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Error analysis of projection methods for non inf-sup
stable mixed finite elements. The transient Stokes

problem.

Javier de Frutos∗ Bosco Garćıa-Archilla† Julia Novo‡

Abstract

A modified Chorin-Teman (Euler non-incremental) projection method and a
modified Euler incremental projection method for non inf-sup stable mixed finite
elements are analyzed. The analysis of the classical Euler non-incremental and
Euler incremental methods are obtained as a particular case. We first prove that
the modified Euler non-incremental scheme has an inherent stabilization that allows
the use of non inf-sup stable mixed finite elements without any kind of extra added
stabilization. We show that it is also true in the case of the classical Chorin-Temam
method. For the second scheme, we study a stabilization that allows the use of
equal-order pairs of finite elements. The relation of the methods with the so-called
pressure stabilized Petrov Galerkin method (PSPG) is established. The influence of
the chosen initial approximations in the computed approximations to the pressure
is analyzed. Numerical tests confirm the theoretical results.

keywords Projection methods, PSPG stabilization, non inf-sup stable elements

1 Introduction

In this paper we analyze a modified Chorin-Temam (Euler non-incremental) projection
method for non inf-sup stable mixed finite elements. The analysis of the classical Euler
non-incremental method is obtained as a particular case. We prove that both the modified
and the standard Euler non-incremental schemes have an inherent stabilization that allows
the use of non inf-sup stable mixed finite elements without any kind of extra added
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stabilization. Although this result is known (see for example [18], [10]) to our knowledge
there are no proved error bounds for the Chorin-Temam method with non inf-sup stable
elements in the literature (see below for related results in [1]). For the closely-related
Euler incremental scheme we analyze a modified method for non inf-sup stable pairs of
finite elements. In this case an added stabilization is required. The analysis of a stabilized
Euler incremental scheme is also obtained as a consequence of the analysis of the modified
method. We establish the relation of the methods with the so called pressure stabilized
Petrov Galerkin method (PSPG).

It has been observed in the literature that the standard Euler non-incremental scheme
provides computed pressures that behave unstably for ∆t small and fixed h if non inf-sup
stable elements are used, see [3]. With our error analysis we clarify this question since in
that case the inherent PSPG stabilization of the method disappears.

In the present paper, we analyze the influence of the initial approximations to the
velocity and pressure in the error bounds for the pressure. In agreement with the results
obtained for the PSPG method in [14] a stabilized Stokes approximation of the initial data
is suggested as initial approximation. We show both analytically and numerically that
with this initial approximation we can obtain accurate approximations for the pressure
from the first time step.

Our analysis is valid for any pair of non inf-sup stable mixed finite elements whenever
the pressure space Qh satisfies the condition Qh ⊂ H1(Ω). However, we prove that the
rate of convergence cannot be better than quadratic (in terms of h) for the L2 errors of
the velocity and linear for the L2 errors of the pressure so that using finite elements other
than linear elements in the approximations to the velocity and pressure offers no clear
advantage. In terms of ∆t the rate of convergence we prove is one for the L2 errors of
the velocity. For the L2 discrete in time and H1 in space errors for the velocity and L2

discrete in time and L2 in space errors for the pressure the rate of convergence in terms
of ∆t is one for the modified Chorin-Temam method and is one half for the standard
Chorin-Temam method, accordingly to the rate of convergence of the continuous in space
Chorin-Temam method, see [11] and the references therein. The analysis presented in
this paper is not intended to obtain bounds with constants independent of the viscosity
parameter. The possibility of obtaining viscosity independent error bounds will be the
subject of further research.

Of course, the Chorin-Temam projection method is well known and this is not the
first paper where the analysis of this method is considered. The analysis of the semidis-
cretization in time is carried out in [19], [20], [18], [16], [17]. In [3] the stability of the
Chorin-Temam projection method is considered and, in case of non inf-sup stable mixed
finite elements, some a priori bounds for the approximations to the velocity and pressure
are obtained but no error bounds are proven for this method. In [1] the Chorin-Teman
method is considered together with both non inf-sup stable and inf-sup stable mixed finite
elements. In case of using non inf-sup stable mixed finite elements a local projection type
stabilization is required in [1] to get the error bounds of the method. In the present pa-
per, however, we get optimal error bounds without any extra stabilization for non inf-sup
stable mixed finite elements.

For the Euler incremental scheme the analysis of the semidiscretization in time can
be found in [16]. The Euler incremental scheme with a spatial discretization based on
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inf-sup stable mixed finite elements is analyzed in [12]. To our knowledge there is no
error analysis for this method in case of using non-inf-sup stable elements. Some stability
estimates can be found in [3] for the method with added stabilization terms more related
to local projection stabilization than to the PSPG stabilization we consider in the present
paper. A stabilized version of the incremental scheme is also proposed in [15] although
no error bounds are proved. Finally, for an overview on projection methods we refer the
reader to [11].

Being the Chorin-Temam projection method an old one, it has seen the appearance
of many alternative methods during the years, many of which possess better convergence
properties. The purpose of this paper is not to discuss its advantages or disadvantages
with respect to newer methods, but just to analyze its inherent stabilization properties
which allow the use of non inf-sup stable elements without extra stabilization, and its
connection with (more modern) PSPG stabilization.

For simplicity in the exposition in most of the paper we concentrate on the transient
Stokes equations assuming enough regularity for the solution. However, in Section 4.2
we include a sketch of the analysis of the modified Euler non-incremental scheme in the
general case in which non-local compatibility conditions for the solution are not assumed.
For a detailed analysis including the analysis of the evolutionary Navier-Stokes equations
without assuming compatibility conditions we refer the reader to [8].

The outline of the paper is as follows. We first introduce some notation. In the second
section we consider the steady Stokes equations and introduce a stabilized Stokes approxi-
mation that will be used in the error analysis of the method. Next section is devoted to the
analysis of the evolutionary Stokes equations. Both methods Euler non-incremental and
Euler-incremental schemes are considered. In the last section some numerical experiments
are shown.

2 Preliminaries and notation

Throughout the paper, standard notation is used for Sobolev spaces and corresponding
norms. In particular, given a measurable set ω ⊂ Rd, d = 2, 3, its Lebesgue measure is
denoted by |ω|, the inner product in L2(ω) or L2(ω)d is denoted by (·, ·)ω and the notation
(·, ·) is used instead of (·, ·)Ω. The semi norm in Wm,p(ω) will be denoted by | · |m,p,ω and,
following [7], we define the norm ‖·‖m,p,ω as

‖f‖pm,p,ω =
m∑
j=0

|ω|
p(j−m)

d |f |pj,p,ω ,

so that ‖f‖m,p,ω |ω|
m
d
− 1

p is scale invariant. We will also use the conventions ‖ · ‖m,ω =
‖ · ‖m,2,ω and ‖ · ‖m = ‖ · ‖m,2,Ω. As it is usual we will use the special notation Hs(ω) to
denote W s,2(ω) and we will denote by H1

0 (Ω) the subspace of functions of H1(Ω) satisfying
homogeneous Dirichlet boundary conditions. Finally, L2

0(Ω) will denote the subspace of
function of L2(ω) with zero mean.

Let us denote by Th a triangulation of the domain Ω, which, for simplicity, is assumed
to be convex with Lipschitz polygonal boundary. On Th, we consider the finite element
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spaces Vh ⊂ V = H1
0 (Ω)d and Qh ⊂ L2

0(Ω) ∩H1(Ω) based on local polynomials of degree
k and l respectively. Equal degree polynomials for velocity and pressure are allowed. It
will be assumed in the rest of the paper that the family of meshes is regular.

We will denote by Jhu ∈ Vh the elliptic projection of a function u ∈ V defined by

(∇(u− Jhu),∇vh) = 0, ∀vh ∈ Vh.

The following bound holds for m = 0, 1 and u ∈ Hk′+1(Ω)d, 0 ≤ k′ ≤ k,

‖u− Jhu‖m ≤ Chk
′+1−m‖u‖k′+1. (1)

Analogously, we will denote by Jhz ∈ Qh the elliptic projection of a function z ∈
H1(Ω). For m = 0, 1, z ∈ H l′+1(Ω), 0 ≤ l′ ≤ l it holds

‖z − Jhz‖m ≤ Chl
′+1−m‖z‖l′+1, (2)

‖Jhz‖1 ≤ C‖z‖1. (3)

The following inverse inequality holds for each vh ∈ Vh, see e.g., [6, Theorem 3.2.6],

‖vh‖Wm,p(K) ≤ Cinvh
n−m−d( 1

q
− 1

p)
K ‖vh‖Wn,q(K), (4)

where 0 ≤ n ≤ m ≤ 1, 1 ≤ q ≤ p ≤ ∞, and hK is the size (diameter) of the mesh cell
K ∈ Th.

Let λ be the smallest eigenvalue of A = −∆ subject to homogeneous Dirichlet bound-
ary conditions, ∆ being the Laplacian operator in Ω. Then it is well-known that there
exists a scale-invariant positive constant c−1 such that

‖v‖−1 ≤ c−1λ
−1/2 ‖v‖0 , v ∈ L2(Ω)d, (5)

and, also,
‖v‖0 ≤ λ−1/2 ‖∇v‖0 , v ∈ H1

0 (Ω)d, (6)

this last inequality is also known as the Poincaré inequality.

3 A stabilized Stokes projection

Let us consider the Stokes problem

−ν∆s +∇z = ĝ, in Ω

∇ · s = 0, in Ω (7)

s = 0, on ∂Ω.

We define the stabilized Stokes approximation to (7) as the mixed finite element approx-
imation (sh, zh) ∈ (Vh, Qh) satisfying

ν(∇sh,∇χh) + (∇zh,χh) = (ĝ,χh), ∀χh ∈ Vh, (8)

(∇ · sh, ψh) = −δ(∇zh,∇ψh), ∀ψh ∈ Qh, (9)
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where δ is a constant parameter. Observe that from (7) and (8) it follows that the errors
sh − s and zh − z satisfy

ν(∇(sh − s),∇χh) + (∇(zh − z),χh) = 0, ∀χh ∈ Vh. (10)

The pair (Jhs, Jhz) satisfies the following equations for all χh ∈ Vh and ψh ∈ Qh

ν(∇Jhs,∇χh) + (∇Jhz,χh) = (ĝ,χh)− (T1,∇ · χh), (11)

(∇ · Jhs, ψh) = −δ(∇Jhz,∇ψh) + δ(T2,∇ψh),

where T1 and T2 are the truncation errors

T1 = Jhz − z, T2 =
s− Jhs

δ
+∇Jhz. (12)

Let us denote by
eh = sh − Jhs, rh = zh − Jhz.

