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Ph.D. Thesis

Nonlinear and nonlocal diffusion equations.
Qualitative theory and asymptotic behaviour

Candidate: Alessandro Audrito

Advisors: Prof. Susanna Terracini (UniTo), Prof. Juan Luis Vázquez (UAM)

Academic year 2017/2018



v

To Juan Luis and Susanna



vii

Acknowledgments
First of all, I would like to thank my advisors, Prof. Susanna Terracini and Prof. Juan Luis Vázquez

for having guided me in these three beautiful years of hard work. I am deeply grateful to you not only
for having directed this Ph.D. thesis, but also for being examples of tenacity, curiosity and optimism,
which I believe being essential qualities in the research field.

Secondly, I would like to thank the three departments I am affiliated with: Dipartimento di Matem-
atica “Giuseppe Peano” (UniTo), Dipartimento di Scienze Matematiche “Giuseppe Luigi Lagrange”
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Introduction and summary of the results

This Ph.D. thesis is structured in two independent parts: the first one is devoted to the study of reaction
equations with doubly nonlinear diffusion, while the second one to the analysis of the nodal set of
solutions to a nonlocal parabolic equation. In the next paragraphs we introduce some basic concepts
and the main results of both parts.

Before moving on, we would like to stress that both parts are centred on the research topic of
the diffusion equations, which is a crucial issue in PDEs. A wide variety of natural phenomena can be
mathematically described by diffusion processes and they have been intensively studied in the last
200 years. Still nowadays, they are the subject of considerable research.
The foundation of the entire diffusion theory is the Heat Equation

∂tu = ∆u x ∈ RN, t ≥ 0 (HE)

introduced by Fourier in 1822, in his work: Théorie analytique de la chaleur, [104]. As the name of the
equation suggests, Fourier’s goal was to describe the time variation of a heat density inRN, assuming
to know its distribution at time t = 0. Later, the same equation have been employed in other fields
of applied mathematics in connection with diffusive phenomena like dynamics of populations, fluid
dynamics, elasticity and so on. Due to its historical importance and in order to bring the reader into
the diffusion framework from the very beginning, we devote some paragraphs to review some well-
known but crucial concepts that, as we will see, influence the majority of the methods and techniques
employed in this treatise to study more advanced and complex models.

So, from the PDEs point of view, we are interested in describing the analytical properties of equation
(HE), such as existence, uniqueness, regularity and long time behaviour of its solutions. These are
encoded in a special solution called fundamental solution. The idea is to look for solutions in self-similar
form

U(x, t) = t−αF(xt−α/N), x ∈ RN, t > 0,

for some exponent α > 0. In the case of the Heat Equation, the fundamental solution is the time-
dependent Gaussian function

GN(x, t) =
1

(4πt)
N
2

e−
|x|2
4t ,

with α = N/2, and F(ξ) = e−ξ
2/4 with ξ = |x|t−1/2, which is the most common density employed in

Probability and Statistics (in the case of nonlinear and nonlocal diffusion we will find different special
solutions that will play a decisive role in both settings). In addition to the self-similar form, the
Gaussian GN = GN(x, t) possesses remarkable properties like symmetry with respect to the spacial
variable x ∈ RN, conservation of the initial mass, and strict positivity. Moreover, it converges to a
Dirac’s Delta when t→ 0:

GN(x, t)→ δ0(x), as t→ 0, in the sense of distributions.

This last property is crucial in the study of equation (HE) with initial datum u0(x) = u(x, 0), x ∈ RN

and u0 ∈ L1(RN) (this last assumption can be relaxed, but for now it is unimportant, see for instance

xi
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[193, 208]). Indeed, we have the convolution formula

u(x, t) = (GN ∗ u0)(x, t) :=
∫
RN

G(x − y, t) u0(y) dy, (CFHE)

which gives an analytic expression for the solution of (HE) in terms of the convolution of the Gaussian
with initial datum u0(·) (this property will not be available for the nonlinear diffusion models that we
will study in the first part and we will have to use techniques based on comparison with different
self-similar solutions). From the previous formula, it is possible to deduce existence, uniqueness,
regularity and asymptotic behaviour of the solutions, for a wide class of initial data.

Finally, we must highlight the probabilistic interpretation of formula (CFHE), discovered in the
work of Einstein [90], which links the solution of (HE) with initial datum u(x, 0) = u0(x), with the
Brownian motion which is the stochastic process most used in the applications. Indeed, it is simple to
see that

u(x, t) = (GN ∗ u0)(x, t) = Ex(u0(Wt)),

where {Wt}t≥0 is a Brownian motion and Ex(·) is the expectation w.r.t. the distribution of a Brownian
motion starting at x, i.e., the Gaussian distribution found earlier. The previous formula is probably the
first significative result which has strongly connected the fields of parabolic equations and stochastic
processes, and it is basically equivalent to the fact that the Laplacian is the generator of the Brownian
motion:

−∆u(x) = 2 lim
h→0

u(x) − Ex[u(Wh)]
h

,

for all u = u(x) smooth enough (cfr. for instance with Chapter 1 of [164]). We highlight that the
diffusion equations studied in this thesis have interesting connections with the probability field, too.
However, we will focus on nonlinear and nonlocal models that describe non-Gaussian processes (cfr.
for instance with [14, 108, 195, 197, 198] for and their references for models and connections with the
probability field) which frequently emerge in many applied sciences.

Some of the facts reviewed in the above paragraphs have serious consequences (from both the
theoretical and applicative point of view) in both topics if this thesis. For what concerns the first part,
in which we focus on the study of the long time behaviour of solutions to reaction-diffusion equations
with doubly nonlinear diffusion, we prove the existence of special wave fronts which describe the
asymptotic behaviour for large times of a much larger class of solutions (extending the classical works
[12, 13] to the doubly nonlinear setting).
In to the second part, we will extend some of the results proved in [63, 122] (for the local case) to
a class of solutions to a nonlocal parabolic equation. We find a class of parabolically homogeneous
polynomials of Hermite and Laguerre type, which will be employed to characterize the nodal points
of more general solutions. In both cases the analysis of some special/fundamental solutions (wave fronts
and homogeneous polynomials) will be the key to describe the properties of general solutions. We
can now pass to the presentation of the two main parts of the thesis.

Reaction equations with doubly nonlinear diffusion

The first part of this manuscript essentially contains the results proved in the papers [17, 18] written
in collaboration with Prof. Juan Luis Vázquez and the preprint [15] by the author. It is devoted to the
study of the long-time behaviour of solutions to the reaction-diffusion initial value problem ∂tu = ∆pum + f (u) in RN

× (0,∞)

u(x, 0) = u0(x) in RN,
(RDNL)

for a wide class of initial data u0 = u0(x) (u0 ∈ Cc(RN) with 0 ≤ u0 ≤ 1), different ranges of the
parameters m > 0 and p > 1, and different reaction terms f (·).
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The doubly nonlinear operator is defined by

∆pum := ∆p(um) = ∇ · (|∇(um)|p−2
∇(um)), m > 0, p > 1,

where∇ is the spatial gradient while∇· is the spatial divergence. We call it doubly nonlinear since it can
be seen as the composition of the m-th power and the p-Laplacian (cfr. with [59, 81, 94, 131, 144, 197, 198]
and their references, for some physical models). Note that we recover the Porous Medium operator
choosing p = 2 or the p-Laplacian operator choosing m = 1. Of course, choosing m = 1 and p = 2 we
obtain the classical Laplacian. It thus clear that the diffusion strongly depends on the parameter m > 0
and p > 1. We will divide the analysis in three different ranges m > 0 and p > 1 depending on the
sign/value of the quantity:

m(p − 1) − 1 > 0, m(p − 1) − 1 = 0, −
p
N
< m(p − 1) − 1 < 0,

called slow, pseudo-linear and fast ranges, respectively. The function f (·) will essentially be of two
types, modeled on two different classical reaction terms:

f (u) = u(1 − u), f (u) = u(1 − u)(u − a),

where 0 < a < 1 is fixed. The first one is known as Fisher-KPP reaction [103, 135] or reaction of
type A [31], whilst the second one bistable reaction or reaction of type C [31], see also the works
[12, 13, 102, 159]. The first important step is to establish the existence/non-existence of Travelling Wave
(TW) fronts for the equation in (RDNL). They are special solutions to (RDNL) (here we take spatial
dimension N = 1) with the form

u(x, t) = ϕ(ξ), ξ = x − ct, c > 0,

where the constant c > 0 is the wave’s speed of propagation, and ϕ(·) is its profile (sometimes the variable
ξ is called moving coordinate). More precisely, we consider wave profiles with the properties

0 ≤ ϕ ≤ 1, ϕ(−∞) = 0, ϕ(∞) = 1 and ϕ′ ≤ 0,

and we refer to them as admissible TWs. Finally, an admissible TW is said finite if ϕ(ξ) = 0 for ξ ≤ ξ0,
or positive if ϕ(ξ) > 0, for all ξ ∈ R. Note that a finite TW has a free boundary: x = ξ0 − ct.

TW solutions are truly valuable tools in the study of the asymptotic behaviour of solutions to
(RDNL), and the study of their existence/non-existence leads us to a nonstandard ODEs phase-plane
analysis that we present in Chapter 1. The main results of that chapter are the following (cfr. with
Theorem 1.1 and Theorem 1.2):
• Take m > 0 and p > 1 such that m(p − 1) − 1 ≥ 0 (slow and pseudo-linear diffusion) and f (·) of the
Fisher-KPP type. Then there exists a unique c∗ = c∗(m, p, f ) > 0 such that equation (RDNL) possesses
a unique admissible TW for all c ≥ c∗ and does not have admissible TWs for 0 < c < c∗.
Moreover, if m(p − 1) − 1 > 0 the TW corresponding to the value c = c∗ is finite (i.e., it vanishes in
an infinite half-line), while the TWs corresponding to the values c > c∗ are positive everywhere. If
m(p − 1) − 1 = 0 any admissible TW profile is positive everywhere.
• Take m > 0 and p > 1 such that m(p − 1) − 1 ≥ 0 and f (·) of the type C. Then there exists a unique
c∗ = c∗(m, p, f ) > 0 such that equation (RDNL) possesses a unique admissible TW for c = c∗ and does
not have admissible TWs for 0 ≤ c , c∗.
Again, if m(p − 1) − 1 > 0 the TW corresponding to the value c = c∗ is finite. If m(p − 1) − 1 = 0 the
unique admissible TW profile is positive everywhere.

The corresponding result in the linear case m = 1 and p = 2, was shown by Aronson and Weinberger
in [12] (in that case all the TWs are positive). The Fisher-KPP case with Porous Medium diffusion
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(m > 1 and p = 2) was studied by Aronson [10, 11] and later by De Pablo and Vázquez in [79, 80] (see
also [145] and very recent work [87] for more general equations), while for the p-Laplacian diffusion
(m = 1 and p > 2) there were some partial results in [91, 114]. Note that for what concerns reactions
of type C there were no results (at least to our knowledge) for nonlinear diffusion except the work of
Jin, Yin and Zheng [129] in which the authors worked with delayed reactions and Porous Medium
diffusion. W.r.t. to the classical case, in the slow diffusion range, TWs exhibit free boundaries. This
property is an important feature of Porous Medium and p-Laplacian diffusion, which is extended also
to solutions to (RDNL).

Passing to Chapter 2, in which the PDEs part begins, we show the following two asymptotic
behaviour theorems, which are the main results for slow and pseudo-linear diffusion (cfr. with
Theorem 2.1 and Theorem 2.2):
• Take m > 0 and p > 1 such that m(p − 1) − 1 ≥ 0 (slow and pseudo-linear diffusion), f (·) of the
Fisher-KPP type, and u0 ∈ Cc(RN) with 0 ≤ u0 ≤ 1. Then the solution u = u(x, t) to (RDNL) satisfies:

u(x, t)→
{

1 uniformly in {|x| ≤ ct} for all c < c∗
0 uniformly in {|x| ≥ ct} for all c > c∗

as t→∞.

Moreover, if m(p−1)−1 > 0 and c > c∗, u ≡ 0 in {|x| ≥ ct} for any t large enough (in particular u = u(x, t)
has a free boundary).
• Take m > 0 and p > 1 such that m(p− 1)− 1 ≥ 0, f (·) of type C. Then the solution u = u(x, t) to (RDNL)
satisfies the following three assertions:
(i) There are initial data u0 ∈ Cc(RN) with 0 ≤ u0 ≤ 1 such that

u(x, t)→ 0 point-wise in RN, as t→ +∞.

(ii) There are initial data u0 ∈ Cc(RN) with 0 ≤ u0 ≤ 1 such that

u(x, t)→ 1 point-wise in RN, as t→ +∞.

(iii) For the same class of initial data of (ii)

u(x, t)→
{

1 uniformly in {|x| ≤ ct} for all c < c∗
0 uniformly in {|x| ≥ ct} for all c > c∗

as t→∞.

Again, if m(p− 1)− 1 > 0 and c > c∗, u ≡ 0 in {|x| ≥ ct} for any t large enough. We must briefly comment
these two PDEs results.

From a dynamical point of view, it follows that the both steady states u = 0 and u = 1 are attractors
(part (i) and (ii)) for the space of nontrivial initial data u0 ∈ Cc(RN), 0 ≤ u0 ≤ 1, whilst the stationary
solution u = a is unstable. This is in contrast with what stated for Fisher-KPP framework, where the
steady state u = 1 is globally stable, whilst u = 0 is unstable (which means, from the point of view of
the applications, that the density u = u(x, t) saturates all the available space with constant speed of
propagation c = c∗ for large times).

The different asymptotic behaviour for reactions of type C is known in literature as threshold effect,
i.e., the initial datum must be large enough to avoid the finite time extinction of the corresponding
solution. As we will explain deeper later, threshold phenomena for reaction diffusion equations are
known since [12, 13] and much work have been done also in recent years (cfr. for instance with
[88, 157, 166] and their references). We stress that except for some particular cases [88], there are not
sharp threshold results, i.e., at least for nonlinear diffusion, there is not a complete characterization of
the classes of initial data for which (i) and (ii) hold true. This problem seems to be very challenging
also in the classical diffusion framework. In our nonlinear setting, we restrict ourselves to prove the
validity of a threshold effect by using the TWs studied in first chapter.
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As we have mentioned before, it is important to stress that the PDEs part strongly relies on the ODEs
one. In some sense, the TWs studied in Chapter 1 play the role (for what concerns the asymptotic
behaviour) of the fundamental solution for the Heat Equation (HE).

Finally, in Chapter 3 we focus on the fast diffusion range −p/N < m(p − 1) − 1 < 0 and Fisher-KPP
reactions. The main fact in this framework is that solutions do not propagate with constant speed of
propagation for large times, but exponentially fast in space for large times. In particular (cfr. with
Theorem 3.1), defining

σ∗ :=
γ̂

p
f ′(0),

we can prove that the solution u = u(x, t) to (RDNL) (with m > 0 and p > 1 are such that −p/N <
m(p − 1) − 1 < 0 and f (·) is of the Fisher-KPP type) satisfies

u(x, t)→
{

1 uniformly in {|x| ≤ eσt
} for all σ < σ∗

0 uniformly in {|x| ≥ eσt
} for all σ > σ∗

as t→∞.

This is the fast diffusion version of the asymptotic theorem proved in the slow and pseudo-linear
range, but now the speed of propagation is infinite and, more precisely, exponential w.r.t. the time
variable, for large times. We point out that exponential propagation was also found by Cabré and
Roquejoffre for fractional diffusion [47] and by Hamel and Roques [121] for linear diffusion (m = 1,
p = 2) and slow decaying initial data. Finally, the above convergence was formally proved by King and
McCabe in [133], in the Porous Medium setting, (N − 2)+/N < m < 1 and p = 2, and f (u) = u(1 − u).
Our result generalizes and completes it for doubly nonlinear diffusion (note that we also work with
more general reaction terms).

Finally, in the fast diffusion range, we prove precise bounds for the level sets of general solutions
to problem (RDNL) with the classical Fisher-KPP reaction f (u) = u(1 − u). We show that for all level
0 < ω < 1, there exist a large constant Cω > 0 and a large time tω > 0 such that

Eω(t) = {u(x, t) = ω} ⊂ {C−1
ω eσ∗t ≤ |x| ≤ Cωeσ∗t}, for all t ≥ tω.

The above inclusion is stated in Theorem 3.2. As always, we are not imposing restrictions on the
dimension N ≥ 1, and m > 0 and p > 1 are taken in the fast diffusion range. Taking spacial logarithmic
coordinates, we can re-write the previous expression as

Eω(t) ⊂ {− ln Cω ≤ ln |x| − σ∗t ≤ ln Cω}, for all t ≥ tω.

This last formulation is particularly meaningful since it allows us to compare our result with the
classical case, see the work of Bramson [44, 45] and the more recent papers [120, 160, 161]. Indeed,
in the linear case, it turns out that the location of the level sets is linear (with coefficient c∗ = 2) up to
a (time variable) logarithmic shift and a bounded interval of uncertainty. Taking logarithmic spacial
coordinates we obtain a linear propagation in time with coefficient σ∗ = γ̂/p, but not a time shift, for
large times. We stress that these bounds are new for both Porous Medium setting and the p-Laplacian
one and, possibly, is the most original result contained in the first part. We point out that similar
bounds were found in [47] for the half-Laplacian (−∆)1/2 and dimension N = 1. Finally, we quote the
very recent preprints [7] in which different bounds for level sets (propagating exponentially fast and
not) are studied in the case of Porous Medium diffusion.

Nodal properties of solutions to a nonlocal parabolic equation

In the second part we present the preprint [16] written in collaboration with Prof. Susanna Terracini.
The main goal is to describe as precisely as possible the nodal set of solutions to the nonlocal parabolic
equation

(∂t − ∆)su = 0 in RN
× (−T, 0), (NLHE)
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where 0 < s < 1 and 0 < T < ∞ are fixed. We stress from the beginning that, w.r.t. the first part, the
view-point and the main goals strongly change. In Part I we study nonnegative solutions to parabolic
reaction-diffusion equations, whilst in Part II we are focus on the local properties of solutions near
their nodal set.

Fractional powers of the Laplacian have a long history (cfr. with the works of Riesz [169, 170]) and
a wide number of applications (cfr. for instance with Athanasopoulos et al. [14], Berestycki et al. [33],
Caffarelli and Vázquez [55, 56, 57, 58], Danielli et al. [71], Figalli et al. [21, 48], Metzler and Klafter
[153], and the less recent work [89]). We finally quote some very recent works of Nyström and Sande
[163], Stinga and Torrea [185], and Banerjee and Garofalo [19], to which our work is strictly related.
In the first two, the authors present a parabolic extension method for equation (NLHE), together with
the proof of smoothness of solutions, while in the third one new monotonicity formulae and strong
unique continuation properties for a larger class of solutions are proved.

As for the elliptic setting (cfr. with [54]), nonlocal operators are often defined in terms of their
Fourier transform. In our case, introducing the heat operator H := ∂t − ∆, we define

Ĥsu(η, ϑ) := (iϑ + |η|2)s û(η, ϑ),

for any 0 < s < 1 and for all functions u = u(x, t) belonging to the domain

dom(Hs) :=
{
u ∈ L2(RN+1) : (iϑ + |η|2)s û ∈ L2(RN+1)

}
.

On the other hand, there are different representations of Hs that do not involve Fourier transform. A
very significative one uses hypersingular integrals and has been found in Theorem 1.1 of [185] (and
observed in [163]),

Hsu(x, t) =
1

|Γ(−s)|

∫ t

−∞

∫
RN

[u(x, t) − u(z, t′)]
GN(x − z, t − t′)

(t − t′)1+s dzdt′,

for all u ∈ S(RN+1), where GN = GN(x, t) is the standard Gaussian probability density introduced
before. From the above formula we deduce that the value of Hsu at a point (x, t) depends on all the
past values of u = u(x, t) and so equation (NLHE) is nonlocal both in space and time.

A key tool for studying such nonlocal operators is the extension method (cfr. with the work
of Caffarelli and Silvestre [54]). We briefly recall a parabolic version of it, studied in [163, 185]. If
u ∈ dom(Hs) and a := 1 − 2s, we define its extension U = U(x, y, t) to the extended space RN

×R+ ×R
as

U(x, y, t) :=
∫
∞

0

∫
RN

u(x − z, t − t′)Pa
y(z, t′)dzdt′,

where the Poisson kernel is defined by

Pa
y(x, t) =

1
21−aΓ( 1−a

2 )
GN(x, t)

y1−a

t1+ 1−a
2

e−
y2

4t (x, y) ∈ RN+1
+ , t > 0.

Then U = U(x, y, t) solves∂tU − y−a
∇ · (ya

∇U) = 0 in RN+1
+ × (−∞,∞),

U(x, 0, t) = u(x, t),
with − ca∂

a
yU(x, t) = Hsu(x, t),

where ∂a
yU(x, t) := limy→0+ ya∂yU(x, y, t) and ca > 0 is a suitable constant. The main idea is thus to

investigate solutions to equation (NLHE) by studying the local problem in the extended space (note
the change of variables t→ −t)∂tU + y−a

∇ · (ya
∇U) = 0 in RN+1

+ × (0,T)
−∂a

yU = 0 in RN
× {0} × (0,T),

(NP)
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and to recover information on u = u(x, t) passing to the trace U(x, 0, t) = u(x, t). This is also called
Dirichlet-to-Neumann approach (we anticipate we will work in a more general setting, but, for sim-
plicity, in this introduction we focus on problem (NP)). This approach is crucial since it allows to
introduce an Almgren-Poon type quotient

N(t,U) :=
tI(t,U)
H(t,U)

=
t
∫
RN+1

+
|∇U|2(x, y, t) dµt(x, y)∫

RN+1
+

U2(x, y, t) dµt(x, y)
, (APQ)

where {dµt}t>0 is a family of probability measures on RN+1
+ , defined by

dµt(x, y) :=
1

2aΓ( 1+a
2 )

GN(x, t)
1

t
1+a

2

e−
y2

4t dxdy,

and prove the function t → N(t,U) is monotone nondecreasing (for a suitable class of solutions
to (NP)). The time monotonicity of the Almgren-Poon quotient have been established for smooth
solutions by Stinga and Torrea in [185, Theorem 1.15] and for a larger class by Banerjee and Garofalo in
[19, Theorem 8.3]. We recall that this class of quotients was introduced by Poon [167] for the parabolic
case, to study strong unique continuation properties of solutions. We will review the proofs in Chapter
4 for completeness, adapting them to our setting.

The second main goal of Chapter 4 is establishing for what class of solutions the quotient (APQ) is
constant in time. The main fact is that the function t → N(t,U) is constant if and only if U = U(x, y, t)
is parabolically homogeneous of degree κ ∈ R, i.e.

U(δx, δy, δ2t) = δ2κU(x, y, t), for any δ > 0,

and some κ ∈ R, which is equivalent to say that U = U(x, y, t) satisfies the problemt∂tU +
(x,y)

2 · ∇U = κU in RN+1
+ × (0,T)

−∂a
yU = 0 in RN

× {0} × (0,T).

The above problem has an equivalent and (from our point of view) clearer form, which is obtained
by passing to the re-scaled version Ũ(x, y, t) = U(

√
tx,
√

ty, t), which satisfies the Ornstein-Uhlenbeck
eigenvalue problem type −y−a

∇ · (ya
∇Ũ) +

(x,y)
2 · ∇Ũ = κŨ in RN+1

+

−∂a
yŨ = 0 in RN

× {0},
(OU)

for all 0 < t < T. We are thus lead to solve an eigenvalue problem and carry out a complete spectral
analysis. We find (cfr. with Theorem 4.1) that the eigenvalues to (OU) are the half-integers

κ̃n,m =
n
2

+ m, m,n ∈N,

and the corresponding eigenfunctions are all possible linear combinations of Hermite and Laguerre
polynomials of the type:

V(x, y) =
∑

(α,m)∈J̃0

ṽα,mVα,m(x, y) =
∑

(α,m)∈J̃0

ṽα,mHα(x)L( a−1
2 ),m(y2/4),

where J̃0 is a finite set of indexes and α ∈ ZN
≥0 is a multi-index of order n ∈ N. This has significative

consequences in what follows.
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In Chapter 5 the blow-up analysis begins and we study the asymptotic behaviour of the normalized
blow-up family

Up0,λ(x, y, t) =
U(x0 + λx, λy, t0 + λ2t)√

H(λ2,U)
λ > 0,

as λ → 0+ (where H(·,Up0) is defined in (APQ) and p0 = (x0, 0, t0)). The main convergence results we
prove are (cfr. with Theorem 5.1 and Theorem 5.3):

Up0,λ → Θ̃p0 in L2
loc([0,∞); H1

µt
) and in L∞loc(R

N+1
+ × (0,∞)), (BUC)

as λ→ 0+, where the blow-up limit Θ̃p0 = Θ̃p0(x, y, t) is defined in terms of re-scaled eigenfunctions:

Θ̃p0(x, y, t) = tκ̃n,m
∑

(α,m)∈J̃0

ṽα,mHα

(
x
√

t

)
L( a−1

2 ),m

(
y2

4t

)
,

and H1
µt

is a suitable H1 Gaussian type space. Together with the above convergence properties we
obtain that the limit of the Almgren-Poon quotient (APQ) must be an eigenvalue of problem (OU),
namely

lim
t→0+

N(t,U) ∈ K̃ := {κ̃n,m}n,m∈N.

Now, the convergence results in (BUC) and the fact that the limit of the Almgren-Poon quotient can
assume only a countable number of values, are crucial in the analysis of the nodal set of solutions to
(NLHE). Indeed, the local uniform convergence combined with Federer’s reduction principle implies
a first bound on the parabolic Hausdorff dimension of the nodal set Γ(u) := u−1(0) of a nontrivial solution
u = u(x, t) (cfr. with Theorem 5.7):

dimP(Γ(u)) ≤ N + 1,

where dimP(E) denotes the parabolic Hausdorff dimension of a set E ⊂ RN
×R (cfr. with Subsection 5.5.1

for the definition). On the other hand, writing Γ(u) as the (disjoint) union

Γ(u) = R(u) ∪ S(u),

(regular and singular part of the nodal set) where

R(u) :=
{
p0 = (x0, 0,−τ0) ∈ Γ(u) : lim

t→0+
N(t,Up0) =

1
2

}
,

andS(u) := Γ(u)\R(u), we prove (cfr. with Theorem 5.8) thatR(u) is indeed regular, i.e. |∇xu| , 0 at any
point of R(u). From this fact it will follow that it is a locally C1-manifold of Hausdorff dimension N.
Let us mention that these same results where proved by Han and Lin in [122] for solutions u = u(x, t)
to some quite general local parabolic equations and by Chen [63] for systems of parabolic inequalities.
They also gave a dimensional estimate of the singular set S(u) = u−1(0)∩ |∇xu|−1(0) (we recall here the
Chen’s one)

dimP(S(u)) ≤ N. (SSLE)

The main novelty is that the above estimate seems not hold for solutions to the nonlocal equation
(NLHE). The most interesting fact here is is that the non-locality of the operator Hs only affects the
local behaviour of solutions near their singular nodal points, whilst, in some sense, leaves invariant
the regular part R(u). We conclude this introduction by anticipating that, in place of (SSLE), we will
prove a structure of the singular set theorem together with the sharp regularity of solutions at their
nodal points (cfr. with Theorem 5.9 and Theorem 5.12). These are the main results of the second part
and are based on quite recent techniques based on the works of Garofalo et al. [71, 112]. However,
their statements require some advanced notations that we prefer not to introduce here, and we refer
the reader to the introduction of Chapter 5.



Introducción y presentación de los
resultados

Esta tesis doctoral está estructurada en dos partes independientes: la primera está dedicada al estudio
de ecuaciones de reacción con difusión doblemente no lineal, mientras que la segunda, al análisis
del conjunto nodal de soluciones de ecuaciones parabólicas no locales. En los párrafos siguientes
introducimos algunos conceptos básicos y los resultados más relevantes de ambas partes.

Antes de esto, queremos enfatizar que las dos partes están centradas en el mismo tema de in-
vestigación: ecuaciones de difusión, un asunto esencial en EDPs. Una amplia variedad de fenómenos
naturales puede ser matemáticamente descrita a través de procesos de difusión que, por lo tanto,
han sido estudiados intensivamente en los últimos 200 años y, también hoy en dı́a, son el foco de
considerable atención matemática.
El fundamento de la teorı́a difusiva es la Ecuación del Calor

∂tu = ∆u x ∈ RN, t ≥ 0 (HE)

introducida por Fourier en el año 1822, en su trabajo: Théorie analytique de la chaleur, [104]. Como el
nombre de la ecuación sugiere, el objetivo de Fourier consistı́a en describir la variación temporal de
una densidad de calor enRN, asumiendo que se conoce su distribución inicial en el tiempo t = 0. Más
tarde, la misma ecuación ha sido empleada en otros campos de la matemática aplicada relacionados
con fenómenos difusivos como la dinámica de poblaciones, dinámica de fluidos, elasticidad. . . Debido
a su importancia histórica y con el fin de introducir al lector en el tema de la teorı́a de difusión,
dedicamos unos párrafos a revisar algunos conceptos bien conocidos que todavı́a tienen influencia
en la mayorı́a de los métodos y técnicas empleadas en este trabajo, donde se estudian modelos más
avanzados y complejos.

Desde el punto de vista de las EDPs, estamos interesados en describir las propiedades analı́ticas de
(HE), como la existencia, unicidad, regularidad y el comportamiento a largo plazo de sus soluciones.
Estos aspectos están codificados en una solución especial llamada solución fundamental. La idea es
buscar soluciones en forma auto-similar

U(x, t) = t−αF(xt−α/N), x ∈ RN, t > 0,

para un exponente α > 0 adecuado. En el caso de la Ecuación del Calor, la solución fundamental es la
función Gaussiana (en las variables auto-similares)

GN(x, t) =
1

(4πt)
N
2

e−
|x|2
4t ,

donde α = N/2 y F(ξ) = e−ξ
2/4 siendo ξ = |x|t−1/2, que es la densidad más comúnmente empleadada

en Probabilidad y Estadı́stica (en el caso de difusión no lineal y no local encontraremos soluciones
especiales que jugarán un papel decisivo en ambos casos). Además, la Gaussiana GN = GN(x, t) tiene

xix
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notables propriedades como la simetrı́a respecto a la variable espacial x ∈ RN, la conservación de la
masa inicial y la positividad estricta. GN = GN(x, t) converge a la Delta de Dirac cuando t→ 0:

GN(x, t)→ δ0(x), con t→ 0, en sentido distribucional.

Esta última propiedad es crucial en el estudio de la ecuación (HE) con dato inicial u0(x) = u(x, 0),
x ∈ RN y u0 ∈ L1(RN) (esta última suposición se puede relajar pero no es importante en este momento,
ver por ejemplo [193, 208]). De hecho, existe una fórmula de convolución

u(x, t) = (GN ∗ u0)(x, t) :=
∫
RN

G(x − y, t) u0(y) dy, (CFHE)

que da una expresión analı́tica para la solución de (HE) en términos de la convolución de la Gaussiana
y del dato inicial u0(·) (esta propiedad no será aplicable a los modelos con difusión no lineal estudiados
en la primera parte y tendremos que usar técnicas de comparación con diferentes soluciones auto-
similares). Queremos destacar que, de la fórmula anterior, es posible deducir existencia, unicidad,
regularidad y comportamiento asintótico de las soluciones para una amplia clase de datos iniciales.

Por último, tenemos que subrayar la interpretación probabilı́stica de la fórmula (CFHE), descubierta
por Einstein [90], que conecta la solución de (HE) con dato inicial u(x, 0) = u0(x), con el movimiento
Browniano (el proceso estocástico más usado en la práctica). De hecho, es sencillo ver que

u(x, t) = (GN ∗ u0)(x, t) = Ex(u0(Wt)),

donde {Wt}t≥0 es un movimiento Browniano y Ex(·) es la esperanza matemática respecto a la dis-
tribución de un movimiento Browniano que empieza en x, es decir, la distribución Gaussiana en-
contrada antes. La fórmula anterior es probablemente el primer resultado significativo que conectó
fuertemente el campo de las ecuaciones parabólicas con los procesos estocásticos, y es básicamente
equivalente al hecho de que el Laplaciano es el generador del movimiento Browniano:

−∆u(x) = 2 lim
h→0

u(x) − Ex[u(Wh)]
h

,

para cada u = u(x) suficientemente regular (cfr. por ejemplo el Capı́tulo 1 de [164]). Subrayamos
que también las ecuaciones de difusión estudiadas en esta tesis tienen interesantes conexiones con
el campo de la probabilidad. Sin embargo nos enfocaremos en modelos no lineales y no locales que
describen procesos no Gaussianos (cfr. por ejemplo [14, 108, 195, 197, 198] y sus referencias para modelos
y conexiones con el campo probabilı́stico) que aparecen frecuentemente en varias ciencias aplicadas.

Algunos de los hechos revisados en los párrafos anteriores tienen importantes consecuencias (desde
el punto de vista teórico y aplicado) en ambos temas de esta tesis. En lo que concierne a la primera
parte, en la cual nos enfocamos en el estudio del comportamiento asintótico (para tiempos grandes)
de las soluciones de ecuaciones de reacción-difusión con difusión doblemente no lineal, probamos
la existencia de frentes de onda especiales que describen el comportamiento asintótico para tiempos
grandes de una clase de soluciones más amplia (extendiendo ası́ los trabajos clásicos [12, 13] al caso
de difusión doblemente no linal).
En la segunda parte, extendemos unos resultados demostrados en [63, 122] (para el caso local) a una
clase de soluciones de una ecuación parabólica no local. Demostramos la existencia de una clase
de polinomios parabólicamente homogéneos de tipo Hermite y Laguerre que serán empleados para
caracterizar los puntos nodales de soluciones más generales. En los dos casos, el análisis de soluciones
especiales/fundamentales (ondas viajeras y polinomios homogéneos) será la clave para describir las
propriedades de soluciones generales. Pasamos ahora a la presentación de las dos partes de la tesis.
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Ecuaciones de reacción con difusión doblemente no lineal

La primera parte de este manuscrito contiene esencialmente los resultados demostrados en los artı́culos
[17, 18] escritos en colaboración con el Profesor Juan Luis Vázquez y el preprint [15] por el autor y
está dedicada al estudio del comportamiento para tiempos grandes de las soluciones del problema de
reacción difusión con datos iniciales ∂tu = ∆pum + f (u) en RN

× (0,∞)

u(x, 0) = u0(x) en RN,
(RDNL)

para una amplia clase de datos iniciales u0 = u0(x) (u0 ∈ Cc(RN) con 0 ≤ u0 ≤ 1), diferentes intervalos
de los parámetros m > 0 y p > 1, y diferentes términos de reacción f (·).

El operador doblemente no lineal está definido por

∆pum := ∆p(um) = ∇ · (|∇(um)|p−2
∇(um)), m > 0, p > 1,

donde ∇ es el gradiente (espacial) mientras que ∇· es el operador de divergencia (espacial). Lo
llamamos doblemente no lineal porque se puede ver como la composición de la potencia m-ésima y el
operador p-Laplaciano (cfr. [59, 81, 94, 131, 144, 197, 198] y sus referencias, para unos modelos fı́sicos).
Cabe destacar que recuperamos el operador de los Medios Porosos cogiendo p = 2 o el p-Laplaciano
cogiendo m = 1. Claramente, cogiendo m = 1 y p = 2 obtenemos el Laplaciano clásico. Está entonces
claro que la difusión depende fuertemente de los parámetros m > 0 y p > 1. Dividiremos el análisis en
tres intervalos diferentes para m > 0 y p > 1 dependiendo del valor de la cantidad:

m(p − 1) − 1 > 0, m(p − 1) − 1 = 0, −
p
N
< m(p − 1) − 1 < 0,

llamados intervalos de difusión lenta, pseudo-lineal y rápida, respectivamente. La función f (·) será
esencialmente de dos tipos, modelizados sobre dos términos diferentes de reacción clásicos:

f (u) = u(1 − u), f (u) = u(1 − u)(u − a),

donde 0 < a < 1 está fijo. El primero es conocido como reacción de tipo Fisher-KPP [103, 135] o reacción
de tipo A [31], mientras el segundo como reacción biestable o reacción de tipo C [31], veanse también
los trabajos [12, 13, 102, 159]. El primer paso consiste en establecer la existencia/no-existencia de Ondas
Viajeras (Travelling Wave, TW) para la ecuación en (RDNL). Las TWs son soluciones especiales de
(RDNL) (ahora consideramos dimensión espacial N = 1) de la forma

u(x, t) = ϕ(ξ), ξ = x + ct, c > 0,

donde la constante c > 0 es la velocidad de propagación de la onda, y ϕ(·) es su perfil (a veces la variable
ξ también se llama coordenada móvil). De manera más precisa, consideramos perfiles de onda que
satisfacen

0 ≤ ϕ ≤ 1, ϕ(−∞) = 0, ϕ(∞) = 1 y ϕ′ ≥ 0,

y los llamamos TWs admisibles. En particular, una TW admisible se llama finita si ϕ(ξ) = 0 para ξ ≤ ξ0,
o positiva si ϕ(ξ) > 0, para cada ξ ∈ R. Notamos que una TW admisible tiene una frontera libre:
x = ξ0 − ct.

Las soluciones de tipo TW son herramientas importantes en el estudio del comportamiento
asintótico de las soluciones de (RDNL), y el estudio de su existencia/no-existencia nos conduce a
un análisis de EDOs en un plano de fase no estándar que presentamos en el Capı́tulo 1. Los resultados
más relevantes de este capı́tulo son los siguientes (cfr. el Teorema 1.1 y el Teorema 1.2):
• Sean m > 0 y p > 1 tales que m(p−1)−1 ≥ 0 (difusión lenta y pseudo-lineal) y f (·) de tipo Fisher-KPP.
Entonces existe un único c∗ = c∗(m, p, f ) > 0 tal que la ecuación (RDNL) tiene una única TW admisible
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para cada c ≥ c∗ y no tiene TWs admisibles para 0 < c < c∗.
Además, si m(p − 1) − 1 > 0, la TW correspondiente al valor c = c∗ es finita (es decir, es cero en toda
una semirrecta), mientras que las TWs correspondientes a los valores c > c∗ son siempre positivas. Si
m(p − 1) − 1 = 0 cada perfil de TW admisible es siempre positivo.
• Sean m > 0 y p > 1 tales que m(p−1)−1 ≥ 0 y f (·) de tipo C. Entonces existe un único c∗ = c∗(m, p, f ) > 0
tal que la ecuación (RDNL) tiene una única TW admisible para cada c ≥ c∗ y no tiene TWs admisibles
para 0 ≤ c , c∗.
De nuevo, si m(p − 1) − 1 > 0, la TW correspondiente al valor c = c∗ es finita. Si m(p − 1) − 1 = 0, el
único perfil TW admisible es siempre positivo.

El resultado correspondiente en el caso lineal m = 1 y p = 2, fue demostrado por Aronson y
Weinberger en [12] (en este caso todas las TWs son positivas). El caso Fisher-KPP con difusión de tipo
Medios Porosos (m > 1 y p = 2) fue estudiado por Aronson [10, 11] y luego por De Pablo y Vázquez
en [79, 80] (véanse también [145] y el muy reciente artı́culo [87] que trata ecuaciones más generales),
mientras que para la difusión p-Laplaciana (m = 1 y p > 2) existen resultados parciales en [91, 114].
Cabe destacar que en lo que respecta a las reacciones de tipo C no habı́a resultados (por lo menos hasta
donde sabemos) para difusión no lineal excepto el trabajo de Jin, Yin y Zheng [129] donde los autores
trabajaron con reacciones retrasadas y difusión de tipo Medios Porosos. Respecto al caso clásico, en el
intervalo de difusión lenta, las TWs muestran fronteras libres. Esta propiedad es una caracterı́stica de la
difusión no lineal (Medios Porosos y p-Laplaciano), y se extiende también a las soluciones de (RDNL).

