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Abstract  
 
Clay and cement are known nano-colloids originating from natural processes or traditional 
materials technology. Currently, they are used together as part of the engineered barrier system 
(EBS) to isolate high-level nuclear waste (HLW) metallic containers in deep geological 
repositories (DGR). The EBS should prevent radionuclide (RN) migration into the biosphere until 
the canisters fail, which is not expected for approximately 103 years. The interactions of 
cementitious materials with bentonite swelling clay have been the scope of our research team 
at the Autonomous University of Madrid (UAM) with participation in several European Union 
(EU) projects from 1998 up to now. Here, we describe the mineral and chemical nature and 
microstructure of the alteration rim generated by the contact between concrete and bentonite. 
Its ability to buffer the surrounding chemical environment may have potential for further 
protection against RN migration.   
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Introduction 

Clay and cement are known nano-colloids originating from natural processes or traditional 

materials technology 1. Their final chemical and structural forms are created by hydration or 

aqueous dissolution-precipitation reactions, which affect anhydrous primary minerals2 and 

weathering, even on the surface of Mars 3, or the hydration of synthetic phases produced in the 

calcination of geomaterials4. A common feature in these materials is that they are composed of 

hydrated nanophases, and with metal oxides, they develop (cement5) rims around primary 

materials. These rims should act as metastable physico-chemical barriers to prevent a rapid 

alteration process6.   

Our research group at the Autonomous University of Madrid (UAM) has participated in several 

UE integrated projects under the Euratom Framework Programme for Nuclear Research & 

Training Activities (ECOCLAY-I and II 1998-2003)7, NFpro (2004-2007) and PEBS (2010-2014)8. In 

these projects, we studied the alkaline alteration that characterizes the geochemical reactions 

in concrete and bentonite materials used for nuclear waste isolation. Bentonite is composed of 
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smectite sheet-silicate organized as aggregates of stacked layers. These aggregates swell driven 

by the hydration of the cations confined in their nanostructured interlayers. These interlayers 

can accommodate water and many ionic and polar pollutant substances9, 10. After the 18th year, 

the FEBEX11 (full-scale engineered barriers experiment) in situ experiment was dismantled in 

2015. We are determining the long-term reactivity of concrete-bentonite interfaces during the 

development of the CEBAMA (cement-based materials) UE project12. In this paper, we describe 

the structure of these interfaces and show that the developed alteration rim produced has a 

limited extension and may be a new skin worth studying due to its potential protective capacity. 

 

Review topics and prospect 

Radioactive waste and trusted materials for underground high-level waste repository safety  

A deep geological repository (DGR) is currently accepted as the most reliable final management 

option for the long-term isolation of high-level radioactive waste (HLW)13. The heat released by 

HLW due to Cs, Sr and Co radioisotope decay may last for 102-103 years, and the radiotoxicity of 

waste due to long-lived transuranic elements such as Am, Pu, and Tc will remain above safety 

standards for up to 104 to 106 years 14. All DRG concepts call for the use of a multi-barrier system 

(engineered barrier system, EBS) to fulfill the safety requirements to limit the eventual release 

of radionuclides into the biosphere. The EBS usually has three main components: the waste 

form, the metal waste canister and the clay buffer. Liners such as metal meshes or concrete 

sleeves and mechanical supports such as compacted bentonite blocks may be added to the basic 

design (Figure 1). Using a stiff clay host rock as an example, concrete should be installed as a 

supporting annulus for the galleries and for the placement of plugs for close galleries containing 

several aligned waste canisters. 



 

Figure 1. Components of the near-field for a HLW repository system. Process development at 

the interfaces (modified from Nagra)15. 

 

Both concrete and metallic canisters (iron steel) are artificial barriers composed of chemical 

constituents that are far from the aqueous solution thermochemical equilibrium in a 

groundwater geological environment. Iron steel is known to experience a very slow anoxic 

corrosion rate in terms of less than 1 µm/year, and its failure is not expected until > 103 years16. 

