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‘ Son of man
You cannot say, or guess, for you know only
A heap of broken images’

T. S. Eliot
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Abstract

This thesis starts by providing an overview of some amongst the essential aspects of
low-dimensional topologically nontrivial electronic phases (first chapter), and follows by
presenting four theoretical studies on novel phenomena that arise in two-dimensional
materials. In three of these four chapters, we put forward innovative routes for tailoring
the emergent topological properties of graphene (second and third chapters) and semi-
conducting quantum wells proximitized with superconductors (fourth chapter). The fifth
chapter deals instead with the rich spin and valley-dependend low-energy description of
semiconducting two-dimensional transition metal dichalcogenides.

In graphene, we propose two schemes for engineering two independent topological
phases of matter, both relying on the unconventional relativistic-like low-energy proper-
ties of this material. Specifically, in the second chapter we consider a graphene Hall bar
on top of a magnetic insulator as a possible detector for skyrmions, using as a working
priciple the anomalous Hall signal produced by these magnetic whirls. We demonstrate
that the linear semimetallic dispersion of graphene, which places it on the brink of be-
coming topological, is able to enhance the Hall signal. In addition, graphene’s one-atom
thickness make it especially suitable for extrinsic engineering through proximity with a
vast range of materials. We therefore suggest that these two properties combined render
the detection of skyrmions by means of graphene especially effective. In the third chapter
we focus on a special time reversal-broken quantum spin Hall phase that can be hosted
by samples of twisted bilayers of graphene in the quantum Hall state. We show that,
in the regime of large twisting angles where the two layers are virtually decoupled, the
interplay between electronic interactions and an applied electric field drives the system
into the targeted phase by lifting the eightfold degeneracy of the zero Landau level in
a nontrivial fashion. To implement this phase, crucially, no spin-orbit interactions nor
Zeeman fields are needed, which constitutes a rather novel and attractive feature of the
proposal.

In the fourth chapter we focus on a different platform based on a two-dimensional
electron gas with strong spin-orbit coupling in the quantum Hall regime. We study the
topological properties of this system when it is proximitized with a narrow supercon-
ducting strip and a Zeeman field is applied parallel to the strip direction, revealing un-
conventional features that provide for a novel implementation of a topological p Joseph-
son junction. We exploit this finding to propose a protected route towards quantum
computational operations with Majorana zero modes at the junction.

Finally, in the last chapter we derive a k �p low-energy description for transition metal
dichalcogenides based on rigorous symmetry-rooted group theoretical arguments. We
then allow for all possible symmetry breaking terms that preserve time reversal invari-
ance, and classify them according to the microscopic properties of different kinds of in-
teractions and defects. The resulting characterization is particularly interesting because
of the unconventional coupled spin and valley physics.
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Resumen

Esta tesis empieza ofreciendo una perspectiva general sobre algunos de los aspectos es-
enciales de las fases electrónicas de baja dimensionalidad topológicamente no triviales
(primer capítulo), y sigue con la presentación de cuatro estudios teóricos sobre fenó-
menos novedosos en materiales bidimensionales. En tres de los cuatro capítulos, pro-
ponemos rutas innovadoras para modelar las propiedades topológicas emergentes de
grafeno (segundo y tercer capítulo) y pozos cuánticos semiconductores proximizados
con superconductores (cuarto capítulo). Por otro lado, el quinto capítulo está centrado
en la descripción de baja energía de monocapas bidimensionales de dicalcogenuros de
metales de transición.

En grafeno, proponemos dos esquemas para realizar dos fases topológicas indepen-
dientes, ambas basadas en las propriedades relativistas de baja energía de este mate-
rial. Concretamente, en el segundo capítulo consideramos un sensor de efecto Hall de
grafeno acoplado a un aislante magnético como un posible detector de skyrmiones, uti-
lizando como principio de funcionamiento la señal Hall anómala producida por estos
remolinos magnéticos. Demostramos que la dispersión semimetalica lineal de grafeno,
una propiedad que le coloca en el borde de hacerse topológico, es capaz de magnificar
la señal Hall. Además, su grosor de tan solo un átomo hace que este material sea espe-
cialmente apto para ser manipulado extrínsecamente a través de efecto proximidad con
una amplia gama de materiales. Proponemos por lo tanto que la combinación de estas
dos propiedades hace que la detección de skyrmiones a través de grafeno sea especial-
mente eficaz. En el tercer capítulo nos centramos en una fase Hall cuántica de espín con
ruptura de simetría de inversión temporal, que puede darse en muestras de bicapas de
grafeno rotadas en el estado Hall cuántico. Demostramos que, en el régimen de ángulos
de rotación grandes en el cual las dos capas están prácticamente desacopladas, las inter-
acciones electronicas junto a un campo électrico aplicado fuerzan al sistema en la fase
deseada levantando de forma no trivial la degeneración de grado ocho del nivel cero de
Landau. Para implementar esta fase, crucialmente, no se necesitan ni interacción espín-
órbita ni campos Zeeman, lo cual constituye una característica novedosa y atractiva de la
propuesta.

