms to solve them. Following these

interests, the contributions of this thesis can be summarized as:

• A thorough analysis of the strong points and weaknesses of the available algorithms

for SVM training, in particular the current state–of–the–art Sequential Minimal

Optimization (SMO) method for non–linear SVM solving.
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• The proposal and analysis of a number of modifications to the SMO algorithm

seeking to improve its efficiency.

• An analysis of the structure of the Total-Variation regularization problem from

the point of view of convex optimization and proximity operators theories.

• The development of new, efficient algorithms for Total-Variation regularization

and some of its applications making use of this analysis.

• Experimental results supporting the improvements in performance of the new

methods for SVM and Total-Variation solving.

• Software implementations of such methods.

The rest of this thesis is organized as follows. Chapter 2 presents a detailed review

of the theory behind the Support Vector Machine model in its different variants and

their associated optimization algorithms. Following this, in Chapter 3 a new series of

algorithms to improve SVM solving is presented. Addressing the topic of Total-Variation

regularization, Chapter 4 presents the insights and results obtained through the work in

this area. Finally, Chapter 5 states the conclusions of this thesis and suggests possible

lines of further work. In addition to all of this, Appendix A presents a brief review of

the journal publications and conference contributions produced as a result of the work

for this thesis.





Chapter 2

Theory and algorithms for

Support Vector Machines

“If you only read the books that everyone else is reading,

you can only think what everyone else is thinking.”

Haruki Murakami

This chapter consists of a review of a number of advanced though essential concepts

in the field of Support Vector Machines, which form the basis needed for the contri-

butions presented in Chapter 3 of this thesis. First, the notions of convexity, duality

and kernelization in SVMs are introduced. These properties provide base elements for a

deep understanding of the structure and characteristics of the SVM optimization prob-

lem. Next, a number of SVM-like models developed in the literature to address other

machine learning tasks are introduced, together with a general SVM formulation con-

taining all of them. All the following discussions are made in terms of this generalized

formulation. Third, a geometric approach to SVM models is presented, providing fur-

ther insights into this problem. Finally, a review of SVM training algorithms is included,

placing special stress in the Sequential Minimal Optimization method, which is regarded

as the current state-of-the-art for non-linear SVM training.

2.1 Properties of the SVM model

As stated in Section 1.4, the Support Vector Machine can be understood as a regulariza-

tion problem in which the hinge loss is selected for the loss function and a l22 regularizer

is applied,

25
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0 1-1
Figure 2.1: Depiction of hinge loss function Li(w, b) for a single pattern xi. A
linear penalty is applied to misclassified patterns, but also to correctly classified ones
if the classifier is not “sure enough” (output ≥ 1) of its prediction. A point of non-

differentiability is present at yi(w · xi + b) = 1.

min
w,b

1
2‖w‖

2
2 + C

∑
i

|1− yi(w · xi + b)|+. (2.1)

The motivations behind the choice of this particular model have already been discussed.

It should be realized now that selecting a model for the machine learning task at hand is

only the first step of the model construction process. Once the model to use is expressed

as an optimization problem (as is Equation 2.1) an appropriate optimization algorithm

should be devised to solve this problem and produce the model parameters. Failing to

find an adequate algorithm might well result in inefficient or unstable methods unfit for

application in any real purpose scenario. It is therefore mandatory to apply or design

proper optimization algorithms in order to obtain practical models.

From the point of view of optimization theory, the SVM model can be regarded as

a quadratic problem (QP), as the function to minimize (or objective function,
1
2‖w‖

2
2 + C

∑
i |1 − yi(w · xi + b)|+) is a quadratic function w.r.t. any of the variables

to optimize (w,b). This class of problems is, in general, relatively easy to solve through

the theory of convex optimization, to be addressed later. Unfortunately, the objective

function here also features the non-smooth property, or in other words, it is not dif-

ferentiable (smooth) at every point of its domain. This lack of smoothness originates

from the hinge loss, which as shown in Figure 2.1 is non–differentiable at the point

yi(w · xi + b) = 1. Non-smooth problems are, in general, harder to solve than smooth

problems, though as shown later this can be circumvented easily by rewriting the prob-

lem in a more suitable form.

In what follows it is shown how the convexity of the SVM problem allows to make use

of duality, and so exploit the structure of the problem. The kernelization strategy
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is also introduced, which allows to produce non-linear models out of the very same

SVM problem. All of these concepts prove to be essential for the proper design of SVM

optimization algorithms.

2.1.1 Convexity and duality

As commented before, the SVM optimization problem falls into the category of the well

studied convex optimization problems [22, 23]. A convex optimization problem can

be expressed in the form

min
x

f0(x) (2.2)

s.t. fi(x) ≤ bi, i = 1, . . . ,m,

where the objective function f0 and every constraint fi is a convex function, i.e. meets

the convexity property fi(αx+βy) ≤ αfi(x)+βfi(y) for any α, β ≥ 0, α+β = 1. Equality

constraints in the form fi(x) = bi for fi(x) a linear function can also be managed by

transforming them into two inequality constraints as fi(x) ≤ bi and −fi(x) ≤ −bi.
Additionally, the domain of x needs to be convex (this is met for the general x ∈ RN ).

This class of problems is known to have nice properties which are useful for their opti-

mization; for instance, any extreme point is necessarily also a global minimum. Another

key property of convex problems is duality. For every convex primal problem P(x)

an alternative dual problem D(λ) can be defined such that at the optimum both attain

the same objective value, that is, P(x∗) = D(λ∗). What is more, means to obtain x∗

from λ∗ can be derived. Hence, duality effectively allows to solve an alternative problem

instead of the original one, also obtaining the desired solution.

Duality can be easily understood by approaching it from the point of view of the La-

grange coefficients or multipliers. Given a convex problem in the form of Equation 2.2,

its Lagrangian is defined as

L(x, λ) = f0(x) +
∑
i

λi(fi(x)− bi),

where the introduced λ variables are the Lagrange coefficients. Using the Lagrangian,

an equivalent optimization problem to Equation 2.2 can be written as
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{
minx maxλ L(x, λ)

s.t. λ ≥ 0

}
≡

{
minx maxλ f0(x) +

∑
i λi(fi(x)− bi)

s.t. λ ≥ 0
.

}
(2.3)

The equivalence follows by noticing that:

• If some fi(x) > bi, then maxλ{f0(x) +
∑

i λi(fi(x) − bi)} → ∞ by selecting λi →
+∞. Therefore maxλ L(x, λ) = +∞.

• If every fi(x) ≤ bi, then maxλ{f0(x) +
∑

i λi(fi(x)− bi)} = f0(x) with λi = 0 ∀ i.
Thus, maxλ L(x, λ) = f0(x).

It is then clear that at the optimum Equation 2.2 and Equation 2.3 share the same

solution, as infeasible x choices for Equation 2.2 result in infinity (and thus suboptimal)

objective values for Equation 2.3.

The resultant problem from the inclusion of the Lagrange coefficients is a saddle point

problem, in which the solution consists in an equilibrium point of the maximization and

minimization problems. A great advantage of this equivalent formulation of the primal

problem is the disappearance of every primal constraint, presenting only very simple

positivity constraints instead. However, the max/min objective is in general difficult

to deal with. Fortunately, a further transforming step leads to the more approachable

dual problem, this step being given by Sion’s minimax theorem [24], which can be

summarized as follows.

Theorem 2.1 (Sion’s minimax theorem). Let X, Y be compact convex subsets of a

linear topological space, f a real-valued function in X × Y with

• f(x, ·) upper semicontinuous and quasiconcave on Y ∀ x ∈ X,

• f(·, y) lower semicontinuous and quasiconvex on X ∀ y ∈ Y ,

then

min
x∈X

max
y∈Y

f(x, y) = max
y∈Y

min
x∈X

f(x, y),

i.e. the minimum and maximum operators can be swapped.
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A function f is quasiconvex if f(λx+ (1−λ)y) ≤ max {f(x), f(y)} ∀ x, y, λ ∈ [0, 1], and

quasiconcave if f(λx+ (1−λ)y) ≥ min {f(x), f(y)}. These concepts can be regarded as

generalizations of the convexity and concavity properties, and thus they are immediately

met for a convex problem. Lower (or upper) semicontinuity is a weaker assumption than

continuity, as it only requires, roughly speaking, that for any choice x ∈ R and every

point x0 in a neighborhood of x, f(x0) ≥ f(x) (or f(x0) ≤ f(x)). Lower semicontinuity

is also always met for convex functions.

Besides this, the compactness requirements reduce to the feasible sets being closed and

bounded for the case of an euclidean space, like the one addressed here. The space of the

x for a general convex problem, though, is not necessarily bounded, but this technicality

is just needed to avoid unbounded solutions (tending to x, y →∞) to the minimization /

maximization optimization problems above. Since in a convex problem a finite optimum

is guaranteed, this is not an issue. Consequently the theorem can be applied in the

saddle point problem, producing an equivalent formulation of Equation 2.2

max
λ

min
x

f0(x) +
∑
i

λi(fi(x)− b), (2.4)

s.t. λ ≥ 0,

which is the dual problem. While at first glance this problem may appear to pose a

similar difficulty to the previous saddle point problem, it might well happen that the

inner minimization problem can be solved in closed form, greatly simplifying the task

at hand. This is just the situation arising in the SVM problem, as it is shown in the

following. Before that, though, some additional observations of interest should be made

about duality.

The applicability of Sion’s minimax theorem ensures that at the optimum both primal

and dual formulations present identical objective values, P(x∗) = D(λ∗). This situation

is commonly known as primal-dual problems presenting no duality gap, or having

strong duality. However, for more general primal optimization problems in which, for

instance, the quasiconvexity assumptions are not met, a duality gap is bound to appear.

Nevertheless even in these defective situations a useful weak duality property can be

stated

Proposition 2.2 (Weak duality). Given a feasible (not necessarily optimal) solution

x̂ of the primal problem and a feasible (not necessarily optimal) solution λ̂ of the dual

problem,
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Primal problem

Dual problem

Optimum

Optimum

Duality gap

Primal problem

Dual problem

Optimum

Strong duality Weak duality
Figure 2.2: Depiction of the relationship between primal and dual problems. By
the weak duality theorem, the dual problem is always upper bounded by the primal
problem. Only under strong duality the objective value of both problems coincides at

the optimum.

D(λ̂) ≤ P(x̂).

Proof. The value of the dual problem (Equation 2.4) for a given feasible λ̂ turns out to

be D(λ̂) = minx f0(x) +
∑

i λ̂i(fi(x) − b) = minx L(x, λ̂). It is clear that, whatever the

feasible primal x̂ given, minx L(x, λ̂) ≤ L(x̂, λ̂). Now, the value of the primal problem

for this given x̂ would be P(x̂) = maxλ≥0 L(λ, x̂), and it is immediate that L(x̂, λ̂) ≤
maxλ≥0 L(λ, x̂). Therefore

D(λ̂) = min
x
L(x, λ̂) ≤ L(x̂, λ̂) ≤ max

λ≥0
L(λ, x̂) = P(x̂).

By noting that the optimal solutions λ∗ and x∗ must be feasible solutions as well, the

following useful corollary is obtained:

Corollary 2.3. The optimal value of the dual is upper bounded by the value of the

primal, that is

D(λ∗) ≤ P(x∗).

Therefore, for any primal optimization problem there is a guarantee that its correspond-

ing dual is a lower bound on the primal’s optimal value, and vice versa. A depiction of

this effect is shown in Figure 2.2. If only weak duality is met, the difference P(x∗)−D(λ∗)
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is the amount of dual gap, which can be used as a measurement of the distance between

both problems, and so of the approximation quality of a solution obtained through the

dual problem. Even if strong duality is present the amount of duality gap can be used

during the optimization procedure to obtain a quality measure of the solution found by

the optimization algorithm so far. As shown later in the text, this turns out to be an

useful stopping criterion in SVM optimization methods.

Addressing now the SVM problem under the point of view of these convex optimization

tools, consider it in its constrained form (as seen in Equation 1.4)

min
w,b,ξ

1
2‖w‖

2
2 + C

∑
i

ξi,

s.t.

{
yi(w · xi + b) ≥ 1− ξi ∀ i,
ξi ≥ 0 ∀ i.

It is easy to see that the objective function is convex, while the constraints are linear,

thus fulfilling the properties of a convex optimization problem. Following the previous

derivation for a general convex problem, the Lagrangian of the SVM takes the form

L(w, b, ξ, α, ν) = 1
2‖w‖

2
2 + C

∑
i

ξi +
∑
i

αi(1− ξ1 − yi(w · xi + b))−
∑
i

νiξi,

and so the dual problem can be stated as

max
α,ν

min
w,b,ξ

1
2‖w‖

2
2 + C

∑
i

ξi +
∑
i

αi(1− ξi − yi(w · xi + b))−
∑
i

νiξi, (2.5)

s.t. αi, νi ≥ 0 ∀ i.

The inner problem becomes an unconstrained problem, and so it can be solved by finding

a choice of variables (w∗, b∗, ξ∗) for which the gradient becomes 0, i.e.

∇w,b,ξL(w∗, b∗, ξ∗, ·, ·) = 0.

This is done trivially as
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∇wL = w∗ −
∑
i

αiyixi = 0 → w∗ =
∑
i

αiyixi, (2.6)

∂L

∂b
= −

∑
i

αiyi = 0 →
∑
i

αiyi = 0,

∂L

∂ξi
= C − αi − νi = 0 → νi = C − αi.

Substituting these expressions into Equation 2.5 produces

max
α

−1
2

∑
i

∑
j

αiαjyiyjxi · xj +
∑
i

αi,

s.t.

{
0 ≤ αi ≤ C ∀i,∑

i αiyi = 0,

where the additional constraints αi ≤ C ∀i come from the fact that νi = C − αi and

αi, νi ≥ 0 ∀i. This simplified dual problem can be expressed more compactly by adapting

a vectorial notation in the form

min
α

1
2α

TQα− eTα, (2.7)

s.t.

{
α · y = 0,

0 ≤ α ≤ C,

where e is a vector of ones and the matrix Q is formed by Qij = yiyjKij with Kij = xi·xj ,
or alternatively as Q = IyKIy, with Iy a diagonal matrix with the labels vector y as

its main diagonal. As will be discussed later, the matrix K plays a crucial role in the

non–linearization of the SVM model, though for now it is simply formed by the dot

products of every pair of training patterns.

The resultant SVM dual problem is also a convex optimization problem; however, it

features simpler constraints in the form of a single equality constraint and a set of box

constraints over the α coefficients. Conversely, the quadratic term in the objective

function is more complex because of the presence of the matrix Q. Depending on the

situation solving the primal or the dual is preferred, and a large number of algorithms

following either of these approaches can be found in the literature: a description of the

most representative methods is presented in Section 2.4.
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If the dual approach is followed, a procedure to recover the primal variables w∗, b∗ from

the dual solution α∗ is needed. w∗ can be computed straightforwardly as a function of

α∗ by noticing that by Equation 2.6, w∗ =
∑

i α
∗
i yixi. Equivalently this formula can be

plugged into the classification function itself as f(x) = w∗ · x+ b∗ =
∑

i α
∗
i yixi · x+ b∗,

thus not needing an explicit representation of w∗. Also, it is of special relevance that

in practice only a subset of the α∗ coefficients turn out to be α∗i > 0, i.e. α∗ is usually

sparse. This allows to rewrite w∗ just in terms of these so-called support vectors

(SV), as w∗ =
∑

αi>0 α
∗
i yixi, as well as the classification function as f(x) = w∗ ·x+ b∗ =∑

αi>0 α
∗
i yixi · x + b∗. As shown later in the text, these facts prove to be essential in

order to allow the SVM to obtain nonlinear models.

Obtaining b∗, though, requires invoking additional arguments establishing links between

the primal and dual formulations. The links to be used here are the Karush-Kuhn-

Tucker conditions (or KKT conditions) [23, 25], which provide necessary conditions

of optimality for nonlinear constrained programs, namely

Theorem 2.4 (Karush-Kuhn-Tucker conditions). Given a nonlinear optimization prob-

lem in the form

min
x

f(x),

s.t.

{
gi(x) ≤ 0 , i = 1, . . . ,m,

hj(x) = 0 , j = 1, . . . , l,

with f, gi, hj ∀ i, j functions from Rn to R and continuously differentiable at a point

x∗ satisfying some regularity conditions (see below). Then x∗ is a local minimum if ∃
µi(i = 1, . . . ,m), λj(j = 1, . . . , l) KKT multipliers such that the following conditions are

met:

Stationarity

• ∇f(x∗) +
∑m

i=1 µi∇gi(x∗) +
∑l

j=1 λj∇hj(x∗) = 0.

Primal feasibility

• gi(x∗) ≤ 0 ∀ i = 1, . . . ,m,

• hj(x∗) = 0 ∀ j = 1, . . . , l.

Dual feasibility

• µi ≥ 0 ∀ i = 1, . . . ,m.

Complementary slackness

• µigi(x∗) = 0 ∀ i = 1, . . . ,m.

Several regularity conditions can be tested on the point x∗ to qualify for the applica-

tion of the KKT conditions, depending on the particular kind of problem at hand. For

a convex problem the most commonly applied is the Slater condition, which requires
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the existence of at least one point x such that hj(x) = 0 ∀ j and gi(x) < 0 ∀ i active in

x∗ (i.e., gi(x
∗) = 0). This generally reduces to checking that the interior of the primal

feasible set is not empty, i.e. there are strictly feasible points (gi(x) < 0 ∀ i).

Note how the so-called KKT multipliers are in fact the variables of the dual problem,

and so these conditions establish relationships that must hold at any local minimum /

maximum of the primal / dual problem. Even more, the following corollary strengthens

these relationships in the case of a class of convex problems.

Corollary 2.5. If the objective function f and the inequality constraints gi are continu-

ously differentiable convex functions and the equality constraints hj are affine functions,

the KKT conditions are sufficient for optimality.

The SVM primal problem fully meets these requirements, and so the KKT conditions

provide a reliable link between primal and dual formulations, as well as a guarantee of

global optimality. In fact, rewriting these conditions for the SVM problem results in

Stationarity

• w =
∑

i αiyixi,

•
∑

i αiyi = 0,

• νi = C − αi ∀ i.

Primal feasibility

• yi(w · xi + b) ≥ 1− ξi ∀ i,

• ξi ≥ 0 ∀ i.

Dual feasibility

• αi ≥ 0 ∀ i,

• νi ≥ 0 ∀ i.

Complementary slackness

• αi(1− ξi − yi(w · x+ b)) = 0 ∀ i,

• ξiνi = 0 ∀ i.

Once the optimal α∗i have been obtained, the primal b∗ can be recovered by realizing

that for those α∗i ∈ (0, C) we have

• As α∗i < C, ν∗i > 0, and so ξ∗i = 0.

• As α∗i > 0, 1− ξ∗i − yi(w · x+ b∗) = 0.

• By joining these facts, 1− yi(w∗ · x+ b∗) = 0, and so b∗ = yi − w∗ · xi.

Thus, if any of the αi in the dual solution lies in the range (0, C) (something that

happens often in practice), the primal bias b can be recovered using this strategy. It

is however generally suggested to compute b as an average of this estimation for every

αi ∈ (0, C).
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Algorithm 1 Generic SVM dual solver

Inputs: training set (x, y), penalty parameter C.
Solve dual problem 2.7 to obtain optimal α∗:
minα

1
2α

TQα− eTα,

s.t.

{
0 ≤ α ≤ C
α · y = 0

.

Recover primal solutions as
w∗ =

∑
i α
∗
i yixi,

b∗ = 1
card({αi∈(0,C)})

∑
αi∈(0,C)(yi − w∗ · xi).

Return (w∗, b∗).

As a wrap-up of this section, Algorithm 1 briefly sketches the procedure to obtain a

solution for the SVM model through its dual problem. The resulting procedure turns out

to be remarkably simple in spite of the seemingly involved theory used. This fact makes

the SVM dual problem an appealing reformulation of the “standard” SVM problem, and

as such a number of successful algorithms make use of it.

2.1.2 Kernelization

As presented, the Support Vector Machine is supported by solid foundations from the

field of regularization, making it an attractive model for classification. However, a serious

drawback of this model (as presented so far) is its linearity. Recall that the decision

function of the SVM is given by the expression f(x) = w · x + b, which is nothing

but a hyperplane bisecting the space of the inputs x. This kind of decision function,

shared by its predecessor the perceptron [19], completely fails to produce an accurate

model in those situations where the data is nonlinear. For the perceptron model this

drawback was overcome by the invention of the Multilayer Perceptron (MLP) model

[3], which introduced nonlinear capabilities into the model by stacking several layers of

perceptrons with nonlinear transformations in-between. Unfortunately this approach is

not applicable in the SVM model, as nice properties such as margin maximization would

be partially lost. However, an alternative way to introduce nonlinearity is possible.

Suppose the training data is given as a set of patterns with d explanatory features, so

that each pattern xi lies in the input space Rd. Now define a mapping function

Φ : Rd → F such that it maps the input patterns to an enlarged feature space F (for

instance, F ≡ RD with D � d). If the mapping function is nonlinear and, instead of

using the original xi as the training set, the mapped Φ(xi) are used to build a linear

model, the model will still remain linear with respect to the Φ(xi), but nonlinear with

respect to the input data xi. Or, in other words, the model will be linear in the feature

space, though nonlinear in the input space. An example of this effect is shown in
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Figure 2.3: A simple example of how embedding the input data into a larger space
can effectively cast a nonlinear problem into a linear one. Although the data is nonlinear
in their original input space (R1), adding the nonlinear feature x2 produces a linearly

separable problem in the feature space R2.

Figure 2.3, where a linear classifier is able to solve a nonlinear model by following this

approach.

Of course, the effectiveness of this strategy is completely determined by the choice of

an appropriate mapping function. Furthermore, the mapped data should be stored in

memory or recomputed every time it is needed. If the feature space is very large or the

evaluation of the mapping function is costly, this might raise memory or computational

issues. These problems can be partially solved by observing that in the dual formulation

of the SVM

min
α

1
2α

TQα+ eTα,

s.t.

{
0 ≤ α ≤ C
α · y = 0

,

the training data does not show up explicitly, but as part of the computation of Q

(recall Qij = yiyjKij with Kij = xi · xj). Introducing the mapping Φ, thus, only

involves modifying the computation of K as Kij = Φ(xi) · Φ(xj). By further defining

the kernel function k(xi, xj) = Φ(xi) · Φ(xj) it is realized that the matrix K is just

Kij = k(xi, xj). Owing to this, this matrix is commonly named as the kernel matrix.

It should be realized that because of this, there is no need to compute explicitly the

mapping Φ as long as it is possible to calculate the kernel function k or the kernel

matrix K directly. This removes the necessity of storing the mappings Φ(xi) explicitly,

and may also lead to savings in computation times if given a mapping Φ the inner

product Φ(xi) · Φ(xj) can be simplified down.

Needless to say, the problem of finding a suitable mapping function has only been re-

placed by the problem of finding an appropriate kernel function. What is more, the
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kernel function must be decomposable into an inner product of mappings (k(xi, xj) =

Φ(xi) · Φ(xj)) in order to make sense. This task, seemingly daunting at first glance,

can be approached by using Mercer’s theorem [10, 26]. Before introducing it, the

definition of positive semi-definiteness for a kernel function is presented:

Definition 2.6. (Positive semi-definite kernel) A kernel function k(xi, xj) is positive

semi-definite if for any other function f at least square integrable∫
X×X

k(xi, xj)f(xi)f(xj)dxidxj ≥ 0,

where X is the set of all possible x.

Alternatively and considering a finite set X (as in a training set), a kernel function is

positive semi-definite if its associated kernel matrix K for any X is positive semi-definite

(K < 0), i.e. for every x 6= 0

xTKx ≥ 0.

With this in mind, Mercer’s theorem can be stated as follows

Theorem 2.7 (Mercer’s theorem). If a scalar function k(xi, xj) is positive semi-definite,

then it can always be decomposed as an inner product k(xi, xj) = Φ(xi) · Φ(xj) where

Φ(x) ∈ F, F a Hilbert space.

Although the full theory behind this theorem and Hilbert spaces is not straightforward,

in practice there is no need to resort to it. It suffices to say that any Hilbert space

is characterized by having a well–defined inner product operation. Mercer’s theorem,

hence, can be used as a tool that allows to define a kernel function with guarantees of

fulfilling the necessary properties. Several examples of kernel functions following this

theorem can be found in the literature; some of the most popular ones are presented in

Table 2.1. In practice and for general applications, the gaussian kernel is preferred for

its versatility. To obtain a better fit of the kernel function to the modeling problem at

hand, the parameters of the function are usually optimized to maximize the model accu-

racy in a validation set. More details about this procedure are given in the experimental

sections of this thesis.

It is therefore possible to introduce nonlinearity into the SVM model by just using a

kernel matrix K computed through a kernel function, as the structure of the optimization

problem to solve remains identical. This method to transform a linear model into a

nonlinear one through the use of kernels is known as the kernel trick, and has also

been applied to other models and techniques in the field of machine learning, such as the

Perceptron [27], Nearest Neighbors [28] or Principal Component Analysis [29] to name

a few.
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Kernel function Formula Parameters

Linear xi · xj None
Homogeneous polynomial (xi · xj)p p polynomial degree
Inhomogeneous polynomial (xi · xj + 1)p p polynomial degree

Gaussian e

(
−
‖xi−xj‖

2
2

2σ2

)
σ kernel width

Table 2.1: Some examples of popular kernel functions.

A word of warning about using the kernel trick under the primal formulation of the

SVM is needed. Recall that the primal solution w relates to the dual solution α through

the formula w =
∑

i αiyixi. When introducing the mapping function this equivalence

turns out be w =
∑

i αiyiΦ(xi) and so w lies in the feature space generated by the

mapping Φ (as expected). This fact implies that while solving the dual formulation

under the kernel trick is straightforward, addressing the primal formulation can lead to

complications derived from the possibly very large dimensionality of w. Even worse,

the mapping Φ might be unknown, as Mercer’s theorem does not provide of a formula

for Φ (only proves its existence). Therefore it is sensible to consider only the dual

formulation for the non–linearized SVM model, and as will be presented later in the

text, optimization algorithms for this model generally do so.

2.2 Modifications of the SVM model

While the Support Vector Machine model was originally intended for classification tasks,

analog models following similar principles have also been developed to address other

machine learning tasks, such as regression or density estimation. Nice properties like

margin maximization, convexity and duality are shared among these models, and allow

to study all of them under a common framework. In fact, they all can be regarded

as particular cases of a generalized SVM model. This observation is crucial for the

design of optimization algorithms addressing the SVM problem, as being able to solve

this generalized formulation immediately provides effective ways to deal with all the

underlying particular models.

This section contains a review of the SVM model extensions of interest for this thesis,

concluding with the presentation of the general SVM formulation by Chang et al. [30].

Additionally, and as a first minor contribution of this thesis, this formulation is further

generalized to include as well the Least-Squares Support Vector Machine model for

classification and regression [31].
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0
(a) (b)

Figure 2.4: a) Depiction of ε-insensitive loss function for a single pattern xi. b)
Depiction of the ε-tube formed by the SVR model.

Note that when discussing these alternative formulations the original SVM model is

sometimes referred in the literature as Support Vector Classification (SVC).

2.2.1 Support Vector Regression

One of the most popular SVM model modifications strives to solve regression tasks as a

natural extension of the classification problem [32, 33]. This model, known as Support

Vector Regression (SVR), is another instance of regularization, showing the loss plus

regularizer objective function

min
w,b

1
2‖w‖

2
2 + C

∑
i

[w · xi + b− ti]ε,

for explanatory features and targets (xi, ti). The loss function of choice here is the

ε-insensitive loss, which takes the form [z]ε = max{0, |z| − ε}. A depiction of it

is shown in Figure 2.4(a). The insensitivity parameter ε acts together with C as a

safeguard against overfitting: not penalizing small errors avoids unnecessarily increasing

the model complexity in order to obtain a perfect fit over the training set. This also

leads the model to produce a solution (w∗, b∗) around which training samples gather at

a distance no larger than ε: the so-called ε-tube (see Figure 2.4(b)).

In analog with the hinge loss used in SVM for classification, the ε-insensitive loss presents

points of non-differentiability. To handle the difficulties produced by this, an alternative

constrained formulation of SVR is preferred,
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min
w,b,ξ,ξ∗

1
2‖w‖

2
2 + C

∑
i

(ξi + ξ∗i ),

s.t.


ti − w · xi − b ≤ ε+ ξi ∀ i
w · xi + b− ti ≤ ε+ ξ∗i ∀ i
ξ, ξ∗ ≥ 0

,

where the slack variables ξ, ξ∗ stand for the loss produced by training points outside

the ε-tube. As in SVM, this optimization problem is convex, and so a dual formulation

allowing the application of the kernel trick is also possible, resulting in the dual problem

min
α,α∗

1
2(α− α∗)TK(α− α∗) + ε(α+ α∗) · e− (α− α∗) · t,

s.t.

