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Resumen
Las interacciones entre genes, entre individuos sociales, y entre los resultados de his-

torias evolutivas alternativas reflejan la organización y propiedades dependientes

del contexto de cada respectivo nivel de complejidad biológica. Las interacciones

genéticas modifican el efecto combinado de dos genes sobre las características de

un organismo. Las interacciones sociales aparecen cuando algunos individuos de

una población contribuyen a mantener un recurso común incurriendo en un coste

personal. Las interacciones evolutivas ocurren cuando la adaptación a un ambi-

ente particular altera la supervivencia de un organismo en otras condiciones difer-

entes. Estudiamos estos tres tipos de interacciones con una combinación de aprox-

imaciones computacionales y experimentales en microbios. En primer lugar, eval-

uamos la estabilidad de las interacciones entre genes metabólicos bajo cambios en

el fondo genético. Comparamos las redes de interacción genética de un modelo

in silico de Saccharomyces cereivisae en dos tipos de contextos genéticos: deleciones

simples y acumulación de mutationes neutrales. El reordenamiento de las redes

genéticas se debe mayoritariamente a los genes catabólicos, revelando que pueden

contribuir al crecimiento de un organismo en diferentes configuraciones de modo

que se amortiguan las perturbaciones genéticas. Tras las deleciones neutrales se

redujeron notablemente tanto esta capacidad de amortiguamiento genético como

la capacidad del organismo de crecer utilizando fuentes de nutrientes alternativas,

conectando la robustez genómica y ambiental. En segundo lugar, observamos la

sostenibilidad de una comunidad microbiana en la que una interacción social de

tipo cooperativo es esencial para su supervivencia. Individuos que no cooperan

suelen aparecer y explotar a los cooperadores, poniendo en peligro este efecto colec-

tivo. Utilizando una interacción social sintética construida con dos cepas de Es-

cherichia coli, demostramos cómo feedbacks entre dinámicas poblacionales y evoluti-

vas, combinadas con distribución espacial, pueden crear un contexto en el que la

invasión de no cooperadores, contraintuitivamente, preserva el comportamiento so-

cial. Además, analizamos cómo la implementación molecular de una interacción

social puede modificar estas dinámicas, tanto en el sistema sintético en E. coli como

en un sistema natural, la producción de una molécula captadora de hierro por la

bacteria Pseudomonas fluorescens. En tercer lugar, examinamos cómo de predecible es

el efecto de la historia previa de un organismo sobre su reacción ante un ambiente

nuevo. Contrastamos las redes interacción evolutiva generadas tras la adaptación de

una cepa de laboratorio de E. coli a antibióticos de diferentes clases. La adquisición

de resistencia a la misma droga puede, no obstante, resultar en diferentes respues-

tas a otro compuesto alternativo, incluyendo efectos opuestos en la supervivencia

de la bacteria. Discutimos cómo la combinación de la arquitectura genómica y la

contingencia histórica puede producir estos resultados tan variables.
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Abstract
Interactions between genes, between social individuals, and between the results of

alternative evolutionary histories reflect the organization and context-dependent

properties of each respective level of biological complexity. Genetic interactions

modify the combined effect of two genes on the characteristics of an organism. Social

interactions develop when some individuals of a population contribute to a common

resource at a personal cost. Evolutionary interactions result when adaptation to a

particular environment changes survival in unrelated conditions. We studied these

three types of interactions with a combination of computational and experimental

approaches using microbes. First, we evaluate the stability of interactions between

metabolic genes upon changes in the genetic background. We compared the genetic

interaction networks of an in silico model of Saccharomyces cerevisiae in two types

of backgrounds: single deletions and accumulation of neutral mutations. Network

rewiring was strongly associated to catabolic genes, revealing that they can add to an

organism’s growth in different configurations thus buffering genetic perturbations.

Neutral deletion backgrounds greatly reduced both this genetic buffering and the

ability to grow on alternative nutrients, connecting both environmental and genomic

robustness. Second, we tracked the sustainability of a microbial community where a

social cooperative interaction is essential for survival. Non-cooperative individuals

tend to appear and threaten the collective effect by exploting cooperators. Using an

engineered interaction between two strains of Escherichia coli we show how feedback

between population and evolutionary dynamics, combined with spatial structure,

can create a context where invasion by non-cooperators instead preserves the social

behavior. We further analyze how the molecular implementation of a social inter-

action can modify such dynamics, on the synthetic E. coli system and in the natural

production of an iron-scavenging molecule by Pseudomonas fluorescens. Third, we

assessed the predictability of the effect of an organism’s prior history on its reac-

tion to a novel environment. We contrasted the evolutionary interaction networks

associated to the adaptation of a laboratory strain of E. coli to different antibiotic

classes. Acquiring resistance to the same drug could nevertheless result in different

responses to an alternative compound, including opposite effects on survival. We

discuss how a combination of genomic architecture and historical contingency can

produce these contrasting outcomes.



x

Universidad Autónoma de Madrid

How genetic, social, and evolutionary interactions shape the many levels of bio-

logical complexity

by Clara Beatriz MORENO FENOLL

http://www.uam.es


xi

Contents

Certificate of Supervision iii

Acknowledgements v

Resumen vii

Abstract ix

Introduction 1

Objectives 5

1 Genetic Interactions 7

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Epistasis as a force defining genotype-phenotype mapping . . . . . . . 7

In silico metabolic models of microbes and Flux Balance Analysis . . . 8

Stability of epistatic genotype-phenotype mapping . . . . . . . . . . . . 9

1.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Model and genetic network assembly . . . . . . . . . . . . . . . . . . . 11

Genetic backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Network rewiring and metabolic analysis . . . . . . . . . . . . . . . . . 11

Random environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Experimental confirmation . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Rewiring of epistatic interactions after gene deletion reflects the dif-

ferential organization of metabolic functional modules . . . . . 13

Accumulation of neutral deletions significantly reduces the buffering

and versatility of metabolisms . . . . . . . . . . . . . . . . . . . 21

In silico results are consistent with experimental observations . . . . . 23

1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Social Interactions 29

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Social dynamics in bacterial communities . . . . . . . . . . . . . . . . . 29



xii

Physiological, ecological and evolutionary constraints shape public

good-based interactions . . . . . . . . . . . . . . . . . . . . . . . 31

A novel framework connects ecological and evolutionary dynamics . . 32

Eco-evolutionary feedbacks and constraints ultimately determine the

fate of public good-based systems . . . . . . . . . . . . . . . . . 33

2.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Culture media and reagents . . . . . . . . . . . . . . . . . . . . . . . . . 34

Strains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Simulation of eco-evolutionary dynamics . . . . . . . . . . . . . . . . . 35

Experimental eco-evolutionary dynamics . . . . . . . . . . . . . . . . . 35

Characterization of the synthetic social interaction and biological con-

straints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Estimation of public good production . . . . . . . . . . . . . . . . . . . 36

Mutation rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Microscope slides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

subsection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Preservation of cooperation can be mediated by eco-evolutionary

feedbacks in a simulated community that relies on an essen-

tial public good . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Experimental implementation of the social interaction confirms the

eco-evolutionary feedbacks . . . . . . . . . . . . . . . . . . . . . 39

Constraints on the social system induce secondary effects on the dy-

namics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Characterizing a novel phenotype: the subcellular localization of a

bacterial public good . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3 Evolutionary Interactions 59

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Details matter: molecular mechanism of antibiotic action and ac-

quired resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Fast acquisition of antibiotic resistance can occur through non-

genomic mechanisms . . . . . . . . . . . . . . . . . . . . . . . . 61

Evolution experiments in microbes allow us to directly observe evo-

lutionary processes . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Molecular constraints shape the repeatability of evolutionary trajecto-

ries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Interactions between bacterial adaptive histories are a promising

framework to approach antibiotic resistance . . . . . . . . . . . 63



xiii

3.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Strains, culture media, and reagents . . . . . . . . . . . . . . . . . . . . 65

Evolution experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Antibiotic resistance measurements . . . . . . . . . . . . . . . . . . . . . 66

Cross-resistance and Cross-sensitivity calculations . . . . . . . . . . . . 66

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Genomic adaptation can generate significant levels of resistance . . . . 67

Nonspecific resistance mechanisms can explain some interaction pat-

terns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Parallel evolutionary trajectories generate unique interactions . . . . . 72

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Discussion 87

Conclusions 89

Conclusiones 91

Bibliography 93

A Appendix - Publication corresponding to Chapter 1 105

B Appendix - Publication corresponding to Chapter 2 107





xv

List of Figures

1.1 Metabolic readjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Functional module instability . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Epistasis sign and strength instability . . . . . . . . . . . . . . . . . . . 17

1.4 Wild typenetwork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5 Hub-driven rewiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.6 Metabolic and network reorganization in ΔMIR1 . . . . . . . . . . . . . 20

1.7 Neutral trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.8 Environmental plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.9 Experimental confirmation . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.10 Main conclusions summary . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1 Public goods in microbial communities . . . . . . . . . . . . . . . . . . 30

2.2 Simulation of social eco-evolutionary dynamics . . . . . . . . . . . . . 40

2.3 Bacterial synthetic social interaction . . . . . . . . . . . . . . . . . . . . 41

2.4 Effect and vulnerability of a synthetic public good . . . . . . . . . . . . 42

2.5 Population collapse induced by cheater invasion . . . . . . . . . . . . . 44

2.6 Population recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.7 Secondary constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.8 Polarization sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.9 Polarization and spatial effects . . . . . . . . . . . . . . . . . . . . . . . 51

2.10 Recycling of Pvd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.11 Depolarization sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1 Evolutionary trajectory and acquired resistance . . . . . . . . . . . . . . 70

3.2 Interactions between antibiotics . . . . . . . . . . . . . . . . . . . . . . . 73

3.3 Interactions between clones . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.3 Interactions between clones (cont.) . . . . . . . . . . . . . . . . . . . . . 78

3.4 Clone interaction variability . . . . . . . . . . . . . . . . . . . . . . . . . 80





xvii

List of Tables

3.1 List of antibiotics used in these experiments. . . . . . . . . . . . . . . . 68

3.2 Characteristic of evolved isolates . . . . . . . . . . . . . . . . . . . . . . 74





xix

List of Abbreviations

AMK amikacin
CTX cefotaxime
COL colistin
DFBM Distribution of Fitness effects of Beneficial Mutations
DHFR dihydrofolate reductase
DHPS dihydropteroate synthase
FBA Flux Balance Analysis
FOS fosfomycin
Gm gentamicin
HGT Horizontal Gene Transfer
IMP imipenem
Km Kanamycin
LTEE Long Term Evolution Experiment
MIC Minimum Inhibitory Concentration
MRSA Methicillin Resistant Staphylococcus aureus
NFX norfloxacin
PBP Penicillin Binding Protein
Pvd pyoverdin
Sp spectinomycin
SMX sulfamethoxazole
S-T Sulfamethoxazole -Trimethoprim
SGA Synthetic Genetic Array
TMP trimethoprim





1

Introduction

The term “interaction” very broadly refers to the reciprocal effect that two compo-

nents of a system have on each other. In this thesis we use the concept of interaction

to address questions at three levels of biological complexity: genetic, social, evolu-

tionary. We selected this framework because, while at each level the term manifests

as a precise effect on particular system components, it follows the logic of bridging

the specific and the systemic. Thus, it emerges as a useful approach for the holistic

understanding of biological entities in their full complexity.

The contribution of a gene to an organism’s phenotype often depends on the accom-

panying genes, a phenomenon that is termed epistasis. In one individual epistatic

interactions are a tractable abstraction of the genotype-phenotype map, revealing

functional dependencies and redundancies [1]. One small change — such as dele-

tion of one gene – provides information on two crucial features of a genotype: its

robustness, i.e. how the individual components interact to buffer change and main-

tain a functioning system; and evolvability, i.e. how these individual components

equally interact in alternative functional configurations that can give rise to new

capabilities[2, 3].

Variability at this subcellular level combines to produce one or more phenotypes

that again interact, translated into population-level properties [4, 5]. Population fea-

tures can be roughly sorted into two classes: ecological (population structure) and

evolutionary (genetic frequencies and their processes of change). It is becoming in-

creasingly evident that even these two population properties cannot be considered

separately, as each influences the other sequentially (e.g. Ecology acts on evolution

via natural selection) and even simultaneously[6, 7]. In one type of individual-level

interaction eco-evolutionary feedbacks impact in a clear manner: the production of

a public good, i.e. a social interaction [8]. In a social interaction, the emergence of

non-cooperative individuals exerts an effect on both evolution — as cheaters gain a

fitness advantage by exploiting the public good — and ecology —as cheater inva-

sion can disrupt the functionality of a community and lead to its decay [9]. Thus,

feedbacks between ecological and evolutionary phenomena arising from individual

interactions ultimately determine the fate of a population in a particular context [10].
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Evolutionary histories can in turn interact, where previous adaptation modulates fit-

ness in novel conditions [11, 12]. Adaptation in a particular eco-evolutionary back-

drop proceeds with intrinsic variability, where a crucial shaping force is genomic

architecture [13–15]. In this way, evolutionary interactions – placed at the highest

level of complexity – connect back to genetic interactions.

Biological entities are thus defined by a combination of processes with some de-

gree of hierarchical organization (i.e. the different levels of complexity) but multi-

layered, intertwined effects. Here, in order to address specific questions of systemic

importance we select three particular types of interactions: between genes, between

individuals and between evolutionary trajectories.

Furthermore, this thesis rests on two methodological approaches that ease the ap-

proximation to systemic topics: high-throughput genomic and computational tools

[16, 17], and the use of microorganisms as "simulators" amenable for the study of

general ecological and evolutionary processes [18, 19].

In Chapter 1 we study genetic interactions. Interactions between genes occur when

two genes influence their respective effects on the organism, in a reflection of their

underlying functional relationships [1]. Epistasis is often measured by comparing

the expected and observed phenotypes of a double mutant given the respective sin-

gle mutants. The development of high-throughput techniques for the generation

and characterization of gene deletions allowed the examination of epistasis between

all the genes of an organism (or a relevant subset) [20]. This renewed interest in

epistasis as a system-level tool for genotype-phenotype mapping [16]. The stabil-

ity of this mapping is coming under interrogation, i.e. what does it mean when

an epistatic interaction network changes? [21] Another technology enables exam-

ination of genetic networks under a vast array of genetic and environmental con-

ditions: metabolic reconstructions of microorganisms, that can be manipulated in

silico to predict growth and flow through the different reactions [22]. We used the

metabolic model of the yeast Saccharomyces cerevisiae [23] to evaluate genetic network

stability under two types of genetic backgrounds: single deletion of active enzymes,

and trajectories accumulating neutral mutations. We connect epistatic interaction

changes to the logic of the different functional modules and the resulting metabolic

robustness.

In Chapter 2 we study social interactions. Specifically, we focus on an interaction

based on an essential public good in a synthetic bacterial community. At the micro-

bial scale, public goods are often extracellular molecules synthesized at an individ-

ual cost but that can benefit the whole community [24]. With the use of a genetic
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circuit we implemented in Escherichia coli an interaction where the public good en-

ables survival to an antibiotic [25]. This type of cooperative interactions have a vul-

nerability: cheaters that do not contribute but reap the benefits of cooperation can

invade the population and disrupt the collective effect. We set a scenario where we

predict that eco-evolutionary feedbacks will translate instead cheater invasions into

part of a cycle that preserves cooperation [26, 27]. A combination of simulations and

experiments explore this feedback. Moreover, we examine how particular features

of the biological system impact on the social dynamics by appraising the interacting

effect of cellular growth stage [28] and the emergence of spontaneous mutants [29].

In this same avenue, we describe a novel phenotype linked, alternatively, to a natu-

ral system with social implications: the production of siderophores (iron-scavenging

molecules) in Pseudomonas fluorescens [30]. We examine some aspects of a previously

undescribed pattern of subcellular localization of this molecule and discuss its po-

tential ecophysiological role.

In Chapter 3 we study evolutionary interactions. Adaptation to particular envi-

ronment can indirectly modify the organisms suitability for a different one, this is

what we term "evolutionary interaction". Specifically, the development of bacterial

resistance to an antibiotic can alter its sensitivity to a different drug [31], an effect

that can be used for the rational design of treatment protocols [32]. A topic of recent

interest, evolutionary interactions between antibiotics have led to discoveries with

great clinical potential involving the reciprocal development of increased vulnera-

bility after adaptation to two antibiotic classes, β-lactams and aminoglycosides [33,

34]. Nevertheless, processes concerning the repeatability of evolution can introduce

variability in the development of these collateral resistances and sensitivities [35].

Size and specificity of the genomic resistance determinants [36], hierarchies among

the mutations amenable to selection [37], and epistasis between evolving alleles [38]

can introduce diversity in adaptive trajectories. We evaluate the variability in the

evolutionary interaction networks of E.coli clones adapted to a set of antimicrobials

comprising a variety of classes and mechanisms. We emphasize the need for de-

tailed consideration of evolutionary interactions between antibiotics that integrates

the complex role of contingency in adaptive trajectories.

The work presented in Chapter 1 and the first three sections of the Results in Chapter

2 is already reflected in scientific publications, which can be found in Appendix

A and Appendix B, respectively. The remaining content corresponds to work in

progress.
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Objectives

1. Using microbes to explore interactions at genetic, social, and evolutionary lev-

els of complexity as a tool for the systemic understanding of biological sys-

tems.

2. Evaluating the stability of genetic interactions in metabolism and what it can

reveal about the organization and robustness of a genomic system.

3. Understanding the interplay of ecological and evolutionary processes as they

determine the population dynamics of a social interaction based on an essential

public good.

4. Analyzing the effect of constraints associated to the molecular implementation

of a social interaction on these dynamics.

5. Investigating the impact of variability in adaptive trajectories on the develop-

ment of interactions between antimicrobial resistance patterns.
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Chapter 1

Genetic Interactions

1.1 Introduction

The development of high-throughput techniques to manipulate and analyze

genomes [39, 40] and the associated bioinformatic tools to sift and understand these

high volumes of data [41] allowed us to start looking at molecular information with

a systemic view [16]. Cellular and subcellular levels of biological complexity are

increasingly amenable to the incorporation of specific details into global properties

[20, 42, 43]. An essential system-level question is the assembly of the genetic compo-

nents of an organism into particular traits concerning its ability to accommodate and

assimilate perturbations [44]. Thorough mapping of these ecological and evolution-

ary characteristics integrating molecular functions and interdependencies is now a

more feasible prospect.

Epistasis as a force defining genotype-phenotype mapping

The effects of all the genes in a genotype combine in a particular environment to ul-

timately produce a phenotype in ways that are not necessarily linear, i.e. the simple

addition of all genes. This phenomenon whereby the effect of a gene on a pheno-

typic trait is dependent upon other genes is generally termed "epistasis". Genes can

interact in a manner that either amplifies or masks their respective effects; in this

way, analyzing epistatic interactions between genes is an abstract reflection of their

functional relationships in the genotype-phenotype map [1]. At the cellular level,

epistasis is usually measured as the deviation of the phenotype of a double mutant

from the expected phenotype given the respective single mutants (if there were no

interaction between the genes) [20]. In microbial cells, the type of organism utilized

throughout this Thesis, the evaluated phenotype is commonly the growth rate of

the cells as a proxy for organism fitness. Then, negative epistasis occurs when the

double mutant exhibits greater fitness defects than expected and frequently reveals

functional redundancies between the interacting genes. On the other hand, positive



8 Chapter 1. Genetic Interactions

epistasis arises when double mutant fitness is greater than expected, even equivalent

to that of one of the single mutants. This type of genetic interaction is usually asso-

ciated to functional dependencies, such as the subunits of a multiprotein complex

(the positive interaction appears because inactivating one of the genes abolishes the

associated pathway, such that successive perturbations cannot do further damage).

Recently developed high-throughput technologies enabled the analysis of large ge-

netic interaction networks, based on the systematic deletion or knock-down of a

vast array of the genes of an organism [20, 45]. This type of high-throughput ap-

proach identified some features of large-scale epistatic interaction networks whose

aggregated information was previously unavailable, such as the role as genetic hubs

of some chromatin regulation processes in Saccharomyces cerevisiae and the worm

Caenorhabditis elegans [20, 46] and the balanced distribution of weak and strong in-

teractions [47].

In silico metabolic models of microbes and Flux Balance Analysis

Despite the substantial development of experimental techniques to measure genetic

interactions, this approach remains highly labor-intensive and rapid advancement

requires complementation by computational methods. Genome-scale metabolic re-

constructions arose as a powerful tool to predict the growth rate, and other fea-

tures such as the production of compounds of interest, of microbes under vary-

ing environments and genetic perturbations. A large collection of such models is

now available, for a number of both prokaryotic and eukaryotic cells (http://

systemsbiology.ucsd.edu/InSilicoOrganisms/OtherOrganisms) These

models are built from the annotations of all the enzymatic genes of an organism in

multiple steps including automated methods, manual curation, and complementa-

tion with additional information such as the subcellular compartment where a par-

ticular reaction takes place [48]. They contain all the known metabolic reactions of a

given cellular type adjusted stoichiometrically, and can then be manipulated with a

growing array of computational approaches. Flux balance analysis (FBA) is the basis

of a family of constraint-based methods that can be applied to metabolic reconstruc-

tion models [49]. Using a steady-state assumption, FBA allows the prediction of

flow through the many reactions of the metabolism that maximizes a given output,

such as the synthesis of a particular molecule or organism growth. Prediction of

cellular fitness is achieved by incorporating into the model a biomass reaction that

rests on the production of essential metabolites. Additions to this basic approach in-

clude the integration of regulatory information, minimization of flux changes after

perturbation [22], enzymatic constraints [50] or a restricted allocation of resources to

different parts of the metabolism [51]. FBA methods were shown early on to produce

http://systemsbiology.ucsd.edu/InSilicoOrganisms/OtherOrganisms
http://systemsbiology.ucsd.edu/InSilicoOrganisms/OtherOrganisms
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biologically realistic results in the prediction of growth features [52]. These recon-

structions allow us to evaluate system-level properties of metabolisms through their

performance across a wide range of genetic perturbation events and environmental

changes. Analysis of Escherichia coli and S. cerevisiae models revealed a high degree

of redundancy in metabolic pathways enabling biomass production in a vast array of

random environments, which is likely preserved as evolutionary byproducts due to

small differences in efficiency and pleiotropic effects [53]. Implementation of gene

deletions necessary to appraise genetic interactions between all the enzymes in a

metabolism is also straightforward (by restricting the flux through the associated re-

action to 0). This approach uncovered some basic features of genetic networks, such

as frequent, monochromatic (i.e. predominantly positive or negative) interaction be-

tween metabolic functional modules using the S. cerevisiae model [54], a result that

was verified experimentally using a large-scale synthetic genetic array (SGA) that

was also used to refine the model, adding to the frequent feedback between theory

and experiments in the design and validation of metabolic reconstructions [55].

