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ABSTRACT. RESUMEN

FRANCISCO TORRES DE LIZAUR

Abstract

In this document, we address some questions concerning the structure of the
invariant manifolds of vector (and also spinor) fields. We do so by studying the
limiting properties of sequences of solutions to certain PDEs.

The first part of the document studies the geometric structure of smooth invari-
ant manifolds of vector and spinor fields abiding to a PDE on certain compact man-
ifolds. More precisely, the vector fields are steady fluid flows (stationary solutions
of the Euler equations), while the spinor fields are Dirac spinors (eigenfunctions of
the Dirac operator). The central problem is to understand how topologically intri-
cate the invariant manifolds can get to be, while respecting the analytic constraints
imposed by the PDEs.

We introduce a new set of techniques to show that there are solutions to the
PDEs with arbitrarily complicated invariant manifolds (such as knotted and linked
trajectories and invariant tori in the hydrodynamic case), and that these solutions
are not rare, provided one looks for these topological structures at high energies (in
the spectral sense) and small scales.

In the second part of the thesis we study a new promising framework to address
problems of invariant manifolds of vector fields in dimension 3, discovered by C.
Taubes. When the helicity of an exact vector field X is non-zero, new non-trivial
invariant measures of X can be obtained through an asymptotic analysis of a per-
turbation of the Seiberg-Witten equations. Furthermore, some analytic properties
of sequences of solutions to the Seiberg-Witten equations are tied to the dynamical
properties of the invariant measures of the vector field: as a striking example, when
solutions satisfy a suitable “finite energy condition”, they yield measures supported
on periodic orbits of X. We recast Taubes framework and we obtain a new related
result concerning the measures arising as limits of sequences of solutions to the two
dimensional vortex equations.

The final chapter of the thesis answers a question of V. Arnold and B. Khesin
concerning the helicity of an exact vector field. One of the remarkable properties of
the helicity is its invariance under the action of volume preserving diffeomorphisms.
We show that, under some mild technical assumptions, any other integral functional
with this symmetry must be a function of the helicity.

Resumen

En esta memoria resolvemos algunos problemas sobre la estructura de las var-
iedades invariantes de campos vectoriales y espinoriales. Para ello, estudiamos las
propiedades asintóticas de secuencias de soluciones de ciertas EDPs.

1



2 FRANCISCO TORRES DE LIZAUR

En la primera parte de la tesis, estudiamos la topoloǵıa de las variedades invari-
antes suaves de campos vectoriales y espinoriales que satisfacen una EDP en ciertas
variedades compactas. De forma más precisa, los campos vectoriales son soluciones
estacionarias de la ecuación de Euler, mientras que los campos espinoriales son aut-
ofunciones del operador de Dirac. El problema principal es comprender cómo de
intrincadas pueden llegar a ser las variedades invariantes de estos campos.

Presentamos una serie de técnicas que permiten demostrar que hay soluciones
con variedades invariantes tan complicadas como se desee (por ejemplo, fluidos
ideales estacionarios con torbellinos anudados); y que estas soluciones no son raras,
siempre y cuando uno busque estas estructuras complicadas a altas enerǵıas.

En la segunda parte de este documento estudiamos un nuevo marco conceptual
muy prometedor para el estudio de variedades invariantes de campos vectoriales
exactos en dimensión tres, descubierto por C. Taubes. Cuando la helicidad de un
campo exacto es distinta de cero, se pueden obtener nuevas medidas invariantes del
campo como ĺımites de secuencias de soluciones de las ecuaciones de Seiberg-Witten
(perturbadas de manera adecuada). Revisamos el marco conceptual de Taubes, y
presentamos un nuevo resultado sobre los ĺımites de secuencias de soluciones a la
ecuación del vórtice en dimensión dos (que son un modelo local de las ecuaciones
de Seiberg-Witten).

El último captulo de este documento resuelve una conjetura de V. Arnold y B.
Khesin a propósito de la helicidad. Demostramos que todo funcional integral en el
espacio de campos exactos de clase C1, invariante ante la acción de difeomorfismos
que preservan el volumen, tiene que ser una función de la helicidad.
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28049 Madrid, Spain

E-mail address: fj.torres@icmat.es
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Chapter 1

Introduction, summary, and
conclussions. Introducción,
resumen, y conclusiones

In recent years, new experimental techniques [39, 40] have enabled the con-
trolled observation of topological structures emerging in a wide range of phys-
ical processes, from fluid dynamics to solid state physics. These topological
structures take the form, for example, of knotted vortex tubes in fluid flows
and plasmas, and of topological dislocations in superconductors. They provide
a powerful visual tool to gain understanding of complex physical systems.

Mathematically, these physical phenomena are described by (vector valued or
scalar) fields abiding to a system of Partial Differential Equations; and the
emerging topological structures are instances of the so-called invariant mani-
folds of their solutions.

For example, in Fig. 1.1, we see a vortex tube of water with the form of a trefoil
knot. If we describe the water flow by assigning, to each point x in the domain
of the fluid and to each instant of time t, a vector u(x, t) (the velocity field),
this vortex tube is just the region enclosed by an invariant torus of the vortic-
ity field at a fixed time t, ω(·, t) = curl u(·, t). Other interesting examples of
invariant manifolds of vector fields would be periodic orbits (like the one that
runs through the core of the invariant torus) and more generally, supports of
invariant measures of the flow.

In many other condensed matter phenomena the state of the system is de-
scribed by a scalar field (or more generally, by a section of a complex vector
bundle) and the invariant manifolds observed in experiments correspond to
connected components of their zero set (also called nodal set).

The results coming from these experiments offer a very interesting challenge
for mathematicians: to understand how topologically complex the invariant
manifolds can get to be, while respecting the analytic constraints imposed by a
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Figure 1.1: A knotted vortex tube of water obtained at the Irvine Lab in
Chicago. Photo courtesy of W. Irvine

Figure 1.2: The zero set of an eigenfunction of the 3D quantum harmonic os-
cillator, and one of its knotted connected components. Simulation courtesy of
Mark Dennis.
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PDE. Addressing this problem requires to orchestrate concepts and techniques
from analysis, differential geometry and mathematical physics; so it is a very
good test of our current level of understanding of these fields.

1.1 Realization problems for vector and scalar fields

To illustrate the type of mathematical questions that spring from the above
discussion, consider the following two problems, which would serve as proto-
typical examples of the problems that we will address in this thesis:

• Problem A (vector-type problem): Find a vector field u satisfying the sta-
tionary Euler equations of hydrodynamics

u×ω = ∇B, divu = 0, ω := curl u,

(where B := |u|2
2 + p is the so called Bernoulli function, and p is the pres-

sure) such that the vorticity field ω has an invariant torus (i.e, a vortex
tube) diffeomorphic to a tubular neighborhood of a trefoil knot (or, more
generally, diffeomorphic to a tubular neighborhood of any given knot).
(That is, show that our ideal fluid models are compatible with what we
see in Fig. 1.1)

• Problem B (scalar-type problem): Find a complex-valued function ψ :
R3 → C, satisfying the Helmholtz equation

∆ψ + ψ = 0,

and whose zero set (which is a collection of curves, as long as zero is not a
critical value) has a connected component diffeomorphic to a given knot
L. This problem is a simplified version of the one coming from Fig 1.2:
there, we see the zero set (and a knotted connected component of it) of a
complex-valued function ψ satisfying ∆ψ− |x|2ψ + λψ = 0.

These problems are often called realization problems: one is asked to realize a
given manifold as invariant manifold of a solution to a PDE.

Now, for the solutions to be relevant to the physical context in which the prob-
lems arise, one should add a further requirement to the problems above. The
invariant manifold that one wishes to realize (be it a zero set or an invariant
torus) must be structurally stable. This simply means that the invariant mani-
fold must survive if one perturbs the solution a bit (in the Cm sense). Indeed,
in an experiment, the structures that we observe must be robust under small
perturbations for us to observe them at all. 1

1This is not just because of the classical “observing perturbs the observed” dictum. When we
observe a physical process, we are recording a finite amount of information —be it with our eyes
or with a different data acquisition device—; that is, we observe at a finite resolution. So we can’t
actually see a solution to a PDE, just an open ε-neighborhood of a solution in the Cm topology.
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Before disclosing how to address the problems above, let us put them in a more
historical perspective (because in fact, as is often the case, these mathematical
problems predate the recent experiments that we used to motivate them). Prob-
lem A was already posed by the renowned physicist William Thomson (Lord
Kelvin) around the third quarter of the nineteenth century [70]. He was, how-
ever, not thinking in vortex knots in water, but in the (then ubiquitous) aether.
While his physical motivation turned out to be misguided (he suggested atoms
to be vortex knots of the aether fluid, of different knot-types) the mathematical
problem stimulated the development of knot theory, and remained unsolved
for more than a century despite efforts of later mathematicians.

As for Problem B, it was first studied by M. Berry and M. Dennis in [12]. There,
Berry and Dennis devised a method to obtain solutions of the Helmholtz equa-
tion with a zero set L diffeomorphic to a torus knot, an conjectured that Prob-
lem B always has a solution, for any knot type L. Berry also considered ([13])
generalizations of Problem B for PDEs of the form Hψ = λψ, with H being a
Schődinger operators H := −∆ + V (for example, the Hydrogen atom or the
quantum harmonic oscillator), suspecting again that solutions exhibiting any
knot should exist.

Analogs of Problem B, which concerns more generally the allowed shapes of
zero sets of solutions to elliptic PDEs, also have some interesting history. In the
case of the Poisson equation,

∆ψ = ρ

the problem can again be traced back to nineteenth century mathematical physi-
cists, who were intrigued by it because of their interest in describing the sur-
faces of constant gravitational or electric potential (for example, to character-
ize the possible equilibrium shapes of a gravitating fluid). In the case of the
Cauchy-Riemann equations in a complex manifold X

∂ψ = 0, ψ : X → C

the problem actually corresponds to a weakened version of the celebrated sec-
ond Cousin problem: what (real) codimension 2 submanifolds of a complex
manifold can be the nodal set of a holomorphic function? As first shown by
K. Oka [63] (in what became both one of the precursors of sheaf theoretical
methods in algebraic geometry, and a first hint of M. Gromov’s Oka Principle
[34]), in the case of a Stein manifold, the only obstruction is the obvious one:
it must be possible to realize the submanifold in question as the zero set of a
continuous, complex-valued function.

1.1.1 The euclidean case: a general strategy

More recently, Alberto Enciso and Daniel Peralta-Salas introduced a very gen-
eral strategy [27, 24] that yields flexibility results in the context of realization
problems (in a similar spirit to the previous result by K. Oka, albeit through
completely different techniques). More precisely, by flexibility we mean that
the PDE does not impose any additional restriction to the invariant manifolds
that can appear: one can find solutions realizing any conceivable manifold.
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This strategy is in itself rather malleable, and although its adaptation to partic-
ular PDEs can be quite non-trivial (for example, in the case of the recent res-
olution of Problem A for vector fields in R3, also by Enciso and Peralta-Salas
[24]), the main scheme can be readily grasped with a simple enough example.
Problem B provides a good template for this purpose.

Recall that Problem B asks us to find a complex-valued function ψ in R3 that
satisfies the Helmholtz equation ∆ψ + ψ = 0, and such that the set ψ−1(0) has
a connected component diffeomorphic to a given knot L.

Given such a problem, Enciso and Peralta-Salas’ scheme proceeds as follows.
First, one solves the problem locally, that is, one finds a solution ψ̃ of the equa-
tion ∆ψ̃ + ψ̃ = 0 in a tubular neighborhood of the knot L.

The local solution ψ̃ must be such that, on the one hand, ψ̃|L = 0 (so that it real-
izes L as zero set), and on the other hand, the pair of vector fields (∇ψ̃1,∇ψ̃2) at
L spans the normal bundle of L. This last condition ensures that the zero set L
is robust under small, C1 perturbations of ψ̃ (think, for example, on the zero set
of a real function: if the gradient of the function does not vanish at the zero set,
a small enough perturbation of the function will still have a zero set diffeomor-
phic to the original one). For second order elliptic PDEs such as the Helmholtz
equation, a local existence theorem (such as the Cauchy-Kovalevskaya theo-
rem, or a well-posed boundary value problem) can be used to ensure that such
a local solution exists.

In the next step, one finds a global solution ψ to the PDE approximating the local
one ψ̃ to any desired precision. This local-to-global approximation is achieved
by means of a Runge-type approximation theorem, such as the Lax-Malgrange
theorem and its variants. Given some local solution to an elliptic PDE in some
open set U, these theorems provide a function satisfying the PDE in the whole
space and approximating the local solution in U arbitrarily well.

The condition of the normal derivatives of ψ̃ at L that we required in the pre-
vious step makes the zero set of ψ̃ robust under perturbation. Hence, the
knot does not dissolve in the process of local-to-global approximation, and an
almost-exact copy of it (obtained deforming L trough a diffeomorphism close
to the identity) persists in the zero set of the global solution, thus Problem B is
solved.

Both the local existence and global approximation theorems that we have de-
scribed above are not specific to the Helmholtz equation; they hold in a wide
variety of contexts (and when not, suitable analogs are often at reach). This
makes the overall strategy flexible enough to be adapted to many different
realization problems (albeit this adaptation can be highly non-trivial, as we
already pointed out).

For example, Enciso and Peralta-Salas used it to show the existence of solutions
to a very general class of second order elliptic PDEs with zero sets of arbitrar-
ily complicated topology [27] (including the Helmholtz equation above). Later
on, together with D. Hartley, they used it to give a positive answer to M. Berry
conjecture about the existence of arbitrarily complicated knots in the zero sets
of eigenfunctions of the quantum harmonic oscillator [22] and of the hydrogen
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atom [23]. Further still, the resolution of Enciso and Peralta-Salas of Kelvin’s
vortex atom conjecture [24] (on the existence of stationary fluid flows with ar-
bitrarily knotted and linked vortex tubes) is based on a similar strategy.

But, however wide ranging, the strategy works only for PDEs in open spaces.
Trying to carry it out in compact manifolds encounters a fundamental obstruc-
tion. As could be expected, this obstruction lies in the local-to-global approxi-
mation step.

It is exactly of the same nature that the obstruction we encounter when try-
ing to extend a holomorphic function in an annulus to an entire function: a
singularity is bound to appear at the disk enclosed by the annulus.

Indeed, Lax-Malgrange approximation Theorem requires the local solution to
be defined in an open set U whose complement has no compact components
(for example a ball, or a solid torus). If the complement of the set U has a
compact component K, in general one can do no better than finding a global
solution with singularities in K.

1.1.2 The compact case: inverse localization at small scales and
large wavenumbers

In Part I of this thesis, we present a new strategy to bypass the obstruction
explained in the previous subsection, and apply it to solving realization prob-
lems for invariant manifolds of vector and spinor fields in compact spaces. In
particular, we extend Enciso and Peralta-Salas’ existence result for stationary
fluid flows with arbitrarily knotted and linked vortex tubes (which hold in eu-
clidean space) to S3 and T3; and we study the topology of the nodal sets of
Dirac spinors (eigenfunctions of the Dirac operator) on Sn and Tn.

The interest of extending our grasp of realization problems to the compact case
is more than purely technical. Indeed, notice, for example, that fluid flows in
T3 and S3 are closer to the fluids in the real world than the ones in euclidean
space that Enciso and Peralta-Salas originally considered in [24]. This might
seem puzzling from a purely geometrical viewpoint, but it is not so from the
analytical viewpoint. Real fluid flows have finite energy (mathematically, finite
L2 norm), as fluids in compact spaces do; whereas the solutions of the Euler
equations in [24] can decay only as fast as the inverse of the distance to the ori-
gin. This finite energy considerations are much more relevant when studying
some regimes of fluid motion than naive considerations about the geometry of
the container.

The main idea that enables us to bypass the obstruction in compact manifolds is
based on the asymptotic analysis of the eigenfunctions of a self-adjoint opera-
tor (be it the curl operator, when dealing with stationary fluid flows in Chapter
2, or the Dirac operator for spinors in Chapter 3) at very high energies (in the
spectral sense) and correspondingly small scales.

Let M be a compact Riemannian manifold. Let us examine with a microscope
the neighborhood of a point p, that is, we consider a ball of small radius 1/

√
λ
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Figure 1.3: The nodal domains of high energy eigenfunctions of the laplacian
on the sphere (left) and the torus (right)

centered at the point and rescale the geodesic coordinates by a factor
√

λ, so
that the ball looks like the Euclidean ball of radius 1, with the point p at the
origin. Now, an eigenfunction of a second order self-adjoint operator on M
(for simplicity, think of eigenfunctions of the laplacian, as represented in Fig.
1.3) of large enough eigenvalue λ, looks under this microscope arbitrarily close
to a solution of an euclidean PDE with constant coefficients (e.g the Helmholtz
equation ∆ψ + ψ = 0).

One could be tempted to jump from this observation to the conclusion that, if
one goes to high enough energies and looks at small scales, it could be possible
to find eigenfunctions having the desired invariant manifolds. After all, they
look like euclidean eigenfunctions at these small scales, and euclidean eigen-
functions can be shown (by Enciso and Peralta-Salas techniques) to display
invariant manifolds of arbitrary topology.

However, notice that the euclidean techniques only ensure that some particular
solutions have the desired structures; since we cannot ensure, in general, that
there is a high-energy eigenfunction on the compact manifold that approxi-
mates a given euclidean solution, the euclidean small scale behavior is a priori
useless for our purposes. The key to our approach is precisely to revert this
situation, that is, to ensure that, in certain compact manifolds, any given solu-
tion in euclidean space is indeed the small scale approximation of a sufficiently
high-energy eigenfunction.

That is, if one examines the eigenfunctions of the relevant operator at increas-
ingly high energies and correspondingly small scales, one ends up seeing, at
any desired resolution, any given solution of energy 1 of the corresponding oper-
ator on euclidean space. We call this kind of result an inverse localization theorem,
since it can be pictured as picking a euclidean solution in the unit ball, shrink-
ing the ball, and localizing it in the compact manifold. A crucial ingredient in
the proof is that the relevant operator has increasingly degenerate eigenvalues,
that is, there is an increasingly large pool of eigenfunctions for us to combine
as the eigenvalue increases. This is why our results work in spheres and tori.

This approximation result implies that any property that solutions of the eu-
clidean operator display on compact sets is also exhibited at small scales by
high energy eigenfunctions of the operator on the sphere and the torus, pro-
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vided such property is robust under suitably small perturbations. The problem
is thus reduced to the analog in euclidean space, where one can rely on Enciso
and Peralta-Salas technique.

Let us end this introduction of the Part I of the thesis by exposing in more detail
the contents of each chapter.

1.2 A closer look at the contents of Chapter 2: Real-
ization of knotted vortex structures in high en-
ergy Beltrami fields

Chapter 2 addresses the topology of vortex lines and vortex tubes of stationary
solutions to the Euler equations on the round sphere S3 and the flat torus T3.
We will concentrate on a special family of solutions, Beltrami fields, which are
in a sense the building blocks of fluid motion.

For us, a Beltrami field u is an eigefunction of the curl operator

curlu = λu.

(Eigenfunctions of the curl operator are sometimes called in the literature strong
Beltrami fields, with the term “Beltrami field” left to include vector fields solv-
ing the above equation with a non-constant factor λ. )

Note that a Beltrami field is automatically divergence free, i.e, its flow pre-
serves the volume form of the manifold. It is also easy to see that Beltrami
fields are, in particular, stationary solutions of the Euler equations

u×ω = ∇B, divu = 0, ω = curl u,

Finally, as eigenfunctions of the curl operator, Beltrami fields form a basis in
the space of all exact divergence free vector fields. Our main result in Chapter
2 states that there are many Beltrami fields on S3 and T3 with vortex lines and
vortex tubes of any given knot and link type, provided the eigenvalue is high
enough and one looks at small scales.

We note that by vortex line we precisely mean an orbit of the vector field ω,
while by vortex tube we mean an embedded solid torus in the manifold which
is invariant under the flow of ω.

Theorem 1.2.1 (Arbitrarily knotted vortex estructures in high energy Beltrami
fields). Let S be a finite union of (pairwise disjoint, but possibly knotted and linked)
closed curves and tubes in S3 or T3. In the case of the torus, we also assume that S is
contained in a contractible subset of T3. Then for any large enough odd integer λ there
exists a Beltrami field u satisfying the equation curl u = λu and a diffeomorphism Φ of
S3 or T3 such that Φ(S) is a union of vortex lines and vortex tubes of u. Furthermore,
this set is structurally stable.

8



CHAPTER 1. INTRODUCTION, SUMMARY, AND CONCLUSSIONS.
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This theorem corresponds to Theorem 2.1.1 in Chapter 2. The proof is based on
an inverse localization theorem for Beltrami fields at small scales, following the
strategy described in the previous section. In order to state it more precisely,
let us fix a point p on the manifold M3 (S3 or T3) and take a patch of normal
geodesic coordinates Ψ : B→ B centered at p, where by B (resp. B) we denote
the ball in R3 (resp. the geodesic ball in M3) centered at the origin (resp. at p)
and of radius 1. A vector field u under these coordinates reads

Ψ∗u(x) =
3

∑
i=1

ui(x) ei ,

where Ψ∗ is the pushforward of Ψ and where ui(x) are the three components of
Ψ∗u in the Cartesian basis {ei}3

i=1 of R3. The small scale behavior of the vector
field u is then described by the rescaled vector

Ψ∗u
( x

λ

)
:=

3

∑
i=1

ui
( x

λ

)
ei .

for x ∈ B.

The inverse localization theorem reads

Theorem 1.2.2 (Inverse localization for high energy Beltrami fieds). Let v be a
Beltrami field in R3, satisfying curl v = v. Fix any positive numbers ε and m. Then
for any large enough odd integer λ there is a Beltrami field u, satisfying curl u = λu
in M3, such that ∥∥∥∥Ψ∗u

( ·
λ

)
− v
∥∥∥∥

Cm(B)
< ε . (1.2.1)

The effect of the diffeomorphism Φ in Theorem 1.2.1 becomes thus clear: it
consists in shrinking a ball containing the set of tubes S into a ball of very
small radius 1/λ.

As a closing comment for this Chapter, we note that a particularly attractive
aspect of our result from the physical viewpoint is that it correlates geometric
intricacy of the fluid trajectories with energy and length scales. This is some-
how related to turbulence, where one observes the emergence of complicated
vortex structures at small scales and large wave-numbers.

1.3 A closer look at the contents of Chapter 3: the
topology of the zero sets of high energy Dirac
spinors

In Chapter 3, the objects of interest are Dirac spinors on n-dimensional spheres
instead of vector fields, and the role of the invariant manifolds is played by
their zero sets. 2

2The results of Chapter 3 can also be proven with minor variations in the n-dimensional flat
torus, and we include some comments about this in the final section of the chapter. The reason for

9



CHAPTER 1. INTRODUCTION, SUMMARY, AND CONCLUSSIONS.
INTRODUCCIÓN, RESUMEN, Y CONCLUSIONES

Recall that eigenfunctions of the Dirac operator are sections of a hermitian vec-
tor bundle S of complex rank r(n) = 2b

n
2 c, called the spinor bundle. If the

spinor bundle is trivial, as is the case in spheres, a choice of trivialization makes
any section ψ of S into a collection (ψ1, ..., ψr(n)) of r(n) complex-valued func-
tions. In a spin manifold of dimension 3 or higher, the regular zero sets of a
spinor are empty (since 2r(n) > n, the relevant codimension is negative), so
we will focus our attention on the topology of the zero sets of the spinor com-
ponents ψi. These spinor components have values in C, so their zero sets are,
generically, codimension 2 submanifolds of Sn.

For example, in S3, a spinor can be decomposed in two components ψ :=
(ψ1, ψ2). If ψ is an eigenfunction of the Dirac operator, ψ1 and ψ2 are tied by a
first order partial differential relation. A subtler analog of Problem B can then
be posed: if L1 and L2 are two disjoint closed curves, arbitrarily knotted and
linked between them, is it possible to find an eigenfunction of the Dirac opera-
tor such that L1 is a component of the zero set of ψ1, and L2 is a component of
the zero set of ψ2 ?

Our results in this Chapter imply that this is indeed the case. More precisely,
we will show that there are many eigenfunctions of the Dirac operator with
zero sets of arbitrarily complex topology, for any choice of trivialization of the
spinor bundle. Here is a simplified statement of our main theorem (Theorem
3.1.1 in Chapter 3)

Theorem 1.3.1 (Realization theorem for high energy Dirac spinors in Sn). In
Sn, for n > 3, let Σ := {Σ1, ..., Σr(n)} be any collection of codimension 2 smooth
submanifolds of arbitrarily complicated topology (r(n) being the complex dimension of
the spinor bundle). There is always an eigenfunction ψ = (ψ1, ..., ψr(n)) of the Dirac
operator (in fact, infinitely many of them) such that the submanifold Σi, modulo am-
bient diffeomorphism, is a structurally stable component of the nodal set of the spinor
component ψi. The result holds for any choice of trivialization of the spinor bundle.

As was the case with Theorem 1.2.1, the emergence of these complicated struc-
tures takes place at small scales and sufficiently high energies.

The proof consists mainly of two ingredients. The first one is an inverse local-
ization result, like in the previous chapter, this time for eigenfunctions of the
Dirac operator (Theorem 3.2.1 in Chapter 3):

Theorem 1.3.2 (Inverse localization for high energy Dirac spinors). Let φ :=
(φ1, ..., φr(n)) be a Cr(n) valued function in Rn, satisfying the Dirac equation D0φ =
φ. Fix an integer m > 1 and a positive constant δ. For any large enough positive
integer k, there is an eigenfunction ψ of the Dirac operator D on Sn of eigenvalue
( n

2 + k) such that ∥∥∥∥φ− Ψ̂∗ψ
( ·

k

)∥∥∥∥
Cm(B)

< δ .

not including here the results on the torus at the same level as those on the sphere (in contrast to
what is done in Chapter 2) is that they are somewhat less general: the n-torus has a spin structure
(and an associated Dirac operator) for each element in the first cohomology group H1(Tn, Z) and
our Theorem can only be stated for the trivial one.
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Here, D0 is the standard euclidean Dirac operator, and as in the previous sub-
section, we have a geodesic patch Ψ : B → B defined on a ball B of radius 1
centered at an arbitrary point p ∈ Sn; with the map Ψ̂∗ : S|B → B×Cr(n) being
an analog of the pushforward map for the spinor bundle.

This reduces the problem to the euclidean case. The second ingredient is the
following euclidean result (Theorem 3.1.2 in Chapter 3)

Theorem 1.3.3 (Realization theorem for Dirac spinors in Rn). Fix an integer
m > 1, and an arbitrarily small real number ε > 0. Inside the unit ball B ⊂ Rn,
consider a collection S := {Σa}r(n)

a=1 of r(n) closed, pairwise disjoint, smooth codi-
mension 2 submanifolds. For any given λ ∈ R, there is a Cr(n)-valued function
φ := (φ1, ..., φr(n)), satisfying the Dirac equation D0φ = λφ on Rn, and a diffeomor-
phism Φ0 : B → B satisfying ||Φ0 − Id||Cm 6 ε, such that Φ0(Σa) is a component
of the nodal set of φa. Furthermore, these sets are structurally stable.

The proof is an adaptation of the strategy in [27] that we introduced in sec-
tion 1.1.1 to solve Problem B. However, this adaptation is not immediate and
requires some further considerations. The main reason is that, when solving
Problem B, robustness of the nodal set under perturbations was ensured by
prescribing the gradient of the local solution on the manifold we wished to re-
alize, and we could prescribe the gradient because we were solving a second
order Cauchy problem. But the Dirac operator is of order 1, so we can only
construct local solutions with prescribed 0-jet: robustness does not come out
automatically, and a more involved construction is needed. 3

1.4 Inverse localization for spherical harmonics: Chap-
ter 4

Both inverse localization results, for the curl and Dirac operators, rely on an
analogous result for eigenfunctions of the laplacian. This result and a further
refinement of it (more precisely, a multiple inverse localization result, that finds
a spherical harmonic with prescribed small scale behavior at distinct regions
of the sphere) are proved in Chapter 4.

Theorem 1.4.1 (Inverse localization for spherical harmonics). Let φ be a Rq-
valued function in Rn, satisfying ∆φ + φ = 0. Fix a positive integer m and a positive
constant δ′. For any large enough integer k, there is a Rq-valued spherical harmonic
Y := (Y1, ..., Yq) on Sn with energy k(n + k− 1) such that∥∥∥∥φ−Y ◦Ψ−1

( ·
k

)∥∥∥∥
Cm(B)

6 δ′ .

It is understood that each component Yj of Y is a real valued spherical har-
monic.

3One could object that the same problem appears in Chapter 2, with the curl operator, and that
is indeed the case, but in Chapter 2 we could rely on the realization theorem for Beltrami fields in
Euclidean space due to Enciso and Peralta-Salas [24].
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The proofs of the localization results in Chapters 2 and 3 combine the proposi-
tion above with Weitzenbőck-type formulas for the curl and Dirac operators.

We also prove in this Chapter a refinement of the above inverse localization
result. In order to state it, let {pα}Λ

α=1 be a set of points in Sn, with Λ an arbi-
trarily large (but fixed throughout) integer. We denote by Ψα : Bρ(pα) → Bρ

the corresponding geodesic patches on balls of radius ρ centered on the points
pα. We fix a radius ρ such that no two balls intersect, for example by setting

ρ :=
1
2

min
α 6=β

distSn(pα, pβ) .

It would be also necessary for our purposes to pick the points {pα}Λ
α=1 so that

no pair of points are antipodal in Sn ⊂ Rn+1, i.e, so that pα 6= −pβ for all α,
β. The reason is that spherical harmonics of energy k(n + k − 1) have parity
(−1)k, that is, Y(pα) = (−1)kY(−pα) (they are the restriction to the sphere of
real harmonic homogenous polynomials of degree k).

Proposition 1.4.2 (Multiple inverse localization for spherical harmonics). Let
{φα}Λ

α=1 be a set of Λ Rq-valued functions in Rn, φα := (φα1, ..., φαq), satisfying
∆φα + φα = 0. Fix a positive integer m and a positive constant δ. For any large
enough integer k, there is a Rq-valued spherical harmonic Y := (Y1, ..., Yq) on Sn

with energy k(n + k− 1) verifying the bound∥∥∥∥φα −Y ◦Ψ−1
α

( ·
k

)∥∥∥∥
Cm(B)

< δ

for all 1 6 α 6 Λ.

An analog of Proposition 1.4.1 can be proved for the torus Tn (this is done in
Chapter 2 for n = 3, but the argument generalizes to any dimension). How-
ever, the proof of Proposition 1.4.2 makes use of very specific properties of
Gegenbauer polynomials (the building blocks of spherical harmonics) that have
no equivalent in the torus. This prevents us from translating the multiple in-
verse localization to the torus case.

To conclude with the description of Part I of the thesis, we note that Chapter
2 is based on the paper [29] of the author in collaboration with Alberto Enciso
and Daniel Peralta-Salas, while Chapter 3 is based on [69].

1.5 A change in perspective: detecting invariant sets
through asymptotic limits of the Seiberg-Witten
equations

Part I of the thesis can be described thus: we take advantage of small-scale,
highly oscillatory asymptotic phenomena (eikx, with k→ ∞) in the solutions of
a PDE in a compact manifold to prescribe invariant sets of a vector (or scalar)
field that satisfies the PDE. These invariant sets are, so to speak, allowed by the
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PDE, and optional for its solutions: not every solution to the PDE must display
them.

Part II of the thesis is also concerned with invariant manifolds of particular
classes of vector fields, and it also uses asymptotic analysis of PDEs for their
study, albeit the viewpoint is rather different.

This change in viewpoint could be described as follows. As in Part I, a space
of vector fields abiding to some constraint is given. This time, the constraint
could in principle range from the analytical (the space of solutions to a PDE)
to the purely topological (the space of all smooth vector fields on a given man-
ifold). What we want to know, given the constraint, is which invariant sets are
mandatory, and which are forbidden.

To do this, we take advantage of concentration phenomena in asymptotic anal-
ysis. (This will become transparent in the subsequent paragraphs.) The idea
is, first, to use a vector field to write a PDE depending on a parameter. The
vector field itself is not this time a solution to the PDE, it is just used as datum to
define it. The solutions to these PDEs concentrate on some very particular sets
of the ambient manifold, often showing exponentially fast decays away from
them, decays that become more pronounced as the parameter goes to infinity
(e−kx, k → ∞). The PDEs are cleverly designed in such a way that these sets of
the manifold where the solutions concentrate end up being invariant sets of the
vector fields used as data, and the solutions themselves converge to invariant
measures of the vector field. Hence we could describe this scheme as detecting
invariant sets, rather than prescribing them.

To better appreciate this switch in the point of view, consider first the follow-
ing statements. They range from easy to prove results to well known open
conjectures, but they are all examples of the new perspective described above:

• 1) A simple statement: any (non identically zero) area-preserving vector
field on S2 has a periodic orbit.

• 2) The Poincare-Hopf lemma: the Euler characteristic of a manifold is
equal to the suitable counted number of zeroes of any vector field whose
zeroes can be counted.

• 3) A classical corollary from Morse theory: in a closed Riemannian man-
ifold M, a generic gradient vector field (i.e, the gradient of a function)
has its number of zeroes of index k bounded from below by the k-th Betti
number of M.

• 4) Two deep theorems: 4.1) a 3-dimensional vector field having non-zero
topological entropy must have a periodic orbit (this is a result by Katok);
4.2) the Reeb vector field of a contact form in dimension 3 must always
have a periodic orbit (this is the celebrated Weinstein conjecture in di-
mension 3, solved by C. Taubes).

• 5) Three well known open conjectures: Seifert conjecture in the smooth
volume preserving case, which posits that a volume preserving vector
field without zeroes in S3 must always have a periodic orbit. Gottschalk
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conjecture, also in the volume preserving case, which posits that there
are no volume preserving flows in S3 all whose orbits are dense. And,
finally, the above mentioned Weinstein conjecture in any (odd, since we
are dealing with contact forms) dimension.

In all of them, a constraint on the vector field (the topology of the underlying
manifold, the fact that it preserves some measure, etc) imposes some of the
properties of its invariant sets.

It is perhaps very surprising that the asymptotic analysis of PDEs and concen-
tration phenomena have anything to do at all with some of the above problems.
But it is indeed the case. This relationship could be traced back to Witten’s ac-
count of Morse theory [74], which in particular yields an elegant interpretation
of item 3) above.

Part II of this thesis will in particular be concerned with asymptotic analysis in
relation to items 4.2) and 5).

1.5.1 A very simple example

Let us explain more precisely how the aforementioned concentration phenom-
ena tend to manifest and how this yields a new approach to structural prob-
lems of invariant manifolds.

The simplest (but nonetheless bearing relevance to the upcoming discussion)
instance of an asymptotic decay phenomenon happens for the following family
of ODEs, labelled by a parameter r > 0

1
r

d2ur

dx2 − ur = 0; ur(0) = 1 ; lim
x→∞

ur(x) = 0 (1.5.1)

on the half space R> := [0, ∞). We are interested in the behavior of the solu-
tions ur as r → ∞.

By setting the parameter to infinity we obtain, in a purely formal way, the equa-
tion u∞ = 0. This equation, together with the original boundary conditions, is
often called the limiting problem. A natural question to ask is what do the “so-
lutions” to the limiting problem tell us about the behavior of sequences ur of
solutions as r → ∞.

There is the caveat that the limiting problem has no continuous solutions. In
this case it is obvious, but more generally, it could be expected from the fact
that the order of the differential equation drops, so we can no longer expect to
satisfy the original boundary conditions.

Still, some lesson can be drawn. Note that the unique solution to (1.5.1) is
ur(x) = exp(−

√
rx). Note, on the other hand, that the function defined as

u∞(x) := 0 if x ∈ R> \ {0} and as u∞(x) := 1 in x = 0 can be considered to be
a continuous solution to the limiting problem in R> \ {0}.
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We observe that, as r → ∞, ur converges uniformly in compact sets of R> \ {0}
to u∞ = 0, except for an ever narrower window [0, l) (with l ∼ r−

1
2 ) near the

boundary (the simplest instance of a boundary layer). In this region, a sudden
readjustment occurs for u to meet the boundary condition u(0) = 1.

This is the typical behavior in most asymptotic problems: the solutions dis-
play a kind of non-uniform convergence. That is, they converge uniformly to
solutions of a simpler PDE, except in some regions where sudden transitions
appear and where, in the limit, the derivatives of the solution blow up.

The presence of boundaries is not at all required for these phenomena to ap-
pear. The general pattern is always thus: on a closed manifold (or on a man-
ifold with boundary, in which case we suppose appropriate boundary condi-
tions) we have a PDE of the form

Lur + rΦ(ur, ∂ur) = 0 (1.5.2)

where L is an elliptic operator acting on sections of some vector bundle, and
Φ(u, ∂u) is a function of u and its first derivatives. One knows that smooth so-
lutions to Eq. (1.5.2) exist for any r. However, the space of continuous solutions
to Φ(u, ∂u) = 0 is either empty (for instance, because boundary conditions fail
to be satisfied, as in the previous example); or “trivial”: made up of solutions
(for example, u = 0) that do not satisfy some reasonable feature that solutions
to (1.5.2) all display (for example, being always uniformly bounded away from
zero in some region of the manifold).

This unavoidable dilemma is ultimately resolved by the solutions quickly tran-
sitioning, and their derivatives ultimately blowing up, on certain subsets of M.
This is the ultimate lesson of this type of asymptotic analysis.

1.5.2 C. Taubes solution of the Weinstein conjecture. Example
1.5.1 revisited

One can use this concentration phenomenon to detect invariant sets of a vector
field X. The general scheme is thus: the vector field X is used to define a PDE

Lur + rΦ(ur, ∂ur, X) = 0

whose solutions ur, depending on the case, could be functions, p-forms, or
spinors and connections; but in any case the catch is that, as r goes to infinity,
the solutions are forced to concentrate on an invariant set of the vector field.

Witten was the first to use an approach of this kind, writing a PDE (a modified
Laplace-Beltrami operator) whose solutions show a tendency to concentrate
around the zeros of gradient vector fields, and using this as a starting point to
construct a new approach to Morse Theory.

Clifford Taubes, building on his previous work on pseudoholomorphic curves
in symplectic manifolds, used analogous principles to prove the Weinstein con-
jecture on dimension 3 [68]. (We recall that this conjecture states that the Reeb
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vector field of a contact form must always have a periodic orbit.) Later on, he
generalized his construction to more general volume preserving vector fields
[66]. Part II of this thesis is devoted at examining and expanding these ideas.

Let us introduce the general set-up. Our object of interest is a nowhere van-
ishing vector field X on a closed 3-manifold M, preserving a volume form µ.
Given these data, we endow M with a Riemannian metric g adapted to X and
µ: this means that g(X, X) = 1 and that µ is the volume form associated to the
metric g.

(To alleviate the amount of necessary geometric background in what is to fol-
low and focus on the analytic and dynamical aspects, we will suppose hence-
forth that M is diffeomorphic to S3 (note that the metric g depends on the field
X, in particular it is not the round metric, with the exception of X being a Hopf
vector field). All the operators that will appear (curl, gradient, divergence) are
the ones defined by the metric g. Finally, we denote the scalar product of two
vector fields by a dot, and integration will be understood with respect to the
volume measure µ. )

With these data, that any volume preserving vector field X on S3 provides,
Taubes strategy starts by defining the following system of PDEs (for which the
unknowns are a vector field Ar and a function ψr : S3 → C2):

curl Ar = r(X− (ψ†
r σ1ψr)X− (ψ†

r σ2ψr)Y− (ψ†
r σ3ψr)Z) + v (1.5.3)

DAr ψr := i ∑
k

σkek · (∇ψr − iArψr) = 0 (1.5.4)

where {e1, e2, e3} = {X, Y, Z} is a (global) orthonormal parallelization of the
tangent bundle TS3 (in a general manifold M, this could only be done locally)
and

σ1 :=
(

1 0
0 −1

)
, σ2 :=

(
0 i
−i 0

)
, σ3 :=

(
0 1
1 0

)
.

(1.5.5)

are the Pauli matrices. The operator ∇Ar := (∇ − iAr) can be seen as a co-
variant derivative on the trivial bundle C2 × S3, and it must be understood as
acting on each complex-valued component of ψr = (ψ1r, ψ2r) separately. The
term v stands for a given divergence free vector field; it is a small perturbation
of the equation that ensures the existence of solutions with suitable properties.

The above are a modified version of the 3-dimensional Seiberg-Witten equations,
that we will call SW(r, v)-equations.
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Let us first outline how this framework yields a proof to the Weinstein conjec-
ture. First of all, the Reeb vector field X of a contact form α on a 3-manifold M
can be shown to be equivalent to the data (X, µ, g), with X further satisfying

curl X = X,

that is, in particular, X is a Beltrami field for the metric g.

Example (1.5.1) now serves as a good guiding model for what happens.

It is easy to check that, if one divides the equation (1.5.3) by r and, formally,
sets 1

r = 0, the analog of the “limiting solutions” Example (1.5.1) is

ψ∞ = (ψ1∞, ψ2∞) = (1, 0).

It is not difficult to see that this “limiting solution” is basically unique, up to
multiplication by a function u : S3 → C with |u| = 1 (which can be interpreted
as a choice of gauge.)

Moreover, there is also an analog of the boundary condition in (1.5.1). Taubes
proves that certain sequences of solutions of the SW(r, v)-equations must sat-
isfy

sup(1− |ψ1r|2) > δ

as r → ∞, with δ not depending on r. So, as in Example (1.5.1), the equations
cannot converge everywhere to the naive limiting solution, because this solu-
tion fails to meet the condition above. Hence a readjustment in the value of
|ψ1r| must take place somewhere, if we are to trust the analogy with Example
(1.5.1) until the end

This somewhere is precisely a periodic orbit X. More exactly, Taubes proves
that, as the parameter r tends to infinity, the quantity ur := (1− |ψ1r|2) con-
centrates around one dimensional sets invariant by the flow of X, and decays
to zero away from them. At the limit, the solutions do indeed converge to the
naive limiting solution in all M except for a set of closed curves where u∞ = 1,
which are periodic orbits of the vector field. Since this phenomenon occurs
without reference to any further particularity of the Reeb field that one uses as
input, one concludes that all Reeb vector fields must have a periodic orbit.