En el cuarto capítulo, nos enfocamos en una plataforma diferente basada en un gas
electrónico bidimensional con fuerte interacción espín-órbita en el régimen Hall cuán-
tico. Estudiamos las propiedades topológicas de este sistema cuando está acoplado a una
tira superconductora estrecha y se aplica un campo Zeeman en la dirección de la tira,
revelando caracteristicas no convencionales que permiten una realización novedosa de
una unión Josephson topológica con una diferencia de fase p. Explotamos este hallazgo
para proponer una ruta protegida hacia operaciones computacionales cuánticas con los
modos cero de Majorana de la unión.

Finalmente, en el último capítulo derivamos una descripción k �p de baja energía para
dicalcogenuros de metales de transición a través de argumentos rigurosos de teoría de
grupos basados en simetría. A continuación, admitimos todos los términos que rompen
las simetrias del sistema excepto la invariancia bajo inversión temporal, y los clasificamos
según las propiedades microscopicas de diferentes tipos de interacciones y defectos. La
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caracterización resultante es especialmente interesante debido a la física no convencionál
generada por el acoplo entre espín y valle.
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Chapter 1

Introduction

This thesis is mainly concerned with investigating the quantum transport properties of
two-dimensional (2D) systems, with a specific interest in their symmetries and emergent
topological properties. On a priviledged footing, three out of four chapters are dedicated
to hexagonal-lattice 2D systems, specifically graphene and semiconducting monolayers
of transition metal dichalcogenides (TMDCs) [1–4]. The remaining chapter deals instead
with a generic two-dimensional electron gas (2DEG), that serves as a paradigm for a
broad class of systems such as semiconducting quantum wells. However, while the for-
mer systems present an intrinsic interest rooted in their geometrical properties, the latter
merely serves as a building block to engineer a platform where non-trivial physical in-
gredients are combined to test the onset of exotic phenomena.

The interest in two-dimensional systems has witnessed a huge boost ever since the
discovery of graphene in 2004 [5] by the Manchester group of Professors Geim and
Novoselov, who were afterwards awarded a Nobel prize for having succeded for the first
time to isolate a single layer of graphite by mechanical exfoliation. This discovery gave
rise to a flourishing advancement of this field of research on both the theoretical [1,6–
12] and experimental side [13–20]. Many phenomena well-known in conventional ma-
terials were predicted and discovered in graphene, often presenting anomalous features
ascribable to its relativistic-like low-energy dispersion [13,21–28]. Also, composite struc-
tures such as graphene bilayers and trilayers, with a variety of stacking orders ranging
from higly ordered structures to compounds with misalignment faults were investigated,
usually presenting far from standard low-energy features [29–37].

During the following years, a richer collection of 2D materials has been progressively
uncovered, starting from the family of single-layer TMDCs. Specifically, in this thesis we
are interested on semiconducting monolayers with general formula MX2, with M=Mo, W
and X=S, Se [4,38–43]. These systems have a geometry very similar to that of graphene,
and they are characterized by akin low-energy properties [38,43–46]. However, addi-
tional effects stemming from the lack of inversion symmetry (due to the presence of two
different constituent elements rather than only one, as in graphene) and from a large
spin-orbit interaction inherited from the heavy transition metal atoms, further expand
the already diverse playground offered by graphene.

Along with these novel compounds, nowadays technologies are allowing an ever im-
proved ability to grow thin layers of a variety of materials. The experimental workability
of these platforms in a number of configurations has been well demonstrated, in particu-
lar for the class of 2D semiconducting quantum wells proximitized with superconductors
relevant to this thesis [47–53].

The reason to devote special attention to 2D materials is to be sought in at least two
key aspects: (i) their improved experimental flexibility and versatility as compared with
three-dimensional (3D) systems for a variety of applications, such as proximity effects,
response to external applied fields, exceptional suitability for gating and contacting; (ii)
the extended variety of physical phenomena that they can host owing to their reduced
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dimensionality, ranging from the celebrated quantum Hall effect (a topic which will be
tackled to a great extent in the course of this introductory chapter) to manifestations of
exotic non-Abelian statistics of particles that is forbidden in three dimensions, a subject
that we will study in detail in the fourth chapter.

This introductory chapter is divided into three sections. In the first section, we give
an account of the geometrical and electronic properties of honeycomb lattice systems,
namely graphene and TMDCs. In the second section we review the basic concepts un-
derlying the thriving field of topology in physics, a leitmotive that recurs troughout the
first chapters of the thesis, providing the reader with some key concepts that will prove
useful in the reading of these chapters. We defer instead a detailed account of the tools
needed for the fifth chapter, namely, symmetries and their role in condensed matter, to
appendices A and B. Finally, in the last section we briefly discuss the organization of the
rest of the thesis into chapters.