{
α · e = α∗ · e
0 ≤ α, α∗ ≤ C

.

After solving the dual problem the primal solution can be recovered through the use of

duality and the KKT conditions as

w =
∑
i

(αi − α∗i )xi,

b = ti − w · xi − ε ∀ αi ∈ (0, C),

b = ti − w · xi + ε ∀ α∗i ∈ (0, C).

Again, several formulæ allow to recover b, and so in practice an average of them is used.

2.2.2 One-Class SVM

Yet another modification of the Support Vector Machine model allows to address the

task of density estimation: the so-called One-Class Support Vector Machine. First

proposed by Schölkopf et al. [34], the problem to be solved can be written in loss plus

regularizer form as

min
w,ρ

1
2‖w‖

2
2 − ρ+

1

νN

∑
i

[ρ− w · xi]+
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for a training set x1, . . . , xN . This corresponds to looking for a hyperplane w such

that every data point lies on its positive side with a margin of at least ρ. It should be

noted how deviations from this hyperplane are penalized following a hinge loss, this time

weighed by the parameter ν ∈ (0, 1). A constrained formulation of the problem is also

possible, resulting in

min
w,ξ,ρ

1
2‖w‖

2
2 − ρ+

1

νN

∑
i

ξi,

s.t.

{
w · xi ≥ ρ− ξi ∀ i,
ξ ≥ 0.

Once the optimization problem is solved new data points can be classified as belonging

to the data distribution or not by evaluating f(x) = sgn(w · x − ρ). If f(x) ≥ 0, x is

considered to have been generated by the same distribution, else x is regarded to have

been generated by a different distribution or to be an outlier.

Once again this SVM-like model can be transformed into a dual form where kernelization

is feasible. The dual one-class SVM problem takes the form

min
α

1
2α

TKα,

s.t.

{
α · e = 1,

0 ≤ α ≤ 1
νN ,

and the primal solution (w, ρ) can be recovered as

w =
∑
i

αixi,

ρ =
∑
j

αjw · xi ∀ αi ∈
(

0,
1

νN

)
.

Figure 2.5 presents and example of application of the One-Class SVM model. Using

the bidimensional dataset banana [35], training and test splits are made, and all in-

stances from the negative (blue) class are removed from the training set. By training

the One-Class SVM with appropriate kernel and ν parameters, the boundary shown in
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(a) (b)

Figure 2.5: An example of application of the One-Class SVM on the banana dataset.
a) Training set using only data from one of the classes, along with the classification
boundary learned. b) Application of the model to test data presenting the two classes.

Figure 2.5(a) is obtained. When this trained model is then applied to the test set, con-

taining patterns from both classes, most of the patterns from the new class are correctly

identified as not belonging to the distribution observed in training.

2.2.3 LS-SVM

The Least-Squares Support Vector Machine (LS-SVM) was introduced by Suykens

and Vandewalle [31] as a model approximating the standard SVM model. Featuring a

simpler formulation, it also allows to tackle both classification and regression tasks, and

the resulting optimization problem is also easier to solve. The primal formulation of the

LS-SVM can be written in the form of loss plus regularizer as

min
w,b

1

2
‖w‖22 +

C

2
‖(w ·X + be)− y‖22,

with X matrix of input patterns, y vector of class labels or regression targets, depending

on the task to perform, and e is an all–ones vector. It is readily noticed that the loss

function selected for the model is nothing but the least-squares loss (hence the name).

While this loss is better suited for regressions tasks, it can also deal with classification

as a particular case of regression to values {−1, 1}. It must be remarked, though, that

in opposition to the hinge loss or the ε-insensitive loss, the least-squares loss penalizes

every deviation of the model from the target value, which can make the model prone to

overfitting. In practice, however, LS-SVM usually produces similar results to SVM or

SVR in spite of this.
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A dual form of LS-SVM can be obtained by first rewriting its primal as a constrained

problem, in the form

min
w,b,ξ

1

2
‖w‖22 +

C

2
ξT ξ,

s.t. (w · xi + b)− yi = ξi ∀ i.

Dualization can then be performed, obtaining the problem

min
α

1

2
αTQα− yTα,

s.t. αT e = 0,

where the matrix Q can be obtained as Q = K + IC , with IC a diagonal matrix with

non-zero entries 1/C. Once solved, optimal values for the primal can be recovered as

w =
∑
i

αiyixi,

b = yi −
αi
C
− w · xi ∀ i.

One major drawback of LS-SVM is that because of the dual problem lacking box con-

straints, having α∗i = 0 is a rare situation, and so usually every training vector turns out

to be a support vector. This results in high costs when evaluating the objective func-

tion f(x) =
∑

αi 6=0 αiyix, making the method impractical for on–line purposes when the

training set is large.

On a positive note, the lack of box constraints allows to obtain an LS-SVM solution

through the following linear equations system

[
0 eT

e Q

][
b

α

]
=

[
0

y

]
,

which has been shown to produce the optimal (α∗, b∗) choices [31]. This method for

solving the LS–SVM is widely extended in practice, and in fact is the approach followed

in the LS–SVM software by the original authors [36]. It must be realized, though,

that solving this kind of linear system incurs in a cubic cost (O(N3)) even if matrix
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Support Vector Machine One–Class SVM Support Vector Regression

Q = Iy K Iy Q = K α = [α, α∗]

p = −e y = e Q =

[
K −K
−K K

]
∆ = 0 p = 0 p = [εe− t, εe+ t]

∆ = 1 y = [e,−e]
C = 1

νN ∆ = 0

Table 2.2: Transformations of the generalized SVM formulation by Chang et al.
(Equation 2.8) leading to particular SVM models

decomposition strategies are used, and thus its scalability is severely compromised. More

efficient (though more complex) methods similar to the ones used in the classic SMO

model have been developed as well [37, 38]. In this thesis the LS–SVM model is shown

to be a particular instance of a more general SVM formulation (see Section 2.2.4), and

so this latter approach is followed.

It is also notable that it has been shown [39, 40] how relationships exist between the

LS–SVM model and the Kernel Fisher Discriminant Analysis (KFDA) [41]. In

particular a solution for the KFDA model can be obtained by first solving the LS–SVM

problem and then rescaling the resultant solution. Therefore, any algorithm solving

LS–SVM is also immediately applicable for solving the KFDA model.

2.2.4 Generalized SVM formulation

While the standard Support Vector Machine, Support Vector Regression and One-Class

SVM models solve different tasks, their dual forms present intriguing similarities. Indeed,

and as observed by Chang et al. [30], the three models can be posed under a common,

more general formulation in the form

min
α

1
2α

TQα+ pTα, (2.8)

s.t.

{
α · y = ∆

0 ≤ α ≤ C
.

This is equivalent to the cited models under the transformations shown in Table 2.2.

Recall that Iy stands for a diagonal matrix with the labels vector y as its main diagonal.

The main benefit of this joint formulation is the ability to deal with classification, re-

gression and density estimation tasks by just solving the single optimization problem
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Least–Squares SVM

Q = K + IC ∆ = 0
p = −y L = −∞
y = e C =∞

Table 2.3: Transformation of the generalized SVM formulation proposed in this thesis
(Equation 2.9) leading to the LS–SVM model.

posed by Equation 2.8. Note that this general problem still keeps a similar structure

to the specific models: quadratic objective function with box constraints and a single

equality constraint. Therefore, the difficulty of the problem to solve is not increased by

this generalization.

Due to its flexibility, this approach to SVM modeling is followed in the popular LIBSVM

[30] software. In this thesis this formulation is further extended to include the LS-SVM

model as well by modifying the lower bound on the α coefficients as

min
α

1
2α

TQα+ pTα, (2.9)

s.t.

{
α · y = ∆

L ≤ α ≤ C
.

The new parameter L allows choosing a lower bound different than 0. SVM, SVR

and One-class SVM models still fit in this framework by setting L = 0 and using the

transformations above. For the LS-SVM model the adequate transformation is given by

Table 2.3.

In this way the optimization problem 2.9 effectively handles all four SVM models. A

diagram depicting its relationships with these models is shown in Figure 2.6. Owing to

this, the rest of the discussion focuses on the optimization of this problem.

2.2.5 Other SVM formulations

For the sake of completeness, other SVM models of relevance are briefly discussed in

this section. Note however they are outside the scope of this thesis.

• The ν-SVM [42] is a reformulation of SVM for classification, where the penalty

parameter C is substituted by another parameter ν ∈ (0, 1] having a more direct

interpretation: ν is an upper bound on the fraction of training errors and a lower
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Figure 2.6: Relationships between the generalized SVM and the presented SVM
models.

bound of the fraction of support vectors. Equivalence relationships between the C

and ν parameters have been established, as well as with geometric SVM models

[43].

• In analogy with the SVM and SVR models, the ν-SVR [42] stands as the regression

counterpart for ν-SVM. Similar interpretations of the parameter ν can be made in

this case as well.

• The Extended ν-SVM (Eν-SVM) [44, 45] model is a generalization of ν-SVM

able to produce a wider range of solutions than the classic ν-SVM (and thus C-

SVM). This is done by observing that there exist a certain νmax above which the

ν-SVM is only able to produce the trivial w = 0 solution. By generalizing the

ν-SVM model it is possible to obtain non-trivial solutions for ν > νmax, which can

lead to better model accuracies in some situations. Unfortunately, the resultant

optimization problem turns out to be non-convex for the new range (νmax, 1), mak-

ing it very hard to solve. Relationships of this model with other SVM formulations

and efficient algorithms for Eν-SVM are still open areas of research.

2.3 Geometry of SVM

While the SVM models are meaningful from the point of view of regularization and

margin maximization, their motivations are not always easy to grasp. The previous

sections have already shown that, in particular, the SVM model for classification results
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from the sum of a number of non-trivial ideas, and so gaining insights into this method is

not straightforward. One example of this fact is the C penalty parameter: even though

its purpose is well understood, there is not a clear interpretation of the effects of specific

values of C on the model.

Geometric Support Vector Machines appear as an alternative yet equivalent model

to the standard SVM, providing clearer concepts about the classifier through geometry.

In this section a brief review of this particular approach is presented.

An equivalent geometric model for SVM for classification was first proposed in the work

of Bennett and Bredensteiner [46]. Through the use of KKT conditions and duality

arguments, the authors show that the solution found by the SVM model is equivalent

to performing the following steps:

1. Consider two convex hulls: one formed by the points of the positive class, the

other by the points of the negative class.

2. Find two points, each inside one of the convex hulls, such that distance between

them is minimal.

3. The hyperplane bisecting the line joining such points is the SVM solution.

Recall from geometry basics that the convex hull C of a set of points X = {x1 . . . xN} is

defined as the set

C(X ) =

{
z

∣∣∣∣∣z =
∑
i

µixi,
∑
i

µi = 1, µi ≥ 0 ∀ i

}
,

that is to say, any point which can be expressed as a convex combination of the points

in X belongs to C(X ).

Figure 2.7 shows an example of this approach. A quick look suffices to realize that the

hyperplane obtained is, in fact, the one maximizing the margin, as one would expect

from the solution of a SVM.

Mathematically the geometric model can be simply written as
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Figure 2.7: Example of the classification hyperplane obtained by following the bi-
section of the line joining the nearest points in the convex hulls of each class.

min
α

∥∥∥∥∥∑
i+

αixi −
∑
i−

αixi

∥∥∥∥∥
2

2

, (2.10)

s.t.


∑

i+ αi = 1,∑
i− αi = 1,

α ≥ 0,

where i+ notes the indexes corresponding to the patterns from the positive class and i−
to the negative one. This optimization problem is nothing but finding the nearest points

(objective function) in the convex hulls of each class (constraints). The classification

hyperplane (w, b) can then be obtained as the mentioned bisection:

w =
∑
i+

αixi −
∑
i−

αixi,

b = −1
2

(
w ·
∑
i+

αixi + w ·
∑
i−

αixi

)
.

By noting that
∑

i+ αixi−
∑

i− αixi =
∑

i yiαixi and rewriting the norm in matrix form,

it is easy to arrive at the equivalent problem
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Figure 2.8: Example of convex hull reduction for different values of the ν parameter.

min
α

αTQα, (2.11)

s.t.


α · y = 0,

0 ≤ α ≤ 1,

α · e = 2.

In this form the similarities with the dual SVM formulation become evident. The only

novelties are the appearance of the last constraint and the bound on the α coefficients

by 1.

It must be drawn to attention now the fact that the described geometric model corre-

sponds to a hard margin SVM. If the classes result not to be linearly separable, their

convex hulls have a non-empty intersection, and thus the result of problem 2.10 is the

trivial solution w = 0. To make up for this, again in [46] the concept of Reduced

Convex Hulls (RCH) is presented, which are defined as

Cν(X ) =

{
z

∣∣∣∣∣z =
∑
i

µixi,
∑
i

µi = 1, 0 ≤ µi ≤ ν ∀ i

}
,

that is, again a convex combination of points, though this time the maximum contri-

bution of each point is limited to ν. A value ν = 1 produces the standard convex hull

definition, and as ν grows smaller the hulls are reduced towards their barycenters. The

minimum feasible value of ν turns out to be νmin = 1
|X | , as then the RCH is reduced

to a singleton: the barycenter
∑

i
1
|X |xi. An illustration showing the resultant RCHs for

different values of ν is shown in Figure 2.8.

By means of reducing the convex hulls a non-trivial classification hyperplane can be

obtained, and so the following optimization problem arises
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min
α

αTQα,

s.t.


α · y = 0,

0 ≤ α ≤ ν,
α · e = 2,

which results to be equivalent to the soft margin SVM. As expected, ν acts as a substitute

for the penalty parameter C, allowing for larger margin errors when ν is small. However,

the range of this alternative parameter is limited as ν ∈
[

1
|X | , 1

]
, and furthermore its

effect in the model is clear through geometry concepts.

Besides classification, an equivalent geometric model has been proposed as well for Sup-

port Vector Regression by Bi and Bennet [47]. It consists in casting the regression

problem as a classification one by creating two synthetic classes above and below the

ε-tube, and then finding the SVM classification hyperplane, which turns out to be also

the regression function. This approach could be useful in those situations where a good

SVM solver is already available, thus allowing to apply it to regression as well. How-

ever, in practice the generalized SVM formulation presented in Section 2.2.4 is preferred,

since it also allows to address other problems apart from classification and regression.

Nevertheless, this geometric regression approach is of use to gain further insights into

the SVR model.

It is also worth mentioning that other approaches to geometric soft margin SVM have

appeared in the literature, such as the Scaled Convex Hulls (SCH) method by Liu

et al. [48, 49]. This particular approach reduces the class convex hulls by scaling them

down towards their barycenters, therefore not altering the shape of the hull. While

this provides some advantages such as an easy computation of a value for the scaling

parameter ν ensuring hulls separability, the scaled hulls are only an approximation of

the reduced hulls, producing a similar model only when the number of training patterns

is large.

Considering geometric SVMs as a whole, it can be stated that they provide the same

functionality as standard SVMs, as well as further insights into the workings of these

models. A number of algorithms are available to solve these alternative optimization

problems (see Section 2.4.3), some of them having strong connections with solver al-

gorithms for the standard SVM. These connections result useful in practice to transfer

advances in one field to the other one, and in fact some of the novelties presented in this

thesis make use of them (Section 3.1).
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2.4 Standard solvers for SVM

After studying the key concepts of the Support Vector Machine model and its generaliza-

tion to address several SVM-like models, this section presents a review of the algorithms

available in the literature to solve the SVM problem. An overview of solvers for the

geometric SVM formulation is included in the discussion as well. The methods here

form the baseline from which the contributions in Chapter 3 are built up.

First, the primal formulation of the SVM is considered, as the majority of the recent

advances in SVM methods have been focused on this variant. At first glance two ap-

proaches seem possible:

a) Solve the unconstrained loss + regularizer form of the problem, which suffers from

non-differentiability (Equation 2.1),

min
w,b

1
2‖w‖

2
2 + C

∑
i

|1− yi(w · xi + b)|+.

b) Solve the smooth, convex but constrained version of the problem (Equation 1.4),

min
w,b,ξ

1
2‖w‖

2
2 + C

∑
i

ξi,

s.t.

{
yi(w · xi + b) ≥ 1− ξi ∀ i,
ξi ≥ 0 ∀ i.

The most straightforward approach is to address formulation (b). Being a standard

convex problem, widely-available Quadratic Program solvers (QP solvers) such as

CVX [50] or Matlab’s Optimization Toolbox can be used practically out of the box to

obtain a solution for the problem. This naive approach, though, does not make any use

of the structure present in the problem, and thus is bound to produce poor results.

Solving formulation (a) turns out to be more profitable, and in fact the most successful

algorithms addressing the primal SVM problem do so by employing non-differentiable

optimization methods. One such example is the Pegasos [51] method by Shalev-Shwartz

et al., which relies on a projected subgradient descent method. Other examples are given

by the OCAS [52] method by Franc and Sonnenburg and the less recent SVM-Perf

[53] method by Joachims, which follows a cutting planes strategy to find the SVM

solution. All of these algorithms are able to solve the primal problem very efficiently by

taking advantage of the fact that the hinge loss, although not being smooth, is a simple

piecewise linear function; i.e. the structure of the problem is explicitly used.
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Algorithm 2 Dual coordinate descent for linear SVM

1: Inputs: training set (x, y), penalty parameter C.
2: Initialize α, w to some feasible value.
3: while α not optimal do
4: for i = 1, . . . , N do
5: Compute gradient G = yiw · xi − 1.

6: Project gradient PG =


min {G, 0} if αi = 0,
max {G, 0} if αi = C,
G if 0 < αi < C.

7: Compute new unconstrained α′i = αi−PG
Qii

.

8: Clip to box constraints α′i = min {C,max {α′i, 0}}.
9: Update w′ = w + (α′i − αi)yixi.

10: end for
11: end while
12: Return (w∗, b∗).

Despite all these efforts to produce good solvers for the SVM primal, there is a procedure

these algorithms can hardly go through: kernelization. Recall from 2.1.2 that when the

kernel trick is used the SVM weight vector w lies in the feature space F induced by the

mapping Φ. If this mapping is only known through its associated kernel function k(·, ·),
no explicit representation of w can be made, making the primal problem unapproachable

in principle.

A way of circumventing this problem is to try to extend the ideas behind these algorithms

to the dual formulation. A remarkable example of this is the state-of-the-art SVM

optimization method included in the LIBLINEAR library [54, 55] by Hsieh et al.,

which solves the modified dual problem

min
α

1
2α

TQα− eTα,

s.t. 0 ≤ α ≤ C,

that results from considering a primal SVM with no bias term b. The algorithm essen-

tially performs coordinate descent in this dual problem, i.e. updates one αi at a time,

by also taking advantage from the structure of the primal. A pseudocode of this method

is presented in Algorithm 2. The greatest virtue of this method comes from the fact

that most expensive steps are the computation of the gradient (line 5) and the update

of w (line 9): both of them can be performed in just O(d̄) operations, with d̄ the average

number of non-zero features in the training patterns. However, it must be pointed out

that this is possible thanks to the ability to maintain an explicit representation of w,

which in turn eases the computation of the gradient. If the very same algorithm was
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to be applied to a kernelized SVM, this shortcut would no longer be available, and the

gradient would have to be computed as

G = Qi,:α− 1 = yi
∑
αj>0

αjyjk(xi, xj)− 1,

where Qi,: stands for the i-th row of Q. This requires up to O(d̄N) operations for

N the size of the training set, which is much more than the previous computation,

as generally d̄ � N . Furthermore these O(d̄N) operations involve calling the kernel

function which, being a non-linear operation, usually incurs in even larger costs than

“standard” operations like products or sums. Even if the full gradient is maintained in

memory and updated at every iteration, the updates follow the expression

∇αf(α′) = ∇αf(α) +Q:,i(α
′
i − αi),

for Q:,i the i-th column of Q, therefore requiring again up to O(d̄N) operations. In the

view of this, the authors of the method conclude that when considering non-linear SVMs,

using a decomposition method (presented later on in Section 2.4.1) is more efficient than

their proposed algorithm.

The lesson learned from the analysis of the dual coordinate descent method is that even

though great advantage can be gained from using the explicit primal representation,

this advantage does not hold for the non-linear case. This effect is confirmed also by the

authors of the Pegasos algorithm [51], in which kernelization can be achieved by replacing

the explicit representation of the weight vector by w =
∑

αi>0 αiΦ(xi). This, however,

again increments the cost per iteration of the algorithm, hence not being satisfactory.

In conclusion, even though recent works in primal SVM optimization have resulted in

extremely efficient and practical training algorithms for linear SVMs, these results do

not apply for non-linear SVMs. Because of this, dual solvers based on the decomposition

strategy are still the state-of-the-art approach in this area. Consequently, the rest of

this section focuses on these dual solvers.

2.4.1 Dual SVM solvers: QP, chunking and decomposition methods

Considering now the optimization problem posed by the generalized dual formulation of

the SVM, recall that it can be written as the quadratic (convex) program (Equation 2.9)
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min
α

1
2α

TQα+ pTα,

s.t.

{
α · y = ∆,

L ≤ α ≤ C.

As in the constrained primal formulation, this problem can also be tackled by using a

general QP solver, though again this is prone to perform badly. Methods tailored to

take advantage of the specific structure of the problem, such as interior point methods

[56], also fail to produce good running times because

a) They require storing the full Q matrix into memory (O(N2) storage), or at least

making use of all of its entries at every iteration.

b) Their computational costs are of order O(N3).

c) Even though they provide very strong guarantees on convergence and on the accuracy

of the solution (≈ 10−8 dual gap), in machine learning applications generally mild

guarantees suffice (≈ 10−3 dual gap).

Because of (a), large-scale learning is unfeasible, as for instance a dataset of 100000

training patterns would requiring storing a 100000 × 100000 matrix of floats. Even

if only 4 bytes are used per float, this already requires 40 GB of RAM memory. If

instead of storing Q in memory its entries are computed on the fly every time they are

needed, the running time of (b) would further increase to O((d̄N)3) kernel evaluations

per iteration. Even a computational cost of O(N3) is impractical for medium to large

size datasets. Finally, (c) hints that using such methods is overshooting, and so simpler

methods should be considered instead.

To overcome these difficulties, the first working idea that appeared in the SVM commu-

nity was chunking. Originally, Vapnik [8] realized that by discarding from the training

set those elements that result in α∗i = 0 at the optimum (i.e. not support vectors) the

solution of the problem remains the same. To take advantage of this, the algorithm

sequentially applies a QP solver over a series of subproblems involving only a subset B

of the training patterns, known as the working set, in the form
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min
αB

1
2

[
αTB αTN

] [ QBB QBN

QNB QNN

][
αB

αN

]
+
[
pTB pTN

] [ αB

αN

]
,

s.t.


[
αTB αTN

] [ yB

yN

]
= ∆,

L ≤ αB, αN ≤ C.

The training patterns N not in B are kept fixed, and so the problem simplifies down to

min
αB

1
2α

T
B QBB αB + αTB (QBN αN + pB)

s.t.

{
αB · yB = ∆,

L ≤ αB ≤ C,

which is a much easier problem if the working set B is small and, what is more, only

requires storing in memory the parts QBB and QBN αN of the kernel matrix. The main

concern is, though, how to decide which working set to choose, and furthermore, whether

there is a guarantee that after sequentially optimizing over a series of subsets B1, B2, . . .

the solution of the full problem is obtained. Vapnik connected this problem with his

observation regarding the α∗i = 0 coefficients and proposed the following: start with

some small working set B, and at each iteration remove from this subset those αi = 0,

and add to the set a fixed number M of αi coefficients among those that most violate

the KKT optimality conditions (details on this criterion are given later in Section 2.4.2).

Eventually B is guaranteed to contain every support vector, and thus the solution of

the full problem is attained.

While practical at first, the chunking approach suffers from a severe drawback: if the

number of support vectors of the final solution is large, the last steps of the method

require solving problems of almost the same size as the full problem itself. To address

this, Osuna et al. [57] proved that the solution to the SVM problem can be obtained

by solving a series of subproblems even if none of them optimize over the whole set

of support vectors simultaneously; this new approach was termed the decomposition

method. The only requirement for this to happen is that at each step at least one

example violating the KKT conditions is added to the working set B. Therefore, using

this fact, Osuna et al. propose a chunking algorithm in which a fixed-size B is used,

and at each step drops one element from B to add a violating one. This approach solves

the memory issues raised by the storage of (QBB, QBN αN ) regardless of the size of the
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training set used thanks to the fixed size of the working set, while at the same time

guaranteeing convergence.

In spite of this, the method of Osuna et al. is not free from problems. The selection

of which element to drop from the working set and which one to add among the KKT

violating coefficients is not trivial, and different authors implementing the method have

used different heuristics. A clear winner among all these approaches to decomposition did

not appear until the introduction of the SVMlight [58] algorithm by Joachims. SVMlight

builds over the method of Osuna et al. by introducing a number of key novelties, the

most prominent of them being a strategy to select the working set at each step based on

Zoutendijk’s method [59]. This finds the feasible updating direction providing greatest

descent in the objective function (in a first order sense) such that only q coefficients are

updated, q being the size of the working set B. This can be written as the optimization

problem

min
d

∇f(α) · d

s.t.



d · y = 0,

di ≥ 0 ∀ i : αi = 0,

di ≤ 0 ∀ i : αi = C,

−1 ≤ d ≤ 1,

‖d‖0 = q.

Note the “first order sense“ comes from the fact that ∇f(α) ·d approximates the change

in the objective function when performing a step d under a first order Taylor expansion

approximation, i.e.

f(α+ d) ' f(α) +∇f(α) · d.

The optimization problem posed above would be, in principle, very hard to solve because

of the L0 constraint ‖d‖0 = q. In spite of this, Joachims notes that in fact the problem

is solvable by following the steps:

1. Restrict q to an even number.

2. Sort the αi coefficients by the values ωi = yi[∇f(α)]i in decreasing order.

3. Select the top q
2 elements from the sorted list such that 0 < αi < C, or di = −yi

obeys the constraints above.
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4. Select the bottom q
2 elements from the sorted list such that 0 < αi < C, or di = yi

obeys the constraints above.

5. The selected coefficients define the working set.

Following this, the working set selection is performed just at a cost of O(N logN) oper-

ations, as the most expensive step is sorting (supposing the gradient has already been

computed). Also, using this working set selection strategy is shown to produce much

better results than other heuristics.

Nevertheless, and even after the improvements of SVMlight, the decomposition method

still needs to invoke a QP solver at each step of the algorithm. Even if the size of the

subproblems to solve is smaller than the full problem, the performance issues pointed out

at the beginning of the section still arise. It was not until the introduction of the SMO

algorithm that the need of a QP solver was dropped off and these drawbacks overcame.

Due to the relevance of this algorithm for the field of SVMs as well as for this thesis,

the next subsection is entirely devoted to this method.

2.4.2 Sequential Minimal Optimization

2.4.2.1 Platt’s SMO

The Sequential Minimal Optimization (SMO) algorithm is the result of taking the

decomposition strategy by Osuna et al. [57] to the extreme. First proposed by Platt [60],

the algorithm sequentially optimizes minimum-sized working sets; hence the name. As

in the SVM dual problem the equality constraint α · y = ∆ is present, the minimum size

working set must consist of two αi coefficients for the α to remain feasible. Traditionally,

the indexes of these two coefficients are usually noted as l and u. The greatest advantage

of this approach boils down to the fact that with such a small working set, a closed form

solution of the resultant quadratic problem is possible, thus overriding the need of a QP

solver. In what follows the way to achieve this is explained.

Considering that the working set consists in only the l and u indexes, the value of the

α coefficients after an SMO step would in principle be

α′u = αu + δu,

α′l = αl + δl,

α′i = αi ∀ i 6= l, u.
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However, this update is not valid for every pair of (δu, δl) values, as the constraints of

the problem should be taken into account. Considering first the α · y = ∆ constraint it

is realized that

α′ · y = ∆,

→ α · y + δuyu + δlyl = ∆,

→ δuyu + δlyl = 0,

→ δl = −yuylδu,

that is, the update really depends only on δu, as δl depends on it to ensure feasibility.

Because of this, the SMO’s update can be written as

α′ = α+ δ(eu − yuylel) = α+ δs,

where ei is an all-zeroed vector but for a 1 at the i-th entry, δ is a stepsize and s is the

updating direction eu − yuylel. This update guarantees that the constraint α · y = ∆ is

met, and so the decomposition subproblem associated with the working set (l, u) can be

written as

min
δ

1
2(α+ δs)T Q (α+ δs) + (α+ δs)T p (2.12)

s.t.

{
L ≤ αu + δ ≤ C,

L ≤ αl − yuylδ ≤ C.

The subproblem depends on a single variable δ, the objective function is still quadratic

convex (a parabola, in fact), and the box constraints have been reduced to two two-sided

simple inequality constraints, thanks to the fact that every αi ∀ i 6= l, u is not updated.