How stable is the epistatic genotype-phenotype map?

Conclusions about the features of a genome using the particular mapping of epistatic

interaction networks tended to be based on static pictures, that is, of networks gen-

erated in constant conditions. However, understanding the full functional range of

a genotype necessitates expanded evaluation, to include its resilience to perturba-

tions and its potential for change (its robustness and its evolvability [3]). Relatedly,

studies started emphasizing that genetic interaction networks were dependent on

both genetic and environmental contexts, such as on the severity of mutations and

the resource-richness of an environment (in a study performed in silico on phages

[56]); or on the presence of toxins in the environment such as DNA-damaging agents

(in studies carried out in S.cerevisiae [57–59]). That changes in epistatic interactions

have evolutionary implications can be acknowledged by their conservation – and

the lack thereof – in different species; as evidenced by comparing the networks of

S. cerevisiae to another yeast, Schizosaccharomyces pombe [60–63]. The effect of envi-

ronmental and genetic variables on the expression of a mutational phenotype was

established specifically in the case of epistatic interactions [21], which given the piv-

otal role of epistasis in defining evolutionary trajectories [13, 64] (see Chapter 3 for

further discussion) again ties this type of functionally abstract genotype to pheno-

type map to important evolutionary processes [2, 44].

We ask here how the genetic interaction network of a complete genomic subset ful-

filling an essential cellular role, metabolism, is rewired in response to genetic and en-

vironmental perturbations. We carefully selected two types of genetic backgrounds
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that reveal distinct but connected properties of the metabolism: single deletion of ac-

tive enzymes, and accumulation of a large amount mutations with neutral effect on

growth. The first type of background speaks to the built-in capability of metabolism

to buffer changes and maintain a viable phenotype; the second reveals how a partic-

ular type of constraining evolutionary trajectory [65] will shape these plastic capa-

bilities. The use of in silico models allowed us to directly connect changes in epistatic

interactions at a broad phenotypic level (the growth rate of each mutant) with un-

derlying rearrangements of fluxes through explicitly annotated metabolic reactions,

and thus arrive at functional explanations at the detailed phenotypic level.
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1.2 Materials and Methods

Model and genetic network assembly

We utilized as wild type the fully compartmentalized iND750 S. cerevisiae model. All

simulations were performed using Flux Balance Analysis implemented in the CO-

BRA Toolbox for Matlab (https://opencobra.github.io/cobratoolbox/

latest/). The wild type growth conditions are glucose minimal medium and aer-

obiosis, implemented by setting flow through the glucose import reaction to a real-

istic 18.5 mmol g−1 h−1 and leaving the oxygen import reaction functionally uncon-

strained. Deletion mutants used to assemble the genetic networks and the different

types of backgrounds are generated by constraining to 0 the flux through the asso-

ciated reaction. Epistasis was calculated using a multiplicative model with scaling

[54] with growth rates from the relevant sets of single and double mutants of each

evaluated genotype. This model assumes that the fitness effects of genes combine in

a multiplicative manner, such that the growth phenotype of a double mutant can be

obtained by multiplying the respective single mutant fitnesses.Scaling defines inter-

action values between −1 and 1, which are further classed as synthetic lethal (SL),

weak negative (WN), weak positive (WP) and strong positive (SP). Epistatic interac-

tions are classified as SL when ε = −1 and SP when ε = 1. WN and WP comprise the

remaining negative and positive interaction values, respectively. Epistasis values

below ε < |0.01| are discarded. To simplify functional redundancies, genes coding

for subunits of an enzymatic complex are considered as one interacting node in the

network (eg. The ATPase complex containing 15 subunits, adding a significant vol-

ume of positive interactions with the same functional underpinning and patterns of

change).

Genetic backgrounds

Single deletion backgrounds were generated by obtaining all the reactions with

nonzero flux in the wild type conditions and systematically deleting them. Neutral

deletion backgrounds were created by randomly deleting one of the model genes,

re-measuring fitness in the glucose medium and fixing mutations with a neutral ef-

fect on the phenotype. This process is repeated until 100 neutral mutations have

accumulated, following the logic of previous studies [65].

Network rewiring and metabolic analysis

When used for analysis, fluxes through reactions were normalized by the respective

biomass production to enable direct comparison between genotypes. Background

https://opencobra.github.io/cobratoolbox/latest/ 
https://opencobra.github.io/cobratoolbox/latest/ 
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dispersion was quantified as normalized Shannon entropy SMP (MP denotes “mod-

ule pair”). This is defined as SMP =
∑n

i=1 kilogki/logN with n being the number of

backgrounds with new interactions between the two modules, and ki the number of

interactions appearing in the background i (divided by the total number of interac-

tions considering all backgrounds). This was normalized by logN , where N is the

total number of analyzed backgrounds where any new interaction appears between

any two modules (N = 37).

Random environments

1000 random environments were generated by sampling from a nutrient pool con-

taining 107 possible organic compounds, using an exponential distribution with

mean = 0.1 to assign a probability of appearing in the environment to each nutrient

source [53]. For each nutrient set, concentration was again randomly defined using

a uniform distribution between 0 and 20 mmol g−1 h−1; in all cases oxygen remained

unconstrained.

Experimental confirmation

Data on instability of interactions in response to environmental change were ob-

tained from [59]. We considered nonsignificant epistasis values below 2 and above

2.5 (following the original reference). We defined SP interactions as those in the

upper quartile among positive ones and similarly for negative ones. The insta-

bility of each category was quantified as the average number of treatments where

the interaction changes or disappears (out of three). We quantified the functional

similarity of the genes constituting an interaction as the ratio between the num-

ber of shared functional classes ( biological process annotations in the original

reference) and the minimal number of classes that one of the genes of the pair

presents. Pairs with score greater than 0.1 were considered functionally “close”

and “distant” otherwise. We considered an interaction “stable” if it remained

within the same category (sign, strength) in all conditions and unstable otherwise.

We downloaded from http://www-sequence.stanford.edu/group/yeast_

deletion_project/deletions3/ a list of yeast essential genes and used the ge-

netic interaction data of yeast metabolism from [55]. For each module, we computed

the ratio between the number of essential and the number of epistatic genes that we

term θ.

http://www-sequence.stanford.edu/group/yeast_deletion_project/deletions3/
http://www-sequence.stanford.edu/group/yeast_deletion_project/deletions3/
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1.3 Results

We interrogated the stability of the epistatic interaction networks of the metabolism

of the yeast S. cerevisiae under different genetic backgrounds using an in silico recon-

struction. In silico metabolisms are built from curated, annotated genes with stoi-

chiometric fidelity, and are able to predict growth by optimizing biomass produced

by incorporating essential metabolites. To assemble the interaction network of each

individual genotype, we systematically generated all possible single and double mu-

tants of the iND750 S. cerevisiae model [23] and assessed their associated fitness i.e.

their growth rate. This single measurement already encompasses multiple pheno-

typic features, that is, the flux through the many reactions of the metabolic network

as they combine to produce biomass. Epistatic interactions are then computed from

these growth rates using a multiplicative model and scaled to range from -1 to 1

from synthetic lethality to complete masking, following previous studies [54] (Ma-

terials and Methods). The epistatic network emerges as an abstract representation of

the relationship between metabolic genes as they yield organism growth. We then

introduce genetic and environmental perturbations (in the form of gene deletion

backgrounds and availability of different nutrients) and repeat the assembly of the

genetic interaction network. Contrasting changes in phenotype – growth rate and

metabolic fluxes – and epistasis allows us to assign functional relationships between

these two levels of complexity in the genotype-phenotype map.

Rewiring of epistatic interactions after gene deletion reflects the differen-
tial organization of metabolic functional modules

The first type of genetic backgrounds evaluated was a set of single deletion mu-

tants of the genes that were active under the established default growing conditions

(glucose minimal medium, aerobiosis)(Materials and Methods). This set of epistatic

interaction networks was characterized by connecting the genetic change to rear-

rangement of metabolic fluxes; analyzing the annotation, sign and strength of the

involved interactions and the directions of change. The features of network rewiring

reflect some fundamental properties of the organization of metabolism.

We first established that changes in the "lower" phenotypic level (i.e. incorporating

more molecular detail) of metabolic flux rearrangements upon gene deletion were

translated into meaningful changes in the "higher" level of genetic interaction net-

works. Rewiring of the epistatic network was computed by aggregating all the inter-

actions that appear, disappear and change sign (Fig. 1.1A) and was found to be pre-

dictable by the change in metabolic fluxes (Fig. 1.1, Spearman’s ρ = 0.72, P < 10−8)
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A B

FIGURE 1.1: Metabolic readjustment predicts network readjust-
ment. A) Rewiring is calculated using a simple metric that aggre-
gates all the possible changes in an epistatic network after a gene is
deleted. In a genetic network, nodes represent genes and links repre-
sent epistasis, positive (+) or negative (-) between them. After gene
deletion interactions can disappear (dotted line), appear (green) or
change sign (orange). B) Association between rewiring of a genetic
network and rearrangement of metabolic fluxes (scored as number of
reactions with altered relative flux) in the set of genotypes generated
by single (active) gene deletion. The number of interactions in the
wild type network (207) and the corresponding active metabolic reac-
tions (277) are included for reference. Genetic backgrounds are repre-
sented with the name of the deleted gene, color shows the functional
annotation of each gene (the rationale for the "artifactually catabolic"
notation is explained in the main text)(data points are represented
with some added noise to aid visualization and the y axis logarithmic
scale is broken showing backgrounds with no genetic rewiring).

and particularly by qualitative change (that is, reactions switching on and off) (mul-

tiple linear regression P < 10−8 compared to quantitative changes, P = 0.97).

Changes in the genetic interaction network are then a reliable reflection of changes

in the relevant phenotypic features determining fitness – in this case, in the flux

through metabolic reactions contributing to biomass production. Adding further
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detail, alterations in currency metabolites (such as NADH) and catabolic intermedi-

ates (from eg. glycolysis) were particularly tied to epistatic network rearrangement

(Appendix A ).

Catabolic genes soon emerged as central to genetic network rewiring, as back-

grounds with catabolic genes deleted were also particularly unstable (it is worth

noting that some genes associated to strong rewiring but annotated as non-catabolic

were fulfilling an artifactually catabolic role in the model, discussed below; this if

anything reinforces the general principle)(Fig 1.1.B)

Tracking the change of individual epistatic interactions (by noting the number of ge-

netic backgrounds in which they were altered) revealed that the most unstable pairs

comprised genes belonging to different functional modules i.e. to different "parts" of

the metabolism (mean instability within the same group = 5.1, mean between groups

= 7.8, P = 3.4 × 10−5). Conversely, new interactions arose more readily between

metabolic modules (90% of new interactions). Here, again, instability was largely

found in catabolic functional groups (Fig. 1.2A), while biosynthetic genes showed

fewer, more conserved interactions that varied only in specific backgrounds (Fig.

1.2B). Sign and strength of the interactions also emerged as a differential property of

stable and unstable interactions. Strong interactions arise with unique and absolute

functional dependencies: synthetic lethal (SL) interaction arises between two unique

alternative pathways to contribute to fitness, while strong positive (SP) interactions

take place between two steps in the same pathway (or subunits of a protein com-

plex)(Fig. 1.3A, left). Weak interactions, respectively, occur when further alternative

pathways of different efficiency exist (Fig. 1.3A, center), and when at least one of

the interacting genes participates in another fitness-contributing function (Fig. 1.3A,

right). In our set of backgrounds rewiring is stronger in weak interactions (Fig. 1.3B)

and, among these, new interactions are more frequently weak negative (WN) aris-

ing anew (Fig. 1.3C) or transformed from weak positive (WP)(Fig. 1.3D). This would

suggest that some proportion of the network changes is due to multifunctional genes

switching between contributing to fitness in the same or different pathways.

That is, instability (measured in aggregate as appearing, disappearing or chang-

ing sign and/or strength) is greater in inter-module interactions that intra-module;

greater in positive interactions compared to negative, and greater in weak interac-

tions compared to positive. Strength and sign of the interactions is in turn related

to the functional annotation of the genes involved. In the wild type network (Fig.

1.4A), SL interactions are predominantly associated to biosynthetic genes, such as

aminoacid synthesis. Some of these interactions are easily understood as they in-

volve pairs of gene paralogs arising from gene duplication, eg. LEU9-LEU4 in the

leucine synthesis pathway (Fig.1.4B). The weak positive and negative component

of the network is more closely associated to catabolism, related to processes such
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A

B

FIGURE 1.2: Network rewiring varies with functional annotation.
A) Instability of wild type interactions between the different metabolic
annotation groups. Dot size represents the number of interactions
between a specific pair of modules, dot color represents the asso-
ciated average instability as number of genetic backgrounds where
an interaction disappears, changes sign or strength. B) New interac-
tions (compared to the wild type network) between pairs of functional
modules that appear in specific backgrounds. Dot size represents the
number of new interactions, dot color represents their distribution
among the set of single deletion backgrounds (normalized Shannon
entropy, Materials and Methods).

as glycolysis (eg. PGI1, PFK1, FBA1), the tricarboxilic acid cycle (TCA)(eg. IDH1,

LPD1, SHD2) and oxidative phosphorylation (COX1, COB, ATP8).(Fig. 1.4 C,D). We

introduce the notation "artifactually catabolic" for a set of genes with different anno-

tations (eg. SER1, AGX1) that act in concert in the model to produce ATP via a sort

of "glycine fermentation", which is not described for S. cerevisiae and is probably due
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A

B C D

FIGURE 1.3: Types of epistatic interactions and their instability.
A) Cartoons depicting the metabolic architecture underlying positive
and negative, strong and weak epistasis. Circles represent genes (en-
zymes) as they transform metabolites feeding them into an essential
function "E". Left: SP (strong positive epistasis) (dark blue) arises be-
tween the components of a pathway, while SL (synthetic lethal) (dark
yellow) connects two unique pathway alternatives. Center: when a
third, less efficient alternative pathway (dotted line) exists two genes
providing the same function interact with WN (weak negative) epis-
tasis (light yellow). Right: WP (weak positive) (light blue) connects
genes acting on the same pathway when at least one of them performs
additional functions in other pathway(s). B) Distribution of interac-
tions in the wild type network that disappear in the set of single dele-
tion backgrounds, grouped by interaction sign and strength (median
with upper and lower quartile in gray line). C) Average number of
new interactions appearing in the set of single deletion backgrounds,
grouped by sign and strength. D) Expected number of transitions in
an average background between interaction classes, grouped by sign
and strength.

to an artifact of the model. Nonetheless these genes behave in concert with the truly

catabolic ones in terms of network properties.

Catabolic genes exhibit a greater connectivity, comprising most of the genetic hubs

linking catabolic modules with weak interactions (nodes with weak average epista-

sis |ε| < 0.5 exhibit a mean of ∼ 8 links; nodes with strong average epistasis |ε| > 0.5

have ∼ 3 links, Wilcoxon test P = 0.003)(Fig. 1.5A) . Deletion of one of these genes
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A B

C

D E

FIGURE 1.4: Wild type network. A) Epistatic interaction network
of the wild type S. cerevisiaemodel. Nodes represent the genes in
the model, color represents the corresponding functional annota-
tion. Edges represent epistatic interactions, color represents sign and
strength as in Fig. 1.3 and throughout the text. To emphasize the dif-
ferential interaction patterns by functional modules the components
of the network are shown separately, representing interactions of type
B) SL, C) WN, D) WP, E) SP.

induces rewiring of these hubs, highlighting different means of achieving the nec-

essary components for cellular growth (i.e. the necessary metabolites supplying the

biomass reaction in the model). Take as an example the glycolitic gene PFK1 (phos-

phofructokinase). Upon its deletion it is mostly other hubs such as PGI1 and FBA

that rearrange their epistatic links with other genes. In the case of FBA1 interactions

disappear as this enzyme, connected with a SP interaction with PFK1, now becomes

essential. On the other hand, new interactions appear with PGI1, an earlier glycol-

itic gene, and others such as the pentose-phosphate pathway gene ZWF1 as initial

processing of glucose is now diverted to this functional module (Fig. 1.5B) This pat-

tern of hubs rewiring hubs holds for most of the genes with high interactivity (the

exception is a biosynthetic hub, IRC7)(Fig. 1.5).
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MIR1
LPD1
SER1
SER2
GCV3
PMP1
ATP8
COB
COX1
FBA1
PFK1
TPI1
PGI1
ALT2
AAT1
FUM1
RPE1
ACH1
ALD6
GLY1
IDP1
SDH2
IRC7

Mit. Trnsp.
TCA cycle; Gly; Ser; Clycls
Gly, Ser; Pdx
Gly, Ser
Folate; Gly, Ser
Extcl. Trnsp.
OxPhos.
OxPhos.
OxPhos.
Glycls.
Glycls.
Glycls.
Glycls.
Ala, Asp
Ala, Asp; Arg, Pro; Tyr, Trp, Phe
OxPhos
Pent. Ph.
Pyr.
Tyr, Trp, Phe
Thr, Lys
TCA cycle,
TCA cycle, OxPhos.
Met.
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Negative

FIGURE 1.5: Influence of the deletion and rewiring of hubs on
epistatic network instability. A) Genetic hubs in the wild type ge-
netic network. Interaction degree and functional annotation of the 25
most connected genes in the S. cerevisiae wild type genetic network.
B) Network rewiring after deletion of the hub PFK1 as a function of
the degree of the interacting genes (red crosses). Bars represent the
number of modified interactions for each gene, colors represent the
type of change (appear, disappear or change sign/strength in blue,
gray and green respectively). C) Interaction rewiring of genetic hubs
upon deletion of other hubs. Rewiring scores are normalized by the
connectivity of each hub in the wild type network. Colors represent
the percentiles of the normalized score (with percentiles [20 40 60 80
100] corresponding to a score of [0.22,0.4, 0.66,0.96, 5.6]; a value of 1
represents a case where the number of altered interactions matches
the wild type connectivity; white denotes an absence of rewiring).

Catabolism then is a highly intertwined structure comprised of genes whose mul-

tifunctionality allows them to contribute to fitness and compensate each other in

various configurations. The complexity of this organization based on functional

versatility can be further understood taking as an example case the ΔMIR1 back-

ground. MIR1 is a carrier that imports inorganic phosphate into the mitochondria;

hence its abundant SP interactions with oxidative phosphorilation genes in the wild

type network (Fig. 1.4). It also presents numerous WN interactions with other genes

that together can supply its function with lesser efficiency: upon deletion of MIR1,
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phosphate must then be transported into the mitochondria coupled to the export of

malate. This alternative pathway has far-reaching consequences on the homeostasis

of the whole metabolism, such as redox imbalances that must be corrected through

other mechanisms (Fig. 1.6A presents a simplified picture of these changes to illus-

trate the general mechanics of network rewiring, detailed changes are omitted; see

Appendix A ) This new pattern of metabolic fluxes and dependencies is translated

into the network, inducing substantial rewiring (Fig. 1.6B, C).