Furthermore, the set-up can be defined for any non-vanishing volume preserv-
ing vector field X on S3, regardless of it being Reeb or not (and more generally,
for any non-vanishing exact vector field on a 3-manifold M: exact means that
the two form iXµ, whose closedness is equivalent to X being volume preserv-
ing, is also exact). In general, though, one cannot prove that solutions concen-
trate around closed curves, nor that they decay exponentially away from some
other smooth invariant sets; but still one can prove that the quantity

σr :=
r(1− |ψ1r|2)µ∫

curl Ar · X

converges (maybe after passing to a subsequence) to an invariant measure of
the vector field, provided this vector field has positive helicity,

H(X) :=
∫

X · curl−1 X > 0 .
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We will introduce the notion of helicity and the precise statement of the rele-
vant results in the next section, which describes the exact contents of Chapter
5. For the moment, let us just say that the above relationship (between new
invariant measures coming from the Seiberg-Witten equations and helicity) is
quite remarkable, and constitutes a new promising framework to study vol-
ume preserving vector fields on S3. It is also worth emphasizing that the posi-
tivity condition on the helicity is actually equivalent to H(X) 6= 0. The reason
is that helicity changes sign under a volume preserving, but orientation revers-
ing, diffeomorphism of the manifold, so that if X hasH(X) < 0, a change in the
orientation brings us to the caseH(X) > 0, where Taubes framework applies.

1.5.2.1 A brief description of Chapter 5

Chapter 5 can be divided in two parts. In the first part, which accounts for
most of the Chapter, we recast the essential ingredients in Taubes framework,
and rederive the results coming from it. The important ideas are all already in
Taubes papers [68, 66]; the novelty of the first part of this chapter rests rather
in how we assemble and present them. In particular, we put more emphasis
on the PDE and dynamical aspects, and some of our proofs differ. Our aim has
been to make Taubes ideas more accessible to a wider audience of mathemati-
cians, since we believe that these ideas could provide important insights into
other areas of mathematics traditionally disconnected from the gauge theoretic
mathematics in [68, 66].

By contrast, the second part of the Chapter presents a previously unknown
result, to the best of our knowledge. In a work in progress, we are trying to
extend Taubes framework and to extract further properties of these invariant
measures in more general cases. In this context, we encountered a related, but
simpler problem, concerning sequences of solutions to the two dimensional
vortex equations. The final section of Chapter 5 is devoted to presenting this
problem and our solution to it.

Let us present now the results of this chapter in more detail.

1.6 A closer look at the contents of Chapter 5: Seiberg-
Witten equations and invariant measures

As the above discussion suggests, many aspects of the Seiberg-Witten equa-
tions are subtly tied to the properties of the vector field used as input.

The existence of certain types of solutions (and the nature of the invariant mea-
sures that they converge to) depends on a collection of global quantities, all of
which are instances of Hopf invariants.

The Hopf invariant of a pair of volume preserving vector fields V, W in (S3, µ)
is defined as

H(V, W) :=
∫

V · curl−1 W.
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The operator curl−1 is well defined in the space of volume preserving vector
fields in S3 (and more generally in the space of exact volume preserving vector
fields in a closed manifold M): curl−1 W is the unique exact volume preserv-
ing vector field such that curl curl−1 W = W. It is easy to see that the Hopf
invariant is symmetric, i.e, thatH(V, W) = H(W, V). 4

The helicity of a vector field, that we defined above, is an example of Hopf
invariant, withH(X) := H(X, X). The other main quantity of interest for us is
H(curl A, curl X),

H(curl A, curl X) =
∫

curl A · X = r
∫
(1− ψ†σ1ψ) +

∫
M

X · v,

where we have used Eq. (1.5.3).

We will setHA(X) := H(curl A, curl X).

The following is the main result of the first part of Chapter 5:

Theorem 1.6.1 (Taubes 06 [68], Taubes 08 [66]). Let X be a nowhere-vanishing
vector field on S3 preserving a volume form µ and with positive helicity with respect
to it, H(X) > 0. Fix ε > 0 arbitrarily small. There exists a sequence {rn, ψrn :=
(ψ1rn , ψ2rn), Arn} of solutions to the associated SW(rn, v)− equations, for some vol-
ume preserving vector field v of Ck norm less than ε, such that

(i) if the sequence of Hopf invariants HArn
(X) has a bounded subsequence, the

vector field X has a periodic orbit.

(ii) if the sequence of Hopf invariants HArn
(X) has no bounded subsequence, then

the signed measure

σrn :=
rn(1− |ψ1rn |2)µ
HArn

(X)

converges (maybe after passing to a subsequence) to an invariant probability
measure σ∞ of X. This measure satisfies σ∞(X · curl−1(X)) 6 0; as a conse-
quence, it is not a multiple of µ.

This is Theorem 5.2.1 in Chapter 5.

The following Theorem, which implies that any Beltrami field with no zeroes
in S3 has a periodic orbit, can be seen as a (non-trivial) consequence of Theorem
5.2.1

4Note that the Hopf invariant can be defined without reference to any metric in S3: since by
definition icurl Xµ = diX g, Stokes theorem implies that the above expression is equal to∫

iV µ ∧ η

for any η such that dη = iW µ.
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Theorem 1.6.2 (Taubes 06 [68]). Let X be a nowhere-vanishing vector field on S3

preserving a volume form µ. If we have that curl−1 X = hX, with h a positive function
in S3, the vector field X has a periodic orbit.

This corresponds to Theorem 5.2.2. Its proof is given in Section 5.4.

The proofs of the Theorems rest on the following three main ideas:

• (A) A priori behavior of the solutions (Section 5.5): The Weitzenbőck formula
for DAr , through standard elliptic bootstrapping, yields a priori estimates
for the solutions of the Seiberg-Witten equations. Roughly speaking, the
main lesson of these estimates is that for large r, the curl of Ar is mostly
parallel to X, curl Ar ∼ r(1− |ψ1r|2)X, and that |ψ1r| can change its value
very quickly in the transverse directions of X, but not in the direction of
the flow.

• (B) The existence of non-trivial solutions (Section 5.6): The Monopole Floer
Homology, as constructed by P. Kronheimer and T. Mrowka in [46], pro-
vides the foundation on which the existence of solutions rests. Very
roughly speaking, this theory associates topological invariants to 3-manifolds,
by constructing an appropriate chain complex (and associated homology
groups) using as generators some classes of solutions to Seiberg-Witten
like equations, in the same way one uses critical points in Morse Theory.
The relevance of this construction from the PDE viewpoint is that, when-
ever an homology group is not trivial, we know that there must be some
generators, that is, some solutions. Since the resulting homology groups
are independent of the precise geometric or analytic data used to define
the equations, once the groups are known to be non trivial in one case,
we can infer the existence of solutions in many other cases. Finally, it is
key to ensure also that those solutions have the desired properties: it is
at this point that the helicity of X being non-zero plays a significant role,
that we will outline in Section 5.6.

• (C) The asymptotic properties of solutions at small scales (Section 5.7): By
virtue of item (A), the solutions to the the Seiberg-Witten equations for
r big enough are shown to approximate, at small scales, solutions to the
2-dimensional vortex equations in the transverse directions of X. The
properties of these equations are the key input for the proof of item (i) in
Theorem 1.6.1.

1.6.1 A result on the rescaled vortex equations: the realization
of any probability measure as the limit of sequences of
renormalized solutions

An important open problem is to better understand the nature of the invariant
sets where the measure σ∞ in Theorem 1.6.1 concentrates when HAr (X) is un-
bounded, and also to uncover further properties of the invariant measure. For
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example, do the equations impose any condition in the type of invariant mea-
sure that can be obtained as a limit? In the final section of Chapter 5, Section
5.8, we present a new result on a related problem in dimension 2, that appears
naturally when trying to address this question.

Let us present first the context in which our result is inscribed.

The behavior of sequences of solutions to the SW(r, v)-equations as r → ∞
becomes more transparent when one looks at the solutions under an adapted
rescaling, in a small enough flow-box of the vector field. More precisely, let p
be any point in S3. Consider, for positive constants ε and ρ, a map

Φp : (−ε, ε)×Dρ −→ S3

where Dρ := {z ∈ C, |z| 6 ρ} is the disk of radius ρ, and Φp is defined as

Φp(t, z) := φt
X(expp(xY(p) + yZ(p))

with t ∈ (−ε, ε) and z = x + iy ∈ Dρ, and where φt
X is the flow of X and

expp : TpS3 → S3 is the exponential map. With ε and ρ small enough, Φp is a
well defined diffeomorphism.

Denote by Cp(ε, ρ) the set Φp((−ε, ε)×Dρ) ⊂ S3. The flow box chart at Cp(ε, ρ)

is the map Ψp : Cp(ε, ρ) → (−ε, ε)×Dρ defined as Ψp := Φ−1
p . We note that

in these coordinates (Ψp)∗X = ∂t

We define the rescaled coordinates (t′, z′) = (
√

rt,
√

rz), which now take values
in the stretched cylinder C√r := (−ε

√
r, ε
√

r)×D√rρ. The rescaled solutions
are

ψ̃r(t′, z′) := ψr ◦Φp

( t′√
r

,
z′√

r

)
and

Ãr(t′, z′) :=
1√
r
(Ψp)∗Ar

( t′√
r

,
z′√

r

)
(Note the extra rescaling factor in Ãr. This factor is consistent with the inter-
pretation of Ar as a connection: this way, the covariant derivative∇− iAr gets
homogeneously rescaled when rescaling the coordinates.)

For ease of notation, in what follows we call (t, z) the rescaled coordinates
(t′, z′). By virtue of the a priori properties of solutions of the SW(r, v)-equations,
the rescaled solutions ψ̃r(t, z) and Ãr(t, z) satisfy, in the rescaled coordinates, a
PDE with the schematic form

curl0 Ãr = (1− |ψ̃1r|2)∂t +
B1

r
(1.6.1)

∂Ãr
ψ̃1r =

B3

r
(1.6.2)

(∂t − iAtr)ψ1r =
B2

r
(1.6.3)
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with ∂Ãr
= (∂x − iÃxr) + i(∂y − iÃyr) and where the Bi are bounded on com-

pact sets of C√r (so, as r → ∞, the terms with the Bi go to zero on compact
sets). For r very large, note that the transverse or longitudinal components of
the equation with respect to the vector field X decouple: the terms involving
Ãxr, Ãyr, ψ̃1r and their derivatives in the transverse directions of the flow (∂x
and ∂y) stay of order one, while the others go to zero.

These equations look closer and closer to the well known self dual vortex equa-
tions on C

da = ∂xay − ∂yax = (1− |φ|2) (1.6.4)

∂aφ = ∂zφ− (ax − iay)φ = 0 (1.6.5)

where ∂z := (∂x + i∂y) is (twice) the Cauchy-Riemann operator, and the un-
knowns are a real one form a = axdx + aydy (that we will also sometimes
identify with its dual vector field through the euclidean metric) and a complex
valued function φ = φ1 + iφ2, the “Higgs field”.

And indeed, one proves that, on compact sets [−T, T] ×DR ⊂ C√r, there is
a family of solutions (at, φt) to the self dual vortex equations, each living on
slices {t} × C of constant t ∈ [−T, T], such that, for any ε > 0 as small as
desired, we have

||at − Ãr||Cm([−T,T]×DR)
6 ε (1.6.6)

||φt − ψ̃1r||Cm([−T,T]×DR)
6 ε (1.6.7)

for r large enough. Moreover, this family of solutions is gauge equivalent to a
solution (a, φ) not depending on the t factor, meaning that for each t there is a
smooth function ut : C→ C with |ut| = 1 and such that

(at +
1
ut
∇ut, utφt) = (a, φ)

(note that (a, φ) is still a solution, as the equations are invariant under such
kind of transformations). In particular, note that this means that |φt| does not
depend on t.

Hence, the behavior of the vortex equations can offer good clues about the
limiting behavior of solutions to the SW(r, v)-equations, at least locally.

The vortex equations are very well understood in the finite action case (see the
classical monograph [38]), i.e, when the action functional

E(a, φ) =
∫

C
(|da|2 + |∇φ− iaφ|2 + 1

4
(1− |φ|2)2) (1.6.8)

is bounded. This is the classical situation in gauge theories (corresponding to
the so-called instantons). A particularly relevant feature of these equations in
this context is that the modulus of the complex field |φ| is either identically one,
or has a finite number of zeroes and approaches 1 exponentially fast outside the
region where these zeroes lay.
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When the energy functional HAr (X) of the sequence of Seiberg-Witten solu-
tions is bounded

HAr (X) =
∫

X · curl Ar 6 C,

(with C independent of r as r → ∞) the vortex solutions (a, φ) that appear
as local limits of solutions (Ar, (ψ1r, ψ2r)) at small flow boxes are of the type
above.

Thus the limiting vortex solution |φ| has a finite number of zeroes, and this
zeroes are seen as one dimensional curves in [-T, T] ×DR, and, rescaling back,
as curves in [− T√

r , T√
r ]×D 1√

r
. Near these curves the Seiberg-Witten solution

|ψ1r| is also zero, by Eqs. (1.6.6)—(1.6.7). The exponentially fast approach of the
vortex solution |φ| to 1 corresponds roughly to a e−

√
r|x| decay of the quantity

(1− |ψ1r|2) outside the curves where |ψ1r| = 0 (here |x| represents the distance
to the points with |ψ1r| = 0).

As we have seen previously, in the limit, these curves are precisely periodic
orbits of X.

That the functional HAr (X) can be shown to be bounded in the case of Reeb
fields is something of a miracle, and it depends strongly on the fact that, in
the adapted metric g, Reeb fields can be written as vector fields proportional
to their curl. For more general vector fields, however, the functional cannot
be assumed to stay bounded. The solutions still converge locally to solutions
of the vortex equations, but these do not have finite action. The study of the
vortex equations outside the finite action regime could thus shed some light on
the nature of the more general invariant measures that arise from the SW(r, v)-
equations.

Perhaps more importantly, it could single out which invariant measures are
forbidden as invariant measures of general volume preserving vector fields.
Indeed, if there were severe constraints in, say, the arrangements of the (pos-
sibly infinite number of) zeroes of the vortex solutions φ, one could hope that
these constraints imply that some limiting measures σ∞ are impossible. 5

The problem is that in the infinite action regime, the equations are much less
understood, and the number of vortices (the zeroes of the Higgs field φ) can
grow indefinitely. Even the existence of solutions is problematic: solutions
with an infinite number of vortices are only known to exist if those vortices are
sufficiently far apart, or when they are distributed in a periodic arrangement
[55]

Still, something can be said. In Section 5.8, we introduce a 2-dimensional “vor-
tex analog” of our problem of finding restrictions to measures arising from
sequences of Seiberg-Witten equations of unbounded HAr (X). We study se-
quences of solutions to the rescaled vortex equations in C:

5Note that this is not completely clear, however, since the convergence of the Seiberg-Witten
solutions to the vortex solutions involves a rescaling that blows up at the limit.
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?dar = r(1− |φr|2) (1.6.9)

∂ar φ = ∂zφr − (axr − iayr)φ = 0 (1.6.10)

where the unknowns are again, for r > 0 fixed, a real one form ar := a1rdx +
a2rdy and a complex valued function φr : C → C. We are interested in se-
quences of solutions to these equations with r → ∞ and

Far :=
∫

dar

unbounded.

Section 5.8 is devoted to the proof of the following result:

Theorem 1.6.3. Let ν be a Borel probability measure on the open disk D ⊂ C. There
is a sequence {(φrn , arn)} of solutions to the rn-rescaled vortex equations in C, with
rn → ∞, such that the 2-form

σrn =
rn(1− |φrn |2)dx ∧ dy∫

D
darn

converges to ν in the sense of measures on D, and is zero elsewhere.

The measure being defined on D is not an important condition in the above
theorem: as the proof will make clear, the result works as well with ν a Borel
probability measure in any bounded set on C.

In a work in progress we try to pass from this result to an analogous, local
result for invariant measures arising as limits of sequences of three forms

σr :=
r(1− |ψ1r|2)µ
HAr (X)

defined from solutions (Ar, ψr) to the Seiberg-Witten equations. This would
mean that, in the case of the Seiberg-Witten equations, we do not have any local
obstruction to the type of limiting invariant measures that can appear. Hence,
if one wants to understand further properties of the measure σ∞ for general
volume preserving vector fields X, one should bring in the global aspects of the
solutions.

1.6.2 Concluding remarks: further implications of the Seiberg-
Witten framework for dynamics in dimension 3

Let us finish our review of the contents of Chapter 5 with two observations
about their wider significance. These observations might help to appreciate
them better from the dynamical systems viewpoint.
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• The role of the Hopf invariants. The first observation concerns the important
role played in Theorem 1.6.1 by the Hopf invariants of the vector fields
Ar, X and their curls.

A (seemingly) dynamical interpretation has been known for some time
for the Hopf invariant H(V, W) of two exact volume preserving vector
fields V and W preserving a volume form µ: the Hopf invariant measures
a suitable average of the asymptotic linking number between pairs of
orbits.

More specifically, choose a point x in the manifold and track its path as it
flows with the vector field V for a time T, then join the two endpoints of
the resulting arc by a minimal length geodesic: this yields a closed curve.
Do the same with a different point y and the vector field W. One gets two
closed curves in the manifold.

These two closed curves do not intersect in general. Therefore, they have
a well defined linking number. Divide the linking number between the
two curves by T2, and consider the limit of the resulting quantity as T
goes to infinity.

Perhaps surprisingly, for almost all pairs of points (x, y) (in the sense of
a.e for the measure µ× µ) this limit is a well defined measurable function
on M × M: it is called the asymptotic linking number, Λ(x, y). The inte-
gral of this function over S3 × S3 coincides with H(V, W). This fact was
discovered by Arnold [4, 5] (who offered a proof modulo some missing
details) and was later rigorously proven by T. Vogel [72].

However, despite its elegance, it was unclear whether the above result
offered any further insight into the dynamics of divergence-free vector
fields. The result has thus remained more or less disconnected from the
rest of the body of knowledge about volume preserving dynamical sys-
tems.

Theorems 1.6.1 and 1.8.4 are probably the firsts instances of such a con-
nection, and maybe hint at some deeper structure. In fact, they already
provide a new characterization of the class of uniquely ergodic vector fields.
Here, by uniquely ergodic vector field we mean a vector field preserving
a volume form and having no other invariant measure. By Theorem 1.6.1,
such a vector field must have helicity zero (it is actually in these terms
that C. Taubes presented his results in [66]).

• The Gottschalk conjecture. The second observation resumes some of our
scattered comments in the previous pages about the relevance of the
Seiberg-Witten perspective for Gottschalk conjecture. We recall that this
conjecture, still open in the smooth volume preserving case, posits the
non-existence of minimal (all orbits are dense) flows on S3.

Theorem 1.6.1 offers a new perspective on the conjecture, which is all
the more compelling because it is rather consistent with other traditional
approaches to it.

Traditional approaches to the conjecture proceed by contradiction: they
try to prove that a minimal flow must be transverse or tangent to a 2-
foliation; for if that were the case, since every 2-foliation on S3 has a com-
pact leaf (a theorem of Novikov), the flow would either get trapped inside
the leaf or be tangent to it, and thus could not have all of its orbits dense
after all.

25



CHAPTER 1. INTRODUCTION, SUMMARY, AND CONCLUSSIONS.
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But as it is easy to see, a volume preserving flow with vanishing helic-
ity density (curl−1 X · X = 0) is tangent to a (possibly singular) folia-
tion. A first step is thus to show that minimal flows must have helicity
zero, and here the above theorems offer a new approach. Indeed, since
Theorems 1.6.1 associate an invariant measure σ∞ to any vector field of
non-vanishing helicity, one would prove that minimal flows have helicity
zero by showing that the invariant measures σ∞ cannot be the invariant
measure of a minimal flow (for example, by proving that their support is
nowhere dense).

1.7 A look at the contents of Chapter 6: helicity is
the only invariant of divergence-free fields

The final chapter of Part II, Chapter 6, while of certain relevance to Chapter
5, can be read independently and contains a result of its own interest. It con-
centrates on the concept of helicity (or Hopf invariant) of a volume preserving
vector field X which, as we have just seen, measures in some sense the average
linking number of its orbits, and plays a very important role in the Seiberg-
Witten framework.

We show that helicity is, in a certain sense, the only quantity of its kind one
can rely on when it comes to describing the dynamics of volume preserving
fields. This proves a conjecture that V. Arnold and B. Khesin presented in their
well-known book on Topological Hydrodynamics [5].

Let us recall the context. Let X be a vector field on a 3-manifold M, preserv-
ing a volume form µ. The vector field is called exact if its flux through any
closed surface is zero. This is a topological condition, equivalent to the (closed)
two form iXµ being exact (in particular, if M is a homology sphere, a volume
preserving vector field is always exact). The helicity of X is defined as

H(X) =
∫

M
iXµ ∧ α

where α is any one form such that dα = iXµ. Stokes theorem ensures that
the helicity does not depend on the particular one form α. Alternatively, if
one introduces a Riemannian metric compatible with the volume form µ, one
recovers the expression

H(X) =
∫

M
X · curl−1 X

that we introduced in Section 1.8.

It is easy to see that helicity is invariant under the action of volume preserving
diffeomorphisms. More precisely, for any volume preserving diffeomorphism
Φ : M→ M respecting the orientation of the volume form µ, we have

H(Φ∗X) = H(X) ,

26



CHAPTER 1. INTRODUCTION, SUMMARY, AND CONCLUSSIONS.
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and if Φ is orientation reversing, we have thatH(Φ∗X) = −H(X).

Besides being invariant, helicity has other interesting properties: as we have
seen before, it is an asymptotic invariant, being equal to the average asymptotic
linking number between pairs of orbits. But it is also an integral invariant, which
means that it can be expressed as the integral of a density (in this case a 2-point
density):

H(X) =
∫

M×M
H(x, y, X(x), X(y)) dµx dµy

This is because the inverse of the curl operator (which is well defined in the
space of exact volume preserving vector fields) is an integral operator analo-
gous to the classical Biot-Savart operator in euclidean space: this allows us to
write

H(X) =
∫

M
X · curl−1 X =

∫
M

X(x) ·
∫

M
B(x, y)× X(y) dµy dµx

In view of the expression above, V. Arnold and B. Khesin asked whether there
could be other integral invariants of volume preserving vector fields, with gen-
eral form

I(X) =
∫

M1×...×Mn
G(x1, ..., xn, X(x1), ..., X(xn)) dµ1... dµn, (1.7.1)

and they conjectured that there were none. In Chapter 6 we prove this con-
jecture in the case of functionals in the space of C1 volume preserving vector
fields: we show that any integral invariant I verifying some mild technical
assumptions (that include in particular the integral invariants considered by
Arnold and Khesin) must be a function of the helicity.

More precisely, if we define X1
ex to be the space of volume preserving, exact

vector fields on (M, µ) of class C1, we have

Definition 1.7.1. Let I : X1
ex → R be a C1 functional. We say that I is a regular

integral invariant if:

(i) It is invariant under volume-preserving transformations, i.e., I(w) = I(Φ∗w)
for any diffeomorphism Φ of M that preserves volume.

(ii) At any vector field w ∈ X1
ex, the (Fréchet) derivative of I is an integral operator

with continuous kernel, that is,

(DI)w(u) =
∫

M
K(w) · u ,

for any u ∈ X1
ex, where K : X1

ex → X1
ex is a continuous map.

This definition includes, in particular, all integral invariants with the form in
Eq. (1.8.1) with G a reasonably well-behaved function on M.
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Figure 1.4: Un torbellino anudado en el agua. Cortesı́a de William Irvine.

The main theorem of Chapter 6 states

Theorem 1.7.2. Let I be a regular integral invariant. Then I is a function of the
helicity, i.e., there exists a C1 function f : R→ R such that I = f (H).

The proof exploits an interesting property of the space of all volume preserving
vector fields, unveiled by M. Bessa [14]: that topologically transitive ones (i.e,
having at least one dense orbit) are dense in the C1 topology.

This Chapter is based on the paper [28].

Remark 1.7.3. Finally, let us say that we have aimed at making each Chapter reason-
ably self-contained, so that the reader does not need to refresh the notions and motiva-
tional context in this Introduction when going through each Chapter.

1.8 Traducción: Introducción, resumen de los resul-
tados, y conclusiones

Recientemente han aparecido nuevas técnicas experimentales [39, 40] que per-
miten observar en el laboratorio la emergencia de estructuras topológicas en di-
versos procesos fı́sicos (dinámica de fluidos, óptica, fı́sica del estado sólido...).
Estas estructuras topológicas se manifiestan, por ejemplo, en forma de torbelli-
nos anudados en fluidos y plasmas, o en forma de dislocaciones en supercon-
ductores. Nos proporcionan una representación visual muy útil a la hora de
estudiar sistemas complejos.

Desde el punto de vista matemático, estos fenómenos fı́sicos vienen descritos
por soluciones (ya sean vectoriales o escalares) de sistemas de ecuaciones en
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derivadas parciales; y las estructuras topológicas emergentes son ejemplos de
variedades invariantes de estas soluciones.

Por ejemplo, en la imagen 1.4, vemos una fotografı́a de una de estas estructuras
topológicas en el agua: se trata de un torbellino anudado (también llamado tubo
de vorticidad), formando un nudo de trébol. Qué es, matemáticamente, tal tor-
bellino? Si describimos el movimiento del agua asignando, a cada punto x del
espacio que el fluido ocupa, y a cada instante t del intervalo de tiempo que
nuestra pelı́cula de su movimiento abarca, un vector u(x, t) (el campo de veloci-
dad del fluido), el torbellino es simplemente una región del fluido confinada en
el interior de un toro invariante del campo de vorticidad ω(·, t) = curl u(·, t), en
un determinado instante t. Hay más ejemplos interesantes de variedades in-
variantes de campos vectoriales: órbitas periódicas (como por ejemplo aquella
que recorre el núcleo del tubo de vorticidad) y, más generalmente, los soportes
de medidas invariantes del fujo, que pueden ser muy complejos.

En muchos otros fenómenos, propios del estudio de la materia condensada, el
estado del sistema se describe mediante un campo escalar (o, de forma más
general, mediante una sección de un fibrado vectorial complejo). En tal caso,
las estructuras topológicas que se manifiestan en los experimentos son, matemáticamente,
regiones (conexas, es decir, de una pieza) del sistema en las que el campo
escalar vale cero (técnicamnete, componentes conexas del llamado conjunto
nodal).

Los resultados de estos experimentos ofrecen a los matemáticos un reto in-
teresante: comprender cuán intrincadas (desde el punto de vista topológico)
pueden llegar a ser las variedades invariantes de estos campos escalares y vec-
toriales, al tiempo que los campos satisfacen ciertas restricciones analı́ticas; re-
stricciones que vienen impuestas por las ecuaciones en derivadas parciales que
rigen su comportamiento.

Para abordar problemas de esta clase, uno tiene que conjugar conceptos y
técnicas provenientes de áreas de las matemáticas diversas: análisis, geometrı́a
diferencial, fı́sica matemática...Los problemas que requieren de este esfuerzo
integrador suele ser muy fructı́feros, pues son una buena forma de comprobar
hasta dónde llega nuestro discernimiento en estas áreas, y de detectar posibles
lagunas en nuestra comprensión.

Problemas de realización para campos vectoriales y
escalares

Para ilustrar la clase de cuestiones matemáticas que surgen de las considera-
ciones que preceden, considérense los siguientes problemas (que bien pueden
servir de prototipos del tipo de cuestiones que trataremos más adelante en esta
memoria):

• Problema A (problema vectorial): Encontrar una solución u de las ecua-
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ciones de Euler estacionarias

u×ω = ∇B, divu = 0, ω := curl u,

(aquı́ B := |u|2
2 + p es la llamada función de Bernoulli, y p es la presión)

cuyo campo de vorticidad ω tenga un toro invariante (es decir, un tor-
bellino) con forma de nudo de trébol (o, de forma más general, anudado
como se desee). (Dicho de otra forma, muéstrese que nuestra descripción
matemática de los fluidos es compatible con lo que se observa en la Figura
1.1).

• Problema B (problema escalar): Encontrar una función compleja ψ : R3 →
C, que se avenga a la ecuación de Helmholtz

∆ψ + ψ = 0,

y cuyo conjunto nodal (que será genéricamente una colección de curvas,
siempre y cuando el cero sea un valor no crı́tico) tenga una componente
conexa difeomorfa a un nudo L dado.

A estos problemas se los denomina problemas de realización: el objetivo es re-
alizar una determinada variedad como variedad invariante de la solución de
una EDP.

Antes de revelar cómo se pueden abordar los problemas anteriores, conviene
contemplarlos desde una perspectiva histórica. De hecho, como viene ocur-
riendo a menudo, estos problemas matemáticos preceden cronológicamente
a los experimentos que les sirven de acicate. Ası́, el problema A fue origi-
nalmente propuesto por el fı́sico William Thomson, Lord Kelvin, en torno al
tercer cuarto del siglo XIX. Lord Kelvin no estaba considerando torbellinos
anudados en el agua, sino en el (por entonces ubicuo) éter. Al decir de un
célebre matemático de la época (que labios castellanos pueden pronunciar sin
esfuerzo):

“Ası́ el ilustre lord Kelvin ha buscado en los movimientos de los torbellinos
una explicación mecánica del Universo. El Universo está lleno, según opinión
de muchos sabios, por una materia continua, y lo que nosotros llamamos ma-
teria, materia propiamente dicha, no es más que un conjunto de torbellinos:
átomos-torbellinos les llama el ilustre autor, átomos que, según Helmholtz, son
indestructibles y eternos.

Verdad es, que según los descubrimientos de la radioactividad, el átomo puede
destruirse y se destruye de hecho; pero en todo caso no hay más que correr la
escala y suponer que es el electrón ese átomo-torbellino cuya existencia civil
habı́a usurpado el átomo de la Quı́mica. ” 6

Según Lord Kelvin, los átomo serı́an torbellinos anudados, y a cada tipo de
nudo corresponderı́a una especie de átomo (lo que hoy llamarı́amos un ele-
mento quı́mico). Aunque la motivación fı́sica de Lord Kelvin acabó por mostrarse

6extracto de las notas del curso de Fı́sica Matemática impartido por José de Echegaray en el
Ateneo de Madrid, ver José de Echegaray: entre el teatro, la ciencia y la polı́tica, de José Manuel Sánchez
Ron, en Arbor CLXXIX, 707-708
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errónea no mucho después (como ya se presiente en las palabras de Echegaray)
el problema matemático que sugirió estimuló el desarrollo de la teorı́a de nudos,
y permaneció sin resolver durante más de un siglo.

En cuanto al problema B, fue estudiado originalmente por M. Berry y M. Den-
nis [12]. Berry y Dennis idearon un método para construir soluciones a la
ecuación de Helmholtz con un conjunto cero L difeomorfo a un nudo tórico
dado, y conjeturaron que el Problema B tiene solución para cualquier tipo de
nudo. Berry también estudió ([13]) generalizaciones del Problema B para EDPs
de la forma Hψ = λψ, con H un operador de Schődinger, H := −∆ + V (por
ejemplo, el átomo de hidrógeno o el oscilador armónico), y conjeturó de nuevo
que existen soluciones en las que se forman nudos de cualquier clase.

Algunos análogos del Problema B, que estudian qué formas pueden adoptar
los conjuntos cero de soluciones a EDPs elı́pticas, también tienen una biografı́a
interesante. Si consideramos la ecuación de Poisson

∆ψ = ρ

podemos remontarnos de nuevo al siglo XIX: el problema ya intrigaba por en-
tonces a los fı́sicos-matemáticos, interesados como estaban en describir las su-
perficies equipotenciales de la fuerza eléctrica o gravitatoria (por ejemplo, para
caracterizar todas las posibles configuraciones de equilibrio que podı́a adoptar
un fluido sometido a una fuerza gravitatoria).

En el caso de las ecuaciones de Cauchy-Riemann en una variedad compleja X

∂ψ = 0, ψ : X → C

el problema es equivalente a una versión relajada del célebre segundo prob-
lema de Cousin: qué subvariedades de codimensión (real) 2 de una variedad
compleja pueden aparecer como conjuntos nodales de una función holomorfa?
Como demostró K. Oka (en un trabajo que fue a la vez precursor de los métodos
de haces en geometrı́a algebraica, y un primer indicio de la filosofı́a del H-
principio de Gromov [34]), en el caso de una variedad de Stein, no hay más
obstrucción que la topológica: la subvariedad en cuestión tiene que poder re-
alizarse como conjunto cero de una función compleja continua.

El caso Euclı́deo: una estrategia general

No hace mucho, Alberto Enciso y Daniel Peralta-Salas idearon una estrategia
muy general para tratar problemas de realización de los tipos A y B. De esta
estrategia se sigue que estas cuestiones exhiben una cierta flexibilidad (en el
sentido del resultado de K. Oka descrito anteriormente, aunque por medio de
técnicas completamente diferentes). Para ser más precisos, por flexibilidad en-
tendemos lo siguiente: la ecuación en derivadas parciales que rige el compor-
tamiento de las soluciones no impone ninguna restricción al tipo de variedad
invariante que las soluciones pueden exhibir: se pueden encontrar soluciones
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que realicen cualquier subvariedad imaginable; siempre, claro está, que sea
topológicamente posible.

La estrategia introducida por Enciso y Peralta-Salas es muy maleable, y puede
adaptarse a problemas muy variados (aunque la adaptación a cada problema
particular dista en muchas ocasiones de ser trivial: sirva como ejemplo la re-
ciente resolución, también por Enciso y Peralta-Salas, del problema A para
campos vectoriales en R3 [24]). El esquema general de la estrategia se puede
ilustrar mediante ejemplos sencillos, y el problema B viene muy a mano para
este fin.

Recordemos que el Problema B nos pedı́a hallar una función compleja ψ en R3,
que resolviese la ecuación ∆ψ + ψ = 0, y cuyo conjunto cero, ψ−1(0), tuviese
una componente conexa difeomorfa a un nudo convenido L.

Ante tal problema, el esquema de Encisco y Peralta-Salas procede como sigue.
En primer lugar, se resuelve el problema localmente: esto es, se construye una
solución ψ̃ de la ecuación ∆ψ̃ + ψ̃ = 0 en un entorno tubular del nudo L.

Esta solución local tiene que cumplir, por una parte, que ψ̃|L = 0 (ası́, realiza
el nudo como conjunto cero), y por otra parte, que la pareja de campos vec-
toriales gradiente (∇ψ̃1,∇ψ̃2) en el conjunto L genera el fibrado normal de L.
Esta última condición es necesaria para asegurar que el conjunto cero L es ro-
busto, y sobrevive a perturbaciones de clase C1 de la función ψ̃ (considérese,
por ejemplo, el conjunto cero de una función real: si el gradiente de la función
no se anula en dicho conjunto, una perturbación suficientemente pequea de la
función seguirá teniendo un conjunto cero difeomorfo al conjunto original). Si
nos concierne, como es el caso, una EDP elı́ptica de segundo orden, basta un
teorema de existencia local (como el teorema de Cauchy-Kovalevskaya, o un
problema de contorno) para asegurarnos de que existe una solución local que
cumple con los requisitos.

El siguiente paso consiste en encontrar una solución global ψ a la EDP que aprox-
ime la solución local ψ̃ con una resolución tan fina como se desee. Esto se con-
sigue por medio de un teorema de aproximación la Runge, como el Teorema
de Lax-Malgrange y sus variantes. Dada una solución local a una EDP elı́ptica
en un abierto U, este tipo de teoremas aseguran la existencia de una solución
global que aproxima a la solución local, en su dominio de definición U, con
tanta precisión como se quiera.

El conjunto cero de ψ̃ es robusto ante perturbaciones (es decir, también ante
aproximaciones), gracias a la condición que se impuso a la derivadas de ψ̃ en
L en el paso previo. Ası́ pues, el nudo L no se disuelve en el proceso de aprox-
imación global, y una copia casi exacta de L (que se obtiene deformando L
mediante un difeomorfismo muy parecido a no hacer nada) persiste en el con-
junto cero de la solución global: el problema B queda resuelto.

Nótese que los dos ingredientes clave en la estrategia anterior (el teorema de
existencia local, y el teorema de aproximación global) no son válidos solamente
en el caso de la ecuación de Helmholtz: son aplicables en contextos mucho más
generales (y cuando no es el caso, no es raro que haya análogos apropiados a
nuestro alcance). Ahı́ reside la capacidad de adaptación de esta estrategia a
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problemas de realización muy variados (véase por ejemplo [27, 22, 23, 24]).

Sin embargo, por variadas que sean, las aplicaciones de esta estrategia se lim-
itan a EDPs en espacios abiertos. Al intentar implementarla en variedades
compactas uno se encuentra con una obstrucción fundamental. Como era de
esperar, esta obstrucción se encuentra en el segundo paso: la aproximación
global.

Es el mismo tipo de obstrucción con el que uno se topa al tratar de extender
analı́ticamente a todo el plano complejo una función holomorfa definida en
un anillo: en general, es ineludible que aparezca una singularidad en el disco
delimitado por la circunferencia interior del anillo.

En efecto, el teorema de Lax-Malgrange requiere que la solución local esté
definida en un abierto U cuyo complemento no tenga componentes compactas
(por ejemplo, una bola, o un toro sólido). Si el complemento de U tiene una
componente compacta K, lo más que se puede conseguir, en general, es encon-
trar una aproximación global a la solución local con singularidades en K.

Variedades compactas: localizacion inversa a pequea escala y
altas energı́as

En la Parte I de esta memoria presentamos una estrategia para abordar proble-
mas de realización en variedades compactas (superando ası́ la obstrucción que
acabamos de exponer en la sección anterior), y la aplicamos a problemas de
realización para campos vectoriales y espinoriales en esferas y toros. En partic-
ular, resolvemos la conjetura de Kelvin en la 3-esfera y el 3-toro, y estudiamos
la topologı́a de de los conjuntos nodales de espinores de Dirac (autofunciones
del operador de Dirac) en n-esferas y n-toros.

El interés por abordar problemas de realización en el caso compacto va más allá
de lo puramente técnico. Nótese, por ejemplo, que un fluido en el 3-toro o la
3-esfera describe mucho mejor el comportamiento de los fluidos reales que un
fluido en el espacio euclı́deo del tipo que Enciso y Peralta-Salas estudiaron en
[24]. Los fluidos reales tienen una cantidad finita energı́a (matemáticamente,
su norma L2 está acotada), y este es también el caso de los fluidos en espa-
cios compactos; en cambio, las soluciones a la ecuación de Euler consideradas
en [24] describen fluidos de infinita extensión, y el valor de su campo de ve-
locidades decrece, en el mejor de los casos, tan rápido como el inverso de la
distancia al origen de coordenadas. Estas consideraciones a propósito de la
finitud de la energı́a suelen ser mucho más relevantes, a la hora comprender la
dinámica de fluidos reales, que consideraciones sobre la geometrı́a del espacio
que contiene al fluido.

La idea principal que nos permite soslayar la obstrucción a la implementación
de la estrategia previa en variedades compactas se basa en el análisis asintótico
de las autofunciones de un operador autoadjunto (que será el operador rota-
cional, cuando tratemos fluidos estacionarios en el capı́tulo 2; o el operador de
Dirac, cuando tratemos con espinores en el capı́tulo 3) a energı́as muy altas (en
el sentido espectral) y a escalas muy pequeas
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Veamos la idea en más detalle.

Sea M una variedad riemanniana compacta. Examinemos el entorno de un
punto p al microscopio, es decir, consideremos una pequea bola de radio 1/

√
λ

con centro en el punto p, y rescalemos las coordenadas geodésicas correspon-
dientes por un factor

√
λ, de forma que la bola se nos aparezca en coordenadas

rescaladas como la bola euclı́dea de radio 1, con el punto p en el origen de co-
ordenadas. Bien: una autofunción de un operador autoadjunto de segundo or-
den en M (pensemos sencillamente en el laplaciano), cuyo autovalor λ sea su-
ficientemente grande, se aparece a este microscopio como una solución de una
EDP de coeficientes constantes en el espacio euclı́deo (por ejemplo, en el caso
del laplaciano, como una solución de la ecuación de Helmholtz ∆ψ + ψ = 0).

A raı́z de esta observación uno podrı́a sentir la tentación de concluir que, siem-
pre que se consideren altas energı́as y se busque en escalas pequeas, se pueden
encontrar autofunciones de un operador que tengas variedades invariantes ar-
bitrariamente intrincadas: después de todo, a esas pequeas escalas las autofun-
ciones se comportan como soluciones de una EDP euclı́dea, y las técnicas de
Enciso y Peralta-Salas muestran que para soluciones euclı́deas la flexibilidad
es la norma en problemas de realización.

Sin embargo, las técnicas euclı́deas solamente aseguran que algunas soluciones
muy particulares tienen estructuras topológicamente complicadas; y puesto
que no podemos asegurar, en general, que haya una autofunción en la var-
iedad compacta que aproxime una solución euclı́dea dada, el comportamiento
euclı́deo a pequea escala es inútil para nuestros fines.

La clave de nuestro método consiste precisamente en revertir la situación, es
decir, en asegurarse de que, en algunas variedades compactas, cualquier solución
euclı́dea es la aproximación a pequea escala de alguna autofunción de energı́a
suficientemente elevada.