Pasando al capı́tulo 2, donde empieza la parte de EDPs, demostramos los dos siguientes teoremas
de comportamiento asintótico, que son los resultados más relevantes para los casos de difusión lenta
y pseudo-lineal (cfr. el Teorema 2.1 y el Teorema 2.2):
• Sean m > 0 y p > 1 tales que m(p− 1)− 1 ≥ 0 (difusión lenta y pseudo-lineal), f (·) de tipo Fisher-KPP,
y u0 ∈ Cc(RN) con 0 ≤ u0 ≤ 1. Entonces la solución u = u(x, t) de (RDNL) cumple:

u(x, t)→
{

1 uniformemente en {|x| ≤ ct} para cada c < c∗
0 uniformemente en {|x| ≥ ct} para cada c > c∗

cuando t→∞.

Además, si m(p−1)−1 > 0 y c > c∗, u ≡ 0 en {|x| ≥ ct} para cada t suficientemente grande (en particular
u = u(x, t) tine una frontera libre).
• Sean m > 0 y p > 1 tales que m(p−1)−1 ≥ 0, f (·) de tipo C. Entonces la solución u = u(x, t) de (RDNL)
satisface lo siguiente:
(i) Existen datos iniciales u0 ∈ Cc(RN) con 0 ≤ u0 ≤ 1 tales que

u(x, t)→ 0 puntualmente en RN, cuando t→ +∞.

(ii) Existen datos iniciales u0 ∈ Cc(RN) con 0 ≤ u0 ≤ 1 tales que

u(x, t)→ 1 puntualmente en RN, cuando t→ +∞.

(iii) Para la misma clase de datos iniciales que en (ii)

u(x, t)→
{

1 uniformemente en {|x| ≤ ct} para cada c < c∗
0 uniformemente en {|x| ≥ ct} para cada c > c∗

cuando t→∞.

De nuevo, si m(p−1)−1 > 0 y c > c∗, u ≡ 0 en {|x| ≥ ct}para cada t suficientemente grande. Comentamos
brevemente estos dos resultados de EDPs.

Desde un punto de vista dinámico, se sigue que ambos estados estacionarios u = 0 y u = 1 son
atractores (parte (i) y (ii)) para el espacio de datos iniciales no triviales u0 ∈ Cc(RN), 0 ≤ u0 ≤ 1, mientras
que la solución estacionaria u = a es inestable. Esto es una contradicción con el caso Fisher-KPP, donde
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el estado estacionario u = 1 es globalmente estable, mientras que u = 0 es inestable (que significa,
desde el punto de vista de las aplicaciones, que la densidad u = u(x, t) satura todo el espacio disponible
con velocidad de propagación constante c = c∗ para tiempos grandes).

Por otro lado, el comportamiento asintótico para reacciones de tipo C es conocido en la literatura
como threshold effect, es decir, el dato inicial tiene que ser suficientemente grande para evitar la ex-
tinción en tiempo finito de la solución correspondiente. Como explicaremos con más detalles luego,
fenómenos de threshold para ecuaciones de reacción y difusión son conocidos desde [12, 13] y un
gran número de artı́culos han sido escritos en años recientes (cfr. por ejemplo [88, 157, 166] y sus
referencias). Subrayamos que, excepto unos casos particulares (véanse [88]), no existen resultados de
threshold sharp, es decir, por lo menos para el caso de difusión no lineal, no hay una caracterización
completa de las clases de datos iniciales para los cuales tenemos (i) y (ii). Este problema parece ser
muy desafiante también en el caso de la difusión clásica . En el caso no lineal, nos limitamos a probar
la validez de un efecto threshold empleando una vez más las TWs estudiadas en el primer capı́tulo.
Como hemos mencionado antes, es importante destacar que la parte de EDPs está fuertemente basada
en la de ODEs. Las TWs estudiadas en el Capı́tulo 1 juegan el papel (en lo que concierne al compor-
tamiento asintótico ) de la solución fundamental de la Ecuación del Calor (HE).

Finalmente, en el Capı́tulo 3 nos enfocamos en el intervalo de difusión rápida−p/N < m(p−1)−1 < 0
y reacciones de tipo Fisher-KPP. El hecho más importante en este caso es que las soluciones no se
propagan con velocidad constante para tiempos grandes, sino de manera exponencialmente rápida en
el espacio para tiempos grandes. En particular (cfr. el Teorema 3.1), definiendo

σ∗ :=
γ̂

p
f ′(0),

demostramos que la solución u = u(x, t) de (RDNL) (cuando m > 0 y p > 1 son tales que −p/N <
m(p − 1) − 1 < 0 y f (·) es de tipo Fisher-KPP) cumple

u(x, t)→
{

1 uniformemente en {|x| ≤ eσt
} para cada σ < σ∗

0 uniformemente en {|x| ≥ eσt
} para cada σ > σ∗

cuando t→∞.

Esta es la versión “rápida” del teorema asintótico demostrado para los casos de difusión lenta y pseudo-
lineal. En este caso la velocidad de propagación es infinita, más precisamente, exponencial respecto a
la variable temporal, para tiempos grandes. Señalamos que también ha sido observada propagación
exponencial ha sido también observada por Cabré y Roquejoffre para difusión fraccionaria [47] y por
Hamel y Roques [121] para difusión lineal (m = 1, p = 2) y datos con decaimiento lento. Finalmente,
la convergencia de arriba fue demostrada formalmente por King y McCabe en [133] en el caso de los
Medios Porosos, (N − 2)+/N < m < 1 y p = 2, y f (u) = u(1 − u). Nuestro resultado lo generaliza y
lo extiende al caso de difusión doblemente no lineal (nótese que trabajamos también con términos de
reacción más generales).

Para terminar, en el caso de difusión rápida, probamos lı́mites precisos para los conjuntos de
nivel de soluciones generales de (RDNL) con reacción de tipo Fisher-KPP clásica f (u) = u(1 − u).
Demostramos que para cada nivel 0 < ω < 1, existe una constante Cω > 0 y un tiempo tω > 0 tales que

Eω(t) = {u(x, t) = ω} ⊂ {C−1
ω eσ∗t ≤ |x| ≤ Cωeσ∗t}, para cada t ≥ tω.

La inclusión de arriba está presentada en el Teorema 3.2. Como siempre, no ponemos restricciones
sobre la dimensión N ≥ 1, y m > 0 y p > 1 se eligen en el intervalo de difusión rápida. En coordenadas
espaciales logarı́tmicas, podemos rescribir la expresión anterior como

Eω(t) ⊂ {− ln Cω ≤ ln |x| − σ∗t ≤ ln Cω}, para cada t ≥ tω.

Esta última formulación es particularmente significativa porque nos permite comparar nuestro re-
sultado con el caso clásico, véanse los trabajos de Bramson [44, 45] y los artı́culos más recientes
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[120, 160, 161]. De hecho, en el caso lineal, se descubre que la posición de los conjuntos de nivel crece
linealmente (con coeficiente c∗ = 2) a menos de un desplazamiento logarı́tmico en la variable temporal
y un intervalo acotado de incertidumbre. Cogiendo coordenadas espaciales logarı́tmicas obtenemos
propagación lineal en el tiempo con coeficiente σ∗ = γ̂/p, pero no aparece desplazamiento temporal
para tiempos grandes. Subrayamos que este resultado es nuevo para el caso de los Medios Porosos y
p-Laplaciano y, posiblemente, es el resultado más original de esta primera parte. Este tipo de lı́mites
han sido demostrados en [47] para el 1/2-Laplaciano (−∆)1/2 y dimensión N = 1. Finalmente, citamos
el reciente preprint [7] donde se estudian diferentes lı́mites para conjuntos de nivel (tanto para los que
se propagan exponencialmente rápido como para los que no) en el caso de los Medios Porosos.

Propiedades nodales de soluciones de una ecuación parabólica no local

En la segunda parte presentamos el preprint [16] escrito en colaboración con la Profesora Susanna
Terracini. El objetivo principal es describir de la manera más precisa posible el conjunto nodal de las
soluciones de la ecuación parabólica no local

(∂t − ∆)su = 0 en RN
× (−T, 0), (NLHE)

donde 0 < s < 1 y 0 < T < ∞ están fijos. Subrayamos desde el primer momento que, respecto a la
primera parte, el punto de vista y los objetivos más importantes cambian fuertemente. En la Parte I
estudiamos soluciones no negativas de ecuaciones de reacción-difusión parabólicas, mientras que en
la Parte II nos enfocamos en las propiedades nodales de las soluciones cerca de sus conjuntos nodales.

Las potencias fraccionarias del Laplaciano tienen una larga historia (cfr. los trabajos de Riesz
[169, 170]) y un gran número de aplicaciones (cfr. por ejemplo Athanasopoulos et al. [14], Berestycki
et al. [33], Caffarelli y Vázquez [55, 56, 57, 58], Danielli et al. [71], Figalli et al. [21, 48], Metzler
y Klafter [153], y el trabajo menos reciente [89]). Finalmente, citamos los trabajos muy recientes de
Nyström y Sande [163], Stinga y Torrea [185], y Banerjee y Garofalo [19], con los cuales nuestro trabajo
está estrechamente relacionado. En los dos primeros, los autores presentan un método de extensión
parabólico para la ecuación (NLHE), junto con la prueba de la regularidad de las soluciones, mientras
que, en el tercero, los autores prueban una nueva fórmula de monotonı́a y propiedades de continuación
única para una amplia clase de soluciones.

Como para el caso elı́ptico (cfr. [54]), los operadores están comúnmente definidos en términos
de sus transformadas de Fourier. En nuestro caso, introduciendo el operador del calor H := ∂t − ∆,
definimos

Ĥsu(η, ϑ) := (iϑ + |η|2)s û(η, ϑ),

para cada 0 < s < 1 y para cada función u = u(x, t) que partenece al dominio

dom(Hs) :=
{
u ∈ L2(RN+1) : (iϑ + |η|2)s û ∈ L2(RN+1)

}
.

Por otra parte, existen representaciones diferentes de Hs que no implican el uso de la transformada de
Fourier. Un ejemplo muy significativo (véanse el Teorema 1.1 de [185] y también [163]) que emplea
integrales hipersingulares es

Hsu(x, t) =
1

|Γ(−s)|

∫ t

−∞

∫
RN

[u(x, t) − u(z, t′)]
GN(x − z, t − t′)

(t − t′)1+s dzdt′,

para cada u ∈ S(RN+1), donde GN = GN(x, t) es la densidad de probabilidad Gaussiana estándar
introducida previamente. De la fórmula anterior se deduce que el valor de Hsu en un punto (x, t)
depende de todo el pasado de u = u(x, t) y entonces la ecuación (NLHE) es no local en espacio y
tiempo.
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Una herramienta técnica para estudiar estos operadores no locales es el método de extensión (cfr.
el trabajo de Caffarelli y Silvestre [54]). Revisamos a continuación una versión parabólica, estudiada
en [163, 185]. Si u ∈ dom(Hs) y a := 1−2s, definimos su extensión U = U(x, y, t) en el espacio extendido
RN
×R+ ×R como

U(x, y, t) :=
∫
∞

0

∫
RN

u(x − z, t − t′)Pa
y(z, t′)dzdt′,

donde el núcleo de Poisson está definido por

Pa
y(x, t) =

1
21−aΓ( 1−a

2 )
GN(x, t)

y1−a

t1+ 1−a
2

e−
y2

4t (x, y) ∈ RN+1
+ , t > 0.

Entonces U = U(x, y, t) cumple∂tU − y−a
∇ · (ya

∇U) = 0 en RN+1
+ × (−∞,∞),

U(x, 0, t) = u(x, t),
con − ca∂

a
yU(x, t) = Hsu(x, t),

donde ∂a
yU(x, t) := limy→0+ ya∂yU(x, y, t) y ca > 0 es una constante adecuada. La idea más importante

es entonces investigar las soluciones de la ecuación (NLHE) estudiando el problema local en el espacio
extendido (nótese el cambio de variable t→ −t)∂tU + y−a

∇ · (ya
∇U) = 0 en RN+1

+ × (0,T)
−∂a

yU = 0 en RN
× {0} × (0,T),

(NP)

y obtener información sobre u = u(x, t) pasando a la traza U(x, 0, t) = u(x, t). Esto se conoce también
como método Dirichlet-to-Neumann (anticipamos que trabajaremos en un escenario más general,
pero en esta introducción nos enfocamos en el problema (NP)). Este método es crucial porque permite
introducir un cociente de tipo Almgren-Poon

N(t,U) :=
tI(t,U)
H(t,U)

=
t
∫
RN+1

+
|∇U|2(x, y, t) dµt(x, y)∫

RN+1
+

U2(x, y, t) dµt(x, y)
, (APQ)

donde {dµt}t>0 es una familia de medidas de probabilidad sobre RN+1
+ , definidas por

dµt(x, y) :=
1

2aΓ( 1+a
2 )

GN(x, t)
1

t
1+a

2

e−
y2

4t dxdy,

y probar que la función t→ N(t,U) es monótona no decreciente (para una clase adecuada de soluciones
de (NP)). La monotonı́a temporal del cociente de Almgren-Poon ha sido demostrada para soluciones
regulares por Stinga y Torrea en [185, Teorema 1.15] y para una clase más amplia por Banerjee y
Garofalo en [19, Teorema 8.3]. Recordamos que esta clase de cocientes fue introducida por Poon
[167] para el caso parabólico, con el fin de estudiar propriedades de continuación única fuerte de
las soluciones. Revisaremos las demostraciones en el Capı́tulo 4 para completitud, adaptándolas a
nuestro contexto.

El segundo objetivo principal del Capı́tulo 4 es establecer para qué clase de soluciones el cociente
(APQ) es constante en el tiempo. La idea principal es que la función t→ N(t,U) es constante si y sólo
si U = U(x, y, t) es parabólicamente homogénea de grado κ ∈ R, es decir

U(δx, δy, δ2t) = δ2κU(x, y, t), para cada δ > 0,

y κ ∈ R adecuado, que es equivalente a decir que U = U(x, y, t) resuelve el problemat∂tU +
(x,y)

2 · ∇U = κU en RN+1
+ × (0,T)

−∂a
yU = 0 en RN

× {0} × (0,T).
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El problema anterior tiene una forma equivalente y (desde nuestro punto de vista) más clara, que se
obtiene pasando a la versión reajustada Ũ(x, y, t) = U(

√
tx,
√

ty, t), que resuelve el problema de los
autovalores de tipo Ornstein-Uhlenbeck−y−a

∇ · (ya
∇Ũ) +

(x,y)
2 · ∇Ũ = κŨ en RN+1

+

−∂a
yŨ = 0 en RN

× {0},
(OU)

para cada 0 < t < T. Entonces tenemos que resolver un problema de autovalores y realizar un análisis
espectral completo. Descubrimos (cfr. el Teorema 4.1) que los autovalores de (OU) son los semi-enteros

κ̃n,m =
n
2

+ m, m,n ∈N,

y las autofunciones correspondientes son todas las posibles combinaciones lineales de polinómios del
tipo:

V(x, y) =
∑

(α,m)∈J̃0

ṽα,mVα,m(x, y) =
∑

(α,m)∈J̃0

ṽα,mHα(x)L( a−1
2 ),m(y2/4),

donde J̃0 es un conjunto finito de ı́ndices y α ∈ ZN
≥0 es un multi-ı́ndice de orden n ∈ N. Este hecho

tiene consecuencias significativas más adelante.
En el Capı́tulo 5 empieza el análisis de blow-up y estudiamos el comportamiento asintótico de la

familia de blow-up normalizada

Up0,λ(x, y, t) =
U(x0 + λx, λy, t0 + λ2t)√

H(λ2,U)
λ > 0,

cuando λ → 0+ (donde H(·,Up0) está definido en (APQ) y p0 = (x0, 0, t0)). Los resultados de conver-
gencia que probamos (cfr. el Teorema 5.1 y el Teorema 5.3) son los siguientes:

Up0,λ → Θ̃p0 en L2
loc([0,∞); H1

µt
) y en L∞loc(R

N+1
+ × (0,∞)), (BUC)

cuando λ→ 0+, donde el lı́mite blow-up Θ̃p0 = Θ̃p0(x, y, t) se define en terminos de las autofunciones
reajustadas:

Θ̃p0(x, y, t) = tκ̃n,m
∑

(α,m)∈ J̃0

ṽα,mHα

(
x
√

t

)
L( a−1

2 ),m

(
y2

4t

)
,

y H1
µt

es un espacio H1 adecuado de tipo Gaussiano. Junto a las propiedades de convergencia de
arriba, obtenemos que el lı́mite del conciente de Almgren-Poon (APQ) tiene que ser un autovalor del
problema (OU), concretamente

lim
t→0+

N(t,U) ∈ K̃ := {κ̃n,m}n,m∈N.

Los resultados de convergencia en (BUC) y el hecho de que el lı́mite del cociente de Almgren-Poon
solo puede tomar una cantidad numerable de valores son caracterı́sticas cruciales en el análisis del
conjunto nodal de soluciones de (NLHE). De hecho, la convergencia uniforme local combinada con
el principio de reducción de Federer implican un primer resultado sobre la dimensión parabólica de
Hausdorff del conjunto nodal Γ(u) := u−1(0) de una solución no trivial u = u(x, t) (cfr. el Teorema 5.7):

dimP(Γ(u)) ≤ N + 1,

donde dimP(E) denota la dimensión parabólica de Hausdorff de un conjunto E ⊂ RN
×R (cfr. la Subsección

5.5.1 para la definición). Por otra parte, escribiendo Γ(u) como la unión (disjunta)

Γ(u) = R(u) ∪ S(u),
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(parte regular y singular del conjunto nodal) donde

R(u) :=
{
p0 = (x0, 0,−τ0) ∈ Γ(u) : lim

t→0+
N(t,Up0) =

1
2

}
,

y S(u) := Γ(u) \ R(u), demostramos (cfr. el Teorema 5.8) que R(u) es regular, es decir, |∇xu| , 0 en
cada punto de R(u). De este hecho se sigue que R(u) es una variedad localmente C1 con dimensión
de Hausdorff N. Estos mismos resultados fueron probados por Han y Lin en [122] para soluciones
u = u(x, t) de ecuaciones parabólicas locales bastante generales y por Chen [63] para sistemas de
desigualdades parabólicas. Dieron también una estimación dimensional para el conjunto singular
S(u) = u−1(0) ∩ |∇xu|−1(0) (aquı́ recordamos el resultado de Chen)

dimP(S(u)) ≤ N. (SSLE)

La novedad más relevante es que esta desigualdad parece no ser válida para soluciones de la ecuación
no local (NLHE). El hecho más interesante es que la no localidad del operador Hs afecta únicamente al
comportamiento asintótico de las soluciones cerca de sus puntos nodales singulares, mientras que, en
algun sentido, deja invariante la parte regularR(u). Terminamos esta introducción anticipando que, en
lugar de (SSLE), probaremos un teorema de estructura del conjunto singular junto con la regularidad
óptima de las soluciones cerca de sus puntos nodales (cfr. el Teorema 5.9 y el Teorema 5.12). Estos
son los resultados principales de esta segunda parte y están basados en técnicas bastante recientes,
introducidas en los trabajos de Garofalo et al. [71, 112]. Sin embargo, sus enunciados necesitan unas
nociones más avanzadas que preferimos no introducir aquı́, y referimos al lector a la introducción del
Capı́tulo 5.



Part I

Long time behaviour for reaction
equations with doubly nonlinear diffusion

1



Introduction

In this first part, we study the doubly nonlinear reaction-diffusion (RDNL) problem posed in the whole
Euclidean space  ∂tu = ∆pum + f (u) in RN

× (0,∞)

u(x, 0) = u0(x) in RN,
(1)

for a wide class of initial data u0 = u0(x), different ranges of the parameters m > 0 and p > 1, and
different reaction terms f (·).
We stress from the beginning the the main goal of our work consists in establishing the asymptotic
behaviour of the solutions u = u(x, t) to problem (1) for large times. Other important issues like
existence, uniqueness and regularity of the solutions are not studied here, but briefly presented with
the related bibliography.
As the reader can easily imagine, the asymptotic behaviour of solutions to (1) will depend on the choice
of the initial datum, on the diffusion parameters (m > 0 and p > 1), and on the reaction f (·). For this
reason, we have decided to dedicate this introduction to giving a clear and methodical presentation
of the basic concepts needed in the rest of the first part. Furthermore, we will recall some known facts
and preliminaries, essential in the rest of the treatise (as the definition of Travelling Wave (TW) to
whom we dedicate a short section) and, finally, we will briefly sketch the contents of each chapter.

“Slow”, “Fast” and “Pseudo-linear” diffusion

We recall that the p-Laplacian is a nonlinear operator defined by the formula

∆pv := ∇ · (|∇v|p−2
∇v),

and we consider the more general diffusion term

∆pum := ∆p(um) = ∇ · (|∇(um)|p−2
∇(um)), m > 0, p > 1,

that we call “doubly nonlinear”operator. Here, ∇ is the spatial gradient while ∇· is the spatial
divergence. The doubly nonlinear operator (which can be though as the composition of the m-th
power and the p-Laplacian) is much used in the elliptic and parabolic literature (see [59, 81, 94, 131,
144, 197, 198] and their references) and allows to recover the Porous Medium operator choosing p = 2
or the p-Laplacian operator choosing m = 1. Of course, choosing m = 1 and p = 2 we obtain the
classical Laplacian.
In order to fix the notations and avoid cumbersome expressions in the rest of the of the first part, we
define the constant

γ := m(p − 1) − 1, m > 0, p > 1,

which will play an important role in our study. The importance of the constant γ is related to the
properties of the fundamental solutions to the “purely diffusive” doubly nonlinear parabolic equation

2
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and we refer the reader to [197] and to the section dedicated to the preliminaries on doubly nonlinear
diffusion, for a more detailed explanation. We will consider parameters m > 0 and p > 1 such that

γ ≥ 0 or −
p
N
< γ < 0, m > 0, p > 1.

We refer to the range γ > 0 as “slow diffusion” assumption, “pseudo-linear” assumption when we
consider γ = 0, whilst “fast diffusion” assumption when −p/N < γ < 0. In Figure 1 the corresponding
ranges in the (m, p − 1)-plane are reported.

0 1 N - 1
0

1

p - 1

m

 

 

  = 0   > 0

 = - p/N

 < - p/N - p/N <  < 0

A(p=2,m=1)

Figure 1: The “slow diffusion” region (red area), “fast diffusion” region (yellow area) and the “pseudo-
linear” line in the (m, p − 1)-plane. The range γ ≤ −p/N (orange area) has peculiar features and it is
not studied in this treatise.

Reaction terms and initial data

The function f (·) will be of three different types. The first one is a reaction term modeled on the famous
references by Fisher [103], and Kolmogorov-Petrovski-Piscounoff [135] in their seminal works on the
existence of travelling wave propagation. The classical example is the logistic term f (u) = u(1 − u),
0 ≤ u ≤ 1. More generally, we will assume that

f (0) = f (1) = 0, 0 < f (u) ≤ f ′(0)u in (0, 1)
f ∈ C1([0, 1]), f ′(0) > 0, f ′(1) < 0
f (·) has a unique critical point in (0, 1),

(2)

see [12, 13, 101, 103, 135, 158] for a more complete description of the model. We will refer to reactions
satisfying (2) as Fisher-KPP reactions or reactions of type A.

The second one is modeled on the function f (u) = u(1 − u)(u − a), where 0 < a < 1 is a fixed
parameter and 0 ≤ u ≤ 1. More precisely, we assume

f (0) = f (a) = f (1) = 0, f (u) < 0 in (0, a), f (u) > 0 in (a, 1)
f ∈ C1([0, 1]), f ′(0) < 0, f ′(a) > 0, f ′(1) < 0∫ 1
0 um−1 f (u)du > 0

f (·) has a unique critical point in (0, a) and a unique critical point in (a, 1).

(3)
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Note that the classical reaction f (u) = u(1−u)(u− a) with 0 < a < 1/2 satisfies (3) in the case m = 1, and
the last assumption implies that the unique critical point of f (·) in (0, a) is a (local) minimum while the
unique critical point in (a, 1) is a (local) maximum. Differently from the reactions of the Fisher-KPP
type (or type A) ([103, 135]), there is not a standard way to indicate them: Fitzhugh-Nagumo model
or Nagumo’s equation in [43, 102, 150, 159], “heterozygote inferior” reaction in [12], reaction of type
C in [31], or Allen-Cahn reaction [149], for reaction terms like (3). We will refer to them following the
notation proposed in [31], i.e., reaction of type C.

In the study of the third one, we assume
f (0) = f (a) = f (1) = 0, 0 < f (u) ≤ f ′(0)u in (0, a), f (u) < 0 in (a, 1)
f ∈ C1([0, 1]), f ′(0) > 0, f ′(a) < 0, f ′(1) > 0
f (·) has a unique critical point in (0, a) and a unique critical point in (a, 1).

(4)

We point out that in this second case, the basic model for the reaction is f (u) = u(1−u)(a−u), 0 ≤ u ≤ 1
and 0 < a < 1 is again a fixed parameter (note that w.r.t. the previous setting, our assumptions imply
that the unique critical point of f (·) in (0, a) is (local) maximum while the unique critical point in (a, 1)
is a (local) minimum). We point out from the beginning that the last assumptions in (3) and (4) will be
mostly employed in the ODEs analysis. According to the previous choice, we will refer to a function
satisfying (4) as reaction of type C’, even though it was proposed as “heterozygote superior” in [12].

0 1

0

 

 

Fisher-KPP Type

0 a 1

0

 

 

Type C

0 a 1

0

 

 

Type C'

Figure 2: Qualitative representation of the reactions of Fisher-KPP type, type C and type C’, respec-
tively.

It is the least studied of the three models. This is possibly due to the fact that reactions satisfying
(4) are Fisher-KPP reactions (or reaction of type A) on the interval [0, a], i.e., they satisfy f (0) = f (a) = 0, f (u) > 0, in (0, a)

f ∈ C1([0, a]), f ′(0) > 0, f ′(a) < 0,

and so, part of the theory concerning reactions (4) is similar to the study of models with Fisher-KPP
reactions type. Let us see this fact through a scaling technique. Let us fix 0 < a < 1 and let us suppose
for a moment that u = u(x, t) satisfies the equation

∂tu = ∆pum + f (u) in RN
× (0,∞),

where now f (·) is of the Fisher-KPP type (or type A), i.e. f (0) = f (1) = 0, f (u) > 0, in (0, 1)
f ∈ C1([0, 1]), f ′(0) > 0, f ′(1) < 0.
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Then the re-scaled ua = ua(y, s) of u = u(x, t) defined by

u(x, t) = a−1ua(y, t), with y = aγ/px,

satisfies the equation
∂tua = ∆pum

a + fa(ua) in RN
× (0,∞),

where fa(ua) := a f (a−1ua) is of type C’ in [0, a]. This property will be very helpful both in the ODEs
and PDEs analysis, where we will highlight the connections and the significant differences between
the type C’ setting and the Fisher-KPP one.

Finally, typical assumptions on the initial datum areu0 : RN
→ R is continuous with compact support: u0 ∈ Cc(RN)

u0 . 0 and 0 ≤ u0 ≤ 1.
(5)

We point out that majority of our results hold true even for a larger class of initial data. However, out
of clarity in the exposition, we have decided to keep (5) as “basic” assumption on the initial datum
and be more specific when we will give the precise statement of our theorems.

Preliminaries on doubly nonlinear diffusion

Now we present some basic results concerning the Barenblatt solutions of the “purely diffusive”
doubly nonlinear parabolic equation which are essential to develop our study in the next sections
(the reference for this issue is [197]). Moreover, we recall some basic facts on existence, uniqueness,
regularity and Comparison Principles for the solutions of problem (1).

Barenblatt solutions

Fix m > 0 and p > 1 such that γ > −p/N and consider the “purely diffusive” doubly nonlinear problem: ∂tu = ∆pum in RN
× (0,∞)

u(t)→Mδ0 in RN as t→ 0,
(6)

where Mδ0(·) is the Dirac’s function with mass M > 0 at the origin of RN and the convergence has to
be intended in the sense of measures.

Case γ > 0. It has been proved (see [197]) that problem (6) admits continuous weak solutions in
self-similar form BM(x, t) = t−αFM(xt−α/N), called Barenblatt solutions, where the profile FM(·) is defined
by the formula:

FM(ξ) =
(
CM − k|ξ|

p
p−1

) p−1
γ

+

where

α =
1

γ + p/N
, k =

γ

p

(
α
N

) 1
p−1

and CM > 0 is determined in terms of the mass choosing M =
∫
RN BM(x, t)dx (see [197] for a complete

treatise). It will be useful to keep in mind that we have the formula

BM(x, t) = MB1(x,Mγt)

which describes the relationship between the Barenblatt solution of mass M > 0 and mass M = 1. We
remind the reader that the solution has a free boundary which separates the set in which the solution is
positive from the set in which it is identically zero (“slow” diffusion case).
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Case γ = 0. Again we have Barenblatt solutions in self-similar form. The new profile can be obtained
passing to the limit as γ→ 0:

FM(ξ) = CM exp
(
− k|ξ|

p
p−1

)
,

where CM > 0 is a free parameter and it is determined fixing the mass, while now k = (p − 1)p−p/(p−1).
Note that, in this case the constant α = N/p and for the values m = 1 and p = 2, we have α = N/2
and FM(·) is the Gaussian profile. The main difference with the case γ > 0 is that now the Barenblatt
solutions have no free boundary but are always positive.

Case −p/N < γ < 0. Even in this range there are Barenblatt solutions, with profile FM(·):

FM(ξ) =
[
CM + k|ξ|

p
p−1

]− p−1
γ̂
,

where we set γ̂ := −γ and now

α =
1

p/N − γ̂
, k =

γ̂

p

(
α
N

) 1
p−1
, CM > 0,

where the constants α, k, and CM are generally different from the ones of the range γ ≥ 0. We point out
that the relation between Barenblatt solutions of different masses still holds true, replacing γ by −γ̂:

BM(x, t) = MB1(x,M−γ̂t).

Moreover, we have some estimates of the profile corresponding to the Barenblatt solution of mass
M > 0:

K2(1 + |ξ|p/γ̂)−1
≤ FM(ξ) ≤ K1|ξ|

−p/γ̂ for all ξ ∈ RN

for suitable positive constants K1 and K2 depending on M > 0.

Existence, Uniqueness, Regularity and Comparison Principles

Before presenting the main results of this paper, we briefly discuss the basic properties of solutions
to problem (1). Results about existence of weak solutions of the pure diffusive problem and its
generalizations, can be found in the survey [131] and the large number of references therein. The
problem of uniqueness was studied later (see for instance [3, 83, 84, 141, 147, 192, 198, 210]). The
classical reference for the regularity of nonlinear parabolic equations is [137], followed by a wide
literature. For the Porous Medium case (p = 2) we refer to [197, 198], while for the p-Laplacian case
we suggest [81, 144] and the references therein. Finally, in the doubly nonlinear setting, we refer to
[128, 168, 204] and, for the “pseudo-linear” case, [136]. The results obtained in these works showed
the Hölder continuity of the solution of problem (1). We mention [81, 198, 210, 212] for a proof of the
Comparison Principle. Finally, we suggest [4] and [181] for more work on the “pure diffusive” doubly
nonlinear equation and the asymptotic behaviour of its solutions.

Travelling Waves

They are special solutions with remarkable applications, and they will play an essential role in the first
two chapters of this first part. Let us review the main concepts and definitions.

Fix m > 0 and p > 1 such that γ ≥ 0, and assume that we are in space dimension 1 (note that when
N = 1, the DNL operator has the simpler expression ∆pum = ∂x

(
|∂xum

|
p−2∂xum

)
. A TW solution to the

equation in (1):
∂tu = ∂x

(
|∂xum

|
p−2∂xum

)
+ f (u) in R × [0,∞),
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is a solution of the form u(x, t) = ϕ(ξ), where ξ = x − ct, c > 0 and the profile ϕ(·) is a real function. In
our reaction-diffusion setting, we will need the profile to satisfy

0 ≤ ϕ ≤ a, ϕ(−∞) = a, ϕ(∞) = 0 and ϕ′ ≤ 0, (7)

for some 0 < a ≤ 1. In the case in which a = 1 we say that u(x, t) = ϕ(ξ) is an admissible TW solution,
whilst if 0 < a < 1, we will talk about a-admissible TW solution. Similarly, one can consider TWs of
the form u(x, t) = ϕ(ξ) with ξ = x + ct, ϕ nondecreasing and such that ϕ(−∞) = 0 and ϕ(∞) = a. It is
easy to see that these two options are equivalent, since the profile of the second one can be obtained
by reflection of the first one, and it moves in the opposite direction of propagation. In the rest of the
paper, we will prevalently use the first kind of admissible/a-admissible, (7).

0

1

 

 

Reflected Pos. TW

Reflected Fin. TW

Figure 3: Examples of admissible TWs: Finite and Positive types

Finally, an admissible/a-admissible TW is said finite if ϕ(ξ) = 0 for ξ ≥ ξ0 and/or ϕ(ξ) = 1 for ξ ≤ ξ1,
or positive if ϕ(ξ) > 0, for all ξ ∈ R. The line x = ξ0 + ct that separates the regions of positivity and
vanishing of u(x, t) is then called the free boundary. Same name would be given to the line x = ξ1 + ct
and ϕ(ξ) = 1 for ξ ≥ ξ1 with x1 finite, but this last situation will not happen.

Before moving forward, we point that sometimes it will be useful to work with “normalized”
reactions, i.e., functions f (·) satisfying one of (2), (3), or (4) and, furthermore, | f ′(0)| = 1, without losing
in generality. This reduction will be very useful to make the reading easier and it is strictly related to
the speed of propagation of the travelling wave solutions.
To see this equivalence, let us fix A > 0. We define the function uA(y, τ) = u(x, t), where x = Ay, t = Apτ,
and u = u(x, t) is a solution of the equation in (1):

∂tu = ∆p,xum + f (u) in RN
× (0,∞),

and ∆p,x is the p-Laplacian with respect to the spacial variable x ∈ RN. Thus, it is simple to see that
uA = uA(y, τ) solves the same equation where we replace ∆p,x with ∆p,y (the p-Laplacian with respect
to the spacial variable y ∈ RN) and the function f (·) with the reaction fA(·) = Ap f (·). Hence, to have
| f ′A(0)| = 1, it is sufficient to choose A = | f ′(0)|−1/p. We then recover the properties of a solution of the
equation with | f ′(0)| , 1 by means of the formula

u(x, t) = uA

(
| f ′(0)|1/px, | f ′(0)|t

)
.

We point out that our transformation changes both the space and the time variables. Consequently,
we have to take into account the change of variable of the initial datum u0(x) = uA0(| f ′(0)|1/px) when
we consider the initial-value problem associated with our equation. Moreover, notice that the speed
of propagation changes when we consider TW solutions u(x, t) = ϕ(x− ct), c > 0. Indeed, if c > 0 is the
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speed of propagation of a TW of the equation in (1) with | f ′(0)| , 1 and ν > 0 is the same speed when
| f ′(0)| = 1, we have

c =
x
t

= A1−p y
τ

= | f ′(0)|
p−1

p ν.

This last formula will be useful since it clearly shows how the propagation speed changes when we
change the derivative | f ′(0)|. Thus, from now on, we will try to make explicit the dependence of the
propagation speeds on the quantity | f ′(0)| by using the previous formula. This fact allows us to state
our results in general terms and, at the same time, in a standard and clear way.

Organization of the chapters

The first part of the thesis is organized in three chapters. Here we just introduce the main ideas and
the distinct “block of work”, whilst we will present all the details and the precise statements of our
results at the beginning of each chapter.

In Chapter 1 we consider the range of parameters m > 0 and p > 1 such that γ ≥ 0 (“slow”
and “pseudo-linear” diffusion) and we study the existence/non-existence of admissible/a-admissible TW
solutions to the equation in (1) for reaction terms of the three different type introduced before (cfr.
with (2), (3), and (4)) through a phase plane analysis.
We find that admissible/a-admissible TWs exist depending on the wave’s propagation speed c > 0 and,
of course, on the reaction term f (·). This strong dependence is a very well-known fact for both linear
diffusion (see for instance [12, 13, 102, 103, 135, 150]) and nonlinear diffusion (see [61, 79, 91]), and we
extend it to the doubly nonlinear setting.

In Chapter 2 the PDEs analysis begins. Again we consider the range of parameters m > 0 and p > 1
such that γ ≥ 0 and we employ the TWs analyzed in the previous chapter together with a priori PDEs
lemmas to study the asymptotic behaviour of solutions to problem (1). Again, our results depend on
the reaction term f (·) which, as always, is assumed to satisfy one of (2), (3), or (4). The nature of the
reaction influences and modifies the stability of the steady states u = 0, u = a and u = 1 for large times,
so that we will obtain “saturation/non-saturation” and “threshold effect” phenomena depending on
f (·). Moreover, employing TWs as barriers, we will prove that for a large class of initial data the
solutions to (1) propagate in space with constant speed for large times. This is the main result of the
first two chapters (even in this case, it extends some very well-known facts for linear diffusion).

Finally, in Chapter 3 we study the asymptotic behaviour of solutions to (1) in the “fast diffusion”
range −p/N < γ < 0 and for Fisher-KPP type reactions (i.e. satisfying (2)). This framework turns out
to be very interesting since TWs cannot describe the asymptotic behaviour in time, for more general
solutions. Indeed, we find that solutions to (1) propagate exponentially fast in space for large times,
with a strong deviance w.r.t. the “slow” and “pseudo-linear” setting (see also [47, 121, 133, 182] for
previous and related works). Moreover, we prove precise bounds for the level sets of the solutions,
getting very powerful information on the front location.



Chapter 1

TWs for “slow” diffusion

This first chapter is devoted to the study of the existence/non-existence of travelling wave solutions to
the equation in (1) (that we rename for simplifying the reading):

∂tu = ∂x(|∂xum
|
p−2∂xum) + f (u) in R × (0,∞), (1.1)

where N = 1 and γ := m(p − 1) − 1 ≥ 0 (cfr. with Figure 1.1). Of course, the function f (·) will always
satisfy one of (2), (3), or (4).

0 1
0

1

 

 

"Slow diffusion" range

 = 0

m

p - 1

A(p=2,m=1)

Figure 1.1: The “slow diffusion” region (red area) and the “pseudo-linear” line (green line) in the
(m, p − 1)-plane.

We recall that a TW solution to equation (1.1) is a solution of the form u(x, t) = ϕ(ξ), where ξ = x − ct,
c > 0 and the profileϕ(·) is a real function. We will mainly focus on a-admissible TWs, i.e., TWs satisfying
(7):

0 ≤ ϕ ≤ a, ϕ(−∞) = a, ϕ(∞) = 0 and ϕ′ ≤ 0,

for some 0 < a ≤ 1. As explained in the introduction to Part I, when a = 1 we abbreviate 1-admissible
to admissible TW solutions, and we will talk about finite TW if ϕ(ξ) = 0 for ξ ≥ ξ0, while positive TW
if ϕ(ξ) > 0, for all ξ ∈ R. The line x = ξ0 + ct that separates the regions of positivity and vanishing of
u(x, t) is called the free boundary.
Finally, we stress the TWs are essentially one dimensional objects (a natural extension to several
dimensions consists in looking for solutions in the form u(x, t) = ϕ(x · n − ct) where x ∈ RN and n is
a unit vector of RN which direction coincides with the direction of the wave propagation) and that
there is an equivalent definition in which we consider “reflected” TWs satisfying u(x, t) = ϕ(ξ) with
ξ = x + ct, ϕ nondecreasing and such that ϕ(−∞) = 0 and ϕ(∞) = a. These TWs move in the opposite
direction of propagation and can be obtained be the others by reflection.