A B C
wild type network deletion network

FIGURE 1.6: Functional underpinnings of network rewiring. A)
Schematic representation of the metabolic reorganization that under-
lies the changes in the genetic network of a deletion genotype, based
on the ΔMIR1 background. Deletion of the background gene (BG,
red) interrupts flow through a specific metabolic pathway . This in-
duces the activation of a compensatory mechanism to fulfill its func-
tion (C1), which in turn usually generates metabolic imbalances that
must be rectified through additional compensatory reactions (C2, C3,
C4)(the exception being the deletion of a gene with a completely
equivalent alternative, such as duplicated genes). In the case of MIR1,
upon its deletion the main mechanism to import phosphate into the
mitochondria is abolished (red). An alternative mechanism based on
the antiport of malate is then activated, which necessitates correction
of redox homeostasis. B) Wild type network of the BG gene. Green
nodes represent active reactions, size of the node represents single
fitness contributions. BG interacts positively with genes acting in
the same pathway (R, denoting genes operating with MIR1 to ful-
fill its main function of respiration) or otherwise dependent on it to
function (SP), and negatively with the alternative and compensatory
mechanisms (C1, C2, C3, C4). C) When the BG gene is deleted, the
target function R develops instead positive interactions with the com-
pensatory mechanisms, now acting in concert to maintain respiratory
function. These genes can in turn interact with each other, positively
or negatively depending on their functional relationships. Second or-
der compensatory mechanisms can also be uncovered (C’1) and re-
flected in the new network.
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Accumulation of neutral deletions significantly reduces the buffering and
versatility of metabolisms

Single gene deletion backgrounds allowed us to connect network rewiring to the

underlying metabolic structure, particularly the distributed robustness of catabolic

modules. To explore this feature or metabolism, we generated an additional set of

genetic backgrounds where neutral mutations accumulate (up to a total of 100 mu-

tations per background, Materials and Methods). The resulting networks exhibit a re-

duction in the number of nodes (196 out of 200 are smaller in number of nodes com-

pared to the wild type) combined with a tendency to increase the number of interac-

tions per node (166/200 have, on average, more interactions). Negative interactions

are mostly responsible for these changes: negatively interacting genes are deleted

during the trajectory, and negative interactions undergo substantial rearrangement

by disappearing, appearing and arising from previously positive interactions. Over-

all this, combined with an increase in essential genes (in 187/200 neutral genotypes),

points to a restriction in buffering mechanisms. An example trajectory is examined

in Fig. 1.7, tracking network change as neutral deletions accumulate. Here rewiring

occurs in a stepwise manner, with some mutations leaving the network unaltered

and others introducing extensive rearrangement (Fig. 1.7A); the latter are, not un-

expectedly, particularly tied to the deletion of wild type hubs, an example being the

early removal of SDH2 which uncovers a new role as genetic hubs for other genes

such as FBP1 and disconnects others such as IDP1 (Fig1.7.B) which will reconnect at

a later step (Fig. 1.7D). The loss of buffering can be clearly observed looking at the

glucose phosphorylation enzymes HXK1, HXK2 and GLK1: after HXK2 is deleted

the remaining genes supplying this function, HXK1 and GLK1 develop a SL inter-

action (Fig. 1.7 C); later, HXK1 is deleted as well and GLK1 becomes essential (Fig.

1.7D). Note that because the remaining enzyme GLK1 is only able to activate glu-

cose, while the other two hexokinases can activate other sugars, catabolic versatility

is reduced in combination with the observed network rearrangement.

Alterations in metabolic capabilities after neutral deletion accumulation should be

further evident in the possibility of accommodating different nutrients to produce

sufficient biomass for growth, as each individual source needs particular processing

before being assimilated. To test this, we exposed our set of neutral mutation back-

grounds to a collection of random environments ([53], Materials and Methods) and

obtained the corresponding growth rates. The ensuing distribution encompassed a

wide range of fitnesses i.e. varying capability of adaptation to new nutritional envi-

ronments (Fig. 1.8A). We classified these backgrounds as high growth (HG) and low

growth (LG) and compared the resulting genetic networks. Many network rewiring

metrics were higher in LG backgrounds: they incurred greater change in the sign
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A

B C

D

FIGURE 1.7: Neutral background trajectory. A)Trajectory of one neu-
tral deletion backgrounds as mutations accumulate (x axis, genes col-
ored in red are hubs in the wild type network) and the genetic net-
work changes accordingly, showing the step-wise rewiring associ-
ated to each deletion and the cumulative rewiring over the trajec-
tory. Rearrangement associated to three specific steps is shown in
detail: B) In step 3 the catabolic hub SDH2 is deleted, inducing sub-
stantial rewiring among other catabolic genes; C) Deletion of one of
three genes able to perform the same function creates a SL link be-
tween the remaining genes; D) Additional deletion of one member
of the remaining pair renders the last gene essential and further con-
strains the metabolism, rewiring of the local genetic network reflects
these changes (see main text for further discussion of the functional
implications)

.

and strength of interactions (Fig. 1.8B) (mean = 24.3 and 13.4 interactions per back-

ground in LG and HG, respectively) and these were particularly less conserved in
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catabolic modules (i.e. less conserved weak and inter-module epistasis)(Appendix A

). The final networks were smaller in number of edges and nodes, and contained

more essential genes (Fig. 1.8C). LG epistatic networks were also proportionally

more negative. While new interactions arose at a similar rate in HG and LG (mean

= 60.6 and 61.0 respectively), in the latter they occurred in genes of particular sig-

nificance: negative ones between the pentose-phosphate patwhay and other genes

performing catabolic functions (Fig. 1.8).

The backgrounds accumulating neutral deletions, thus, incurred a variable but fre-

quently significant reduction in compensatory mechanisms. The LG genotypes are

particularly impaired in their ability to incorporate alternative carbon sources due

to their notable loss of metabolic versatility and, particularly, of the pathways re-

quired to direct nutrients towards the later catabolic functions. This occurs because

carbon sources other than glucose require initial transformation steps involving the

pentose-phosphate pathway and gluconeogenesis to be then introduced into the

common core of catabolism (at different stages of glycolisis or the TCA cycle). Dele-

tion of many of these genes can be phenotypically neutral in glucose medium, but

the metabolisms thus generated are harboring cryptic variability that is only exposed

when challenged with varying environments or further genetic perturbations (as

when assembling the genetic interaction network).

In silico results are consistent with experimental observations

The results described here are based on in silico metabolic reconstructions, but a

quick assessment of experimental studies on this topic corroborate some of the fea-

tures we describe. We confirmed some of our in silico predictions with other avail-

able experimental datasets. Using data from a previous study [62] we explicitly eval-

uated the comparative rewiring of genetic networks in S. cerevisiae and the distantly

related yeast S. pombe, finding confirmation of the greater instability of weak interac-

tions ( with conservation rates of 4.9% compared to 8.7% for strong interactions, χ2

test P < 2, 2 × 10−16) and of positive interactions (0.8% of conservation while 5.4%

of negative ones were conserved χ2 test P < 2, 2× 10−16) (Fig. 1.9 A) (SeeDiscussion

for further examples).

The reflection of environmental plasticity on epistatic interaction rewiring was also

apparent using data from genetic networks assembled by exposing yeast growing on

rich media to three DNA-damaging agents: methyl methanosulfonate, camptothecin

and zeozin [59]. Again, weak interactions show greater instability than strong ones,

and positive interactions are less conserved than negative (comparing the untreated

network to the three environmental alterations, Fig. 1.9 B). Functional relationships

also define conservation status, as interactions among closely related genes are more
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A B

C D

FIGURE 1.8: Environmental plasticity of the neutral deletion back-
grounds. A) Fitness distribution, as the of a set of neutral deletion
genotypes exposed to an array of random environments. Data points
represent the median of the growth ratio between each background
and the wild type for a given environment. 100 backgrounds with
the highest and lowest growth were selected for further analysis (HG
and LG respectively, highlighted in red). B) Instability of the genetic
networks of HG and LG backgrounds as fraction of conserved inter-
actions, grouped by interaction sign and strength. Boxes show the
median (center) and first and third quartiles (lower and upper edges).
C) Distribution of the number of essential genes in HG and LG geno-
types. D) Enrichment/depletion of specific deleted genes in the LG or
HG backgrounds. Colors represent genes found by a bootstrapping
analysis to be significantly enriched or depleted in HG, LG or both
(blue, yellow and green, respectively) (P < 0.01 accounting for mul-
tiple testing). Inset: proportion of genes from the significant groups
that present interactions in the wild type genetic network.
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A B C

FIGURE 1.9: Experimental support for the in silico conclusions.
A) Conservation of genetic interaction rewiring between two distant
yeasts, S. cerevisiae and S. pombe, using data obtained from [62] consid-
ering direct orthologs. SN and SP defined as interactions belonging
to the upper 30 percentile of all negative and positive interactions,
respectively (WN and WP defined as the lower respective 70 per-
centile). NO indicates an absence of interactions. Box colors indicate
ratios between the number of times that a transition is observed and
the expected value (by random permutation 10000 times, stars indi-
cate significance at P < 10−4). B) Stability of interactions in response
to environmental change, consisting of the addition of three DNA
damaging agents to yeast cells growing in rich media. Data obtained
from [59] (Materials and Methods). Unstable interactions grouped by
sign and strength. C) Instability of the interactions in the dataset as
in B, in relation to the functional distance between genes defined by
the proportion of shared biological process annotation in the original
reference.

stable than between more distant functional classes (Fig. 1.9C). Furthermore, weak

epistatic interactions specific to each treatment also tend to arise between function-

ally distant genes (92% as opposed to 87% in the untreated genetic network, χ2 test

P = 3× 10−15).
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1.4 Discussion

Systematic deletion of metabolically active genes in one specific, realistic growth

condition for yeast (glucose minimal medium and aerobiosis) allowed us to connect

the stability of the respective genetic networks to the functionality of the deleted

genes and their position within metabolic architecture. Interaction sign and strength

are reflections of the way in which each gene contributes to the observable pheno-

type (Fig. 1.3A). Instability of the epistatic interaction network is mostly associated

to weak interactions compared to strong; and to positive compared to negative in-

teractions. Furthermore, network change is mostly tied to catabolic genes (a cate-

gory to which most of the genetic hubs belong, Fig. 1.5 A), and to between-module

interactions (Fig. 1.2A); most of the background-specific interactions are likewise

encompassed in this classification (Fig. 1.2B). All this information converges on the

distributed and versatile nature of catabolic processing, whose potentiality is already

reflected in the wild type network (Fig. 1.4). Biosynthetic functional modules exhibit

the opposite pattern: a greater proportion of conserved SL interactions, connected

to a more linearized mode of operation.

While this study was entirely performed in silico, experimental observations rein-

force our conclusions. Some of these studies are discussed in Results (Fig. 1.9);

other studies in various genomic subsets report high conservation of SL and within-

module interactions, compared to the rearrangement of between-module interac-

tions [60, 61]. All these experimental studies are consistent with our predictions of

rewiring being largely associated to weak and positive epistatic interactions. Sign

changes that we identified in catabolic hubs could likewise be indicative of func-

tional repurposing [63]. Comparable results are observed in the yeast genetic inter-

action dataset from [55], where we computed the ratio of essential and epistatically

interacting genes (θ) finding a significantly larger ratio for biosynthetic modules

(θ = 0.18, θ = 0.94 for catabolic and biosynthetic genes, respectively; Wilcoxon-

Mann-Whitney test P = 0.01).

After examining another set of mutational backgrounds defined by neutral adaptive

trajectories [65, 66], the functional underpinnings of genetic network rewiring are

emphasized. In some cases (LG) catabolism has been "pared down" so that much

of the distributed buffering is lost and functions are carried out by as few genes as

possible; this causes an enrichment in essential genes, negative interactions and a

notable decrease in environmental plasticity (Fig. 1.8).

In sum, the cell typically will respond to genetic and environmental stresses in ways

that will necessitate the compensation of metabolites related to energy and/or redox

balance. Catabolism is the fraction of metabolic reactions suited to these means, due
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its distributed compensation mechanisms associated to high pleiotropy and inter-

connection between subfunctions. Once homeostasis is achieved and precursors are

produced, biosynthesis of different cellular components proceeds through more lin-

earized pathways with simple redundancy. This different organization is reflected

in the patterns of genetic networks and their change (Fig. 1.10).

catabolism

biosynthesis

FIGURE 1.10: Summary of the main conclusions obtained in this
study. The organization of metabolic functional modules (left) is
reflected in the associated genetic network and its stability (right).
Catabolism contributes the essential currency metabolites ATP and
NAD(P)H (energy and reductive power)(reactions marked in blue
and orange, respectively) and biosynthetic precursors (red). Degen-
eracy of catabolism leads to distributed robustness, manifested as
unstable weak and positive interactions among functionally diverse
genes (interaction sign and strength coded by color as in previous fig-
ures). Mutational and environmental robustness are linked in the re-
arrangement of the epistatic network (top). Biosynthesis is composed
mostly of independent pathways in which robustness is mostly due
to simple redundancy, leading stable synthetic lethal genetic interac-
tions (bottom).
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Chapter 2

Social Interactions

2.1 Introduction

Bacteria were traditionally studied under the framework of their antagonistic effect

on human health -a view that focused on individual species acting in an isolated

manner to cause infections. However,the complexity and versatility of microbial or-

ganisms is increasingly being recognized [67]. Interest in communities of microbes

has been propelled by advances in metagenomics and other high-throughput tech-

niques [68, 69], and they have emerged as useful experimental tools in Ecology and

Evolutionary Biology [12, 19] and mediators in human health states [70, 71]. Micro-

bial communities are shaped by social interactions between its members [72], and

thus the understanding of microbial social dynamics emerges as central to the full

comprehension of their natural lives and potential applications [73]. This under-

standing comprises rigorous assessment of all the interacting system variables de-

termining the dynamics of a population at different levels of biological organization

(biophysical, molecular, physiological), including ecological and evolutionary pro-

cesses acting on similar time scales in an integrated manner.

Social dynamics in bacterial communities

Social interactions at the microbial scale often manifest as external molecules se-

creted into the medium, which act as public goods. In a broad sense a "public good"

is a common resource maintained by the members of a community [9], and they

are integral to the functioning of microbial populations [24]. They can supply in-

formation to individuals about the state of the collective, as in the case of quorum-

sensing molecules that implement cell-cell communication between bacteria [74].

They can enable the degradation of nutrient sources too large to be individually

processed, such as the case of the enzyme invertase which allows Saccharomyces

cerevisiae to break down sucrose in the medium that can then be internalized [75];

or nutrients otherwise inaccessible, such us free iron scavenged by siderophores in



30 Chapter 2. Social Interactions

Pseudomonas aeruginosa and related species [76]. The formation of biofilms is fun-

damentally based on the sharing of external molecules, i.e. secreted polymers that

construct a protective layer around the community; this category includes highly or-

ganized biofilms that are a regular part of a microbe’s lifestyle, such as those formed

by Bacillus subtilis [77], or structures quickly arising de novo in particular selective

pressures, such as the mats created by Pseudomonas fluorescens in response to oxy-

gen deprivation in static culture [78]. Public goods are also used by microbes to

coordinate complex population-level behaviors, such as the induction of virulence

in Salmonella typhimurium [79]. A common vulnerability threatens systems based on

public goods: their exploitation by individuals, cheaters, that do not contribute to

the shared resource but nevertheless reap its benefits. By avoiding the cost of coop-

eration, cheaters retain a fitness advantage that can lead them to invade the popula-

tion, damaging the collective effort and in some cases ultimately causing population

decay in what has been termed "The tragedy of the commons" [9] (Fig. 2.1, see [78]

for a clear experimental example in the mats of P. fluorescens).

FIGURE 2.1: Dynamics of a cooperative interaction in a microbial
community. A) Interactions based on public goods can be essen-
tial for the functioning of microbial communities, relying on the pro-
duction of a shared resource (the public good, gray) by cooperators
(green) at an individual cost. B) Public goods are inherently unsta-
ble. Cheaters (red) that do not contribute to the common resource but
reap its benefits tend to appear. C) Because cheaters avoid paying the
cost of producing the public good, they grow faster and invade the
population. D) Cheater invasions can compromise or even destroy
the collective effect.

Preservation of a social interaction mediated by public goods, then, necessitates ad-

ditional features or mechanisms of control. The theoretical discussion on this topic is

extensive [80] but we will focus on the many specific experimental examples that can

be found in microbes. The general underlying principle is the assortment of coop-

erators, that is, the preferential interaction of cooperator among themselves and/or

with the public good molecule. Implementation of this general strategy can entail
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specific genetic mechanisms, such as the recognition of cooperators among them-

selves the exclusion of cheaters by what has been termed a "green beard" gene, or an

indirect cost to cheating associated to pleiotropy in the cooperative gene [81, 82]. It

can also involve, for example, the partial privatization of the public good, such as the

case of invertase (described above) where cooperator yeast cells retain a small but

sufficient percentage of the produced glucose to outcompete cheaters in conditions

of scarcity [75].

Physiological, ecological and evolutionary constraints shape public good-
based interactions

Nevertheless, disentangling the contribution of tangential factors to the social inter-

action to the sustainability of a collective effect is necessary to rigorously discuss the

evolution and dynamics of cooperative behaviors; such as fitness tradeoffs [83], or

the biochemical details of public good production and distribution [75]. This ties into

the idea that a given molecule or cellular process might only display the character-

istics of a public good in a certain context [30], and that the social interaction might

be modulated by other factors of similar impact on ecological and evolutionary dy-

namics. Thus, detailed knowledge of the cellular and cell-environment interactions

is required to fully comprehend the social aspect [10].

Deepening our understanding of the social features of microbial communities re-

quires precise knowledge of the natural living conditions of the species, and detailed

characterization of the processes involved from the ecological to the subcellular

level. An important part of this discussion involved the production of siderophores

by P. aeruginosa and other related strains, mentioned above but enumerated here

in greater detail as an example of the complexity of public goods in their complete

regulatory context.

The production of pyoverdin by some Pseudomonas spp. is one of the most widely

used as a bacterial public good model system [72]. Pyoverdin is a water-soluble iron-

chelating molecule synthesized as a response to iron scarcity, and exported into the

periplasm and then the external medium through dedicated transporters [84]. Af-

ter binding iron in the specific ionic state ferripyoverdin is again imported into the

cell through another set of transporter proteins. There, iron is released to be used

in cellular processes and pyoverdin is recycled and secreted again [85]. Because

pyoverdin molecules present in the extracellular medium can be used by any neigh-

boring cell with the appropriate receptors, regardless of its origin, it has frequently

been described as a public good. However, many regulatory and environmental fac-

tors create a more complex picture. In an ecological context where multiple bacterial
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strains interact, siderophore production could be tuned by a combination of com-

petitive and cooperative dynamics [86]. The culture medium and the presence of

spatial constraints (which can create an oxygen gradient that affects the ionic state

of iron and thus its bioavailability) define the functionality of pyoverdin as a public

good or a neutral or even deleterous product [30, 87]. Spatial effects observed at

the subcellular level can further influence pyoverdin dynamics: in microcolonies of

P. aeruginosa observed under epifluorescent microscopy, pyoverdin diffused prefer-

entially between the periplasmic spaces of adjacent cells, reducing its loss into the

external medium and the possibility of exploitation by cheats [88]. The siderophore,

thus, potentially transitions from behaving as a public to private good. These envi-

ronmental and single-cell level variables combine to determine varying population

dynamics.

A novel framework connects ecological and evolutionary dynamics

Ecological and evolutionary processes were typically thought to occur over separate

timescales, with ecology being considered "fast" and evolution "slow". The effect

of ecology on evolution has been established for a long time in the form of natural

selection, that is, the change in the distribution of heritable traits in response to the

environment. Increased attention is being placed on the reverse phenomenon: the

possibility that evolution can in turn influence ecology [6]. In a simple scenario, for

instance, natural selection – ecology acting on evolution – can increase the growth

rate of a population – evolution acting on ecology – ; recent discussions attempt to

tease apart more complex scenarios where multifaceted aspects of ecology and evo-

lution interact simultaneously [7]. Part of this framework shift originates from the

recognition that evolution can be fast [89], and the possibility that rapid evolution

can rescue a decaying population has become ever more relevant under the envi-

ronmental alterations brought by global climate change [90, 91]. Within this novel

framework microbes are a particularly suitable model and subject of study, given

their fast life cycles and experimental amenability. Specifically, interactions between

microbes emerge as a type of biological feature where eco-evolutionary feedbacks

exert a clear influence.

One recent study tracked the development of an interaction between species that

had previously not met in their natural ecological context: the yeast S. cerevisiae and

the nitrogen-fixing bacteria Rhizobium etli [92]. S. cerevisiae produces molecules that

affect bacterial growth, including both growth-promoting factors and an inhibitor.

When co-culturing these two species in mixed conditions, an early commensal re-

lationship develops through the growth factors, until their depletion and the rise of

bacteria resistant to the inhibitor leads the prokaryotes to compete for resources. The
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interaction then turns antagonistic. This study portrays how an eco-evolutionary

process –specifically, the evolutionary rescue mentioned above – can quickly shape

an interaction between unrelated species.

Eco-evolutionary feedbacks and constraints ultimately determine the fate
of public good-based systems

Feedbacks between evolution and ecology also result from the social conflict be-

tween cooperators and cheaters of the same species, as a study in the invertase sys-

tem of S. cerevisiae demonstrated. Here, a density-dependent effect (as cooperator

retain a small fraction of the public good that gives them an advantage at lower den-

sities) produces a distinct spiraling pattern in the population dynamics that couples

the evolutionary spread of the cheating allele and growth of the population enabled

by the public good [8].

Other strategies can connect ecological constraints (such as population size) to the

sustainability of cooperation, such as stochastic contribution to a public good, or

plasticity based on the sensing of population-wide cooperation levels [93]. We fo-

cused on a particular scenario where eco-evolutionary feedbacks in a social system

can produce counter-intuitive effects: invasion by cheaters can be part of a mecha-

nism that preserves cooperation, instead of necessarily leading to its collapse. This

is one of a few contexts where a positive role for cheating individuals has been sug-

gested; others include their potential role in the development of life cycles [94] or

phenotypic cheating protecting cooperative alleles from genotypic cheating [79]. We

analyze, both with a computational model and experimentally, how these paradoxi-

cal dynamics are mediated by synergy between eco-evolutionary processes and the

effect of spatial structure. Previous theoretical studies have explored this issue [27],

but experimental implementation in a synthetic bacterial system (two strains of E.

coli engineered to display a social interaction) allows us to additionally assess the

effect of other features of the bacterial system on the social dilemma. As part of

the effort to rigorously contextualize microbial public goods in their interplay with

biophysical to ecological variables, we additionally characterize a previously unde-

scribed subcellular localization pattern of a natural bacterial product tied to social

dynamics, the siderophore pyoverdin in P. fluorescens SBW25.
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2.2 Materials and Methods

Culture media and reagents

For the eco-evolutionary feedbacks experiments. Strains were grown in LB broth

10 g L−1casein peptone, 5 g L−1 yeast extract, and 5 g L−1 NaCl) at 30 ◦C with con-

stant shaking. Overnight cultures were grown aerobically in flasks (170 rpm) at

30 ◦C, and experiments were performed in 96-well plates (Thermo Scientific, Den-

mark), with 200 µL of medium, 50 µL of mineral oil (Sigma-Aldrich, MO, USA),

and shaking at 10000 rpm and 30 ◦C. Where indicated, antibiotics were added to

the liquid medium or plate at final concentrations: kanamycin (Km) 50 µg mL−1,

spectinomycin (Sp) 50 µg mL−1 in the construction of strains and 25 µg mL−1 in ex-

periments, and/or gentamicin (gm) with concentration as noted in the experiments.