1.1 Hexagonal 2D platforms

In this section, we review the basic geometrical and electronic properties of systems with
honeycomb lattices: graphene and TMDCs.

1.1.1 Graphene

A graphene monolayer is composed of two interpenetrating sublattices of Carbon atoms,
that we label A and B for convenience, where the atoms pertaining to each individual
sublattice form a triangular Bravais lattice with lattice parameter a = 2.46 Å [1]. Sites A
occupy the positions

rA
n,m = na1 + ma2 (1.1)

with

a1 = a

 
1
2

,

p
3

2

!
and a2 = a

 
�1

2
,

p
3

2

!
(1.2)

whereas the B atoms are displaced by a vector

d =
1
3

(a1 + a2) = a(0, 1/
p

3) = a0(0, 1) (1.3)

where we have defined the Carbon-Carbon distance a0 = a/
p

3 = 1.42 Å. Therefore,
sites B occupy the positions

rB
n,m = rA

n,m + d. (1.4)

The hexagonal lattice of graphene is depicted in Fig. 1.1a, where the primitive vectors a1,2
are explicitly shown. It is straightforward to see that the lattice has a basis of two atomic
sites per unit cell. The reciprocal vectors for this lattice are

b1 =
2p

a0

�
1p
3

,
1
3

�
and b2 =

2p

a0

�
� 1p

3
,

1
3

�
The graphene Brillouin zone (BZ) is the parallelogram formed by these two vectors, even
though it is common practice to refer to the BZ as the equivalent hexagon with corners

K =
4p

3a
(1, 0) and K0 =

4p

3a
(�1, 0) (1.5)
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FIGURE 1.1: (a) Hexagonal graphene lattice where the A and B sublattices are colored in blue
and red, respectively, and the primitive vectors a1,2 are explicitly shown. (b) Brillouin zone of the
graphene lattice where the reciprocal lattice vectors b1,2 and the two inequivalent valleys K and
K0 are explicitly shown. (c) Graphene band structure in the BZ. The zoomed region shows the
Dirac cone-like low-energy dispersion around one of the BZ corners. [Adapted with permission
from Ref. [1]]

also called valleys. The hexagonal BZ is shown in Fig. 1.1 along with the reciprocal
vectors b1,2. The simplest tight-binding Hamiltonian for graphene considers pz-orbitals
electrons that hop only between nearest neighboring sites with amplitude t � 2.7 eV, that
is, between atoms on different sublattices separated by a distance a0, and can be written
as

H = �t å
<i,j>

h
c†

i,Acj,B + H. c.
i

(1.6)

where the sum is limited to atoms within the same unit cell or within nearest neighboring
unit cells, where, as mentioned above, each cell contains two atomic sites, each belonging
to a different sublattice, that we have labeled A and B. The operators c†

i,s and ci,s, with
s = A, B therefore respectively create and annihilate an electron on the sublattice s of the
i-th unit cell, whose position Ri is taken to be coincident with the position of the A atom
within the cell. By taking the Fourier transform of the creation and annihilation operators
as

ci,A =
1p
N

å
k

ck,Aeik�Ri and ci,B =
1p
N

å
k

ck,Beik�(Ri+d) (1.7)

with N the number of unit cells, Hamiltonian (1.6) can be rewritten as

H = �t å
k

"
c†

k,Ack,B

3

å
i=1

eik�dj + H. c.

#
(1.8)
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since each atom has three nearest neighbors belonging to the opposite sublattice that are
displaced by the three vectors

d1 = d = a0(0, 1) d2 =
a0

2
(�
p

3,�1) d2 =
a0

2
(
p

3,�1) (1.9)

By defining the annihilation and creation spinorial operators in sublattice space as

ck = (ck,A, ck,B)T and c†
k = (c†

k,A, c†
k,B) (1.10)

Eq. (1.8) can be rewritten in matricial form as

H = å
k

c†
kHkck (1.11)

with

Hk = �t
�

0 å3
i=1 eik�dj

å3
i=1 e�ik�dj 0

�
(1.12)

Upon explicitly expanding the sum around the K, K0 valleys up to first order in momen-
tum, one is left with the following Hamiltonian

HK
k =

3ta0

2

�
0 kx � iky

kx + iky 0

�
(1.13)

and

HK0
k =

3ta0

2

�
0 �kx � iky

�kx + iky 0

�
(1.14)

that is, by introducing the Pauli matrices s = (sx, sy, sz) acting in sublattice space, and
defyining the Fermi velocity for graphene as vF = 3ta0/2

Ht
k = vF(tkxsx + kysy) (1.15)

where t = 1 at K and t = �1 at K0 and sx,y are Pauli matrices acting in sublattice
space. Note that the low-energy Hamiltonians at K and K0 are related by time-reversal
symmetry, that in a spinless system is implemented by the complex conjugation operator.
Diagonalization of this Hamiltonian yields, for both valleys, the linear dispersion

