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Abstract	
The	chromaffin	cells	(CCs)	of	adrenal	medulla	play	a	key	role	 in	the	control	of	

circulating	 catecholamines	 to	 adapt	 our	 body	 function	 to	 stressful	 conditions.	 A	
huge	research	effort	over	the	last	35	years	has	converted	these	cells	in	the	E.	coli	of	
neurobiology.	CCs	have	been	the	testing	bench	for	the	development	of	patch-clamp	
and	amperometric	recording	techniques	and	helped	clarifying	most	of	the	molecular	
mechanisms	that	regulate	cell	excitability,	Ca2+	signals	associated	to	secretion	and	
the	molecular	apparatus	that	regulates	vesicle	fusion.	This	special	issue	provides	a	
state-of-the-art	 on	 the	 many	 well-know	 and	 unsolved	 questions	 related	 to	 the	
molecular	processes	at	 the	basis	of	CC	 function.	The	 issue	 is	also	 the	occasion	 to	
highlight	 the	 seminal	 work	 of	 Antonio	 G.	 García	 (Emeritus	 professor	 at	 UNAM,	
Madrid)	who	contributed	greatly	to	the	advancement	of	our	present	knowledge	on	
the	CCs	physiology	and	pharmacology.	All	the	contributors	of	the	present	issue	are	
distinguished	 scientists	 that	 are	 either	 staff	 members,	 external	 collaborators	 or	
friends	of	Prof.	García.	
	
The	early	studies	
Adrenal	chromaffin	cells	(CCs)	together	with	the	sympathetic	nervous	system	are	

the	main	sources	of	catecholamines	that	our	body	mobilizes	for	the	“fight	or	flight”	
response	during	fear,	stress,	exercise	or	conflict	conditions.	During	the	response,	the	
body	is	prepared	to	achieve	maximal	strength	and	awareness	by	increasing	heart	
work	and	blood	pressure.	Vasodilation	and	vasoconstriction	are	regulated	in	a	way	
that	 skeletal	 muscles	 and	 the	 heart	 receive	 more	 blood	 while	 peripheral	 and	
gastrointestinal	 blood	 supply	 is	 attenuated.	 Glucose	 is	 mobilized	 from	 the	 liver	
while	 bronchioles	 and	 pupils	 dilate	 to	 improve	 respiration	 and	 increase	 visual	
acuity.	
CCs	 contribute	massively	 to	 the	 “fight	 or	 flight”	 response	 by	mainly	 secreting	

adrenaline	 into	 the	 bloodstream	 after	 the	 release	 of	 acetylcholine	 (ACh)	 from	
preganglionic	 splanchnic	 fibers.	W.	 Feldberg	was	 the	 first	 to	 identify	 ACh	 as	 the	
primary	 neurotransmitter	 triggering	 adrenaline	 and	 noradrenaline	 release	 (29)	
while	W.	W.	Douglas	coined	the	term	“stimulus-secretion	coupling”	to	describe	the	
release	 of	 catecholamines	 following	 the	 activation	 of	 nicotinic	 receptors	 by	 ACh	
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(28).	This	 latter	also	 identified	Ca2+	as	 the	main	extracellular	 ion	 involved	 in	 the	
secretagogue	action	of	ACh.	
Chromaffin	 cells	 physiology	 has	 been	widely	 studied	 since	 then.	 Early	 studies	

(1965-1981)	 focused	 on	 the	 role	 of	 nicotinic	 (nAChR)	 and	 muscarinic	 (mAChR)	
receptors	in	regulating	the	CC	response	to	ACh	(27,	69)	(see	reviews	by	Albillos	&	
McIntosh,	Inoue	&	Kao	and	Criado	in	this	issue).	Great	interest	was	also	dedicated	
to	clarify	how	vesicle	secretion	was	regulated	by	extracellular	Ca2+	 flows	(5)	and	
which	molecules,	 beside	 adrenaline	 and	noradrenaline,	were	packed	 in	 the	 large	
dense	 core	 (LDC)	 secretory	 granules	 and	 released	 during	 activity	 (45).	 It	 was	
evident	 that	 chromaffin	 cells	 were	 excitable	 cells	 like	 neurons	 and	 thus	 able	 to	
generate	action	potentials	(APs)	sustained	by	voltage-gated	Na+	and	K+	channels	(6,	
11)	and	that	most	of	the	Ca2+	used	for	the	exocytosis	entered	the	cell	through	not	yet	
fully	identified	voltage-gated	Ca2+	channels	(10,	12).	
Of	great	interest,	during	this	period	was	also	the	identification	of	the	cytoskeletal	