The synthetic quorum-sensing molecule N-butyryl-L-homoserine lactone (C4-HSL)

was purchased from Cayman Chemical (Mi, USA). Cell dilutions were done in PBS

(pH 7.4, Na2HPO4 80.6 mM, KH2PO4 19.4 mM, KCl 27mM, NaCl 1.37 M at 10X, USB

Corporation, OH, USA).

For the subcellular localization of a public good experiments. Strains were grown

overnight in LB broth at 28 ◦C with constant shaking (180 rpm), then centrifuged 4

min at 6000 rpm and resuspended in succinate minimal medium (SMM) K2HPO4

6 g, KH2PO4 3 g, NH4SO4 2 g, MgSO4 0.2 g, NaOH 3 mM, sodium succinate 4

g)(Sigma-Aldrich, MO, USA) and incubated an additional 24 h before preparation

of the microscope sample.

Strains

For the eco-evolutionary feedbacks experiments. The different E. coli strains were

derivatives of JC1080 (BW25113 Δsdi::FRT) [25]. The parental strain was con-

structed by integrating the cassette T0-SpR-rhlRPlacIq-PrhlGmRLAA-T1 into the

λattachment site (attB) of E. coli JC1080 with the helper plasmid pLDR8, that bears

the λintegrase, as described [95, 96]. The plasmid pZS4int-rhIL-GmLAA plasmid

was constructed by adding the aacC1 gene (GmR), from pSEVA611 plasmid [97],

replacing the catLVA resistance marker from pZS4int-rhl-catLVA [25]. The final

pZS4int-rhIL-GFP plasmid was assembled by replacing GmRLAA cassette for a GFP

fluorescent reporter (from the lab collection). The pZS*2R-mCherry (ori-SC101*,

PRGFP-rhlI, KmR) plasmid was constructed by swapping the GFP-rhlI cassette

for the mCherry gene (lab collection). Then, the quorum-sensing reporter strain,

"biosensor", was constructed by introducing into the λ attachment site (attB) of E. coli

JC1080 the cassette T0-SpR-rhlRPlacIq-Prhlgfp-T1 as described above. The plasmid
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pZS*2R-GFP-rhlI (ori-SC101*, PRGFP-rhlI, KmR) was obtained from [25](for further

details see Appendix B).

For the subcellular localization of a public good experiments The strains used were

P. fluorescens SBW25 wild type and a derived mutant defective in PvdS and tagged

with mCherry under IPTG induction. Isolation and construction of these strains is

thoroughly described in the cited literature [30, 78].

Simulation of eco-evolutionary dynamics

We used a model first described in [26] to simulate the dynamics of a population

whose growth is based on an essential public good. It is based on a one-shot public

good game [98] in which agents can contribute (cooperators) or not (cheaters) to the

public good in groups of size N . Contributing implies a cost c to the agents. Group

contributions are then summed, multiplied by a reward factor r (that determines the

efficiency of the investments and the attractiveness of the public good) and redis-

tributed to all group members, irrespective of their contribution. . The life cycle of

the computational model is characterized by two distinct stages. In stage I the pop-

ulation is structured in evenly sized randomly formed groups in which the public

good game is played. In stage II , each individual replicates according to the group

composition (and payoff) experienced in stage I (see Appendix B for more details).

Experimental eco-evolutionary dynamics

To engineer the initial conditions, initial populations were prepared by mixing co-

operators and cheaters at a defined population density (104 cells/well for high

initial density experiments and 1-10 cell/well for low initial density experiments)

and cooperator frequency. Overnight cultures of producers and nonproducers were

washed twice with PBS by centrifugation for 15 min at 3800 rpm and room tempera-

ture. Then, OD600 was adjusted to 0.15. We assembled populations at the desired P

frequency in a fixed final volume (2.5 mL), which was then serially diluted to the re-

quired cell density. This dilution was done in large volumes of medium (20 mL) and

applying low dilution factor (1/4) each step to minimize the introduction of error in

strain frequencies. Initial dilution steps were performed in PBS and the final 3 steps

were performed in LB with Km, Sp.

Populations with a given initial cell density and cooperator frequency were pre-

pared, distributed into a 96-multiwell plate and incubated for 15.5 h (T1). Then,

1/10 of each well was transferred into a new 96-multiwell plate with LB, Km, Sp

and the specified gm concentration. This plate is again incubated for 8.5h (T2). At

the end of T2 we plated whole well contents were spread onto 1.5% (w/v) LB agar
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plates with five 3 mm glass beads for 30 s, and are incubated at 30 ◦C for 48 h (or

otherwise indicated). Then, to quantify the cell number of a population we counted

colony forming units (CFU) under blue light illumination (LED transilluminator,

Safe ImagerTM 2.0, Invitrogen, Waltham MA USA). The OD600 of cultures was mea-

sured in a VICTOR2x 2030 Multilabel Reader machine (Perkin Elmer, Waltham, MA,

USA) with intermittent orbital shaking. For experiments with P and nP strains, Km

and Sp were added to the media.

Characterization of the synthetic social interaction and biological con-
straints

To evaluate the invasion capability of nonproducers we prepared washed cultures

of producers and nonproducers as described above . After adjusting OD600, to 0.15

we mixed both strains at the indicated frequency. Then, we inoculated three replica

50 ml Erlenmeyer flasks with 5 ml of LB, Km, Sp. After 24 h, we reseeded a new

flask with a 1/100 dilution and fresh medium. In order to estimate producer fre-

quency in grown cultures, cells were 1/10 serially diluted in PBS using a total of 10

ml of medium, plated onto LB agar plates, and colonies counted after 24h at 30 ◦C.

We followed this process for 4 consecutive days. To determine antibiotic sensitivity

overnight cultures were reseeded and grown for 4 h at 30 ◦C to reach exponential

phase. Aliquots of this culture containing ∼ 106 cells were resuspended into a 96-

multiwell plate with LB and a given dose of Gm, incubated for 2 h or 4 h, plated

and counted. For experiments with the nP strain, Km and Sp were added to the

LB medium. For experiments with cells in stationary phase, overnight cultures were

used directly in the initial inoculation. We used additional wells without antibiotic in

parallel to obtain a reference population size. We express the sensitivity to the antibi-

otic as “fraction surviving” (population size after exposure to antibiotic/reference

population size without antibiotic). To measure the protective effect of the public

good overnight cultures of nP were resuspended into LB with Km, Sp and the in-

dicated concentrations of synthetic quorum-sensing molecule (C4-HSL). Then, we

proceeded with the antibiotic sensitivity assay as described above.

Estimation of public good production

To estimate the concentration of the quorum sensing signal produced (C4-HSL), in

different experimental conditions we used the reporter “biosensor” bacteria. We

grew the “biosensor” strain overnight, adjusted the OD600nm to 0.1 and grew aer-

obically for 2.5 h at 30 ◦C. Then, the culture was aliquoted and purified super-

natant from the experimental sample was added. We used known concentrations

(0, 0.1 µmol, 1 µmol, 10 µmol, 100 µmol of the commercial N-butyryl-L-homoserine
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lactone (C4-HSL) to obtain a calibration curve. We grew these preparations aerobi-

cally for 3h, laid out 200 µL of cultures in quadruplicates in a 96-well black/clear

bottom microtiter plate (Sigma-Aldrich, MO, USA) and measured OD600 and GFP

fluorescence (ex: 488nm; em: 520nm; cutoff: 495nm) in a SpectraMax M2e mi-

croplate reader (Molecular Devices, CA, USA). Supernatants were obtained from

200 µL of overnight liquid cultures prepared following the predetermined protocol,

centrifuged twice at room temperature to remove cells and used directly to induce

growing cells of the reporter strain. Comparing observed supernatant fluorescence

to the calibration curve approximated QS molecule quantities.

Mutation rate

We generated replica populations of the nP strain and initial density of∼ 1 cell/well.

We distributed these cultures in 96-multiwell plates and allowed them to grow for

15.5h (T1). We plated the whole well content on LB agar plates with the spec-

ified gm dosage and counted viable cells. From the distribution of Gm-resistant

CFU observed in a set of replica populations the mutation rate was estimated with

a maximum likelihood method as described in [99], using the online application

“FALCOR: Fluctuation Analysis Calculator” (http://www.keshavsingh.org/

protocols/FALCOR.html ).

Microscope slides

To prepare the agarose pad, 220 µL of agarose dissolved in SMM (2% w/v) were

poured onto a microscope slide fitted with a sticky frame (Gene Frame,Fisher Scien-

tific), pressed with a clean slide and allowed to dry for ∼ 2 min. A small ∼ 3 mm

section of the pad and frame was cut across the slide to provide air for the grow-

ing cells. Growing cultures of SBW25 were again centrifuged 4 min at 6000 rpm

and resuspended in fresh SMM. OD600nm was measured and additional dilutions

were performed to adjust optical density to values previously determined by em-

pirical means to result in an inoculum of 5-10 cells in this specific microscope field.

1.5 µL of this preparation was inoculated on the agarose pad. After inoculating the

pad,a clean coverslip was placed and carefully sealed onto the frame. Note that

the only source of oxygen is the small channel cut across the agarose pad, which

is liable to be depleted as cells closer to this channel grow into a thick lawn dur-

ing extended culture time. To prepare the “liquid slides”, the cultures were grown

and OD adjusted as usual, and 140 µL (using a single frame) or 410 µL(triple frame)

of the liquid inoculum were placed on the frame and sealed with a coverslip. The

“triple frame” conditions were used to produce an inoculum with a large proportion

of cells in a polarized state, after 24 h of incubation, to be extracted with a syringe

http://www.keshavsingh.org/protocols/FALCOR.html
http://www.keshavsingh.org/protocols/FALCOR.html
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and re-inoculated following the usual protocol. All experiments and incubations

were carried out at 28 ◦C unless otherwise indicated.

Time-lapse fluorescence microscopy and image analysis

Time-lapse fluorescence microscopy and image analysis The growing inoculated mi-

crocolonies were monitored by taking snapshots every 10 min for a typical total time

of 18 using the microscope Axio Observer.Z1. Colonies were imaged under phase

contrast (exposure: 30 ms) and Pvd using the fluorescence Source X-Cite 120 LED

and the following filters: 390/40 BrightLine HC, Beamsplitter T 425 LPXR, 475/50

BrightLine HC (exposure: 30 ms, 12% intensity). Handling of the microscope, in-

cluding the autofocus function for time-lapse imaging was achieved using the open

source software MicroManager (with the plugin OughtaFocus) [100]. Images were

taken with 63x and optovar 1.6x magnification. Visualization of the microscope out-

put and image processing (such as background correction) was performed using the

image analysis software Image J (https://imagej.nih.gov/ij/). Preliminary

segmentation analysis was performed using the package for Matlab SuperSegger

from the Wiggins Lab (http://mtshasta.phys.washington.edu/website/

SuperSegger.php).

https://imagej.nih.gov/ij/
http://mtshasta.phys.washington.edu/website/SuperSegger.php
http://mtshasta.phys.washington.edu/website/SuperSegger.php
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2.3 Results

Preservation of cooperation can be mediated by eco-evolutionary feed-
backs in a simulated community that relies on an essential public good

We first analyzed the effect on eco-evolutionary dynamics of a social system with a

constitutive, essential public good with a stylized in silico model [26]. In the model,

a finite population of agents (representing bacteria) is transiently aggregated into

groups of a given size. The model comprises two types of cells, cooperators that

produce an essential public good incurring a fitness cost, and cheaters that arise

from mutation and can use the public good avoiding the cost. In the groups the

social interaction takes place, and individuals divide according to the payoff of the

public good game [98] (Fig. 2.2A). This scenario produces characteristic dynamics,

an example trajectory of which is depicted in Fig. 2.2B: by avoiding the fitness cost

of cooperation, cheater agents multiply and invade the population.This, mediated

by the essentiality of the public good, causes an overall demographic reduction that

is translated into variability in the composition of the groups (Fig. 2.2C). Variability

enables the isolation of cooperators that can then recover the population (Fig. 2.2D).

The process of cheater invasion, population collapse, and cooperator recovery re-

occurs cyclically, with some risk of population extinction. Thus, eco-evolutionary

dynamics are sufficient to generate endogenous cycles of collapse and recovery of

both population size and cooperator frequency. The conditions for recovery are set

when initial population decay results in inter-group variability, in a process that re-

sembles a statistical phenomenon known as Simpson’s paradox [25]. Briefly, this

phenomenon alludes to the contrast between a local (i.e. in a subpopulation or

group) decrease in cooperators due to cheater invasion, and their global increase

due to differential growth of cooperator-rich and cooperator-poor groups.

Experimental implementation of the social interaction confirms the eco-
evolutionary feedbacks

We translated this conceptual framework into an experimental system. We engi-

neered a synthetic social interaction between two strains of bacteria: a producer

of a public good that is essential for population survival, and a nonproducer that

does not contribute but can utilize this public good (Fig. 2.3A). Specifically, the co-

operator/producer is an Escherichia coli strain modified to constitutively produce

a molecule that freely diffuses in the medium; the molecule is the RhlI autoin-

ducer from P. aeruginosa, which guarantees an absence of cross-talk with other bac-

terial systems. Both cooperators and cheaters/nonproducers are equipped with the

cognate regulator RhlR, which in response to the autoinducer activates resistance
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FIGURE 2.2: Eco-evolutionary dynamics in a simulated social sys-
tem where exploitation by cheaters contributes to the rescue of co-
operation. A) Cartoon depicting the in silico model of a microbial
community which is organized as a transient metapopulation where
cooperators (green) and cheaters (red, originating from cooperators
by mutation) interact by means of a public good game (Materials and
Methods). B) Typical population dynamics obtained with this model.
Growth depends on an essential public good producer by coopera-
tors. When cheaters invade, the decline in the amount of public good
drives collapse of the population. This collapse paradoxically deter-
mines its subsequent revival. C) Revival is coupled to the endoge-
nous emergence of variability in the composition of the groups when
population is decaying. For the time window highlighted in B we
display group composition (bottom; groups are colored according to
their ratio of cooperators as indicated by the color gradient; white
squares denote empty groups of a total of N = 30) and intergroup
diversity (top, black curve, quantified as variance in group compo-
sition), number of empty groups (top, pink curve). D) Cartoon de-
picting the mechanism of cooperator recovery after cheater invasion,
mediated by the assortment of cooperators into isolated groups en-
abled by the increase in intergroup variability measured in C.

to the antibiotic gentamicin (Gm). Resistance is implemented through a cytosolic

antibiotic-modifying enzyme that inactivates the drug (Fig. 2.3B). We designed an

additional "biosensor" strain where the public good induces green fluorescence, as
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an instrument to measure public good production and its association to relevant

population properties (Materials and Methods).

FIGURE 2.3: Engineering of a bacterial synthetic social interaction.
A) We designed two types of strains, that can contribute (green) or
not (red) to the production of a public good. A community that ac-
cumulates (top,cooperators) or obtains (bottom, cheaters) the public
good in the environment is able to tolerate a bactericidal antibiotic
stress, although the latter can survive least because the initial pub-
lic good is spent. A community growing without public good would
eventually collapse under stress (middle). B) Molecular implemen-
tation of the synthetic social interaction. The cooperator strain is
equipped with a plasmid (top) carrying the necessary genes to syn-
thesize the public good, the quorum-sensing (QS) molecule RhlI, and
a GFP fluorescence tag allowing their phenotypic identification. In
the cheater strain, the rhlI and GFP cassette is swapped with the al-
ternative red fluorescence tag mCherry Both strains carry a genomic
insert capacitating their use of the public good: the cognate recep-
tor for the quorum-sensing molecule, RhlR, inducing the synthesis of
the antibiotic resistance enzyme aacC1 which degrades the bacterici-
dal gentamicin (Gm)(the system is based on a previous one [25], see
Materials and Methods for construction details)

The synthetic social system thus designed allows us to ensure that public good pro-

duction is constitutive (i.e. producers cannot avoid cooperating), the public good is

equally available to cooperators and cheaters (the small autoinducer freely diffuses

through cells), and it is properly essential (as the antibiotic is a bactericidal). Ad-

ditionally, cooperators and cheaters are tagged with green and red fluorescence, re-

spectively, which enables direct evaluation of their population frequencies. Synthe-

sis of the public good molecule carries a fitness cost for producers, which manifests

as a reduced growth rate. Then, the public good is required to tolerate a bactericidal

stress (Fig. 2.4B) (note that it significantly increases population survival to a high



42 Chapter 2. Social Interactions

dosage of the antibiotic, for which a MIC of under an order of magnitude has been

reported for E. coli, see http://mic.eucast.org/Eucast2/, but its presence is

inherently unstable due to the fitness advantage of cheaters (Fig. 2.4A). It must be

noted that, while in this case both the cooperator and cheater strain are engineered

as is to ensure maximum control of the social interaction features, public good non-

producers readily arise in natural settings [78].

FIGURE 2.4: Beneficial effect and vulnerability of the public good
mediating the social interaction described in Fig. 2.3. A) Survival
to Gm of a population constituted only by cheaters increases when
the essential QS (i.e. the public good) molecules are added to the
pre-incubation medium, before being exposed to stress (8 µg mL−1

Gm, black dots represent N = 17 replicas per QS dosage, solid color
represents 95% confidence interval of a local polynomial regression).
B) Decay in the fraction of cooperators in a mixed population as
cheaters, which do not pay the cost of synthesizing the public good,
invade over time. Cheater invasion is independent of the initial frac-
tion of cooperators (10% or 50%). Boxes indicate the standard devia-
tion associated to the experimental estimation of ratios. (see Materials
and Methods for protocol details).

We aimed to capture experimentally the fundamental features of the simulation: the

population collapse induced by cheater invasions, and the subsequent recovery of

cooperators. We designed a minimal experimental protocol to study the dynamics

of the engineered bacterial interaction: we assembled a population with a specific

frequency of our cooperator and cheater strains, and distributed it in a 96-well mi-

crotiter plate mimicking the transient division into groups. The social interaction

occurs as bacteria are allowed first to grow for a time T1 in which the public good

molecule accumulates, and then exposed to the antibiotic stress for a second time

http://mic.eucast.org/Eucast2/
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period T2. Subpopulations are then plated and surviving cells are counted, merg-

ing the individual results into a population measurement. The outcome of one such

experimental round can then become the initial conditions for a prospective next

round (Fig. 2.5A). To test the effect on global resilience of cheater expansion we

initially assembled populations with a high cell density (∼ 104 cells per subpopu-

lation) and a range of producer frequencies i.e. varying degrees of cheater invasion

(Fig. 2.4B). This array of populations was subjected to a level of antibiotic stress

where we had corroborated that survival is closely tied to the presence of public

good ( 8 µg mL−1, Fig. 2.4A). Nonproducer preponderance notably reduced the abil-

ity of the population to survive antibiotic stress (Fig. 2.5A), a reduction that was

tied (as in the model) to the decreased global levels of public good (Fig. 2.5B inset).

An additional feature of the experimental system is that the protective effect of the

public good is dose-dependent: a greater antibiotic stress increases the demographic

collapse of populations with the same ratio of cooperators (Fig. 2.5C). Furthermore,

in this regime, the high initial cell density ensures group homogeneity (that is, every

group behaves as the whole population). Cheater invasion, then, causes an overall

demographic collapse, the extent of which depends on the amount of cooperators

and the intensity of the stress. (Fig. 2.5B,C, respective right panels)

We continued tracking the dynamics of two populations with initial high cell density,

20% producers, and exposed to a medium and strong antibiotic dosages (9.5 µg mL−1

and 13 µg mL−1, respectively) heretofore termed "pop1" and "pop2" (Fig. 2.5 C). Af-

ter distributing populations assembled with the "pop1" and "pop2" characteristics

population density and frequency (after the first experimental round cooperator fre-

quency did not vary substantially, see Appendix B ) we evaluated the variability in

the composition of the subpopulation generated by the initial population collapse.

Identification of a subpopulation as composed purely by cooperators or cheaters, or

mixed, is easily achieved by simple phenotypic comparison of the colonies formed

by a sample drop (as mixed populations exhibit a characteristic "striped" pattern

created by a series of founder effects at the edge of the expanding colony [101]).We

subjected these "pop1" and "pop2" populations to a subsequent round of the experi-

mental protocol (Fig. 2.6A).

The two types of trajectories generate distinct distributions of subpopulations (Fig.

2.6B, pie charts depict the distribution of nonempty wells). While both exhibit in-

creased variability in group composition compared to the initial conditions in Fig.

2.5C, the population originated from a greater initial demographic decay, "pop2",

is characterized by a predominance of pure cheater groups and assortment of co-

operators, which is the class best equipped to survive subsequent antibiotic stress.