Esto es, si se analizan las autofunciones del operador de Dirac o del operador
rotacional a energı́as cada vez más altas y a escalas cada vez más pequeas, uno
termina por ver, a una resolución tan alta como se desee, cualquier solución de
energı́a 1 del operador correspondiente en el espacio euclı́deo. A un resultado
de este tipo lo hemos llamado teorema de localización inversa.

Para probar los teoremas de localización inversa, un ingrediente clave es la di-
mensión creciente de los autoespacios del operador en la variedad compacta.
Esto nos permite disponer de una gama cada vez mayor de autofunciones para
combinar, conforme incrementamos la energı́a. Por este motivo, nuestros resul-
tados valen para esferas y toros, con métricas de alta simetrı́a.

El resultado de aproximación o localización inversa implica que cualquier propiedad
que las soluciones de la EDP euclı́dea presenten en subconjuntos compactos de
Rn es extensible a las autofunciones de alta energı́a del operador en esferas y
toros, siempre y cuando tal propiedad sea robusta ante perturbaciones. La
cuestión se reduce, por tanto, al caso euclı́deo, en el que uno puede esperar
resolver el problema de realización con las técnicas de Enciso y Peralta-Salas

A continuación expondremos con un poco más de detalle los resultados de los
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primeros dos capı́tulos de esta memoria.

Capı́tulo 2 : realización de torbellinos entrelazados
en campos de Beltrami de altas energı́as

El capı́tulo 2 estudia la topologı́a de los torbellinos (ya sean lı́neas, es decir,
trayectorias de la vorticidad, o tubos, es decir, toros invariantes) presentes en
soluciones estacionarias a las ecuaciones de Euler en S3 y T3. Nos ocuparemos
en concreto de un tipo especial de soluciones, los llamados campos de Beltrami,
que constituyen, en cierto sentido, los “átomos” del movimiento de los fluidos.

Para nosotros, un campo de Beltrami es una autofunción del operador rota-
cional

rotu = λu.

Nótese que un campo de Beltrami tiene divergencia cero, es decir, su flujo
preserva la forma de volumen de la variedad. También es fácil caer en la cuenta
de que los campos de Beltrami son soluciones estacionarias de las ecuaciones
de Euler

u×ω = ∇B, divu = 0, ω = curl u,

Finalmente, como autofunciones del operador rotacional, los campos de Bel-
trami forman una base en el espacio de todos los campos de divergencia cero
exactos (un campo de divergencia cero es exacto si puede considerársele el
campo de vorticidad de un campo de velocidades).

El resultado principal del Capı́tulo 2 establece que hay “bastantes” campos de
Beltrami en S3 y T3 en cuyo seno podemos encontrar torbellinos anudados y
entrelazados según cualquier tipo de nudo y enlace dado, siempre y cuando el
autovalor sea lo suficientemente alto, y uno busque estos torbellinos a escalas
muy pequeas.

(Recordamos que por torbellino entendemos tanto una trayectoria cerrada del
campo de vorticidad, como un tubo invariante, es decir, un toro sólido embe-
bido en la variedad e invariante bajo la acción del campo de vorticidad)

Theorem 1.8.1 (Torbellinos entrelazados en campos de Beltrami de altas en-
ergı́as). Sea S un conjunto finito de curvas cerradas y de tubos (disjuntos dos a
dos, pero arbitrariamente anudados y entrelazados) en S3 o T3. En el caso del toro,
suponemos también que el conjunto S está contenido en un subconjunto contráctil de
T3. Para cualquier entero impar

λ

suficientemente grande, existen un campo de Beltrami u (que satisface la ecuación u =
λu) y un difeomorfismo Φ de S3 o T3, tales que Φ(S) es un conjunto de torbellinos
del campo u. Además, los torbellinos son estructuralmente estables. .
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Este teorema se corresponde con el Teorema 2.1.1 del Capı́tulo 2. La prueba se
basa en un teorema de localización inversa para campos de Beltrami, siguiendo
un esquema similar al expuesto en la sección anterior.

Desde el punto de vista fı́sico, un aspecto particularmente sugerente de nue-
stro resultado es que relaciona la complejidad de los torbellinos presentes en
el fluido con las escalas de energı́a y de longitud del sistema. Esto puede tener
tiene cierta relevancia en el estudio de los fenómenos de turbulencia, en los que
se pueden observar la formación de torbellinos complejos a escalas pequeas y
números de onda elevados.

Capı́tulo 3: topologı́a de los conjuntos nodales de es-
pinores de Dirac de energı́as elevadas

En el capı́tulo 3, los objetos que nos conciernen no son campos vectoriales,
sino espinoriales, más concretamente autofunciones del operador de Dirac en
n-esferas; y esta vez el papel de variedades invariantes lo juegan los conjuntos
nodales.

Recordemos que las autofunciones del operador de Dirac son espinores, es de-
cir, secciones de un fibrado hermı́tico S de rango (complejo) r(n) = 2b

n
2 c, lla-

mado fibrado espinorial. Cuando el fibrado espinorial es trivial (es el caso en
esferas), la elección de una trivialización hace de cualquier sección ψ de S una
colección (ψ1, ..., ψr(n)) de r(n) funciones con valores en C. En una variedad
espı́n de dimensión 3 o superior, los conjuntos cero regulares de una sección
del fibrado espinorial están vacı́os (porque 2r(n) > n), ası́ que en lo que esta-
mos interesados es en la topologı́a de los conjuntos cero de las componentes ψi
del espinor. Estas últimas son C-valuadas, por lo que sus conjuntos cero son
(genéricamente) subvariedades de Sn de codimensión 2.

Por ejemplo, en S3, podemos descomponer un espinor en dos componentes,
ψ := (ψ1, ψ2). Cuando ψ es una autofunción del operador de Dirac, ψ1 y ψ2
están ligadas mediante una condición diferencial de primer orden. Podemos
entonces plantear un análogo al problema B: dadas dos curvas cerradas L1 y
L2, enlazadas y anudadas de cualquier manera, existe una función propia del
operador de Dirac que tenga a L1 por componente conexa del conjunto nodal
de ψ1, y a L2 por componente conexa del conjunto nodal de ψ2 ?

Nuestros resultados en este capı́tulo demuestran que sı́. De forma un poco
más precisa, demostraremos que hay muchas funciones propias del operador
de Dirac con ceros de topologı́as arbitrariamente complicadas, sin importar la
trivialización del fibrado espinorial que escojamos:

Theorem 1.8.2 (Teorema de realización para espinores de Dirac de alta energı́a).
En Sn (con n > 3), sea Σ := {Σ1, ..., Σr(n)} una colección de subvariedades de codi-
mensión 2, con topologı́as tan complicadas como se quiera (r(n) es aquı́ la dimensión
compleja del fibrado espinorial). Existe siempre una autofunción ψ = (ψ1, ..., ψr(n))
del operador de Dirac (de hecho, infinitas autofunciones) tal que Σi es difeomorfa a un
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subconjunto estructuralmente estable del conjunto nodal de la componente espinorial
ψi.

Este teorema es una versión simplificada del Teorema 3.1.1 del Capı́tulo 3.
Como ocurrı́a con el Teorema del Capı́tulo anterior, estas estructuras topológicamente
complicadas aparecen a energı́as altas y escalas pequeas.

Dos teoremas sustentan a su vez el teorema anterior, el teorema 3.2.1 y el teo-
rema 3.1.2. El primero es un resultado de localización inversa para autofun-
ciones del operador de Dirac. Como ya se expuso en la sección anterior, este
teorema reduce el problema al caso euclı́deo. El segundo es, precisamente, un
análogo del teorema principal en el caso euclı́deo (en el caso de espinores de
Dirac, el problema euclı́deo presenta algunas sutilezas adicionales, y no basta
con aplicar las técnicas que aparecen en [27] y que resumimos en la sección de
introducción).

Los dos resultados de localización inversa (para el operador rotacional y el
operador de Dirac), ingredientes fundamentales de los capı́tulos anteriores, re-
quieren a su vez de un resultado de localización inversa para autofunciones
del laplaciano. Este resultado y algunas variantes adicionales del mismo se
demuestran en el Capı́tulo 4.

El capı́tulo 2 se basa en el artı́culo [29], del autor en colaboración con Alberto
Enciso y Daniel Peralta-Salas; el capı́tulo 3 está basado en el artı́culo [69].

Un cambio de perspectiva: cómo detectar conjuntos
invariantes mediante el estudio asintótico de las ecua-
ciones de Seiberg-Witten

La segunda parte de esta memoria también estudia variedades invariantes de
campos vectoriales mediante el análisis asintótico de EDPs, pero la filosofı́a
subyacente es distinta.

En la Parte I nos valı́amos del comportamiento asintótico muy oscilatorio a es-
calas pequeas (eikx, con k → ∞) de las soluciones de una EDP en una variedad
compacta para prescribir la topologı́a de los conjuntos invariantes de un campo
vectorial (o espinorial) que satisfacı́a la EDP. Los conjuntos invariantes eran, por
decirlo de alguna manera, emphconsentidos por la EDP, y facultativos para sus
soluciones: no aparecı́an en todas ellas.

En esta parte, aprovechamos fenómenos de concentración asintótica, en lugar
de fenómenos de oscilación. La idea es, en primer lugar, usar el campo vec-
torial cuyas variedades invariantes queremos estudiar para plantear una EDP.
Esta vez, el campo vectorial no es solución de la EDP en cuestión, sino simple-
mente uno de los ingredientes que la definen. Las soluciones de esta EDP se
concentran en ciertos conjuntos del espacio ambiente, y a menudo decaen ex-
ponencialmente a nada que nos alejemos un poco de ellos; decaimiento tanto
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más rápido cuanto mayor es cierto parámetro que hacemos tender a infinito
(de ahı́ el adjetivo asintótica)

La EDP está astutamente diseada de tal forma que esos conjuntos, en los que las
soluciones se concentran, acaban siendo precisamente conjuntos invariantes
del campo vectorial; y las soluciones, por su parte, convergen a medidas invari-
antes del campo. Ası́, si en la Parte I hablábamos de prescripción de conjuntos
invariantes, aquı́ podemos hablar de detección.

El esquema general es el siguiente: dado un campo vectorial X, definimos una
EDP

Lur + rΦ(ur, ∂ur, X) = 0

en la que L es un operador elı́ptico actuando sobre secciones de un fibrado
vectorial u, y Φ(u, ∂u, X) es una función de u, sus derivadas, y X. Conforme r
va a infinito, las soluciones ur se concentran en un conjunto invariante de X.

Clifford Taubes se basó en este fenómeno para demostrar la conjetura de We-
instein en dimensión 3 [68]. (Recordemos que esta conjetura postula que todo
campo de Reeb tiene una órbita periódica.) Poco después, generalizó estos
resultados a campos exactos que preservan una forma de volumen [66].

La Parte II de esta memoria se basa a su vez en estas ideas de Taubes.

Antes de exponer en más detalle los resultados de esta parte de la tesis, pre-
sentemos el escenario más detalladamente. El objeto de interés esta vez es un
campo vectorial X, sin ceros, en una variedad cerrada M de dimensión 3; este
campo preserva una forma de volumen µ. Con estos datos, podemos definir
en M una métrica riemanniana g adaptada al campo X y a la forma µ: esto se
traduce sencillamente en que g(X, X) = 1 y en que µ es el volumen que corre-
sponde a la métrica g.

(Supondremos que M es difeomorfa a S3, para simplificar la exposición y que
destaquen las ideas analı́ticas subyacentes. Entenderemos además que los op-
eradores que aparezcan (rotacional, gradiente, divergencia) son aquellos aso-
ciados a la métrica g. Finalmente, denotaremos el producto escalar de dos
campos vectoriales por un punto, y la integración será siempre con respecto a
la medida de volumen µ. )

Con los datos mencionados, que podemos obtener de cualquier campo vecto-
rial X en S3 que preserve una forma de volumen, la estrategia de Taubes con-
siste, en primer lugar, en definir el siguiente sistema de EDPs (cuyas incógnitas
son un campo vectorial A y una función ψr : S3 → C2):

curl Ar = r(X− (ψ†
r σ1ψr)X− (ψ†

r σ2ψr)Y− (ψ†
r σ3ψr)Z) + v (1.8.1)

DAr ψr := i ∑
k

σkek · (∇ψr − iArψr) = 0 (1.8.2)

donde {e1, e2, e3} = {X, Y, Z} forma una paralelización ortogonal global del
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fibrado tangente TS3 (en una variedad M genérica, esto podrı́a solamente hac-
erse de forma local) y

σ1 :=
(

1 0
0 −1

)
, σ2 :=

(
0 i
−i 0

)
, σ3 :=

(
0 1
1 0

)
.

(1.8.3)

son las matrices de Pauli. El término v es una perturbación que asegura la
existencia de soluciones apropiadas.

Las ecuaciones anteriores son una versión modificada de las ecuaciones de
Seiberg-Witten en dimensión 3.

El Capı́tulo 5 consta de dos partes. En la primera parte, rederivamos los prin-
cipales resultados que se siguen del análisis asintótico de las ecuaciones de
Seiberg-Witten. Las ideas importantes están todas ya presentes en los artı́culos
de Taubes [68, 66]; la novedad reside en cómo las estructuramos y las pre-
sentamos. Damos un énfasis especial a los aspectos dinámicos y analı́ticos, y
algunas de nuestras demostraciones difieren de las de Taubes. Nuestro obje-
tivo es hacer las ideas de Taubes accesibles a una audiencia de matemáticos
más variada; consideramos que esto es importante porque hay áreas de las
matemáticas, tradicionalmente alejadas de las matemáticas de [68, 66], en las
que estas ideas pueden proporcionar una perspectiva original y muy intere-
sante.

En la segunda parte del Capı́tulo, en cambio, presentamos un resultado hasta
ahora desconocido, que explicaremos más adelante. Primero presentemos los
resultados de la primera parte.

Para ello, es necesario introducir el concepto de invariante de Hopf. El invari-
ante de Hopf de un par de campos vectoriales V, W que preserven la forma de
volumen de (S3, µ) se define como

H(V, W) :=
∫

V · curl−1 W;

o, equivalentemente, como ∫
iVµ ∧ η

para cualquier η tal que dη = iWµ.

La llamada helicidad de un campo vectorial es un ejemplo de invariante de
Hopf, H(X) := H(X, X). La otra magnitud de mayor interés en lo que sigue
esH(curl A, curl X),

H(curl A, curl X) =
∫

curl A · X = r
∫
(1− ψ†σ1ψ) +

∫
M

X · v,
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que redefinimos comoHA(X) := H(curl A, curl X).

El siguiente teorema es el resultado principal de la primera parte del Capı́tulo
5:

Theorem 1.8.3 (Taubes 06 [68], Taubes 08 [66]). Sea X un campo sin ceros en S3

que preserva una forma de volumen µ y con helicidad positiva, H(X) > 0. Fı́jese un
ε > 0 tan pequeo como se desee. Existe una secuencia {rn, ψrn := (ψ1rn , ψ2rn), Arn}
de soluciones a las ecuaciones de Seiberg-Witten (para algún campo v que preserva el
volumen y de norma Ck más pequea que ε) tal que

(i) Si la secuencia de invariantes de Hopf HArn
(X) está acotada, el campo X tiene

una órbita periódica.

(ii) Si la secuencia de invariantes de Hopf HArn
(X) no tiene ninguna subsecuencia

acotada, entonces la medida

σrn :=
rn(1− |ψ1rn |2)µ
HArn

(X)

converge a una medida de probabilidad invariante σ∞ of X. Esta medida satisface
además que σ∞(X · curl−1(X)) 6 0.

Este teorema se corresponde con el Teorema 5.2.1 en el Capı́tulo 5.

El siguiente teorema, que implica en particular que cualquier campo de Bel-
trami sin ceros en S3 tiene una órbita periódica, es una consecuencia (no trivial)
del Teorema 5.2.1.

Theorem 1.8.4 (Taubes 06 [68]). Sea X un campo sin ceros en S3 que preserva una
forma de volumen µ. Si se tiene que curl−1 X = hX, con h una función positiva en
S3, entonces el campo vectorial X tiene una órbita periódica.

Este es el Teorema 5.2.2, cuya prueba se expone en la Sección 5.4.

Las ecuaciones de vórtice: realización de cualquier medida de
probabilidad en dimensión dos como lı́mite de secuencias de
soluciones renormalizadas

En un proyecto en curso, estamos intentando extender el marco conceptual
creado por Taubes, para poder captar propiedades más finas de las medidas
invariantes que emergen de las secuencias de soluciones a las ecuaciones de
Seiberg-Witten. En este contexto, nos encontramos con un problema relacionado,
pero más simple, que versaba sobre el comportamiento de las secuencias de
soluciones a las ecuaciones del vórtice en dimensión 2. La segunda parte del
Capı́tulo 5 presenta una solución a este problema.
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Más concretamente, estudiamos secuencias de soluciones a las ecuaciones del
vórtice rescaladas en C:

?dar = r(1− |φr|2) (1.8.1)

∂ar φ = ∂zφr − (axr − iayr)φ = 0 (1.8.2)

donde las incógnitas son, para r > 0 fijo, una 1-forma real ar := a1rdx + a2rdy
y una función compleja φr : C → C. Nos interesa el comportamiento de las
soluciones a estas ecuaciones a medida que r → ∞ y que la secuencia

Far :=
∫

dar

no está acotada.

El resultado que obtenemos es el siguiente:

Theorem 1.8.5. Sea ν una medida de probabilidad de Borel en el disco abierto D ⊂ C.
Existe una secuencia {(φrn , arn)} de soluciones a las ecuaciones del vórtice rescaladas
en C, con rn → ∞, tal que la 2-forma

σrn =
rn(1− |φrn |2)dx ∧ dy∫

D
darn

converge a ν (en el sentido de convergencia de medidas) en D, y es idénticamente nula
fuera.

En nuestro trabajo en curso, intentamos obtener un resultado análogo al ante-
rior, pero en dimensión 3, local, y concerniente a la secuencia de medidas

σr :=
r(1− |ψ1r|2)µ
HAr (X)

definidas a partir de soluciones (Ar, ψr) a las ecuaciones de Seiberg-Witten.
Esto implicarı́a que, en el caso de las ecuaciones de Seiberg-Witten, no hay
ninguna obstrucción local en cuanto al tipo de medida invariante que puede
surgir en el lı́mite asintótico. Ası́ pues, para comprender mejor las propiedades
de la medida lı́mite σ∞ en el caso campos vectoriales generales generales (ex-
actos y que preservan el volumen), habrı́a que recurrir a argumentos globales.

Capı́tulo 6: la helicidad como único invariante de
campos que preservan el volumen

El último capı́tulo de la Parte II, aunque es relevante para los que lo preceden,
se puede leer de forma independiente y contiene un resultado interesante en sı́
mismo.
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En este capı́tulo nos centramos en el concepto de helicidad (o invariante de
Hopf) de un campo vectorial X; concepto que, como ya hemos visto, tiene un
papel crucial en el capı́tulo anterior.

Lo que demostramos en este capı́tulo es que la helicidad es, en un sentido
preciso, la única cantidad que satisface ciertas propiedades naturales. Nuestro
resultado resuelve en particular una conjetura de V. Arnold y B. Khesin, que
aparece en su célebre monografı́a [5].

Recordemos qué es la helicidad. Sea X un campo vectorial en una 3-variedad
M; supongamos que X preserva una forma de volumen µ. Un campo vectorial
que preserva un volumen se denomina exacto si su flujo a través de cualquier
superficie cerrada es cero. Es esta una condición topológica, equivalente a que
la 2-forma iXµ (que, notemos, es cerrada) sea exacta. La helicidad de un campo
exacto X se define como

H(X) =
∫

M
iXµ ∧ α

donde α es cualquier 1-forma que verifique dα = iXµ. Por el teorema de Stokes,
H(X) no depende de la forma α que se escoja. Si consideramos sobre la var-
iedad M una métrica compatible con la forma µ, podemos definir la helicidad
de forma equivalente como

H(X) =
∫

M
X · curl−1 X.

Es fácil comprobar que la helicidad es invariante ante la acción de difeomorfis-
mos que preservan la forma de volumen. Más concretamente, si Φ : M → M
es un difeomorfismo que preserva µ y que respeta la orientación, se tiene que

H(Φ∗X) = H(X) ,

y si Φ invierte la orientación, tenemosH(Φ∗X) = −H(X).

Además de ser invariante, hay otras propiedades que hacen de la helicidad una
magnitud interesante. Por una parte, la helicidad es un invariante asintótico: es
igual a la media del número de entrelazado asintótico entre pares de órbitas del
campo; por otra (y esto es más relevante para este capı́tulo), es un invariante
integral, es decir, puede expresarse como la integral de una densidad:

H(X) =
∫

M×M
H(x, y, X(x), X(y)) dµx dµy

Esto se debe a que la inversa del operador rotacional (que, en el espacio de
campos exactos, está bien definida) es un operador integral:

H(X) =
∫

M
X · curl−1 X =

∫
M

X(x) ·
∫

M
B(x, y)× X(y) dµy dµx
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En vista de la expresión anterior, V. Arnold y B. Khesin se preguntaron si
podrı́an existir otros invariantes integrales de campos exactos, que pudiesen
expresarse generalmente de la forma:

I(X) =
∫

M1×...×Mn
G(x1, ..., xn, X(x1), ..., X(xn)) dµ1... dµn, (1.8.1)

y conjeturaron que la helicidad era el único. En el capı́tulo 6 demostramos
esta conjetura en el caso de funcionales en el espacio de campos exactos de
regularidad C1: demostramos que cualquier invariante integral I que satisfaga
ciertas hipótesis técnicas naturales (hipótesis que satisfacen, entre otros, los
invariantes integrales que Arnold y Khesin consideraban en su conjetura) ha
de ser simplemente una función de la helicidad.

El ingrediente crucial de la demostración es una propiedad interesante de los
campos que preservan el volumen, descubierta por M. Bessa [14]: que aquellos
topológicamente transitivos son densos en la topologı́a C1.

Este capı́tulo esta basado en el artı́culo [28].
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Part I

Beltrami fields and Dirac
spinors
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Chapter 2

Knotted structures in high
energy Beltrami fields

Let S be a finite union of (pairwise disjoint but possibly knotted and linked)
closed curves and tubes in the round sphere S3 or in the flat torus T3. In the
case of the torus, S is further assumed to be contained in a contractible subset of
T3. In this chapter, we show that for any sufficiently large odd integer λ there
exists a Beltrami field on S3 or T3 satisfying curl u = λu and with a collection
of vortex lines and vortex tubes given by S , up to an ambient diffeomorphism.

2.1 Introduction

An incompressible fluid flow in R3 is described by its velocity field u(x, t),
which is a time-dependent vector field satisfying the Euler equations

∂tu + (u · ∇)u = −∇P , div u = 0

for some pressure function P(x, t). When the velocity field does not depend on
time, the fluid is said to be stationary. This chapter concerns stationary solu-
tions of the Euler equations, which describe equilibrium configurations of the
fluid.

A central topic in topological fluid mechanics, which can be traced back to Lord
Kelvin in the XIX century [70], concerns the existence of knotted stream and
vortex structures in stationary fluid flows. The most relevant of these struc-
tures are the stream lines, vortex lines and vortex tubes of the fluid. We recall
that a stream line and a vortex line are simply a trajectory (or integral curve)
of the velocity field u and the vorticity ω := curl u, respectively, while a vor-
tex tube is the interior domain bounded by an invariant torus of the vorticity.
The existence of topologically complicated stream and vortex lines is a central
topic in the Lagrangian theory of turbulence and in magnetohydrodynamics,
and has been studied extensively in the last decades (see e.g. [41, 58] for recent
accounts of the subject).
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Our understanding of the set of stationary states of the Euler equations in
three dimensions is much more limited than in the two-dimensional situa-
tion [16, 60]. This is due to the fact that, in two dimensions, the vorticity is
a scalar quantity, whereas in the three dimensional case it is a vector field,
which can exhibit a much richer behavior. In particular, the existence of sta-
tionary solutions in R3 having stream lines, vortex lines and vortex tubes that
are knotted and linked in arbitrarily complicated ways has been established
only very recently [26, 24, 25]. Following a suggestion of Arnold [3, 5] related
to his celebrated structure theorem, to prove these results one does not con-
sider just any kind of solutions to the stationary Euler equations but a very
particular class that are called Beltrami fields. A Beltrami field in R3 is a vector
field satisfying the equation

curl u = λu (2.1.1)

for some nonzero constant λ. Notice that stream lines and vortex lines coincide
in the case of a Beltrami field, and that a Beltrami field is automatically smooth
(even real analytic) by the elliptic regularity theory.

The stationary solutions in R3 that one can construct using the techniques
in [26, 24] fall off at infinity as 1/|x|, this decay being sharp for Beltrami fields
but not fast enough for the velocity to be in the energy space L2(R3). In fact, the
incompressibility condition ensures that there are no Beltrami fields in R3 with
finite energy even if the proportionality factor λ is allowed to be nonconstant,
as has been recently shown in [61, 15].

On the contrary, Beltrami fields in a closed Riemannian 3-manifold M (or a
bounded domain of R3) are stationary solutions to the Euler equations that
do have finite energy. If S is a union of (possibly knotted and linked) closed
curves and embedded tori in the 3-sphere, in this setting one can use contact
topology to show [30] that there is a Riemannian metric g on the sphere with
an associated Beltrami field u having a collection of vortex lines and vortex
tubes given precisely by S . The main ideas of the proof are that the Reeb field
of a contact form is in fact a Beltrami field in some adapted metric and that one
can indeed construct contact forms on the sphere whose Reeb fields have the
collection of periodic trajectories and invariant tori given by S . Notice that,
as it is a Reeb vector field, a Beltrami field obtained in this fashion does not
vanish. Conversely, any nonvanishing Beltrami field on the sphere is the Reeb
vector field of some contact form.

Our goal in this chapter is to establish the existence of knotted and linked vor-
tex structures in Beltrami fields on compact manifolds with a fixed Riemannian
metric. Specifically, we will consider Beltrami fields in the flat 3-torus T3 and in
the unit 3-sphere S3; in fact, the former is the most fundamental space consid-
ered in the fluid mechanics literature other than R3 and the latter is perhaps the
simplest example of a closed Riemannian 3-manifold from a geometric point
of view.

It is worth emphasizing that, for a fixed Riemannian structure, the problem
is much more rigid than when one can freely choose a metric adapted to the
geometry of the set of lines and tubes that one aims to recover from the tra-
jectories of a Beltrami field. An obvious reason is that, analytically, Beltrami
fields in a closed Riemannian manifold arise as eigenfields of the curl operator,
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which defines a self-adjoint operator with discrete spectrum and a dense do-
main in the space of divergence-free L2 fields. In the context of spectral theory,
the proportionality constant λ, or rather its absolute value, can be thought of
as the energy of the Beltrami field, although of course it is in no way related to
the L2 norm of the latter.

Our main theorem asserts that there are “many” Beltrami fields u in the sphere
and in the torus with vortex lines and vortex tubes of any link type. Further-
more, these structures are structurally stable in the sense that any vector field
on the torus or the sphere which is sufficiently close to u in the C4 norm and
which preserves some smooth volume measure will also have this collection of
periodic trajectories and invariant tori, up to a diffeomorphism. To state this
result precisely, let us call a tube the closure of a domain (in S3 or T3) whose
boundary is an embedded torus. Throughout, diffeomorphisms are of class
C∞, curves are all assumed to be non-self-intersecting, and we will agree to say
that an integer is large when it is large in absolute value.

Theorem 2.1.1 (Arbitrarily knotted and linked vortex tubes in high energy Bel-
trami fields). Let S be a finite union of (pairwise disjoint, but possibly knotted and
linked) closed curves and tubes in S3 or T3. In the case of the torus, we also assume
that S is contained in a contractible subset of T3. Then for any large enough odd
integer λ there exists a Beltrami field u satisfying the equation curl u = λu and a
diffeomorphism Φ of S3 or T3 such that Φ(S) is a union of vortex lines and vortex
tubes of u. Furthermore, this set is structurally stable.

An important observation is that the proof of this theorem yields a reasonably
complete understanding of the behavior of the diffeomorphism Φ, which is, in
particular, connected with the identity. Oversimplifying a little, the effect of Φ
is to uniformly rescale a contractible subset of the manifold that contains S to
have a diameter of order 1/|λ|. In particular, the control that we have over the
diffeomorphism Φ allows us to prove an analog of this result for quotients of
the sphere by finite groups of isometries (lens spaces). Notice that Φ(S) is not
guaranteed to contain all vortex lines and vortex tubes of the Beltrami field. It
is also worth mentioning that, if S only consists of curves, the condition that
the perturbation of the Beltrami field be volume-preserving is not necessary
for the structural stability of Φ(S), and the smallness in C4 can be replaced by
a C1 condition.

In S3 and T3, Theorem 2.1.1 proves a conjecture of Arnold [3] asserting that
there should be Beltrami fields having stream lines with complicated topology.
Furthermore, it should be noticed that the helicity of the vorticity, that is, the
quantity [57]

H(curl u) :=
∫

M
u · curl u ,

is proportional to its eigenvalue λ so the Beltrami fields constructed in the main
theorem have very large helicity. More precisely, the scale-invariant quantity

H(curl u)
‖u‖2

L2

,

which is given by λ in the case of a Beltrami field, becomes arbitrarily large.
This is fully consistent with Moffatt’s interpretation [57, 58] of helicity as a
measure of the degree of knottedness of the vortex lines in the fluid flow.
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The proof of the theorem involves an interplay between rigid and flexible prop-
erties of high-energy Beltrami fields. Indeed, rigidity appears because high-
energy Beltrami fields in any 3-manifold behave, locally in sets of diameter
1/λ, as Beltrami fields in R3 with parameter λ = 1 do in balls of diameter 1.
The catch here is that, in general, one cannot check whether a given Beltrami
field in R3 actually corresponds to a high-energy Beltrami field on the com-
pact manifold. To prove a partial converse implication in this direction (The-
orem 2.2.1), it is key to exploit some flexibility that arises in the problem as a
consequence of the fact that large eigenvalues of the curl operator in the torus
or in the sphere have increasingly high multiplicities. For this reason the proof
does not work in a general Riemannian 3-manifold.

One should notice that the techniques introduced in [26, 24] to prove the ex-
istence of Beltrami fields in R3 with a prescribed set S of closed vortex lines
and vortex tubes do not work for compact manifolds. The reason is that the
proof is based on the construction of a local Beltrami field in a neighborhood of
S , which is then approximated by a global Beltrami field in R3 using a Runge-
type global approximation theorem. For compact manifolds the complement of
the set S is precompact, so we cannot apply the global approximation theorem
obtained in [26, 24]. In fact, as is well known, this is not just a technical issue,
but a fundamental obstruction in any approximation theorem of this sort. This
invalidates the whole strategy followed in [26, 24] and makes it apparent that
new tools are needed to prove the existence of Beltrami fields with geometri-
cally complex vortex lines and vortex tubes in compact manifolds.

The chapter is organized as follows. In Section 2.2 we will prove the main
theorem assuming that Theorem 2.2.1 holds. Theorem 2.2.1 will be proved in
Section 2.3 in the case of the sphere (with the proof of some technical results
relegated to Section 2.4 and to Chapter 4) and in Section 2.5 in the case of the
torus. We conclude with some remarks that we present in Section 2.6, where in
particular we prove an analog of the main theorem for lens spaces.

2.2 Proof of the main theorem: realization of knot-
ted and linked vortex tubes at small scales and
high energies

For the ease of notation, we shall write M3 to denote either T3 (the standard
flat 3-torus, (R/2πZ)3) or S3 (the unit sphere in R4). A Beltrami field u in M3

is an eigenfield of the curl operator, which satisfies

curl u = λu ,

for some nonzero constant λ. It is known (see e.g. [31]) that the spectrum of curl
in the sphere are the integers of absolute value greater than or equal to 2. In
the case of T3 it is easy to check using Fourier series that the spectrum consists
of the real numbers of the form

λ = ±|k|
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for some k ∈ Z3. In particular, the spectrum of curl in T3 contains the set of
integers. Here and in what follows, | · | denotes the usual Euclidean norm of a
vector.

The following theorem, whose proof is presented in Section 2.3, shows that
a Beltrami field v in R3 can be approximated, up to a suitable rescaling, by
a high-energy Beltrami field u in M3. This fact is key to the proof of Theo-
rem 2.1.1 as it implies that the dynamics of any Beltrami field of R3 in compact
sets can be reproduced in a small ball of M3 by a high-energy Beltrami field
on the manifold, provided that the dynamical properties under consideration
are robust under suitably small perturbations. For concreteness, we will hence-
forth assume that λ is positive; the case of negative λ is completely analogous.

For the precise statement of the theorem, let us fix an arbitrary point p0 ∈
M3 and take a patch of normal geodesic coordinates Ψ : B → B centered at
p0. Here and in what follows, Bρ (resp. Bρ) denotes the ball in R3 (resp. the
geodesic ball in M3) centered at the origin (resp. at p0) and of radius ρ, and we
shall drop the subscript when ρ = 1. The theorem will be then stated in terms
of the vector field Ψ∗u on B, which is just the expression of the Beltrami field u
in local normal coordinates. If ui(x) are the three components of Ψ∗u in the
Cartesian basis {ei}3

i=1 of R3, i.e.,

Ψ∗u(x) =
3

∑
i=1

ui(x) ei ,

we will make use of the rescaled vector field

Ψ∗u
( ·

λ

)
:=

3

∑
i=1

ui
( ·

λ

)
ei .

Theorem 2.2.1 (Inverse localization of Beltrami fields). Let v be a Beltrami field
in R3, satisfying curl v = v. Let us fix any positive numbers ε and m. Then for any
large enough odd integer λ there is a Beltrami field u, satisfying curl u = λu in M3,
such that ∥∥∥∥Ψ∗u

( ·
λ

)
− v
∥∥∥∥

Cm(B)
< ε . (2.2.1)

Let us now show how this result can be exploited to prove the main theorem.
For this, let Φ′ be a diffeomorphism of M3 mapping the set S into the ball B1/2,
and the ball B1/2 into itself. (In S3, the existence of such a diffeomorphism is
trivial, while in the case of T3 it follows from the assumption that S is con-
tained in a contractible set.) We can now define a set S ′ of finitely many closed
curves and tubes in the ball B1/2 as

S ′ := (Ψ ◦Φ′)(S) .

The following result is a straightforward consequence of the main theorem
in [24]:

Theorem 2.2.2. There is a Beltrami field v in R3 satisfying curl v = v and an
orientation-preserving diffeomorphism Φ0 of R3, which coincides with the identity
in the complement of B1/2, such that Φ0(S ′) is a union of vortex lines and vortex
tubes of v. Furthermore, this set is structurally stable.
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Proof. It was shown in [24] that there is a Beltrami field ṽ in R3, satisfying

curl ṽ = λ̃ṽ

for some small positive constant λ̃ < 1, and an orientation-preserving diffeo-
morphism Φ̃ of R3 that is the identity in the complement of B1/2 such that
Φ̃(S ′) is a set of closed vortex lines and vortex tubes of ṽ. The closed vortex
lines are elliptic trajectories of ṽ and the boundaries of the vortex tubes are
KAM-nondegenerate invariant tori of ṽ. Given a positive number Λ let us de-
note the rescaling with factor Λ by ΘΛ(x) := Λx. The theorem follows setting
v(x) := ṽ(x/λ̃), which satisfies the equation curl v = v in R3, and noticing that
(Θλ̃ ◦ Φ̃)(S ′) is a set of closed vortex lines and vortex tubes of v. Since this set
is contained in B1/2 because λ̃ < 1, it is standard that there exists a diffeomor-
phism Φ0 of R3 mapping S ′ onto Θλ̃ ◦ Φ̃(S ′) which is the identity in the com-
plement of B1/2. The closed vortex lines in the set Φ0(S ′) are structurally stable
under C1-small perturbations because they are elliptic [59, Section 2.1], while
the vortex tubes are structurally stable under C4-small volume-preserving per-
turbations by the KAM theorem.

Let us now combine Theorems 2.2.1 and 2.2.2 to conclude the proof of Theo-
rem 2.1.1. Theorem 2.2.1 guarantees that, for any large enough odd integer λ,
the Beltrami field v constructed in Theorem 2.2.2 can be approximated in the
sense of Eq. (2.2.1) by a Beltrami field u defined on M3. Then it is not hard
to see that the structural stability of the set Φ0(S ′) of closed vortex lines and
vortex tubes of v implies the existence of a diffeomorphism Φ1 of R3, which
is the identity in the complement of B1/2, such that Φ1(S ′) ⊂ B1/2 is a set of
structurally stable closed vortex lines and vortex tubes of the rescaled field

Ψ∗u
( ·

λ

)
. (2.2.1)

Indeed, because of the ellipticity of the trajectories, this claim is immediate in
the case of closed vortex lines provided that the number m appearing in the
approximation estimate (2.2.1) is at least 1. For the case of vortex tubes one can
use that the Beltrami field u is divergence-free in M3, which ensures that the
field (2.2.1) preserves a smooth volume 3-form in B that is a small perturbation
of the Euclidean one, namely

(Ψ∗µ)
( ·

λ

)
= µ0 + O(λ−1) .

Here µ and µ0 respectively denote the canonical volume 3-forms of M3 and
R3. Hence, taking m > 4 in the approximation estimate (2.2.1), this enables us
to apply the KAM theorem for volume-preserving fields in R3, which ensures
the existence of the aforementioned diffeomorphism Φ1 yielding the desired
set of vortex tubes of the rescaled field (2.2.1). (For the benefit of the reader let
us recall that, in order to prove this KAM result, one takes a Poincaré section
transversal to the tube of v under consideration, thereby reducing the problem
to perturbations of a nondegenerate twist map of the annulus with the inter-
section property. It is then standard that one can apply a Moser-type twist
theorem to guarantee the preservation of the invariant tori. The details, which
go as in [24, Section 7.4], are omitted.)
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It follows from the above discussion that the diffeomorphism Φ of M3 can be
then defined as

Φ(x) :=

{
Φ′(x) if x 6∈ Φ′−1(B) ,
(Ψ−1 ◦ Θ̃1/λ ◦Φ1 ◦Ψ ◦Φ′)(x) if x ∈ Φ′−1(B) ,

where Θ̃1/λ is a smooth diffeomorphism of R3 which is equal to the rescaling
Θ1/λ in the ball B1/2 and is the identity in the complement of the ball B3/4. This
ensures that Φ is a smooth diffeomorphism of M3 such that the set Φ(S) is the
union of structurally stable closed vortex lines and vortex tubes of the Beltrami
field u, so the main theorem follows.

2.3 Proof of the inverse localization theorem in the
sphere

In this section we show that for any Beltrami field v in R3 satisfying curl v = v
there exists a Beltrami field u in S3 satisfying curl u = λu whose dynamics in a
ball of radius λ−1 is very close to the dynamics of v in the unit ball. The proof
is largely based on the results in Chapter 4, and we divide it in three steps.

In the first step, the Beltrami field v, which is, in particular a solution of the
Helmholtz equation

∆v + v = 0

(note that for divergence free fields, curl2 = −∆) is approximated in B by a
field w that is a finite sum of spherical Bessel functions j0(|x− xn|) centered at
different points xn ∈ R3 (Proposition 2.3.1). The field w is not a Beltrami field,
however, but it still satisfies the Helmholtz equation ∆w + w = 0.

In the second step we show that one can take three spherical harmonics Y1, Y2, Y3
in S3 of energy λ(λ− 2) whose behaviors in a ball of radius 1/λ respectively
correspond to those of the three components of the field w in a ball of radius
1, provided that λ is large enough (Proposition 2.3.2). Finally, in the third step
we construct a Beltrami field u in S3 of energy λ, using as key ingredients the
spherical harmonics Yk and a basis of Hopf fields, so that u approximates the
field v in the sense of Eq. (2.6.1) (Proposition 2.3.3).

For notational convenience, in this section we will write Λ := λ − 2. Notice
that Λ is then a large integer.

The first step is encoded by the following Proposition:

Proposition 2.3.1. For any δ > 0, there is a finite radius R and finitely many con-
stants {cn}N

n=1 ⊂ R3 and {xn}N
n=1 ⊂ BR such that the field

w :=
N

∑
n=1

cn j0(|x− xn|)

approximates the Beltrami field v in the ball B as

‖v− w‖Cm+2(B) < δ .
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This proposition is the particular case q = 3, n = 3 of Proposition 4.1.2 in
Chapter 4. When comparing the above with the statement in Proposition 4.1.2,
it is convenient to have in mind the following relationship between spherical
Bessel functions and Bessel functions of the first kind:

j0(t) =
√

π

2t
J 1

2
(r) .

For the second step, let us write the vector field w in terms of its components
wi in the Cartesian basis {ei}3

i=1 of R3:

w =
3

∑
i=1

wiei .

Each component wi is a solution of the Helmholtz equation ∆wi + wi = 0 in
R3. We now show that for any large enough integer Λ, there exists a spherical
harmonic Yi on S3 with energy Λ(Λ + 2) that behaves in the ball B1/Λ as wi

does in the unit ball.

Proposition 2.3.2. Given any positive constant δ, for any large enough integer Λ
there is a spherical harmonic Yi on S3 with energy Λ(Λ + 2) such that∥∥∥∥wi −Yi ◦Ψ−1

( ·
Λ

)∥∥∥∥
Cm+2(B)

< δ .

The proof of this result is the the particular case q = 1 and n = 3 of Proposition
4.1.3 in Chapter 4. We refer the reader to that chapter for details.

For the last step, let us consider the three positively oriented orthonormal Hopf
vector fields in S3 that, in terms of the Cartesian coordinates of R4, are explic-
itly given by

h1 := (−x4, x3,−x2, x1) ,
h2 := (−x3,−x4, x1, x2) ,
h3 := (−x2, x1, x4,−x3) .

It is well known that they are curl eigenfields with eigenvalue 2, that is,

curl hi = 2hi .