This kind of problem is straightforward to solve upon realization that, because the

problem is convex and one-dimensional, the optimal δ∗ is either at the unconstrained

optimum δ̂ or at boundary of the feasible region (in fact, an interval) nearest to δ̂.

Therefore, the solution is obtained by first computing the unconstrained optimum as

0 = ∂f(α+δs)
∂δ ,

→ 0 = sTQ(α+ δs) + sT p,

→ δ̂ = −sTQα−sT p
sTQs

,

and then clipping it down to the feasible region (if needed) as
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Algorithm 3 Sequential Minimal Optimization

Inputs: x, y, p, L,C,Q.
while stopping criterion not met do

Select working set (l, u).
Compute unconstrained stepsize δ̂ using Equation 2.14.
Clip down δ̂ using Equation 2.13 to obtain δ∗.
Update: αu ← αu + δ∗, αl ← αl − yuylδ∗.

end while
Compute bias b∗.
Return (α∗, b∗).

δ∗ = max
{
L− αu,−yuyl(L− αu),min

{
C − αu,−yuyl(C − αl), δ̂

}}
. (2.13)

As complex this last expression might seem to be, it just checks whether δ̂ makes αu or

αl move out of the L ≤ αi ≤ C bounds and, if this is the case, adjusts δ so that the

update moves α no farther than the bounds.

Regarding the efficiency of these computations, it is clear that the clipping operation

can be done in constant (O(1)) time. Addressing now the calculation of δ̂, because of

the sparsity of s (only entries u and l differ from zero) and realizing that the gradient

takes the form ∇f(α) = Qα+ p, its expression can be rewritten as

δ̂ =
−s · ∇f(α)

sTQs
=
−[∇f(α)]u + yuyl[∇f(α)]l

Quu +Qll − 2Qul
, (2.14)

which turns out to be doable with cost O(d̄) for the calculation of the required Q entries

(d̄ the average number of non-zero features), provided the gradient has already been

computed.

A sketch of the SMO algorithm is shown as Algorithm 3. Recall the bias of the solution

b∗ could be computed by means of the KKT conditions (Section 2.1.1). The only loose

ends in the definition of the algorithm are the procedure to select the working set and the

stopping criterion to use. In Platt’s original proposal [60] an involved heuristic checking

the degree of violation of the KKT conditions for each pattern is used to select the

working set. If no pattern with a minimum quantity of violation is found, the algorithm

stops. Though the ideas behind this proposal are sound, their implementation turns out

to be somewhat messy.



Chapter 2. Theory and algorithms for Support Vector Machines 60

2.4.2.2 Keerthi et al.’s SMO

A few years later after the publication of Platt’s SMO method, Keerthi et al. [37]

proposed an improvement where a more simplistic yet more efficient working set selection

is used. Their method is also based on measuring the quantity of violation for each

pattern, and to do so they proceed as follows.

To begin with, the Lagrangian of the dual problem can be computed as

L(α, ν, τ, b) = 1
2α

TQα+ α · p− ν · (α− L) + τ · (α− C) + β(α · y −∆).

The ”dual of the dual“ Lagrange coefficient β actually coincides with the primal variable

b. This is because of strong duality: dualization of the dual results in the original primal

problem. Note though that in the dual of the SVM some transformations have been

carried out in order to simplify the problem, and thus the Lagrange coefficients ν and

τ appear instead of the primal ξ. Regardless of this, the KKT conditions for this dual-

primal pair can be obtained as in the dual SVM derivation, resulting in

Stationarity

• ∇f(α)− ν + τ + by = 0.

Dual feasibility

• L ≤ αi ≤ C ∀ i,

• α · y = ∆.

Primal feasibility

• νi, τi ≥ 0 ∀ i.

Complementary slackness

• νi(αi − L) = 0 ∀ i,

• τi(αi − C) = 0 ∀ i.

Recall that ∇f(α) = Qα + p. Supposing an already feasible α, the primal feasibility

conditions are already met. Regarding the rest of conditions, each αi multiplier can be

assigned to one of the following groups

• αi < C: by the complementary slackness conditions τi = 0, and by dual feasibility

νi ≥ 0. Therefore, by stationarity [∇f(α)]i ≥ −byi.

• αi > L: by the complementary slackness conditions νi = 0, and by dual feasibility

τi ≥ 0. Therefore, by stationarity [∇f(α)]i ≤ −byi.

By considering that yi ∈ {−1, 1}, these two cases can be summarized into the KKT

conditions
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{
−[∇f(α)]i ≤ b if i ∈ I ≡ {yi = 1, αi < C or yi = −1, αi > L},
−[∇f(α)]i ≥ b if i ∈ J ≡ {yi = −1, αi < C or yi = 1, αi > L}.

Using this, the KKT violation for a pattern xi can be measured as the absolute value in

which the corresponding [∇f(α)]i deviates from fulfilling these conditions. As already

shown in the work of Osuna et al. [57], violating patterns are a good choice for the

working set, so choosing (l, u) from the above sets is a sensible idea. It should be noted,

however, that the optimal b is unknown until the end of the algorithm. Because of this,

the violation can only be measured as pairs of patterns, i.e. a violating pair is a pair

(i, j) such that i ∈ I, j ∈ J and −[∇f(α)]i > −[∇f(α)]j , leaving no possible b value

meeting the KKT conditions above. Therefore, such a pair is eligible as a working set.

Also, making use of this concept of violating pairs, the KKT conditions can be even

further summarized by means of the most violating pair (MVP), defined through the

indexes (low, up) as

low = argmaxi {−[∇f(α)]i s.t. i ∈ I} ,

up = argminj {−[∇f(α)]j s.t. j ∈ I} .

Using this pair it is clear that the KKT conditions simplify down to

−[∇f(α)]low ≤ −[∇f(α)]up.

Given this, Keerthi et al. propose two selection procedures:

• SMO Modification 1: find an i in the set L < αi < C such that when paired with

low or up (depending on whether i ∈ J or i ∈ I, respectively), the resulting pair

has a violation of at least 2ε. Use that pair as the working set.

• SMO Modification 2: use the most violating pair (low, up) as the working set if it

has a violation of at least 2ε.

Modification 1 follows the spirit of the heuristics of Platt, which focused on the coeffi-

cients not at bound L < αi < C. Modification 2, in turn, pursues reducing the total

violation of the KKT conditions by adjusting at each step the coefficients with largest
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violation. Violations under a minimum of ε are not considered, as an approximate fulfill-

ment of the optimality conditions is enough in practice. If at some step of the algorithm

the rules above cannot find any suitable violating pair, the algorithm stops. Therefore,

implicitly, the algorithm is using the quantity of violation of the MVP as a stopping

criterion. Also, whatever the modification used, the working set selection requires lin-

ear (O(N)) time provided the gradient ∇f(α) has already been computed. This one is

maintained in memory and updated efficiently at every iteration by noting that

∇f(α+ δs) = Q(α+ δs) + p,

= ∇f(α) + δQs,

= ∇f(α) + δ(Q:,u − yuylQ:,l),

at a cost of O(d̄N) dominated by the computation of the columns Q:,u and Q:,l. Conse-

quently, the overall cost of the algorithm per iteration is O(d̄N).

In practice, Keerthi et al. show that Modification 2 performs better, and so this is the

strategy followed in most SMO implementations. Furthermore, this modification has

been proved to be convergent [61]. It has also been shown that choosing q = 2 in

SVMlight results in exactly the same algorithm as Modification 2 [62]. As this approach

usually obtains better results than SVMlight when other choices of q are used, it is clear

that avoiding the use of a QP solver effectively improves the efficiency of the method.

2.4.2.3 WSS2

Modification 2 is also termed as First Order Working Set Selection or WSS1, in

contrast to the Second Order Working Set Selection (WSS2) [63] by Fan et al.

This refinement further improves the ability of the selected working sets to produce a

decrease in the objective function (the function being minimized) by observing that the

new value of the objective function after an update, assuming no clipping to constraints

is needed, is given by
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f(α+ δ̂s) = 1
2(α+ δ̂s)T Q (α+ δ̂s) + (α+ δ̂s)T p,

= f(α) + 1
2 δ̂

2sTQs+ δ̂αTQs+ δ̂s · p,

= f(α) + 1
2 δ̂

2sTQs+ δ̂s · ∇f(α),

= f(α)− 1
2

(s · ∇f(α))2

sTQs
,

= f(α)− 1
2

(−[∇f(α)]u − yuyl[∇f(α)]l)
2

Quu +Qll − 2Qul
,

where it is made use of the fact that the unbounded optimal stepsize is δ̂ = −s·∇f(α)
sTQs

.

What Fan et al. propose is to select one element of the working set using WSS1 (for

instance, u) and then choose the other in order to maximize the decrease in the objective

function. This results in the rules

 u = low ≡ argmaxi {−[∇f(α)]i s.t. i ∈ I} ,
l = argmaxj

{
(−[∇f(α)]u−yuyj [∇f(α)]l)

2

Quu+Qjj−2Quj
s.t. j ∈ J,−[∇f(α)]j < −[∇f(α)]u

}
.

The new rule for l is also doable in almost linear time, as it just requires evaluating

the decrease obtained for each possible j = 1, . . . , N , and each such evaluation has

cost O(d̄) because of the requirement to compute entries Quj which, in turn, call the

kernel function. The resultant cost for WSS2 is O(d̄N), though its faster convergence

speed in terms of iterations more than justifies this additional burden over the O(N)

time required by WSS1. It should also be noted that the cost of the SMO algorithm

is still dominated by the update of gradient O(d̄N), so WSS2 does not really increase

the algorithm’s overall complexity. Convergence for this kind of WSS has also been

proved [63], and nowadays it is widely regarded as the best performing strategy in SMO

implementations.

2.4.2.4 LIBSVM: caching and shrinking

To close this section two improvements that further boost the performance of SMO

algorithms are reviewed: caching and shrinking, which were first introduced by Joachims

[58]. The use of these heuristics together with WSS2 form the popular LIBSVM method

[30] by Chang and Lin, which can be considered as the de facto standard in non-linear

SVM training software.
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On the one hand, caching is a memory management strategy that successfully reduces

the overhead caused by the evaluations of the kernel function by storing in memory a

subset of the rows of the matrix Q. It is based on the observation that at each iteration of

SMO, only the rows/columns Ql,: and Qu,: corresponding to the working set are required

(Q is symmetric). If these rows need to be computed every time they are needed, the

cost of SMO per iteration is in the order of O(d̄N), with kernel evaluations dominating

the cost. If, however, these rows were already precomputed and available in memory,

the cost would drop down to O(N). However, and as already stated at the beginning of

this section, storing the full matrix Q into memory is infeasible. What caching proposes,

thus, is an intelligent way to maintain in memory a subset of the rows of Q so that the

cost per iteration is reduced.

Caching works as follows. At each iteration of SMO, the two rows corresponding to the

selected (l, u) working set are requested from a kernel cache. If these rows happen to be

available in this cache their values can be used immediately without further computa-

tions. Else, the non-available rows are computed from scratch and added to the cache.

When the size of the cache grows above a used-defined memory limit, rows are dropped

following a Least Recently Used (LRU) policy to reduce memory usage. This policy

ensures that the removed rows have not been accessed recently, thus avoiding repeated

computations of highly demanded rows. In this way the kernel cache effectively helps to

reduce the number of kernel function evaluations throughout the whole algorithm. As

expected, this effectiveness greatly depends on the amount of memory available for the

cache; more details on this are given in the experimental sections of Chapter 3.

Shrinking, on the other hand, is based on more theoretical properties of the SMO

algorithm. As shown by Chen et al. [64], there is a point in the algorithm after which

the coefficients at bound αi ∈ {L,C} that are not at a support hyperplane in the

optimum (w∗ · xi + b∗ 6= ±1) remain at that bound until the end of the algorithm.

In other words, those coefficients have already attained their optimal α∗i value, and

therefore, could be held fixed during the rest of the algorithm, guaranteeing the same

final solution. This property can be regarded as an extension of Vapnik’s motivations for

the chunking algorithm [8]. The shrinking strategy takes advantage of this by “freezing”

those α coefficients that are located at the boundaries of the problem {L,C} and are

likely to remain there, so that the optimization can continue without considering them

(the hyperplane condition w∗ ·xi+b∗ 6= ±1 is ignored). Different implementations of the

shrinking strategy depend on the criterion used to decide which coefficients should be

shrunk. In LIBSVM, after a certain number of iterations a shrinking step is performed, in

which the gradient of the αi at bound is checked. If the gradient indicates the coefficient

is likely to remain there (see [64] for details), that αi is “shrunk”, and the algorithm

continues working on the non-shrunk coefficients.
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To prevent bad quality solutions arising from too early shrunk coefficients, once a so-

lution satisfying the stopping criterion is attained, the problem is reconstructed, i.e.

every coefficient is activated again, and once again the algorithm continues considering

every coefficient. This reconstruction step involves recomputing the gradient for every

shrunk coefficient, which can be very expensive. In LIBSVM this step is performed in

an efficient way by noting that each entry of gradient can be written as

∇[f(α)]i = pi + L
∑
αj=L

Qij +
∑

αj∈(L,C)

αjQij + C
∑
αj=C

Qij .

The second term has no effect in the computation if L = 0 (which is the case for SVM

classification, SVR, and One-class), and the computation of the last one can be done

efficiently by maintaining in memory the sums Ḡi =
∑

αj=C
Qij , which only need to be

updated when a coefficient hits or leaves the C boundary. Note however that there is

no fast way to compute the third term, which must be recomputed from scratch.

It must be noted that because shrinking only identifies those coefficients that with some

probability are at their optimal value, one can find cases where this identification fails

and no faster or even slower convergence is attained. Therefore, shrinking is regarded

as a heuristic procedure that may or may not work. Despite this, its use is generally

recommended, and furthermore is used jointly with caching: shrunk coefficients do not

need to appear anymore in cache, and thus neither their Q rows nor their columns are

stored, making room for other non-shrunk rows.

Joining WSS2, caching and shrinking, LIBSVM’s implementation of SMO, can be con-

sidered the state-of-the-art in non-linear SVM training. Nevertheless, there is still room

for improvement, and as shown in the contributions of this thesis in Chapter 3, LIBSVM

can still benefit from new strategies.

2.4.3 Geometric SVM solvers

In parallel with the development of primal and dual algorithms for the SVM problem, a

series of methods from the field of geometry have been adapted to address the alternative,

geometric formulation of the SVMs for classification. A brief overview of the most

relevant methods of this kind is given in this section.

The first successful attempt to solve the geometric SVM problem was made by Franc and

Hlavǎc [65] as the Schlesinger–Kozinec (SK) algorithm, sometimes also referred as

the Gilbert–Schlesinger–Kozinec (GSK) algorithm, as its motivation can be traced

back to the work of Gilbert [66]. The algorithm originates in a procedure designed to
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Algorithm 4 Schlesinger–Kozinec (simplified)

Inputs: convexs set X+,X−.
Initialize w+ ∈ X+, w− ∈ X−.
while not at optimum do

Find point m with least margin to the hyperplane w = w+ − w−.
Move w± in the same hull as m so as to minimize distance to the opposite w∓.

end while
Return (w+, w−).

(a) (b) (c)

(d) (e)

Figure 2.9: Example of iterations performed by the GSK algorithm. a) The point
with least margin is identified, which turns out to belong to the set X+ (red). b) w+

is displaced towards this least-margin point to minimize distance to w−. c-e) This
procedure is repeated until convergence.

solve the Minimum Norm Problem (MNP), which pursues finding the point x∗ inside

convex set such that the norm ‖x‖2 is minimized. This problem can be easily generalized

to finding the closest points in two convex sets by alternatively optimizing for each one

of the sets, minimizing at each step the norm of the point in that set and considering as

the origin the point in the other set. The resulting algorithm is given as Algorithm 4, in

which at each step the data point with least margin is selected for update. It should be

noted that a point at the wrong side of the hyperplane is considered to have less margin

than a correctly classified one, even if its actual distance to the hyperplane is smaller 1.

An example showing some iterations of the algorithm is depicted in Figure 2.9.

1This is sometimes referred as signed margin
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Adapting this algorithm to work when the convex sets are defined as the convex hull

of a set of points and adding kernelization results in the algorithm proposed by Franc

and Hlavǎc [65]. This is done by expressing the points w± as w± =
∑

i± αiΦ(xi), that

is, making explicit use of the convex hull structure for convex combination weights α.

With this, the method is able to solve the problem

min
α

∥∥∥∥∥∑
i+

αiΦ(xi)−
∑
i−

αiΦ(xi)

∥∥∥∥∥
2

2

,

s.t.


∑

i+ αi = 1,∑
i− αi = 1,

α ≥ 0,

which after some algebra can be rewritten as

min
α

αTQα,

s.t.


α · y = 0,

0 ≤ α ≤ 1,

α · e = 2,

i.e. the hard–margin geometric SVM model (Equation 2.11). The method presents costs

per iteration of the same order as the SMO algorithm (O(d̄N)), though its convergence

rate is much poorer due to the fact that a large number of iterations are needed to

achieve a good enough solution. This is because even if the solution of the problem is

always at a vertex or a face of the convex sets, SK can only approach the boundary of

the sets asymptotically (as seen in the example).

A further SK extension by Mavroforakis and Theodoridis [67] addresses the soft-margin

case

min
α

αTQα,

s.t.


α · y = 0,

0 ≤ α ≤ ν,
α · e = 2,
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(a) (b) (c)

(d) (e) (f)

Figure 2.10: Example of iterations performed by the MDM algorithm. a) The points
with least and most margin are identified. b) w+ is displaced the direction given by
the selected points so as to minimize distance to w−. c-e) This procedure is repeated.
f) The optimal solution is found. Note how in e) the crossed points are not eligible, as

they no longer contribute to w+ (αi = 0).

in which the hulls are replaced by reduced convex hulls with a reduction parameter ν.

This approach, though, increases the cost per iteration to O(N log(N)) due to some

required sorting operations.

Improving on SK, the Mitchel–Dem’yanov–Malozemov (MDM) algorithm [68] man-

ages to solve SK convergence issues. To do so, the update is performed in the direction

given by the point with least margin and the one with largest margin contributing to w±

(i.e. αi > 0), with the requirement that both of them must belong to the same convex

set. This avoids asymptotic approximations to the boundary of the convex sets, hence

requiring less iterations for convergence. Even though MDM roughly requires twice as

many operations than SK per iterate, most of the times it pays off, resulting in faster

training times. Figure 2.10 shows an example of some iterations of the algorithm. As

in SK, the original method could only solve the hard-margin version of the problem,

though it was later extended to the soft-margin case first by Tao et al. [69] and then in

a more effective way by López, Barbero and Dorronsoro [70, 71].

As shown in [70], MDM turns out to be a restricted version of the SMO algorithm when

WSS1 is used. Indeed, l coincides with the point with least margin, u with the point with



Chapter 2. Theory and algorithms for Support Vector Machines 69

largest margin and αi > 0, and the restriction comes in the form of l and u belonging

to the same convex set, that is, to the same class. This observation is backed up by the

fact that the ν-SVM formulation (see Section 2.2.5) can be shown to be equivalent to

the geometric SVM [43], and in the LIBSVM software [30] this SVM variant is solved

by an adapted SMO procedure in which both l and u are forced to belong to the same

class. This equivalence between algorithms is relevant because any improvement in one

of the methods could be, in principle, applied to the other one and, in fact, in Chapter 3

an effective use is made of this fact.





Chapter 3

Accelerating SVM training

“The mind that opens to a new idea

never comes back to its original size.”

Albert Einstein

In this chapter the first major contribution of this thesis is presented: a method to

reduce the number of iterations required by Sequential Minimal Optimization for con-

vergence, while maintaining its computational cost per iteration. The method originates

in observations of the behavior of the Mitchel–Dem’yanov–Malozemov algorithm for ge-

ometric SVMs, which because of its way of constructing updating directions suffers from

slow convergence towards the optimum in some situations. A geometry-inspired algo-

rithm termed as the Cycle-Breaking method is proposed to address these flaws, which

is then applied to the SMO algorithm making use of the links between both methods.

Once in SMO, Cycle-Breaking is further improved to form the Momentum Sequential

Minimal Optimization (MSMO) algorithm, which once adapted to the generalized

SVM formulation of Section 2.2.4 is effectively applied for SVM classification, Support

Vector Regression, One-class SVM and Least–Squares SVM. The chapter closes with

a thorough analysis on the compatibility of MSMO with the alternative accelerating

strategies of caching and shrinking, providing notions about when MSMO can provide

useful improvements in SVM training times.

71
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Figure 3.1: An example where the MDM method zigzags towards the optimum. One
class consists in a single point where the other one is made up of four.

3.1 Cycle-Breaking

3.1.1 Deficiencies of the MDM algorithm

The Mitchel–Dem’yanov–Malozemov algorithm (Section 2.4.3) can be regarded as a

the best-performing method for solving the optimization problem posed by geometric

SVMs. It is, as well, a constrained version of the Sequential Minimal Optimization

(Section 2.4.2) method applied to this particular problem where the two coefficients

(l, u) of the working set are forced to belong to the same class. While because of this

constraint MDM results in a slower algorithm than SMO (it solves a harder problem) [70],

its intrinsic geometric interpretation allows a more careful study of the behavior of this

method. For instance, when not employing the kernel trick and using 2-dimensional data,

regardless on the number of training patters, it is possible to produce a 2-dimensional

plot representing the two convex hulls and the evolution the points (w+, w−) follow until

the solution of the problem is found.

Because of this and thanks to observation it was realized that situations like the one

depicted in Figure 3.1 could take place, in which the algorithm zigzags towards the

optimum by repeating several times the same choices of working set selections, i.e.

(l1, u1), (l2, u2), . . . , (lM , uM ), (l1, u1), (l2, u2), . . . , (lM , uM ), (l1, u1), . . . and so on until a

boundary of the convex set is hit, making one of the ui in the repetition no longer

available (because αi → 0) or a pair (lj , uj) out of the repetition becomes a better

working pair (because of the changes in w±). Until either of these events takes place

the algorithm is optimizing over and over using the same (l1, u1), (l2, u2), . . . , (lM , uM )

working sets, that is, repeating several times the same cycle. While this situation might

appear to be a degeneracy of the method, it actually turns out to be reproduced also in

high-dimensional situations (as shown later on experimentally).
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CB

Figure 3.2: A cycle made up by the two directions d1 and d2 can be broke down by
building the cycle-breaking direction shown.

An explanation to this effect from the point of view of optimization can be given. As

stated before, SMO with WSS1 (and thus MDM) is nothing but the SVMlight algorithm

when a working set of size q = 2 is used [62]. As SVMlight working set selection follows a

modified Zoutendijk’s method (see Section 2.4.1), in essence it is selecting the updating

direction s with only 2 non-zero entries producing the largest decrease in the objective

function, in a first–order sense. Methods using only first–order information (gradient)

to select their updating directions are known to show zigzagging effects [25]: the gra-

dient descent method is the best example of this. Conversely, second–order methods

like Newton descent or Conjugate Gradient [72] get rid of this inefficient zigzagging by

making use of Hessian information, though at a higher cost per iteration. MDM and

SMO not only use just first–order information, but further limit themselves to update

the minimum possible number of the problem’s variables per iteration. This is in line

with classic methods such as coordinate optimization, where a simple line optimiza-

tion along each one of the variables is done at a time. These methods, though requiring

minimal computational costs per iteration, further suffer these zigzagging effects, result-

ing in a large number of iterations till convergence. Using a “second-order” working

set selection (WSS2) only solves the problem partially, since just two rows from the full

Hessian are employed and still only two variables are updated per iteration. Hence,

zigzagging is still bound to appear, though with less frequency than in WSS1.

Back to MDM, the appearance of cycles is an inefficiency of the method, because usually

little improvement in the objective function is gained at each step and, furthermore, the

cycle repetition can be completely overcome by performing an optimization step follow-

ing a suitable updating direction, different than the standard one chosen by MDM as a

function of (l, u). In the simple example of Figure 3.2 the cycle being repeated is made

up of just two working sets (l1, u1) and (l2, u2). By denoting the updating directions

defined by these sets as d1 and d2, it is clear that by optimizing along the combined

direction d = s1 + s2, the end of the cycle repetitions is reached in a single iteration.

Therefore, looking for these cycle-breaking directions seems an appealing way to
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solve this problem and hence to reduce MDM’s number of iterations for convergence.

The question is how these directions can be constructed and how the algorithm can

realize that a cycle is taking place.

3.1.2 The Cycle-Breaking method

The first instantiation of the cycle-breaking idea was made as the Cycle-Breaking

method applied to the MDM algorithm [73], and later on extended to WSS1 SMO [74],

WSS2 SMO [75] and Support Vector Regression [76]. This was before the generalized

SVM formulation used in this thesis was considered, though for the ease of presentation,

the description of the algorithm here is given in terms of an SMO solving this formulation,

considering MDM is a particular case of it where yuyl = 1 since (u, l) must belong to

the same class.

First of all, the SMO algorithm was modified to maintain an updates queue Q containing

information about the working sets (l, u) and the updating step δ used during the past τ

iterations (τ being a queue memory parameter). This allows to remember the decisions

taken by SMO during the last τ steps, and to decide whether a cycle is taking place

using this information. Specifically, at each iteration and after SMO has issued a new

working pair (l, u) to use in the current iteration, it is checked whether the same pair

already appears in Q. If so, it is decided that a cycle is taking place, it being formed by

the updates performed between the repetition found in Q and the most recent one, and

a cycle-breaking step is applied. Otherwise a standard SMO step is performed, adding

the current working set and resultant stepsize (l, u, δ) as the most recent element of Q.

The oldest element from Q is dropped if Q already contains τ elements.

To perform a cycle-breaking step, suppose the detected cycle is given by the previ-

ous iterations (l1, u1, δ1), . . . , (lM , uM , δM ). Following the intuitions presented before, a

cycle-breaking direction d is built as

d =
M∑
i=1

δi(eui − yuiylieli), (3.1)

that is, summing up the directions making the detected cycle. Then the subproblem of

optimizing the objective function following this direction is solved, which takes the form

min
δ

1
2(α+ δd)T Q (α+ δd) + (α+ δd)T p,

s.t. L ≤ α+ δdi ≤ C ∀ di 6= 0.
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Because each of the basic directions si = δi(eui − yuiylieli) meets the constraint (α +

δisi) · y, this constraint is also met for d. Consequently, there is no need to consider

it here. Despite the direction d being more complex than the usual si directions, the

resulting subproblem presents the same structure as the problem to solve at each step

of SMO (Equation 2.12), but for the larger number of box-constraints, which depend

on the number of non-zero entries of d. Therefore, the unconstrained optimum of the

problem can be computed similarly as

δ̂ =
−d · ∇f(α)

dTQd
. (3.2)

The computation of d · ∇f(α) can be made fast by exploiting the sparsity of d, i.e.

d · ∇f(α) =
∑
di 6=0

di[∇f(α)]i.

Since d is made up of at most τ previous updates (because of the updates queue Q
limitation) and each of this updates modifies exactly two entries, at most 2τ entries of d

are non-zero. Therefore, d · ∇f(α) can be computed in O(2τ) time (recall the gradient

is always maintained in memory in SMO). Similarly, the calculation of the denominator

dTQd can also take advantage of this sparsity by defining first U = Qd, i.e.,

Ui =
∑
dj 6=0

Qi,jdj , (3.3)

and then using

dTQd =
∑
di 6=0

diUi.

The computation of U requires O(2τNd̄) operations, O(2τ d̄) per each Ui entry, d̄ because

of the evaluation of the kernel function for Q (d̄ average number of non–zero features).

After that, only O(2τ) operations are needed to obtain the denominator dTQd. Overall,

the cost for computing the unconstrained stepsize δ̂ is dominated by the computation

of U , i.e. O(2τNd̄).

Replicating the arguments given for SMO (Section 2.4.2), the constrained optimum δ∗

is obtained by clipping down δ̂. To do so, each one of the box constraints is checked,

clipping the value of δ if needed, as
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Algorithm 5 Cycle-Breaking method

Inputs: x, y, p, L,C,Q, τ .
Initialize Q = ∅, α = ∇f(α) = 0.
while stopping criterion not met do

Select working set (l, u).
if (l, u) ∈ Q then

Build Cycle-Breaking direction d using Equation 3.1.
Compute U and unconstrained stepsize δ̂ using Equation 3.3 and Equation 3.2.
Clip down δ̂ using Equation 3.4 to obtain δ∗.
Update: α← α+ δ∗d, ∇f(α)← ∇f(α) + δ∗U .
Reset Q = ∅.

else
Perform standard SMO step.
Add (l, u, δ∗) to Q, drop oldest from Q if more than τ elements exist.

end if
end while
Compute bias b∗.
Return (α∗, b∗).