To comparatively evaluate the rates of recovery of "pop1" and "pop2" populations

after the ensuing antibiotic stress, we chose to characterize the survival of pure
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FIGURE 2.5: Experimental test of the eco-evolutionary feedback:
Collapse induced by cheater invasion. A) An initial population (ini)
with specific cell density and composition is distributed in a mul-
tiwell plate. Groups (wells) grow and accumulate quorum-sensing
(QS) molecules (T1, without antibiotic) and are reseeded into medium
with gentamicin (Gm) (T2). The final population is quantified by plat-
ing each well and merging the values to estimate the full population
(end). The outcome of one experimental round can become the ini-
tial conditions for an ensuing round. B) Demographic collapse af-
ter exposure to 8 µg mL−1 of Gm of populations with different com-
position(represented by colors). Dots represent the result of groups
within a metapopulation, box plots represent associated statistical pa-
rameters (N = 45). Cooperators/cheaters labeled as producers (P)/
nonproducers (nP) of public good, respectively (left). Accumulation
of QS at T1 in groups constituted by 20% or all Ps (inset). Demo-
graphic decline of the full population as a function of composition
(right). C) Demographic collapse under three Gm dosages of groups
within a metapopulation from initial density as B and 20% Ps. Dots
and box plots also as in B (left). Demographic collapse of the full
population as a function of Gm. Population densities, and associated
dosages of 9.5 µg mL−1 and 13 µg mL−1 are correspondingly termed
as “pop 1” and “pop 2” conditions (right).

cooperator and pure cheater subpopulations under the respective regimes. This

approach bypasses the uneven distribution of each type of group - cooperators,

cheaters, and mixed- which would preclude characterization to statistical signifi-

cance of the scarcer ones, combined with the variability in the specific frequencies
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of each strain in mixed groups. Instead, it provides a range of statistically accessible

recovery for "pop1" and "pop2" by defining the respective extremes (all cooperators

for maximum recovery; all cheaters for the minimum). Recuperation of actual pop-

ulations will then be found within this range, as mixed groups have been previously

demonstrated to obtain intermediate rates of survival (Fig. 2.5B), and will further

depend on the specific proportion of each type of subpopulation. In "pop2" trajecto-

ries subsistence of cooperator groups is most disproportionate, indicating not only a

global demographic increase but a preservation of the public good producers when

the populations are again pooled together (Fig. 2.6 B). We verified this statistical

approach by measuring the subpopulation distribution and recovery of two actual

"pop2" subpopulations, finding in both cases i) assortment of cooperator groups, at

low frequency (4 out of 54 subpopulations and 9/53), ii) negligible recovery of non-

producer and mixed groups, and, in contrast, iii) substantial recovery of isolated co-

operators (Fig. 2.6C). These results confirm the phenomenon observed in the simu-

lation, whereby feedback between ecological and evolutionary processes produce an

endogenous mechanism for the preservation of cooperative genotypes: initial -and

unavoidable- invasion by cheaters induces a demographic collapse which, mediated

by inter-group composition variability, sets the conditions for cooperator assortment

and recovery (Fig. 2.6D).

Constraints on the social system induce secondary effects on the dynamics

In an actual biological system – in contrast to the simulation described above – the

many features of the organism are entangled with those of the specific social inter-

action of interest. Even in a synthetically implemented social interaction we found

this to be the case. Particularly, we explored two features of the bacterial system that

interact with the functionality of the public good i.e. with resistance to an antibiotic

stress: cellular growth stage and the emergence of spontaneous mutants. Because

antibiotics interfere with the normal growth processes of bacteria (such as targeting

the ribosome, as is the case of the aminoglycoside antibiotic chosen here, gentam-

icin), entering a state of reduced growth can indirectly provide tolerance to a bacte-

ricidal. When bacterial cells grow to large numbers and thus close to exhausting the

resources of the medium, they enter a stationary phase of reduced growth ; when

exposed to fresh medium cells experience a certain delay before resuming division.

This lag phase can protect bacteria from the antibiotic present in the medium in a

way that is entirely independent of the available public good (Fig. 2.7A, right)[28].

Populations growing from a longer time, or starting from a higher initial cell density,

would thus enter stationary phase and benefit from this effect. However, extended
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growth can also have a detrimental impact on the stress-protecting social interac-

tion (Fig. 2.7A, left): the metabolic changes associated with stationary phase pro-

duce changes in the medium that degrade the public good molecule (specifically,

an increase in pH due to the switch from consuming sugars available in LB broth

to aminoacids) [102]. Another aspect tied to growth dynamics of the populations

is the appearance of spontaneous mutants that can resist the antibiotic [103], again

through means tangential to the social interaction. These mutations can rescue a

population that is directed towards decay due to lack of public good (such as an

all-cheater subpopulation) thus deviating from the predictions of social theory. This

type of rescue becomes more probable as population size increases (Fig. 2.7B,C), and

more rare as the antibiotic dosage is strengthened [29]. All these effects arise from

the particular features of the organism and combine with the social interaction to ul-

timately determine the destiny of the population. Of note, in "pop2" conditions the

low initial cell density and high antibiotic dosage create conditions where these two

discussed phenomena (protection due to lag phase and spontaneous mutation) have

lesser impact; survival then is essentially mediated by the public good interaction.
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FIGURE 2.6: Experimental test of the eco-evolutionary feedback: re-
covery of cooperators. A) An ensuing round of the protocol imple-
menting the eco-evolutionary dynamics of the model was prepared
using as initial conditions the outcome of previous rounds with 20%
initial Ps (Fig. 2.5C) termed "pop1" and "pop2". Resulting group vari-
ability was assessed by direct observation of the colonies arising from
a sample of each subpopulation (top image), classifying the groups as
pure cooperators (P, green), pure cheaters (nP, red) or mixed (striped)
(see main text). B) Second round of the experimental protocol with
initial conditions corresponding to those of either “pop 1” or “pop2”
in Fig. 2.5C. The pie charts show the experimental distribution of
nonempty wells determined as described in A. Quantification of the
characteristic tolerance of groups of only Ps and only nPs is done by
engineering replica populations with “pop 1” and “pop 2” cell den-
sities, application of the protocol with correspondent Gm, and mea-
surement of the recovery (dots represent a replica well, N = 45). A
maximal value of 10000 cfu/well denotes strong recovery. C) Verifi-
cation of the range of recovery rates determined in B in two replicate
populations with "pop2" conditions, grouping the outcome of indi-
vidual wells according to composition (the number of wells of each
type is indicated below the x-axis). D) Summary of the experiments
confirming the eco-evolutionary feedbacks that preserve cooperation.
While the first round of the protocol causes a demographic collapse
of the initial full population (20% Ps), it also generates a sufficient
variance in the metapopulation, in a second round, to allow the re-
covery of cooperators (recovery is proportional to the characteristic
growth of P wells and their abundance in a “pop 2” metapopulation,
see Materials and Methods).
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FIGURE 2.7: Influence of secondary effects on the maintenance of
public good-based communities under antibiotic stress. A) Cheater
cells in exponential or saturating phase were resuspended in medium
with gentamicin (Gm) (Materials and Methods). Cells in exponential
phase experienced less antibiotic tolerance (Gm = 12 µg mL−1, dots
correspond toN = 45 replicas, box plots indicate associated statistical
parameters)(right). Concentration of quorum-sensing (QS) molecules
decays as a function of time of growth [102], starting from an ini-
tial low-density of cooperators, i.e., “pop 2” density condition in Fig.
2.5C. Bars represent measurement errors associated to QS estimation
(Materials and Methods) (letf). Starting from these “pop 2” initial den-
sities, and after an accumulation time of 15.5 h (T1), cells are in ex-
ponential phase, and the amount of QS is maximal. Recovery is thus
strongly linked to the presence of the public good. B,C) Emergence of
spontaneous mutants to Gm. Initial populations of cooperators and
cheaters are subjected to an accumulation and stress protocol under
the “pop 1” and “pop 2” conditions (same as Fig. 2.5C; black dots
represent replicas, N = 45; box plots represent statistical parame-
ters). We repeated the experiment for each strain and dosage, so that
one can quantify the typical resulting population, and also the mu-
tant subpopulation (by plating with Gm and without Gm; the spe-
cific plating dosage of antibiotic corresponds to that of the matching
growing conditions). Emergence of spontaneous mutants is reduced
at higher dosage C, i.e., “pop 2” conditions. Tolerance is most signifi-
cantly associated in this regime to the presence of the public good.
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Characterizing a novel phenotype: the subcellular localization of a bacte-
rial public good

To further study the complexity that biological constraints introduce in public good

dynamics, we selected one particular effect in a natural system, pyoverdin produc-

tion in P. fluorescens. Pyoverdin is one of the most widely studied molecules with a

social aspect, the intricacy of which is still being unraveled. It must be noted that

while many of the studies concerning the social dynamics of pyoverdin are per-

formed using P. aeruginosa, and there is a great diversity of pyoverdin-receptor pairs

in this bacterial genus, comparative genomic analysis of P. aeruginosa and P. fluo-

rescens enables careful translation of a great proportion of the conclusions across both

strains [104]. Some observations challenge the assumed homogeneous distribution

of pyoverdin in the medium, finding instead some evidence of personalization [30,

88]. We focused on a highly specific phenomenon that could be tied to this type

of distribution: previous unpublished observations noticed an accumulation of the

molecule in the cell pole of P. fluorescens cells but no systematic characterization or

plausible mechanisms were available. What follows is an attempt to set the foun-

dation for the rigorous description of this effect and its possible functional implica-

tions. In a more global perspective, this adds to the growing interest in thoroughly

contextualizing a purported social interaction in its ecology and natural physiology,

including subcellular localization processes [10].

Observed under epifluorescence microscope in the pyoverdin emission range (460

nm), microcolonies of P. fluorescens present fluorescence that is evenly distributed all

over the cells with highest intensity in the cellular edges, reflecting the periplasmic

localization of the molecule. In contrast, our phenomenon of interest manifests as

an intensified fluorescence spot in the cell pole. We tracked the growth of micro-

colonies of P. fluorescens SBW25 on an agarose pad in succinate minimal medium,

which is known to promote the production of pyoverdin (Pvd) [88], with an epi-

fluorescence microscrope equipped to visualize the siderophore. Initial assessment

revealed that the appearance of bright Pvd spots in cell poles (heretofore termed

"polarization")(Fig. 2.8A) can be reproduced through extended culture of the cells,

of at least an overnight (∼ 16 - 18h) (Fig. 2.8B,C). Under these conditions polariza-

tion was clearly distinguishable in some of the cells forming part of smaller colonies,

as longer culture increased the probability of obtaining large multilayered colonies

where individual cells could not be properly visualized. A control experiment where

nonproducing mutants (defective in one of the initial synthesis steps, the sigma fac-

tor PvdS) were grown in the same conditions confirmed that the observed bright

spots were due to the presence of Pvd and not some artifact of the fluorescence mea-

surement. Importantly, polarization is only present in nondividing cells, as it only

appears once the microcolonies that have grown from an initial inoculated cell reach
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a final, stable size. In all the analyzed samples this phenotype displayed great vari-

ability, appearing in some cells but not others; and then in some cells earlier and

others later. Preliminary observations are consistent with polarization appearing

within the first few hours after colony growth has halted (Fig. 2.8 C, where growth

stops after 10h of culture and the first identifiable pyoverdin spots appear 1h 30 min

later) and reaches a variable proportion of cells in the mature colony (30/58 cells in

this colony).

no polarization polarizationA

B 06:00 h 08:00 h 12:00 h 17:00 h

17:00 h

07:00 h 10:00 h 11:30 h 17:00hC
10 μm

10 μm

FIGURE 2.8: Polarization appears as cells stop dividing. A) Cartoon
depicting the phenotypic characteristic of polarization i.e. a bright
fluorescence spot in the cell pole. B) Selected time-lapse images from
a growing microcolony of SBW25, reflecting points in which division
is still taking place, final colony size and morphology, the appearance
of pyoverdin polarization, and the state of the colony at the end of
acquisition. C) Image sequence from an independent biological repli-
cate in the same conditions as B.

The effect of spatial distribution on microbial social dynamics is well established (see

above in this Chapter) and, specifically in the case of Pvd, contact among adjacent

cells is responsible for non-uniform distribution of the public good in the related

strain P. aeruginosa PAO1. To evaluate spatial effects on pyoverdin localization we

tested two additional conditions: one where high initial inoculum density precluded

division in the agarose pad, and another where cells were grown in liquid medium

instead of on the solid agarose surface but in otherwise equivalent conditions. In

both cases polarization reappears in a similar fashion to the standard conditions, in-

dicating that spatial structure and cell-cell contacts are not necessary to induce polar-

ization (Fig. 2.9). This suggests that polarization is tied to some individually-sensed

signal inducing growth arrest, possibly the depletion of some essential nutrient. One
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intriguing candidate is oxygen (of which we expect quick reduction given the prepa-

ration of the samples, see Materials and Methods), given that its has been previously

described to affect pyoverdin social dynamics [30].

00:30 h

18:10 h

10 μm

FIGURE 2.9: Polarization is independent of spatial effects. Selected
time points in a time-lapse acquisition of an inoculum of SBW25 pre-
pared with high cell density (standard density conditions were se-
lected to observe ∼ 10 colonies per frame; these images reflect a
cropped region of a photographic frame of equal size) at the begin-
ning and at the end of acquisition time. Cell crowding prevents di-
vision in these conditions, allowing the direct observation of isolated
bacteria.
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Pyoverdin is transported across the periplasmic membrane of P. fluorescens by spe-

cific transporters, some of which participate in both extrusion of freshly synthesized

molecules and their recycling after iron acquisition such as OpmQ-RT, but other un-

known mobilization mechanisms exist [105]. Thus, the observed accumulation of

Pvd at the cell poles could be attributed to recently synthesized pyoverdin that is

failing to be exported to the medium after maturation, or to imported siderophores

that are remaining in the periplasm after iron release. As a first approach to distin-

guish between these two scenarios, we co-cultured pyoverdin producing wild type

SBW25 with the PvdS mutants (which we previously checked for an absence of any

fluorescence signal in the Pvd wavelength). Nonproducers were tagged with red flu-

orescence to enable their identification (Materials and Methods). Presence of polariza-

tion in microcolonies of Pvd-defective mutants indicates that the uptake/recycling

machinery is sufficient to produce this effect (Fig. 2.10); additional tests with cultures

of pure nonproducers and Pvd from the filtered supernatant of wild type SBW25 con-

firmed this observation .

SBW25 wild type PvdS-

18:10 h00:00 h

10 μm

Pvd mCherry

FIGURE 2.10: Uptake/recycling machinery is sufficient for py-
overdin polarization. Culture inoculated with a 50/50 mixture of
SBW25 wild type (pyoverdin producers) and PvdS defective mutants
tagged with red fluorescence (nonproducers). Producers and nonpro-
ducers are identified on the first frame of the acquisition time by their
fluorescence signal. At the end of the acquisition the microcolonies
result from the clonal expansion of the original cells, enabling us to
establish their composition as producers (SBW25 wild type, green) or
nonproducers (PvdS mutants, red)

Another feature of relevance regarding a possible functional role for pyoverdin po-

larization was reversibility, which would indicate that this process is part of the

cellular repertoire of the bacteria rather than an artifactual marker for decaying or

damaged individuals. To test this, we generated an initial inoculum of SBW25 cells

in conditions where polarization was reliably obtained, with the added experimen-

tal design feature that we should be able to collect the final culture and re-inoculate
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a fresh agarose pad (Materials and Methods). We monitored the ensuing inoculum in

our standard conditions and we were able to capture the "depolarization" of some

cells, corroborating reversibility and the association of polarization to an active cel-

lular state. Furthermore, we observed pre-polarized cells as they again divided and

acquired polarization towards the end of the culture time (Fig. 2.11). This suggests

that polarization is part of the normal functioning of P. fluorescens SBW25 popula-

tions, reinforcing also the apparent incompatibility of the polarized phenotype with

cellular division.

00:10 h 01:40 h 06:10 h 12:00 h 18:20 h

10 μm

FIGURE 2.11: Polarization is reversible. Selected images from the
time-lapse acquisition of a sample prepared by obtaining the in-
oculum from conditions in which cells are in the polarized state.
(Aside from inoculum preparation, the experimental protocol re-
mains equal). At the start of the acquisition time, some cells appear in
a clearly polarized state (first frame). Within the first hours of incuba-
tion, the Pvd spot disappears from the pole and fluorescence is again
evenly distributed (second frame). The cell is alive and able to un-
dergo one cycle of division, maintaining the depolarized phenotype,
after which polarization begins to reappear (third and fourth frames).
At the end of the acquisition time both daughter cells again display
polarization (fifth frame).
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2.4 Discussion

With a combination of simulations and experiments, we demonstrated how feed-

back between evolutionary and ecological processes can determine the destiny of

a microbial social community. This effect is mediated by specific attributes of the

social system; in this case, essentiality of a public good. The final ingredient shap-

ing the primary dynamics that we describe here is spatial structure. The interplay of

eco-evolutionary phenomena with these additional features produces the counterin-

tuitive preservation of cooperative behavior after cheater invasions. Here, exploita-

tion by cheaters lead to a demographic collapse that, through spatial constraints,

results in the assortment of cooperators and their eventual recovery. This type of

dynamics had been explored theoretically [27] and experimentally, where the neces-

sary inter-group variability was deliberately introduced (in order to clearly show an

effect known as Simpson’s Paradox [25]). Instead we explore conditions where this

mechanism is endogenous.

The sustainability of cooperative behaviors is a subject of intense study, in which

experiments with microbes have become both a tool and a subject of discussion [24,

72]. Indeed, impact of spatial structure on a social interaction was developed in

social evolution theory and has been directly observed in growing colonies of mi-

crobes producing a public good, where the establishment of assorted subsections

ensured protection of cooperators from cheaters [101]; and during range expansions

[106, 107]. Frequency dependence is another well-known variable determining so-

cial outcomes [75, 78, 108]. However, the notion of integrating evolutionary and

ecological dynamics is a recently proposed framework [6] that has only started to be

explored experimentally in social microbial systems [8].

The use of a synthetic system eliminates some of the regulatory complexity of nat-

ural public goods [109] and allows us to specifically explore the combined role of

essentiality and spatial structure in the stabilization of cooperation through eco-

evolutionary feedbacks. We engineered a social interaction between two strains of

E. coli, where cooperators constitutively synthesize a public good molecule that en-

ables tolerance to an antibiotic stress (Fig. 2.3). Essentiality of the public good di-

rectly ties the abundance of cooperators to population size after exposure to stress

(Fig. 2.5.) Spatial structure translates the lack of population resilience due to cheater

invasions into assortment of cooperators, and thus recovery (Fig. 2.6. These basic

properties of a biological system generate intrinsic eco-evolutionary dynamics that

preserve cooperation (Fig. 2.2). Nevertheless, we recognized the ramifications of

additional biological features and constraints on the cooperative interaction. Specif-

ically, we evaluated how bacterial mechanisms to resist antibiotic stress that operate

in tangential or even contradictory manners to our public good can influence the
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dynamics. While in the conditions where cooperator recovery after cheater-induced

collapse is strongest these effects are shallower (Fig. 2.7), we highlight the potential

integration of multifaceted phenomena into a social interaction.

Recent discussions have also emphasized the need to properly contextualize pur-

ported microbial public goods, including approaching the natural living conditions

of the organisms and biophysical and molecular-level processes. While we have fo-

cused on one particular microbial interaction, cooperation, the larger effort to under-

stand the complex interplay of evolution and ecology modulated by molecular and

biophysical constraints applies to other social behaviors such as competition [110].

We make an additional contribution to this research avenue by analyzing popula-

tions of bacteria involved in the production of a molecule with social aspect.

We were able to narrow down some of the characteristics of a previously unde-

scribed phenotype for P. fluorescens SBW25 and the conditions under which it man-

ifests: localization of the siderophore pyoverdin in the cellular poles, in contrast to

its usually homogeneous periplasmic distribution. Polar localization is a pattern

of molecular cellular distribution associated to important bacterial functions [111],

such as cell division, flagellum motility and chemotaxis [112, 113]. Indeed, spe-

cific cues produce the active localization of proteins to the cell pole, such as mem-

brane curvature (in the process of sporulation), membrane potential (in cell division)

and membrane lipid composition (biofilm formation, protein secretion) [114]. Thus,

precedent exists for an interest in localization to the cell poles and the exploration of

a possible functional role.

Furthermore, polarization of pyoverdin in P. fluorescens could impact on the eco-

evolutionary dynamics of this species, as siderophore production is a cellular be-

havior with social implications. Pyoverdin synthesis in the related species P. aerug-

inosa has long been used as a canonical model for public goods in microbes, a view

whose generality has been challenged [30, 86]. Evidence exists of pyoverdin pro-

ducers maintaining a fitness advantage over nonproducers in contexts where a social

dilemma should be in full effect. In growing colonies of a Pseudomonas sp. pyoverdin

is mostly transferred locally among adjacent cells [88]. A recent study showed that

privatization can delineate competitive strategies between different siderophore-

producing strains [86]. This again places an interest on the asymmetrical distribution

of the siderophore that we describe here.

We observed that localization of pyoverdin to the poles was associated to one

particular state: nondividing cells. As a preliminary study case, the colony

displayed in Fig. 2.8C was analyzed with the segmentation package for

Matlab SuperSegger (http://mtshasta.phys.washington.edu/website/

SuperSegger.php), which tracks cell lineage as the microcolony develops. This

http://mtshasta.phys.washington.edu/website/SuperSegger.php
http://mtshasta.phys.washington.edu/website/SuperSegger.php
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allows the identification of the old and new cell poles of each cell; in the cells pre-

senting polarization slightly over 50% (57%) displayed it in the old pole as identified

by the software. Alternatively, the cell tracked in Fig. 2.11 underwent one cycle of

division, after which polarization reappeared in the new pole of both daughter cells.