We have taken the the Cartesian basis ei of R3 so that Ψ∗hi(0) = ei.

In the following proposition we show how to construct a Beltrami field on S3

using the spherical harmonics Yi obtained in Proposition 2.3.2 and the Hopf
fields hi so that it approximates the Beltrami field v in a suitable sense.

Proposition 2.3.3. The vector field on the sphere

u :=
1

2Λ2 curl(curl+Λ) (Y1h1 + Y2h2 + Y3h3)

is a Beltrami field satisfying curl u = (Λ + 2)u and approximates v as∥∥∥∥Ψ∗u
( ·

Λ

)
− v
∥∥∥∥

Cm(B)
< Cδ ,

provided that Λ is sufficiently large.
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Here C is a constant depending on m but not on δ. Since rescaling Ψ∗u by Λ is
essentially equivalent to rescaling it by λ because

1
Λ

=
1
λ

(
1 +

2
Λ

)
,

Theorem 2.2.1 then follows from Proposition 2.3.3 provided Λ is sufficiently
large and δ is chosen small enough for Cδ not to be larger than ε/2. The proof
of Proposition 2.3.3 is given in Section 2.4.

2.4 Proof of Proposition 2.3.3

We start by defining a vector field ũ on S3 using the Hopf fields hi as

ũ := Y1 h1 + Y2 h2 + Y3 h3 ,

where the functions Yi are the spherical harmonics obtained in Proposition 2.3.2.
In the following lemma we compute the action of the Laplacian on the vector
field ũ using the properties of the Hopf fields. The Laplacian on vector fields
that we need to consider is defined as the dual of the Hodge Laplacian on 1-
forms, and can be computed as

∆ := − curl curl+∇div ,

where ∇ and div are the gradient and divergence operators, respectively.

Lemma 2.4.1. The Laplacian of the vector field ũ is

−∆ũ = Λ(Λ + 2) ũ + 2 curl ũ .

Proof. The proof is simpler if we work with differential forms, so let us denote
by β̃ and αi the 1-forms that are dual to ũ and hi, respectively, with respect to
the canonical metric on S3. We recall that the dual of curl ũ is the 1-form ?dβ̃,
with ? being the Hodge star operator. The 1-form β̃ is given by β̃ = Yi αi, where
summation over repeated indices is understood throughout. The Laplacian of
β̃ is then

−∆β̃ := dd∗ β̃ + d∗dβ̃ = −d ? d ? (Yi αi) + ?d ? d(Yi αi) .

Using that ?dαi = 2αi because αi is the dual 1-form of the Hopf field hi, and
that the differential of Yi can be written as dYi = hj(Yi) αj, where hj(Yk) denotes
the action of the vector field hj on the scalar function Yk, we readily obtain

d ? d ? (Yi αi) =
1
2

d ? (hj(Yi) αj ∧ dαi) .

Observing that αj ∧ dαi = 2αj ∧ ?αi = 2δjk µ, where µ stands for the Rieman-
nian volume 3-form on S3, it follows that

d ? d ? (Yi αi) = d(hi(Yi)) = hjhi(Yi) αj . (2.4.1)
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Analogously, a straightforward computation using that ?(αj ∧ αi) = ε jilαl ,
where ε jil stands for the Levi-Civita permutation symbol, and the identity εimlε jkl =
δijδmk − δikδmj yields

? d(Yi αi) = ε jilhj(Yi) αl + 2Yi αi , (2.4.2)

? d ? d(Yi αi) = −hjhj(Yi) αi + hihj(Yi) αj + 4ε jilhj(Yi) αl + 4Yi αi . (2.4.3)

Finally, adding Eqs. (2.4.1) and (2.4.3) we obtain

−∆β̃ = −hjhi(Yi) αj + hihj(Yi) αj − hjhj(Yi) αi + 4ε jilhj(Yi) αl + 4Yi αi

= Λ(Λ + 2)Yi αi + 2ε jilhj(Yi) αl + 4Yi αi ,

where we have used that ∆Yi = −Λ(Λ+ 2)Yi and that the commutator of Hopf
fields is [hi, hj] = −2εijlhl . The lemma then follows upon noticing that

2ε jilhj(Yi) αl + 4Yi αi = 2 ? dβ̃

by Eq. (2.4.2).

Using this lemma, it is easy to check that

u :=
1

2Λ2 curl(curl+Λ)ũ

is a Beltrami field with eigenvalue Λ + 2. Indeed, a straightforward computa-
tion shows that

curl u =
1

2Λ2 curl curl(curl+Λ)ũ =
1

2Λ2 curl(−∆ + Λ curl)ũ

=
Λ + 2
2Λ2 curl(curl+Λ)ũ = (Λ + 2)u .

To prove the Cm estimate of the proposition, it is convenient to introduce the
following auxiliary vector field in the unit ball B of R3

ū(x) := Ỹ1(x) e1 + Ỹ2(x) e2 + Ỹ3(x) e3 ,

where x ∈ B and Ỹi was defined in (4.1.4). There is no loss of generality in
choosing the orthonormal basis ei of R3 compatible with the Hopf fields hi in
the sense that Ψ∗(hi)(0) = ei. It is then easy to check that for x ∈ B one has:

Ψ∗ũ
( ·

Λ

)
= ū +

G1

Λ
ū ,

Ψ∗(curl ũ)
( ·

Λ

)
= Λ

(
curl0 ū +

G2

Λ
ū +

G3

Λ
Dū
)

,

Ψ∗(curl curl ũ)
( ·

Λ

)
= Λ2

(
curl0 curl0 ū +

G4

Λ
ū +

G5

Λ
Dū +

G6

Λ
D2ū

)
.

Here curl0 denotes the Euclidean curl operator, acting on the variables x, and
the functions Gi(x, Λ) are (possibly matrix-valued) functions that depend smoothly
on all their variables and whose derivatives are uniformly bounded as

sup
x∈B
|Dα

x Gi(x, Λ)| < Cα . (2.4.4)
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Here the constant Cα depends on the multiindex α but not on Λ.

These identities and the fact that (curl0 curl0 + curl0)v = 2v then permits us to
write∥∥∥Ψ∗u

( ·
Λ

)
− v
∥∥∥

Cm(B)
6
∥∥∥1

2
(curl0 curl0 + curl0)(ū− v)

∥∥∥
Cm(B)

+
C
Λ
‖ū‖Cm+2(B)

6 C‖ū− v‖Cm+2(B) +
C
Λ
‖ū− w‖Cm+2(B)

+
C
Λ
‖v− w‖Cm+2(B) +

C
Λ
‖v‖Cm+2(B) .

(2.4.5)

To conclude, notice that it stems from Propositions 2.3.1 and 2.3.2 that

‖v− w‖Cm+2(B) < δ

‖ū− w‖Cm+2(B) < 3δ ,

so in particular

‖ū− v‖Cm+2(B) 6 ‖ū− w‖Cm+2(B) + ‖v− w‖Cm+2(B) < 4δ .

Hence the proposition follows from the estimate (2.4.5) upon noticing that v
is a fixed vector field (so its norm is independent of Λ) and choosing Λ large
enough, which also allows us to take δ as small as one wishes.

2.5 Proof of the inverse localization theorem in the
torus

Arguing as in the proof of Proposition 2.3.1 we can readily show that for any
δ > 0, there exists a vector field v1 on R3 that approximates the Beltrami field
v in the ball B as

‖v1 − v‖C0(B) < δ , (2.5.1)

and that can be represented as the Fourier transform of a distribution sup-
ported on the unit sphere of the form

v1(x) =
∫

S2
f (ξ) eiξ·x dσ(ξ) .

Again S2 denotes the unit sphere {ξ ∈ R3 : |ξ| = 1} and f is a smooth R3-
valued function on S2.

Let us now cover the sphere S2 by finitely many closed sets {Un}N
n=1 with

piecewise smooth boundaries and pairwise disjoint interiors such that the di-
ameter of each set is at most δ′. We can then repeat the argument used in the
proof of Proposition 2.3.1 to infer that, if ξn is any point in Un and we set

cn := f (ξn) |Un| ,
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the field

w(x) :=
N

∑
n=1

cn eiξn ·x

approximates the field v1 uniformly with an error proportional to δ′:

‖w− v1‖C0(B) < Cδ′ .

The constant C depends on δ but not on δ′, so one can choose the maximal
diameter δ′ small enough so that

‖w− v1‖C0(B) < δ . (2.5.2)

In turn, the uniform estimate

‖w− v‖C0(B) 6 ‖w− v1‖C0(B) + ‖v− v1‖C0(B) < 2δ

can be readily promoted to the Cm+2 bound

‖w− v‖Cm+2(B) < Cδ . (2.5.3)

This follows from standard elliptic estimates as both w (whose Fourier trans-
form is supported on S2) and v satisfy the Helmholtz equation:

∆v + v = 0 , ∆w + w = 0 .

Furthermore, replacing w by its real part if necessary, we can safely assume
that the field w is real-valued.

Let us now observe that for any large enough odd integer Λ one can choose the
points ξn ∈ Un ⊂ S2 so that they have rational components (i.e., ξn ∈ Q3) and
the rescalings Λξn are actually integer vectors (i.e., Λξn ∈ Z3). This is because
rational points ξ ∈ S2 ∩Q3 with Λξ ∈ Z3 are uniformly distributed on the unit
sphere as Λ→ ∞ through odd values [20].

Choosing ξn as above, we are now ready to prove Theorem 2.2.1 in the torus.
Without loss of generality, we will take the origin as the base point p, so that we
can identify the ball B with B through the canonical 2π-periodic coordinates
on the torus. In particular, the diffeomorphism Ψ : B → B that appears in the
statement of Theorem 2.2.1 can be understood to be the identity.

Since Λξn ∈ Z3, it follows that the vector field

ũ(x) :=
N

∑
n=1

cneiΛξn ·x

is 2π-periodic (that is, invariant under the translation x → x + 2π a for any
vector a ∈ Z3). Therefore it descends to a well-defined vector field on the
torus T3 := R3/(2πZ)3, which we will still denote by ũ.

Since the Fourier transform of ũ if now supported on the sphere of radius Λ, ũ
then satisfies the Helmholtz equation on the flat torus T3 with energy Λ2,

∆ũ + Λ2ũ = 0 .
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A straightforward calculation then reveals that the vector field on the torus

u :=
curl curl ũ + Λ curl ũ

2Λ2

satisfies the equation
curl u = Λu ,

so it is a Beltrami field on T3 with eigenvalue λ := Λ.

Let us now notice that, with some abuse of notation,

ũ
(

x
Λ

)
= w(x)

for all points x, say, in the ball B. In particular, as the derivatives of the rescaled
vector field ũ(·/Λ) behave as

curl ũ
( ·

Λ

)
=Λ curl w ,

curl curl ũ
( ·

Λ

)
=Λ2 curl curl w ,

it then follows that∥∥∥∥u
( ·

Λ

)
− v
∥∥∥∥

Cm(B)
=

∥∥∥∥Λ2 curl curl w + Λ2 curl w
2Λ2 − v

∥∥∥∥
Cm(B)

=

∥∥∥∥curl curl(w− v) + curl(w− v)
2

∥∥∥∥
Cm(B)

6 C‖w− v‖Cm+2(B)

< Cδ ,

where we have used the identity curl curl v + curl v = 2v to pass to the second
equality and the estimate (2.5.3) to derive the last inequality. The theorem then
follows provided that δ is chosen small enough for Cδ < ε.

2.6 Concluding remarks

To conclude, let us make a few simple observations about our main result that
follow from its proof:

There are many Beltrami fields with closed vortex lines and tubes of a given
link type

Indeed, since our construction works for any large enough odd integer λ and
Beltrami fields corresponding to different eigenvalues are L2 orthogonal, there
are many non-proportional Beltrami fields with closed vortex lines and tubes
realizing any given link.
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In the sphere, the result holds true for any large enough eigenvalue λ

Indeed, the fact that Λ is odd was never used in the proof of Theorem 2.2.1
in S3 (cf. Section 2.3), so it stems that, given any finite union of closed curves
and tubes S , for any integer λ with |λ| greater than certain constant Λ0(S)
there is a Beltrami field with eigenvalue λ having a structurally stable set of
vortex lines and vortex tubes diffeomorphic to S .

In our Beltrami fields on the sphere, knots and links appear in pairs

In fact, using the Hopf basis {hi}3
i=1 introduced in Section 2.3, any Beltrami

field u on S3 with eigenvalue λ := Λ + 2, with Λ a nonnegative integer, can be
written as

u = F1 h1 + F2 h2 + F3 h3 ,

where Fi are smooth functions on the sphere. It is then easy to check using
Eq. (2.4.2) that Fi must be a spherical harmonic of energy Λ(Λ + 2). Since such
a spherical harmonic is known to have parity (−1)Λ, in the sense that

Fi(−p) = (−1)Λ Fi(p)

for all points p in the unit sphere S3, and the Hopf fields hi are odd (i.e.,
hi(−p) = −hi(p)), we conclude that a Beltrami field on the sphere with eigen-
value λ has parity (−1)λ+1, so it is either even or odd. Therefore, the fact that
Φ(S) is a set of vortex lines and vortex tubes of the Beltrami field u diffeomor-
phic to S and contained in a ball of small radius 1/λ automatically implies that
so is the antipodal set −Φ(S).

The result carries over to lens spaces

In order to see why, the key is that in the sphere the statement of Theorem 2.2.1
can be refined to include localizations around different points of the sphere.
More precisely, let us fix l points P1, . . . , Pl in S3, none of which are antipodal
to another (that is, Pj 6= −Pk), and denote by Ψj : B(Pj, R0) → BR0 a patch of
normal geodesic coordinates centered at the point Pj. Here B(Pj, R0) denotes
the geodesic ball in the sphere of center Pj and radius

R0 :=
1
2

min
j 6=k

distS3(Pj, Pk) .

The approximation theorem can then be stated as follows:

Theorem 2.6.1. Let {vj}l
j=1 be Beltrami fields in R3, satisfying curl vj = vj. Let

us fix any positive numbers ε and m. Then for any large enough integer λ there is a
Beltrami field u, satisfying curl u = λu in S3, such that∥∥∥∥(Ψj)∗u

( ·
λ

)
− vj

∥∥∥∥
Cm(B)

< ε (2.6.1)

for all 1 6 j 6 l.
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For the proof, it is enough to argue exactly as in Section 2.3, but using, in-
stead of Proposition 2.3.2, a refinement of it, Proposition 4.2.1, that is proven in
Chapter 4.

In particular, this yields the existence of Beltrami fields in the sphere hav-
ing prescribed sets of closed vortex lines and tubes (modulo diffeomorphism)
around any finite number of points P1, . . . , Pl . These lines and tubes are con-
tained in balls of radius 1/λ. This line of reasoning also allow us to prove an
analog of Theorem 2.1.1 in any lens space L(p, q):

Theorem 2.6.2. Let S be a finite union of (pairwise disjoint, but possibly knotted
and linked) closed curves and tubes contained in a contractible subset of a three-
dimensional lens space L(p, q). Then for any large enough even integer λ there ex-
ists a Beltrami field u satisfying the equation curl u = λu and a diffeomorphism Φ of
L(p, q) such that Φ(S) is a union of vortex lines and vortex tubes of u. Furthermore,
this set is structurally stable.

Proof. The lens space can be written as

L(p, q) = S3/G ,

where G is a finite isometry group isomorphic to Zp. We can assume that G is
generated by certain isometry g. Let us now fix a point p0 ∈ S3 and set

Pj := gj · p0

for 0 6 j 6 p− 1. If Ψ is a patch of normal geodesic coordinates around p0, we
will also set Ψj(x) := Ψ(g−j · x). Notice that if p is odd there are not any points

in the set {Pj}
p−1
j=0 that are antipodal to each other, while for p even Pj and Pk

are antipodal if and only if |j− k| = p
2 .

Let us fix a Beltrami field v in R3 as in Theorem 2.2.2. Theorem 2.6.1 then
ensures the existence of a Beltrami field ũ in S3 such that∥∥∥∥(Ψj)∗ũ

( ·
λ

)
− vj

∥∥∥∥
Cm(B)

< ε ,

where 0 6 j 6 p′ − 1 with p′ := p if p is odd and p′ := p
2 if p is even. Here

v0 := v and vj := 0 for 1 6 j 6 p′ − 1. Notice that, as λ is even, we saw in
the previous remark that ũ is odd, i.e., ũ(x) = −ũ(−x), so that ũ is equivariant
under the isometry x 7→ −x. Hence, by construction, the vector field

u :=
p′−1

∑
j=0

(gj)∗ũ

is G-equivariant, and therefore it defines a vector field in the quotient space
L(p, q) = S3/G that we still denote by u with some abuse of notation. Arguing
exactly as in the proof of the main theorem one can show that the vector field u
on L(p, q) indeed has the desired properties, so the statement then follows.

61



CHAPTER 2. KNOTTED STRUCTURES IN HIGH ENERGY BELTRAMI
FIELDS

In the torus, the distribution of rational points on the 2-sphere is key

The proof that we have given holds provided that the eigenvalue λ is an odd
integer of sufficiently large absolute value. It does not say anything about even
integers, or about eigenvalues that are not integers. This assertion can be re-
fined a little, however. We have seen that for any eigenvalue λ of the curl
operator in T3 there is a set of points {ξn}N

n=1 lying on the unit sphere S2 of R3

such that λξn ∈ Z3 (this is obvious from the fact that one can write λ = |k|with
k ∈ Z3). Therefore, in the proof of Theorem 2.2.1 for the torus (cf. Section 2.5)
one can substitute the collection of odd integers Λ by any subset of eigenvalues
λ for which there is a set of points {ξn}N

n=1 ⊂ S2 (depending on λ and such that
the rescalings λξn are in Z3) that becomes dense in the sphere as |λ| → ∞ along
this subset of eigenvalues. In particular, replacing the density condition by the
more stringent assumption that {ξn} becomes equidistributed on the sphere,
it turns out that the characterization of the numbers λ that satisfy this prop-
erty is somehow related to the celebrated Linnik problem in number theory.
In particular, since the aforementioned equidistribution property holds for any
eigenvalue for which the integer λ2 is square-free [19], we immediately infer
that the statement of Theorem 2.1.1 also holds for any large enough eigenvalue
λ of curl (possibly even or non-integer) for which λ2 is square-free.

Another interesting point to consider is whether the above methods apply to
tori of the form T3

L := R3/(2πL), where L is a general lattice in R3. As above,
the key in this case is to have a density or equidistribution result at disposal,
but this time not for rational points on the sphere and integer eigenvalues, but
for a set of points {ξn}N

n=1 ⊂ S2 and real eigenvalues λ such that λξn ∈ L′,
where L′ is the so called reciprocal lattice to L, which is defined as the set
of points k ∈ R3 such that k · x ∈ Z for all x ∈ L. In some very particular
cases, e.g. for lattices of the form L := aZ3 with a ∈ R\{0}, the previous
equidistribution results directly hold for a sequence of eigenvalues of the form
λ/a with λ an odd integer. In general, however, the authors are not aware of
any results in this direction.
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Chapter 3

Geometric structures in the
eigenfunctions of Dirac
operators

In spheres of dimension n > 3, let Σ := {Σ1, ..., ΣN} be any collection of codi-
mension 2 smooth submanifolds of arbitrarily complicated topology (N being
the complex dimension of the spinor bundle). In this chapter we show that
there is always an eigenfunction ψ = (ψ1, ..., ψN) of the Dirac operator (in fact,
infinitely many of them) such that the submanifold Σi, modulo ambient diffeo-
morphism, is a structurally stable nodal set of the spinor component ψi. The re-
sult holds for any choice of trivialization of the spinor bundle. The emergence
of these complicated structures takes place at small scales and sufficiently high
energies.

3.1 Introduction

Regarding the spectral properties of elliptic operators on a compact manifold, a
problem of much physical and mathematical significance is to understand the
ultraviolet regime, that is, which patterns emerge as the eigenvalues get larger.

The paradigmatic example of such a pattern is Weyl’s law on the growth of
the number of eigenvalues of the Laplace operator, which first appeared as
a heuristic derivation of the energy distribution of black body radiation (the
so-called Rayleigh-Jeans law, at the heart of the ultraviolet catastrophe). A
more modern example, to this day the object of intense investigation, is S. T.
Yau’s conjecture [75] on the growth of the Hausdorff measure of the zero sets of
eigenfunctions: the total hypersurface measure is expected to be proportional
to the square root of the eigenvalue, regardless of the manifold. In the case of
real analytic Riemannian metrics, this conjecture was proved by H. Donnelly
and C. Fefferman [18]; in the general case, some very recent breakthroughs
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have been made by A. Logunov [52, 53] and A. Logunov and E. Malinnikova
[54].

These asymptotic laws suggest a certain universality of the ultraviolet behav-
ior. Indeed, leaving the constants aside, they do not depend on the metric used
to define the elliptic operator, nor do they detect the topology of the underly-
ing manifold. Even if the magnitudes of interest are global, they seem to be
controlled only by the small scale behavior. The intuition is that, at sufficiently
high energies, the characteristic scales are very small with respect to those rel-
evant to the geometry and topology of the manifold, hence the behavior of
eigenfunctions should not be very sensible to these.

Our aim in this chapter is to investigate, from the above perspective, the topol-
ogy of the nodal sets of eigenfunctions of Dirac operators.

Dirac operators have gained a central role in geometry, by virtue of their an-
alytic properties (especially the index theorem and the Weitzenbőck formula),
and how these relate to the geometry and topology of the manifold (see e.g
[35, 73]). What can be learned from their spectral properties has also interested
mathematicians and physicists alike [17, 9, 71].

On the other hand, the problem of the allowed shapes of zero sets of solutions
to elliptic PDEs also has some interesting history. If, instead of the Dirac opera-
tor, one considers the Cauchy-Riemann operator, it corresponds to a weakened
version of the second Cousin problem: what codimension 2 submanifolds of
a complex manifold can be (maybe up to diffeomorphism) the nodal set of a
holomorphic function? As first shown by K. Oka [63] (in what became both
one of the precursors of sheaf theoretical methods in algebraic geometry, and
a first hint of M. Gromov’s Oka Principle [34]), in the case of a Stein manifold,
the only obstruction is the obvious one: it must be possible to realize the sub-
manifold in question as the zero set of a continuous, complex-valued function.

In a n-dimensional spin manifold M, we can formulate an analogous problem
for eigenfunctions of the Dirac operator. Recall that eigenfunctions of the Dirac
operator are sections of a hermitian vector bundle S of complex rank r(n) =

2b
n
2 c, called the spinor bundle. In a spin manifold of dimension 3 or higher, the

regular zero sets of a spinor are empty (because 2r(n) > n), so we will focus
our attention on the topology of the zero sets of the spinor components. These
are complex-valued, so their regular zero sets are, as in the holomorphic case,
codimension 2 submanifolds (interestingly, by a result of C. Ba̋r [10], critical
level sets of a spinor are also of codimension at most 2).

To be more precise, if the spinor bundle is trivial, a choice of trivialization
makes any section of S a collection of r(n) complex-valued functions; if the
section is an eigenfunction of the Dirac operator, these complex-valued func-
tions are related by a first order partial differential relation, and this relation
might impose restrictions on how topologically intricate the zero sets of the
functions can get to be. For example, in S3, a spinor can be decomposed in two
components (ψ1, ψ2). If L1 and L2 are two disjoint closed curves, arbitrarily
knotted and linked, one might ask whether it is possible to find an eigenfunc-
tion of the Dirac operator such that L1 is a nodal set of ψ1, and L2 is a nodal
set of ψ2, possibly up to an ambient diffeomorphism (henceforth, by a nodal
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set of a function we mean a union of connected components of its zero set, not
necessarily the whole zero set).

More generally, given a collection of r(n) codimension 2 submanifolds, S :=
{Σa}r(n)

a=1 , we will say that a section of the spinor bundle ψ realizes S if each
submanifold Σa, possibly modulo an ambient diffeomorphism Φ, is a nodal
set of the corresponding spinor component ψa, Φ(Σa) ⊂ ψ−1

a (0). The main
result in this chapter is that, in the case of the round n-dimensional sphere, any
collection can be realized, for any given trivialization, by Dirac eigenfunctions
of high enough energy:

Theorem 3.1.1. Let S := {Σa}r(n)
a=1 be a collection of r(n) closed, pairwise disjoint,

smooth codimension 2 submanifolds in Sn, for n > 3. Fix an integer m > 1. For
any large enough positive integer k, and for any choice of orthonormal basis of Killing
spinors trivializing the spinor bundle, there is a Cm-open set of eigenfunctions of the
Dirac operator of eigenvalue ±( n

2 + k) realizing S.

The proof exhibits the interplay between, on one side, the flexibility of such
questions in euclidean space (or more generally, in open manifolds); and on the
other side, a certain notion of universality at high energies and corresponding
small scales that reduces the problem to the euclidean case.

Flexibility in euclidean space is captured by the following result, whose proof
will be given in Section 3.4. If we denote by D0 the standard Dirac operator on
Rn, it reads:

Theorem 3.1.2. Fix an integer m > 1, and an arbitrarily small real number ε > 0.
Inside the unit ball B ⊂ Rn, consider a collection S := {Σa}r(n)

a=1 of r(n) closed,
pairwise disjoint, smooth codimension 2 submanifolds. For any given λ ∈ R, there is
a Cr(n)-valued function φ := (φ1, ..., φr(n)), satisfying the Dirac equation D0φ = λφ

on Rn, and a diffeomorphism Φ0 : B → B satisfying ||Φ0 − Id||Cm 6 ε, such that
Φ0(Σa) is a nodal set of φa. Further, these nodal sets are structurally stable.

The nodal sets being structurally stable means that any other Cr(n)-valued
function ϕ := (ϕ1, ..., ϕr(n)) that is close enough to φ = (φ1, ..., φr(n)) in the Cm

topology will have the same collection of nodal sets, modulo a diffeomorphism
arbitrarily close to the identity (more precisely, once one choses how close to
the identity the diffeomorphism is to be, there exists a bound on how close to φ
a function ϕ needs to be). This stability is a consequence of the fact that, by our
construction, the derivatives dxφa will have full rank for all x ∈ Φ(Σa) (the re-
lation between the full rank of the derivatives and the stability of the structures
is often called Thom’s isotopy lemma, see e.g [1]).

In [27], A. Enciso and D. Peralta-Salas introduced a general strategy to tackle
similar realization questions for level sets of solutions of second order elliptic
PDEs in euclidean space. It is based on finding local solutions with prescribed
1-jet on the submanifold one wants to realize (which can be done by means
of Cauchy-Kovalevskaya theorem, or solving a well chosen boundary value
problem), and then extending these local solutions to global ones by means
of a Runge-type approximation theorem. That we have prescribed the first
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derivative at the submanifold becomes crucial in this last step, to ensure the
structural stability of the level set.

The proof of our euclidean result adapts this strategy to the case of the Dirac
operator, but this requires some further considerations. The main difficulty is
that now we can only prescribe the 0-jet on the local Cauchy problem, because
the Dirac operator is of order one, so structural stability does not come out
automatically and a more involved construction is needed.

On compact manifolds, however, the whole strategy above is guaranteed to fail
from the start. The reason for this failure is of a fundamental nature: on a com-
pact manifold, one cannot use Runge-type approximations without creating
singularities in the global solutions.

In contrast, the idea of the proof of Theorem 3.1.1 is to regain some flexibility
by exploiting the increasing dimension of the space of eigenfunctions of the
Dirac operator. This is analogous to the strategy used in [29] in the context of
invariant sets of eigenfunctions of the curl operator. Specifically, we prove that
for any given eigenfunction φ of the euclidean Dirac operator of eigenvalue 1,
there are many Dirac spinors in the sphere of high enough eigenvalue n

2 + k
whose behavior (in the sense of Cm norm) in a ball of radius k−1 is very close
to the behavior of φ in the unit ball.

This implies that any property that eigenfunctions of the euclidean Dirac op-
erator exhibit on compact sets is also exhibited at small scales by high energy
eigenfunctions of the Dirac operator on the sphere, provided such property
is robust under suitably small perturbations. Theorem 3.1.2 precisely ensures
that the realization of any arbitrarily complicated collection of submanifolds S
is a property of this kind.

The proof of the theorem yields as well a rather precise understanding of the
ambient diffeomorphism Φ through which the structure S is realized. It ba-
sically consists In rescaling an open subset containing S so that it gets inside
a ball of radius proportional to k−1. In principle, we have no control on the
nodal sets outside the small ball. Nonetheless, the analysis can be refined so
that one is able to construct eigenfunctions with prescribed nodal sets inside a
given number (as large as we want) of small enough balls.

The chapter is organized as follows. In Section 3.2 we will prove Theorem 3.1.1,
assuming the euclidean realization theorem (Theorem 3.1.2) and the key in-
verse localization result (Theorem 3.2.1). The inverse localization result is then
proved in Section 3.3, assuming as input the key inverse localization for spher-
ical harmonics that is the main concern of the Chapter 4. The euclidean real-
ization theorem is proved in Section 3.4. In Section 3.5 we adapt the previous
results to prescribe the nodal sets at multiple regions at once. We conclude with
some comments about the analog of Theorem 3.1.1 in the torus case, which can
be proved with minor adaptations of the ideas in this chapter, together with
the ones in Section 2.5 of Chapter 2.
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3.2 Proof of the main theorem

To set the stage, consider the sphere Sn (n > 3) endowed with the round metric
g of constant sectional curvature 1. We will denote by S the spinor bundle,
whose sections ψ : Sn → S we call spinors. The canonical covariant derivative
on S associated with the Levi-Civita connection on TSn will be denoted by∇S.
The Dirac operator D can be written locally as

D =
n

∑
i=1

ρ(ei)∇S
ei

,

where ρ is the Clifford multiplication map, ρ : TSn → End(S), and {ei}n
i=1 is

an orthonormal basis of TSn.

The spectrum of the Dirac operator on Sn is well studied (see e.g [8]). In partic-
ular, eigenvalues are of the form ±( n

2 + k), for k ∈ N, and the linear space of
eigenfunctions of fixed k has complex dimension

D(n, k) = r(n)
(

n + k− 1
k

)
.

A very explicit characterization of the spinor bundle of the n-dimensional sphere
can be provided in terms of Killing spinors. Killing spinors are solutions of the
equation

∇Sχ = λρ(·)χ,

for some fixed constant λ, called the Killing number of the Killing spinor.

Note that a Killing spinor is either identically zero, or it has no zeroes at all.
Indeed, the Killing equation implies, on one hand, that a Killing spinor is also
an eigenfunction of the Dirac operator, so that it satisfies the strong unique
continuation property; and on the other hand, that in a point where a Killing
spinor vanishes, all of its derivatives vanish too.

It is well known (see e.g [8]) that for λ = ± 1
2 one can define a global orthonor-

mal frame {χa}r(n)
a=1 of S consisting on λ-Killing spinors. Thus, any section ψ of

S can be specified by the choice of r(n) complex functions ψa : Sn → C,

ψ =
r(n)

∑
a=1

ψaχa.

Let us now introduce the notations needed to describe the small scale behavior
of spinors. Fix an arbitrary point p0 ∈ Sn and take a patch of normal geodesic
coordinates Ψ : B → B centered at p0. We will denote by Bρ (resp. Bρ) the
ball in Rn (resp. the geodesic ball in Sn) of radius ρ and centered at the origin
(resp. at p0). We omit the subscript when ρ = 1. Via the diffeomorphism Ψ one
defines a map on the spinor bundle

Ψ̂∗ : S|B −→ B×Cr(n);
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and a spinor field ψ will be expressed in local coordinates x on B as

Ψ̂∗ψ(x) =
r(n)

∑
a=1

ψ̂a(x) ξa ,

where {ξa}r(n)
a=1 is the standard basis on Cr(n). Throughout the rest of the chap-

ter, unless we explicitly say otherwise, we assume the choice of a basis of
Killing spinors χa, and we choose the basis ξa accordingly, that is, with Ψ̂∗χa(0) =
ξa.

The small scale behavior of the spinor ψ on a ball of radius k−1 around p0 is
thus captured by the rescaled field

Ψ̂∗ψ
( ·

k

)
:=

r(n)

∑
a=1

ψ̂a

( ·
k

)
ξa .

Note that, in general, the expression of the a-th spinor component ψa in normal
coordinates, ψa ◦Ψ−1, does correspond exactly to the euclidean component ψ̂a.
Still, one has

ψa ◦Ψ−1
( ·

k

)
= ψ̂a

( ·
k

)
+ ∑

b
Aab

( ·
k

)
ψ̂b

( ·
k

)
(3.2.1)

with smooth functions Aab verifying∥∥∥∥Aab

( ·
k

)∥∥∥∥
Cm(B)

6
Cm

k
,

with constants Cm not depending on k. Finally, we will denote the standard
Dirac operator on Rn by D0.

We are now ready to state the following approximation theorem, which is the
main ingredient in the proof. It makes precise the statement in the introduction
to the effect that the increasing degeneracy of the spectrum of the Dirac oper-
ator introduces the exact amount of flexibility we need in our problem. For
the sake of concreteness, we will concentrate henceforth on the case of positive
eigenvalues, the negative case being completely analogous:

Theorem 3.2.1. Let φ := (φ1, ..., φr(n)) be a Cr(n) valued function in Rn, satisfying
the Dirac equation D0φ = φ. Fix an integer m > 1 and a positive constant δ. For any
large enough positive integer k, there is an eigenfunction ψ of the Dirac operator D on
Sn of eigenvalue ( n

2 + k) such that∥∥∥∥φ− Ψ̂∗ψ
( ·

k

)∥∥∥∥
Cm(B)

< δ .

Note that it is the converse statement which is trivially true, not only in spheres
but in any spin manifold: an eigenfunction of the Dirac operator of high enough
eigenvalue λ always behaves, at scales of order λ−1, as an eigenfunction of the
euclidean Dirac operator of eigenvalue 1; however, this is not very revealing,
since in principle we have no information whatsoever as to which particular
eigenfunction we are converging to, and its properties.
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By contrast, the above theorem ensures that any property that can be exhibited
by solutions to the euclidean Dirac equation D0φ = φ on Euclidean space is
also exhibited, at small scales, by eigenfunctions of D of high enough eigen-
value, provided such property is robust under Cm perturbations.

Now, let Φ′ be a diffeomorphism of Sn mapping the collection {Σa} into the
ball B1/2, and the ball B1/2 into itself. Consider the collection of codimension
two submanifolds {Σ′a} in B1/2, defined as

Σ′a := (Ψ ◦Φ′)(Σa) .

The euclidean realization theorem (Theorem 3.1.2) yields a Cr(n)-valued func-
tion φ = (φ1, ..., φr(n)) and a diffeomorphism Φ0, very close to simply being
the identity, such that Φ0(Σ′a) ⊂ φ−1

a (0).

Besides, Theorem 3.2.1 allows us to find, for any large enough integer k, a
spinor ψ verifying Dψ = ( n

2 + k)ψ and approximating φ in the Cm(B) norm
as much as we want. In particular, we can choose k so that each component ψa
of the spinor approximates φa as much as we want. In view of equation (3.2.1),
we have∥∥∥∥φa−ψa ◦Ψ−1

( ·
k

)∥∥∥∥
Cm(B)

6

∥∥∥∥φa− ψ̂a

( ·
k

)∥∥∥∥
Cm(B)

+
C
k

∥∥∥∥φ− Ψ̂∗ψ
( ·

k

)∥∥∥∥
Cm(B)

+
C
k
||φ||Cm(B),

so, choosing k big enough, we get∥∥∥∥φa − ψa ◦Ψ−1
( ·

k

)∥∥∥∥
Cm(B)

< δ

for δ > 0 as small as we want.

The structural stability property ensures then the existence of a diffeomor-
phism Φ1 : Rn → Rn very close to the identity, such that Φ1(Φ0(Σ′a)) ⊂ ψa ◦
Ψ−1( ·k ). Therefore, each ψa has the corresponding submanifold Ψ−1(Φ1(Φ0(Σ′a))
as a nodal set, and we conclude that ψ realizes S. Every other eigenfunction
close enough to ψ will also realize S, through a slightly perturbed diffeomor-
phism.

3.3 Inverse localization: proof of Theorem 3.2.1

On any spin manifold, the Weitzenbőck identity relates two natural second
order elliptic operators arising from the spinor connection: the square of the
Dirac operator D2, and the covariant laplacian ∆S := ∇S∗∇S (here ∇S∗ is the
L2 adjoint of the covariant derivative on the spinor bundle). It reads

D2 = ∆S +
s
4

, (3.3.1)

where s is the scalar curvature.
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In the n-sphere, the Weitzenbőck formula provides a link between Dirac spinors
and spherical harmonics. To see this, first consider the twisted connection

∇χ := ∇S +
1
2

ρ(·)

whose covariantly constant sections are precisely the Killing spinors of Killing
number − 1

2 . The corresponding laplacian ∆χ := ∇χ∗∇χ has a transparent

interpretation when written in an orthonormal frame {χa}r(n)
a=1 of − 1

2 -Killing
spinors: a straightforward computation yields

∆χψ =
r(n)

∑
a=1

(∆Sn ψa)χa , (3.3.2)

where ∆Sn is the Laplace-Beltrami operator acting on functions.

On the other hand, consider the twisted Dirac operator

/D := D− 1
2

.

From the Weitzenbőck formula we obtain that the couple /D2 and ∆χ satisfies
the identity

/D2 = ∆χ +
(n− 1)2

4
, (3.3.3)

where we have used that the scalar curvature of the round n-sphere is n(n− 1).
Now, let ψ be an eigenfuntion of D of eigenvalue n

2 + k. It verifies

(
D− 1

2

)2
ψ =

(n− 1
2

+ k
)2

ψ = k(n + k− 1)ψ +
(n− 1)2

4
ψ, (3.3.4)

hence Equation (3.3.3) allows us to conclude that

∆χψ = k(n + k− 1)ψ

and so, in view of equation (3.3.2), the components ψa of ψ are complex spher-
ical harmonics of eigenvalue k(n + k− 1).

The following proposition captures the small scale behavior of spherical har-
monics:

Proposition 3.3.1. Let φ be a complex-valued function in Rn, satisfying ∆φ+ φ = 0.
Fix a positive integer m and a positive constant δ′. For any large enough integer k,
there is a complex-valued spherical harmonic Y on Sn with energy k(n + k− 1) such
that ∥∥∥∥φ−Y ◦Ψ−1

( ·
k

)∥∥∥∥
Cm+2(B)

6 δ′ .

Here and in what follows, by ∆ we denote the euclidean negative Laplacian,
∆ = ∑ ∂2

µ. For the proof of Proposition 3.3.1 we refer the reader to Chapter 4,
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where the same result is proven when φ := (φ1, ..., φq) is a Rq-valued functions
in Rn, and hence with Y := (Y1, ..., Yq) a Rq-valued spherical harmonic.

Now, let φ := (φ1, ..., φr(n)) be a Cr(n)-valued function on Rn satisfying D0φ =
φ. Since D2

0 = −∆, the complex functions φa satisfy the Helmholtz equation
∆φa + φa = 0. From Proposition 3.3.1, we obtain a collection of spherical har-
monics Ya, with a = 1, ..., r(n), locally approximating the corresponding func-
tions φa. The spinor ψ̃ defined as

ψ̃a := Ya

is an eigenfunction of the operator /D2 of eigenvalue k(n + k− 1) + (n−1)2

4 (by
equation (3.3.3)). It satisfies∥∥∥∥φ− Ψ̂∗ψ̃

( ·
k

)∥∥∥∥
Cm+2(B)

6 δ′ + Ck−1||φ||Cm+2(B),

where the last term on the right hand side of the inequality comes from the mis-
match between euclidean and spherical trivializations (as in equation (3.2.1)).

Since φ is fixed, by choosing δ′ in Proposition 3.3.1 small enough and k large
enough, we get that ψ̃ satisfies the bound∥∥∥∥φ− Ψ̂∗ψ̃

( ·
k

)∥∥∥∥
Cm+2(B)

< δ.

for a given δ as small as we want.

Given such a ψ̃, the following lemma provides us with an eigenfunction of D
that still approximates the euclidean spinor φ:

Lemma 3.3.2. Let φ and ψ̃ be as above. The spinor ψ defined as

ψ :=
/D( /Dψ̃ + ( n−1

2 + k)ψ̃)
2( n−1

2 + k)2

is an eigenfunction of the Dirac operator D of eigenvalue n
2 + k, satisfying∥∥∥∥φ− Ψ̂∗ψ

( ·
k

)∥∥∥∥
Cm(B)

< Cδ + Ck−1||φ||Cm+2(B).

with constants C not depending on k.

Proof. In view of equation (3.3.4) , one can easily check that ψ satisfies the iden-
tity

/Dψ =
(n− 1

2
+ k
)

ψ,

and since /D = D − 1
2 , the spinor ψ is an eigenfunction of D with eigenvalue

( n
2 + k). With regards to the Cm bound, first let us note that we have

Ψ̂∗( /Dψ̃) = k
(

D0Ψ̂∗ψ̃ +
G1

k
∂Ψ̂∗ψ̃ +

G2

k
Ψ̂∗ψ̃

)
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Ψ̂∗( /D2ψ̃) = k
(

D2
0Ψ̂∗ψ̃ +

G3

k
∂2Ψ̂∗ψ̃ +

G4

k
∂Ψ̂∗ψ̃ +

G5

k2 Ψ̂∗ψ̃
)

where the Gi are smooth matrix-valued functions satisfying the uniform bounds

||Gi||Cm(B) 6 Cm

and ∂Ψ̂∗ψ̃ (resp. ∂2Ψ̂∗ψ̃) is a matrix whose entries are first (resp. second) order
derivatives of the components of Ψ̂∗ψ̃.

