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Abstract

A two-grid scheme to approximate the evolutionary Navier-Stokes e-
quations is introduced and analyzed. A standard mixed finite element
approximation is first obtained over a coarse mesh of size H at any pos-
itive time T > 0. Then, the approximation is postprocessed by means of
solving a steady problem based on one step of a Newton iteration over a
finer mesh of size h < H. The method increases the rate of convergence
of the standard Galerkin method in one unit in terms of H and equals the
rate of convergence of the standard Galerkin method over the fine mesh h.
However, the computational cost is essentially the cost of approaching the
Navier-Stokes equations with the plain Galerkin method over the coarse
mesh of size H since the cost of solving one single steady problem is neg-
ligible compared with the cost of computing the Galerkin approximation
over the full time interval (0, T ]. For the analysis we take into account the
loss of regularity at initial time of the solution of the Navier-Stokes equa-
tions in the absence of nonlocal compatibility conditions. Some numerical
experiments are shown.

Keywords Incompressible Navier–Stokes equations; inf-sup stable finite ele-
ment methods; static two-grid methods; nonlocal compatibility conditions

1 Introduction

Let Ω be a bounded domain in Rd (d = 2, 3) with a smooth boundary ∂Ω and
let us consider the incompressible Navier-Stokes equations

ut − ν∆u+ (u · ∇)u+∇p = f

div(u) = 0
(1)
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with initial condition u(·, 0) = u0 and homogeneous Dirichlet conditions u = 0
on the boundary. In this paper, we study a two-grid postprocessing tech-
nique based on Newton iteration. First, a mixed finite-element approximation
(uH , pH) is computed over a coarse grid of size H. Then, the postprocessed
solution (ũ, p̃) is obtained at any time T > 0 as the mixed finite element ap-
proximation over a fine mesh h < H to the following steady problem:

−ν∆ũ+ (uH · ∇)ũ+ (ũ · ∇)uH +∇p̃+ λũ = f − d
dtuH + (uH · ∇)uH + λuH

div(ũ) = 0,
(2)

where λ is a positive parameter that is added to have coercivity in the bilinear
form associated to problem (2) whose value will be specified later.

In general, two-grid postprocessing techniques improve the rate of conver-
gence of the standard finite element approximations with a slight increase in
the computational cost. In [24], [23] several two-level methods are considered to
approximate the steady Navier-Stokes equations. They require solving a non-
linear system over a coarse mesh and, depending on the algorithm chosen, one
Stokes problem, one linear Oseen problem or one Newton step over the fine
mesh. The corresponding algorithms obtain the optimal rate of convergence in
the fine mesh for appropriate choices of the coarse mesh diameter H.

Static two-grid or two-grid postprocessing techniques for the evolutionary
Navier-Stokes equations have also been studying. In all cases the plain Galerkin
method is used to evolve in time and a steady problem is solved at the fine
level. More precisely, the problem solved at the fixed step or fine level can be a
Stokes problem or an Oseen-type problem both computed with data based on
the Galerkin approximation. The Stokes-type postprocess was first developed
for spectral methods in [6], [7], [13], [26] and then applied to mixed finite element
methods in [2], [3], [11], [12]. The Oseen-postprocess has been studied in [15]. In
both cases, the rate of convergence of the postprocessed approximation equals
the rate or convergence of the standard finite element approximation over the
fine grid and improves in one unit the rate of convergence of the Galerkin method
over the coarse grid.

Several authors have also considered two-grid algorithms for the evolutionary
Navier-Stokes equations based on evolutionary linearized problems. We refer the
reader to [16] for a detailed description of several algorithms of this type that
have appeared in the literature. We add to those references two more that
have recently appeared. In [19] a two level method based on a linearized time
dependent Stokes problem is analyzed considering the case of non-smooth initial
data. In [25] Euler-based discretizations of three corrections based on linearized
time dependent Stokes, Oseen and Newton problems are considered.

In this paper we concentrate ourselves on the static two-grid approach based
on a Newton-type step to the evolutionary Navier-Stokes equations. The reason
is twofold, on the one hand the static approaches are computationally cheaper
than the dynamical approaches and on the other, although there are three typ-
ical linearized methods that can be applied: Stokes, Oseen and Newton, to our
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knowledge, the last one had not been previously analyzed. We show that with
the static two grid method based on Newton-type postprocess we can improve
the rate of convergence of the Galerkin approximation in one unit. The inclu-
sion of the reaction term (ũ · ∇)uH , with the subsequent lost of coercivity of
the bilinear form associated to the steady problem, introduces several challenges
which are of interest.

As in [11], [12], [15] for the analysis we take into account the loss of regularity
suffered by the solutions of the Navier-Stokes equations at the initial time in the
absence of nonlocal compatibility conditions. Consequently, for the analysis we
do not assume the solution u to have more than second-order partial derivatives
bounded in L2 up to the initial time t = 0. Demanding further regularity
requires the data to satisfy nonlocal compatibility conditions unlikely to be
fulfilled in practical situations, see [20], [21]. Due to the loss of regularity at
t = 0, the best error bound that we can obtain is O(H5| log(H)|). For this
reason we do not analyze higher than cubic finite elements. The same limit
in the rate of convergence was found in [21] for standard mixed finite-element
approximations and in [11], [15], [16] for two-grid schemes.

The outline of the paper is as follows. We first introduce some preliminaries
and notations. In Section 3 we describe the three static linearized approaches to
the nonlinear Navier-Stokes equations. The new method is analyzed in Section
5, based on some theoretical results obtained in Section 4. Finally, last section
is devoted to show some numerical experiments. We check numerically the rate
of convergence of the method predicted by the theory and we compare the static
Newton-type approach with the static Stokes and Oseen approaches for different
values of the diffusion parameter in order to study the behaviour of the different
methods for different values of the Reynolds number.