Concrete aging and degradation are not easy to measure. A consecutive set of chemical 

reactions are produced by groundwater (pH 8-9 in clay or granite host rocks) interactions with 

concrete porewater originating from ordinary Portland cement (OPC), (pH > 13). The pH during 

the concrete aging will first be controlled by alkali hydroxides, then by the dissolution of 

portlandite [Ca(OH)2], pH 12.6, and later, between the pH values of 12.6 and 10, by the 

dissolution of calcium from C–S–H (calcium silicate hydrate), generating different gel phases and 

dissolution-precipitation processes with Ca/Si ratios from 1.6 to 0.617. During these stages, the 

reactions may coexist with the precipitation of Mg(OH)2 (brucite) and CaCO3 (calcite) because 

Ca, Mg and inorganic carbon species are present in a natural aqueous environment. The 

precipitation of several hydrated minerals in the concrete matrix will reduce the porosity and 

reaction-transport processes, and a pessimistic estimation of the partial alteration is 20 cm in 

105 years18. A similar thickness of bentonite will be affected by the reaction of the concrete 

alkaline plume within the same timeframe. Nevertheless, experiments carried out to study the 

equilibrium conditions with montmorillonite (smectite) and portlandite have shown consistency 

with low Ca/Si (0.8) C-S-H (11 Å, tobermorite), which is in agreement with the existence of a 

montmorillonite-CSH thermochemical equilibrium19. The achievement of such conditions should 



stop or maintain a very slow rate of reaction for both bentonite and concrete degradation in 

these EBS contacts. Taking into account that bentonite is a natural alteration product of volcanic 

glass known to be stable for > 106 years20, the EBS system is a reasonable engineered 

architecture to ensure the safety of the design through continuous long-term modeling 

validation of the geochemical and hydro-mechanical performances of the system.    

In the nuclear field, concrete is not solely used as a construction material. Hydrated cementitious 

nanophases such as C-S-H or Afm (Ca, Al, monosulfate) retain oxyanion species of radionuclides, 

such as Se, U, or Np, by sorption, surface complexation and co-precipitation mechanisms 17, 21. 

Porewaters from either bentonite or the host rock in contact with the composites of cement 

and radioactive waste will be buffered by the formation and dissolution of calcium silicate 

hydrates. Hence, a multifunctional barrier can be expected in these complex, artificial-natural 

interfaces. 

 

Interaction of concrete with clay rocks or buffer materials: from lab-scale to full-scale 

experiments 

In the present paper, the results from three experimental setups were considered. The 

experiments exhibit conditions with different complexities, including reaction mixtures in batch 

reactors22, 23, long-term concrete–bentonite column experiments (10 years)23, 24, and results 

from the concrete-bentonite in situ FEBEX experiment (13-year-old interface)25, 26. Three testing 

scenarios composed the framework of the research. The in situ concrete-bentonite interfaces, 

which were obtained during the dismantling of the FEBEX tunnel at the Grimsel test site (GTS) 

(Switzerland), represent an aged interface within a 50 m3 experiment (10 m3 concrete plug and 

40 m3 heated bentonite) hosted in a granitic rock. HB6 is part of a series of HB tests (1-5 are 

already dismantled) implemented by CIEMAT (Centro de Investigaciones Energéticas, 

Ambientales y Tecnológicas, SPAIN) and consists of a bentonite cylinder column (7 cm length) 

hydrated through a high pH OPC concrete disc (3 cm). On the opposite side, the bentonite faces 

a hot steel plate maintained at 100 °C. HB6 represents a 385 cm3 10-year-old experiment (115 

cm3 concrete and 270 cm3 bentonite). In both cases, the concrete-bentonite interface was < 40 

°C. Finally, the batch experiments consisted of creating different mixtures of smectite extracted 

from bentonite with Ca(OH)2, OPC (CEM-I) cement paste or alkali-treated OPC to precipitate 

Mg(OH)2 close to the exchange complexes located in the interlayer spaces of the swelling silicate 

sheets. All these experiments consider the presence of calcite at different temperatures. An 

exhaustive description of the experimental procedures is published elsewhere and is 

summarized in Table 1.  

The purpose of performing the experiments at different scales was to link the cement paste/clay 

reactivity to the in situ-scale real experiment. In fact, the difficulties encountered in the chemical 

and mineralogical characterizations of the scenarios close to the real conditions prompted us to 

perform batch synthetic experiments. This was necessary to determine the types of phases that 

are produced and to try to find them in the compacted bentonite-concrete experimental 

interfaces. 



 

Figure 2: Aspect of the Grimsel Test Site in situ sampling, preparation of the samples and images 

of the polished sections containing the bentonite-concrete contact. Cylinders at the front of the 

gallery are resin protected for the practice core drilling performed by the University of Bern. 
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Table 1: Summary of the experiment types and conditions. 