Further, since 2φ = D0(D0 + 1)φ, we have

∥∥∥∥φ− Ψ̂∗ψ
( ·

k

)∥∥∥∥
Cm(B)

6

∥∥∥∥1
2
(D2

0 + D0)(φ− Ψ̂∗ψ̃
( ·

k

)
)

∥∥∥∥
Cm(B)

+
C
k

∥∥∥∥Ψ̂∗ψ̃
( ·

k

)∥∥∥∥
Cm+2(B)

6 C
∥∥∥∥φ− Ψ̂∗ψ̃

( ·
k

)∥∥∥∥
Cm+2(B)

+
C
k

∥∥∥∥φ− Ψ̂∗ψ̃
( ·

k

)∥∥∥∥
Cm+2(B)

+
C
k
‖φ‖Cm+2(B) 6 Cδ +

C
k

. (3.3.1)

and the lemma follows.

Finally, Theorem 3.2.1 follows upon choosing δ as small and correspondingly
k as large as needed.

3.4 Flexibility in euclidean space: proof of Theo-
rem 3.1.2

Let us recall the setting: inside the unit n-dimensional ball B ⊂ Rn, we are
given a collection S := {Σa}r(n)

a=1 of r(n) closed, pairwise disjoint, codimension
2 smooth submanifolds. Our aim in this section is to find functions φa : Rn →
C, with a = 1, ..., r(n), and a diffeomorphism Φ : B → B , as close to the
identity in the Cm norm as we want, such that, on the one hand, each Φ(Σa) is
a structurally stable nodal set of the corresponding φa, and on the other hand,
the spinor φ := (φ1, ..., φr(n)) satisfies the standard Dirac equation in Rn

D0φ =
n

∑
µ=1

ρ(eµ)∂µφ = λφ

where {eµ}n
µ=1 is an orthonormal basis on Rn and ρ(eµ) denotes the standard

Clifford multiplication. We will henceforth fix λ = 1, the general case being
completely analogous.

To find and φ and Φ, we will adapt the strategy introduced in [27] for anal-
ogous realization problems in the case of second order elliptic PDEs. To be-
gin with, one finds local solutions to the PDE under consideration that van-
ish at the Σa: this is achieved by means of some local existence theorem (we
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will use Cauchy-Kovalevskaya theorem). Then, one promotes these local so-
lutions to global ones by means of a Runge-type approximation theorem (we
will use Lax-Malgrange theorem). Through the process, one must ensure that
the zero sets are structuraly stable, and this is done by prescribing the normal
derivatives of the local solutions at the nodal sets and applying Thom’s isotopy
lemma.

Still, the application of the above scheme to our problem requires additional
considerations, the reason being, first of all, that the Dirac operator is of order
1, and thus we lose the capacity to prescribe the normal derivatives on the
Cauchy problem; and further, that the Dirac operator mixes all components φa
of φ, so that we cannot solve the problem for each component separately.

Let us begin with our construction. First of all, we note that, to use the Cauchy-
Kovalevskaya theorem to find local solutions, our submanifolds Σa should be
real analytic. This can be achieved by an arbitrarily small perturbation of the
original submanifolds, because of the density of analytic functions in the space
of smooth functions. Indeed, since the normal bundle of each Σa is of rank 2,
it is always trivial (by a theorem of W. S. Massey [56]), and therefore we can
always find a smooth complex-valued function Fa vanishing at Σa and whose
differential has full rank at Σa. The full rank condition makes the zero set Σa of
Fa structurally stable, so a real analytic function approximating Fa well enough
is guaranteed to have as zero set a very small perturbation of Σa (in the sense
of being diffeomorphic by an ambient diffeomorphism arbitrarily close to the
identity).

We will keep denoting by Σa the analytic submanifolds obtained after small
perturbation, and by Fa the collection of complex-valued, real analytic func-
tions realizing such submanifolds as zero sets.

For each a = 1, ..., r(n), let Ma be an analytic hypersurface containing Σa, and
such that, for a 6= b, Ma and Mb are disjoint. For example, we can choose Ma
to be

Ma := {x ∈ Rn, dist(x, Σa) 6 εa, Im(Fa)(x) = 0}
for εa small enough.

We will denote by na the normal vector field to Ma ⊂ Rn, and by νa the normal
vector field to Σa ⊂ Ma, when considering Σa as a hypersurface of Ma.

The next lemma will play an important role in what is to follow, providing
the initial condition for the Cauchy problem that is compatible with structural
stability:

Lemma 3.4.1. There is a collection of real-analytic functions gb : Σa → C, with b ∈
{1, ..., r(n)} \ {a}, such that the spinor ϕ := (g1, g2, ..., νa · ∇Fa, ..., gr(n)) verifies
the condition

Im [ρ(na)ρ(νa)ϕ(x)]a > 0
for all x ∈ Σa. Here, by [·]a we denote the a-th component of a spinor.

Proof. Let Γ(x) = {Γcd(x)}, with c, d = 1, ..., r(n), denote the matrix ρ(na)ρ(νa)(x).
Note that at each point x ∈ Σa, Γ(x) is an antihermitian matrix, so Γaa(x) is
purely imaginary or zero. The above condition can be written as
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−iΓaa(x)νa · ∇Re(Fa) + Im
r(n)

∑
b=1

Γab(x)gb(x) > 0. (3.4.1)

The matrix Γ(x) always has non-zero determinant, so the functions Γab(x),
for b = 1, ..., r(n), cannot all vanish at once. Besides, note that the term νa ·
∇ReFa(x) cannot vanish either, because rank(dFa|Σa) is 2 while ∇ImFa(x)|Ma
vanishes. Thus, at any point x0 ∈ Σa, it is easy to see that one can find a col-
lection of complex numbers wb0 such that condition 3.4.1 holds. Further, since
all the coefficients in condition 3.4.1 are analytic functions, and the condition is
open, on a sufficiently small neighborhood of the point x0 we can find complex
valued real analytic functions gb0(x), with gb0(x0) = wb0, and satisfying 3.4.1, .

Thus, the above discussion grants the existence of an open cover {Uα} of Σa
and an associated collection of complex analytic functions gbα : Uα → C satis-
fying condition 3.4.1 on each Uα. Therefore, if {ψα, Uα} is a partition of unity,
it is easy to check that the smooth functions

gb(x) := ∑
α

ψα(x)gbα(x)

satisfy condition 3.4.1 for all x ∈ Σa. These functions fail to be analytic, because
they are defined through a partition of unity; nevertheless, since the condition
is open and Σa is compact, we can find analytic functions close enough to the
gb so that 3.4.1 is still satisfied.

Now, let Na ⊂ Ma be a tubular neighborhood of Σa (to define the tubular
neighborhood, Σa is being considered as hypersurface of Ma), and let X be the
projection of the vector field ∇Re(Fa) to the tangent space of Ma. Provided
Na is small enough, the vector field X is never zero on Na. Thus, any point
y ∈ Na can be written uniquely as y = Φt

X(x), for some x ∈ Σa and t ∈ R. The
functions fb on Na defined as

fb(y) = fb(Φ
t
X(x)) = tgb(x),

are real-analytic, vanish on Σa, and verify that νa · ∇ fb = gb. With these func-
tions as input, we pose the following Cauchy problem for the Dirac operator
on a neighborhood of the hypersurfaces Na:

D0φ = φ

φb|Na = fb for b ∈ {1, ..., r(n)} \ {a}
φa|Na = Fa

(3.4.2)

The Cauchy-Kovalevskaya theorem yields a solution φ to (3.4.2) on a small
enough tubular neighborhood Ua of Na (it is understood that we have one such
solution φa for each submanifold Σa, but we will not make this explicit for ease
of notation).

Let us analyze the properties of this local solution. First of all, Σa is a nodal set
of the component φa of φ, because we have imposed that φa|Σa = Fa|Σa = 0.
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Further, by virtue of the properties of the functions fb, we are going to see that
this nodal set is structurally stable (note that, in fact, Σa is also a nodal set of
the rest of the components φb, but it need not be structurally stable for them).

To get structural stability, we need to ensure that the real and imaginary parts
of ∇φa are linearly independent on Σa. Firstly, note that we can write

∇φa|Σa = (na · ∇φa)na +∇Na φa|Σa = (na · ∇φa)na + X|Σa

because the projection of ∇Im(Fa)|Σa into the tangent space of Na is zero. In
addition, X is real and does not vanish. Hence, for∇Re(φa) and∇Im(φa) to be
linearly independent, it is necessary and sufficient that the term Im (na · ∇φa)
does not vanish on Σa.

Next, note that the Dirac equation on Σa can be written as

na · ∇φ|Σa = ρ(na)ρ(∇Mφ)|Σa ,

because φ|Σa = 0 and ρ(na)ρ(na) = −Id. It is at this point that the properties
of the functions fb are important: since fb|Σa = 0 and νa · ∇ fb = gb, we have
that

ρ(na)ρ(∇Mφ)|Σa = ρ(na)ρ(νa)ϕ

with ϕ = (g1, ...,∇Re(Fa), ..., gr(n)). Hence, by Lemma 3.4.1, the term

Im [ρ(na)ρ(νa)ϕ]a = Im na · ∇φ|Σa

is greater than zero, and structural stability follows.

To sum up, what we get after carrying out the same construction for each sub-
manifold Σa is a collection of local solutions {φa = (φa

1, ..., φa
r(n))}

r(n)
a=1 to the

Dirac equation, each one being defined on a small enough open neighborhood
Ua of the corresponding submanifold Σa (small enough so that the open sets
can be assumed to be pairwise disjoint) and verifying that Σa = (φa

a)
−1(0),

with the structural stability property. Since the complement of the union of
all the open sets Ua has no relatively compact components, the Lax-Malgrange
approximation theorem (see e.g [62]) ensures the existence, for any given con-
stant δ > 0 and integer m > 1, of a global solution φ′ to the Dirac equation on
Rn satisfying

‖φa − φ′‖Cm(Ua) 6 δ.

In particular, the components verify ‖φa
a − φ′a‖Cm(Ua) 6 δ. Since rank(dφ′a)|Σa

is 2, by Thom’s isotopy lemma we can choose an appropriate δ so that, for a
given ε > 0 as small as desired, there is a diffeomorphism Φ : B→ B verifying
‖Φ− Id‖Cm(Ua) 6 ε and such that Φ(Σa) ⊂ φ′−1

a (0).

3.5 Prescribing nodal sets at different regions at once

To set the stage, consider a collection of structures {Sα}Λ
α=1, where Λ is a posi-

tive integer that we can choose as large as we want, and where each Sα is itself
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a collection of r(n) codimension 2 submanifolds, Sα = {Σα
1 , ..., Σα

r(n)}.

Following the notation in Section 3.2, for a set of points {pα}Λ
α=1 in Sn we de-

note by Ψα : Bρ(pα) → Bρ the corresponding geodesic patches on balls of
radius ρ centered on the points pα. We fix a radius ρ such that no two balls
intersect, for example by setting

ρ :=
1
2

min
α 6=β

distSn(pα, pβ) .

Our goal is to find a Dirac spinor realizing each structure Sα within the ball
Bρ(pα).

Remark 3.5.1. It is necessary to choose the set {pα}Λ
α=1 so that no pair of points are

antipodal in Sn ⊂ Rn+1, i.e, so that pα 6= −pβ for all α, β. The reason is that if a
structure S is realized by the Dirac spinor ψ of eigenvalue n

2 + k in the ball Bk−1(p),
S is also automatically realized by ψ in the antipodal ball Bk−1((−1)k p). Indeed, the
components ψa have parity (−1)k, that is

ψa(−p) = (−1)kψa(p),

because, being complex spherical harmonics of energy k(n + k − 1), they are the re-
striction to the sphere of a couple of real harmonic homogenous polynomials of degree
k.

The realization of many different structures at once is a direct consequence of
the following proposition:

Proposition 3.5.2. Let {φα}Λ
α=1 be a set of Λ complex-valued functions in Rn, satis-

fying ∆φα + φα = 0. Fix a positive integer m and positive constant δ. For any large
enough integer k, there is a spherical harmonic Y on Sn with energy k(n + k − 1)
verifying the bound ∥∥∥∥φα −Y ◦Ψ−1

α

( ·
k

)∥∥∥∥
Cm+2(Bρ)

< δ

for all 1 6 α 6 Λ.

The proof is given in Section 4.2 of Chapter 4.

Given this proposition, by arguing exactly as in Sections 3.2 and 3.3, we find
a spinor ψ and a diffeomorphism Φ such that Φ(Σα

a ) ⊂ ψ−1
a (0) ∩B(pα, ρ), for

α = 1, ..., Λ.

3.6 Concluding remarks: the case of the torus

We conclude by sketching how to prove an analog of Theorem 3.1.1 on the
torus Tn.
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The spin structures on the n-dimensional torus Tn = Rn/Zn are indexed by
elements in the first cohomology class H1(Tn, Z2) ∼= Zn

2 . The Dirac operator
corresponding to the zero cohomology class can be regarded as the one inher-
ited from the standard Dirac operator on Rn.

For this Dirac operator, an inverse localization theorem (as Theorem 3.2.1) can
be proven following a similar strategy as the one in Section 3.3 and Section 2.5
of Chapter 2. To begin with, Weitzenbőck formulas (and hence the relation be-
tween spinors and eigenfunctions of the Laplace-Beltrami operator) are trivial.
Next, for the proof of the torus analog of Proposition 3.3.1, it suffices to argue
as in Section 2.5, that is: the role of the shifted Bessel functions centered at
points xj is now played by trigonometric polynomials of frequencies ξ j, with
|ξ j| = 1, and instead of spherical harmonics expressed as sums of ultraspher-
ical polynomials, we have trigonometric polynomials of frequencies kξ j (with
k an eigenvalue of the Dirac operator in the torus); with the further require-
ment that k and ξ j verify that kξ j ∈ Zn (so that the trigonometric polynomials
define eigenfunctions of the laplacian on the torus). These results in hand, the
reasoning in Section 3.2 can be directly transplanted to the torus case.

We encounter here thus the same number-theoretical subtlety that we remarked
in Section 2.6 of Chapter 2. We will nevertheless recall it here: in the torus ana-
log of Proposition 4.1.2, one would like to approximate the complex-valued
function φ1 (in the notation of Chapter 4)

φ1(x) =
∫

Sn−1
f1(ξ) eix·ξ dσ(ξ) ,

by a sum of the form

ϕ(x) =
N

∑
j=1

cje
iξ j ·x

with |ξ j| = 1 and such that kξ j ∈ Zn for some high enough k. One can always
approximate the above integral as much as one wishes by a discretized sum
centered at some points ξ j ∈ Sn−1 ⊂ Rn; the problem is that we have a very
specific requirement on the points ξ j. The approximation would hold when-
ever, for an increasing sequence of eigenvalues k, there are corresponding sets
of points {ξ j}N

j=1, depending on k and with kξ j ∈ Zn, that become dense in

Sn−1 as k increases.

However, not all sequences of eigenvalues might verify this property. As a
matter of fact, if we restrict our attention to sequences of integer eigenvalues,
and we substitute the density property by the (stronger) property of equidis-
tribution of the corresponding sets of rational points, the problem is related to
the celebrated Linnik problem in number theory (when k is an integer, we say
that the frequencies ξ j with ξ jk ∈ Zn are rational points on Sn−1 ⊂ Rn of height
k). For instance, in dimension 3, only certain sequences of integers are known
to verify the equidistribution property [19, 20], for example, sequences of odd
integers, or sequences of integers whose squares are square-free. To take this
phenomenon into account, one has to modify accordingly the statement of The-
orem 3.1.1, so that it reflects that it is the eigenfunctions with, say, sufficiently
high odd eigenvalue (in the case of T3) that realize the given structure S.
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Chapter 4

Inverse localization for
spherical harmonics

Given any function φ : Rn → Rq satisfying ∆φ + φ = 0 (where the Lapla-
cian is understood as acting component-wise), we show that there is a Rq-
valued spherical harmonic Y := (Y1, ..., Yq) in Sn (each Yj being an ordinary
real-valued spherical harmonic), satisfying ∆Sn Y = k(n + k − 1)Y, whose be-
havior in a small ball of radius k−1 is very close to that of φ in the euclidean unit
ball B. This provides a converse to the general fact that high energy eigenfunc-
tions of an elliptic operator on a compact manifold behave, at small scales, like
eigenfunctions of eigenvalue 1 of an euclidean elliptic operator with constant
coefficients.

This result provides some of the key Propositions needed both in Chapters 2
and 3. In the case of Chapter 2, which deals with vector fields in S3, Proposi-
tions 2.3.1 and 2.3.2 in Section 2.3 follow from this Chapter by setting n = 3
and q = 3. As for Chapter 3, Proposition 3.3.1 correspond to the case q = 2 and
arbitrary n > 3.

4.1 Inverse localization in a small ball

Theorem 4.1.1. Let φ be a Rq-valued function in Rn, satisfying ∆φ + φ = 0. Fix a
positive integer m and a positive constant δ′. For any large enough integer k, there is a
Rq-valued spherical harmonic Y := (Y1, ..., Yq) on Sn with energy k(n + k− 1) such
that ∥∥∥∥φ−Y ◦Ψ−1

( ·
k

)∥∥∥∥
Cm+2(B)

6 δ′ .

We will proceed in two successive approximation steps. First, we will approx-
imate the function φ(x) in B by a function ϕ(x) that consists in a finite sum of
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terms of the form
cj

|x− xj|
n
2−1

J n
2−1(|x− xj|)

with cj ∈ Rq and xj ∈ Rn, j = 1, ..., N, for N big enough (Proposition 4.1.2).
In the second step, we show that there is a collection of q spherical harmonics
Y := (Y1, ..., Yq) in Sn of energy k(n+ k− 1) which, when considered in a ball of
radius k−1 with coordinates rescaled to the euclidean ball of radius 1, approx-
imate ϕ := (ϕ1, ..., ϕq), provided that k is large enough. The proof does not
change if one sets q = 1. We recall that the dimension of the space of spherical
harmonics on the n-sphere of eigenvalue k(n + k− 1) is given by

d(k, n) :=
(

n + k− 1
k

)
n + 2k− 1
n + k− 1

.

Proposition 4.1.2. Given any δ > 0, there is a finite radius R and finitely many
Rq-valued constants {cj}N

j=1 and points {xj}N
j=1 ⊂ BR such that the function

ϕ :=
N

∑
j=1

cj
1

|x− xj|
n
2−1

J n
2−1(|x− xj|)

approximates the function φ in the ball B as

‖φ− ϕ‖Cm+2(B) < δ .

Proof. It will be more convenient to work with complex-valued functions: we
set φ̃ := φ + iφ. First, we notice that, since φ̃ is also a solution of the Helmholtz
equation, it can be written in the ball B2 as an expansion

φ̃ =
∞

∑
l=0

d(n−1,l)

∑
j=1

bl j jl(r)Yl j(ω), (4.1.1)

where r := |x| ∈ R+ and ω := x/r ∈ Sn−1 are spherical coordinates in
Rn, Yl j are a basis of spherical harmonics of eigenvalue l(l + n − 2), jl are
n-dimensional hyperspherical Bessel functions and bl j ∈ Cq are constant co-
efficients.

The series in (4.1.1) is convergent in the L2 sense, so for any δ′ > 0, we can
truncate the sum at some integer L

φ1 :=
L

∑
l=0

d(n−1,l)

∑
j=1

bl j jl(r)Yl j(ω) (4.1.2)

so that it approximates φ̃ as

‖φ1 − φ̃‖L2(B2)
< δ′ . (4.1.3)

Every component of the function φ1 decays as |φ1i(x)| 6 C/|x| n−1
2 for large

enough |x| (because of the decay properties of the spherical Bessel functions).
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Hence, Herglotz’s theorem (see e.g. [37, Theorem 7.1.27]) ensures that we can
write

φ1(x) =
∫

Sn−1
f1(ξ) eix·ξ dσ(ξ) , (4.1.4)

where dσ is the area measure on Sn−1 := {ξ ∈ Rn : |ξ| = 1} and f1 is a
Cq-valued function in L2(Sn−1).

We now choose a smooth Cq-valued function f2 approximating f1 as

‖ f1 − f2‖L2(Sn−1) < δ′ ,

which is always possible since smooth functions are dense in L2(Sn−1). The
function defined as the inverse Fourier transform of f2,

φ2(x) :=
∫

Sn−1
f2(ξ) eix·ξ dσ(ξ) , (4.1.5)

approximates φ1 uniformly: by the Cauchy–Schwarz inequality, we get

|φ2(x)− φ1(x)| =
∣∣∣∣ ∫

Sn−1
( f2(ξ)− f1(ξ)) eix·ξ dσ(ξ)

∣∣∣∣ 6 C‖ f2 − f1‖L2(Sn−1) < Cδ′

(4.1.6)

for any x ∈ Rn.

Our next objective is to approximate the function f2 by a trigonometric poly-
nomial: for any given δ′, we will find a radius R > 0 and finitely many points
{xj}N

j=1 ⊂ BR and constants {cj}N
n=1 ⊂ Cq such that the smooth function in Rn

f (ξ) :=
1

(2π)
n
2

N

∑
j=1

cj e−ixjξ ,

when restricted to the unit sphere, approximates f2 in the C0 norm,

‖ f − f2‖C0(Sn−1) < δ′ . (4.1.7)

In order to do so, we begin by extending f2 to a smooth function g : Rn → Cq

with compact support,

g(ξ) := χ(|ξ|) f2

(
ξ

|ξ|

)
,

where χ(s) is a real-valued smooth bump function, being 1 when, for example,
|s − 1| < 1

4 , and vanishing for |s − 1| > 1
2 . The Fourier transform ĝ of g is

Schwartz, so it is easy to see that, outside some ball BR, the L1 norm of ĝ is
very small, ∫

Rn\BR

|ĝ(x)| dx < δ′ ,

and therefore we get a very good approximation of g by just considering its
Fourier representation with frequencies within the ball BR, that is,

sup
ξ∈Rn

∣∣∣∣g(ξ)− ∫BR

ĝ(x) e−ix·ξ dx
∣∣∣∣ < δ′ . (4.1.8)
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Next, we can approximate the integral∫
BR

ĝ(x) e−ix·ξ dx

by the sum

f (ξ) :=
1

(2π)
n
2

N

∑
j=1

cj e−ixj ·ξ (4.1.9)

with constants cj ∈ Cq and points xj ∈ BR, so that we have the bound

sup
ξ∈Sn−1

∣∣∣∣ ∫BR

ĝ(x) e−ix·ξ dx− f (ξ)
∣∣∣∣ < δ′ . (4.1.10)

To see this, consider a covering of the ball BR by closed sets {Uj}N
j=1, with

piecewise smooth boundaries, pairwise disjoint interiors, and diameters not
exceeding δ′′. Since the function e−ix·ξ ĝ(x) is smooth, we have that for each
x, y ∈ Uj

sup
ξ∈Sn−1

∣∣ĝ(x) e−ix·ξ − ĝ(y) e−iy·ξ | < Cδ′′ ,

with the constant C depending on ĝ (and therefore on δ′) but not on δ′′. If xj is
any point in Uj and we set cj := (2π)

n
2 ĝ(xj) |Uj| in (4.1.9), we get

sup
ξ∈Sn−1

∣∣∣∣ ∫BR

ĝ(x) e−ix·ξ dx− f (ξ)
∣∣∣∣ 6 N

∑
j=1

∫
Uj

sup
ξ∈Sn−1

∣∣ĝ(x) e−ix·ξ − ĝ(xj) e−ixj ·ξ
∣∣ dx

6 Cδ′′ ,

with C depending again on δ′ and R but not on δ′′ or N. By taking δ′′ so that
Cδ′′ < δ′, the estimate (4.1.10) follows.

Now, in view of (4.1.8) and (4.1.10), one has

‖ f − g‖C0(Sn−1) < Cδ′ ,

where C does not depend on δ′. The estimate (4.1.7) follows upon noticing that
the function f2 is the restriction to Sn−1 of the function g.

To conclude, set

ϕ̃(x) :=
∫

Sn−1
f (ξ) eix·ξ dσ(ξ) =

N

∑
j=1

1

(2π)
n
2

cj

∫
Sn−1

ei(x−xj)·ξ dσ(ξ) =

=
N

∑
j=1

cj
1

|x− xj|
n
2−1

J n
2−1(|x− xj|) ,

from Equation (4.1.7) we infer that

‖ϕ̃− φ2‖C0(Rn) 6
∫

Sn−1
| f (ξ)− f2(ξ)| dσ(ξ) < Cδ′ ,
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and from Equations (4.1.3) and (4.1.6) we get the L2 estimate

‖φ̃− ϕ̃‖L2(B2)
6 C‖ϕ− φ2‖C0(Rn) + C‖φ2 − φ1‖C0(Rn)+

+ ‖φ1 − φ̃‖L2(B2)
< Cδ′ . (4.1.11)

Furthermore, both ϕ̃ and φ̃ are Cq-valued functions satisfying the Helmholtz
equation in Rn (note that the Fourier transform of ϕ is supported on Sn−1), so
by standard elliptic estimates we have

‖φ̃− ϕ̃‖Cm+2(B) 6 C‖φ̃− ϕ̃‖L2(B2)
< Cδ′ .

This in particular implies that

‖φ− Re ϕ̃‖Cm+2(B) < Cδ′ ,

and taking δ′ small enough so that C′δ′ < δ, resetting cj := Re cj, and defining
ϕ := Re ϕ̃, the proposition follows.

The next step consists in showing that, for any large enough integer k, we can
find a Rq-valued spherical harmonic Y on Sn with eigenvalue k(n + k− 1) that
approximates, in the ball B1/k and when rescaled, the function ϕ in the unit
ball. The proof is based on asymptotic expansions of ultraspherical polynomi-
als, and uses the representation of ϕ as sum of shifted Bessel functions which
we just obtained as a key ingredient.

Proposition 4.1.3. Given a constant δ > 0, for any large enough positive integer k
there is a Rq-valued spherical harmonic Y on Sn with energy k(n + k− 1) satisfying∥∥∥∥ϕ−Y ◦Ψ−1

( ·
k

)∥∥∥∥
Cm+2(B)

< δ .

Theorem 4.1.1 follows from this proposition, provided k is large enough and δ
is chosen small enough for 2δ not to be larger than δ′.

Proof. Consider the ultraspherical polynomial of dimension n+ 1 and degree k,
Cn

k (t), which is defined as

Cn
k (t) :=

Γ(k + 1)Γ( n
2 )

Γ(k + n
2 )

P( n
2−1, n

2−1)
k (t) , (4.1.1)

where Γ(t) is the gamma function and P(α, β)
k (t) are the Jacobi polynomials (see

e.g [65, Chapter IV, Section 4.7]). We have included a normalizing factor so that
Cn

k (1) = 1 for all k .

Let p, q be two points in Sn, considered as the set {|p| = 1} of Rn+1. The
addition theorem for ultraspherical polynomials ensures that Cn

k (p · q) (where
p · q denotes the scalar product in Rn+1 of the vectors p and q) can be written
as

Cn
k (p · q) = 2π

n+1
2

Γ( n+1
2 )

1
d(k, n)

d(k,n)

∑
j=1

Ykj(p)Ykj(q) , (4.1.2)

83



CHAPTER 4. INVERSE LOCALIZATION FOR SPHERICAL HARMONICS

with {Ykj}
d(k,n)
j=1 being an arbitrary orthonormal basis of spherical harmonics

with eigenvalue k(k + n− 1).

We recall that the function ϕ was expressed as the finite sum

ϕ(x) =
N

∑
j=1

cj
1

|x− xj|
n
2−1

J n
2−1(|x− xj|) ,

with coefficients cj ∈ Rq and points xj ∈ BR. With these cj and xj we define,
for any p ∈ Sn, the function

Y(p) :=
N

∑
j=1

cj
1

2
n
2−1Γ( n

2 )
Cn

k (p · pj) ,

where pj := Ψ−1(
xj
k ). As long as k > R, pj is well defined. In view of Equation

(4.1.2) it is clear that Y is a spherical harmonic with eigenvalue k(n + k− 1).

Our aim is to study the asymptotic properties of the spherical harmonic Y. To
begin with, note that if we consider points p := Ψ−1( x

k ) with k > R and x ∈ BR,
we have

p · pj = cos
(
distSn(p, pj)

)
= cos

( |x− xj|+ O(k−1)

k

)
, (4.1.3)

as k → ∞. The last equality comes from Ψ : B → B being a patch of normal
geodesic coordinates (by distSn(p, pj) we mean the distance between p and pj
considered on the sphere Sn). From now on we set

Ỹ(x) := Y ◦Ψ−1
(

x
k

)
. (4.1.4)

When k is large, one has

Γ(k + 1)
Γ(k + n

2 )
= k1− n

2 + O(k−
n
2 ) ,

so from Equation (4.1.3) we infer

Cn
k (p · pj) =

(
Γ
(n

2

)
k1− n

2 +O(k−
n
2 )

)
P( n

2−1, n
2−1)

k

(
cos

( |x− xj|+ O(k−1)

k

))
.

(4.1.5)
By virtue of Darboux’s formula for the Jacobi polynomials [65, Theorem 8.1.1],
we have the estimate

1

k
n
2−1

P( n
2−1, n

2−1)
k

(
cos

t
k

)
= 2

n
2−1

J n
2−1(t)

t
n
2−1

+ O(k−1) ,

uniformly in compact sets (e.g., for |t| 6 2R). Hence, in view of Equation
(4.1.5), Ỹ can be written as

Ỹ(x) =
N

∑
j=1

cj
1

2
n
2−1Γ( n

2 )
Cn

k

(
cos

( |x− xj|+ O(k−1)

k

))
=

N

∑
j=1

cj
1

|x− xj|
n
2−1

J n
2−1(|x− xj|) + O(k−1) ,
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for k big enough and x, xj ∈ BR. From this we get the uniform bound

‖ϕ− Ỹ‖C0(B) < δ′ (4.1.6)

for any δ′ > 0 and all k large enough.

It remains to promote this bound to the Cm+2 estimate. For this, note that, since
the spherical harmonic Y has eigenvalue k(n + k− 1), the rescaled function Ỹ
verifies on B the equation

∆Ỹ + Ỹ =
1
k

AỸ ,

with
AỸ := −(n− 1)Ỹ + G1 ∂Ỹ + G2 ∂2Ỹ ,

and where ∂Ỹ is a matrix whose entries are first order derivatives of Ỹ, and
Gi(x, k) are smooth matrix-valued functions with uniformly bounded deriva-
tives, i.e.,

sup
x∈B
|∂α

xGi(x, k)| 6 Cα . (4.1.7)

with constants Cα independent of k.

Since ϕ satisfies the Helmholtz equation ∆ϕ + ϕ = 0 , the difference ϕ − Ỹ
satisfies

∆(ϕ− Ỹ) + (ϕ− Ỹ) =
1
k

AỸ ,

and, considering the estimates (4.1.6) and (4.1.7), by standard elliptic estimates
we get

‖ϕ− Ỹ‖Cm+2,α(B) < C‖ϕ− Ỹ‖C0(B) +
C
k
‖AỸ‖Cm,α(B)

< Cδ′ +
C
k
‖ϕ− Ỹ‖Cm+2,α(B) +

C
k
‖ϕ‖Cm+2,α(B) ,

so we conclude that, for k big enough and δ′ small enough,

‖ϕ− Ỹ‖Cm+2(B) 6 Cδ′ +
C‖ϕ‖Cm+2,α

k
< δ

and the proposition follows.

4.2 Inverse localization in multiple regions

The results of the previous section can be refined to include inverse localiza-
tions around different points of the sphere. This way, we get a spherical har-
monic that approximates several given solutions of the Helmholtz equation.
Behind this multiple localization is the fast decay of ultraspherical polynomials
of high degree outside the balls where they behave as shifted Bessel functions.
Notice that, in contrast, trigonometric polynomials do not exhibit this decay,
hence the lack of an analog of the following multiple realization results (The-
orem in Chapter 2, for Beltrami fields, and Theorem in Chapter 3, for Dirac
fields) in the case of the torus.
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Let {pα}Λ
α=1 be a set of points in Sn, with Λ an arbitrarily large (but fixed

throughout) integer. We denote by Ψα : Bρ(pα) → Bρ the corresponding
geodesic patches on balls of radius ρ centered on the points pα. We fix a ra-
dius ρ such that no two balls intersect, for example by setting

ρ :=
1
2

min
α 6=β

distSn(pα, pβ) .

We further choose the points {pα}Λ
α=1 so that no pair of points are antipodal

in Sn ⊂ Rn+1, i.e, so that pα 6= −pβ for all α, β. The reason is that spherical
harmonics of energy k(n + k− 1) have parity (−1)k

Y(pα) = (−1)kY(−pα)

(they are the restriction to the sphere of real harmonic homogenous polynomi-
als of degree k); so that prescribing the behavior of a spherical harmonic in a
ball around the point pα automatically determines its behavior in the antipodal
ball.

Proposition 4.2.1. Let {φα}Λ
α=1 be a set of Λ Rq-valued functions in Rn, φα :=

(φα1, ..., φαq), and satisfying ∆φα + φα = 0. Fix a positive integer m and positive
constant δ. For any large enough integer k, there is a Rq-valued spherical harmonic Y
on Sn with energy k(n + k− 1) verifying the bound∥∥∥∥φα −Y ◦Ψ−1

α

( ·
k

)∥∥∥∥
Cm+2(Bρ)

< δ

for all 1 6 α 6 Λ.

Proof. Applying Theorem 4.1.1 to each φα we obtain, for high enough k, Rq-
valued spherical harmonics {Yα}Λ

α=1 satisfying the bound∥∥∥∥φα −Yα ◦Ψ−1
α

( ·
k

)∥∥∥∥
Cm+2(B)

< δ .

The Rq-valued spherical harmonics Yα(p) are linear combinations (with coeffi-
cients in Rq) of ultraspherical polynomials Cn

k (p · q), with distSn(pα, q) propor-
tional to k−1. Recall that ultraspherical polynomials verified the asymptotic
formula

Cn
k (p · q) =

Γ( n
2 )

k
n
2−1

P( n
2−1, n

2−1)
k (cos(distSn(p, q))) + O(k−

n
2 ) ,

so considering the fact that the Jacobi polynomials behave as (see [65, Theorem
7.32.2])

k
n
2−1 P( n

2−1, n
2−1)

k (cos t) =
O(k−1)

t
,

uniformly for k−1 < t < π − k−1, we can conclude that the Cn
k (p · q) are uni-

formly bounded as

|Cn
k (p · q)| 6

Cρ

k
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for any points p and q verifying

distSn(p, q) > ρ and distSn(p,−q) > ρ ,

and where Cρ is a constant depending only on ρ. The same decay is thus also
exhibited by the spherical harmonics Yα,

‖Yα‖C0(Sn\(B(pα ,ρ)∪B(−pα ,ρ)) 6
C′ρ
k

since they are just normalized linear combinations of ultraspherical polynomi-
als (here C′ρ depends also on the particular coefficients in the expansion of Yα,
that is, on φα and δ).

Now, if we define the Rq-valued spherical harmonic

Y :=
Λ

∑
α=1

Yα

and we choose k large enough, and ρ small enough so that the sets B(pα, ρ) ∪
B(−pα, ρ) are disjoint for all α, the desired bound automatically follows in the
C0 norm. By standard elliptic estimates, we promote it to the Cm+2 norm, and
the proposition follows.
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Part II

Helicity, adiabatic limit of the
Seiberg-Witten equations, and
invariant measures of volume

preserving vector fields
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Chapter 5

The asymptotic analysis of the
Seiberg-Witten equations and
invariant measures

Let X be a nowhere vanishing volume preserving vector field on the 3-sphere
(or more generally, an exact volume preserving vector field on a closed 3-
manifold M). C. Taubes discovered that, when the helicity of X

H(X) =
∫

iXµ ∧ α (for any α with dα = iXµ)

is non-zero, new non-trivial invariant measures of X can be obtained through
an asymptotic analysis of the so-called Seiberg-Witten equations in dimension 3.
Furthermore, some analytic properties of sequences of solutions to the Seiberg-
Witten equations are tied to the dynamical properties of the invariant measures
of the vector field: as a striking example, when solutions satisfy a suitable “fi-
nite energy condition”, they yield measures supported on periodic orbits of
X.

Sections 2-7 of this Chapter give an account of the above phenomenon. Our
aim is to make this circle of ideas more accessible to mathematicians that might
be not conversant in the gauge-theoretic mathematics involved, but who work
in fields related to PDEs and dynamical systems where Taubes discoveries
could provide deep new insights. Thus, the contribution of those sections is
on the expository side: we provide an alternative account of the original ideas
of Taubes in [68, 66], putting more emphasis on the PDE and dynamical as-
pects.

Section 8 of the Chapter presents a previously unknown result, to the best of
our knowledge. Its relation to the above is as follows: in a work in progress,
we are trying to extend Taubes framework and to extract further properties of
these invariant measures in more general cases; in this context we encountered
a related, but simpler problem, concerning the measures arising as limits of
sequences of solutions to the two dimensional vortex equations. Section 8 is
devoted to presenting this problem and our solution to it.
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5.1 Introduction

Asymptotic analysis can be defined as the study of the properties of solutions
differential equations depending on a parameter, as this parameter goes to in-
finity. Alternatively, it can be said to deal with the emergence of discontinuities
in solutions to PDEs.

These techniques are extremely important in physics, where they account for
a wide range of phenomena: from the shadows casted by an object as light
passes by, to shock waves in a stream of gas, and to the emergence of classical
behavior from quantum mechanics.

All these phenomena have the paradoxical property of displaying a discon-
tinuous nature, while being described by PDEs whose solutions one –rightly–
expects to be smooth. What happens is that these discontinuities appear only
to the naked eye: in reality, they are just quick transitions in the value of the
solutions in certain regions; transitions that become stepper and stepper (un-
til asymptotically the derivatives blow up) as the relevant parameter goes to
infinity.

The application of Seiberg-Witten theory to dynamical systems that we are to
present falls into a more general class of methods in geometry, whose common
denominator is their taking advantage of the asymptotic techniques above not
to explain some physical phenomenon, but to gain geometrical information.
The idea is to analyze the asymptotics of a judiciously chosen PDE to detect,
through the emerging discontinuities, subsets of the ambient space with geometric
or dynamical meaning. In our case, these sets will be invariant sets of a vector
field. As was the case with the traditional methods of asymptotic analysis,
these new geometric approaches also have their origin in theoretical physics.

5.1.1 An example: detecting critical points of a gradient vector
field

An illustrative example of how to use asymptotic analysis to detect relevant
geometric data is provided by Witten’s approach to Morse Theory.

The setting is a closed Riemannian manifold (M, g), where we are given a
smooth function f . Let

C := {p ∈ M,∇ f (p) = 0}

denote the set of critical points of f .

Witten introduces a deformation of the exterior derivative associated to f

dr := e−r f drer f := d + rd f ∧ · ,

whose adjoint is readily seen to be

d∗r = d∗ − ri∇ f .
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With these operators one can define a twisted version of the Laplace-Beltrami
operator on M acting on k-forms, namely

∆r :=
1
r
(d∗r dr + drd∗r ),

which can be more explicitely written as

∆r =
1
r

∆ + r|∇ f |2 + V, (5.1.1)

where |∇ f | denotes the norm (defined with the metric g) of the gradient of f ,
and the action of V on any k-form αr can be locally written as

Vαr = ∑
i

ei · H f (ej)(ei ∧ iej αr − iej(e
i ∧ αr))

where H f is the Hessian of f , and {ei}n
i=1 is a basis of orthonormal vectors of

TM, with {ei} representing the dual one-forms.

The point now is that sequences of k-forms solving the PDE

∆rαr = 0 (5.1.2)

with r → ∞, concentrate around the critical points of f . More precisely

Example 5.1.1. Let αr be a solution to Eq. (5.1.2), suitably normalized so that
||αr||L2(M) = 1. Given any ε > 0 and ρ > 0 arbitrarily small, we have that, for
all r large enough, the L2 norm of αr outside the set {p ∈ M, dist(p, C) 6 ρ} is
smaller than ε.

Proof. First, note the following heuristic: as r grows, the equation ∆rαr = 0
“tends” to the equation |∇ f |2α∞ = 0, that is, a “solution” α∞ must be zero
except, possibly, at the critical points of f .

This heuristic argument points towards the right direction: one can see that for
r large, the L2 norm of the forms in the kernel of ∆r is concentrated around the
critical points of f .

Indeed, normalize αr so that it has unit L2 norm, and consider the quantity
g(αr, ∆rαr) = ∆rαr ∧ ?αr. An integration by parts yields

1
r

∫
M
(|dαr|2 + |d∗αr|2) + r

∫
M
|∇ f |2|αr|2 +

∫
M

Vαr ∧ ?αr = 0

hence ∫
M
|∇ f |2|αr|2 6

1
r

∣∣∣∣ ∫M
Vαr ∧ ?αr

∣∣∣∣ 6 C
r
||αr||2L2 =

C
r

From this we infer that, if we set C(ρ) := {p ∈ M, dist(p, C) 6 ρ},∫
M\C(ρ)

|∇ f |2|αr|2 6 cρ
∫

M\C(ρ)
|αr|2 6

C
r
||αr||2L2

where c is a constant depending on the second derivatives of f . For a fixed ρ,
taking r large enough, the statement in the Example follows.
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(An argument of this kind, which rests on a Weitzenbőck type formula, will
appear later when considering the concentration sets of the Seiberg-Witten so-
lutions, and it is also behind our result on the rescaled vortex equations in the
last section.)

5.2 The Seiberg-Witten approach to dynamics: Set-
ting and statement of the main Theorems

We will show in the following sections how to use the asymptotic concentration
of solutions of another PDE, the so-called Seiberg-Witten equations, to detect
invariant sets and construct invariant measures of a vector field X.

Both the Seiberg-Witten equations and their applications that we are to present
can be stated in any manifold M, and in fact have deep roots in three (and four)
dimensional geometry. Nevertheless, we will focus on the case of the 3-sphere
S3, as this allows us to lighten up the amount of geometric background and to
concentrate on the underlying analysis.

Statement of the equations.