Ek,� = �vFjkj (1.16)

associated to the valley-dependent eigenspinors

yt
k,� =

1p
2

�
e�tiqk/2

�etiqk/2

�
(1.17)

where qk = arctan(kx/ky). One then sees that the low-energy dispersion of graphene
is a relativistic one characterized by a velocity vF � 106 m/s, and its carriers are Dirac-
like fermions in 2D. From this very peculiar dispersion relation, shown in Fig. 1.1c, stem
all the unconventional properties that differentiate graphene from conventional systems
with standard parabolic dispersion. We will discuss one of these ‘anomalies’ in the next
section, where we will explicitly compute the unconventional Landau levels sequence of
graphene in the quantum Hall regime.
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FIGURE 1.2: Structure of a typical TMDC lattice with formula MX2 (a) seen from the top; (b) seen
from the side. Green and yellow atoms correspond respectively to the transition metal (M) atoms
and to the chalcogen (X) atoms. (c) Sketch of the low-energy dispersion of TMDCs around the
inequivalent corners of the BZ. Notice that the green colour represent spin unpolarized bands,
whereas blue and red colors represent oppositely spin-polarized states along the out-of-plane
quantization axis.

1.1.2 Transition metal dichalcogenides (TMDCs)

Transition metal dichalcogenides are Van der Waals layered materials with general for-
mula MX2, with each individual layer composed of three atomic planes, namely a one-
atom-thick plane of transition metal atoms (M) sandwiched between two layers of chalco-
gen atoms (X), all arranged in triangular arrays. The outer planes are rotated with respect
to the central one in such a way that the overall planar structure of the system realizes a
staggered honeycomb lattice equivalent to that of graphene, as shown in Fig. 1.2a, with
the A and B sublattices corresponding to the triangular lattice of transition metal atoms
M and to the two sublattices of chalcogen atoms X, respectively [3,4,43,46,54]. The struc-
ture as seen from the top and from the side is shown in Fig. 1.2a and b, respectively. The
lateral view is shown instead in Fig. 1.2b. The BZ zone is hexagonal as shown in Fig.
1.2c. However, building a tight binding model is a much more complicated task in these
systems than in graphene because of the many atomic orbitals involved [43,46,55]. Sev-
eral models for capturing the low-energy features of the spectrum by fitting it to the DFT
bands have been proposed with a number of involved orbitals ranging from three [46] to
eleven [43]. A different approach to derive a continuum model for the dispersion around
the high-symmetry points rests on a group theoretical approach based on symmetry con-
siderations [54,56]. We will deal with such a derivation in great detail in the fifth chapter.
At this level, it suffices to say that both approaches, as well as experimental confirma-
tions, reveal that monolayer samples of TMDCs are semiconductors with a direct band
gap located at the two inequivalent corners of the Brillouin zone K and K0 [43,54]. This
endows the spectrum of these systems with the same appealing multivalley structure as
graphene. However, at odds with graphene, TMDCs lack inversion symmetry because
the two interpenetrating sublattices are composed of different atomic species. Due to the
simultaneous presence of the heavy transition metal atoms, endowed with a large atomic
spin-orbit coupling (SOC), and to the lack of inversion symmetry, breaking of spin degen-
eracy is allowed. However, since the z ! �z symmetry is preserved, the out-of-plane
spin polarization is protected against any type of mirror-preserving perturbation. This
enables the formation of a large spin splitting that affects the valence band more severly
than the conduction band due to their different orbital composition [54,56–58]. Also, due
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to the time reversal symmetry connecting the two valleys, this spin splitting is opposite
at K and K0. A minimal two-bands Hamiltonian that takes care of all these properties
is given by Eq. (1.15) with the addition of a mass term D and a valley-dependent spin-
splitting term in the valence band sector [58]

Ht
k = vF(tkxsx + kysy) + Dsz +

l

2
tsz(1� sz) (1.18)

where sx,y,z are now Pauli matrices acting in the space spanned by the conduction and
valence bands (that do not coincide with sublattices, as was the case for graphene) and sz
is a Pauli matrix acting in spin space. All these features are sketched in Fig. 1.2c.

1.2 Topology in physics

Up to very recently, the underlying principle beyond the classification of quantum phases
of matter has been that of spontaneous symmetry-breaking. Specifically, phase transi-
tions from a given quantum state to a lower symmetry state where one or more symme-
tries have been broken are the object of the Ginzburg-Landau theory [59], that has been
the paradigm for explaining (almost) all of the exotic quantum phases discovered during
last century, among which superconductivity, ferromagnetism, Bose-Einstein condensa-
tion and many more. In this theory, the microscopic details of the system under analysis
are disregarded and quantum states are characterized by a local order parameter that as-
sumes a nonzero value only in the highly ordered symmetry-broken phase. However,
during the last decades its has become overwhelmingly clear that there are a number of
phases of matter that are not captured by this model, characterized by a higly non-local or-
der parameter, for which a Landau-Ginzurg theory cannot be developed in the standard
way. These phases are said to be topologically ordered, and their classification required
elaborating a novel paradigm that rests on concepts borrowed from the mathematical
notion of topology [60–62].

