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Abstract/Resumen  



Abstract 
In mammalian cells, DNA replication starts from thousands of replication origins 

whose activation is tightly regulated in the cell division cycle. In this study, we have 

aimed at better understanding the regulation of origin selection and activation in 

mouse embryonic stem cells and human cancer cells.  

 

In the first part of this dissertation, we set out to investigate the dynamics of origin 

activation in response to stress conditions that slow down or stall replication forks. 

This situation promotes the activation of otherwise ‘dormant’ origins, which provide a 

backup mechanism to complete replication and prevent genomic instability. Using the 

SNS-Seq technique based on deep-sequencing of short nascent DNA strands, we 

have mapped the genomic positions of origins in control growth conditions and two 

experimental settings that trigger the activation of extra origins: (a) exposure to DNA 

polymerase inhibitor aphidicolin; (b) overexpression of CDC6, a limiting factor for 

origin licensing and activation in primary murine cells. Using SNS-Seq data we also 

determined the efficiency of activation of each individual origin in the cell population. 

Constitutive origins, in contrast to stress-responsive ones, show a strong preference 

towards open, transcriptionally active chromatin and display higher efficiency. Our 

results strongly suggest that the main response to stress is mediated by modulating 

the activity of pre-existing origins rather than the activation of new ones. We have 

also carried out an unprecedented integration of linear origin maps into 3D chromatin 

networks that reveals how origins tend to group together in clusters that likely 

correspond to DNA replication factories. Origin connections are found within the 

same topologically associated domain (TAD), but also between origins located in 

different TADs. We report for the first time that the connectivity of an origin is directly 

proportional to its efficiency of activation. 

 

In the second part, we aimed at dissecting a novel mechanism that regulates CDC6 

protein stability. Downregulation of CDC7 kinase, known to activate the MCM 

helicase at replication origins, caused a drop in cellular CDC6 levels. CDC6 was 

phosphorylated by CDC7 in vitro and became destabilized in vivo when all possible 

CDC7-dependent phosphorylation sites were mutated. We report a previously 

unknown role of CDC7 in the regulation of CDC6 stability that is mediated by a 

combination of direct and indirect mechanisms. 

  



Resumen 

En células de mamífero, la replicación del DNA comienza en miles de puntos 

conocidos como orígenes de replicación, cuya actividad está regulada en el ciclo 

celular. En este trabajo, nuestro objetivo ha sido entender la regulación de la 

selección y activación de orígenes en células embrionarias pluripotentes de ratón. 

 

En la primera parte de la Tesis, hemos investigado la dinámica de activación de 

orígenes en respuesta a situaciones que ralentizan o detienen las horquillas de 

replicación. En esta situación se activan orígenes “silentes” para completar la 

replicación y evitar la inestabilidad genómica. Mediante la técnica de SNS-Seq, 

basada en la secuenciación masiva de cadenas de DNA naciente, hemos 

determinado las posiciones genómicas de los orígenes en células control y en 

células sometidas a tratamientos que causan la activación de orígenes silentes: (a) 

afidicolina, un inhibidor de DNA polimerasas; (b) sobre-expresión de CDC6, un factor 

limitante para la activación de orígenes en células primarias. Además, hemos 

calculado la eficiencia de activación de cada origen dentro de la población celular. 

Los orígenes constitutivos correlacionan preferentemente con zonas de cromatina 

abierta, transcripcionalmente activa, y tienen mayor eficiencia. Nuestros resultados 

sugieren que la principal respuesta a estrés consiste en aumentar la eficiencia de 

activación de orígenes pre-existentes, más que en la activación de orígenes nuevos. 

También hemos integrado los mapas de orígenes en redes tridimensionales de 

cromatina, encontrando que los orígenes tienen tendencia a agruparse en 3D, 

formando “factorías de replicación”. Si bien muchas de las conexiones entre 

orígenes se localizan dentro de una misma zona TAD (“dominio de asociación 

topológica”) en la cromatina, también existen conexiones entre orígenes intra-TAD. 

En este trabajo describimos por primera vez que la conectividad de un origen con 

otros orígenes es directamente proporcional a su eficiencia de activación. 

 

En la segunda parte, hemos estudiado un nuevo mecanismo de control sobre la 

estabilidad de la proteína CDC6. La pérdida de expresión o actividad de la quinasa 

CDC7 causa una disminución en los niveles celulares de CDC6. Hemos demostrado 

que CDC6 es sustrato de CDC7 in vitro, y que la mutación de todos los posibles 

sitios de fosforilación por CDC7 resulta en una proteína CDC6 con vida media más 

corta in vivo. Nuestros datos indican la existencia de una función hasta ahora 

desconocida de CDC7 en la regulación de CDC6, que está mediada por una 

combinación de efectos directos e indirectos.  
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Abbreviations 
 
 
Aph  Aphidicolin 

APC/C  Anaphase promoting complex-cyclosome 

BrdU  5-bromo-2’-deoxyuridine 

Cdc7i  PHA-767491, an inhibitor of Cdc7 kinase 

CDK  Cyclin-dependent protein kinase 

CFS  Common fragile site 

CGI CpG island 

ChAs  Chromatin assortativity 

ChIA-PET  Chromatin interaction analysis with paired-end tagging 

ChIP-seq  Chromatin immunoprecipitation and high-throughput sequencing 

CHX Cycloheximide 

CKI  CDK inhibitors 

CldU  5-Chloro-2’-deoxyuridine 

CMG Cdc45-MCM-GINS 

DDK  DBF4-dependent CDC7 kinase 

Dox  Doxycycline 

DDR DNA damage response 

DSB  Double strand breaks 

ESCs  Embryonic stem cells 

FACS Fluorescence activated cell sorting 

FBS Foetal bovine serum 

FR  Fork rate 

G4    G-quadruplex 

Hi-C High-throughput variation of 3C 

LADs  Lamin B1-associated domains 

MCM Mini-chromosome maintenance complex 

MEFs  Mouse embryonic fibroblasts 

mESCs  Mouse embryonic stem cells 

O  Other ends (in “P-O” network) 

ORC  Origin Recognition Complex 

ORIs Origins of replication initiation 

OriAs  Origin assortativity 

OriEfAs   Assortativity of origin efficiency 

P  promoter ends (in “P-P” and “P-O” networks) 
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PcG  Polycomb Group Proteins 

PCHiC  Promoter-Capture HiC 

PI Propidium iodide 

PIP  PCNA-interacting protein 

RNAPII  RNA Polymerase II 

Pre-RC Pre-Replication Complex 

RD Replication domains  

RS  Replication stress 

RT  Room temperature 

SD  Standard deviation 

siRNA Short interfering RNA 

SNS  Short nascent strands 

SNS-seq  SNS assay followed by high-throughput sequencing 

TADs  Topologically associated domains 

TSS  Transcription start site 

TTS  Transcription termination site 

RT-qPCR Quantitative reverse transcription PCR 

WT  Wild type 

λ-exo λ-exonuclease 

3C  Chromatin conformation capture 

 

 

Note about nomenclature. The standard HUGO nomenclature for human, mouse and 

yeast genes and proteins has been applied depending on the context. 
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Introduction 
 
Initiation of eukaryotic DNA replication: regulatory principles 

In order to transmit genetic information from one cell generation to the next, cells 

prepare two identical copies of their genetic material before each cell division. The 

process of duplication of a genome is called DNA replication, and needs to be 

integrated with nucleosome assembly and restoration of chromatin structure 

(reviewed by Alabert and Groth, 2012). Because of the large size of eukaryotic 

genomes, which are organized in long linear chromosomes, DNA replication starts at 

thousands of sites called “replication origins” that are progressively activated 

throughout the S phase of the cell cycle. Accurate regulation of replication origins is 

fundamental for genomic stability. Indeed, under- or over-replication of chromosomal 

DNA may have deleterious consequences for the cells and lead to several human 

diseases, including cancer (reviewed by Boyer et al., 2016). 

Initiation of DNA replication 
Replication origins are recognized by initiator proteins, whose main role is to recruit 

the DNA helicase as a first step to assemble the ‘replisome’ machinery (reviewed by 

Deegan and Diffley, 2016; Gilbert, 2004). The eukaryotic replicative helicase is a 

ring-shaped hexameric complex formed by six mini-chromosome maintenance 

proteins (MCM2-7), and is commonly referred to as MCM. The role of the MCM 

helicase is to unwind the double helix in order to provide the DNA primase and 

polymerases with single-stranded DNA (ssDNA) template. 

 

Initiation of DNA replication is separated into two steps, which are coordinated with 

cell cycle progression. The first step is called ‘origin licensing’ and consists in the 

loading of MCM helicases in inactive form. It takes place at late mitosis and during 

G1. The second step involves helicase activation and replisome assembly and it 

occurs in S phase (Fig. 1A). The temporal separation of helicase loading and 

activation ensures that the same origin cannot be activated twice within the same cell 

cycle (reviewed by Deegan & Diffley 2016; Bleichert et al. 2017; Masai et al. 2010).  

Origin licensing 

Origins are marked by the Origin Recognition Complex (ORC), an AAA+ ATPase 

formed by six subunits (ORC1-6). Origin licensing starts when ORC recruits another 

AAA+ ATPase called CDC6 (Cell Division Cycle 6). Subsequently, ORC and CDC6 

cooperate with CDT1 (CDC10-Dependent Transcript 1) protein to facilitate the 
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deposition of two MCM complexes onto dsDNA as a head-to-head double hexamer 

(Evrin et al., 2009; Remus et al., 2009). Besides the ATPase activities of ORC and 

CDC6, ATP binding and hydrolysis by MCM itself seems to play a crucial role in the 

loading reaction (Deegan and Diffley, 2016). The assembly of ORC, CDC6, CDT1 

and MCM is commonly known as pre-replication complex (pre-RC) formation. Pre-

RCs are the signature of licensed origins (Fig. 1A). At least in yeast, Cdc6 and Cdt1 

are released after the loading reaction, whereas ORC and MCM remain stably bound 

to the DNA (reviewed by Bleichert et al., 2017; Deegan and Diffley, 2016). 

 

 
Figure 1. Cell cycle regulation of DNA replication. (A) Schematic of the main proteins that 
assemble at replication origins during origin licensing and firing. (B) Changes in the activity of 
CDK2–Cyclin E, CDK2-Cyclin A and CDK1-Cyclin B during cell cycle progression. (C) 
Changes in the activity of anaphase promoting complex-cyclosome (APC/C), CDK inhibitors 
(CKI) as CDK and DDK activity across the cell cycle. Figure inspired from Depamphilis et al. 
(2012). See text for details. 
 

Helicase activation 

Concomitant to origin activation, the MCM double hexamer is remodelled into two 

separate helicases that move away bidirectionally from the origin, translocating on 

the leading strand of DNA (Deegan and Diffley, 2016; Tanaka and Araki, 2013). The 

active form of each replicative helicase is composed of a MCM hexamer and two 
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accessory proteins called CDC45 and GINS (a tetramer consisting of SLD5, PSF1, 

and PSF3 subunits). The resultant super-complex is called CMG (CDC45-MCM-

GINS; Costa et al., 2011; Costantino et al., 2014; Ilves et al., 2010; Moyer et al., 

2006). 

 

In budding yeast, helicase activation requires the action of DDK (Dbf4-dependent 

Cdc7 kinase) and CDK (cyclin-dependent protein kinase). DDK phosphorylates MCM 

to facilitate the association of Sld3/7 and Cdc45 proteins to the pre-RC (Heller et al., 

2011; Sheu and Stillman, 2006; Tanaka et al., 2011). In turn, CDK phosphorylates  

Sld2 and Sld3, facilitating their association to yet another factor called Dpb11 

(Tanaka et al., 2007; Zegerman and Diffley, 2007). These phosphorylation events 

promote the formation of a complex composed of Sld2, Dbp11, GINS and DNA 

polymerase ε (Pol ε), (Heller et al., 2011; Tanaka and Araki, 2013) and the eventual 

assembly of two CMG complexes around ssDNA. An additional factor called Mcm10 

is necessary for CMG activation but not for its assembly (Deursen et al., 2012; 

Yeeles et al., 2015). Recently, DDK, CDK, Sld3/7, Sld2, Cdc45, Dpb11, GINS, DNA 

Pol ε and Mcm10 were shown to be the minimal set of factors essential and sufficient 

for helicase activation in vitro (Yeeles et al., 2015). In metazoans, regulation of CMG 

assembly and activation operates under similar principles, and functional homologs 

of Dbp11, Sld2 and Sld3 have been identified (TOPBP1, RECQL4 and Treslin, 

respectively). Still, many details of the process may be slightly different from those 

described in unicellular organisms (Tanaka and Araki, 2013). 

 

The replisome machinery that performs DNA replication includes three DNA 

polymerases. Polymerase α-primase is responsible for the generation of short RNA 

primers and their initial extension with dNTPs. Subsequently, DNA Polymerase ε 

(POL ε) carries out continuous DNA synthesis in the leading strand whereas DNA 

Polymerase 𝛿 (POL 𝛿) synthetizes DNA at the lagging strand in a discontinuous 

manner (reviewed by Kunkel and Burgers, 2008). 

Cell cycle regulation of DNA replication 
The temporal separation between origin licensing and activation prevents origin re-

initiation after the G1/S transition (Fig. 1A). This is achieved through the combined 

action of cell cycle regulators such as cyclin-dependent kinases (CDKs) and ubiquitin 

ligases (Fig 1B,C, reviewed by Depamphilis et al. 2012).  

 

In mammalian cells, M-phase CDK (CDK1-Cyclin B) activates APC/CCDC20 ubiquitin 
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ligase, which promotes destruction of Cyclins A and B. When the levels of mitotic 

cyclins are reduced, APC/CCDC20 is inhibited and the alternative ubiquitin ligase 

APC/CCDH1 becomes active. APC/CCDH1 stabilizes CDK inhibitors (CKI) p21 and p27 

(Manchado et al., 2010), effectively maintaining a temporal window of low CDK levels 

during G1-phase and creating a permissive state for origin licensing. After G1, the 

accumulation of Cyclin E activates CDK2 and inactivates CDH1, preventing its 

binding to APC/C. The activity of APC/C is also counteracted in S phase by its 

inhibitor EMI1 and CDH1 degradation (Manchado et al., 2010). This allows for the 

accumulation of S-phase CDK (CDK2-CyclinA). The increase in CDK levels at the 

G1/S transition, together with activation of DDK, promotes origin firing. At the same 

time, high CDK activity inhibits further origin licensing throughout S, G2 and early M 

phases (Depamphilis et al., 2012; Manchado et al., 2010).  

Cell cycle regulation of DDK 

DDK, an evolutionary conserved S/T kinase formed by cell division cycle 7 (Cdc7) 

protein and its activating subunit Dbf4, was originally identified in budding yeast 

(Masai and Arai, 2002). DDK activity fluctuates in the cell cycle in response to 

changes in the abundance of Dbf4, paralleling CDK regulation by oscillating cyclins. 

Actually, fluctuations of DDK activity in the cell cycle resemble the changes observed 

for CDKs (Fig. 1 B and 1C). In yeast, APC/C-dependent degradation of Dbf4 in M/G1 

results in DDK inactivation. At the G1/S transition, the levels of Dbf4 start to increase 

leading to restoration of Cdc7 activity, which is maintained during S and G2 (Fig. 1C; 

Ferreira et al., 2000; Oshiro et al., 1999; Weinreich and Stillman, 1999). The human 

homolog of Dbf4, also known as ASK (activator of S-phase kinase), is a target of 

APC/CCDH1 as well (Yamada et al, 2013) and undergoes similar changes in the cell 

cycle (Kumagai et al., 1999). Mammalian DBF4 is transcriptionally regulated by E2F 

factors (Yamada et al., 2002). Both DDK and CDKs act together to restrict origin 

firing and DNA synthesis to the S phase. 

Genome duplication: only once per cell cycle  

In metazoa, at least three different systems ensure that licensing occurs once and 

only once per cell cycle: (1) CDT1 inhibition by Geminin, (2) destruction of CDT1 by 

CLR4CDT2 and (3) CDK-dependent inhibition of several pre-RC components. These 

mechanisms provide multiple layers of protection against uncontrolled origin 

licensing (reviewed by Arias and Walter, 2007; Diffley, 2011; Siddiqui et al., 2013). 
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Geminin is a small coiled-coil protein that binds and inhibits CDT1 by preventing its 

interaction with MCM (Lee et al., 2004; Wohlschlegel et al., 2000). Both APCCDC20 

and APCCDH1 mediate Geminin destruction in mitosis (Clijsters et al., 2013; McGarry 

and Kirschner, 1998), allowing CDT1 to perform its licensing function. Geminin re-

accumulates throughout S and G2, sequestering CDT1 to impede uncontrolled pre-

RC formation. Reducing the expression of Geminin is sufficient to induce re-

replication in different cell lines (Melixetian et al., 2004; Quinn et al., 2001; Zhu et al., 

2004). Of note, cancer cell lines seem to be especially vulnerable to geminin ablation 

(Zhu and DePamphilis, 2009). 

 

Degradation of CDT1 by CLR4CDT2 E3 ubiquitin ligase occurs only in S-phase as it 

depends on the binding of CDT1 to the PCNA (Arias and Walter, 2007). CDT1 binds 

PCNA via its PCNA-interacting protein (PIP) motif localized at its N-terminus. CLR4 

is recruited to PCNA-CDT1 complex through CDT2 (Arias and Walter, 2006; 

Nishitani et al., 2006). Alterations in this pathway cause re-replication in metazoans 

(Arias and Walter, 2005; Jin et al., 2006; Lovejoy et al., 2006). In human cells, CDT1 

is subject to yet another regulatory mechanism. Phosphorylation of Thr29 by CDK2-

CycA is recognized by SKP2, a substrate receptor for SCFSKP2 E3 ubiquitin ligase 

that mediates CDT1 destruction in S and G2 phase (Li et al., 2003; Sugimoto et al., 

2004). However, abrogation of this pathway does not cause significant re-replication 

(Nishitani et al., 2006; Takeda et al., 2005), suggesting that the mechanisms 

discussed before can regulate CDT1 even in the absence of SCFSKP2 activity. 

 

CDK–dependent inhibition of MCM loading is the only system that prevents 

inappropriate pre-RC assembly in budding yeast. In contrast, this pathway seems to 

be less important in metazoa (Arias and Walter, 2007; Siddiqui et al., 2013) but it is 

critical at G2-M phase, when CDK1 inhibition can promote origin relicensing even in 

the presence of Geminin (Ballabeni et al., 2004; Coverley et al., 1998; Sugimoto et 

al., 2004). The specific targets of CDK1-mediated inhibition of licensing in G2-M 

remain largely unknown.  

 

ORC might also be regulated by CDKs in mammalian cells. CDK1 inhibits ORC1 

loading on chromatin in mitosis (Li et al., 2004). Moreover, ORC1 chromatin levels 

fluctuate in the cell cycle, being higher in G1 and lower in S and G2 (Méndez et al., 

2002; Tatsumi et al., 2003). This regulation could depend on phosphorylation by 

CDK2-CycA (Méndez et al., 2002). Moreover, phosphorylation of ORC2 by S-CDK 
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was shown to promote disassociation of ORC from chromatin and replication origins 

(Lee et al., 2012). 

Complex regulation of CDC6 throughout the cell cycle 

CDC6 is one of the crucial targets for inhibiting origin relicensing in yeast. 

Intriguingly, mammalian CDC6 is subjected to multiple regulatory mechanisms, some 

of them with seemingly opposing effects. CDC6 levels and subcellular localization 

are regulated mostly by CDK and APC/CCDH1 activity. CDC6 contains three CDK 

target sites (S54, S74, S106) in its N-terminus, as well as a cyclin-binding motif and 

D- and KEN-boxes required for APC/CCDH1 dependent protein degradation (Borlado 

and Méndez, 2008). CDC6 is degraded at the M-G1 transition by APC/CCDH1 

mediated proteolysis and re-accumulates in S, G2 and M phases (Méndez and 

Stillman, 2000; Petersen et al., 2000). CLR4CDT2-dependent destruction of CDC6 at 

the G1-S transition has also been suggested (Clijsters and Wolthuis, 2014). More 

recently, CDC6 was shown to be targeted for degradation by SCFCyclinF in G2 and M 

phase and this regulation appears to prevent re-replication in the absence of 

Geminin (Walter et al., 2016).  

 

Despite the described proteolytic mechanisms, a significant amount of CDC6 protein 

is bound to chromatin throughout the cell cycle (Fujita et al, 1999; Coverley et al, 

2000; Méndez and Stillman, 2000; Alexandrow and Hamlin, 2004; Oehlmann et al, 

2004). It has also been proposed that soluble CDC6 is exported from the nucleus to 

the cytoplasm after the G1-S transition in a CDK2-CycA dependent manner (Jiang et 

al., 1999; Petersen et al., 1999; Saha et al., 1998). The data on CDC6 translocation 

were initially obtained with exogenously expressed protein, although one report notes 

that it may also apply to endogenous CDC6 (Paolinelli et al., 2009). Considering the 

amount of CDC6 detected on chromatin, the functional significance of CDC6 

subcellular localization remains unclear.  

 

In quiescent cells, CDC6 is degraded by APC/CCDH1 (Mailand and Diffley, 2005; 

Petersen et al., 2000). Upon cell cycle re-entry, CDC6 is protected from APCCDH1 

mediated proteolysis by phosphorylation by CDK2-CycE, allowing origin licensing 

(Mainland and Diffley, 2005). Interestingly, activation of p53 upon DNA damage 

destabilizes CDC6 due to the loss of its protective phosphorylation by CDK2-CycE at 

S54 (Duursma and Agami, 2005). 
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Overexpression of CDC6 enhances MCM loading on chromatin and induces higher 

activity of origins, both in vitro and in vivo (Búa et al., 2015; Muñoz et al., 2017). 

However, deregulation of CDC6 (either by affecting its stability, cellular localization or 

expression levels) is not sufficient to induce re-replication in mammalian cells (Muñoz 

et al., 2017; Paolinelli et al., 2009; Petersen et al., 1999, 2000). In line with this, 

recent reports from our laboratory show that individual overexpression of CDC6 or 

CDT1 in adult mice have very limited effects (Búa et al, 2015; Muñoz et al, 2017). 

Only when both proteins are overexpressed simultaneously, DNA re-replication 

causes lethal dysplasia of the intestinal epithelium and other tissues (Muñoz et al., 

2017). This study underscores the importance of having multiple safeguard 

mechanisms against origin re-firing.  

 

In summary, origin licensing starts at M-G1, when CDT1 is released from Geminin-

mediated inhibition and CDC6 is not yet degraded by APC/C. It is somehow 

paradoxical that the levels of CDC6 are lower in early G1, when pre-RC assembly is 

permitted, than in the remaining phases of the cell cycle when licensing is inhibited. 

This regulation suggests that CDC6 may play additional roles. In this regard, 

depletion of CDC6 during S-phase in HeLa cells affects origin activation and leads to 

abnormal spindle formation and mitotic defects (Lau et al., 2006). Another report 

proposed that CDC6 prevents premature mitosis through mechanisms involving 

CHK1, the checkpoint kinase 1 (Clay-Farrace et al., 2003). Moreover, CDC6 

centrosomal localization has been described, suggesting a possible role in mitotic 

chromosome segregation (Kalfalah et al., 2015; Kim et al., 2015).  