2 Preliminaries and notations

Along the paper we will denote by Wm,q(Ω)d the space of Lebesgue integrable
functions with m (weak) derivatives in Lq(Ω). For q = 2 we will use the standard
notation Hm(Ω)d = Wm,2(Ω)d.

For q ∈ [1,∞), we will use the following Sobolev embedding formula. There
exists a constant C depending on the domain such that

‖v‖Lq′ ≤ C‖v‖W s,q ,
1

q′
≥ 1

q
− s

d
> 0, q <∞, v ∈W s,q(Ω)d. (3)

For q′ = ∞, (3) holds with 1
q <

s
d . In particular, we will do extensive use of

the following cases, which hold simultaneously for both two and three spatial
dimensions.

‖v‖L2d ≤ C‖v‖s, s ≥ 1, ‖v‖L2d/(d−1) ≤ C‖v‖s, s ≥ 1/2. (4)

We consider the Hilbert spaces:

H =
{
u ∈ L2(Ω)d | div(u) = 0, u · n|∂Ω

= 0
}
,

V =
{
u ∈ H1

0 (Ω)d | div(u) = 0
}
,
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endowed respectively with the L2(Ω)d and H1(Ω)d norms. The following inf-sup
condition (see [18]) is satisfied

inf
q∈L2(Ω)/R

sup
v∈H1

0 (Ω)d

(q,∇ · v)

‖q‖L2(Ω)/R‖v‖1
≥ β ≥ 0. (5)

For u ∈ V , v, w ∈ H1
0 (Ω)d, it also holds

((u · ∇)v, w) = −((u · ∇)w, v) = −(∇w̄ · v, u) (6)

where (∇w̄)ij = ∂iwj .
Let Π : L2(Ω)d −→ H be the L2(Ω)d projection onto H. We denote by A

the Stokes operator on Ω:

A : D(A) ⊂ H −→ H, A = −Π∆, D(A) = H2(Ω)d ∩ V.

We shall assume that u is a strong solution up to time t = T , so that

‖u(t)‖1 ≤M1, ‖u(t)‖2 ≤M2, 0 ≤ t ≤ T, (7)

for some constantsM1 and M2. We shall also assume that there exists a constant
M̃2 such that

‖f‖1 + ‖ft‖1 + ‖ftt‖1 ≤ M̃2, 0 ≤ t ≤ T.

Finally, we shall assume that for some k ≥ 2

sup
0≤t≤T

∥∥∂bk/2ct f
∥∥
k−1−2bk/2c +

b(k−2)/2c∑
j=0

sup
0≤t≤T

∥∥∂jt f∥∥k−2j−2
< +∞,

so that, according to Theorems 2.4 and 2.5 in [20], there exist positive constants
Mk and Kk such that the following bounds hold:

‖u(t)‖k + ‖ut(t)‖k−2 + ‖p(t)‖Hk−1/R ≤Mkτ(t)1−k/2, (8)∫ t

0

σk−3(s)
(
‖u(s)‖2k + ‖us(s)‖2k−2 + ‖p(s)‖2Hk−1/R + ‖ps(s)‖2Hk−3/R

)
ds ≤ K2

k , (9)

where τ(t) = min(t, 1) and σn = e−α(t−s)τn(s) for some α > 0. Observe that
for t ≤ T <∞, we can take τ(t) = t and σn(s) = sn. For simplicity, we will take
these values of τ and σn. We want to remark that in the error bounds we prove
in this paper the final time T is fixed and we are not studying the behavior of
the bounds for increasing values of T while, on the contrary, we want to clarify
the behavior of the bounds around t = 0.

Let Th = (τhi , φ
h
i )i∈Ih , h > 0 be a family of partitions of suitable domains

Ωh, where h is the maximum diameter of the elements τhi ∈ Th, and φhi are
the mappings of the reference simplex τ0 onto τhi . Let r ≥ 2, we consider the
finite-element spaces

Sh,r =
{
χh ∈ C

(
Ωh
)
|χh|τh

i
◦ φhi ∈ P r−1(τ0)

}
⊂ H1(Ωh),

S0
h,r = Sh,r ∩H1

0 (Ωh),
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where P r−1(τ0) denotes the space of polynomials of degree at most r− 1 on τ0.
We shall denote by (Xh,r, Qh,r−1) the so-called Hood–Taylor element [4, 22],
when r ≥ 3, where

Xh,r =
(
S0
h,r

)d
, Qh,r−1 = Sh,r−1 ∩ L2(Ωh)/R, r ≥ 3,

and the so-called mini-element [8] when r = 2, where Qh,1 = Sh,2 ∩ L2(Ωh)/R,
and Xh,2 = (S0

h,2)d⊕Bh. Here, Bh is spanned by the bubble functions bτ , τ ∈ Th,

defined by bτ (x) = (d+ 1)d+1λ1(x) · · ·λd+1(x), if x ∈ τ and 0 elsewhere, where
λ1(x), . . . , λd+1(x) denote the barycentric coordinates of x. For these elements
a uniform inf-sup condition is satisfied (see [4]), that is, there exists a constant
β > 0 independent of the mesh grid size h such that

inf
qh∈Qh,r−1

sup
vh∈Xh,r

(qh,∇ · vh)

‖vh‖1‖qh‖L2/R
≥ β. (10)

The approximate velocity belongs to the discrete divergence-free space

Vh,r = Xh,r ∩
{
χh ∈ H1

0 (Ωh)d | (qh,∇ · χh) = 0 ∀qh ∈ Qh,r−1

}
.