The mathematical concept of topological invariance is introduced to classify differ-
ent geometrical objects into broad classes distinguished by their shapes in spite of their
microscopic properties [63]. This leads to a crucial criterion underpinning topological
classes: according to this criterion, objects from a given class can be continuously de-
formed into one another, whereas objects from different classes require an abrupt and
discontinuous action to transform into each other. A well-known example is that of 2D
surfaces, classifiable according to the number of holes they contain. In this sense, objects
with the same number of holes, or genus - e. g. zero as in the case of a sphere or an
ellipsoid, or one as in the case of a donut or a teacup - belong to distinct topology classes
that can be labeled by their genus.

The concept of topological classification in physics is equivalent, and applies to
gapped Hamiltonians (either insulating or superconducting) of many-particle systems
[64]. In this context, the idea of a continuous deformation that preserves the topological
character of an Hamiltonian is that of a change that doesn’t close the gap. Therefore,
for two systems to be in the same class, they have to be described by Hamiltonians
whose low-energy spectra can be deformed one into the other without closing the gap.
In turn, if in order to deform one Hamiltonian into another the gap needs to close at
some point, this indicates that the two Hamiltonians belong to different topological
classes. In the same way in which 2D mathematical surfaces can be characterized by
the genus, distinct physical classes of topologically inequivalent Hamiltonians can
be characterized by a topological index playing the same role as the order parameter
in Ginzburg-Landau theories [60,61,64]. The topological index for a given system is
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determined by its dimensionality and the discrete symmetries of the Bloch Hamiltonian,
and it can be either a Z invariant, which can take on any integer value, or a Z2 invariant,
which can only be either 0 or 1. It has been shown that in every spatial dimension there
exist precisely five distinct classes of topological insulators or superconductors, and
within each class the different topological sectors can be distinguished by the topological
invariant [65,66]. The theory encompassing the topological classification of solid-state
gapped systems goes under the name of ten-fold way [66,67]. Here we will not go into
further details since a full treatment of the topic is beyond the scope of this thesis and
in the following we will concentrate only on the cases relevant to the topics covered
in it, that are 2D systems in the presence or absence of given symmetries, such as time
reversal invariance and charge conjugation.

1.2.1 Berry phase and Berry curvature

In this subsection, we present the idea of topological order as naturally emerging in the
context of the evolution of quantum systems with a parametric dependence [68–70].

Basic definitions Under an adiabatic evolution of a set of ‘slow’ degrees of freedom
R = (R1, R2, ...) that perform a closed path C in the parameter space, a non-degenerate
eigenstate of an Hamiltonian that depends on these parameters picks up a geometrical
phase. Two key requirements are that the state vectors jn(R)i (i) all reside in the same
Hilbert space, (ii) are single-valued throughout the whole evolution. The phase thus
acquired is called Berry phase by virtue of the physicist who first introduced it [68] and it
is given by

gn =
I
C

dR � An(R) (1.19)

where An(R) is a vector called Berry connection, defined as

An(R) = ihn(R)jrRjn(R)i (1.20)

It is easy to see that, because the eigenvector jn(R)i is gauge-dependent,An(R) is gauge-
dependent as well. On the contrary, gn(R) is a gauge-independent quantity and only
depends on the geometric aspect of the closed path C on which the integration in Eq.
(1.19) is performed. By drawing an analogy with electrodynamics, one can think of the
Berry connection as a vector potential that, as in electromagnetism, is characterized by
an intrinsic degree of arbitrariness (in other words, an intrinsic gauge-dependence) stem-
ming from its lack of physical meaning. Following these premises, a gauge-field tensor
can be derived from An(R) as

Wn
mn(R) =

¶An
n

¶Rm
�

¶An
m

¶Rn
= i
��

¶n
¶Rm

���� ¶n
¶Rn

�
�
�

¶n
¶Rn

���� ¶n
¶Rm

��
(1.21)

called Berry curvature. In three and two dimensions, Eq. (1.21) can be recast in the more
compact form