δ =

 min
{
δ, C−αidi

}
if di > 0,

min
{
δ, L−αidi

}
if di < 0,

∀ di 6= 0. (3.4)

After applying this clipping procedure, the resulting δ is δ∗, and so the update is per-

formed as α ← α + δ∗d. The only point left to address is the update of the gradient

∇f(α), a crucial step to maintain SMO’s performance. This is straightforward to do

upon realization that

∇f(α+ δ∗d) = Q(α+ δ∗d) + p,

= ∇f(α) + δ∗Qd,

= ∇f(α) + δ∗U,

that is, the update in the gradient is immediately given by the stepsize δ∗ and the vector

U already computed to obtain δ∗. Therefore the update of the gradient just requires

O(N) operations.

A pseudocode of the algorithm is shown as Algorithm 5. In practice some additional

measures are taken to ensure good performance of the cycle-breaking steps:

• The slope of the standard direction suggested by SMO ∇f(α) · s is compared

against the slope of the cycle-breaking direction ∇f(α) · d. The cycle-breaking
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update is only performed if ∇f(α) · d < ∇f(α) · s, that is, if the improvement in

a first–order sense is larger than the one provided by a standard update. Else, a

standard update is performed and (l, u) and every older entry in Q is removed to

prevent trying to break this cycle again. This avoids running cycle-breaking steps

that provide little improvement. While when τ is well–tuned such situations do

not take place very frequently, still some savings can be obtained following this

rule.

• If δ̂ 6= δ∗ in a standard step, i.e. a boundary of the problem is hit, Q is reset to

∅. This prevents generating infeasible cycle-breaking directions, as d would try to

push α further beyond the boundary.

A value for the new parameter τ has to be chosen to run the algorithm. τ constitutes

a trade-off between a low cost per cycle-breaking step and the ability to detect and

break long cycles (though large values of τ might be prone to detect spurious cycles). In

practice, therefore, small values of τ ∈ [10, 30] generally work best. In any case, usually

τ � N . Further discussion on this parameter is given later in the experimental results

(Section 3.1.3).

Cost per iteration depends on whether a standard SMO step or a cycle-breaking step

is performed. The standard step retains its original cost (O(Nd̄)) while the cost of the

cycle-breaking step is dominated by its most expensive computation, the calculation of

U , which involves at most O(2τNd̄) operations. This means a cycle-breaking step could

take up to the cost of 2τ steps; fortunately in practice the number of non-zero entries

in the cycle-breaking direction d is usually very small, making this cost smaller, and so

performing cycle-breaking steps pays off.

As a final remark, it should be noted how this cycle-breaking strategy is reminis-

cent of the Hooke–Jeeves algorithm [77] for accelerating the cyclic coordinate descent

method. This method is a special case of coordinate optimization where the variable

over which to optimize at each step is selected using a policy such that, after a number

T of iterations, each one of the problem’s variables has been optimized over at least

once. The simplest form of this method involves optimizing each variable sequentially

(α1, α2, . . . , αN , α1, . . .) and so T = N . The Hooke–Jeeves algorithm improves over

the cyclic coordinate descent method by building an accelerating direction d after each

optimization cycle, summing up in d the previous T directions and then performing a

line search along d. In this respect, the Cycle-Breaking method can be regarded as a

modification of the Hooke–Jeeves algorithm in which accelerating directions are only

build when there is a reasonable expectation of the utility of those directions, and the
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Dataset N d Splits log10(C) log10(2σ2)

thyroid 140 5 100 1 0.5

heart 170 13 100 1 2.3

titanic 150 3 100 0.7 0.3

breastcancer 200 9 100 1.2 1.7

diabetes 468 8 100 0 1.3

german 700 20 100 0.5 1.7

flare 666 9 100 0 1.5

image 1300 18 20 2.7 1.5

splice 1000 60 20 3 1.8

banana 400 2 100 2.5 0.0

ringnorm 400 20 100 9 1

twonorm 400 20 100 0.5 1.6

waveform 400 21 100 0 1.3

Table 3.1: Training set sizes N , input dimensions d and training-test splits of the
datasets used in the Cycle-Breaking experiments, along the recommended C and σ

parameters.

underlying algorithm (SMO) selects the variables to update as a function of gradient

information instead of following a cyclic policy.

3.1.3 Experimental results

Experimental results supporting the cycle-breaking method had been already carried

out in references [73–76]. For the sake of clarity of presentation and because the main

contribution of this chapter is the MSMO algorithm (presented in Section 3.2), here only

the most representative results for SVM classification using SMO with WSS2 are pre-

sented. It should be noted that these results apply as well for Support Vector Regression

and the MDM algorithm.

The experimental setup was as follows. Benchmark datasets were taken from Gunnar

Rätsch’s [35] online repository. These are distributed in the form of 100 training / test

splits per dataset (but for two datasets which only present 20 splits), and recommended

values for the SVM parameters are provided as well. Table 3.1 presents the size, number

of splits and parameters for these datasets. As a stopping criterion for SMO, a KKT
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Figure 3.3: Percentage of time required by Cycle-Breaking w.r.t SMO for the bench-
mark datasets. Dashed lines present results for individual datasets, while the bold line

is an average across datasets.

violation smaller than 10−5 in the most violating pair must be achieved. The kernel

function used was always the gaussian kernel k(xi, xj) = e−
‖xi−xj‖

2
2

2σ2 .

The SMO algorithm as well as the Cycle-Breaking method were implemented from

scratch in the C programming language. A simple caching strategy that stores up

to 100 rows of Q was included in the implementation as well. Shrinking was not used.

In the first place, the influence of the τ parameter over training times was studied.

Figure 3.3 presents reductions in training times attained by the Cycle-Breaking method

w.r.t standard SMO times, for a range of values of the τ parameter. Small values of τ

slightly degrade the performance of the algorithm, while from τ = 5 on improvements

are observed, up to the point τ ' 20 beyond which the behavior of the method does

not change significantly. The interpretation of this effect is the following: small τ values

can only detect very small cycles, and thus the larger, probably more inefficient cycles

are left unchanged. However as the Cycle-Breaking strategy imposes additional burdens

on computational times, applying it only to such small cycles does not seem to pay off.

Regarding the constant behavior of the method for large τ values, it should be realized

that whatever the size Q is allowed to grow to, if no cycles of such large sizes take place

during the algorithm the result will be the same. Therefore, it seems that in practice

large cycles do not take place, or are marginal when compared with the occurrence of
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Dataset Times SMO Times CB Reduction

thyroid 3.02 2.90 96.10 %

heart 8.07 7.52 93.11 %

titanic 3.67 3.73 101.62 %

breastcancer 31.90 24.99 78.33 %

diabetes 40.50 40.70 100.50 %

german 155.83 138.83 89.09 %

flare 83.63 81.49 97.44 %

image 1818.10 1340.80 73.75 %

splice 1470.00 1469.30 99.95 %

banana 406.34 277.33 68.25 %

ringnorm 44.17 49.32 111.65 %

twonorm 16.29 17.07 104.78 %

waveform 22.57 21.85 96.81 %

Average 93.18 %

Table 3.2: Average running times (in milliseconds) for SMO WSS2 and Cycle-
Breaking (CB); the reduction in % is also given.

smaller cycles. Under the light of these results, it seems that an adequate value for this

parameter would be τ = 20.

Table 3.2 presents detailed running times for every dataset and τ = 20. An average

reduction factor of 93.18 % is obtained, with large variations across datasets: while

for banana Cycle-Breaking requires only 68.25 % of the time of SMO, in diabetes both

algorithms perform similarly, and in ringnorm Cycle-Breaking takes even more time than

SMO. The causes of these variations will be clear when analyzing them in the context

of the MSMO method (Section 3.2), and so they are not addressed here.

As a conclusion of these experiments, it can be stated that the basic Cycle-Breaking idea

works, breaking cycles even in high-dimensional (kernel) spaces, though regrettably, the

improvements obtained are not significant enough to be of practical use. Fortunately, the

method can be further enhanced to augment its effectiveness; the next section presents

how this can be realized.
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3.2 Momentum Sequential Minimal Optimization

In this section another SMO accelerating method is built upon the Cycle-Breaking

ideas, resulting in the Momentum Sequential Minimal Optimization (MSMO)

algorithm. This improved method is able to attain significant reductions in the number

of iterations required by SMO for convergence, while not increasing noticeably the cost

per iteration. Depending on the situation and its combination with other accelerating

methods such as caching and shrinking, the method is also able to attain relevant savings

in training times.

3.2.1 Momentum motivation

As already discussed in Section 3.1, the SMO algorithm builds its updating directions

by only making use of first–order information, and, furthermore, restricting them to

make use of the minimal number of αi coefficients, which turn out to be 2. While

this approach has large advantages like getting rid of the necessity of using a QP solver

(Section 2.4.2), the excessive simplicity in the updates leads to zigzagging effects towards

the optimum, resulting in slow convergence in terms of number of iterates. Because of

this, a possible way to improve SMO performance would be to allow the use of more

complex and informative updating directions, while preserving the ability to solve the

resulting subproblem in closed form.

A first naive idea would be to apply a Gradient Projected method [25]. This implies

using the updating direction d = −∇f(α) at each step and performing line optimization

along d, projecting the result back to the feasible set afterwards. Since the constraints of

the SVM problem are simple, this projection would reduce to a simple clipping procedure

like in SMO or Cycle-Breaking. However, a severe drawback becomes evident when the

optimal unconstrained stepsize is computed, as it has the form

δ̂ =
−d · ∇f(α)

dTQd
,

and since d may be an all non-zeros vector, the calculation of the denominator involves

O(d̄N2) operations because of the entries of Q. Furthermore, caching a fraction of the

rows of Q is of no use in this setting, as the whole matrix would be requested at every

iteration.

The moral of this attempt is that not only the subproblem must be solvable in closed

form, but also the updating direction should be sparse. The Cycle-Breaking method

fulfills both conditions, but the construction of its directions is based on heuristics that
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Figure 3.4: Depiction of the concept of general direction. While individual directions
show zigzagging patterns, the general direction of movement has a clearer orientation

towards the objective.

leave considerable room for improvement. The method proposed here seeks to obtain

better updating directions while keeping these good properties.

Looking at the Cycle-Breaking method from a different point of view, it could be said

that what the method is trying to do is to capture the general direction of movement

of the SMO algorithm, i.e., the direction SMO follows when batches of several consecutive

steps are considered. An example of this idea is depicted in Figure 3.4. While each step of

the algorithm produces an update that follows a zigzag pattern when compared with the

preceding and subsequent steps, if a sufficiently large number of steps are considered as

a whole, it is clear that the algorithm is moving following a certain direction. Extending

this concept to the limit, that is, considering every step since the beginning of the

algorithm till convergence, it is obvious that the direction followed is the one taking

the starting point to the optimum. The point here is that taking a reduced number of

steps the general direction could still be an useful estimate of the direction towards the

optimum.

The concept of general direction is broader than that of cycle repetitions: while both of

them try to break zigzagging to save iterations, these zigzags might not be necessarily

caused by the repetition of a cycle, i.e. the same sequence of working sets. In fact, in

large training sets it is not strange to find patterns such that Φ(xi) ' Φ(xj) but i 6= j, so

that the working set (i, u) is as suitable as (j, u). Because of this, Cycle-Breaking might

fail to identify cycles taking place, as only the indexes of the working sets are checked.

Checking directly the (Φ(xi),Φ(xj)) values instead is unfeasible or impractical depending

on the choice of kernel function, whereas using the general direction of movement could

solve this issues.

In fact, the concept of general direction of movement is not new, and it has already been

used in other contexts in the field of optimization and also machine learning under the

idea of momentum. It involves modifying the updating rule of a given algorithm so

that it takes the form

x← x+ (1− λ)δs+ λm,
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for (s, δ) the standard updating direction and stepsize issued by the optimization algo-

rithm, m a momentum term and λ ∈ [0, 1) a parameter to weigh the influence of the

momentum. The momentum is usually defined as mt = xt − xt−1 for iteration t of the

algorithm, that is to say, it is the movement performed in the previous iteration. Since

each update of x involves a momentum term, the definition of m is recursive,

mt = xt − xt−1,

= (1− λt−1)δt−1st−1 + λt−1mt−1,

and so implicitly all the steps performed during the algorithm build up into m. Or, in

other words, the momentum is capturing the intended general direction of movement.

Momentum terms have been widely used in the training of classic feedforward networks

[3], but have also become popular recently in the spirit of cleverly combining the present

xt and previous xt−1 points in the optimization iterations to make a better choice for

the next one xt+1. Examples of this can be found in the field of image and signal

processing in methods such as FISTA [78] or TwIST [79], as well as in the context of

proximal splitting methods [80]. Also it has been proved by Bhaya and Kaszkurewicz

[81] that when optimizing unconstrained problems with quadratic objective functions,

gradient descent with momentum coincides with the second–order method of Conjugate

Gradients [72] if particular choices of the weighting parameter λ are used. All these facts

support the idea that the use of momentum effectively helps to improve the efficiency of

the algorithm, and also that second-order information is gathered and put into use by

this method.

Because of this, trying out this approach over the SMO algorithm seems a reasonable

idea. However, and as stated in the beginning of this section, care must be take so as

not to use non-sparse updating directions; otherwise the performance of the algorithm

would degrade beyond repair. Unfortunately and due to the recursive definition of

the momentum term, even if the base directions s are sparse, after a certain number

of iterations m would become non-sparse, as all the preceding s accumulate into m.

Therefore, momentum cannot be directly applied over SMO, and so some amendments

are required.

3.2.2 The MSMO algorithm

This section details the Momentum Sequential Minimal Optimization (MSMO)

algorithm, which puts into practice the aforementioned ideas regarding acceleration
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through a momentum term. As stated before, a direct application of momentum is

not practical in SMO because of the density of the resultant updating direction, and so

here a memory–limited momentum is proposed, which takes the form

mt =
t−1∑

r=t−τ
(1− λr)δrsr,

in which only the s terms from the most recent τ updates are taken into account,

much in the spirit of the Cycle–Breaking method. Even though this might appear as

a rough approximation to the classic momentum term, it features useful properties for

the problem at hand, namely, the ability to control the sparseness of the generated

direction through the τ parameter (since each basic direction sr only has two non–zero

entries) and the independence of each contributing term s, which facilitates bookkeeping

operations, as detailed later in the text. Also, and even though generally in this class

of methods λ is a predefined, fixed parameter of the algorithm in the range λ ∈ [0, 1),

in this formulation it is possible to find (δ∗, λ∗) pairs that maximize the decrease in the

objective function at each iteration, the range of λ being augmented to λ ∈ R. The way

the updating direction with momentum is constructed is also modified to be

d = (1− λ)s+ λm = λ(m− s) + s,

so that the update becomes

α← α+ δd,

that is, it can be expressed in the usual form of an updating direction together with a

stepsize. A depiction of the effect of λ in the resultant direction d is shown in Figure 3.5.

The subproblem to solve at each iteration thus takes the form

min
δ,λ

1
2(α+ δd)T Q (α+ δd) + (α+ δd)T p,

s.t. L ≤ α+ δdi ≤ C ∀ di 6= 0,

which has the same structure as the subproblem appearing in a cycle–breaking step

but for the need to optimize over λ as well, which is included in the problem implicitly

through d. The unconstrained optimal values δ̂ and λ̂ can be obtained by computing
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Figure 3.5: Effect of the weighing parameter λ on the resulting updating direction
d. λ = 0 coincides with the standard SMO update.

the partial derivatives of the objective function w.r.t. to δ and λ and equaling them to

zero, obtaining the system of equations


δ = −∇f(α)·(λ(m−s)+s)

(λ(m−s)+s)TQ(λ(m−s)+s) ,

λ = −δ∇f(α)·(m−s)−δ2sTQ(m−s)
δ2(m−s)TQ(m−s) .

These expressions can be simplified by defining the notation

Z = sTQs = Quu +Qll − 2Qul,

M = mTQm,

R = mTQs,

H = (m− s)TQ(m− s) = M + Z − 2R,

∇s = ∇f(α) · s,

∇m = ∇f(α) ·m.

By realizing that the SMO update is included in this more general update when λ = 0,

it is clear that δ̂ 6= 0, since the SMO updating direction is guaranteed to provide a

decrease in the objective function. Therefore both terms of the fraction in the equation

for λ can be divided by δ2, obtaining
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
δ = −λ(∇m−∇s)−∇s

λ2H+Z+2λ(R−Z)
,

λ =
− 1
δ

(∇m−∇s)−R+Z

H .

Plugging the expression for δ into the one for λ and working out the computations results

in

λ̂ =
−Z∇m +R∇s

−H∇s + (R− Z)(∇m −∇s)
, (3.5)

and, consequently,

δ̂ = −(∇m −∇s)(Z −R) +H∇s
−(R+ Z)2 +HZ

. (3.6)

All the terms needed in these computations can be easily obtained by defining U = Qm

(similarly to Cycle-Breaking), for

∇m =
∑
mi 6=0

mi[∇f(α)]i , ∇s = [∇f(α)]u − yuyl[∇f(α)]l, (3.7)

M = m · U =
∑
mi 6=0

miUi , R = Uu − yuylUl,

where the sparse structure of m has been exploited. Details on how to compute U

efficiently are given later.

These (δ̂, λ̂) choices must be projected back into the feasible region. Unfortunately the

subproblem is now two–dimensional, as opposed to the one–dimensional subproblems

in SMO and Cycle-Breaking. Also while the box–constraints remain simple w.r.t. δ,

this is not case for λ, which modifies the updating direction itself (through its angle).

Because of this, a clipping strategy like the ones used before cannot guarantee an optimal

projection, though an approximate method can be devised. Considering λ̂ fixed, the

resultant updating direction d = (1− λ̂)s+ λ̂m is constructed and the stepsize δ = δ̂ is

clipped down as

δ =

 min
{
δ, C−αidi

}
if di > 0,

min
{
δ, L−αidi

}
if di < 0,

∀ di 6= 0 (3.8)
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in a similar fashion to what is done in Cycle-Breaking. Nevertheless, it might be the case

that the direction d produced by the angle λ̂ is infeasible regardless of the updating step

δ selected, and so the clipping returns δ∗ = 0. If this situation arises a more complex

projection procedure would be needed so, to avoid these extra computations, a standard

SMO update is performed instead.

Once the updating direction and stepsize have been decided, a way to update the gradient

∇f(α) is needed as well. As in SMO, this can be done efficiently as

∇f(α+ δd) = ∇f(α) + δQd, (3.9)

= ∇f(α) + δQ((1− λ)s+ λm),

= ∇f(α) + δ(1− λ)w + δλu.

where w = Qs = Q:,u − yuykQ:,l, with Q:,i the i-th column of Q. What is more, the

vector U used for some of the previous calculations can be maintained in memory and

updated at each iteration as well by noticing that

U ′ = Qm′, (3.10)

= Q(m+ (1− λ)δs− (1− λ̃)δ̃s̃),

= U + (1− λ)δw − (1− λ̃)δ̃w̃,

where (δ̃, λ̃, w̃) stand for the corresponding quantities of the oldest term contributing

to m (update at time t− τ), which is to be removed due to the limited memory of the

momentum, unless m still does not contain τ terms. If that is the case, no removal is

needed, and thus U ′ = U + δ(1 − λ)w. It should be noted that by storing in memory

the quantities (δ, λ, w) for each term building up m this update requires no additional

Q entries with respect to the ones used in a standard SMO update. This only incurs in

a memory requirement of order O(τN).

A simplified pseudocode of the whole Momentum Sequential Minimal Optimization al-

gorithm, is presented as Algorithm 6. Similarly to SMO, an updates queue Q is used to

store the (δ, λ, w) information from previous iterations. m is updated at each iteration,

adding and removing the required values at its entries as terms enter and leave Q. Also,

in practice this simple pseudocode is implemented with the following enhancements:
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Algorithm 6 Momentum Sequential Minimal Optimization

Inputs: x, y, p, L,C,Q, τ .
Initialize α = ∇f(α) = m = U = 0, Q = ∅.
while stopping criterion not met do

Select working set (l, u).
Compute MSMO variables using Equation 3.7.
Compute unconstrained λ̂ and δ̂ using Equation 3.5 and Equation 3.6.
Build direction d = (1− λ̂)s+ λ̂m.
Clip down δ̂ using Equation 3.8 to obtain δ∗.
if δ∗ = 0 then

Perform standard SMO step (λ = 0).
Reset momentum: m = U = 0, Q = ∅.

else
Update α← α+ δ∗d, ∇f(α) using Equation 3.9.

end if
Update m, U using Equation 3.10 and the information in Q.
Add (δ∗, λ̂, w) to Q, drop oldest term if Q contains more than τ elements.

end while
Compute bias b∗.
Return (α∗, b∗).

• At the beginning of each iteration, the feasibility of m on its own is checked, i.e.,

whether there is any mi > 0 and αi = C, or any mi < 0 and αi = L. If this

situation takes place, the momentum is pushing towards an out–of–bounds region,

and so an unfeasible updating direction d is likely to appear. To avoid this, the

momentum is reset and an standard SMO step is applied instead.

• If Q = ∅ (algorithm starts or momentum has been reset), an SMO step is directly

performed at that iteration. If as a result of this step the updated coefficients hit

a boundary, the momentum is not updated, so Q is left as ∅. This avoids wasting

time in full-fledged MSMO iterations when no momentum info is available or the

momentum term in the next iteration is bound to be infeasible.

• Similarly, if a full momentum update hits a boundary and in that boundary m

turns out to be an infeasible direction, the update is carried out but afterwards

the momentum is reset to avoid an infeasible direction in the next iteration.

• Care is taken during the updates of the α coefficients, so that coefficients at bound

(αi ∈ {L,C}) can be identified without distortions coming from numerical errors.

While this is straightforward to do in SMO where the updating equations are

simple, MSMO requires careful handling. This is of special relevance for infeasible

directions tests and for the application of the shrinking algorithm.

Addressing now the computational costs of the algorithm, the quantities in Equation 3.7

only require O(τ) operations thanks to the sparsity of m. The clipping of δ and the α
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update can both be done with cost O(τ). All these costs are marginal when compared

with the gradient update, needing O(d̄N) operations for the calculation of w. This

is also the order of cost of the working set selection function if WSS2 is used. It is of

special significance that the new elements appearing in the gradient update only amount

to O(N) costs, similarly to the update of U . Therefore, it turns out that the complexity

order of MSMO is also O(d̄N) for every iteration, as in SMO.

Of course, this does not mean that both algorithms have the same computational de-

mands, since MSMO does require more computations to update U , obtain R, M , etc.,

but at costs in the O(N) or O(τ) orders. Therefore, both algorithms have the same

cost per iteration only for asymptotically large d̄, or to be more precise, for asymptoti-

cally large costs of evaluation of the kernel function, which is the source of those O(d̄)

costs. These observations are essential to understand the performance of the algorithm

in practice, as shown later.

3.2.3 Experimental results

Thorough experimental results analyzing the performance of the Momentum Sequential

Optimization algorithm are presented here. For organization purposes, the description

of the experiments here has been divided in several subsections comprising results under

a variety of situations.

3.2.3.1 Comparison with Cycle-Breaking

To begin with, a comparison with the Cycle-Breaking method is mandatory, since the

major claim of the MSMO algorithm is to be a generalized and improved version of

this method. To do so, MSMO was run under the same experimental setting as Cycle-

Breaking (Section 3.1.3), in particular using the same datasets and parameters. For

this test, the MSMO method was programmed in C from scratch as well. It must

be noted that this was a rough implementation just for the sake of this experiment

and to be able to compare adequately against Cycle-Breaking; a better, more efficient

implementation of MSMO is presented in the next subsection, which was used for the

rest of the experiments.

First, the study of the influence of the τ parameter was repeated for MSMO. While

the original motivations for τ in Cycle-Breaking are different than in MSMO, in essence

both control the amount of information accumulating into the updating directions, and

so it seems sensible to study them together. Figure 3.6 presents the degrees of reduction

achieved by both methods for a range of τ values. The results for Cycle-Breaking are the
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Figure 3.6: Percentage of time required by Cycle-Breaking and MSMO w.r.t SMO
for the Cycle-Breaking benchmark datasets. Dashed lines present results for individual

datasets, while the bold line is an average across datasets.

same as the ones presented in Section 3.1.3. It is immediate that MSMO performs much

better than Cycle-Breaking for the full range of τ , but other facts are also remarkable.

For instance, while Cycle-Breaking performs worse than SMO for a number of datasets,

in MSMO this only happens for one of them. Even more, MSMO attains its best

parameter value around τ ' 10, and before that it already obtains improvements for

almost every choice of τ .

Detailed time values for MSMO with τ = 10 are presented in Table 3.3, and compared

with the results obtained in Section 3.1.3 for the Cycle-Breaking algorithm. It is con-

firmed that MSMO is a superior algorithm to Cycle-Breaking, achieving an average time

reduction factor of 85.37 %. Also, in the banana dataset MSMO is able to save almost

half of the running time, while bad performance only shows up for ringnorm. Like in

Cycle-Breaking, large variance in the results is present across datasets: an explanation

for this is given later in this experimental section.

3.2.3.2 Efficient implementation of MSMO

As stated before, a better, more efficient implementation of MSMO than the one used

for the previous experiments was produced. The main reason this implementation has
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Method SMO Cycle-Breaking MSMO

Dataset Times Times Reduction Times Reduction

thyroid 3.02 2.90 96.10 % 2.77 91.85 %
heart 8.07 7.52 93.11 % 6.54 81.00 %
titanic 3.67 3.73 101.62 % 3.43 93.43 %
breastcancer 31.90 24.99 78.33 % 21.33 66.87 %
diabetes 40.50 40.70 100.50 % 38.30 94.59 %
german 155.83 138.83 89.09 % 121.96 78.26 %
flare 83.63 81.49 97.44 % 76.89 91.94 %
image 1818.10 1340.80 73.75 % 1311.80 72.15 %
splice 1470.00 1469.30 99.95 % 1065.70 72.50 %
banana 406.34 277.33 68.25 % 224.19 55.17 %
ringnorm 44.17 49.32 111.65 % 52.20 118.17 %
twonorm 16.29 17.07 104.78 % 15.58 95.63 %
waveform 22.57 21.85 96.81 % 22.20 98.36 %

Average 93.18 % 85.37 %

Table 3.3: Average running times (in milliseconds) for SMO WSS2, Cycle-Breaking
with τ = 20 and MSMO with τ = 10; the reductions in % are also given.

such virtues is due to the fact that it is implemented within the framework of LIBSVM

[30], a popular SVM software by Chang and Lin. Such popularity is not only based

on LIBSVM’s ability to address different SVM models through its general SVM formu-

lation (classification, SVR and one-class, among others) but also thanks to its careful

implementation, especially with regard to its integrated caching and shrinking methods.

For instance, caching seems deceivingly straightforward to implement; however a naive

instantiation of this technique results in poor gains. An adequate Least–Recently–Used

strategy, an efficient implementation of every cache management operation and the abil-

ity to retrieve a full cache row in a single operation are all essential ingredients for taking

full advantage of a kernel cache. Similar comments could be made about the shrinking

and the required bookkeeping operations during the SMO algorithm. Because of these

reasons and also to able to properly compare the MSMO algorithm to a state–of–the–art

method, an implementation in LIBSVM seemed desirable.

In the first place, the general SVM model solver by LIBSVM (Equation 2.8) was extended

to the further generalized formulation proposed in this thesis (Equation 2.9). This merely

involved adding the new parameter L, whose particular value depends on the model to

solve (see Section 2.2.4) and adapting the code to consider L as the α lower bound

instead of the usual 0. Making use of this extended formulation, the LS–SVM model for

classification and regression was implemented as well, adding up to the list of already

available models in LIBSVM.
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Dataset Task N d C | ν γ ε

phw 10-class 7227 16 10 1 ∅
news 20-class 13281 62060 10 0.1 ∅
letter 26-class 13294 16 10 10 ∅
poker 10-class 16674 10 1 0.1 ∅
census 2-class 30148 14 10 1 ∅
a9a 2-class 32561 123 1000 0.001 ∅
ijcnn1 2-class 35000 22 1 1 ∅
shuttle 7-class 38664 9 10000 100 ∅
connect-4 3-class 45038 126 10 0.1 ∅
w8a 2-class 49749 300 1 1000 ∅
mnist2 2-class 60000 780 100 0.01 ∅
acoustic 3-class 78823 50 10 1 ∅
seismic 3-class 78823 50 10 1 ∅
combined 3-class 78823 100 10 1 ∅
mg regression 922 6 10 1 0.1
space regression 2070 6 1 10 0.1
abalone regression 2784 8 100000 0.01 0.1
cpusmall regression 5460 12 1 1 0.01
cadata regression 13760 8 0.1 0.0001 0.1

census-one 1-class 22676 14 0.001 0.0001 ∅
a9a-one 1-class 24720 123 0.0001 0.001 ∅
ijcnn1-one 1-class 31585 22 0.0001 0.01 ∅

Table 3.4: Datasets used in the MSMO experiments along with their dimensions and
selected SVM, SVR and One-class SVM parameters. While SVM and SVR use a C
penalty parameter, One-class uses ν. The ε tube width parameter is only used by SVR.