Let (uH , pH) ∈ (XH,r, QH,r−1) be the semi discrete Galerkin approximation to
the exact solution (u, p) of the Navier–Stokes equations, that is for t ∈ (0, T ],
(uH , pH) is the solution of the following problem for all φH ∈ XH,r and ψH ∈
QH,r−1

(u̇H , φH) + ν(∇uH ,∇φH) + b(uH , uH , φH) + (∇pH , φH) = (f, φH), (11)

(∇ · uH , ψH) = 0, (12)

where b(u, v, w) = ((u · ∇)v + 1
2 (∇ · u)v, w) for any u, v, w ∈ H1

0 (Ω)d. The
following bounds hold for 2 ≤ r ≤ 5, see [11], [20] and [21]

‖u(t)− uH(t)‖0 +H‖u(t)− uH(t)‖1 ≤ C
Hr

t(r−2)/2
, 0 ≤ t ≤ T, (13)

and also,

‖p(t)− pH(t)‖L2/R ≤ C
Hr−1

t(r′−2)/2
, 0 ≤ t ≤ T, (14)

where r′ = r if r ≤ 4 and r′ = r + 1 if r = 5.

3 The Newton-type problem

Since Navier-Stokes equations are non-linear, it is of interest to study linearized
problems related to them. Stokes, Oseen and Newton-type problems provide
three ways to linearize the equations. Let g ∈ L2(Ω) and consider the Stokes
problem

−ν∆v +∇j = g
div(v) = 0

}
in Ω

v = 0, on ∂Ω
(15)
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with homogeneous Dirichlet boundary conditions. It is well known (see [21])
that the Stokes projection (sh, qh) ∈ (Xh,r, Qh,r−1) that approximates problem
(15) satisfies the following error bounds for 2 ≤ m ≤ r

‖v − sh‖0 + h‖v − sh‖1 ≤ Chm
(
‖v‖m + ‖j‖Hm−1/R

)
, (16)

‖j − qh‖L2/R ≤ Chm−1
(
‖v‖m + ‖j‖Hm−1/R

)
. (17)

Let us now consider the following steady Oseen-type problem, which can be
obtained by adding a convection term to the Stokes problem (u · ∇)v, where u
is a function satisfying ∇ · u = 0.

−ν∆v + (u · ∇)v +∇j = g
div(v) = 0

}
in Ω

v = 0. on ∂Ω
(18)

The mixed finite-element approximation (wh, kh) ∈ (Xh,r, Qh,r−1) of the Oseen
problem (18) satisfies the same bounds as the Stokes projection [15] for 2 ≤
m ≤ r

‖v − wh‖0 + h‖v − wh‖1 ≤ Chm
(
‖v‖m + ‖j‖Hm−1/R

)
, (19)

‖j − kh‖L2/R ≤ Chm−1
(
‖v‖m + ‖j‖Hm−1/R

)
. (20)

Now, we add to the Oseen problem two new terms. The first one is an extra
reaction term (v · ∇)u which transforms the Oseen problem into a Newton-type
problem. Since in general the resulting problem is not coercive, we also add a
correction term λv to ensure coercivity. The Newton problem we consider along
the paper is then the following:

−ν∆v + (u · ∇)v + (v · ∇)u+∇j + λv = g
div(v) = 0

}
in Ω

v = 0, on ∂Ω
(21)

Let us denote by Bu the bilinear form associated to problem (21)

Bu(v, w) = ν(∇v,∇w)+((u ·∇)v, w)+((v ·∇)u,w)+λ(v, w), v, w ∈ H1
0 (22)

Continuity of the bilinear form (22) can be derived from

|Bu(v, w)| ≤ ν‖v‖1‖w‖1 + ‖u‖L2d/(d−1)‖∇v‖0‖w‖L2d

+‖v‖L2d/(d−1)‖∇u‖0‖w‖L2d + λ‖v‖0‖w‖0
≤ (ν + 2C‖u‖1 + λ)‖v‖1‖w‖1, (23)

where we have applied Sobolev inequality (4).
Coercivity comes from the antisymmetry of the convection term ((u·∇)v, v) =

0 (6) and the following bound

|((v · ∇)u, v)| ≤ ‖∇u‖∞‖v‖20 (24)
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that is
Bu(v, v) ≥ ν‖∇v‖20 + (λ− ‖∇u‖∞)‖v‖20. (25)

Observe that due to the reaction term ((v · ∇)u, v), Newton-type problem be-
comes non coercive, so it is necessary to include the correction term λv in (21).
Now, assuming

λ− ‖∇u‖∞ ≥ 0 (26)

we get that Bu(v, w) is coercive being ν the constant of coercivity.
Let us observe that the norm ‖∇u‖∞ is bounded. By (3) and (8) we get

‖∇u‖∞ ≤ C‖∇u‖3/2+α ≤ C‖u‖5/2+α ≤M3t
−1/2.

Since we solve the Newton-type problem at a fixed time T > 0 we can bound
‖∇u‖∞ ≤ CM3T

−1/2. Let us also observe that since ‖∇u‖∞ is not known
in practice we can replace in (26) ‖∇u‖∞ by ‖∇uH‖∞ to have a computable
algorithm.
Remark 1 We want to remark that that assumption u ∈ L∞(0, T ;W 1,∞(Ω)) is
also required in other related references. See for example [5] where the analysis
of the continuous interior penalty finite element method for the time-dependent
Navier-Stokes equation is considered, [1] where the local projection finite ele-
ment stabilization for the time-dependent incompressible Navier-Stokes problem
is analyzed and [9] where the authors prove error bounds for stabilized finite
element methods for the Oberbeck-Boussinesq model.

The bilinear form Bu(v, w) is thus continuous and coercive on the whole
space H1

0 . In particular, this is also true for the divergence free space V . Then,
by the Lax-Milgram theorem and the aid of the continuous inf-sup condition (5),
there exists a unique solution (v, j) of the problem (21). Regularity conditions
can be obtained from the general theory of elliptic problems [17]:

‖v‖2 + ‖j‖H1(Ω)/R ≤ C‖g‖0.