9
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1.1 Main results

As we have mentioned in the introduction, in this Chapter we perform an accurate ODEs analysis to
study the existence of TWs to equation (1.1) when γ := m(p − 1) − 1 ≥ 0. Out of clarity, we divide the
“slow” diffusion range γ > 0 to the “pseudo-linear” one γ = 0, highlighting the interesting differences
between the two ranges.

Theorem 1.1. (cfr. with Theorem 2.1 of [17] and Theorem 1.1 of [15])
Fix N = 1, and m > 0 and p > 1 such that γ > 0.

(i) If the reaction f (·) is of Fisher-KPP type (or type A), i.e., it satisfies (2), then there exists a unique
c∗ = c∗(m, p, f ) > 0 such that equation (1.1) possesses a unique admissible TW for all c ≥ c∗ and does not have
admissible TWs for 0 < c < c∗. Moreover, the TW corresponding to the value c = c∗ is finite (i.e., it vanishes in
an infinite half-line), while the TWs corresponding to the values c > c∗ are positive everywhere.

(ii) If the reaction f (·) is of type C, i.e., it satisfies (3), then there exists a unique c∗ = c∗(m, p, f ) > 0 such that
equation (1.1) possesses a unique admissible TW for c = c∗ and does not have admissible TWs for 0 ≤ c , c∗.
Again, the TW corresponding to the value c = c∗ is finite.

(iii) If the reaction f (·) is of type C’, i.e., it satisfies (4), then there exists a unique c∗ = c∗(m, p, f ) > 0 such
that equation (1.1) possesses a unique a-admissible TW for all c ≥ c∗ and does not have a-admissible TWs for
0 < c < c∗. The TWs corresponding to values c > c∗ are positive everywhere while, the TW corresponding to the
value c = c∗ is finite.

In all parts (i), (ii), and (iii) the uniqueness of the TW is understood up to reflection and horizontal
displacement. Moreover, we point out that not to exceed in notations, we have used the same symbol for
c∗ = c∗(m, p, f ) even if the critical speeds of part (i), (ii), and (iii) generally differ from each other.

The existence/non-existence of travelling wave solutions for reaction-diffusion equations has been
widely studied and still nowadays it is an important field of research. Due to this fact, a bibliographical
survey is now in order. In the linear setting (m = 1 and p = 2), the first version of Theorem 1.1 was
proved in the pioneer work of Aronson and Weinberger in [12, 13], and by Fife and McLeod in
[102]. Before these works, wave fronts were introduced by Fisher [103], Kolmogorov-Petrovsky-
Piscounoff [135], and McKean in [150] with different techniques. However, in the linear setting, all
the admissible/a-admissible TWs are always positive and solutions with free boundaries, which are the
fundamental novelties respect to the classical case, are not admitted (cfr. with Theorem 1.2).

Passing to the nonlinear diffusion setting, the existence of free boundaries was already observed by
DePablo and Vázquez in the Porous Medium setting p = 2 in [79] for Fisher-KPP reactions and only
more recently in [138] and, later, in [129] for reactions of type C with time delay.
More precisely, part (i) of Theorem 1.1 generalizes the ODEs theorem proved in [79], whilst part (ii)
extends the results of [138, 129] to the doubly nonlinear setting with reaction satisfying (3) (recall
that here we do not consider reactions with time delay). For reactions of the Fisher-KPP type and
p-Laplacian diffusion we also quote [91], where the existence of TW solution was already been proved
with different techniques, and the more recent paper [113] where an ODEs analysis is carried out for
Fisher-KPP reactions an (p, q)-Laplacian diffusion.

As mentioned above, TW solutions appear in other kind of reaction-diffusion equations. We
mention the fundamental works of [28, 29, 30] for reactions equations in non homogeneous media,
[6, 32, 115] for equations with linear diffusion and “non-local reactions”, whilst [2, 47, 117, 152] for
reaction equations with “non-local” diffusion of Fractional Laplacian type and [182] with “non-local
and nonlinear” diffusion.

In the next theorem we treat the “pseudo-linear” range γ = 0 (for related bibliography, see the
references given above). We anticipate that the proof of the following theorem is strictly related to
the one of Theorem 1.1, which is the main result of this chapter. Nevertheless, the range γ = 0 shows
different phenomena and significative technical details that need to be presented separately.
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Theorem 1.2. (cfr. with Theorem 2.2 of [17] and Theorem 1.1 of [15])
Fix N = 1, and m > 0 and p > 1 such that γ = 0.

(i) If the reaction f (·) is of Fisher-KPP type (or type A), i.e., it satisfies (2), then there exists a unique critical
speed

c0∗ := p(m2 f ′(0))
1

mp (1.2)

such that equation (1.1) possesses a unique admissible TW for all c ≥ c0∗ while it does not possess admissible
TWs for 0 < c < c0∗. All the admissible TWs are positive everywhere.

(ii) If the reaction f (·) is of type C, i.e., it satisfies (3), then there exists a unique c0∗ = c0∗(m, p, f ) > 0
such that equation (1.1) possesses a unique admissible TW for c = c0∗ and does not have admissible TWs for
0 ≤ c , c0∗. Again, the TW corresponding to the value c = c0∗ is positive everywhere.

(iii) If the reaction f (·) is of type C’, i.e., it satisfies (4), then there exists a unique c0∗ = c0∗(m, p, f ) > 0 such
that equation (1.1) possesses a unique a-admissible TW for all c ≥ c0∗ and does not have a-admissible TWs for
0 < c < c0∗. All the a-admissible TWs are positive everywhere.

As in Theorem 1.1, in all parts (i), (ii), and (iii) the uniqueness of the TW is understood up to reflection
and horizontal displacement. Again we have employed the same symbol c0∗ = c0∗(m, p, f ) to indicate the critical
speed of propagation. In this case we will show that the critical speeds found in part (i) and (iii) coincide.

Theorem 1.2 is the “pseudo-linear” version of Theorem 1.1 and, as mentioned above, generalizes
the results proved in [12, 13, 102] for the linear case (m = 1 and p = 2), to the all “pseudo-linear”
range γ = 0. As one could have guessed solutions with free boundaries disappear and only admissible/a-
admissible TWs are left. This turns out to be a really interesting fact, since it means that the positivity of
the admissible/a-admissible TWs is not due to the linearity of the diffusion operator but depends on its
homogeneity, i.e., on the relations between the diffusive parameters m > 0 and p > 1. Finally, we stress
that for reactions of Fisher-KPP type (2) and type C’ (4) we have an explicit formula for the critical
speed given by formula (1.2), which generalizes the classical one c0∗ =

√
4 f ′(0), found in [12], it agrees

with the scaling for the critical speed:

c∗(m, p) = f ′(0)
p−1

p ν∗(m, p),

where ν∗(m, p) is the critical speed when and f ′(0) = 1 (cfr. with the introduction).
In this chapter, we lastly prove that the critical speed c∗ = c∗(m, p, f ) (when γ > 0), found in Theorem

1.1, converges to the critical speed c0∗ = c0∗(m, p, f ) (when γ = 0), found in Theorem 1.2, as γ→ 0.

Theorem 1.3. (cfr. with Theorem 2.3 of [17])
Consider the region R = {(m, p) : γ = m(p − 1) − 1 > 0} and let c∗(m, p) and c0∗(m, p) be the critical speeds of
propagation found in Theorem 1.1 and Theorem 1.2, respectively, with reaction f (·) satisfying one of (2), (3), or
(4). Then the function

(m, p) →

{
c∗(m, p) if γ > 0
c0∗(m, p) if γ = 0

(1.3)

is continuous on the closure R = {(m, p) : γ = m(p − 1) − 1 ≥ 0}.

The previous theorem is proved in two steps (for Fisher-KPP reactions only since the other two
cases are similar). We first show the continuity of the function (1.3) in the region R and then we
extend the continuity to its closure R. Theorem 1.3 will allows us to unify the notations c∗ = c∗(m, p, f )
and c0∗ = c0∗(m, p, f ) in Chapter 2, when the PDEs part begins. In the current chapter we keep them
separate not generate confusion.

Finally, we end the chapter with some extensions, comments and open problems.
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1.2 Proof of Theorem 1.1

We fix N = 1, and m > 0 and p > 1 such that γ > 0 and we look for admissible/a-admissible TWs to
equation (1.1). So, substituting the ansatz u(x, t) = ϕ(ξ), ξ = x − ct into (1.1), we obtain the equation of
the profile

[|(ϕm)′|p−2(ϕm)′]′ + cϕ′ + f (ϕ) = 0 in R, (1.4)

where the notation ϕ′ indicates the derivative of ϕ with respect to the variable ξ.
Now the standard approach consists in performing the change of variables X = ϕ and Y = ϕ′,

transforming the second-order ODE (1.4) into the system of two first-order ODEs

dX
dξ

= Y, (p − 1)mp−1Xµ
|Y|p−2 dY

dξ
= −cY − f (X) − µmp−1Xµ−1

|Y|p,

where we set for simplicity µ := (m − 1)(p − 1). It can be re-written as the less singular system

dX
ds

= (p − 1)mp−1Xµ
|Y|p−2Y,

dY
ds

= −cY − f (X) − µmp−1Xµ−1
|Y|p, (1.5)

where we used the re-parametrization dξ = (p−1)mp−1Xµ
|Y|p−2ds. Note that both system are equivalent

for Y , 0 but, at least in the case µ > 1, the second one has two critical points (0, 0) and (1, 0).
This setting seems to be convenient since proving the existence of an admissible TW for (1.1) corre-
sponds to showing the existence of a trajectory in the region of the (X,Y)-plane where 0 ≤ X ≤ 1 and
Y ≥ 0, and joining the critical points (0, 0) and (1, 0). More precisely, the desired trajectories must
“come out” of (0, 0) and “going into” (1, 0). Let us point out that, contrary to the linear case (see for
example [11, 12] and [135]), we face a more complicated problem. Indeed, it turns out that in the
nonlinear diffusion case, the Lyapunov linearization method ([75], Chapter 8) used to analyze the local
behaviour of the trajectories near the critical points cannot be directly applied to system (1.5), due to
its heavy nonlinear features.

The previous observation suggests to change our approach. So, inspired by the methods used in
the Porous Medium framework (see [79]), we introduce the new variables

X = ϕ and Z = −

(
m(p − 1)

γ
ϕ

γ
p−1

)′
= −mX

γ
p−1−1X′. (1.6)

These variables correspond to the density and the derivative of the pressure profile (see [94]). Assuming
only X ≥ 0, we obtain the first-order ODE system

−m
dX
dξ

= X1− γ
p−1 Z, −m(p − 1)X

γ
p−1 |Z|p−2 dZ

dξ
= cZ − |Z|p −mX

γ
p−1−1 f (X), (1.7)

that again can be re-written as the non-singular system

dX
dτ

= (p − 1)X|Z|p−2Z,
dZ
dτ

= cZ − |Z|p − fm,p(X), (1.8)

where we have used the re-parametrization dξ = −m(p − 1)X
γ

p−1 |Z|p−2dτ and we have defined

fm,p(X) = mX
γ

p−1−1 f (X).

System (1.8) seems more reasonable than (1.5) and the procedure employed to get it does not change
if the reaction f (·) satisfies (2), (3), or (4). However, in what follows, the function f (·) will play an
important role. We will thus separate the proofs according to the nature of f (·), starting with the case
of Fisher-KPP reactions (2).
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Proof of Theorem 1.1: Part (i). So, let f (·) be a Fisher-KPP reaction satisfying (2):
f (0) = f (1) = 0, 0 < f (u) ≤ f ′(0)u in (0, 1)
f ∈ C1([0, 1]), f ′(0) > 0, f ′(1) < 0
f (·) has a unique critical point in (0, 1),

Note that since f ′(0) > 0, we deduce that fm,p(·) is well-defined and continuous in [0, 1]. Moreover, it
is nonnegative, with a unique maximum point in the same interval and satisfies fm,p(0) = 0 = fm,p(1).

The first important observation is that, since fm,p(0) = 0 = fm,p(1), the critical points of system (1.8)
are now three:

S = (1, 0), O = (0, 0) and Rc = (0, c1/(p−1)).

It is then clear that the change of variables (1.6) “splits” the critical point (0, 0) of system (1.5) into two
critical points: O and Rc of the new system. The idea is that formula (1.6) is the unique change of
variables that allows us to separate the orbits corresponding to finite and positive TWs. In fact, we
will show that the connections between O and S correspond to positive TW (they exist only if c > c∗
where c∗ is the critical speed of propagation in the statement of Theorem 1.1) while the connection
between Rc and S corresponds to a finite TW (c = c∗).

So, in order to carry out the plan just introduced, we focus on the range 0 ≤ X ≤ 1 and we study
the equation of the trajectories

dZ
dX

=
cZ − |Z|p − fm,p(X)

(p − 1)X|Z|p−2Z
:= H(X,Z; c), (1.9)

obtained by eliminating the parameter τ, looking for solutions defined for 0 ≤ X ≤ 1 and linking the
critical points Rc and S for some c > 0. The main difference with respect to the Porous Medium and
the linear case (see [12] and [79]) is that the critical points are all degenerate and it is impossible to
describe the local behaviour of the trajectories by linearizing the system (1.8) around S. Consequently,
in what follows, we study some local and global properties of the equation (1.9) with more qualitative
ODEs methods to obtain a clear view of the graph of the trajectories. The proof is divided in some
steps as follows.

Step1: Study of the null isoclines. Firstly, we study the null isoclines of system (1.8), i.e., the set of the
points (X,Z) with 0 ≤ X ≤ 1 and Z ≥ 0 such that H(X,Z; c) = 0. We thus have to solve the equation

cZ̃(X) − Z̃p(X) = fm,p(X) in [0, 1] × [0,∞). (1.10)
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Figure 1.2: Fisher-KPP reactions, range γ > 0. Null isoclines in the (X,Z)-plane for f (u) = u(1 − u), in
the cases 0 < c < c0 and c > c0, respectively.
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If Xm,p is the (unique) maximum point of f (·) in [0, 1] and Fm,p := fm,p(Xm,p), defining

c0 = c0(m, p, f ) := p
(

Fm,p

p − 1

)(p−1)/p

,

it is simple to see that for c < c0 the graph of the isoclines is composed by two branches joining the
point O with Rc and the point (1, 0) with (1, c1/(p−1)), while for c > c0 the branches link the point O with
S and the point Rc with (1, c1/(p−1)). As c approaches the value c0 the branches move nearer and they
touch in the point (Xm,p, (c0/p)1/(p−1)) for c = c0. Note that the value c0 is critical in the study of the
isoclines and it is found by imposing

max
Z̃∈[0,c1/(p−1)]

{
cZ̃ − Z̃p

}
= Fm,p. (1.11)

For c < c0, the trajectories in the region between the two branches have negative slopes, while those
in the region between the Z-axis and the left branch and between the right branch and the line X = 1
have positive slopes. Conversely, for c > c0 the trajectories in the region between the two branches
have positive slopes while, those in the region between the bottom-branch and the X-axis and between
the line Z = c1/(p−1) and the top-branch have negative slopes. Finally, for c = c0, it is simple to see
that in the regions between the bottom-branch and the X-axis and between the line Z = c1/(p−1)

0 and
the top-branch the trajectories have negative slopes and they have positive slopes in the rest of the
rectangle [0, 1] × [0, c1/(p−1)

0 ]. We conclude this paragraph noting that for all c > 0 the trajectories have
negative slopes for Z > c1/(p−1) and positive slopes for Z < 0 (note that that above we have crucially
used the last assumption in (2)).

Step2: Local analysis of S(1, 0). In this second step, we prove the existence and the uniqueness of
solutions of (1.9) “coming into” the point S. We divide the proof in three subcases: p = 2, p > 2 and
1 < p < 2.

Case p = 2. If p = 2, it is not difficult to linearize system (1.8) through Lyapunov method and
showing that the point S is a saddle type critical point. Moreover, it follows that there exists exactly
one locally linear trajectory Tc = Tc(X) in the region [0, 1] × [0,∞) “coming into” S with slope λS =

(c −
√

c2 − 4m f ′(1))/2.
Case p > 2. Substituting the expression Z = λ(1 − X), λ > 0 in the equation of trajectories (1.9) and

taking X ∼ 1 we get

−λ = H(X, λ(1 − X)) ∼
cλ(1 − X) + m f ′(1)(1 − X)

(p − 1)λ(p−1)(1 − X)p−1
, for X ∼ 1

which can be rewritten as

−(p − 1)λp(1 − X)p−2
∼ cλ + m f ′(1), for X ∼ 1.

Since the left side goes to zero as X → 1, the previous relation is satisfied only if λ = −mc−1 f ′(1) :=
λ+

S > 0 (note that this coefficient coincides with the slope of the null isocline near X = 1). Hence, for
p > 2, there exists at least one trajectory Tc = Tc(X) “going into” the point S and it is linear near this
critical point. Note that the approximation Tc(X) ∼ λ+

S (1−X) as X ∼ 1 can be improved with high order
terms. However, we are basically interested in proving the existence of a trajectory “coming into” S
and we avoid to present technical computations which can be performed by the interested reader.
To prove the uniqueness, we show that the trajectory Tc (satisfying Tc(X) ∼ λ+

S (1 − X) as X ∼ 1) is
“repulsive” near X = 1. It is sufficient to prove that the partial derivative of the function H with
respect to the variable Z is strictly positive when it is calculated on the trajectory Tc and X ∼ 1. It is
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straightforward to see that

∂H
∂Z

(X, λ+
S (1 − X)) ∼

1
D(X)

[−cλ+
S (p − 2)(1 − X) −m(p − 1) f ′(1)(1 − X)]

∼ −
m f ′(1)(1 − X)

D(X)
= −

m f ′(1)
(p − 1)(λ+

S )p(1 − X)p−1
� 0, for X ∼ 1.

Hence, our trajectory is “repulsive” near the point S, i.e., there are no other locally linear trajectories
which “enter” into the point S with slope λ+

S . Now, to show that Tc is the unique trajectory “coming
into” the point S, we define the one-parameter family of curves

Za(x) = λ+
S (1 − X)a, a > 1,

and we use an argument with invariant regions. We compute the derivative

dZa/dX
dZ/dX

(X,Za(X); c) =
dZa/dX(X)

H(X,Za(X); c)
∼
−a(p − 1)(λ+

S )p

m f ′(1)
(1 − X)ap−2

∼ 0 for X ∼ 1,

for all a > 1 (since p > 2). This means that the “flux” derivative (in absolute value) along the curve
Za = Za(X) is infinitely larger with respect to the derivative of the curve when X ∼ 1, i.e., the trajectories
have vertical slopes on the curve Za = Za(X) for X ∼ 1. So, since a > 1 is arbitrary, it is possible to
conclude the uniqueness of our trajectory “coming into” S.

Case 1 < p < 2. Proceeding as before, it is not difficult to prove that when 1 < p < 2, there
exists a trajectory “coming into” S with local behaviour Tc(X) ∼ λ−S (1 − X)2/p for X ∼ 1 and λ−S :=
{−pm f ′(1)/[2(p − 1)]}1/p. Note that in this case the trajectory is not locally linear but presents a power-
like local behaviour around S with power greater than one. Moreover, exactly as in the case p > 2, it
is simple to see that this trajectory is “repulsive”. Thus it remains to prove that our trajectory is the
unique “coming into” S. We proceed using invariant regions as before. This time, the one-parameter
family of curves is

Za(x) = λ−S (1 − X)a, 1 < a , 2/p

Again we compute the derivative

dZa/dX
dZ/dX

(X,Za(X); c) =
dZa/dX(X)

H(X,Za(X); c)
∼
−a(p − 1)(λ−S )p

m f ′(1)
(1 − X)ap−2,

and so
dZa/dX
dZ/dX

(X,Za(X); c) ∼

+∞, if 1 < a < 2/p
0, if a > 2/p

for X ∼ 1.

Consequently, we conclude the uniqueness of our trajectory “coming into” S exactly as in the case
p > 2.

Step3: Monotonicity of Tc(·) w.r.t. c > 0. In this crucial step we prove that

for all 0 < c1 < c2 then Tc2(X) < Tc1(X), for all 0 < X < 1

where, of course, Tc is the trajectory “coming into” in S(1, 0). So, fix 0 < c1 < c2. First of all, we note
that

∂H
∂c

(X,Z; c) =
1
X
≥ 1 > 0, for all 0 < X ≤ 1, Z ≥ 0, c > 0, (1.12)

which implies H(X,Z; c1) < H(X,Z; c2).
Now, assume by contradiction Tc1 and Tc2 touch in a point (X0,Tc1(X0) = Tc2(X0)), with 0 < X0 < 1. Since
dTc1(X0)/dX < dTc2(X0)/dX by (1.12), we have that Tc2 stays above Tc1 in a small right-neighbourhood
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I0 of X0 and so, by the continuity of the trajectories, there exists at least another “contact point”
X0 < X+

0 < 1, with Tc1(X+
0 ) = Tc2(X+

0 ). Consequently, for h > 0 small enough, we have

Tc2(X+
0 ) − Tc2(X+

0 − h)

h
≤

Tc1(X+
0 ) − Tc1(X+

0 − h)

h

and taking the limit as h → 0, we get the contradiction dTc2(X+
0 )/dX ≤ dTc1(X+

0 )/dX. Our assertion
follows from the arbitrariness of 0 < X0 < 1.

Step4: Existence and uniqueness of a critical speed c = c∗. We are ready to prove that there exists a
unique value c = c∗ and a unique trajectory Tc∗ linking S and Rc∗ .
Before proceeding, we have to introduce some notations. Let Γ1 be the left-branch of the isoclines in
the case 0 < c < c0 (note that the study of the isoclines carried out in Step1 tell us that there are no
trajectories linking the points S and Rc for c ≥ c0), define Γ2 := {(X, c1/(p−1)) : 0 < X ≤ 1} and consider
Γc := Γ1 ∪ Rc ∪ Γ2.
Now, fix 0 < c < c0 and let Tc be the linear trajectory corresponding to the value c from the point S.
Since Tc come from the point S and it lies in the region in which the slope is negative, it must join S
with Γc, i.e., there exists a point (X,Z) ∈ Γc ∩ Tc. We have the following possibilities:
• If (X,Z) = Rc, then we have c∗ = c and the uniqueness follows by (1.12) and Step3.
• If (X,Z) ∈ Γ1, using (1.12) it follows that there exists 0 < c2 < c and a corresponding point (X2,Z2) ∈
Γ2 ∩ Tc2 . Moreover, we have that for all c < c < c0 the trajectory Tc links S with Γ1 and for all 0 < c < c2
the trajectory Tc links S with Γ2. Hence, from the continuity of the trajectories with respect to the
parameter c, there exists c2 < c∗ < c such that Tc∗ joins S with Rc∗ and the uniqueness follows from the
strict monotonicity (1.12).
• If (X,Z) ∈ Γ2, using (1.12) it follows that there exists c < c1 < c0 and a corresponding point
(X1,Z1) ∈ Γ1 ∩ Tc1

. Moreover, we have that for all c1 < c < c0 the trajectory Tc links S with Γ1 and for
all 0 < c < c the trajectory Tc links S with Γ2. Hence, there exists a unique c < c∗ < c1 such that Tc∗ joins
S with Rc∗ .
Thus, we can conclude that there exists exactly one value c = c∗ < c0 with corresponding trajectory
Tc∗ joining the points S and Rc∗ . Moreover, since in Step2 we have showed that the trajectory from
the point S is unique, it follows that the trajectory Tc∗ is unique too. We underline that our argument
is completely qualitative and based on a topological observation: we proved the existence of two
numbers 0 < c2 < c1 < c0 such that for all 0 < c < c2, Tc links S with Γ2, while for all c1 < c < c0, Tc
links S with Γ1. Hence, since the trajectories are continuous respect with the parameter c it follows the
existence of a value c∗ such that Tc∗ links S with Γ1 ∩ Γ2 = Rc∗ .
Finally, it remains to prove that the TW corresponding to c∗ is finite i.e., it reaches the point u = 0
in finite “time” while the point u = 1 in infinite “time” (here the time is intended in the sense of the
profile, i.e. the “time” is measured in terms of the variable ξ). In order to see this, it is sufficient to
integrate the first equation in (1.7) by separation of variable between X0 and X1:

ξ1 − ξ0 = −m
∫ X1

X0

dX

X1− γ
p−1 Tc∗(X)

. (1.13)

So, since γ > 0 and Tc∗(X) ∼ c1/(p−1)
∗ for X ∼ 0 we have that for all 0 < X1 < 1, the integral of the right

member is finite when X0 → 0 and so, our TW reaches the steady state u = 0 in finite time. More
precisely, as X0 → 0, it holds

ξ − ξ0 = −m
∫ X

0

dX

X1− γ
p−1 Tc∗(X)

∼ −mc
−

1
p−1
∗

∫ X

0
X

γ
p−1−1dX = −c

−
1

p−1
∗

m(p − 1)
γ

X
γ

p−1 ,
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and so the critical travelling wave profile satisfies

ϕ
γ

p−1 (ξ) = X
γ

p−1 (ξ) ∼ c
1

p−1
∗

γ

m(p − 1)
(ξ0 − ξ), for ξ ∼ ξ0, (1.14)

according to the Darcy law (see for instance [94, 198]). This is a crucial computation that shows that
finite propagation holds in this case. Conversely, recalling the behaviour of the trajectory Tc∗ near the
point S (see Step2), it is not difficult to see that for all 0 < X0 < 1, the integral is infinite when X1 → 1
and so, the TW gets to the steady state u = 1 in infinite time.

We conclude this step with a brief analysis of the remaining trajectories. This is really simple once
one note that the trajectory Tc∗ acts as barrier dividing the set [0, 1]×R into subsets, one below and one
above Tc∗ . The trajectories in the subset below link the point O with R−∞ := (0,−∞) (the same methods
we use in Step6 apply here), have slope zero on the left branch of the isoclines, are concave for Z > 0
and increasing for Z < 0. We name these trajectories CS-TWs (change sign TWs) of type 1. On the
other hand, the trajectories above Tc∗ recall “parabolas” (see Step4) connecting the points R∞ := (0,∞)
and SZ = (1,Z) for some Z > 0 and having slope zero on the right branch of the isoclines. Finally, note
that, in this last case, the trajectories lying in the region [0, 1] × [c1/(p−1)

∗ ,∞) are always decreasing.
Step5: Non existence of admissible TWs for 0 < c < c∗. In the next paragraph, we show that there are

no admissible TW solutions when 0 < c < c∗.
So, we assume by contradiction that there exists 0 < c < c∗ such that the corresponding trajectory Tc

joins S and RZ for some Z ≥ 0. Then, by (1.12) and Step3, it must be Z > c1/(p−1)
∗ . Moreover, since

H(X,Z; c) < 0 for all Z > c1/(p−1), there exists a “right neighbourhood” of RZ in which the solution
Z = Z(X) corresponding to the trajectory Tc is invertible and the function X = X(Z) has derivative

dX
dZ

=
(p − 1)XZp−1

cZ − Zp − fm,p(X)
:= K(X,Z; c). (1.15)

Choosing the neighbourhood Bδ(RZ) = {(X,Z) : X2 + (Z−Z)2 < δ, X ≥ 0}, where δ > 0 is small enough
(for example, δ ≤ min{1,Z − C∗}), it is simple to obtain∣∣∣∣∣K(X,Z; c)

X

∣∣∣∣∣ ≤ I in Bδ(RZ),

where I = IZ,δ,m,p > 0 depends on Z, δ, m and p. The previous inequality follows from the fact the
quantity |cZ − Zp

− fm,p(X)| is greater than a positive constant in Bδ(RZ) (see Step1) and Z is (of course)
bounded in Bδ(RZ). This means that the function K(X,Z) is sub-linear respect with the variable X,
uniformly in Z in Bδ(RZ) and this is sufficient to guarantee the local uniqueness of the solution near
RZ. Since the null function solves (1.15) with initial datum 0, from the uniqueness of this solution, it
follows that X = X(Z) is identically zero too and it cannot be invertible. This contradiction assures
there are no TW solutions for c < c∗.

As we did in the previous step, we explain the qualitative properties of the trajectories. In the case
c < c∗, the “zoo” of the trajectories is more various. First of all, the previous analysis shows that we
have a connection between the points S and R∞ always decreasing. Moreover, below this connection,
there is a family of CS-TWs of type 1 linking the points O and R−∞ and family of CS-TWs of type 2,
i.e., trajectories linking R∞ with R−∞, decreasing for Z > 0 and increasing for Z < 0. Furthermore, for
topological reasons, there exists a trajectory between the family of CS-TWs of type 1 and CS-TWs of
type 2 which link the critical point Rc and R−∞. Finally, we find again the “parabolas” described in
Step3.

Step6: Existence of admissible positive TWs for c > c∗. Finally, we focus on the case c > c∗. We
follow the procedure used in Step5, assuming by contradiction that there exists c > c∗ such that the
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Figure 1.3: Fisher-KPP reactions, range γ > 0. Qualitative behaviour of the trajectories in the (X,Z)-
plane for f (u) = u(1 − u). Cases c < c∗, c = c∗ and c > c∗, respectively.

corresponding trajectory Tc joins S and RZ for some Z > 0 (in this case it must be Z < c1/(p−1)
∗ ). Note

that, to be precise, we should treat separately the cases c∗ < c < c0 and c ≥ c0 since the phase plane
changes markedly, but, however, our argument works independently of this distinction.
Again, we want to prove the sub-linearity of the function K(X,Z; c) respect with the variable X,
uniformly in Z in a “right” neighbourhood of RZ. Define

R :=
{
(X,Z) : H(X,Z; c) > 0 for 0 ≤ X ≤ 1, 0 ≤ Z ≤ c1/(p−1)

∗

}
Bδ(RZ) =

{
(X,Z) : X2 + (Z − Z)2

≤ δ, X ≥ 0
}
,

where δ > 0 is taken small enough such that Bδ(RZ) ⊂ R. Hence, proceeding as in the previous step,
we can state that, in Bδ(RZ), the quantity |cZ − Zp

− fm,p(X)| is greater than a positive constant and so,
it is simple to get ∣∣∣∣∣K(X,Z; c)

X

∣∣∣∣∣ ≤ I in Bδ(RZ),

where I = IZ,δ,m,p > 0 depends only on Z, δ, m and p. Hence, reasoning as before, we obtain that the
trajectories cannot “touch” the Z-axis. This means that the point O “attracts” the trajectories and so
for all c > c∗ there exists a connection between the points S and O, i.e., a TW solution.
Now, in order to prove that these TWs are positive, we show that all trajectories approach the branch
of the isoclines near O given by equation (1.10). First of all, from the equation of the null isoclines
(1.10), it is simple to see that the branch of the isoclines satisfies Z̃(X) ∼ λ̃Xγ/(p−1) as X ∼ 0, where
λ̃ := m f ′(0)/c. Now, as we did in Step2, we use an argument with invariant regions. Consider the
one-parameter family

Za(X) = aX
γ

p−1 , λ̃ < a < ∞.
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With straightforward computations as in Step2, it is simple to obtain

dZa/dX
dZ/dX

(X,Za(X); c) =
dZa/dX(X)

H(X,Za(X); c)
∼

γap

c(a − λ̃)
Xγ
∼ 0 as X ∼ 0,

i.e., for all a > λ̃ and for small values of the variable X, the derivative of the trajectories along the curve
Za = Za(X) is infinitely larger than the derivative of the same curve. This fact implies that for all a > λ̃,
all trajectories Z = Z(X) satisfy Z̃(X) ≤ Z(X) ≤ Za(X) as X ∼ 0 and so, since a can be chosen arbitrarily
near to λ̃ it follows Z(X) ∼ Z̃(X) as X ∼ 0.
We may now integrate the first differential equation in (1.7) by separation of variables. Since Z̃(X) ∼

λ̃Xγ/(p−1), we have that Z̃(X)X1− γ
p−1 ∼ λ̃X for X ∼ 0. Hence, using the fact that Z(X) ∼ Z̃(X) for X ∼ 0,

we get

ξ1 − ξ0 = −m
∫ X1

X0

dX

X1− γ
p−1 Z(X)

= −m
∫ X1

X0

dX

X1− γ
p−1 Z̃(X)

∼ −
c

f ′(0)

∫ X1

X0

dX
X

for X0 ∼ 0.

Thus, since the last integral is divergent in X0 = 0, we deduce that the admissible TWs reach the level
u = 0 at the time ξ = +∞, i.e., they are positive.
Moreover, we can describe the exact decaying of the profiles corresponding to these TWs when X ∼ 0.
Indeed, from the previous formula we have that ξ1 − ξ ∼ (c/ f ′(0)) ln(X1/X) for X ∼ 0, which can be
easily re-written as

ϕ(ξ) = X(ξ) ∼ a1 exp
(
−

f ′(0)
c
ξ

)
= a1 exp

(
−

f ′(0)1/p

ν
ξ

)
, for ξ ∼ +∞ (1.16)

where a1 is a fixed positive constant (depending on ξ1) and ν > 0 is the speed with f ′(0) = 1.
We conclude this long analysis, describing the “zoo” of the trajectories obtained in the (X,Z)-plane.

As we observed in the case c = c∗ the TW joining S and O represents a barrier and divide the region
[0, 1]×R in two subsets. We obtain again the CS-TWs of type 1 in the region below the positive TW and
the “parabolas” in the region above it. Moreover, if c∗ < c < c0, we have a family of trajectories which
“come” from O, are decreasing in the region between the branches of the isoclines and increasing in
the regions between the Z-axis and the left branch and between the right branch and the line X = 1.
Performing the complete phase plane analysis it is possible to see that these trajectories are increasing
for X ≥ 1 and go to infinity as X → ∞. We name them infinite TWs of type 1. If c ≥ c0, the analysis
is similar except for the fact that there exist a family (or exactly one trajectory in the case c = c0) of
infinite TWs of type 2, i.e., trajectories “coming” from O and increasing for all X ≥ 0. Finally, we have a
trajectory from the point Rc trapped between the family of infinite TWs and the family of “parabolas”
which goes to infinity as X→∞. �

Proof of Theorem 1.1: Part (ii). Now, let f (·) be a reaction term of type C satisfying (3):
f (0) = f (a) = f (1) = 0, f (u) < 0 in (0, a), f (u) > 0 in (a, 1)
f ∈ C1([0, 1]), f ′(0) < 0, f ′(a) > 0, f ′(1) < 0∫ 1
0 um−1 f (u)du > 0

f (·) has a unique critical point in (0, a) and a unique critical point in (a, 1).

As before, we consider system (1.8) and the equation of the trajectories (1.9):

dZ
dX

=
cZ − |Z|p − fm,p(X)

(p − 1)X|Z|p−2Z
:= H(X,Z; c).



CHAPTER 1. TWS FOR “SLOW” DIFFUSION 20

Since now f (·) satisfies (3), we get that the function fm,p(X) := mX
γ

p−1−1 f (X) is well-defined and
continuous in [0, 1], with fm,p(0) = fm,p(a) = fm,p(1) = 0 and fm,p(X) < 0 for 0 < X < a, while fm,p(X) > 0
for a < X < 1. Consequently, system (1.8) has four critical points

O(0, 0), S(1, 0), A(a, 0) and Rc(0, c1/(p−1)).

As we did in the proof of the first part, we prove the existence of a special speed c∗ = c∗(m, p, f ) with
corresponding trajectory linking S(1, 0) and Rc∗(0, c

1/(p−1)
∗ ) and lying in the strip [0, 1] × [0,+∞) of the

(X,Z)-plane. Again this connection is the finite TW we are looking for.
So, following the ideas of Part (i), we have to understand the qualitative behaviour of the trajectories
of system (1.8) (or, equivalently, the solutions of equation (1.9)) in dependence of the parameter c > 0.
Respect to the previous case, we start by considering the simpler case c = 0, which is fundamental to
exclude the existence of admissible TWs for small speeds of propagation. The assumption∫ 1

0
um−1 f (u)du > 0,

(cfr. with (3)) plays an important role here. Then, as before, we will need information on the local
behaviour of the trajectories near the critical points and on the global monotonicity properties of the
trajectories w.r.t. the speed c > 0. Once more, we employ them to show the existence or non-existence
of trajectories linking the critical points S(1, 0) and Rc(0, c1/(p−1)), which correspond to a finite TW.

Step0: Case c = 0. As we have explained in the previous paragraph, we begin by taking c = 0 an we
show that for the null speed, there are not admissible TW profiles. With this choice, system (1.8) and
equation (1.9) becomeẊ = (p − 1)X|Z|p−2Z,

Ż = −|Z|p − fm,p(X),
and

dZ
dX

= −
|Z|p + fm,p(X)

(p − 1)X|Z|p−2Z
= H(X,Z; 0),

respectively (here Ẋ means dX/dτ). The critical points are O(0, 0), A(a, 0), and S(1, 0) (note that the
point Rc “collapses” to O(0, 0)).
Respect to the linear case, our system does not conserve the energy along the solutions (see [12]).
Consequently, excluding the existence of a trajectory, contained in the strip (0, 1) × (0,∞) in the (X,Z)-
plane and linking O(0, 0) and S(1, 0), is done by studying more qualitative properties of the trajectories
in the (X,Z)-plane.
So, we begin by analyzing the null isoclines Z̃ = Z̃(X) of our system, i.e. the solutions of the equation:

|Z̃|p + mX
γ

p−1−1 f (X) = 0, 0 ≤ X ≤ 1.

They are composed by two branches linking the points O(0, 0) and A(a, 0), lying in the strip [0, a]×(0,∞)
and [0, a] × (−∞, 0), respectively (this follows by the last assumption in (3)) and they satisfy

Z̃(X) ∼ ± p
√
−m f ′(0)X

γ
p(p−1) , for X ∼ 0.

Now, there are two symmetric trajectories (one positive, and one negative in a right-neighbourhood
of O(0, 0)) “leaving” O(0, 0) (this follows from study of the null isoclines and the sign of the derivative
dZ/dX in the (X,Z)-plane). Moreover, since H(X,−Z; 0) = −H(X,Z; 0), the two trajectories coincide
and we obtain a unique trajectory linking O(0, 0) with itself. Now, let us focus on the part lying in
[0, 1) × [0,∞), T+ = T+(X) and let T0 = T0(X) be the trajectory “going into” S(1, 0) (see Step1 below). If
T+ = T+(X) and T0 = T0(X) touch at a point, they coincide in [0, 1] and the resulting trajectory has the
shape of an admissible profile. In the next paragraphs, we show that T+ and T0 must be two distinct
trajectories and the just described case cannot happen.
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As first observation, since the solution T+ = T+(X) stays below the positive branch Z̃ = Z̃(X) for X ∼ 0,
a simple approximation argument (see also Step2 of the proof of Part (i)) shows that

T+(X) ∼ p

√
−

mp f ′(0)
γ + p

X
γ

p(p−1) , for X ∼ 0.

Hence, substituting it in the first equation of system (1.7), we obtain (up to a multiplicative constant):

−
dX
dξ
∼ X1− γ

p−1 T+(X) ⇔ X(ξ) = ϕ(ξ) ∼ (ξ0 − ξ)
p
γ , for ξ ∼ ξ−0 ,

which contradicts then Darcy law of the free boundary (see [198], Chapter 4 for the Porous Medium
case). Consequently, if T+ = T+(X) and T0 = T0(X) coincide, we immediately conclude that the
resulting trajectory linking O(0, 0) and S(1, 0) cannot be an admissible finite TW and we conclude the
non-existence admissible TWs for c = 0. The qualitative behaviour of the trajectories in the (X,Z)-plane
is shown in Figure 1.4.
However, in what follows, we will need to exclude the case in which the trajectory T0 = T0(X) “going
into” S(1, 0) has either a closed curve or S(1, 0) as negative limit set, or crosses at some point the
negative half-line X = 1 (cfr. with the right picture of Figure 1.4). To achieve this, we will show that
T0 = T0(X) ∼ +∞ as X ∼ 0, using our assumption on the reaction term (see (3)):∫ 1

0
um−1 f (u) du > 0. (1.17)
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Figure 1.4: Reactions of type C, range γ > 0, case c = 0. Qualitative behaviour of the trajectories in
the (X,Z)-plane for f (u) = u(1 − u)(u − a), a = 0.3, 0.7. The second case is excluded by the assumption∫ 1

0 um−1 f (u)du > 0.