 

Replication origins 

According to the replicon model proposed over half a century ago, an origin of 

replication is a specific genetic element (initially called “replicator”) that is 

recognized by a diffusible element called “initiator” to promote initiation of DNA 

duplication from this particular site (Jacob et al., 1963; reviewed by Gilbert, 2004). In 

contrast to bacteria and budding yeast, the metazoan initiator protein ORC does not 

bind to a specific consensus sequence, hindering our understanding of the 

positioning and regulation of replication origins. Hence, the nature of mammalian 

replication origins remains partially elusive, but extensive research has determined 

that they are specified by a combination of genetic and epigenetic features that 

shape up chromatin environment and nuclear organization (reviewed by Aladjem and 

Redon, 2016; Antequera, 2004; Fragkos et al., 2015; Méchali, 2010). 
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Flexibility in origin choice 
In mammalian cells, approximately 50,000 origins are activated in every cell cycle 

(Cayrou et al., 2011; Huberman and Riggs, 1966). Of note, these activated origins 

represent only a subset of the many potential origins that are licensed during G1 

phase (Gilbert, 2007; Taylor, 1977). It is estimated that cells use 10-20% of the 

potential origins and the rest is passively replicated by ongoing forks (McIntosh and 

Blow, 2012; Méchali, 2010). For this reason, DNA replication can occur even after a 

significant downregulation of MCM proteins in mammalian cells (Ge et al, 2007; 

Ibarra et al, 2008). An excess of potential origins provides cells with flexibility when it 

comes to origin choice. Theoretically, replication origins can be grouped into three 

categories depending on how often (i.e. how efficiently) they are activated within the 

population (Fig. 2; Fragkos et al. 2015; Aladjem & Redon 2016). In this view, 

constitutive origins are the most efficient, becoming activated in each cell in the 

population regardless of developmental stage or environmental conditions. Flexible 

origins would be activated in a subset of cells in the population and likely represent 

the most numerous group (Fragkos et al., 2015). The firing efficiency of each flexible 

origin is indicated by the percentage of cells in the population that activate it (Fig. 2). 

The last category consists of dormant origins (McIntosh and Blow, 2012), which 

become activated only when neighbouring forks are stalled (Fig. 2 and 4). It is 

postulated that the excess of licensed origins gives the cells replicative flexibility in 

response to changes associated to differentiation, or in response to replication stress 

(Alvarez et al., 2015; Méchali, 2010). Two major questions remaining in the field are: 

(1) whether each one of the origin types (constitute, flexible and dormant) have 

specific characteristics; (2) how a subset of the licensed origins is selected for 

activation. 

 

 
Figure 2. Different types of replication origins according to their usage. See text for details. 
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Organization of replication origins in the nucleus 
The length of DNA replicated by forks generated from a single active origin is defined 

as a replicon. It has been proposed that each replicon contains several flexible 

origins, only one of which becomes activated while the others are inhibited (Cayrou 

et al., 2011). In mammalian cells, the size of replicons ranges between 50-150 kb 

(Cayrou et al., 2011; Jackson and Pombo, 1998). Groups of consecutive replicons 

can form a cluster encompassing 0.5-1 Mb of DNA (Berezney et al., 2000). Origins 

belonging to the same cluster tend to activate simultaneously in S phase (Jackson 

and Pombo, 1998; McIntosh and Blow, 2012). Replicons within clusters may form 

loops that are anchored to a nuclear matrix structure, and origins localized at the 

base of the loops are activated preferentially (Fig. 3 and Courbet et al. 2008). While 

the selection of an origin within a replicon is believed to be stochastic, activation of 

the clusters is tightly controlled to follow a spatial and temporal order of genome 

duplication (Blow et al., 2011). 

 
Figure 3. Organization of replication origins into a replication factory. Left, schematic of 
chromatin folding within a factory, where each loop corresponds to one replicon. Active 
origins located at the base of the loops are depicted in green. Dormant origins are depicted in 
grey. Red arrows indicate the directions of fork movement. Right, foci of BrdU incorporation in 
a HeLa cell nucleus. Each focus could correspond to a factory.  

 

Replication foci 

Replicon clusters (or groups of clusters) likely correspond to replication foci, which 

are discrete sites in the nucleus where DNA synthesis takes place (Fig. 3 and 

Berezney et al. 2000). Replication foci can be visualized microscopically after 

labelling cells with nucleotide analogues such as BrdU or by immunofluorescence 

detection of replisome components such as PCNA. Replication foci were proposed to 

be stable units of chromosome structure with constant dimensions in the cell cycle 

remain stable throughout many cell generations (Berezney et al., 2000; Jackson and 

Pombo, 1998). 

 

The pattern of active replication foci changes during S phase (Berezney et al., 2000). 
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Early replicating sites are distributed throughout the nucleus as numerous, relatively 

separated, small foci. In mid-S, foci become bigger and localize towards the 

periphery of nucleoli and nuclear envelope. In late S, fewer, larger foci are formed 

that probably correspond to constitutive heterochromatin regions (Chagin et al., 

2010). A domino-like model has been proposed to explain the progression of 

replication throughout S phase (Sporbert et al., 2002). In this model, ongoing 

replication in a particular cluster triggers subsequent initiation of DNA synthesis in 

neighbouring clusters. Replication would therefore spread from early replicating, 

easy–accessible euchromatin regions, through facultative heterochromatin to finally 

reach highly-condensed, constitutive heterochromatin regions in the late S phase 

(Chagin et al., 2010; Rivera-Mulia and Gilbert, 2016a). 

Replication factories 

Replication clusters/foci are also referred to in the literature as replication factories, 

a concept that integrates the organization of replicons with the DNA replication 

protein machinery. By analogy to the concept of transcriptional factories, it was 

initially suggested that replication factories are static centres, in which DNA synthesis 

would occur simultaneously at different replicons by template translocation through 

replication machineries ‘fixed’ to a nuclear skeleton (Cook, 1999; Hozák et al., 1993; 

Kitamura et al., 2006). However, recent super-resolution microscopy data support a 

model in which replication factories consist of a group of separated smaller foci 

localized in close proximity, each corresponding to DNA synthesis carried out at an 

individual replicon (Chagin et al., 2016). Spatial proximity of smaller foci would be 

dictated by the three-dimensional organization of chromatin structure (Chagin et al., 

2016; Löb et al., 2016). 

 

In any case, organization of origins into “replication factories” could facilitate local 

concentration of limiting replication factors and activator kinases at the sites of DNA 

synthesis. Interestingly, cohesin was proposed to play a role in the spatial 

organization of replication factories by mediating the formation and stabilization of 

chromatin loops (Guillou et al., 2010). Downregulation of cohesin did not affect the 

total number of replication factories but limited the efficiency of origin firing within 

each one. This effect is likely due to an increase in the size of chromatin loops, 

leading to a decrease in the number of origins localized at the bases of the loops, 

where their chance of activation is higher (Guillou et al., 2010).  

 

Despite these antecedents, the connections between replicons, chromatin loops, foci 
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and replication factories still remain poorly understood. Integration of super-

resolution microscopic observations with linear, high-throughput genomic data and 

the recently available high-resolution, three-dimensional (3D) chromatin interaction 

maps could provide a better understanding of their structure and function. 

Activation of back-up origins upon replication stress 

Replication stress (RS) is defined as the slow down or stalling of replication forks in 

the face of DNA lesions, hard-to-replicate DNA structures, collisions with the 

transcriptional machinery, and other circumstances. In many of these situations, the 

functional uncoupling of the helicase and DNA polymerase leads to the formation of 

stretches of ssDNA that are subsequently coated by RPA. This is sensed by the ATR 

checkpoint kinase, which is recruited to stalled forks and phosphorylates CHK1 that 

in turn regulates origin initiation both globally and locally (reviewed by Mcintosh et al., 

2012; Muñoz and Méndez, 2017). 

 

Fork stalling poses a threat for genomic stability as it may lead to under-replication of 

fragments of the genome. If a single fork stalls, the unreplicated DNA fragment will 

be eventually replicated by a second fork moving in the opposite direction (Fig. 4A). 

If, however, two converging forks stop, replication cannot in principle be completed. 

Work from our group and others revealed that in the latter situation, genome 

duplication relies on the presence of an excess of licensed origins referred to as 

“dormant” or “back-up” origins (Ge et al., 2007; Ibarra et al., 2008; Woodward et al., 

2006). MCM complexes are loaded onto chromatin in excess relative to the number 

of origins that are activated. Strikingly, a strong downregulation of MCM proteins (up 

to 95%) does not have major consequences for cellular replication and proliferation 

in normal conditions (Ibarra et al., 2008). However, in situations of RS caused by 

DNA polymerase inhibitors or dNTP depletion, cells with limited licensing accumulate 

DNA damage and display reduced viability coupled to checkpoint activation (Ge and 

Blow, 2010; Ge et al., 2007; Ibarra et al., 2008). It was proposed that upon RS, 

‘silent’ origins located in the proximity of stalled forks are activated as a back-up 

mechanism to replicate the stretch of DNA between stalled forks (Fig. 4B and Ge et 

al. 2007; Ibarra et al. 2008). There is evidence that these newly activated origins 

could belong either to the ‘dormant’ or ‘flexible’ categories (Fig. 5). On one hand, the 

activation of novel dormant origins in response to a partial depletion of the dNTP pool 

was shown by DNA combing assays at the GNAI3 locus of Chinese hamster cells 

(Anglana et al., 2003). On the other hand, an increased usage of flexible origins 

without activation of dormant initiation sites has been reported in response to DNA 
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replication slowdown caused by MUS81 deficiency (Fu et al., 2015). The activation of 

extra origins may require the action of CHK1 kinase. Interestingly, basal levels of 

CHK1 activity may negatively regulate the activation of potential origins within a 

single replicon in the absence of RS, because CHK1 downregulation in human cells 

leads to increased firing of neighbouring origins (Maya-Mendoza et al., 2007).  

 

 
Figure 4. Mechanisms to rescue stalled forks: (A) a single stalled fork can be recovered 
from an adjacent fork; (B) two converging forks that stall simultaneously can only be rescued 
by the activation of a dormant origin located between them. See text for details. 
 

In parallel, CHK1 activation globally inhibits the replication of clusters of late-

replicating origins (Ge and Blow, 2010; Ge et al., 2007), through the inhibition of CDK 

and DDK (Fragkos et al. 2015). Interestingly, ATR-dependent inhibition of origin firing 

protects cells from deleterious DNA breakage caused by RPA exhaustion (Toledo et 

al., 2014). If the levels of RS are sufficiently high, the cell cycle is temporarily 

arrested due to the inhibition of CDK1, which blocks the entry into mitosis.  

 

The importance of having a full complement of potential origins (constitutive and 

flexible/dormant) has been demonstrated in vivo in several mouse models. For 

instance, mice hypomorphic for the MCM2 or MCM4 subunits of the MCM licensing 

factor display higher levels of genomic instability and are prone to cancer (Pruitt et 

al., 2007; Shima et al., 2007). Mice with reduced levels of MCM3 suffer from lethal 

anaemia caused by defects in the differentiation of hematopoietic progenitors 

(Alvarez et al., 2015). Hence, proper use of potential origins is of the highest 

importance for the different cell types in an organism. The regulation of origin activity 

in response to RS and other contexts such as differentiation is still under 

investigation.  
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Figure 5. Flexibility in origin choice allows two models for additional origin activation: either 
an origin in a new genomic position (top right) or an increased frequency of activation of an 
existing origin in the population (bottom right). See text for details. 

Replication timing 
In eukaryotes, certain factors needed for initiation and progression of replication may 

be limiting and prevent the activation of all origins at the same time. As seen by the 

different patterns of replication foci in the nucleus, origins fire at different times 

throughout S phase. Still, a replication timing program governs the temporal and 

spatial organization of origin firing. This program is regulated by different 

determinants such as three-dimensional (3D) chromosomal organization, 

transcriptional programs and gradients of factors limiting for initiation (reviewed by 

Rhind & Gilbert 2013; Rivera-Mulia & Gilbert 2016a,b). 

Three-dimensional genome architecture  

Chromatin is hierarchically organized in the nucleus, starting with the formation of 

clutches and fibers by dynamic nucleosome-nucleosome interactions (reviewed by 

Bian and Belmont, 2012; Ricci et al., 2015). The next level of chromatin organization 

consists of formation of loops, which can bring together genomic elements 

separated by long distances in the linear genome, such as promoters and enhancers 

(Rao et al., 2014). The recent discovery of topologically associated domains 

(TADs) revealed yet another level of chromatin organization (Dixon et al., 2012). 

TADs are stable sub-megabase size domains that encompass strong chromatin 

interactions within them, but not with other regions. TADs often correlate with specific 

epigenomic signatures. TADs are then folded into higher-level compartments of 

multi-megabase scale, which are of two types, A and B, associated to active/open 

and inactive/closed chromatin, respectively. At the highest level of genome 

organization, different compartments of the same chromosome group together 

forming a chromosome territory. Inter-chromosomal interactions are rarely 

observed within the nucleus. In mammalian cells, 3D chromatin organization is 
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established and maintained by architectural proteins such as mediator, CTCF and 

cohesin (reviewed by Bonev and Cavalli, 2016; Phillips-Cremins et al., 2013; Pombo 

and Dillon, 2015). The nuclear lamina is also linked to chromatin organization since it 

anchors chromatin to the nuclear periphery (Shimi et al., 2010) 

 

Recent advances in chromatin conformation capture (3C) techniques, including Hi-C 

(a high-throughput variation of 3C), have provided novel insights into 3D chromatin 

architecture, allowing for better understanding of its functional role in processes 

occurring in the nucleus (reviewed in Bonev & Cavalli 2016). Briefly, in 3C methods, 

chromatin is crosslinked, fragmented with restriction enzymes or sonication, and this 

is followed by ligation of adjacent DNA ends. The possible interaction between two 

fragments is detected by PCR or sequencing methods. Importantly, modifications of 

3C assays enable for genome-wide detection of chromatin interaction networks 

mediated by specific proteins (e.g. cohesin or Polycomb) or occurring at specific 

genomic elements such as promoters (Bian and Belmont, 2012; Bonev and Cavalli, 

2016; Schoenfelder et al., 2015a, 2015b). 

Chromatin organization and timing of DNA replication  

In eukaryotes, genome replication follows a defined order that seems to be 

evolutionary conserved between closely related species (Ryba et al., 2010). In 

mammalian cells, genome-wide replication timing profiles reveal the existence of 

400-800 kb replication timing domains, frequently abbreviated replication domains 

(RD), which replicate simultaneously (Hiratani et al., 2008; Ryba et al., 2010). They 

are interspersed by timing transition regions, where the change in replication 

timing occurs. The approximately 5000 RD likely correspond to microscopically 

observed foci, as early RDs localize in the nuclear interior and late RDs in the 

nuclear envelope and nucleolar periphery (Fig. 6 and Rivera-Mulia and Gilbert, 

2016a). 

 

Replication timing correlates with chromatin accessibility, certain DNA sequence 

features, and transcriptional activity. Early replication occurs preferentially in 

euchromatin regions and is associated with high gene density, high GC content and 

active transcription. Late-replicating regions present an opposite pattern. They tend 

to localize in heterochromatin and correlate with gene-poor regions, low GC content 

and low transcriptional activity (Hiratani et al., 2008; Rhind and Gilbert, 2013; Ryba et 

al., 2010).  
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Figure 6. Model for the regulation of DNA replication in the nucleus. TDP, timing 
decision point, ODP, origin decision point; n-nucleolus. Figure inspired from Rivera-Mulia and 
Gilbert (2016a). See text for details.  
 

Several observations have revealed a striking concordance between 3D chromatin 

architecture and the replication timing program. First, the strong correlation between 

early and late RDs with A- and B- Hi-C compartments, respectively (Ryba et al., 

2010). In addition, a high degree of overlap has been observed between late RD and 

Lamin B1-associated domains (LADs), which are chromosome regions associated 

with nuclear periphery (Guelen et al., 2008). In a recent study, RDs were found to 

actually correspond to TADs (Pope et al., 2014) and it was therefore proposed that 

replication timing is controlled at the level of TADs (Dileep et al., 2015a; Rivera-Mulia 

and Gilbert, 2016b). 

 

Replication timing is established early in G1, at the so-called timing decision point 

(TDP; Dimitrova & Gilbert 1998). At this moment, chromatin reorganizes spatially into 

RD/TADs allowing for segregation of early and late replication timing domains into 

different nuclear compartments (Dileep et al., 2015b). The selection of origins for 

activation takes place later in S phase, at the so-called origin decision point (ODP; 

Fig. 6). 

 

Timing of replication is regulated during development. Changes in the temporal order 

of replication generally correlate with changes in transcriptional activity (Hiratani et 

al., 2008; Ryba et al., 2010). Importantly, developmentally regulated RDs remain 
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intact and undergo changes as whole units. RDs that maintain their temporal order of 

activation upon differentiation are called constitutive RDs (Rhind and Gilbert, 2013; 

Rivera-Mulia and Gilbert, 2016a). Intriguingly, constitutive and developmentally 

regulated domains present different chromatin properties (Dileep et al., 2015b).  

 

Replication timing may be regulated by competition for limiting factors that would 

initially be directed to easily accessible, early-replicating origins. As S phase 

progresses, fewer origins compete for the pool of limiting factors, and their probability 

of firing increases in late S phase. This mechanism would ensure that late-replicating 

heterochromatin regions duplicate timely and efficiently (Rhind and Gilbert, 2013). In 

yeast, limiting proteins include Cdc45, Sld2, Sld3, Sld7, Dbp11 and Cdc7-Dbf4, and 

their overexpression increases the probability of late origins activation (Mantiero et 

al., 2011; Tanaka et al., 2011). In mammalian cells, it has been proposed that Cdc45 

is the main limiting factor (Wong et al., 2011).  

Determinants of replication origin choice 
Although replication is tightly controlled temporally and spatially at the level of 

RD/TADs, the selection of replication origins within those domains appears to be 

flexible and stochastic. Decades of work have been devoted to investigate the 

genome-wide distribution of origins in different eukaryotic organisms, to understand 

what determines their localization and efficiency (reviewed in Fragkos et al. 2015; 

Prioleau & Macalpine 2016; Aladjem & Redon 2016). 

Methods to map replication origins genome-wide 

A straightforward origin mapping method consists in chromatin immunoprecipitation 

of pre-RC components, followed by hybridization to DNA microarrays (ChIP-chip) or 

high-throughput sequencing of the immunoprecipitated DNA (ChIP-seq). These 

techniques have been successful applied in yeast (Hayashi et al., 2007; Wyrick et al., 

2001) and Drosophila melanogaster (MacAlpine et al., 2010; Powell et al., 2015). 

However, they have proven to be more challenging in mammalian genomes. 

Although ChIP-seq datasets have been recently published with ORC1 and ORC2 

proteins (Dellino et al., 2013; Miotto et al., 2016), the complexity of mammalian 

genomes makes it difficult to convincingly map origin ‘peaks’ over background signal 

(reviewed by Gilbert, 2010).  

 

Other methods aim at localizing the start sites of bidirectional DNA replication 

(Prioleau & MacAlpine 2016). Isolation and sequencing of short nascent strands 
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(SNS-Seq) synthetized on the leading strand at origins has been widely used to map 

initiation sites (see Fig. 7 in Materials and Methods, Cayrou et al., 2012a). RNA-

primed SNS are isolated by sucrose gradient centrifugation and digested with 

lambda exonuclease (λ-exo) to eliminate fragments of broken genomic DNA, which 

are not protected by the presence of RNA primers at their 5’ end. SNS-seq provides 

good resolution and can also be used to estimate origin efficiency (Besnard et al., 

2012; Cayrou et al., 2011; Comoglio et al., 2015; Picard et al., 2014). Nevertheless, 

this method has been criticized because the λ-exonuclease step might enrich in GC-

rich sequences and G-quadruplex (G4)-containing DNA (Foulk et al., 2015). A 

variation of this method in which SNS are first labelled with BrdU and then enriched 

by immunoprecipitation has also been applied (Mukhopadhyay et al., 2014). 

 

DNA Sequencing of DNA-replication bubbles (bubble-seq) is an alternative method, 

in which replication bubbles are first ‘trapped’ in a 2D agarose gel and then 

sequenced (Mesner et al., 2013). Bubble-seq is very sensitive but it has limited 

resolution and is technically challenging (reviewed by Prioleau and MacAlpine, 2016; 

Urban et al., 2015). 

 

Another recently developed approach for origin mapping consists in the isolation and 

sequencing of Okazaki fragments (Oka-seq), as initially described in yeast (Smith 

and Whitehouse, 2012). Oka-seq detects initiation sites by identifying the transition 

zones between leading (continuous) and lagging (discontinuous) strand synthesis. In 

yeast, this method has allowed for global analysis of initiation, origin efficiency, fork 

progression and termination events (McGuffee et al., 2013). In human cells, the 

resolution of Oka-seq allowed for detection of broad initiation zones rather than 

specific sites of origin firing (Petryk et al., 2016). 

 

Attempts at genome-wide origin mapping using the techniques described have 

revealed the presence of tens of thousands of origin positions in a metazoan genome 

(Besnard et al., 2012; Cadoret et al., 2008; Cayrou et al., 2015; Comoglio et al., 

2015; Martin et al., 2011; Mesner et al., 2013; Petryk et al., 2016; Picard et al., 2014; 

Sequeira-Mendes et al., 2009). Remarkably, the overlap between the different sets of 

results is limited, even when the same cell lines are used (Hyrien, 2015). Several 

factors could contribute to these discrepancies. First, the initiator ORC complex does 

not recognize a consensus sequence in higher eukaryotes (Miotto et al., 2016; 

Vashee et al., 2003). Second, origins are licensed in excess and each cell in the 

population may activate a different subset. Besides, at the time of origin licensing, 
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MCM complexes can slide along the DNA and change their localization from the 

ORC-binding site (Gros et al., 2015; Powell et al., 2015). Despite these difficulties, 

some features of mammalian replication origins and the factors that influence their 

probability of activation are progressively being discovered. 

Genomic features influencing origin choice 

S. cerevisiae origins are autonomously replicating sequences (ARS) that support 

DNA replication when placed into plasmids (reviewed by Gilbert, 2004). ARS contain 

a short consensus sequence that is specifically recognized by ORC (Eaton et al., 

2011; Wyrick et al., 2001). However, not all the existing ACS are used as origins, 

indicating that sequence is not sufficient to determine replication start sites 

(Nieduszynski et al., 2006). Notably, recent reconstitution of DNA replication in vitro 

using chromatinized templates revealed that origin selection is highly dependent on 

chromatin (Devbhandari et al., 2017; Kurat et al., 2017). 

 

Origin consensus sequences have not been identified in any other eukaryotic 

organism. In S. pombe, origins are determined by A/T-rich islands recognized by 

ORC (Hayashi et al., 2007; Heichinger et al., 2006; Segurado et al., 2003). 

Metazoan replication origins tend to localize in GC-rich regions and are enriched at 

CpG islands, methylation free regions frequently associated with promoters 

(Antequera, 2004; Cadoret et al., 2008; Cayrou et al., 2011; Delgado et al., 1998). 

The most efficient origins are located in regions with high GC content (Besnard et 

al., 2012; Sequeira-Mendes and Gómez, 2012). 

 

A correlation of origins with G-rich repeated elements (OGRE) that have a potential 

to form G-quadruplexes (G4) has also been reported (Besnard et al., 2012; Cayrou 

et al., 2012b, 2015; Comoglio et al., 2015). The presence of G4 may have a role in 

origin positioning and efficiency (Valton et al., 2014). At least in vitro, ORC binds 

preferentially to ssDNA that forms G4s (Hoshina et al., 2013). However, potential 

G4-forming sequences are in large excess relative to the number of origins (Huppert 

and Balasubramanian, 2005), indicating that this element is not sufficient to define 

replication start sites. 

Transcription, epigenetic features, and chromatin environment  

The correlations between origins and genomic features such as DNAseI 

hypersensitive sites (Comoglio et al., 2015; Mesner et al., 2013) and nucleosome 

occupancy (Cayrou et al, 2015; Lombraña et al, 2013) suggest a direct link between 

replication and chromatin accessibility. Indeed, mammalian origins are preferentially 
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located at permissive chromatin environments (Fragkos et al., 2015; Sequeira-

Mendes and Gómez, 2012). Early RDs show higher density and efficiency of origins 

than late RDs (Besnard et al., 2012; Cadoret et al., 2008; Miotto et al., 2016). The 

general view that emerges is that origins preferentially locate at TSS, promoters and 

gene-rich regions, indicating a positive correlation with active transcription. Of note, 

origins located around promoters and CpG islands are more efficient (Cadoret et al., 

2008; Cayrou et al., 2010; Dellino et al., 2013; MacAlpine et al., 2010; Martin et al., 

2011; Sequeira-Mendes et al., 2009).  

 

While correlations are not absolute, several epigenetic marks have been associated 

to replication start sites (Aladjem and Redon, 2016; Prioleau and MacAlpine, 2016). 