Now, by (6), the dual problem of (21) is

−ν∆v − (u · ∇)v −∇v̄ · u+ λv +∇j = g,
div(v) = 0,

}
in Ω

v = 0, on ∂Ω
(27)

Let Du(v, w) be the bilinear form associated to the problem (27)

Du(v, w) = ν(∇v,∇w)− ((u · ∇)v, w)− (∇v̄ · u,w) + λ(v, w)

that satisfies Du(v, w) = Bu(w, v). The bilinear form Du is also continuous and
coercive so existence, uniqueness and regularity conditions of problem (27) can
be obtained arguing exactly as before. In particular the following regularity
condition for the dual problem holds true:

‖v‖2 + ‖j‖H1(Ω)/R ≤ C‖g‖0. (28)

In the following lemma we get error bounds for the mixed finite-element
approximation to problem (21) analogous to bounds (16)-(17) and (19)-(20) for
the Stokes (15) and the Oseen (18) problems respectively.
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Lemma 1 Let u be the velocity of the Navier-Stokes equations (1) and let (v, j)
be the solution of the linearized problem (21). Consider the discrete variational
problem for all φh ∈ Xh,r and ψh ∈ Qh,r−1

ν(∇vh,∇φh) + ((u · ∇)vh, φh) + ((vh · ∇)u, φh) + λ(vh, φh)

+(∇jh, φh) = (g, φh), (29)

(∇ · vh, ψh) = 0.

Then, there exists a unique solution (vh, jh) ∈ (Xh,r, Qh,r−1) of (29) which
satisfies the following bounds for 2 ≤ m ≤ r

‖v − vh‖0 + h‖v − vh‖1 ≤ Chm
(
‖v‖m + ‖j‖Hm−1/R

)
, (30)

‖j − jh‖L2/R ≤ Chm−1
(
‖v‖m + ‖j‖Hm−1/R

)
. (31)

Proof Let us observe that the bilinear form Bu(v, w) is also coercive and
continuous in the discrete divergence free subspace Vh,r. Applying Lax-Milgram
Theorem and the discrete inf-sup condition (10), the existence and uniqueness
of the discrete solution of (29) is obtained.

Now, we observe that problem (21) can be rewritten as an Oseen-type prob-
lem with right-hand side g − v · ∇u− λv as follows

−ν∆v + (u · ∇)v +∇j = g − v · ∇u− λv,
div(v) = 0.

(32)

Let (wh, kh) ∈ (Xh,r, Qh,r−1) be the finite-element approximation of (32) defined
for all (φh, ψh) ∈ (Xh,r, Qh,r−1) by

ν(∇wh,∇φh) + ((u · ∇)wh, φh) + (∇kh, φh) = (g, φh)− ((v · ∇)u, φh)− λ(v, φh)

(∇ · wh, ψ) = 0. (33)

We decompose the error in two parts

v − vh = (v − wh) + (wh − vh). (34)

The first term on the right-hand side above is bounded in (19). For the second
term eh = wh − vh we subtract (29) from (33) and project onto the divergence
free space to get

ν(∇eh,∇φh) + ((u · ∇)eh, φh) + ((eh · ∇)u, φh) + λ(eh, φh)

= (((wh − v) · ∇)u, φh) + λ(wh − v, φh), ∀φh ∈ Vh,r. (35)

Taking φh = eh and using the coercivity of the bilinear form Bu we get a first
estimation of ‖eh‖1

ν‖eh‖21 ≤ ‖wh − v‖0‖∇u‖∞‖eh‖0 + λ‖wh − v‖0‖eh‖0, (36)

from which

‖eh‖1 ≤ C‖wh − v‖0 ≤ hm
(
‖v‖m + ‖j‖Hm−1/R

)
, (37)
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where in the last inequality we have applied (19).
Inserting (37) in (34) and applying (19) again we complete the proof of the

bound for the H1 norm in (30)

‖v − vh‖1 ≤ Chm−1
(
‖v‖m + ‖j‖Hm−1/R

)
. (38)

In view of (37) we have proved a super-convergent result in the H1 norm be-
tween the Galerkin approximation to the velocity of problem (21) and the Oseen
approximation to the velocity of the same problem defined in (33).

For the pressure bound, we decompose

j − jh = (j − kh) + (kh − jh) (39)

and subtract again (29) from (33) to obtain

ν(∇eh,∇φh) + ((u · ∇)eh, φh) + (∇(kh − jh), φh) = (((vh − v) · ∇)u, φh)

+λ(vh − v, φh) ∀φh ∈ Xh,r.

Applying the inf-sup condition (10) and (4) it follows

β‖kh − jh‖L2/R ≤ ν‖eh‖1 + C‖u‖1/2‖eh‖1 + C‖u‖1‖vh − v‖1 + λ‖vh − v‖1,

so that applying (37) and (38) the proof of (31) is finished.
To bound the zero norm we use duality arguments. Let us observe that

‖eh‖0 = sup
ϕ∈L2(Ω)d ϕ6=0

|(eh, ϕ)|
‖ϕ‖0

so that for each fixed ϕ ∈ L2(Ω)d, we introduce the dual problem of (21).