Our main object of interest is a nowhere vanishing vector field X preserving
a volume form µ on the 3-sphere S3. This amounts to having a closed 2-form
iXµ; this form is, in addition, exact (since the homology is trivial). To define the
relevant version of the Seiberg-Witten equations, we endow S3 with a metric
g compatible with the volume form µ (this means, in particular, that for any
vector field W, iW g = ?iWµ, where ? is the Hodge dual defined by the metric);
and such that g(X, X) = 1. With these data we can always find vector fields Y
and Z such that {X, Y, Z} defines an orthonormal parallelization of the tangent
bundle TS3 (in a general three manifold M it would only be possible to define
Y and Z locally, the reason being that the plane bundle Ker iX g might be non-
trivial). It will be often convenient to refer to {X, Y, Z} as {e1, e2, e3}.

We will denote by a dot the scalar product defined by g, and by |W|2 := W ·W
the norm squared of a vector field W. Throughout this chapter, each time that
we are given a pair (X, µ) in S3, we automatically assume as well that we have
endowed the manifold with an adapted metric g. Integration will be always
understood with respect to the volume form µ.

Finally, let us introduce the Pauli matrices

σ1 :=
(

1 0
0 −1

)
, σ2 :=

(
0 i
−i 0

)
, σ3 :=

(
0 1
1 0

)
.

The Seiberg-Witten equations associated to the above data are

curl Ar = r(X− ψ†
r σψr) + v (5.2.1)
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DAr ψr := i ∑
k

σkek · (∇ψr − iArψr) = 0 (5.2.2)

where, for each fixed value of r, the unknowns are a vector field Ar and a
function ψr : S3 → C2. The term ψ†

r σψr represents the vector field

ψ†
r σψr := (ψ†

r σ1ψr)X + (ψ†
r σ2ψr)Y + (ψ†

r σ3ψr)Z, (5.2.3)

and∇ and curl are the gradient and curl operators defined by the metric g. The
operator ∇A := (∇− iAr) can be seen as a covariant derivative on the trivial
bundle C2 × S3, and it must be understood as acting on each complex-valued
component of ψr separately.

Finally, v is a given divergence-free vector field, which can be chosen to have
arbitrarily small Ck norm: it acts as a perturbation to the equation that ensures
the existence of solutions with desired properties. For a fixed r and v, Eqs
(5.2.1) and (5.2.2) will be referred to as SW(r, v)-equations.

An important feature of the equations is that they are gauge invariant under the
action of the group U(1). This means that, given a solution (Ar, ψr) and any
smooth function u : S3 → C with |u| = 1, the pair u(Ar, ψr) := (A + u1∇u2 −
u2∇u1, uψr) is also a solution (here u1 and u2 are such that u := u1 + iu2). Note
that the vector field (u1∇u2 − u2∇u1) is curless (because u2

1 + u2
2 = 1) and so,

since H1(S3) = 0, it must be the gradient of a function. Consequently, we can
always write a gauge transformation as u = ei f for a well defined real function
f : S3 → R, and we have u(Ar, ψr) = (Ar +∇ f , ei f ψr). This symmetry of the
equations is important in many arguments, as it grants us some extra freedom
when dealing with their analytical properties.

Main results.

Before stating the main theorems, we have to introduce the notion of Hopf in-
variant: the Hopf invariant of a pair of volume preserving vector fields V, W in
(S3, µ) is defined as

H(V, W) =
∫

iVµ ∧ α (for any α with dα = iWµ).

Stokes theorem guarantees that the Hopf invariant is well defined regardless of
the form α one choses. In particular, one can choose α with d ? α = 0, and this α
is unique, since there are no non-trivial harmonic functions. In terms of vector
fields and a metric g compatible with µ, this α is the dual of a divergence free
vector field, that we denote by curl−1 W: icurl−1 W g = α. The operator curl−1 is
thus a well defined one-to-one map in the space of volume preserving vector
fields in S3, with curl−1 W being the unique volume preserving vector field
such that curl curl−1 W = W. In these terms, we can express the Hopf invariant
as

H(V, W) :=
∫

V · curl−1 W.

Finally, let us note that the Hopf invariant is symmetric, i.e, that H(V, W) =
H(W, V), as can be easily checked with an integration by parts.
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An important role in what is to follow will be played by the helicity of a vector
field, which is defined as the Hopf invariant of X with itself,H(X) := H(X, X).
The other main quantity of interest for us will beH(curl Ar, curl X),

H(curl Ar, curl X) =
∫

curl Ar · X = r
∫
(1− ψ†

r σ1ψr) +
∫

X · v,

We will setHAr (X) := H(curl Ar, curl X).

We are now ready to estate the main two theorems that we will prove in the
first part of this Chapter. These results are originally due to Clifford Taubes
in [68, 66] and, in fact, he proves them with greater generality: not only in S3,
but on any closed 3-manifold. In particular, Item (i) in Theorem 5.2.1, together
with Theorem 5.2.2, follow from Taubes paper [68], which is the first paper
examining this framework; the rest of Theorem 5.2.1 appeared later in [66].

Theorem 5.2.1. Let X be a nowhere-vanishing vector field on S3 preserving a volume
form µ, and such that its helicity H(X) is positive. Fix ε > 0 arbitrarily small.
There exists a sequence {rn, ψrn := (ψ1rn , ψ2rn), Arn} of solutions to the associated
SW(r, v)-equations, for some volume preserving vector field v of Ck norm less than ε,
such that

(i) if the sequence of Hopf invariants HArn
(X) has a bounded subsequence, the

vector field X has a periodic orbit.

(ii) if the sequence of Hopf invariants HArn
(X) has no bounded subsequence, then

the signed measure

σrn :=
rn(1− |ψ1rn |2)µ
HArn

(X)

converges (maybe after passing to a subsequence) to an invariant probability
measure σ∞ of X. This measure satisfies σ∞(X · curl−1(X)) 6 0.

We will prove this Theorem in Section 5.3. The following Theorem can be seen
as a (non-trivial) consequence of Theorem 5.2.1

Theorem 5.2.2. Let X be a nowhere-vanishing vector field on S3 preserving a volume
form µ. If we have that curl−1 X = hX, with h a positive function in S3, the vector
field X has a periodic orbit.

Indeed, this Theorem follows from Theorem 5.2.1 once one establishes that a
rescaling X̃ of the vector field X has an associated sequence of solutions to the
SW(r, v)-equations with boundedHAr (X̃). This will be proven in Section 5.4.

Let us disclose the main ingredients behind the proof of Theorem 5.2.1. Each
item below has a corresponding section in this Chapter:

• (A) A priori behavior of the solutions (Section 5.5): The Weitzenbőck formula
for DAr , through standard elliptic bootstrapping, yields a priori estimates
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for the solutions of the Seiberg-Witten equations. Roughly speaking, the
main lessons of these estimates are: that for large r, ψ2r goes to zero every-
where; that the curl of Ar is mostly parallel to X, curl Ar ∼ r(1− |ψ1r|2)X;
and that the derivatives of |ψ1r| can change quickly in the transverse di-
rections of X, but not in the direction of the flow.

• (B) The existence of non-trivial solutions (Section 5.6) The Monopole Floer
Homology, as constructed by P. Kronheimer and T. Mrowka in [46], pro-
vides the foundation on which the existence of solutions rests. Very
roughly speaking, this theory associates topological invariants to 3-manifolds
by constructing an appropriate chain complex (and associated homology
groups) using as generators solutions to Seiberg-Witten-like equations,
in a similar spirit one uses critical points in Morse Theory. The relevance
of this construction from the PDE viewpoint is as follows: whenever an
homology group is not trivial, we know that there must be some gener-
ators, that is, some solutions. Better still, the resulting homology groups
are independent of the precise geometric or analytic data used to define
the equations, so once the groups are known to be non trivial in some
case, we can infer the existence of solutions in many other cases. Finally,
it is key to ensure as well that those solutions have the desired properties:
it is at this point that the helicity of X being non-zero plays a significant
role that we will explain in more detail in Section 5.6.

• (C) The asymptotic properties of solutions at small scales (Section 5.7): By
virtue of item (A), the solutions to the Seiberg-Witten equations for r big
enough are shown to approximate, at small scales, solutions to the 2-
dimensional vortex equations in the transverse directions of X. The prop-
erties of these 2-dimensional equations are the key input for the proof of
item (i) in Theorem 5.2.1.

An important open problem is to understand better the invariant sets where
the measure σ∞ in item (ii) of Theorem 5.2.1 concentrates (i.e in the case of
unbounded sequences HAr (X)). For example, do the equations impose any
condition on the type of invariant measure that can be obtained as a limit?
In the final section of this Chapter (Section 5.8) we present a new result on a
related, prototype problem in dimension 2. This problem appears naturally
when trying to address this question, and concerns the rescaled vortex equations
in C:

?dar = r(1− φ2
r ) (5.2.1)

∂ar φ = ∂zφr − i(axr − iayr)φ = 0 (5.2.2)

where the unknowns are, for r > 0 fixed, a real one form ar := a1rdx + a2rdy in
R2 (that we identify with C) and a complex valued function φr : C→ C.

The problem is to understand whether sequences of solutions to the above
equations, with increasing r, could converge to any conceivable probability
measure on C. Section 5.8 is devoted to the proof of the following:
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Theorem 5.2.3. Let ν be a Borel probability measure on the open disk D ⊂ C. There
is a sequence {(φrn , arn)} of solutions to the rn-rescaled vortex equations in C (with
rn → ∞) such that the 2-form

σrn =
rn(1− |φrn |2)dx ∧ dy∫

darn

converges to ν in the sense of measures on D, and is zero elsewhere.

(The measure being defined on D is not an important requirement in the above.
As the proof will make clear, the result works as well with ν any Borel proba-
bility measure on C. )

In work in progress, we try to pass from this result to an analogous result for
invariant measures arising as limits of sequences of three forms of the type

σr :=
r(1− |ψ1r|2)µ
HAr (X)

,

coming from solutions (Ar, ψr) to the Seiberg-Witten equations.

The chapter is organized as follows. Section 5.3 is devoted to the proof of The-
orem 5.2.1, and Section 5.4 gives the proof of Theorem 5.2.2. The proof of some
key propositions that are needed in the two first sections is postponed to Sec-
tions 5.5, 5.6, and 5.7 (concerning, respectively, the a priori bounds, the exis-
tence of solutions, and the small scale behavior). We end the chapter with the
proof of Theorem 5.2.3 in Section 5.8.

5.3 Proof of Theorem 5.2.1

We will divide the proof into two parts, corresponding to the proof of item (ii)
in Theorem 5.2.1 (Subsection 5.3.1) and then item (i) (Subsection 5.3.2). Before
engaging with the proof of each item, we state two Propositions that are cru-
cially needed for both, and which are concerned with, on the one hand, the
a priori properties of solutions, and on the other hand, with the existence of
solutions.

The first Proposition describes the a priori behavior that any solution to the
SW(r, v) equations displays:

Proposition 5.3.1 (A priori bounds). Let (Ar, ψr) be a solution to the SW(r, v)-
equations, with v a fixed C∞ divergence free vector field. We have the following uni-
form estimates for all m > 1:

||ψ1r||2C0(S3) 6 1 +
c0

r
; ||ψ2r||2C0(S3) 6

c0(1− |ψ1r|2)
r

+
c0

r2 (5.3.1)

||(∇− iAr)ψ1r||Cm(S3) 6 cmr
m+1

2 (5.3.2)
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||(∇− iAr)ψ2r||Cm(S3) 6 cmr
m
2 . (5.3.3)

where all the constants depend only on the metric and v.

The proof of this Proposition is given in Section 5.5.

The next Proposition yields the existence of a solutions with additional prop-
erties, suitable for our ends.

Proposition 5.3.2 (Existence of solutions). Let X be a nowhere-vanishing vec-
tor field on S3 preserving a volume form µ and with non-zero helicity. There al-
ways exists a smooth perturbing volume preserving vector field v, of arbitrarily small
Cm norm, for which the associated SW(r, v)-equations have a sequence {rn, ψrn :=
(ψ1rn , ψ2rn), Arn} of solutions such that

• A) sup (1− |ψrn |2) > δ, for all rn and some δ > 0,

• B) Either the sequence HArn
(X) is bounded or the sequences of functionals

HArn
(X) andHArn

(curl−1 X) verify

HArn
(curl−1 X)

HArn
(X)

6 ε

for any ε > 0 as small as we want, provided rn is large enough.

The proof of this Proposition is given in Section 5.6. We recall that the func-
tionalsHAr (X) andHAr (curl−1 X) were defined as

HAr (X) =
∫

curl Ar · X , HAr (curl−1 X) =
∫

curl Ar · curl−1 X .

Granted the above Propositions, we proceed with the proof of Theorem 5.2.1.

5.3.1 Proof of item (ii) in Theorem 5.2.1

Let {r, ψr := (ψ1r, ψ2r), Ar} be a sequence as in Proposition 5.3.2 (we will
drop henceforth the subscript n). Suppose first that the sequence HAr (X) is
not bounded. This is the relevant case for item (ii) in Theorem 5.2.1. Our goal is
to prove that the 3-form

σr :=
r(1− |ψ1r|2)µ
HAr (X)

converges (maybe after passing to a subsequence) to an invariant measure of
X.

We divide the proof into three steps: the first step shows that σr converges to a
probability measure, i.e, there is a σ∞ with σ∞(S3) = 1. The second step shows
that this measure is indeed invariant under the flow of X. Finally, the third step
shows that σ∞(X · curl−1 X) 6 0 (hence, in particular, σ∞ cannot be a multiple
of the volume form).
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Step 1: Subsequences of σr converge to a probability measure σ∞

Our first goal is to prove that the sequence σr is bounded from above, which
will imply that there is a weakly convergent subsequence and hence, at least, a
limiting measure σ∞.

To that end, we first notice the following straightforward consequence of the
bounds in (5.3.1)

Lemma 5.3.3. Let (Ar, ψr) be any solution to the SW(r, v)-equations. We have that,
on the one hand

r
∫
|1− |ψ1r|2| 6 HAr (X) + C

and on the other hand

HAr (X) 6 r
∫
|1− |ψ1r|2|+ C

for C a positive constant depending on the metric and v, but not on r.

Proof of Lemma 5.3.3. Indeed, we have

HAr (X) = r
∫
(1− |ψ1r|2) + r

∫
|ψ2r|2 +

∫
X · v .

The third integral in the right hand side is bounded by the volume of S3 (which
we assume to be normalized to one) times the C0 norm of v. The second inte-
gral can be bounded, by virtue of (5.3.1), by

r
∫
|ψ2r|2 6 c

∫
|1− |ψ1r|2| 6 c

for some constant c. Finally, note that the bound (5.3.1) also implies that

r
∫
(1− |ψ1r|2) = r

∫
|1− |ψ1r|2|+ O(1) .

where by O(1) we denote a term bounded by an r-independent constant (and
that, in this case, is negative). Hence, we have that

HAr (X) = r
∫
|1− |ψ1r|2|+ O(1) .

which readily implies both bounds in Lemma 5.3.3.

Now, using the first inequality in Lemma 5.3.3, we have that, for any continu-
ous function ϕ

σr(ϕ) =
r
∫

ϕ(1− |ψ1r|)2

HAr (X)
6
||ϕ||C0(S3) r

∫
|1− |ψ1r|2|

HAr (X)
6

6 ||ϕ||C0(S3)(1 +
C

HAr (X)
) 6 ||ϕ||C0(S3)(1 + ε)
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where ε can be chosen as small as desired as long as r is big enough. Hence, the
sequence of measures has a weakly convergent subsequence (by the Banach-
Alaoglu theorem), and we get a limiting measure σ∞. Note that the total mass
of this measure is bounded above by 1.

Furthermore, the limit σ∞ of any convergent subsequence is never zero, be-
cause the sequence of measures is also bounded from below: it easily follows
from the second inequality in Lemma 5.3.3 that

σr(1) >

∫
r(1− |ψ1r|2)∫

r(1− |ψ1r|2) + C
> 1 + ε.

again with ε as small as desired as long as rn is big enough. In particular,
the above expression shows that the limiting measure σ∞ has total mass one,
σ∞(S3) = 1. Finally, the limiting measures are always non-negative, because

σr(U) >

∫
U r|1− |ψ1r|2| − C∫
S3 r|1− |ψ1r|2|+ C

> −ε

for ε > 0 as small as we want, as long as r is large enough. So any limiting
measure σ∞ is a probability measure.

5.3.1.1 Step 2: Any limiting probability measure σ∞ is invariant under the
flow of X

Now let us demonstrate that the flow of X leaves σ∞ invariant, i.e, that for any
continuous function ϕ, we have that

σ∞(ϕ ◦ φt
X) = σ∞(ϕ).

There is no loss of generality in taking f to be C∞ (since smooth functions
approximate arbitrarily well continuous ones).

Differentiating the above expression with respect to the parameter t, we get the
equivalent condition for invariance:

σ∞(X · ∇ f ) = 0. (5.3.1)

For finite r, we can integrate by parts σr(X · ∇ f ) to get

σr(X · ∇ϕ) =
r
∫

ϕ div (1− |ψ1r|2)X
HAr (X)

(5.3.2)

Lemma 5.3.4. The quantity div (1− |ψ1r|2)X satisfies, for any C1 function ϕ∫
ϕ div (1− |ψ1r|2)X 6 ||∇ϕ||C0(S3)

(C
r

∫
|1− |ψ1r|2|+

C√
r

∫
|1− |ψ1r|2|

1
2

)
with constant C depending on v and the metric g, but not on r.
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Proof of Lemma 5.3.4. It is convenient to introduce the following notation: the
second of the Seiberg-Witten equations, that is

σ · ∇ψ = iσ · Aψ , (5.3.1)

can be written component-wise as

X · ∇Aψ2 = ∂Aψ1 (5.3.2)

X · ∇Aψ1 = −∂Aψ2 (5.3.3)

where (we recall that, in our conventions, Z = e3 and Y = e2)

∂A := Z · ∇A + iY · ∇A = (∇3 − iA3) + i(∇2 − iA2) (5.3.4)

∂A := Z · ∇A − iY · ∇A = (∇e3 − iA3) + i(∇2 − iA2) (5.3.5)

The notation is justified thus: the operator ∂A (resp. ∂A) can be understood as a
(twisted) Cauchy-Riemann operator in the transverse planes to X. We further
notice the the general identity∫

ψ1∂Aψ2 + ∂Aψ2ψ1 = −
∫

∂Aψ1ψ2 − ψ2∂Aψ1 .

Given the above notations, a straightforward calculation yields that

∫
ϕ div (1−|ψ1r|2)X =

∫
|ψ2r|2∇X ϕ+ 2

∫
Re (ψ2rψ1r)∇Z ϕ+ 2

∫
Im (ψ2rψ1r)∇Y ϕ

(5.3.6)

where c.c stands for the complex conjugate of the term just preceding it. From
this we clearly get the following bound∫

ϕdiv (1− |ψ1r|2)X 6 ||∇ϕ||C0

∫
|ψ2r|2 + ||∇ϕ||C0

∫
|ψ2r| .

Now, recall that Proposition 5.3.1 grants that:

|ψ2r|2 6
c0|1− |ψ1r|2|

r
+

c0

r2

and therefore, we conclude that∫
ϕ div (1− |ψ1r|2)X 6 C||∇ϕ||C0

(1
r

∫
|1− |ψ1r|2|+

1√
r

∫
|1− |ψ1r|2|

1
2

)
(5.3.7)

with constants depending on the metric and v, and on the C1 norm of ϕ, and
the Lemma follows.
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From this, we clearly have that

σr(X · ∇ϕ) 6
c

HAr (X)
+

c
√

r
∫
|1− |ψ1r|

1
2 |

HAr (X)
(5.3.8)

Since HAr (X) has no convergent subsequence, the first term clearly goes to
zero as r increases. Now for the second term, recall that the first inequality in
Lemma 5.3.3 gives the bound

HAr (X) > r
∫
|1− |ψ1r|2| − C

Further still, Lemma 5.3.3 also implies that if HAr (X) is unbounded, r
∫
|1−

|ψ1r|2| is also unbounded, and therefore

HAr (X) > cr
∫
|1− |ψ1r|2| ,

for any desired constant c < 1 as long as r is large enough. This permits to
bound from above the second term in the right hand side of Eq (5.3.7):

c
√

r
∫
|1− |ψ1r|2||

1
2

HAr (X)
6 c
||
√

r|1− |ψ1r|2|
1
2 ||L1

||
√

r|1− |ψ1r|2|
1
2 ||2L2

where c is a new constant depending again on g, v, and ϕ.

By the Cauchy-Schwarz inequality, the term in the numerator is bounded by

||
√

r|1− |ψ1r|2|
1
2 ||L1 6 ||

√
r|1− |ψ1r|2|

1
2 ||L2 .

Therefore, we finally get

σr(X · ∇ f ) 6
c

HAr (X)
+

c

(r
∫
|1− |ψ1r|2|)

1
2

The above expression goes to zero as r → ∞, hence for any converging se-
quence, the limit verifies σ∞(X · ∇ f ) = 0, as we wanted to show.

Now the only thing left to prove is the key fact that σ∞(X · curl−1 X) 6 0.

5.3.1.2 Step 3: σ∞(X · curl−1 X) 6 0

The key input for this step is given by item B in Proposition 5.3.2: since we have
a sequence of r’s such that the sequenceHAr (X) has no bounded subsequence,
our solutions verify ∫

curl Ar · curl−1 X∫
curl Ar · X

6 ε (5.3.9)

for any ε as small as we want, and long as r is large enough.
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The above statement is actually pretty much equivalent to what we want to
prove. Indeed, since the Ar solve the SW(r, v)-equations, we have:∫

curl Ar · curl−1 X∫
curl Ar · X

=
r
∫
(1− |ψ1r|2)X · curl−1 X

HAr (X)
+ G (5.3.10)

where G can be bounded (using again the bound (5.3.1) in Proposition 5.3.1) as

√
r|1− |ψ1r|2|

1
2

HAr (X)
.

Note that the first term in Eq. (5.3.10) is exactly equal to

σr(X · curl−1 X)

As for the second term G, arguing as in Step 2 we can bound it as

c
||
√

r|1− |ψ1r|2|
1
2 ||L1

||
√

r|1− |ψ1r|2|
1
2 ||2L2

6
c

(r
∫
|1− |ψ1r|2|)

1
2

,

which goes to zero. Thus, we infer from Eq. (5.3.9) that, for any ε > 0 and r
sufficiently large, there is a δ > 0 such that

HAr (curl−1 X)

HAr (X)
= σr(X · curl−1 X) + δ 6 ε,

and so we get that σ∞(X · curl−1 X) 6 0, as desired. Step 3 is done and so is
the proof of item (ii) in Theorem 5.2.1.

A remarkable consequence of Step 3 is that σ∞ is not the volume measure µ, or
some multiple of it. Indeed, the helicity of X (that is, µ(X · curl−1 X)) is positive
by assumption. Furthermore, σ∞(U) > 0 for any open set U, so the possibility
that σ∞ is a negative rescaling of µ is also discarded.

5.3.2 Proof of item (i) of Theorem 5.2.1: convergence to a set of
periodic orbits in the bounded energy case

Through this subsection, we assume that

HAr (X) = r
∫
(1− |ψ1r|2) + r

∫
|ψ2r|2 +

∫
X · v 6 C

for some constant C not depending on r; and we take from Proposition 5.3.2 a
sequence of solutions (Ar, ψr) with r → ∞ such that

sup (1− |ψ1r|2) > δ > 0 (5.3.11)

with δ not depending on r.

For notational convenience, throughout the rest of this subsection we set ur :=
(1− |ψ1r|2).
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Note that Eq. (5.3.11) grants the existence of a sequence of points {pr} in S3

with ur(pr) > δ as r → ∞. The next thing that we will settle is that we can
actually choose a fixed point p with ur(p) > δ (for a sequence of r big enough)
rather than a sequence of points pr.

This is not a priori evident. Granted, by compactness of S3, we can always
choose a subsequence of points pr where the supremum of ur is attained, and
converging to a fixed point p. But this just means that there certainly exists a
point q such that, for any ε as small as we wish, there is some point pr with
u(pr) > δ within a distance ε from q. Nevertheless, since ur could have deriva-
tives as big as

√
r, we could have ε >> 1√

r (we have no control on the relation
between the convergence of pr to q, and the growth of r) and thus we cannot
ensure that q has also ur(q) > δ.

Still, we can argue by contradiction that a point p with ur(p) > δ′, for some
δ′ > 0 and an infinite sequence of r → ∞, must exists. Indeed, suppose that
there was no such point. Then, for any point p, we should have that ur(p) 6 ε,
for any ε > 0 as small as we want, as long as r is big enough. But then, by
compactness of S3, we would know that, for any given ε, for r big enough we
have that ur(p) 6 ε for every point p. This clearly contradicts (5.3.11).

So we can indeed choose a fixed point p with

u(p) > δ′

for some δ′ > 0. In what follows, we reset δ′ = δ.

The key to the proof of item (i) in Theorem 5.2.1 rests on the local behavior of
the solutions to the SW(r, v)-equations in small flow boxes of X, and in partic-
ular, in flow boxes around points p as above.

In order to properly describe this local behavior, let us define, at any point
p ∈ S3, a “flow-box chart” adapted to the field X around p.

Definition 5.3.5 (Adapted flow-box and flow-box chart at a point p). Let p be
any point in S3. Consider, for positive constants ε and ρ, the map

Φp : (−ε, ε)×Dρ −→ S3

with Dρ := {z ∈ C, |z| 6 ρ} being the disk of radius ρ, and

Φp(t, z) := φt
X(expp(xY(p) + yZ(p))

with t ∈ (−ε, ε) and z = x + iy ∈ Dρ, and where expp : TpS3 → S3 is the
exponential map. With ε and ρ small enough, Φp is a well defined diffeomorphism.

Denote by Cp(ρ, ε) the set Φp((−ε, ε)×Dρ) ⊂ S3. This is an adapted flow box at
p. The flow box chart at Cp(ρ, ε) is the map Ψp : Cp(ρ, ε)→ (−ε, ε)×Dρ defined
as Ψp := Φ−1

p .

Note that in the flow box chart coordinates, we have that (Ψp)∗X = ∂t.
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With a slight abuse of notation, we will denote by ψ(t, z) the function ψ ◦
Ψ−1

p (t, z), and follow this convention for all the other variables. The metric
g in the flow-box coordinates, i.e, (Ψp)∗g, will also keep being referred to as g;
as well as the vector field A(t, z) := (Ψp)∗A.

We begin by noticing the following direct consequence of Proposition 5.3.1 to-
gether with the second of the Seiberg-Witten equations, that will play an im-
portant role all through the proof:

Lemma 5.3.6. Let (Ar, ψr) be a solution to the SW(r, v)-equations. At any point
p ∈ S3, we have

|X · ∇ur|(p) < Ĉ

|Y · ∇ur|(p) < Ĉ
√

r

|Z · ∇ur|(p) < Ĉ
√

r

where Ĉ is a constant depending on the metric and on v, but not on r.

Proof. First, note that, for any vector field ek

|ek ·∇(1−|ψ1r|2)| = |∇k|ψ1r|2| = |Re (ψ†
1r(∇k− iAk)ψ1r)| 6 |ψ1r||(∇k− iAk)ψ1r|

and so, by virtue of Proposition 5.3.1, we have

|∇(1− |ψ1r|2)| 6 (1 +
c0

r
)c1
√

r 6 C
√

r

which already yields the last two bounds in the Lemma. For the bound in the
X direction, recall that the second of the SW(r, v)-equations reads component
wise (we write the relevant component only)

X · (∇− iA)ψ1r = −Z · (∇− iA)ψ2r − iY · (∇− iA)ψ2r

and hence, by the last bound in Proposition 5.3.1

|X · ∇(1− |ψ1r|2)| 6 |X · (∇− iA)ψ1r| 6 |(∇− iA)ψ2r| 6 C.

Remark 5.3.7. We will henceforth fix the value of the constant Ĉ as above; any other
constant appearing under some of the usual labels (C, c0...) may change its value from
one appearance to the next, and depend on some data to be specified at each appearance,
but it is always understood that it does not depend on r.

Lemma 5.3.8. Let p be any point p ∈ S3 with ur(p) > δ, and let Cp(
R√

r , ε) be an
adapted flow box, for some constant R and ε verifying

R 6
δ

2Ĉ
, ε 6

δ

2Ĉ

where Ĉ is the same constant as in Lemma 5.3.6. Then

r
∫

Cp(
R√

r ,ε)
ur > C′

where C′ is a constant depending only on the metric, on δ, and on Ĉ (which in turn
depend just on the upper bounds for r−

1
2 |(∇− iAr)ψ1r| and |(∇− iAr)ψ2r| in Propo-

sition 5.3.1).
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Proof of Lemma 5.3.8. The proof is a straightforward consequence of Lemma
5.3.6: the above choice of R and ε ensures that

u|Cp(
R√

r ,ε) >
δ

2
,

therefore,

r
∫

Cp(
R√

r ,ε)
ur > cδR2ε

The following Proposition is the last ingredient that will enable us to detect
periodic orbits of X:

Proposition 5.3.9. Let p be a point in S3 with ur(p) > δ as r → ∞ for some δ > 0
independent of r. Let Cp(ρ, ε) be a flow box around the point p, with ρ and ε small
enough. There are two large enough constants R1 and R2 (possibly depending on the
point, and with R1 < R2 ) such that, for any given ε > 0 as small as desired, and any
given R′ > R2 as large as desired, we have

(i)
sup ur

Cp(
R′√

r , ε
Ĉ
)

< 2ε

(ii)
sup ur
Cp(

R1√
r ,ε)

> 1− ε

provided r is large enough.

Remark 5.3.10. In fact, as the proof will make manifest, the supremum in item (ii) is
achieved at some point q which is in the same slice of the flow fox as the given point p,
i.e, with flow-chart coordinates Ψp(q) = (z, 0).

We will prove this Proposition at the end of this subsection.

From Proposition 5.3.9 together with Lemma 5.3.6 we readily get the following
key corollary:

Corollary 5.3.11. Let p be a point in S3 with ur(p) > δ as r → ∞ for some 1
2 >

δ > 0 independent of r. Fix ε > 0 such that 1−ε
2 > δ. There is a point qr, with

dist (p, qr) 6 2R1
1√
r , such that

u(φt
X(qr)) >

1− ε

2
> δ

for all t such that |t| 6 1−ε
2Ĉ

.
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With these ingredients stablished, we are ready to show that the vector field X
has a periodic orbit. More precisely, the following construction finds a measure
λr whose limit λ∞ is an invariant measure of the field, supported on a periodic
orbit.

To start with the construction, fix a point p1 with u(p1) > δ for some δ. We
agree on δ being less than 1/2 throughout. Consider a flow box Cp1(

ρ√
r , τ),

with ρ := δ
2Ĉ

and τ := δ
2Ĉ

.

Define λ1r to be the measure given (in flow-chart coordinates in D ρ√
r
× [−τ, τ])

as λ1r := δ(z) ⊗ dt. This completes the first step. We note in passing that,
because of Lemma 5.3.8, we have

r
∫

Cp1 (
ρ√
r ,τ)

ur > c

with c depending only on δ and Ĉ. The main idea now is to repeat this con-
struction at different points pkr, in such a way that the union of the flow boxes
end up converging to a periodic orbit of X, and the sum of the measures λkr
converges to a measure supported on the orbit.

For the second step, we first find a point p2r, with ur(p2r) > δ, and which is,
roughly speaking, at a fixed distance 2τ from p1 in the direction of the flow,
and at a distance of order O(r−1) in the transverse directions. This we can do
thanks to Corollary 5.3.11.

Indeed, choose (with the notations of Corollary 5.3.11 with p = p1) a point
p2r := φt

X(qr) with |t| 6 1−ε
2Ĉ

. As is estated in the corollary, by choosing ε

small enough, we can rest assured that the point p2r has ur(p2r) > 1−ε
2 > δ.

Furthermore, since by construction 2τ = δ
Ĉ
6 1−ε

2Ĉ
, we can set t := 2τ.

We now define a flow-box Cp2r (
ρ√
r , τ) at p2r. We again have the lower bound

r
∫

Cp2r (
ρ√
r ,τ)

ur > c

and moreover, (note that the closures of the two flow boxes intersect, at most,
on a disk)

r
∫

Cp(
ρ√
r ,τ)∪Cp2r (

ρ√
r ,τ)

ur > 2c (5.3.1)

As we did in the first step, we define a measure λ2r := δ(z) ⊗ dt, supported
now in the core of the flow box Cpr2 .

Again, thanks to Corollary 5.3.11 we find a point p3r with the same relation to
p2r as the one that p2r has with p1, and we repeat the construction. This scheme
is iterated until the flow box CpNr (

ρ√
r , τ), centered at some point pNr, intersects

(in a set of non-zero volume) the original flow box Cp1(
ρ√
r , τ) centered at p1.

That this must happen after a finite number of steps N is a consequence of
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the boundedness of HAr (X). Indeed, if after N steps, the flow box CpNr (
ρ√
r , τ)

does not intersect the flow box we started with, we have, by virtue of Eq. 5.3.1

Nc 6 r
∫

Cp(
ρ√
r ,τ)∪...∪CpNr (

ρ√
r ,τ)

ur

but, on the other hand,

r
∫

Cp(
ρ√
r ,τ)∪...∪CpNr (

ρ√
r ,τ)

ur 6 r
∫

S3
|u| 6 HAr (X) + c′

so the maximum number of steps N must always stay smaller than some con-
stant. (Note that, as long as r is big enough, the flow-boxes are as thin as we
want, so we can always discard the possibility that the process ends with a
flow box around a point pNr intersecting the flow box centered at a point pkr
distinct from p1.)

We thus get, at the end of the process some measure

λr :=
N

∑
i=1

λir

which by construction is supported in N arcs of orbits of the vector field X.
This measure is clearly bounded from above (by the total length of the arcs,
Nτ), so it converges to some measure λ∞.

Furthermore, it is easy to see (since the supporting arcs of λr are within a dis-
tance O( 1√

r ) from each other), that λ∞ is invariant under the flow of X: it is
thus supported on a closed orbit of X. This completes the proof of item (i) in
5.2.1.

Proof of Proposition 5.3.9. Let Ψp : Cp(ρ, ε)→ (−ε, ε)×Dρ be an adapted flow-
box chart at p, as in Definition 5.3.5. It is convenient at this point to define
the rescaled coordinates (t′, z′) = (

√
rt,
√

rz), which now take values in the
stretched cylinder C√r := (−ε

√
r, ε
√

r) ×D√rρ. The variables in rescaled
coordinates will be denoted by their namesakes with a tilde, e.g, ψ̃(t′, z′) :=
ψ( t′√

r , z′√
r ); with the exception of the vector field A, which gets an extra rescal-

ing factor:

Ã(t′, z′) :=
1√
r

A(
t′√

r
,

z′√
r
)

(note that this rescaling factor is consistent with A being considered a connec-
tion: the covariant derivative ∇ − iA gets this way homogeneously rescaled
when rescaling the coordinates).

Let us first prove the bound (i) in Proposition 5.3.9. This amounts to proving
that ũr must be ever smaller outside disks of ever bigger radius R.

Suppose it were not the case. Then, we could find an increasing sequence of
points z′k, separated from each other by a distance at least some fixed R, and
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such that ũ(0, z′k) = ur(0, z′k√
r ) > δ′ for some δ′ > 0. But then, around each of

these points, we could repeat the argument in the proof of Lemma 5.3.8 to find
that each point contributes to the energy by at least some constant c depending
only on δ′, R, and Ĉ. But this would imply that

r
∫

S3
|u|

is not bounded. However, by Lemma 5.3.3, the boundedness of HAr (X) im-
plies that the above quantity is also bounded, so we get a contradiction.

Thus we find, for any ε as small as we want, a radius R2 with ũr(z′, 0) 6 ε for
any |z′| > R2. This together with Lemma 5.3.6 implies the first bound in the
Proposition.

The second bound is subtler. It rests on the properties of the vortex equations,
a system of PDEs which captures very well the behavior of solutions to the
SW(r, v)-equations at small scales. More precisely, sequences of solutions of
the SW(r, v)-equations with increasing r converge, in the rescaled coordinates,
to solutions of the self-dual vortex equations on slices t×D√r of constant t:

Definition 5.3.12 (Self-dual vortex equations). The self dual vortex on C are the
system of equations

∂xay − ∂yax = (1− |φ|2)
∂aφ = ∂zφ− (ax − iay)φ = 0

where ∂z := (∂x + i∂y) is the Cauchy-Riemann operator, and the unknowns are a real
one form a = axdx + aydy (that we will also sometimes identify with its dual vector
field through the euclidean metric) and a complex valued function φ = φ1 + iφ2, the
“Higgs field”. As is the case with the Seiberg-Witten equations, these equations are
invariant under U(1)-gauge transformations: if (a, φ) is a solution to the equations,
then g(a, φ) = (a− g−1dg, gφ) is also a solution, for any smooth function g : C→ C

with |g| = 1.

Lemma 5.3.13. Let (Ar, ψr) be a family of solutions to the SW(r, v)-equations. Given
a point p ∈ S3 and a sequence of values of r going to infinity, and given a compact set
[−T, T]×DR ⊂ R× C, there always exists a subsequence ri such that the rescaled
fields

Ãi(t′, z′) :=
1√
ri
(Ψpi )∗Ari

( t′√
ri

,
z′√
ri

)
, ψ̃1i(t′, z′) := ψ1ri ◦Ψ−1

pi

( t′√
ri

,
z′√
ri

)
converge in [−T, T]×DR in the Cm norm to a smooth family of solutions (at′(z′), φt′(z′))
of the vortex equations on t′ × C, with t′ ∈ [−T, T]. Furthermore, all members of
this family are gauge equivalent, that is, there is a smooth function g : [−T, T] ×
DR → C with |g| = 1 and a solution to the vortex equation (a(z′), φ(z′)) such that
g(t′, ·)∗(a(t′, ·), φ(t′, ·)) = (a(·), φ(·)).

The proof of this Lemma is given in section 5.7, Subsection 5.7.1.

The above Lemma ensures that, for any choice of R > 0, T > 0 and ε′ > 0, we
have, for r large enough,

sup
(z′ ,t′)∈DR×[−T,T]

|ũr − (1− |φ|2|)| < ε′ (5.3.1)

110



CHAPTER 5. THE ASYMPTOTIC ANALYSIS OF THE SEIBERG-WITTEN
EQUATIONS AND INVARIANT MEASURES

sup
(z′ ,t′)∈DR×[−T,T]

|(∇− iÃr)ψ̃r − (∇− ia)φ| < ε′ (5.3.2)

with (φ, a) being solution to the self-dual vortex equations on C, understood
here as a solution to the equations on C×R invariant in the R-direction. Fur-
thermore, Proposition 5.3.1 implies that |φ| 6 1 everywhere.

Equation (5.3.1) together with the first bound in Proposition 5.3.9 (which we
already proved) implies that the solution of the vortex equations we are con-
verging to satisfies (1− |φ(z′)|2)→ 0 as |z′| → ∞.

This in turn yields the desired proof of bound (ii) in Proposition 5.3.9, via the
following lemma:

Lemma 5.3.14. Let (a, φ) be a solution to the vortex equations. Then

(i) The set |φ|−1(0) is either empty or consists on a set of isolated points.

(ii) If |φ| 6 1, then either |φ| = 1 everywhere or |φ| < 1. Further, if |φ| < 1, any
local minima of |φ| has |φ| = 0.

This lemma is proved in Section 5.7, Subsection 5.7.2.

For the proof of (ii) in Proposition 5.3.9, note that, since ur(p) = ũr(0, 0) > δ,
the limiting vortex solution φ cannot be identically 1, by item (ii) in Lemma
5.3.14, so we have that |φ| < 1 everywhere. Further, since |φ(z′)|2 → 1 as
|z′| → ∞, item (i) in Lemma 5.3.14 implies that the function |φ| has a finite
number of zeroes.

Hence, there is at least one point z′∗ ∈ DR1 , for some R1 < R2, with |φ(z′∗)| = 0.
Now for r large enough, (5.3.1) ensures that ũr(z′∗, 0) < 1− ε, so item (ii) of
Proposition 5.3.9 follows.

5.4 Proof of Theorem 5.2.2

We start with the following

Proposition 5.4.1. Let (X, µ, g) be a nowhere-vanishing vector field on S3 preserv-
ing a volume form µ and with adapted metric g; and such that curl−1 X = X. There
always exists a smooth volume preserving vector field v, of arbitrarily small Cm norm,
for which there is a sequence {rn, ψrn := (ψ1rn , ψ2rn), Arn} of solutions to the associ-
ated SW(r, v)-equations such that

(i) sup (1− |ψrn |2) > δ, for all rn and some δ > 0,

(ii) The sequenceHArn
(X) is bounded
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Subsection 5.6.2 in Section 5.6 is devoted to proving the Proposition above.

With this Proposition granted, the proof of theorem 5.2.2 is just a consequence
of the following Lemma:

Lemma 5.4.2. Let (X, µ, g) be a nowhere-vanishing vector field on S3 preserving a
volume form µ and with adapted metric g; and such that curl−1 X = hX, with h a
positive function in S3. Then, the vector field X̃ := hX preserves the volume form
µ̃ = 1

h µ and, with respect to the adapted metric g̃ := 1
h2 g, satisfies curl−1

g̃ X̃ = X̃.

Proof. It is easy to see that µ̃ and g̃ are an invariant volume form and an adapted
metric of the vector field X̃. As for the fact that curl−1

g̃ X̃ = X̃, note that curl−1

can be defined as
iXµ = dicurl−1 X g

and hence it is straightforward to see that

iX̃ µ̃ = iXµ = dicurl−1 X g = dih−2X̃ g = diX̃ g̃

Now, granted Lemma 5.4.2 and Proposition 5.4.1, Theorem 5.2.2 is just a corol-
lary of Theorem 5.2.1.