Experiment 
type 

Number of 
experiments 

materials dimensions Hydration T (ºC) time 

 
In situ FEBEX26 

1 

Concrete CEM-II (CEM-I 
<10% lime added) 
 
 

Cylindrical 
gallery 2.3 x 3 m 
 
 

Granitic site 
groundwater 
diluted 
(<0.01 M) 
Na-Ca-Cl-
SO4-HCO3; 
pH 8-9 

Concrete 
bentonite 
contact at 
 30 ºC 

13 years 

FEBEX bentonite 
1.65 g/cm3 dry density 

Cylindrical 
gallery 2.3 x 
9 m 
 

Medium cells 
HB 
(CIEMAT)24 

5 

Concrete CEM-I-SR 
Cylindrical 70  
30 mm 

Clayey saline  
(0.2 M) 
solution Na+-
SO4

2- 
dominant 

Gradient, 
100 ºC at 
bottom 
(bentonite) 
~40 ºC at the 
interface 

1, 1,5, 
4.5 6.5 
and 10 
years 

FEBEX bentonite 
1.65 g/cm3 dry density 

70  71.5 mm 

Batch 
experiments22, 

23, 
*:unpublished 
**: three Mnt 
described in27  

4 
 
 

FEBEX bentonite < 2 m 
(montmorillonite, Mnt) 

Powder 
1:5  
Solid:aqueous 
solution, 
airtight inert 
reactor 

Ca(OH)2 at 
2/1 and 3/1 
Mnt/ 
Ca(OH)2 
ratio 

60, 120 ºC 
2 
months 

6* 
Mnt FEBEX, MX-80 and Mmt-
Chile 

Mg saturated 
Mnt 
2/1 Mnt 
/CEM-I paste 
ratio 

60, 90 ºC 1 month 

6* 
Mnt FEBEX, MX-80 and Mmt-
Chile** 
 

Mg saturated 
Mnt 
K,Na (3,1)-OH 
pH 13.5 
20/1 
Mnt/calcite 

60 ºC 1 week 

 

  



The nature of the nanostructured materials formed and the concrete-bentonite interface zone  

The best image capturing the complexity of the chemical perturbation in one of the studied 13-

year-old in situ concrete-bentonite interfaces is a typical SEM-EDX profile of the interface (Figure 

3). The profiles depicted for the variations in the weight percent of the major elements show a 

relevant increase in Mg from 1 mm in the concrete side to 2.5 mm in the bentonite side. With 

an average variation of ±0.5 and ±2 mm in the concrete and bentonite, respectively, the rim has 

been measured and studied in at least three HB cells (4.5, 6 and 10 years)23, four interfaces in 

the FEBEX in situ experiment26, two portlandite/bentonite interfaces in small cells (5-mm-thick 

lime mortar and 2-cm-thick compacted bentonite)28, and at 60-90 ºC in the alkaline alteration 

(K,Na-OH, pH=13.5 solution) of a 2-cm-thick Mg-saturated, compacted FEBEX bentonite29. 

Calcite precipitates in concrete when the Mg-enrichment peak ends after a millimetric rim, and 

a Ca,Si (Al)-rich region develops as the Mg decreases (i.e., a calcium aluminum silicate hydrate 

phase (C-A-S-H)). An example of the Mg-rich phases at the in situ interface is shown in Figure 4.   

 

The chemistry and structural nature of the formed Mg phase is not easy to determine. From a 

chemical point of view, Figure 4 show that Al ratio to silica remains very close to that of 2:1 Al-

di-octahedral montmorillonite alongside the Mg-rich rim transect. In addition, the rate of the 

Mg increase is consistent with the mixtures of brucite and montmorillonite. However, there is 

some evidence of the presence of a Mg-trioctahedral sheet silicates.  

These chemical trends were examined by X-ray diffraction powder analyses of very small 

bentonite samples that were scraped from the concrete interface (Figure 5, Left). The in situ or 

long-term interfaces (HB6) exhibited large shoulders in the Mnt basal reflection XRD regions. 