protein	 components	 (f-actin	 and	 myosin)	 that	 are	 the	 major	 constituent	 of	
cytoplasmic	microfilaments	 along	which	 LDC	 vesicles	move	 from	 the	 cell	 inside,	
where	they	are	stored,	to	the	plasmalemma	where	they	are	docked	and	fused	(32,	
68).	 Of	 enormous	 interest	 was	 also	 the	 first	 report	 on	 the	 existence	 of	 the	
intravesicular	protein	chromogranin	A	(CgA)	in	the	mid-sixties	(7).	The	initial	idea	
was	that	CgA	served	as	a	colligative	agent	for	reducing	the	osmotic	forces	resulting	
from	 the	 large	 accumulation	 of	 solutes	 in	 large	 dense	 core	 vesicles.	 Later,	
chromogranin	B	and	chromogranin	C	(secretogranin	II)	have	been	added	to	the	list	
that	currently	includes	9	members	(26).	
	

35	years	of	amazing	discoveries	(1982-2017)	
Ion	channels,	receptors,	neurotransmitters	and	gap-junctions	regulating	chromaffin	
cell	activity	

As	for	other	neuroendocrine	cells,	adrenal	chromaffin	cells	gained	greatly	from	
the	advent	of	the	patch-clamp	technique	(38).	The	approach	allowed	to	identify	the	
gating	properties	of	a	large	number	of	Na+,	K+	and	Ca2+	channels	that	regulate	AP	
firing	and	catecholamine	secretion	(30).	Meanwhile	Na+,	K+	and	Ca2+	channels	where	
identified	by	DNA	sequencing	and	newly	available	blockers,	in	CCs	it	was	possible	
to	 establish	 the	 presence	 of	 a	 voltage-gated	 Na+	 channel	 (Nav1.7)	 (31),	 several	
voltage-gated	 (Kv)	 (50,	 63)	 and	 Ca2+-gated	 K+	 channels	 (SK,	 BK)	 (51,	 56)	 and	 a	
number	of	voltage-gated	Ca2+	channels	(L,	N	and	P/Q-type)	(33).	The	Madrid	group	
of	Antonio	García	was	particularly	active	in	these	studies.	It	was	the	first	to	identify	
the	 key	 role	 of	 L-type	 calcium	 channels	 (Cav1.2,	 Cav1.3)	 in	 controlling	
catecholamine	secretion	in	cat	CCs	(34)	(see	review	by	Nanclares	et	al.	in	this	issue)	
and	to	uncover	variable	densities	of	P/Q-	(Cav2.1)	and	N-type	(Cav2.2)	in	bovine,	
cat,	rat,	mouse	and	human	CCs	that	contribute	differently	to	secretion	(33).	Rat	and	
mouse	CCs	express	also	R-type	channels	(Cav2.3)	sensitive	to	SNX-482	(3,	47)	and	
T-type	channels	(Cav3.2)	that	are	effectively	coupled	to	the	secretory	apparatus	(15,	
16).	The	role	of	each	ion	channel	in	CCs	excitability	is	still	debated	but	it	is	now	clear	
that	their	expression	and	regulation	are	key	factors	to	set	the	“neuron-like”	 firing	
modes	of	CCs	(70)	(see	review	by	Lingle	et	al.	in	this	issue).	
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Besides	muscarinic	 receptors,	 CCs	were	 found	 to	 express	 a	 large	 variety	 of	 G	
protein-coupled	receptors	(GPCRs)	that	were	autocrinally	activated	by	the	released	
products	of	the	same	cells	(for	a	review	see	(17,	23,	33)).	This	action	was	of	great	
interest	 to	 understand	 CCs	 function	 and	 boosted	 a	 massive	 work	 of	 several	
laboratories	that	brought	to	the	identification	of	α-	and	β-adrenergic	(see	review	by	
Artalejo	et	al.	in	this	issue),	δ-opioidergic,	P2y-purinergic	and	GABA	receptors	(see	
review	by	Alejandre-García	et	al.	in	this	issue).	Most	of	them	are	effectively	activated	
by	the	neurotransmitter	molecules	released	by	CCs	(ATP,	opioids,	A,	NA)	and	induce	
a	marked	depression	of	Ca2+	currents.	Here	also,	the	Madrid	group	was	determinant	
in	 demonstrating	 that	 the	 purified	 content	 of	 secretory	 vesicles	 (soluble	 vesicle	
lysate)	 when	 applied	 on	 bovine	 CCs	 had	 a	 potent	 voltage-dependent	 depressive	
action	on	N-	 and	P/Q-type	Ca2+	 currents	 (Cav2.1,	 Cav2.2)	 that	was	prevented	by	
mixtures	of	broad	opioidergic	and	purinergic	antagonists	(2,	33).	L-type	channels	
(Cav1.2	and	Cav1.3)	were	also	autocrinally	modulated	by	β1-	and	β2-AR	but	 the	
action	was	voltage-independent	and	could	be	either	depressive	or	potentiating	(18).	
Apart	from	the	L-type	channel	up-regulation	by	β-AR	stimulation,	most	pathways	of	
Cav	 channel	 modulation	 serve	 as	 a	 negative	 feedback	 inhibition	 to	 regulate	
catecholamine	secretion	in	CCs	(23).	
CCs	express	also	GPCRs	for	the	pituitary	adenylate	cyclase-activating	polypeptide	