For 0 < X < 1 and Z > 0, the equation of the trajectories can be re-written as

dZ
dX

= −
Zp + mX

γ
p−1−1 f (X)

(p − 1)XZp−1
⇔ pX2− γ

p−1 Zp−1 dZ
dX

= −
pX1− γ

p−1 Zp + mp f (X)
(p − 1)

Using that
d

dX

(
X2− γ

p−1 Zp
)

=

(
2 −

γ

p − 1

)
X1− γ

p−1 Zp + pX2− γ
p−1 Zp−1 dZ

dX
,

and the previous equation, we deduce that S(X) := X2− γ
p−1 Zp satisfies the equation

dS
dX

=
1 −m

X
S −

mp
p − 1

f (X), 0 < X < 1,
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where we have used the definition of γ := m(p− 1)− 1. Now, assume for a moment m , 1. It is simple
to integrate the previous equation obtaining

S(X) = X1−m
[
k −

mp
p − 1

∫ X

0
um−1 f (u)du

]
, 0 < X < 1,

where k is a free parameter. Now, coming back to the function Z = Z(X), we get

Z(X) = X−
1

p−1

[
k −

mp
p − 1

∫ X

0
um−1 f (u)du

] 1
p

, 0 < X < 1, (1.18)

and, thanks to our assumption (1.17), we can take∫ 1

0
um−1 f (u)du :=

p − 1
mp

h > 0.

Furthermore, choosing k = h in (1.18), we deduce Z(1) = 0. Hence, if T0 = T0(X) is the trajectory “going
into” in S(1, 0), we have by uniqueness of this solution

T0(X) = X−
1

p−1

[
h −

mp
p − 1

∫ X

0
um−1 f (u)du

] 1
p

∼ +∞, for X ∼ 0,

proving our claim (cfr. with the left diagram shown in Figure 1.4). The case m = 1 is very similar and
formula (1.18) holds with m = 1.
We end this paragraph pointing out that, thanks to the continuous dependence of the solutions w.r.t.
to the parameter c ≥ 0, we deduce that there are not admissible TWs for values of c > 0 small enough.

Step1: Local analysis of S(1, 0). From now on, we consider c > 0. This step coincide with Step2 of
Part (i). We recall that we have proved that there exists a unique trajectory Tc = Tc(X) “coming into”
S(1, 0) and is asymptotic behaviour near X = 1 is

Tc(X) ∼


λ−S (1 − X)2/p if 1 < p < 2
λS(1 − X) if p = 2
λ+

S (1 − X) if p > 2
for X ∼ 1, (1.19)

for suitable positive numbers λ−S , λS, and λ+
S . The local analysis of the point A(a, 0) is less important

in this setting and we skip it. In the Porous Medium case p = 2 and m > 1, it is not difficult to see
that A(a, 0) is a focus unstable if c <

√
4mam−1 f ′(a), while a node unstable if c ≥

√
4mam−1 f ′(a) (cfr. with

Figure 1.6).
Step2: Study of the null isoclines. Again, to obtain a qualitative picture of the trajectories of the

system, we study the null isoclines of system (1.8), i.e., the curve Z̃ = Z̃(X) satisfying (1.10):

cZ̃ − |Z̃|p = fm,p(X), in [0, 1] × (−∞,∞).

Now, let Fm,p > 0 be the maximum of fm,p(·) in [0, 1], and take c0 > 0 so that

max
Z̃∈[0,c1/(p−1)]

{
cZ̃ − |Z̃|p

}
= Fm,p i.e. c0 = c0(m, p, f ) := p

(
Fm,p

p − 1

)(p−1)/p

.

Then it is not difficult to see that for 0 < c < c0, the null isocline is composed of two disjoint branches:
the left one, linking the points O(0, 0), A(a, 0), (a, c1/(p−1)) and Rc(0, c1/(p−1)), and the right one, con-
necting S(1, 0) and (1, c1/(p−1)). The two branches approach as c → c0, until they touch at the point
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Figure 1.5: Reactions of type C, range γ > 0. Null isoclines in the (X,Z)-plane for f (u) = u(1−u)(u− a),
a = 0.3, in the cases 0 < c < c0 and c > c0, respectively.

(Xm,p, (c0/p)1/(p−1)) when c = c0, where fm,p(Xm,p) = Fm,p. Finally, when c > c0, there are again two
disjoint branches: the upper one linking Rc(0, c1/(p−1)), (a, c1/(p−1)) and (1, c1/(p−1)), whilst the lower one
joining O(0, 0), A(a, 0) and S(1, 0). A qualitative representation is shown in Figure 1.5. From this
analysis it is clear that if there exists a critical speed c∗, then it must be c∗ < c0 (again we employed the
last assumption in (3)).

Step3: Monotonicity of Tc(·) w.r.t. c > 0. This step coincide with Step3 of Part (i). We just mention
that formula (1.12) holds true even in this setting and it is employed to show that

for all 0 < c1 < c2 then Tc2(X) < Tc1(X), for all a < X < 1

whereTc is the trajectory “coming into” S(1, 0). Note that for 0 ≤ X ≤ a, Tc(·) is not in general a function
of X, so that we have to restrict our “comparison interval” to (a, 1). However, our statement holds true
on the interval of definition of Tc = Tc(X).

Step4: Existence and uniqueness of a critical speed c = c∗. In Step0, we have shown that for c = 0 there
are not admissible TWs, and, in particular, the trajectory T0 = T0(X) “coming into” S(1, 0) stays above
the trajectories “leaving” the origin O(0, 0).
Consequently, thanks to the continuity of the trajectories w.r.t. the parameter c we can conclude the
same, for small values of c > 0, i.e., naming T+

c = T+
c (X) and T−c = T−c (X) the trajectories from Rc(0, c)

and O(0, 0), respectively, we have that Tc(X) is above T+
c (X) and T−c (X) in [0, 1] (note that for c = 0,

R0 = O and both T+
0 and T−0 “leave” O).

In particular, the study of the null isoclines carried out in Step2 shows that T+
c (X = a) > c1/(p−1) for all

c > 0, and so, using the monotonicity of Tc w.r.t. c > 0 proved in Step3, we conclude that for c > 0 large
enough it must be Tc(X = a) < T+

c (X = a), which means that for large c > 0, Tc(X) stays below T+
c (X) in

[0, 1] by uniqueness of the trajectories. This means that there exists a critical speed c∗ = c∗(m, p, f ) such
that Tc∗(X) = T+

c∗(X) for all X ∈ [0, 1], and the uniqueness of c∗ follows the strict inequality in (1.12). In
other words, the trajectories T+

c and Tc approach as c < c∗ grows until they touch (i.e. they coincide) for
c = c∗, while for c > c∗ they are ordered in the opposite way w.r.t. the range c < c∗, i.e. T+

c (X) > Tc(X)
in [0, 1] for all c > c∗.
We conclude this step by pointing out that the last part of Step4 of Part (i) is still valid even in this setting.
Indeed, we can integrate the first equation in(1.7) along Tc∗ = Tc∗(X) obtaining (1.13) and showing that
this trajectory corresponds to an admissible TW profile X(ξ) = ϕ(ξ) of a finite TW u(x, t) = ϕ(x − ct), i.e.,
ϕ(−∞) = 1 and ϕ(ξ) = 0, for all ξ ≥ ξ0, for some −∞ < ξ0 < +∞. More precisely, we still have formula
(1.14):

ϕ
γ

p−1 (ξ) = X
γ

p−1 (ξ) ∼ c
1

p−1
∗

γ

m(p − 1)
(ξ0 − ξ), for ξ ∼ ξ0,
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Figure 1.6: Reactions of type C, range γ > 0. Qualitative behaviour of the trajectories in the (X,Z)-plane
for f (u) = u(1 − u)(u − a), a = 0.3. The first two pictures show the case 0 < c < c∗, while the others the
cases c = c∗ and c > c∗, respectively.

which gives the behaviour of the finite TW near the free boundary point −∞ < ξ0 < +∞.
Step5: Non existence of admissible TWs for c > c∗. We are left to prove that there are not admissible TW

solutions when c > c∗. This follows from the fact that if the trajectory Tc joins O(0, 0) and S(1, 0), then
the resulting connection is not admissible since the derivative of the corresponding profile changes sign.
Indeed, using the continuity of the trajectory w.r.t. the speed of propagation, we know that for all
c > 0, there exists a unique trajectory T−c = T−c (X) “leaving” O(0, 0) (see Step0) and simple computations
shows that

T−c (X) ∼
m f ′(0)

c
X

γ
p−1 , for X ∼ 0+.

Hence, if Tc links O(0, 0) and S(1, 0), it must coincide with T−c and so, the derivative of its profile must
change sign, i.e., it is not an admissible profile. A qualitative representation of the trajectories in the
(X,Z)-plane is given in Figure 1.6.

Proof of Theorem 1.1: Part (iii). We lastly consider reaction terms f (·) of type C’, i.e., satisfying (4):
f (0) = f (a) = f (1) = 0, 0 < f (u) ≤ f ′(0)u in (0, a), f (u) < 0 in (a, 1)
f ∈ C1([0, 1]), f ′(0) > 0, f ′(a) < 0, f ′(1) > 0
f (·) has a unique critical point in (0, a) and a unique critical point in (a, 1).

System (1.8) and the equation of the trajectories (1.9)

dZ
dX

=
cZ − |Z|p − fm,p(X)

(p − 1)X|Z|p−2Z
:= H(X,Z; c)

do not formally change, but this time fm,p(X) := mX
γ

p−1−1 f (X) satisfies fm,p(0) = fm,p(a) = fm,p(1) = 0,
with fm,p(X) > 0 for 0 < X < a, while fm,p(X) < 0 for a < X < 1. So, as for the reactions of type C, system
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(1.8) has the four critical points

O(0, 0), S(1, 0), A(a, 0) and Rc(0, c1/(p−1)).

In this part, we study the existence of a-admissible TW solutions for equation (1.1) with reaction
satisfying (4). Respect to the previous case, our proof strongly relies on the proof of Part (i). Indeed,
as we have mentioned in the introduction, reaction terms satisfying (4) are of the Fisher-KPP type if
we restrict them to the interval [0, a] ⊂ [0, 1], in the sense that f (0) = f (a) = 0, f (u) > 0, in (0, a)

f ∈ C1([0, a]), f ′(0) > 0, f ′(a) < 0.

For this reason, it follows that the qualitative behaviour of the trajectories in the strip [0, a] × (−∞,∞)
of the (X,Z)-plane is the same of the ones studied Part (i) in the larger strip [0, 1] × (−∞,∞), where
the Fisher-KPP case has been analyzed. In this way, it is easily seen that the study of the trajectories
corresponding to a-admissible TW solutions of equation (1.1) (with reaction of type C’) is reduced to
the study of admissible TWs for equation (1.1) with a reaction of Fisher-KPP type (or type A). In view
of this explanation, parts of the following paragraphs coincide with the ones of Part (i), so that, for the
reader’s convenience, we will try to report the most important ideas, quoting the specific paragraphs
of the proof of Part(i) for each technical detail.

Step1: Local analysis of A(a, 0) and S(1, 0). Let us take c > 0. Proceeding as in the proof of Part (i) (see
Step2), and recalling that now f ′(1) > 0, while f ′(a) < 0, we deduce that A(a, 0) is a saddle type critical
point, and formulas (1.19) hold replacing f ′(1) with f ′(a).
For what concerns the point S(1, 0), we can conclude it has a focus/node nature from the study of the
null isoclines we perform in Step2.

Now, let Tc = Tc(X) be the trajectory entering in A(a, 0) with Tc(X) > 0 for all 0 < X < a. In the next
paragraphs, following the proof of Part (i), we show that there exists a unique c∗ = c∗(m, p, f ) such that
Tc∗ links Rc∗(0, c

1/(p−1)
∗ ) and A(a, 0) and we prove that this trajectory corresponds to a finite TW profile.

Secondly, we show that for all c > c∗, Tc joins O(0, 0) and A(a, 0), and it corresponds to a positive TW
profile. Finally, we prove that there are not connections of the type A(a, 0) ! Rc(0, c1/(p−1)) and/or
A(a, 0)! O(0, 0) for c < c∗, i.e. there are not any a-admissible TW profiles for c < c∗.
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Figure 1.7: Reactions of type C’, range γ > 0. Null isoclines in the (X,Z)-plane for f (u) = u(1−u)(a−u),
a = 0.3, in the cases 0 < c < c0 and c > c0, respectively.

Step2: Study of the null isoclines. We study the null isoclines of system (1.8), i.e., the curve Z̃ = Z̃(X)
satisfying

cZ̃ − |Z̃|p = fm,p(X),
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exactly as in Step1 of the proof of Part (i). We proceed as before and we obtain that there exists c0 > 0
such that for 0 < c < c0, the null isocline is composed of two disjoint branches: the left one, linking the
points O(0, 0) and Rc(0, c1/(p−1)), and the right one, connecting S(1, 0), A(a, 0), (a, c1/(p−1)) and (1, c1/(p−1)).
For c > c0, we have again two branches: the upper one linking Rc(0, c1/(p−1)), (a, c1/(p−1)) and (1, c1/(p−1)),
whilst the lower one joining O(0, 0), A(a, 0) and S(1, 0). As before, the two branches approach as c→ c0,
and they touch at a point when c = c0. We point out that for c < c0 we obtain symmetric null isoclines
respect to the previous case (cfr. with Figure 1.5). Again we see that if our c∗ exists, then it has to be
c∗ < c0. The qualitative shape of the null isoclines for reactions of type C’ in the cases 0 < c < c0 and
c > c0 is reported in Figure 1.7. We stress that the shape of null isocline in the rectangle [0, a]× [0, c1/(p−1)]
is (of course) the same of the one found for Fisher-KPP reactions in the rectangle [0, 1]× [0, c1/(p−1)] (cfr.
with Step1 of Part (i)).

Step3: Existence and uniqueness of a critical speed c = c∗. As we have explained in Step1, we have to
prove the existence and the uniqueness of a speed c∗ = c∗(m, p) such that Tc∗ links Rc∗(0, c

1/(p−1)
∗ ) and

A(a, 0) with corresponding TW profile vanishing in a half-line. Consequently, the proof of this fact
coincides with what proved in Step4 of Part (i), substituting the point S(1, 0) with A(a, 0).

Step4: The cases 0 < c < c∗ and c > c∗. We have to show that for 0 < c < c∗, the are not a-admissible TW,
while to each c > c∗, it corresponds exactly one a-admissible TW and it is positive. Again it is sufficient
to adapt Step5 and Step6 of Part (i) and we conclude the proof. A qualitative representation of the
trajectories for c < c∗, c = c∗ and c > c∗ is shown in Figure 1.8. �
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Figure 1.8: Reactions of type C’, rangeγ > 0. Qualitative behaviour of the trajectories in the (X,Z)-plane
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1.2.1 Fisher-KPP reactions. Analysis of some special trajectories

In Step5 of the proof of Theorem 1.1 (Part (i)), we have shown the existence of a family of CS-TWs
of type 2 which link the points R∞ and R−∞ in the (X,Z)-plane. These particular TWs will play a
really important role in the study of more general solutions (see Chapter 2). In particular, we want
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to analyze their behaviour in the “real” plane (ξ, ϕ(ξ)) = (ξ,X(ξ)) near their global positive maximum
(for example in ξ = 0) and near the two change sign points ξ0 < 0 < ξ1 where ϕ(ξ0) = 0 = ϕ(ξ1).

Behaviour near the maximum point. The existence of a positive global maximum follows from the
analysis performed in the (X,Z)-plane and it corresponds to the value of ξ such that Z(ξ) = 0 (we
will always assume ξ = 0). However, in the proof of the asymptotic behaviour Theorem 2.1, we will
need more information on the CS-TWs near their maximum point when 0 < m < 1 and p > 2 (see
relation (1.21)). So, with this choice of parameters, we differentiate with respect to the variable ξ the
first equation in (1.7):

d2X
dξ2 =

1
m

[(
1 −

γ

p − 1

)
X−γ/(p−1) dX

dξ
Z + X1−γ/(p−1) dZ

dξ

]
. (1.20)

Then, substituting the expressions in (1.7) and taking Z small, it is not difficult to see that

d2X
dξ2 ∼ −

X−
γ

p−1 f (X)
m(p − 1)

|Z|2−p, for Z ∼ 0.

In particular, for all 0 < X < 1 fixed, it is straightforward to deduce the relation we are interested in:∣∣∣∣∣dX
dξ

∣∣∣∣∣p−2∣∣∣∣∣d2X
dξ2

∣∣∣∣∣ ∼ m2−p

m(p − 1)
Xp−2−γ f (X) > 0, for Z ∼ 0, (1.21)

near the maximum point of ϕ = ϕ(ξ).

Behaviour near the change sign points. For what concerns the profile’s behaviour near zero, we can
proceed formally considering the equation of the trajectories (1.9) and observe that if X ∼ 0 and Z ∼ ∞
we have cZ − Zp

− fm,p(X) ∼ −Zp and so

dZ
dX
∼ −

1
(p − 1)

Z
X

i.e. Z ∼ a′X−
1

p−1 , for X ∼ 0

for some a′ > 0. Now, from the first differential equation in (1.7), we get

dX
dξ
∼ aX1−m, for X ∼ 0 (1.22)

where we set a = a′/m and integrating it between X = 0 and X = ϕ by separation of variables, we get
that the profile X = ϕ satisfies

ϕ(ξ) ∼ ma(ξ − ξ0)1/m for ξ ∼ ξ0 (1.23)

which not only explains us that the CS-TWs get to the level zero in finite time, but also tells us that
they cannot be weak solutions of problem (1) since they violate the Darcy law: ϕ(ξ) ∼ (ξ − ξ0)γ/(p−1)

near the free boundary (see [94], or [198] for the Porous Medium equation). For this reason they cannot
describe the asymptotic behaviour of more general solutions, but they turn out to be really useful
when employed as “barriers” from below in the PDEs analysis. We ask the reader to note that, since
the same procedure works when X ∼ 0 and Z ∼ −∞, we obtain the existence of the second point
0 < ξ1 < ∞ such that ϕ(ξ1) = 0 and, furthermore, the local analysis near ξ1 is similar.
Finally, using that Z ∼ aX−1/(p−1) for X ∼ 0, we can again obtain information on the behaviour of the
second derivative near the change sign point ξ = ξ0. In particular, we get the relation

X2m−1 d2X
dξ2 ∼

a2(p − 2 − γ)
m2(p − 1)

for X ∼ 0 and Z ∼ ∞, (1.24)

near the “free boundary point” of ϕ = ϕ(ξ). We will need this estimate in the proof of Theorem 2.1 in
the case 0 < m < 1 and p > 2.
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Detailed derivation of relation (1.22). Before, we deduced relation (1.22) in a too formal way and
we decided to end this section with a more complete proof. Let Z = Z(X) be a branch of the trajectory
of the CS-TW of type 2 and suppose Z ≥ 0 (the case Z ≤ 0 is similar).

We start proving that Z(X) ≥ aX−1/(p−1) for X ∼ 0 and some a > 0. Since, fm,p(X) ≥ 0 we have

dZ
dX
≤

cZ − Zp

(p − 1)XZp−1

which can be integrated by variable separation and gives Zp−1(X) ≥ −X0(c − Z0)p−1X−1, for all 0 < X ≤
X0 < 1 (X0 is the initial condition and Z0 = Z(X0)). Hence, taking X0 ∼ 0 and, consequently, Z0 ∼ ∞,
we have that −X0(c − Z0)p−1

∼ X0Zp−1
0 and we deduce

Z(X) ≥ X
1

p−1

0 Z0X−
1

p−1 for X ∼ 0.

Now, we show Z(X) ≤ aX−1/(p−1) for X ∼ 0. Using the fact that fm,p(X) ≤ Fm,p and Z ≥ 0, we get the
differential inequality

dZ
dX
≥ −

Zp + Fm,p

(p − 1)XZp−1
.

Proceeding as before, it is straightforward to deduce Zp
≤ Xp/(p−1)

0 (Z0 + F)X−p/(p−1), where X0 and Z0

are taken as before. Thus, since Xp/(p−1)
0 (Z0 + F) ∼ Xp/(p−1)

0 Z0 for X0 ∼ 0, we obtain

Z(X) ≤ X
1

p−1

0 Z0X−
1

p−1 for X ∼ 0,

which allows us to conclude Z(X) ∼ aX−
1

p−1 for X ∼ 0 and a = X
1

p−1

0 Z0 and, consequently, (1.22).

1.2.2 Reactions of type C. Analysis of some special trajectories

For what concerns the case of reactions of type C, it easily follows from the phase plane analysis that
the family of CS-TWs of type 2 exist for all 0 ≤ c < c∗ also in this different framework and moreover,
these special solutions have the same properties of the previous setting. In particular, formulas (1.21),
(1.22), and (1.24) hold true. In this case, the important difference is that the maximum of the profile
(that we can assume is attained at ξ = 0) is always greater than 0 < a < 1 (cfr. with Step0 and Step2 of
the proof of Part (ii)). More precisely, we can have

ϕ(0) = a + δ,

where δc ≤ δ < 1− a, and δc > 0 depends on 0 ≤ c < c∗ and satisfies δc → 1− a as c→ c∗, while δc → δ0,
as c→ 0, for some 0 < δ0 < 1 − a, thanks to the monotonicity of the trajectory Tc = Tc(X) w.r.t c ≥ 0.

In study of the so called “threshold” results for problem (1), we will employed other two important
families of TWs, found in the ODEs analysis. The first one is composed by TW profiles ϕ(ξ) = ϕ(x− ct)
with the following properties:

ϕ(0) = 1 − ε, ϕ(ξ0) = 0, ϕ(ξ1) = a, ϕ(ξ) > a, for all 0 < ξ < ξ1,

for some ξ0 < 0, ξ1 > 0, ε > 0 small and c ≥ c∗. The property ϕ(ξ0) = 0 is obtained exploiting again

the fact that Z(X) ∼ ±X−
1

p−1 , for X ∼ 0, Z ∼ ±∞, in the (X,Z)-plane, while the others come from the
analysis of the null isoclines (cfr. with Figure 1.6). We will call them “0-to-a” TW. As always, for any
c ≥ c∗, we can consider the reflections ψ(ξ) = ψ(x + ct) satisfying

ψ(0) = 1 − ε, ψ(ξ0) = a, ψ(ξ1) = 0, ψ(ξ) > a, for all ξ0 < ξ < 0,

for some ξ0 < 0, ξ1 > 0, ε > 0 small, to which will refer as “a-to-0” TW.



CHAPTER 1. TWS FOR “SLOW” DIFFUSION 29

1.2.3 Reactions of type C’. Analysis of some special trajectories

Passing to the reactions of type C’ (satisfying (4)), we will consider TW profiles ϕ(ξ) = ϕ(x − ct) with
the following properties:

ϕ(−∞) = a, ϕ(ξ0) = 1, ϕ′(ξ) > 0 for all ξ ≤ ξ0, (1.25)

where 0 < a < 1 with f (a) = 0, ξ0 ∈ R is suitably chosen, and c > 0. The existence of these TW
profiles follows from the analysis in the (X,Z)-plane (see part (i) and (iii) of Theorem 1.1). Indeed, the
study of the null isoclines and local behaviour of the critical point A(a, 0) show the existence of two
trajectories “coming from” A(a, 0) (it is an hyperbolic type critical point) and crossing the line X = 1
in the (X,Z)-plane. The first one, lying in the strip [a, 1] × (−∞, 0] satisfies (1.25). The second one,
lying in [a, 1] × [0,+∞), has symmetric properties but less significative for our purposes. We will call
“increasing a-to-1” TWs the profiles satisfying (1.25). These special solutions and their reflections will
be used to prove that solutions to problem (1) converge to the steady state u = a as t→ +∞.

Finally, we point out that there CS-TWs of type 2 even in this setting, but now they satisfies

ϕ(0) = δ,

where 0 < δ0 ≤ δ < 1, c < c∗ and suitable ξ0 < ξ1, and δ0 > 0. Their existence follows by analysis in the
(X,Z)-plane or, as always, recalling the scaling property that links problem (1) with reaction of type C’
to the same problem with reaction of Fisher-KPP type to the one with reaction of type C’.

1.3 Proof of Theorem 1.2

As we have done for the “slow” diffusion range γ > 0, we fix N = 1, and m > 0 and p > 1 such that
γ = 0 and we look for admissible/a-admissible TWs to equation (1.1), substituting u(x, t) = ϕ(ξ), ξ = x− ct
into (1.1) and obtaining the equation of the profile (1.4):

[|(ϕm)′|p−2(ϕm)′]′ + cϕ′ + f (ϕ) = 0 in R,

where, as always, the notation ϕ′ indicates the derivative of ϕ with respect to the variable ξ.
Now, for γ = 0, the change of variables (1.6):

X = ϕ and Z = −

(
m(p − 1)

γ
ϕ

γ
p−1

)′
= −mX

γ
p−1−1X′,

becomes
X = ϕ and Z = −m(log X)′ = −mX−1X′. (1.26)

Hence, we get the system

−m
dX
dξ

= XZ, −|Z|p−2 dZ
dξ

= cZ − |Z|p −mX−1 f (X), (1.27)

which can be re-written (after the re-parametrization dξ = |Z|p−2dτ) as the non-singular system

dX
dτ

= (p − 1)X|Z|p−2Z,
dZ
dτ

= cZ − |Z|p − F(X), (1.28)

where we set
F(X) := mX−1 f (X), X ∈ [0, 1],

which the “pseudo-linear” version of fm,p(·) introduced in the range γ > 0. Also in this case we will
give different proofs, depending on the reaction term f (·) and starting from the Fisher-KPP framework.
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Proof of Theorem 1.2: Part (i). So, let f (·) be a Fisher-KPP reaction satisfying (2):
f (0) = f (1) = 0, 0 < f (u) ≤ f ′(0)u in (0, 1)
f ∈ C1([0, 1]), f ′(0) > 0, f ′(1) < 0
f (·) has a unique critical point in (0, 1),

Note that F(·) is well-defined and continuous in [0, 1]. Moreover, F(0) = m f ′(0), F(1) = 0, F(X) ≥ 0 and
F′(X) ≤ 0 for all 0 ≤ X ≤ 1.

System (1.28) possesses the critical point S = (1, 0) for all c ≥ 0. Now, define

c0∗(m, p) := p(m2 f ′(0))
1

mp ,

as in (1.2). Then it is not difficult to prove:
• If c < c0∗(m, p), then there are no other critical points for system (1.28).
• If c = c0∗(m, p), then system (1.28) has another critical point Rλ∗ := (0, λ∗), where we define for
simplicity

λ∗ := (c0∗(m, p)/p)m = (m2 f ′(0))1/p,

according to the definition of c0∗(m, p).
• If c > c0∗, then system (1.28) has also two critical points Rλi = (0, λi), i = 1, 2 where 0 < λ1 < λ∗ < λ2 <
cm.
This follows from the fact that if X = 0 then dZ/dτ = 0 if and only if cZ − |Z|p − m f ′(0) = 0 and the
number of solutions of this equation depends on the parameter c > 0 following our classification.
Equivalently, one can write the equation of the trajectories

dZ
dX

=
cZ − |Z|p − F(X)
(p − 1)X|Z|p−2Z

(1.29)

and study the null isoclines imposing (exactly as we did at the beginning of the proof of Theorem 1.1):

max
Z̃∈[0,cm]

{cZ̃ − |Z̃|p} = F(0).

Solving the previous equation, we get the same value for c0∗(m, p). In particular, for c = c0∗(m, p) we
have c0∗λ∗ − λ

p
∗ −m f ′(0) = 0 and c0∗ − pλp−1

∗ = 0. When c > c0∗(m, p), we have cλi − λ
p
i −m f ′(0) = 0, for

i = 1, 2, while c − pλp−1
1 > 0 and c − pλp−1

2 < 0.
Step1: Study of the null isoclines. We can classify the null isoclines according to the ranges of the

parameter c > 0: remembering the properties of the function F(·), it is not difficult to show that for
the value c = c0∗(m, p), we have a continuous isocline curve recalling a “horizontal parabola” with
vertex in Rλ∗ and linking this point with S and (1, cm

0∗). Moreover, the trajectories are increasing in the
area between the isocline and the line X = 1 whilst decreasing in the remaining part of the rectangle
[0, 1] × [0, cm

0∗]. If c < c0∗(m, p), the branch of the null isocline is again a “horizontal parabola”, but, in
this case, it does not have intersections with the axis X = 0. So, the trajectories have negative slope
at the left of this curve while positive at the right. Finally, in the case c > c0∗(m, p), the isoclines are
composed by two branches: one in lower position linking the points Rλ1 and S and one in higher
position linking Rλ2 and (1, cm). In the area between these two branches the trajectories are increasing
while in the rest of the rectangle [0, 1] × [0, cm] are decreasing. Note that for all c ≥ 0, the slopes of the
trajectories are negative when Z ≥ cm while positive Z ≤ 0.

Step2: Local analysis of S(1, 0). It is no difficult to prove the existence and the uniqueness of
a trajectory “coming into” the critical point S. This trajectory satisfies the same properties of the
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Figure 1.9: Fisher-KPP reactions, range γ = 0. Null isoclines in the (X,Z)-plane for f (u) = u(1 − u), in
the cases c < c0∗, c = c0∗ and c > c0∗, respectively.

case γ > 0 (the fact that the same techniques used when γ > 0 apply here is not surprising since
fm,p(X) ∼ F(X) ∼ m f (X) as X ∼ 1).

Step3: Existence and uniqueness of a critical speed c = c0∗. In this case, it suffices to observe that the
trajectory “coming into” S has to cross the axis X = 0 in a point (0,Z) with 0 < Z ≤ λ∗. Nevertheless,
proceeding as in Step5 and Step6 of the proof of Theorem 1.1 (Part (i)) it is simple to see that the only
possibility is Z = λ∗. Hence we have proved the existence of a connection Rλ∗ ↔ S. To show that this
admissible TW is positive we consider the first differential equation in (1.27) and we integrate between
X = 0 and X = 1 the equivalent differential relation dξ = (XZ)−1dX. It is straightforward to see that the
correspondent integral is divergent both near X = 0 and X = 1, which means that the TW is positive.

Now we would like to describe the exact shape of this TW (with speed c0∗(m, p) := p(m2 f ′(0))1/(mp))
as ξ ∼ +∞. In Step5 of Theorem 1.1, in the case γ > 0, we have given an analytic representation of the
(finite) TWs corresponding to the value c = c∗(m, p) nea its free boundary point (see (1.14)). This has
been possible since we have been able to describe the asymptotic behaviour of the trajectories in the
(X,Z)-plane near X = 0. The case γ = 0 is more complicated and we devote the entire Section 1.3.1
to the detailed analysis. Here, we simply report the asymptotic behaviour of our TW ϕ = ϕ(ξ) with
critical speed c0∗(m, p):

ϕ(ξ) ∼ a0|ξ|
2
p e−

λ∗
m ξ = a0|ξ|

2
p exp

(
−m

2−p
p f ′(0)

1
pξ

)
for ξ ∼ +∞, (1.30)

where λ∗ := (c0∗(m, p)/p)m = (m2 f ′(0))1/p and a0 > 0.
We conclude this paragraph with a brief description of the remaining trajectories. Below the positive
TW, we have a family of trajectories linking Rλ∗ with R−∞ = (0,−∞) while above it, there are a family
of “parabolas” (exactly as in the case γ > 0). Between these two families, there are trajectories from
the point Rλ∗ which cross the line X = 1.

Step4: Non existence of admissible TWs for c < c0∗. In this case there are no admissible TWs. Indeed,
using again the same methods of Step5 and Step6 (see the proof of Theorem 1.1 (Part (i))) it is simple
to show that the orbit “coming into” S cannot touch the axis X = 0, i.e., it links R∞ = (0,∞) and S and
so it is not an admissible TW. Below this trajectory there are a family of CS-TWs of type 2 and above
it we have a family of “parabolas”. We stress that, with the same techniques used for the case γ > 0,
the CS-TWs of type 2 satisfy Z(X) ∼ a′X−1/(p−1) = a′X−m for X ∼ 0 and a suited positive constant a′.
Hence, exactly as we did in the proof of Theorem 1.1 (Part (i)), it is possible to show that the profile
X = ϕ reaches the level zero in two points −∞ < ξ0 < ξ1 < ∞. Indeed, exactly as we did before, using
the first differential equation in (1.27), we get the estimate

dX
dξ
∼ aX1−m for X ∼ 0,

from which we can estimate the (finite) times ξ0 and ξ1 (note that a = a′/m).
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Figure 1.10: Fisher-KPP reactions, range γ = 0. Qualitative behaviour of the trajectories in the (X,Z)-
plane for f (u) = u(1 − u), in the cases 0 < c < c0∗, c = c0∗ and c > c0∗, respectively.

Step4: Existence of admissible TWs for c > c0∗. To show the existence of a connection Rλ1 ↔ S and to
prove that this TW is positive, it is sufficient to apply the methods used in the case c = c0∗(m, p). We
recall that for all c > c0∗(m, p), λ1 = λ1(c) < λ∗, it solves cλ1 − λ

p
1 −m f ′(0) = 0, and c − pλp−1

1 > 0.
Now, by using the Lyapunov method, it is possible to linearize system (1.28) around the critical point
Rλ1 = (0, λ1), and it is straightforward to see that its Jacobian matrix (calculated in (0, λ1)) has two
positive eigenvalues ν1 = (p− 1)λp−1

1 and ν2 = c− pλp−1
1 . This means that Rλ1 is a node unstable. Hence,

we deduce that the trajectory Z = Z(X) from Rλ1 = (0, λ1) satisfies Z(X) ∼ λ1 − ν1X, for X ∼ 0 and some
ν1 > 0. Thus, we can re-write the first equation in (1.27) as

dX
dξ
∼ (1/m)X(λ1 − ν1X) for X ∼ 0,

which is a first order logistic type ODE, and so we easily obtain that the profile X(ξ) = ϕ(x− ct) has the
exponential decay

X(ξ) ∼ a0e−
λ1
m ξ, for ξ ∼ +∞, (1.31)

where a0 > 0 is a fixed constant.
Below this connection we have a family of trajectories joining Rλ1 and R−∞. Above it, there are
trajectories from Rλ2 and crossing the line X = 1, one trajectory from Rλ2 crossing the line X = 1 and,
finally, a family of “parabolas” as in the other cases. See Figure 1.10 for a qualitative representation. �

Proof of Theorem 1.2: Part (ii). Let f (·) be a reaction term of type C satisfying (3):
f (0) = f (a) = f (1) = 0, f (u) < 0 in (0, a), f (u) > 0 in (a, 1)
f ∈ C1([0, 1]), f ′(0) < 0, f ′(a) > 0, f ′(1) < 0∫ 1
0 um−1 f (u)du > 0

f (·) has a unique critical point in (0, a) and a unique critical point in (a, 1).
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As before, we consider system (1.28) and the equation of the trajectories (1.29):

dZ
dX

=
cZ − |Z|p − F(X)
(p − 1)X|Z|p−2Z

:= H(X,Z; c),

where now the function F(X) := mX−1 f (X) satisfies F(0) = m f ′(0) < 0, F(a) = F(1) = 0, with F(X) < 0
and F′(X) > 0 in (0, a). The critical points are now four for any c > 0:

S(1, 0), A(a, 0), Rλ1(0, λ1), and Rλ2(0, λ2),

where λ1 = λ1(c) < 0 < cm < λ2 = λ2(c) are the solutions to the equation

cZ − |Z|p = F(0), c > 0.

In the next paragraph we look for trajectories in the strip [0, 1]× [0,∞) connecting S(1, 0)! Rλ2(0, λ2)
for a specific speed of propagation c = c0∗(m, p).
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Figure 1.11: Reactions of type C, range γ = 0, case c = 0. Qualitative behaviour of the trajectories in
the (X,Z)-plane for f (u) = u(1 − u)(u − a), a = 0.3.

Step0: Case c = 0. If c = 0, the equation of the trajectories reads

dZ
dX

= −
|Z|p + F(X)

(p − 1)X|Z|p−2Z
:= H(X,Z; 0).

The null isoclines are composed by two branches, the upper one linking Rλ2(0, λ2) and A(a, 0), and the
lower one joining Rλ1(0, λ1) and A(a, 0), where in this easier case

λ1 = λ1(0) = −
p
√
−m f ′(0), λ2 = λ2(0) =

p
√
−m f ′(0).

Employing the Lyapunov linearization method, it is not difficult to prove that Rλ1(λ1, 0) and Rλ2(λ2, 0)
are two saddle points. So, there are exactly two trajectories T− = T−(X) and T+ = T+(X) “coming from”
Rλ1(λ1, 0) and Rλ2(λ2, 0), respectively, lying in the strip [0, 1] × (−∞,∞) in the (X,Z)-plane. Moreover,
since

H(X,−Z; 0) = −H(X,Z; 0), for all 0 ≤ X ≤ 1, Z ∈ R,

we deduce that T− ≡ T+. At the same time, exactly as in the case γ > 0 we have a trajectory
T0 = T0(X) > 0 “entering” in S(1, 0) (see Step1 of the proof of Theorem 1.1, Part (ii)). Assuming (1.17),

i.e.,
∫ 1

0 um−1 f (u) du > 0, it follows that T+(X) < T0(X) for all 0 ≤ X ≤ 1, with T0(X) ∼ +∞ for X ∼ 0. This
follows by using the same technique of the case γ > 0. In particular, it is simple to see that the same
construction works if we take γ = 0 and formula (1.18) holds. Consequently, there are not admissible
TWs for c = 0.
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Step1: Local analysis of S(1, 0). This step coincides with Step1 of Part (i), since the nature of
the critical point S(1, 0) does not change if we take γ = 0. This can be easily seen noting that
F(X) ∼ fm,p(X) ∼ −m f ′(1)(1 − X) for X ∼ 1.

Step2: Study of the null isoclines. We proceed as before by studying the solutions of the equation

cZ̃ − |Z̃|p = mX−1 f (X), in [0, 1] × (−∞,∞).

As before, we find that there exists c0 > 0 such that for 0 < c < c0 the null isoclines are composed by
two branches: the left one, linking the points Rλ1(0, λ1), (a, cm), (a, 0) and Rλ2(0, λ2), whilst the second
linking (1, cm) and S(1, 0). The two branches approach as c→ c0 until they touch for c = c0. Finally, for
c > c0, we again two branches: the upper one, linking Rλ1(0, λ1), (a, cm) and (1, cm), while the lower one
joining Rλ2(0, λ2), (a, 0) and (1, 0).
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Figure 1.12: Reactions of type C, range γ = 0. Qualitative behaviour of the trajectories in the (X,Z)-
plane for f (u) = u(1− u)(u− a), a = 0.3. The first picture show the case 0 < c < c0∗, while the others the
cases c = c0∗ and c > c0∗, respectively.

Step3: Existence and uniqueness of a critical speed c = c0∗. The existence of a unique critical speed
c0∗ = c0∗(m, p) with corresponding trajectory linking S(1, 0) and Rλ2(λ2(c∗), 0) follows exactly as in
the case γ > 0, see Theorem 1.1, Part (ii). The unique (important) difference is the fact that the
the TW is positive everywhere. Indeed, integrating the first equation in (1.27) along the trajectory
Tc0∗ = Tc0∗(X) ∼ λ2(c0∗) for X ∼ 0, we obtain

ξ0 − ξ1 = m
∫ X1

X0

1
XTc0∗(X)

dX ∼ mλ2(c0∗)
∫ X1

X0

X−1dX for X0 ∼ 0,

from which we deduce ϕ(+∞) = X(+∞) = 0, i.e., the TW profile X(ξ) = ϕ(ξ) reaches the level u = 0 in
infinite time.