Wn(R) = rR �An(R) (1.22)

whence it is clearer that, within the previously drawn electromagnetic analogy, the Berry
curvature plays the role of a magnetic field. The Berry curvature is gauge-invariant, and
therefore observable, and it is a local manifestation of the geometric properties of the
wavefunction in the parameter space. Because of Stoke’s theorem, we have that it can be
rewritten as

gn =
I
C

dR � An(R) =
Z
S

dS �Wn(R) (1.23)
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where S is any surface enclosed by the curve C.
The Berry phase is somewhat special in that it is a potentially observable quantity

that nonetheless cannot be expressed in the usual form for observable physical quanti-
ties, that is, expectation values of Hermitian operators. This peculiarity stems from the
assumption made at the very beginning that the Hamiltonian depends on a set of pa-
rameters, what in general implies that the system it describes is not isolated. In fact, a
parametric dependence of the Hamiltonian always encodes a coupling with degrees of
freedom that are not included in the Hilbert space, and is due to the fact that the system
under analysis is not truly isolated but rather part of a larger system. The consequence
of this projection is that some observable quantities manifest as gauge-invariant phases
rather than expectation values of operators.

Berry phase effects on crystalline solids In crystalline solids, by performing an op-
portune unitary tranformation one can cast the original problem into one characterized
by a k-dependent Hamiltonian H(k) (k being the crystal momentum) with eigenstates
jun(k)i all living in the same Hilbert space [69,70]. This space is nothing but the Brillouin
zone, that can be considered as the parameter space for the transformed Hamiltonian
H(k). We therefore identify the Bloch momentum k with the parameter R. Since the
k-dependence of the eigenstates is inherent to the Bloch problem, as this parameter is
moved through a closed path in the Brillouin zone, the Bloch states will inevitably pick
up a Berry phase given by

gn = i
I
C

dk � hun(k)jrkjun(k)i (1.24)

with the Berry curvature now defined as

Wn(k) = rk � ihun(k)jrkjun(k)i (1.25)

Notice that the Berry curvature is an intrinsic property of the band structure since it only
depends on the wavefunction.

Anomalous velocity A fundamental consequence of the Berry phase effects on the
properties of Bloch electrons is that the group velocity of electrons subject to an ex-
ternal electric field acquires an additional term, called the anomalous velocity, that is
proportional to the Berry curvature and to the applied field, namely

vn(k) = rk#n(k)! vn(k) = rk#n(k)� e
h̄

E�Wn(k) (1.26)

where #n(k) is the dispersion of the n-th non degenerate crystalline band [70,71]. It is
easy to see that since this additional term is always perpendicular to the direction of the
applied field, it will give rise to a transverse, or Hall, component in the velocity. This
phenomenon is at the basis of virtually every unquantized intrinsic Hall phenomena oc-
curing in metals, from the well-known Hall effect to more exotic ones such as the intrinsic
anomalous or the valley Hall effects.

Given that the group velocity must be invariant under the symmetries of the system,
one can obtain valuable information from Eq. (1.26). In fact, in the presence of time
reversal (TR) symmetry, imposing that vn and k change sign under TR whereas E does
not, results in the following condition for the Berry curvature:

Wn(�k) = �Wn(k) (1.27)
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Instead, in the presence of inversion symmetry, imposing that vn, k and E all change sign
under inversion results in the following condition on the Berry curvature:

Wn(�k) = Wn(k) (1.28)

Of course, this implies that when both symmetries are present the Berry curvature has
to vanish identically throughout the whole Brillouin zone. However, in systems where
either symmetry is broken or both are, the Berry curvature can be non-zero and in this
case the anomalous group velocity will be finite as well, thus originating a Hall current
in metals or, as we will see below, allowing for topological invariants such as the Chern
number to be nonzero.

Chern number In a 2D insulating system, the integral of the Berry curvature over the
full BZ, a closed manifold that has the topology of a torus, is quantized in the units of 2p
and is nothing but the Chern number of the filled bands, where the Chern number of the
n-th band is defined as

Cn =
1

2p

Z
BZ

dkxdky Wn(k). (1.29)

This number is a Z topological invariant [66] that equals to the net number of monopoles
inside the BZ, that are degeneracy points in the parameter space. Notice that, because
of Eq. (1.27), the Chern number is identically zero if time reversal invariance holds. In
turn, it can be shown that the Chern number of 2D insulators is connected with the Hall
conductance as

sxy =
e2

h å
n 2 filled bands

Cn. (1.30)

The Chern number stays exactly quantized even in the presence of many-body interac-
tions and disorder. The reason is to be sought in the fact that it must be an integer, so it
can only be varied in a discontinuous way. Therefore, small perturbations (that result in
small changes of topologically trivial physical quantities) cannot change it [70]. This, in
turn, is physically reflected in the robustness of the Hall conductance against perturba-
tions.

We notice that the Chern number is a special case of a Z topological invariant charac-
terizing 2D systems with no TR symmetry. However, systems with different symmetries
and in different dimensions will be characterized by invariants (either Z or Z2) other
than the Chern number [66]. Importantly, since the protection discussed above is a gen-
eral outcome of topological invariance, it holds for any system characterized by any other
finite invariant.