The 14.7 Å Mnt (001) peak corresponding to the hydrated sheet unit of the FEBEX 

montmorillonite changes to a broad shoulder ranging from 14 to 7.4 Å, and from 14 to 9 Å, 

tobermorite can have diffraction effects 30, 31. The step at 7.4 Å, the plateau between 2.56-2.40 

and the reflection at 1.53 Å ((060) reflection for serpentine minerals) are consistent with the 

coexistence of brucite intercalated with montmorillonite (chlorite-like, 7 Å) or serpentine29. The 

(060) region exhibits a broad maximum between the tri-octhedral and di-octahedral (as Mnt) 

silicate sheets, and thus, tri-octahedral 2:1 silicate sheets cannot be excluded. In any case, the 

patterns are indicative of the formation of disordered minerals with very similar aspects to the 

magnesium silicate hydrates described to precipitate in cement-clay interactions32. The 

interaction between Mnt and the cement paste or lime confirms the possible formation of 

poorly ordered phases in the range of 14 to 11 Å and contributes to the complex mixture of 

these sheet-like structures (Figure 5, right). Al-tobermorite (C-A-S-H) formed, and the presence 

of calcite makes it difficult to determine its presence. In any case, these results are in agreement 

with the presence of Mg phases in the bentonite and the existence of C-A-S-H close to the 

concrete. 

To advance this characterization, we applied thermal, infrared and Si and Al NMR methods. The 

thermal analysis confirms the presence of brucite-like and disordered MSH-like phases with 

broad dehydroxylation effects between 450 and 550 ºC that are not produced in the bentonite 

outside the altered rim26, 33. The broad 550-650 ºC dehydroxylation of Mnt in these samples and 

the presence of calcite also make it difficult to discard the presence of other Mg hydrated 

silicates with very similar effects to those of serpentine. 

 



 

Figure 

3. Composition of the chemical analysis and mineralogical zonation (major cations Ca, Si, Al 

and Mg, excluding C and O and recalculated to 100% (Na, K, Fe, and S not shown)) determined 

by SEM-EDX showing the characteristic changes in the concrete-FEBEX bentonite interface. 

Data elaborated from26. 0 on the x scale is the contact interface. 
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Figure 4: Characteristics of the Mg-rich zone in the alteration rim produced at the contact 

between concrete and bentonite in a real-scale in situ experiment (FEBEX experiment). 

 

Figure 5: Al/Si and Mg/Si atomic (mol) ratios from the bentonite towards the interface (x=0) 

with concrete in one of the FEBEX in situ analyzed interfaces. The mix rate trends of different 

Mg phases and Mnt were calculated (0: 0%; 500: 50% and 1000: 100%).  

FEBEX- mont Ca0.25Al1.5Mg0.50Si4O10 (OH)2   Mg/Si: 0.12; Al/Si: 0.38
FEBEX–brucite Mg3 (OH)5.5Al1.50Mg0.50 Si4O10(OH)2  Mg/Si: 0.87; Al/Si: 0.38
Tri-Sme: Ca0.125 Mg2.75 Si4 O10(OH)2  Mg/Si: 0.69
Serpentine: Mg3Si2O5(OH)4 Mg/Si: 1.50
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Figure 6. XRD powder patterns comparing the characteristics of the laboratory reactions with 

lime or cement mixtures and Mnt (right) with long-term concrete-bentonite interfaces. Numbers 

are in Å. Mnt: montmorillonite, Afm: monosulfate calcium aluminate, ctl: chrysotile, cal: calcite, 

Tb: tobermorite, Pl: plagioclase, qtz: quartz, Tri-Sm: trioctahedral smectite, Brc: brucite. 

 

The FT-IR spectra of FEBEX montmorillonite (Figure 6) are characterized by the presence of a 

broad band at approximately 3430 cm-1, corresponding to the water-stretching vibrations, and 

a shoulder near 3330 cm−1 due to an overtone of the bending vibration of water observed at 

1640 cm−1. The most intense band near 1040 cm−1 is attributed to the Si–O stretching vibrations 

(in plane), and the Si–O stretching vibrations (out of plane) are located at approximately 1115 

cm−1. The absorption band at 3625 cm−1 corresponds to the stretching vibrations of the 

structural OH groups of montmorillonite, which is typical for smectites with Al in the octahedral 

sheet. The bands corresponding to the Al–Al–OH and Al–Mg–OH bending vibrations are 

observed at 910 and 834 cm−1, respectively34. Moreover, the bands at approximately 580 and 

650 cm-1 also presumably involve the Mg-O-H vibrations observed in the spectra of trioctahedral 

clays35. The band at 580 cm-1 became more intense in this region for the in situ sample. In 

addition, three carbonate-related absorption bands were observed at 1430, 875 and 713 cm-1. 