The only association between cellular poles and siderophore production described

in the literature is the placement of siderosomes, protein complexes carrying the

initial cytoplasmict steps of pyoverdin synthesis. Siderosomes cluster at cell poles

(preferentially old, but also new) during early exponential phase, delocalizing in

late exponential phase and stationary phase [105]. Because we are observing mature

pyoverdin, which does not enter the cytoplasm, and polarization appears in the op-

posite stages of the cell cycle, it is unclear how both phenomena could be connected.

While polarization is clearly linked to nondividing cells, there is great variability

in terms of which individual cells display polarization and the timeline of its ap-

pearance. In the colony analyzed above (Fig. 2.8C), approximately 50% of the cells

are polarized by the end of an overnight culture (18 h). This proportion is roughly

consistent with other replicate colonies by ocular inspection, (when identification of

individual cells and thus quantification is hindered by their overlap). Phenotypic

variability in a clonal bacterial population could be tied to intrinsic noise in the un-

derlying molecular process; it is also a marker for specific ecological strategies such

as bet-hedging, a possibility that while unevidenced at this point regarding polar-

ization cannot be entirely discounted [115].

Given that undergoing division is not a requirement for the development of po-

larization in a particular growth environment (Fig. 2.9) and that neither is cell-cell

contact or a particular spatial distribution – de-emphasizing a possible connection of

this phenomenon with the two well established social variables of space and kinship

– one possible cause for intercellular variability lies in the individual sensibility to an

environmental trigger for polarization. This signal could be related to growth arrest,

such as the depletion of an essential nutrient. In our experimental samples we ob-

served a clear gradient of colony growth from the oxygen source, making this gas a

likely candidate (although not discounting scarcity of the carbon source as the defin-

ing variable) Oxygen is closely tied to siderophore dynamics, as its absence increases

iron solubility and renders pyoverdin unnecessary, even maladaptive [30]. Shifts

between oxygen rich, pyoverdin-requiring and oxygen poor, pyoverdin-redundant

conditions could mediate a possible functional role for polarization in this strain.

Another aspect of the discussed sociality of pyoverdin production concerns the con-

trast between laboratory and ecological conditions i.e. is abundant siderophore pro-

duction, with its associated social conflict, an artifact of experimental manipulation?

[30]. As an exploratory depart from laboratory to more natural conditions, we co-

cultured P. fluorescens SBW25 with a cellulose-degrading Bacillus sp. strain from the
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Rainey Lab collection, where this polymer was the only carbon source (which SBW25

is unable to process unaided). We were able to recover the polarized phenotype in

these communal conditions, which suggests polarization is not entirely dependent

on our particular experimental design.

Reversibility of the polarized state eliminates another possible artifactual explana-

tion for this phenomenon: as an indirect marker for dying cells (Fig. 2.11). Elu-

cidating the molecular mechanism behind polarization would reveal whether it is

a specific and/or active phenomenon, the first clues of which are revealed by co-

culturing SBW25 wild type and nonproducting mutants. Expression of pyoverdin

localization in nonproducers suggests that the molecular recycling machinery is suf-

ficient for the development of polarization (Fig. 2.10). Construction of the appropri-

ate deletion mutants of the importers and exporters of the siderophore would be an

essential next step in the rigorous understanding of this phenotype. Additionally,

because pyoverdin is only visible in its unbound state, and there is evidence that

most of the specific receptor (FpvA) sites are occupied by this molecule regardless

of iron availability [116], we could be visualizing one possible stable siderophore

distribution – of course, questions would remain regarding polar localization and

intercellular variability.

In sum, while the phenotype described here is highly specific, its thorough charac-

terization is tied to important aspects of the ecophysiology of P. fluorescens SBW25,

from the integration of the nutrient-scarcity response of siderophore production

with other environmental cues, to a potential role in community dynamics. Its de-

scription at all levels of complexity – molecular to eco-evolutionary – will ultimately

add to the understanding and proper contextualization of microbial public goods

[10].
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Chapter 3

Evolutionary Interactions

3.1 Introduction

Antibiotic resistance is one of the greatest upcoming global health challenges [117],

and one of the best documented real-time examples of evolution in motion [118].

The rapid spread of resistance has created the need to go beyond traditional clinical

tools and tackle it with system-level approaches [16]. These approaches include the

use of high-throughput technologies and -omics analyses for the surveillance and

characterization of resistance; it also requires us to take an ever closer look at ba-

sic ecological and evolutionary processes [119]. Here the role of microbes as tools

for experimentation reappears, as experimental evolution in controlled laboratory

settings [19] provides clues into the evolutionary processes defining antibiotic resis-

tance in the clinic. Again, it becomes fundamental to integrate system variables at

different levels of complexity, from the molecular features of antibiotic resistance to

the properties of genomic evolution and how they influence each other reciprocally.

Details matter: molecular mechanism of antibiotic action and acquired re-
sistance

Antibiotics are small molecules that inhibit microbial cell growth by halting divi-

sion (bacteriostatic) or actively killing cells (bactericidal). Some of them were dis-

covered in the early 20th century as natural compounds secreted by microbes, and

since many synthetic drugs have been developed based on their basic design and

properties. Antibiotics interfere with the essential cell functions of DNA replication

(eg. quinolones), translation (eg. rifamycins) and transcription (eg. aminoglyco-

sides); with the structural integrity of the cell (eg. β-lactamases) and with its energy

metabolism (eg. sulfonamides). While each antibiotic has a specific subcellular tar-

get (eg. kanamycin and other aminoglycosides bind the 16S rRNA component of

the 30S ribosome subunit, promoting tRNA mismatching during translation which

produces misfolded proteins), the cell damage caused by these drugs is tied to many
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indirect effects (such as increased cell membrane permeability due to the insertion

of misfolded proteins) and general cellular responses (such as the generation of cell-

disrupting hydroxyl radicals due to the action of most bactericidal antibiotics, de-

spite their differing molecular mechanisms of action) [120].

In a similar fashion, bacterial resistance to antibiotics is achieved through both spe-

cific and general mechanisms. Some taxa are equipped with intrinsic resistance to

certain antimicrobial agents, due to their cellular architecture (Gram negative bac-

teria have an additional protective layer against β-lactams in their external mem-

brane) and particular species characteristics (Pseudomonas spp. are resistant to many

antibiotics due to their large repertoire of efflux pumps [121]). Indeed, antibiotic

resistance genes are naturally present even in ancient environments [122]; it is ac-

quired resistance by clinically relevant pathogens that is a global health concern.

Antibiotic resistance or tolerance can be achieved by i) avoiding drug-target inter-

action, ii) altering the target, iii) disabling the drug. Avoiding drug-target interac-

tions is usually achieved by nonspecific mechanisms that decrease the intracellular

concentration of the antibiotic, such as a reduction cell permeability or augmented

efflux through energy-dependent pumps. Resistance through these mechanisms has

been described for a large proportion of antibiotics, such aminoglycosides, chloram-

phenicol, macrolides or tetracycline [103, 123, 124]. Specific mechanisms following

this strategy also exist, as in the case of proteins protecting the molecular targets of

quinolones, DNA gyrase and topoisomerase IV [124, 125]. The second strategy con-

sists of modifying the antibiotic target to reduce the effectiveness of the drug against

it. This can be achieved by direct mutation of the molecules involved, such as PBPs

(Penicillin Binding Proteins) with reduced affinity for β-lactams, modified peptido-

glycan precursors protected against glycopeptides, or mutations in the DNA bind-

ing surface in the genes for DNA gyrase and topoisomerase IV conferring resistance

to quinolones [124]. Alternatively, the antibiotic target can be chemically modified

by other enzymes to achieve the same result of reduced affinity for the drug; exam-

ples include methylation of different rRNAs protecting against ribosome-targeting

antibiotics such as aminoglycosides and macrolides, lincosamide and streptogramin

(targeting the 30S and 50S subunit, respectively). Finally, instead of protecting the

cell against the toxic compound, resistance can be acquired by altering it. Antibiotic-

modifying enzymes include a wide range of acetyltransferases acting against amino-

glycosides, chloramphenicol or tetracycline, and antibiotic-degrading proteins act

against β-lactams or fosfomycin [103, 123–126].
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Fast acquisition of antibiotic resistance can occur through non-genomic
mechanisms

The evolutionary features previously described would apply to de novo genomic evo-

lution of antibiotic resistance. However, bacteria can acquire resistance through hor-

izontal gene transfer (HGT). Antibiotic-modifying enzymes are frequently obtained

by HGT, but other genes are amenable to this mode of transmission such as alter-

native versions of the drug target and efflux pumps. Mobile genetic elements con-

ferring antibiotic resistance comprise DNA molecules of varying autonomy, such as

plasmids (which are self-replicating), integrons, and transposons. These elements

can be transmitted via conjugation (that requires bacterial contact with a specific

molecular machinery) or transformation (where naked DNA molecules can be in-

corporated into a bacterial cells), and some can be shared among different species.

Transduction via bacteriophages has also been described to spread antibiotic resis-

tance genes. Like genomic resistance, HGT-acquired resistance carries associated fit-

ness costs and is subject to compensatory mutations. Additional constraints apply,

such as incompatibility between some plasmid classes and bacterial mechanisms

to guard against foreign DNA such as the CRISPR/Cas system. HGT induces an

incredibly rapid spread of resistance, with its instantaneous acquisition of one or

multiple genes and inter-species promiscuity [123].

Evolution experiments in microbes allow us to directly observe evolution-
ary processes

Although there has been recent discussion about the integration of simultaneous

evolutionary and ecological phenomena [6] evolution is typically thought to occur

over long timescales. Consequently, its outcomes and processes are inferred indi-

rectly in most cases. Microbes, however, present such short generation times that,

when combined with new high-throughput technology such as whole genome se-

quencing, the direct observation of evolution has been enabled. Experimental evolu-

tion is a framework in which functional and evolutionary questions can be answered

with molecular detail [127]. Briefly, it involves the prolonged culture of microor-

ganisms under carefully designated selective pressures and the posterior analysis

of evolved clones; with the possibility of storing intermediate time points akin to a

"fossil record". A notable example is the Long Term Evolution Experiment (LTEE)

where parallel populations of Escherichia coli have been evolving in glucose-limited

medium for >50.000 generations, finding unexpected adaptation to a novel carbon

source through potentiating mutations [11] in one of them. Data from the LTEE also

allowed exploration on the prevalence of epistasis during evolutionary trajectories
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of bacteria, finding a predominance of negative interactions that produce diminish-

ing returns in fitness as adaptation progresses [13]. Experimental evolution has shed

light on some basic characteristics of the evolution of antibiotic resistance. An evo-

lution experiment were bacteria were under constant antibiotic selective pressure

revealed that the shape of an adaptive trajectory depends on the size of the genomic

mutational target, where smooth adaptation results from many possible mutations

with cumulative effects whereas a sharp step-wise adaptation is tied to a small target

with sequential mutations [36]. Adaptation of Pseudomonas aeruginosa to an antibiotic

showed changes in distribution of fitness effects of beneficial mutations (DFBM) un-

der increased drug doses: whereas at low concentrations the DFBM consists mainly

of rare mutations of small effect, a higher antibiotic exposure can shift it towards

many mutations of large effect [29]. Even as it simplifies the natural history defining

every existing organism, experimental evolution is thus a powerful tool to explore

the forces shaping microbial adaptation.

Molecular constraints shape the repeatability of evolutionary trajectories

One essential problem that can be addressed with evolution experiments is the re-

peatability of evolution: how similar are outcomes of parallel evolutionary trajec-

tories under the same selection pressure? At a broad phenotypic level, repeated

adaptation is quite clear, such as the reliable appearance of antibiotic resistance in

different species and geographical locations, both in laboratory and clinical condi-

tions. However, the mapping of phenotypic to genotypic changes in an evolutionary

context is vastly more complex. Different studies have approached this topic exper-

imentally in microbes, at the level of individual proteins and at the cellular level.

A few studies shed light on the constraints delineating the evolution of the the β-

lactamase TEM. Variants of this enzyme, originally targeting ampicillin, can be ob-

tained with activity against numerous β-lactams. Only 5 point mutations increase

100.000-fold its activity against cefotaxime. Assessment of all the possible mutation

accumulation trajectories from one version to the other revealed that a majority of

them were inaccessible mostly due to sign epistasis (that is, a mutation was only

beneficial in combination with specific others, and ineffective or deleterious in the

rest) [128]. Another study took a more open-ended approach to the same question,

and performed in vitro evolution of this protein with the use of error-prone PCR

as it measured its adaptation to degrade cefotaxime. While the predominant tra-

jectory was the one previously described, researchers found that initial mutations

could direct evolution toward alternative pathways through epistatic interactions

[38]. Thus, even though individual protein evolution seems severely constrained by
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sign epistatic interactions between mutations, historical chance allows an evolving

system to explore different adaptive peaks.

One study assessed the ability of E. coli to recover an essential metabolic function lost

due to a gene deletion [129]. Growth was recuperated by a combination of structural

and, particularly, regulatory mutations in pathways close to the deleted gene, where

the contribution of each type of mutation depended on the affected cellular subsys-

tem. In a large number of E. coli populations adapting to temperature, an environ-

mental variable with multifaceted effects, researchers found two exclusionary adap-

tive trajectories of equal fitness but different tradeoffs. Parallelism was clear at at

the level of genes, with many beneficial mutations accumulating in a few functional

units. At the mutation level, convergence varied by the type of mutation, higher

for larger deletions and lower for point mutations (with some widely-shared excep-

tions) which showed the previously described pattern of negative epistasis within

each gene [130, 131].

In general terms, the selective pressure will point towards phenotypic changes with

different degrees of underlying molecular specificity. The particularities of this

molecular target will shape the repeatability of evolutionary trajectories through dif-

ferences its size and organization (that is, the availability of targets in which changes

can readily be translated into the phenotype), the cost of associated pleiotropic ef-

fects, and epistatic interactions between subsequent mutations. Adaptation pro-

gresses through a complex interplay of constraints and contingency highly depen-

dent on the genomic architecture of the evolving cellular system [132].

Interactions between bacterial adaptive histories are a promising frame-
work to approach antibiotic resistance

New conceptual and experimental tools against antibiotic resistance incorporate a

systems-level view and careful assessment of ecological and evolutionary processes.

One such approximation involves tailoring antibiotic therapy to interactions be-

tween the drugs [133]. Physiological interactions between antibiotics refer to the

masking or potentiating effects of one compound over another when they are co-

administered. Synergistic combinations (where the effect of the two drugs is greater

than the addition of the individual effects) are more effective at killing bacteria but

promote the evolution of multiresistance. Antagonistic interactions (where one drug

masks the effect of the other) have the opposite effect, as development of resistance

against one uncovers the deleterious effect of the other [134].

Another systems-level approximation considers instead evolutionary interactions.

An evolutionary interaction occurs when adaptation to a particular environmental
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variable modifies fitness under another variable that the organism has never en-

countered before. Then, the development of resistance to a given antibiotic can ei-

ther increase (cross-resistance) or decrease (cross-sensitivity) tolerance to a different

drug. A few recent studies have explored this issue, finding that commonalities

in responses at the molecular level often underlie the development of evolutionary

interactions [33, 34, 135]. Despite the many challenges in translating basic studies

into clinical applications, antibiotic interactions are a promising avenue to combat

antibiotic resistance [32]. Indeed, success has recently been reported against one of

the most resilient multiresistant pathogens, Methicillin-resistant Staphylococcus au-

reus (MRSA), using a combination of drugs exhibiting physiological synergy and

evolutionary cross-sensitivity [136].

Our aim is to further understand some of the basic features of evolutionary inter-

actions between antibiotics. We obtain a collection of clones adapted to a set of

antibiotics through experimental evolution, and construct their evolutionary inter-

action networks with phenotypic measurements of resistance. Adaptation to an-

tibiotics can occur through specific (constrained to a small region of the genome

or set of genes) or general mutations, and in turn these can be acquired through

genomic mutation or horizontal transfer. Genetic features of the resistance deter-

minants, combined with the evolutionary context, can generate adaptive pathways

that are more or less repeatable. We discuss how these fundamental evolutionary

processes and the specific molecular mechanisms of each drug combine to produce

the observed patterns of interactions. Crucially, the diversity of evolutionary path-

ways that enable adaptation to a particular drug introduces variability in these types

of interactions; we specifically focus on the impact that this variability might have

on the conclusions established by observing global patterns, which ultimately have

implications for the development of clinical protocols.
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3.2 Materials and Methods

Strains, culture media, and reagents

All strains are derivatives of E.coli MG1655. Overnight cultures for the evolution

experiment and MIC measurements were performed in LB (casein peptone 10 g.l−1,

yeast extract 5 g.l−1, sodium chloride 5 g.l−1) (Affymetrix). Evolution experiments

were performed in M9 minimal medium (M9 salts: Na2HPO4 6 g.l−1, KH2PO4 3g.l−1

,NaCl 0.5 g.l−1, NH4Cl 1 g.l−1; MgSO4 2mM, CaCl2 0.1 mM)(Panreac) adjusted to

support growth in these experimental conditions following previous work [137],

supplemented with 1% casamino acids (Bacto Casamino Acids)(Beckton, Dickin-

son and Co.) and 1% glucose (D(+)-Glucose)(Panreac). MIC (Minimum Inhibitory

Concentration) measurements were performed in 12x12 mm square LB Agar plates

(1.5% w/v) supplemented with the necessary antibiotics. All incubations were car-

ried out at 37 ◦C in static conditions. The following antibiotics were used at the indi-

cated concentrations. Amikacin (Normon), Cefotaxime (Normon), Colistin (Sigma-

Aldrich), Fosfomycin (Normon), Imipenem (Sigma-Aldrich), Norfloxacin (Sigma-

Aldrich) and Sulfamethoxazole/Trimethoprim 5:1 (Soltrim) (Normon)

Evolution experiment

For each antibiotic treatment, 48 parallel populations were propagated in increasing

concentrations of the indicated antibiotics in a 96-wel deep-well multiwell plate (1.1

ml, Axygen) covered with a loose-fitting plastic lid in static conditions. Every 24 h

20 µL of each well was transfered to 1ml fresh medium. The wells were inoculated

in a chessboard pattern to minimize contamination, the contamination rate was 1%

. Antibiotic dosage was increased every 48 h in a gradient determined by the wild

type strain’s MIC, starting at 1/4 x MIC and finishing at 128 x MIC in 2n x MIC

steps. Starting with 2 transfer sin antibiotic-free medium, the evolution experiment

continued for a total of 21 days. Survival of each well was monitored by visual in-

spection of turbidity. Clones from the last 6 surviving wells in each treatment were

streaked to isolation and stored in glycerol 20% (v/v) at −80 ◦C. In cases where

more than 6 wells were available for clone isolation they were selected randomly

using the online random number generator https://www.random.org/. An ad-

ditional evolution experiment was carried out in antibiotic-free medium for 19 days

and the corresponding isolates were used as controls for adaptation to the medium.

Intermediate time-points were also stored at −80 ◦C.

https://www.random.org/
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Antibiotic resistance measurements

To characterize the resistance of each clone to the antibiotic set, a standard MIC

measurement protocol was chosen. All MIC measurements were performed follow-

ing the Agar dilution method detailed in [138], using LB as the nutritive medium.

Briefly, all 48 strains (7 antibiotics x 6 clones/antibiotic + 6 control clones) were

grown overnight in LB without agitation, the concentration was adjusted to obtain

roughly the same number of cells per well, and all wells were spotted on a set of LB

Agar plates containing growing concentrations of one antibiotic using a pin repli-

cator. The MIC value was considered the lowest concentration at which there was

no visible growth of the isolates. 3 biological replicates of each measurement were

collected.

Cross-resistance and Cross-sensitivity calculations

Evolutionary interactions between antibiotics were calculated for each clone by nor-

malizing the median observed MIC value by the median MIC of the most represen-

tative control isolate. This normalization accounts for a possible interacting effect

of adaptation to the M9 medium. Interaction networks were assembled using the

log2-fold change of this calculated value, so that an interaction between a clone and

an antibiotic is represented by the number of steps increased (positive values, cross-

resistance) or decreased (negative values, cross-sensitivity) in a MIC gradient where

concentrations vary in steps of 2n (see [138]). Cross-resistance and cross-sensitivity

interactions are considered reliable if they are ±1, as changes below this threshold

fall within the margin of error of the experimental technique. Individual clone net-

works were aggregated in a summary network depicting the frequency of evolu-

tionary interactions between all clones in each set. To measure the variability within

the clones adapted to each antibiotic, we compared the interaction networks of all

clones in a given set. To do this, we represented each clone network as a vector

where entries are the evolutionary interaction between the clone and each of the n

antibiotics. We calculated the distance d between all possible pairs of networks (X

and Y ) for each clone set as d =
√∑n

i=1(cloneXi − cloneYi)2, and obtained the mean

value.
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3.3 Results

Genomic adaptation can generate significant levels of resistance

Starting from a common wild type strain (E. coli MG1655) we obtained a collection of

evolved mutants by subjecting parallel bacterial populations to increasing concen-

trations of our set of antibiotics (Fig. 3.1, Materials and Methods). Antibiotics were

chosen to represent a variety of targets and mechanisms, from different drug classes

(Table 3.1; SMX and TMP used in combination in proportion 5:1). The antibiotic

gradients were determined by the ancestor strain’s MIC to the respective antibiotics

(Table 3.2), so that the first drug dosage they encounter is 1/4 of the MIC value and

the maximum dosage to which they are exposed is 128xMIC (Fig 3.1).