−ν∆α− (u · ∇)α−∇ᾱ · u+∇γ + λα = ϕ,
div(α) = 0,

}
in Ω

α = 0, on ∂Ω.
(40)

Let (αh, γh) be the Stokes projection of the solution (α, γ) of (40). This approx-
imation satisfies, by (16), (17) and (28), the following bounds

‖α− αh‖0 + h‖α− αh‖1 ≤ Ch2(‖α‖2 + ‖γ‖H1/R) ≤ Ch2‖ϕ‖0,
‖γ − γh‖L2/R ≤ Ch(‖α‖2 + ‖γ‖H1/R) ≤ Ch‖ϕ‖0. (41)

Integrating by parts, we get

(ϕ, eh) = ν(∇eh,∇α) + ((u · ∇)eh, α) + ((eh · ∇)u, α) + λ(α, eh)− (γ,∇ · eh)

= ν(∇eh,∇(α− αh)) + ((u · ∇)eh, α− αh) + ((eh · ∇)u, α− αh) (42)

+ λ(eh, α− αh) + (γh − γ,∇ · eh) + ν(∇eh,∇αh) + ((u · ∇)eh, αh)

+ ((u · ∇)eh, αh) + λ(eh, αh).
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Now the terms depending on α− αh are easily bounded applying (4) and (41)

(ϕ, eh) ≤ ν‖eh‖1‖α− αh‖1 + ‖u‖1/2‖eh‖1‖α− αh‖1
+‖u‖1‖eh‖1‖α− αh‖1 + λ‖eh‖1‖α− αh‖1 + ‖γ − γh‖L2/R‖eh‖1
+ν(∇eh,∇αh) + ((u · ∇)eh, αh) + ((eh · ∇)u, αh) + λ(eh, αh)

≤ Ch‖eh‖1‖ϕ‖0 + ν(∇eh,∇αh) + ((u · ∇)eh, αh)

+((eh · ∇)u, αh) + λ(eh, αh). (43)

For the other terms we take φh = αh in (35) and apply (4) to get

ν(∇eh,∇αh) + ((u · ∇)eh, αh) + ((eh · ∇)u, αh) + λ(eh, αh)

= (((wh − v) · ∇)u, αh) + λ(wh − v, αh)

≤ C‖∇u‖L2d‖wh − v‖0‖αh‖L2d/(d−1) + λ‖wh − v‖0‖αh‖0
≤ C‖u‖2‖wh − v‖0‖αh‖1 + λ‖wh − v‖0‖αh‖1
≤ C‖wh − v‖0‖ϕ‖0, (44)

where the constant C depends on M2 (see (7)) and the last inequality is due to

‖αh‖1 ≤ ‖αh − α‖1 + ‖α‖1 ≤ Ch‖α‖2 + ‖α‖2 ≤ C‖ϕ‖0. (45)

Inserting (44) in (43) and applying (19) we obtain the following bound

‖eh‖0 ≤ Ch‖eh‖1 + C‖wh − v‖0
≤ Chm

(
‖v‖m + ‖j‖Hm−1/R

)
.

Applying triangle inequality and (19) again we conclude the proof. �

4 Some auxiliary results

We now state some results that will be used to get the rate of convergence of
the new two-grid method. Let us denote by BH the bilinear form defined by

BH(v, w) = ν(∇v,∇w) + ((uH · ∇)v, w) + ((v · ∇)uH , w) + λ(v, w), v, w ∈ H1
0 ,

where uH is the mixed finite-element approximation to u defined in (11)-(12).
Continuity of BH can be proved in the following way

BH(v, w) = Bu(v, w)−(Bu−BH)(v, w) ≤ C(ν+2‖u‖1+2‖uH−u‖1+λ)‖v‖1‖w‖1.

Moreover, for H small enough BH , is also coercive. Using the same decomposi-
tion as before and the coercivity of the bilinear form Bu we get

BH(v, v) = Bu(v, v)− (Bu −BH)(v, v) ≥ Bu(v, v)− 2‖uH − u‖1‖v‖21

≥
(
ν − 2C

Hr−1

t(r−2)/2

)
‖v‖21.
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Then, the coercivity is attained when uH is a good enough approximation to u,
i.e., when H is small enough. More precisely:
Remark 2 Let us observe that for t > 0 and H < (t(r−2)/2ν/2C)1/(r−1) the
bilinear form (46) is coercive. Taking for example H < (t(r−2)/2ν/(4C))1/(r−1)

we get

|BH(v, v)| ≥ ν

2
‖v‖21, ∀v ∈ H1

0 . (46)

We want to remark that we are not studying the convection dominating regime
in which ν → 0. Some works concerning this case are for example, [5], [1] where
the continuous interior penalty method and the local projection stabilization
method for the Navier-Stokes equations are considered and [10] where a plain
Galerkin method with grad-div stabilization for the Navier-Stokes equations is
analyzed. In all these papers error bounds with constants independent on the
viscosity parameter ν can be found.

Altogether, we can state that the method can be applied whenever condi-
tion (26), that assures coercivity of the continuous problem, is satisfied, for any
strictly positive time t > 0, for any strictly positive value of the viscosity param-
eter ν and whenever H is small enough, H < (t(r−2)/2ν/(4C))1/(r−1). Under
these assumptions the bilinear form BH is coercive which assures the stability
of the method.

The following two lemmas establish some bounds for the temporal derivative
of the Galerkin error and for the dual norm or the Galerkin error. Their proofs
can be found in [14, Lemma 4] for the case r = 2, [11, Lemma 5.1] for r = 3, 4
and in [11, p. 226], respectively.

Lemma 2 Let (u, p) be the solution of (1) and let uH be the mixed finite-element
approximation to u defined in (11)-(12). Let A the Stokes operator defined by
(7). Then, there exists a positive constant C such that

‖ut(t)− u̇H(t)‖−1 ≤ C

t(r−1)/2
Hr |log(H)|r

′
, t ∈ (0, T ], r = 2, 3, 4, (47)

‖A−1Π (ut(t)− u̇H(t)) ‖0 ≤ C

t(r−1)/2
Hr+1 |log(H)| , t ∈ (0, T ], r = 3, 4, (48)

where r′ = 2 when r = 2 and r′ = 1 otherwise.