Subtracting (11) from (8) it is easy to reach

ν(∇eh,∇χh) + (∇rh,χh) = (T1,∇ · χh), ∀χh ∈ Vh (13)

(∇ · eh, ψh) = −δ(∇rh,∇ψh)− δ(T2,∇ψh), ∀ψh ∈ Qh.

Taking χh = eh and ψh = rh we obtain

ν‖∇eh‖2
0 + δ‖∇rh‖2

0 ≤ ν−1‖T1‖2
0 + δ‖T2‖2

0.

In view of the expressions of T1 and T2 in (12), the right-hand side above can be bounded
in terms of ν−1‖Jhz − z‖2

0 + δ−1‖Jhs− s‖2
0 + δ ‖∇Jhz‖2

0 , so that denoting

M(s, z) := ν−1/2 ‖Jhz − z‖0 + δ−1/2‖Jhs− s‖0, (14)

and recalling (3) we have

ν‖∇eh‖2
0 + δ‖∇rh‖2

0 ≤ C
(
M(s, z) + δ1/2 ‖∇z‖0

)2
. (15)

Using the triangle inequality we obtain

ν1/2‖∇(s− sh)‖0 + δ1/2‖∇(z − zh)‖0 ≤ C
(
M(s, z) + δ1/2 ‖∇z‖0

)
. (16)

In the sequel we set

ρ =
h

(νδ)1/2
, (17)

so that applying (1) and (2) we have the estimate

M(s, z) ≤ C
(
ρν1/2hk

′‖s‖k′+1 +
hl
′+1

ν1/2
‖z‖l′+1

)
. (18)

To bound ‖rh‖0 we will use the following lemma [4, Lemma 3], [14, Lemma 2.1].
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Lemma 1 For ψh ∈ Qh it holds

‖ψh‖0 ≤ Ch‖∇ψh‖0 + C sup
χh∈Vh

(ψh,∇ · χh)
‖χh‖1

. (19)

Applying (19), (13) and (15) we get

‖rh‖0 ≤ Chδ−1/2δ1/2‖∇rh‖0 + sup
χh∈Vh

(rh,∇ · χh)
‖χh‖1

≤ Chδ−1/2δ1/2‖∇rh‖0 + ν‖∇eh‖0 + ‖T1‖0

≤ C
(
(hδ−1/2 + ν1/2)M(s, z) + (h+ (νδ)1/2) ‖∇z‖

)
.

Applying the triangle inequality we have

‖z − zh‖0 ≤ Cν1/2(1 + ρ)
(
M(s, z) + δ1/2 ‖∇z‖0

)
. (20)

To conclude this section we will get a bound for the L2 norm of the error by means of a
well-known duality argument.

Lemma 2 There exist a constant C > 0 such that for any v ∈ H1
0 (Ω)d with div(v) = 0,

q ∈ L2
0(Ω), vh ∈ Vh and qh ∈ Qh satisfying

ν(∇(vh − v),∇χh) + (∇(qh − q),χh) = 0, ∀χh ∈ Vh, (21)

(∇ · (vh − v), ψh) + δ(∇qh,∇ψh) = 0, ∀ψh ∈ Qh, (22)

the following bounds hold:

ν1/2 ‖∇vh‖0 + δ1/2 ‖∇qh‖0 ≤ C
(
ν1/2 ‖∇v‖0 + ν−1/2 ‖q‖0

)
, (23)

‖vh − v‖0 ≤ C
(
h
(
‖∇(v − vh)‖0 + ν−1 ‖q − qh‖0

)
+ δ ‖∇qh‖0

)
. (24)

Proof Observe that since div(v) = 0, relation (22) can be written in the form

(∇ · vh, ψh) + δ(∇qh,∇ψh) = 0,

for all ψh ∈ Qh. Then taking ψh = qh in this relation, χh = vh in (21) and summing both
equations, the bound (23) follows easily. To prove (24), for φ = v− vh, let (E, Q) be the
solution of

−ν∆E +∇Q = φ, in Ω,
∇ · E = 0, in Ω,

E = 0, on ∂Ω.
(25)

Since we are assuming Ω is a convex domain with Lipschitz polygonal boundary, the
solution of (25) satisfies

ν‖E‖2 + ‖Q‖1 ≤ C‖φ‖0 = C‖v − vh‖0. (26)
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Then, we have

‖v − vh‖2
0 = (φ,v − vh) = ν(∇(v − vh),∇E)− (∇ · (v − vh), Q). (27)

For the first term on the right-hand side of (27) adding and subtracting JhE and using
(21) we get

ν(∇(v − vh),∇E) = ν(∇(v − vh),∇(E− JhE)) + ν(∇(v − vh),∇JhE)

= ν(∇(v − vh),∇(E− JhE)) + (q − qh,∇ · JhE)

= ν(∇(v − vh),∇(E− JhE)) + (q − qh,∇ · (E− JhE))

Then, applying (1) and (26) we obtain

ν(∇(v − vh),∇E) ≤
(
ν‖∇(v − vh)‖0 + C‖q − qh‖0

)
‖∇(E− JhE)‖0

≤
(
‖∇(v − vh)‖0 + Cν−1‖q − qh‖0

)
hν‖E‖2 (28)

≤ Ch
(
‖∇(v − vh)‖0 + Cν−1‖q − qh‖0

)
‖v − vh‖0.

For the second term on the right-hand side of (27) we add and subtract JhQ and apply
(22)

(∇ · (v − vh), Q) = (∇ · (v − vh), Q− JhQ) + (∇ · (v − vh), JhQ)

= (∇ · (v − vh), Q− JhQ) + δ(∇qh,∇JhQ).

Applying now (2) and (3) together with (26) we get

(∇ · (v − vh), Q) ≤ ‖∇(v − vh)‖0‖Q− JhQ‖0 + δ‖∇qh‖0‖∇JhQ‖0

≤ C (h‖∇(v − vh)‖0 + δ‖∇qh‖0) ‖Q‖1 (29)

≤ C (h‖∇(v − vh)‖0 + δ‖∇qh‖0) ‖v − vh‖0

Inserting (28) and (29) into (27) we reach (24) �

We now apply (24) with v = s, q = z, vh = sh and qh = zh to get

‖s− sh‖0 ≤ C
(
h
(
‖∇(s− sh)‖0 + ν−1 ‖z − zh‖0

)
+ δ ‖∇zh‖0

)
.

Applying (16) and (20) together with definition (17) we get

‖s− sh‖0 ≤ C
(
hν−1/2(2 + ρ)

(
M(s, z) + δ1/2 ‖∇z‖0

)
+ δ ‖∇zh‖0

)
≤ C

(
ρ(2 + ρ)δ1/2

(
M(s, z) + δ1/2 ‖∇z‖0

)
+ δ ‖∇zh‖0

)
.

By writing δ ‖∇zh‖ ≤ δ ‖∇(zh − z)‖+ δ ‖∇z‖ and applying (16) we have

‖s− sh‖0 ≤ C(1 + ρ)2δ1/2
(
M(s, z) + δ1/2 ‖∇z‖0

)
, (30)

and applying (18),

‖s− sh‖0 ≤C(1 + ρ)2
(
hk
′+1‖s‖k′+1 +

δ1/2

ν1/2
hl
′+1‖z‖l′+1 + δ‖∇z‖0

)
, (31)
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for 0 ≤ k′ ≤ k and 0 ≤ l′ ≤ l.
We notice that in the last bound there are positive powers of the parameter ρ. This

implies that in order to have optimal error bounds in the velocity ρ must be bounded
above. Hence, in the sequel, we will assume

ρ ≤ ρ1, (32)

for a positive constant ρ1 which implies

1

νρ2
1

h2 ≤ δ. (33)

Assuming (32) we obtain the following simplified error bounds for 0 ≤ k′ ≤ k and 0 ≤
l′ ≤ l.

ν1/2‖∇(s− sh)‖0 + δ1/2‖∇(z − zh)‖0 ≤
C

ν1/2
M̂1(s, z),

‖z − zh‖0 ≤ CM̂1(s, z),

‖s− sh‖0 ≤ CM̂2(s, z), (34)

where the constants C in the bounds above depend on the value ρ1 in (32), and

M̂1(s, z) = νhk
′‖s‖k′+1 + hl

′+1‖z‖l′+1 + (νδ)1/2‖∇z‖0,

M̂2(s, z) = hk
′+1‖s‖k′+1 + ν−1h2l′+2‖z‖l′+1 + δ(‖∇z‖0 + ‖z‖l′+1),

where M̂2 is obtained from (31) by writing δ1/2

ν1/2
hl
′+1 ≤ δ

2
+ h2(l

′+1)

2ν
. We observe that

independently of the degree of the piecewise polynomials, in view of condition (33), we
do not achieve more than second order in the L2 norm of the error of the velocity and
first order in the L2 norm of the error of the pressure due to the terms δ‖∇z‖0 and
δ1/2‖∇z‖0 respectively. Using piecewise linear polynomials both in the approximations to
the velocity and the pressure (i.e. with k = l = 1) and assuming (s, z) ∈ H2(Ω)d×H1(Ω)
(i.e. taking l′ = 0) we get

ν1/2‖∇(s− sh)‖0 + δ1/2‖∇(z − zh)‖0 ≤ C
h

ν1/2
(ν‖s‖2 + ‖z‖1) + Cδ1/2‖z‖1,

‖z − zh‖0 ≤ Ch(ν‖s‖2 + ‖z‖1) + C(νδ)1/2‖z‖1, (35)

‖s− sh‖0 ≤ C
h2

ν
(ν‖s‖2 + ‖z‖1) + Cδ‖z‖1,

the constants C depending on the value ρ1 in (32). Here and in the rest of the paper we
use C to denote a generic non-dimensional constant.

Finally, we will also use the following bound that can be easily obtained (see [8, Section
3.1])

‖s− sh‖0 ≤ C(h+ ν1/2δ1/2)
(
‖s‖1 + ν−1‖z‖0

)
. (36)
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4 Evolutionary Stokes equations

In the rest of the paper we consider the evolutionary Stokes equations

vt − ν∆v +∇q = g, in Ω

∇ · v = 0, in Ω (37)

v = 0, on ∂Ω,

v(0,x) = v0(x), in Ω.

We will introduce a modified Euler non-incremental scheme in the first part of this section
and we will end the section considering a modified Euler incremental scheme. The error
analysis of the second scheme is obtained as a consequence of the error analysis of the
first method.