Step4: Non existence of admissible TWs for c > c0∗. Proving the non existence of admissible TW profiles
is easier than the case γ > 0, since from the study of the critical points and the null isoclines it follows
that there cannot exist nonnegative trajectories linking S(1, 0) and O(0, 0). The qualitative behaviour
of the trajectories in the (X,Z)-plane is reported in Figure 1.12. �
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Proof of Theorem 1.2: Part (iii). Finally we consider reaction terms f (·) of type C’, i.e., satisfying (4):
f (0) = f (a) = f (1) = 0, 0 < f (u) ≤ f ′(0)u in (0, a), f (u) < 0 in (a, 1)
f ∈ C1([0, 1]), f ′(0) > 0, f ′(a) < 0, f ′(1) > 0
f (·) has a unique critical point in (0, a) and a unique critical point in (a, 1).

As always, we consider system (1.28) and the equation of the trajectories (1.29):

dZ
dX

=
cZ − |Z|p − F(X)
(p − 1)X|Z|p−2Z

:= H(X,Z; c),

where F(X) := mX−1 f (X), but this time it satisfies F(0) = m f ′(0) > 0, F(a) = F(1) = 0, with F(X) > 0 and
F′(X) < 0 in (0, a). Note that for all c > 0, system (1.28) has the two critical points

S(1, 0) and A(a, 0).

Moreover, exactly as in the proof of Part (i), if

c0∗(m, p) := p(m2 f ′(0))
1

mp ,

as in (1.2), then there are no other critical points for system (1.28), when c < c0∗(m, p), there is exactly
one more critical point Rλ∗ := (0, λ∗), where

λ∗ := (c0∗(m, p)/p)m = (m2 f ′(0))1/p,

if f c = c0∗(m, p), whilst if c > c0∗, system (1.28) has two more critical points Rλi = (0, λi), i = 1, 2 where
0 < λ1 < λ∗ < λ2 < cm. Recall that λi, i = 1, 2 are the solutions to cZ − |Z|p = F(0).

Step1: Local analysis of A(a, 0) and S(1, 0). This step coincides with Step1 of 1.1, Part (iii).
Step2: Study of the null isoclines. As always, we study the solutions of the equation

cZ̃ − |Z̃|p = F(X), c > 0,

finding that for 0 < c < c∗, the null isoclines are composed by a unique branch linking the points (1, cm),
(a, cm), A(a, 0), and S(1, 0), while when c = c0∗ the branch crosses the Z-axis at the point Rλ∗(0, λ∗).
Finally, for c > c0∗, there are two branches: the upper one, linking Rλ2(0, λ2), (a, cm) and (1, cm), whilst
the lower one joining Rλ1(0, λ1), A(a, 0) and S(1, 0).

Step3: Existence and uniqueness of a critical speed c = c0∗. In this step, we have to prove the existence
of a trajectory Tc0∗ linking A(a, 0) with Rλ∗(0, λ∗), corresponding to an a-admissible positive TW profile.
This easily follows remembering the scaling property we explained before and substituting S(1, 0)
with A(a, 0) in the proof of Part (i).

We stress that even in this case the “critical” TW has the following asymptotic behaviour (cfr. with
(1.30)):

ϕ(ξ) ∼ a0|ξ|
2
p e−

λ∗
m ξ = a0|ξ|

2
p exp

(
−m

2−p
p f ′(0)

1
pξ

)
for ξ ∼ +∞,

where as before λ∗ := (c∗/p)m and a0 > 0 is a suitable constant.
Step4: The cases 0 < c < c0∗ and c > c0∗. If 0 < c < c0∗, there are not a-admissible TW. The proof of this

fact easily follows from the study of the null isoclines and from the non existence of critical points on
the Z-axis.

To the other hand, at each c > c∗, it corresponds exactly one a-admissible TW and it is positive. This
is proved by showing the existence of a trajectory Tc linking A(a, 0) and Rλ1(0, λ1) corresponding to
an a-admissible positive TW profile. Again we refer to the proof of Part (i) for any technical detail. See
Figure 1.13 for a qualitative representation of the trajectories in the (X,Z)-plane. �
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Figure 1.13: Reactions of type C’, range γ = 0. Qualitative behaviour of the trajectories in the (X,Z)-
plane for f (u) = u(1 − u)(a − u), a = 0.3, in the ranges 0 < c < c∗, c = c∗ and c > c∗, respectively.

Important Remarks. First of all, we point out that the existence of “special trajectories” like Change-
Sign TWs found in the range γ > 0 can be easily proved also in the range γ = 0. In particular, all what
we have explained in Subsections 1.2.1, 1.2.2, and 1.2.3 hold true even in the “pseudo-linear” range
γ = 0.

Secondly, we want to comment the asymptotic behaviour of the function c0∗ = c0∗(m, p) (cfr. with
(1.2)) for Fisher-KPP reactions and reactions of type C’. Since we assume m(p − 1) = 1, it is simple to
re-write the critical speed as a function of m > 0 or p > 1:

c0∗(m) = (1 + m)m
1−m
1+m f ′(0)

1
m+1 or c0∗(p) = p(p − 1)−

2(p−1)
p f ′(0)

p−1
p .

Then we have:
lim
m→0

c0∗(m) = lim
p→∞

c0∗(p) = 0 and lim
m→∞

c0∗(m) = lim
p→1

c0∗(p) = 1.

These limits allow us to guess if in the cases m→ 0, p→∞ and m→∞, p→ 1 such that m(p − 1) = 1,
there exist TWs or not. It seems natural to conjecture that the answer is negative in the first case, while
admissible TWs could exist in the second case.
Finally, it is not difficult to calculate the derivative of c0∗(m) (or c0∗(p)) in the case f (u) = u(1 − u):

c′0∗(m) = (m + 1)−1m−
2m

m+1 (m + 1 − 2m log m)

and conclude that the maximum of the critical speed is assumed for a critical value of m = m∗, with
2 < m∗ < 3 (of course, we can repeat this procedure with the function c0∗(p) finding a critical value
4/3 < p∗ < 3/2). This simple calculation assures the linear case m = 1 and p = 2 is not critical for the
function c0∗(m, p) while the maximal speed of propagation is found choosing m = m∗ and/or p = p∗.
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Figure 1.14: Pseudo-linear case: the graphics of c0∗ := c∗ in dependence of m > 0 and p > 1.

1.3.1 Proof of formula (1.30)

As we explained in the proof of Theorem 1.2, Part (i), studying the asymptotic behaviour of the positive
TW with critical speed c0∗(m, p) := p(m2 f ′(0))1/(mp), when γ = 0, is more complicated than the case γ > 0.
In what follows, we give the detailed proof of formula (1.30).

Before proceeding with the analysis, let’s recall some facts proved above. We have worked in the
(X,Z)-plane, where X = ϕ and Z = −mX−1X′ are defined in (1.26) and we showed the existence of a
trajectory linking Rλ∗ ↔ S, where Rλ∗ = (λ∗, 0), S = (1, 0), and λ∗ := (c0∗(m, p)/p)m = (m2 f ′(0))1/p. This
trajectory corresponds to an admissible positive TW with critical speed c0∗(m, p).

We are now ready to begin with the proof of (1.30). Let us suppose f ∈ C2([0, 1]) and let Z = Z(X)
be the analytic expression of the trajectory of this TW. We consider the approximation Z ∼ λ∗ − ζ0(X)
as X ∼ 0, where ζ0(X) ∼ 0 as X ∼ 0. Our goal is to compute the remainder ζ0 = ζ0(X) as X ∼ 0. Let us
consider the equation of the trajectories (1.29). Since

X−1 f (X) ∼ f ′(0) +
f ′′(0)

2
X, for X ∼ 0,

(λ∗ − ζ0(X))p
∼ λ

p
∗ − pλp−1

∗ ζ0(X) +
p(p − 1)

2
λ

p−2
∗ ζ0(X)2 for X ∼ 0,

(1.32)

we have that equation (1.29) with c = c0∗ becomes

dζ0

dX
∼ −

c0∗λ∗ − λ
p
∗ −m f ′(0) − (c0∗ − pλp−1

∗ )ζ0 −
p(p−1)

2 λ
p−2
∗ ζ2

0 −m f ′′(0)
2 X

(p − 1)λp−1
∗ X

∼
p

2λ∗

ζ2
0

X
+ b0, for X ∼ 0

where b0 := m f ′′(0)/[2(p − 1)λp−1
∗ ] < 0. We point out that the second approximation holds since both

the quantities c0∗λ∗ − λ
p
∗ −m f ′(0) and c0∗ − pλp−1

∗ are zero. Now, consider the equation

dζ̃0

dX
=

p
2λ∗

ζ̃ 2
0

X
,

which is obtained by taking b0 = 0 in the previous equation. We have ζ̃0(X) ∼ −(2λ∗/p) ln−1(X) for
X ∼ 0 while, for all small ε > 0, it is simple to see that the functions

ζ
0
(X) ∼ −

2λ∗ + ε
p

ln−1(X) and ζ0(X) ∼ −
2λ∗ − ε

p
ln−1(X)
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are sub-solution and super-solution of the equation dζ0/dX =
p

2λ∗
ζ2

0
X + b0 for X ∼ 0, respectively. Thus,

using the arbitrariness of ε > 0 and Comparison Principle, we deduce that

ζ0(X) ∼ ζ̃0(X) ∼ −
2λ∗
p

ln−1(X), for X ∼ 0.

Now, we iterate the previous procedure to compute high order terms. So let Z ∼ λ∗ − ζ1(X), for
X ∼ 0, where ζ1(X) = ζ0(X) + lh.o.t. We suppose for a moment to have f ∈ C3([0, 1]) and, proceeding
as in (1.32), we compute the Taylor expansions:

X−1 f (X) ∼ f ′(0) +
f ′′(0)

2
X +

f ′′′(0)
6

X2, for X ∼ 0,

(λ∗ − ζ1(X))p
∼ λ

p
∗ − pλp−1

∗ ζ1(X) +
p(p − 1)

2
λ

p−2
∗ ζ1(X)2

−
p(p − 1)(p − 2)

6
λ

p−3
∗ ζ1(X)3 for X ∼ 0,

and we substitute in the equation of the trajectories (1.29) to find

dζ1

dX
∼

p
2λ∗

ζ2
1

X
−

p(p − 2)

6λ2
∗

ζ3
1

X
+ b0 − b1X, for X ∼ 0,

where b1 := m f ′′′(0)/[6(p − 1)λp−1
∗ ]. Now, we know the less accurate approximation ζ1(X) ∼ ζ0(X) ∼

−
2λ∗
p (ln X)−1, for X ∼ 0. So, substituting it in the previous equation we obtain

dζ1

dX
∼

2λ∗
p

1

X ln2(X)
+

4(p − 2)λ∗
3p2

1

X ln3(X)
+ b0 − b1X, for X ∼ 0,

and once we integrate with respect to the variable X, we get

ζ1(X) ∼ −
2λ∗
p

1
ln(X)

−
2(p − 2)λ∗

3p2
1

ln2(X)
+ b0X −

b1

2
X2

= ζ0(X) −
2(p − 2)λ∗

3p2
1

ln2(X)
+ b0X −

b1

2
X2, for X ∼ 0.

Using this information, the differential equation −mX′ = XZ in (1.27) becomes

−mX′ ∼ λ∗X
[
1 +

2
p

1
ln(X)

+
2(p − 2)

3p2
1

ln2(X)
−

b0

λ∗
X +

b1

2λ∗
X2

]
, for X ∼ 0. (1.33)

As the reader can easily see, a first approximation of the solution of (1.33) is given by

ln X(ξ) ∼ −
λ∗
m
ξ, for ξ ∼ +∞.

Consequently, by substituting the previous expression in the square parenthesis of (1.33) we have

X′

X
∼ −

λ∗
m

+
2
p

1
ξ
−

2m(p − 2)
3λ∗p2

1
ξ2 −

b0

m
e−

λ∗
m ξ +

b1

2m
e−

2λ∗
m ξ, for ξ ∼ +∞,

which, once integrated, can be re-written as

ln(X) ∼ −
λ∗
m
ξ +

2
p

ln(|ξ|) +
2m(p − 2)

3λ∗p2
1
ξ

+
b0

λ∗
e−

λ∗
m ξ −

b1

4λ∗
e−

2λ∗
m ξ, for ξ ∼ +∞.
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Hence, we have shown that equation (1.33) is satisfied by taking

X(ξ) = ϕ(ξ) ∼ a0|ξ|
2
p e−

λ∗
m ξ = a0|ξ|

2
p exp

(
−m

2−p
p f ′(0)

1
pξ

)
for ξ ∼ +∞,

for some constant a0 > 0, which is exactly (1.30). With the previous formula we complete the study of
the asymptotic behaviour of the TW with critical speed for ξ ∼ +∞. We end this paragraph pointing
out that neither the assumption f ∈ C2([0, 1]) nor f ∈ C3([0, 1]) is needed since the terms involving
f ′′(0) and f ′′′(0) do not influence formula (1.30) and that this estimate is consistent with the results
known in the linear case. Indeed, when m = 1 and p = 2, the TW ϕ = ϕ(ξ) with critical speed
c0∗(m = 1, p = 2) := c′0∗ = 2

√
f ′(0) satisfies

ϕ(ξ) ∼ |ξ|e
c′0∗
2 ξ = a0|ξ|e

√
f ′(0)ξ, for ξ ∼ −∞,

for some a0 > 0. See for instance [119] and the references therein.

1.4 Proof of Theorem 1.3

We now prove Theorem 1.3 for reactions of Fisher-KPP type (2). As the reader can easily see the proof
in the case of reactions of type C and/or C’ is very similar and we skip it. To facilitate the reading, we
divide the proof in two main steps: in the first one, we show the continuity of c∗ = c∗(m, p) in the range
γ > 0 of the (m, p)-plane and then we extend the continuity to the all range γ ≥ 0.

1.4.1 Continuity of the function c∗ for γ > 0

We will see in a moment that the continuity of the critical speed strongly depends on the stability of
the orbit “coming into” the point S = (0, 1) (recall that we proved its existence and its uniqueness for
all c > 0 in Step2 of Part (i) of Theorem 1.1). Before proceeding, we need to introduce the following
notations:
• Z j = Z j(X) stands for the analytic representation of the trajectory Tc∗(m j,p j) (as a function of X) for the
values m j > 0 and p j > 1 such that γ j = m j(p j − 1) − 1 > 0 and j = 0, 1.
• A j = A j(X) will indicate the analytic representation of the trajectories “above” Tc∗(m j,p j), j = 0, 1.
• B j = B j(X) will indicate the analytic representation of the trajectories “below” Tc∗(m j,p j), j = 0, 1.
The following lemma proves that the orbit Tc∗ is continuous with respect to the parameters m > 0 and
p > 1.

Lemma 1.4. Let c = c∗. Then the orbit Tc∗ linking Rc∗ = (0, c1/(p−1)
∗ ) and S = (1, 0) is continuous with respect

to the parameters m > 0 and p > 1 (with γ > 0) uniformly on [0, 1].
This means that for all m0 > 0 and p0 > 1 with γ0 > 0, for all ε > 0 there exists δ > 0 such that

|Z0(X) − Z1(X)| ≤ ε for all |m0 −m1| + |p0 − p1| ≤ δ with γ1 > 0

and for all 0 ≤ X ≤ 1.

Proof. Fix m0 > 0 and p0 > 1 with γ0 > 0 and note that the proof is trivial if X = 1.

Step1. First of all, we show that for all ε > 0 and for all 0 < X < 1, there exists δ > 0 such that

|Z0(X) − Z1(X)| ≤ ε for all |m0 −m1| + |p0 − p1| ≤ δ with γ1 > 0.

So, fix 0 < X < 1 and ε > 0. We consider the trajectories A0 = A0(X) and B0 = B0(X) with

A0(X) = Z0(X) + ε and B0(X) = Z0(X) − ε, (1.34)
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where Z0 = Z0(X), as we explained before, is the analytic expression for the trajectory Tc∗ with
parameters m0 and p0. Since we proved that Tc∗ is “repulsive” near S (see Step2 of Theorem 1.1), we
have that A0(·) has to cross the line Z = 1 in some point with positive height while B0(·) crosses the
X-axis in a point with first coordinate in the interval (X, 1). Hence, we can apply the continuity of the
trajectories with respect to the parameters m and p outside the critical points and deduce the existence
of δ > 0 such that for all m1 and p1 satisfying |m0 − m1| + |p0 − p1| ≤ δ, the trajectories A1 = A1(X) and
B1 = B1(X) with

A1(X) = Z0(X) + ε and B1(X) = Z0(X) − ε (1.35)

satisfy |A0(X) −A1(X)| ≤ ε and |B0(X) − B1(X)| ≤ ε for all X ≤ X ≤ 1. In particular, A1(·) crosses the line
Z = 1 in a point with positive height and B1(·) has to cross the X-axis in a point with first coordinate
in the interval (X, 1). Consequently, since B1(X) ≤ Z1(X) ≤ A1(X) for all X ≤ X ≤ 1, we deduce that
|Z0(X) − Z1(X)| ≤ ε.

Step2. Now, in order to show that

|Z0(X) − Z1(X)| ≤ ε for all X ≤ X ≤ 1,

we suppose by contradiction that there exists a point X < X
′

< 1 such that |Z0(X
′

) − Z1(X
′

)| > ε.
Without loss generality, we can suppose Z0(X

′

) > Z1(X
′

) + ε. Then, we can repeat the procedure
carried out before by taking A0(·) and B0(·) satisfying (1.34) with X = X

′

. Hence, the continuity of the
trajectories with respect to the parameters m and p (outside the critical points) assures us the existence
of A1(·) and B1(·) satisfying (1.35) with X = X

′

. Hence, since B0(·) crosses the X-axis in point with first
coordinate in the interval (X

′

, 1) and B1(·) has to behave similarly (by continuity), we have that the
trajectory described by B1(·) and Z1(·) have to intersect, contradicting the uniqueness of the solutions.
We ask to the reader to note that, at this point, we have showed the continuity of the trajectory Tc∗
with respect to the parameters m and p uniformly in the interval [X, 1], where 0 < X < 1 is arbitrary.

Step3. Finally, to conclude the proof, it is sufficient to check the continuity in X = 0, i.e., we have
to prove that for all m0 > 0 and p0 > 1 such that γ0 > 0, for all ε > 0 there exists δ > 0 such that

|Z0(0) − Z1(0)| ≤ ε for all |m0 −m1| + |p0 − p1| ≤ δ with γ1 > 0.

Arguing by contradiction again, we suppose that there exist ε > 0 such that for all δ > 0, we can find
m1 and p1 with |m0 −m1| + |p0 − p1| ≤ δ and γ1 > 0 such that it holds |Z0(0) − Z1(0)| > ε.
Hence, since the trajectories are continuous with respect to the variable X, we deduce the existence of
a small 0 < X < 1 such that |Z0(X) − Z1(X)| > ε/2 and so, thanks to the result from the Step1 and Step2,
we can take δ > 0 small so that |Z0(X) − Z1(X)| ≤ ε/2, obtaining the desired contradiction. �

A direct consequence of the previous lemma is the continuity of the function c∗ = c∗(m, p) in the
region R := {(m, p) : γ = m(p − 1) − 1 > 0, that we enunciate in the following corollary.

Corollary 1.5. The function c∗ = c∗(m, p) is continuous in the region R, i.e., for all m0 and p0 with γ0 > 0 and
for all ε > 0, there exists δ > 0 such that it holds |c∗(m0, p0) − c∗(m, p)| ≤ ε, for all m and p with γ > 0 and
satisfying |m −m0| + |p − p0| ≤ δ.

1.4.2 Continuity of the function c∗ for γ ≥ 0

In these last paragraphs, we complete the proof of Theorem 1.3 showing the following lemma.

Lemma 1.6. The function defined in (1.3) is continuous in R, i.e., for all m0 and p0 with γ0 ≥ 0 and for all
ε > 0, there exists δ > 0 such that it holds |c0∗(m0, p0) − c∗(m, p)| ≤ ε, for all m and p with γ ≥ 0 and satisfying
|m −m0| + |p − p0| ≤ δ.
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Proof. We divide the proof in some short steps as follows.
Step1. First of all, we observe that, thanks to Corollary 1.5 and since the function c0∗(m, p) is

continuous in the set {γ = 0}, it is sufficient to check the continuity along the boundary of the region
R. More precisely, we will show that for all m0 and p0 with γ0 = 0, for all ε > 0, there exists δ > 0 such
that it holds |c0∗(m0, p0) − c∗(m, p)| ≤ ε, for all m and p with γ > 0 and satisfying |m −m0| + |p − p0| ≤ δ.

Step2. Now, we ask the reader to note that, with the same notations and techniques used in the
proof of Lemma 1.4, it is possible to prove the continuity of the trajectory “coming into” S = (1, 0) with
respect to the parameters m and p with γ ≥ 0 uniformly in the variable X in all sets [X, 1], where X is
fixed in (0, 1]. This fact can be easily checked since, as we explained in the proof of Theorem 1.2, the
local behaviour of the trajectories near the point S is the same for γ > 0 and γ = 0.

Step3. Before, proceeding with the proof we need to recall a last property. In the proof of Theorem
1.1, we showed that c∗(m, p) < c0(m, p) for all m and p with γ > 0, where

c0(m, p) := p
(

Fm,p

p − 1

)(p−1)/p

,

and Fm,p is the maximum of the function fm,p(X) = mX
γ

p−1−1 f (X). Since fm,p(X) → mX−1 f (X) as γ → 0
for all 0 < X ≤ 1 and the limit function is decreasing, we have that the maximum point of fm,p(·)
converges to zero as γ→ 0. Consequently, we obtain that Fm,p → m f ′(0) as γ→ 0 and we deduce

c0(m, p)→ p(m2 f ′(0))1/(m+1) = c0∗(m, p) as γ→ 0.

Now we have all the elements needed for completing the proof by proving the assertion stated in
Step1.

Step4. Suppose by contradiction that there exists m0 and p0 with γ0 = 0, ε > 0 and a sequence
(m j, p j)→ (m0, p0) as j→∞with γ j > 0, such that |c0∗(m0, p0) − c∗(m j, p j)| ≥ ε for all j ∈N.
Hence, there exists a subsequence that we call again c∗(m j, p j) converging to a value c , c0∗(m0, p0).
Note that, since we proved c∗(m j, p j) < c0(m j, p j)→ c0∗(m0, p0), it has to be c < c0∗(m0, p0) (see Step3).
Now, since γ j > 0, we have that the trajectory Tc∗(m j,p j) joins the point S = (1, 0) with the point
Rc∗(m j,p j) = (0, c∗(m j, p j)1/(p j−1)) for all j ∈ N and Rc∗(m j,p j) → Rc = (0, c1/(p0−1)) as j → ∞. In particular, it
follows that the sequence of trajectories Tc∗(m j,p j) has to be bounded. However, thanks to the analysis
done in the proof of Theorem 1.2, we know that if c < c0∗(m0, p0), the trajectory “coming into” the point
S is unbounded and joins the previous point with R∞ = (0,∞). Consequently, applying the continuity
of the trajectory “coming into” S with respect to the parameters m and p (stated in Step2) we obtain
the desired contradiction and we conclude the proof. �

1.5 Extensions, comments and open problems

We end the chapter with some extensions, comments and open problems.

1.5.1 Models with “strong” reaction

In order to give to reader a wider vision of the work we have carried out, we focus on a model with a
“strong” reaction term. Following [79] and [80], we shortly present an extension of Theorem 1.1 and
Theorem 1.2, in framework of Fisher-KPP reactions, studying the existence of TWs for the equation

∂tu = ∂x(|∂xum
|
p−2∂xum) + un(1 − u) in R × (0,∞), (1.36)

where m > 0 and p > 1 such that γ ≥ 0 and n ∈ R (note that we get the Fisher-KPP equation with
doubly nonlinear diffusion choosing n = 1). The problem consists in understanding if equation (1.36)
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has admissible TWs (in the sense of definition (7)) when we replace the usual smooth reaction term
f (u) = u(1− u) with a non-smooth one, called “strong” reaction for the “singularity” in the point u = 0
(when n < 1). We start with the case γ > 0 and then we discuss the case γ = 0.

Theorem 1.7. Let m > 0 and p > 1 such that γ > 0, n ∈ R and q := [γ + (n − 1)(p − 1)]/(p − 1). Then there
exist admissible TWs for equation (1.36) if and only if q ≥ 0.
Moreover, for all q ≥ 0, there exists a critical speed c∗ = c∗(m, p,n) > 0 such that equation (1.36) possesses a
unique admissible TW for all c ≥ c∗(m, p,n) and does not have admissible TWs for 0 < c < c∗(m, p,n). The TW
corresponding to the speed c∗(m, p,n) is finite.
Finally, we have:
• If q = 0, each TW is finite;
• If q > 0, the TWs corresponding to the values c > c∗(m, p,n) are finite if and only if 0 < n < 1.

Proof. The proof is very similar to the one of Part (i) of Theorem 1.1 and we sketch it quickly. We
start writing the equation of the profile getting to the system

dX
dτ

= (p − 1)X|Z|p−2Z,
dZ
dτ

= cZ − |Z|p −mXq(1 − X)

where X and Z are defined as in (1.6) and the equation of the trajectories

dZ
dX

=
cZ − |Z|p −mXq(1 − X)

(p − 1)X|Z|p−2Z
.

Now, using the same methods of the proof of Theorem 1.1 (Step5 of Part (i)), it is not difficult to see
that if q < 0, there are no trajectories linking the saddle point S = (1, 0) with a point of the type (0, λ)
for all λ ≥ 0 and so, there are no admissible TWs.

If q = 0, i.e. γ = (1 − n)(p − 1) (note that this expression makes sense only if n < 1), we have
null isoclines qualitatively equal to the ones found in Theorem 1.2 (Part (i)) and so, we can show the
existence of a critical speed c∗ = c∗(m, p,n) such that there are no TWs for c < c∗ and there exists exactly
one TW for all c ≥ c∗. Moreover, since we know that n < 1 and using the same methods of Step4 of
Theorem 1.1 (Part (i)), it is simple to see these TWs are finite.

If q > 0, the analysis is very similar to the one done in Theorem 1.1. The unique significant difference
appears when we study the local behaviour of the trajectories from the critical point O = (0, 0) in the
case c > c∗. Indeed, it is simple to see that the trajectories from O satisfies Z(X) ∼ (m/c)Xq for X ∼ 0.

Hence, integrating the differential equation −mX′ = X1− γ
p−1 Z (cfr. with (1.7)), we get that the time

(measured respect with the variable ξ) in which the profile approaches the level 0 depends on n:

ξ1 − ξ0 = −m
∫ X1

X0

dX

X1− γ
p−1 Z(X)

∼ −c
∫ X1

X0

dX

X1− γ
p−1 +q

= −c
∫ X1

X0

dX
Xn ,

where 0 < X1 < 1 is fixed. Then, letting X0 → 0, it follows that the TW is finite if and only if 0 < n < 1.
�

Remarks. (i) We have showed that the existence of admissible TWs depends on the sign of the value
q := [γ + (n − 1)(p − 1)]/(p − 1) which, in some sense, describes the interaction between the diffusion
and the reaction terms. In particular, we have proved a really interesting fact: if q ≥ 0 and 0 < n < 1,
then all the admissible TWs for equation (1.36) are finite. This represents a very important difference
with the case γ > 0 and n = 1. Indeed, when γ > 0 and n = 1 only the TW corresponding to the critical
value c∗ is finite.
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(ii) We point out that the same procedure can be followed when γ = 0 and n ∈ R. In this case, we
have q = q(n) = n − 1 and system (1.28) has the form

dX
dτ

= (p − 1)X|Z|p−2Z,
dZ
dτ

= cZ − |Z|p −mXn−1(1 − X).

Following the proof of Part (i) of Theorem 1.1 and Theorem 1.2, it is not difficult to show that for all
n ≥ 1, there exists a critical speed of propagation c∗(n) > 0, such for all c ≥ c∗(n), there exists a unique
positive TW for equation (1.36), while there are no admissible TWs for c < c∗(n). Moreover, if n < 1
equation (1.36) does not possess TW solutions.
This means that when γ = 0, a “weak/strong” modification of the reaction term is not sufficient to have
finite TWs. So, the previous observations and Theorem 1.7 explain us the exact combination of slow
diffusion (γ > 0) and strong reaction needed in order to “generate” only finite TW solutions: we need
to have q ≥ 0 and 0 < n < 1. Consequently, we can conclude that the method of balancing the doubly
nonlinear slow diffusion with a strong reaction allows us to separate quantitatively the cases in which
all the TWs are positive, there exists at least one finite TW and all the TWs are finite.

(iii) Note that Theorem 1.7 extends the result of DePablo and Vźquez proved in [79] for the Porous
Medium case (i.e., p = 2 and m > 1).

(iv) We point out that the study of the super-level sets and the asymptotic study can be repeated
when f (u) = un(1 − u) and 0 < n < 1. Indeed, since un(1 − u) ≥ u(1 − u), we can employ the solutions
of the problem with n = 1 as sub-solutions for the problem with 0 < n < 1. The significative open
problem in the study of problem (1) with a strong reaction term is that the solutions are not unique
since the reaction term is not Lipschitz continuous (see also [78]).

1.5.2 An interesting limit case

In Part (i) of Theorem 1.2, we have studied the “pseudo-linear” case (γ = 0, i.e., m(p − 1) = 1) finding
an explicit formula for the function c∗ and we wrote it as a function of m > 0 and/or p > 1. In particular,
we found

lim
m→∞

c∗(m) = lim
p→1

c∗(p) = 1.

This fact allows us to conjecture the existence of admissible TWs for the limit case m→∞ and p→ 1.
Now, we can formally compute the limit of the doubly nonlinear operator:

∆pum = mp−1
∇ · (uµ|∇u|p−2

∇u)

= m1/m
∇ · (u2−p

|∇u|p−2
∇u)→ ∇ ·

(
u
∇u
|∇u|

)
as m→∞ and p→ 1,

keeping m(p − 1) = 1. We ask the reader to note that, assuming m(p − 1) = θ with θ > 0, we can repeat
the previous computations and deduce that

∆pum
→ ∇ ·

(
uθ
∇u
|∇u|

)
as m→∞ and p→ 1,

keeping m(p−1) = θ fixed. Consequently, a very interesting open problem is the study of the existence
of admissible TWs for the equation

∂tu = ∂x
(
uθ|∂xu|−1∂xu

)
+ f (u) in R × (0,∞) (1.37)

for different values of the parameter θ ≥ 0. The case θ = 1 has been studied by Andreu et al. in [9],
where the authors showed the existence of discontinuous TWs for equation (1.37) (with θ = 1). Hence,
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it seems reasonable to conjecture that in the limit case m → ∞ and p → 1 with m(p − 1) = θ > 1 there
are admissible TWs but with less regularity.
Finally, we recommend the papers [60, 61, 62] for more work on TW solutions (in general discontinuous)
to a nonlinear flux limited Fisher-KPP equation, which seem to be related with the limit TWs of our
work.



Chapter 2

Long time behaviour for “slow” diffusion

In this chapter the PDEs part begins and we show our main results for the “slow” and the “pseudo-
linear” diffusion ranges γ > 0 and γ = 0, respectively (cfr. with Figure 2.1). As explained in the
introduction to Part I, we are concerned with the asymptotic behaviour for large times of the solutions
to problem (1): ∂tu = ∆pum + f (u) in RN

× (0,∞)
u(x, 0) = u0(x) in RN,

with reaction term satisfying on of (2), (3), or (4), and initial datum satisfying (5). We will see how
different reaction terms influence the asymptotic behaviour of the solutions and the stability of the
steady states, and why travelling waves solutions are so essential for our purposes.

0 1
0

1

 

 

"Slow diffusion" range

 = 0

m

p - 1

A(p=2,m=1)

Figure 2.1: The “slow diffusion” region (red area) and the “pseudo-linear” line (green line) in the
(m, p − 1)-plane.

In what follows, we will need the concept of radial solutions to problem (1). So we say that
u = u(x, t) is a radial solution to problem (1), if u(x, t) = u(r, t), with r = |x| and it satisfies∂tu = ∆p,rum + f (u) in R+ × (0,∞)

u(r, 0) = u0(r) in R+,
(2.1)

where R+ is the set of positive real numbers and

∆p,rum := r1−N∂r
(
rN−1
|∂rum

|
p−2∂rum

)
= ∂r

(
|∂rum

|
p−2∂rum

)
+

N − 1
r
|∂rum

|
p−2∂rum

45
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is the “radial doubly nonlinear” operator. Finally, we assume that the initial datum u0(x) = u0(r)
satisfies (5) and it is radially decreasing. Note that when N = 1, it is equivalent to study problem (1)
or (2.1) (with an even reflection).

2.1 Main results

As we did in Chapter 1, we report here the main statements we will prove in the next sections. Newly,
we will keep separate the proofs depending on the reaction term f (·), starting with the Fisher-KPP
case (2). In this treatise, it is the most significative between the three type of reactions, and we will
give it more relevance.

Theorem 2.1. (cfr. with Theorem 2.6 of [17])
Let m > 0 and p > 1 such that γ ≥ 0, and let N ≥ 1. Let u = u(x, t) be a radial solution to the initial-value
problem (1) (with radially decreasing initial datum (5)) and reaction of Fisher-KPP type (satisfying (2)). Then:

(i) For all 0 < c < c∗,
u(x, t)→ 1 uniformly in {|x| ≤ ct} as t→∞.

(ii) For all c > c∗ it satisfies,

u(x, t)→ 0 uniformly in {|x| ≥ ct} as t→∞.

where c∗ = c∗(m, p, f ) is the critical speed found in Theorem 1.1, 1.2, Part (i). Moreover, if γ > 0 and c > c∗,
then u = u(x, t) has a free boundary and, in particular, u(x, t) = 0 in {|x| ≥ ct} as t→ +∞.

Figure 2.2: Fisher-KPP reactions, range γ ≥ 0. Qualitative long time behaviour (convergence to 1 in
the “inner” sets {|x| ≤ ct}, for c < c∗) of the solutions for f (u) = u(1 − u).

Theorem (2.1) was proved by Aronson and Weinberger (see [12, 13]) in the linear setting m = 1
and p = 2. Here we extend it to the all range of parameters m > 0 and p > 1 such that γ ≥ 0. It
is important to mention that a similar asymptotic behaviour theorem was proved in [78] for Porous
Medium diffusion and “strong reactions” (see also [79, 80]).

From the point of view of the applications, it explains that the density of population u = u(x, t)
invades all the available space with speed of propagation c∗. In other words, this means that the steady
state u = 0 is unstable, while u = 1 is stable and the rate of convergence of general solutions to u = 1 is
constant for large times.
Furthermore, as stated before, in the case γ > 0, we will prove that not only u = u(x, t) converges to zero
in the “outer” sets {|x| ≥ ct} for large values of t > 0 (for c > c∗), but also it will turn out that u = u(x, t)
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is identically zero in {|x| ≥ ct} for large times. This means that when γ > 0, the general solutions have a
free boundary and it represents a significant difference with respect to the “pseudo-linear” case (γ = 0),
in which all solutions are positive everywhere. We stress that this is due to the fact that when γ > 0
there exists a finite TW corresponding to the value c = c∗.

Theorem 2.1 is proved in three main steps. The first one consists in showing that the solutions
to problem (1) converges point-wise to 1 on every compact sets of RN for times large enough (see
Section 2.2). This is a technical and quite long part, based on a priori “lifting-up” lemmas, to whom
we dedicate two sections depending on γ > 0 or γ = 0 (cfr. with Subsection 2.2.1 and Subsection 2.2.2).
Then, using the TW solutions found in Theorem 1.1, 1.2 as sub-solutions and super-solutions, we
prove a one dimensional version of Theorem 2.1. The last step consists in studying radial solutions
(see (2.1)) by using solutions to the one-dimensional problem as barriers from above and below and
suitable comparison principles. This second part is carried out in Section 2.3.

Theorem 2.2. (cfr. with Theorem 1.2 of [15])
Let m > 0 and p > 1 such that γ ≥ 0, and let N ≥ 1. Let u = u(x, t) a radial solution to problem (1) with
reaction of type C (satisfying (3)). Then:

(i) There are initial data satisfying (5) such that

u(x, t)→ 0 point-wise in RN, as t→ +∞.

(ii) There are initial data satisfying (5) such that

u(x, t)→ 1 point-wise in RN, as t→ +∞.

(iii) Asymptotic behaviour:

• For the same class of initial data of (ii) and for all 0 < c < c∗, it holds

u(x, t)→ 1 uniformly in {|x| ≤ ct}, as t→ +∞.

• For all radially decreasing initial data satisfying (5) and for all c > c∗ it holds

u(x, t)→ 0 uniformly in {|x| ≥ ct}, as t→ +∞.

Moreover, if γ > 0 and c > c∗, then u(x, t) = 0 in {|x| ≥ ct} as t→ +∞. Here c∗ = c∗(m, p, f ) is the critical speed
found in Theorem 1.1,1.2, Part (ii).

The previous statement is very significant in terms of stability/instability of the steady states u = 0,
u = a, and u = 1, since it explains that the both u = 0 and u = 1 are “attractors” (part (i) and (ii)) for the
space of nontrivial initial data u0 ∈ Cc(RN), 0 ≤ u0 ≤ 1. This is an important difference respect to the
Fisher-KPP setting, where the steady state u = 1 is globally stable, whilst u = 0 is unstable (cfr. with
Theorem 2.1). We ask the reader to note the part (ii) not only asserts that u = 1 is an “attractor” for
a suitable class of initial data, but also gives the rate of convergence c∗ = c∗(m, p, f ) of the solutions to
this steady state, for large times. The precise classes of initial data in part (i) and (ii) will be given later
(cfr. with Definition 2.13 and Definition 2.14).

Even threshold properties of reaction diffusion equations have been largely investigated since the
first results proved in [13]. We quote the quite recent works [88, 157, 166] for the proof of sharp
threshold theorems in the case of linear diffusion. As the reader can see, Theorem 2.2 is not sharp,
but we will see how some special kind of TW solutions found in the fine ODEs analysis carried out in
Chapter 1 can be employed as barriers to show the existence of a threshold effect, which is known in
the linear setting but not a priori in the nonlinear one. We stress that, at least to our knowledge, in the
case of nonlinear or non-local diffusion sharp threshold results are not known.

Even if in this framework the proof is easier, it will be divided depending on the spacial dimension
N = 1 or N ≥ 2 to simplify the reading. Let us state our last PDEs result:
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Theorem 2.3. (cfr. with Theorem 1.3 of [15])
Let m > 0 and p > 1 such that γ ≥ 0, and let N ≥ 1. Let u = u(x, t) be a radial solution to the initial-value
problem (1) (with radially decreasing initial datum (5)) and reaction of type C’ (satisfying (4)). Then:

(i) For all 0 < c < c∗,
u(x, t)→ a uniformly in {|x| ≤ ct} as t→∞.

As always 0 < a < 1 and satisfies f (a) = 0.

(ii) For all c > c∗ it satisfies,

u(x, t)→ 0 uniformly in {|x| ≥ ct} as t→∞.

where c∗ = c∗(m, p, f ) is the critical speed found in Theorem 1.1, 1.2, Part (iii). Moreover, if γ > 0 and c > c∗,
then u = u(x, t) has a free boundary and, in particular, u(x, t) = 0 in {|x| ≥ ct} as t→ +∞.

Even in this setting, the previous theorem gives relevant information on the stability/instability of
the steady states u = 0, u = a and u = 1. Possibly, the most important one is that the state u = a is
globally stable w.r.t. the class of initial data u0 ∈ Cc(RN), 0 ≤ u0 ≤ 1, whilst both u = 0 and u = 1 are
unstable. This is a strong departure from the previous case of reaction of Type C and of the Fisher-KPP
type.
Note that the statement of Theorem 2.3 coincides with the one of Theorem 2.1 for Fisher-KPP reactions
and a = 1 and was proved for the linear case in [13], together with a so called “hair-trigger effect”
results that we do not study in this treatise. So, Theorem 2.3 and Theorem 2.1 can unified and give the
asymptotic behaviour of a wider class of mono-stable reaction equations of type C’ (4) with 0 < a ≤ 1.