This sample also presents an additional single absorption in the OH-stretching region at 

approximately 3705 cm-1, which indicates the presence of Mg-rich phases. Either brucite or 

trioctahedral smectites (i.e., saponite and stevensite) as well as poorly ordered M-S-H phases33, 

36 exhibited a band centered near 3698 cm-1, corresponding to the characteristic OH vibration of 

the Mg(OH)2 group. The reaction mixtures with the CEM-I cement paste show additional bands 

at 1550-1350 cm-1, which can be attributed to CO3
2-. The low absorption intensity of this band is 

related to the low Ca/Si ratios in the present C-S-H37. 

Cement and Lime laboratory
montmorilllonite reaction

Concrete-bentonite interface 
at long term

1
4

-1
3

.0
 M

n
t-

C
A

SH



 

Figure 7: FTIR spectra of FEBEX montmorillonite. Left: comparison with the in situ concrete 

interface alteration rim and the alkali-treated Mg-montmorillonite (FEBEX MSH); right: 

comparison of FEBEEX montmorillonite with the reaction mixtures with the CEM-I cement paste.  
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Figure 8: 29Si and 27Al MAS NMR spectra of the FEBEX samples taken from the concrete interface 

in the in situ experiment (above) and produced during the reaction of FEBEX montmorillonite 

with cement paste CEM I(I) at 60 -90 ºC or lime Ca(OH)2 at 120 ºC (below). SSB denotes spinning 

side bands. 

The 27Al MAS NMR spectra clearly show resonances in the region 70-55 ppm and at 

approximately 2.5 ppm, which correspond to aluminum atoms in tetrahedral and octahedral 

coordination, respectively38. The dominant resonance in FEBEX montmorillonite corresponds to 

the octahedral environment of Al, and the two poorly resolved peaks at approximately 56 and 

69 ppm can be attributed to the four-coordinated tetrahedral Al core 39, but the different 

chemical shifts suggest a different local structure, i.e., a small Al substitution in the tetrahedral 

sheet with the calculated structural formula K0.04±0.01Ca0.24±0.06(Fe0.09 Al1.41 Mg0.50)Si3.94 Al0.05(O10 

(OH)2)15, and the presence of minor feldspar impurities. In both the in situ samples and batch 

cement paste reactions, the four-coordinated tetrahedral Al resonance increases to represent a 

comparable amount of octahedral Al. This cannot be attributed to feldspar impurities and 

In situ FEBEX

Laborary batch reactions
FebeX Mnt + CEM-I



confirms the presence of C-A-S-H phases. The presence of a –OAl(OSi)3 site in the C–S–H 

structure also implies the presence of a Q3 (1Al) 29Si site 40. 

Regarding the 29Si MAS NMR spectra of montmorillonite, the dominant resonance appears at 

approximately -93 ppm and is present in all the spectra (Figure 7), and this resonance 

corresponds to the Si04 groups in the tetrahedral sheet of montmorillonite that are connected 

to the zero tetrahedron in which Al substitutes for Si, i.e., Q3(0Al) units. However, in the cement 

paste or lime reacted montmorillonite (60-90-120 ºC) and in the in situ experiments, the 

contribution from the Q3(0Al) resonance decreases, and new resonances appear between -82 

and -86 ppm, which can be related to several types of connectivity between the aluminum-

silicate groups and the CSH and CASH phases23. The chemical shift of 29Si at ∼–86 ppm is assigned 

to tetrahedral Si, which is bonded in the middle of silicate chains (Q2). When aluminum was 

incorporated into the silicate chain as a bridging tetrahedron, an additional peak was observed 

at approximately –83 to -81 ppm (Q2 [1Al]; 41, 42. 

The presence of C-A-S-H nanophases at the concrete-bentonite interfaces has been confirmed 

by NMR methods, and they are characteristic reactivity products of cementitious material and 

bentonite. Unfortunately, the exact nature of the Mg-silicate phase was not determined despite 

the thermal, IR and XRD data confirming the existence of Mg hydroxylated phases.     

 

Concept of the concrete-bentonite interface as a new physical-chemical barrier for safety 

protection  

The complex mixture of disordered mineral compounds characteristic of the alteration rim 

produced in one of the EBS interfaces proposed for a nuclear DGR repository has been shown. 