(PACAP)	 that	 is	 a	 38-amino	 acid	 peptide	 (71)	 co-released	 with	 ACh	 from	
preganglionic	splanchnic	nerve	fibers	during	sympathetic	stimulation	(20,	73,	74).	
PACAP	 is	 able	 to	 sustain	 catecholamine	 release	 from	 CCs	 even	 during	 sustained	
depolarizations	 and	 to	 lead	 to	 CCs	 gene	 transcription	 (64).	 Since	 PACAP	 and	 its	
receptors	are	broadly	expressed	in	the	central	nervous	system,	in	particular	in	the	
hypothalamic-pituitary-adrenocortical	axis,	it	is	proposed	as	a	“master	regulator”	of	
stress	signaling	throughout	the	nervous	system	(66)	(see	review	by	Eiden	et	al.	in	
this	issue).	
Since	 the	 first	 morphological	 observations	 on	 adrenomedullary	 cells	 it	 was	

evident	that	CCs	are	in	contact	one	to	each	other	and	grouped	in	clusters	of	either	
adrenergic	 or	 noradrenergic	 cells	 (22).	 These	 functional	 units	 are	 differentially	
innervated	(43)	and	electrically	coupled	by	gap-junctions	(49)	forming	an	excellent	
model	 for	 studying	 the	molecular	 components	of	 cell-to-cell	 communication	 (see	
review	by	Guerineau	in	this	issue).	
Vesicle	exocytosis	viewed	through	cell	capacitance	changes,	amperometric	recordings	
and	fluorescence	microscopy	