Secondly, the MSMO algorithm was implemented following the pseudocode and recom-

mended enhancements in Section 3.2.2. Thanks to the general SVM formulation used

in LIBSVM, this immediately allows its application for SVM for classification, SVR,

One-class SVM and LS–SVM.

A publicly available version of this code can be found at http://arantxa.ii.uam.

es/~gaa/software.html. The new parameter τ has been added as a new LIBSVM

command line argument; standard SMO is run when τ = 0. This is the code that was

used in all the experiments to follow.

3.2.3.3 “Plain” SMO comparison

Using the MSMO implementation within LIBSVM, a comparison of the improvements

obtained by this new algorithm with respect to standard SMO is presented here. As

it is of interest to check whether the method applies to large classification datasets as

http://arantxa.ii.uam.es/~gaa/software.html
http://arantxa.ii.uam.es/~gaa/software.html
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well, for the following experiments the datasets shown in Table 3.4 were used, which

were obtained from the online repositories in [30, 82]. Datasets for regression and one-

class classification are included in the mix as well. The latter were built by taking

the corresponding classification datasets and keeping only the patterns belonging to the

majority class. For those datasets provided as a single file, i.e. with no predefined

training/test division, the first 2
3 of the data were used as training set, the rest as test

set. Classification datasets were used as provided, with the exception of mnist, which

was casted to a two-class problem by seeking to classify odd versus even digits. Target

values in regression datasets were normalized to lie in the range [0, 1].

The SVM parameters were selected by a grid search aiming to maximize accuracy in the

corresponding test set.1 Table 3.4 shows the optimal parameters for SVM for classifi-

cation datasets, SVR for regression datasets, and One-class SVM for one-class datasets.

Results for LS–SVM both for classification and regression are presented later on. In ev-

ery experiment the gaussian kernel k(xi, xj) = e−γ||xi−xj ||
2
2 was used; it must be noticed

that a parameter γ appears in the place of the previously used σ. Both are equivalent

as γ = 1
2σ2 , nevertheless here γ is preferred since it is the standard one adopted in

LIBSVM.

As a stopping criterion for the training algorithms a KKT violation smaller then 10−3

in the most violating pair was used, which is the default in LIBSVM.

Results for momentum memories τ = 1 and τ = 10 are presented in Table 3.5. The

number of iterations to achieve convergence and running times were measured for both

algorithms; test accuracies were exactly the same in all cases. But for the w8a and cadata

datasets, it is clear that MSMO succeeds in constructing more informative updating

directions for the classification and regression problems, as the number of iterations

to achieve convergence is always reduced. Furthermore, this reduction in iterations

is reflected in a reduction in training times, which are only slightly higher than their

respective iterations reductions. This fact support the previous claims (Section 3.2.2)

about how MSMO’s extra computations (O(N)) are marginal with respect to the base

cost of SMO (O(d̄N)). Consequently, any reduction in iterations practically produces

direct savings in training times. In contrast to these results, for the one-class problems,

MSMO has little impact on performance. This is, however, readily explained by the fact

that training the SVM model for these datasets requires a very low number of iterations

(' 30), regardless of the number of training patterns, and so MSMO has a thin chance

to produce any savings.

1This practice generally leads to overfitting over the test sets, providing inaccurate estimates of the
generalization ability of the model. It must be realized, however, that model accuracy is not of interest
in these experiments, since both SMO and MSMO solve exactly the same model, but rather how fast
these methods can find the solution under an ideal choice of the SVM parameters.
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τ = 1 τ = 10

Dataset Iters. % Time % Iters. % Time %

phw 81.6% 85.6% 75.7% 80.7%
news 94.3% 96.8% 87.1% 90.3%
letter 88.6% 96.8% 83.3% 91.9%
poker 94.8% 95.2% 90.4% 89.9%
census 77.1% 77.9% 69.4% 69.9%
a9a 73.1% 73.8% 47.7% 47.8%
ijcnn1 92.2% 91.6% 89.7% 89.9%
shuttle 49.7% 42.6% 62.6% 60.4%
connect-4 86.4% 82.9% 69.2% 74.6%
w8a 101.4% 103.0% 101.4% 102.1%
mnist2 86.5 % 85.2 % 55.3 % 56.0 %
acoustic 84.9% 85.1% 72.4 % 72.7 %
seismic 79.6 % 80.2 % 75.8 % 75.7 %
combined 86.3 % 87.8 % 77.9 % 77.3 %

Average 84.0 % 84.6 % 75.5 % 77.0 %

mg 63.6 % 63.5 % 53.3 % 61.4 %
space 89.8 % 93.5 % 71.3 % 56.8 %
abalone 31.8 % 33.3 % 35.0 % 36.5 %
cpusmall 75.4 % 77.0 % 68.2 % 69.6 %
cadata 96.7 % 102.2 % 97.7 % 101.1 %

Average 71.4 % 73.9 % 65.1 % 65.08 %

census-one 100 % 101.7 % 100 % 97.1 %
a9a-one 115.7 % 108.8 % 100 % 100.5 %
ijcnn1-one 73.9 % 92.7 % 86.9 % 99.0 %

Average 96.5 % 101.0 % 95.6 % 98.8 %

Table 3.5: Percentage of iterations and running time of MSMO w.r.t SMO to achieve
convergence, grouped by model (classification, regression, one-class).

Another point worth mentioning is that although a choice of τ = 10 produces larger

savings than τ = 1, the fact that a single term building up m already produces a

significant speedup is of interest. Recall that each term requires storing its corresponding

updating info (δ, λ, w) in memory. If τ = 1, additional memory space for only N+2 floats

is needed, thus making this choice attractive for those situations where strict memory

limitations must be met.

Addressing now the LS–SVM model, Table 3.6 presents a listing of some of the classifi-

cation and regression datasets from Table 3.4 for which the LS–SVM model was tested.

Since this model is different from the SVM classification and SVR formulations, a search

for optimal parameters was run again, yielding the values also shown in the table.
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Dataset Task N d C γ

phw 10-class 7227 16 10 1
letter 26-class 13294 16 10 10
census 2-class 30148 14 10 1
a9a 2-class 32561 123 0.1 0.1
ijcnn1 2-class 35000 22 1 1
w8a 2-class 49749 300 1000 0.1
acoustic 3-class 78823 50 10 1

mg regression 922 6 100 1
abalone regression 2784 8 100 1
cadata regression 13760 8 1 0.0001

Table 3.6: Datasets used in the MSMO experiments with LS–SVM model, along with
their dimensions and selected parameters.

As well as including results for SMO and MSMO with τ = 10, Table 3.7 shows also

training times for the LS–SVMlab toolbox [36], which is the standard software for

LS–SVM training implemented by the authors of the model. This method finds a so-

lution to the LS–SVM problem just by solving a system of linear equations (details in

Section 2.2.3), thus incurring in cost of order O(N3). This should be compared against

a (roughly) O(N2) cost of SMO [60]. Furthermore, LS–SVMlab requires storing the full

matrix Q in memory, which makes it ineffective for large training sets.

By analyzing first the SMO–MSMO pair, similarly to the previous models MSMO man-

ages to produce gains in training times in most of the cases. Comparing now MSMO

running times against LS–SVMlab, for the smallest datasets (mg and abalone) the latter

is clearly faster, despite the difference in complexity orders. However, for the larger phw

dataset MSMO produces faster convergence. This can be explained as follows: even

though (M)SMO has lower computational complexity (O(N2)), it requires far more op-

erations than the LS–SVMlab algorithm, which directly solves the problem through the

solving of a single linear system (O(N3)). For small datasets solving such system results

to be cheaper than running SMO. However, as the size of the problem grows, LS–SVMlab

running times grow cubicly, whereas SMO quadratically. This explains why LS–SVMlab

works better only for small inputs.

Additionally, it is relevant that LS-SVMlab could not be run for most of the datasets

(denoted in Table 3.7 as ∅), as because of their large size, trying to load the full Q

matrix produced a RAM memory overflow. Though strictly speaking the algorithm is

still runnable through virtual memory, this approach is impractical, and thus was not

considered here.
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SMO MSMO LS–SVMlab

Dataset Iters. Time Iters. Time % Red. Time

phw 143462 69.4 106226 54.9 79.10 % 168.51
letter 915659 300.8 699596 242.9 80.74 % ∅
census 88870 1098.2 69406 905.5 82.45 % ∅
a9a 48922 1088.2 48840 1093.4 100.48 % ∅
ijcnn1 49533 751.7 47875 739.3 98.35 % ∅
w8a 601716 10219 380058 7417 72.58 % ∅
acoustic 545908 29762 401490 23142 77.75 % ∅
Average 84.49 %

mg 8640 1.87 4869 1.04 55.9 % 0.33
abalone 17251 12.74 9927 7.90 62.0 % 4.38
cadata 21863 266.7 20553 263.0 98.6 % ∅
Average 72.16 %

Table 3.7: Iterations and running times of SMO, MSMO and LS–SVMlab for solv-
ing the LS–SVM model. Percentage of time required by MSMO w.r.t. SMO is also

displayed. A ∅ appears whenever LS–SVMlab could not solve the problem.

3.2.3.4 Effects of caching and shrinking

After showing how ”plain” MSMO obtains significant speedups for a variety of models

and datasets, now its performance is analyzed when combined with the caching and

shrinking strategies. Four scenarios are tested: using kernel caches of 100 MB and 1

GB, and using shrinking or not for each of these cache sizes. Repeating the experiments

in the previous section with these settings produces the results summarized in Table 3.8

for SVM classification, SVR and One-class SVM. Again, accuracies obtained for both

models were exactly the same.

Several facts must be pointed out from these results. First, and as expected, the reduc-

tion in number of iterations does not depend on the cache size, since this strategy just

saves time in the evaluations of the kernel function. Shrinking, conversely, does have

some influence in the iterations savings, though negligible in the classification datasets.

In the regression datasets only abalone is seriously affected.

Second, and in spite of the savings in iterations remaining similar, reductions in training

times are greatly modified by the inclusion of these strategies. As the cache size grows,

reductions are diminished. The use of shrinking also has a great impact, weakening

further the effects of MSMO. In spite of this, speed-ups can still be obtained for some

of the datasets.
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Full Shrinking

Dataset Iters. 100 MB 1 GB Iters. 100 MB 1 GB

phw 75.79 108.66 102.98 75.80 96.17 97.08
news 87.19 100.69 100.48 87.21 101.97 100.94
letter 83.31 98.79 98.72 83.31 98.58 98.63
poker 90.41 92.16 98.64 90.60 100.61 100.80
census 69.40 95.93 92.43 63.83 101.69 98.78
a9a 47.70 80.96 76.45 48.25 92.97 97.16
ijcnn1 89.76 99.47 99.39 88.93 98.86 102.52
shuttle 62.66 95.51 93.12 64.38 108.84 108.49
connect-4 69.29 70.14 90.70 69.28 87.66 92.65
w8a 101.43 102.20 101.83 101.44 100.75 101.83
mnist2 55.35 57.37 77.24 55.96 84.98 93.97
acoustic 72.48 75.64 92.40 72.37 94.10 101.80
seismic 75.85 87.95 99.81 77.62 100.40 100.20
combined 77.96 78.74 88.34 77.30 87.59 98.78

Average 75.61 88.87 93.75 75.44 96.79 99.54

mg 53.32 53.83 62.24 50.28 77.59 75.68
space 71.33 35.23 92.23 71.33 99.89 126.50
abalone 35.09 39.31 39.31 78.34 91.28 91.01
cpusmall 68.22 79.21 78.22 72.30 93.65 95.98
cadata 97.77 105.49 105.59 97.51 104.73 104.74

Average 65.14 62.61 75.51 73.95 93.428 98.782

census-one 100 83.37 101.06 100 113.26 102.18
a9a-one 100 109.90 107.26 100 113.76 119.45
ijcnn1-one 86.95 96.35 95.02 86.95 104.89 100.10

Average 95.65 96.54 101.11 95.65 110.63 107.243

Table 3.8: Percentage of iterations and time required by MSMO w.r.t SMO to achieve
convergence, for cache sizes of 100 MB and 1GB, and for full problem optimization (no
shrinking) or shrinking. Situations where some reduction in times (at most 97 % of

time) is maintained are marked in bold.

The causes of these results can be easily understood by recalling that most of the cost

per iteration of SMO comes from the evaluations of the kernel function, producing the

aforementioned O(d̄N) algorithm complexity. The caching technique allows reusing

kernel evaluations from previous iterations and so the later iterations in the algorithm

have a reduced average cost per kernel evaluation, depending on the actual size of the

cache. If the cache is large enough it might well happen that at some point of the

algorithm the full kernel matrix is in memory, and SMO no longer needs to invoke the

kernel function, improving its cost per iteration to O(N). This has two implications:

1. When the cost of SMO drops down to O(N), so does the cost of MSMO. However,
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Figure 3.7: Evolution of the number of iterations where the momentum update was
successfully applied (solid lines) and the number of kernel evaluations, i.e. Q matrix

entries not found in cache (dashed lines).

MSMO requires a number of additional operations with also order O(N) cost.

While these were negligible for a cost per iteration of O(d̄N), they are no longer

so in this situation. Therefore, the relative cost per iteration of MSMO in this

setting should be noticeably higher than that of SMO.

2. The iterations with cost O(d̄N) take as much as O(d̄) times the time of an O(N)

iteration. This observation, as obvious as it might be, makes a great difference in

a procedure like MSMO whose aim is to reduce the number of iterations. Clearly,

saving O(d̄N) cost iterations is by far more beneficial than saving O(N) iterations.

Furthermore and as pointed out in Theorem II.3 in [83] and in [64], at the end of the

algorithm only a subset of the α coefficients has to be updated, and thus only a reduced

set of rows from the kernel matrix is needed. This effect is observed in Figure 3.7, where

MSMO is run with a cache size of 100 MB, no shriking and τ = 10 for the ijcnn1, census

and a9a datasets. As observed, the dashed lines representing the accumulated percentage

of kernel operations saturate early on, i.e., there is a point after which no additional

kernel evaluations are needed, as they can be fetched directly from the cache. The plot

also shows how the number of iterations where the momentum update is successfully

applied grows with the total number of iterations. It is clear that momentum updates

start to be applied consistently only after a certain number of iterations (this is specially

true in the ijcnn1 dataset). However, it is after these iterates that the number of kernel
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Figure 3.8: Percentage of time for convergence required by MSMO in comparison to
SMO for increasing kernel cache sizes.

evaluations per iteration drops down due to kernel caching. Therefore, the acceleration

induced by MSMO is less effective, as only iterations with cost ' O(N) are being saved,

while the costly O(d̄N) iterations at the beginning of the algorithm remain unchanged.

Joining this with the relative higher costs of MSMO in iterates requiring just O(N)

operations explains the observed weakening in MSMO performance for increasing cache

sizes.

This explanation is confirmed by taking a look at Figure 3.8, where the percentage of

time required by MSMO w.r.t SMO is shown for increasing cache sizes and the same

datasets as in Figure 3.7 (no shrinking). Larger cache sizes imply smaller time gains for

MSMO, as stated.

The effects of shrinking, on the other hand, are two-fold. First, the effective number of

training patterns n (active patterns after shrinkages) is to be much smaller than N , also

reducing the cost per iteration. Additionally, when combined with caching, only the

submatrix corresponding to the unshrunk elements is cached, thus further minimizing

the average cost of kernel evaluations even if the number of training patterns is large

or the available cache size small. These two effects combined contribute to reducing

the cost per iteration to O(n) in the later iterations of the algorithm, thus further

limiting the potential time savings produced by MSMO. It must be noted, however,

that improvement is still obtained when applying MSMO in some of the cases (as seen

in Table 3.8).
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No cache 100 MB 1 GB

Dataset SMO MSMO SMO MSMO SMO MSMO LS–SVMlab

phw 69.4 79.1 % 18.2 95.6 % 18.3 94.5 % 168.5
letter 300.8 80.7 % 71.6 95.0 % 70.9 95.2 % ∅
census 1098.2 82.4 % 1105 82.1 % 976.7 84.9 % ∅
a9a 1088.2 100.4 % 1096.3 100.2 % 1066.3 101.4 % ∅
ijcnn1 751.7 98.3 % 759.9 98.1 % 738.9 98.9 % ∅
w8a 10219 72.5 % 9924.7 67.3 % 8275.9 68.4 % ∅
acoustic 29762 77.75 % 29948 76.6 % 29257 77.4 % ∅
Average 84.45 % 87.84 % 88.67 %

mg 1.87 55.9 % 0.32 72.4 % 0.34 71.3 % 0.33
abalone 12.7 62.0 % 2.2 78.7 % 2.1 80.3 % 4.3
cadata 266.7 98.6 % 265.7 98.7 % 83.3 111.8 % ∅
Average 72.16 % 83.26 % 87.8 %

Table 3.9: Running times for SMO and reduction factors attained by MSMO when
solving the LS–SVM model for different cache sizes. LS–SVMlab running times from

Table 3.7 are also included for reference.

For completeness, results for LS–SVM are included as well in Table 3.9 for different cache

sizes. Shrinking cannot be applied in this model, as box constraints no longer exist. The

decay of MSMO’s performance as the cache size grows takes place again, as expected,

although this time the lack of an shrinking strategy leaves more room for improvement

to MSMO. In the particular case of the large dataset acoustic the use of a cache has no

impact on running times, however MSMO does. For the rest of datasets caching helps

in improving running times, as expected. This fact, though, is still remarkable by the

sole reason that other SMO–like implementations of LS–SVM solvers do not use make

use of caching. This adds further value to the LS–SVM implementation presented here,

as it turns out to be an appealing practical way of training LS–SVM models.

3.2.3.5 Influence of SVM parameters

Caching and shrinking are not the only factors that alter the functioning of MSMO.

As it turns out, the parameters selected for the SVM model largely influence MSMO’s

capability to reduce the number of iterations until convergence, and are in fact the cause

of the variability observed when testing the method on different datasets. To assess

this effect running times were measured for “plain” SMO and MSMO solving SVM

classification for the datasets phw, letter and ijcnn1 for a grid of γ and C parameters.

The results obtained are shown in Figure 3.9 (other datasets present similar behavior).

A general pattern can be observed: MSMO is able to obtain better savings in the
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Figure 3.9: a-c) Percentage of running times required by MSMO w.r.t SMO for
different settings of C and γ parameters. The squared dots represent the corresponding
values used in the rest of experiments (Table 3.4). d) Performance regions of the SVM

parameters (figure adapted from [84]).

parameter region where C is large and γ has an intermediate value. This behavior can

be explained as follows.

First, the influence of the γ parameter can be explained in terms of the structure of

the matrix Q of the dual problem. Whatever the particular SVM model being used, Q

always depends on K, Ki,j = k(xi, xj) = e−γ||xi−xj ||
2
2 . Consequently, whenever γ → ∞,

Q tends to the identity matrix I, and when γ → 0, Q tends to the all ones matrix → 1.

In the identity case the problem becomes separable – problem variables are independent

– but for the α · y = ∆ constraint, and so it can basically be solved by optimizing for

each αi separately. It is obvious then that a momentum term has no use in this setting,

as previous updates have practically no influence in the current update. Similarly, when

Q → 1 each αi has exactly the same influence as all the others over the problem (but

for the linear term α · p), and so again a strategy trying to combine previous updates to
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generate better directions will not be effective.

Second, the influence of parameter C can be addressed as follows. As already stated

before, by Theorem 6 in [64] it is known that after a certain number of iterations, a subset

of the αi at a bound {L,C} remain there until convergence. This result is the keystone of

the shrinking strategy, but also shows that once a coefficient hits a boundary, it is likely

that no further improvement in the objective function can be obtained by modifying

it, i.e. the problem is already solved for that coefficient. This situation is not likely to

arise in unconstrained optimization problems when a first–order optimization method

is used, due to the aforementioned zigzagging towards the optimum, and SMO falls

into this category. The larger the C, the more the problem resembles an unconstrained

problem, and so the performance of SMO will be poorer. Conversely, since MSMO

avoids this zigzagging, large values of C have much lesser impact in running times than

in SMO, and so the performance differences between both algorithms become larger.

It is also worth mentioning that in [84] a study of the asymptotic behavior of the gaussian

kernel parameters is presented, concluding that there exists a “good” region in the

(logC, log γ) space of parameters where the best leave-one-out error is likely to be found.

This region is depicted in Figure 3.9(d), and can roughly be defined as a cone originating

at a certain (C, γ) pair, one of its borders extending towards C →∞ with no change in γ

and the other one moving diagonally in (C, γ) towards (∞, 0). This pattern appears also

in the results here, as seen in Figure 3.9, as the region where MSMO is able to achieve

larger speed-ups. This hints that MSMO is generally able to produce accelerations for

those SVM parameters in which the model performs correctly, i.e. those bound to be

used in practice.

3.3 Discussion

Research in the field of Support Vector Machine training algorithms has been thorough

during the last years, producing a series of efficient solvers and accelerating strategies,

such as caching and shrinking, that further improve the performance of such solvers.

Still, the results obtained in this chapter show how improvements are still possible, or

more specifically, that the state–of–the–art algorithm Sequential Minimal Optimization

(SMO) can still be improved for higher efficiency.

Between the two proposed approaches to improve SMO, the Momentum Sequential Min-

inal Optimization (MSMO) algorithm stands as a clear winner, and when comparing it

against standard SMO, significant reductions in number of iterations for convergence
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are often achieved. When no other accelerating strategies are used, these savings in it-

erations almost directly translate into savings in running times. If caching or shrinking

strategies are also used, savings in iterations still appear, though the time savings are

attenuated. Nevertheless and in almost all of the experiments run, MSMO produces

equal or better results than SMO, and therefore its application could be recommended

in general.

It is also remarkable that the proposed methods solve a generalized SVM optimization

problem, and thus the models of SVM classification, Support Vector Regression and

One-class SVM directly benefit from it. Additionally and thanks to such generalized

formulation used here, these algorithms apply as well to Least–Squares SVM. Though

SMO–like algorithms for LS–SVM had already been developed in the past, the inclusion

into this general framework and the application of the presented accelerating techniques

is new.

In conclusion, the algorithms presented in this chapter, while based on simple ideas,

manage to improve over the state–of–the–art for several SVM models. Detailed analysis

of the structure of the problem, review of existing algorithms and careful design of the

proposed ones were decisive factors to obtain these results.





Chapter 4

Newton optimization approaches

for TV–regularization

“For the person for whom small things do not exist, the great is not great”

José Ortega y Gasset

This chapter constitutes the second major contribution of this thesis, consisting in a

series of methods for rapidly solving problems associated with the Total–Variation (TV)

regularizer. First, it is shown how such problems can be tackled elegantly through

the use of proximal methods . An essential prerequisite to follow this approach is to

have an algorithm able to solve the so–called proximity operator induced by the non–

smooth part of the model, in this case the TV regularizer. In this line, reliable and

efficient solvers to perform such task are developed here, based on Newton optimization

ideas. Experimental results show how these methods are able to perform better than

the state–of–the–art. Next, it is shown how the Fused–Lasso model, which employs

TV regularization, can be solved efficiently making use of a general–purpose proximity

algorithm and the implemented proximity operator solvers. Applications of the model

for microarray classification are presented.

Generalizing over this, 2–dimensional and multi–dimensional versions of the TV regu-

larization are presented, showing how their respective proximity operators can be solved

by using the 1–dimensional (standard) TV regularization proximity operator solvers as

building blocks. This and the application of suitable proximal methods, allows to ad-

dress more complex models making use of such regularizers, with applications to image

denoising and deblurring for the 2–dimensional TV case, and video deblurring as an

instance of the multi–dimensional case.

105
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4.1 Total–Variation proximity

The Total–Variation regularizer follows the already presented expression (Section 1.3)

TV1D
p (x) =

(
n−1∑
i=1

|xi+1 − xi|p
)1/p

,

where it is stressed that the standard (1–dimensional) case is being considered, as an

opposite to the more general cases to follow in subsequent sections. Solving optimization

problems involving this regularizer,

min
x
f(x) + TV1D

p (x),

is hard because of its non-differentiability, even for well-behaved choices of norm p.

For instance, when p = 2 the inner absolute value of TV1D
2 (x) can be removed, but

nevertheless its outer exponent 1/2 produces non–differentiable points. A good approach

to do so is by making use of methods employing proximity operators [80], which stand

as a kind of basic operation in non-smooth optimization, much in the way a gradient

step is a basic operation in smooth optimization. Proximity operators are defined as

proxR(y) = argmin
x

1
2‖x− y‖

2
2 +R(x),

where R is a given function. Informally, the proximity operator seeks to minimize the

function R in a neighborhood of the given point y, i.e. x choices far away from y produce

large values of the term 1
2‖x− y‖

2
2, thus making them unacceptable. In the limit case

where R is an indicator function ιC of a given set C 1, the proximity operator turns

out to be the Euclidean projection operator: find the point x ∈ C nearest to y in

Euclidean distance. Because of this, proximity operators are sometimes regarded as a

generalization of the projection operator.

The usefulness of proximity operators comes from their use as a key step in a large num-

ber of proximal methods for non-smooth optimization [78, 79, 85–89]. An illustrative

example of this is given by the Forward-backward splitting (FBS) algorithm [90],

also known as FOBOS, which allows to solve the problem

min
x

f1(x) + f2(x),

1Indicator functions were defined in Table 1.2: ιC(x) = 0 if x ∈ C, +∞ otherwise.
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Algorithm 7 Forward-Backward Splitting

Inputs: f1, f2, β.

Initialize ε ∈
(

0,min
{

1, 1
β

})
, x0 ∈ RN , n = 0.

while stopping criterion not met do

Choose gradient stepsize γn ∈
[
ε, 2
β − ε

]
.

Gradient step: yn = xn − γn∇f2(xn).
Choose proximity stepsize: λn ∈ [ε, 1].
Proximity step: xn+1 = xn + λn(proxγnf1(yn)− xn).

end while
Return x∗.

with f1(x) a lower semicontinuous2 convex function and f2(x) a convex differentiable

function with a β-Lipschitz continuous gradient, that is, ∀ (x, y) ∈ RN ×RN , ‖∇f2(x)−
∇f2(y)|| ≤ β||x − y|| for some norm || · ||. Therefore, this kind of problem accepts

a class of non-differentiable functions as f1(x). The pseudocode of FBS is shown in

Algorithm 7. Basically, it consists in alternating the minimization of the smooth function

f2 by performing gradient descent, and the minimization of the non-smooth function f1

through proximity steps. The sequence x1, x2, . . . generated by the algorithm has been

shown to converge to a solution of the problem [91].

Proximity operators, thus, provide an effective way of addressing non-differentiability in

optimization problems; models using TV regularization are nothing but an instance of

those, and so can be approached following these ideas. Unfortunately, there is a catch:

a way to solve the subproblem posed by the proximity operator must be provided. Even

more, solving the proximity operator turns out to be the most expensive step of the FBS

algorithm, as well as of quite a few of other algorithms based on proximity. Therefore,

in most of the cases the proximity operator constitutes the bottleneck in performance

of the overall solver, and so using or designing efficient proximity solvers is crucial.

In what follows, a way of constructing a solver for the proximity operator applied to 1-

dimensional TV regularization is detailed, making use of the particular structure of this

regularizer to do so efficiently. This constitutes the basis on which a proximal method

can be used to optimize models making use of this regularizer.

4.1.1 Structure of the TV regularizer

The problem posed by the proximity operator of 1-dimensional TV takes the form

2Lower semicontinuous functions where already introduced in Section 2.1.1
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proxTV1D
p

(y) = argmin
x

1
2‖x− y‖

2
2 + λTV1D

p (x),

= argmin
x

1
2‖x− y‖

2
2 + λ

(
n−1∑
i=1

|xi+1 − xi|p
)1/p

,

where the regularization parameter λ has also been included as part of the regularizer.

The hardness of this problem comes not only from its non-differentiability, but also

because of its non-separability, i.e. the problem cannot be decomposed into N sub-

problems, each involving a single xi variable. This is relevant because, for instance, the

proximity operator of the L1 norm

proxL1
(y) = argmin

x

1
2‖x− y‖

2
2 + λ‖x‖1

is also non-smooth, but its separability makes it solvable in closed form through the

soft-thresholding operator [92]

proxL1
(y) = sgn(y)�max {|y| − λ, 0} ,

where � denotes componentwise product. Non-separability of the TV-norm prevents

obtaining such a direct solution for its proximity operator. Nevertheless, the fact is

that the TV-norm only presents “weak” non-separability, in the sense that each xi

variable appears coupled with just its preceding xi−1 and following xi+1 variables. This

is especially obvious upon rewriting the proximity problem making use of a differencing

matrix

D =


−1 1

−1 1
. . .