4.1 Euler non-incremental scheme

We will denote by (vnh, ṽ
n
h, q

n
h), n = 1, 2, . . . , ṽnh ∈ Vh, q

n
h ∈ Qh and vnh ∈ Vh + ∇Qh

the approximations to the velocity and pressure at time tn = n∆t, ∆t = T/N , N > 0
obtained with the following modified Euler non-incremental scheme(

ṽn+1
h − vnh

∆t
,χh

)
+ ν(∇ṽn+1

h ,∇χh) = (gn+1,χh), ∀χh ∈ Vh

(∇ · ṽn+1
h , ψh) = −δ(∇qn+1

h ,∇ψh), ∀ψh ∈ Qh, (38)

vn+1
h = ṽn+1

h − δ∇qn+1
h .

Let us observe that for δ = ∆t, (38) is the classical Chorin-Temam (Euler non-incremental)
scheme [5], [21]. In case δ = ∆t we can remove vnh from (38) inserting the expression of
vnh from the last equation in (38) into the first equation in (38) to get(

ṽn+1
h − ṽnh

∆t
,χh

)
+ ν(∇ṽn+1

h ,∇χh) + (∇qnh ,χh) = (gn+1,χh), ∀χh ∈ Vh, (39)

(∇ · ṽn+1
h , ψh) = −δ(∇qn+1

h ,∇ψh), ∀ψh ∈ Qh. (40)

The method we study is exactly (39)-(40) with δ a parameter not necessarily equal to
∆t. More precisely, we suggest to take δ as defined in (33). Let us observe that in the
formulation (39)-(40) we only look for approximations ṽnh ∈ Vh and qnh ∈ Qh to the velocity
and pressure respectively. The discrete divergence free approximation vnh to the velocity
is not part of the scheme. As a consequence of the error analysis of this section we will
get the error bounds for the classical Euler non-incremental scheme assuming in that case
δ = ∆t.
Remark 1 Let us observe that condition (40) is analogous to the condition imposed
for the pressure stabilized Petrov-Galerkin (PSPG) method to stabilize non inf-sup stable
mixed-finite elements, see [14]. The difference is that in the PSPG method instead of (40)
one has the full residual

(∇ · ṽn+1
h , ψh) = δ

∑
K∈Th

(
(gn+1,∇ψh)K −

(
ṽn+1
h − ṽnh

∆t
,∇ψh

)
K

−(ν∆ṽn+1
h , ψh)K − (∇qn+1

h ,∇ψh)K ) (41)
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so that the PSPG method is consistent, while in (40) we only keep the last term on
the right-hand side above which is the one giving stability for the approximate pressure.
However, due to the lack of consistency no better that O(h2) error bounds can be obtained
for the method (39)-(40). The analogy between the PSPG method and the modified Euler
non-incremental scheme applies also to the value of the stabilization parameter δ which is
in general for the PSPG method δ ≈ h2, see [14]. Let us observe that we assume a lower
bound for δ of size h2 in (33) for the method (39)-(40). In view of (35) assuming also an
analogous upper bound, i.e. δ ≈ h2, gives an error O(h) for the first two bounds in (35)
and O(h2) for the last one so that assumption δ ≈ h2 equilibrates all terms in (35).

Let us denote by gn = g(tn) and vnt = vt(tn). Let us consider (snh, z
n
h) the stabilized

Stokes approximation to the steady Stokes problem (7) with right-hand side ĝn = gn−vnt .
Let us observe that (vn, pn) = (v(tn), p(tn)), i.e., the solution of the evolutionary Stokes
problem (37) at time t = tn is also the exact solution of this steady problem. More
precisely, (snh, z

n
h) ∈ Vh ×Qh satisfies

ν(∇snh,χh) + (∇znh ,χh) = (ĝn,χh), χh ∈ Vh, (42)

(∇ · snh, ψh) = −δ(∇znh ,∇ψh), ∀ψh ∈ Qh.

In the sequel we will denote by

ẽnh = ṽnh − snh, rnh = qnh − znh . (43)

From (39)-(40) and (42) one obtains the following error equation for all χh ∈ Vh, ψh ∈ Qh(
ẽn+1
h − ẽnh

∆t
,χh

)
+ ν(∇ẽn+1

h ,∇χh) + (∇rnh ,χh) = (τ nh,χh)− (∇(znh − zn+1
h ),χh),

(44)

(∇ · ẽn+1
h , ψh) + δ(∇rn+1

h ,∇ψh) = 0. (45)

where

τ nh = vn+1
t − sn+1

h − snh
∆t

= (vn+1
t − (sh)

n+1
t ) +

(
(sh)

n+1
t − sn+1

h − snh
∆t

)
. (46)

To estimate the errors ẽnh and rnh we will use the following stability result.

Lemma 3 Let (wn
h)∞n=0 and (bnh)∞n=0 sequences in Vh and (ynh)∞n=0 and (dnh)∞n=0 sequences

in Qh satisfying for all χh ∈ Vh and ψh ∈ Qh(
wn+1
h −wn

h

∆t
,χh

)
+ ν(∇wn+1

h ,∇χh) + (∇ynh ,χh) =(bnh +∇dnh,χh), (47)

(∇ ·wn+1
h , ψh) + δ(∇yn+1

h ,∇ψh) =0. (48)

Assume condition
∆t ≤ δ (49)

10



holds. Then, there exists a non-dimensional constant c0 such that the following bounds
hold

‖wn
h‖2

0 +
n−1∑
j=0

‖wj+1
h −wj

h‖
2
0 + ∆t

n−1∑
j=0

(
ν‖∇wj+1

h ‖
2
0 + δ‖∇yj+1

h ‖
2
0

)
≤ c0

(
‖w0

h‖2
0 + ∆t

n−1∑
j=0

(
ν−1‖bjh‖

2
−1 + δ‖∇djh‖

2
0

))
, (50)

tn‖wn
h‖2

0 +
n−1∑
j=0

tj+1‖wj+1
h −wj

h‖
2
0 + ∆t

n−1∑
j=0

tj+1

(
ν‖∇wj+1

h ‖
2
0 + δ‖∇yj+1

h ‖
2
0

)
≤ c0

(
t0‖w0

h‖2
0 + ∆t

n∑
j=0

‖wj
h‖

2
0 + ∆t

n−1∑
j=0

tj+1

(
tj+1‖bjh‖

2
0 + δ‖∇djh‖

2
0

))
, (51)

n−1∑
j=0

∆t

∥∥∥∥wj+1
h −wj

h

∆t

∥∥∥∥2

0

+ ν‖∇wn
h‖2

0 + δ‖∇ynh‖2
0 + ν

n−1∑
j=0

‖∇(wj+1
h −wj

h)‖
2
0

≤ c0

(
ν‖∇w0

h‖2
0 + δ‖∇y0

h‖2
0 + ∆t

n−1∑
j=0

(
‖bjh‖

2
0 + ‖∇djh‖

2
0

))
. (52)

Proof Taking χh = ∆twn+1
h in (47) and ψh = ∆tynh in (48) we get

1

2

(
‖wn+1

h ‖2
0 − ‖wn

h‖2
0 + ‖wn+1

h −wn
h‖2

0

)
+ ν∆t‖∇wn+1

h ‖2
0 + ∆t(∇ynh ,wn+1

h )

= ∆t(bnh +∇dnh,wn+1
h ), (53)

∆t(∇ ·wn+1
h , ynh) + δ∆t(∇yn+1

h ,∇ynh) = 0. (54)

Summing both equations and noticing that, after integration by parts, ∆t(∇ynh ,wn+1
h )

in (53) cancels out with the term ∆t(∇ ·wn+1
h , ynh) in (54), we have

1

2

(
‖wn+1

h ‖2
0 − ‖wn

h‖2
0 + ‖wn+1

h −wn
h‖2

0

)
+ ν∆t‖∇wn+1

h ‖2
0 + δ∆t(∇yn+1

h ,∇ynh)

= ∆t(bnh +∇dnh,wn+1
h ).

Multiplying by 2 and adding and subtracting ‖∇yn+1
h ‖2

0 we get

‖wn+1
h ‖2

0 − ‖wn
h‖2

0 + ‖wn+1
h −wn

h‖2
0 + 2ν∆t‖∇wn+1

h ‖2
0 + 2δ∆t‖∇yn+1

h ‖2
0

= 2∆t(bnh,w
n+1
h ) + 2∆t(∇dnh,wn+1

h ) + 2δ∆t(∇yn+1
h ,∇(yn+1

h − ynh)). (55)

From (48) it is also easy to obtain

δ(∇(yn+1
h − ynh),∇yn+1

h ) = −(∇ · (wn+1
h −wn

h), yn+1
h ),

11



so that

2δ∆t(∇yn+1
h ,∇(yn+1

h − ynh)) ≤ 2

3
‖wn+1

h −wn
h‖2

0 +
3

2
(∆t)2‖∇yn+1

h ‖2
0.

Thus, from (55) and (49) we have

‖wn+1
h ‖2

0 − ‖wn
h‖2

0 +
1

3
‖wn+1

h −wn
h‖2

0 + 2ν∆t‖∇wn+1
h ‖2

0 +
1

2
δ∆t‖∇yn+1

h ‖2
0

≤ 2∆t(bnh,w
n+1
h ) + 2∆t(∇dnh,wn+1

h ). (56)

We now bound the two terms on the right-hand side above. For the first one we write

2∆t(bnh,w
n+1
h ) ≤ ∆t

ν
‖bnh‖2

−1 + ν∆t‖∇wn+1
h ‖2

0.

For the second one we have 2∆t(∇dnh,wn+1
h ) = −2∆t(dnh,∇ · wn+1

h ), so that using (48)
with ψh = 2∆tdnh we may write

2∆t(∇dnh,wn+1
h ) = 2δ∆t(∇yn+1

h ,∇dnh) ≤ δ∆t

4
‖∇yn+1

h ‖2
0 + 4δ∆t‖∇dnh‖2

0. (57)

Using the two inequalities above in (56) we obtain

‖wn+1
h ‖2

0 − ‖wn
h‖2

0+
1

3
‖wn+1

h −wn
h‖2

0 + 2ν∆t‖∇wn+1
h ‖2

0 +
1

2
δ∆t‖∇yn+1

h ‖2
0

≤∆t

ν
‖bnh‖2

−1 + ν∆t‖∇wn+1
h ‖2

0 + 4δ∆t‖∇dnh‖2
0 +

δ∆t

4
‖∇yn+1

h ‖2
0.