Important remark. In order to simplify the reading, we have decided to state Theorem 2.1, 2.2,
and 2.3 for radial solutions to problem (1) (generated by radially decreasing initial data). A simple
comparison with “sub” and “super” initial data shows the the three theorems hold true for initial
data satisfying (5). Indeed, if u0 = u0(x) satisfies (5), there are u0 = u0(|x|) and u0 = u0(|x|) radially
decreasing satisfying (5) such that u0 ≤ u0 ≤ u0 in RN. Consequently, if u = u(x, t) and u = u(x, t) are
radial solutions to problem (1) with initial data u0 and u0, respectively, it follows u(x, t) ≤ u(x, t) ≤ u(x, t)
for all x ∈ RN and t > 0, thanks to the comparison principle. So, since Theorem 2.1, 2.2, and 2.3 hold
for u = u(x, t) and u = u(x, t), they will hold for u = u(x, t), too.

2.2 Fisher-KPP reactions, range γ ≥ 0. Convergence to 1 on compact sets

In this section, we show that the steady state u = 1 is stable, i.e., the solutions to problem (1), (5) with
reaction term f (·) satisfying (2):

f (0) = f (1) = 0, 0 < f (u) ≤ f ′(0)u in (0, 1)
f ∈ C1([0, 1]), f ′(0) > 0, f ′(1) < 0
f (·) has a unique critical point in (0, 1)

converge to 1 on compact sets of RN, for large time (see Theorem 2.4). It will be crucial in the proof of
Theorem 2.1. In what follows, we will make the additional assumption u0(0) = maxx∈RN u0(x) without
loosing in generality (this choice is admissible up to a translation of the x-axis), that will allows us to
avoid some tedious technical work.

Theorem 2.4. Let m > 1 and p > 1 such that γ ≥ 0 and let N ≥ 1. Let u = u(x, t) be a solution to problem (1)
with initial datum satisfying (5) and Fisher-KPP reaction term (2). Then, for all ε > 0, there exist 0 < ãε < 1
and %̃ε > 0 (which depend on ε > 0) such that for all %̃1 ≥ %̃ε, there exists t1 > 0 (depending on %̃1, ε) such that
it holds

u(x, t) ≥ 1 − ε in {|x| ≤ ãε%̃1}, for all t ≥ t1.
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As we have anticipated in the previous section, the proof is based on a priori “lifting up” results
(see Proposition 2.5 for the case γ > 0 and Proposition 2.2.2 for the case γ = 0) that we prove in
Subsection 2.2.1 and Subsection 2.2.2, respectively. Then, in the last subsection, we prove Theorem 2.4
(see Subsection 2.2).

2.2.1 Fisher-KPP reactions, range γ > 0. A priori “lifting up” results

In this section, we study problem (1), assuming that f (·) satisfies (2) with the following choice of the
initial datum:

ũ0(x) :=

ε̃ if |x| ≤ %̃0

0 if |x| > %̃0,
(2.2)

where ε̃ and %̃0 are positive real numbers. The choice of ũ0(·) in (2.2) is related to the finite propagation
of the Barenblatt solutions in the case γ > 0 (see Section the preliminaries on doubly nonlinear diffusion
reported in the introduction to Part I) and its usefulness will be clear in the next sections. We devote
the all section to the proof of the following proposition.

Proposition 2.5. Let m > 0 and p > 1 such that γ > 0 and let N ≥ 1. Then, for all 0 < ε̃ < 1, all %̃0 > 0 and
all %̃1 ≥ %̃0, there exists ε̃ > 0 and t0 > 0, such that the solution u(x, t) to problem (1) with initial datum (2.2)
satisfies

u(x, t) ≥ ε̃ in {|x| ≤ %̃1/2} for all t ≥ t0.

This proposition asserts that for any initial data “small enough”, the solutions to problem (1) are
strictly greater than a fixed positive constant on every compact set ofRN for large times. This property
will be essential in the study of the stability of the steady state u = 1.

We begin our study with an elementary lemma. Even though it has a quite simple proof, its
meaning is important: it assures that the solution u = u(x, t) does not extinguish in finite time, but, on
the contrary, remains larger than a (small) positive level (depending on time), on all compact sets of
RN.

Lemma 2.6. Let m > 0 and p > 1 such that γ > 0 and let N ≥ 1. Then for all 0 < ε̃ < 1, for all %̃0 > 0 and for
all %̃1 ≥ %̃0, there exists t1 > 0 and n1 ∈ N such that the solution u(x, t) of problem (1) with initial datum (2.2)
satisfies

u(x, t1) ≥ ε̃/n1 in {|x| ≤ %̃1}.

Proof. Fix 0 < ε̃ < 1 and 0 < %̃0 ≤ %̃1.
We start with constructing a Barenblatt solution with positive parameters M1 and θ1 such that
BM1(x, θ1) ≤ ũ0(x) in RN. Since the profile of the Barenblatt solution is decreasing, we can choose
M1, θ1 > 0 such that BM1(0, θ1) = ε̃ and BM1(x, θ1)||x|=%̃0

= 0. Thus, it is simple to obtain the relation(
Mγ

1θ1

)α
= (k/C1)

(p−1)N
p %̃N

0 (2.3)

and the constants

θ1 = kp−1%̃
p
0 ε̃
−γ and M1 = C

−
p−1
γ

1 (k/C1)
(p−1)N

p %̃N
0 ε̃, (2.4)

where C1 is the constant corresponding to the profile F1(·) and

α =
1

γ + p/N
, k =

γ

p

(
α
N

) 1
p−1
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are defined in the section on doubly nonlinear diffusion preliminaries of the introduction to Part I.
Then, we consider the solution of the problem∂tw = ∆pwm in RN

× (0,∞)
w(x, 0) = BM1(x, θ1) in RN,

i.e., w(x, t) = BM1(x, θ1 + t), which satisfies u(x, t) ≥ w(x, t) in RN
× (0,∞) thanks to the Comparison

Principle (recall that by construction we have w(x, 0) ≤ ũ0(x)).
Now, we take t1 > 0 and n1 ∈N satisfying

t1 ≥ 2
N(p−1)
αp θ1

(
%̃1

%̃0

)N
α

and n1 ≥ 2
p−1
γ

(
1 +

t1

θ1

)α
. (2.5)

Thus, since the profile of the Barenblatt solutions is decreasing, in order to have u(x, t1) ≥ ε̃/n1 in
{|x| ≤ %̃1}, it is sufficient to impose

w(x, t1)||x|=%̃1
= BM1(x, θ1 + t1)||x|=%̃1

≥ ε̃/n1. (2.6)

Now, using the relations in (2.3) and (2.4), it is not difficult to compute

BM1(x, θ1 + t1)||x|=%̃1
= M1B1(x,Mγ

1 (θ1 + t1))||x|=%̃1

=
M1

(Mγ
1θ1)α

(
θ1

θ1 + t1

)α C1 − k%̃
p

p−1

1

[
(Mγ

1θ1)−
α
N

(
θ1

θ1 + t1

) α
N
] p

p−1


p−1
γ

+

= ε̃
(

θ1

θ1 + t1

)α 1 − (
%̃1

%̃0

) p
p−1 (

θ1

θ1 + t1

) αp
N(p−1)


p−1
γ

+

.

So, requiring (2.6) is equivalent to1 − (
θ1

θ1 + t1

) αp
N(p−1)

(
%̃1

%̃0

) p
p−1


p−1
γ

+

≥
1
n1

(
1 +

t1

θ1

)α
. (2.7)

Since the first condition in (2.5) assures that the term on the left side of the previous inequality is larger
than 2−(p−1)/γ, we have that a sufficient condition so that (2.7) is satisfied is

n1 ≥ 2
p−1
γ

(
1 +

t1

θ1

)α
,

which is our second assumption in (2.5), and so our proof is complete. �

We proceed in our work, proving that, for all ε̃ > 0 small enough, the super-level sets E+
ε̃

(t) := {x ∈
RN : u(x, t) ≥ ε̃} of the solution u = u(x, t) of problem (1) with initial datum (2.2) do not contract in
time for t large enough and, in particular, we will show that for all m > 0 and p > 1 such that γ > 0
and for all %̃0 > 0, it holds

{|x| ≤ %̃0/2} ⊂ E+
ε̃

(t), for large times.

This result highlights the role of the reaction term f (·). Indeed, the solution of the “pure diffusive”
equation converges to zero as t→∞, whilst the presence of the function f (·) is sufficient to guarantee
the strict positivity of the solution in a (small) compact set for large times.

Lemma 2.7. Let m > 0 and p > 1 such that γ > 0 and let N ≥ 1. Then, for all %̃0 > 0, there exist t2 > 0 and
0 < ε̃0 < 1 which depend only on m, p, N, f and %̃0, such that for all 0 < ε̃ ≤ ε̃0, the solution u(x, t) of problem
(1) with initial datum (2.2) satisfies

u(x, jt2) ≥ ε̃ in {|x| ≤ %̃0/2}, for all j ∈N+ = {1, 2, . . .}.
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Proof. We prove the assertion by induction on j ∈ N+ and assuming firstly that f (·) is concave in
(0, 1). We ask the reader to note that we follow the ideas previously used by Cabré and Roquejoffre
[47] and, later, in [182] adapting them to our (quite different) setting.

Step0: Basic definitions. In this step, we introduce some basic definitions and quantities we will use
during the proof. We fix j = 1 and %̃0 > 0. Moreover, let 0 < δ < 1 and set λ := f (δ)/δ. Then take t2
large enough such that

eλt2 ≥ 2
p−1
γ

(
1 +

τ(t2)

C̃1

)α
(2.8)

where α > 0 and k > 0 are defined in Section I (see also the beginning of the proof of Lemma 2.6). The
constant C̃1 is defined by the formula

C̃1 := kp−1%̃
p
0

and the function τ(·) is defined as follows:

τ(t) =
1
γλ

[
eγλt
− 1

]
, for t ≥ 0. (2.9)

Then, we set ε̃0 := δe− f ′(0)t2 and, finally, we fix 0 < ε̃ ≤ ε̃0. Note that the choices in (2.8) are admissible
since γα < 1 and t2 > 0 does not depend on ε̃.

Step1: Construction of a sub-solution. We construct a sub-solution to problem (1), (2.2) inRN
× [0, t2].

First of all, as we did at the beginning of the proof of Lemma 2.6, we construct a Barenblatt solution of
the form BM1(x, θ1) such that BM1(x, θ1) ≤ ũ0(x) for all x ∈ RN. Evidently, we obtain the same formulas
for M1 > 0 and θ1 > 0 (see (2.3) and (2.4)). Before proceeding, we note that, using (2.4) and the fact
that ε̃ < 1, it is simple to get

θ1 ≥ C̃1 > 0. (2.10)

Now, consider the change of time variable τ = τ(t) defined in (2.9) and the “linearized” problem∂tw = ∆pwm + λw in RN
× (0,∞)

w(x, 0) = ũ0(x) in RN.
(2.11)

Then, the function w̃(x, τ) = e−λtw(x, t) is a solution to∂τw̃ = ∆pw̃m in RN
× (0,∞)

w̃(x, 0) = ũ0(x) in RN.

Since BM1(x, θ1) ≤ ũ0(x) ≤ ε̃ for all x ∈ RN, from the Comparison Principle we get

BM1(x, θ1 + τ) ≤ w̃(x, τ) ≤ ε̃ in RN
× (0,∞). (2.12)

Hence, using the concavity of f and the second inequality in (2.12) we get

w(x, t) = eλtw̃(x, τ) ≤ ε̃e f ′(0)t
≤ ε̃0e f ′(0)t2 = δ, in RN

× [0, t2]

and so, since w ≤ δ implies f (δ)/δ ≤ f (w)/w, we have that w is a sub-solution to problem (1), (2.2) in
RN
× [0, t2]. Finally, using the first inequality in (2.12), we obtain

u(x, t) ≥ eλtw̃(x, τ) ≥ eλtBM1(x, θ1 + τ), in RN
× [0, t2]. (2.13)

Step2: Conclusion of t = t2. In this step, we verify that the assumptions (2.8) on t2 > 0 (depending
only on m, p, N, f and %̃0) are sufficient to prove u(x, t2) ≥ ε̃ in the set {|x| ≤ %̃0/2}.
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First of all, we note that, from the second inequality in (2.13) and since the profile of the Barenblatt
solution is decreasing, it is clear that it is sufficient to have t2 such that

eλt2BM1(x, θ1 + τ2)||x|=%̃0/2 ≥ ε̃, (2.14)

where τ2 := τ(t2). Using the relations in (2.3) and (2.4) and proceeding as in the proof of Lemma 2.6,
we get

eλt2BM1(x, θ1 + τ2)||x|=%̃0/2 = ε̃ eλt2

(
θ1

θ1 + τ2

)α 1 − 2−
p

p−1

(
θ1

θ1 + τ2

) αp
N(p−1)


p−1
γ

+

Hence, we have that (2.14) is equivalent to

eλt2

1 − 2−
p

p−1

(
θ1

θ1 + τ2

) αp
N(p−1)


p−1
γ

+

≥

(
1 +

τ2

θ1

)α
. (2.15)

Since for all fixed τ > 0, the function θ/(θ + τ) satisfies

θ
θ + τ

≤ 1 ≤ 2
N
αp , for all θ ≥ 0

and since θ1 ≥ C̃1 (see (2.10)), it is simple to deduce that a sufficient condition so that (2.15) is satisfied
is

eλt2 ≥ 2
p−1
γ

(
1 +

τ2

C̃1

)α
Note that it does not depend on 0 < ε̃ ≤ ε̃0 and it is exactly the assumption (2.8) on t2 > 0. The proof
of the case j = 1 is completed.

However, before studying the iteration of this process, we need to do a last effort. Let %̃1 ≥ %̃0/2 be
such that

eλt2BM1(x, θ1 + τ2)||x|=%̃1
= ε̃

and introduce the function

v0(x) :=

ε̃ if |x| ≤ %̃1

eλt2BM1(x, θ1 + τ2) if |x| > %̃1.

A direct computation (which we leave as an exercise for the interested reader) shows that condition
(2.8) is sufficient to prove

u(x, t2) ≥ v0(x) ≥ BM1(x, θ1) in RN. (2.16)

Iteration. We suppose to have proved that the solution of problem (1), (2.2) satisfies

u(x, jt2) ≥ ε̃ in {|x| ≤ %̃0/2}, for some j ∈N+

with the property
u(x, jt2) ≥ v0(x) ≥ BM1(x, θ1) in RN (2.17)

which we can assume since it holds in the case j = 1 (see (2.16)) and we prove

u(x, ( j + 1)t2) ≥ ε̃ in {|x| ≤ %̃0/2}. (2.18)

Thanks to (2.17), it follows that the solution v(x, t) of the problem∂tv = ∆pvm + f (v) in RN
× (0,∞)

v(x, 0) = v0(x) in RN (2.19)
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satisfies u(x, t + jt2) ≥ v(x, t) in RN
× [0,∞) by the Comparison Principle. Consequently, we can work

with the function v(x, t) and proceeding similarly as before.
Step1’. We construct a sub-solution to problem (2.19) in RN

× [0, t2]. This step is identical to Step1
(case j = 1). However, we ask the reader to keep in mind that now we are building a sub-solution of
the function v = v(x, t). This means that we consider the “linearized” problem∂tw = ∆pwm + λw in RN

× (0,∞)
w(x, 0) = v0(x) in RN

where λ := f (δ)/δ and, using again the change of variable (2.9), we deduce that the function w̃(x, τ) =
e−λtw(x, t) satisfies the problem ∂τw̃ = ∆pw̃m in RN

× (0,∞)
w̃(x, 0) = v0(x) in RN.

Since BM1(x, θ1) ≤ v0(x) ≤ ε̃ for all x ∈ RN, from the Comparison Principle we get again

BM1(x, θ1 + τ) ≤ w̃(x, τ) ≤ ε̃ in RN
× (0,∞)

and, moreover, w(x, t) ≤ δ in RN
× [0, t2] which allows us to conclude that w = w(x, t) is a sub-solution

to problem (2.19) in RN
× [0, t2]. In particular, it holds

u(x, ( j + 1)t2) ≥ v(x, t2) ≥ w(x, t2) ≥ eλt2BM1(x, θ1 + τ2).

Step2’. This step is identical to Step2, since we have to verify that

eλt2BM1(x, θ1 + τ2)||x|=%̃0/2 ≥ ε̃.

Since we showed in Step2 that (2.8) is as sufficient condition so that the previous inequality is satisfied,
we obtain (2.18) and we conclude the proof.
However, in order to be precise and be sure that our iteration actually works, we have to prove that

u(x, ( j + 1)t2) ≥ BM1(x, θ1) in RN,

but this follows from the fact that w(x, t2) ≥ v0(x) ≥ BM1(x, θ1) in RN.

Last Step. We conclude the proof for reactions f (·) satisfying (2) without the assumption of concavity.
For such f (·), we can infer as in Remark 3.5 of [47], taking a new reaction f̃ = f̃ (u) defined as the
primitive of

h(u) := min
v∈[0,u]

f ′(v),

satisfying f̃ (0) = 0. It easily seen that f̃ (·) satisfies
f̃ (0) = f̃ (θ) = 0, f (u) ≥ f̃ (u) > 0 in (0, θ)
f̃ ∈ C1([0, θ]), ( f̃ )′(0) = f ′(0)
f̃ (·) is concave in (0, θ),

for some 0 < θ < 1, cfr. with formula (3.20) of [47]. Now, since the above proof concerns only the
“small” level sets of u = u(x, t) (i.e. ε̃0 > 0 can be taken smaller), we can substitute f (·) with f̃ (·)) (which
is now concave) and the argue by comparison, since f ≥ f̃ in (0, θ). This conclude the proof of the
Lemma. �

Corollary 2.8. Let m > 0 and p > 1 such that γ > 0 and let N ≥ 1. Then, there exist t2 > 0 and 0 < ε̃0 < 1
which depend only on m, p, N, f and %̃0 such that, for all 0 < ε̃ ≤ ε̃0, the solution u(x, t) to problem (1) with
initial datum (2.2) satisfies

u(x, t) ≥ ε̃ in {|x| ≤ %̃0/2} for all t ≥ t2.
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Proof. The previous lemma states that for all %̃0 > 0 and for the sequence of times t j = ( jt2) j∈N+ , the
solution to problem (1), (2.2) reaches a positive value ε̃ in the set {|x| ≤ %̃0/2}, i.e.

u(x, jt2) ≥ ε̃ in {|x| ≤ %̃0/2}, for all j ∈N+,

for all 0 < ε̃ ≤ ε̃0 = δe− f ′(0)t2 . We can improve this result choosing a smaller ε̃0 > 0.
Indeed, since conditions (2.8):

eλt2 ≥ 2
(p−1)
γ

(
1 +

τ(t2)

C̃1

)α
are satisfied for all t2 ≤ t ≤ 2t2, we can repeat the same proof of Lemma 2.7, modifying the value
of ε̃0 and choosing a different value ε̃0 = δe−2 f ′(0)t2 > 0, which is smaller but strictly positive for all
t2 ≤ t ≤ 2t2. Hence, it turns out that for all 0 < ε̃ ≤ ε̃0, it holds

u(x, t) ≥ ε̃ in {|x| ≤ %̃0/2}, for all t2 ≤ t ≤ 2t2.

Now, iterating this procedure as in the proof of Lemma 2.7, we do not have to change the value of ε̃0
when j ∈N+ grows and so, for all 0 < ε̃ ≤ ε̃0, we obtain

u(x, t) ≥ ε̃ in {|x| ≤ %̃0/2}, for all j ∈N+ and for all jt2 ≤ t ≤ ( j + 1)t2.

Hence, using the arbitrariness of j ∈N+, we end the proof of this corollary. �

Now, in order to prove Proposition 2.5), we combine Lemma 2.6 and Corollary 2.8.

Proof of Proposition 2.5 (case γ > 0). Fix %̃0 > 0, %̃1 ≥ %̃0 and consider the solution u = u(x, t) to
problem (1) with initial datum (2.2). So, thanks to Lemma 2.6, for all 0 < ε̃1 < 1, there exist t1 > 0 and
n1 ∈N such that

u(x, t1) ≥ ε̃ := ε̃1/n1 in {|x| ≤ %̃1}.

Now, define the function

ṽ0(x) :=

ε̃ if |x| ≤ %̃1

0 if |x| > %̃1

and note that u(x, t1) ≥ ṽ0(x) in RN. Hence, the solution to the problemvt = ∆pvm + f (v) in RN
× (0,∞)

v(x, 0) = ṽ0(x) in RN

satisfies u(x, t1 + t) ≥ v(x, t) in RN
× (0,∞). Finally, applying Corollary 2.8, we get

u(x, t) ≥ ε̃ in {|x| ≤ %̃1/2} for all t ≥ t0

with t0 := t1 + t2 (note that, since n1 ∈ N can be chosen larger, ε̃ > 0 is arbitrarily small and we “end
up” in the hypotheses of Corollary 2.8). �

2.2.2 Fisher-KPP reactions, range γ = 0. A priori “lifting up” results

Following Subsection 2.2.1, we study problem (1), with reaction term f (·) satisfying (2) and with initial
datum:

ũ0(x) :=

ε̃ if |x| ≤ %̃0

a0e−b0|x|
p

p−1 if |x| > %̃0,
a0 := ε̃eb0%̃

p
p−1

0 (2.20)
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where ε̃, %̃0 and b0 are positive numbers (note that ũ0 ∈ L1(RN)). We ask the reader to note that,
alternatively, we can fix the constants %̃0, a0 and b0 and obtaining ε̃ > 0 by the “inverse” of the second
formula in (2.20).
The different choice of the initial datum is due to the different shape of the profile of the Barenblatt
solutions in the case γ = 0 (see the introduction of Part I). In particular, the new datum has not compact
support, but “exponential” tails. Now, our goal is to prove the “pseudo-linear” version of Proposition
2.5 stated below.

Proposition 2.9. Let m > 0 and p > 1 such that γ = 0 and let N ≥ 1. Then, for all 0 < ε̃ < 1, all %̃0 > 0 and
all %̃1 ≥ %̃0, there exists ε̃ > 0 and t0 > 0, such that the solution u(x, t) to problem (1) with initial datum (2.20)
satisfies

u(x, t) ≥ ε̃ in {|x| ≤ %̃1} for all t ≥ t0.

Even in this setting, we proceed with a series of shorter steps. Even though Proposition 2.9 is a
version of Proposition 2.5 when γ = 0, we decided to separate their proofs since there are significant
deviances in the techniques employed to show them.

Lemma 2.10. Let m > 0 and p > 1 such that γ = 0 and let N ≥ 1. Then for all %̃0 > 0, there exist t1 > 0,
a0 > 0 and b0 > 0 such that the solution u(x, t) to problem (1) with initial datum (5) satisfies

u(x, t1) ≥ ũ0(x) in RN

where ũ0(·) is defined in (2.20).

Proof. Let u = u(x, t) the solution of problem (1), (5) and consider the solution v = v(x, t) to the “pure
diffusive” Cauchy problem: ∂tv = ∆pvm in RN

× (0,∞)
v(x, 0) = u0(x) in RN,

which satisfies v(x, t) ≤ u(x, t) in RN
× [0,∞) thanks to the Comparison Principle.

Step1. We begin by proving that for all τ > 0, there exist ε > 0, M > 0 such that for all τ < t1 < τ+ ε
it holds

u(x, t1) ≥ BM(x, t1 − τ) in RN

where BM(x, t) is the Barenblatt solution in the “pseudo-linear” case (see the introduction to Part I)
with exponential form

BM(x, t) = CMt−
N
p exp

(
−k|xt−

1
p |

p
p−1

)
,

where CM > 0 is chosen depending on the mass M and k = (p − 1)p−p/(p−1).
Fix τ > 0, % > 0 and let ε > 0 (for the moment arbitrary). Furthermore, take a mass M > 0 such that
CM ≤ 1. We want to compare the general solution v = v(x, t) with the “delayed” Barenblatt solution
BM = BM(x, t − τ) in the strip

S = [τ, τ + ε] × {x ∈ RN : |x| ≥ %},

in order to deduce v(x, t) ≥ BM(x, t − τ) in S. Hence, from the Comparison Principle, is sufficient to
check this inequality on the parabolic boundary of S. Note that we have v(x, τ) ≥ BM(x, 0) = 0 for all
|x| ≥ %. Now, in order to check that v(%, t) ≥ BM(%, t− τ) for all τ ≤ t ≤ τ+ ε, we compute the derivative
of the function b(t) := BM(%, t − τ) deducing that

b′(t) ≥ 0 if and only if t ≤ τ +

[
pk

N(p − 1)

]p−1

% p.
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Thus, choosing ε ≤ {(pk)/[N(p − 1)]}p−1% p and noting that v(%, t) ≥ v > 0 for all τ ≤ t ≤ τ + ε and some
constant v > 0 (the strict positivity follows from the Harnack Inequality proved in [134]), we have that
it is sufficient to prove v ≥ BM(%, ε). Since, BM(%, ε)→ 0 as ε→ 0, we obtain the required inequality by
taking eventually ε > 0 smaller. We ask to the reader to note that the assumption CM ≤ 1 guarantees
that the choice of ε > 0 does not depend on M > 0.
Now, take τ < t1 < τ + ε. We know v(x, t1) ≥ BM(x, t1 − τ) if |x| ≥ % and so, by taking CM > 0 smaller
(depending on ε > 0) and using again the positivity of the solution v = v(x, t), it is straightforward to
check that the same inequality holds for all |x| ≤ %, completing the proof of the first step.

Step2. Fix %̃0 > 0 and let t1 > 0 be fixed as in the previous step. To end the proof, it is sufficient to
prove

BM(x, t1 − τ) ≥ ũ0(x) in {|x| ≥ %̃0},

since the profile of the Barenblatt solution is radially decreasing. A direct computation shows that the
previous inequality is satisfied by taking

a0 ≤ CM(t1 − τ)−N/p and b0 ≥ k(t1 − τ)−1/(p−1)

and so, the proof is complete. �

Following the ideas of the previous section (see Lemma 2.7), we prove that for all ε̃ > 0 small
enough, the super-level sets E+

ε̃
(t) of the solution u = u(x, t) to problem (1) with initial datum (2.20)

expand in time for t large enough. More precisely, we will show that for all %̃0 > 0 and for all %̃1 ≥ %̃0,
it holds

{|x| ≤ %̃1} ⊂ E+
ε̃

(t), for large times.

This will be slightly simpler with respect to the case γ > 0, since now we work with strictly positive
Barenblatt solutions (see the section of preliminaries on doubly nonlinear diffusion in the introduction
of Part I). For instance, we do not need a version of Lemma 2.6, which seems to be essential in the case
γ > 0.

Lemma 2.11. Let m > 0 and p > 1 such that γ = 0 and let N ≥ 1. Then, for all %̃0 > 0 and for all %̃1 ≥ %̃0,
there exist t0 > 0 and 0 < ε̃0 < 1 which depend only on m, p, N, f , ũ0 and %̃1, such that for all 0 < ε̃ ≤ ε̃0, the
solution u(x, t) to problem (1) with initial datum (2.20) satisfies

u(x, jt0) ≥ ε̃ in {|x| ≤ %̃1}, for all j ∈N+ = {1, 2, . . .}.

Proof. We prove the assertion by induction on j = 1, 2, . . . , assuming again that f (·) is concave in
(0, 1). The general case follows exactly as the range γ > 0.

Step0: Basic definitions. As in the proof of Lemma 2.7, this “first” step is devoted to the introduction
of basic definitions and quantities we need during the proof.
We fix j = 1, %̃0 > 0 and %̃1 ≥ %̃0. Moreover, let 0 < δ < 1, set λ := f (δ)/δ and fix 0 < λ0 < λ. Then take
t0 large enough such that

t0 ≥ kp−1%̃
p
1 , eλ0t0 ≥

(
θ1 + t0

θ1

)N/p
and t0 ≥

1
λ − λ0

, (2.21)

where (we ask the reader to note that we defined k in Section I, case γ = 0):

k := (p − 1)p−p/(p−1) and θ1 :=
(

k
b0

)p−1

.

Then, we set ε̃0 := δe− f ′(0)t0 and, finally, we fix 0 < ε̃ ≤ ε̃0.
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Step1: Construction of a sub-solution. As before, we construct a sub-solution to problem (1), (2.20) in
RN
× [0, t0].

First of all, as we did at the beginning of the proof of Lemma 2.6 and Lemma 2.7, we construct
a Barenblatt solution of the form BM1(x, θ1) such that BM1(x, θ1) ≤ ũ0(x) for all x ∈ RN. Note that
in the case γ = 0, the Barenblatt solutions have exponential profile (see Section I). Imposing again
BM1(0, θ1) = ε̃ we get the first relation CM1θ

−N/p
1 = ε̃ which is sufficient to have BM1(x, θ1) ≤ ũ0(x) in

{|x| ≤ %̃0}. On the other hand, for all |x| ≥ %̃0, we need to have:

BM1(x, θ1) ≤ a0e−b0|x|
p

p−1
, |x| ≥ %̃0.

Using the relation CM1θ
−N/p
1 = ε̃ and the fact that ε̃ ≤ a0, it is not difficult to see that a possible choice

of parameters such that the previous inequality is satisfied too is

θ1 =

(
k
b0

)p−1

and CM1 = ε̃

(
k
b0

)N(p−1)
p

. (2.22)

Note that, with respect to the case γ > 0, θ1 does not depend on ε̃ > 0. Now, as in the proof of Lemma
2.7, we consider the “linearized” problem∂tw = ∆pwm + λw in RN

× (0,∞)
w(x, 0) = ũ0(x) in RN (2.23)

and we deduce that the function w̃(x, t) = e−λtw(x, t) satisfies the problem (note that when when γ = 0
the doubly nonlinear operator has homogeneity 1)∂tw̃ = ∆pw̃m in RN

× (0,∞)
w̃(x, 0) = ũ0(x) in RN.

Again we have that BM1(x, θ1) ≤ ũ0(x) ≤ ε̃ for all x ∈ RN and so, by comparison we deduce

BM1(x, θ1 + t) ≤ w̃(x, t) ≤ ε̃ in RN
× (0,∞). (2.24)

Hence, using the concavity of f and the second inequality in (2.24) we get

w(x, t) = eλtw̃(x, t) ≤ ε̃e f ′(0)t
≤ ε̃0e f ′(0)t0 = δ, in RN

× [0, t0]

and, consequently, w = w(x, t) is a sub-solution to problem (1), (2.20) in RN
× [0, t0]. Finally, using the

first inequality in (2.24), we obtain

u(x, t) ≥ eλtBM1(x, θ1 + t), in RN
× [0, t0]. (2.25)

Step2. Conclusion for t = t0. In this step, we verify that the assumptions (2.21) on t0 > 0 are sufficient
to prove u(x, t0) ≥ ε̃ in the set {|x| ≤ %̃1}.
First of all, we note that, from the inequality in (2.25) and since the profile of the Barenblatt solution is
decreasing, it is clear that it is sufficient to have t0 such that

eλt0BM1(x, θ1 + t0)||x|=%̃1
≥ ε̃. (2.26)

Using the relations, we compute

eλt0BM1(x, θ1 + t0)||x|=%̃1
= ε̃

(
θ1

θ1 + t0

)N/p
exp

λt0 − k

 %̃
p
1

θ1 + t0

1/(p−1) .
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Hence, we have that (2.26) is equivalent to(
θ1

θ1 + t0

)N/p
exp

λt0 − k

 %̃
p
1

θ1 + t0

1/(p−1) ≥ 1. (2.27)

Now, using the first and the second relation in (2.21) it is not difficult to see that a sufficient condition
so that (2.27) is satisfied is

e(λ−λ0)t0−1
≥ 1,

which is equivalent to the third assumption in (2.21) and so, we have u(x, t0) ≥ ε̃ in {|x| ≤ %̃1}, i.e. the
thesis for j = 1.

As we did in Lemma 2.7, we conclude the analysis of the case j = 1 by showing that u(x, t0) ≥
BM1(x, θ1) in RN. So let %̃2 ≥ %̃1 be such that

eλt0BM1(x, θ1 + t0)||x|=%̃2
= ε̃.

Evidently, defining the function:

v0(x) :=

ε̃ if |x| ≤ %̃2

eλt0BM1(x, θ1 + t0) if |x| > %̃2,

it is sufficient to prove v0(x) ≥ BM1(x, θ1) in {|x| > %̃2}, i.e.

eλt0BM1(x, θ1 + t0) ≥ BM1(x, θ1), for |x| > %̃2.

This last inequality can be easily written as

eλt0

(
θ1

θ1 + t0

)N
p
≥ exp

[
k|x|

p
p−1 (θ1 + t0)−

1
p−1 − k|x|

p
p−1θ

−
1

p−1

1

]
, for |x| > %̃2.

and, using the second relation in (2.21), it is simple to see that the above inequality holds provided

exp [(λ − λ0)t0] ≥ exp
[
k|x|

p
p−1 (θ1 + t0)−

1
p−1 − k|x|

p
p−1θ

−
1

p−1

1

]
, for |x| > %̃2,

which is satisfied since the exponent of the left-hand-side is always positive while the exponent of the
right-hand-side is always negative.

Iteration. We suppose to have proved that the solution of problem (1), (2.20) satisfies

u(x, jt0) ≥ ε̃ in {|x| ≤ %̃1}, for some j ∈N+

with the property
u(x, jt0) ≥ v0(x) ≥ BM1(x, θ1) in RN (2.28)

and we prove
u(x, ( j + 1)t0) ≥ ε̃ in {|x| ≤ %̃1}.

As in the proof of Lemma 2.7, we have that (2.28) implies that the solution v = v(x, t) to the problem∂tv = ∆pvm + f (v) in RN
× (0,∞)

v(x, 0) = v0(x) in RN (2.29)

satisfies u(x, t + jt0) ≥ v(x, t) in RN
× [0,∞) by the Comparison Principle and this allows us to work

with the function v = v(x, t). The rest of the proof is almost identical to the case γ > 0 (see Lemma 2.7)
and we leave the details to the interested reader. �
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Proof of Proposition 2.9 (case γ = 0). The proof is identical to the proof of Corollary 2.8, substituting
condition (2.8) with conditions (2.21), %̃0/2 with %̃1 and t2 with t0. �

2.2.3 Fisher-KPP reactions, range γ ≥ 0. Proof of Theorem 2.4

We begin by assuming γ > 0. We fix ε > 0 and proceed in some steps as follows.
Step1. In this step, we construct a sub-solution of problem (1) on a domain of the form Ω × (t1,∞),

where Ω is a ball in RN and t1 > 0.
First of all, we fix %̃2 = 2%̃1 > 0 arbitrarily large and we apply Proposition 2.5 deducing the existence
of a value ε̃ > 0 and a time t0 > 0 such that

u(x, t) ≥ ε̃ in Ω × [t0,∞)

where Ω := {|x| ≤ %̃1}. Hence, since ε̃ ≤ u ≤ 1 and using the assumptions on f (·), we can deduce a
linear bound from below for the reaction term

f (u) ≥ q(1 − u) in Ω × [t0,∞), where q := q(ε̃).

Now, for all %̃1 > 0, we consider a time t1 ≥ t0 (note that t1 is now “almost” arbitrary and its precise
value depending on ε > 0 will be specified later). Thus, the solution of the problem

∂tv = ∆pvm + q(1 − v) in Ω × (t1,∞)
v = ε̃ in ∂Ω × (t1,∞)
v(x, t1) = ε̃ in Ω

(2.30)

satisfies ε̃ ≤ v(x, t) ≤ u(x, t) ≤ 1 in Ω × [t1,∞) by the Comparison Principle. Furthermore, since for
all fixed τ > 0, the function w(x, t) = v(x, τ + t) satisfies the equation in (2.30) and w(x, t1) ≥ v(x, t1),
it follows v(x, τ + t) ≥ v(x, t) in Ω × [t1,∞), i.e., for all x ∈ Ω, the function v(x, ·) is non-decreasing.
Consequently, since v is uniformly bounded, there exists the uniform limit v∞(x) := limt→∞ v(x, t) and
it solves the elliptic problem {

−∆pvm
∞ = q(1 − v∞) in Ω

v∞ = ε̃ in ∂Ω
(2.31)

in the weak sense.
Step2. In this step, we define the constants aε and %̃ε and we complete the proof of the lemma.

The value of these constants comes from the construction of a particular sub-solution of the elliptic
problem (2.31). Since our argument is quite technical, we try to sketch it skipping some computations
that can be verified directly by the reader.

We look for a sub-solution of the elliptic problem (2.31) in the form

wm(r) = a
[
eg(r)
− 1

]
,

where r = |x|, x ∈ RN while the function g(·) and the constant a > 0 are taken as follows:

g(r) := 1 −
(

r
%̃1

)λ
, with λ :=

p
p − 1

and
(1 − ε/2)m

e − 1
< a <

1
e − 1

.

Note that the radially decreasing function w(·) is well defined in [0, %̃1] and, moreover, w(r) = 0 on the
boundary ∂Ω = {|x| = %̃1}.
Now, we define the value %̃ε (note it is well defined and positive thanks to the assumption on a) with
the formula

%̃
p
ε :=

N(aeλ)p−1

q{1 − [a(e − 1)]1/m}
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and we show that for all %̃1 ≥ %̃ε, w(·) is a sub-solution of the equation in (2.31). Note that, since w(·) is
radially decreasing, it is sufficient to consider our operator (the p-Laplacian) in radial coordinates and
verify that for all %̃1 ≥ %̃ε and 0 ≤ r ≤ %̃1, it holds

− ∆p,rwm := −r1−N∂r
(
rN−1
|∂rwm

|
p−2∂rwm

)
≤ q(1 − w). (2.32)

A direct computation shows that

−∆p,rwm =

aλ
%̃λ1

p−1 [
N − p

(
r/%̃1

)λ] e(p−1)g(r)

and that sufficient condition so that inequality (2.32) is satisfied is

N(aeλ)p−1%̃
−p
1 ≤ q

{
1 − [a(e − 1)]1/m

}
,

which is equivalent to say %̃1 ≥ %̃ε. Finally, we define ãε with the formula:

ãλε := 1 − log
[
a + (1 − ε/2)m

a

]
.

It is not difficult to see that w(r) ≥ 1 − ε/2 in {r ≤ ãε%̃1} and that again our assumption on a guarantee
the well definition of ãε.

Hence, if we suppose %̃1 ≥ %̃ε, we can apply the elliptic Comparison Principle (recall that w = 0 on
the boundary ∂Ω) deducing

v∞(x) ≥ 1 − ε/2 in {|x| ≤ ãε%̃1}.

So, since v(x, t)→ v∞(x) as t→∞, a similar inequality holds for the function v = v(x, t) and large times:

v(x, t) ≥ 1 − ε in {|x| ≤ ãε%̃1}, for all t ≥ t1

where t1 > 0 is chosen large enough (depending on ε > 0) and the same conclusion is true for the
solution u = u(x, t) of problem (1) since it holds v(x, t) ≤ u(x, t) in Ω × [t1,∞).
As the reader can easily check, the proof when γ = 0 is identical to the case γ > 0 except for the fact
the we apply Proposition 2.9 instead of Proposition 2.5 (see also the following remark). �

Remark 1. At the beginning of Step1 (case γ > 0), we have applied Proposition 2.5, even though the
assumptions (5) on u0 are not sufficient to guarantee its hypotheses. However, it is really simple to see
that for an initial datum u0(·) satisfying (5) and u0(0) = maxx∈RN u0(x) there exist %̃0 > 0 and ε̃ > 0 such
that the function ũ0 = ũ0(x) defined in (2.2) satisfies ũ0(x) ≤ u0(x) inRN. Hence, using the Comparison
Principle, it follows that the solution u(x, t) of the problem (1) with initial datum (5) is greater than the
solution of the problem (1) with initial datum (2.2). Consequently, we deduce that u(x, t) satisfies the
assertion of Proposition 2.5 applying the Comparison Principle again.
If γ = 0, we can proceed similarly. However, this time, we have to start applying Lemma 2.10 which
guarantees the existence of a time t′1 > 0 large enough so that we can place an initial datum with form
(2.20) under the solution u = u(x, t) at the time t = t′1. Then, we can apply Proposition 2.9 and proceed
with the proof of Lemma 2.4.
We ask the reader to note that, in both cases, the key point consists in deducing that for any ball
Ω ⊂ RN there exists a time t0 > 0 such that

u(x, t) ≥ ε̃ in Ω × [t0,∞).