Lemma 3 Let (u, p) be the solution of (1) and let uH be the mixed finite-element
approximation to u defined in (11)-(12). Then, there exists a positive constant
C such that

‖u(t)− uH(t)‖−1 ≤ C

t(r−1)/2
Hr+1 |log(H)| , t ∈ (0, T ], r = 3, 4. (49)

5 The Newton-type two-grid method

The postprocessing technique we propose is a two-level or two-grid method.
In the first level, we choose a coarse mesh of size H and compute the mixed
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finite-element approximation (uH , pH) to (u, p) defined by (11)-(12). In the sec-
ond level, the discrete velocity and pressure (uH(t), pH(t)) are postprocessed
by solving the following linear Newton-type problem: find (ũh(t), p̃h(t)) ∈
(Xh,r, Qh,r−1), h < H, satisfying for all φh ∈ Xh,r and ψh ∈ Qh,r−1

ν(∇ũh(t),∇φh) + ((uH(t) · ∇)ũh(t), φh) + ((ũh(t) · ∇)uH(t), φh) + λ(ũh(t), φh)

+(∇p̃h(t), φh) = (f(t)− u̇H(t), φh) + ((uH(t) · ∇)uH(t), φh) + λ(uH , φh) (50)

(∇ · ũh(t), ψh) = 0.

Equations (50) can also be solved over a higher order mixed finite-element space
over the same grid. For simplicity in the exposition we will only consider the
case in which we refine the mesh at the postprocessing step.

We now state the main result of the paper that bounds the error of the
post-processed approximation.

Theorem 1 Let (u, p) be the solution of (1) and (ũh, p̃h) be the solution of
(50). Then, for h and H small enough the following bounds hold for t ∈ (0, T ],
m = 0, 1:

‖u(t)− ũh(t)‖1 ≤ Ch+
C

t1/2
H2| log(H)|2, r = 2, (51)

‖u(t)− ũh(t)‖m ≤ C

t(r−2)/2
hr−m +

C

t(r−1)/2
Hr+1−m| log(H)|, r = 3, 4. (52)

‖p(t)− p̃h(t)‖L2/R ≤ C

t(r−2)/2
hr−1 +

C

t(r−1)/2
Hr| log(H)|r

′
, r = 2, 3, 4, (53)

where r′ = 2 for r = 2 and r′ = 1 otherwise.

Proof Let us consider the auxiliary problem (21) with g = f−ut+(u·∇)u+λu.
Clearly the solution (u, p) of the Navier-Stokes equations (1) is also the unique
solution of this problem. We will denote by (vh, jh) its mixed finite-element
approximation. Let us decompose

u− ũh = (u− vh) + (vh − ũh) (54)

and denote by eh = vh − ũh. To bound the first term we apply Lemma 1. For
the second, we subtract (50) from (29) projecting onto the discrete divergence
free space Vh,r. Then,

ν(∇eh,∇φh) + ((uH · ∇)eh, φh) + ((eh · ∇)uH , φh) + λ(eh, φh) =

(u̇H − ut, φh) + (((uH − u) · ∇)vh, φh) + ((vh · ∇)(uH − u), φh) + ((u · ∇)u, φh)

−((uH · ∇)uH , φh) + λ(u− uH , φh), ∀φh ∈ Vh,r.

Adding and subtracting to the right-hand side the following terms

(((uH − u) · ∇)u, φh) + ((u · ∇)(uH − u), φh)

12



and reordering terms we get

ν(∇eh,∇φh) + ((uH · ∇)eh, φh) + ((eh · ∇)uH , φh) + λ(eh, φh) =

(u̇H − ut, φh) + (((uH − u) · ∇)(vh − u), φh) + (((vh − u) · ∇)(uH − u), φh)

+(((uH − u) · ∇)(u− uH), φh) + λ(u− uH , φh).

Taking φh = eh and applying (46) we get for H small enough

ν

2
‖eh‖21 ≤ |(u̇H − ut, eh)|+ |(((uH − u) · ∇)(vh − u), eh)|

+|(((vh − u) · ∇)(uH − u), eh)|+ |(((uH − u) · ∇)(u− uH), eh)|
+|λ(u− uH , eh)|. (55)

We will bound each term on the right-hand side of (55). To this end, we write

|(u̇H − ut, eh)| ≤ ‖u̇H − ut‖−1‖eh‖1,
|(((uH − u) · ∇)(vh − u), eh)| ≤ C‖uH − u‖1‖vh − u‖1‖eh‖1,
|(((vh − u) · ∇)(uH − u), eh)| ≤ C‖vh − u‖1‖uH − u‖1‖eh‖1,
|(((uH − u) · ∇)(u− uH), eh)| ≤ C‖u− uH‖21‖eh‖1,

|λ(u− uH , eh)| ≤ λ‖u− uH‖0‖eh‖0 ≤ λ‖u− uH‖0‖eh‖1.

And then we get

ν

2
‖eh‖1 ≤ ‖ut − u̇H‖−1 + 2C‖vh − u‖1‖uH − u‖1

+C‖u− uH‖21 + λ‖u− uH‖0. (56)

To bound the first term above we apply (47)

‖ut − u̇H‖−1 ≤
C

t(r−1)/2
Hr |log(H)|r

′
, (57)

where r′ = 2 for r = 2 and r′ = 1 for r = 3, 4. For the other terms, we apply
(30) with m = 2 together with (13)

‖u− vh‖1‖uH − u‖1 ≤ C

t(r−2)/2
hHr−1,

‖u− uH‖21 ≤ C
Hr−1

t(r−2)/2

Hmin(2,r−1)

t1/2
= C

Hr+min(1,r−2)

t(r−1)/2
, (58)

‖u− uH‖0 ≤ C

t(r−2)/2
Hr.

Inserting now (57) and (58) in (56) and keeping only the biggest terms in the
error bound we get

‖eh‖1 ≤ C

t(r−1)/2
Hr| log(H)|r

′
, r = 2, 3, 4, (59)
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where r′ = 2 for r = 2 and r′ = 1 for r = 3, 4. Applying triangle inequality
together with (30) we conclude

‖u(t)− ũh(t)‖1 ≤
C

t(r−2)/2
hr−1 +

C

t(r−1)/2
Hr| log(H)|r

′
.