Early origins tend to colocalize with euchromatin histone modifications, e.g. 

H3K4me1, H3K4me2, H3K4me3, H3K9ac, H3K18ac and H3K36me3. In contrast, 

late origins associate with heterochromatin marks, e.g. H3K9me, H3K9me3, 

H3K27me3 and hypoacetylation of H3 and H4 (Aladjem and Redon, 2016). 

H3K79me2-containing DNA has also been suggested to correlate with origin activity 

(Fu et al., 2013) 

 

Factors involved in nucleosome modification and remodelling also influence origin 

usage (reviewed by Aladjem and Redon, 2016; Prioleau and MacAlpine, 2016). H4 

specific acetylase HBO1 (Iizuka & Stillman, 1999) is recruited to origins through its 

interaction with ORC1 and CDT1 and is important for MCM loading (Miotto and 

Struhl, 2010). PR-Set7-mediated methylation of H4K20 also promotes pre-RC 

formation (Tardat et al., 2010). Interestingly, the bromo-adjacent homology 

(BAH) domain of ORC1 recognizes specifically H4K20me2, and its mutation leads to 

lower ORC occupancy at selected origins (Kuo et al., 2012). 

 

Recent genome-wide origin studies in human and mouse cells have revealed a 

correlation of origins with marks associated to Polycomb (PcG) repressive 

complexes (PRC) 1 and 2. Replication start sites associate with PcG proteins 

(mESCs) and H3K27me3 (mESC and human K562 cells), an epigenetic mark 

deposited by PRC2 (Cayrou et al., 2015; Picard et al., 2014). In ESCs, origins 

localize preferentially at sites bound by both repressive H3K27me3 and activating 

H3K4me3 marks, a feature of bivalent domains that silence developmentally 

regulated genes in ESCs but keep them poised for transcriptional activation 

(Bernstein et al., 2006; Cayrou et al., 2015). Interestingly, PRC1 organizes a 3D 

network of promoter-promoter contacts in the nucleus, further emphasizing the 
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strong connection between origin localization, chromatin architecture and 

transcription (Schoenfelder et al., 2015a). 

 

In this dissertation, we have aimed at better understanding the regulation of origin 

selection and activation in mammalian cells. In the first part we investigated the 

response of replication origins to stress and their spatial organization in the nucleus. 

In the second part we studied a novel mechanism that regulates CDC6 protein 

stability during the cell cycle. 
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	 33	

 
Objectives 

 

1. Generate genome-wide maps of replication origins in mESCs growing in 

normal conditions or under situations of stress. 

2. Define subsets of constitutive and stress-responsive origins, in order to 

determine their genomic and epigenomic characteristics, as well as their 

activation efficiency. 

3. Integrate linear origin maps into three-dimensional chromatin structure. 

4. Investigate the role of CDC7 kinase in the regulation of CDC6 licensing 

factor. 

 

 

 

 

 

 

Objetivos 

 

1. Generar mapas a nivel genómico de orígenes de replicación en mESCs en 

condiciones normales de crecimiento o en situaciones de estrés. 

2. Definir subconjuntos de orígenes constitutivos y orígenes de respuesta a 

estrés, para determinar sus características genómicas y epigenómicas, así 

como su eficiencia de activación. 

3. Integrar los mapas lineales de orígenes en la estructura tridimensional de la 

cromatina. 

4. Investigar la función de la quinasa CDC7 en la regulación de la proteína 

replicativa CDC6 
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Materials and Methods  
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Materials and Methods 
 

Cell lines and culture conditions 
The TetO-CDC6 mouse model has been recently described (Muñoz et al., 2017). In 

this model, HA-tagged CDC6 is expressed upon induction with doxycycline. TetO-

CDC6- mouse embryonic stem cells (TetO-CDC6-ESCs) were grown on 0.1% 

gelatin-coated plates in Dulbecco’s Modified Eagle’s Medium (DMEM) with 

Ultraglutamine 1 and 4.5 g/L glucose (Lonza) supplemented with 15% FBS (Sigma), 

50 U/mL Penicillin - 50 mg/mL Streptomycin (Invitrogen), Minimum Essential Medium 

Non-Essential Aminoacids (MEM NEA; Invitrogen), 100 µM 2-Mercaptoethanol 

(Invitrogen) and 103 U/mL ESGRO mLIF Medium Supplement (Millipore). TetO-

CDC6-mouse embryonic fibroblasts (TetO-CDC6-MEFs), U2OS and HeLa cells were 

grown in complete DMEM (Lonza) supplemented with 10% FBS (Sigma-Aldrich) and 

10% penicillin/streptomycin (Invitrogen). All cells were incubated at 37°C in humid 

environment containing 5% CO2. 

To induce CDC6 overexpression, 1 µg/ml doxycycline (dox, Sigma) was added to the 

medium for 27h (MEFs) or 30h (ESCs). To induce mild replication stress cells were 

treated with 0.5 µM aphidicolin (Sigma-Aldrich) for 2.5h.  

To synchronize cells in metaphase 250 ng/ml nocodazole (Sigma-Aldrich) was added 

to the medium for 18h. Cells were released from the block by washing twice with pre-

warmed PBS and once in pre-warmed medium and then incubated in fresh medium 

for the indicated times. 

The following drug treatments were used: 25 µg/ml cycloheximide (CHX, Sigma), 10-

25 µM MG-132 (Sigma-Aldrich), nocodazole (Sigma-Aldrich), 25µg/ml roscovitine 

(Sigma-Aldrich), 20 µM PHA-767491 (Cdc7i, Sigma-Aldrich). We observed that PHA-

767491 activity varied depending on the batch. Incubation times were adjusted 

empirically and therefore may vary among experiments, as reflected in the figure 

legends. 

siRNA and plasmid transfections 
DNA sequences encoding for WT, phospho-dead (S8A) and phospho-mimic (S8D) 

CDC6 were ordered as GeneArt Strings DNA Fragments or GeneArt Gene Synthesis 

plasmids (Thermo-Fisher Scientific) and subsequently cloned into Gateway 

expression vectors introducing an N-terminal V5 tag (Invitrogen). Transient siRNA 

and plasmid transfection were performed using Lipotransfectin (Niborlab) and 

Lipofectamine 2000 (Invitrogen), respectively, according to manufacturer’s 

instructions. Transfections with siRNA against CDC7 (siCdc7) were performed with 
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100nM siRNA for 48h. siCdc7 oligonucleotides were synthesized to the following 

CDC7 coding region: 5’-AAGCTCAGCAGGAAAGGTGTT-3’ (GE Healthcare), as 

previously reported (Cdc7-A; Montagnoli et al., 2004). 

Flow cytometry analysis 
In order to analyse DNA synthesis, cells were pulse-labelled with 20µM BrdU for 30 

min. Cells were trypsinized, washed in PBS and fixed with cold (-20°C) 70% ethanol 

for at least 24h. DNA denaturation and cell permabilization was achieved by 

incubation with 2N HCl for 20 min at RT. Cells were then washed twice with PBS, 

treated with blocking solution (1% bovine serum albumin in PBS, 0.05% Tween20) 

for 15 min at RT and incubated with FITC-conjugated anti-BrdU antibody (BD 

Biosciences Pharmigen) for 1h at 37°C. To monitor DNA content, cells were stained 

overnight with 50µg/ml propidium iodide (PI; Sigma-Aldrich) in the presence of 

RNaseA (10µg/ml, Qiagen). Flow cytometry was conducted in a FACS Canto II 

cytometer (BD) and data was analysed using FlowJo V 9.4 or V.10.1 (Three Star). 

For cell sorting into different phases of cell cycle, U2OS cells were stained (1x106 

cells/ml) with 2.5 µg/ml Hoechst (Invitrogen) for 30 min at 37°C in culture medium. 

Cells were washed in PBS, and resuspended in PBS + 0.3% FBS + 3mM EDTA and 

sorted by DNA content using a BD Influx sorter (BD, San Jose, CA) in the Flow 

Cytometry Unit at CNIO. 

Single molecule analysis of DNA replication in stretched DNA fibers  
Exponentially growing cells were pulse-labelled for 20 min with 50 µM CldU, washed 

3 times with PBS and pulse-labelled with 250 µM IdU for another 20 min. Cells were 

trypsinized, washed and resuspended in ice-cold PBS (0.5x106 cell/ml). 2µl of cell 

suspension was placed on microscope slides and lysed with 0.2M Tris pH 7.4, 50µM 

EDTA, 0.5% SDS (10 µl) for 6min at RT. Slides were tilted 15 degrees to spread 

DNA fibers. Next, slides were air-dried, fixed in cold (-20°C) methanol:acetic acid 

(3:1) for 2 min and stored at 4°C overnight. DNA was denaturated in 2.5N HCl 

(30min/RT) and washed 3x in PBS. Blocking solution (1% bovine serum albumin in 

PBS, 0.1% Triton X-100) was added for 1h at RT. Slides were incubated with CldU, 

IdU and ssDNA primary antibodies (Table 2) diluted in blocking solution (1h, RT), 

washed in PBS and incubated with secondary antibodies for 30 min. Slides were 

mounted with Prolong (Invitrogen). Images were acquired with DM6000 B Leica 

microscope with an HCX PL APO 40x, 0.75 NA objective. ssDNA staining was 

performed to monitor DNA integrity. For fork rate analysis, the length of second-

labelled (IdU, green) track was measured using ImageJ software. The conversion 
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factor 1µm= 2.59kb (Jackson and Pombo, 1998) was applied. At least 300 tracks 

were measured per condition. To assess origin firing activity, first-label origins 

(corresponding to CldU tracks flaked on both sides by IdU tracks, green-red-green 

structures) were counted and quantified as a percentage of all CldU (red) tracks.. At 

least 500 structures in total were counted per condition. Three biological replicates of 

each DNA fibre experiment were performed.  

Short Nascent Strand assay 
Short Nascent Strand assay was performed in 

collaboration with Dr. María Gómez’s laboratory 

(CBMSO, Madrid), according to a previously 

described protocol (Sequeira-Mendes et al., 

2009). This assay aims at the isolation of short 

nascent strands (SNS), which are leading strand 

replication intermediates synthetized at 

replication bubbles (Fig. 7). 

Extraction of genomic DNA 

Exponentially growing cells (1X108) were 

washed twice in PBS and lysed for 15 min in 

Lysis Buffer (50 mM Tris pH 8.0, 10 mM NaCl., 

10mM EDTA pH 8.0, 0.5% SDS). 100 µg/ml 

Proteinase K (Roche) was added and samples 

were incubated overnight at 37°C. The DNA 

lysate was gently mixed with one volume of Tris-

saturated Phenol (Sigma-Aldrich) and 

centrifuged (3500 rpm, 10 min). The aqueous 

phase was mixed gently with one volume of 

Phenol:chlorophorm:isoamyl alcohol (25:24:1) 

and centrifuged (3500 rpm, 10 min). DNA was 

precipitated with two volumes of cold (-20°C) 

100% ethanol (Panreac AppliChem), washed 

with 70% ethanol, air dried and resuspended in 

TE buffer (10 mM Tris pH 8.0, 1mM EDTA) supplemented with 0.1 U/µl RNAseOUT 

(Invitrogen). Samples were stored at 4°C. 

Figure 7. SNS assay workflow. 



	 40	

Purification of SNS 

Seven-step discontinuous sucrose gradients (5-20% sucrose, 2,5% steps made in 10 

mM Tris pH 8.0, 1 mM EDTA and 100 mM NaCl) were prepared in centrifuge tubes 

(Beckman Coulter 331374). Total genomic DNA was heat-denaturated (100°C / 10 

min), cooled on ice and loaded on the top of gradient. Size-fractionation was 

performed by centrifugation at 78000 rcf in an Ultracentifuge (Beckman Coulter 

Optima L-100 XP), with a SW-40Ti rotor (Beckman Coulter) for 20 min at 20°C, as 

previously described (Gómez and Antequera, 2008). 12-13 1ml fractions were 

recovered and DNA from each of them was precipitated with ethanol. Analysis of 

DNA size in each fraction was performed by 1% agarose gel electrophoresis in 

alkaline conditions. Fractions 4-5, corresponding to the size of ≈ 300-1500 nt, were 

chosen for further analysis. Fractions containing shorter and larger DNA fragments 

were not used to avoid the selection of Okazaki fragments and large fragments of 

broken genomic DNA, respectively. Examples of DNA fractionation are depicted in 

Fig. 8A. For each experimental replicate, DNA samples were pooled from two 

separate gradients. 

Samples were treated with 100 U of T4 Polynucleotide Kinase (PNK, Thermo Fisher) 

in the presence of 1mM dATP (Roche) and 40 U of RNAseOUT (Thermo Scientific) 

for 30 min at 37°C. PNK phosphorylates 5’-hydroxyl ends rendering DNA molecules 

that are preferentially digested by λ-exonuclease. PNK reaction was stopped with of 

Proteinase K (6.25 µg), 0.125% sarkosyl and 2.5 µM EDTA (30 min at 37°C). DNA 

was extracted, precipitated and resuspended in H2O. To eliminate any broken 

genomic DNA from the samples, digestion with λ-exonuclease was carried out. This 

enzyme degrades DNA fragments from their 5’-end, and RNA-primed short nascent 

strands are protected by their 5’-RNA primers. PNK-treated samples were heat-

denaturated (95°C, 5 min), cooled on ice, and incubated with 150 U of λ-exonuclease 

(Thermo Scientific) in λ-exonuclease digestion buffer (Thermo Scientific) in the 

presence of 40 U of RNAseOUT (37°C, over night). Reactions were heat-inactivated 

(75°C, 10 min). DNA was extracted, precipitated and resuspended in H2O. To 

increase the purity of SNS in the fractions, PNK treatment and λ-exonuclease 

digestion were performed three times. Upon digestion, DNA was precipitated with 

two volumes of 100% ethanol (-20°C) in the presence of 0.3 M sodium acetate pH 

5.2 and 20 µg/ml glycogen (Roche) for 30 min at -20°C. Samples were centrifuged 

(20000 rcf, 30 min, 4°C) and pellets were washed with 70% ethanol. After air-drying, 

DNA pellets were resuspended in TE buffer. Samples were subsequently processed 

for high-throughput sequencing.  
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Each λ-exonuclease digestion step was controlled by adding 50 ng of linearized 

pFRT-myc plasmid to 5% of digestion reaction and incubated in the same conditions. 

pFRT-myc (a kind gift from S. Gerbi, Brown University, Providence, USA) contains 

two G-quadruplex (G4) forming sequences, which are known to be digested less 

efficiently by λ-exonuclease (Foulk et al., 2015). Also, a reaction without enzyme was 

performed. These control reactions were loaded on 1% agarose gel to confirm full 

digestion of the plasmid (Fig. 8B). 

 

 
 
Figure 8. (A) Representative images of alkaline agarose gel electrophoresis following DNA 
fractionation by sucrose gradient centrifugation. Fractions 4 and 5 (marked in red) were used 
for further analysis. (B) Control reaction for λ-exonuclease digestion. 5% of the pool of 
fractions 4 and 5 was mixed with pFRT-Myc plasmid and digested with λ-exo. Two separate 
gradients (I and II) for each replica are shown. Note the presence of a band (≈7200 bp) 
corresponding to undigested linearized pFRT-myc vector only in the - λ-exo control. (C) 
Control qPCR reaction for one of the replicates of WT, APH and CDC6 samples at Mecp2 
origin and its flanking region. Absolute SNS enrichment is depicted. Mean and SD is 
represented; n=2. 
 

Before library preparation, a fraction of the samples was tested by quantitative real-

time PCR (qPCR) to control for SNS enrichment at the known Mecp2 origin (Fig. 8C). 

Primer sequences for Mecp2 origin and Mecp2 flanking region are indicated in Table 
1. qPCR reactions were performed in duplicates using ABI Prism 7900HT Detection 

System (Applied Biosystems) and HotStarTaq DNA polymerase (Qiagen) according 

to manufacturer’s instructions. Data was analysed in Applied Biosystems Software 
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SDS v2.4. For absolute quantifications samples of known quantity were serially 

diluted and amplified to generate a standard curve.  

Genomic DNA extraction for input sample 

Exponentially growing mESCs (≈ 40x106) were washed twice in PBS and collected 

by scraping and centrifugation (3000 rpm, 7 min, 4 °C). Cells were lysed in lysis 

buffer (1% SDS, 10mM EDTA, 50 mM Tris-HCl ph 8.1) at a 2x107 cell/ml density. 

Sonication was performed in a Bioruptor device (Diagenode) for 25 min (30s 

sonication/30s pause mode). DNA was extracted with phenol/chloroform, ethanol-

precipitated, air-dried and resuspended in 0.5x TE buffer. The size of DNA in the 

samples was monitored by 1% agarose gel electrophoresis. 

Library preparation and high-throughput sequencing 

RNA primers were first removed by treatment with RNAse A/T1 Mix (Roche) for 60 

min at 37 °C. 100 µg/ml Proteinase K was added (30 min, 37 °C) and DNA was 

extracted and precipitated. ssDNA was converted to dsDNA by random priming using 

50 pM random hexamer primer phosphate (Roche) for 5 min at 95°C and cooling 

gradually to 4°C, as previously described (Cadoret et al., 2008). Primer extension 

was performed by subsequent incubation (1 h, 37°C) with 10 mM dNTPs (Roche), 5 

U of Klenow Fragment (3'→5' exo-; New Englands Biolabs) in 1x NEB buffer 2 (New 

Englands Biolabs). Reactions were inactivated by incubation at 75°C for 10 min. 

Ligation of adjacent DNA fragments was performed by incubation with 80 U of 

TaqDNA ligase (New England Biolabs) in 1x TaqDNA ligase buffer (30 min, 50°C), 

followed by enzyme inactivation (10 min, 75°C), DNA extraction with 

phenol/chloroform and ethanol precipitation. Samples were resuspended in TE 

buffer. 

DNA libraries were prepared in Fundación Parque Científico de Madrid (FPCM) 

using NEBNext® Ultra™ II DNA Library Prep Kit for Illumina (New England Biolabs) 

following manufacturer’s instructions and purified with Agencourt AMPure XP beads 

(Beckman Coulter). Each library was sequenced using a read length of single end 75 

bp (120-140 x106 reads per sample) in NextSeq500 System (Illumina) at the FPCM. 

SNS-seq data analysis 

Note: Bioinformatic and computational analysis of SNS-seq data and its integration 

with genome-wide chromatin data was performed in collaboration with Dr. Vera 

Pancaldi (Structural Biology and Biocomputing group, CNIO, Madrid; Computational 

Biology Life Sciences Group, BSC, Barcelona), Osvaldo Graña and Miriam Rubio 
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(Bioinformatics Unit, CNIO, Madrid) with additional assistance from José Miguel 

Fernández (Genome Dynamics and Function Group, CBMSO, Madrid). 

The quality of sequencing reads was analyzed with FastQC 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Short sequences, 

adaptor sequences and read duplicates were removed. Reads were then analyzed 

with the RUbioSeq pipeline v3.8 (Rubio-Camarillo et al., 2017), using BWA v0.7.10 

(Li and Durbin, 2009), SAMtools v0.1.19 (Li et al., 2009), Picard tools v1.107 

(http://broadinstitute.github.io/picard/) and MACS v2.0.10 (Feng et al., 2012), and the 

mouse reference genome GRCm38/mm10. When MACS algorithm was used, the 

peak calling was performed versus input. The algorithm described in Picard et al. 

(2014) was used to provide a second way to identify ORIs. Genome segmentation 

required by this algorithm was based on replication timing data from mESCs, which 

accurately matches the read coverage differences between segments. Common 

peaks were obtained using BedTools v2.23.0 (Quinlan, 2014) with parameters: -f 0.1 

-r -wa –u. In stringent criteria, a peak was considered to be an origin when it was 

detected by both peak-calling algorithms (MACS/Picard) in both replicates. In relaxed 

criteria, a peak was considered to be an origin when it was detected by both peak-

calling algorithms in at least one replicate. For common peaks between MACS and 

Picard the genomic coordinates defined by Picard were used. Read distribution 

around peak centres was generated using seqMINER v1.3.3e. For the comparative 

analysis with epigenomic features and chromatin states, genomic coordinates of 

origins were converted from mm10 to mm9 genome assembly with LiftOver 

(https://genome.ucsc.edu/util.html).  

Genomic feature analysis 

For analysis of genomic distribution, origins were intersected with the genomic 

features depicted in Table 3, using the indicated overlapping parameters. 

Randomized origin datasets were generated to facilitate interpretation of the data. 

This was done by reshuffling origin positions 1000 times along the genome, with 

preservation of the number and sizes of origin peaks for each chromosome. Origin 

density was calculated in 500 kb sliding windows; the size of the slide was 1 kb. This 

analysis was performed in mm10 mouse genome assembly in collaboration with Dr. 

María Gómez’s Laboratory (CBMSO, Madrid). 

Origin efficiency analysis 

Read density divided by peak length was used as an approximation for origin 

efficiency. To calculate read density, each read within a peak was multiplied by the 
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number of nucleotides that it covers. Mean origin efficiency was calculated for each 

origin group or subgroup. In stringent datasets, efficiency of each origin was 

calculated as an average of efficiency between two replicates. In relaxed datasets 

their average efficiency was used when a peak was detected in both replicates, and 

this single efficiency value was used when the peak was detected only for one 

replicate. Comparison of efficiencies between different origin groups was performed 

using Wilcoxon signed-rank test.  

Epigenomic feature analysis 

We analysed the overlap of origin groups with a set of ≈ 70 epigenomic features 

previously compiled from >130 ChIP-seq experiments performed in ESCs (Juan et 

al., 2016). ChIP-seq datasets were ‘discretized’ in 200 bp windows: the presence of a 

given epigenetic mark within a 200bp window was scored as 1, and its absence as 0. 

The overlap between origin fragments and the genomic windows was calculated 

using findOverlaps in the genomicRanges R package. A score for each epigenomic 

feature was calculated as the number of 200bp windows with value=1 within each 

origin fragment, divided by the total number of windows within the origin.  This 

produced a value between 0 and 1 for each epigenomic mark in each origin 

fragment. The overlap of origins with epigenetic features was visualized using 

heatmaps with rows and columns ordered by unsupervised hierarchical clustering, 

using the cluster package and gplots in R. The enrichment of any particular feature in 

origins was calculated as the ratio between its average value in origin fragments and 

its average genomic value. To further assess the significance of these overlaps origin 

positions were randomly shuffled along each chromosome 100 times (using 

Bedtools) and the average overlap in randomized datasets was also calculated. We 

observed that randomized datasets are mostly indistinguishable from the genome 

average. Therefore, enrichment is presented as fold-change between the origin 

overlap and the genome average. 

Chromatin state analysis 

Using the same approach, we calculated enrichment of origins at 20 chromatin states 

determined previously (Juan et al., 2016). In brief, these states were defined using a 

Hidden Markov Model applied to a collection of datasets including major histone 

modifications (ChromHMM, Ernst and Kellis, 2010), see Juan et al., 2016 for 

details.  For simplification purposes, states corresponding to similar chromatin 

functions were merged according to the definitions indicated in Table 4. 
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Integration with chromatin interaction maps 

Linear origin maps were integrated into the following 3D chromatin interaction maps 

for mESCs: Promoter-Capture HiC (PCHiC; Schoenfelder et al., 2015), SMC1 ChIA-

PET (Dowen et al., 2014), RNA Polymerase II (RNAPII) ChIA-PET (Zhang et al., 

2013) and another variation of promoter Capture Hi-C called Hi-Cap (Sahlén et al., 

2015). The PCHiC, Hi-Cap and ChIA-PET networks were processed as described in 

Pancaldi et al. (2016). The PCHiC contact map was processed using the CHiCAGO 

pipeline, which identifies significant 3D contacts starting from the raw Capture HiC 

data. The other networks were generated starting from the contacts provided in the 

original references.  

Origin positions were mapped to the chromatin fragments of 3D maps using 

findOverlaps (genomicRanges package). Origin efficiency of the chromatin fragment 

was calculated as the mean of the efficiencies of origins that overlap with this 

fragment. 