5.5 A priori estimates: Proof of Proposition 5.3.1 and
of Lemma 5.6.5

In this section we prove the a priori bounds in Proposition 5.3.1, which are
needed as input for the proof of Theorem 5.2.1 in Section 5.3; and we further
establish a corollary of those bounds, Lemma 5.6.5, that is needed as input in
the proof of Proposition 5.6.4 in Section 5.6.

We recall that, for any solution (Ar, ψr) of the SW(r, v)-equations ( with v a
fixed C∞ divergence free vector field), these bounds read:

||ψ1r||2C0(S3) 6 1 +
c0

r
; ||ψ2r||2C0(S3) 6

c0(1− |ψ1r|2)
r

+
c0

r2 (5.5.1)

||(∇− iAr)ψ1r||Cm(S3) 6 cmr
m+1

2 (5.5.2)

||(∇− iAr)ψ2r||Cm(S3) 6 cmr
m
2 . (5.5.3)

with all the constants depending only on the metric and v. The corollary
needed in Section 5.6 asserts that the following inequality holds

|H(curl Ar)| 6 Cr
2
3 (|HAr (X)|

4
3 + C). (5.5.4)
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for some constant C independent of r, and where H(curl Ar) is the helicity of
the vector field curl Ar.

5.5.1 Proof of the bounds (5.5.1)–(5.5.3)

The proof of the bounds above is just an application of the Weitzenbőck for-
mula, the maximum principle and standard elliptic estimates.

The Weitzenbőck formula states that the square of the Dirac operator DA dif-
fers from the ordinary twisted Laplacian associated to∇A by a zero order mul-
tiplication operator, which depends on the scalar curvatures of the manifold
and the curvature of the connection A (i.e the curl of the vector field A). More
precisely, we have

D2
A = ∇∗A∇A +

s
4
− σ · curl A (5.5.5)

where ∇∗A = div + iA is the L2-adjoint of the covariant derivative ∇− iA, s
stands for the scalar curvature of the metric g, and by σ ·W we denote the Pauli
matrix in the direction of the vector field W

σ ·W = ∑
k

σkWk

We will denote the operator ∇∗A∇A by −∆A. In explicit form, this operator
reads

−∆A = −∆ + 2iA · ∇+ divA + |A|2.

Notice that for us the laplacian is a negative operator, i.e, we set ∆ := div ∇ =
∑k ek · ∇(ek · ∇) (in terms of the orthonormal basis ek).

If (Ar, ψr) satisfies the SW(r, v)-equations, the Weitzenbők formula becomes

−∆Ar ψ +
s
4

ψr − rσ1ψr + r|ψr|2ψr − σ · vψr = 0 (5.5.6)

where we have used that
σ · ψ†σψ = |ψ|2ψ.

Multiplying Eq. (5.5.6) by ψ†
r and taking the real part of the resulting expres-

sion, it is easy to see that we get

−1
2

∆|ψr|2 + |∇ψr− iArψr|2 +
s
4
|ψr|2− r(|ψ1r|2−|ψ2r|2 + |ψr|4)−Re(ψ†

r σ · vψr) = 0

where we have used that

Re(ψ†∆ψ) =
1
2

∆|ψ|2 + |∇ψ|2

and

Re(2ψ†iA · ∇ψ) + |ψ|2divA + |A|2|ψ|2 = |∇ψ− iAψ|2 − |∇ψ|2.
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Discarding the positive terms and taking into account that

Re(ψ†σ · vψ) 6 |v||ψ|2 ,

and that |ψ1r|2 − |ψ2r|2 6 |ψr|2, we readily have the inequality

−1
2

∆|ψr|2 + r|ψr|2
( s′ − |v|

r
− 1 + |ψr|2

)
6 0 (5.5.7)

where s′ = s/4.

By the maximum principle, at the point where |ψr|2 achieves its maximum
value, we have that ∆|ψr|2 6 0, and hence

( s′ − |v|
r
− 1 + |ψr|2

)
6 0 .

Therefore, for any solution, at any point of the manifold, we have

|ψr|2 6 1 +
c0

r

with c0 := sup v−min s′. The bound for ψ1r in Eq. (5.5.1) follows.

The bound for ψ2r is derived following an analogous (though more calculation-
ally involved) route; this time departing from the component-wise versions of
Eq. (5.5.6), multiplying each component separately with the corresponding
component of ψ†, and (taking into account the bound already obtained for ψ1r)
applying the maximum principle to an appropriate linear combination of both
equations. We refer to [66] for the details.

In order to derive the bounds for the derivatives, Eqs. (5.5.2) and (5.5.3), it is
convenient to work in the Coulomb gauge, so that the Seiberg-Witten system
becomes elliptic. More precisely, the idea is to consider the SW(r, v)-equations
as a PDE on the space of divergence free vector fields, that is, to impose that
divA = 0. The convenience comes from the fact that, in this case, the curl op-
erator has elliptic symbol (its square is minus the Laplace-Beltrami operator)
and trivial kernel (note that in S3 there are no harmonic vector fields, because
the first cohomology group is trivial).

There is no problem in imposing the extra equation divA = 0; indeed, any solu-
tion to the SW(r, v)-equations is gauge-equivalent to a solution with divA = 0.
More precisely, given any (A′, ψ′) solving the equations, finding a gauge equiv-
alent solution (A, ψ) = (A′ +∇ f , ei f ψ′) with divergence free A amounts to
finding f such that ∆ f = −divA′. Since there is always exactly one f solving
∆ f = −divA′ up to constants (note that

∫
divA′ = 0), there is exactly one

divergence free A in each gauge equivalent class of solutions.

We will work now on local coordinates in the neighborhood of some point p,
rescaling lengths by an

√
r factor. For this purpose, let Ψ : B(p, δ)→ B(0, δ) ⊂

R3 be a patch of normal geodesic coordinates centered at a point p. We will
drop the point subscript and just write Bδ for the Euclidean ball of radius δ
centered at the origin. For the ball of unit radius we will just write B.
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We set
ψ̃r(x) := ψr ◦Ψ−1

( x√
r

)
Ãr(x) :=

1√
r
(Ψ∗Ar)

( x√
r

)
ṽ(x) := (Ψ)∗v(

x√
r
)

where the coordinates x now take values in the rescaled ball B√rδ). Note that
in these rescaled coordinates, if x ∈ BR for fixed R (i.e not depending on r)
the metric g̃ := Ψ∗g is euclidean up to terms of order O(r−1). We will use
the convention of indexing the euclidean coordinates by greek indices µ =
1, ..., 3, and we construct the patch so that (Ψp)∗ek(0) = δµk∂µ, where δµk is the
Kroenecker delta. Hence, we have that

(Ψ)∗ek(
x√
r
) = δµk∂µ + O(1/

√
r)

on compact sets (e.g in BR), so that the ek and ∂µ (with k = µ) components

of any vector field coincide up to terms of the form G(x)√
r , with G uniformly

bounded in all derivatives.

In these coordinates, the equations read

curlg̃ Ãr =
(

∂1 +
G√

r
− ψ̃†

r σψ̃r

)
+

ṽ
r

(5.5.8)

i ∑
µ

σµ(x)∂µψ̃r = −∑
µ

σµ(x)Ãµrψ̃r (5.5.9)

divg̃ Ãr = 0 (5.5.10)

where curlg̃ and divg̃ are the curl and divergence operators defined by the
rescaled metric (notice that they are a very small perturbation of their euclidean
counterparts), and where σµ(x) = δµiσi +

1√
r ∑j Gj(x)σj. Finally, we have that

both G and the Gj are uniformly bounded in compact sets

||Gj||Cm(BR)
6 cm.

The bound (5.5.2) follows from standard elliptic regularity estimates starting
from the fact that, by virtue of Eq. (5.5.1), |ψ̃| is bounded independently of r.

In order to see this, we first perform a (local) gauge transformation: we define
Ā = Ãr −∇g̃ f with f such that, on the unit ball B

∆g̃ f = 0 , x · ∇g̃ f = x · Ãr on ∂B ,

and outside B we extend f smoothly (note that both f and Ā depend on r, but
we drop the subscript). This ensures that Ā is divergence-free and tangent to
the boundary of the unit ball B. When such is the case, it is standard that we
have the following inequality (see e.g the main Theorem in [21])

||Ā||Wk+1,p(B) 6 C(g, k)|| curl Ā||Wk,p(B)
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Furthermore, the pair (Ā, uψ̃), with u := e−i f , is a solution to (5.5.8)–(5.5.10),
so we get the inequalities

||Ā||Wk+1,p(B) 6 C|| |ψ̃|2||Wk,p(B) +
1
r
||ṽ||Wk,p(B) (5.5.11)

and

||uψ̃||Wk+1,p(B) 6

∥∥∥∥∑
µ

σµ(x)∂µ(uψ̃)

∥∥∥∥
Wk,p(B)

+ ||ψ̃||Lp(B) 6 C||Āuψ̃||Wk,p(B)+ ||ψ̃||Lp(B) .

(5.5.12)
with constants C depending on the metric g and k, p. Now, starting from the
pointwise bound on ψ̃, the standard elliptic bootstrapping argument applied
to Eqs. (5.5.11) and (5.5.12) yields that both Ā and uψ̃ are bounded in Wk,p(B)
for all k > 0, p > 1. Thus, from Sobolev embedding, one readily gets

||Ā||Cm(B) 6 C′m (5.5.13)

||uψ̃||Cm(B) 6 C′m (5.5.14)

where the constants depend on v and g, but not on r. To get the bounds in the
statement of the Lemma, note that (5.5.14) implies that

||∇(uψ̃)||Cm(B) 6 C′m+1

but on the other hand we have that

|∇(uψ̃)| = |∇ψ̃− i(∇ f )ψ̃| = |∇ψ̃− iÃr + iĀψ̃|

and hence, in view of the bound (5.5.13), we deduce

||∇ψ̃r − iÃr||Cm(B) 6 Cm.

Rescaling back, we get the estimates (recall the extra
√

r rescaling of Ãr)

||∇ψr − iA||Cm(B 1√
r
) 6 Cmr

m+1
2

from which estimates (5.5.2) follow by compactness of S3.

Finally, to derive the bound (5.5.3) on the derivatives of ψ2r, we use a similar
argument departing from the second component of Eq. (5.5.6), which, under
rescaled coordinates, reads

−∆g̃ψ̃2r + 2iÃr · ∇g̃ψ̃2r + (1 +
f1

r
)ψ̃2r = −

f2

r
ψ̃1r −

|ψ|2
r

ψ̃2r

where f1 is a function depending linearly on the scalar curvature and the com-
ponents of v, and f2 just on the components of v.

5.5.2 Proof of the Lemma 5.6.5

Our objective in this subsection is to prove the Lemma 5.6.5, which establishes
the bound

|H(curl Ar)| 6 Cr
2
3 (|HAr (X)|

4
3 + C) .
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We recall that

H(curl Ar) =
∫

curl Ar · Ar , HAr (X) =
∫

curl Ar · X

The above bound is a crucial ingredient in the proof of Propostion 5.3.2 in Sub-
section 5.6.1.

To this end, first note that the bounds (5.5.1) imply that

| curl Ar| 6 r|1− |ψ1r|2|+ G (5.5.15)

where G is a function pointwise bounded as

|G| 6 C(g, v).

and depending on terms of the form ψ1rψ2r and on v.

Indeed, this follows upon noticing that

|X− ψ†
r σψr|2 6 |1− |ψ1r|2|2 +

|ψ1r||1− |ψ1r||2
r

and hence

|X− ψ†
r σψr| 6 |(1− |ψ1r|2)|+

|ψ1r|2
2r

.

Furthermore, we also deduce (recall that the negative part of (1− |ψr|2) is of
order O(r−1)) :∫

| curl Ar| 6 c + r
∫
|1− |ψ1r|2| 6 c′ + r

∫
(1− |ψ1r|2) 6 |HAr (X)|+ C

(5.5.16)
where the constants are positive and depend again only on g and v.

Thus, we can write that

|H(curl Ar)| 6 ||Ar||C0(S3)

∫
| curl Ar| 6 ||Ar||C0(S3)(|HAr (X)|+ C)

The following lemma yields thus the desired bound (5.5.4):

Lemma 5.5.1. In the Coulomb gauge, divA = 0, the following inequality holds

||Ar||C0(S3) 6 Cr
2
3 (|HAr (X)|

1
3 + C)

Proof. The proof follows easily from the remarks above. First, notice that the
absence of harmonic vector fields in the sphere implies that, on the space of
divergence free fields, the curl operator has a well defined inverse (if there were
harmonic vector fields, we will further need to ensure that we are working with
divergence free fields whose harmonic part is zero). Thus, by fixing the gauge
to Coulomb, we can write

A(x) =
∫

B(x, y) · curl A(y) d µ(y) ,
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where B(x, y) is a matrix valued kernel (the Green function of the curl). This
kernel is the analog of the Biot-Savart operator (see e.g [21, 72]) in R3. In par-
ticular, it has a singularity of the form B(x, y) ∼ (dist(x, y))−2.

We can decompose the above integral as:

|A(x)| 6 c
∫

B(x,ρ)

| curl A|
dist(x, y))2 +

∫
M\B(x,ρ)

| curl A|
dist(x, y)2 .

The first integral has an integrable singularity in its kernel, and can be bounded
by ∫

B(x,ρ)

| curl A|
dist(x, y)2 6 Crρ

where the constant C depends on the metric and the C0 norm of v. The second
integral is readily seen by virtue of (5.5.16) to be bounded as∫

M\B(x,ε)

| curl A|
dist(x, y))2 6 Cρ−2(|HAr (X)|+ C) + C.

Now choosing ρ3 := r−1|HAr (X) + C| we finally get

|A(x)| 6 Cr
2
3 (|HA(X)|

1
3 + C),

which is the desired bound.

5.6 Existence of solutions: Proof of Propositions 5.3.2
and 5.4.1

The existence of solutions meeting our goals (i.e, the construction of non-trivial
invariant measures) rests on the following Proposition. Before stating it, let us
define

Remark 5.6.1. Let X∞(S3) be the space of smooth vector fields in S3. Set M :=
X∞(S3)×C∞(S3, C2). Solutions to the SW(r, v)-equations are critical points of the
functional Sr : M→ R defined as

Sr(A, ψ) :=
1
2
H(curl A)− rHA(curl−1(X))−

∫
S3

curl−1 v · curl A+ ir
∫

S3
ψ†σ · (∇− iA)ψ.

(5.6.1)
Note that this functional is invariant under gauge transformations (A, ψ) → (A +
∇ f , ei f ψ)

Proposition 5.6.2. Let X be a nowhere vanishing volume preserving vector field in
S3 withH(X) > 0. There is a real number δ > 0 and an unbounded from below set of
integers Λ ⊂ Z such that, for each fixed λ ∈ Λ, we have:

(i) For any chosen ε > 0, m > 0, there is a smooth divergence-free vector field
v with ||v||Cm(S3) 6 ε such that the SW(r, v)-equations have a non trivial
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solution for all r ∈
∞
∪

k=1
(ρk, ρk+1), where {ρk}∞

1 ⊂ [1, ∞) is a set of positive

real numbers, with no accumulation points, and depending on all the previous
data. These solutions are said to have degree λ.

(ii) On each interval (ρk, ρk+1), the family of solutions (A(r), ψ(r)) varies smoothly
with r.

(iii) The solutions (Ar, ψr) of degree λ 6= 0 satisfy that

sup (1− |ψr|) > δ

for the constant δ > 0.

(iv) The solutions (Ar, ψr) of any degree λ satisfy

|λ−H(curl A)| 6 r2−δ∗

for a constant δ∗ with δ∗ > 1
16 .

(v) There is a continuous map Ŝ : [ρ1, ∞) → R whose restriction to each interval
(ρk, ρk+1), is equal to Sr(A(r), ψ(r)).

This Proposition is a combination of several deep results in Sections 3, 4 and
5 of C. Taubes’ [68]. The proof is highly involved, and rests ultimately on P.
Kronheimer and T. Mrowka’s construction of Monopole Floer Homology in
[46]. We will not attempt at reproducing it here, but we will give a rough
sketch in subsection 5.6.3, whose only aim is to explain how the Helicity of X
has anything to do with the existence of solutions.

5.6.1 Proof of Proposition 5.3.2

We recall that our goal is to prove the following:

Let X be a nowhere-vanishing vector field on S3, preserving a volume form
µ and with non-zero helicity. There always exists a smooth volume preserv-
ing vector field v, of arbitrarily small Cm norm, for which there is a sequence
{rn, ψrn := (ψ1rn , ψ2rn), Arn} of solutions to the associated SW(r, v)-equations
satisfying

• A) sup (1− |ψrn |2) > δ, for all rn and some δ > 0,

• B) Either the sequenceHArn
(X) is bounded or the sequences of function-

alsHArn
(X) andHArn

(curl−1 X) are such that

HArn
(curl−1 X)

HArn
(X)

6 ε

for any ε > 0 as small as we want, provided rn is large enough.
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Proof. From Proposition 5.6.2, we choose, for r large enough, a piecewise smooth
family of solutions (Ar, ψr) to the SW(r, v)-equations (for some v smooth and
with very small Cm norm), with fixed degree λ 6= 0. Any sequence of solutions
of such a family already satisfies item A,

sup (1− |ψrn |2) > δ

(by virtue of Item (iii) in Proposition 5.6.2). For item B, it remains to prove that,
assuming a sequenceHArn

(X) of the family has no bounded subsequence, then
we can find a subsequence with

HArn
(curl−1 X)

HArn
(X)

6 ε

Suppose then that the family HAr (X) as no bounded subsequence. We will
split the proof into two cases. To alleviate the notation, we define

X (r) := HAr (X)

and
X ∗(r) := HAr (curl−1 X)

(Note that X and X ∗ are well-defined and smooth in (ρ1, ∞) \ {ρk}∞
k=2. )

First suppose that there is a subsequence of values rn with

X ∗(rn) 6 1

Since by assumption X (rn) is unbounded, then it is clear that

X ∗(rn)

X (rn)
6 ε

for any large enough rn (recall that X (r) is always positive for r large enough,
as can be inferred from Lemma 5.5).

The remaining possibility is that there is no such subsequence withX ∗(rn) 6 1,
i.e, there exists an r′ such that

X ∗(r) > 1

for all r > r′ (it is understood we are avoiding the points ρk, where X ∗ is not
well-defined).

Introduce now two constants κ and α, with κ > 0 and α ∈ (0, δ∗
16 ] (where δ∗

is the constant in item (iv) of Porposition 5.6.2). The reason for that choice of
the range of α will become evident as we go along. Suppose first that there is a
subsequence rn of the family with

X (rn) > κrαX ∗(rn)
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it is clear then that item B follows, no matter the precise value of α and κ.

If there is no such subsequence, what remains then to prove is that item B holds
when

X (r) 6 κrαX ∗(r)
for r > r′, for some r′ big enough.

This follows immediately from the subsequent lemma:

Lemma 5.6.3. With the notations above, suppose there is κ > 0 and α ∈ (0, δ∗
16 ] such

that, for all r large enough
X (r) 6 κrαX ∗(r) .

Then
X ∗(r) 6 C

for some C independent of r.

Granted this lemma, whose prove we give below, it is clear that

X ∗(rn)

X (rn)
−→ 0

as rn → ∞, for any sequence of rn avoiding the constants ρk. Hence, Proposi-
tion 5.3.2 is proved.

5.6.1.1 Proof of Lemma 5.6.3

It is at this stage that the particular items (ii) and (v) in Proposition 5.6.2 become
important. Recall that those items ensure that the family of solutions (Ar, ψr)
is piecewise smooth with respect to the parameter r, and that there is a con-
tinuous function Ŝ(r) which, in the intervals {(ρk, ρk+1)}∞

k=1 where (Ar, ψr) is
smooth, is equal to

Ŝ(r) = 1
2
H(curl Ar)− rHAr (curl−1 X)−

∫
S3

curl−1 v · curl Ar

Note that in particular, this means that S(r) is smooth in the intervals (ρk, ρk+1).
Note also that the term in S ∫

S3
ψ†

r σ · (∇− iAr)ψr.

is zero for a solution (Ar, ψr).

We define the functions

A(r) := H(curl Ar) =
∫

curl Ar · Ar ,

and
V(r) :=

∫
S3

curl−1 v · curl Ar .
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They are also piece-wise smooth. We then have that

Ŝ(r) = 1
2
A(r)− rX ∗(r)− V(r) .

Now, it is not hard to see that, on the intervals {(ρk, ρk+1)}∞
k=1, we have

Ŝ ′(r) = −X ∗(r) (5.6.1)

where by Ŝ ′ we denote the derivative of Ŝ . (Note that as a consequence, −Ŝ is
increasing for r big enough.)

Indeed, let (B, η, s) denote an element in the tangent space T(Ar ,ψr ,r)M×R '
M×R. The (Frechet) derivative of S(Ar, ψr, r) in the direction of (B, η, s) is
easily seen to be given by

(DS)(Ar ,ψr ,r((B, η, s)) =
∫

B · (curl Ar − rX− v)− sHAr (curl−1 X)+

+ir
∫

η†σ · (∇− iA)ψ + irψ†σ · (∇− iA)η +
∫

ψ†σ · Bψ

Now, the pair (B, η) is tangent to the space of solutions of the SW(r, v)-equations
at the configuration (Ar, ψr) when it satisfies the linearized equations

curl B = η†σψr + ψ†
r ση (5.6.2)

iσ · (∇− iAr)η + σ · Bψ = 0 (5.6.3)

In view of the above equations one gets that, if (B, η, s) is tangent to the space
of solutions at (Ar, ψr, r)

(DS)(Ar ,ψr ,r((B, η, s)) = sHAr (curl−1 X)

and Eq. (5.6.1) follows.

Notice in particular that Eq. (5.6.1) implies that the quantity

E(r) :=
−2Ŝ(r)

r
=
−A

r
+ 2X ∗ + 2V

r
(5.6.4)

satisfies

E ′(r) = A(r)
r2 − 2V

r2 (5.6.5)

where the term V
r2 is of order O( 1

r ). Our next goal is to show that E(r) is
bounded as r → ∞, and that this implies that X ∗ is also bounded, hence prov-
ing Lemma 5.6.3.

As can be suspected by inspecting Eqs. (5.6.4) and (5.6.5), the key to get some
bounds on E and X ∗ is in the behavior of the function A(r).
Lemma 5.6.4. Let δ∗ be the constant in item (iv) of Proposition 5.6.2, i.e, the constant
in the bound

|λ(Ar, ψr)−H(curl Ar)| 6 cr2−δ∗ .

where λ(Ar, ψr) is the degree of the solution (Ar, ψr). For any d < δ∗
4 we have, in the

notations above
A(r) 6 κr1−dX (r)
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Proof of Lemma 5.6.4. Suppose it were not the case, that is, that we had an in-
creasing, unbounded sequence of values of r for which

A(rn) > κr1−d
n X (rn). (5.6.1)

for some d < δ∗
4

The following lemma provides a contradiction between Eq. (5.6.1) and item
(iv) of Proposition 5.6.2

Lemma 5.6.5. Let (Ar, ψr) be any solution to the SW(r, v)-equations. We have the
bound

|H(curl A)| 6 Cr
2
3 (|HA(X)|

4
3 + C) .

This lemma is proved in Subsection 5.5.2 of Section 5.5. By the above lemma,
we have that, if the bound in Eq. (5.6.1) holds, then

κr1−d
n X (r) 6 A(rn) 6 Cr

2
3
nX

4
3 (rn) ,

and hence we get
X (rn) > cr1−3d

n

but then, again assuming that bound (5.6.1) holds, we get that there is a se-
quence of values of rn such that

A(rn) > cr2−4d
n .

Now, if d < δ∗
4 , this yields a contradiction with the fact that our solutions have

fixed degree for all r. Indeed, by item (iv) in Proposition 5.6.2, our solutions
must satisfy

A(r) 6 cr2−δ∗ .

Since by assumption we have that X 6 κrαX ∗, Proposition 5.6.4 implies that

A 6 κr1−d+αX ∗

and since by assumption we have α 6 δ∗
16 , for δ∗

4 > d > δ∗
8 we have

A 6 κr1−αX ∗ . (5.6.1)

Introducing this information in Eq. (5.6.4) we get that

E > (2− κr−α)X ∗ + V
r
> (2− κ)X ∗ − c (5.6.2)

where c is a constant coming from the V term. Since X ∗(r) > 1 by assumption,
we infer thatX ∗ is bounded if E is bounded. Furthermore, we can assume that,
actually

E > c′(2− κr−α)X ∗

for some fixed constant c′ since, if that were not the case, then we would have
that X ∗ is already bounded.
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Now, notice that taking into account combining the above bound (5.6.1) with
Eq. (5.6.5) we get the differential inequality

E ′(r) 6 cr−1−αX ∗ + c′

r2 6 c′r−1−αX ∗ 6 c′′r−1−αE(r)

Integrating the above readily yields that E is bounded, hence X ∗ is bounded
and we have proved Lemma 5.6.3.

5.6.2 Proof of Proposition 5.4.1

We first recall the statement of Proposition 5.4.1:

Let (X, µ, g) be a nowhere-vanishing vector field on S3 preserving a volume
form µ and with adapted metric g; and such that curl−1 X = X. There always
exists a smooth volume preserving vector field v, of arbitrarily small Cm norm,
for which there is a sequence {rn, ψrn := (ψ1rn , ψ2rn), Arn} of solutions to the
associated SW(rn, v)-equations such that

(i) sup (1− |ψrn |2) > δ, for all n and some δ > 0,

(ii) The sequenceHArn
(X) is bounded

As in the previous subsection, we first use Proposition 5.6.2 to find a piece-wise
smooth family of solutions (Ar, ψr) to the SW(r, v)-equations of fixed degree
λ 6= 0, so that the condition

sup (1− |ψrn |2) > δ

is already satisfied for any subsequence of rn. It remains to show that this
family has a subsequence with boundedHArn

(X).

In the notation from the previous subsection, note that the condition curl−1 X =
X implies that X (r) = X ∗(r) and hence Eq. (5.6.4) reads in this case

E(r) :=
−2Ŝ

r
=
−A

r
+ 2X (r) + 2

V
r

(5.6.3)

and we have the same expression for the derivative of E :

E ′(r) = A
r2 − 2

V
r2 (5.6.4)

Notice that an analog of Lemma 5.6.4 also applies here, since the argument in
the proof of Lemma 5.6.4 uses only the general results from Proposition 5.6.2
and the a priori bound in Lemma 5.6.5. Thus, we have that for d < δ∗

4 and
some fixed constant κ (that we can choose to be small enough):

A(r) 6 κr1−dX (r). (5.6.5)
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for r large enough.

From Eqs. (5.6.5) and (5.6.4) we get, on the one hand, that

E ′(r) 6 κr−1−dX (r)− 2
V
r2 6 cκr−1−dX (r) (5.6.6)

(note that the last inequality would be false only if X had already a bounded
subsequence, since by virtue of Proposition 5.3.1, X is already bounded from
below by a constant and hence it cannot have sequences going to −∞). On the
other hand, from Eq. (5.6.3) and (5.6.5) we get

E(r) > (2− κr−d)X (r) +
V
r

;

and again, we can assume that there is a constant c′ such that

E(r) > c′(2− κr−d)X (r)

or otherwise we would already know that X has a bounded subsequence. In
view of Eq. (5.6.6) we conclude that

E ′(r) 6 c′′r−1−dE

and integrating we get that E is bounded, hence so is X .

5.6.3 The role of Helicity in Proposition 5.6.2

Helicity is important to ensure that we can choose sequences of solutions with

|H(curl Ar)| 6 r2−δ∗ .

This inequality is a key input in the proofs of both Propositions 5.3.2 and 5.4.1
in Subsections 5.6.1 and 5.6.2.

Let us explain how helicity enters the picture. First, note that, actually, the
SW(r, v)-equations always have a solution with

sup (1− |ψ1r|2) > δ ,

as item A in Proposition 5.3.2 requires. Indeed, this is the solution correspond-
ing to ψ = 0 and

Ar = r curl−1 X + curl−1 v ,

which is unique modulo gauge transformation, i.e, adding a gradient field to
Ar.

Definition 5.6.6 (Reducible solution vs irreducible solution). The solution (Ar, ψr) :=
(r curl−1 X + curl−1 v, 0) to the SW(r, v) equations is called the reducible solution.
The other solutions are called irreducible solutions.
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However, it is clear that the sequence of reducible solutions (Ar, 0) is not the
sequence of solutions that we want in Theorem 5.2.1, since its associated se-
quence of measures is just

σr =
rµ

rvol(S3) + c

which clearly converges to the volume measure µ.

So we must ensure that other solutions do exist.

The following lemma is the main input form Kronheimer and Mrowka’s Monopole
Floer Homology, and it is also where helicity plays its role, to ensure the exis-
tence of irreducible solutions. It is a very rough distillation of some of the
results in Sections 2 and 3 of [68]:

Lemma 5.6.7. Given an integer λ, a constant ε > 0, and m > 0, there is always an
integer λ′ 6 λ and a positive number rk such that there always exists an irreducible
solution to the SW(r, v) equations of degree λ′, for some smooth divergence free field
v with ||v||Cm(S3) 6 ε.

Idea of the proof. This Lemma rests ultimately on two facts:

• A version of the Monopole Floer Homology groups HF(M) of a 3-manifold,
as defined by Kronheimer and Mrowka, is non-zero for an infinite set of
degrees λ′ unbounded from below.

• There is a correspondence between generators of the chain complex giv-
ing rise to the homology groups HFλ′(M) and both the reducible and ir-
reducible solutions to the SW(r, v) equations of degree λ′, for some suffi-
ciently large r and some v ∈ Ω.

Now, since the HFλ′(M) is non trivial, generators must exists. And hence, by
the second item above, solutions to SW(r, v) must exists also. The problem is
that those generators might, in principle, correspond to the reducible solution.

It is at this point that the Helicity of X becomes key, via the following lemma:

Lemma 5.6.8. Let (A = r curl−1X + v, ψ = 0) be the reducible solution to the
SW(r, v)− equations. Then,

degree(A, ψ) = −cr2H(X) + O(r2−δ)

for a positive constant c and δ > 0.

This lemma follows from Section 5 in [68]. Our statement actually incurs in a
slight abuse of terminology: in rigor, the degree cannot be directly defined for
the reducible solution (it can for the irreducible ones). However, the conclusion
of this lemma still holds: the actual generators corresponding to the reducible
solution in HF(M) have degree λ′ ∼ −r2 whenH(X) > 0.
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Hence, for λ′ fixed and sufficiently large r, all the generators in HFλ′(M) must
correspond to irreducible solutions, and Lemma 5.6.7 follows.

5.7 The vortex equations: Proof of Lemma 5.3.13 and
Lemma 5.3.14

We divide this section into two subsections. Subsection 5.7.1 proves Lemma
5.3.13, and Subsection 5.7.2 proves Lemma 5.3.14 (both are needed for the proof
in 5.3 of the detection of periodic orbits in the boundedHA(X) case).

We recall that the self dual vortex equations on C are the system of PDEs

da = ∂xay − ∂yax = (1− |φ|2) (5.7.1)

∂aφ = ∂zφ− i(ax − iay)φ = 0 (5.7.2)

where ∂z := ∂x + i∂y, and the unknowns are a real one form a = axdx + aydy
(that we will identify when needed with its dual vector field through the eu-
clidean metric) and a complex valued function φ = φ1 + iφ2. These equations
are invariant under U(1)-gauge transformations: if (a, φ) is a solution to Eqs.
5.7.1 and 5.7.2, then g(a, φ) = (a− g−1dg, gφ) is also a solution, for any smooth
function g : C→ C with |g| = 1.

5.7.1 Proof of Lemma 5.3.13

Let Ψp : Cp(ρ, ε) → (−ε, ε) ×Dρ be an adapted flow-box chart at p, as in
Definition 5.3.5. We will drop here the subscript indexing the point since no
confusion can arise. We recall that Lemma 5.3.13 states:

Let (Ar, ψr) be a family of solutions to the SW(r, v)-equations. Given a point
p ∈ S3 and a sequence of values of r going to infinity, and given a compact
set [−T, T]×DR ⊂ R× C, there always exists a subsequence ri such that the
rescaled fields

Ãi(t, z) :=
1√
ri
(Ψ)∗Ari

( t√
ri

,
z√
ri

)
, ψ̃1i(t′, z′) := ψ1ri ◦Ψ−1

( t√
ri

,
z√
ri

)
converge in [−T, T] ×DR in the Cm norm to a smooth family of solutions
(at(z), φt(z)) of the vortex equations on t×C, with t ∈ [−T, T]. Furthermore,
all members of these family are gauge equivalent, that is, there is a smooth
function g : [−T, T] ×DR → C with |g| = 1 and a solution to the vortex
equation (a(z), φ(z)) such that g(t, ·)∗(a(t, ·), φ(t, ·)) = (a(·), φ(·)).

Proof. Note that from now we incur in a slight abuse of the notation with re-
spect to the notations in Section 5.3 by renaming the rescaled euclidean coor-
dinates (t′, z′) as (t, z). Recall that these rescaled coordinates take values in the
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stretched cylinder C√r := (−ε
√

r, ε
√

r) ×D√rρ. We will use the convention
of indexing the rescaled euclidean coordinates by greek indices µ = 1, 2, 3, as
opposed to latin indices k = 1, 2, 3 for the orthonormal basis in S3. In these
rescaled coordinates, the metric is almost euclidean and it is easy to see that
we have

Ψ∗X
( ·√

r

)
= ∂t

Ψ∗Y
( ·√

r

)
= ∂x +

1√
r

3

∑
µ=1

Gµ(·)∂µ

Ψ∗Z
( ·√

r

)
= ∂y +

1√
r

3

∑
µ=1

G′µ(·)∂µ

where the indices {1, 2, 3} correspond to {t, x, y} and where Gµ and G′µ are
smooth functions, uniformly bounded in compact sets [−T, T]×DR ⊂ C√r as∥∥∥Gµ

∥∥∥
Cm([−T,T]×DR)

6 Cm,

where the Cm are constants not depending on r.

Hence, we have that, under these coordinates

(DAψ) ◦Ψ−1
( ·√

r

)
=
√

ri
3

∑
µ=1

σµ(∂µ − iÃµ)ψ̃ +
G4(Ã, ψ,∇ψ̃)√

r

where we set σµ := ∑k δkµσk; and

Ψ∗(curl A)
( ·√

r

)
= r
(

curlR3 Ã +
G5(Ã, ∂Ã)√

r

)
here, again, G4 and G5 are uniformly bounded on compact sets as∥∥∥G4(Ã, ψ̃, ∂ψ̃)

∥∥∥
Cm([−T,T]×DR)

6 Cm

∥∥∥∇ψ̃ + Ãψ
∥∥∥

Cm([−T,T]×DR),

and ∥∥∥G5(Ã, ∂Ã)
∥∥∥

Cm([−T,T]×DR)
6 Cm

∥∥∥∇Ã + Ã
∥∥∥

Cm([−T,T]×DR).

Furthermore, by virtue of the a priori bounds obtained in Lemma 5.3.1, we
have that Ã and ψ̃ are bounded with all their derivatives, i.e,

‖ψ̃1‖C0(C(
√

r)) 6 1 +
C
r

; ‖ψ̃2|‖C0(C(
√

r)) 6
C√

r
(5.7.3)

‖(∇− iÃ)ψ̃1‖Cm(C(
√

r)) 6 Cm; ‖(∇− iÃ)ψ̃2‖Cm(C(
√

r)) 6
Cm√

r
; (5.7.4)

Hence, in the rescaled coordinates the Seiberg-Witten equations take the form

curl0 Ã = (1− |ψ̃1|2)∂t +
B1

r
(5.7.5)
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∂Ãψ̃1 =
B3

r
(5.7.6)

(∂t − iÃt)ψ̃1r =
B2

r
(5.7.7)

where ∂Ã := (∂x + i∂y) − i(Ãx − iÃy) and the Bi are smooth functions de-
pending on Ã, ψ̃ and their derivatives, but whose Cm norms on compact sets
[−T, T]×Dρ do not depend on r.

In a similar fashion as was done in the proof of Lemma 5.3.1, one can, locally
on compact sets [−T, T]×Dρ, apply a gauge transformation to (Ã, ψ̃) so that
the following bounds are satisfied

‖∇ψ̃1‖Cm([−T,T]×Dρ) 6 Cm; ‖∇ψ̃2‖Cm([−T,T]×Dρ) 6
Cm√

r
; ‖A‖Cm([−T,T]×Dρ) 6 Cm .

(5.7.8)
Notice how these bounds apply now only on compact subsets of the rescaled
flow-box C(

√
r), as opposed to the a priori bounds (5.7.4), which come from

global bounds on S3 and are thus valid in the whole flow-box C(
√

r)

Eqs. (5.7.5)–(5.7.6) together with the uniform bounds (5.7.3) and (5.7.8) ensure
that a subsequence of (Ãr, ψ̃r) uniformly converges on [−T, T]×DR towards
a smooth family of solutions (at(z), φt(z)) of (5.7.1)-(5.7.2).

It remains to show that this family is gauge equivalent to a unique, R-invariant
solution (a, φ). This is granted by Equation (5.7.7): it implies that the limiting
solution (a(t, z), φ(t, z)) must verify

(∂t − iat)φ = 0,

and hence, in particular, we have that

∂t|φ|2 = Re(φ(∂t − iat)φ) = 0

The complex field can then be written as φ(t, z) = |φ|(z)u(t, z), with |u| =
1. Note that u is not well-defined on the points where |φ| vanishes (and |du|
grows indefinitely nearby), so in principle u does not define a good Gauge
transformation and we cannot define the g in the statement of the Lemma as,
say, g := u−1, or g := φ(t0, z)/φ(t, z) for any chosen t0, to conclude that the
solutions are gauge equivalent.

Nevertheless, by virtue of Lemma 5.3.14, the zeroes of any given solution φ are
isolated, and moreover, near an isolated zero z0 the field φ can be written as

φ(z) = h(z)(z− z0)
n0

with h(z) a non-vanishing function. (We will prove this in the next Subsec-
tion). It is then clear that if two solutions of the vortex equations have the
same modulus, |φ1| = |φ2|, the quotient u12 := φ1/φ2 is a well defined smooth
function u12 : C → C with |u12| = 1, and φ1 and φ2 are gauge equivalent.
Back to our case, by choosing any reference solution (a(t0, z), φ(t0, z)) for some
t0 ∈ [−T, T], we can define g as g(t, z) := φ(t0, z)/φ(t, z).
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5.7.2 Proof of Lemma 5.3.14

In this subsection we prove that any solution (a, φ) to the vortex equations
verifies that

(i) The set |φ|−1(0) is either empty or consists of a set of isolated points.

(ii) If |φ| 6 1, then either |φ| = 1 everywhere or |φ| < 1. Further, if |φ| < 1
any local minima of |φ| has |φ| = 0.

Let us note at this point that the reader can find a throughout treatment of the
vortex equations (including the lemma above) in the monograph [38].

We begin with the proof of item (i). This follows from the lemma

Lemma 5.7.1. On any disk D ⊂ C, a smooth solution (a, φ) to the vortex equations
can be written as

φ = e− f h

where f is a smooth complex-valued function bounded on D and h is a holomorphic
function on the disk.

The above lemma implies that at in the neighborhood of any zero, φ is locally
of the form g(z)(z− zk)

nk , with g a non-vanishing function, so item (i) follows.

Proof of Lemma 5.7.1. Set α := ax − iay. The Lemma is just a consequence of the
properties of the Cauchy kernel. If we set

f (z) :=
∫

D

α

2π(z− w)
dw ∧ dw. (5.7.1)

then f satisfies on D the equation

∂z f = iα (5.7.2)

and standard arguments show that if α (that is, the connection a) is bounded
with all derivatives on the disk, so is f . Now, define h := e f φ. Equation (5.7.2)
together with the second vortex equation implies that h is holomorphic,

∂zh = (∂ze f )φ + e f ∂zφ = e f (∂zφ− iαφ) = 0 .

and the lemma follows.

For the proof of item (i), note that the vortex equations imply that (a, φ) satisfies
the second order PDE

− ? da ? daφ = (1− |φ|2)φ

with da = d − ia and ? the standard euclidean Hodge operator. Multiplying
the above expression by φ, extracting the real part, and taking into account that

Re(−φ̄ ? da ? daφ) = 2|daφ|2 − ∆|φ|2
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we get
−∆|φ|2 + 2|daφ|2 = (1− |φ|2)|φ|2 (5.7.3)

Item (ii) follows from standard applications of the maximum principle to the
above equation. More precisely, the first statement follows from the proposi-
tion:

Proposition 5.7.2 (see for example [33], Theorem 3.5). Let u be a C2(Ω) function
on an open set Ω (which does not need to be bounded), and let L := L + f with L a
uniformly elliptic operator with continuous coefficients (if the region has a boundary,
then continuous on the boundary too) and f a continuous, non-positive function on
Ω. If Lu 6 0 on Ω, then any interior minimum of u must be positive, or else u is
constant.

By applying the above Proposition to u = (1− |φ|2), L = ∆− |φ|2 and Ω = C

the first statement in item (ii) follows. Note that since we have by assumption
that |φ| 6 1, standard elliptic estimates applied to the vortex equations imply
that φ is bounded uniformly with all derivatives in C and hence (1 − |φ|2)
satisfies the hypotheses of the above Proposition.

For the second statement in item (ii), we use a very particular property of the
self-dual vortex equations: that from Eq. (5.7.3) we can get a PDE on |φ|2 only.
First, note that the second vortex equation can be written as

∂aφ = 0←→ daφ = i ? daφ (5.7.1)

The above relationship and the fact that the connection is unitary, that is, that
a is real, allows us to deduce

∇|φ|2 = 2Re(φ̄∇aφ) = 2 ? Im(φ̄∇aφ) (5.7.2)

and so
|∇|φ|2|2 = 2|φ|2|∇aφ|2 (5.7.3)

where we have identified the 1-form daφ with its dual vector field∇aφ. Notice
that if the relation (5.7.1) did not hold, the equality in Eq. (5.7.3) would be an
inequality: a trivial instance of the so-called Kato’s inequality for connections
compatible with the metric (note that in our context, compatibility with the
metric is equivalent to the connection being unitary, i.e, to a being real).