During the evolution experiment we visually estimated the proportion of surviv-

ing parallel populations (Fig. 3.1A). For each antibiotic treatment we isolated 6

clones from the last 6 surviving populations, named after the compound used (Ta-

ble 3.1) and numbered 1-6. The particular effect on population dynamics associ-

ated to each antibiotic provides some initial clues regarding the availability, num-

ber and diversity of resistance mutations, with large step-wise changes possibly

indicating that mutations are constrained to narrow genomic regions, and smaller

continuous changes suggesting a wider mutational target [36]. Differences between

antibiotics and clones within a set are already evident from these trajectories, with

some drugs inducing early and dramatic population decays (COL,IMP, SMX/TMP);

others producing this effect in a gradual manner (CTX, NFX) and others maintain-

ing growth in most parallel evolving populations until the end (AMK, FOS)(Fig

3.1). Consequently, some clones in the same antibiotic set were isolated at differ-

ent points in the adaptive trajectory (particularly in the gradually decaying tra-

jectories of CTX and NFX, and also SMX/TMP, detailed information is available

in Table 3.2). Adaptation was compared not to the ancestor MG1655 MIC but to

clones evolved with the same protocol without antibiotic, to control for any pos-

sible effects of the medium (Materials and Methods). Clones isolated later in the

evolutionary trajectories, and thus selected in larger antibiotic dosages, exhibit a

greater increase in resistance (Table 3.2), ranging from an 8-fold increase in MIC

for FOS clone 1 (Figure 3.1B, note that MIC increase is expressed in log2-fold, such

that an 8-fold increase in MIC means resistance to an antibiotic concentration 256

times the original MIC) to clones that show no significant adaptation such as COL2,

COL4 and S-T6. Except in the case of these unadapted clones, all isolates reached,

and most significantly surpassed, the Epidemiological Cutoff points (ECOFFS,taken

from https://mic.eucast.org/Eucast2/) for that antibiotic and E.coli (Ta-

ble3.2).

https://mic.eucast.org/Eucast2/
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TABLE 3.1: List of antibiotics used in these experiments.

Antibiotic Family Effect Mechanism

Amikacin
(AMK)

aminoglycoside bactericidal

Binds the 16S rRNA of
the 30S ribosomal subunit
producing misfolded pro-
teins [123].

Cefotaxime
(CTX)

cephalosporin
(β-lactam)

bactericidal

Inhibits bacterial cell
wall synthesis by bind-
ing penicillin-binding
proteins (PBPs) and inter-
fering with production of
peptidoglycan [137].

Colistin
(COL)

polymyxin bactericidal

Disrupts bacterial cell
membrane by binding to
LPS (Lipopolysaccharide)
[139].

Fosfomycin
(FOS)

bactericidal

Inhibits bacterial cell
wall synthesis by binding
MurA and interfering
with production of pepti-
doglycan [126].

Imipenem
(IMP)

carbapenem
(β-lactam)

bactericidal
Inhibits cell wall synhesis
by binding PBPs [123].

Norfloxacin
(NFX)

fluoroquinolone bactericidal
Inhibits replication by
binding DNA gyrase and
topoisomerase IV [125].

Sulfamethoxazole
(SMX)

sulfonamide bacteriostatic

Inhibits synthesis of
folic acid by binding the
enzyme DHPS (dihy-
dropteroate synthetase).
[123]

Trimethoprim
(TMP)

bacteriostatic

Inhibits synthesis of folic
acid by binding DHFR
(dihydrofolate reductase)
[123].

Acquiring levels of resistance of such clinical significance can usually be traced to

the transfer of mobile genetic elements such as plasmids. These plasmids commonly

carry antibiotic-modifying enzymes, such as aminoglycoside acetylases (AAC), nu-

cleotidyl transferases (ANT) and phosphotranspherases (APH); and β-lactamases,

an extensive range of proteins with different levels of activity against the β-lactam

family of antibiotics from the earliest penicillins to fourth-generation cephalosporins

and carbapenems. However, in this experimental setup completely naive bacteria are

able to acquire substantial protection against the aminoglycoside AMK (5-6 MIC fold
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increase) and the cephalosporin CTX (4-5 MIC fold increase). In both cases clones

were isolated towards the end of the antibiotic dosage range, meaning that bacteria

were able to survive 32-128 times their original MIC. On the other hand, the car-

bapenem IMP exhibited a very moderate increase in MIC (2 fold) and the evolving

populations consistently went extinct at a dosage ca. 8 x MIC. This suggests that,

even though CTX and IMP belong to the same broad antibiotic class, their particular

biochemistry translates into different resistance determinants.

Specific genomic alterations conferring significant drug resistance are described for

some of the antibiotics used here. Resistance to quinolones is commonly associ-

ated to mutations in the molecular targets gyrase and topoisomerase IV[123, 125],

and clones evolved under NFX treatment reached notably higher MICS compared

to control strains (6-7 fold).

Mutation or overexpression of the – unique for this antibiotic– drug target MurA

has also been found to generate high levels of resistance to FOS [137] at a low fitness

cost, which could explain the increase in MIC (up to 8-fold) and the large proportion

of surviving populations. Resistance to FOS can also be acquired through mutation

or downregulation of its transporters, which again are specific for this drug [126].

While a lot of attention has been placed on the plasmidic COL resistance gene mcr-1

and its quickly spreading derivatives [140], genomic mechanisms to resist polymyx-

ins have also been described. The cellular target LPS can be modified to reduce

its negative charge, and thus the binding of colistin (which is a positively charged

lipopeptide), by substituting the phosphate group with aminoarabinose or phospho-

etanolamine [139]. The MIC increases of 3-5 fold observed in the endpoint isolates

could be due to this mechanism.

In the case of the synergistic combination SMX/TMP, where each drug inhibits a

different step in the same biochemical pathway, clones exhibited low levels of adap-

tation. The previously described genomic mechanisms to resist either of these drugs

is the overexpression of their targets folA (dihydropholate reductase) in the case of

TMP [141] and folP (dihydropteroate synthase) for SMX [123]. These mutations are

likely to be insufficient unless combined, a more improbable event that could explain

the moderate increase in MIC and the early extinction of evolving populations.

Although not conceived as the main resistance-conferring mutations, alteration of

the cellular targets of aminoglycosides – by methylation of the 16S rRNA subunit —

and β-lactams – mutating the PBPs to reduce drug affinity – have also been charac-

terized and could give rise to the observed levels of acquired resistance [123].
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FIGURE 3.1: Experimental evolution trajectories and acquired resis-
tance of adapted clones. A) Surviving parallel populations evolving
under an antibiotic gradient. Every 24h, 48 parallel bacterial pop-
ulation are diluted into fresh medium. Starting from antibiotic-free
medium, every 48h the antibiotic concentration is doubled following
a gradient determined by the wild type MIC. The proportion of sur-
viving wells in each time-step is estimated visually. Each dot is the
proportion of populations with visible growth at the end of the 24h
incubation period, colors represent the different antibiotics. B) Ac-
quired resistance of evolved clones. A representative clone from the
last 6 surviving populations of each treatment is isolated and MIC
to the corresponding antibiotic is assessed. Bars indicate the median
log2-fold increase in MIC for each isolate and treatment.
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Nonspecific resistance mechanisms can explain some interaction patterns

In-pathway mutations that produce significant resistance have been described for

most antibiotics, in some cases representing the main mechanism and sufficiently

explaining the acquired MIC increases to the selection antibiotic in our isolate col-

lection (detailed above) [123]. Survival to the high dosages to which the clones

have evolved would a priori point towards these specific resistance mechanisms.

However, because most of our antibiotics belong to different classes and thus repre-

sent an assortment of subcellular targets (Table 3.1), evolutionary interactions would

likely arise from mutations associated to, instead, general mechanisms of resistance.

Augmented tolerance (cross-resistance) or vulnerability (cross-sensitivity) to previ-

ously unencountered compounds will then indicate the selection of mutations with

pleoiotropic effects, and tradeoffs.

To uncover evolutionary interactions between our set of antibiotics, the resistance

of all clones to all antibiotics was measured and deviations from neutrality (i.e. a

phenotype indistinguishable from unadapted controls) were assessed (Materials and

Methods). A pattern of cross-resistance that is consistent and reciprocal across two

or more clone sets could be a marker for a general resistance mechanism. The clear-

est case here is the interaction between CTX and NFX, where 4/6 CTX clones and

all NFX clones exhibit cross resistance to each other (MIC fold increase mean=2.25

and 2.8, respectively)(Fig. 3.2). Mutations producing increased efflux and/or de-

creased cell permeability are strong candidates to explain these interactions. In-

deed, down-regulation of the outer membrane porins of the Omp family (OmpF,

OmpC) has been described in E.coli strains resistant to quinolones [142] and β-

lactamases [143]. Another common reported resistance strategy is the overexpres-

sion of efflux pumps such as the AcrAB-TolC system [142, 144]. In the case of

CTX-adapted clones, a broad mechanism of this kind could also account for their

cross-resistance to SMX/TMP (eg.through up-regulation of efflux pumps [145], 2/6

clones interact with MIC fold increase mean=2.5, and reciprocally 3/6 SMX/TMP

evolved clones are cross-resistant to CTX with MIC fold increase mean = 2.67). Core-

sistance to fluoroquinolones and sulphonamides has been observed in clinical iso-

lates of cefotaximase-carrying E. coli [146]. This type of resistance mechanism is also

coherent with the population dynamics during the evolution experiment, as these

smooth trajectories have been associated to a large mutational target set with cumu-

lative and broad effects, tied to the same molecular subsystem proposed here [36].

Previous studies analyzing evolutionary interactions in antibiotics identified a gen-

eral pattern of increased sensitivity in aminoglycoside-evolved clones [33, 34]. This

was attributed to conflicting effects of changes in the membrane potential: while

a decrease in this potential reduces aminoglycoside uptake (which is dependent of
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the proton-motive force), it also reduces the activity of the multidrug efflux system

AcrAB. Hence, sensitivity to the antibiotics usually expelled by this pump is raised.

Cross-sensitivity to these antibiotics is not present in our AMK-evolved set of clones,

where the only notable decrease in MIC is obtained in FOS (2/6 mutants, MIC fold

decrease mean = -2). Instead, significant levels of cross resistance are observed

against IMP (4/6 clones,MIC fold increase mean = 2), with some reciprocity (2/6

IMP clones, MIC fold increase mean = 3). This, together with the single-direction

cross-resistance of CTX clones to IMP (2/6 clones, MIC fold increase mean=2) cre-

ates an atypical interaction profile for both the carbapenem and the aminoglycoside.

The only antibiotic to present a predominance of cross-sensitivity is COL to

SMX/TMP (2/6 clones, MIC fold decrease mean = -2.5). A moderate decrease in

SMX/TMP MIC in colistin resistant isolates of P. aeruginosa has been observed in at

least one study [147], with no further mechanistic discussion. Further analysis of

these clones with increased susceptibility would reveal if this interaction could be of

clinical importance, given the role of COL as a last-resort antibiotic against particu-

larly multiresistant pathogens.

Another striking pattern is found in FOS clones, which exhibit the highest acquired

resistance and survival during the evolution experiment, yet are dramatically lack-

ing in interactions with other antibiotics. Specificity of the described genomic mech-

anism of resistance could explain this phenomenon.

Parallel evolutionary trajectories generate unique interactions

If there is a predominant mutational target to increase resistance, we expect a family

of clones to present similar interaction profiles with different intensity (allowing for

nonsignificance of some interactions under our measurements). This generates the

global interaction patterns between antibiotics observed in this work and in previous

studies [33, 34, 135]. On the other hand, chance can allow parallel evolving popu-

lations to explore similarly suited targets, generating particular interactions in some

clones. Here, variability between individual clones’ interaction networks (Fig.3.3)

can again be related to the size and diversity of genomic resistance determinants for

each antibiotic, and, further, hint at the prevalence of tradeoffs between general and

specific resistance mechanisms.

Cohesive interaction patterns involving over half of the clones in a set include the

cross-resistance of AMK-evolved strains to IMP, the reciprocal cross-resistance of

CTX and NFX, and the overall non-interactivity of FOS clones (discussed above, Fig.

3.2). Some interactions do not rise to the level of significance but match the overall

trend of the significant ones. Aggregated interactions match the general paradigm

of a relationship between specificity of the resistance mechanism and evolutionary
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FIGURE 3.2: Evolutionary interactions between antibiotics. Net-
work representing the general trends of the evolutionary interac-
tions between antibiotics. Evolutionary interactions are defined as
the log2-fold change in MIC of each clone adapted to a given an-
tibiotic, to all other antibiotics, compared to control isolates. Nodes
represent the different antibiotics. A directed edge from one antibi-
otic to another represents their interaction frequency, as the propor-
tion of clones adapted to the first antibiotic that exhibit increased or
decreased(respectively, cross-resistance, red lines and cross-sensitivity,
blue lines) resistance to the second. Edge width represents interac-
tion frequency; this value is also reflected above each edge for clarity.
Unique interactions in a clone set are removed. This type of network
is often used in evolutionary interaction studies, and presents the ag-
gregated information of all clones adapted to the same antibiotic. In-
teractions of each individual clone are itemized in an ensuing figure.



74 Chapter 3. Evolutionary Interactions

TABLE 3.2: Resistance and evolutionary interaction features of
evolved isolates. Clones are identified by the trajectory antibiotic
and numbers 1-6. For each clone we include the wild type ancestor
MIC to the selection antibiotic, the antibiotic dosage from which it
was isolated (see Fig. 3.1), the acquired MIC in the selection antibi-
otic, and the number of evolutionary interactions with the remaining
antibiotics.

Clone
Initial MIC
(mg/L)

Isolation
dose
(mg/L)

Acquired
MIC
(mg/L)

No.
interactions

FOS1 16 2048 4096 0
FOS2 16 2048 2048 0
FOS3 16 2048 1024 0
FOS4 16 2048 512 0
FOS5 16 2048 512 0
FOS6 16 2048 512 0
AMK1 8 1024 128 0
AMK2 8 1024 256 1
AMK3 8 1024 64 1
AMK4 8 1024 128 2
AMK5 8 1024 64 2
AMK6 8 1024 128 1
COL2 0.5 64 2 3
COL3 0.5 64 4 0
COL5 0.5 64 8 0
COL6 0.5 64 4 1
NFX1 0.125 16 8 3
NFX3 0.125 16 16 1
NFX6 0.125 16 16 2
CTX2 0.125 8 1 0
NFX2 0.125 8 8 1
NFX4 0.125 8 8 2
NFX5 0.125 8 8 2
S-T1 0.5 8 16 2
S-T2 0.5 8 8 2
CTX5 0.125 4 1 0
CTX1 0.125 2 1 1
CTX3 0.125 2 1 2
CTX4 0.125 2 1 3
CTX6 0.125 2 2 3
S-T3 0.5 2 4 0
S-T4 0.5 2 4 0
S-T5 0.5 2 8 0
S-T6 0.5 2 2 0
IMP1 0.25 1 1 2
IMP2 0.25 1 1 0
IMP3 0.25 1 1 0
IMP4 0.25 1 1 1
IMP5 0.25 1 1 0
IMP6 0.25 1 1 0
COL1 0.5 0.5 0.25 0
COL4 0.5 0.5 0.25 0
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interactivity. However, in most clone sets there are low frequency interactions that

could have relevant implications for evolutionary dynamics and clinical outcomes.

The pattern of interactions of CTX isolates exemplifies this increased complexity ob-

served at the individual clone level. Their interaction pattern is largely coherent with

pre-existing literature on antibiotic resistance: a predominance of cross-resistance

to drugs against which the same general mechanisms (increased efflux, decreased

permeability) have been described. This clone sets has the highest number of inter-

actions per interacting clone (mean=2.25, details in Table 3.2), and most are to NFX,

IMP, SMX/TMP fitting the strategy of decreasing intracellular antibiotic levels. Nev-

ertheless, clone CTX6 presents an unusual, if moderate, resistance to AMK (MIC fold

increase = 2; clones CTX1, 3 and 4 exhibit the same interaction below the threshold

of significance). This, like the cross-resistance of AMK clones to IMP, seems to con-

tradict other evolutionary interaction studies and should be further explored.

In SMX/TMP clones, the administered drug combination possibly shifted the main

resistance determinant from highly specific to general, which could explain the di-

versification of interactions. 2 of the 3 clones that developed cross-resistance to

CTX also acquired it against NFX. These are the two isolates obtained later in the

evolution experiment, meaning they probably underwent a stronger selective pro-

cess. Surprisingly, the other SMX/TMP interacting clone, S-T6, did not show an

increase in SMX/TMP MIC. This would typically be interpreted as it not having un-

dergone evolution, and yet it is cross-resistant to CTX. Perhaps the population went

extinct before the nonspecific CTX cross-resistance-conferring mutation(s) could be

adequately refined against SMX/TMP.

The IMP clone collection shows little interactivity, which is congruent with its early

isolation (Fig. 3.2) and low levels of acquired IMP resistance (Fig. 3.1B). Neverthe-

less, clone IMP5 developed strong (MIC fold increase = 4) cross resistance to AMK.

Yet another clone, IMP1, is very strongly resistant to FOS (MIC fold increase = 6).

That is, in a population with moderate resistance against IMP there exists the poten-

tial for high tolerance of other antibiotic classes, which are of particular importance

given that both fosfomycin and aminoglycosides have been suggested as last-line

treatment against carbapenemase-carrying bacteria [148].

Because 2 of the 6 COL clones where isolated very early, it is trivial to explain their

lack of resistance and interactions (Table 3.2). The other 4 clones tend towards

increased sensitivity to SMX/TMP, as was previously detailed, but one particular

clone (COL2) also developed cross-sensitivity to IMP (fold decrease = -2) and cross-

resistance to CTX (fold increase = 2). This is the only COL clone with significant

resistance to other antibiotics. Together these observations and the adaptation tra-

jectory (Fig. 3.1) could be explained by a specific colistin resistance mechanism with
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pleiotropic tradeoffs, which is nevertheless compatible with particular mutations

that increase resistance to other drugs.

Although FOS clones did not acquire interactions with other antibiotic classes, se-

lected clones from other sets do interact with this antibiotic. Two AMK clones

(AMK4, AMK5) and one NFX clone (NFX1) show increased sensitivity to fos-

fomycin, while one IMP clone (IMP1) and another NFX clone (NFX6) developed

cross-resistance. While cross-resistance to fosfomycin is rare, both interactions are

among the strongest (MIC fold increase = 6) and the level of acquired resistance is

comparable to FOS clones. That is, even though fosfomycin has an idiosyncratic

uptake pathway-where commonalities usually lead to cross-resistance-, significant

collateral resistance can be developed against it.

The NFX clone set is the most interactive (6/6 clones possess significant interac-

tions, for a combined total of 11 interactions; both are the highest values in the

whole clone collection, details in Table 3.2). It also exhibits the highest variability

in terms of clones with unique interactions: aside from the global CTX resistance,

clone NFX1 is sensitive to FOS and IMP (both with MIC decrease = -2), NFX4 is

sensitive to AMK (MIC decrease = -2), NFX5 is resistant to COL (MIC increase = 3),

and NFX6 is highly resistant to FOS (MIC increase = 6). Notably, the interaction of

NFX5 is the only instance of collateral resistance to colistin. Furthermore, this clone

shows evidence that in parallel trajectories of adaptation to antibiotic it is possible

to acquire both cross-sensitivity and cross-resistance to the same drug (FOS, in this

case). One explanation is the acquisition of specific mutations along or within a large

predominant mutational target (producing in this case generalized CTX resistance),

such as compensatory mutations, or combinations that are only available to selection

through epistasis. These low probability events could translate into vastly different

outcomes.
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FIGURE 3.3: Evolutionary interaction networks of individual
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FIGURE 3.3: Evolutionary interaction networks of individual
clones. Cross-resistance (red lines) and cross-sensitivity (blue lines)
of each individual isolate to the remaining antibiotics. Nodes repre-
sent antibiotics, and edges represent interactions between the clone
named above each network and all the antibiotics. Edges represent
interaction strength (i.e. the log2-fold change in MIC to each drug),
and this value is also reflected above each edge; negative values rep-
resent a decrease in resistance. Solid edges represent interactions con-
sidered significant (MIC log2-fold change of at least 2 in either direc-
tion) and dotted edges represent interactions within the experimental
error of the measurement, added because of their possible biological
entity given interaction trends.



3.4. Discussion 79

3.4 Discussion

The analysis of these interaction networks built with standard phenotypic measure-

ments of antibiotic resistance allows us to delineate some preliminary conclusions

about adaptation to our set of antibiotics, which bear on the question of interac-

tion variability: AMK probably developed an atypical general resistance mecha-

nism (producing cross-resistance to IMP). Both CTX and NFX acquired a general

mechanism related to permeability/efflux, more efficient in CTX (producing more

interactions with antibiotics tied to this resistance strategy) and accompanied by

more specific mutations in NFX producing unique interactions. Resistance in COL

is probably due to a specific resistance mechanism with broad tradeoffs that induce

cross-sensitivity to other drugs. FOS acquired a highly specific mechanism with

few tradeoffs. Mutations in IMP are probably associated to a mechanism of low ef-

fectiveness (with some relation to the mechanism of AMP, deviating from previous

studies). Finally, SMX/TMP probably developed resistance through a general mech-

anism similar to CTX and NFX but of lower effectiveness, due to the exclusion of the

specific and effective mutations for each drug in isolation.