The	advent	of	patch-clamp	techniques	allowed	also	an	impressive	breakthrough	
into	 CCs	 function,	 allowing	 a	 direct	 measurement	 of	 the	 Ca2+-dependent	
neurosecretion	during	cell	stimulation.	By	measuring	the	increase	of	cell	surface	as	
membrane	capacity	changes	(∆C)	during	exocytosis,	it	was	possible	to	correlate	Ca2+-
entry	 to	 the	 amount	 of	 vesicles	 that	 fuse	 and	 release	 catecholamines	 during	
stimulation	 (57).	Alternating	pulses	of	Ca2+	 loading	and	∆C	measurements	 it	was	
possible	 to	 determine,	 with	 high-time	 resolution,	 key	 parameters	 such	 as	 the	
amount	 of	 “ready-releasable”	 vesicles,	 the	 probability	 of	 vesicle	 release	 and	 the	
quantal	 size	 of	 single	 secretory	 events	 in	 bovine	CCs	 (35,	 39).	 In	mouse	CCs,	 ∆C	
recordings	combined	with	Ca2+-uncaging	experiments	allowed	also	to	obtain	a	clear	
picture	of	the	vesicles	distribution	at	rest	and	during	stimulus-secretion	coupling	
with	high	time	resolution.	Erwin	Neher’s	group	could	resolve	the	presence	of	four	
different	pool	of	vesicles	in	dynamic	equilibrium	among	each	other	(see	review	by	
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Neher	 in	 this	 issue).	 A	 reserve	 (depot)	 pool,	 containing	 many	 vesicles	 (2,000	 to	
4,000)	 in	slow	equilibrium	with	an	unprimed	pool	(UPP)	of	650	vesicles,	a	slowly	
releasable	pool	(SRP)	and	a	ready-releasable	pool	(RRP)	of	about	100	vesicles	each,	
close	to	the	membrane	(61,	72).	Movements	from	the	UPP	to	the	SRP	and	RRP	lead	
to	vesicle	docking,	priming	and	fusion	and	terminate	with	the	emptying	of	the	vesicle	
content.	All	these	sequential	events	are	common	to	neurons	and	CCs	(for	a	review	
see	(40)	and	Dhara	et	al.	in	this	issue)	and	are	regulated	by	the	formation	of	the	four-
helix	SNARE	complex	(syntaxin,	synatobrevin	and	SNAP25)	and	by	the	interaction	of	
SNARE	with	the	priming	protein	Munc13-1	and	the	Ca2+-sensor	synaptotagmin	(61).	
In	this	regard,	the	studies	on	CCs	using	the	fast	time	resolution	of	∆C	recordings	in	
combination	with	KO	mice	models	have	been	crucial	in	identifying	the	role	of	each	
molecular	 player	 on	 the	 sequence	 of	 events	 regulating	 the	 “stimulus-secretion”	
coupling	(see	review	by	Cardenas	&	Marengo	in	this	issue).	
Studies	 on	 CCs	 function	 were	 further	 boosted	 by	 adapting	 electrochemical	

methods	 to	 measure	 the	 oxidation	 currents	 generated	 by	 specific	 released	
neurotransmitters.	 Using	 carbon	 fibre	 microelectrodes	 it	 was	 possible	 to	
demonstrate	that	pressure	ejections	of	ACh	induce	brief	spikes	of	oxidative	currents	
associated	to	the	release	of	catecholamines	in	bovine	CCs	(44,	75).	Amperometric	
and	voltammetric	recordings	broadened	the	present	knowledge	of	cell	exocytosis.	
Cyclic	 voltammetry	 allowed	 identifying	 the	 type	 of	 biological	 amines	 released	
(adrenaline,	 noradrenaline,	 histamine	 or	 serotonin)	 while	 amperometry	 helped	
resolving	bursts	of	quantal	secretory	events	during	stimulus-secretion	coupling	and	
to	 distinguish	 the	 kinetics	 of	 vesicle	 fusion	 (foot)	 and	 neurotransmitter	 release	
(amperometric	peak)	during	single	events	(for	a	review	see	(8,	25,	67)).	Bovine	and	
mouse	CCs	have	been	the	ideal	cells	for	studying	the	role	that	SNARE-related	and	
cytoskeletal	proteins	play	on	the	regulation	of	vesicle	transport,	priming	and	fusion	
using	either	amperometric	recordings	alone	(37,	55)	or	in	combination	with	whole-
cell	 capacitance	 and	 Ca2+-uncaging	measurements	 (9,	 58,	 65).	 Amperometry	 has	
been	determinant	also	to	demonstrate	many	key	biophysical	and	pharmacological	
properties	 of	 exocytosis.	 Among	 them	 it	 is	 worth	 recalling	 the	 well-accepted	
evidence	 that:	 i)	 fusion	 pore	 is	 permeable	 to	 catecholamines	 (19),	 ii)	 secretion	
occurs	in	spatially	localized	micro-regions	of	CCs	(hot	spots)	(36,	62)	and	iii)	PKG,	
PKA	and	PKC	are	effective	modulators	of	exocytosis	(37,	46).	Of	 interest	are	also	
recent	observations	 that	 the	quantal	 size	 is	 regulated	by	VMAT	an	autoreceptors	
(21,	33)	and	vesicular	pH	regulates	the	kinetics	and	quantal	size	of	chromaffin	cell	
granules	 (14).	 Amperometry	 has	 been	 also	 successfully	 employed	 to	 correlate	
changes	in	the	kinetics	of	exocytosis	and	quantal	size	with	changes	in	the	content	of	
other	 soluble	 species	 co-stored	 with	 catecholamines	 that	 contribute	 to	 granule	
homeostasis	(see	review	by	Borges	et	al.	in	this	issue).	
Since	the	early	observations	that	actin	and	myosin	are	the	main	components	of	