Arranging terms we get

‖wn+1
h ‖2

0 − ‖wn
h‖2

0 +
1

3
‖wn+1

h −wn
h‖2

0 + ν∆t‖∇wn+1
h ‖2

0 +
1

4
δ∆t‖∇yn+1

h ‖2
0

≤ ∆t

ν
‖bnh‖2

−1 + 4δ∆t‖∇dnh‖2
0, (58)

so that (50) follows easily.
To prove (51), multiply (56) by tn+1 and write

tn+1‖wn
h‖2

0 = tn‖wn
h‖2

0 + ∆t‖wn
h‖2

0.

Use (57) to bound the term 2tn+1∆t(∇dnh,wn+1
h ), and for 2tn+1∆t(bnh,w

n+1
h ) use the fol-

lowing bound
2tn+1∆t(bnh,w

n+1
h ) ≤ t2n+1∆t‖bnh‖2

0 + ∆t‖wn+1
h ‖2

0,

so that

tn+1‖wn+1
h ‖2

0 − tn‖wn
h‖2

0

+ tn+1

(1

3
‖wn+1

h −wn
h‖2

0 + 2ν∆t‖∇wn+1
h ‖2

0 +
1

4
δ∆t‖∇yn+1

h ‖2
0

)
≤ tn+1∆t

(
tn+1‖bnh‖2

0 + 4δ‖∇dnh‖2
0

)
+ ∆t

(
‖wn

h‖2
0 + ‖wn+1

h ‖2
0

)
,

12



and (51) follows by summing consecutive values of n.
To prove (52) we take χh = wn+1

h −wn
h in (47). Then

∆t

∥∥∥∥wn+1
h −wn

h

∆t

∥∥∥∥2

0

+
ν

2

(
‖∇wn+1

h ‖2
0 − ‖∇wn

h‖2
0 + ‖∇(wn+1

h −wn
h)‖2

0

)
+ (∇ynh ,wn+1

h −wn
h)

= (bnh,w
n+1
h −wn

h) + (∇dnh,wn+1
h −wn

h).

(59)

For the last term on the left-hand side of (59) applying (48) we obtain

(∇ynh ,wn+1
h −wn

h) = −(ynh ,∇ · (wn+1
h −wn

h)) = δ(∇ynh ,∇(yn+1
h − ynh))

=
δ

2

(
‖∇yn+1

h ‖2
0 − ‖∇ynh‖2

0 − ‖∇(yn+1
h − ynh)‖2

0

)
.

(60)

We will bound the last term on the right-hand side above applying (48) again:

δ‖∇(yn+1
h − ynh)‖2

0 = −(∇ · (wn+1
h −wn

h), yn+1
h − ynh)

= (wn+1
h −wn

h,∇(yn+1
h − ynh))

≤ δ

2
‖∇(yn+1

h − ynh)‖2
0 +

1

2δ
‖wn+1

h −wn
h‖2

0,

so that
δ

2
‖∇(yn+1

h − ynh)‖2
0 ≤

1

2δ
‖wn+1

h −wn
h‖2

0 =
δ

2

∥∥∥∥wn+1
h −wn

h

δ

∥∥∥∥2

0

.

Inserting the above inequality into (60) we reach

(∇ynh ,wn+1
h −wn

h) ≥ δ

2

(
‖∇yn+1

h ‖2
0 − ‖∇ynh‖2

0

)
− δ

2

∥∥∥∥wn+1
h −wn

h

δ

∥∥∥∥2

0

, (61)

so that from (59) it follows that

2∆t

∥∥∥∥wn+1
h −wn

h

∆t

∥∥∥∥2

0

− δ
∥∥∥∥wn+1

h −wn
h

δ

∥∥∥∥2

0

+ ν
(
‖∇wn+1

h ‖2
0 − ‖∇wn

h‖2
0 + ‖∇(wn+1

h −wn
h)‖2

0

)
+ δ

(
‖∇yn+1

h ‖2
0 − ‖∇ynh‖2

0

)
≤ 2(bnh,w

n+1
h −wn

h) + 2(∇dnh,wn+1
h −wn

h).

Using from now on that restriction (49) holds we get

∆t

∥∥∥∥wn+1
h −wn

h

∆t

∥∥∥∥2

0

+ ν
(
‖∇wn+1

h ‖2
0 − ‖∇wn

h‖2
0 + ‖∇(wn+1

h −wn
h)‖2

0

)
+ δ

(
‖∇yn+1

h ‖2
0 − ‖∇ynh‖2

0

)
≤ 2(bnh,w

n+1
h −wn

h) + 2(∇dnh,wn+1
h −wn

h).

(62)
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To conclude we bound the two terms on the right-hand side above. For the first one we
write

2(bnh,w
n+1
h −wn

h) ≤ ∆t

4

∥∥∥∥wn+1
h −wn

h

∆t

∥∥∥∥2

0

+ 4∆t‖bnh‖2
0,

and for the second one,

2(∇dnh,wn+1
h −wn

h) ≤ ∆t

4

∥∥∥∥wn+1
h −wn

h

∆t

∥∥∥∥2

0

+ 4∆t‖∇dnh‖2
0.

Using these two bounds in (62) we reach

∆t

2

∥∥∥∥wn+1
h −wn

h

∆t

∥∥∥∥2

0

+ ν
(
‖∇wn+1

h ‖2
0 − ‖∇wn

h‖2
0 + ‖∇(wn+1

h −wn
h)‖2

0

)
+ δ

(
‖∇yn+1

h ‖2
0 − ‖∇ynh‖2

0

)
≤ 4∆t‖bnh‖2

0 + 4∆t‖∇dnh‖2
0,

from where (52) follows easily. �

Remark 2 At the price of a more elaborate proof, it is possible to replace condition (49)
by ∆t ≤ 2δ.

We now prove a bound for the error in the velocity and pressure in the approximation
defined by (39)-(40). We assume the solution (v, q) of (37) is smooth enough so that
all the norms appearing below on the right-hand side of the bounds in Theorem 1 are
bounded.

Theorem 1 Let (v, q) be the solution of (37) and let (ṽnh, q
n
h), n ≥ 1, be the solution of

(39)-(40). Assume δ satisfies condition (33) and ∆t satisfies condition (49). Then, the
following bounds hold

‖ṽnh − v(tn)‖2
0 ≤ C‖ẽ0

h‖2
0 + C

h4

ν2

(
ν2‖v(tn)‖2

2 + ‖q(tn)‖2
1

)
+ Cδ2‖q(tn)‖2

1

+ Cn
1 tn∆t2 + Cn

2 tnh
4 + Cn

3 (νλ)−1tnδ
2,

(63)

∆t
n∑
j=1

(
ν‖∇(ṽjh − v(tj))‖2

0 + δ‖∇(qjh − q(tj))‖
2
0

)
≤ C‖ẽ0

h‖2
0 + Ctn

h2

ν

(
ν2 max

t1≤t≤tn

(
‖v(t)‖2

2 + ‖q(t)‖2
1

))
+ Ctnδ max

t1≤t≤tn
‖q(t)‖2

1 + Cn
1 tn∆t2 + Cn

2 tnh
4 + Cn

3 (νλ)−1tnδ
2,

(64)

where Cn
1 , Cn

2 and Cn
3 are defined as

Cn
1 = C

(
c2
−1

νλ
max

0≤t≤tn
‖(sh)tt(t)‖2

0 + δ max
0≤t≤tn

‖∇(zh)t(t)‖2
0

)
, (65)

Cn
2 =

C

ν3λ

(
ν2 max

t1≤t≤tn

(
‖vt(t)‖2

2 + ‖qt(t)‖2
1

))
, (66)

Cn
3 = C

(
max
t1≤t≤tn

‖qt(t)‖2
1

)
. (67)
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Proof We apply Lemma 3 to relation (44)-(45), that is, taking wn
h = ẽnh, ynh = rnh ,

bnh = PVhτ
n
h and dnh = zn+1

h − znh , where PVh is the L2 orthogonal projection onto Vh. As
a consequence of (50) we have

‖ẽnh‖2
0 +

n−1∑
j=0

‖ẽj+1
h − ẽjh‖

2
0 + ∆t

n−1∑
j=0

(
ν‖∇ẽj+1

h ‖
2
0 + δ‖∇rj+1

h ‖
2
0

)
≤ c0

(
‖ẽ0

h‖2
0 + ∆t

n−1∑
j=0

(
ν−1‖PVhτ

j
h‖

2
−1 + δ‖∇(zj+1

h − zjh)‖
2
0

))
.

(68)

We now estimate the last two terms on the right-hand side above. For the second one we
have ∥∥∇(zj+1

h − zjh)
∥∥2

0
=

∥∥∥∥∫ tj+1

tj

∇(zh)t dt

∥∥∥∥2

0

≤ ∆t

∫ tj+1

tj

‖∇(zh)t‖2
0 dt, (69)

where in the last inequality we have applied Hölder’s inequality. Thus we can write

n−1∑
j=0

δ
∥∥∇(zj+1

h − zjh)
∥∥2

0
≤ δ∆t

∫ tn

0

‖∇(zh)t‖2
0 dt. (70)

To estimate the truncation error we first consider the second term in the expression of τ jh
in (46). Applying Hölder’s inequality we may write∥∥∥∥∥(sh)

j+1
t − sj+1

h − sjh
∆t

∥∥∥∥∥
2

0

=

∥∥∥∥ 1

∆t

∫ tj+1

tj

(tj − s)(sh)tt dt
∥∥∥∥2

0

≤ ∆t

∫ tj+1

tj

‖(sh)tt‖2
0 dt, (71)

so that, recalling (5) and applying (71) we obtain

‖PVhτ
j
h‖

2
−1 ≤

c2
−1

λ
‖PVhτ

j
h‖

2
0 ≤

c2
−1

λ
‖τ jh‖

2
0

≤ 2
c2
−1

λ

(
‖vj+1

t − (sh)
j+1
t ‖2

0 + ∆t

∫ tj+1

tj

‖(sh)tt‖2
0 dt

)
,

(72)

which allows us to write

∆t
n−1∑
j=0

‖PVhτ
j
h‖

2
−1 ≤ 2c2

−1

(
∆t2

λ

∫ tn

0

‖(sh)tt‖2
0 dt+

tn
λ

max
t1≤t≤tn

‖vt(t)− (sh)t(t)‖2
0

)
. (73)

Thus, inserting (70) and (73) in (68) it follows that

‖ẽnh‖2
0 +

n−1∑
j=0

‖ẽj+1
h − ẽjh‖

2
0 + ∆t

n−1∑
j=0

(
ν‖∇ẽj+1

h ‖
2
0 + δ‖∇rj+1

h ‖
2
0

)
≤c0

(
‖ẽ0

h‖2
0 + ∆t2

∫ tn

0

(c2
−1

νλ
‖(sh)tt‖2

0 + δ‖∇(zh)t‖2
0

)
dt

+c2
−1

tn
νλ

max
t1≤t≤tn

‖vt(t)− (sh)t(t)‖2
0

)
.
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Now, in view of (34) we can write

‖ẽnh‖2
0 +

n−1∑
j=0

‖ẽj+1
h − ẽjh‖

2
0 + ∆t

n−1∑
j=0

(
ν‖∇ẽj+1

h ‖
2
0 + δ‖∇rj+1

h ‖
2
0

)
≤ c0

(
‖ẽ0

h‖2
0 + ∆t2

∫ tn

0

(c2
−1

νλ
‖(sh)tt‖2

0 + δ‖∇(zh)t‖2
0

)
dt

+
C

ν3λ
tn

(
ν2h2k+2 max

t1≤t≤tn
‖vt(t)‖2

k+1 + Ch4 max
t1≤t≤tn

‖qt(t)‖2
1

)
+

C

νλ
tnδ

2 max
t1≤t≤tn

‖qt(t)‖2
1

)
.