−1 1

 ∈ R(N−1)×N ,

that is, Di,j = 0, except for Di,i = −1 and Di,i+1 = 1. Using this, the proximity problem

results in

proxTV1D
p

(y) = argmin
x

1
2‖x− y‖

2
2 + λ‖Dx‖p.
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The matrix D sets the separability of the problem. On the one hand for a diagonal D

the problem is separable; on the other hand a full D matrix results in a problem where

every variable is linked to each other. Clearly, the differencing matrix D for TV stands

at a point quite close to the separable case, and thus some advantage should come from

this “weak” non-separability.

This hypothetical advantage becomes real when considering the dual formulation of the

TV proximity problem (Section 2.1.1 already provided an introduction to duality). Such

dual formulation has already been used in the past (for instance, in [93]), and actually the

dual problem can be obtained directly by applying Theorem 31.2 in [22]. Nevertheless,

in what follows a new, clearer approach to arrive at the dual is introduced. To to do so,

first a more general primal problem is considered, namely

inf
x

f(x) + λr(Bx),

for f, r convex (not necessarily smooth) functions 3. This can be casted into a constrained

problem by introducing an auxiliary variable z = Bx so that

inf
x,z

f(x) + λr(z),

s.t. z = Bx.

The Lagrangian of this problem turns out to be

L(x, z, u) = f(x) + λr(z) + uT (Bx− z),

which produces the saddle-point problem

inf
x,z

sup
u

L(x, z, u).

Through convexity arguments the infimum and supremum operators can be swapped,

and so the dual problem takes the form

3The discussion is made using the infimum instead of the minimum operator, as done in Section 2.1.1.
This is more general than the minimum operator, in the sense that functions defined in an open set could
be considered as well. Although no such functions are used in what follows, this approach is favored
here, since the Fenchel–conjugate works by definition with the infimum / supremum operators.
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supu infx,z L(x, z, u)

= supu infx,z f(x) + λr(z) + uT (Bx− z)
= supu infx

{
f(x) + uTBx

}
+ infz {λr(z)− u · z}

= supu − supx
{
−f(x)− uTBx

}
− supz {u · z − λr(z)} .

The inner maximization problems are instances of the Fenchel-conjugate [22]. Given

a convex function f(x), its Fenchel-conjugate is defined as

f∗(u) = sup
x
{u · x− f(x)} .

Using this definition the dual problem becomes

sup
u

−f∗(−BTu)− λr∗(λ−1u).

Returning to the TV1D
p proximity problem, proxTV1D

p
(y) = argminx

1
2‖x− y‖

2
2+λ‖Dx‖p,

the functions f and r can be identified as f(x) = 1
2‖x− y‖

2
2, r(x) = ‖x‖p, and B = D.

The Fenchel-conjugate f∗(z) is easily seen to be f∗(z) = 1
2z ·z+z ·y, while the conjugate

of r(x), that is, of the Lp norm function, is known [22] to be r(z)∗ = ι‖z‖q≤1, that is, the

indicator function of the dual Lq norm with 1
p + 1

q = 1. This results in the dual problem

max
u

−1
2‖D

Tu‖22 + uTDy − λι‖u‖q≤λ,

in which the indicator function can rewritten as a constraint as

min
u

1
2‖D

Tu‖22 − uTDy,

s.t. ‖u‖q ≤ λ.

Completing the square in the objective function produces

min
u

1
2‖D

Tu− y‖22,

s.t. ‖u‖q ≤ λ.
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It is remarkable how such a simple problem comes out from the seemingly hard primal

TV1D
p proximity problem. In the subsequent sections methods to solve this problem

for primal norms p = 1, 2 are introduced, which make explicit use of the particular

structure of the differencing matrix D to produce efficient solvers. Before that, though,

it is relevant to notice that the primal solution x∗ can be recovered from the dual u∗

by making use of the Karush–Kuhn-Tucker optimality conditions (Theorem 2.4). More

specifically, the stationarity condition requires that ∇xL(x, z, u) = 0, i.e.

∇x
(

1
2‖x− y‖

2
2 + λ‖z‖p + uT (Dx− z)

)
= 0

which results in the relationship

x∗ = y −DTu∗.

Furthermore and making use of this relationship, the dual gap can be obtained as

gap(x, u) = 1
2‖x− y‖

2
2 + λ‖Dx‖p − (−1

2‖D
Tu‖22 + uTDy),

= λ‖Dx‖p − uTDx, (4.1)

which is used as a stopping criterion in the algorithms to follow.

4.1.2 TV-L1 proximity

Focusing now on the TV proximity operator with p = 1 norm, the corresponding dual

norm turns out to be q =∞, and so the dual problem becomes

min
u

1
2‖D

Tu− y‖22,

s.t. −λ ≤ u ≤ λ,

as the infinity-norm imposes nothing but box-constraints on the problem. Thanks to

this simplicity in the constraints and since the objective function is quadratic convex,

the problem can be solved by standard methods such as TRON [94], L-BFGS-B [95],

or Projected-Newton (PN) [96]. However, as good solvers as they might be, these

methods do not make explicit use of the structure of the problem at hand when invoked
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out-of-the-box, and so careful adaption is needed to obtain a truly efficient solver. The

approach proposed here is to design an adapted PN method taking into account these

facts.

The generic PN procedure runs iteratively: it first identifies the subset of active vari-

ables4 and uses these to compute a reduced Hessian. Then, this Hessian is used to

correct the gradient and move in the direction opposite to it, scaling by a stepsize, if

needed. Finally, the next iterate is obtained by projecting onto the constraints, and

the cycle repeats. At the beginning of each iteration, the subset of active variables I is

identified as follows:

I = {i| (ui = −λ and [∇f(u)]i > ε) or (ui = λ and [∇f(u)]i < −ε)},

which are those variables that are at a bound and the gradient indicates that improve-

ment can be obtained by moving further beyond the bound. To avoid numerical issues,

the gradient condition is checked using a small threshold ε (for instance, 10−10). These

variables should not be used in the current update, as they will produce infeasible up-

dating directions. Consequently, the complementary set Ī = {1 . . . N} \I constitutes the

set of variables to update in the current iteration. From the full Hessian H = ∇2f(u)

the reduced Hessian HĪ is extracted by selecting rows and columns indexed by Ī; this

defines the “reduced” update

uĪ ← P
[
uĪ − αH−1

Ī
[∇f(u)]Ī

]
,

where α is a stepsize, and P [z] denotes componentwise projection of z onto the con-

straints. So, in essence, the PN algorithm performs Newton steps taking into account

the box-constraints of the problem. Being a second–order method, strong theoretical

guarantees exist on its convergence and performance [96]. Nevertheless and as stated

before, careful design is needed to adequately exploit the problem’s structure in order to

run the above steps efficiently. In what follows it is shown how to do so for the problem

at hand.

First, it should be noticed that the Hessian H = DDT is symmetric and tridiagonal,

with 2s on the main diagonal and −1s on the sub- and superdiagonals. Next, no matter

what the active set I contains, the corresponding reduced Hessian HĪ remains symmetric

tridiagonal. This is crucial because then the updating direction dĪ = H−1
Ī

[∇f(ut)]Ī is

computed by solving the linear system

4The name active variables comes from the fact that they correspond to active constraints, i.e. those
met with equality.
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HĪdĪ = [∇f(ut)]Ī .

This can be done very efficiently by computing the Cholesky decomposition HĪ = RTR

[97], and then solving instead the systems

RT v = [∇f(ut)]Ī ,

and then

RdĪ = v.

Since H is tridiagonal, R turns out to be a bidiagonal matrix. This has two major

advantages: first, the Cholesky decomposition can be performed in linear (O(N)) time,

and second, the linear systems involving R or RT can also be solved in linear time

through forward / back-substitution. Additionally, high-quality routines to perform

such tasks are available in the LAPACK [98] linear algebra libraries, which guarantee

top-notch performance. Thus, obtaining the updating direction can be done in O(N)

time.

The next crucial ingredient is stepsize selection. The original Projected Newton method

[96] recommends Armijo-search along the projection arc. However, for this problem

Armijo-search is expensive, since a large number of function evaluations might be re-

quired. Consequently, a backtracking strategy using quadratic interpolation [99] is used

instead. This strategy is as follows: if the current stepsize αk does not provide enough

decrease in f , a quadratic model is built using f(u), f(u − αkd), and ∂αf(u − αkd).

Then, the stepsize αk+1 is set to the value that minimizes this model. If the new αk+1 is

larger than or too similar to αk, its value is halved. Attention must be paid to the fact

that the gradient ∇f(u) might be misleading if u has components at the boundary and

d points outside this boundary (because then, due to the subsequent projection no real

improvement would be obtained by stepping outside the feasible region). To address

this concern, the computation of the gradient ∇f(u) is modified, replacing by zeros the

entries that relate to direction components pointing outside the feasible region. This

procedure, though involved, can also be run in linear time.

All the above ideas are encapsulated as Algorithm 8. Special consideration is given to

the particular case in which λ is so large that the unconstrained optimum coincides with

the constrained one. In this case, the optimum is obtained by just solving the system û

via DDT û = Dy. This case is checked at the very beginning of the algorithm, and only
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Algorithm 8 PN algorithm for TV-L1-proximity

Inputs: y, λ.
Solve DDT û = Dy.
if ‖û‖∞ ≤ λ return x∗ = y −DT û; end if
u0 = P [û], t = 0.
while dual gap (Equation 4.1) > tolerance do

Identify set of active variables I; let Ī = {1 . . . N} \I.
Construct reduced Hessian HĪ .
Solve HĪdĪ = [∇f(ut)]Ī .
Compute stepsize α using backtracking + interpolation.
Update ut+1

Ī
= P [ut

Ī
− αdĪ ].

t← t+ 1.
end while
Recover primal solution x∗ = y −DTut.
return x∗.

if the unconstrained optimum is out of bounds, i.e. ‖û‖∞ > λ, the rest of the algorithm

is run. By the arguments above, every step can be carried out in linear time, and so

the method has computational cost of O(N) per iteration. Even more, experimentally

a sufficiently good solution is usually found in less than 10 iterations, and so in practice

the algorithm scales linearly with the size of the inputs (see Section 4.1.4).

Regarding the novelty of the proposed approach, it must be noted that the idea of ap-

plying a Newton–like method to TV regularization is not completely new. In the work

by Vogel and Oman [100, 101] an approximate version of the TV1D
1 regularizer is pro-

posed, satisfying smoothness properties. This allows to easily apply Newton approaches

to the primal problem, also making use of problem structure to produce an O(N) cost

per iteration solver. However, by removing the points of non-differentiability from the

problem, much of the structure–inducing properties of the TV regularizer are lost. In

particular, sparsity in the gradient is no longer present. Because of this, solving the

exact TV regularizer instead of such approximation is more interesting; however, the

non-smoothness of the primal problem makes the application of a Newton–like method

infeasible. In spite of this, it has been shown here that through dualization and the use

of a Projected Newton method this is, in fact, possible.

4.1.3 TV-L2 proximity

For the primal norm p = 2, the dual norm is also q = 2, and so the dual problem becomes

min
u

1
2‖D

Tu− y‖22,

s.t. ‖u‖2 ≤ λ.
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This problem results to be an instance of the well-known trust-region subproblem, for

which a variety of numerical methods are available [102]. Below an algorithm based on

the Moré-Sorensen Newton (MSN) iteration [13] is derived, which in general would

be very expensive but in this case proves to be efficient owing again to the tridiagonal

structure of the Hessian. In addition to this, an alternative, much simpler method based

on Gradient Projection ideas is proposed as well.

First, the KKT conditions for the dual problem must be considered. They can be derived

from the Lagrangian of such dual problem, which takes the form

L(u, α) = 1
2‖D

Tu− y‖22 + α(‖u‖22 − λ2),

for α ≥ 0 a Lagrange multiplier. Since both sides of the constraint are always positive,

they can be squared without modifying the problem. This helps to ease some calcu-

lations in what follows. Following a similar derivation to the one shown previously in

Section 2.1.1, the KKT conditions result to be

Stationarity

• (DDT + αI)u = Dy.

Primal feasibility

• α ≥ 0,

Dual feasibility

• ‖u‖2 ≤ λ.

Complementary slackness

• α(‖u‖2 − λ) = 0.

There are two cases: ‖u‖2 < λ or ‖u‖2 = λ. If ‖u‖2 < λ, then α = 0 and u is obtained by

solving DDTu = Dy, which is the unconstrained optimum of the problem. The inverse

is also true: if the solution to DDTu = Dy lies in the interior of the L2 ball, then it

solves the problem. This can be checked at the beginning of the algorithm as it is done

in the method proposed for TV-L1 proximity, and so only the case ‖u‖2 = λ must be

considered from then on.

For a given α, u is determined as a function of α, as u(α) = (DDT + αI)−1Dy, and so

the optimal value of α must be found to obtain the solution u∗. This can be done by

solving ‖u(α)‖22 = λ2, or alternatively solving the MSN equation

h(α) = λ−1 − ‖u(α)‖−1
2 = 0,

which is written in this way because it results to be almost linear in the search interval,

producing fast convergence [13]. Solving this non-linear equation system for α can be

done by applying the classic Newton’s method for root-finding, whose iterations take

the form
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α← α− h(α)

h′(α)
,

and some calculation shows that

1

h′(α)
= − ‖u(α)‖32

u(α)T (DDT + αI)−1u(α)
.

The key idea in MSN is to eliminate the matrix inverse here by making use again of the

Cholesky decomposition DDT + αI = RTR and defining a vector q = (RT )−1u, so that

‖q‖22 = u(α)T (DDT + αI)−1u(α). As a result, the Newton iteration becomes

α− h(α)

h′(α)
= α− (‖u(α)‖−1

2 − λ
−1) · ‖u(α)‖32

u(α)T (DDT + αI)−1u(α)
,

= α− ‖u(α)‖22 − λ−1‖u(α)‖32
‖q‖22

,

= α− ‖u(α)‖22
‖q‖22

(
1− ‖u(α)‖2

λ

)
,

and therefore

α ← α− ‖u(α)‖22
‖q‖22

(
1− ‖u(α)‖2

λ

)
.

As in TV-L1, the tridiagonal structure of (DDT + αI) allows to compute both R and q

in linear time, so the overall iteration runs in O(N) time.

The above ideas are presented as pseudocode in Algorithm 9. As a stopping criterion

two conditions are checked: whether the dual gap is small enough, and whether u is

close enough to the boundary. This latter check is useful because intermediate solutions

could be dual-infeasible, thus making the dual gap an inadequate optimality measure

on its own.

Even though the MSN method can be run at linear time per iteration, it is fairly sophis-

ticated, and in fact a much simpler method can be devised. This is illustrated here by a

Gradient Projection method with a fixed stepsize α0, whose updating rule is simply

defined as
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Algorithm 9 MSN algorithm for TV-L2 proximity

Inputs: y, λ.
Solve DDT û = Dy.
if ‖û‖2 ≤ λ return x∗ = y −DT û; end if
Initialize α0 = 0, t = 0.
while (¬ converged) do

Compute Cholesky decomp. DDT + αtI = RTR.
Obtain u by solving RTRu = Dy.
Obtain q by solving RT q = u.

Update α: αt = αt−1 − ‖u‖
2
2

‖q‖22

(
1− ‖u‖2λ

)
.

t← t+ 1.
end while
Recover primal solution x∗ = y −DTut.
return x∗.

Algorithm 10 GP algorithm for TV-L2 proximity

Inputs: y, λ.
Initialize u0 ∈ RN , t = 0.
while (¬ converged) do

Gradient update: vt = ut − 1
4∇f(ut).

Projection: ut+1 = max(1− λ/‖vt‖2, 0) · vt.
t← t+ 1.

end while
Recover primal solution x∗ = y −DTut.
return x∗.

ut+1 = P‖·‖2≤λ
[
ut − α0∇f(ut)

]
,

for a given function f to optimize. A good choice for the stepsize α0 is given by the

inverse of the Lipschitz constant L of the gradient ∇f(u), as already shown in other

methods [78, 90, 103]. Since in the case at hand f(u) is a quadratic function, L can be

shown to be the largest eigenvalue of the Hessian DDT . Thanks to the structure of D,

the eigenvalues have a closed-form expression, namely λi = 2−2 cos
(
iπ
N

)
(for 0 ≤ i ≤ N)

[104]. The largest is λN−1 = 2−2 cos
(

(N−1)π
N

)
, which tends to 4 as N →∞; so α0 = 1/4

is a good approximation and is the stepsize used here in practice.

A pseudocode for this alternative GP approach is presented as Algorithm 10. It is

clearly simpler than the MSN algorithm, and thus requires even less cost per iteration.

Still, GP is just a first–order method as opposed to MSN’s second–order iterates. This

implies that MSN has stronger guarantees of convergence, though depending on the

situation GP can outperform it. In practice a hybrid approach joining both of them is

recommended. Details on this are given later in Section 4.1.4.
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Figure 4.1: Running times (in secs) for PN, SLEP and Coordinate Optimization
solvers for TV1D

1 -proximity with increasing a) input sizes, b) penalties. Both axes are
plotted in logarithmic scale.

4.1.4 Experiments

Experiments on the performance of the introduced proximity solvers for the TV1D
1 and

TV1D
2 regularizers are presented here. Comparisons with state–of–the–art algorithms in

this field are made, showing the benefits of the proposed methods.

The proximity solvers were implemented in the C programming language, with calls to

the LAPACK library [98] (made in Fortran) for the required matrix decomposition and

linear system solving steps of the algorithms. A MATLAB toolbox implementing some

of the methods here is available at http://arantxa.ii.uam.es/~gaa/software.html.

The solvers were tested under two scenarios

I) Increasing input size N ranging from 101 to 107. A random penalty λ ∈ [0, 50] is

selected for each run, and the data vector y is also generated randomly (following

a uniform distribution) by picking yi ∈ [−2λ, 2λ] (proportionally scaled to λ) ∀ i.

II) Varying penalty parameter λ ranging from 10−3 (negligible regularization) to 103

(the TV term dominates). N is set to a medium value (1000) and yi is randomly

generated in the range [−2, 2] (again, uniformly).

Starting with the Projected Newton (PN) proximity solver of TV1D
1 (Section 4.1.3), the

method is compared against the FLSA function (C implementation) of the SLEP library

by Liu et al. [105], which seems to be the state–of–the–art method for TV1D
1 -proximity

[103]; and the Pathwise Coordinate Optimization method (R + Fortran implemen-

tation) by Friedman et al. [106]. For PN and SLEP, a duality gap of 10−5 is used as

http://arantxa.ii.uam.es/~gaa/software.html
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log10N Times SLEP Times PN Times Coord.

1.53 0.17 0.2476 1.37
2.06 0.30 0.29 1.52
2.58 0.59 0.41 2.69
3.11 1.33 1.04 6.74
3.64 5.25 3.10 22.20
4.17 15.10 8.22 92.41
4.70 67.60 39.35 359.50
5.23 221.58 137.81 1550.27
5.75 759.62 464.32 5678.25
6.28 2874.83 1655.25 23285.00
6.81 9457.11 5659.42 93366.00

Table 4.1: Running times (in milliseconds) for PN, SLEP and Coordinate Optimiza-
tion solvers for TV1D

1 problems with increasing input sizes (in log-scale); N denotes
problem size.

the stopping criterion. Duality gap is not supported by Coordinate Optimization, and

so its default stopping criteria is employed. Timing results are presented in Figure 4.1

for both experimental scenarios. From the plots it is clear that both SLEP and PN are

much faster than Coordinate Optimization. It must be mentioned, though, that the

latter returns the full regularization path (solutions for every choice of λ), while SLEP

and PN compute the solution for only one λ. But this is no limitation; SLEP and PN

run much faster and with warm-starts solutions for several λ values could be computed

rapidly, if needed.

With increasing input sizes PN finds a solution faster than SLEP, taking roughly at most

60% of the time: explicit numerical values are reported Table 4.1 for easy reference.

Figure 4.1(b) indicates that larger speedups are observed for small λ, while for large

λ, both SLEP and PN perform similarly. The rationale behind this behavior is simple:

for smaller λ the active set I (variables at bound) is prone to become larger, and PN

explicitly takes advantage of this set by updating only the variables not indexed by

I. On the other hand, for large λ, PN’s strategy becomes similar to that of SLEP,

hence the similar performance. Finally, as Coordinate Optimization computes the full

regularization path, its runtime is invariant with λ.

Moving now to the TV1D
2 proximity problem, the proposed More–Sorensen Newton

(MSN) and Gradient Projection (GP) methods are analyzed. The stopping criterion is a

duality gap of 10−5, with the addition of an extra boundary proximity criterion for MSN

with tolerance 10−6 to avoid early stopping due to non-feasible solutions generation.

Figure 4.2 shows results for the two experimental scenarios under test.
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Figure 4.2: Running times (in secs) for MSN, GP and a hybrid MSN+GP approach
for TV1D

2 -proximity with increasing a) input sizes, b) penalties. Both axes are plotted
in logarithmic scale.

Looking at the results it can be seen that the performance of MSN and GP differs

noticeably in the two experimental scenarios. While the results for the first scenario

(Figure 4.2(a)) might indicate that GP converges faster than MSN for large inputs, it

actually does so depending on the size of λ relative to ‖y‖2. Indeed, the second scenario

(Figure 4.2(b)) shows that although for small values of λ, GP runs faster than MSN,

as λ increases, GP’s performance worsens dramatically, so much that for moderately

large λ it is unable to find an acceptable solution even after 10000 iterations (an upper

limit imposed in our implementation). Conversely, MSN finds a solution satisfying the

stopping criterion under every situation, thus showing a more robust behavior.

Therefore, it seems sensible to propose a hybrid approach combining the strengths of

MSN and GP. This hybrid method is guided using the following (empirically determined)

rule of thumb: if λ < ‖y‖2 use GP, otherwise use MSN. Further, as a safeguard, if GP

is invoked but fails to find a solution within 50 iterations, the hybrid should switch

to MSN. This combination guarantees rapid convergence in practice. Results for this

hybrid approach are also included in the plots in Figure 4.2, and show how it successfully

mimics the behavior of the better algorithm amongst MSN and GP.

4.2 Fused–Lasso

After developing efficient solvers for the TV proximity operator, this section shows how

they can be used to solve the optimization problem posed by the Fused-Lasso (FL)

model, introduced by Tibshirani et al. [17] . This model takes the form
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min
x

1
2‖Ax− y‖

2
2 + λ1‖x‖1 + λ2TV1D

1 (x),

that is, a Least–Squares loss L(x) = 1
2‖Ax− y‖

2
2 plus two regularizers: an L1 and a

TV1D
1 norm (r(x) = λ1‖x‖1 + λ2TV1D

1 (x)). The combination of these two regularizers

induces a sparse structure where most of the xi tend to be 0, while those xi 6= 0 tend

to appear in blocks of equal values xi−1 = xi = xi+1 = . . .. This model has been

successfully applied in several bioinformatics applications [106–108], as it encodes prior

knowledge about consecutive elements in microarrays becoming active at once.

While this problem could be solved using the FBS algorithm reviewed in Section 4.1,

instead the general Trust-Region Proximal (Trip) framework of Kim et al. [89] is

applied. Similarly to the FBS method, Trip works by repeated calls to the proximity

operator of the non-smooth function; the basic step in Trip is

xk+1 ← proxr(·)/αk

(
xk − 1

αk
∇L(xk)

)
.

The key aspect that distinguishes this step from other proximal methods is the stepsize

αk, which is selected using the famous spectral formulæ of Barzilai–Borwein [109], and

has been shown to have tremendous impact on empirical performance [89, 109]. A

known problem of this stepsize, though, is its non-monotonicity: it does not ensure that

improvements in the objective function are obtained at every iteration, which in turn

might produce non-convergent behaviors in some settings. To circumvent this potential

problem, if after a fixed number of iterations Trip fails to produce an improvement, it

enforces a monotonic step that guarantees such improvement, though at a higher cost

than a standard step. Still, in practice the monotonic step is seldom required, and thus

Trip features a low amortized cost per iteration.

In order to apply Trip to the Fused–Lasso problem a way to compute the proximity

operator for the scaled regularizer r(x) = λ1‖x‖1 + λ2TV1D
1 (x) is needed. While prox-

imity operators do not decompose in general, for this case it can be shown [17, 103, 110]

that proxr(·)(y) = proxλ1‖·‖1

(
proxλ2TV1D

1 (·)(y)
)

. The inner proximity operator can be

computed by using the proximity solver presented in Section 4.1.2, while the outer cor-

responds to an L1 norm and thus can be calculated in closed form by soft-thresholding

(Section 4.1.1). Therefore, Fused–Lasso is solvable straightforwardly by making use of

the proximity operator introduced above and a proximal method like Trip.

Additionally and taking advantage of the modularity of the Trip + proximity solver

framework, variants of Fused Lasso with different choices of the loss or regularization

functions can be addressed as well. Those are
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• Standard Fused–Lasso (FL): Least–Squares loss + L1 norm + TV1D
1 norm, as

just presented.

• `2-variable fusion (VF): Least–Squares loss + L1 norm + TV1D
2 norm. Though

Variable fusion was already introduced in the past by Land and Friedman [111],

their approach proposes an `pp-like regularizer in the sense that r(x) =
∑n−1

i=1 |xi+1−

xi|p instead of the TV regularizer TV1D
p (x) =

(∑n−1
i=1 |xi+1 − xi|p

)1/p
, which would

correspond to a `p regularization in these terms. The `2 approach used here leads

to a more conservative penalty that does not oversmooth the estimates. This FL

variant seems to be new.

• Logistic-fused lasso (LFL): Logistic loss + L1 norm + TV1D
1 norm. The logistic

loss takes the form Llog(x, c) =
∑

i log
(

1 + e−yi(a
T
i x+c)

)
, and can be introduced

in the FL formulation to obtain a more appropriate model for classification on a

dataset {(ai, yi)} [112].

• Logistic + `2-fusion (LVF): Logistic loss + L1 norm + TV1D
2 norm.

All these models can be solved within the Trip framework if means to compute the

gradient of the loss and the proximity operator of the regularizer are provided. The

Least–Squares loss and the L1 + TV1D
1 regularizer were already addressed above for the

standard Fused–Lasso. Regarding the Logistic loss, obtaining its gradient is straight-

forward. The only hard point is dealing with a proximity operator for the L1 + TV1D
2

regularizer, as in this case decomposition into the proximity operators for L1 and TV1D
2

is not possible. Still, a solution can be found by making use of the Proximal Dykstra

(PD) method [80], yet another algorithm making use of proximity operators. This one

is designed to solve the problem

min
x

f(x) + g(x) + 1
2‖x− z‖

2
2,

where f(x), g(x) are both lower-semicontinuous functions. The structure of this problem

makes it ideally suited to obtain the proximity operator of a combination of regularizers,

since the proximity operator of the combined regularizer r(x) = λ1r1(x) + λ2r2(x) (like

the ones above) has the form

proxr(·)(y) = min
x

1
2‖x− y‖

2
2 + λ1r1(x) + λ2r2(x),

which coincides with the problem solved by the PD method as long as r1(x), r2(x) are

lower-semicontinuous (all the regularizers above meet this condition).
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Algorithm 11 Proximal Dykstra

Inputs: f, g, z.
Initialize x0 = z, p0 = q0 = 0, t = 0.
while stopping criterion not met do
g proximity operator: yt = proxg(·)(xt + pt).
g step: pt+1 = xt + pt − yt.
f proximity operator: xt+1 = proxf(·)(yt + qt).
f step: qt+1 = yt + qt − xt+1.
t← t+ 1.

end while
Return xt.

Fused Lasso

Soft-th

PN solver

TRIP

Variable Fusion

Soft-th MSN solver

TRIP

PD

Logistic Fused Lasso

Soft-th

PN solver

TRIP

Log. Variable Fusion

Soft-th MSN solver

TRIP

PD

Figure 4.3: Fuses–Lasso models addressed and hierarchy of algorithms used to solve
them.

The pseudocode of the Proximal Dykstra method is shown in Algorithm 11. The algo-

rithm has been shown to produce a sequence of xt converging to the optimum of the

problem [113].

Using PD the proximity operator of a pair of regularizers can be obtained as long as the

proximity operator for each of them can be computed individually. As the regularizers

above reduce to the L1, TV1D
1 and TV1D

2 norms, proximity solvers for all of them are

also available. For clarity, Figure 4.3 shows the methods and proximity solvers employed

for each of the Fused–Lasso models presented above. Numerical experiments studying

the efficiency of these solvers for the cited models are presented in what follows.
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Model SLEP Trip

N 103 104 105 103 104 105

FL 0.089 1.43 41.80 0.02 0.10 0.86
VF 0.16 1.26 35.77 0.02 0.10 0.90
LFL 0.21 15.01 144.81 0.78 5.35 53.88
LVF 0.86 0.02 132.13 0.81 0.15 11.24

Table 4.2: Running times (secs) for SLEP and Trip for optimizing different versions
of fused-lasso with increasing input sizes. Both methods were run to satisfy the same

convergence criterion.

4.2.1 Experiments on synthetic data

Since the standard Fused–Lasso model has been throughly studied in the literature, a

number of practical algorithms addressing it have been already introduced in the past.