If γ > 0, we get the previous relation noting that we can always find a function satisfying (2.2) which
can be placed under an initial datum satisfying (5) and applying Proposition 2.5, while, when γ = 0,
we can repeat this procedure but we need both Lemma 2.10 and Proposition 2.9.
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Remark 2. In above proof we have employed that for any 0 < ε̃ < 1,

u ≥ ε̃ ⇒ f (u) ≥ q(1 − u).

for some suitable q = q(ε̃). To see this, let us fix 0 < ε̃ < 1 and take

qε̃ :=
f (ε̃/n)
1 − ε̃

> 0,

for some integer n ≥ 1 large enough. Since f (·) is increasing in [0,u) (where u is the maximum point
of f (·)), we easily deduce that f (u) ≥ qε̃(1 − u) in [ε̃,u], for any integer n ≥ 1. We are left to prove that
the same inequality holds in (u, 1) for a suitable choice of n ≥ 1 large. So, assume by contradiction that
for any integer n ≥ 1, there exist un ∈ (u, 1), such that

f (un) ≤
f (ε̃/n)
1 − ε̃

(1 − un).

Assume u < un < 1 − σ for some small σ > 0 independent of large values of n ≥ 1. We can thus
take the limit as n → +∞ in the above inequality to obtain that the l.h.s. remains strictly positive
(since u < un < 1 − σ), while the r.h.s. converges to zero since f (0) = 0. Now, if un → 1−, we have
f (un) ∼ − f ′(1)(1 − un) and, since f ′(1) < 0, we get the same contradiction and we complete the proof
of the claim.

2.3 Proof of Theorem 2.1

We now focus on to the study of the asymptotic behaviour of the solutions to problem (1), (5) with
Fisher-KPP reactions (2): 

f (0) = f (1) = 0, 0 < f (u) ≤ f ′(0)u in (0, 1)
f ∈ C1([0, 1]), f ′(0) > 0, f ′(1) < 0
f (·) has a unique critical point in (0, 1),

As we mentioned in Section 2.1, we divide the proof depending on the spacial dimension N = 1 or
N ≥ 2. The case N = 1 is an important step for two reasons. First of all, we are going to understand
the importance of the TWs we found in Theorem 1.1 and Theorem 1.2, since we employ them as
sub-solutions and super-solutions of the general solution to problem (1), (5). Secondly, we will see that
the one-dimensional solutions plays an important role in the study of higher-dimension solutions.

2.3.1 Proof of Theorem 2.1, case N = 1

Step1: Proof of Part (i). We fix γ ≥ 0 and we prove that for all ε > 0 and for all 0 < c < c∗, there exists
t2 > 0 such that

u(x, t) ≥ 1 − ε in {|x| ≤ ct} for all t ≥ t2.

First of all, fix 0 < c < c∗ arbitrarily and ε > 0 such that c + ε < c∗. Now, consider a CS-TW solution
of type 2: ϕ = ϕ(ξ), where ξ = x − (c + ε)t. Up to a translation of the ξ-axis, we can assume that
maxξ∈R ϕ(ξ) = ϕ(0) = 1 − ε and ϕ(ξ0) = 0 = ϕ(ξ1) for some ξ0 < 0 < ξ1.
We define the function

ϕ(ξ) =


1 − ε if ξ ≤ 0
ϕ(ξ) if 0 ≤ ξ ≤ ξ1

0 otherwise.
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Computing the derivative with respect to the variable ξ = x − (c + ε)t, it not difficult to verify that

− cϕ′ − εϕ′ ≤ [|(ϕm)′|p−2(ϕm)′]′ + f (ϕ), for all ξ ∈ R. (2.33)

We proceed proving that u(x, t) = ϕ(x − ct) is a sub-solution of u = u(x, t) in R+ × [0,∞), i.e., we verify
that

∂tu ≤ ∂x(|∂xum
|
p−2∂xum) + f (u) in R+ × [0,∞),

where R+ is the set of the positive real numbers. Imposing this condition and using (2.33), it is simple
to obtain that a sufficient condition so that the previous inequality is satisfied is ϕ′ ≤ 0 for a.e. ξ ∈ R,
which is true by construction (note that in this case ξ = x− ct, but we do not introduce other variables
to avoid weighting down our presentation).

Now, we fix %̃1 ≥ %̃ε large enough such that ξ1 ≤ ãε%̃1 where ãε and %̃ε are the values found
in Theorem 2.4 (of course they refer to a general solution u = u(x, t) of problem (1) with initial
datum (5)). The function u = u(x, t) satisfies u(x, t1) ≥ u(x, 0) in R+ thanks to Theorem 2.4 and
u(0, t1 + t) ≥ 1 − ε ≥ u(0, t) for all t ≥ 0 (this follows from the construction of u). Hence, we obtain

u(x, t1 + t) ≥ u(x, t) in R+ × [0,∞).

In particular, we deduce u(x, t1 + t) ≥ u(x, t) ≥ 1 − ε for all 0 < x ≤ ct and for all t ≥ 0. We ask the
reader to note that we can conclude that u(x, t1 + t) ≥ 1 − ε for all −ct < x < 0 and for all t ≥ 0, simply
constructing a sub-solution in the set R− × [0,∞) (R− denotes the set of non-positive real numbers),
considering “reflected” CS-TWs of type 2 and proceeding similarly as we did previously. Hence, we
can assume

u(x, t1 + t) ≥ 1 − ε in {|x| ≤ ct} for all t ≥ 0.

Finally, fix 0 < c̃ < c and t2 := ct1/(c − c̃). Then it holds u(x, t) ≥ 1 − ε in {|x| ≤ c̃t} for all t ≥ t2, and the
thesis follows from the arbitrariness of 0 < c̃ < c and 0 < c < c∗.

Step2: Proof of Part (ii). We begin with the case γ > 0. We construct a super-solution which is
identically zero on the set {x ≥ ct} for all c > c∗ and t sufficiently large (note that the same construction
can be repeated by “reflection” in the set {x ≤ −ct}).
Case u0(0) = maxx∈R u0(x) < 1. Set ξ = x − c∗t and consider the function

u(x, t) := ϕ(ξ) in R × [0,∞),

where now ϕ = ϕ(ξ) is the profile of the finite TW found in Theorem 1.1. We showed that there exists
−∞ < ξ0 < +∞ such that ϕ(ξ) = 0 for all ξ ≥ ξ0, ϕ′ ≤ 0 and ϕ(−∞) = 1. Hence, up to a translation
of the ξ-axis we can assume u(x, 0) ≥ u0(x) for all x ∈ RN. Consequently, applying the Comparison
Principle we deduce

u(x, t) ≥ u(x, t) in R × [0,∞).

Let x0 be the free boundary point of ϕ = ϕ(x), i.e., x0 := min{x > 0 : ϕ(x) = 0}. Then, it is simple to
deduce that

u(x, t) , 0 if and only if x ≤ x0 + c∗t.

Now, fix an arbitrary c > c∗ and define t2 := x0/(c − c∗). Then for all t ≥ t2 we have ct ≥ x0 + c∗t and so

u(x, t) ≡ 0 in {x ≥ ct} for all t ≥ t2

which implies u(x, t) ≡ 0 in {x ≥ ct} for all t ≥ t2 and, since c > c∗ was taken arbitrarily we get assertion
(ii) in the case u0(0) < 1.
Case u0(0) = maxx∈R u0(x) = 1. Now assume u0(0) = 1. In this case, the initial datum cannot be “placed”
under an admissible TW. Then, fix δ > 0 and consider the function

w(y, τ) = (1 + δ)u(x, t) where τ(t) = (1 + δ)t and y(x) = (1 + δ)m(p−1)/px
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which satisfies the equation

∂τw = ∂y(|∂ywm
|
p−2∂ywm) + f ((1 + δ)−1w). (2.34)

Thus, Theorem 1.1 assures that equation (2.34) possesses a finite TW solution ϕ = ϕ(ξ), with ϕ(ξ) = 0
for all ξ ≥ ξ0, ϕ′ ≤ 0 and ϕ(−∞) = 1 + δ. Note that in this case both the moving coordinate ξ = x − c∗t
and c∗ = c∗(m, p, δ) depend on δ > 0. Now, since ϕ(−∞) = 1 + δ, we can suppose u0(x) ≤ ϕ(x) for all
x ∈ R and we can repeat the same analysis we did in the case u0(0) < 1.
Consequently, having that c∗(m, p, δ)→ c∗(m, p) as δ→ 0 (this follows from the fact that the the system
of ODEs of the re-scaled equation converges to system (1.8) which is derived from the standard
equation), we get the assertion (ii) in the case γ > 0.

We finally consider the range γ = 0. Again we assume u0(0) < 1 (the case u0(0) = 1 can be treated
as we did previously). Fix ε > 0 and let ϕ = ϕ(ξ) be the profile of the positive TW with critical speed
c∗ = c∗(m, p) found in Theorem 1.2, where ξ = x − c∗t. We have ϕ > 0, ϕ′ < 0 and ϕ(−∞) = 1, ϕ(∞) = 0
and, in particular, ϕ(ξ) < ε for all ξ ≥ ξε, where ξε is chosen large enough depending on ε > 0. Now,
define u(x, t) = ϕ(ξ) and note that we can suppose u(x, 0) ≥ u0(x) inR (we ask the reader not to confuse
the function u with the one used in part (ii)). Consequently, it follows u(x, t) ≥ u(x, t) inR× [0,∞) and,
furthermore, we obtain

u(x, t) ≤ ε in {x ≥ ξε + c∗t} for all t ≥ 0.

Now, for all fixed c > c∗ and t ≥ t2 := ξε/(c − c∗) we have ct ≥ ξε + c∗t and so it follows

u(x, t) ≤ ε in {x ≥ ct} for all t ≥ t2

i.e., the thesis. Since the same procedure can be repeated for the “reflected” TWs and c > c∗ is arbitrary,
we end the proof of (ii) case γ = 0. �

Remark. As previously mentioned, when γ > 0 (“slow diffusion” assumption) the general solutions
of problem (1) exhibit free boundaries. This fact follows from the proof of the previous theorem (part
(ii) case γ > 0). Indeed, we showed that the solution is identically zero when c > c∗ in the outer
set {|x| ≥ ct} as t → ∞. This fact represents the significant difference with respect to the case γ = 0
(“pseudo-linear” assumption) in which the general solutions are positive everywhere. Hence, we can
conclude that for all γ ≥ 0, the general solutions of problem (1) expand linearly in time (for large times)
with a critical speed c∗ > 0 but, in the case γ > 0, for all fixed time, they are identically zero outside
a ball with radius large enough, whilst, when γ = 0, they are positive everywhere. This is true when
N = 1 and, in the next section, we will see that it is possible to extend the previous assertions for all
N ≥ 1.

2.3.2 Proof of Theorem 2.1, case N ≥ 2

As explained before, we focus on radial solutions to problem (1), i.e., on solutions u(x, t) = u(r, t), with
r = |x|, to problem (2.1): ∂tu = ∆p,rum + f (u) in R+ × (0,∞)

u(r, 0) = u0(r) in R+,

where
∆p,rum := ∂r

(
|∂rum

|
p−2∂rum

)
+

N − 1
r
|∂rum

|
p−2∂rum

is the “radial doubly nonlinear” operator and the initial datum u0(x) = u0(r) satisfies (5) and it is
radially decreasing. We prove separately part (i) and (ii). In (i), we firstly consider the case γ > 0 and
then γ = 0.
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Proof of Theorem 2.1: Part (i), range γ > 0. So, let γ > 0, fix 0 < c < c∗ and take 0 < ε < 1 such that
c + ε < c∗ (this choice does not represent a problem since ε > 0 will be taken arbitrary small). First
of all, we construct a sub-solution for problem (2.1) in a set of the form R+ × [tε,∞) for tε > 0 large
enough.
As we showed in Theorem 1.1 and recalled in the proof of Theorem 2.3.1in the case N = 1, the
one-dimensional equation

∂tv = ∂y(|∂yvm
|
p−2∂yvm) + f (v) in R × [0,∞)

admits CS-TWs of type 2 in the form v(y, t) = ϕ(y−(c+ε)t), y ∈ R and t ≥ 0, with speed c+ε. In particular,
we are considering the TW solution moving to the right direction with ϕ(0) = maxξ∈R ϕ(ξ) = 1 − ε,
ϕ(ξ0) = 0 = ϕ(ξ1) for some ξ0 < 0 < ξ1. Now, we define

ϕ(ξ) =


1 − ε if ξ ≤ 0
ϕ(ξ) if 0 ≤ ξ ≤ ξ1

0 otherwise

and we observe that the profile ϕ(·) satisfies the differential inequality (2.33) (the we rename for
simplicity):

− cϕ′ − εϕ′ ≤ [|(ϕm)′|p−2(ϕm)′]′ + f (ϕ), for all ξ ∈ R (2.35)

where we computed the derivative with respect to the variable ξ = y − (c + ε)t, i.e., ϕ′(ξ) = dϕ(ξ)/dξ.

Step1: Range m > 1 and p > 1. We consider the function u(r, t) = ϕ(δ1/pr− cδt), where r = |x|, x ∈ RN,
δ = 1 − ε, and we use (2.35) to show that , u = u(r, t) is a sub-solution for problem (2.1) if t is large
enough, i.e., it satisfies

∂tu ≤ ∆p,rum + f (u), for t� 0. (2.36)

The inequality in (2.36) can be easily re-written as

−cϕ′ ≤ [|(ϕm)′|p−2(ϕm)′]′ +
N − 1

ξ + c(1 − ε)t
|(ϕm)′|p−2(ϕm)′ +

1
1 − ε

f (ϕ),

where ξ = δ1/pr − cδt. Now, using (2.35), we get that it suffices to verify

ε|ϕ′| ≥
bε

δ−1ξ + ct
ϕ(m−1)(p−1)

|ϕ′|p−1
−

ε
1 − ε

f (ϕ), (2.37)

where bε := mp−1(N − 1)/(1 − ε).
Case ξ ∼ 0. For all t ≥ t′1ε � 0, the previous inequality is trivially satisfied when ξ ∼ 0. Indeed, we

have ϕ ∼ 1 − ε, |ϕ′|p−1
∼ 0 (since p > 1), and f (1 − ε) > 0.

Case ξ ∼ ξ1. On the other hand, when ξ ∼ ξ1, we have ϕ ∼ 0, |ϕ′| ∼ aϕ1−m
∼ +∞ (since m > 1)

and ϕ(m−1)(p−1)
|ϕ′|p−1

∼ ap−1. Thus we can deduce that (2.37) is satisfied for all t ≥ 0 (of course when
ξ ∼ ξ1).

Case 0 < ξ < ξ1 with ξ / 0 and ξ / ξ1. Finally, when 0 < ξ < ξ1 with ξ / 0 and ξ / ξ1, it is possible
to note that the condition

εct ≥ bεϕ(m−1)(p−1)
|ϕ′|p−2

is sufficient to guarantee (2.37) and so, since with the current assumptions on ξ we have that |ϕ′| is
bounded from above and below, we deduce the existence of a value t′′1ε such that (2.36) is satisfied for
all t ≥ t′′1ε when 0 < ξ < ξ1 with ξ / 0 and ξ / ξ1. Hence, we have that when m > 1 and p > 1, (2.36) is
satisfied for all t ≥ t1ε := max{t′1ε, t

′′

1ε}.
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Step2: Range 0 < m < 1 and p > 2. This is the most delicate case. We define u(r, t) = ϕ(r − cδt), with

δ = (1 + εn)−1 and we impose condition (2.36) (the value of n ∈ N is not important now and will be
specified later). Using inequality (2.35) and carrying out some tedious computations, we obtain that
a sufficient condition so that (2.36) is satisfied is

ε1−nm1−p
|ϕ′| ≥ |µ|ϕµ−1

|ϕ′|p − (p − 1)ϕµ|ϕ′|p−2ϕ′′ + bε(ξ + cδt)−1ϕµ|ϕ′|p−1
−m1−p f (ϕ), (2.38)

where this time bε := (1 + εn)(N − 1)/εn and µ := (m − 1)(p − 1) < 0 since m < 1.
Case ξ ∼ 0. If ξ ∼ 0, we have ϕ ∼ 1 − ε and |ϕ′| ∼ 0. Hence, recalling relation (1.21) and applying it

with X = 1 − ε, it is not difficult to see that for all t ≥ t2ε � 0, (2.38) is equivalent to

m2−p f (1 − ε) ≥ m2−p(1 − ε)µ+p−2−γ f (1 − ε),

which is satisfied (the equality holds) since µ = γ + 2 − p.
Case ξ ∼ ξ1. When ξ ∼ ξ1, we have again ϕ ∼ 0 and ϕ′ ∼ aϕ1−m and, as the reader can easily check,

(2.38) is equivalent to

0 ≥ ap−2ϕ−m
[
a2
|µ| − (p − 1)ϕ2m−1ϕ′′

]
+ ap−1bε(ξ1 + cδt)−1.

Using relation (1.24), it is simple to re-write the previous inequality as

0 ≥ −apdm,pϕ
−m + bε(ξ0 + cδt)−1,

where dm,p := (p − 2 − γ)/m2 + µ = |µ|/m2
− |µ|. Since 0 < m < 1, we have dm,p > 0 and so, using that

ϕ−m
∼ ∞ as ϕ ∼ 0, we obtain that for all fixed t ≥ 0, the last inequality is satisfied and we conclude the

analysis of the case ξ ∼ ξ0.
Case 0 < ξ < ξ1 with ξ / 0 and ξ / ξ1. It is not difficult to see that (2.38) is equivalent to

|ϕ′| + εn−1 f (ϕ) ≥ −εn−1(|(ϕm)′|p−2(ϕm)′)′ + εn−1bε(ξ + cδt)−1ϕµ|ϕ′|p−1 (2.39)

and, furthermore, we have that ϕ and |ϕ′| are bounded from above and below by positive con-
stants. Moreover, combining (1.7) and (1.20), it is straightforward to see that the “second order term”
(|(ϕm)′|p−2(ϕm)′)′ has not definite sign but is bounded too (from below and above). Moreover, since
t ≥ 0, we have that a sufficient condition so that (2.39) is satisfied is

|ϕ′| + εn−1 f (ϕ) ≥ −εn−1(|(ϕm)′|p−2(ϕm)′)′ + εn−1bεξ−1ϕµ|ϕ′|p−1. (2.40)

Hence, we take n ∈N large enough (independently of t ≥ 0) to make the terms in the right side of the
previous inequality smaller and proving the validity of the inequality (2.40). Consequently, we can
state that also in this last case, there exists t2ε > 0 large enough such that u = u(r, t) satisfies (2.36) for
all t ≥ t2ε.
Hence, for all γ > 0, we constructed a sub-solution u = u(r, t) in the set R+ × [tε,∞), where tε =
max{t1ε, t2ε}. Now, we proceed with the proof of the case m > 1 and p > 1. We can treat the other range
of parameters with identical methods.

Step3: Comparison and conclusion. Define w(r, t) := u(r, tε + t) and let r0 > 0 be the “free boundary
point” of w(r, 0), i.e., r0 := min{r > 0 : w(r, 0) = 0}. From the analysis done previously, we have that the
sub-solution w = w(r, t) satisfies

∂tw ≤ ∆p,rwm + f (w) in R+ × [0,∞)
w(r, t) = ϕ(δ1/pr − cδ(tε + t)) in {r = 0} × [0,∞)

w(r, 0) = ϕ(δ1/pr − cδtε) in R+,
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where δ = 1 − ε. Now, let u = u(r, t) be a radial solution of problem (1) and fix %̃1 ≥ %̃ε large enough
such that r0 ≤ ãε%̃1, where 0 < ãε < 1 and %̃ε > 0 are the values found in Lemma 2.4. Consider the
function w(r, t) = u(r, t1 + t) in R+ × (0,∞), where t1 > 0 is chosen depending on ε > 0 and %̃1 > 0 as in
Lemma 2.4. Thanks to Lemma 2.4, we have that w(r, 0) ≥ w(r, 0) for all r ≥ 0 and, since 1 − ε ≥ w(r, t)
by construction, it holds w(0, t) ≥ w(0, t) for all t ≥ 0. So, we can apply the Comparison Principle
deducing

u(r, t′1 + t) ≥ u(r, t) in R+ × [0,∞).

where t′1 = t1− tε. In particular, we have u(r, t1 + t) ≥ u(r, t) = 1−ε for all r ≤ c(1−ε)(p−1)/pt and all t ≥ 0.
Finally, proceeding as in the final lines of the proof of Theorem 2.1 in dimension N = 1 (part (i) case
γ > 0) and using the arbitrariness of ε > 0, we complete the proof of Theorem 2.1 part (i) case γ > 0.
Note that the case 0 < m < 1 and p > 2 can be treated similarly. The unique difference is that we
employ u(r, t) = ϕ(r − cδt) instead of u(r, t) = ϕ(δ1/pr − cδt).

Proof of Theorem 2.1: Part (i), range γ = 0. The analysis is very similar to the case γ > 0 since the
TWs we use now have the same properties of the ones in the case γ > 0 (cfr. with Subsection 1.2.1).
Note that the procedure carried out in the case m > 1, p > 1 (γ > 0) can be easily adapted to the linear
case m = 1 and p = 2 (with γ = 0), which is the only one missing.

Proof of Theorem 2.1: Part (ii). The proof of Part (ii) is easier. Since we can use solutions to problem
(1) posed in spacial dimension N = 1 as barriers from above for solutions to problem (2.1). Let us see
why, with a comparison technique.

We firstly show that if u = u(x, t) is a solution to∂tu = ∂x
(
|∂xum

|
p−2∂xum

)
+ f (u) in R × (0,∞)

u(x, 0) = u0(x) in R,

with initial data u0 = u0(x) satisfying (5), u0(x) = u0(−x) and u0(·) non-increasing for all x ≥ 0, then
u(·, t) is non-increasing w.r.t. x ≥ 0, for all t > 0. So, fix h > 0 and let v = v(x, t) be the solution to the
problem ∂tv = ∂x

(
|∂xvm

|
p−2∂xvm

)
+ f (v) in R × (0,∞)

v(x, 0) = v0(x) := u0(x + h) in R.

Hence, since v0(x) ≤ u0(x) we deduce v(x, t) ≤ u(x, t) and, by uniqueness of the solutions, it follows
v(x, t) = u(x + h, t). Hence, we obtain that u(·, t) is non-increasing for all t ≥ 0 thanks to the arbitrariness
of x ≥ 0 and h ≥ 0.

Now, assume N ≥ 2 and consider radial solutions to problem (1), i.e., solutions u = u(r, t) to
problem (2.1): ∂tu = ∂r

(
|∂rum

|
p−2∂rum

)
+ N−1

r |∂rum
|
p−2∂rum + f (u) in R+ × (0,∞)

u(r, 0) = u0(r) in R+ × {0},

where r = |x|, x ∈ RN, and u0(·) is a radially decreasing initial datum satisfying (5). Moreover, let
u = u(r, t) be a solution to the problem

∂tu = ∂r
(
|∂ru

m
|
p−2∂ru

m
)

+ f (u) in R+ × (0,∞)

u = u in {0} × (0,∞)
u(r, 0) = u0(r) in R+ × {0}.

For what explained before, we have ∂ru(r, t) ≤ 0 in R+ × (0,∞), and so u = u(r, t) is a super-solution to
the radial problem (2.1) and satisfies u(r, t) ≥ u(r, t) in R+ × (0,∞).
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Consequently, since u = u(r, t) is a solution to the one-dimensional equation we obtain assertion
(ii) from the case N = 1. �

We end this section with the following corollary, which allows us to relax the assumptions on the
initial data.

Corollary 2.12. Let m > 0 and p > 1 such that γ ≥ 0, and let N ≥ 1. Consider a Lebesgue-measurable initial
datum u0 : RN

→ R with u0 . 0 and 0 ≤ u0 ≤ 1 and satisfying

u0(x) ≤ a0 exp
(
− ν−1
∗ f ′(0)

1
p |x|

)
for |x| ∼ ∞ if γ > 0, (2.41)

or
u0(x) ≤ a0|x|

2
p exp

(
−m

2−p
p f ′(0)

1
p |x|

)
for |x| ∼ ∞ if γ = 0, (2.42)

where ν∗ = ν∗(m, p) is the critical speed for f ′(0) = 1, and a0 > 0. Then the statements (i) and (ii) of Theorem
2.1 hold for the solution of the initial-value problem (1), (2.41) if γ > 0, or (1), (2.42) if γ = 0, respectively.

Proof. We divide the proof in four short steps.
Step1. In this first step we show assertion (i) of Theorem 2.1. We simply note that for all initial

data u0(·) satisfying (2.41) and/or (2.42), there exists a “sub-initial datum” u0(·) satisfying (5), i.e. with
compact support, such that u0(x) ≤ u0(x) for all x ∈ RN. Hence, the solution u(x, t) of problem (1) with
initial datum u0(·) satisfies u(x, t) ≤ u(x, t) in RN

× (0,∞) by the Comparison Principle. Here, u(x, t)
stands for the solution of problem (1) with initial data (2.41) or (2.42) depending on γ ≥ 0. Thus, since
u(x, t) satisfies statement (i) of Theorem 2.1, we deduce that u(x, t) has to satisfy it too.

Step2. We show assertion (ii) of Theorem 2.1 when γ > 0 and N = 1. For all c > c∗(m, p), we can
place an admissible TW ϕ(x− ct) above an initial datum u0(x) satisfying (2.41). This is possible thanks
to formula (1.16), which can be re-written for t = 0 as

ϕ(x) ∼ a0 exp
(
− c−1 f ′(0)x

)
= a0 exp

(
− ν−1 f ′(0)1/px

)
, for x ∼ ∞, for some a0 > 0.

We recall that 0 < ν < ν∗ is the speed with f ′(0) = 1. Consequently, proceeding as in the parts (ii) and
(iii) of the proof of Theorem 2.1, case N = 1, we get our statement and we complete this step.

Step3. Take now γ = 0 and N = 1. We fix c > c0∗(m, p) = p(m2 f ′(0))
1

mp (cfr. with (1.2)), and we
proceed as in Step2. However, in this case, we consider an admissible TW ϕ(x − ct) satisfying for t = 0

ϕ(x) ∼ a0 exp
(
−
λ1

m
x
)

for x ∼ ∞, for some a0 > 0,

according to (1.31). Recall that λ1 = λ1(c) and λ1 < λ∗ = (c0∗/p)m = (m2 f ′(0))1/p for all c > c0∗(m, p).
This fact implies that we can actually place the TW above an initial datum satisfying (2.42). Indeed, in
(2.42) we have assumed

u0(x) ≤ a0 x
2
p exp

(
−m

2−p
p f ′(0)

1
p x

)
= a0 x

2
p exp

(
−
λ∗
m

x
)

for x ∼ ∞.

Once we can employ the TW ϕ(·) as a barrier from above, we conclude the proof of this step with the
same procedure carried out before.

Step4. We end the proof with some comments. First of all, when N = 1, we can repeat the previous
analysis when x ∼ −∞ by using “reflected” TWs with the form ϕ(x + ct) (note that we used |x| in
conditions (2.41) and (2.42)). Secondly, in order to prove our statements for N ≥ 2, it is sufficient to
repeat the arguments of the proof of part (ii) of Theorem 2.1 in which we have studied the asymptotic
behaviour of non-increasing radial solutions. Finally, we stress that if the initial datum satisfies
maxx∈RN u0(x) = 1, we can proceed as in the proof of part (ii) of Theorem 2.1, case N = 1. �
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2.4 Proof of Theorem 2.2

This section is devoted to the proof of Theorem 2.2, which concerns the asymptotic behaviour of
solutions to problem (1) with initial data satisfying (5) and reaction terms of type C, i.e., satisfying (3):

f (0) = f (a) = f (1) = 0, f (u) < 0 in (0, a), f (u) > 0 in (a, 1)
f ∈ C1([0, 1]), f ′(0) < 0, f ′(a) > 0, f ′(1) < 0∫ 1
0 um−1 f (u)du > 0

f (·) has a unique critical point in (0, a) and a unique critical point in (a, 1).

and, as anticipated, on the stability/instability of the steady states u = 0, u = 1, depending on the initial
data. Thus, before starting with the proof, we introduce two classes of initial data which generate
solutions to problem (1) evolving to u = 0 or u = 1, respectively.

Definition 2.13. We divide this definition depending on the dimension N = 1 or N ≥ 2.
• Let N = 1. An initial data u0 = u0(x) satisfying (5) is called “not-reacting” if there are c1, c2 ≥ c∗ such that

u0(x) ≤ min{ϕ,ψ}(x), for all x ∈ R,

where

ϕ(ξ) :=


0 if ξ ≤ ξc1

0
ϕc1(ξ) if ξc1

0 < ξ < ξc1
1

a if ξ ≥ ξc1
1

ψ(ξ) :=


a if ξ ≤ ξc2

0
ψc2(ξ) if ξc2

0 < ξ < ξc2
1

0 if ξ ≥ ξc2
1 ,

andϕc1 = ϕc1(x−ct) is a “0-to-a” TW corresponding to c1 andψc2 = ψc2(x+ct) is a “a-to-0” TW corresponding
to c2 (see Subsection 1.2.2).
• Let N ≥ 2. An initial data u0 = u0(x) satisfying (5) is called “not-reacting” if

u0(x) ≤ ũ0(|x|), for all x ∈ RN,

where ũ0 = ũ0(y) (y ∈ R) is a radial “not-reacting” initial datum in N = 1.

Definition 2.14. Again we separate the cases N = 1 or N ≥ 2.
• Let N = 1. An initial data u0 = u0(x) satisfying (5) is called “reacting” if there is 0 < c̃ < c∗ such that for all
0 ≤ c ≤ c̃, it holds

u0(x) ≥ max{ϕ,ψ}(x), for all x ∈ R,

where

ϕ(ξ) :=

ϕc(ξ) if ξc
0 ≤ ξ ≤ ξ

c
1

0 otherwise
ψ(ξ) :=

ψc(ξ) if ξc′
0 ≤ ξ ≤ ξ

c′
1

0 otherwise

and ϕc = ϕc(x − ct) is a “change-sign” TW (of type 2) corresponding to c and ψc = ψc(x + ct) is its reflection
(see Subsection 1.2.1 and 1.2.2).
• Let N ≥ 2. An initial data u0 = u0(x) satisfying (5) is called “reacting” if there is 0 < c < c∗ such that it holds

u0(x) > ϕ(|x| − ct) for all x ∈ RN,

where

ϕ(ξ) :=


ϕ(0) if ξ ≤ 0
ϕ(ξ) if 0 ≤ ξ ≤ ξ1

0 otherwise
with ϕ(0) = maxϕ(ξ),

t > 0 is large enough and ϕ = ϕ(ξ) is a “change-sign” TW (of type 2) corresponding to c (the value of the time
t > 0 will be specified in the proof of Theorem 2.2).

We are now ready to prove Theorem 2.2.
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Proof of Theorem 2.2: Part (i). We take a “non-reacting” initial datum u0 = u0(x) (see Definition 2.13)
and we prove that the solution u = u(x, t) to problem (3) satisfy

u(x, t)→ 0 uniformly in RN, as t→ +∞.

Let us firstly consider the case N = 1. Since u0 = u0(x) is “not-reacting” there are c1, c2 ≥ c∗ such that
u0(x) ≤ min{ϕ,ψ}(x) in R, as in Definition 2.13.
Note that both ϕ(ξ) = ϕ(x − c1t) and ψ(ξ) = ψ(x + c2t) are solutions to the equation in (3), and at
time t = 0, we have u0(x) ≤ ϕ(x) and u0(x) ≤ ψ(x) for all x ∈ R. Consequently, from the Comparison
Principle we deduce u(x, t) ≤ ϕ(x − c1t) and u(x, t) ≤ ψ(x + c2t) for all x ∈ R and t > 0, and, since
ϕ(x − c1t) = 0 for all x ≤ ξc1

0 + c1t and ψ(x + c2t) = 0 for all x ≥ ξc2
1 − c2t, we deduce that there is a time

tc1,c2 > 0, such that u(x, t) = 0 for all t ≥ tc1,c2 . This conclude the proof for the case N = 1.
Before moving forward, we show that if N = 1 and u = u(x, t) is a solution to∂tu = ∂x

(
|∂xum

|
p−2∂xum

)
+ f (u) in R × (0,∞)

u(x, 0) = u0(x) in R,

with initial data u0 = u0(x) satisfying (5), u0(x) = u0(−x) and u0(·) non-increasing for all x ≥ 0, then
u(·, t) is non-increasing w.r.t. x ≥ 0, for all t > 0. So, fix h > 0 and let v = v(x, t) be the solution to the
problem ∂tv = ∂x

(
|∂xvm

|
p−2∂xvm

)
+ f (v) in R × (0,∞)

v(x, 0) = v0(x) := u0(x + h) in R.

Hence, since v0(x) ≤ u0(x) we deduce v(x, t) ≤ u(x, t) and, by uniqueness of the solutions, it follows
v(x, t) = u(x + h, t). Hence, we obtain that u(·, t) is non-increasing for all t ≥ 0 thanks to the arbitrariness
of x ≥ 0 and h ≥ 0.

Now, assume N ≥ 2 and consider radial solutions to problem (3), i.e., solutions u = u(r, t) to the
problem ∂tu = ∂r

(
|∂rum

|
p−2∂rum

)
+ N−1

r |∂rum
|
p−2∂rum + f (u) in R+ × (0,∞)

u(r, 0) = u0(r) in R+ × {0},
(2.43)

where r = |x|, x ∈ RN, and u0(·) is a radially decreasing “not-reacting” initial datum. Moreover, let
u = u(r, t) be a solution to the problem

∂tu = ∂r
(
|∂ru

m
|
p−2∂ru

m
)

+ f (u) in R+ × (0,∞)

u = u in {0} × (0,∞)
u(r, 0) = u0(r) in R+ × {0}.

For what explained before, we have ∂ru(r, t) ≤ 0 in R+ × (0,∞), and so u = u(r, t) is a super-solution
to (2.43). But u = u(r, t) is a solution of the one-dimensional equation with “not-reacting” initial data,
and so, from the case N = 1, it follows

u(r, t) = 0 in R+ ∪ {0}, for all t ≥ tc1,c2 ,

and by the comparison, we deduce the same for u = u(r, t), concluding the proof of Part (i). �

Proof of Theorem 2.2: Part (ii), case N = 1. We fix N = 1 and we proceed in two steps.
Step1: Propagation of minimal super-level sets. Consider a “reacting” initial datum u0 = u0(x) ≥

max{ϕ,ψ}(x), x ∈ R, where ϕ(ξ) = ϕ(x − ct) and ψ(ξ) = ψ(x + ct) are defined in Definition 2.14. From
the ODEs analysis (see in particular Subsection 1.2.2), we can assume that for all 0 ≤ c ≤ c̃, it holds

ϕ(0) = ψ(0) = a + δc < 1, δc ≥ δ0,
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for some 0 < δ0 < 1 − a. Now, since u0(x) ≥ ϕ(x) and u0(x) ≥ ψ(x), we deduce by comparison

u(x, t) ≥ ϕ(x− ct) and u(x, t) ≥ ψ(x + ct) for all x ∈ RN and t > 0. Hence, by the arbitrariness of 0 ≤ c ≤ c̃,
we obtain that

u(x, t) ≥ a + δ0 in {|x| ≤ c̃t}, for all t > 0.

Step2: Convergence to 1 on compact sets. Now, fix ε > 0 small and %̃ > 0 arbitrarily large. Then, we have

u(x, t) ≥ a + δ0 in {|x| ≤ %̃}, for all t ≥ t%̃,̃c := %̃/̃c,

which implies

f (u) ≥ qδ0
(1 − u) in {|x| ≤ %̃} × [t%̃,̃c,∞), with qδ0

=
f (δ)

1 − δ0
, (2.44)

for some 0 < δ ≤ δ0 small enough. Thus, the solution u = u(x, t) to the problem
∂tu = ∂x

(
|∂xum

|
p−2∂xum

)
+ qδ0

(1 − u) in {|x| ≤ %̃} × [t%̃,̃c,∞)

u(x, t) = a + δ0 in ∂{|x| ≤ %̃} × [t%̃,̃c,∞)
u(x, t%̃,̃c) = a + δ0 in {|x| ≤ %̃}

(2.45)

is a sub-solution to problem (3) in {|x| ≤ %̃} × [t%̃,̃c,∞), and so by the Comparison Principle, we obtain
u(x, t) ≤ u(x, t) in {|x| ≤ %̃} × [t%̃,̃c,∞). Then, since %̃ > 0 can eventually be taken larger, we can repeat the
proof of Theorem 2.4, to show that there exist t1 > 0 depending on ε > 0, such that

u(x, t) ≥ u(x, t) ≥ 1 − ε in {|x| ≤ ãε%̃} for all t ≥ t1,

where 0 < ãε < 1 is a factor depending only on ε > 0. This conclude the proof in the case N = 1, since
%̃ > 0 can be chosen arbitrarily large. �

Proof of Theorem 2.2: Part (ii), case N ≥ 2. We fix N ≥ 2 and, proceeding as in part (i), we consider
the radial problem∂tu = ∂r

(
|∂rum

|
p−2∂rum

)
+ N−1

r |∂rum
|
p−2∂rum + f (u) in R+ × (0,∞)

u(r, 0) = u0(r) in R+ × {0},

where r = |x|, x ∈ RN, and u0(·) is a radially decreasing “reacting” initial datum. By definition, we can
assume that for any fixed ε > 0 (small), there is 0 < c < c∗, such that

u0(r) > ϕ(r − (c + ε)t) for all r > 0,

where ϕ = ϕ(ξ) is as in Definition 2.14 part (ii) and t > 0 is large enough and will be chosen later. Now,
setting δ := 1 − ε, we defineu(r, t) = ϕ(δ1/pr − cδt) if m > 1, p > 1 (γ > 0)

u(r, t) = ϕ(r − cδt) if 0 < m < 1, p > 2 (γ > 0),

as in the proof of Theorem 2.1. Repeating the same procedure of that proof, it is easily seen that
u = u(r, t) is a sub-solution to the equation in problem (2.43) in R+ × [̃t,∞) where t̃ > 0 is suitably
chosen (large enough). Consequently, taking t := t̃ � 0 and noting that we can assume u0(r) ≥ u(r, t)
for any r > 0 (since δ = 1 − ε and ε > 0 is arbitrarily small), we conclude by comparison

u(r, t) ≥ u(r, t + t) ≥ ϕ(0) = a + δ0 in {r = |x| ≤ c̃t}, for all t > 0,
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for some δ0 > 0 and c̃ := cδ (see also Lemma 5.1 of [13] for the linear setting). Moreover, exactly as in
Step2 of the case N = 1, we have

f (u) ≥ qδ0
(1 − u) in {|x| ≤ %̃} × [t%̃,̃c,∞), with qδ0

=
f (δ0)

1 − δ0
,

for any %̃ > 0 and t%̃,̃c > 0 large enough, and so we can newly repeat the construction of Theorem 2.4
to show that for all ε > 0 (small) and %̃ > 0 (large), there exists t1 > 0 such that

u(r, t) ≥ 1 − ε in {r = |x| ≤ ãε%̃} for all t ≥ t1,

where 0 < ãε < 1 is as in the case N = 1, concluding the proof of the case N ≥ 2. �

Remark. The above proof strongly relies on the fact that the functionu(r, t) = ϕ(δ1/pr − cδt) if m > 1, p > 1 (γ > 0)

u(r, t) = ϕ(r − cδt) if 0 < m < 1, p > 2 (γ > 0),

defined depending on the value m > 0 and p > 1 such that γ > 0, is a sub-solution to problem (2.43)
for large times t � 0. As we have mentioned before, this fact can be easily showed by repeating the
proof of Theorem 2.1 for the Fisher-KPP framework. This parallelism is due to the fact that the main
difficulty is to study the sign of the quantity

∂tu − ∂r
(
|∂rum

|
p−2∂rum

)
−

N − 1
r
|∂rum

|
p−2∂rum

− f (u)

near the points in which u = 0, i.e. ϕ = 0 (here ϕ denotes the profile of a “change-sign” TW. The
behaviour of ϕ near the “change-sign” points is completely understood and is the same for both
reactions of type C and Fisher-KPP reactions (cfr. with Subsection 1.2.1 and 1.2.2).