Interestingly, higher adaptation to the initial antibiotic – measured by a greater in-

crease in MIC – does not necessarily lead to higher interactivity. This was recently

remarked in other studies [34]. Further, we wanted to explore how similar are the

interaction patterns resulting from adaptation to each antibiotic, and the potential

connection to other relevant adaptive properties. We measured interaction variabil-

ity among a collection of isolates by comparing whole networks (that is, considering

both the antibiotics to which sensitivity might be altered and its degree, see Materi-

als and Methods) and we additionally observe that acquired resistance is not strongly

tied to interaction diversity (Fig. 3.4). FOS and NFX produced some of the most

highly adapted clones, and yet they represent the two extremes in the interactivity

distribution, with a total of 0 and 11 interactions respectively (Table 3.2) and, again,

both extremes in terms of interaction network variability (Fig. 3.4). Furthermore,

clone families with consistent levels of acquired resistance, such as AMK, CTX, IMP,

and NFX (Fig.3.1) nevertheless encompassed substantial interaction variability. Par-

allel evolution at the broad phenotypic level, then, was not necessarily a predictor

of underlying diversity at the molecular level.

Instead, interactivity seems more closely tied with the specificity of the main resis-

tance mechanism under the particular selection pressure conditions: FOS is charac-

terized by an uptake pathway and molecular target that are unique among the dif-

ferent antibiotic classes, where a small number of mutations dramatically increases

tolerance with little fitness cost. On the other hand, protection against NFX and
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FIGURE 3.4: Variability in clone interaction networks. Variability
within each antibiotic-adapted clone set is measured by comparing
the interaction network of all isolates, considered as vectors where
each entry represents the collateral resistance/sensitivity of the iso-
late against each antibiotic. Variability is then computed as the mean
euclidean distance between the interaction networks of all clones in
a specific set (Materials and Methods). This variability is plotted as
a function of the mean level of acquired resistance to the trajectory
antibiotic, as another relevant feature of each clone set. The rela-
tionship between these two variables is discussed in the main text.
Distances are calculated excluding interactions with strength below
a log2-fold change of ±2 (black letters), and including them for com-
parison (gray)

its main interacting partner CTX can be acquired through the same multidrug re-

sistance determinants, based on generalized reduction of intracellular concentration

of toxic compounds. Plausible commonality of this general resistance mechanism,

in turn, does not necessarily lead to the same diversity among a family of clones

(Fig. 3.4). Here, NFX is again in the lead with multiple unique interactions com-

prising almost all the remaining antibiotics and in both directions (cross-resistance

and cross-sensitivity). This crucial difference can only be discovered by assessing

individual clone networks, as these low-frequency but, in some cases, strong inter-

actions are lost in the aggregate networks typically assembled in this type of studies

(Fig. 3.2).

Not unexpectedly, most evolutionary interactions are associated to smaller MIC in-

creases than direct adaptation to a given antibiotic (typically 2-fold as opposed to

4-fold, respectively). However, cross-resistance of comparable magnitude to the

strongest direct adaptation has been obtained in specific clones: to AMK (in clone
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IMP4), CTX (S-T2), and FOS (IMP1 and NFX6) (Fig. 3.3). Remarkably, these indi-

vidual interactions appeared in clones that showed low levels of adaptation (IMP

and S-T), and with an antibiotic with strong interactive isolation (FOS). This could

indicate that these interactions are due to chance events, again highlighting the great

evolutionary potential hidden in clone diversity.

Evolutionary interactions between antibiotics is a topic of very recent interest. Previ-

ous studies [33, 135] found both cross-sensitivity and cross-resistance were frequent,

but the first was largely constrained to one antibiotic class, the aminoglycosides (the

mechanistic reasons are discussed in Results). Mutational similarities, a proportion

of which affected the cellular subsystems discussed here involving cell permeability,

underlied a substantial part of the observed cross-resistance patterns. In [34], evo-

lutionary interaction networks obtained under weak and strong selection pressures

were compared, observing greater interactivity in the latter. Antibiotics inducing

more evolutionary interactions were associated to an enrichment in what we term

here both specific and nonspecfic mutations (referred therein as "in-pathway" and

"off-pathway", respectively). On the other hand, antibiotics exhibiting little cross-

resistance lacked these off-pathway mutations. These studies by design focus on

the shared mutations and have been tremendously useful in identifying common

mechanisms and mutational profiles that lead to cross resistance and, crucially, cross

sensitivity. Both [33, 34] report an increased susceptibility to many other antibiotic

classes after adaptation to aminoglycosides, and another study [32] successfully ap-

plied this effect to avoid the development of concerning resistance by administering

these drugs cyclically.

The authors in [33, 135] note that antibiotic adaptation seems to generally proceed

through a diverse set of mutations in a set of functional units shared among many

antibiotics. These results are reinforced in [34] and our discussion of the interac-

tions of NFX and CTX follows the same logic. Some details concerning specific

drug classes are worth mentioning. In [135] they also encounter that adaptation

to fluoroquinolones (ciprofloxacin and nalixidic acid in their case) produced some

of the highest degrees of cross-resistance; these antibiotics have available highly ef-

ficacious specific (eg.gyrA) and nonspecific (eg. acrAB) resistance mutations. Alter-

natively, in [34] they classify the folic acid synthesis inhibitors sulfamonomethoxine,

sulfamethoxazole and trimethoprim in the low interaction category; by applying

them in combination we possibly forced evolution through a more general mech-

anism that increases interactivity. In [32] colistin exhibits an interaction pattern

largely composed of cross-sensitivities, matching our observations; and fosfomycin

presents low levels of cross-resistance overall, which combined with the high adap-

tation and low interactivity described here provides an interesting alternative type

of trajectory. These authors specifically notice that antibiotics belonging to the same
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class can nevertheless interact in remarkably different ways, as is the case of CTX

and IMP here.

Our main interest, however, is a preliminary evaluation of the variability of evolu-

tionary interactions beneath the class-level assessments previously discussed. While

the two studies covering evolutionary interactions most directly [34, 135] do not ad-

dress this issue, both comment on the related question of parallel evolution in antibi-

otic resistance. Authors in [135] report high parallelism at the level of sites, genes,

and functional units, with many mutations shared across different antibiotics. For

instance, one specific aminoacid change in acrB (part of the AcrAB-TolC complex)

was found in four lines adapted to chloramphenicol, ampicillin and cefoxitin; and

as many as 66% of the genes mutated in parallel were observed in lines adapted

to different drugs. The proportion of shared mutations diverged between differ-

ent antibiotic-adapted lines, where overlap correlated with the described levels of

cross-resistance. In [34], in turn, authors highlight the greater diversity of drug-

specific mutations in lines evolved under strong selection pressure. They note that

mutations found in two populations adapted to the same antibiotic do not necessar-

ily coincide, where repeatability again varies among drug classes being highest for

quinolones and folic acid inhibitors. Because many antibiotics, despite differences

in the molecular mechanism, converge in the subcellular systems damaged and acti-

vated as a response, it is not surprising that there exists substantial convergent evo-

lution. However, substantial parallel evolution is not at odds with the appearance

of particular mutations that accompany the shared ones. We specifically explore

how these unlikely or chance-driven events can introduce functional diversity in a

bacterial population that analyses of aggregate networks cannot capture.

A very recent study explored the influence of alternative adaptation trajectories on

the development of evolutionary interactions between antibiotics in P. aeruginosa

[35]. Not insignificantly, they do not report the generalized aminoglycoside-evolved

cross-sensitivity that the studies done in E.coli showed. Instead, they obtain some

instances of cross-resistance and cross-sensitivity only against penicillins. Some of

the contrasting interactions in clones adapted to the same antibiotic that we describe

here (e.g. cross-resistance and cross-sensitivity to FOS in NFX lines) were observed

here as well; for instance, in 10 populations adapted to cefsulodin (a cephalosporin) 3

acquired resistance to gentamicin while other 5 acquired sensitivity. Using a cluster-

ing approach on phenotypic interaction patterns and genotypic changes the authors

were able to tie specific mutations to both resistance to the antibiotic on which they

arose and collateral sensitivity to others. These mutations appeared in genes related

to the regulation of efflux and other membrane organization processes and mediated

cross-sensitivity between the aminoglycosides gentamicin and streptomycin and the
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penicillins carbenicillin and piperacillin-tazobactam. Nevertheless, this highly spe-

cific association was only described for a small number of gene variants and the

study acknowledges that much of the variability remains to be explained.

A combination of evolutionary processes could account for the observed diversity

and patterns of interaction. One of the effects mentioned above alludes to the size

and fitness effects of resistance determinants: general resistance mechanisms can

emerge from a variety of combinations of mutations of small effect in broad genomic

regions [36]; this explains both the smooth shape of the adaptive trajectory of CTX

and NFX and their interactivity. The underlying diversity of mutations that produce

this beneficial phenotype could in turn be tied to the diversity of evolutionary in-

teractions in a clone set. Many factors shape this variability, including the genomic

architecture of the mutational target and epistatic interactions between mutations.

Genomic architecture of the target pathway will determine the availability of mu-

tations that are easily transformed into phenotypic changes, following a hierarchy

atop which are loss-of-function mutations [37, 149]. Epistasis, in turn, will introduce

constraints in evolutionary trajectories [13] and make them contingent upon the ini-

tial mutational steps [14, 38]. Alternative pathways of equal levels of adaptation can

be found, which nevertheless can have different tradeoffs in other conditions [131].

An alternative genetic explanation for mutational diversity is the appearance of hy-

permutator genotypes (which carry errors in the DNA repair machinery that in-

crease their mutation rate), frequently described in antibiotic resistance [137, 150].

However, because the level of interaction variability is somewhat consistent within

a clone family, hypermutators do not seem the most likely candidates to explain it.

The extracellular medium plays a role too: combining an evolution experiment with

in silico metabolic modeling, researchers found that resistance to antibiotics arose

more readily in glucose than in acetate medium, due to the greater plasticity of

respiro-fermentative metabolism in the former [151]. Of note,this study also finds

increased sensitivity to fosfomycin only in ampicillin-glucose evolved clones, sug-

gesting metabolic rewiring as another relevant factor shaping evolutionary interac-

tions between antibiotics.

Then, the size and fitness effects of genomic resistance determinants; the availabil-

ity of beneficial mutations; epistasis between them and between compensatory mu-

tations, and metabolic tradeoffs all combine to produce this complex landscape of

interactions.

Our work deviates from the three studies of evolutionary interactions in E. coli

discussed above in one important way: we did not observe cross-sensitivity in

aminoglycoside-evolved clones (all three studies, and ours, include amikacin); in-

stead we find cross-resistance to a carbapenem. Differences between our study and
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others can be attributed to the selection of specific drugs in a class (discussed in [32]),

the effect of the culture medium [151, 152], differences in the genetic background of

the bacterial ancestor [15] (even when the same strain is used as in [32, 34]; in [33,

135] another E. coli strain was chosen) and the particular features of the evolution

protocol such as the size of the dilution bottleneck [153] and selection strength [34].

Indeed, a recent study evaluating the effect of previous antibiotic exposure history

on further adaptation during drug cycling protocols in P. aeruginosa failed to find col-

lateral sensitivity after evolution to the aminoglycoside chosen, tobramycin [154].

We observed that clones isolated in a given antibiotic concentration do not necessar-

ily exhibit MICs matching that value (Table 3.2). Populations can subsist in a high-

dosage environment through physiological plasticity, by dedicating a subpopulation

of cells to a protective state of dormancy (this phenomenon is know as persistence).

Persistence is associated in non-trivial ways to specific antibiotic biochemistry; for

instance, it can be activated via the SOS response by fluoroquinolones [155], or in-

activated by carbon sources in a way that makes bacterial cells again susceptible to

aminoglycosides [152]. Survival to antibiotic can also be achieved by indirect toler-

ance mechanisms such as adapting the lag phase to exposition time [28] and other

adaptive mechanisms with quick reversibility [156].

The experimental technique chosen to measure antibiotic resistance also influences

to some extent the obtained interaction network. Phenotypic resistance is typically

measured with MIC assays, based on observable bacterial growth in an antibiotic

gradient. Other evolutionary interaction studies specifically discuss choosing an al-

ternative, more sensitive method based on optical density to measure resistance [33,

135]. We utilized a standard MIC assay because it is the most widespread technique,

with well-defined protocols [138] and substantial data to make rough comparisons

across studies (see EUCAST). However, it must be noted that the sensitivity of the

technique combined with differences in the ecological context in which resistance is

measured means that some portion of the evolutionary interaction network might

remain cryptic.

In sum, the full scope of evolutionary interactions between antibiotics is far from be-

ing elucidated, and this preliminary work and the recent study in P. aeruginosa dis-

cussed above [35] emphasize the fundamental importance of parallelism and vari-

ability in these evolutionary processes. Just one mutation, or a more complex but

equally low-frequency event, can define the nature of an evolutionary interaction

-resistance or sensitivity- and thus alter the landscape for the design of rational drug

treatments.
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Future directions

The results presented here reflect a work in progress where the logical next step is

the sequencing of all evolved clones. The smaller sample size compared to other

work (which nonetheless captures both global trends and significant variability) al-

lows the direct, itemized comparison of mutations. It also makes feasible individu-

alized phenotypic tests to elucidate the molecular underpinnings of interactions, in

terms of pleiotropy and tradeoffs. Tests include assessment of changes in membrane

integrity and potential (as in [33]), competition assays (eg. between clones that ex-

hibit the same MIC to a certain antibiotic, one by direct adaptation and the other

through cross-resistance), and alternative resistance measurements that consider the

influence of the culture medium and cellular growth stage. The role of epistasis in

shaping adaptive trajectories is frequently discussed regarding the causes of paral-

lel evolution (see Introduction). Presumably, some of the variability in the interac-

tions observed here could be explained by this phenomenon. Our clone set makes

feasible the reconstruction of epistatic constraints through the analysis of: 1)frozen

timepoints during the evolution experiment, 2)synthetic combination of mutations

in endpoint isolates. Broadening the picture, these evolutionary interactions do not

only depend on the molecular characteristics of each particular antibiotic but also

on the genetic background of the adapted strain. Again, in a clinical context, one

genetic component of particular importance is the acquisition of plasmidic antibi-

otic resistance genes by lateral gene transfer. The existence of this highly specific

antibiotic resistance mechanism could bias adaptation to the antibiotic so that the

final evolutionary interaction network is altered. Nonspecific genomic resistance

mechanisms have been described in coexistence with plasmidic resistance genes in

clinical isolates. Consistent application of the conceptual framework of evolution-

ary interactions would require the incorporation of HGT and phage transduction as

modulating forces of natural adaptive trajectories of bacteria.
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Discussion

We explore three levels of complexity tied to fundamental questions on biologi-

cal systems: genotype-phenotype mapping (Chapter 1), eco-evolutionary feedbacks

(Chapter 2), and parallel evolutionary processes (Chapter 3). In each we select a type

of interaction tightly connected to the broad conceptual question: epistatic interac-

tions between metabolic genes, a social interaction mediated by the production of a

bacterial public good, and evolutionary interactions arising from bacterial adapta-

tion to different antibiotics.

We aim to understand general aspects of the fundamental biological process and,

crucially, how the understanding of these basic questions is inextricably linked to de-

tails of the biological system under study – which again ties to another fundamental

biological question: historical contingency. Both lenses, the theoretical concept and

the molecular detail, are absolutely indispensable to explain existing biological phe-

nomena. At each level, in turn, the multi-layered features of the biological system

interact ultimately shaping its full complexity.

Aside from the overarching theme of understanding essential conceptual questions

through interactions at different levels of biological complexity (genetic, ecological,

evolutionary), the three projects in this thesis are connected by particular aspects.

Epistasis appears as both a tool in defining the genotype to phenotype map and its

potentiality for change under genetic perturbation (Chapter 1) and as a force shap-

ing the variability of evolutionary trajectories e.g. through diminishing returns in

beneficial mutations [13] as organisms become better suited to an antibiotic pres-

sure, or constraining the paths to more efficient antibiotic- resistance enzymes [38]

(Chapter 3).

We explore antibiotic resistance as a property of individuals in the form of selected

clones after experimental evolution (Chapter 3), but resistance can be social [157] and

in turn social dynamics might help fight infections [158]. Likewise, antibiotic resis-

tance (Chapter 3) can mediated by the metabolic versatility (a concept from Chapter

1) of the evolving species [151]), and metabolism can in turn define the dynamics of

a social interaction [159] (such as metabolic prudence in swarming [109]).

Furthermore, throughout this thesis we have focused on microbial organisms – Sac-

charomyces cerevisiae (Chapter1), Escherichia coli, (Chapter 2, Chapter 3 ) Pseudomonas
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fluorescens (Chapter 2)- but these intertwined basic ecological-evolutionary processes

are of equal importance in multicellular organisms and might even provide novel

clinical applications against cancer [160]. Microbes appear here both as a model

system for these global questions and as subjects of interest in their own right, as

the complexity of their impact in human lives, beyond their traditional conception

as disease-causing antagonists, is increasingly being recognized in the microbiome

[71]. Here, too, aspects of the conceptual framework of this thesis impart valuable

insights such as the social relationships (Chapter 2) between gut microbiota [161].

Together, these projects highlight how the study of an interaction in a carefully se-

lected context can manifest properties of the organization of each level of complex-

ity and their interconnection. The dependence on the genetic background of genetic

interaction revealed the distributed robustness of catabolism. In a context that com-

bines essentiality and spatial structure, eco-evolutionary feedbacks can turn cheaters

of a social interaction into part of the mechanism that preserves cooperation. Social

interactions are further contextualized by their molecular implementation, which in-

troduces additional constraints at biophysical and physiological levels. Evolution-

ary interactions analyzed in the context of a specific type of selection pressures, that

is, under a set of specific antimicrobials, exposes how the architecture of genomic

resistance determinants introduces varying diversity. This if anything strengthens

the motivation for this multidisciplinary thesis, as emphasis on the interrelations

between all aspects and layers of biological processes.
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Conclusions

1. In an in silico reconstruction of Saccharomyces cerevisiae metabolism, epistatic

interaction networks change in response to single deletions of active genes by

rewiring predominantly weak, positive interactions connecting different func-

tional modules. This pattern reflects the distributed robustness of catabolism.

2. Accumulation of neutral deletions in the yeast metabolic model results in an

increase in negative interactions and essential genes as well as reduced envi-

ronmental plasticity. This reveals a reduction in buffering mechanisms and the

functional connection between genetic and environmental robustness.

3. In a microbial social community studied combining simulations and ex-

periments on a synthetic interaction implemented in Escherichia coli, eco-

evolutionary feedbacks mediated by essentiality of the public good and spatial

structure translate population collapse induced by cheater invasions into the

recovery of cooperators.

4. Features of the experimental system concerning the growth stage of bacterial

cells and the emergence of spontaneous mutants introduce interacting sec-

ondary effects on the population dynamics.

5. Single-cell imaging of populations of Pseudomonas fluorescens SBW25 identified

a novel phenotype regarding the subcellular distribution of a molecule that

can behave as a public good: polar localization of the siderophore pyoverdin,

which entails potential implications for the social dynamics of the bacteria.

6. Assessment of collateral resistance and sensitivity between evolutionary tra-

jectories in the adaptation of Escherichia coli to a variety of antibiotics showed

substantial interaction diversity unequally distributed among drug classes,

including opposite trends within the same selection conditions. This high-

lights the importance of parallel evolutionary processes in the design of next-

generation clinical protocols against the challenge of global antibiotic resis-

tance.
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Conclusiones

1. En un modelo in silico del metabolismo de Saccharomyces cerevisiae, las redes de

interacción epistática se modificaron en fondos genéticos generados por dele-

ción de genes metabólicamente activos. Los cambios ocurrieron predominan-

temente en interacciones débiles y positivas, que conectan diferentes módulos

funcionales, reflejando la robustez distribuida del catabolismo.

2. En fondos genéticos generados por la acumulación de deleciones neutrales se

observó un incremento de las interacciones negativas y el número de genes

esenciales, así como una reducción en la plasticidad ambiental del modelo

metabólico. Estos cambios revelan una reducción en los mecanismos de amor-

tiguamiento, y a su vez manifiesta la relación funcional entre robustez genética

y ambiental.

3. En una comunidad microbiana social, estudiada mediante una comibinación

de simulaciones y experimentos que implementan una interacción sintética

en Escherichia coli, la retroalimentación entre procesos ecológicos y evolutivos

mediada por la esencialidad del bien común y la estructura espacial produjo

un efecto contraintuitivo: la invasión de células egoístas indujo un colapso

poblacional que se convirtió en parte del mecanismo que preserva el compor-

tamiento cooperativo en dicha comunidad.

4. Características adicionales del sistema experimental, relacionadas con el es-

tado de cremiento de las bacterias y la emergencia de mutantes espontáneos,

introducen efectos secundarios en la dinámica de la población.

5. La visualización de células individuales en una población de Pseudmonas fluo-

rescens SBW25 permitió la identificación de un nuevo fenotipo definido por la

distribución subcelular de una molécula que puede comportarse como un bien

común. Se describió la localización en los polos célulares del sideróforo piover-

dina, lo cual podría conllevar efectos sustanciales sobre la dinámica social de

esta bacteria.

6. La comparación de las resistencias y sensibilidades colaterales desarrolladas

tras la adaptación de E. coli a un conjunto de antibióticos mostró una impor-

tante diversidad. La variabilidad en las interacciones evolutivas es diferente
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entre distintas clases de drogas, apareciendo en algunos casos tendencias op-

uestas dentro del mismo tratamiento selectivo. Estos resultados enfatizan la

importancia de considerar procesos evolutivos paralelos en el diseño de pro-

tocolos clínicos de nueva generación que se enfrenten al reto global de la apari-

ción de resistencias a antibióticos.
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