(74)

Taking k = 1 and l = 0 in (74), applying triangle inequality and the error bounds (35)
we conclude (63) and (64). �

Remark 3 We observe that the norms ‖(sh)tt‖0 and δ1/2‖∇(zh)t‖0 in (65) can be easily
bounded in terms of ‖vtt‖1 and ‖qt‖1 by adding and subtracting vtt and∇(qt), respectively,
and applying (34).
Remark 4 Let us observe that taking δ = ∆t the analysis above applies to the standard
Euler non-incremental scheme assuming

1

νρ2
1

h2 ≤ ∆t. (75)

This result is in agreement with the error bounds in [1] where the authors prove error
bounds for the Euler non-incremental scheme for inf-sup stable elements assuming ∆t ≥
Ch2, see [1, Assumption 7]. It is also in agreement with the classical results for the
continuous in space Euler non-incremental method (see for example [11]) since for δ = ∆t
the rate of convergence in terms of ∆t in the L2 norm of the velocity is one and the rate
of convergence in the H1 norm of the velocity and the L2 norm of the pressure is one half,
see (63) and (64).

Let us also observe that condition (75) is stronger than condition (49), ∆t ≤ δ. As a
consequence, the modified Euler non-incremental scheme with δ different from ∆t would
be advisable if one wants to use the method for ∆t → 0 since there is no need in the
modified method to impose (75) for the time step ∆t. Moreover, the error analysis carried
out explains the instabilities that can be observed in the approximate pressures computed
with the standard Euler non-incremental scheme for a fixed h and ∆t tending to zero in
case of using non inf-sup stable elements, see for example [3]. In that case, the lower
bound in (75) is not satisfied and the stability for the pressure induced by equation (40)
disappears. This is in agreement with the analogies stated in Remark 1 between the Euler
non-incremental scheme and the PSPG method.
Remark 5 It must be observed that the time step restriction (49) is not an artifact of
the proof but, as it can be easily checked in practice, the modified Euler non-incremental
method becomes unstable if ∆t is taken larger than 2δ.
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We now turn to estimate the error in the pressure. We first notice that we already
have an estimate of the form

∆t
n∑
j=1

δ‖∇(qjh − q(tj))‖
2
0 = O(∆t2 + h2 + δ)

from (64). However, we will obtain error bounds for stronger norms than this one.

Lemma 4 Under the assumptions of Theorem 1 the following bound holds

δ‖∇(qnh − q(tn))‖2
0 ≤ C

(
ν‖∇ẽ0

h‖2
0 + δ‖∇r0

h‖2
0 + Cn

4 tn∆t2 + Cn
5 tnh

4 + Cn
3 tnδ

+
h2

ν

(
ν2‖v(tn)‖2

2 + ‖q(tn)‖2
1

)
+ δ‖q(tn)‖2

1

)
,

(76)

where Cn
3 is the constant in (67) and

Cn
4 = max

0≤t≤tn
‖(sh)tt(t)‖2

0 + max
0≤t≤tn

‖∇(zh)t(t)‖2
0 (77)

Cn
5 =

1

ν2

(
ν2 max

t1≤t≤tn
‖vt(t)‖2

2 + max
t1≤t≤tn

‖qt‖2
1

)
. (78)

Proof We apply (52) to (44)-(45) so that we get

δ ‖∇rnh‖
2
0 ≤ c0

(
ν‖∇ẽ0

h‖2
0 + δ‖∇r0

h‖2
0 + ∆t

n−1∑
j=0

(‖PVhτ
j
h‖

2
0 + ‖∇(zj+1

h − zjh)‖
2
0

)
.

In view of (70) and (72)-(73) we have

δ ‖∇rnh‖
2
0 ≤C

(
ν‖∇ẽ0

h‖2
0 + δ‖∇r0

h‖2
0 + ∆t2

∫ tn

0

(
‖(sh)tt‖2

0 + ‖∇(zh)t‖2
0

)
dt

+tn max
t1≤t≤tn

‖vt(t)− (sh)t(t)‖2
0

)
, (79)

which in view of (35) can be written as

δ ‖∇rnh‖
2
0 ≤C

(
ν‖∇ẽ0

h‖2
0 + δ‖∇r0

h‖2
0 + ∆t2

∫ tn

0

(
‖(sh)tt‖2

0 + ‖∇(zh)t‖2
0

)
dt

+tn
h4

ν2

(
ν2 max

t1≤t≤tn
‖vt(t)‖2

2 + max
t1≤t≤tn

‖qt(t)‖2
1

)
+ tnδ max

t1≤t≤tn
‖qt(t)‖2

1

)
.

(80)

To conclude we apply the triangle inequality together with (35). �

Remark 6 The norm ‖∇(zh)t‖0 in the constant Cn
4 in (67) can be bounded as follows.

Using inverse inequality (4) and (3) we get

‖∇(zh)t‖0 ≤ ‖∇((zh)t − Jhqt)‖0 + ‖∇qt‖0 ≤ cinvh
−1‖(zh)t − Jhqt‖0 + C‖qt‖1.
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Applying now (35) and (2) we finally bound ‖∇(zh)t‖0 in terms of ‖vt‖2 and ‖qt‖1.
Remark 7 As before, the bound (76) applies to the standard Euler non-incremental
scheme with δ = ∆t assuming in that case h2/(νρ2

1) ≤ ∆t, i.e. condition (75) holds. We
can deduce from (76) that the errors in the pressure are bounded in terms of δ‖∇r0

h‖2
0.

Let us observe that using (39) to get ṽ1
h, apart from the standard initial condition for

the velocity ṽ0
h one would need an initial pressure q0

h. If one takes for example q0
h = 0,

then one gets ‖∇r0
h‖2

0 = ‖∇z0
h‖0, the last norm being O(1) as can be proved arguing as

in Remark 3. Then δ‖∇r0
h‖2

0 = O(δ) which is of the same order as the last term in (76).
As a consequence, the choice q0

h = 0 in (39) does not spoil the rate of convergence of the
pressure.

Next lemma gets an improvement of the error bound (80) that will allow us to under-
stand the effect of the initial condition chosen on the error in the approximate pressure.

Lemma 5 Let rnh = qnh−znh the error defined in (43). Under the assumptions of Theorem 1
the following bound holds

‖∇rnh‖2
0 ≤ C

(‖ẽ0
h‖2

0

δtn
+

∆t2

t2n
‖∇r0

h‖2
0 +∆t

(
Cn

1 +tnC
n
4

)
+δCn

3

(
(νλ)−1 +tn

)
+νh2(Cn

2 +tnC
n
5 )
)
,

(81)
where Cn

1 , Cn
2 , Cn

3 , Cn
4 and Cn

5 are the constants in (65), (66), (67), (77) and (78),
respectively.

Proof Multiply (44) and (45) by tn+1, and add±(tnẽn/∆t,χh) and±tn(∇rnh ,χh) to (44),
so that for

wn
h = tnẽ

n
h, ynh = tnr

n
h , bnh = tn+1PVhτ

n
h + ẽnh,

and
dn = tn+1(zn+1

h − znh)−∆trnh ,

we get (47)-(48). Applying (52) we have

δt2n ‖∇rnh‖
2
0 ≤c0∆t

n−1∑
j=0

t2j+1(‖τ jh‖
2
0 + ‖∇(zj+1

h − zjh)‖
2
0)

+ c0∆t
n−1∑
j=0

(‖ẽjh‖
2
0 + ∆t2‖∇rjh‖

2
0).

(82)

For the second sum on the right hand side above using (49) and ∆t ≤ tn for n ≥ 1 we get

∆t
n−1∑
j=0

(‖ẽjh‖
2
0 + ∆t2‖∇rjh‖

2
0) ≤ tn max

0≤j≤n−1
‖ẽjh‖

2
0 + δ∆t2‖∇r0

h‖2
0 + tn

n−1∑
j=1

δ∆t‖∇rjh‖
2
0

and then apply (74) to reach

∆t
n−1∑
j=0

(‖ẽjh‖
2
0 + ∆t2‖∇rjh‖

2
0)

≤ Ctn‖ẽ0
h‖2

0 + δ∆t2‖∇r0
h‖2

0 + C
(
Cn

1 t
2
n∆t2 + Cn

2 t
2
nh

4 +
Cn

3

νλ
t2nδ

2
)
,

(83)
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where Cn
1 , Cn

2 and Cn
3 are the constants in (65), (66) and (67), respectively.

For the first sum on the right hand side of (82) we write t2j+1 ≤ t2n and apply (69) and
(72), (73). Then, we get

∆t
n−1∑
j=0

t2j+1(‖τ jh‖
2
0 + ‖∇(zj+1

h − zjh)‖
2
0

≤ Ct2n∆t2
(∫ tn

0

(
‖(sh)tt(t)‖2

0 + ‖∇(zh)t(t)‖2
0

)
dt

)
+ Ct3n max

t1≤t≤tn
‖vt(t)− (sh)t(t)‖2

0,

and applying (35)

∆t
n−1∑
j=0

t2j+1

(
‖τ jh‖

2
0 + ‖∇(zj+1

h − zjh)‖
2
0

)
≤ C

(
Cn

4 t
3
n∆t2 + Cn

5 t
3
nh

4 + Cn
3 t

3
nδ

2
)
, (84)

where Cn
3 , Cn

4 and Cn
5 are the constants in (67), (77) and (78). Inserting (83) and (84)

into (82) we obtain

δ‖∇rnh‖2
0 ≤ C

(
‖ẽ0

h‖2
0

tn
+
δ∆t2

t2n
‖∇r0

h‖2
0 + ∆t2 (Cn

1 + tnC
n
4 )) + h4(Cn

2 + tnC
n
5 )

)
+Cδ2Cn

3

(
(νλ)−1 + tn

)
.