neurofilaments	 in	 CCs,	 the	 present	 view	 of	 cytoskeleton	 protein	 function	 is	
progressively	evolved.	 In	 the	eighties,	 the	presence	of	 filamentous	actin	 (F-actin)	
was	 simply	 interpreted	 as	 a	 peripheral	 cortical	 barrier	 of	 proteins	 preventing	
vesicles	access	to	the	secretory	sites	(4,	13).	At	the	beginning	of	this	century,	with	
the	 availability	 of	 more	 advanced	 immunofluorescence	 techniques,	 it	 became	
apparent	that	F-actin	participated	also	to	vesicle	transport	and	fusion	in	addition	to	
its	 original	 “retentive”	 role	 (41,	 54,	 60).	Recent	 evidence	on	 adrenal	 gland	 slices	
suggests	that	F-actin	has	an	even	more	complex	function	than	expected	and	that	the	
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traditional	2D	primary	cell	culture	arrangement	usually	employed	for	these	studies	
does	not	accurately	mimic	the	3D	in	vivo	environment	(see	review	by	Gutiérrez	et	
al.	in	this	issue).	
Chromaffin	cells	for	testing	new	materials	for	amperometric	microdevices	

Because	 of	 the	 many	 electrochemical	 active	 species	 stored	 in	 the	 secretory	
granules,	CCs	are	still	the	favorite	cell	model	to	test	novel	approaches	and	materials	
for	 fabricating	electrochemistry	devices	and	 lab-on-chips	currently	used	 for	drug	
screening	(see	the	review	by	Gillis	&	Carabelli	and	the	research	article	by	Huang	et	
al.	 in	 this	 issue).	 From	 the	 time	 when	 electrochemical	 detectors	 were	 firstly	
implemented	 as	 sensors	 for	 HPLC	 to	 date,	 their	 sizes	 have	 been	 progressively	
reduced	 to	 allow	 on-cell	 recordings	 as	 conventional	 amperometry	 (67),	
microelectrodes	 fabrication	 for	 patch	 amperometry	 (1)	 and	 intracellular	
electrochemistry	(53).	This	tendency	persists	and	miniaturization	is	currently	used	
for	studying	secretory	vesicles	inside	living	CCs	(see	review	by	Cans	in	this	issue).	
Chromaffin	cells	for	studying	cardiovascular	and	neurodegenerative	diseases	

Although	recent	research	has	precisely	defined	the	roles	of	Cgs	in	the	storage	of	
catecholamines	 (26)	 these	 proteins	 are	 shown	 to	 possess	 new	 key	 physiological	
roles.	 Cgs	 are	 now	 recognized	 to	 be	 the	 precursors	 of	 several	 active	 peptides	
involved	 in	 the	 regulation	 of	 glycaemia,	 blood	 pressure	 or	 innate	 immunity	 (see	
review	by	Helle	et	al.	in	this	issue).	Recent	studies	have	shown	that	CCs	can	produce	
granules	 in	 animals	 lacking	 Cgs	 (52),	 thus	 proving	 that	 Cgs	 are	 not	 critical	 for	
granulogenesis.	Indeed,	Cgs	are	sufficient	to	trigger	functional	granule	production	
and	sorting	even	in	non-secretory	cells	(26,	42).	Interestingly,	Cgs	are	now	widely	
used	 as	 clinical	 markers	 for	 cardiovascular,	 gastrointestinal,	 and	 inflammatory	
diseases.	Since	 the	pioneering	work	of	D.	T.	O’Connor	(59),	 the	presence	of	 large	
plasma	 concentrations	 of	 Cgs	 are	 key	 diagnostic	 and	 prognostic	 tools	 of	 several	
tumors	(see	review	by	Corti	et	al.	in	this	issue).	
CCs	are	also	widely	used	as	a	model	system	for	studying	diseases.	The	presence	