Bulk-boundary correspondence The result of obtaining a nonzero conductance when
the Fermi level lies within a gap may at first sight seem puzzling. This apparent contra-
diction is clarified by the mathematical argumentations given above, stating that the gap
closure between two topologically distinct phases is unavoidable. This gap closure is the
key to understand the nonzero conductance: edge states must appear at the boundary
between systems belonging to different topological classes. In particular, since the vac-
uum can be considered as a trivial insulator, it is to be expected that any system with a
non-zero topological invariant presents edge modes at the boundary with vacuum. These
modes are responsible for carrying the protected quantized currents predicted by theory
in the form of an integer Hall conductance in the units of e2/h (cfr Eq. (3.22)), and are
therefore a robust property as long as the symmetries of the system are preserved. This is
true of course if the system size is larger than the typical extension of the edge states, that
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are exponentially localized on a distance given by the inverse of the gap, so that they do
not couple through the bulk. These ideas are part of a more general paradigm, known as
the bulk-edge correspondence, stating that at the boundary between two systems char-
acterized by different topological indexes will arise a number of edge modes equal to the
difference in topological indexes of the two systems [71].

1.2.2 Celebrated topological phases

In this subsection we encompass some of the topological phases relevant to this thesis.

Quantum Hall effect The paradigm example of the phenomenology described so far
is the integer quantum Hall effect (QHE), discovered by Klitzing et al. in 1980 [72], who
found that in a strong magnetic field the Hall conductance is exactly quantized in units of
e2/h. The origin of this quantized transverse conductivity must be sought not in the mere
formation of Landau levels but rather in their nontrivial topological character or, stated
more rigorously, in the fact that the Chern number of the bands is nonzero. In turn, this
is possible because the presence of a magnetic field breaks time reversal invariance, an
ingredient that is necessary to have a net nonzero Berry curvature in the magnetic BZ, as
made clear by Eq. (1.27). As seen above, the Chern number of the system corresponds
to the number of conductance channels emerging at the boundaries with vacuum, that in
the case of the QHE is also referred to as the filling factor n. These channels are chiral,
meaning that they carry charge unidirectionally, and they are protected from backscat-
tering by the spatial separation of the counterpropagating channels, that are found at the
opposite edge of the sample. The physics of the QHE will be studied in detail in the next
subsection, and it will be a crucial ingredient of the phenomena discussed in the third
and fourth chapters of the thesis.

Topological insulators and quantum spin Hall effect A distinct topological class is
that of time reversal invariant systems with strong spin-orbit coupling. These systems
are also called topological insulators (TIs), and they can be either two-dimensional or
three-dimensional. One of the first theoretical poposal for 2D TIs, also called quantum
spin Hall (QSH) insulators, was cast by Bernevig, Hughes and Zhang in 2006 [73]. Specif-
ically, they predicted a thickness-dependent SOC-driven gap inversion in HgTe/CdTe
quantum wells associated with a topological quantum phase transition, a prediction that
was experimentally confirmed for the first time by Koning et al. in 2007 [74]. This phase is
characterized by two oppositely spin-polarized counterpropagating edge states. Because
of SOC, the spin polarization is bound to be perpendicular to the direction of motion,
and because of this spin-momentum locking these states are also referred to as helical
and they are protected from backscattering by time reversal symmetry. However, these
systems have a zero Chern number in the BZ because of TR invariance. However, non-
zero quantized responses are still possible. By defining a Chern number for each spin
polarization, Cs with s =", #, one can define a ‘spin Chern number’ as Cs = C" � C#,
indicating that there is a net spin current circulating along the edges of the system. This
quantity is a Z2 topological invariant, fundamentally different from Z invariants as the
Chern number, which characterizes the topological nature of TR invariant bands of 2D
systems with well-defined spin polarization. When spin is not well defined Cs loses its
meaning, although a Z2 topological invariant can always be defined for time-reversal
symmetric 2D systems [66,67]. Remarkably, QSH phases are also possible in systems
with no TRS. Discussing a concrete realization of this possibility is the subject of chapter
three.
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Analogously to 2D TIs, 3D TIs are characterized by a bulk gap and gapless surface
states. Specifically, special compounds such as Bi2Te3, Sb2Te3 and Bi2Se3 exhibit surface
states consisting of a single Dirac cone [75–78].