For the pressure bound, we decompose

p− p̃h = (p− jh) + (jh − p̃h). (60)

Let us denote by rh = jh − p̃h. We subtract again (50) from (29) to get

ν(∇eh,∇φh) + ((uH · ∇)eh, φh) + ((eh · ∇)uH , φh) + λ(eh, φh) + (∇rh, φh) =

(u̇H − ut, φh) + (((uH − u) · ∇)(vh − u), φh) + (((vh − u) · ∇)(uH − u), φh)

+(((uH − u) · ∇)(u− uH), φh) + λ(u− uH , φh),

for all φh ∈ Xh,r. Using the continuity of BH and applying the inf-sup condition
(10) we get

β‖rh‖L2/(R) ≤ C‖eh‖1 + ‖ut − u̇H‖−1 + 2C‖vh − u‖1‖uH − u‖1
+C‖u− uH‖21 + λ‖u− uH‖0.

Applying (59) to bound ‖eh‖1 together with (57) and (58) we reach

β‖rh‖L2/(R) ≤
C

t(r−1)/2
Hr |log(H)|r

′
.

To conclude the error bound for the pressure we apply decomposition (60) and
(31).

To bound the L2 norm of the error in the velocity we argue by duality exactly
as in the proof of Lemma 1. We write

‖eh‖0 = sup
ϕ∈L2(Ω)d ϕ6=0

|(eh, ϕ)|
‖ϕ‖0

,

and consider the following dual problem for each ϕ ∈ L2(Ω)d

−ν∆α− (u · ∇)α−∇ᾱ · u+∇γ + λα = ϕ,
div(α) = 0,

}
in Ω

α = 0, on ∂Ω.

As in Lemma 1 we denote by (αh, γh) the Stokes projection of this dual problem.
Then, we observe that (43) holds. Using (55) instead of (35) in (43) we reach

(eh, ϕ) ≤ Ch‖eh‖1‖ϕ‖0 + ν(∇eh,∇αh) + ((u · ∇)eh, αh) + ((eh · ∇)u, αh)

+λ(eh, αh)

≤ Ch‖eh‖1‖ϕ‖0 + (u̇H − ut, αh) + (((uH − u) · ∇)(ũh − u), αh)

+(((ũh − u) · ∇)(uH − u), αh)

+(((uH − u) · ∇)(u− uH), αh) + λ(u− uH , αh). (61)
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To get the error bound in L2 it is necessary to improve some of the bounds used
in the proof of the H1 norm. For the temporal Galerkin error, we apply (47),
(48) and (41) to obtain

|(u̇H − ut, αh)| = |(u̇H − ut, αh − α) + (u̇H − ut, α)|
≤ C‖ut − u̇H‖−1‖αh − α‖1 + C‖A−1Π(u̇− ut)‖0‖Aα‖0
≤ C‖ut − u̇H‖−1h‖ϕ‖0 + C‖A−1Π(u̇− ut)‖0‖ϕ‖0

≤ C

t(r−1)/2
Hr+1 |log(H)| ‖ϕ‖0. (62)

Let us observe that (62) is valid for r ≥ 3. Next two terms in (61) are bounded
applying (52), (13) with m = 2 and (45)

|(((uH − u) · ∇)(ũh − u), αh)|+ |(((uH − u) · ∇)(u− uH), αh)|
≤ C‖uH − u‖1‖ũh − u‖1‖αh‖1

≤ CH2

t(r−1)/2

(
t1/2hr−1 +Hr| log(H)|

)
‖ϕ‖0. (63)

For the fifth term we apply (58) and (45) to get

|(((uH − u) · ∇)(u− uH), αh)| ≤ C
Hr+1

t(r−1)/2
‖ϕh‖0. (64)

Finally, for the last term in (62) we use (49) and (45) to obtain

|(u− uH , αh)| ≤ C

t(r−1)/2
Hr+1 |log(H)| ‖ϕh‖0. (65)

Inserting (62), (63), (64) and (65) in (61) and keeping only the biggest terms in
the error bound we get

‖eh‖0 ≤ Ch‖eh‖1 +
C

t(r−1)/2
Hr+1 |log(H)| .

Applying (59), decomposition (54) and (30) we finally reach (52) for m = 0. �

Remark 3 We want to observe that projecting onto the discrete divergence
free space Vh,r in the proof of Theorem 1 simplifies the task of getting the error
bounds for the velocity. This technique can be applied whenever inf-sup stable
mixed finite elements are considered.

6 Numerical experiments

In this section, we carry out several experiments for studying both the order
of convergence and the comparative behaviour of the three postprocessed pro-
cedures: Stokes, Oseen and Newton. The experiments are computed in the
unit square Ω = [0, 1] × [0, 1], using the mini-element over a regular triangu-
lation based on the set of nodes (i/N, j/N) i, j = 1, 2...N , where N = 1/H is
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the Galerkin spatial resolution. In the time integration we use a semi-implicit
trapezoidal rule, where spatial derivatives are treated implicitly. The size of the
time step is chosen so that temporal errors are negligible compared to spatial
errors. Once the mini-element is obtained, the bubble part is removed and the
errors of the linear part are computed. It has been reported in [15] that the
linear part is a better approximation to the solution than the complete linear-
bubble vector velocity. The bubble part is considered only for stability reasons.
In this experiment, we take the following functions

u1(x, y, t) = πt sin2(πx) sin(2πy),

u2(x, y, t) = −πt sin2(πy) sin(2πx), (66)

p(x, y, t) = 5tx2y.

and calculate the forcing term f(x, t) so that (66) is the solution of the Navier
Stokes equations for different values of the diffusion parameter ranging from
ν = 1 to ν = 0.001. The Galerkin approximations are obtained integrating up
to time T = 1 in the coarse mesh of size H = 1/N . Then, there are post-
processed at the fixed final time over a finer mesh of size h < H small enough
to retain the asymptotic behavior of the rate of convergence. Computational
cost of the post-processed step is typically of the order of a single time step over
the fine mesh h. In this experiment, the sizes of the coarse meshes are given by
N = 40, N = 50, N = 70, N = 85 and for the fine meshes n = 175, n = 223,
n = 273 and n = 353, respectively. Although for the mini-element, optimal
values for the fine mesh in the sense of Theorem 1 are those obtained taking
h = H2, in practice the rate of convergence of the methods can be reached
taking exponents less than 2. This is the reason why we chose the above values
of n that correspond to the smallest values for which increasing them we do not
achieve smaller errors.