Network analysis 

All network analyses including correlations between degree, efficiency and 

replication timing (RT) were performed using the igraph package in R and standard R 

functions. TAD definitions were taken from Dixon et al. (2012). Networks were 

visualised using Cytoscape v3.4.0.  

Replication timing data 

Replication timing data was downloaded from Hiratani et al. (2010). Here RT is given 

as the ratio of probes of two colour tiling microarrays representing either early or late 

RT for 3 mESC cell lines, which were combined in our analysis. The data was 

processed in two separate ways: 1) the median value for probes overlapping each 

origin was taken and individual origins were ranked based on RT in the range 0 to 1 

(from early to late); 2) the probes within each chromatin fragment in the 3D chromatin 

network were combined to give an RT for the entire chromatin fragments.  

Assortativity analysis 

Origin Assortativity (OriAs) and Assortativity of Origin Efficiency (OriEfAs) were 

calculated using the previously described measure of Chromatin Assortativity 

(Pancaldi et al., 2016). 
 

Briefly, assortativity in a chromatin contact network is defined as the Pearson 

correlation coefficient of the presence of an origin (OriAs) or of the value of origin 
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efficiency (OriEfAs) across all pairs of nodes that are connected with each other. This 

value was calculated with the assortativity function in the igraph package for R. 
 

OriAs is thus a value between -1 and 1, with negative values meaning that origins 

are preferentially in contact with non-origin fragments and positive values meaning 

that origins are preferentially in contact with other origins. To estimate the 

significance of OriAs values we performed 100 randomization of origin assignations 

on the network fragments, preserving the total number of origins (OriAs) or the mean 

origin efficiency (OriEfAs). As ChAs depends on how prevalent a particular feature is 

in the network fragments, it is important to analyse it in relation to the feature 

abundance. For example, if a particular mark is found in the majority of the fragments 

in the network, its localization in specific areas of the network cannot be observed 

and the value of ChAs will be low. On the contrary, when a certain feature is detected 

only in a small subset of fragments, but they are found to interact preferentially with 

each other, the ChAs measure is high. 

 

OriAs and OriEfAs have very similar behaviour, as OriAs is just a discretization of 

efficiency values, where any efficiency >0 is rounded to 1 and fragments with no 

origins are assigned efficiency 0. Thus, instead of representing the number of 

fragments containing origins as in the OriAs plot, the OriEfAs plots show on the x-

axis the mean value of their efficiency in the network fragments. 

RNA expression analysis 
RNA was isolated from cells using Trizol (Invitrogen) according to the manufacturer’s 

instructions. To remove potential contamination with genomic DNA, DNAse I (Roche) 

digestion was performed (37°C, 20 min). Reverse transcription (RT) reaction to 

generate cDNA was carried out using Maxima First Strand Kit for RT-qPCR 

(ThermoFisher). qPCR reaction was performed in triplicates using SYBR Green PCR 

Master Mix (Thermo Fisher), using ABI Prism 7900HT Detection System (Applied 

Biosystems). Quantifications were normalized to endogenous GAPDH, using ΔΔCt 

method. Primer sequences are listed in Table 1. 

Whole cell extract preparation 
Cells were trypsinised, collected by centrifugation (1200 rpm, 5 min), washed in PBS 

and resuspended in Laemmli Sample Buffer (50 mM Tris-HCl pH 6.8, 10% glycerol, 

3% SDS, 0.006% w/v bromophenol blue and 5% 2-mercaptoetanol at 1000 cells/µl. 
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Solutions were sonicated for 30 seconds at 15%-20% amplitude (Branson Digital 

Sonifier). 

Biochemical fractionation    
Biochemical fractionation assays were performed according to a previously 

described protocol (Méndez and Stillman, 2000). Briefly, cells were resuspended 

(1x107 cells/ml) in buffer A (10 mM HEPES pH 7.9, 10 mM KCl, 1.5 mM MgCl2, 0.34 

M sucrose, 10% glycerol, 1 mM DTT, 1mM NaVO4, 0.5mM NaF, 5mM β-

glycerophosphate, 0.1mM PMSF, protease inhibitor cocktail-Roche). TritonX-100 

was added at the concentration of 0.05 % and cells were incubated for 5 min on ice. 

Low-speed centrifugation (4min, 3600 rpm, 4°C) was used to separate the cytosolic 

fraction (supernatant) from the nuclei (pellet). Cytosolic fraction was centrifuged at 

high speed (14000rpm, 15min) to eliminate debris. Pellets were washed in buffer A 

and lysed for 30 min in buffer B (3 mM EDTA, 0.2 mM EGTA, 1 mM DTT, protease 

inhibitors as described above). Centrifugation at 4000rpm for 5 min was performed to 

separate soluble nuclear proteins from chromatin-bound proteins. Chromatin fraction 

was resuspended in Laemmli Sample Buffer and sonicated. The distribution of 

proteins between equivalent amounts of the soluble and chromatin-enriched fractions 

was analysed by immunoblot.  

Immunoblots 
Standard protocols were used for SDS-polyacrylamide gel electrophoresis and 

immunoblotting (SDS-PAGE; Harlow and Lane, 1999). Primary antibodies used in 

this study are listed in Table 2. Horseradish peroxidase (HRP)-conjugated secondary 

antibodies (GE Healthcare) and ECL developing reagent (Amersham Biosciencies) 

were used. 

Protein purification 
pGEXCdc7/Dbf4199-333 expression plasmid (Rainey et al., 2013) was kindly provided 

by Dr. C. Santocanale (National University of Irleand, Galway). pGST-TEV-hCdc6 

expression plasmid to purify GST-CDC6 was previously described (Méndez and 

Stillman, 2000). Both pGEXCdc7/Dbf4199-333 and GST-CDC6 proteins were expressed 

in Rosetta (DE3) E. coli strain and purified using gluthathione-sepharose beads 

according to standard protocols. GST tag was removed from CDC7/DBF4199-333 using 

PreScission protease. CDK2-CycA was purified as described (Méndez et al., 2002). 
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In vitro kinase assay 
The kinase reaction was performed in a total volume of 20 µl in the presence of 1µCi 

of [γ-32P]ATP in kinase buffer (50M HEPES pH 7.9, 10 mM MgCl2, 2 mM DTT, 10 

µM ATP) for 30 min at 30 °C, as described (Rainey et al., 2013). 1.5 µg GST-CDC6 

was used as substrate and 0.5 g CDC7/DBF4199-333 or 1.5 µg CDK2-CycA as kinases 

in separate reactions. To remove unbound [γ-32P]ATP, samples were purified 

through Ilustra MicroSpin G-25 Columns (GE Healthcare). The reaction was 

analysed by SDS-PAGE. After Coomassie staining and gel drying, signal was 

detected by exposing the gel to autoradiographic film.  

 

Cold in vitro kinase assays were performed to obtain samples for mass spectrometry 

(MS) analysis, at the Proteomics Unit (CNIO). Samples (20 µL) were diluted with 180 

µL of freshly prepared 8M urea in 100 mM Tris/HCl pH 8.0 containing 15 mM TCEP 

and 45 mM chloroacetamide, and incubated 1h at 25 ºC in the dark. Protein samples 

were desalted following the FASP protocol (Wiśniewski et al., 2009) and digested 

with 200 ng of trypsin for 5h at 37 ºC. Peptides were desalted using home-made 

Empore® C18 tips. All samples were analysed using a QqTOF Impact (Bruker 

Daltonics) coupled online to a NanoLC Ultra 1D+ system (Eksigent), equipped with a 

CaptiveSpray nanoelectrospray ion source supplemented with a CaptiveSpray 

NanoBooster operated at 0.2 bar/minute with isopropanol as dopant. Data was 

analysed and quantified using the Maxquant software v1.5.3.30. 

Statistical analysis 
Statistical analyses were performed using Prism v4.0 (GraphPad Software) or 

Microsoft Excel v15.38. For comparison of two data groups, two-tailed paired 

Student’s t-test was used. In the analysis of fork rate in stretched DNA fibers, data 

distribution is normally not Gaussian and statistical differences were assessed with 

nonparametric Mann-Whitney rank sum test. 



	 49	

 

Table 1. Primers for qPCR. 

Gene/region primer name primer sequence 5’- 3’ 

Mecp2 origin 
Mecp2 43 Fwd CTACCCGCCCCCCAGCAAG 

Mecp2 44 Rv GTGAGTGGGACCGCCAAGG 

Mecp2 flank 
Mecp2 1 Fwd GCATCCAATGCTCTTTGTGC 

Mecp2 14 Rv GTCTCTTGTTGAGCATTTGT 

GAPDH 
GAPDH-Fwd TGCACCACCAACTGCTTAGC 

GAPDH-Rv GAGGGGCCATCCACAGTCTTC 

CDC6 
Cdc6-Fwd TCTGATTCCCAAGAGGGTTG 

Cdc6-Rv TTCTGCTGAAGAGGGAAGGA 

MCM3 
Mcm3-Fwd AGCTTCTGCGGTATGTGCTT 

Mcm3-Rv CCTGTTTCCTGGTCTGTGGT 

ORC1 
Orc1-Fwd GCTCCTCAGATCCGTAGTCG 

Orc1-Rv CGACAGGGAAGAGACTCAGG 

p21 
p21-Fwd TTCATGCCAGCTACTTCCTC 

p21-Rv GAATTTCATAACCGCCTGTG 

 
 

Table 2. Antibodies used in this study. 

Antibody Use Supplier Ref/Catalogue # 
Species/ 

Dilution 

Aurora B WB Abcam ab2254 Rb/1:1000 

CDC45 WB Méndez Lab Aparicio et al. (2009) Rb/1:400 

CDC6 WB Millipore 05-550 Ms/1:1000 

CDC6 pS54 WB Santa Cruz sc-12920 Goat/1:400 

CDC7 WB Novus Biologicals SPM171 Ms/1:1000 

CDC20 WB Proteintech 10252-1-AP Rb/1:500 

FZR1/CDH1 WB Abcam DH01 (DCS-266) Ms/1:500 

CDK9 WB Cell signalling C12F7 Rb/1:1000 

CDT1 WB Millipore 07-1383 Rb/1:1000 

Cyclin A WB Santa Cruz sc-751 Rb/1:1000 

Cyclin B1 WB Santa Cruz sc-752 Rb/1:1000 

Cyclin B1 WB Santa Cruz sc-245 Ms/1:1000 
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Cyclin E WB Santa Cruz sc-247 Ms/1:1000 

GAPDH WB Antibodies 
Unit,CNIO 

220/EG3 Ms/1:2000 

Geminin WB Santa Cruz sc-13015 Rb/1:1000 

H3 WB Abcam ab1791 Rb/1:50000 

MCM2 WB Méndez Lab Ekholm-Reed et al. (2004) Rb/1:2000 

MCM2 pS40 WB Abcam ab133243 Rb/1:1000 

MCM2 pS53 WB Abcam ab109133 Rb/1:1000 

MCM3 WB Méndez Lab Ekholm-Reed et al. (2004) Rb/1:5000 

MCM4 WB Méndez Lab Ekholm-Reed et al. (2004) Rb/1:4000 

MCM6 WB Méndez Lab Ekholm-Reed et al. (2004) Rb/1:4000 

MEK2 WB BD 610235 Ms/1:2000 

ORC1 WB Méndez Lab 769AP Mendez et al. (2002) Rb/1:200 

ORC 2 WB Méndez Lab 205 S Mendez et al. (2002) Rb/1:2000 

p53 pS15 WB Cell signalling 9284 Rb/1:1000 

p21 WB Santa Cruz sc-397 Goat/1:1000 

PSF1 WB Méndez Lab 192B Aparicio et al. (2009) Ms/1:500 

PSF2 WB Méndez Lab AB34 Aparicio et al. (2009) Rb/1:500 

RNAPII pS2 WB Abcam ab5095 Rb/1:1000 

γH2AX WB Millipore 05-636 Ms/1:500 

BrdU-FITC FACS BD 556028 Ms/1:200 

BrdU (CldU) IF Abcam ab6326 Rat/1:100 

BrdU (ldU) IF BD 347580 Ms/1:100 

Rb-rabbit, Ms-mouse 
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Table 3. Genomic features analysed in this study.  

Feature Average 
size (bp) % overlap Source/definition 

CGI 655 10 UCSC browser, (Gardiner-
Garden and Frommer, 1987) 

promoters 2000 10 
RefSeq UCSC track, (Pruitt et 
al., 2004, 2014); +1.5 kb and - 
0.5 kb from TSS 

exons 176.4 10 RefSeq UCSC track, (Pruitt et 
al., 2004, 2014) 

introns 4619.8 10 RefSeq UCSC track, (Pruitt et 
al., 2004, 2014) 

TTS 2000 10 
RefSeq UCSC track, (Pruitt et 
al., 2004, 2014); +/- 1kb from 
TTS 

Intergenic regions 92823.2 10 RefSeq UCSC track (Pruitt et 
al., 2004, 2014) 

G4 34 1bp 

Home-made script; G4 were 
defined as 
GGGN[1,7]GGGN[1,7]GGGN[1
,7]GGG, intersecting matches 
were merged 

Early timing regions 1.49 x106 100 Hiratani et al. (2010) 

Late timing regions 2.21 x106 100 Hiratani et al. (2010) 

	
	
	
Table 4. Definitions of chromatin states used in this study. 

 State Definition from Juan et al. (2016) 

 Enhancers 1+2+3+11+12+13+14 

 Active promoters 15+16+17 

 Poised promoters 18 

 Transcriptional elongation 4+5 

 Insulators 20 

 PcG Repressed  19 

 Heterochromatin 6+7+8+10 

 Low signal 9 
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Results 
 
Chapter 1: Response of replication origins to stress and their 
spatial organization in the nucleus 
	
Changes in origin usage in response to fork stalling and CDC6 
overexpression 
In this chapter, we set out to determine whether stress-responsive origins may differ 

from regular origins on the basis of their genomic position, correlation with 

epigenomic marks or their three-dimensional (3D) organization within chromosome 

structures. Mouse embryonic stem cells (ESCs) were chosen for these experiments 

for two reasons: their highly proliferative status, which allows the efficient isolation of 

short nascent strands, and the extensive information available about their genomic 

and epigenomic features.  

Two approaches were used to ‘activate’ extra origins: (1) treatment with aphidicolin, 

a DNA polymerase inhibitor that triggers compensatory origin activation in response 

to replication fork slowdown; (2) overexpression of CDC6, recently found to be a 

limiting factor for origin licensing and activation in primary murine cells (Muñoz et al, 

2017; Fig. 9A). 

In the first approach, ESCs were treated with 0.5 µM aphidicolin for 2.5 h. At this 

concentration no major changes in the distribution of cells within the different cell 

cycle phases were observed (Fig. 9B, C). While the percentage of cells in S phase 

was not affected, aphidicolin caused a decrease in the intensity of BrdU 

incorporation, a partial accumulation of cells in early S and a modest activation of the 

DNA damage response, as assessed by p53-P and γH2AX protein levels (Fig. 9D). 

The dynamics of replication were assessed using stretched DNA fibers in cells 

labelled consecutively with CldU and IdU (Materials and Methods). As expected, 

aphidicolin decreased the rate of fork progression (Fig. 9E, F) and this was 

accompanied by an increase in the frequency of origin firing (Fig. 9G). We conclude 

that even mild levels of RS are sufficient to activate ‘dormant’ origins. 



	 56	

 

Figure 9. Aphidicolin triggers the activation of extra origins in mESCs. (A) Schematic of 
the experimental conditions used to compare origin usage in normal and stress conditions. 
(B) Top, flow cytometry plots showing BrdU incorporation profiles in control and Aph-treated 
mESCs. DNA content is assessed with propidium iodide (PI). Gates indicate the fractions of 
cells in G1, S or G2/M. The percentages of the total cell population in each gate are indicated. 
Bottom, DNA content profiles. (C) Histogram with the quantification of cell cycle distribution. 
Mean value and standard deviation, n=3 assays, *p < 0.1; n.s. = not significant in Student’s t 
test. (D) Immunoblot detection of the indicated proteins in mESC whole cell extracts (WCE). 
MEK2 is shown as loading control. (E) DNA fibre analysis of ESCs cells. Cell labelling 
scheme and representative pictures of DNA fibers are shown. (F) Fork rate quantification; 
***p<0.001 in Mann-Whitney test. (G) Origin activity quantification. First label origins (green-
red-green structures) were counted as a percentage of all red-labelled fibres; ***p<0.001 in 
Student’s t test. 
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Figure 10. CDC6 overexpression affects DNA replication in mESCs. (A) Schematic of 
TetO-CDC6 cells genetic alterations. Dox addition triggers overexpression of CDC6. (B) 
Immunoblot of CDC6 protein in TetO-CDC6 MEFs and ESCs in the absence or presence of 
Dox. Ponceau S staining of the nitrocellulose membrane is shown as loading control. (C) 
Flow cytometry plots showing BrdU incorporation profiles of TetO-CDC6 ESCs. Bottom, cell 
cycle profiles determined by DNA content. (D) Quantification of the cell cycle distribution of 
the cell populations in (C). (E) Quantification of origin activity by DNA fibre analyses in the 
cells shown in (C); n.s., not significant in Student’s t test. (F) Quantification of fork rate in the 
same experiment as in (E); ***p<0.001 in Mann-Whitney test.  
 

The second approach relies on CDC6 overexpression and is based on the fact that in 

mouse embryonic fibroblasts (MEFs) this manipulation was sufficient to enhance 

origin licensing and firing, without triggering a DNA damage response (Muñoz et al., 

2017). We took advantage of the available TetO-CDC6 ESC line in which HA-tagged 

CDC6 can be conditionally expressed with doxycycline (dox; Fig. 10A). CDC6 was 

efficiently overexpressed in ESCs upon 30h of induction with dox (Fig. 10B, compare 

lanes 3 and 4). Interestingly, the endogenous levels of CDC6 were much higher in 

ESCs than in MEFs (Fig. 10B, compare lanes 1 and 3). In ESCs, CDC6 
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overexpression did not alter the cell cycle profiles (Fig. 10C, D). DNA fiber analysis 

revealed a tendency towards higher origin firing following CDC6 overexpression in 

three separate replicates, even if the difference was less prominent than in MEFs 

and did not reach statistical significance (p-value 0.2; Fig. 10E; Muñoz et al., 2017). 

However, CDC6 overexpression led to a decrease in fork rate, which is consistent 

with increased origin firing (Fig. 10F). The quantitative differences between MEFs 

and ESCs in their response to CDC6 overexpression are likely due to the difference 

in endogenous CDC6 levels (Fig. 10B).  

Generation of genome-wide origin maps by SNS-Seq 
SNS-seq consists in the biochemical isolation of short nascent strands (SNS), 

followed by next-generation DNA sequencing. SNS are the first molecules 

synthetized in the leading strand at replication origins, and can be separated from 

total DNA by sucrose gradient fractionation. SNS in the 300-1500 nt size range are 

selected, while shorter fragments are excluded to avoid the interference of Okazaki 

fragments. SNS isolation can also be contaminated by small fragments of broken 

genomic DNA. To avoid sequencing these fragments, SNS preparations are 

subjected to extensive digestion with 5’-3’ λ-exonuclease, which does not act on SNS 

because of the presence of 5’ RNA primers. The efficiency of the digestion step is 

crucial and it was carefully controlled in our experiments using an exogenous 

plasmid containing two G4 motifs which are partially resistant to λ-exonuclease 

(Foulk et al., 2015, Materials and Methods). Before sequencing, RNA primers are 

removed and the remaining SNS are converted to dsDNA using random priming. 

 

SNS were isolated from three experimental conditions: (1) control ESCs (hereafter 

referred to as “WT”), (2) aphidicolin-treated ESCs (hereafter “APH”) and (3) CDC6-

overexpressing ESCs (hereafter “CDC6”). For each condition, two independent 

replicates were prepared and subjected to high-throughput DNA sequencing. 

Genomic DNA from asynchronous ESCs was isolated, fragmented by sonication to 

the same size range as SNS preparations, and sequenced. This “input” sample 

provided a background noise line for subsequent peak calling analysis, which is 

performed by specific algorithms (see below). 

 

Good quality sequencing tracks with well-defined read density peaks were obtained 

in five out of six samples (1xWT, 2xAPH and 2xCDC6). A third replicate of WT SNS 

was obtained, but the overall quality of the sequencing data was still low. Therefore 

we decided to incorporate one set of WT mouse ESCs SNS-seq data obtained 
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independently in the laboratory of Dr. M. Gómez (CBMSO, Madrid), a collaborator in 

this project. Despite the slight differences that could exist between both ESC lines, 

read density tracks looked remarkably similar (Fig. 11). 

 

 
Figure 11. Examples of origin distribution in normal and stress conditions. Origin 
datasets defined in our study were uploaded to the UCSC genome browser. Images show 
read density tracks and peaks for the indicated datasets in a representative region of 
chromosome 1. Two biological replicates are shown per condition. Dashes below the tracks 
indicate the positions of peaks called by MACS (grey) and Picard (black) algorithms. The 
upper part of the graph indicates the positions of genes and CGI in this region. 
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SNS-seq sequencing reads were aligned to the reference mouse genome, duplicates 

were removed, and peaks were identified using two separate algorithms (Table 5). 

MACS is a widely used peak-finding algorithm developed for ChIP-seq that has also 

been applied for the analysis of SNS-seq data (Comoglio et al, 2015). In addition, we 

used a second algorithm optimized for SNS-seq analysis by the group of M.N. 

Prioleau (Institut Jacques-Monod, Paris), to which we refer as "Picard", after the first 

author in the study (Picard et al., 2014). The perceived advantage of the Picard 

algorithm is that the threshold of peak detection is adjusted to any variations in the 

local read coverage. A visual comparison in the genome browser of read density 

tracks revealed that both algorithms adequately detected regions of SNS enrichment 

(Fig. 11). Tens of thousands of putative origins were found in each condition, a 

number that is within the expected range (Table 5). In general, the Picard algorithm 

was more stringent than MACS (with the exception of WT-I replicate, in which the 

number of peaks were similar). In most cases, over 90% of the peaks detected by 

Picard were included within the peaks determined by MACS (Table 5).  

 

Sample No of aligned reads 
without duplicates 

No of called peaks No of common 
peaks 

Picard vs MACS 

% of 
common 

peaks MACS Picard 

WT I 57 789 135 94 758 94 924 65 623 69.1% 
WT II 64 910 836 81 119 44 907 41 974 93.5% 
APH I 33 994 540 74 644 49 097 42 536 86.6% 
APH II 42 562 298 71 515 41 412 38 200 92.2% 
CDC6 I 77 850 848 72 418 42 831 39 883 93.1% 
CDC6 II 60 639 981 82 108 62 973 57 020 90.5% 
 
Table 5. Summary of aligned reads, called peaks, and peaks overlap between MACS 
and Picard in separate SNS replicates. Replicate WT I was obtained in the laboratory of Dr. 
M. Gómez (CBMSO, Madrid). 
 
Regardless of the peak algorithm used, a high overlap (≈80%) was obtained between 

the two experimental replicates in either APH and CDC6 conditions (Fig. 12A). Peak 

overlap was ≈50% between WT replicates, probably due to the fact that one of the 

two samples (WTI) displayed greater read coverage and a better signal-to-noise ratio 

resulting in a larger number of peaks (Fig. 12A). 

 

As an alternative test of reproducibility, we compared the patterns of read distribution 

around peak centres in both replicates (Fig. 12B). Heatmaps consist of two panels, 

each centered on the peaks from replicate I. The panels on the left show read 

distribution from replicate I around the peak centres and the panel on the right 

represents read distribution from replicate II around the same peak centres (from 
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replicate I). The patterns of read distribution of both replicates were very similar in all 

experimental conditions, supporting the high degree of reproducibility of the SNS-seq 

approach (Fig. 12B). 

 
Figure 12. Reproducibility of SNS-seq experiments. (A) Venn diagrams showing the 
overlap of origins identified in replica I and II in each condition, either using MACS (left) or 
Picard (right) as the peak-calling algorithm. (B) Heatmaps show the distribution of SNS-seq 
reads for the indicated experimental replicates, around origin peak centres. See text for a 
detailed explanation. 
 