Dividing by δ and using conditions (33) and (49) we reach (81). �

Remark 8 Let us assume we choose the initial condition for the velocity such that the
error ‖ẽ0

h‖0 = O(h2) and q0
h = 0. Then ‖∇r0

h‖0 = O(1) (see Remark 7) and, as a
consequence, the second term in (81) for n = 1 is O(1) and the first one is O(h2/∆t) and
then is also O(1) in case (75) is satisfied or it can be worse than O(1) if we consider the
modified Euler non-incremental scheme and we take ∆t tending to 0 for a fixed h.

However, in the case (ṽ0
h, r

0
h) = (s0

h, z
0
h), i.e., taking as initial approximation to the

velocity and pressure the stabilized Stokes approximation of the solution (v, p) of (37) at
time t = 0, as suggested in [14], the errors ‖∇rnh‖0 are O(h) from the first step. This
result is in agreement with both theoretical and numerical results shown in [14] for the
PSPG method applied to the evolutionary Stokes equations and supports the analogy
between the Euler non incremental projection scheme and the PSPG method previously
found in the literature [10], [18]. We refer the reader to [14] for details about the practical
computation of the initial stabilized Stokes approximation using only the given data g
and v0.

Lemma 6 Under the assumptions of Lemma 4 and assuming (ṽ0
h, q

0
h) = (s0

h, z
0
h), the

following bound holds for the error qnh − q(tn)

‖qnh − q(tn)‖2
0 ≤ Cλ−1

(
∆t
(
Cn

1 + tnC
n
4

)
+ δCn

3

(
(νλ)−1 + tn

)
+ νh2(Cn

2 + tnC
n
5 )
)

+ Ch2(ν2‖v(tn)‖2
2 + ‖q(tn)‖2

1) + Cνδ‖q(tn)‖2
1,

(85)

where Cn
1 , Cn

2 , Cn
3 , Cn

4 and Cn
5 are the constants in (65), (66), (67), (77) and (78)

respectively.
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Proof Applying Poincaré inequality and (81) we get

‖rnh‖2
0 ≤ Cλ−1‖∇rnh‖2

0 ≤ Cλ−1
(
∆t
(
Cn

1 + tnC
n
4

)
+ δCn

3

(
(νλ)−1 + tn

)
+ νh2(Cn

2 + tnC
n
5 )
)
.

Now, (85) follows applying triangle inequality together with (35). �

To conclude this section we get an error bound for the pressure valid for any initial
condition.

Theorem 2 Under the assumptions of Theorem 1 the following bound holds

n∑
j=1

∆t‖qjh − q(tj)‖
2
0 ≤ C(tnν + λ−1)(ν‖∇ẽ0

h‖2
0 + δ‖∇r0

h‖2
0) + Cν‖ẽ0

h‖2
0 + Ct2nνC

n
3 δ

+ Ctnh
2 max
t1≤t≤tn

(ν‖v(t)‖2
2 + ‖q(t)‖2

1) + Ctnνδ max
t1≤t≤tn

‖q(t)‖2
1

+ Ctn+1∆t2
(
νtnC

n
5 + νCn+1

1 + Cn+1
6 + λ−1Cn+1

7

)
+ Ctn+1h

4
(
νtnC

n
4 + νCn+1

2 + λ−1Cn+1
5

)
+ Ctn+1λ

−1Cn+1
3 δ2

(86)

where

Cn
6 = max

t1≤t≤tn
‖(zh)t(t)‖2

0 + λ−1 max
t1≤t≤tn

‖∇(zh)t‖2
0, (87)

Cn
7 = max

t1≤t≤tn
‖(sh)tt(t)‖2

0, (88)

and Cn
1 , Cn

2 , Cn
3 , Cn

4 , Cn
5 , Cn

6 and Cn
7 are the constants in (65), (66), (67), (77), (78),

(87) and (88).

Proof We first observe that from (80) we get

δ ‖∇rnh‖
2
0 ≤ C

(
ν‖∇ẽ0

h‖2
0 + δ‖∇r0

h‖2
0 + Cn

4 tn∆t2 + Cn
5 tnh

4 + Cn
3 tnδ

)
, (89)

where Cn
3 , Cn

4 and Cn
5 are the constants in (67), (77) and (78). Applying Lemma 1 we get

‖rnh‖0 ≤ Cν1/2δ1/2‖∇rnh‖0 + C sup
χh∈Vh

(rh,∇ · χh)
‖χh‖1

.

From (44) we obtain

sup
χh∈Vh

(rh,∇ · χh)
‖χh‖1

≤
∥∥∥∥ ẽn+1

h − ẽnh
∆t

∥∥∥∥
−1

+ ν‖∇ẽn+1
h ‖0 + ‖PVh τ̂

n
h‖−1 + ‖znh − zn+1

h ‖0.

Then, we can write

n∑
j=1

∆t‖rjh‖
2
0 ≤ Cν

n∑
j=1

∆tδ‖∇rjh‖
2
0 + C

n∑
j=1

∆t

∥∥∥∥∥ ẽj+1
h − ẽjh

∆t

∥∥∥∥∥
2

−1

+ Cν2

n∑
j=1

∆t‖∇ẽj+1
h ‖

2
0 + C

n∑
j=1

∆t‖PVh τ̂
j
h‖

2
−1

+ C
n∑
j=1

∆t‖zjh − z
j+1
h ‖

2
0.

(90)
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To bound the first term on the right-hand side of (90) we apply (89) and get

ν
n∑
j=1

∆tδ‖∇rjh‖
2
0 ≤ Ctnν

(
ν‖∇ẽ0

h‖2
0 + δ‖∇r0

h‖2
0 + tn

(
Cn

4 ∆t2 + Cn
5 h

4 + Cn
3 δ
))
. (91)

For the third term we apply (74) with n+ 1 instead of n to obtain

ν2

n∑
j=1

∆t‖∇ẽj+1
h ‖

2
0 ≤ Cν

(
‖ẽ0

h‖2
0 + tn+1C

n+1
1 ∆t2 + tn+1C

n+1
2 h4 + Cn+1

3 (νλ)−1tn+1δ
2
)
.

(92)
Applying (73) with n replaced by n+ 1 again to bound the forth term we get

n∑
j=1

∆t‖PVh τ̂
j
h‖

2
−1 ≤ Cλ−1

(
tn+1C

n+1
7 ∆t2 + tn+1C

n+1
5 h4 + Cn+1

3 tn+1δ
2
)
. (93)

For the last term on the right-hand side of (90) we observe that

n∑
j=1

∆t‖zjh − z
j+1
h ‖

2
0 ≤ ∆t2

∫ tn+1

t1

‖(zh)t‖2
0 dt. (94)

To conclude we will bound the second term on the right-hand side of (90) applying (5)
and (52)

n∑
j=1

∆t

∥∥∥∥∥ ẽj+1
h − ẽjh

∆t

∥∥∥∥∥
2

−1

≤ c2
−1λ

−1

n∑
j=0

∆t

∥∥∥∥∥ ẽj+1
h − ẽjh

∆t

∥∥∥∥∥
2

0

≤ c2
−1c0λ

−1
(
ν‖∇ẽ0

h‖2
0 + δ‖∇r0

h‖2
0

)
+ c2
−1c0λ

−1
(

∆t
n∑
j=0

‖τ jh‖
2
0 + ‖∇(zjh − z

j+1
h )‖2

0

)
.

To bound the last two terms on the right-hand side above we apply (73) for the first one
as before and argue as usual for the second so that we reach

n∑
j=1

∆t

∥∥∥∥∥ ẽj+1
h − ẽjh

∆t

∥∥∥∥∥
2

−1

≤ Cλ−1
(
ν‖∇ẽ0

h‖2
0 + δ‖∇r0

h‖2
0

)
+ Cλ−1

(
tn+1C

n+1
7 ∆t2 + tn+1C

n+1
5 h4 + Cn+1

3 tn+1δ
2
)

+ Cλ−1∆t2
∫ tn+1

t1

‖∇(zh)t‖2
0 dt.

(95)

Inserting (91), (92), (93), (94) and (95) into (90) we obtain

n∑
j=1

∆t‖rjh‖
2
0 ≤ C(tnν + λ−1)(ν‖∇ẽ0

h‖2
0 + δ‖∇r0

h‖2
0) + Cν‖ẽ0

h‖2
0 + Ct2nνC

n
3 δ (96)

+Ctn+1∆t2
(
νtnC

n
4 + νCn+1

1 + Cn+1
6 + λ−1Cn+1

7

)
+ Ctn+1λ

−1Cn+1
3 δ2

+Ctn+1h
4
(
νtnC

n
5 + νCn+1

2 + λ−1Cn+1
5 )

)
.

Using the triangle inequality together with (35) we finally reach (86). �
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Remark 9 We observe that Remark 5 can be applied to the error bound (86). On the
one hand, the error bound for the pressure holds for the standard Euler non-incremental
scheme whenever ∆t satisfies (75). However, for the modified Euler non-incremental
scheme only condition (33) is required so that for any h we can allow ∆t → 0 without
loosing the optimal rate of convergence. On the other hand, any initial approximation for
the velocity satisfying ‖∇ẽ0

h‖0 = O(h) and any initial pressure satisfying ‖∇r0
h‖0 = O(1)

(including q0
h = 0) will result in an optimal error bound of size O(h + ∆t + δ1/2) for the

discrete L2(L2) norm of the pressure error.

It is well-known that the solution of the Stokes and Navier-Stokes equations, no matter
how smooth the initial velocity and the forcing term are, cannot be expected to have third
spatial derivatives bounded up to t = 0, unless certain nonlocal compatibility conditions
(which are difficult to check in practice and cannot be realistically assumed) are satisfied.
For the pressure, the same can be said for second spatial derivatives. The analysis of the
method in the case in which such compatibility conditions are not assumed (for both time-
dependent Stokes and Navier-Stokes equations) is carried out in [8]. For the conveniency
of the reader, we reproduce in the next section the most revealing parts of the analysis
in [8] in the case of the Stokes equations.