Figure 1 shows the L2 velocity errors of the first component of the velocity for
the Galerkin approximation and the three post-processed procedures: Stokes,
Oseen and Newton, with respect to the above mentioned values for the coarse
and fine meshes. Each of the pictures correspond to a different value of the
diffusion parameter, ranging from ν = 1, ν = 0.1, ν = 0.01 to ν = 0.001
from left to right and up to down. For the Newton-type algorithm we have
carried out computations with different values of the parameter λ. In this
experiment, for all values of λ we chose in our computations, including λ = 0,
the approximations were always computable, i.e., problem (50) had a unique
solution. Then, although, theoretically, λ should be chosen greater or equal to
‖∇u‖∞ according to (26) (or in practice λ ≥ ‖∇uH‖∞ since u is in general
unknown) in the experiments shown in this section we have chosen the values
of λ that produce better errors for the method. These values depend on the
diffusion parameter. In all the pictures, we have chosen λ = 0.1, 0.5, 1.2 and 2
for ν = 1, 0.1, 0.01 and 0.001 respectively.

It can be observed in Figure 1 that, as expected, in general the post-processed
procedures do not increase the L2 rate of convergence of the Galerkin method,
although there is a slight increase for ν = 1. This is a particular case due to
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Figure 1: L2 errors for the first velocity component with ν = 1, ν = 0.1, ν = 0.01
and ν = 0.001

the use of linear elements (case r = 2) . For ν = 1 all the postprocessed meth-
ods produce the same errors and much smaller than the Galerkin errors. The
comparison between the methods changes with the value of ν. As ν decreases
the difference between the errors of the new method and the other two postpro-
cessed methods increases being for ν = 0.001 the new procedure the only one
producing much smaller errors than the Galerkin method. As expected, all the
methods deteriorate when decreasing the value of ν due to the loss of coercivity
but the new method is the one behaving better.

Figure 2 shows the H1 norm of the error for the first component of the
velocity. Considering this norm, and in agreement with the theory, it is remark-
able the increment of the rate of convergence of the new postprocessed method
in one unit in terms of H (same increment can be observed for the other two
postprocessed methods). Contrary to the situation shown in Figure 1 for the
L2 errors, in the H1 norm the three postprocessed methods produce always
smaller errors than the Galerkin method, being again Newton-type the best
post-processing procedure. The Stokes method reveals itself to be the worst
postprocess in all cases. Since the Galerkin errors lie on a perfect straight line
we can deduce from the figure the Galerkin errors for other values of N different
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Figure 2: H1 errors for the first velocity component with ν = 1, ν = 0.1,
ν = 0.01 and ν = 0.001

from those plotted. In particular, for example, for ν = 0.01 the Galerkin error
for n = 175 is around 0.008 while the error for n = 353 is 0.004. On the other
hand, the Newton-type postprocess gives for (N,n) = (40, 175) an error of size
0.004 while for the last plotted value (N,n) = (85, 353) the error is around 0.001.
This means that although in the picture we have compared the postprocessed
errors with the coarse-mesh Galerkin errors if we compare the postprocessed
errors with the fine-mesh Galerkin errors the postprocessed procedure gives still
better errors than the Galerkin method. However, the computational cost of
the postprocessed method is essentially the same as the Galerkin method over
the coarse mesh. This means that those errors on the same vertical line are
achieved with almost the same computational CPU time. Then, from the pic-
ture we can deduce that not only the new method produces smaller errors but
is also considerably more efficient.

Finally, Figure 3 shows the L2 errors for the pressure. We can observe
that the postprocessed pressures of the Newton-type method have a rate of
convergence of order 2, according to Theorem 1. As in Figure 1, Newton-type
postprocess is the best one, Stokes is never worse than Galerkin while Oseen is
worse than the Galerkin method for ν = 0.001.
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Figure 3: L2 errors for the pressure with ν = 1, ν = 0.1, ν = 0.01 and ν = 0.001

In summary, the new method we analyze is the one giving better errors for
all values of the Reynolds number computed in the experiment. Our results are
in agreement with the numerical examples of [25] where, as mentioned in the
introduction, the three two-grid methods are compared but with a dynamical
(time-dependent) implementation of the linearized problem over the fine mesh.
We want to remark that the static two-grid approach we analyze has the ad-
vantage of being computationally more efficient since a single steady problem
is solved at the selected time in which we need to get an approximation over a
finer mesh.

Finally, we want to mention that the increased accuracy of the new Newton-
type postprocessing compared with the plain Galerkin method can be applied
for the interesting task of getting a posteriori error estimations for the Galerkin
method as was already studied in [14] for the Stokes postprocessing. We want
to explore the behavior of a similar a posteriori error estimation but based on
the Newton-type postprocessing in a future work.
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[6] B. Garćıa-Archilla, J. Novo, and E. S. Titi, Postprocessing the
Galerkin method: A novel approach to approximate inertial manifolds,
SIAM J. Numer. Anal., 35 (1998), pp. 941–972.
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