Definition of WT, APH and CDC6 origin datasets 
Next, we defined WT, APH and CDC6 origin datasets for further analyses. In our first 

approach, a peak was only considered a replication origin when it was “called” by 

both algorithms (MACS/Picard) and detected in both replicates. With these stringent 

criteria, 20178, 31653 and 31384 origins were defined in WT, APH and CDC6 

conditions, respectively (Table 6, stringent). These values are below the estimated 

number of total origins in mammalian cells (≈50000; Méchali, 2010), but this can be 

expected given the criteria applied. The number of origins in the APH and CDC6 

conditions was strikingly higher than in WT cells, suggesting the activation of a very 

large number (>10,000) of dormant origins. 

 

Dataset 
Number of origins 

Stringent Relaxed 
WT 20178 88011 
APH 31653 49922 
CDC6 31384 65947 
CONST 11998 29240 
APH-R 17279 13843 
CDC6-R 17655 27519 
CDC6+APH-R 8242 6443 

 
 
 
 
 
 
 
 
Table 6. Number of peaks 
defined for different groups of 
origins by stringent and 
relaxed criteria. 
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Figure 13. Definition of origin subgroups. Venn diagrams represent intersections of the 
indicated groups of origins defined by stringent (A) or relaxed (B) criteria. Total numbers of 
origins in each group or subgroup are indicated in parenthesis. (C) Examples of constitutive 
and stress-responsive origins. UCSC browser images from regions containing examples of 
indicated groups of origins. Read density tracks and peaks are represented. Grey bars, peaks 
called by MACS. Black bars, peaks called by Picard. CONST, constitutive origins; APH-R, 
aphidicolin-responsive origins; CDC6-R, CDC6 overexpression-responsive origins; 
APH+CDC6-R, common origins between APH-R and CDC6-R subgroups. 
 

Actually, visual inspection of these origin datasets in the genome browser did not 

immediately support the notion that >10,000 dormant origins were activated de novo. 

In many cases, small peaks could be detected that were not called by both 
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algorithms in both replicates. For this reason, we defined a second group of datasets 

using less restrictive criteria: a peak was considered an origin when it was called by 

both algorithms in at least one replicate. Using this approach, “relaxed” sets of 

origins were defined obtaining 88011, 49922 and 65947 origins for WT, APH and 

CDC6 respectively (Table 6). In this case, the WT condition displayed a larger 

number of origins than the others, because a large number of peaks were called by 

both algorithms in one of the two WT replicates. 

Constitutive vs responsive origins 
In order to identify origins that are activated in response to APH or CDC6, we 

analysed the intersections between the WT, APH and CDC6 origin datasets. The 

subset of origins identified in all experimental conditions was termed “constitutive” 

(CONST). The subsets of aphidicolin-responsive (APH-R) and CDC6-responsive 

(CDC6-R) origins are those identified only upon aphidicolin treatment and CDC6-

overexpression, respectively. Another subset was defined as APH+CDC6-

responsive (APH+CDC6-R), including those origins that were activated upon both 

stimuli. Intersections were calculated with the stringent and relaxed origin datasets 

(Fig. 13 A, B; Table 6). Genome browser examples of replication origins belonging to 

the different categories are shown in Fig. 13C. 

 

 
 

As indicated before, visual inspection of the genomic browser suggests than many 

APH-R and CDC6-R origins are located at positions where certain activity in WT cells 

Figure 14. Heatmaps 
showing the distribution of 
SNS-seq reads for the 
indicated experimental 
replicates, around APH-R 
(left) or CDC6-R (right) 
peak centers. 
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is also detected (for examples see Fig. 13C). This impression was confirmed by 

aligning the reads of WT samples around peak centres in the APH-R and CDC6-R 

conditions (Fig. 14). This result immediately suggests that changes in origin 

efficiency are very common in the response to stress (see below). 

Defining origin efficiency based on read density 
The efficiency of a given origin is proportional to the percentage of cells in the 

population that activate it. The quantification of origin efficiency is useful because as 

shown above, origins already used in WT cells may display an increased frequency 

of activation upon stimuli. This effect may occur in parallel to the activation of new 

origins. 
 

The efficiency of individual origins was determined as read density divided by peak 

length, as described in earlier studies (Besnard et al., 2012; Comoglio et al., 2015; 

Picard et al., 2014). Efficiencies were calculated using normalized read alignment 

files, e.g. read numbers were balanced so that the files corresponding to different 

replicates contained a similar number of reads. This step minimizes the risk that 

differences in the total number of reads are erroneously translated into differences in 

origin efficiency. 

 

The possible changes in origin efficiency upon aphidicolin treatment and CDC6 

overexpression were monitored. Interestingly, the average origin efficiency in the 

APH and CDC6 conditions was higher than in WT cells, in both stringent and relaxed 

datasets (Fig. 15A). This result indicates that aphidicolin and CDC6 overexpression 

further enhanced the use of origins that are already active in unperturbed conditions. 

The overall efficiency of responsive origins (APH-R and CDC6-R) was similar to the 

WT origins (compare APH-R and CDC6-R in Fig. 15C with WT in Fig. 15A), 

suggesting that the higher efficiency detected in the APH and CDC6 datasets is 

mainly mediated by origins that increase their frequency of firing. To further confirm 

this result, we calculated the average efficiency of the constitutive origins in the WT, 

APH, CDC6 origin groups (Fig. 15E). Indeed, both CDC6 overexpression and APH 

triggered an increase in the efficiency of the same origins used in WT cells. 
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Figure 15. Relative efficiencies of different origin groups. Efficiency values were 
calculated as indicated in the main text for origin groups defined using stringent (A, C, E) and 
relaxed (B, D, F) criteria. (A, B) Efficiencies of main origin datasets. (C, D) Efficiencies of 
constitutive and stress-responsive origins. (E, F) Efficiencies of the origins common to WT, 
APH and CDC6 datasets in each group. Box plots indicate the distribution of efficiency (the 
box includes the two central quartiles and the whiskers the two extreme quartiles). Median 
value is indicated by a horizontal bar. For all comparisons, p<10-16 in Wilcoxon signed-rank 
test. 
 

From this analysis we conclude that aphidicolin and CDC6 overexpression enhanced 

the efficiency of flexible origins, i.e. the ‘activation’ of extra origins from already 

existing origin positions. Examples of increased origin efficiency in APH and CDC6 

groups are shown in Fig. 16.  

 

The efficiency of constitutive origins, calculated as the mean efficiency of common 

origins in the WT, APH and CDC6 conditions (Fig. 15C), was significantly higher than 

those of the WT, APH and CDC6 individual datasets (Fig. 15A, C), indicating that this 

group contains the strongest origins. By comparison, APH-R and CDC6-R origins 

displayed lower efficiency, indicating that they are only activated in a fraction of the 

population (Fig. 15A, C). All results regarding efficiency were reproduced using 

relaxed datasets (Fig. 15 B, D, F). 
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Characterization of origin datasets 

Correlation with genomic features and replication timing 

We next examined the correlation of WT, APH and CDC6 ‘stringent’ origin datasets 

with specific genomic features. As an important control, 100-1000 datasets of 

randomized origins were generated in each case and intersected with the same 

genomic features. The percentages of overlap of randomized origins with the 

indicated features are depicted in all plots to facilitate the interpretation of the results.  

	

In line with previous origin-mapping studies, origins in all datasets (‘stringent’ criteria) 

were found preferentially in promoters and exons. A strong association with CpG 

islands (CGI) was detected (Fig 17A). The overlap with introns was slightly higher 

than expected by random and no preference towards transcription termination sites 

(TTS) was found. Origins were slightly depleted from intergenic regions. The overlap 

with genomic features was quite comparable in WT, APH and CDC6 origin datasets. 

Analyses of the “relaxed” origin datasets produced almost identical results (Fig. 17B). 

 

When we examined these correlations in the constitutive and responsive origin 

subsets, significant differences were found: constitutive origins showed much 

stronger associations to CGI, promoter and exon regions than responsive ones (Fig. 

18A, B). Actually, APH and CDC6 responsive origins did not show a clear enrichment 

for any specific genomic features, compared to the randomized values. Of note, a 

modest but detectable enrichment was still found at CGI and promoters. Constitutive 

Figure 16. Examples of increased 
origin efficiency in response to 
stress. UCSC browser images from 
two genomic regions containing 
origins whose efficiency increased 
upon aphidicolin or CDC6 
overexpression (indicated by 
arrows). The asterisk marks an origin 
that does not change its efficiency 
upon stimuli.  
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origins showed a lower preference towards intergenic regions in comparison to 

responsive ones. Again, these effects were observed in the origin datasets defined 

with both stringent and relaxed criteria. A significant overlap of origins with potential 

G4 structures was detected in all origin groups analysed (Fig. 19).  

 

 

 
 

Figure 17. Overlap of origins with genomic features and replication timing regions. (A, 
B) Histograms show the percentage of overlap of stringent (A) or relaxed (B) origin datasets 
with the indicated genomic features. (C, D) Histograms show the percentage of overlap of the 
same origin groups with early and late replication timing regions for stringent and relaxed 
datasets, respectively. Throughout the figure, horizontal black lines indicate the percentage of 
overlap of randomized origin groups. 
 

A replication timing (RT) map available for the genome of mouse ESCs (Hiratani et 

al., 2010) was used for correlative studies with the new origin datasets. WT, APH 

and CDC6 origins were distributed between early and late RT regions displaying a 

bias towards early RT domains (Fig. 17C, D). This effect was more pronounced in 

constitutive origins, which showed a stronger correlation with early RT than 

responsive ones (Fig 18C, D). 
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Figure 18. Overlap of constitutive and stress responsive origins with genomic features 
and replication timing regions. (A, B) Histograms show the percentage of overlap of 
stringent (A) or relaxed (B) origin subgroups with the indicated genomic features. (C, D) 
Histograms show the percentage of overlap of the same origin groups with early and late 
replication timing regions for stringent and relaxed datasets, respectively. Throughout the 
figure, horizontal black lines indicate the percentage of overlap of randomized origin groups. 
 
	

 

In order to visualize the distribution of origins within RT domains, origin density was 

represented across the genome using 500 kb sliding windows. In the main origin 

groups (WT, APH and CDC6), a higher density of origins was found in early RT 

Figure 19. Overlap of 
origins with G4 
structures. Histograms 
show the percentage of 
overlap of the stringent 
(A) and relaxed (B) origin 
datasets with potential 
G4-quadruplex-forming 
sequences. 
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regions, in line with existing studies (Besnard et al., 2012; Cayrou et al., 2011). 

Visualization of the data in a genome browser confirmed that constitutive origins tend 

to localize in early RT zones, whereas responsive ones lay predominantly in late RT 

domains (Fig. 20, compare CONST and APH+CDC6-R tracks with RT track).  

 
 
Figure 20. Stress-responsive origins display higher density in late replicating regions 
then constitutive ones. Image from IGV genome browser showing read density tracks, 
origin density and peaks (stringent criteria) for the indicated datasets in chromosome 19. 
Origin density correlates with colour intensity (e.g. darker blue indicates higher density). 
Density tracks for CONST and APH+CDC6-R origins are represented next to a replication 
timing (RT) track to facilitate the visualization of constitutive and stress-responsive origins in 
relation to RT regions. 
 
 
With these analyses we conclude that constitutive origins can be distinguished from 

responsive origins by their different efficiency and distinct preference towards a set of 

genomic features and replication timing regions. 

 

Correlation with epigenetic marks and chromatin states  

In order to get novel insights into the characteristics and common features of 

replication start sites, the origin datasets were intersected with a comprehensive 

collection of epigenetic data corresponding to >70 chromatin marks recently 

compiled from >130 ChIP-seq experiments performed in ESCs (Juan et al., 2016). 

Methodologically, ChIP-seq datasets were ‘discretized’ in 200 bp windows: the 

presence of a given epigenetic mark within a window that overlapped with an origin 

was scored as 1, and its absence as 0. Then, the presence of each epigenomic mark 

at each origin fragment was quantified (a number between 0 and 1) and averaged 
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across the dataset. The overlap of origins with epigenetic features was visualized 

using heatmaps generated by unsupervised hierarchical clustering. The three main 

datasets (WT, APH, CDC6) showed similar patterns of overlap with a fraction of the 

ChIP-seq features (Fig. 21). The same pattern was stronger in the subset of 

constitutive origins. In contrast, the association of origins with these specific 

epigenomic marks was modest in CDC6-R and barely detected in the APH-R 

dataset. To establish the significance of these results, similar analyses were 

performed using randomized origin datasets. The pattern of enrichment was 

completely lost upon randomization (Fig. 21; Rand WT, Rand APH and Rand CDC6).  

As it occurred with the genomic features, similar results were obtained when origins 

where defined with relaxed criteria (Fig. 22). The different extent of overlap with 

epigenetic features suggests that constitutive and responsive origins have distinct 

preference towards different functional activities of chromatin. 

 

Next, we calculated the enrichment of epigenomic marks at origins. The enrichment 

of any particular feature was calculated as the ratio between its average value at 

origins and its average genomic value. As expected, the enrichment of features at 

randomized origin datasets was very similar to their average genomic value (Fig. 23). 

Epigenomic marks were organized into different groups based on their function. 

Features within the groups were sorted according to their enrichment, ranking from 

highest to lowest. First, we focused our analyses on the correlations from the three 

main datasets (WT, APH and CDC6), concentrating on the ≈30 most enriched 

features (Fig. 24). 
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Figure 21. Overlap of origins with epigenomic marks. Heatmap representing the overlap 
of the indicated origin groups defined by stringent criteria with ChIP-seq epigenomic marks 
from Juan et al. (2016). Heatmap was generated by unsupervised hierarchical clustering. As 
a control, an overlap of randomized (Rand) origin groups is also represented.  
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Figure 22. Overlap of origins with epigenomic marks. Heatmap representing the overlap 
of the indicated origin groups defined by relaxed criteria with ChIP-seq epigenomic marks 
from Juan et al. (2016). Heatmap was generated by unsupervised hierarchical clustering. 
 

The overlap between replication origins and transcriptionally active chromatin has 

been described in several studies (Cayrou et al., 2011, 2015; Martin et al., 2011; 

Picard et al., 2014; Sequeira-Mendes et al., 2009). Indeed, our analyses indicate that 

origins from the main datasets (WT, APH, CDC6) correlated with open and 

transcriptionally active chromatin marks such as H3K9ac and H3K4me3. The latter is 

a well-established mark of promoters in ESCs (Mikkelsen et al., 2007; Xiao et al., 

2012; Zhou et al., 2011). We also found strong correlations with RNA polymerase II 

(RNAPII-8WG16) as well as its variants RNAPII-S5 and RNAPII-S7, which are 

enriched at promoters and TSS.  
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Figure 23. The presence of epigenomic features at randomized origins is similar to 
their average genome values. Histogram representing average values of epigenomic 
features at WT origins (black), randomized origins (grey) and the mean genome value of the 
features (white). The enrichment of any particular feature was calculated as the ratio between 
its average value at origins and its average genomic value. 
 

Marks with the highest enrichment at origins include histone modifying enzymes 

known for their association with CpG islands (CGI) such as MLL (H3K4 

methyltransferase) and KDM2A and KDM2B (H3K36 demethylases; Dimitrova et al., 

2015; Zhang et al., 2015). Several proteins of the Polycomb group were also strongly 

associated with origins, such as members of Polycomb Repressive Complex 1 

(PRC1): CBX7, RING1, RYBP. Monoubuquitination of H2AK119 (H2Aub1), a mark 

deposited by RING1 was also found. From the Polycomb Repressive Complex 2 

(PRC2) complex, we detected enrichment of EZH2 and PHF19 (Sauvageau and 

Sauvageau, 2010).  

 

Other features highly enriched at origins include TET1, a dioxygenase with the 

capacity of converting 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 

as well as its interactors: OGT, SIN3A and HCFC1. TET-associated complexes are 

proposed to modulate chromatin conformation and gene expression by different 

mechanisms (Balasubramani and Rao, 2013). 
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Figure 24. Enrichment of epigenomic marks at WT, APH and CDC6 origin datasets 
defined with stringent criteria. Epigenomic features (Juan et al., 2016) were organized into 
different groups based on their function. Features within the groups were sorted according to 
their enrichment, ranking from highest to lowest.  
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Figure 25. Enrichment of epigenomic marks at constitutive and stress-responsive 
origins defined with stringent criteria. Epigenomic features (Juan et al., 2016) were 
organized into different groups based on their function. Features within the groups were 
sorted according to their enrichment, ranking from highest to lowest.  
 

 

We also found histone deacetylases HDAC1 and HDAC2, the members of the 

multiprotein complexes CoREST, NuRD and SIN3, which are responsible for 

transcriptional repression and chromatin remodelling. LSD1 H3K4/K9 demethylase, 

another member of CoREST and NuRD complexes (Whyte et al., 2012; Yang and 

Seto, 2008), was also enriched at replication start sites.  
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Interestingly, within the features highly associated with origins we detected two 

subunits of the mediator complex (MED1 and MED12) as well as NIPBL, a cohesin-

loading factor. This is likely related to the fact that cohesin, mediator and NIPBL 

colocalize at enhancers and promoters of actively transcribed genes in ESCs (Kagey 

et al., 2010). Furthermore, transcription factors KLF4, E2F1, N-MYC, C-MYC and 

MAX colocalized with origins, further linking the choice of replication start sites to the 

elements that regulate transcription. 

 

Next, we focused our analysis on the differences between constitutive and 

responsive origins. In Fig. 25, features were ordered by their ratio of enrichment in 

constitutive versus responsive origins, ranking from highest to lowest. In general, 

responsive origins displayed much lower enrichment in any ChIP-seq mark than 

constitutive ones. Therefore, the majority of the features enriched in constitutive vs 

responsive origins were the same as those features displaying enrichment in WT, 

APH and CDC6 datasets (Fig. 24 and 25). Among other features preferentially 

enriched at constitutive origins we detected BRG1 (SWI/SNF chromatin remodelling 

complex (Wilson and Roberts, 2011), H3K79me2 (a mark associated to 

transcriptional elongation), OCT4 (a transcription factor and pluripotency marker) and 

TCFCP2l1 (a transcription factor).  

 

We wondered whether specific groups of origins might be associated with particular 

functional chromatin states, taking advantage of their recent definition in ESCs (Juan 

et al., 2016). Chromatin states can be defined as combinations of chromatin marks 

that can be linked to distinct biological function (Ernst and Kellis, 2010; Filion et al., 

2010). In our case, we used a 20 chromatin state model generated using Hidden 

Markov Model applied to a set of core epigenomic features and genomic annotations. 

Origins in the main datasets (WT, APH and CDC6; stringent definition) were in 

general enriched at active and poised promoters, as well as enhancers (Fig. 26A). 

They showed moderate enrichment in heterochromatin and Polycomb-repressed 

regions and very limited association with transcriptional elongation and with 

insulators. In comparison to WT, the APH and CDC6 datasets displayed slightly 

lower association with active and poised promoters and transcriptional elongation. 

On the contrary, APH and CDC6 origins were slightly more enriched in 

heterochromatin (Fig. 26A).  
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Constitutive, but not responsive origins were strongly enriched with active and poised 

promoters and to a lesser extent with Polycomb-repressed chromatin (Fig. 26B). In 

contrast, responsive origins displayed a stronger overlap with heterochromatin. 

 

 
Figure 26. Enrichment of different chromatin states at origins. Chromatin states 
definitions were reported previously (Juan et al., 2016). Origins defined by stringent criteria 
were used for analysis. (A) Enrichment of chromatin states in WT, APH and CDC6 origin 
datasets. (B) Enrichment of chromatin states in constitutive and stress-responsive origin 
groups.  
 

Integration of linear origin maps with 3D chromatin structure 

Mapping origins to the promoter-centered chromatin interaction network  

To provide a 3D context for the replication start sites identified in this study, origin 

datasets were integrated with published chromatin contact maps for mESCs. Given 

the significant correlation of origins with promoters and transcription-associated 

features, we focused our analysis on a promoter-centered chromatin contact map 

generated using Promoter-Capture HiC (PCHiC). Capture HiC is an adaptation of Hi-

C that includes a step to enrich for interactions involving specific parts of the 

genome. In the case of PCHiC, these sequences correspond to 22,225 annotated 

gene promoters (Schoenfelder et al., 2015b), producing a network that includes gene 

promoters and the genomic regions that interact three dimensionally with them. 
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Figure 27.  Promoter Capture HiC (PCHiC) chromatin interaction network. Figure taken 
from Pancaldi et al. (2016). The PCHiC dataset was published by Schoenfelder et al. (2015). 
Promoter (P) nodes and P-P contacts are depicted in red. Other end (O) nodes and P-O 
edges are depicted in blue. One large connected component of the network and many small, 
disconnected components are observed.  
 

Network analysis is a very useful tool to study 3D chromatin interactions (Sandhu et 

al., 2012). The PCHiC chromatin interactions were processed with CHiCAGO, a 

method to extract significant long-range contacts from capture HiC datasets (Cairns 

et al., 2016) and the resulting interactions were represented as a network in which 

nodes are chromatin fragments and edges represent a significant 3D interaction 

between them (Fig. 27, 28; Pancaldi et al., 2016). The degree of each node is the 

number of connections it has with other nodes. PCHiC enriches for long-range 

interactions (on average 250 kb). Two types of chromatin fragments (nodes) are 

included: promoters (P) and other-ends (O), which are non-promoter genomic 

elements (Fig. 28A). Therefore contacts can be defined between two promoters (P-

P) and between promoters and other ends (P-O; Fig. 28A). The network can actually 

be split into two subnetworks, one including only promoter-promoter contacts (P-P, 

Fig. 28B), the other containing only promoter-other ends contacts (P-O, Fig. 28C). 

The global PCHiC network consists of 55845 nodes with a median size of 3953 kb. It 

contains 72231 connections (edges), from which 22767 mediate promoter-promoter 



	 79	

contacts (P-P edges) and 49464 connect promoters with other elements (P-O 

edges).  

 

 
 

Origin positions were mapped to the PCHiC network, to identify fragments containing 

one or more origins. In the stringent dataset, nearly 50% of WT origins and 

approximately 40% of APH and CDC6 origins localized to fragments contained within 

this network. The majority (60%) of constitutive origins were positioned within the 

nodes, as expected given their increased preference for promoters, CGI, and 

promoter-associated epigenomic marks. In contrast, only approximately 30% of 

CDC6-R and 22% of APH-R and APH+CDC6-R were located within this network. In 

all groups, the number of origins was comparable between the P-P and P-O 

subnetworks (Table 7). Taking into account that the number of P-O contacts in the 

network more than doubles the number of P-P interactions, origins show preference 

towards the P-P subnetwork. 

 
 

WT APH CDC6 CONST APH-R CDC6-R APH+ 
CDC6-R 

Total 
origin No 20164 31627 31360 11989 17264 17264 8234 

PCHiC 9790 
(49%) 

11693 
(37%) 

13598 
(43%) 

7188 
(60%) 

3867 
(22%) 

5564 
(32%) 

1840 
(22%) 

PCHiC in 
P-P 

6444 
(32%) 

6907 
(22%) 

8301 
(26%) 

5215 
(43%) 

1489 
(9%) 

2534 
(14%) 

841 
(10%) 

PCHiC in 
P-O 

6906 
(34%) 

7924 
(25%) 

9341 
(30%) 

5254 
(44%) 

2288 
(13%) 

3472 
(20%) 

1146 
(14%) 

 
Table 7. Overlap of origins (stringent dataset) with PCHiC network and its P-P and P-O 
subnetworks. In brackets the percentage of overlap is annotated. The total number of origins 
for each origin group is indicated. These numbers differ slightly from the values found in 
Table 6 because of the conversion of the data from the mm10 to the mm9 mouse genome 
assembly. 
 

Figure 28. Schematic representing a 
PCHiC network (A) that can be de-
composed into P-P subnetwork (B) 
and P-O subnetwork (C). Nodes 
(chromatin fragments) are 
represented as circles and edges 
(contacts between two nodes) as 
lines. 
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Figure 29. Origins tend to form clusters in 3D. (A) PCHiC origin subnetwork. (B) 
Magnification of a fragment of the origin subnetwork marked in (A) by dashed line. (C) 
Examples of two hubs from the PCHiC origin subnetwork. Red - promoter nodes, blue - other 
end nodes. The size of the node is proportional to its degree. 
 