of	abnormal	blood	catecholamines	is	still	the	most	reliable	test	for	the	diagnostic	of	
pheochromocytoma.	In	addition,	CCs	are	considered	paraneurons	and	as	such	have	
been	exploited	for	studying	hyper-sympathetic	activity	and	hypertension	as	well	as	
neurotoxic	mechanisms	and	neuroprotective	drugs	(48)	(see	review	by	de	los	Ríos	
et	 al.	 in	 this	 issue).	 CCs	 are	 currently	 used	 to	 investigate	 the	 altered	
neurotransmission	mechanism	 induced	 by	 Parkinson’s	 and	 Alzheimer’s	 diseases	
(24).	
	
Future	perspectives	on	chromaffin	cells	in	health	and	disease	
Despite	 the	 great	 advances	 of	 our	 knowledge	 on	 the	 biology,	 biochemistry,	
physiology,	pharmacology	and	pathology	of	chromaffin	cells	described	above	there	
are	still	many	critical	issues	that	remain	unsolved	and	require	future	work.	They	are	
all	of	great	interest,	particularly	in	the	view	of	the	critical	role	that	CCs	play	in	the	
control	 of	 circulating	 catecholamines	 and	 other	 hormones	 during	 physiological	
stress	conditions.	In	addition	to	this,	it	is	worth	mentioning	that	with	the	increased	
availability	 of	 KO	 and	 KI	 animal	 models,	 mouse	 CCs	 have	 further	 attracted	 the	
attention	of	researchers	to	use	these	cells	as	a	model	system	for	studying	stimulus-
secretion	coupling.	Indeed	in	mouse	CCs,	it	is	possible	to	combine	excellent	voltage-
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clamp	recording	of	 ion	currents	with	high-time	resolution	whole-cell	capacitance	
measurements	and	amperometric	spike	detection	to	obtain	simultaneously	on	the	
same	cell,	Ca2+	current	injection	and	secretory	event	recordings	in	forms	of	number	
of	 vesicles	 fused	 (capacitance)	 and	 quantal	 release	 of	 catecholamines	
(amperometry).	 A	 condition	 that	 is	 unlikely	 in	 most	 neuroendocrine	 cells	 or	
neuronal	presynaptic	terminals.	
This	special	issue	of	Pflügers	Archiv	contains	a	collection	of	review	articles	plus	an	
original	article	that	cover	nearly	all	the	key	issues	described	above	on	chromaffin	
cell	function.	All	of	them	highlight	the	past	drawbacks	and	scientific	improvements	
and	 indicate	 new	 future	 perspectives	worth	 of	 investigation.	 The	 authors	 are	 all	
well-distinguished	scientists	who	are	working	on	chromaffin	cell	physiology	and	are	
good	friends	of	Antonio	García	to	whom	this	issue	is	dedicated.		
The	 contributors	 of	 this	 special	 issue	 and	many	 other	 colleagues,	who	were	 not	
invited	only	for	space	limitation,	meet	every	two	years	since	1982,	when	took	place	
the	1st	International	Symposium	on	Chromaffin	Cell	Biology	(ISCCB)	in	Ibiza	(Spain).	
The	ISCCB	meetings	are	a	great	occasion	for	presenting,	discussing	and	advertising	
the	new	findings	on	chromaffin	and	its	“sister”	cells.	The	group	met	last	August	in	
occasion	of	the	19th	ISCCB	in	Sheffield	(UK)	(https://www.sheffield.ac.uk/isccb)	and	
the	next	ISCCB	meeting	will	 take	place	on	January	2020	at	the	Indian	Institute	of	
Technology	in	Madras	(India).	We	are	looking	forward	to	meet	you	there!	
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