Quantum anomalous Hall effect A state of matter that is closely related with the QSH
insulator but that exists in the absence of TR symmetry is the so-called quantum anoma-
lous Hall (QAH) insulator, that is a band insulator characterized by chiral quantized edge
conductance without an orbital magnetic field [64]. The simplest way of realizing this
phase is by introducing magnetic dopants into a TI, which has the effect of breaking TR
symmetry. Loosely speaking, doping the system with spin-polarized impurities changes
the spin-dependent chemical potentials of the two conducting spin species of the QSH
insulator, in turn modifying in opposite fashions the sizes of their bulk gaps. At a criti-
cal density of dopants, one of the two spin species is completely depleted, thus leaving
the system with only the edge states associated with the opposite spin polarization to
conduct. The original helical system (two oppositely spin-flavoured counterpropagating
states) is therefore converted into a chiral one (only one spin-polarized species conduct-
ing), corresponding to the evolution from a QSH phase to a QAH phase, or, equivalently,
from a system characterized by a Z2 to one characterized by a Z topological invari-
ant. Other possibilities exist, such as coupling 2D systems to non-trivial magnetic tex-
tures [79,80], decorating a honeycomb lattice with alternate positive and negative mag-
netic fluxes that sum to a net zero flux [81], or combining Rashba SOC and exchange in
graphene [11].

Anomalous Hall effect Analogously to the standard quantum Hall effect, also the
anomalous one presents an unquantized version, the anomalous Hall effect (AHE), a
phenomenon observed in conducting ferromagnets when spin-orbit interactions are
important [82]. This effect refers to the onset of a finite transverse Hall conductance
induced by the momentum-space Berry curvature-related anomalous contribution to the
group velocity. This is possible because, even though no magnetic field is needed for
this effect to occur, TR symmetry is broken by the ferromagnetic ordering of the system.
As we will see in chapter two, this physics can also arise in the presence of non-coplanar
spin structures (known as skyrmions) with associated spin-chirality and real-space Berry
curvature [82–84].

Topological supeconductors Insulating states such as those reviewed above are not the
only ones to which the idea of a topological order can be attached. Among other, an
additional topological phase of matter that is relevant to this thesis and specifically to
chapter four, is that of topological superconductivity [64,67,71,85]. There is a direct anal-
ogy between superconductors (SCs) and insulators because the Bogoliubov-de Gennes
Hamiltonian for the quasiexcitations of a superconducting condensate is analogous to
that of an insulator, in that they both have a gapped spectrum. Therefore, it is natural
to expect that the concepts borrowed from topology can be extended from the insulat-
ing to the superconducting state. In 2D, the classification of topological SCs is similar
to that of topological insulators. TR breaking SCs are classified according to an integer
N (Z invariant), similarly to how the Chern number classifies TR breaking topological
phases, whereas TR invariant SCs are classified by a Z2 invariant. TR breaking topologi-
cal SCs in 1D and 2D are specially interesting because of their relation with non-Abelian
statistics and their potential application in the field of topological quantum computation
[64,86]. The simplest model of a topological SC is that of theN = 1 px + ipy pairing state
for spinless fermions in 2D, characterized by one Majorana zero mode bound to each of
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its vortices (giving rise to exotic non-Abelian statistics when the vortices are moved one
around the other), plus a chiral Majorana edge state circulating along the boundary [86].
However, many more platforms have been proposed for engineering topological super-
conductivity. We postpone a more exhaustive discussion about this topic to chapter four,
that is entirely dedicated to exploring this phase of matter.

1.2.3 The quantum Hall effect

As mentioned above, the quantum Hall effect was the first phenomenon to be associated
with the existence of topological pahses of matter. Before its discovery in the eighties,
only the classical version of this effect was known, and it had been discovered a century
earlier by Edwin Hall [87]. This effect consists in the generation of a voltage difference
(the Hall voltage) across an electrical conductor, transverse to an applied electric current
and to a magnetic field perpendicular to the current. This phenomenon can be classically
explained by the transverse accumulation of charges driven by the Lorentz force that acts
on the carriers by deflecting their trajectory. The accumulated charges, in turn, give rise
to an induced electric field that explains the measured Hall voltage. An hand-waving ex-
planation of the QHE is that for large applied magnetic field, the cyclotron orbits traced
by the charges decrease in radius so that they tend to effectively localize. In this situa-
tion, the only electrons that can contribute to transport are those at the boundaries of the
sample that follow a path of skipping orbits through which thay can propagate across the
edges of the sample. A more rigurous quantum-mechanical account of this phenomenon,
though not involving topological concepts, is provided by the calculation of the spectrum
of a 2D system in an out-of-plane magnetic field. Given the importance of this effect for
large part of this thesis, we review below the calculation of the QH spectrum for two
different platforms, namely standard 2DEGs (relevant for chapter four) and graphene
(relevant for chapter three).

The quantum Hall effect in 2DEGs

The Hamiltonian for nearly-free electrons reads:

H =
p2

2m

where m is the effective mass near the conduction band edge. When an electromagnetic
field is present, described by a vector potential A, by performing the minimal coupling
the Hamiltonian results in:

H =
(p� qA)2

2m
in the case of electrons q = �e, therefore:

H =
(p + eA)2

2m
(1.31)

By choosing the Gauge A = B(0, x, 0) one gets

H =
(px, py + eBx, 0)2

2m
=

p2
x + (py + eBx)2

2m
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