Next, we focused on the PCHiC origin subnetwork, i.e. the network where all nodes 

contain one or more origins (Fig. 29A). We noticed that this network is highly 

clustered, forming hubs (highly connected nodes) of chromatin fragments containing 

origins (Fig. 29A, B, C). We hypothesized that these clusters could correspond to 

replication factories, in which origins separated in the linear genome are brought 

together in 3D, to become activated simultaneously during S phase. 

Nodes containing origins have a higher degree than average nodes 

To establish whether there are any particular characteristics of chromatin fragments 

containing origins, we first calculated their degree (i.e. number of connections) 

distribution. Remarkably, nodes containing origins displayed higher connectivity 

(mean degree 4.6 for WT and 4.4 for APH and CDC6 origins) relative to the mean 

degree of 2.6 for the entire PCHiC network (Fig. 30).  
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Figure 30. Chromatin fragments containing origins show higher connectivity. 
Distribution of degrees of the nodes containing origins in the PCHiC network. The mean 
degree value of chromatin fragments containing the indicated type of origins is depicted. The 
distribution and mean degree of the whole PCHiC network is also shown (top left). 
 

In addition, those chromatin fragments overlapping with constitutive origins 

presented the highest mean degree (4.8), whereas fragments containing responsive 

origins showed lower connectivity (mean degree in the range 3.8 - 4; Fig. 30).  

Origin connectivity correlates with efficiency and replication timing 

Constitutive origins are also the most efficient (Fig. 15), suggesting a direct 

correlation between origin efficiency and connectivity. To test this hypothesis, the 

distribution of origin efficiencies was plotted in relation to the degree of fragments 

containing origins. In all datasets analysed, a significant positive correlation between 

efficiency and node degree was observed (Fig. 31). The same results were obtained 

with the relaxed origin datasets (not shown). 
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Figure 31. More connected origins are more efficient. Distribution of origin efficiency in 
relation to the degree of PCHiC fragments containing origins belonging to the indicated 
groups. Origins defined by stringent criteria were analysed. The width of the bars is 
proportional to the number of elements in the bin. ***p<10-16 in Pearson correlation coefficient. 
cor, correlation. 
 
 

Next we established the possible correlation with replication timing (RT) of the 

network fragments using the RT data available (Hiratani et al., 2010). When the RT 

of chromatin fragments in the network was represented relative to their degree of 

connectivity, a significant correlation was obtained: in all origin groups analysed, 

those more connected displayed earlier RT (Fig. 32). 
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Figure 32. More connected origins replicate earlier. Distribution of replication timing of 
origins in relation to the degree of PCHiC fragments containing origins belonging to the 
indicated groups. Origins defined by stringent criteria were analysed. For replication timing, 
early=0 and late =1. The width of the bars is proportional to the number of elements in the 
bin. ***p<10-16 in Pearson correlation coefficient. 
 

A significant correlation was also observed between RT and origin efficiency in the 

PCHiC network in all types of origins (Fig. 33). Taken together, these results indicate 

that origins with high connectivity in the promoter-centered chromatin interaction 

network are likely to fire with high efficiency, early in S phase.  

 

 
Figure 33. Origins that replicate earlier in S phase tend to be more efficient. Graphs 
show in cloud form the distribution of origin efficiency in relation to their replication timing in 
the indicated groups of origins. Origins defined by stringent criteria were analysed. For 
replication timing early=0 and late =1. ***p<10-16 in Pearson correlation coefficient. 
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Origin-origin 3D interactions occur preferentially within TADs 

Topologically associated domains (TADs), proposed to be the structural units of 

chromatin organization (Dixon et al., 2012), are known to correspond to RT domains 

(RD; Pope et al., 2014). In order to study the relationship between origin-origin 

interactions in the PCHiC network and TADs, we assigned each chromatin fragment 

to its corresponding TAD and analysed whether ori-ori contacts are found within 

TADs (intra-TAD) or whether they span different TADs (inter-TAD). In the WT origin 

subnetwork (stringent criteria), the majority (63%) of ori-ori contacts were intra-TAD. 

This is expected, as according to the replication factory concept, interacting origins 

should display similar RT, which maintained within TADs. We found, however, that 

approximately one third of ori-ori contacts were inter-TAD. This finding could still be 

compatible with the replication factory model as long as the TADs with connected 

origins displayed comparable RT. To address this issue, we calculated the average 

difference in RT between two contacting origins belonging to intra-TAD, inter-TAD or 

random ori-ori interactions in the WT origin subnetwork (Fig. 34). The smallest 

difference in RT was detected for intra-TAD contacts. This difference was slightly 

higher for inter-TADs interactions, but still clearly below the difference observed in a 

random ori-ori interaction set. These data suggest that two interacting origins, 

independently of whether they belong to the same TAD or two separate TADs, tend 

to replicate synchronously. 

 

 

Integration of origin maps with 3D chromatin structure using chromatin 

assortativity 

To further characterize the integration of replication origins in the 3D chromatin 

structure, we took advantage of a recently developed parameter called chromatin 

Figure 34. Origins brought 
together by intra- or inter-TADs 
interactions display similar 
replication timing. Box plots show 
the distribution of differences in 
replication timing between two 
interacting PCHiC fragments 
containing origins. Intra- and inter-
TADs contacts were evaluated 
separately. Origins defined with 
stringent criteria were analysed. As a 
control, the distribution of differences 
in RT between random pairs of 
fragments is also depicted. Black 
horizontal lines represent the median 
difference in RT. 
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assortativity (ChAs) that enables the integration of linear genomic information with 

3D chromatin interaction networks (Pancaldi et al., 2016). The concept of 

assortativity is derived from social networking studies; when applied to chromatin, it 

identifies to what extent a given property of any chromatin fragment (e.g. the 

presence of a specific epigenetic feature) is shared by those fragments that interact 

with it. ChAs is a correlation coefficient, ranging between -1 and 1, and it is a 

powerful tool to identify epigenomic features which are associated to 3D chromatin 

topology (Pancaldi et al., 2016). 

 

 
Figure 35. Chromatin Assortativity. (A-C) Schematic illustrating possible outcomes of 
chromatin assortativity (ChAs) analysis. Black and white nodes represent chromatin 
fragments that contain, or not, a particular feature, respectively. Edges represent 3D 
interactions between nodes. Adapted from Pancaldi et al. (2016). See text for details. 
 

For any genome feature, ChAs can fall within three categories: ChAs>0, indicating 

that network fragments containing a particular feature tend to interact with each 

other, and less with fragments not containing this feature (Fig. 35A); ChAs=0, 

indicating no relationship between the presence of a particular feature in the 

fragments and its presence in their interacting fragments (Fig. 35B); ChAs<0, which 

would indicate that fragments containing a certain feature interact preferentially with 

fragments not containing the same feature (Fig. 35C). 

Chromatin fragments containing origins tend to interact in 3D 

Using assortativity we first determined whether chromatin fragments that contain 

origins tend to interact with each other. To this aim, origin assortativity (OriAs) was 

measured in the PCHiC network, subdivided into the P-P and P-O subnetworks. The 

three origin datasets (WT, APH, CDC6) as well as the constitutive origin subset 

displayed positive assortativity in the P-P subnetwork (Fig. 36A). In contrast, 

responsive ones were not assortative in this subnetwork. As a control reference, 

assortativity was not found in multiple sets of randomized origins, represented in the 

same graph as open circles.  
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Figure 36. Origins are assortative in the promoter-promoter PCHiC subnetwork. 
Assortativity was calculated for origins defined by stringent criteria. (A) OriAs measured for 
the indicated groups of origins. Filled circle represents the assortativity value. As a control, 
OriAs for randomized origin groups are also depicted (clouds consisting of open circles). (B) 
Comparative plot of OriAs in P-O vs P-P PCHiC subnetwork. (C) OriEfAs of the indicated 
groups of origins. Filled circle represents the assortativity value. As a control, OriEfAs for 
randomized origin groups are depicted (clouds consisting of open circles) (D) Comparative 
plot of OriEfAs in P-O vs P-P PCHiC subnetwork. 
 

Next, we examined OriAs between contacts involving promoter and other element 

fragments. To this aim, OriAs in the P-P and P-O subnetworks were combined in one 

plot, allowing for comparison of assortativity values (Fig. 36B). As shown in the 

previous graph, WT, APH, CDC6 and constitutive origins are assortative in the P-P 

subnetwork, while responsive origins were not. In contrast, assortativity of WT, APH, 

CDC6 and constitutive origins in the P-O subnetwork was not significantly different to 

the values presented by sets of randomized origins (Fig. 36B). We concluded that 

WT, APH, CDC6 and constitutive origins were not assortative in the P-O subnetwork.  
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Figure 37. Confirmation of origin assortativity in the promoter-promoter PCHiC 
subnetwork. Assortativity was calculated for origins defined by relaxed criteria. (A) OriAs 
measured for the indicated groups of origins. Filled circle represents the assortativity value. 
As a control, OriAs for randomized origin groups are also depicted (clouds consisting of open 
circles). (B) Comparative plot of OriAs in P-O vs P-P PCHiC subnetwork. (C) OriEfAs of the 
indicated groups of origins. Filled circle represents the assortativity value. As a control, 
OriEfAs for randomized origin groups are depicted (clouds consisting of open circles). (D) 
Comparative plot of OriEfAs in P-O vs P-P PCHiC subnetwork. 
 

Origin efficiency is an assortative parameter  

To test whether connected origins are likely to fire with similar efficiencies, we 

calculated the assortativity of origin efficiency (OriEfAs). Interestingly, efficiency was 

assortative in the P-P subnetwork for WT, APH, CDC6 datasets as well as the subset 

of constitutive origins (Fig. 36C, D). As it was the case with OriAs, OriEfAs was not 

different from random for the subsets of responsive origins. In the P-O subnetwork, 

origin efficiency did not show assortativity above the random value in any of the 

datasets (Fig. 36D). This data strongly suggests that WT, APH, CDC6 and 

constitutive origins found at promoters that contact each other tend to be activated 

with similar efficiencies.  
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The patterns of OriAs and OriEfAs were confirmed with extended datasets created 

relaxed criteria (Fig. 37).  

Origin assortativity in RNAPII and SMC1 networks 

To further validate the notion of origin connectivity in the 3D chromatin structure, we 

took advantage of other chromatin interaction maps available for ESCs such as 

those mediated by RNA Polymerase II (RNAPII) or cohesin SMC1 subunit. 

Chromatin connectivity maps for both proteins had been generated using ChIA-PET 

(chromatin interaction analysis with paired-end tagging; Dowen et al., 2014; Zhang et 

al., 2013). This assay involves pull-down of chromatin fragments bound to a specific 

protein of interest and interacting with each other. 

 

 
 
Figure 38. Origin efficiency is assortative in the RNAPOLII ChIA-PET chromatin 
network. OriEfAs measured for the indicated groups of origins defined by (A) stringent and 
(B) relaxed criteria. Filled circle represents the assortativity value. As a control, OriEfAs for 
randomized origin groups are also depicted (clouds consisting of open circles). 
 

The percentages of origins that localize within the fragments of these networks were 

lower in comparison to the PCHiC network (Table 8), mostly due to the low genome 

coverage of the ChIA-PET assays. In the RNAPII network, which is enriched in active 

promoter interactions, we detected positive values of OriAs (not shown) and OriEfAs 

in WT, APH, CDC6 and constitutive origins in both the stringent and relaxed datasets 

(Fig. 38). This indicates that origins are frequently located at chromatin interactions 

mediated by RNAPII and that contacting origins tend to share similar efficiency. 



	 89	

 

% WT APH CDC6 CONST APH-R CDC6-R APH+ 
CDC6-R 

RNAPII 21.3 14.4 17.1 29.7 5.09 8.34 5.95 

SMC1 10.6 7.91 9.51 14.1 4.12 6.58 4.42 

HiCap 25.1 17.5 21.4 34.2 6.45 11.7 7.85 

 
Table 8. Overlap of origins (stringent dataset) with RNAPII, ChIA-PET, SMC1 ChIA-PET 
and HiCap networks. The percentage of total origins that overlap with chromatin fragments 
from each network is indicated.  
 

Cohesin participates in the organization of chromatin loops at replication factories 

(Guillou et al., 2010). It has been proposed that cohesin-stabilized DNA loops bring 

origins together to be activated simultaneously. Indeed, values of OriAs (not shown) 

and OriEAs in WT, APH, CDC6 and constitutive origins (both stringent and extended 

datasets) were higher than expected by random in the SMC1 network (Fig. 39). This 

result implies that origins also tend to localize at chromatin interactions mediated by 

cohesin and that origins brought together by these interactions in 3D become 

activated with similar efficiencies. 

 

 
Figure 39. Origin efficiency is assortative in the SMC1 ChIA-PET chromatin network. 
OriEfAs measured for the indicated groups of origins defined by (A) stringent and (B) relaxed 
criteria. Filled circle represents assortativity value. As a control, OriEfAs for randomized origin 
groups are depicted (clouds consisting of open circles). 
 

Origins connected in 3D tend to be separated by long-range distances  

Assortativity was also analysed in a promoter-capture chromatin connectivity map 

obtained using HiCap (Sahlén et al., 2015). In this approach, a higher resolution 3D 

map was obtained (fragments have an average ≈0,6kb length in comparison to ≈4kb 
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in the PCHiC network). This alternative protocol generates shorter interaction 

fragments, increasing the coverage of short-range interactions but reducing the 

coverage of long-range ones. Surprisingly, our initial analyses in the HiCap network 

failed to detect OriAs and OriEfAs above the values expected by random (Fig. 40). 

We hypothesized that lack of assortativity in this chromatin connectivity map could be 

due to the fact that long-distance interactions are needed to detect assortativity. 

 
Figure 40. Origin efficiency is not assortative in the promoter-promoter HiCap 
subnetwork. Assortativity was calculated for origins defined by stringent criteria. (A) OriEfAs 
measured for the indicated groups of origins. (B) Comparative plot of OriEfAs in P-O vs P-P 
PCHiC subnetwork. Filled circle represents assortativity value. As a control, OriEfAs for 
randomized origin groups are depicted (clouds consisting of open circles). 
 

Therefore, OriEfAs values were calculated in the PCHiC network at different ranges 

of linear separation between contacting fragments by gradually eliminating contacts 

between genomically “close” regions (Fig. 41A). Interestingly, OriEfAs peaked 

around 500kb, indicating that this is the most common linear separation between 

origins that interact in 3D and that origins separated by this distance are most likely 

to have the same efficiency (Fig. 41A). This distance is significantly higher than the 

average distance between adjacent origins estimated by other techniques (50-

150kb).  
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Figure 41. Origins preferentially interact at long-range distances. Contacts which span 
less than indicated genomic distances were gradually removed from the PCHiC network. 
Origins defined by stringent dataset were used for this analysis. (A) OriEfAs values in the 
PCHiC network at different ranges of linear separation between contacting fragments. (B) 
The same as in (A) but inter-TAD contacts were eliminated from the network.  
 

To better understand the contribution of intra-TAD and inter-TAD contacts for 

clustering of origins in 3D, a similar analysis was done after elimination of inter-TAD 

interactions from the network. In this scenario, the peak of OriEfAs shifted towards 

250kb (Fig. 41B), indicating that this distance preferentially separates origins within a 

factory involving exclusively intra-TAD contacts. Notably, removal of inter-TAD 

interactions leads to a general decrease in OriEfAs values emphasizing their 

importance in origin clustering in 3D. This result suggests a possible hierarchy of 

organization of replication factories where individual replication factories formed 

within TADs are brought together in 3D by inter-TAD interactions (see Discussion). 
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Chapter 2: Regulation of CDC6 stability by CDC7 kinase 

Inhibition of CDC7 causes a reduction in CDC6 protein levels 
In the course of our experiments with mouse embryonic fibroblasts (MEFs) derived 

from the TetO-CDC6 mice strain, described in Chapter 1 (Muñoz et al., 2017), we 

noticed that CDC6 protein levels decreased when cells were treated with PHA-

767491, an inhibitor of CDC7 kinase (Cdc7i; Montagnoli et al., 2008). The drop in 

CDC6 levels was especially prominent following CDC6 overexpression (Fig. 42A, 

lanes 3 and 4), but could also be detected in control conditions (Fig. 42A, lanes 1 

and 2). The reduction in CDC6 levels upon CDC7 inhibition was conserved in human 

U2OS cells treated with Cdc7i (Fig. 42B). These results suggest a previously 

unknown effect of CDC7 on the stability of CDC6.  

 

Figure 42. Downregulation or inhibition of CDC7 causes a decrease in CDC6 levels 
without affecting other components of the pre-RC. (A) Immunoblots from TetO-CDC6 
MEFs whole cell extracts (WCE) treated with doxycycline (dox) for 27h and/or Cdc7i for 3h. 
(B) Immunoblots from U2OS WCE treated with Cdc7i for the indicated times. (C) 
Immunoblots from U2OS WCE treated with siCdc7 for 48h or Cdc7i for 6h. Pre-RC, pre-
replication complex; CMG, CDC45-MCM-GINS complex. (D) Immunoblot from U2OS and 
HeLa WCE treated with siCdc7 for 48h. MEK2 levels are shown as loading control. 
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The efficiency of CDC7 inhibition was monitored with specific antibodies that 

detected the phosphorylation of MCM2 protein at Ser40 and Ser53, which are 

mediated by CDC7-DBF4 kinase (Fig. 42; Montagnoli et al., 2006). In addition to 

CDC7, PHA-767489 is also known to inhibit CDK9 kinase (Montagnoli et al., 2008). 

CDK9 phosphorylates Ser2 at the C-terminal domain (CTD) of RNA polymerase II to 

stimulate the elongation phase of transcription. Consistent with this, RNAPII pS2-

CTD was decreased following Cdc7i treatment (Fig. 42C). To determine whether the 

reduction in CDC6 levels was actually mediated by DDK, CDC7 was downregulated 

using a specific siRNA oligonucleotide (siCdc7). In both U2OS and HeLa cells, 

siCdc7 led to a reduction in CDC6 levels, supporting the notion that CDC7 

contributes to the regulation of CDC6 protein (Fig. 42D). 

CDC7 downregulation/inhibition did not affect the levels of other components of the 

pre-RC and CMG complexes such as ORC1, ORC2, MCM2, MCM3, MCM4, MCM6, 

CDC45 or PSF2, except for slight reductions in the levels of CDT1 and GINS subunit 

PSF1. Therefore, CDC7 inhibition does not elicit a global downregulation of DNA 

replication proteins. As previously reported, Cdc7i also reduced CDC7 protein levels 

(Fig. 42C; Montagnoli et al., 2008). 

CDC6 levels are reduced in all phases of the cell cycle 
In human cells, CDC6 levels fluctuate in the cell cycle, being lower during early G1 

and higher in the remaining phases (Méndez and Stillman, 2000). For this reason, 

the drop in CDC6 levels observed after CDC7 inhibition could be due to an indirect 

effect on cell cycle distribution. However, analyses of DNA content by flow cytometry 

following siCdc7 or Cdc7i treatments showed only a modest percentual increase in 

G1 cells, concomitant to a slight reduction in S-phase cells (Fig. 43A,B). To exclude 

the possibility that the drop in CDC6 levels was caused by this slight accumulation in 

G1, cells were separated into G1, S and G2/M phases by FACS. The reduction of 

CDC6 protein caused by siCdc7 was observed in all phases (Fig. 43C). In response 

to Cdc7i, the decrease in CDC6 levels was apparent in G1 and G2 phases but less 

clear in S phase (Fig. 43D). 
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Figure 43. CDC6 levels decrease in all cell cycle phases upon siCdc7. (A) Distribution in 
cell cycle phases in U2OS cells -/+ siCdc7 (48h), as assessed by flow cytometry using 
propidium iodide (PI) and BrdU staining. Gates corresponding to G1, S and G2/M cells and 
their percentages relative to the total cell population are indicated. The histogram shows the 
percentage of cells in each phase (mean value and standard deviation (SD), n=3 assays), *p 
< 0.1 in Student’s t test. (B) The same as in (A), but U2OS cells were treated with Cdc7i for 
6h; *p < 0.1; **p < 0.01; n.s. = not significant in Student’s t test. (C) U2OS cells were treated 
with siCdc7, stained with Hoechst 33342 and sorted by FACS into G1, S and G2/M phases. 
Flow cytometry graphs indicate the purity of each fraction after cell sorting. Immunoblots of 
the indicated proteins were performed in WCE from asynchronous (Asy) and sorted cells. s. 
exp., short exposure; l.exp, long exposure. (D) The same as in (C), but U2OS cells were 
treated with Cdc7i instead of siCdc7 before cell sorting. 

 

Next, the subcellular localization of CDC6 was assessed by biochemical 

fractionation. Reduced CDC6 levels were detected in both cytosolic and chromatin 

fractions upon siCdc7 (Fig. 44A) and Cdc7i (Fig. 44B). The fact that the levels of 

chromatin-bound CDC6 are altered suggests a functional significance for the 

stabilization of CDC6 protein mediated by CDC7. 

The decrease in CDC6 levels is mediated by changes in protein stability 
To test the possibility that CDC6 levels could be regulated transcriptionally, CDC6 

mRNA was determined by RT-qPCR following CDC7 downregulation. No major 

changes in mRNA levels were detected for CDC6 or other members of the pre-RC 

such as ORC1 and MCM3 (Fig. 45A). p21 mRNA, which displays a short half-life, 
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was also not reduced (it was actually slightly increased), suggesting that transcription 

is not globally altered (Fig. 45A). Conversely, Cdc7i led to a marked reduction in 

mRNA levels in all genes tested, consistent with a global transcriptional shut-down 

probably mediated by the CDK9 inhibition (Fig. 45B). 

 

 

 
 
Figure 44. CDC7 downregulation or inhibition affects both cytosolic and chromatin-
bound CDC6. U2OS cells were treated with siCdc7 or Cdc7i and subjected to biochemical 
fractionation. Immunoblots of WCE, cytosolic and chromatin (chrom) fractions for cells treated 
with siCdc7 (A) or Cdc7i (B) are shown. MEK2 (cytosolic) and H3 (chromatin-bound) 
immunoblots serve as fractionation controls. 
 
 

CDC6 protein is stabilized by proteasome inhibitors such as MG-132 (Méndez and 

Stillman, 2000). This effect was reproduced in our study in control conditions (Fig. 

45C, lanes 1 and 2; Fig. 45D, lanes 1 and 3), and also upon siCdc7 (Fig. 45C, lanes 

3 and 4) and Cdc7i (Fig. 45D, lanes 2 and 4). These results support the notion that 

the reduction in CDC6 levels in response to CDC7 downregulation/inhibition is 

mediated at least in part by protein destruction via proteasome. 

To confirm that the decrease in CDC6 levels was related to protein stability, the half-

life of CDC6 was examined upon addition of cycloheximide (CHX), an inhibitor of 

protein synthesis. CDC6 normal half-life of approximately 2 h was shortened upon 

Cdc7i treatment (Fig. 45E). A similar effect was observed with CDK inhibitor 

roscovitine, previously shown to reduce CDC6 stability (Fig. 45F; Mailand and 

Diffley,2005).  
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Figure 45. Effect of CDC7 downregulation or inhibition on CDC6 mRNA and protein 
stability. RT-qPCR for CDC6, ORC1, MCM3 and p21 mRNA isolated from U2OS cells 
treated with siCdc7 (A) or Cdc7i (B). Fold-change (mean and SD) of treated vs control cells is 
represented; n=3. (C) Immunoblots of WCE from U2OS cells treated with siCdc7 and/or 
proteasome inhibitor MG-132. (D) Same as in (C), but cells were treated with Cdc7i instead of 
siCdc7. (E, F) U2OS cells were treated with Cdc7i for 6h (E) or roscovitine (Ros) for 4h (F) in 
the presence of cycloheximide (CHX) for the indicated times. Stability of CDC6 was 
monitored by immunoblotting. 