From Equations (5.7.3) and (5.7.3), we get an equation for the modulus of φ:

−∆|φ|2 + |∇|φ|
2|2

|φ|2 = (1− |φ|2)|φ|2 (5.7.4)

The second statement in item (ii) follows from the application of the maximum
principle to the above. Indeed, if a local minimum of |φ| is not zero and |φ| < 1,
then the right hand side of Eq. (5.7.4) is strictly bigger than zero, while the left
hand side is equal to −∆|φ|2 and thus negative (or zero) at a minimum.
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5.8 Probability measures as the renormalized limit
of the vortex equations: Proof of Theorem 5.2.3

We begin by recalling that the rescaled vortex equations on C, which are our
main concern in this Section, read

?dar = r(1− |φr|2) (5.8.1)

∂ar φ = ∂zφr − i(axr − iayr)φ = 0 (5.8.2)

for some fixed parameter r > 0. Our aim in this section is to prove the fol-
lowing realization theorem for sequences of solutions to the rescaled vortex
equations (Theorem 5.2.3 in the Section 5.2):

Let ν be a Borel probability measure on the disk D ⊂ C. There is a sequence
{(φrn , arn), Nrn}∞

n=1 of solutions to the rn-rescaled vortex equations in C with
Nrn zeroes, with rn → ∞, such that the 2-form

σrn =
rn(1− |φrn |2)dx ∧ dy∫

darn

converges to ν in the sense of measures on D.

Proof. The proof of Theorem 5.2.3 rests mainly in the following Proposition:

Proposition 5.8.1. Given a fixed finite set of points P := {zj}k
j=1 ⊂ D and an

associated collection of positive integers {mj}k
j=1, with ∑ mj = N, for each r > 0,

there is a solution (ar, φr) to the rescaled vortex equations on C with |φr|−1(0) = P
and with each zero zj having multiplicity mj. Furthermore, for r large enough, we have

• a) For any z ∈ D \ P there is a constant ρz > 0 such that

|1− |φr|2(z)| 6 e−c
√

rρz

|∇|φr|2(z)| 6
√

r
c

e−
√

rρz

• b) The family of measures

σr :=
r(1− |φr|2)dx ∧ dy∫

D
dar

converge weakly as r → ∞ to the probability measure

δP =
1
N

k

∑
j=1

mjδ(z− zj)

Given this proposition, that we prove in Subsection 5.8.1, Theorem 5.2.3 fol-
lows from the following Lemma:
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Lemma 5.8.2. Given a signed finite Borel measure ρ on the open disk, there is a se-
quence of positive integerts {kn}∞

n=1 going to infinity, and associated sequences of sets
of points {znj}kn

j=1 ⊂ D and constants {cnj}kn
j=1, such that for any ε > 0 and any

bounded continuous function ϕ on D, we have

|ρ(ϕ)−∑
j

cnjδznj(ϕ)| < ε

for all kn large enough, and where δznj := δ(z− znj) is the Dirac measure centered at
the point znj

We prove this Lemma at the end of this subsection. Granted the lemma, choose
a sequence of measures δPn of the form

δPn := ∑
znj∈Pn

cnjδ(z− znj)

(where for each n, Pn is a finite set of points in D) such that δPn converges, in
the weak-sense, to ν. Since ν is a probability measure, it is not hard to see that
the coefficients cnj can be chosen positive and such that

∑
j

cnj = 1 ,

and by density, it is also clear that the cnj can be chosen rational. Then, for each
fixed index n we can set

cnj =
mnj

Nn

for mnj ∈ N (choosing Nn to be the smallest integer such that Nncnj ∈ N);
and if they add up to one, we have that Nn = ∑j mnj, so we get a sequence of
probability measures of the form

δPn :=
1

Nn
∑

znj∈Pn

mnjδ(znj)

converging to ν, and we notice that these measures are of the same type as the
Dirac measures in item (b) of Proposition 5.8.1.

Thus, Proposition 5.8.1 grants the existence, for each fixed n above, of a se-
quence {rin, ain, φin}∞

i=1 of increasing real numbers rin and of solutions (ain, φin)

to the rin-rescaled vortex equations with |φin|−1(0) = Pn and, moreover, with

σi
n :=

rin(1− |φin|2)dx ∧ dy∫
D

dain

converging weakly to δPn . Now let ϕ a bounded continuous function on the
disk: we have, on the one hand, that

|σi
n(ϕ)− δPn(ϕ)| 6 ε

2
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for any ε as small as we want, provided i is large enough; and on the other
hand

|ν(ϕ)− δPn(ϕ)| 6 ε

2

provided n is large enough, hence

|ν(ϕ)− σi
n(ϕ)| 6 ε

for ε as small as we want as long as (i, n) are large enough. Hence, there is a
sequence of pairs (i, n) such that σi

n converges weakly to ν. Redefining rin :=
rn, we get the statement in Theorem 5.2.3.

Proof of Lemma 5.8.2. LetM(D) be the vector space of signed measures on the
disk, and let D(D) the linear subspace formed by signed measures which are
finite linear combinations of Dirac measures on points of D.

The statement of the lemma is equivalent toD being dense inM in the weak-∗
topology, becauseM is in the continuous dual of the space of bounded contin-
uous functions on the disk.

Now the Hahn-Banach theorem implies that a linear subspace of M(D) is
dense if and only if the only continuous linear form vanishing on it is 0. In
the weak star topology, the continuous linear forms on M are precisely the
bounded continuous functions, acting on measures in the obvious way. Since
all Dirac masses δz, for z ∈ D, are in D, a continuous function vanishing on D
must vanish on all points in D: it must be 0. So D is dense inM.

5.8.1 Proof of Proposition 5.8.1

The following Theorem is the starting point for the proof of Proposition 5.8.1.

Theorem 5.8.3 (Taubes 79 [67, 38]). Let P := {zj}k
j=1 be an arbitrarily chosen, fi-

nite set of points zj ∈ C, and let {mj}k
j=1 be an associated set of non-negative integers.

There is a solution (a, φ) to the vortex equations such that φ−1(0) = P , and such that
the zero zj of φ has multiplicity mj. Furthermore, we have that

(i) |φ| 6 1 and |φ| → 1 as |z| → ∞

(ii) ∫
C
|da|2 + |daφ|2 + 1

4
(1−|φ|2)2 =

∫
C

da =
∫

C
(1−|φ|2) = 2π ∑

j
mj = 2πN

(iii) There is a constant C, not depending on the particular configuration of points,
such that

|∇|φ|2(z)| 6 |∇aφ| 6 C
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(iv) Let Ω−(φ) denote the set of points in C where |φ|2 6 1
2 . There is a constant

c ∈ (0, 1), not depending on the particular configuration of points, such that,
for any z ∈ C with dist (z, Ω−(φ)) > c−1

|1− |φ(z)|2| 6 e−cdist (z,Ω−(φ)) (5.8.1)

|∇|φ|2(z)| 6 |∇aφ| 6 1
c

e−cdist (z,Ω−(φ)) (5.8.2)

We refer the reader to the monograph [38] for the proof. From the above The-
orem we can immediately gather the following important corollary, which al-
ready proves the first statement (existence) of Proposition 5.8.1:

Corollary 5.8.4. Let P := {zj}k
j=1 be an arbitrarily chosen, finite set of points zj ∈

D, and let {mj}k
j=1 be an associated set of non-negative integers. For each r > 0,

there is a solution (ar, φr) to the rescaled vortex equations on C with |φr|−1(0) = P
and with each zero zj having multiplicity mj. Furthermore, the solution (ar, φr) to the
rescaled equations thus obtained is such that |φr| 6 1, and satisfies that

(i)
|∇|φr|2(z)| 6 |∇ar φr| 6 C

√
r

(ii)
r
∫

C
(1− |φr|2) = 2π ∑

j
mj = 2πN

(iii) Furthermore, if we define

Ω−r := {z ∈ C such that |φr|2(z) 6
1
2
} ,

there is a constant c such that, if dist (z, Ω−r ) >
1

c
√

r , we have

|1− |φr|2(z)| 6 e−c
√

rdist (z,Ω−r )

and
|∇|φr|2(z)| 6 c−1√re−c

√
rdist (z,Ω−r )

Indeed, if (a(z), φ(z)) is a solution to the original vortex equations (i.e, with
r = 1) on C with zeros at {zj}k

j=1, then (ar(z), φr(z)) := (
√

ra(
√

rz), φ(
√

rz)) is

a solution to the rescaled vortex equations with zeroes in { zj√
r}

k
j=1, so all items

follow from rescaling the coordinates.

Now, notice that item a) in Proposition 5.8.1 does not follow automatically from
item (iii) in Corollary 5.8.4. The reason is that the set of zeroes of the rescaled
vortex equations is fixed for all r, and hence the set of zeroes of the solutions
φr(z) := φr(

z√
r ) to the original vortex equations for r = 1, Pr := {

√
rzj} (to

which Theorem 5.8.3 applies) is changing with r and becoming more and more
spread. Although the constant c in item (iii) of Theorem 5.8.3 does not depend
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on the particular configuration of points, we do lose control of the set of points
with dist (z, Ω−(φr)) > 1

c , i.e, of the set dist (z, Ω−r ) >
1

c
√

r .

Our first goal is to remedy the above situation. The following lemma meets
this goal. In order to state it, consider a sequence of solutions (ar, φr) to the
rescaled vortex equations obtained from Corollary 5.8.4, with r → ∞, and with
|φr|−1(0) = P ⊂ D, for P a fixed set of points, with fixed associated multiplic-
ities. We have:

Lemma 5.8.5. For any pr and qr in the same connected component of Ω−r , there is a
constant C such that dist(pr, qr) 6 C√

r .

Proof. Let γr be a smooth embedded curve inside Ω−r joining the points pr and
qr. It is clear that all points laying in γr have |φr|2 6 1

2 . Moreover, recall that
from Corollary 5.8.4 we have that

|∇|φr|2(z)| 6 C
√

r ,

thus, there is a constant C such that all points within a distance of ε
C
√

r of γr

satisfy |φr|2 6 1
2 + ε; and this for ε > 0 as small as desired.

Denote by Ur the set of points z ∈ C at a distance smaller or equal to ε
C
√

r from
γr. The area of Ur is bounded from above by∫

Ur
dx ∧ dy 6 |γr|

ε

C
√

r

where by |γr| we denote the length of the curve γr. Hence,

r
∫

Ur
(1− |φr|2)dx ∧ dy > r

(1
2
− ε
)
|γr|

ε

C
√

r
> c′
√

r|γr|

for some constant c′ independent of r. On the other hand, note that, by Corol-
lary 5.8.4,

r
∫

Ur
(1− |φr|2)dx ∧ dy 6 r

∫
C
(1− |φr|2)dx ∧ dy = 2πN

where N is the number of zeroes of φr counted with multiplicities. Therefore,
for the above bound to hold, the length of γr must be of order O( 1√

r ). Since the
length of γr is always greater or equal than the distance between pr and qr, the
Lemma follows.

With this Lemma in hand, it is easy to see that, for any point z ∈ D \ P ,

dist (z, Ω−r ) > ρz > 0

for r large enough (where “large enough” depends on z), and with ρz a constant
depending on the point but not on r. Indeed, we have that

dist (z,P) 6 dist (z, Ω−r ) + dist (pr,P) (5.8.1)
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where pr is some point in Ω−r such that dist (z, Ω−r ) = dist (z, pr). Now, note
that pr must be in the connected component of some point in the set of ze-
roes P ; otherwise, the function |φr| would have local minima other than zero,
contradicting Lemma 5.3.14. But then, by lemma 5.8.5, dist (pr,P) = O( 1√

r ).
Since the distance of a point z to any zero in P is always fixed, we have that
dist (z, Ω−r ) must be bounded from below by some constant ρz for the bound
(5.8.1) to hold.

The above discussion ensures that for any z ∈ D \ P , and for r big enough, we
always have that dist (z, Ω−r ) > ρz > 1

c
√

r . Item (a) in Proposition 5.8.1 follows.

For the proof of item (b), it is convenient to work in terms of the function ur
defined as eur := |φr|2. Note that, since |φr| 6 1, ur 6 0. It is not hard to check,
taking into account Lemma 5.7.1, that if φr is a solution to the rescaled vortex
equations with zeroes at zj ∈ P and multiplicities mj, the function ur abides to
the PDE

∆ur − r(eur − 1) = 2π ∑
zj∈P

mjδ(z− zj). (5.8.2)

The measure σr can be written in these terms as

σr =
r(1− eur )dx ∧ dy∫

D
dar

.

Note first that the exponential decay granted by item (a) implies that the inte-
gral in the denominator ∫

D
dar =

∫
D

r(1− |φ|2)

converges, as r → ∞, to its value on the whole complex plane, that is, to 2πN.
As for the numerator, Eq. (5.8.2) implies that, for any continuous function ϕ :
D→ R we have

r
∫

D
(1− eur )ϕ = −

∫
ϕ∆ur + 2π ∑

zj∈P
mjδ(z− zj)(ϕ) .

Hence, item (b) would follow if we manage to prove that, as r → ∞∫
D

ϕ∆ur → 0.

To this end, assume that the function ϕ is C∞ with bounded derivatives in D

(there is no loss in generality in doing so, because of the density of C∞ functions
in C0). An integration by parts yields∫

D
ϕ∆ur = −

∫
D
∇ur · ∇ϕ +

∫
∂D

ϕ∇ur · ndθ (5.8.3)

where n is the outward pointing normal vector to the boundary of the disk.

Item (a) implies that for any point in the boundary of the disk, we have

|∇ur|(z) = |
1

|φr(z)|2
∇|φr(z)|2| 6 ε

137



CHAPTER 5. THE ASYMPTOTIC ANALYSIS OF THE SEIBERG-WITTEN
EQUATIONS AND INVARIANT MEASURES

for ε as small as desired, provided r is big enough. Hence,∫
∂D

ϕ∇ur · ndθ → 0.

As for the remaining term in (5.8.3), integrating by parts again we get

−
∫

D
∇ur · ∇ϕ =

∫
D

ur∆ϕ−
∫

∂D
ur∇ϕ · ndθ

The rightmost term clearly converges to zero, because when z ∈ ∂D, we have
that ur(z)→ 0 as r → ∞. Finally

−
∫

D
ur∆ϕ 6 ||ϕ||C2(D)

∫
D
|ur|

It remains to show that ∫
D
|ur| = −

∫
D

ur −→ 0

To see this, set u′r(
√

rz) = ur(z), so that u′r(z) is a finite energy solution to the
original vortex equations with r = 1. Note that, for z sufficiently far away from
the zero set, u′r decays exponentially:

|u′r|(z) 6 | log (|φr|2)(z)| 6 | log (1− e−cdist (z,Ω−(φr)))| 6 c′e−cdist (z,Ω−(φr))

and near the zero set u′r is integrable since it consists on a logarithmic singular-
ity. Hence, we have that

−
∫

D(
√

r)
u′r 6 C

so that, rescaling,

−
∫

D
ur 6 C/r.

and we conclude that ∫
D

ϕ∆ur → 0 .

Therefore
r
∫

D
(1− eur )ϕ = 2π ∑

zj∈P
mjδ(z− zj)(ϕ) + ε

for ε as small as desired as r → ∞. Item (b) in the Proposition follows.
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Chapter 6

Helicity is the only invariant
of volume preserving vector
fields

Helicity is a remarkable conserved quantity that is fundamental to all the natu-
ral phenomena described by a vector field whose evolution is given by volume-
preserving transformations. This is the case of the vorticity of an inviscid fluid
flow or of the magnetic field of a conducting plasma. The topological nature of
the helicity was unveiled by Moffatt, but its relevance goes well beyond that of
being a new conservation law. Indeed, the helicity defines an integral invariant
under any kind of volume-preserving diffeomorphisms. A well-known open
problem is whether there exist any integral invariants other than the helicity.
In this chapter we answer this question by showing that, under some mild
technical assumptions, the helicity is the only integral invariant.

6.1 Introduction

Incompressible inviscid fluids are modeled by the three-dimensional Euler equa-
tions, which assert that the velocity field u(x, t) of the fluid flow must satisfy
the system of differential equations

∂tu + (u · ∇)u = −∇p , div u = 0 .

Here the scalar function p(x, t) is another unknown of the problem, which
physically corresponds to the pressure of the fluid.

It is customary to introduce the vorticity ω := curl u to simplify the analysis of
these equations, as it enables us to get rid of the pressure function. In terms of
the vorticity, the Euler equations read as

∂tω = [ω, u] , (6.1.1)
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where [ω, u] := (ω · ∇)u− (u · ∇)w is the commutator of vector fields and u
can be written in terms of ω using the Biot–Savart law

u(x) = curl−1 ω(x) :=
1

4π

∫
R3

ω(y)× (x− y)
|x− y|3 dy , (6.1.2)

at least when the space variable is assumed to take values in the whole space R3.

The transport equation (6.1.1) was first derived by Helmholtz, who showed
that the meaning of this equation is that the vorticity at time t is related to the
vorticity at initial time t0 via the flow of the velocity field, provided that the
equation does not develop any singularities in the time interval [t0, t]. More
precisely, if φt,t0 denotes the (time-dependent) flow of the divergence-free field
u, then the vorticity at time t is given by the action of the push-forward of the
volume-preserving diffeomorphism φt,t0 on the initial vorticity:

ω(·, t) = (φt,t0)∗ ω(·, t0) .

The phenomenon of the transport of vorticity gives rise to a new conservation
law of the three-dimensional Euler equations. Moffatt coined the term helicity
for this conservation law in his influential paper [57], and exhibited its topo-
logical nature. Indeed, defining the helicity of a divergence-free vector field w
in R3 as

H(w) :=
∫

R3
w · curl−1 w dx ,

it turns out that the helicity of the vorticity H(ω(·, t)) is a conserved quantity
for the Euler equations. In fact, helicity is also conserved for the compressible
Euler equations provided the fluid is barotropic (i.e. the pressure is a function
of the density).

It is well known that the relevance of the helicity goes well beyond that of being
a new (non-positive) conserved quantity for the Euler equations. On the one
hand, the helicity appears in other natural phenomena that are also described
by a divergence-free field whose evolution is given by a time-dependent family
of volume-preserving diffeomorphisms [58]. For instance, the case of magneto-
hydrodynamics (MHD), where one is interested in the helicity of the magnetic
field of a conducting plasma, has attracted considerable attention. On the other
hand, it turns out that the helicity does not only correspond to a conserved
quantity for evolution equations such as Euler or MHD, but in fact defines an
integral invariant for vector fields under any kind of volume-preserving dif-
feomorphisms [5].

It is important to emphasize that conserved quantities of the Euler or MHD
equations (e.g., the kinetic energy and the momentum) are not, in general, in-
variant under arbitrary volume-preserving diffeomorphisms, but they are in-
variant only under the very particular diffeomorphism defined by the flow of
the velocity field of the fluid or conducting plasma. Perhaps the key feature of
the helicity, which distinguishes it from other conserved quantities of Euler or
MHD, is its invariance under any kind of volume-preserving transformations
(in particular, it is invariant under the transport of the vorticity or the mag-
netic field by an arbitrary divergence-free vector field), so let us elaborate on
this property.
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Helicity is often analyzed in the context of a compact 3-dimensional mani-
fold M without boundary, endowed with a Riemannian metric. The simplest
case would be that of the flat 3-torus, which corresponds to fields on Euclidean
space with periodic boundary conditions. To define the helicity in a general
compact 3-manifold, let us introduce some notation. We will denote by X1

ex the
vector space of exact divergence-free vector fields on M of class C1, endowed
with its natural C1 norm. We recall that a divergence-free vector field w is ex-
act if its flux through any closed surface is zero (or, equivalently, if there exists
a vector field v such that w = curl v). This is a topological condition, and in
particular when the first homology group of the manifold is trivial (e.g., in the
3-sphere) every divergence-free field is automatically exact.

As is well known, the reason to consider exact fields in this context is that,
on exact fields, the curl operator has a well defined inverse curl−1 : X1

ex →
X1

ex. The inverse of curl is a generalization to compact 3-manifolds of the Biot–
Savart operator (6.1.2), and can also be written in terms of a (matrix-valued)
integral kernel k(x, y) as

curl−1 w(x) =
∫

M
k(x, y)w(y) dy , (6.1.3)

where dy now stands for the Riemannian volume measure. Using this integral
operator, one can define the helicity of a vector field w on M as

H(w) :=
∫

M
w · curl−1 w dx .

Here and in what follows the dot denotes the scalar product of two vector
fields defined by the Riemannian metric on M. The helicity is then invariant
under volume-preserving transformations, that is, H(w) = H(Φ∗w) for any
diffeomorphism Φ of M that preserves volume.

In view of the expression (6.1.3) for the inverse of the curl operator, it is clear
that the helicity is an integral invariant, meaning that it is given by the integral
of a density of the form

H(w) =
∫

G(x, y, w(x), w(y)) dx dy .

Arnold and Khesin conjectured [5, Section I.9] that, in fact, the helicity is the
only integral invariant, that is, there are no other invariants of the form

I(u) :=
∫

G(x1, . . . , xn, u(x1), . . . , u(xn)) dx1 · · · dxn (6.1.4)

with G a reasonably well-behaved function. Here all variables are assumed to
be integrated over M.

Our objective in this chapter is to show, under some natural regularity assump-
tions, that the helicity is indeed the only integral invariant under volume-
preserving diffeomorphisms. To this end, let us define a regular integral in-
variant as follows:

Definition 6.1.1. Let I : X1
ex → R be a C1 functional. We say that I is a regular

integral invariant if:
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(i) It is invariant under volume-preserving transformations, i.e., I(w) = I(Φ∗w)
for any diffeomorphism Φ of M that preserves volume.

(ii) At any point w ∈ X1
ex, the (Fréchet) derivative of I is an integral operator with

continuous kernel, that is,

(DI)w(u) =
∫

M
K(w) · u ,

for any u ∈ X1
ex, where K : X1

ex → X1
ex is a continuous map.

In the above definition and in what follows, we omit the Riemannian volume
measure under the integral sign when no confusion can arise. Observe that any
integral invariant of the form (6.1.4) is a regular integral invariant provided
that the function G satisfies some mild technical assumptions. In particular,
the helicity is a regular integral invariant.

The following theorem, which is the main result of this chapter, shows that the
helicity is essentially the only regular integral invariant in the above sense. The
proof of this result is presented in Section 6.2, and is an extension to any closed
3-manifold of a theorem of Kudryavtseva [48], who proved an analogous re-
sult for divergence-free vector fields on 3-manifolds that are trivial bundles of
a compact surface with boundary over the circle, which admit a cross section
and are tangent to the boundary. Kudryavtseva’s theorem is based on her work
on the uniqueness of the Calabi invariant for area-preserving diffeomorphisms
of the disk [47]. We observe that our main result does not imply the aforemen-
tioned theorem because we consider manifolds without boundary.

Let I be a regular integral invariant. Then I is a function of the helicity, i.e.,
there exists a C1 function f : R→ R such that I = f (H).

We would like to remark that this theorem does not exclude the existence of
other invariants of divergence-free vector fields under volume-preserving dif-
feomorphisms that are not C1 or whose derivative is not an integral operator of
the type described in the definition above. For example, the KAM-type invari-
ants recently introduced in [43] are in no way related to the helicity, but they
are not even continuous functionals on X1

ex.

Other type of invariants that have attracted considerable attention are the asymp-
totic invariants of divergence-free vector fields [1, 32, 42, 6, 7, 2, 45]. These
invariants are of non-local nature because they are defined in terms of a knot
invariant (e.g., the linking number) and the flow of the vector field. In some
cases, it turns out that the asymptotic invariant can be expressed as a reg-
ular integral invariant, as happens with the asymptotic linking number for
divergence-free vector fields [4], the asymptotic signature [32] and the asymp-
totic Vassiliev invariants [7, 45] for ergodic divergence-free vector fields. In
these cases, the authors prove that the corresponding asymptotic invariant is a
function of the helicity, which is in perfect agreement with our main theorem.

The so-called higher order helicities [11, 51, 44] are also invariants under volume-
preserving diffeomorphisms. However, they are not defined for any divergence-
free vector field, but just for vector fields supported on a disjoint union of solid
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tori. This property is, of course, not even continuous in X1
ex, so these function-

als do not fall in the category of the regular integral invariants considered in
this chapter.

Our main theorem is reminiscent of Serre’s theorem [64] showing that any con-
served quantity of the three-dimensional Euler equations that is the integral of
a density depending on the velocity field and its first derivatives,

I(u) :=
∫

R3
G(u(x, t), Du(x, t)) dx ,

is a function of the energy, the momentum and the helicity. From a technical
point of view, the proof of our main theorem is totally different to the proof of
Serre’s theorem, which is purely analytic, only holds in the Euclidean space,
and is based on integral identities that the density G must satisfy in order to
define a conservation law of the Euler equations.

Even more importantly, from a conceptual standpoint it should be emphasized
that Serre’s theorem applies to conserved quantities of the Euler equations,
while our theorem concerns the existence of functionals that are invariant un-
der any kind of volume-preserving diffeomorphisms, which is a much stronger
requirement, as explained in a previous paragraph. In particular, the fact that
the energy and the momentum are not functions of the helicity does not con-
tradict our main theorem, because they are conserved by the evolution deter-
mined by the Euler equations but they are not invariant under the flow of an
arbitrary divergence-free vector field. Accordingly, our theorem does not mean
that there are no other integrals of motion of the Euler (or MHD) equations.

It is worth noticing that one can construct well-behaved integral invariants of
Lagrangian type that are invariant under general volume-preserving diffeo-
morphisms but which are not functions of the helicity. These functional arise
in a natural manner in the analysis of the Euler or MHD equations especially
when one considers integrable fields, that is, fields whose integral curves are
tangent to a family of invariant surfaces. For example, one can define a partial
helicity as the helicity integral taken over the region Ω bounded by an invari-
ant surface of the field. In this context, if f is any well-behaved function (e.g.,
a smooth function supported on the region Ω covered by invariant surfaces)
which is assumed to be transported under the action of the diffeomorphism
group, the functional

F ( f , w) :=
∫

M
f w · curl−1 w dx

is invariant under volume-preserving diffeomorphisms (and it is not a function
of the helicity). The key point here is that the assumption that f is transformed
in a Lagrangian way means that the action of the volume-preserving diffeo-
morphism group is not the one considered in this chapter, which would be

Φ · F ( f , w) := F ( f , Φ∗w) ,

but the one given by

Φ · F ( f , w) := F ( f ◦Φ−1, Φ∗w) .

In this sense, this new action is defined on functionals mapping a function and
a vector field (rather than just a vector field) to a number, so it does not fall
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within the scope of our theorem. In the context of the partial helicity defined
above, this action means that not only the vector field w, but also the function
f and the region Ω where it is supported, are transported by the fluid flow.

6.2 Proof of the main theorem

We divide the proof of the main theorem in five steps. The idea of the proof,
which is inspired by Kudryavtseva’s work on the uniqueness of the Calabi in-
variant [47], is that the invariance of the functional I under volume-preserving
diffeomorphisms implies the existence of a continuous first integral for each
exact divergence-free vector field. Since a generic vector field in X1

ex is not in-
tegrable, we conclude that the aforementioned first integral is a constant (that
depends on the field), which in turn implies that I has the same value for all
vector fields in a connected component of the level sets of the helicity. Since
these level sets are path connected, the theorem will follow.

Step 1: For each vector field w ∈ X1
ex, either curl K(w) = f w on M\w−1(0)

for some function f ∈ C0(M\w−1(0)) or the field w admits a nontrivial first
integral (that is, ∇F · w = 0 for some nonconstant function F ∈ C1(M)).

We first notice that the flow φt of any divergence-free vector field u is a 1-
parameter family of volume-preserving diffeomorphisms, so the functional I
must take the same values on w and its push-forward (φt)∗w, i.e.

I((φt)∗w) = I(w)

for all t ∈ R. Taking derivatives with respect to t in this equation and evaluat-
ing at t = 0, we immediately get

0 =
d
dt
I((φt)∗w) = (DI)w([w, u]) =

∫
M

K(w) · [w, u] . (6.2.1)

The identity [w, u] = curl(u× w) for divergence-free fields allows us to write
the integral above as∫

M
K(w) · [w, u] =

∫
M

K(w) · curl(u× w)

=
∫

M
curl K(w) · (u× w)

=
∫

M
u · (w× curl K(w))

where we have integrated by parts to obtain the second equality. Hence Eq. (6.2.1)
implies that for each pair of vector fields u, w ∈ X1

ex we have∫
M

u · (w× curl K(w)) = 0 .
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It then follows that the vector field w × curl K(w) is L2-orthogonal to all the
divergence-free vector fields on M, and hence the Hodge decomposition theo-
rem implies that there exists a C1 function F on M such that w× curl K(w) =
∇F. Then w · ∇F = 0, so F is a first integral of w.

In the case that F is identically constant, we have that w × curl K(w) = 0, so
curl K(w) is proportional to w at any point of M where the latter does not van-
ish. Since curl K(w) is a continuous vector field on M because, by assumption,
K(w) ∈ X1

ex, it follows that there is a continuous function f such that

curl K(w) = f w (6.2.2)

in M\w−1(0), as we wanted to prove.

Step 2: The function f ∈ C0(M\w−1(0)) is a continuous first integral of w.

The flow box theorem ensures that for any point in the complement of the zero
set w−1(0) there is a neighborhood U and a diffeomorphism Φ : U → [0, 1]×D
such that Φ∗w = ∂z. Here D := {x ∈ R2 : |x| 6 1} is the closed unit 2-disk,
and [0, 1] × D is endowed with the natural Cartesian coordinates x ∈ D and
z ∈ [0, 1]. Using the notation Ds := Φ−1({s} × D) and S := Φ−1([0, 1]× ∂D),
it is obvious from the definition of the flow box that

∂U = D0 ∪D1 ∪ S ,

and that the integral curves of w are tangent to the cylinder S and transverse
to the disks D0 and D1.

Taking the negative orientation for the surface ∂U (i.e., choosing a unit normal
vector ν on ∂U that points inward), we can compute the flux of f w across ∂U
as ∫

∂U
f w · ν dσ =

∫
D0

f w · ν0 dσ−
∫
D1

f w · ν1 dσ ,

where dσ denotes the induced surface measure and νs denotes the unit normal
on Ds pointing in the direction of w (that is, w · νs > 0).

Using Eq. (6.2.2), the flux of f w can also be written as∫
∂U

f w · ν dσ =
∫

∂U
curl K(w) · ν dσ = 0 ,

with the integral vanishing by Stokes’ theorem. Therefore we conclude that the
fluxes through the caps D0 and D1 must be equal, that is,∫

D0

f w · ν0 dσ =
∫
D1

f w · ν1 dσ . (6.2.3)

Suppose now that f is not constant along the integral curves of w. Then we can
take a point x0 ∈ D such that the function f takes different values at the points
ps := Φ−1(s, x0) ∈ Ds, with s = 0, 1. For concreteness, let us assume that

f (p0) < f (p1) , (6.2.4)
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the case f (p0) > f (p1) being completely analogous. By the continuity of f , we
can then take the flow box narrow enough (i.e. with D0 and D1 having very
small diameters) such that c0 < c1, where

c0 := max
x∈D0

f (x) , c1 := min
x∈D1

f (x) .

Therefore, since w · νs > 0 on Ds, we have the bound∫
D0

f w · ν0 dσ 6 c0

∫
D0

w · ν0 dσ < c1

∫
D1

w · ν1 dσ 6
∫
D1

f w · ν1 dσ ,

where to obtain the second inequality we have used that, as w is divergence-
free, Stokes’ theorem implies that∫

D0

w · ν0 dσ =
∫
D1

w · ν1 dσ .

This inequality above contradicts Eq. (6.2.3), so we conclude that f must be
constant along the integral curves of w, thus proving that f is a continuous
first integral of w on M\w−1(0), as we had claimed.

Step 3: There exists a continuous functional C on X1
ex\{0} such that deriva-

tives of the invariant I and of the helicityH are related by (DI)w = C(w)(DH)w

Let us start by noticing that Steps 1 and 2 imply that either w has a nontrivial
first integral F ∈ C1(M) or the function f defined in Step 1 is a continuous
first integral of w in the complement of its zero set. Now we observe that
there exists a residual set R of vector fields in X1

ex such that any w ∈ R is
topologically transitive and its zero set consists of finitely many hyperbolic
points. (We recall that a set is residual if it is the intersection of countably many
open dense sets. In particular, a residual set is always dense but not necessarily
open.) This theorem was proved in [14] for divergence-free C1 vector fields, not
necessarily exact. However, it is not difficult to prove that the same result holds
true for exact divergence free vector fields. Indeed, the proof of [14] consists in
perturbing a divergence-free vector field w to obtain another divergence-free
vector field w̃ of the form

w̃ = w +
N

∑
i=1

vi ,

where each vi is a C1 divergence-free vector field supported in a contractible
set. Each vector field vi is necessarily exact because any divergence-free vector
field supported in a contractible set is, so the resulting perturbed field w̃ is exact
too. With this observation, the main theorem in [14] automatically applies to
the class of exact divergence-free C1 vector fields, X1

ex.

Hence let us take a vector field w ∈ R. Since it is topologically transitive, it
has an integral curve that is dense in M, so any continuous first integral of w
must be a constant. Accordingly, Steps 1 and 2 imply that curl K(w) = f w in
M\w−1(0), with f a first integral of w, and therefore the function f is a constant
cw (depending on w) in the complement of the zero set w−1(0). Since this set
consists of finitely many points, cw is the unique continuous extension of f to
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the whole manifold M. As curl K(w) is a continuous vector field, for any w ∈ R
it follows that

curl K(w) = cww (6.2.5)

in M, so curl K(w)× w = 0.

Since the kernel K is a continuous map X1
ex → X1

ex, the fact that curl K(w) ×
w = 0 for all w in the residual set R ⊂ X1

ex implies that curl K(w) × w = 0
for all w ∈ X1

ex. Therefore for any w ∈ X1
ex\{0} we can define a function

f ∈ C0(M\w−1(0)) by setting

f :=
w · curl K(w)

|w|2 ,

such that
curl K(w) = f w

on M\w−1(0). In view of the expression for f , the mapping w → f is contin-
uous on X1

ex\{0} due to the continuity of the kernel K : X1
ex → X1

ex. Since f
is given by a w-dependent constant cw whenever w lies in the residual set R
of X1

ex, we conclude that this must also be the case for all w ∈ X1
ex\{0}, so the

map w 7→ 1
2 cw defines a continuous functional C : X1

ex\{0} → R. (The factor
1
2 has been included for future notational convenience.) The continuous func-
tionals curl K(w) and 2C(w)w coinciding in a residual set, it stems that for any
w ∈ X1

ex\{0} one has
curl K(w) = 2 C(w)w

in all M.

Since the curl operator is invertible on X1
ex and C(w) is just a constant, we can

use the above equation for curl K(w) to write the derivative of I at w as

(DI)w(u) = 2 C(w)
∫

M
curl−1 w · u .

The claim of this step then follows upon recalling that the differential of the
helicity is given by

(DH)w(u) = 2
∫

M
curl−1 w · u .

Step 4: The level sets of the helicity, H−1(c), are path connected subsets of
X1

ex.

Let w0 and w1 be two vector fields in X1
ex with the same helicity:

H(w0) = H(w1) = c .

For concreteness, let us assume that c is positive. It is easy to see that the
path connectedness of the level set H−1(c) is immediate if one can prove the
existence of a path of positive helicity connecting w0 and w1, i.e., a continuous
map w : [0, 1] → X1

ex such that w(0) = w0, w(1) = w1 and H(w(t)) > 0 for all
t ∈ [0, 1]. Indeed, one can then set

w̃(t) :=
(

c
H(w(t))

) 1
2

w(t)
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to conclude that w̃ : [0, 1] → X1
ex is a continuous path connecting w0 and w1 of

helicity c: w̃(0) = w0, w̃(1) = w1 andH(w̃(t)) = c for all t ∈ [0, 1].

To show the existence of a path of positive helicity connecting w0 and w1, we
first observe that the curl defines a self-adjoint operator with dense domain on
the space of exact divergence-free L2 fields (see e.g. [36]), so we can take an
orthonormal basis of eigenfields {v+n , v−n }∞

n=1 satisfying curl v±n = λ±n v±n . Here
we are denoting by λ+

n and λ−n the positive and negative eigenvalues of the
curl, respectively.

Given any vector field v ∈ X1
ex, we can expand v in this orthonormal basis as

v =
∞

∑
n=1

(c+n v+n + c−n v−n ) .

This series converges in the Sobolev space H1. As curl−1 v±n = v±n /λ±n , the
helicity of the field v can be written in terms of the coefficients of the series
expansion as

H(v) =
∞

∑
n=1

(
(c+n )2

λ+
n
− (c−n )2

|λ−n |

)
. (6.2.6)

We shall denote by c±j,n the coefficients of the eigenfunction expansion corre-
sponding to wj, with j = 0, 1. Let us fix two integers nj for which the coefficient
c+j,nj

is nonzero (notice that the coefficients corresponding to positive eigenval-
ues cannot be all zero because of the formula (6.2.6) for the helicity, which is
positive in the case of wj).

We can now construct the desired continuous path w : [0, 1] → X1
ex of positive

helicity connecting w0 and w1 by setting

w(t) :=


8t c+0,n0

v+n0
+ (1− 4t)w0 if 0 6 t 6 1

4 ,

2 cos(πt− π
4 ) c+0,n0

v+n0
+ 2 sin(πt− π

4 ) c+1,n1
v+n1

if 1
4 6 t 6 3

4 ,

(8− 8t) c+1,n1
v+n1

+ (4t− 3)w1 if 3
4 6 t 6 1 .

Notice that w(t) ∈ X1
ex for all t because both wj and the eigenfields v+nj

are in

X1
ex (recall that the eigenfields of curl are automatically smooth because they

are also eigenfields of the Hodge Laplacian acting on vector fields). It is also
obvious that w(0) = w0 and w(1) = w1. Furthermore, one can see that w is
a path of positive helicity. For this, it is enough to use the formula (6.2.6) for
the helicity in terms of the coefficients of the eigenfunction expansion. Indeed,
sinceH(wj) = c, an elementary computation then yields

H(w(t)) =


16t

(c+0,n0
)2

λ+
0

+ (1− 4t)2c if 0 6 t 6 1
4 ,

4(c+0,n0
)2

λ+
n0

cos2(πt− π
4 ) +

4(c+1,n1
)2

λ+
n1

sin2(πt− π
4 ) if 1

4 6 t 6 3
4 ,

16(1− t)
(c+1,n1

)2

λ+
n1

+ (4t− 3)2c if 3
4 6 t 6 1 ,
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provided that n0 6= n1, so H(w(t)) > 0. When n0 = n1, the only change in the
formula above is that the value ofH(w(t)) is

4
(

cos(πt− π
4 )c

+
0,n0

+ sin(πt− π
4 )c

+
1,n1

)2

λ+
n0

if 1
4 6 t 6 3

4 , which is also positive. This proves the connectedness of H−1(c)
when c > 0.

The case where the constant c is negative is completely analogous so, in order
to finish the proof of the claim, it only remains to show that the zero level set
H−1(0) is path connected too. This is immediate because two vector fields
w0, w1 ∈ X1

ex with H(w0) = H(w1) = 0 can be joined through the continuous
path of zero helicity w : [0, 1]→ X1

ex given by

w(t) :=

{
(1− 2t)w0 if 0 6 t 6 1

2 ,
(2t− 1)w1 if 1

2 6 t 6 1 .

Obviously w(0) = w0, w(1) = w1 and H(w(t)) = 0 for all t, so the claim
follows.

Step 5: The regular integral invariant I is a function of the helicity.

We have shown in Step 3 that the derivatives of the functional I and the helic-
ity H are related by (DI)w = C(w)(DH)w at any w ∈ X1

ex\{0}. In particular,
this implies that I is constant on each path connected component of the level
set H−1(c)\{0}. If c 6= 0, since 0 is not contained in H−1(c), the aforemen-
tioned level set is path connected as proved in Step 4. The level set H−1(0) of
zero helicity contains the 0 vector field, so the set H−1(0)\{0} does not need
to be connected. However, since any component of H−1(0)\{0} is path con-
nected with 0 as shown in the last paragraph of Step 4, the continuity of the
functional I in X1

ex implies that it takes the same constant value on any con-
nected component ofH−1(0)\{0}, so it is constant on the path connected level
set H−1(0). We conclude that there exists a function f : R → R which assigns
a value of I to each value of the helicity, i.e., I = f (H). Moreover, f is of class
C1 because I is a C1 functional. The main theorem is then proved.

The only part of the proof where it is crucially used that the regularity of the
vector fields is C1 is in Step 3, when we invoke Bessa’s theorem for generic
vector fields in X1

ex. To our best knowledge, it is not known if there is a residual
subset of the space Xk

ex of exact divergence-free vector fields of class Ck, with
1 < k 6 ∞, whose elements do not admit a Ck−1 first integral. In particular, for
k > 3 the KAM theorem [43] implies that there is no a residual subset of Xk

ex
whose elements are topologically transitive vector fields, thus showing that
Bessa’s theorem does not hold for these spaces and hence it cannot be used to
address the problem of the existence of a first integral for a generic vector field.
Apart from the topological transitivity, we are not aware of other properties of
a dynamical system implying that a vector field does not admit a (nontrivial)
continuous first integral. The lack of results in this direction prevents us from
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extending the main theorem to regular integral invariants acting on Xk
ex with

k > 1.
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