During cement degradation, several pH buffered stages develop, ensuring the longevity of 

cement. Similarly, the microstructure of the reacted concrete-bentonite interface can be 

considered a self-built mineral zone region that is useful for buffering subsequent mineral 

reactions. The capacity of several materials to buffer and stabilize the pH will be important for 

this concept. During the laboratory batch reactions using the CEM-I paste, we measured the pH 

evolution. For the alkali-treated Mg-montmorillonite (Mg(OH)2 precipitate with 

montmorillonite), we added calcite to the obtained products, and we measured the pH 

evolution. These two materials mimic C-A-S-H (and calcite) and Mg-hydroxide-silicate (and 

calcite). Mg-saturated, untreated bentonites were also equilibrated with calcite, which 

represented the bulk bentonite buffer material. The pH evolution is presented in Figure 9. The 

pH quickly stabilized in the explored systems, which is not common in experiments with colloidal 

mineral materials. The pH values were consistent with the reported pH range during C-A-S-H 

formation43 and brucite precipitation44.  

Despite the need to explain the multiple equilibrium reactions that control this complex system, 

including the surface reactions, a correlation exists between the measured, stabilized pH values 

and the mineral zones that are described to form in the concrete-bentonite interface. 

Radionuclides commonly behave as heavy metal ions. Some of them behave as simple cations, 

such as Cs+, Ni2+, and Sr2+, and they can be retained in the near-neutral bentonite region 45. 

Komarneni and coworkers46 studied the sorption of cations (Pb2+, Cd2+, Mn2+, Zn2+, Cu2+, Mg2+, 

Co2+, or Ni2+) on crystalline C-S-H (tobermorite) in aqueous systems and found Ca2+ in the C-S-H 

was replaced by the cations. Thus, these cations can also be retained in the aged concrete 

regions near the bentonite. Oxy cations such as PuO2 
2+ or NpO2+ can also be retained in 

bentonite. They form stable complexes with inorganic carbon species, and they can be 



transported as ion pairs or anions47. These species become depleted as the pH rises (calcite 

precipitation), and they can be retained or adsorbed near the M-S-H region48, 49. Stable 

oxyanions, such as SeO3
2-, SeO4

2-, TcO4
-, MoO4

2- or CrO4
-, can be retained by the C-(A)-S-H or Afm 

or Aft solid solutions in which OH- and CO3
2- anions can also integrate with the major anions 

characterizing such structures50, 51. These RNs are expected to be retained in the C-A-S-H 

degraded zone of concrete. There is some scientific debate about the capacity of C-S-H-like 

phases to retain metals, oxyanions and anions. A recent paper52 concluded that chloride, 

bromides and nitrates do not specifically adsorb on C-S-H particles, but they tend to accumulate 

in a diffuse layer where they compete with OH-.  

In summary, our goal is to study the geochemically zoned rim in the concrete-bentonite interface 

as a multi-functional, nanostructured space barrier for radionuclide cations and anions. There 

are some uncertainties regarding anion retention. Nevertheless, it will be important to know 

how this barrier will perform as a whole. 

 

Figure 9. The pH evolution of the different reaction systems, including calcite and 

montmorillonite. Upper plots: Mnt reacts with the CEM-I cement paste (C-A-S-H formation). 

Lower plots: pH evolution after calcite addition in suspensions of alkali-treated, Mg-saturated 

montmorillonite (final pH 10.5) and Mnt (final pH 9.5). See Table 1. ac, fx(febex) and mx are the 

three bentonites used in the experiments.27 
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Figure 10: Scheme of the concrete-bentonite reactivity and construction of the zone pH 

geochemical barrier. CH and C-S-H are Ca(OH)2 and calcium silicate hydrates. Brucite: Mg(OH)2, 

ettringite is tri-sulfate calcium aluminate (Ca6[Al(OH)6·12H2O]2 (SO4)3·2H2O). Aft is the name of 

solid solutions of alumina, ferric oxide, and tri-sulfate in which ettringite is the most common. 

Calcite: CaCO3, (O,S)RN-, ORN and RN+: oxyanions of radionuclide-substituted and Aft phases 

as precipitated hydroxides or retained as cations. MSH: hydrated magnesium silicates including 

poorly ordered phases in concrete and nanosize silicate sheets in contact with bentonite. The 

clay buffer is bentonite.  
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