CDC7 downregulation does not affect APC/C activity  
In order to elucidate the mechanism responsible for the drop in CDC6 levels, we 

examined the levels of proteins known to regulate CDC6 stability in the cell cycle 

such as the APC/C ubiquitin ligase (Petersen et al, 2000). Upon siCdc7 and Cdc7i 

treatment, APC/C activating subunits CDH1 and CDC20 levels were not upregulated, 

suggesting that the decrease in CDC6 levels is not due to an enhanced activity of 

APC/C. Besides, we confirmed that other known targets of this ubiquitin ligase 

(CycA, CycB, AuroraB; Manchado et al., 2010) were not altered upon CDC7 

downregulation or inhibition. A slight reduction in the levels of Geminin, another APC 

target, was observed (Fig. 46A). We conclude that the activity of APC/C was not 

largely affected in our experimental conditions. Interestingly, we noticed the decrease 

in CycE (not a target of APC/C) levels upon CDC7 inhibition (Fig. 46A), in agreement 

with a previous report (Montagnoli et al., 2008). 
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Figure 46. CDC7 downregulation or inhibition does not affect APC/C activity but 
induces a DNA damage response. (A) Immunoblot detection of the indicated proteins in 
WCEs of U2OS treated with siCdc7 or Cdc7i. (B) Immunoblot detection of the indicated 
proteins in WCEs from U2OS cells treated with siCdc7 or Cdc7i, or HeLa cells upon siCdc7.  

CDC7 downregulation induces p53 and p21 

In response to DNA damage, CDC6 is destabilized in a p53-dependent manner. This 

regulation involves p21, which inhibits a protective phosphorylation event at Ser54 in 

CDC6 by CDK2-CycE (Duursma and Agami, 2005). We therefore examined whether 

siCdc7 and Cdc7i induce a p53 response. In both cases, DNA damage marker 

γH2AX was detected, together with increased levels of p53 phosphorylation at 

Ser15. siCdc7 also led to increased p21 mRNA and protein levels (Fig. 45A and 

46B). This was not observed after Cdc7i, probably due to the downregulation of p21 

mRNA (Fig. 45B and Fig. 46B). CDC6 phosphorylation at Ser54 was reduced in 

parallel to the decrease in total CDC6 levels.  

These experiments suggest that p53 activation may be responsible for the drop in 

CDC6 following CDC7 inhibition. However, when CDC7 is inhibited in HeLa cells that 

carry an inactive form of p53, p21 protein levels did not increase but the levels of 

CDC6 pS54 were still reduced (Fig 46B). We conclude that CDC6 downregulation 

upon siCdc7 and Cdc7i involves both p53-dependent and p53-independent 

mechanisms. 

CDC7 phosphorylates CDC6 at multiple sites in vitro. 
CDC7 kinase phosphorylates preferentially at serine or threonine amino acids that 

are followed by an acidic residue (S/T-D/E; Charych et al., 2008; Cho et al., 2006; 
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Montagnoli et al., 2006). Human CDC6 has eight consensus CDC7 phosphorylation 

sites. Six of them are conserved in mouse and four are maintained between human, 

mouse and frog CDC6 proteins (Fig. 47). We hypothesized that CDC7 may act 

directly on CDC6 by phosphorylating it and affecting its stability. In order to address 

this possibility, GST-CDC6 was purified (Fig. 48A; Méndez and Stillman, 2000). The 

size of GST-CDC6 is ≈88 kDa (62kDa for CDC6 and 26kDa for GST). Also, CDC7 

kinase was purified together with a fragment of DBF4 that is essential for its 

activation (CDC7/DBF4197-333, ≈66 kDa; Fig. 48A). Upon incubation of GST-CDC6 

with CDC7/DBF4197-333, the GST-tag is cleaved from CDC6 (Fig. 48B, compare lane 

2 with lanes 1 and 4), most likely by the action of PreScission protease used for 

CDC7/DBF4197-333 purification. This was unexpected, as the linker sequence between 

GST and CDC6 contains a target sequence for TEV protease rather than 

PreScission enzyme. In any case, the TEV target includes the core sequence Phe-

Gln-Gly that is also recognized by PreScission. Indeed, we confirmed that purified 

PreScission excised GST from GST-CDC6 (Fig. 48B, lane 5). The 66 kDa protein 

species that appears after incubation with CDC7/DBF4197-333 (Fig. 48B, lanes 1 and 

4) or PreScission protease (Fig. 48B, lane 5) is indeed recognized by CDC6 antibody 

(Fig. 48B, bottom). 

 

In vitro kinase assays were performed with the purified proteins. CDK2-Cyclin A was 

used as positive control as it phosphorylates CDC6 at S54, S74 and S106 (Fig. 48C 

lane 5; Jiang et al., 1999; Petersen et al., 1999). Reactions in the absence of kinase 

(Fig. 48C, lane 2) or Mg2+ metal activator (Fig. 48C lane 2) served as negative 

controls. In the absence of GST-CDC6 substrate, autophosphorylation of 

CDC7/DBF4197-333 was detected (Fig. 48D, lane 3), in line with previous studies (Cho 

et al., 2006; Weinreich and Stillman, 1999). The complete in vitro kinase reaction 

revealed the presence of CDC6 phosphorylation (lower band) as well as CDC7 

autophosphorylation (upper band; Fig. 48C). 

 

In order to identify specific phosphorylation sites, an in vitro kinase assay was 

followed by mass spectrometry (MS) analysis. Using this approach, five out of the 

eight CDC7 consensus sites were identified: S30, S134, S421, S439, S504 (Fig. 

48D). Additionally, phosphorylation was detected at two non-consensus sites: S6 and 

S41. CDC7 and DBF4 autophosphorylation sites were also identified (not shown). A 

parallel in vitro kinase assay performed with CDK2-Cyclin A led to the detection of 

two CDK phosphorylation sites in CDC6: S74 and S106 (Fig.48E). From these 

experiments we conclude that CDC7 phosphorylates CDC6 in vitro. 



	 99	

 

 
 

Figure 47. Consensus CDC7 phosphorylation sites in CDC6 protein. (A) Protein 
sequence alignment of CDC6 protein species from human (Hs), mouse (Mm) and frog (Xl). 
CDC7 consensus phosphorylation sites are indicated in grey. (B) Schematic of the human 
CDC6. Conserved motifs are indicated. Red arrows mark the positions of three serine 
residues (S54, S74, S106 that can be phosphorylated by CDK. D-box and KEN motif are 
conserved destruction boxes recognized by APC/CCDH1. Cy, cyclin binding box. AAA+ domain 
contains the active site for ATPase activity. WHD, winged-helix domain. Black line at the 
bottom marks the positions of eight consensus CDC7 phosphorylation sites. Adapted from 
Borlado and Méndez, (2008). 
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Figure 48. CDC7 phosphorylates CDC6 protein in vitro. (A) Coomassie Brilliant Blue 
staining of purified CDC7/DBF4197-333 and GST-CDC6 proteins. (B) Incubation of GST-CDC6 
with CDC7/DBF4197-333 or PreScission (PreSc) protease separates the GST-tag from CDC6. 
Top, Coomassie staining. Bottom, immunoblot with CDC6 antibody. (C) In vitro kinase assay 
followed by autoradiography (upper panel). The lower panel shows a Coomassie staining of 
the proteins present in the in vitro kinase assays. Asterisks mark CDC7 autophosphorylation. 
(D) Table shows the peptides including phosphosites identified by mass spectrometry after in 
vitro kinase reaction similar to the one shown in (C). Consensus phosphorylation sites are 
shown in grey. (E) The same as (D), but the in vitro kinase assay was performed using 
CDK2-Cyclin A and GST-CDC6.  
 

Effect of CDC6 phosphorylation on protein stability  
To study the effects of CDC7-mediated CDC6 phosphorylation, human CDC6 mutant 

versions were generated in which all eight CDC7 consensus sites were modified to 

substitute the Ser/Thr residues for Ala (S8A) or Asp (S8D), mimicking the 

unphosphorylated and phosphorylated states of CDC6, respectively. We decided to 

mutate all consensus sites, because we suspected that the limited sensitivity of the 

IVK/mass-spec assay could hinder the potential presence of phosphorylation at the 

remaining positions. In our system, an N-terminal V5 tag was added to CDC6 to 

differentiate between the endogenous and over-expressed (o/e; V5-tagged) versions 

of CDC6. 

 

We first tested the stability of mutant CDC6 proteins upon siCdc7 treatment. While 

endogenous CDC6 and V5-CDC6 dropped upon downregulation of CDC7 kinase, 
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the levels of phospho-dead (V5-CDC6-S8A) and phospho-mimic (V5-CDC6-S8D) 

proteins remained stable. We reasoned that because both mutants carry 

modifications that prevent their phosphorylation by CDC7, they might be resistant to 

alterations in the levels of this kinase (Fig. 49A). We then evaluated CDC6 stability in 

the presence of CXH. Whereas WT and S8D versions of CDC6 displayed a similar 

half-life, the unphosphorylatable S8A CDC6 was clearly less stable (Fig. 49B). These 

experiments support the notion that CDC7 phosphorylation stabilizes CDC6. 

 

 
Figure 49. CDC6-S8A and S8D mutants are resistant to CDC7 downregulation. (A) 
U2OS cells were transfected with siCdc7 and, 24h later, with plasmids carrying different 
versions of CDC6 (WT, S8A, S8D). The histogram shows the quantification of CDC6 levels as 
detected in immunoblots, normalized to the siCdc7-untreated condition. (B) CDC6-S8A 
mutant displays reduced stability. WT, S8A or S8D CDC6 mutants were expressed in 
U2OS cells and their degradation kinetics were estimated by immunoblotting in the presence 
of CHX. Representative immunoblots are shown. The graph represents quantification of 
fluctuation of each version of CDC6. Protein levels were normalized to the 0h time point. 
Quantifications were performed with ImageJ. endo, endogenous CDC6, o/e, over-expressed 
 

Downregulation of CDC6 does not affect MCM helicase loading 
To understand the possible function of CDC7-dependent CDC6 phosphorylation, we 

examined the effect of over-expressing the mutant CDC6 versions. No differences in 

cell cycle distribution were observed relative to control cells (Fig. 50A, B). As CDC6 

is essential for MCM helicase loading onto DNA, we hypothesized that expression of 

the less stable, phospho-dead version of CDC6 could affect helicase loading. 

However, neither expression of V5-CDC6-S8A nor V5-CDC6-S8D in asynchronous 

cell cultures affected the amount of MCM2, MCM3 and MCM4 proteins on chromatin 

(Fig. 50C).  
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Figure 50. Expression of CDC6-S8A and CDC6-S8D mutants does neither affect cell 
cycle distribution nor MCM chromatin loading. (A) U2OS were transfected with the 
indicated versions of CDC6 for 24 h. Cell cycle distribution was assessed by flow cytometry 
using propidium iodide (PI) and BrdU staining. Gates indicate the percentage of cells in each 
phase of the cell cycle. (B) Histogram showing percentage of cells in G1, S and G2/M phases 
24 h after transfection with the different versions of CDC6 (mean value and SD, n=3 assays). 
(C) Cells treated as in (A) were subjected to biochemical fractionation. Immunoblots show the 
levels of MCM2, MCM3, MCM4 and CDC6 proteins in WCEs and the chromatin fraction. 
GAPDH (cytosol) and H3 (chromatin-bound) are shown as fractionation controls. 
Quantifications were performed with ImageJ. 
 

We also monitored whether the reduction in CDC6 levels would affect the licensing 

reaction specifically at the M-G1 transition. Cells transfected with siCdc7 were 

synchronized in metaphase with nocodazole and released for different times, 

followed by chromatin fractionation. Changes in CycB1, Geminin and CDC6 served 

as controls for the transition from M to G1 (Fig. 51A, B). As expected, the association 

of CDC6 with chromatin was diminished upon siCdc7 treatment, but MCM helicase 

loading was not affected, as assessed by the amounts of MCM2, MCM3 and MCM4 

subunits (Fig. 51B). It should be noted that endogenous CDC6 was still present in 

these experiments, which might influence the evaluation of the effect of the CDC6 

mutant versions. 
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In summary, in this chapter we have described a novel regulatory pathway for CDC6 

protein stability, mediated by CDC7 kinase. While the biological function of this 

regulation is still unclear, possible models are presented in the Discussion section. 

 
 
 
 

Fig. 51. CDC6 downregulation 
mediated by siCdc7 does not alter 
MCM loading in M-G1. (A) U2OS 
cells -/+ siCdc7 were synchronized 
with nocodazole for 20h. After block 
release, cells were collected at 
different times and subjected to 
biochemical fractionation. DNA 
content in each cell population 
assessed by flow cytometry 
detection of PI. (B) Immunoblots 
against the indicated proteins in the 
chromatin or cytosol fractions. 
GAPDH and H3 are shown as 
fractionation controls. 
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Discussion  
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Discussion 
 
Chapter 1: Response of replication origins to stress, and their 
spatial organization in the nucleus 
	
Genome-wide localization and features of constitutive vs stress-
responsive DNA replication origins 
We have generated genome-wide maps of replication origins in mouse ESCs in three 

experimental conditions (WT, APH, CDC6). Before our study, a single genome-wide 

map and two partial maps of mESCs origins had been published (Cayrou et al., 

2011; Sequeira-Mendes et al., 2009). The goal of our analysis was to provide novel 

insights into the regulation of DNA replication in normal and stress conditions. 

The SNS-Seq methodology used for genome-wide mapping of replication origins in 

mammalian cells has raised controversy, mainly because it has been indicated that 

insufficient digestion with λ-exonuclease could enrich in G4-quadruplex sequences 

(Hyrien, 2015; Urban et al., 2015). We have tried to minimize this possible bias in our 

experiments by performing three rounds of extensive λ-exonuclease digestion in the 

presence of an exogenous plasmid containing G4 motifs as control. Still we found 

significant overlap (around 60%) of origins with G4-forming sequences in line with 

previous reports (Besnard et al., 2012; Cayrou et al., 2012b). However, it should be 

taken into account, that G4 motifs are very abundant in the genome (nearly 490 000). 

These structures may therefore contribute to specification of a large subset of 

origins. Genetic experiments involving the manipulation of G4 structures will be 

required to determine the precise contribution of these elements to origin definition 

and activity. 

Then, two separate peak-calling algorithms were used to identify replication start 

sites and restrictive criteria were used to define the final origin datasets. Later on, the 

results obtained were confirmed using datasets that were defined with more relaxed 

criteria. Because of these measures we are confident about the quality and 

reproducibility of the results presented. 

Characterization of origin genetic and epigenetic features 

We examined the chromatin landscape of replication origins in cells in normal growth 

conditions (WT), upon replication stress (APH) or overexpression of a key initiator 

protein (CDC6). In all cases, extensive correlations were established between origin 

positions and genomic and epigenomic features available for ESCs. Many of the >70 
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epigenomic marks (Juan et al., 2016) were analysed for the first time in the context of 

origins, generating one of the most comprehensive characterization of mammalian 

origin features so far.  

In general, our analyses agree with known features of mammalian origins such as 

their preferred localization at CGI, promoters, intragenic regions, early replicating 

regions and open chromatin marks (Besnard et al., 2012; Cadoret et al., 2008; 

Cayrou et al., 2011, 2015; Dellino et al., 2013; Langley et al., 2016; Miotto et al., 

2016; Petryk et al., 2016; Picard et al., 2014; Sequeira-Mendes et al., 2009). 

Because of the exhaustive list of epigenetic marks analysed, we have expanded 

these observations to include the following considerations: 

Connection with promoter elements. It is clear that origins are preferentially located 

at or around promoter elements, as shown by the strong correlations with the 

H3K4me3 mark, RNAPII and histone modifying enzymes such as H3K4 

methyltransferase MLL and H3K36 demethylases KDM2A/B (Dimitrova et al., 2015; 

Zhang et al., 2015). Generally, promoters lack the H3K36me2/3 mark and that KDM2 

demethylases co-localize with H3K4me3 at CGI promoters to ensure the removal of 

H3K36 methylation from TSSs (Zhang et al., 2015). In line with these observations, 

human replication origins preferentially localize at the 5’-end but not the 3’ end of 

expressed genes (Valenzuela et al., 2011).  

 

Interestingly, distinct forms of RNAPII displayed different levels of enrichment: 

amongst the most frequently present were phosphorylated forms RNAPII-S5 and 

RNAPII-S7, which have been associated to RNAPII pausing in the proximity of 

promoters of active genes (Brookes et al., 2012; Core and Lis, 2008). Conversely, 

the elongating form of RNAPII - characterized by RNAPII-S2 phosphorylated form 

and presence of H3K36m2/3 marks (Brookes and Pombo, 2009; Dimitrova et al., 

2015; Harlen and Churchman, 2017; Kouzarides; Zhang et al., 2015) - are amongst 

the least enriched features at origins. We have detected a strong correlation of 

origins with active and poised promoters, but not with transcriptional elongation 

chromatin states. A lower frequency of origin localization in regions where 

transcription elongation takes place could help to avoid conflicts between the 

transcription and replication machineries (García-Muse and Aguilera, 2016). In the 

future, a more detailed analysis of origin localization in respect to the positioning of 

different variants of RNAPII could allow for a better understanding of how initiation of 

DNA replication is coordinated with transcription dynamics. 
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Polycomb repressive complexes and bivalent promoters. The main role of PcG 

complexes is to maintain the pluripotent state by silencing developmental regulator 

genes (Simon and Kingston, 2013). We have found strong correlations of origins with 

several members of both PcG complexes: PRC1 and PRC2. PRC2 can be recruited 

to CGI (Ku et al., 2008; Li et al., 2017), where many origins are located. In mESC 

cells, PRC1 is a master regulator of genome architecture by organizing a network of 

promoter-promoter contacts (Schoenfelder et al., 2015a). We hypothesize that 

Polycomb proteins influence the regulation of replication and transcription by 

controlling the spatial organization of these processes in the nucleus.  

Bivalent promoters contain both activator (H3K4me3) and repressive (H3K27me3) 

marks and are considered to poise expression of developmental genes (Bernstein et 

al., 2006). Recently, origins in mESCs have been shown to display a preference 

towards bivalent domains (Cayrou et al., 2015). Indeed, our independent analyses 

indicate an enrichment at origins of H3K4me3, H3K27me3, EZH2 (methyltransferase 

of H3K27m3) and the “poised promoters” chromatin state. 

Connection with cohesin and mediator complexes. We also found a strong 

enrichment of the mediator complex and cohesin loading factor NIPBL at origins, as 

well as moderate association with cohesin subunits SMC1 and SMC3. Presumably, 

these factors link gene expression and chromatin architecture, as they promote cell 

type-specific gene activation through enhancer-promoter DNA looping (Kagey et al., 

2010). Moreover, mediator interacts with RNAPII and directly regulates 

transcriptional machinery (Kwak and Lis, 2013). These data further underscore the 

interconnections between 3D chromatin architecture, replication and transcription. 

 

Connection with DNA methylation. A striking enrichment of TET-associated 

complexes was seen at origins. In ESCs, TET1 binds within genes and CpG-rich 

promoters (Voigt et al., 2013; Williams et al., 2011) and is implicated in maintaining 

their hypomethylated DNA state (Wu et al., 2011). O-linked N-acetylglucosamine (O-

GlcNAc) transferase (OGT) is recruited to chromatin through its interaction with TET1 

in the proximity of CpG-rich TSS (Vella et al., 2013). OGT also interacts with HCFC1, 

a component of H3K4me3 methyltransferase complexes SET1A/B and MLL1/2 

(Voigt et al., 2013), and this protein network establishes the H3K4me3 mark at CpG 

rich promoters, positively regulating gene expression (Balasubramani and Rao, 

2013; Deplus et al., 2013; Voigt et al., 2013). TET1 can also interact with SIN3 (Vella 

et al., 2013; Williams et al., 2011), a member of Co-repressor complex, and with 
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PRC2 (Wu et al., 2011) indicating a potential role in transcriptional repression. 

Replication origin localization is therefore strongly linked to the modulation of 

chromatin conformation and gene expression mediated by TET1 associated 

complexes. 

Modulation of origin activity upon stress: new origins and global increase in 

efficiency 

We have uncovered unique information about the localization and characteristics of 

constitutive and stress-responsive origins in ESCs. When datasets were defined 

using stringent criteria, the total number of origins upon APH or CDC6 

overexpression was increased in comparison to control conditions (Table 6), 

suggesting the activation of many dormant origins. A marked increase in the number 

of initiation sites upon exposure to APH has also been reported recently in HCT116 

human cancer cells (Utani et al., 2017). However, this effect was not observed when 

datasets were defined using ‘relaxed’ criteria. In this case, the relatively low overlap 

between the two WT replicas resulted in the identification of a very large number of 

initiation sites in WT cells, which was higher than in APH and CDC6 conditions.  

In any case, it is important to remark that very often, an enrichment of SNS-seq 

reads can be detected in positions where a peak is not recognized by the algorithm 

in a particular replicate or experimental condition. We interpret these cases as origins 

that are actually used, although their low efficiency does not reach the threshold of 

peak detection. These observations strongly imply that the main replicative 

response to stress may not consist in the selection of new origin sites but in 

the modulation of origin activity of pre-existing ones.  

Indeed, APH treatment and CDC6 overexpression increased the global efficiency of 

origin usage in comparison to control growth conditions (as shown in Fig. 15). A 

stronger increase in origin efficiency was caused by APH than CDC6, in line with the 

results obtained with DNA fibres (as shown in Fig. 9 and 10). When origin efficiency 

was compared only in the subgroup of origins that are common to the WT, APH and 

CDC6 conditions, we confirmed that the efficiency of these common initiation sites 

was higher in APH and CDC6 than in the WT group. This supports the notion that 

stress increments the frequency of origin firing from already existing positions.  

We would like to propose that both readouts of SNS experiments to detect extra 

origin activation (origin firing from new positions and increased efficiency from 

already existing ones) are caused by the increased efficiency of origin firing upon 
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stimuli. The vast majority of “dormant” origins detected from apparently new positions 

would correspond to origins that are active but not efficient enough to reach the 

threshold of peak detection in control growth conditions. Our observations are in line 

with the stochastic model of origin firing (Rhind and Gilbert, 2013) that postulates that 

there are no qualitative differences between different types of origins (early, late, 

constitutive, flexible, dormant). The only difference between them is their probability 

of firing/ efficiency with which they become activated. 

The relevant question now becomes what determines origin efficiency. Indeed, 

constitutive origins were much more efficient than responsive ones, even after they 

had been activated by stress (as shown in Figure 15). This finding parallels the 

observations that in Drosophila and human cells, origins shared by different cell 

lineages from the same organism (referred to as “developmentally constitutive 

origins”) display higher efficiency than cell type specific origins (Besnard et al., 2012; 

Comoglio et al., 2015; Picard et al., 2014). 

Different nature of constitutive and stress-responsive origins 

Constitutive origins displayed stronger correlations with CGI, promoters, exons and 

early replicating regions than responsive ones. The latter were more evenly 

distributed throughout the genome. We conclude that dormant origins do not have 

strong preference towards any of the genomic features analysed nor to the 

replication timing regions. Analogously, human “developmentally constitutive origins” 

tend to replicate early in S-phase while cell-type specific origins do not show such a 

strong bias in replication timing (Picard et al., 2014). 

Constitutive origins are much more frequently associated than responsive origins 

with the “active promoter” and “poised promoter” chromatin states, as defined by 

multiple epigenetic marks. Therefore, constitutive start sites show a preference 

towards open and transcriptionally active chromatin. On the contrary, responsive 

origins were preferentially associated to heterochromatin regions, which are known 

to be origin-poor (Cayrou et al., 2011; MacAlpine et al., 2010). A very long distance 

between two adjacent origins makes it harder for neighbouring forks to rescue an 

event of fork stalling, and indeed paucity of replication origins contributes to genomic 

instability at late-replicating common fragile sites (Técher et al., 2017). We postulate 

that within these zones, a significant increase in origin density in response to stress 

is necessary to ensure cell survival.  
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Remarkably, none of the analysed chromatin characteristics was exclusive to 

constitutive or responsive origins. Rather, quantitative differences were observed in 

the levels of their overlap/enrichment. Again, this is in line with the stochastic model 

for origin activation. Open chromatin favours origin positioning and efficiency of firing 

(Cayrou et al., 2011; MacAlpine et al., 2010). In our view, constitutive origins that 

strongly correlate with open, transcriptionally active chromatin, display a higher 

probability of being activated that responsive ones. It is likely that euchromatin 

provides easier access to limiting replication factors than heterochromatin. Additional 

factors that could influence the probability of origin activation are the number of 

licensed origins within a particular genomic region and the number of MCM 

complexes loaded onto each origin (Rhind and Gilbert, 2013). Easily accessible 

chromatin would enable the licensing of more origins in a particular genomic region 

and/or a higher loading of MCM complexes onto initiation sites. The probability of 

helicase activation would be accordingly increased in euchromatin zones.  