4.2 Error analysis without compatibility conditions

We shall assume that there are positive constants M1 and M2 such that for t ∈ [0, T ],

‖v(t)‖1 + ν−1 ‖q(t)‖0 ≤M1, ‖v(t)‖2 + ν−1 (‖q(t)‖1 + ‖vt(t)‖0) ≤M2, (97)

and, following the analysis in [13], for k ≥ 2 integer, we shall assume that the following
quantities are finite

Mk,1 = max
0≤t≤T

(t/T )k/2−1
(
‖v(t)‖k + ν−1 ‖q(t)‖Hk−1/R

)
, (98)

Mk,2 = max
0≤t≤T

(t/T )k/2−1
(
ν−1 ‖vt(t)‖k−2 + ν−2 ‖qt(t)‖Hk−3/R

)
, (99)

K2
k,2 =

∫ T

0

( t
T

)k−3(
ν−2 ‖vt(t)‖2

k−2 + ν−4 ‖qt(t)‖2
Hk−3/R

)
dt, (100)

together with,

K2
4,3 = ν−4

∫ T

0

t

T
‖vtt‖2

0 dt, (101)

and

K̂2
3 = ν−2

∫ T

0

‖gt‖
2
0 dt. (102)

Theorem 3 Let (v, q) be the solution of (37) and let (ṽnh, q
n
h), n ≥ 1, be the solution of

(39)-(40). Assume δ satisfies condition (33) and δ < T , and that ∆t satisfies condition
(49). Then, the following bounds hold for n ≥ 1,

‖ṽnh − v(tn)‖2
0 ≤ C

(
‖ṽ0

h − v(0)‖2
0 + ∆t2

∥∥∇r0
h

∥∥2

0

)
+C1∆t2 + C2(h4 + δ2ν2), (103)
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where C1 and C2 are defined as

C1 = Cν2
(
C2 + ν2K2

4,3T + K̂2
3T +M2

2,2

)
, (104)

C2 = C
(
ν2K2

4,2T + νK2
3,2 +M2

2,1

)
, (105)

Moreover, it also holds,

∆t
n∑
j=1

(
ν‖∇(ṽjh − v(tj))‖2

0 + δ‖∇(qjh − q(tj))‖
2
0

)
≤ C‖ṽ0

h − v(0)‖2
0 + C̃1∆t+ C̃2(h2 + νδ).

(106)

where, assuming δ < T ,

C̃1 = C1((νλ)−1 + T ), (107)

C̃2 = C2(λ−1 + diam(Ω)2 + νT ). (108)

Proof In view of (45) we can apply (51) for wn
h = ẽnh, ynh = rnh , bnh = τnh and dnh =

zn+1
h − znh . It follows that

tn‖ẽnh‖2
0 + ∆t

n∑
j=1

tj
(
ν‖∇ẽjh‖

2
0 + δ‖∇rjh‖

2
0

)
≤ c0

(
∆t

n∑
j=0

‖ẽjh‖
2
0 +

n−1∑
j=0

∆t
(
t2j+1‖τ

j
h‖

2
0 + δtj+1‖∇(zj+1

h − zjh)‖
2
0

))
.

(109)

To bound the second term on the right-hand side of (109), we notice that tj+1/tj ≤ 2
for j = 1, . . . , n− 1, so that we may write

∆t
n−1∑
j=0

t2j+1‖τ
j
h‖

2
0 ≤ Ctn∆t

n−1∑
j=0

t′j‖τ
j
h‖

2
0,

where t′j = max(∆t, tj). From definition (46) we may write

‖τ jh‖
2
0 ≤ 2

∥∥∥∥vj+1
t − vj+1 − vj

∆t

∥∥∥∥2

0

+
2

∆t2
∥∥(vj+1 − sj+1

h )− (vj − sjh)
∥∥2

0
. (110)

To bound the first term on the right-hand side of (110), after taking Taylor expansion
with integral reminder and applying Hölder’s inequality we have

∆t
n−1∑
j=0

t′j

∥∥∥∥vj+1
t − vj+1 − vj

∆t

∥∥∥∥2

0

≤
n−1∑
j=0

t′j

∫ tj+1

tj

(s− tj)2‖vss‖2
0.

Now, for j ≥ 1, we write t′j(s − tj)
2 = tj(s − tj)

2 ≤ tj∆t
2 ≤ s∆t2, and, for j = 0,

t′0(s− tj)2 = ∆t(s)2 ≤ s∆t2, so that applying (101) we get

∆t
n−1∑
j=0

t′j

∥∥∥∥vj+1
t − vj+1 − vj

∆t

∥∥∥∥2

0

≤ ∆t2
∫ tn

t0

s‖vss‖2
0 ≤ ∆t2Tν4K2

4,3. (111)
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To bound the second term on the right-hand side of (110) we observe that∥∥(vj+1 − sj+1
h )− (vj − sjh)

∥∥2

0
=
∥∥∥∫ tj+1

tj

(v − sh)s ds
∥∥∥2

0

≤ ∆t

∫ tj+1

tj

‖(v − sh)s‖2
0 ds,

where, in the last inequality we have applied Hölder’s inequality. Now, for j ≥ 1 we write
t′j = tj ≤ s and apply (35) to bound ‖(v − sh)s‖2

0, and, for j = 0, t′0 = ∆t and apply (36),
so that we have

1

∆t

n−1∑
j=0

t′j
∥∥(vj+1 − sj+1

h )− (vj − sjh)
∥∥2

0

≤ C

∫ tn

t1

(h4 + δ2ν2)s
(
‖vs‖2

2 + ν−2‖qs‖2
1

)
ds

+ C

∫ t1

0

(
ν∆t2 +

h4

ν
+ νδ2

)(
‖vs‖2

1 + ν−2‖qs‖2
0

)
ds

≤ C(h4 + ν2(∆t2 + δ2)(ν2K2
4,2T + νK2

3,2), (112)

where in the last inequality we have applied (100). Thus, from (110), (111) and (112) we
finally reach

∆t
n−1∑
j=0

t′j‖τ
j
h‖

2
0 ≤ C

(
∆t2ν4TK2

4,3 + (h4 + ν2(∆t2 + δ2)(ν2K2
4,2T + νK2

3,2)
)
, (113)

so that for the second term on the right-hand side of (109) we write

∆t
n−1∑
j=0

t2j+1‖τ
j
h‖

2
0 ≤Ctn∆t2ν4TK2

4,3

+ Ctn(h4 + ν2(∆t2 + δ2)(ν2K2
4,2T + νK3,2).

(114)

Let us also observe that by writing ∆t−1t′j ≥ 1 and using (110), and repeating the argu-
ments to prove (112), but using (36) instead of (35) for j ≥ 1 we get

∆t
n−1∑
j=0

‖τ jh‖
2
0 ≤ C

(
∆tν4T (K2

4,2 +K3
4,3) + (h2 + νδ)ν2K2

3,2

)
, (115)

For the last term on the right-hand side of (109), applying Hölder’s inequality and (23),
we may write

δ‖∇(zj+1
h − zjh)‖

2
0 = δ

∥∥∫ tj+1

tj

(∇zh)s
∥∥2

0
≤ ∆t

∫ tj+1

tj

δ‖(∇zh)s‖2
0 ds

≤ C∆t

∫ t1

0

(ν‖vs‖2
1 + ν−1‖qs‖2

0) ds. (116)
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Thus,

∆t
n−1∑
j=0

‖∇(zj+1
h − zjh)‖

2
0 ≤

∆t2

δ

∫ tn

0

(ν‖vs‖2
1 + ν−1‖qs‖2

0) ds, (117)

and, consequently, for the last term on the right-hand side of (109), using also (100), we
have

∆tδ
n−1∑
j=0

tj+1‖∇(zj+1
h − zjh)‖

2
0 ≤ Cν3∆t2K2

3,2tn+1. (118)

To conclude we need to bound the first term on the right-hand side of (109). The proof
of this term is more involved and we refer the reader to [8]. It can be proved that

n∑
j=1

∆t‖ẽjh‖
2
0 ≤C

(
tn‖ṽ0

h − v(0)‖2
0 + tn∆t2

∥∥∇r0
h

∥∥2

0
+ ν2t2nK̂

2
3∆t2

)
+C

(
∆t2ν2

(
K2

3,2h
2 + tn(M2

2,1 +M2
2,2)
)

+ tn(h4 + δ2ν2)M2
2,1

)
.

(119)

Going back to (109) and inserting (114), (118) and (119) we finally reach

tn‖ẽnh‖2
0 + ∆t

n∑
j=1

tj
(
ν‖∇ẽjh‖

2
0 + δ‖∇rjh‖

2
0

)
≤ C

(
tn‖ṽ0

h − v(0)‖2
0 + ∆t‖ẽ0

h‖2
0 + tn(∆t)2

∥∥∇r0
h

∥∥2

0
+ t2n∆t2ν2K̂2

3

)
+ C

(
tn(h4 + δ2ν2)(ν2K2

4,2T + νK2
3,2 +M2

2,1)
)

+ C∆t2
(
ν4T (K2

4,2 +K2
4,3)tn + tn+1ν

3K2
3,2

)
+ C∆t2

(
ν2
(
K2

3,2h
2 + tn(M2

2,1 +M2
2,2)
))

≤ Ctn

(
‖ṽ0

h − v(0)‖2
0 + ‖ẽ0

h‖2
0 + ∆t2

∥∥∇r0
h

∥∥2

0

)
+ C1tn∆t2 + C2tn(h4 + δ2ν2), (120)

where C1 and C2 are the constants in (104) and (105) and we have used the bounds
tn+1 ≤ Ctn, ∆t ≤ tn and that (∆t)2ν2K2

3,2h
2 ≤ tn(∆t)ν2K2

3,2h
2 ≤ tn((∆t)2ν3 + h4ν)K2

3,2.
To conclude (103) we apply (120) together with triangle inequality, (35) and (98).
Finally to prove (106) we apply (50) instead of (51). Then, using (5) and then apply-

ing (115), (117) and (100), we have that

∆t
n∑
j=1

(
ν‖∇ẽhh‖2

0 + δ‖∇rh‖2
0

)
≤ C

(
‖ṽ0

h − v(0)‖2
0 +M2

2,1(h4 + (νδ)2)
)

+
C

νλ

(
ν4(K2

4,2 +K2
4,3)T∆t+ ν2K3,2(h2 + νδ + ν2λ∆t2

)
≤ C(‖ṽ0

h − v(0)‖2
0

+ C
(
C1∆t

(
(νλ)−1 + ∆t

)
+ C2(λ−1(h2 + νδ) + h4 + (νδ)2

)
≤ C‖ṽ0

h − v(0)‖2
0 + C̃1∆t+ C̃2(h2 + νδ), (121)
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where C̃1 and C̃2 are the constants in (107) and (108). Taking into account (35) the
estimate (106) follows. �

4.3 Euler incremental scheme

Let us denote by (vnh, ṽ
n
h, q

n
h), n = 1, 2, . . . , ṽnh ∈ Vh, q

n
h ∈ Qh and vnh ∈ Vh + ∇Qh the

approximations to the velocity and pressure at time tn = n∆t, ∆t = T/N , N > 0 obtained
with the following modified Euler incremental scheme(

ṽn+1
h − vnh

∆t
,χh

)
+ ν(∇ṽn+1

h ,∇χh) + (∇qnh ,χh) = (gn+1,χh), ∀χh ∈ Vh,

(∇ · ṽn+1
h , ψh) = −δ(∇(qn+1

h − qnh),∇ψh), ∀ψh ∈ Qh, (122)

vn+1
h = ṽn+1

h − δ∇(qn+1
h − qnh).