One outstanding example of such is the recent Fused–Lasso algorithm in the SLEP

library by Liu et al. [103], which results to be an adapted FISTA method [78] based

on an efficient proximity step (FLSA). The previous experiments for TV1D
1 -proximity

(Section 4.1.4) have already shown the superiority of the proximity solver proposed here

over FLSA, and so what remains is to check whether the Trip strategy followed here is

also superior to the FISTA strategy in SLEP. To do so, first a test with synthetic data

is performed.

Random matrices A ∈ RN×M were generated, whose entries were selected to follow a

zero mean, unit variance normal distribution. The number of variables was fixed to

M = 100, and the penalties were set to λ1 = λ2 = 0.01. Then, matrices were sampled

with the number of columns (patterns) N varying as 103, 104, and 105. To select the

vector of responses y, the formula y = sgn(Axt + v) was followed, where xt, and v are

random vectors whose entries have variances 1 and 0.01, respectively. The numerical

results are summarized in Table 4.2, where SLEP (version 4.0) [105] is compared against

the Trip-based approach. Since SLEP only supports the FL and LFL models, the TV1D
2 -

proximity operator developed here is also coded within SLEP to allow the comparison

for the VF and LVF models. While for smaller matrices with N = 103 both methods

run similarly fast, as the size of the input matrices increases, the Trip-based fused-lasso

solvers run much faster than SLEP.

4.2.2 Microarray classification

Addressing now an applied bioinformatics problem, the four FL models were tested on

real binary classification tasks for the following microarray datasets: ArrayCGH [114],
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Dataset FL VF LFL LVF

ArrayCGH 73.6% 78.9% 73.6% 73.6%
Leukemias 92.0% 92.0% 96.0% 96.0%
Colon 77.2% 77.2% 77.2% 77.2%
Ovarian 88.8% 83.3% 77.7% 77.7%
Rat 67.2% 65.5% 70.4% 70.4%

Table 4.3: Classification accuracies for the presented Fused–Lasso models on microar-
ray data.

Leukemias [115], Colon [116], Ovarian [117] and Rat [118]. Each dataset was split

into three equal parts (ensuring both classes where present in every split) for training,

validation and test. The penalty parameters were found by exhaustive grid search in the

range λ1, λ2 ∈ [10−3, 101] to maximize classification accuracy on the validation splits.

Table 4.3 shows test accuracies. In general, logistic-loss based FL models yield bet-

ter classification accuracies than those based on least-squares. This result is natural:

logistic-loss is more suited for classification tasks, since it turns out to be an smooth

approximation to the hinge loss (already introduced in Section 1.4). Regarding the TV–

regularizer, three out of five datasets seem to be insensitive to this choice, though the

TV1D
1 -penalty performs better for Ovarian, while TV1D

2 works best for ArrayCGH. It

can be concluded, thus, that new proposed variants of Fused–Lasso using TV1D
2 regu-

larization can be of use in some situations.

4.3 2-dimensional TV-regularization

The previous section has shown how TV1D
p -proximity can be solved efficiently, and build-

ing on top of this, how practical models using this regularization can be solved. Now a

2-dimensional version of this regularizer is considered, taking the form

TV2D
p,q(x) =

N∑
i=1

M−1∑
j=1

|xi,j+1 − xi,j |p
1/p

+

M∑
j=1

(
N−1∑
i=1

|xi+1,j − xi,j |q
)1/q

,

for a 2-dimensional input x ∈ RN×M . The effect of this regularizer is applying a TV1D
p

regularization over each row of x, and a TV1D
q regularization over each column. When

p = q the same kind of regularization is applied over the rows and the columns. By

defining DN and DM differencing matrices for the row and column dimensions the

regularizer can be rewritten as
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TV2D
p,q(x) =

∑
i

‖DNxi,:‖p +
∑
j

‖DMx:,j‖q,

where xi,: denotes the i-th row of x and x:,j its j-th column. That is, the TV2D
p,q regularizer

decomposes into N TV1D
p and M TV1D

q regularizers. This observation is relevant because,

similarly to the Fused-Lasso models of Section 4.2, proximity for TV2D
p,q is solvable by

making use of the basic TV1D
p proximity solvers. And, analogously to 1–dimensional

TV, being able to compute proximity for 2–dimensional TV allows to solve problems of

interest through the use of proximal solvers, as is shown later on.

The corresponding TV2D
p,q-proximity problem is

min
x

1
2‖x− y‖

2
F + λTV2D

p,q(x),

where the Frobenius norm ‖x‖F is defined as ‖x‖F =
√

Tr(xTx), or equivalently, ‖x‖F =√∑
i

∑
j x

2
i,j = ‖vec(x)‖2 where vec(x) is the vectorization of x. By using the decom-

position before

min
x

1
2‖x− y‖

2
F + λ

(∑
i

‖DNxi,:‖p

)
+ λ

∑
j

‖DMx:,j‖q

 ,

where the parenthesis make explicit that the regularizer is in fact combination of two

regularizers: one acting over the rows and the other over the columns. The resulting

problem clearly fits into the model solved by the Proximal Dykstra algorithm already

introduced (Section 4.2). Therefore, TV2D
p,q-proximity can be solved via this method.

There is a difference, though, which is that each of the two regularizers involved is in

turn composed by the sum of a number (N or M) of 1–dimensional TV regularizers.

However, each of those operates over a different row or columns of x, and thus they can

be solved independently.

To clarify things, Algorithm 12 shows how TV2D
p,q-proximity can be solved through the

Proximal Dykstra algorithm and TV1D
p and TV1D

q -proximity solvers. A useful remark

is that in the proximity steps, all the proximity operators can be computed simultane-

ously, since they operate in different rows / columns. This naturally leads to a parallel

implementation of such steps; details on this are given in the experimental reports (Sec-

tion 4.3.4).
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Algorithm 12 Proximal Dykstra adapted for TV2D
p,q-proximity

Inputs: x, λ, y, p, q.
Initialize x0 = y, u0 = w0 = 0, t = 0.
while stopping criterion not met do

Proximity over the columns: vt:,j = proxTV1D
q

(xt:,j + ut:,j) ∀ j = 1, . . . ,M .

Columns step: ut+1 = xt + ut − vt.
Proximity over the rows: xt+1

i,: = proxTV1D
p

(vti,: + wti,:) ∀ i = 1, . . . , N .

Rows step: wt+1 = vt + wt − xt+1.
t← t+ 1.

end while
Return xt.

4.3.1 Anisotropic filtering

A first straightforward application of the TV2D
p,q regularizer in the field of image pro-

cessing is anisotropic filtering, which is an approach to image denoising. Given an

image u ∈ RN×M contaminated by additive noise n in the form

u0 = u+ n,

where only u0 is observed, the denoising problem involves obtaining an estimate of the

original image u from its noisy version u0. Such task is by no means approachable un-

less additional assumptions on the noise properties are made. It is therefore common

to assume that the noise follows a Gaussian distribution, or some other zero-mean dis-

tribution. Under these conditions, a classic method to perform such denoising task is

given by the Rudin–Osher–Fatemi (ROF) model [119], which finds an approximation

x to the original image as

min
x

‖x− u0‖2F + λ

N∑
i=2

M∑
j=2

‖∂xi,j‖2,

where ∂xi,j is defined as a discrete gradient at the (i, j)-th point of the image, which is

computed as

∂xi,j =

[
xi,j − xi−1,j

xi,j − xi,j−1

]
,

that is, it is the vector of differences of xi,j and its neighbors in both axes. The objective

of the first term in the ROF model is to penalize any deviation of x from the observed

image u0, while the second term can be readily recognized as a mixed (2, 1) norm over
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the gradient of x. This particular choice of regularization attends to prior knowledge

about the problem: in natural images sharp discontinuities in intensity between neigh-

boring points only appear in borders of objects, while the rest of the pixels usually show

smooth variations in intensity. It makes sense, therefore, to regularize large values of

the gradient, as sharp changes have a higher probability of having being produced by

noise. Conversely, as the mean of the noise is zero, it is also sensible to maintain the

denoised image x close to the observed u0. Joining these two goals produces the ROF

model as presented.

A closer look at the regularizer employed in the ROF model reveals that it follows the

spirit of the 2–dimensional Total-Variation regularizer as presented here, in the sense of

penalizing variations between neighboring pixels. In fact, this kind of regularizer is also

generally known as Total-Variation within the image processing community. It is clear,

though, that this regularizer does not coincide with the TV2D
p,q regularizer presented so

far. Because of this, some authors [79] differentiate these two regularizers by naming

the ROF approach as isotropic TV and the TV2D
p,q approach as anisotropic TV. This

naming comes from the fact that isotropic TV penalizes each component of the discrete

gradient ∂xi,j following an L2 norm, i.e. a ball-shaped norm, putting the same weight

over every direction. Conversely, the anisotropic TV2D
p,q and in particular TV2D

1,1 penalizes

rows and columns independently.

While image filtering using isotropic TV is generally preferred for natural images denois-

ing [120], in some settings anisotropic filtering can produce better results, and in fact

has been favored by some authors in the past [121, 122]. This is specially true on those

images that present a “blocky” structure, and thus are better suited to the structure

imposed by the TV2D
p,q regularizer. An example of this can be seen in Figures 4.4 and 4.5.

In the first one the famous image Lena is corrupted with gaussian noise, and then filtered

with both an isotropic and an anisotropic model. Visually, isotropic filtering produces a

slightly better reconstruction. Conversely, in the second Figure a QR barcode is filtered,

and this time the anisotropic model produces better looking results (quantitative results

for both classes of filters are given later in Section 4.3.4). Therefore, efficient methods

to perform anisotropic filtering are also of interest.

The denoising problem using the anisotropic TV2D
p,q regularizer has the expected form

min
x

‖x− u0‖2F + λTV2D
p,q.

This is exactly the TV2D
p,q-proximity problem, and hence can be solved directly by the

method presented above. In practice, filtering is made by choosing p = q = 1, thus

simplifying things.
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(a) (b)

(c) (d)

Figure 4.4: Lena image (a) Original image (b) Noisy image (c) Isotropic denoising
(d) Anisotropic denoising.

4.3.2 Image deconvolution

Taking a step forward from image filtering the problem of image deconvolution (or

image deblurring) is confronted. In this more complex setting the image recovery task

is made harder by the presence of a convolution kernel K in the form of a linear

operator, which introduces further distortion in the image as

u0 = K ∗ u+ n,

for n a noise vector, and ∗ the convolution operation. Thus, to recover the original image

u from the observed u0 the following deconvolution problem needs to be solved
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(a) (b)

(c) (d)

Figure 4.5: QR code image (a) Original image (b) Noisy image (c) Isotropic denoising
(d) Anisotropic denoising.

min
x

1
2‖K ∗ x− u‖

2
F + λR(x).

Again, the regularization term R(x) can be an isotropic or an anisotropic regularizer

(among others), each of them being better suited for different settings. An example of

deconvolution where an anisotropic filter performs better is shown in Figure 4.6. This

problem is harder than the denoising one due to the inclusion of K, but nonetheless

can be addressed by making use of a proximal algorithm as in the case of the Fused–

Lasso problem. Several solvers of this kind explicitly designed for dealing with the

convolution operator are available in the literature [78, 79, 87], which only require to

provide a function to solve the denoising problem, i.e. the proximity operator. A
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(a) (b)

(c) (d)

Figure 4.6: QR code image (a) Original image (b) Image convoluted with a motion
blur kernel (c) Isotropic deconvolution (d) Anisotropic deconvolution.

notable solver specific for the isotropic case is given by the work of Krishnan and Fergus

[123], providing fast solutions even for non–convex versions of the isotropic TV norm

(0 < p < 1). Unfortunately, such approach can not be extended to the anisotropic case,

and so here the focus is placed on more general proximal solvers addressing any kind of

regularizer R(x). To this end, experiments showing how the TV2D
p,q-proximity solver can

be plugged into the recent proximal method SALSA [87] are presented in Section 4.3.4.

4.3.3 2-dimensional Fused–Lasso Signal Approximator

The Fused–Lasso Signal Approximator (FLSA) [106] can be regarded as a particular

case of Fused–Lasso where the input matrix A is the identity matrix I, i.e.
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min
x

1
2‖Ix− y‖

2
2 + λ1‖x‖1 + λ2TV1D

1 (x),

= min
x

1
2‖x− y‖

2
2 + λ1‖x‖1 + λ2TV1D

1 (x).

In the context of this thesis, FLSA appears as the proximity operator of the L1 + TV1D
1

regularizer, and as such can be solved straightforwardly following the methods presented

in Section 4.2. A slightly more interesting problem is the one posed by the 2-dimensional

variant of FLSA, taking the form

min
x

‖x− y‖2F + λ1‖vec(x)‖1 + λ2TV2D
1,1.

This model has been used in [106] for the denoising of signals where a large number of

pixels are known to be completely black (intensity 0), thus adequately exploiting the

structure imposed by the L1 regularizer.

Similarly to the 1-dimensional case, 2-dimensional FLSA can be solved by realizing

again that the problem is just a proximity operator of the L1 + TV2D
1,1 regularizer.

Fortunately, in this case this proximity operator can again be directly decomposed into

the two constituting proximity operators [106], as

proxλ1‖·‖1+λ2TV2D
1,1(·)(y) = proxλ1‖·‖1

(
proxλ2TV2D

1,1(·)(y)
)
.

Therefore, solving 2-dimensional FLSA amounts to calling the developed TV2D
p,q proxim-

ity solver and then applying soft-thresholding to the results. Since the soft-thresholding

step is done in closed form, the performance of an FLSA solver depends only on its abil-

ity to compute TV2D
p,q-proximity efficiently. Experimental results (Section 4.3.4) show

that the proximity solver proposed here amply fulfills this requirement.

4.3.4 Experiments

Since the developed TV2D
p,q-proximity method is based on its corresponding 1–dimensional

solvers, an implementation of it was also made in the C programming language. The

Matlab toolbox publicly available at http://arantxa.ii.uam.es/~gaa/software.html

contains the implementation of this method that was used to run the following experi-

ments.

http://arantxa.ii.uam.es/~gaa/software.html
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4.3.4.1 Image denoising

The most immediate application of the developed TV2D
p,q-proximity is to image denoising,

as already presented, since it constitutes a problem directly solvable by this method.

As stated before, an image filter making use of a TV2D
p,q regularizer corresponds to an

anisotropic filtering, which produces superior quality reconstructions when the images

to denoise present a blocky structure. A good example of such are 2-dimensional QR

barcodes, where anisotropic filters have already been applied [121]. Images where the

gradient is generally constant are also a good field of application of this filtering, for

instance diagrams or images with plain colors (i.e. not presenting color gradients).

In what follows the presented proximity operator based in Proximal Dykstra (PD) is put

into practice for those settings. Norms p = 1 and q = 1 are used for the filtering, since

this is the standard and actually produces better results than, for instance, p = q = 2.

For this TV2D
1,1 choice, the Proximal Dykstra method just requires the use of the TV1D

1

Projected Newton solver.

In order to offer a contrast with other existing methods, experiments were run also for

the following algorithms:

• The state–of–the–art Primal Dual Hybrid Gradient (PDHG) method by Zhu

et al. [93] for isotropic denoising.

• The Pathwise Coordinate Optimization method by Friedman et al. [106],

designed to solve the FLSA problem (Section 4.3.3), and hence performing an

anisotropic denoising if a weight λ1 = 0 is given to the L1 norm regularizer.

• An adapted PDHG method solving the anisotropic case, which was easily obtained

by modifying the original formulation. This is to check whether such method is

able to perform well also for this case. It must be mentioned that the parameter

selection rules recommended for the original PDHG failed to produce fast running

times when applied in this context. Thus, to make PDHG competitive, optimal

parameters were obtained by exhaustive grid search aiming to minimize training

times over the randomQR-0 image.

• A median filter, which is standard for filtering of images presenting a clear spatial

structure [124].

The images used in the experiments are displayed in Figure 4.7 (at the end of the

chapter). QR barcode images were generated by encoding random text using Google
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Image Gaussian Speckle Poisson Salt & Pepper

randomQR 0.2 0.3 ∅ ∅
shape 0.05 ∅ ∅ ∅
trollface ∅ 1 ∅ ∅
diagram ∅ ∅ X ∅
text ∅ ∅ ∅ 0.1
comic 0.05 ∅ X ∅
contour ∅ ∅ X 0.4
phantom ∅ 2 X ∅

Table 4.4: Kinds of noise and parameters for each test image. A ∅ indicates that such
noise was not applied for the image. Gaussian and Speckle correspond to gaussian addi-
tive and multiplicative (respectively) noises with zero mean and the indicated variance.
Salt & Pepper noise turns into black or white the indicated fraction of image pixels.
Poisson regenerates each pixel by drawing a random value from a Poisson distribution

with mean equal to the original pixel value, thus producing a more realistic noise.

chart API [125]. Images shape and phantom 5 are publicly available and frequently used

in image processing. trollface and comic 6 are also publicly available. The rest of the

images were originally created by the author.

To test the filters under a variety of scenarios, different kinds of noise were introduced

for each image. Table 4.4 gives details on this, while the noisy images are shown in

Figure 4.8. All QR barcode images used the same kind and parameters of noise, for

reasons to be discussed next. Noise was introduced using Matlab’s imnoise function.

Values for the regularization parameter λ in the isotropic and anisotropic models were

found by maximizing the quality of the reconstruction, measured in Improved Signal-

to-Noise Ratio (ISNR) [87], with the exception of the QR barcode images. In those,

λ is optimized only for the randomQR-2 image, and then that value is used for the rest

of QR images as well. This is to see how a fixed choice of λ behaves when applied to

different though similar images. ISNR is defined as

ISNR(x, u, u0) = 10 log10

‖u0 − x‖2F
‖x− u‖2F

,

where u is the original image, u0 is its observed noisy variant, and x is the reconstruction

obtained.

Table 4.5 presents the runtimes and ISNR values that were obtained in the denoising ex-

periments. Pathwise Coordinate Optimization and anisotropic PDHG were not applied

5Extracted from http://en.wikipedia.org/wiki/File:Shepp_logan.png
6Author: Francisco Molina. http://www.afrikislife.net/english/

http://en.wikipedia.org/wiki/File:Shepp_logan.png
http://www.afrikislife.net/english/
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Anisotropic Isotropic Median

Image ISNR PD Coord. PDHG ISNR PDHG ISNR Time

randomQR-0 2.39 0.11 2.85 0.64 2.04 0.03 1.24 0.00
randomQR-1 4.14 0.27 15.99 8.71 3.38 0.11 1.74 0.02
randomQR-2 5.48 0.88 140.78 128.72 4.38 0.37 2.35 0.03
randomQR-3 6.04 1.39 167.68 93.87 4.39 0.76 2.42 0.07
randomQR-4 4.42 2.59 228.55 203.19 3.58 1.30 2.18 0.09
shape 6.02 0.09 45.51 7.75 4.50 0.03 -0.60 0.01
trollface 8.00 1.68 1899.17 316.80 7.69 0.65 2.89 0.05
diagram 6.73 0.32 1937.05 53.12 4.84 0.13 -6.24 0.02
text 5.02 4.00 296.35 1287.11 3.72 1.99 4.49 0.07
comic 7.04 1.09 491.91 209.47 6.13 0.51 2.18 0.05
contour 12.49 11.19 ∅ ∅ 10.71 5.96 9.12 0.33
phantom 6.09 49.78 ∅ ∅ 6.00 16.59 2.78 0.60

Table 4.5: Denoising results obtained via the proposed Proximal Dykstra (PD)
method, Coordinate Optimization and adapted PDHG for the anisotropic model, gen-
uine PDHG for the isotropic model, and a median filter. ISNR (dB) values (higher is
better) and running times for each method in seconds are shown. All methods solving
the anisotropic model produce roughly the same ISNR value. Cases showing a ∅ were

not tested because of excessive requirements in running times.

to the largest images, as they required excessive running times. The actual denoised

images are shown in Figures 4.9, 4.10 and 4.11. To compensate for the loss of contrast

produced by filtering, intensity values were rescaled to the range of the original image.

In general, the median filter performs worse than the isotropic filter, which in turn

shows lower quality reconstructions than the anisotropic filter, for all the tested types

of noise (in terms of ISNR). In the QR images it is confirmed visually that the median

filter produces distorted reconstructions where noise still abounds. Even though the

median filter works well in images with clear spatial structure like these, the speckle

(multiplicative) noise makes this filter fail, as computing medians no longer gives a good

reconstruction. Running again these experiments with just gaussian additive noise (not

shown here), the median filter does produce good results. Still, the anisotropic and

isotropic filters perform well in both settings. It is further visually checked that the

anisotropic version does a better job.

Regarding the rest of images, the advantage of the anisotropic filter can be generally con-

firmed by looking at the image regions presenting constant intensity: artificial changes

in intensity appear when applying the isotropic filter. The median filter generally does

a bad job in removing the noise, and thus attains smaller ISNR values. It is remarkable,

though, that in spite of this lower ISNR, better-looking results are obtained in text and
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contour, as the isotropic and anisotropic filters produce an undesired blurring of the im-

age. This fact suggests that in some situations the use of a metric different from ISNR

might better assess the visually-perceived quality of the reconstructed image. Neverthe-

less ISNR (or SNR) is still a widely-used quality measure for image reconstruction.

In any case, it must be stressed that the main point of these experiments is showing how

the proposed TV2D
p,q-proximity method efficiently solves the anisotropic filtering problem,

and how it can produce better reconstructions than isotropic filtering in some settings.

In spite of this, a vast number of filtering methods have been developed in the field

of image processing, many of them producing higher-quality reconstructions than these

approaches, such as for instance the collaborative filtering approach of Dabov et al. [126].

Nevertheless, efficient methods for isotropic filtering is still an active area of research, as

it can be extended to deal with harder problems such as deblurring, inpainting or super-

resolution [127, 128], and so the anisotropic approach followed here is also of interest.

Therefore, the relevant discussion comes in terms of running times, which comes next.

Looking again at the results, the proposed Proximal Dykstra solver vastly outperforms

Coordinate Optimization and anisotropic PDHG in terms of efficiency. The isotropic

version of the problem is simpler than the anisotropic one, so it is no surprise that the

carefully tuned PDHG approach by Zhu et al. requires less time than Proximal Dykstra.

Indeed, the performance of the PDHG method seems to depend heavily on the choice

of its parameters. While the authors provide some recommended values that ensure

convergence, in practice a set of involved parameter-setting rules are required to obtain

good performance. These rules, when applied to the anisotropic case, failed to produce

good running times. Even a careful selection of parameter values like the one done here

seems to be unable to make the method run fast. In utter contrast to this, the method

proposed here requires no parameter tuning at all.

On a side note, it is also worth mentioning that in [121] an L1 loss is proposed instead of

the ‖x− y‖2F presented here, and denoising is then cast as a Linear Program, to which

a generic solver is applied; this approach requires runtimes of over 103 seconds for the

randomQR-4 image, and so it is of no use in practice.

It must also be noted that the results of Table 4.5 additionally prove that the proposed

Proximal Dykstra method is able to solve the 2–dimensional Fused–Signal–Approximator–

Problem (Section 4.3.3) faster than the Pathwise Coordinate Optimization method pro-

posed by its authors [106], since, as stated before, the FLSA problem is solved by apply-

ing soft-thresholding to the solution of TV2D
1,1-proximity, which in turn is the anisotropic

filtering problem tested here. It should be remarked, though, that the Coordinate Opti-

mization method computes the full regularization path for λ instead of just for a single

value of it. Still, and similarly to the 1–dimensional Fused–Lasso problem, the speed of
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Image 1 processor 2 processors Reduction

shape 0.09 0.10 111.1 %
trollface 1.68 1.43 85.1 %
diagram 0.32 0.40 125 %
text 4.00 3.14 78.5 %
comic 1.09 1.01 92.6 %
contour 11.19 8.04 71.8 %
phantom 49.78 28.65 57.5 %

Table 4.6: Running times (in seconds) for the PD algorithm in anisotropic filter-
ing when 1 or 2 parallel processors are used in the computation, together with the

percentage of time required by 2 processors w.r.t. 1 processor.

Proximal Dykstra allows to rapidly compute solutions for several values of λ if required,

and so this is not a problem in practice.

Finally and to illustrate the parallelization potential of the developed anisotropic filtering

method, Table 4.6 shows running times for the PD algorithm when 1 or 2 parallel

processors are used in the computation of some of the experiments in Table 4.5. While

for the small images using 2 processors does not seem to be advantage, clear reductions

in times are obtained for the larger text, contour, and phantom images. This is not

surprising: any parallel process incurs into a costly overhead due to thread management

and synchronization operations. This overhead, however, scales only with the number

of parallel threads, not with the size of the data, i.e. the work to be performed by each

thread. Therefore speedups coming from parallelization generally show up only for large

quantities of data, where the parallelization overhead becomes negligible when compared

to the computations performed by each thread. Precisely this effect is observed here, and

as the input image becomes larger, the running times when using 2 processors becomes

closer to the theoretically optimal 50 % reduction factor.

4.3.4.2 Image deconvolution

As stated before, the problem of image deconvolution can be addressed as an extension

to image denoising, and in fact deconvolution can be solved by building over a denoising

method. Here the deconvolution method SALSA [87] is used to run the experiments

below, which only requires to supply a denoising function. Thanks to this modularity,

anisotropic deconvolution can be performed by just plugging in the developed TV2D
1,1

solver, as well as isotropic deconvolution by using SALSA’s internal isotropic denoising

filter, which is based on Chambolle’s method [129]. In what follows these two approaches
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Image Convolution Parameters

randomQR Motion Length 5, Angle 35o

shape Average Size 3 × 3
trollface Disk Radius 5
diagram Motion Length 5, Angle 0o

text Average Size 1 × 10
comic Gaussian Size 15, Deviation 2
contour Disk Radius 5
phantom Motion Length 100, Angle 240o

Table 4.7: Convolution kernels used for each test image. Average substitutes each
pixel with the average of its surrounding n × m neighbors. Disk performs the same
operation within a disk-shaped neighborhood of the shown radius. Gaussian uses a
n× n neighborhood and assigns different weights to each neighbor following the value
of a gaussian distribution of the indicated deviation centered at the current pixel.
Motion emulates the distortions produced when taking a picture in motion, defining a

neighborhood following a vector of the indicated length and angle.

to deconvolution are compared, together with the standard Richardson–Lucy (RL)

[130] method as implemented in Matlab.

Test images were the same as for the filtering experiments (Figure 4.7), using identical

noise patterns (Table 4.4) for the QR images and just Gaussian noise with variance 0.05

for the rest. Additionally each image is convolved with a different type of kernel to

observe the behavior of these methods for a variety of convolutions; Table 4.7 shows the

types of kernels applied on each case. All the kernels were constructed using Matlab’s

fspecial function. The resulting images after convolution are shown in Figure 4.12.

Similarly to what was done for image filtering, values for λ in the isotropic and anisotropic

models were found by maximizing the quality of the reconstruction, measured in ISNR,

but for the QR barcode images, where λ is optimized only for the randomQR-2 image

and applied for all of them. Since deconvolution is a much more costly problem to solve,

instead of performing and exhaustive search for the best λ choice, a Focused Grid Search

strategy [131, 132] was used to find the best performing values. The Richardson-Lucy

method does not require any parameter setting.

Table 4.8 shows the results obtained in terms of ISNR and running times. The ac-

tual deconvoluted images are shown in Figures 4.13, 4.14 and 4.15. As in the image

denoising experiments before, the particular structure of the images used allows the

anisotropic method to obtain superior quality results in terms of ISNR when compared

to the isotropic alternative. Again, most of this gain in ISNR comes from a better

reconstruction of large constant-color areas, where noise and blurring distortions are

almost completely removed. Regarding the Richardson–Lucy method, its application



Chapter 4. Newton optimization approaches for TV–regularization 139

Anisotropic Isotropic RL

Size ISNR Time ISNR Time ISNR Time

randomQR-0 1.55 1.19 1.10 0.12 0.73 0.04
randomQR-1 2.79 0.81 2.15 0.55 0.79 0.18
randomQR-2 4.07 3.34 3.07 2.40 1.07 0.46
randomQR-3 4.05 5.41 2.92 3.71 1.13 0.61
randomQR-4 3.21 8.98 2.37 5.71 1.04 1.26
shape 2.13 0.83 1.01 0.15 0.13 0.07
trollface 0.99 8.08 0.40 2.08 0.23 1.14
diagram 1.61 2.30 0.33 9.24 -0.11 0.62
text 0.73 26.41 -0.09 147.01 0.35 2.76
comic 0.61 12.08 0.50 4.62 1.08 1.29
contour 0.82 86.60 0.64 18.63 -0.07 4.73
phantom 3.26 1326.29 0.73 155.47 2.19 32.91

Table 4.8: Deconvolution results for anisotropic and isotropic models using the
SALSA solver, and Matlab’s Richardson-Lucy (RL) method. ISNR (dB) values and

runtimes (in secs) are shown.

generally better reverts the convolution; however, it leaves the noise mostly unchanged

and produces some artifacts in the form of “shadow copies” of the image. Also, atten-

tion should be drawn again to the fact that higher ISNR does not necessarily translate

into better-looking reconstructions: a good example of this are the diagram, text and

comic images, where both the isotropic and anisotropic filters cannot remove all of the

blurring, and so leave hard to read text pieces. Conversely, the Richardson–Lucy filter

better maintains the sharpness of the text, though at the price of an inferior removal of

noise.