 

Spatial organization of replication origins in the nucleus 
	
Efficient origins are connected in 3D: implications for replication factories 

We have integrated for the first time a linear, high-resolution map of replication 

origins into several 3D chromatin structure networks, providing unprecedented 

information about the spatial organization of origins within the nucleus.  

 

Using a parameter known as chromatin assortativity (Pancaldi et al., 2016), we 

have found that genomic regions containing origins tend to interact across the 

genome. This was true for the three origin datasets (WT, CDC6, APH) and the 

constitutive (CONST) origin subset in several published 3D chromatin maps defined 

in ESCs using Hi-C, promoter-capture Hi-C (PCHiC), RNAPII ChIA-PET and SMC1 

ChIA-PET. Origin-origin interactions were predicted by the replication factory model. 

According to it, groups of origins are brought together in 3D by chromatin loop 

formation. In S phase, contacting origins localized at the bases of the loops become 

activated simultaneously (Fig. 52 and Berezney et al., 2000; Courbet et al., 2008; 

Jackson and Pombo, 1998).  

 

In general, subsets of responsive origins did not show this tendency. This could be 

due to the fact that responsive origins become active in the context of existing 

replication factories, rather than forming new factories consisting only of backup 

origins. It is conceivable that dormant origins are localized along the DNA loops, at a 
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distance from the loop base where constitutive origins would be concentrated. Stress 

conditions might induce changes in loop architecture, bringing dormant origins to the 

centre of the factory and favouring their activation (Fig. 52; Fragkos et al., 2015). In 

this regard, it would be interesting to perform a Hi-C experiment to investigate the 

changes in chromatin structure caused by replication stress, e.g. by aphidicolin 

treatment. 

	  
Figure 52. Model of dormant origin activation within a replication factory. Accumulation 
of stalled forks could trigger loop rearrangements and bring dormant origins to the centre of 
the factory. See text for details. 
 
Using tools derived from network theory, we also determined that in the promoter-

capture network (PCHiC), chromatin fragments containing replication origins display 

higher connectivity with other genomic regions than the average PCHiC fragment. 

This was true for all groups and subgroups of replication start sites analysed. 

Remarkably, constitutive origins presented the highest connectivity from all origin 

groups analysed (Fig. 30). As constitutive origins are the most efficient, a relationship 

likely exists between the probability of origin firing and its level of connectivity with 

other chromatin fragments. Here, we have shown that more connected origins not 

only tend to fire with higher efficiency, but also have a preference to replicate earlier 

in S phase. This is in agreement with a previous correlation established between 

origin efficiency and early replication (Picard et al., 2014). 

 

It would also be expected that origins belonging to interacting chromatin fragments 

had comparable access to limiting factors for initiation and therefore become 

activated with similar efficiency. In this regard, we have found that origin efficiency is 

in itself an assortative parameter in the WT, APH, CDC6 datasets and the CONST 

subset. This result implies that origins contacting in 3D tend to fire with similar 

efficiencies, further supporting the replication factory model. 

 
Cohesin has been proposed to stabilize DNA Ioops at replication factories (Guillou et 

al., 2010). ChIA-PET assays with cohesin component SMC1 capture interactions 
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mediated by cohesin (Dowen et al., 2014). We find that origins are assortative within 

the SMC1 ChIA-PET chromatin network, i.e. they are frequently located at chromatin 

interactions mediated by cohesin. This is another strong argument supporting the 

model of replication factories. To further validate this result, it would be interesting to 

calculate origin assortativity in recently reported Hi-C networks determined for 

cohesin-depleted mESCs (Wutz et al., 2017). 

 

Origins are assortative in the promoter-promoter (P-P) subnetwork of PCHiC as well 

as the RNAPII ChIA-PET network, indicating a link between the 3D organization of 

initiation of replication and initiation of transcription. In order to separate the possible 

influence of 3D chromatin structure and transcription activity on replication origins we 

could compare the efficiency of activation of those origins localized at 

transcriptionally active promoters with those localized at poised promoters 

(transcriptionally inactive, but prepared to be rapidly activated upon developmental 

cues). If they were similar, this would indicate that origin activation is not dependent 

on active transcription but rather on 3D chromatin structure, which organizes 

replication initiation sites spatially. 

Replication factories and topologically associated domains (TADs) 

Because replication timing domains coincide almost exactly with TADs (Dileep et al., 

2015; Pope et al., 2014), one would expect that most origin-origin contacts 

established within replication factories should belong to the same TAD. However, our 

results indicate that contacts between chromatin fragments containing origins span 

both intra- and inter-TADs connections. Interestingly, origins that interact with each 

other display similar replication timing regardless of the type of contact (inter- or 

intra-TAD).  

 

Recent reports regarding the spatial organization of chromosomes using Hi-C in 

single cells have provided unique information about changes in chromatin 

organization across the cell cycle (Beagrie and Pombo, 2017; Nagano et al., 2017; 

Stevens et al., 2017). According to these studies, individual cells display a high level 

of heterogeneity in chromatin folding, and chromosome organization undergoes 

dynamic changes during interphase (Nagano et al., 2017). Intra-TAD interactions are 

the strongest during G1 phase. At the start of S phase, the insulation at TAD borders 

declines, reaching its lowest level in mid-S phase and being low during G2. The 

partial dissolution of TAD borders in S-phase could explain the substantial number of 

inter-TAD contacts between fragments containing origins.  
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Figure 53. Hierarchical organization of replication origins in the nucleus: a model. At 
the intra-TAD level, origins are organized within replication factories. Different replication 
factories could be then connected with each other by inter-TAD interactions. A decrease in 
the insulation at TAD borders is observed at the beginning of S phase to facilitate inter-TAD 
contacts to occur. See text for further details. 
 

Multiple studies have indicated that adjacent origins are separated normally by 50-

150 kb (Cayrou et al., 2011; Fragkos et al., 2015; Jackson and Pombo, 1998). Our 

data indicates that the most frequent linear separation between origins that interact in 

3D in the PCHiC network is approximately 500 kb. At this distance, interacting origins 

are most likely to have similar efficiencies of activation. When only intra-TAD origin-

origin contacts were considered, the linear separation between origins decreased to 

approximately 250 kb, closer but still higher than the expected values. Several 

reasons may contribute to this difference. First, origin-origin interactions may occur 

between origins that are not adjacent in the linear DNA sequence. It should also be 

taken into account that our predictions were made in the promoter-centered 

chromatin interaction map, which includes only a subset of all interactions present in 

the nucleus. In addition, our analyses consider the presence of one origin per 

chromatin fragment, but in some cases, there may be more than one origin.  

 

At this point, we would like to propose a model of hierarchical organization of origins 

within replication factories. The first level of organization would include origin-origin 

interactions in 3D within TADs. Then, intra-TAD hubs could be further spatially 

connected through inter-TAD interactions (Fig. 53). Replication factories within TADs 

would correspond to replication foci that can be microscopically detected by PCNA 

staining or BrdU incorporation. Two adjacent replication factories brought together by 

inter-TAD contacts would replicate sequentially in S phase according to a domino-

like model of replication foci activation that has been substantiated microscopically 
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(Maya-Mendoza et al., 2010; Sporbert et al., 2002). In order to obtain additional 

information about replication factories architecture, we plan to perform similar 

analysis of distances at which origins preferentially interact using the SMC1 ChIA-

PET chromatin network. 

 

In summary, we have aimed at providing new information regarding the 

characteristics and regulation of mammalian replication origins in control and stress 

conditions as well as their spatial organization at the genome-wide level. One of the 

major questions remaining is whether chromatin structure determines the dynamics 

of replication and transcription, or whether these processes are shaping the spatial 

organization of the chromatin. A recent study showed that genetic polymorphisms 

can lead to long-range changes in replication timing and influence gene expression 

levels. Altered replication timing of a particular genomic region can affect its 

mutational rate and consequently influence disease and cancer susceptibility (Koren 

et al., 2014). Another report showed that a single nucleotide polymorphism at a 

CTCF binding site could alter chromatin topology and transcription, and was also 

linked to human disease susceptibility (Tang et al., 2015). These observations 

emphasize the importance of understanding in detail the interplay between 3D 

chromatin organization, replication and transcription. 
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Chapter 2: Regulation of CDC6 stability by CDC7 kinase  

A CDC7-dependent mechanism of CDC6 protein stabilization 

The results shown in Chapter 2 reveal a previously unknown function of CDC7 

kinase in the regulation of the stability of CDC6 licensing factor. We have shown that 

the inhibition or downregulation of CDC7 kinase leads to a decrease in the levels of 

CDC6 in mouse and human cells. We have determined that the total amount of 

CDC6 is regulated at the level of protein stability and both the soluble and chromatin-

bound fractions of CDC6 are susceptible to changes in CDC7 activity throughout the 

cell cycle. This effect was not due to a global inhibition of DNA replication in our 

experimental conditions, as most other factors involved in replication licensing and 

initiation were not affected. We have not tested the opposite situation, i.e. whether 

enhanced activity of CDC7, which could be triggered by DBF4 overexpression, 

results in increased CDC6 levels. It was previously reported that CDC6 is stabilized 

in a CDK2-CycE-dependent manner during re-entry from G0 into the cell cycle 

(Mailand and Diffley, 2005) and also in response to genotoxic stress (Duursma and 

Agami, 2005). Here we propose that CDC7 kinase also has a role in the regulation of 

CDC6 during the cell cycle in mammalian cells. 

CDC7 directly phosphorylates CDC6  
We hypothesized that CDC6 could be stabilized by direct CDC7-dependent 

phosphorylation. Using in vitro kinase assays followed by mass spectrometry, 

phosphorylation events were detected at six out of eight potential CDC7 

phosphorylation sites. CDC6 was destabilized in vivo when CDC7-dependent 

phosphorylation was impeded in an unphosphorylatable mutant (S8A). We then 

monitored how WT and mutant CDC6 proteins respond to a decrease in the levels of 

CDC7 kinase. As expected, WT-CDC6 levels were reduced upon siCdc7 treatment. 

In contrast, both phospho-dead and phospho-mimic CDC6 mutants, which cannot be 

phosphorylated by CDC7, were not affected, further indicating that CDC7 regulates 

the stability of CDC6 by direct phosphorylation in vivo. In Saccharomyces cerevisiae 

Cdc6 is not an efficient substrate for Cdc7 (Weinreich and Stillman, 1999), but the 

cycle regulation of Cdc6 is very different between yeast and mammalian cells (Arias 

and Walter, 2007; Diffley, 2004). It is therefore possible that CDC7-dependent 

phosphorylation of CDC6 creates an additional regulatory mechanism that operates 

only in higher eukaryotes.  

At this stage it is not known how CDC7-dependent phosphorylation could lead to the 

stabilization of CDC6. In the case of CDK-mediated stabilization of CDC6, 
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phosphorylated CDC6 fails to interact with APC/C, blocking proteolysis (Duursma 

and Agami, 2005; Mailand and Diffley, 2005). In contrast, DDK phosphorylation sites 

in CDC6 are not near APC/C destruction boxes (D-Box and KEN) as it occurs for 

CDK-dependent phosphorylation sites (Fig. 47 from Results). 

Several mechanisms have been described that induce CDC6 proteolysis in S and G2 

phases, including PIP-box-mediated proteolysis (Clijsters and Wolthuis, 2014) and 

SCFCyclinF-dependent protein destruction (Walter et al., 2016). These pathways were 

proposed to serve as mechanisms preventing origin relicensing. Despite this fact, it 

has been known for a long time that a fraction of CDC6 is protected from these 

degradation pathways and remains associated to chromatin (Méndez & Stillman, 

2000; Coverley et al, 2000). It is possible that this partial protection requires CDC7-

mediated phosphorylation. One of the phosphorylation events detected by mass 

spectrometry lays on S6 (a non-consensus DDK phosphosite), in close proximity to 

the PIP-box-like degron (Clijsters and Wolthuis, 2014). It is conceivable that 

phosphorylation of CDC6 at this site could mask this degron, preventing its 

recognition by CLR4CDT2 ubiquitin ligase. 

 

Is CDC6 downregulation in response to limited CDC7 mediated by 
indirect mechanisms? 

CDC6 levels are regulated in a p53-dependent manner. Upon genotoxic stress, p53 

leads to p21 upregulation, which in turn inhibits CDK and limits the protective 

phosphorylation of CDC6 at S54 (Duursma and Agami, 2005). We have observed 

increased γH2AX levels upon siCdc7 or Cdc7i, suggesting the possible activation of 

the DNA damage response. At least in U2OS cells, activation of p53 was detected, 

suggesting that the decrease in CDC6 levels could be in part caused by p53-

mediated CDK inhibition. However, it is important to note that in HeLa cells, which 

are deficient in p53-dependent response, a drop of CDC6 levels was still observed 

following CDC7 inhibition. Taken together, these results indicate the existence of 

p53-dependent and p53-independent mechanisms to regulate CDC6 stability upon 

CDC7 inhibition/downregulation (Fig. 54). To further complicate things, DDK may 

also be downregulated upon p53 pathway activation, as a mechanism to prevent 

G1/S transition (Tudzarova et al., 2016). This adds another layer of regulation that 

could affect CDC6 levels (Fig. 54). 

High cyclin E levels are restricted to the G1-S transition. In early S-phase, CDK2-

CycA phosphorylates cyclin E targeting it for the SCFSKP2 ubiquitin ligase-mediated 

proteolysis (Depamphilis et al., 2012). We observed that cyclin E levels decrease 
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upon inhibition of CDC7 activity, in line with previous results (Montagnoli et al., 

2008). We speculate that CDC7 could also stabilize cyclin E, potentially by direct 

phosphorylation (both variants of human cyclin E bear CDC7 consensus 

phosphorylation sites). Importantly, in some contexts cyclin E contributes to origin 

licensing by stabilizing CDC6 (Mailand and Diffley, 2005). 

Taking all these antecedents into consideration, we propose a model for CDC7-

dependent regulation of CDC6 stability. CDC7-mediated phosphorylation acts to 

stabilize CDC6 protein by a still unknown mechanism and facilitate its accumulation 

during S, G2 and M phases, when CDC7 is active. Specifically at the G1/S transition, 

CDC7 could influence CDK2 activity by controlling cyclin E levels. In turn, CDK2-

CycE would phosphorylate CDC6 at S54 to stabilize it. In situations of stress, or if 

CDC7 in inhibited, a p53 response leads to destabilization of CDC6. In addition, p53 

activation would contribute to a decrease in CDC7 levels, providing a feedback loop 

and further destabilizing CDC6 (Fig. 54). 

 

 

Figure 54. Model of the regulation of CDC6 stability by CDC7 kinase. Details of the 
model are described in the text. 

 

Potential roles for CDC7 - dependent stabilization of CDC6 during cell 
cycle 

CDC6 performs its origin licensing function in late M/G1 phase. While in yeast Cdc6 

degradation at the G1-S transition prevents origin re-licensing in S phase (Diffley, 

2004), in mammalian cells a fraction of CDC6 is preserved on chromatin throughout 

the cell cycle (Coverley et al., 2000; Méndez and Stillman, 2000). CDC6 highest 

levels are reached in early S, following the rapid increase in DDK activity at the G1/S 

transition. Thus, cell cycle fluctuations in CDC6 levels resemble the changes in 

CDC7 activity, strengthening the notion that DDK could have a role in CDC6 

stabilization.  
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We hypothesized that CDC7 could protect CDC6 from APC/CCDH1-dependent 

degradation by phosphorylating it at the M/G1 transition when licensing step takes 

place. Intriguingly, the drop in CDC6 levels caused by CDC7 inhibition/ 

downregulation did not affect the loading of MCM helicase on DNA, at least as 

determined by biochemical fractionation. This result could be related to the fact that 

cells with high proliferation rate, such us tumour cells or ESCs, display very high 

levels of CDC6 (Tatsumi et al., 2006) and origin licensing can occur even after its 

downregulation. 

Overexpression of phosho-dead and phospho-mimic mutants of CDC6 had no 

impact on MCM chromatin loading or cell cycle progression. The caveat of these 

experiments is that endogenous CDC6 was still present, making it difficult to assess 

CDC6-mutant specific effects. To overcome this problem, it would be useful to 

generate an inducible CDC6 knockout cell line using CRISPR/Cas9 to eliminate the 

endogenous protein.  

CDC7 could protect CDC6 to facilitate some replicative function(s) that are still not 

well characterized. A provocative hypothesis is that licensing may occur beyond 

M/G1 in special contexts, such as very origin-poor genomic regions. The fraction of 

CDC6 bound to chromatin in S and G2 could promote new pre-RC formation or 

stimulate the activation of already existing pre-RCs at late-replicating domains. Other 

possibility is that CDC6 protein participates in origin activation. In this regard, 

chromatin-bound CDC6 in Xenopus modulates CDC7-dependent phosphorylation of 

MCM (Kundu et al., 2010), and CDC6 depletion during S phase in HeLa cells 

inhibited new origin firing (Lau et al., 2006). 

CDC6 may also have functions beyond origin licensing and initiation that justify its 

stabilization. Human CDC6 localizes at the centrosomes during S, G2 and M phases 

and may participate in chromosome segregation at mitosis (Kalfalah et al., 2015; Kim 

et al., 2015). In agreement with this hypothesis, CDC6 depletion in S-phase led to 

abnormal spindle formation, aberrant chromosome segregation and mitotic cell death 

in HeLa cells (Lau et al., 2006).  

CDC6 was also proposed to participate in checkpoint activation (Clay-Farrace et al., 

2003; Oehlmann et al., 2004). In Xenopus egg extracts, it is required to activate 

checkpoint kinase CHK1 in response to aphidicolin (Oehlmann et al., 2004). 

Overexpression of CDC6 in G2 HeLa cells blocks progression into mitosis but this 

block is overcome by a CHK1 inhibitor, suggesting that CDC6 prevents premature 

mitosis via a checkpoint mechanism involving CHK1 (Clay-Farrace et al., 2003). 
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Recently, it was reported in budding yeast that sequestering of DDK by MCM 

complexes at unfired origins during S phase prevents cohesin acetyltransferase 

Eco1 (also a DDK target) from becoming phosphorylated until the late stages of S 

phase. (Seoane and Morgan, 2017). DDK-dependent phosphorylation of Eco1 

targets it for degradation, and the timing of Eco1 degradation is essential for proper 

chromosome segregation (Lyons and Morgan, 2011). We can also speculate that in 

mammalian cells, chromatin-bound CDC6 and MCM might sequester CDC7 kinase 

at non-fired origins to restrict phosphorylation of cohesin acetyltransferase until late 

S-phase.  

In summary, we have found that CDC6 is a previously unknown target of CDC7 

kinase. Our results indicate that CDC7 regulates CDC6 stability, by direct and 

indirect mechanisms. These findings add another layer to the already complex 

mechanisms that regulate this important replication protein in the cell cycle.  

 



	 123	

Conclusions 
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Conclusions 
 

1. Genome-wide maps of replication origins have been generated using SNS-Seq in 

mouse ESCs in control growth conditions and upon stress induced with aphidicolin or 

CDC6 overexpression. Origin datasets have been defined using two different 

algorithms to identify origins at SNS-Seq read peaks. 

2. The genomic positions of origins in the WT, APH and CDC6 datasets have been 

compared to a comprehensive collection of chromatin marks (≈70), many of which 

were analysed for the first time in the context of origins. 

3. The subset of constitutive origins correlates with genomic elements and epigenetic 

features characteristic of open, transcriptionally active chromatin. Conversely, stress-

responsive origins frequently correlate with transcriptionally inactive heterochromatin 

regions.  

4. Constitutive origins display higher efficiency than stress-responsive origins.  

5. Replication stress induced by APH or CDC6 overexpression trigger the activation of 

origins from new positions (´dormant´ origins) and also increase the efficiency of 

already active ones. We propose that the main response to stress consists in the 

modulation of the activity of pre-existing origins. 

6. Linear maps of replication origins have been integrated into three-dimensional 

chromatin structure networks. Using the measure of chromatin assortativity, we find 

that replication origins tend to interact with each other in 3D.  

7. Origins that display higher 3D connectivity tend to be activated with higher efficiency 

and replicate earlier in S phase. Constitutive origins display the highest connectivity 

from all origin subsets. 

8. Origins can be brought together within a same chromatin topologically-associated 

domain (TAD) and also establish inter-TAD contacts. A hierarchical organization 

model is proposed in which origins are first organized within intra-TAD replication 

factories, which then become connected in S phase by inter-TAD origin-origin 

contacts. 

9. CDC7 kinase has a previously undefined role as a regulator of CDC6 protein stability 

in mammalian cells.   

10. The regulation of CDC6 stability by CDC7 kinase likely involves a direct mechanism 

that includes CDC6 phosphorylation, and an indirect pathway mediated by the 

regulation of CDK2-CycE activity, which in turn regulates CDC6. 
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 Conclusiones 
 

1. Mediante la técnica de SNS-Seq, se han generado mapas de orígenes de 

replicación en células ESC murinas, en condiciones normales y en presencia de 

estrés inducido por afidicolina o sobre-expresión de CDC6. Se han utilizado dos 

algoritmos independientes para asignar orígenes a los picos de lecturas SNS-Seq. 

2. Las posiciones genómicas de los orígenes en células WT, APH y CDC6 se han 

comparado con una amplia colección de marcadores en cromatina (≈70), muchos de 

los cuales se analizan por primera vez en el contexto de los orígenes. 

3. El subconjunto de orígenes constitutivos correlaciona con elementos genómicos y 

epigenéticos característicos de cromatina abierta y transcripcionalmente activa. En 

cambio, los orígenes activados en respuesta a estrés correlacionan principalmente 

con regiones de heterocromatina transcripcionalmente inactiva. 

4. Los orígenes constitutivos se activan con mayor eficiencia que los orígenes de 

respuesta a estrés.  

5. El estrés inducido por APH o CDC6 induce la activación de orígenes “silentes” y 

también hace aumentar la eficiencia de orígenes activos en condiciones normales. 

Proponemos que la principal respuesta a estrés está mediada por la modulación de 

la eficiencia de disparo de orígenes pre-existentes. 

6. Los mapas lineales de orígenes de replicación han sido integrados en redes 

tridimensionales de cromatina. Mediante el parámetro de “asortatividad” empleado 

en análisis de redes, hemos encontrado que los orígenes tienen tendencia a 

interaccionar entre ellos en 3D. 

7. Los orígenes con mayor grado de conectividad en 3D se activan con mayor 

eficiencia y replican en la parte más temprana de la fase S. Los orígenes 

constitutivos presentan el mayor grado de conectividad de todos los subconjuntos de 

orígenes analizados. 

8. Las interacciones entre orígenes se establecen tanto dentro del mismo dominio 

topológico (intra-TAD) como entre dominios topológicos distintos (intra-TAD). 

Proponemos un modelo de organización jerárquica en el que los orígenes se 

disponen en primer lugar en factorías replicativas dentro de un TAD, y éstas a su 

vez se conectan entre ellas a través de interacciones origen-origen intra-TAD. 

9. La quinasa CDC7 tiene una función reguladora de la estabilidad de la proteína 

CDC6 en células de mamífero, no descrita hasta la fecha. 

10.  La regulación de la estabilidad de CDC6 por CDC7 implica un mecanismo directo 

que incluye la fosforilación de CDC6, y un mecanismo indirecto a través de la 

regulación de CDK2-CycE, cuya actividad controla a su vez los niveles de CDC6
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