Let us observe that for δ = ∆t in (122) we have the classical Euler incremental scheme [12].
It is well known that this method is not stable if non inf-sup stable mixed finite elements
are employed [3]. Following the suggestion in [9] (see also [16]) we consider the following
method (

ṽn+1
h − vnh

∆t
,χh

)
+ ν(∇ṽn+1

h ,∇χh) + (∇qnh ,χh) = (gn+1,χh), ∀χh ∈ Vh,

(∇ · ṽn+1
h , ψh) = −δ(∇(qn+1

h − qnh),∇ψh)− δ2(∇qn+1
h ,∇ψh), ∀ψh ∈ Qh, (123)

vn+1
h = ṽn+1

h − δ∇(qn+1
h − qnh),

where δ2 is a second stabilization parameter.
In case δ = ∆t we can remove vnh from (123) to get(
ṽn+1
h − ṽnh

∆t
,χh

)
+ ν(∇ṽn+1

h ,∇χh) + (∇(2qnh − qn−1
h ),χh) = (gn+1,χh), ∀χh ∈ Vh,

(∇ · ṽn+1
h , ψh) = −δ(∇(qn+1

h − qnh),∇ψh)− δ2(∇qn+1
h ,∇ψh), ∀ψh ∈ Qh. (124)

As in the previous section the method we study is (124) with δ not necessarily equal
to ∆t. However, since now the parameter δ2 is the one equivalent to the stabilization
parameter in the PSPG method a reasonable choice for the parameters would be δ = ∆t
and δ2 defined as δ in (33). In this section we do not carry out the error analysis of the
method for these values of the stabilization parameters. We only study the errors in the
particular case δ2 = δ defined in (33) since in that case the analysis is a direct consequence
of the error analysis of the previous section. The analysis of the Euler non-incremental
scheme in time with finite elements in space for inf-sup stable elements can be found in
[12]. To our knowledge there is no error analysis for this method in case of using non
inf-sup stable elements. Some stability estimates can be found in [3], but for stabilization
more related to local projection stabilization than the one we consider here, which is more
related to PSPG stabilization. In [3] instead of adding δ2(∇qn+1

h ,∇ψh) as in (124) the
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term δ2(∇qn+1
h − πh,∇ψh) is added where πh is the projection of ∇qn+1

h into a certain
finite element space.

Going back to (124) we first observe that for δ2 = δ and

q̂nh = 2qnh − qn−1
h ,

it is easy to check that (ṽnh, q̂
n
h) satisfies (39) and then we can apply the error bounds (63),

(63) and (86) to (ṽnh, q̂
n
h). To conclude this section we prove an error bound for qnh − q(tn).

Theorem 4 Let (v, q) be the solution of (37) and let (ṽnh, q
n
h), n ≥ 1, be the solution of

(124). Assume δ = δ2 satisfies condition (33) and ∆t satisfies condition (49). Then, the
following bounds hold

n∑
j=1

∆t‖qjh − q(tj)‖
2
0 ≤ C(tnν + λ−1)(ν‖∇ẽ0

h‖2
0 + δ‖∇r0

h‖2
0) + Cν‖ẽ0

h‖2
0 + Ct2nνC

n
3 δ

+ C∆t‖q0
h − q(0)‖2

0

+ Ctnh
2 max
t1≤t≤tn

(ν‖v(t)‖2
2 + ‖q(t)‖2

1) + Ctnνδ max
t1≤t≤tn

‖q(t)‖2
1

+ Ctn+1∆t2
(
νtnC

n
4 + νCn+1

1 + Cn+1
6 + λ−1Cn+1

7 + max
t0≤t≤tn

‖qt(t)‖2
0

)
+ Ctn+1h

4(νtnC
n
5 + νCn+1

2 + λ−1Cn+1
5 ) + Ctn+1C

n+1
3 λ−1δ2, (125)

where Cn
1 , Cn

2 , Cn
3 , Cn

4 , Cn
5 , Cn

6 and Cn
7 are the constants in (65), (66), (67), (77), (78),

(87) and (88), respectively.

Proof We first observe that

qnh − q(tn) =
1

2
(q̂nh − q(tn)) +

1

2
(qn−1
h − q(tn−1)) +

1

2
(q(tn−1)− q(tn)).

Taking into account that (a+ b+ c)2 ≤ 4a2 + 4b2 + 2c2 for any a, b, c ∈ R we can write

n∑
j=1

∆t‖qjh − q(tj)‖
2
0 ≤

n∑
j=1

∆t‖q̂jh − q(tj)‖
2
0 +

1

2

n∑
j=1

∆t‖qj−1
h − q(tj−1)‖2

0

+
n∑
j=1

∆t‖q(tj−1)− q(tj)‖2
0

and then

1

2

n∑
j=1

∆t‖qjh − q(tj)‖
2
0 ≤

n∑
j=1

∆t‖q̂jh − q(tj)‖
2
0 +

1

2
∆t‖q0

h − q(0)‖2
0

+
n∑
j=1

∆t‖q(tj−1)− q(tj)‖2
0.

Applying (86) and taking into account that

n∑
j=1

∆t‖q(tj−1)− q(tj)‖2
0 ≤ ∆t2

∫ tn

t0

‖qt‖2
0 dt

we reach (125). �
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Figure 1: On the left, errors sh − Ih(s) in L2 for linear (solid line) and quadratic (broken
line) elements for different values of δ = h2/(νρ2). On the right, pressure errors zh−Ih(z).

Remark 10 Choosing δ = δ2 = ∆t the error analysis of the modified Euler non-
incremental scheme gives the analysis of the classical Euler non-incremental scheme with
PSPG stabilization whenever condition (75) is assumed.

5 Numerical experiments

In this section, we take Ω = [0, 1]× [0, 1] and all grids are regular N ×N triangular grids
with SWNE diagonals for different values of N

We first check that no better than second order convergence is achieved in the velocity.
For this purpose we consider the errors of the steady state approximation (9) to (7) with
ν = 0.01 where the forcing term ĝ is such that the solution is

s(x, y) =

[
x2(1− x)2 sin(2πy)

−2x(1 + 3x+ 2x2) sin2(πy)

]
, (126)

z(x, y) = sin(x) cos(y) + (cos(1)− 1) sin(1). (127)

This solution is taken from [2] and it is used as a motivating example in [14]. We show
the errors sh−Ih(s) and zh−Ih(z), where Ih denotes the standard (Lagrange) interpolant
on N ×N grids, with N ranging from 20 to 320 in the case of linear elements and from 10
to 160 in the case of quadratic elements. Errors in L2 for the velocity for different values
of δ = h2/(νρ2) are plotted as a function of the mesh size h on the left of Fig. 1, where the
results corresponding to a given value of ρ are joined by straight segments of continuous
and discontinuous line for linear and quadratic elements, respectively. It can be observed
that, for small values of ρ, linear and quadratic elements produce the same errors. As ρ
increases the errors with quadratic elements are smaller than those of linear elements but
the convergence rate is two for both methods. We can also observe that the optimal value
of ρ for the errors is around ρ ≈ 100 which gives δ ≈ 0.01h2. This value is not far away
from the value of δ = 0.005h2 suggested in [14] for the PSPG method.

In the errors for the pressure, shown on the right of Fig. 1 we can observe that for ρ = 1
linear and quadratic elements produce the same errors but as ρ increases the errors of
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quadratic elements are smaller although with the same convergence rate as linear elements.
For the pressure the best value of ρ is around ρ ≈ 10 and as ρ increases the errors in the
pressure increase remarkably. For ρ = 1000 (i.e., δ = 0.0001h2) we can observe that the
errors of the pressure hardly decrease for most of the largest values h. This result is in
agreement with the fact that δ must be strictly positive to stabilize the pressure in (9) if
non inf-sup stable mixed finite elements are used.

10-6 10-4 10-2 100

t

10-4

10-3

10-2

10-1

100

101
Pressure errors in L2 for ∆t=δ

h= 2/20
h= 2/40
h= 2/80

Figure 2: Pressure errors pnh − Ih(p(tn)) for ∆t = δ y δ = h2/(100ν): Initial data (129)
(solid line), and (128) (broken line).

For the evolution problem (37) we now study how the choice of the initial condition
affects the errors in the method (39)-(40). We choose the forcing term g so that the
solution is

v(x, y, t) = s(x, y) cos(t), q(x, y, t) = z(x, y) cos(t),

where s and z are those in (126)-(127). We show the errors corresponding to two different
initial conditions, the first one being that given by the linear interpolant of the true
solution,

ṽ0
h = Ih(v(0)), q0

h = Ih(q(0)), (128)

and the second one that given by the stabilized Stokes approximation (8)-(9) to (7)

ṽ0
h = sh(0), q0

h = zh(0) (129)

where ĝ is chosen so that the solution is v(0) and q(0). According to Remark 8, any
initial data other than (129) should give an O(1) error in the pressure in the first step.
This can be seen in Fig. 2, where we show the time evolution of the errors qnh − Ih(q(tn)),
for δ = h2/(100ν) and decreasing values of h. It can be observed that whereas for initial
data given by (129) (joined by a solid line) the errors decrease with h already from the
first step, they remain O(1) in the first step for initial data (128) (joined by a broken
line). Nevertheless, these O(1) errors decay very fast with time and, for a fixed t > 0 they
decay with h as well. Eventually, for t sufficiently large, they are indistinguishable from
those corresponding to initial data given by (129).
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