Still, again the objective of these experiments is to show how the developed TV2D
1,1

proximity solver can also be applied in the context of image deconvolution, producing

an effective method to solve the problem. The image filtering experiments above al-

ready showed that this method stands out as clearly faster when compared with other

anisotropic denoising methods, and so the same results are to be expected in the deconvo-

lution setting. While other deconvolution approaches in the image processing literature

might produce better quality results, the fact that an efficient anisotropic method is

provided here is already of interest.

4.4 N-dimensional TV-regularization

Moving even beyond TV2D
p,q, a generalized multidimensional version of TV-proximity

can be considered. Suppose X to be an order-M tensor in RN1×N2×···×NM , that is, an M
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dimensional array indexed as Xi1,i2,...,iM , where the indexes range as i1 ∈ {1, . . . , N1},
i2 ∈ {1, . . . , N2}, . . . , iM ∈ {1, . . . , NM}. Then the multidimensional Total-Variation

could be defined as

TVM
p =

M∑
k=1

∑
{i1,...,iM}\ik

Nk−1∑
j=1

|Xi1,...,ik−1,j+1,ik+1,...,iM − Xi1,...,ik−1,j,ik+1,...,iM |
pk

1/pk

,

for a vector of norms p = [p1, . . . , pM ]. This corresponds, for each dimension, to applying

a 1-dimensional TV to each of the 1-dimensional rows of X along that dimension. For

instance, if X ∈ RN1×N2 , that is, a matrix, then 1-dimensional TV is applied over every

row and column, as expected.

Introducing the multi-index i(k) = (i1, . . . , ik−1, ik+1, . . . , iM ), which iterates over ev-

ery 1-dimensional row of X along the k-th dimension, the regularizer can be rewritten

as a sum of M terms of the form

TVM
p =

M∑
k=1

∑
i(k)

‖DNkxi(k)‖pk ,

where xi(k) denotes a row of X along the k-th dimension, and DNk is a differencing

matrix of adequate size for the 1-dimensional rows along that dimension (of size Nk).

The corresponding M -dimensional-TV proximity problem is

min
X

1
2‖X− Y‖2F + λTVM

p (X),

where λ > 0 is a penalty parameter, and the Frobenius norm for a tensor just denotes

the ordinary sum-of-squares norm over the vectorization of such tensor. This can be

further generalized by applying a different penalty for each dimension, as

min
X

1
2‖X− Y‖2F +

M∑
k=1

λk
∑
i(k)

‖DNkxi(k)‖pk ,

This proximity operator looks very challenging. In spite of this, it is clearly decompos-

able, and as done already for the 2-dimensional TV case and the Fused Lasso models,

it can be solved through the solutions of its constitutive proximity operators. More

explicitly, the problem can be written as a sum of TV1D terms as
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Algorithm 13 Parallel-Proximal Dykstra for N-dimensional TV

Inputs: Y ∈ RN1×N2×···×NM , λ, p.
Initialize X0 = Y, Zk

0 = 0, for 1 ≤ k ≤M ; t = 0
while (¬ converged) do

for k = 1 to M in parallel do
Pk
t = minX

1
2‖X− Zk

t ‖2F +Mλk
∑

i(k) TV1D
pk

(
xi(k)

)
end for
Xt+1 = 1

M

∑
k P

k
t

for k = 1 to M in parallel do
Zk
t+1 = Xt+1 + Zk

t − Pk
t

end for
t← t+ 1

end while
Return Xt

min
X

1
2‖X− Y‖2F +

M∑
k=1

λk
∑
i(k)

TV1D
pk

(
xi(k)

)
.

This can be regarded as the sum ofM proximity terms, each of them further decomposing

into a number of inner TV1D terms. This latter inner decomposition is trivial to address

since, as in the 2-dimensional TV, each of the TV1D terms operates on different entries of

X. The problem comes from the M outer terms, which operate over the same X entries.

Using Proximal Dykstra (Section 4.2) a problem of this kind can be solved for M = 2,

though not for a general M . Fortunately, a generalization of this algorithm allows to

effectively deal with M proximity terms: the Parallel-Proximal Dykstra algorithm

[80, 133].

A pseudocode of the algorithm adapted to the problem at hand is shown in Algorithm

13. Convergence of this method towards the optimum has been proved [133]. Also, all

the loops shown can be run in parallel, and in turn each of their iterates can be further

parallelized to solve the TV1D
pk

proximity problems, resulting in a method with a vast

potential for multi-thread computing.

4.4.1 Experiments

To the best of the knowledge of the author of this thesis, Total Variation regularization

has not been applied before for N–dimensional data with N > 2. Still, as a sample

of an application of the developed N–dimensional TV method, an anisotropic filtering

for video denoising can be performed with it. By directly extending from the al-

ready presented 2–dimensional anisotropic filter (Section 4.3.1), a 3–dimensional filter

for video can be devised as well. A video containing F frames of size N ×M pixels
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naturally fits into a 3–dimensional tensor X ∈ RN×M×F , and so the 3–dimensional filter

is straightforwardly defined as

min
X

‖X− U0‖2F + λTV3D
p1,p2,p3(X),

with U0 the observed noisy video, TV3D
p1,p2,p3 = TV3

p, p = [p1, p2, p3]. Like in the 2–

dimensional case, application of the filter just requires solving the corresponding proxim-

ity operator, which can be done using the Parallel-Proximal Dykstra algorithm presented

above.

As an example of application of this filtering method, the salesman video sequence was

used, which is available at [134]. The video consists of 50 frames with a resolution of 288

× 352 grayscale pixels per frame, Figure 4.16 shows some of the frames of the sequence.

Additive gaussian noise with zero mean and variance 10 was introduced independently

into each frame of the sequence (Figure 4.17). Then this noisy sequence was filtered

following a two-step procedure:

1. Using only the first 25 % frames of the video, look for the optimal value of the

regularization parameter λ in terms of ISNR value of the reconstruction. This was

done testing for a range of values of λ, and selecting the best performing one.

2. Filter the whole sequence using the λ value found.

The filtered sequence is shown in Figure 4.18. The anisotropic filter successfully removes

the noise, obtaining an ISNR value of 5.6, although the expected slight blurring of the

image appears as a result, as in the image experiments above. Once a good value for

λ has been chosen, filtering the video takes just 33 seconds. Given that the sequence

contains in total 50 × 288 × 352 = 5068800 pixels, this could be roughly compared

against the filtering of a 2–dimensional image of size ' 2251× 2251 pixels. Looking at

the previous results for image denoising (Table 4.5), it seems like the Parallel-Proximal

Dykstra algorithm performs well when compared against the filtering of the countour

and phantom images. When the same filtering is performed in parallel using 2 processors,

running time drops down to 19 seconds, confirming the suitability of the algorithm for

multi-thread computation.

4.5 Discussion

This chapter has introduced a new series of methods based on Newton optimization for

addressing the problem of Total Variation proximity. Not only do these methods perform
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better than state–of–the–art algorithms, but also it has been shown how they can be

used as building blocks to deal with more complex problems. Building on this and

using recent proximal methods from the literature, efficient solvers for 2–dimensional

and N–dimensional TV proximity, fused–lasso, and anisotropic image denoising and

deconvolution have been constructed, showing good experimental performance. New

approaches to the Fused–Lasso model and an anisotropic video filter have been proposed

as well.

Two key ingredients have been fundamental for this success: a careful implementation

of the basic proximal solvers and the use of appropriate proximal methods for each

problem. While recent literature on proximal methods has provided ample algorithms

and approaches for excellent solvers, at their core an efficient proximity algorithm is

critical to ensure their performance. Therefore, efforts on this seems to be a more

demanding priority.

Similarly to the SVM case in Chapter 3, this chapter has shown that by analyzing the

problem at hand and taking full advantage of its structure applying tailored optimization

methods, very efficient solvers can be developed. The modularity of these solvers when

integrated into larger optimization frameworks not only guarantees their applicability

in a broad range of problems but also, as seen here, their ability to naturally fit into a

parallel framework, further guaranteeing scalability.
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randomQR-0 (100× 100) randomQR-1 (175× 175) randomQR-2 (300× 300)

randomQR-3 (375× 375) randomQR-4 (500× 500) shape (128× 128)

trollface (388× 388) diagram (259× 259) text (665× 665)

comic (402× 402) contour (1000× 1000) phantom (1713× 1713)

Figure 4.7: Test images used in the experiments together with their sizes in pixels.
Images displayed have been scaled down to fit in page.
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randomQR-0 (100× 100) randomQR-1 (175× 175) randomQR-2 (300× 300)

randomQR-3 (375× 375) randomQR-4 (500× 500) shape (128× 128)

trollface (388× 388) diagram (259× 259) text (665× 665)

comic (402× 402) contour (1000× 1000) phantom (1713× 1713)

Figure 4.8: Noisy versions of images used in the experiments.
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randomQR-0 Anisotropic randomQR-0 Isotropic randomQR-0 Median

randomQR-1 Anisotropic randomQR-1 Isotropic randomQR-1 Median

randomQR-2 Anisotropic randomQR-2 Isotropic randomQR-2 Median

randomQR-3 Anisotropic randomQR-3 Isotropic randomQR-3 Median

Figure 4.9: Filtering results for the test images (1 out of 3).
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randomQR-4 Anisotropic randomQR-4 Isotropic randomQR-4 Median

shape Anisotropic shape Isotropic shape Median

trollface Anisotropic trollface Isotropic trollface Median

diagram Anisotropic diagram Isotropic diagram Median

Figure 4.10: Filtering results for the test images (2 out of 3).
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text Anisotropic text Isotropic text Median

comic Anisotropic comic Isotropic comic Median

contour Anisotropic contour Isotropic contour Median

phantom Anisotropic phantom Isotropic phantom Median

Figure 4.11: Filtering results for the test images (3 out of 3).
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randomQR-0 (100× 100) randomQR-1 (175× 175) randomQR-2 (300× 300)

randomQR-3 (375× 375) randomQR-4 (500× 500) shape (128× 128)

trollface (388× 388) diagram (259× 259) text (665× 665)

comic (402× 402) contour (1000× 1000) phantom (1713× 1713)

Figure 4.12: Noisy and convoluted versions of images used in the experiments.
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randomQR-0 Anisotropic randomQR-0 Isotropic randomQR-0 RL

randomQR-1 Anisotropic randomQR-1 Isotropic randomQR-1 RL

randomQR-2 Anisotropic randomQR-2 Isotropic randomQR-2 RL

randomQR-3 Anisotropic randomQR-3 Isotropic randomQR-3 RL

Figure 4.13: Deconvolution results for the test images (1 out of 3).
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randomQR-4 Anisotropic randomQR-4 Isotropic randomQR-4 RL

shape Anisotropic shape Isotropic shape RL

trollface Anisotropic trollface Isotropic trollface RL

diagram Anisotropic diagram Isotropic diagram RL

Figure 4.14: Deconvolution results for the test images (2 out of 3).
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text Anisotropic text Isotropic text RL

comic Anisotropic comic Isotropic comic Lucy

contour Anisotropic contour Isotropic contour Lucy

phantom Anisotropic phantom Isotropic phantom RL

Figure 4.15: Deconvolution results for the test images (3 out of 3).
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Figure 4.16: A selection of frames from the salesman video sequence.
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Figure 4.17: Noisy frames from the salesman video sequence.
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Figure 4.18: Denoised frames from the salesman video sequence using an anisotropic
filter.





Chapter 5

Conclusions

“Walking with the wind blowing on your face.

Walking forwards the future.

Busy days with no compass to guide you.”

Type–Moon

5.1 Conclusions and discussion

Regularized learning presents itself as a flexible framework to design models for machine

learning tasks, featuring good properties such as guarantees on generalization error

through complexity control and the ability to induce a variety of useful structures into

the model parameters. Still, once a model within this framework has been chosen to

address a particular task, an optimization algorithm is required to train such model on

the available data. While general-purpose solvers are able to tackle a broad range of

such problems, specifically designed solvers are bound to provide better results in terms

of efficiency of the training procedure.

In this thesis an emphasis has been placed on the fact that a careful study of the

optimization problem at hand and its structure, followed by the design or adaption of

appropriate optimization methods, is essential to produce high-quality solvers. This is

specially relevant in large-scale data settings where inefficient solvers are impractical, or

in those application contexts where time is a valuable resource. As particular instances

of these general ideas, the following results have been obtained

• The introduction of the Cycle–Breaking (CB) and Momentum Sequential Minimal

Optimization (MSMO) methods for non–linear SVM training, which improve over

157
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the state–of–the–art SMO method by making use of more informative updating

directions, thus reducing the number of iterations required for convergence without

significantly increasing the computational cost per iteration.

• Experimental results showing how MSMO is a more efficient method than CB, and

when the reductions in iterations attained by MSMO result in reduced training

times for a variety of settings and combinations with other accelerating strategies.

• A general dual SVM formulation extending the one presented by Chang et al. [30]

to include the Least Squares Support Vector Machine model as a particular case,

and thus allowing the application of the presented methods. Experimental results

on this have been presented as well.

• Efficient algorithms to solve the Total–Variation proximity operator in its norms

p = 1 and p = 2 variants, performing better than state–of–the–art solvers.

• Modular and parallelizable algorithms to solve the 2–dimensional and a general

N–dimensional Total–Variation proximity operators building over the introduced

1–dimensional (standard) Total–Variation proximity solvers.

• Efficient methods to solve Fused–Lasso and anisotropic image denoising and de-

convolution problems by employing proximal methods also making use of the de-

veloped proximity solvers.

• Experimental results showing the benefits of all the developed methods for Total–

Variation.

• Public software implementations of the presented MSMO algorithm and the 1–

dimensional, 2–dimensional and N–dimensional Total–Variation proximity solvers..

Of course, this idea of precise, almost crafted solver implementations is more a principle

for good practice than an actual, definite methodology. Nevertheless, some general

recommendations can be inferred from the particular results obtained here. A thorough

study of the properties and structure of the problem as well as of already developed

algorithms for the same or similar problems is mandatory. The combination of classic,

well–established ideas with recently developed or even new approaches seems also to be

always advisable, especially when building on already existent methods. When possible,

hybrid strategies pooling the advantages of several different approaches while avoiding

their drawbacks are also a desirable objective. And finally, exhaustive experimental

testing of the new proposed methods is a must, not only to assess their performance in

comparison to other approaches, but also to detect and understand their limitations and,

hopefully, to be able to mend them. Reproducibility in the form of available software
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implementing the new methods should also be implicit in those experimental tests, for

future ease of comparison and, what is more, for more immediate impact and practical

utility.

5.2 Further work

This thesis, as every work in science, is just a mere step in the research areas addressed

by it. While new ideas have been proposed and advances have been made, also new

questions and hypotheses have arisen. Therefore, as a closing of this thesis, some possible

ways of further extending this work are proposed:

• The effectiveness of the Cycle-Breaking and, above that, of the Momentum Sequen-

tial Minimal Optimization algorithms indicates that the basic updating directions

issued by Sequential Minimal Optimization can indeed be improved by the use

of more informative directions. This hints that even better ways of constructing

updating the directions might be possible, for instance by introducing even more

second–order information with Conjugate-Gradient-like techniques. Even recent

methods using just first–order information have been shown to be able to produce

much better results than classic gradient optimization approaches [85]. Still, it

is not straightforward to adapt such methods to the dual SVM problem, where

sparsity in the updating directions is a must. Nevertheless, exploring these ideas

could turn out to be very profitable.

• In parallel to this, it seems that efforts to reduce the number of iterations for

convergence in SMO-like settings may not have a great impact on performance

when combined with caching and shrinking strategies, as these reduce the cost per

iteration precisely on those iterates more likely to be saved. It seems therefore also

reasonable to analyze approaches more directly focused on saving kernel function

evaluations, which are not only the most costly operations in non-linear SVM

algorithms, but also the source of this variability in iteration costs.

• Extending the presented general SVM framework to include other models such as

Eν-SVM, or to address explicitly the Kernel Fisher Discriminant Analysis seems

also to be an interesting approach to provide reliable and efficient solvers for these

models. While this should be easy for KFD, it is unknown whether it is even

possible for Eν-SVM.

• Regarding the Total–Variation regularizer, more applications of the presented

solvers should be studied. The particular structure imposed by this regularizer
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might be of use in other areas apart from the ones addressed here, and its appli-

cation to N–dimensional contexts might be of special relevance.

• It would also be of interest to design methods for other Total–Variation norms

different from p = 1, 2, such as p = ∞, or even p = 1
2 to induce further spar-

sity. While the first case might be more approachable, the second results into a

challenging non-convex model.

• Going further, the general model f(x) + g(Bx) could be considered. This results

in the Total–Variation regularization when B is the differencing matrix D (Sec-

tion 4.1.1) and g is an Lp norm, but other choices of B and g can lead to different

models such as Group Lasso, Group Lasso with overlapping groups, or even multi–

task learning models [135]. The framework presented here could be applied in those

settings as long as a proximity operator is developed for the g(Bx) part. It will

be hard, though, to design efficient solvers for complex g or non–sparse matrices

B, since in the TV–proximity solvers here it has been made extensive use of the

nice structural properties of g = Lp and B = D.

• The proposed 2–dimensional and, in general, N–dimensional Total–Variation prox-

imity solvers, are especially suitable to high parallelization when working with large

data volumes. As such, a GPU implementation of these methods presents itself

as an interesting way to take advantage of this potentially massive multi-thread

computational power. Whether this is feasible in practice still needs to be studied.

• Conversely, these solvers might not be the best option in a single-processor system,

as a hypothetical method addressing directly the 2–dimensional or N–dimensional

problem instead of making use of multiple 1–dimensional solvers might turn out

to be more efficient. However, the structure of these problems is more complex

than the one presented by their 1–dimensional counterpart, and as such adapting

the presented 1–dimensional algorithms for them is a daunting challenge.

5.3 Conclusiones

El aprendizaje regularizado se presenta como una metodoloǵıa flexible para diseñar

modelos para tareas de aprendizaje automático, teniendo propiedades deseables como

garant́ıas sobre el error de generalización a través de un control de la complejidad y la

capacidad de inducir propiedades estructurales útiles en los parámetros del modelo. No

obstante, una vez que se ha seleccionado un modelo, se requiere el uso de un método de

optimización para realizar su entrenamiento con los datos disponibles. Aunque existen

métodos de optimización genéricos que pueden resolver esta tarea, el diseño de métodos
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espećıficamente adaptados para el problema proporciona mejores resultados en términos

de eficiencia del proceso de entrenamiento.

En esta tesis se ha hecho énfasis en el hecho de que un estudio cuidadoso del problema

de optimización ligado al modelo y de su estructura, junto con el diseño o adaptación

de métodos de optimización apropiados, es esencial para producir métodos de buena

calidad. Esto es especialmente relevante en aquellos contextos donde se manejan grandes

volúmenes de datos, puesto que todo método ineficiente no resulta de utilidad práctica,

o en aquellas aplicaciones donde el tiempo disponible para el proceso de entrenamiento

sea limitado. Como casos particulares de estas ideas generales, se han obtenido aqúı los

siguientes resultados

• La creación de los métodos Cycle–Breaking (CB) y Momentum Sequential Min-

imal Optimization (MSMO) para el entrenamiento de Máquinas de Vectores de

Soporte (SVM) no lineales, los cuales mejoran sobre el algoritmo SMO (estado

del arte) mediante el uso de direcciones de avance más informativas, obteniendo

aśı reducciones en el número de iteraciones necesarias para la convergencia sin

incrementar significativamente el coste por iteración.

• Resultados experimentales demostrando cómo MSMO es un método superior a CB,

y cuándo las reducciones en iteraciones obtenidas por MSMO se traducen en tiem-

pos de entrenamiento reducidos dependiendo de la situación y de la combinación

de este método con otras estrategias de aceleración.

• Una formulación general de la SVM dual que extiende la presentada por Chang et

al. [30], y que incluye el modelo Least Squares Support Vector Machine como un

caso particular, permitiendo aśı el uso de los métodos desarrollados. También se

presentaron resultados experimentales en esta ĺınea.

• Algoritmos eficientes para resolver el operador de proximidad de Variación Total

en sus versiones con normas p = 1 y p = 2, mejorando sobre métodos del estado

del arte.

• Algoritmos modulares y paralelizables para resolver las versiones bidimensionales

y multidimensionales del operador de proximidad de Variación Total, y que se

basan en los métodos desarrollados para el caso unidimensional (estándar).

• Métodos eficientes para resolver el modelo del Lasso Fundido, aśı como problemas

de filtrado y deconvolución anisotrópica de imágenes, mediante el uso de algoritmos

proximales que también se basan en los operadores de proximidad desarrollados.

• Resultados experimentales demostrando los beneficios de todos los métodos para

Variación Total presentados.
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• Implementaciones software públicas del algoritmo MSMO y de los operadores de

proximidad para Variación Total desarrollados.

Por supuesto, esta idea de implementaciones precisas y casi artesanales de algoritmos de

optimización para el modelo en cuestión es más una filosof́ıa a seguir que una metodoloǵıa

concreta. No obstante, pueden extraerse algunas recomendaciones generales de los resul-

tados obtenidos aqúı. Un estudio detallado de las propiedades y estructura del problema

a resolver, aśı como de métodos ya existentes que resuelvan el mismo problema o uno

similar, resulta ser un paso ineludible en esta tarea. El combinar métodos e ideas clásicas

y establecidas con nuevas aproximaciones también parece ser siempre algo recomendable.

Cuando aśı sea posible, el emplear estrategias h́ıbridas aunando las ventajas de distin-

tos métodos y evitando sus desventajas también es un objetivo deseable. Y finalmente,

probar extensivamente los nuevos métodos desarrollados mediante experimentos es com-

pletamente necesario, no sólo para comparar su rendimiento con el de otros métodos

ya disponibles, sino también para detectar y entender sus limitaciones para que éstas

puedan ser enmendadas. La reproducibilidad de tales experimentos, por ejemplo sum-

inistrando implementaciones públicas de los algoritmos desarrollados, también debe ser

un componente esencial, para facilitar futuras comparaciones con otras aproximaciones

aśı como para un mayor impacto y utilidad práctica de los resultados obtenidos.



Appendix A

Publications

The work realized during the development of this thesis gave rise to a number of publica-

tions in scientific journals and conference contributions. While some of them have been

cited in the main text, here they are presented again together with a short summary

of their contents. For completeness, and to offer a complete picture of all the lines of

research explored during the PhD period, other publications obtained but not strictly

related with the topics addressed in this thesis are presented as well.

Geometric SVMs

• Using the relationships between SVMs, their geometric counterparts and Support

Vector Regression, in [136] a framework to cast a regression problem into a geo-

metric SVM one is presented. While these connections were already known in the

literature, an alternative proof is given for them, and a relationship is established

between the weights of the support vectors of the model and their position with

respect to the ε-tube.

• In geometric SVM methods usually only the weights representative of one of the

two classes are updated per iteration, since the constraint yu = yl enforces choosing

both components of the working set in the same class. In [137] a method for a

MDM–like update of a working set of 4 elements – 2 from each class – is proposed,

showing some improvements over the standard MDM algorithm.

• The important relationship between the MDM and the SMO algorithms was es-

tablished in [70], showing how MDM coincides with SMO when the additional

constraint yu = yl is introduced. Furthermore, a new and efficient “clipped”

MDM algorithm solving the Reduced Convex Hulls problem is proposed.

163
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• This last algorithm is adapted as well to the GSK algorithm in [71], and compared

with other geometric approaches to geometric SVMs in the literature. An adaption

to the problem of Scaled Convex Hulls was developed as well [49].

• Finally, in [138] a review of methods for the Reduced Convex Hulls problem is

presented, placing in context the contributions above, and showing how the clipped

MDM algorithm performs significantly better than other methods of choice for such

problem.

Cycle–Breaking and Momentum SMO

• The Cycle–Breaking algorithm was first proposed in [70] for the geometric MDM

algorithm, showing how cycles appear during the MDM procedure, and how Cycle–

Breaking takes advantage of this.

• After that, Cycle–Breaking was applied to the SMO algorithm, first in a WSS1

setting and later on in WSS2 [74, 75]. Some first intuitions are given about the

variability in the behavior of Cycle–Breaking for different datasets and parameters.

• In [139] an alternative point of view to Support Vector Regression is provided,

which is used later on in [76] to apply the Cycle–Breaking technique to SVR as

well.

• The Momentum Sequential Minimal Optimization algorithm was proposed in [140],

and applied over the SMO algorithm as implemented in the LIBSVM library. Some

of the experimental results presented in this thesis for MSMO were already included

in this work.

• A preliminary application of this method to the LS–SVM model was also presented

in another contribution in [141].

Total–Variation

• A preliminary work on this topic was presented in the form of a Max Planck In-

stitute technical report [142], already including the proposals for 1–dimensional

Total–Variation as presented here, which are put in comparison with other ap-

proaches to the problem.

• Building over that report, a contribution with 2–dimensional and multi–dimensional

Total–Variation methods, together with Fused–Lasso and image denoising and de-

convolution applications was presented at ICML 2011 [143].
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Other lines of research

• Finding optimal parameter choices for a Support Vector Machine or a Multilayer

Perceptron Model is a mandatory step in almost any practical application of these

models, where fine–tuning of these parameters is required to guarantee good per-

formance. In this line, a series of methods to optimize these parameters were

developed, based on a refined grid search procedure [131, 132].

• The application of Support Vector Machines and other models for the practical

problem of large–scale wind power forecasting was tested in [144, 145], showing

better results than the standard Multilayer Perceptron approaches generally used

in this setting.

• As an outcome of collaborations with “Machine Learning in Neuroscience“ group of

the Max Planck Institute for Biological Cybernetics, an analysis of the application

of implicit Wiener series methods for epileptic seizures recordings was performed

[146], together with an study of the influence of a biased visual feedback in motor–

imagery Brain–Computer interfaces [147].

• In a completely different line and a result from a side project in multi–agent

computing simulation, a system was developed which emulated the behavior of a

group of students interacting in collaborative web application [148].
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[38] J. López and J.A.K. Suykens. First and Second Order SMO Algorithms for LS-

SVM classifiers. Neural Processing Letters, 33(1):33–44, 2011.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://ftp.tuebingen.mpg.de/pub/fml/raetsch-lab/benchmarks/
http://ftp.tuebingen.mpg.de/pub/fml/raetsch-lab/benchmarks/
http://www.esat.kuleuven.be/sista/lssvmlab


Bibliography 170

[39] Tony Van Gestel, Johan A. K. Suykens, Bart Baesens, Stijn Viaene, Jan Van-

thienen, Guido Dedene, Bart De Moor, and Joos Vandewalle. Benchmark-

ing least squares support vector machine classifiers. Machine Learning, 54

(1):5–32, 2004. URL http://dblp.uni-trier.de/db/journals/ml/ml54.html#

GestelSBVVDMV04.

[40] S. S. Keerthi and S. K. Shevade. SMO Algorithm for Least-Squares SVM For-

mulations. Neural Computation, 15(2):487–507, 2003. ISSN 0899-7667. doi:

http://dx.doi.org/10.1162/089976603762553013.
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[75] Á. Barbero and J. R. Dorronsoro. Faster directions for second order smo. In Lecture

Notes in Computer Science, volume 6353, pages 30–39, Berlin, Heidelberg, 2010.

Springer-Verlag.
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[132] Á. Barbero, J. López, and J. R. Dorronsoro. Finding Optimal Model Parameters

by Deterministic and Annealed Focused Grid Search. Neurocomputing, 72(13-15):

2824–2832, 2009. ISSN 0925-2312. doi: DOI:10.1016/j.neucom.2008.09.024.

[133] Patrick L. Combettes. Iterative construction of the resolvent of a sum of maximal

monotone operators. Journal of Convex Analysis, 16:727–748, 2009.

[134] Bm3d software and test sequences. URL http://www.cs.tut.fi/~foi/

GCF-BM3D/.

[135] Andreas Argyriou, Charles A. Micchelli, Massimiliano Pontil, Lixin Shen, and

Yuesheng Xu. Efficient first order methods for linear composite regularizers.

CoRR, abs/1104.1436, 2011. URL http://dblp.uni-trier.de/db/journals/

corr/corr1104.html#abs-1104-1436. informal publication.

[136] Á. Barbero, J. López, and J. R. Dorronsoro. Square Penalty Support Vector

Regression. In Lecture Notes in Computer Science: Intelligent Data Engineering

and Automated Learning - IDEAL 2007, pages 537–546. Springer, 2007.
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