Proof of Theorem 2.2: Part (iii). Let us prove that for all radially decreasing initial data u0 = u0(x)
satisfying (5) and for all c > c∗(m, p, f ) it holds

u(x, t)→ 0 uniformly in {|x| ≥ ct}, as t→ +∞.

This part is the easiest and it actually coincides with Theorem 2.4. Here we just re-view the main ideas.
If N = 1, we fix c > c∗, ε > 0, and we consider the functions

v(x, t) := ϕ(x − c∗t), w(x, t) := ψ(x + c∗t),

where ϕ = ϕ(ξ) is the finite admissible TW studied in Theorem 1.1, part (ii), with its reflection ψ(ξ) =
ψ(x + c∗t). Since u0 = u0(x) satisfies (5), we can assume u0(x) ≤ ϕ(x) and u0(x) ≤ ψ(x) for all x ∈ R, and
so, thanks to the Comparison Principle, we obtain both u(x, t) ≤ v(x, t) and u(x, t) ≤ w(x, t). Thus, since
v(x, t) ≤ ε for x ≥ c∗t + ξ0 and w(x, t) ≤ ε for x ≤ −c∗t + ξ0 and c > c∗, we deduce that u(x, t) ≤ ε in
{|x| ≥ ct} for t > 0 large enough.
We point out that if γ > 0 then v(x, t) = 0 for x ≥ c∗t + ξ0 and w(x, t) = 0 for x ≤ −c∗t + ξ0 which implies
that u = u(x, t) has a free boundary, too, whilst this does not happen when γ = 0, since the TW solutions
are positive everywhere.

When N ≥ 2, we follow the proof of Part (i), using that solutions of problem (1) with N = 1 are
super-solution for radial solutions of the same problem and so, by comparison, the thesis follows.

Now, we show that for all “reacting” initial data u0 = u0(x) and for all 0 < c < c∗(m, p, f ), it holds

u(x, t)→ 1 uniformly in {|x| ≤ ct}, as t→ +∞.
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Let us consider the case N = 1. From part (ii) we obtain the for all ε > 0, %̃ > 0, and all “reacting” initial
data u0 = u0(x), there exist t1 > 0, such that

u(x, t) ≥ 1 − ε in {|x| ≤ %̃} for all t ≥ t1.

Hence, for all 0 ≤ c < c∗, taking eventually %̃ > 0 larger, there is a “change-sign” TW ϕ(ξ) = ϕ(x − ct)
and its reflection ψ(ξ) = ψ(x + ct) (we ask the reader not to confuse these TWs with the ones employed
in Step1, part (ii)) such that

ϕ(0) = ψ(0) = 1 − ε and u(x, t1) ≥ ϕ(x), u(x, t1) ≥ ψ(x) x ∈ R.

Consequently, by comparison we have u(x, t1 + t) ≥ ϕ(x − ct) and u(x, t1 + t) ≥ ψ(x + ct) for all x ∈ RN

and t > 0, and the level 1−ε propagate with speed c. Hence, using again the arbitrariness of 0 ≤ c < c∗,
we deduce

u(x, t) ≥ 1 − ε in {|x| ≤ ct} for all t ≥ t2,

for some t2 = t2(ε, c) large enough. This shows our statement, since ε > 0 has been chosen arbitrarily
small.

Finally, when N ≥ 2, following the proof of part (ii), case N ≥ 2 and using again the sub-solution
constructed in the proof of Theorem 2.4 with speed c < c∗ and ϕ(0) = 1 − ε, we conclude as in the case
N = 1. �

2.5 Proof of Theorem 2.3

In this section we prove Theorem 2.3. We then consider reactions of type C’, i.e. satisfying (4):
f (0) = f (a) = f (1) = 0, 0 < f (u) ≤ f ′(0)u in (0, a), f (u) < 0 in (a, 1)
f ∈ C1([0, 1]), f ′(0) > 0, f ′(a) < 0, f ′(1) > 0
f (·) has a unique critical point in (0, a) and a unique critical point in (a, 1).

and the radial problem (2.1): ∂tu = ∆p,rum + f (u) in R+ × (0,∞)
u(r, 0) = u0(r) in R+.

As in the ODEs part, some of our proofs rely on the methods used to show Theorem 2.1 (Fisher-KPP
framework) and can be recovered by scaling (see the beginning of the introduction to Part I).

This time, Part (ii) (of Theorem 2.3) is the most delicate one and there are significant differences
between the rangeγ > 0 andγ = 0. As always, we divide the proof depending on the spacial dimension
N = 1 or N ≥ 2. As we will see in a moment, in the case N = 1, we construct a super-solution to prove
that u = u(x, t) reaches the level 0 < a < 1 in finite time and a second super-solution combined to a
scaling technique, to show that u = u(x, t) converges uniformly to zero in the “outer sets” {|x| ≥ ct} as
t→ +∞. Part (i) is based on the proof of Theorem 2.1.

Proof of Theorem 2.3: Case N = 1, range γ > 0. Fix m > 0 and p > 1 such that γ > 0. We begin with
two preliminary steps, crucial in the rest of the proof.

Step0. We first prove that for all ε > 0, there exists a waiting time tε > 0 such that

u(x, t) ≤ a + ε, for all x ∈ R, t ≥ tε.
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To do this we employ the “increasing a-to-1” TWs and their reflections, found in Theorem 1.1, cfr.
with Subsection 1.2.3. To be more specific, we fix c = 1 and we consider a TW profile ϕ(ξ) = ϕ(x − t)
moving toward the right direction, satisfying

ϕ(−∞) = a, ϕ(ξ0) = 1, ϕ′(ξ) > 0 for all ξ ≤ ξ0,

and its “reflection” ψ(ξ) = ψ(x + t), moving toward the left direction, satisfying

ψ(+∞) = a, ψ(ξ1) = 1, ψ′(ξ) < 0 for all ξ ≥ ξ1,

for some ξ0, ξ1 ∈ R (cfr with formula (1.25)). Defining

ϕ(ξ) :=

ϕ(ξ) if ξ ≤ ξ0

1 if ξ ≥ ξ0,
ψ(ξ) :=

1 if ξ ≤ ξ1

ψ(ξ) if ξ ≥ ξ1,

and recalling that u0 ∈ Cc(R) with 0 ≤ u0 ≤ 1 we can assume both u0(x) ≤ ϕ(x) and u0(x) ≤ ψ(x) for all
x ∈ R.
Now, we fix ε > 0 small, such that 1 − ε > 0. Defining the function v(x, t) := ϕ(x − (1 − ε)t) and using
the definition of ϕ = ϕ(ξ), we get that

∂tv − ∂x
(
|∂xvm

|
p−2∂xvm

)
− f (v)

= −(1 − ε)ϕ′ −
[
|

(
ϕm

)′
|
p−2

(
ϕm

)′]′
− f (ϕ) = εϕ′ − ϕ′ −

[
|

(
ϕm

)′
|
p−2

(
ϕm

)′]′
− f (ϕ)

= εϕ′ ≥ 0, for all ξ ≤ ξ0,

where ϕ′ stands for the derivative of ϕ(·) w.r.t. ξ. Note that when ξ ≥ ξ0, v(x, t) = 1, i.e., it is just
a stationary state of the equation in (1) and the equality holds in the last inequality for ξ ≥ ξ0. In
particular, it follows that the function v = v(x, t) is a super-solution for the equation in (1).
Similarly, one can define w(x, t) = ψ(x − (1 + ε)t) and prove it is a super-solution too. In this case the
function w = w(x, t) is wave moving toward the left direction.
Hence, thanks to the comparison principle and remembering that u0(x) ≤ ϕ(x) and u0(x) ≤ ψ(x), we
deduce

u(x, t) ≤ v(x, t), and u(x, t) ≤ w(x, t), in RN
× [0,∞).

Moreover, thanks to the properties of ϕ = ϕ(ξ) and ψ = ψ(ξ), we deduce the existence of ξε > 0, such
that

v(x, t) ≤ a + ε, for all x ≤ −ξε + (1 − ε)t
w(x, t) ≤ a + ε, for all x ≤ ξε − (1 + ε)t.

Thus, we get u(x, t) ≤ a + ε in RN if

−ξε + (1 − ε)t ≥ ξε − (1 + ε)t,

i.e. t ≥ tε := ξε.
Step1. In this step, we construct a global super-solution to problem (1) to show that our solution

u = u(x, t) propagates with finite speed of propagation, i.e., u = 0 outside an interval of R with radius
expanding in time. Consider the solution to the problem∂tu = ∂x

(
|∂xum

|
p−2∂xum

)
+ f ′(0)u in R × (0,∞)

u(x, 0) = u0(x) in R.
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Observe that u(x, t) ≤ u(x, t) in R × (0,∞) since f (u) ≤ f ′(0)u, thanks to the first assumption in (4) and
the comparison principle. Furthermore, the function defined by

ũ(x, τ) = e− f ′(0)tu(x, t), with τ(t) =
1

f ′(0)γ

(
e f ′(0)γt

− 1
)
, t ≥ 0,

satisfies the purely diffusive equation∂τũ = ∂x
(
|∂xũm

|
p−2∂xũm

)
in R × (0,∞)

ũ(x, 0) = u0(x) in R.

Consequently, since ũ = ũ(x, τ) has finite speed of propagation (see for instance [197, 198]), we deduce
the same for u = u(x, t), and so for u = u(x, t). We conclude this step pointing out that the same
procedure can be adapted (with obvious changes) to the case N ≥ 1.

Step2. In this part of the proof, we show that for all c > c∗(m, p, f ), there exists t1 = t1(c) > 0 such
that

u(x, t) = 0, in {|x| ≥ ct}, for all t ≥ t1.

So, fix ε > 0 small and c > c∗(m, p, f ). We assume for a moment that 0 ≤ u(x, tε) < a for all x ∈ R, where
tε > 0 is the one found in Step0. Moreover, we know that u(x, tε) = 0 outside an interval of R of radius
large enough (see Step1). Hence, we define

v(x, t) := ϕ(x − c∗t), w(x, t) := ψ(x + c∗t),

where ϕ = ϕ(ξ) is the finite a-admissible TW studied in Theorem Theorem 1.1 (part (iiI), range γ > 0),
satisfying ϕ(−∞) = a, ϕ(ξ) = 0 for all ξ ≥ ξ0, and ψ = ψ(ξ) is its “reflection”. Consequently, up to a
left-right shift, we can assume u(x, tε) ≤ ϕ(x) and u(x, tε) ≤ ψ(x), and so, by the comparison principle
we deduce

u(x, t + tε) ≤ v(x, t), u(x, t + tε) ≤ w(x, t), in RN
× (0,∞).

Thus, since v(x, t) = 0 for x ≥ c∗t + ξ0 and w(x, t) = 0 for x ≤ −c∗t + ξ0 and c > c∗, we deduce that
u(x, t) = 0 in {|x| ≥ ct} for large times exactly as in the proof of Theorem 2.2, Part (iii).
Now, if u(x, tε) ≥ a for some x ∈ R, it must be u(x, tε) ≤ a + ε in R, from what proved in Step0. We
consider the re-scaling of u = u(x, t) defined by

uε(y, τ) = a−1(a + 2ε)u(x, t), where y =
[
a−1(a + 2ε)

]m(p−1)
p x, τ = a−1(a + 2ε)t,

which satisfies the equation

∂τuε = ∂y
(
|∂yum

ε |
p−2∂yum

ε

)
+ f

(
a(a + 2ε)−1uε

)
, in RN

× (0,∞). (2.46)

Note that now fε(uε) := f
(
a(a + 2ε)−1uε

)
satisfies fε(a + 2ε) = f (a) = 0. Hence, from Theorem 1.1 (part

(iiI), range γ > 0), there exists a critical speed cε∗ = c∗(m, p, ε) > 0 and a corresponding (a + 2ε)-admissible
TW with finite profile ϕε = ϕε(ξ), and ξ = x − cε∗ t:

ϕε(−∞) = a + 2ε, ϕε(ξ) = 0 for all ξ ≥ ξε0,

for some ξε0 ∈ R, satisfying equation (2.46). Thus, if ũε = ũε(y, τ) denotes the solution to equation (2.46)
with ũε(y, 0) = u(y, tε) ≤ a + ε and uε(y, τ) = ϕε(y− cε∗τ), we can repeat the comparison procedure with
the assumption u(x, tε) ≤ a, since we can now assume u(y, tε) ≤ ϕε(y) and so, ũε(y, τ) ≤ uε(y, τ). We
finally obtain u(x, t) = 0 in {|x| ≥ ct} for large times for the arbitrariness of ε > 0.
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Step3. In this final step, we prove that for all for all 0 < ε < a and for all 0 < c < c∗(m, p, f ), there
exists t′1 = t′1(ε, c) > 0 such that the solution u = u(x, t) satisfies

u(x, t) ≥ a − ε, in {|x| ≤ ct}, for t ≥ t′1.

This follows by considering the solution u = u(x, t) to the problem∂tu = ∂x
(
|∂xum

|
p−2∂xum

)
+ f (u) in R × (0,∞)

u(x, 0) = u0(x) in R,

where u0 ∈ Cc(R) is defined by u0(x) := min{a,u0(x)}. Consequently, we deduce u(x, t) ≤ u(x, t) and
0 ≤ u(x, t) ≤ a in R × (0,∞) thanks to the comparison principle, and, furthermore:

u(x, t) ≥ a − ε, in {|x| ≤ ct}, for t large enough.

This last property easily follows by applying Proposition 2.5, Theorem 2.4 and Theorem 2.1 to u = u(x, t)
and remembering the scaling property quoted at the beginning of this section. We could have also
repeat the construction done in the Fisher-KPP framework using the “change sign” TWs introduced
in Subsection 1.2.1. Note that this procedure applies to higher dimensions N ≥ 1 too, as explained in
Theorem 2.1. �

Proof of Theorem 2.3: Case N = 1, range γ = 0. Fix m > 0 and p > 1 such that γ = 0. The proof in
this range is similar to the previous one, with some modifications.

Step0’. This step coincides with Step0 of the range γ > 0.
Step1’. In this step we proceed as in Step1 of the range γ > 0, considering the super-solution given

by the problem ∂tu = ∂x
(
|∂xum

|
p−2∂xum

)
+ f ′(0)u in R × (0,∞)

u(x, 0) = u0(x) in R,

and the function ũ(x, t) = e− f ′(0)tu(x, t) satisfying∂tũ = ∂x
(
|∂xũm

|
p−2∂xũm

)
in R × (0,∞)

ũ(x, 0) = u0(x) in R.

This time ũ = ũ(x, t) does not generally propagate with finite speed of propagation, but it is everywhere
positive for all t > 0. In the next paragraphs, we provide a bound from above for ũ = ũ(x, t) which will
be enough for our purposes. The main tool are the Barenblatt solutions presented in the introduction.
Indeed, since u0 has compact support, there are a mass M > 0 large enough and delay θ > 0 such that
u0(x) ≤ BM(x, θ) for all x ∈ R. Thus, from the Comparison Principle, we obtain ũ(x, t) ≤ BM(x, t + θ) for
all x ∈ R and t > 0. Coming back to the solution u = u(x, t), this gives

u(x, t) ≤ u(x, t) = e f ′(0)tũ(x, t) ≤ e f ′(0)tBM(x, t + θ) = e f ′(0)t(t + θ)−1/pFM(x(t + θ)−1/p)

= CM(t + θ)−1/p exp
[

f ′(0)t − k(t + θ)−1/(p−1)
|x|p/(p−1)

]
,

where k = (p − 1)p−p/(p−1) (cfr. with the introduction, range γ = 0). In particular, we obtain

u(x, t) ≤ CM,θ(t) exp
[
−kθ(t)|x|p/(p−1)

]
, in R × (0,∞), (2.47)

where CM,θ(t) = CM(t + θ)−1/pe f ′(0)t and kθ(t) = k(t + θ)−1/(p−1), t > 0. Again, this bound can be easily
extended to the case N ≥ 1, with minor changes in the functions CM,θ(·) and kθ(·).
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Step2’. As before, in this step we prove that for all ε > 0 and for all c > c∗(m, p, f ), there exists
t1 = t1(ε, c) > 0 such that

u(x, t) ≤ ε, in {|x| ≥ ct}, for all t ≥ t1.

So, we fix ε > 0, c > c∗(m, p, f ), and we consider tε > 0 given by Step1’-Step1. As before, we can assume
u(x, tε) < a, since the scaling technique exploited in Step2 of the range γ > 0 works also in the present
setting. Again, we consider

v(x, t) := ϕ(x − c∗t), w(x, t) := ψ(x + c∗t),

where ϕ = ϕ(ξ) is the positive a-admissible TW studied in Theorem 1.1 (part (iii), range γ = 0), satisfying
ϕ(−∞) = a, ϕ(+∞) = 0 , and ψ = ψ(ξ) is its “reflection”. The main difference respect to the range
γ > 0 is neither u = u(x, t) nor v = v(x, t) (resp. w = w(x, t)) have compact support in R, and so we
cannot immediately conclude u(x, tε) ≤ v(x, 0) (resp. u(x, tε) ≤ w(x, 0)) in R (up to a right/left shift) of
the profile ϕ = ϕ(x) (resp. ψ = ψ(x)).
However, we known that asymptotic behaviour of the tales ofϕ = ϕ(x) andψ = ψ(x) (cfr. with formula
(1.30)):

ϕ(x) ∼ a0|x|
2
p e−

λ∗
m x, for x ∼ +∞, ψ(x) ∼ a0|x|

2
p e−

λ∗
m |x|, for x ∼ −∞,

where λ∗ := (c∗/p)m, a0 > 0, and, at the same time,

u(x, tε) ≤ CM,θ(tε) exp
[
−kθ(tε)|x|p/(p−1)

]
, x ∈ R × (0,∞),

from the global bound (2.47) of Step1’. Consequently, since p > 1, u(x, tε) decays faster than ϕ(x) and
ψ(x) when |x| ∼ ∞, and so we can now assume u(x, tε) ≤ v(x, 0) and u(x, tε) ≤ w(x, 0) for all x ∈ R and
applying the Comparison Principle to have u(x, t + tε) ≤ v(x, t) and u(x, t + tε) ≤ w(x, t) for all x ∈ R and
t > 0. Thus, using that v(x, t) ≤ ε for x ≥ c∗t + ξ0 and w(x, t) ≤ ε for x ≤ −c∗t + ξ0 and c > c∗, we deduce
that u(x, t) ≤ ε in {|x| ≥ ct} for large times (see also the proof of Theorem 2.2, Part (iii)). �

Proof of Theorem 2.3: Case N ≥ 2. Fix m > 0 and p > 1 such that γ > 0 (the range γ = 0 is almost
identical and we skip it). Again, we focus on radial solutions to problem (1), i.e., solutions u = u(r, t)
to problem (2.43):∂tu = ∂r

(
|∂rum

|
p−2∂rum

)
+ N−1

r |∂rum
|
p−2∂rum + f (u) in R+ × (0,∞)

u(r, 0) = u0(r) in R+ × {0},

where r = |x|, x ∈ RN, and u0(·) is a radial decreasing initial datum.
Step1: Convergence to zero in “outer” sets. Proceeding as in the proof of Theorem 2.2 (Part (i)), we

can assume ∂rum
≤ 0 in R+ × (0,∞). Consequently, the solution u = u(r, t) to the problem

∂tu = ∂r
(
|∂ru

m
|
p−2∂ru

m
)

+ f (u) in R+ × (0,∞)

u = u in {0} × (0,∞)
u(r, 0) = u0(r) in R+ × {0},

is a super-solution to (2.43) and, at the same time, it is a solution of the one-dimensional equation with
compactly supported initial data. Thus, for all c > c∗(m, p, f ), it follows

u(r, t) = 0 uniformly in {r ≥ ct}, as t→ +∞,

and by the comparison, we deduce the same for u = u(r, t). Of course, if γ = 0, the solutions are always
positive and it holds u(r, t) ≤ ε uniformly in {r ≥ ct} for large times t > 0.
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We ask the reader to note that with the same comparison technique we can prove that for all ε > 0,
it holds

u(x, t) ≤ a + ε, for all x ∈ RN, t ≥ tε, (2.48)

for some suitable waiting time tε > 0 (as we have seen before, this property holds for the case N = 1).
Step2: Convergence to a in “inner” sets. In this second step, we have to prove that for all ε > 0 and

0 < c < c∗(m, p, f ), the solutions to problem (2.43) satisfies

u(r, t) ≥ a − ε, uniformly in {r ≤ ct}, t→ +∞. (2.49)

Following the procedure of the Fisher-KPP framework, we have to proceed in three main steps. In the
first one we have to show that the solution u = u(r, t) does not extinguish and actually lifts-up to a small
level ε̃ > 0 in compact sets of RN for large times. This follows from Theorem 2.4 of the Fisher-KPP
setting and recalling the scaling property linking reactions of type C’ to Fisher-KPP reactions.
Then following the proof of Theorem 2.2, Part (ii), case N = 1, we have

f (u) ≥ qε̃(a − u) in {|x| ≤ %̃} × [t%̃,∞), with qε̃ =
f (ε̃)

1 − ε̃
,

for any %̃ > 0 and t%̃ > 0 large enough. We point out that the previous inequality holds true only when
ε̃ ≤ u ≤ a, which is an assumption we can make thanks to (2.48) and the scaling technique employed
in Step2 of proof of the case N = 1 (see range γ > 0). Thus, exactly as before, we get that for all ε > 0
(small) and %̃ > 0 (large)

u(r, t) ≥ a − ε in {r = |x| ≤ %̃} for all t ≥ t1,

for some (large) t1 > 0. Finally, we get (2.49) by constructing a sub-solution to problem (2.43) through
“change sign” TWs (cfr. with the proof of Theorem 2.1). Recalling the scaling property linking reactions
of type C’ to Fisher-KPP reactions, we consider a barrier (from below) built with the function

ϕ(ξ) :=


a − ε if ξ ≤ 0
ϕc(ξ) if 0 ≤ ξ ≤ ξc

1
0 otherwise

with a − ε = maxϕc(ξ),

where ϕc = ϕc(x− (c + ε)t) is a “change-sign” TW (of type 2) corresponding to the speed 0 < c < c∗ (see
Subsection 1.2.1). Thus, the barrier propagate level a − ε with speed c, and so, using the arbitrariness
of 0 < c < c∗ obtain (2.49) (cfr. with the proof of Theorem 2.1 for all the details). �

2.6 Extensions, comments and open problems

We end the chapter with some extensions, comments and open problems.

2.6.1 On the exact location of the propagation front

Theorems 2.1, 2.2, and 2.3 are the “basic” results describing the wave propagation of solutions to
problem (1) with reactions (2), (3), and (4), respectively. However, they do not give precise information
about the properties of the solution u = u(x, t) on the moving coordinate x = ξ − c∗t, where c∗ is the
critical speed. Important steps forward have been made for linear diffusion and reactions of the
Fisher-KPP type. For example, Bramson showed in [44] and [45], using probabilistic techniques, an
interesting property of the level sets Eω(t) = {x > 0 : u(x, t) = ω}, ω ∈ (0, 1), of the solution u = u(x, t) to
problem (1)-(2) in the case N = 1, m = 1, and p = 2. In particular, he proved that for all ω ∈ (0, 1) there
exist constants xω, a > 0 and Cω > 0 such that

Eω(t) ⊂
[
c∗t −

3
2ω∗

ln t − xω −
a
√

t
−

Cω
t
, c∗t −

3
2ω∗

ln t − xω −
a
√

t
+

Cω
t

]
(2.50)



CHAPTER 2. LONG TIME BEHAVIOUR FOR “SLOW” DIFFUSION 78

for t large enough, where ω∗ = c∗/2. The previous formula is interesting since it allows to estimate the
“delay” of the solution u = u(x, t) from the positive TW with critical speed c = c∗ which, according to
(2.50), grows in time and consists in a logarithmic deviance. More recently, a similar result have been
proved in [120] with PDEs techniques. In particular, the authors showed that there exists a constant
C ≥ 0 such that

Eω(t) ⊂
[
c∗t −

3
2ω∗

ln t − C, c∗t −
3

2ω∗
ln t + C] for t large enough,

which is less precise than (2.50) but, anyway, it contains the most important information on the “delay”
of the solution, i.e., the logarithmic shift (for more work on this issue see [139, 172, 194]). Moreover, they
gave a interesting proof of the uniform convergence of the general solutions to equation to problem
(1)-(2) (in the case N = 1, m = 1, and p = 2) to the TW solution with critical speed c∗ (see Theorem 1.2
of [120]).
It seems quite natural to conjecture that, at least in the “pseudo-linear” case, the level sets of the
solution of (1) satisfy similar properties. Nevertheless, studying the problem of the exact location of
the propagation front for the doubly nonlinear diffusion seems a really difficult task and we pose it as
an interesting open problem.

2.6.2 Reactions of type B

In the literature, other kind of reactions have been intensively investigated. Possibly, the most famous
are the so called reactions of type B f (0) = f (a) = f (1) = 0, f (u) ≤ 0 in (0, a), f (u) > 0 in (a, 1)

f ∈ C1([0, 1]), f ′(1) < 0,
(2.51)

which emerge from combustion models (see for instance the famous works [31, 171] and the interesting
survey [180]). We have not considered this framework in this paper but we want to point out, thanks
to a simple comparison with reaction of type C, that part (ii) of Theorem 2.2 hold even for reaction of
type B. Also part (i) holds if we take initial data 0 ≤ u0 ≤ a (this is true even for reactions of type C
thanks to a straightforward comparison technique, but we have not insisted on it since it goes out of
our purposes).

2.6.3 Sharp threshold results

As we have pointed out in the presentation of the results of this paper, Theorem 2.2 has not a sharp
threshold statement. As already explained, the problem has been studied and solved in dimension
N = 1 and very general reaction terms by Du and Matano [88]. In this work, it is essential the existence
of nontrivial solutions to

−∂xxu = f (u) in R,

which correspond to stationary solutions to the corresponding parabolic problem and eventual limit
configurations (see for instance Theorem 1.1 of [88]). The study of these stationary solutions is clearly
more complicated in the doubly nonlinear framework and seems to be a very challenging open problem
(see [157, 166] for the case N ≥ 1).



Chapter 3

The Fisher-KPP problem with “fast”
diffusion

In the last chapter of Part I, we study the asymptotic behaviour for large times of the solutions to
problem (1): ∂tu = ∆pum + f (u) in RN

× (0,∞)
u(x, 0) = u0(x) in RN,

for reaction terms of the Fisher-KPP type (2):
f (0) = f (1) = 0, 0 < f (u) ≤ f ′(0)u in (0, 1)
f ∈ C1([0, 1]), f ′(0) > 0, f ′(1) < 0
f (·) has a unique critical point in (0, 1),

and in the “fast” diffusion range, i.e., for parameters m > 0 and p > 1 such that −p/N < γ < 0, where
we recall that γ := m(p − 1) − 1 (cfr. with Figure 3.1). We will see that the last assumption in (2) is not
needed in this “fast” diffusion setting (this is due to the fact that this time we are not going to perform
an ODEs analysis). However, in order to simplify notations, we have decided to not introduce new
assumptions on f (·), so that we will work with reactions satisfying (2).

0 1
0

1

p - 1

m

 

 

  = 0

"Fast diffusion" range, N=1

A(p=2,m=1)

0 1 N - 1
0

1

p - 1

m

 

 

  = 0

  = - p/N

 "Fast diffusion" range, N > 2 

A(p=2,m=1)

Figure 3.1: The “fast” diffusion range in the (m, p − 1)-plane: cases N = 1 and N > 2, respectively.

From the beginning, we introduce the notation

γ̂ := −γ,

79
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so that the “fast” diffusion assumption −p/N < γ < 0 reads (in terms of γ̂):

0 < γ̂ < p/N. (3.1)

The positivity of γ̂ will be very useful for simplifying the reading. Finally, we will assume that the
initial datum is a Lebesgue-measurable function and satisfiesu0(x) ≤ C|x|−p/γ̂, for some C > 0

u0 , 0 and 0 ≤ u0 ≤ 1.
(3.2)

Note that the previous assumption is much more general than the one done in Chapter 2 and the
polynomial decaying of the initial data is the same of Barenblatt solutions in the “fast” diffusion
range (cfr. with the section of preliminaries on doubly nonlinear diffusion in the introduction of
Part I). Moreover note that, since 0 < γ̂ < p/N, all data satisfying (3.2) are automatically integrable,
u0 ∈ L1(RN).

3.1 Main results

We present now the two most significative results proved in this third chapter. The first one, is “fast”
diffusion counterpart of Theorem 2.1 for “slow” diffusion and present some very interesting features
w.r.t. the “slow”/“pseudo-linear” diffusion framework. Before giving the precise statements, let us
introduce the critical exponent

σ∗ :=
γ̂

p
f ′(0), (3.3)

which, as the reader we will easily note, will play an important role in what follows.

Theorem 3.1. (cfr. with Theorem 1.1 and Theorem 1.2 of [18])
Let m > 0 and p > 1 such that 0 < γ̂ < p/N, and let N ≥ 1. Let u = u(x, t) be a solution to the initial-value
problem (1) with initial datum (3.2) and reaction of Fisher-KPP type (satisfying (2)). Then:

(i) For all 0 < σ < σ∗,
u(x, t)→ 1 uniformly in {|x| ≤ eσt

} as t→∞.

(ii) For all σ > σ∗ it satisfies,

u(x, t)→ 0 uniformly in {|x| ≥ eσt
} as t→∞,

where σ∗ = σ∗(m, p, f ) is the critical exponent defined in (3.3).

For all σ > σ∗, we call {|x| ≥ eσt
} “exponential outer set” or, simply, “outer set”, while “inner

set” {|x| ≤ eσt
} for σ < σ∗. The previous theorem shows that, for large times, the solution u = u(x, t)

converges to one in the “inner set”, whilst to zero in the “outer set” and represent the most interesting
difference w.r.t. the travelling wave behaviour for large times, found in Theorem 2.1 for “slow” and
“pseudo-linear” diffusion (cfr. with Figure 3.2). Here the solutions do not spread in space with
constant speed of propagation (c∗ = c∗(m, p, f )) for large times, but exponentially fast with exponential
rate σ∗ = σ∗(m, p, f ). In terms of stability, the steady state u = 1 is stable, while u = 0 is unstable and
the asymptotic stability/instability can be measured in terms of speed of convergence of the solution
which, in this case, is asymptotically exponential in distance of the front location as function of time.

Exponential propagation was already observed before. In particular, we quote the paper of King
and McCabe [133] in which they study the Porous Medium case, obtained by taking p = 2 in the
equation in (1): ∂tu = ∇ · (u−(1−m)

∇u) + u(1 − u) in RN
× (0,∞)

u(x, 0) = u0(x) in RN,
(3.4)
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Figure 3.2: Fisher-KPP reactions, range −p/N < γ < 0. Qualitative long time behaviour (convergence
to 1 in the “inner” sets {|x| ≤ eσt

}, for σ < σ∗) of the solutions for f (u) = u(1 − u).

in the fast diffusion range, 0 < m < 1 (note that we absorbed a factor m by using a simple change
of variables). They considered non-increasing radial initial data u0 ∈ L1(RN) decaying faster than
r−2/(1−m) as r = |x| ∼ ∞ and studied radial solutions to problem (3.4). We will see how to generalize
their technique in the following sections.
They showed that when (N − 2)+/N := mc < m < 1, the radial solutions u = u(r, t) to the previous
equation converge point-wise to 1 for large times with exponential rate r(t) ∼ eσt, for σ < (1 − m)/2.
Their approach is based on a powerful heuristic which allows to compute the approximate solution to
(3.4) for large times

u(r, t) ∼

(
κr−2e(1−m)t

) 1
m−1

1 +
(
κr−2e(1−m)t) 1

1−m

, t ∼ ∞ and r = O
(
e

1−m
2 t

)
,

where κ = 2[2− (1−m)N]/(1−m)2. Note that “our” critical exponent σ∗ generalizes the value (1−m)/2
to the case p > 1 and to more general reaction terms than f (u) = u(1 − u).

Exponential propagation happens also with fractional diffusion, both linear and nonlinear, see
for instance [47, 182] and the references therein. Finally, we recall that infinite speed of propagation
depends not only on the diffusion operator but also on the initial datum. In particular, in [121], Hamel
and Roques found that the solutions of the Fisher-KPP problem with linear diffusion i.e., (m = 1 and
p = 2) propagate exponentially fast for large times if the initial datum has a power-like spatial decay
at infinity.

Following the procedure used to prove Theorem 2.1, we will need some a priori “lifting-up”
lemmas, which will be proved in Section 3.2. Moreover, in the proof of Part (i) (of Theorem 3.1) we will
employ a Comparison Principle in non cylindrical domains and some known results about p-Laplacian
diffusion with non-integrable initial data, that we recall in two separate sections (cfr. with Section 3.5
and Section 3.6) at the end of the chapter.

In the second main result we consider the classical reaction term f (u) = u(1−u). We find interesting
bounds for the level sets of the solution of problem (1), (3.2). In particular, we prove that the information
on the level sets of the general solutions is contained, up to a multiplicative constant, in the set |x| = eσ∗t,
for large times.

Theorem 3.2. (cfr. with Theorem 1.4 of [18])
Fix N ≥ 1. Let m > 0 and p > 1 such that 0 < γ̂ < p/N, and take f (u) = u(1 − u). Then for all 0 < ω < 1,
there exists a constant Cω > 0 and a time tω > 0 large enough, such that the solution of problem (1) with initial
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datum (3.2) and reaction f (u) = u(1 − u) satisfies

{|x| > Cωeσ∗t} ⊂ {u(x, t) < ω} and {|x| < C−1
ω eσ∗t} ⊂ {u(x, t) > ω} (3.5)

for all t ≥ tω. In particular, we have

Eω(t) = {x ∈ RN : u(x, t) = ω} ⊂ {x ∈ RN : C−1
ω eσ∗t ≤ |x| ≤ Cωeσ∗t} for all t ≥ tω.

An important feature of this result is that for all 0 < ω < 1, the set {C−1
ω eσ∗t ≤ |x| ≤ Cωeσ∗t} does not

depend on some σ , σ∗, while in Theorem 3.1 the “outer sets” and the “inner sets” depend on σ > σ∗
and σ < σ∗, respectively. Moreover, taking a spatial logarithmic scale we can write the estimate

Eω(t) := {x ∈ RN : u(x, t) = ω} ⊂ {x ∈ RN : − ln Cω ≤ ln |x| − σ∗t ≤ ln Cω},

for t large enough. Actually, this result was not known for “fast” nonlinear diffusion neither for the
Porous Medium case, nor for the p-Laplacian case. However, it was proved by Cabré and Roquejoffre
for the fractional Laplacian (−∆)1/2 in [47], in dimension N = 1.

In order to fully understand the importance of Theorem 3.2, we need to compare it with the linear
case m = 1 and p = 2, see formula (2.50):

Eω(t) ⊂
[
c∗t −

3
2ω∗

ln t − xω −
a
√

t
−

Cω
t
, c∗t −

3
2ω∗

ln t − xω −
a
√

t
+

Cω
t

]
for t large enough, where ω∗ = c∗/2, and xω, Cω, a are suitable positive constant. This means that in
the linear case the location of the level sets is given by a main linear term in t with a logarithmic shift
for large times, see [44, 45, 120] and [106] for an extension of these results to more general reaction
equations. In other words, the propagation of the front is linear “up to” a logarithmic correction, for
large times. Now, Theorem 3.2 asserts that this correction does not occur in the “fast diffusion” range.
Using the logarithmic scale, we can compare the behaviour of our level sets with the ones of formula
(2.50) for linear diffusion, noting that there is no logarithmic deviation, but the location of the level sets
is approximately linear for large times (in spatial logarithmic scale, of course), and moreover there is
a bounded interval of uncertainty on each level set location.

3.2 Fisher-KPP reactions, range 0 < γ̂ < p/N. A priori “lifting up” results

In this section, we study problem (1), with Fisher-KPP reaction term f (·) satisfying (2) and with the
following choice of the initial datum:

ũ0(x) :=

ε̃ if |x| ≤ %̃0

a0|x|−p/γ̂ if |x| > %̃0,
(3.6)

where ε̃ and %̃0 are positive real numbers, and a0 := ε̃ %̃
p/γ̂
0 . Note that ũ0(·) has “tails” which are

asymptotic to the profile of the Barenblatt solutions for |x| large (see the introduction to Part I). The
choice (3.6) will be clear in the next sections, where we will show the convergence of the solution to
problem (1), (3.2) to the steady state u = 1. We devote the all section to the proof of the following
crucial proposition (which is the “fast” diffusion version of Proposition 2.5 and Proposition 2.9 proved
in Chapter 2 in the “slow” and “pseudo-linear” settings).

Proposition 3.3. Fix N ≥ 1. Let m > 0 and p > 1 such that 0 < γ̂ < p/N and let 0 < σ < σ∗. Then there exist
t0 > 0, ε̃ > 0 and %̃0 > 0 such that the solution u = u(x, t) of problem (1) with initial datum (3.6) satisfies

u(x, t) ≥ ε̃ in {|x| ≤ eσt
} for all t ≥ t0.
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This result asserts that for all initial data (3.6) “small enough” and for all σ < σ∗, the solution of
problem (1) is strictly greater than a fixed positive constant on the “exponential inner sets” (or “inner
sets”) {|x| ≤ eσt

} for large times. Hence, it proves the non existence of travelling wave solutions (TWs)
since “profiles” moving with constant speed of propagation cannot describe the asymptotic behaviour
of more general solutions (cfr. with Chapter 1 and Chapter 2).
Moreover, this property will be really useful for the construction of sub-solutions of general solutions
since, as we will see, it is always possible to place an initial datum with the form (3.6) under a general
solution of (1) and applying the Comparison Principle (see the next lemma).

Lemma 3.4. Fix N ≥ 1 and let m > 0 and p > 1 such that 0 < γ̂ < p/N. Then for all θ > 0, there exist
t1 > θ, ε̃ > 0, and %̃0 > 0, such that the solution u = u(x, t) to problem (1) with nontrivial initial datum
0 ≤ u0 ∈ L1(RN) satisfies

u(x, t1) ≥ ũ0(x) in RN

where ũ0(·) is defined in (3.6).

Proof. Let u = u(x, t) the solution to problem (1) with nontrivial initial datum 0 ≤ u0 ∈ L1(RN) and
consider the solution v = v(x, t) to the purely diffusive Cauchy problem:∂tv = ∆pvm in RN

× (0,∞)
v(x, 0) = u0(x) in RN.

It satisfies v(x, t) ≤ u(x, t) in RN
× [0,∞) thanks to the Comparison Principle.

Let θ > 0. Since v(·, θ) is continuous in RN and non identically zero (the mass of the solution is
conserved in the “good” exponent range 0 < γ̂ < p/N), we have that it is strictly positive in a small
ball B%(x0), x0 ∈ RN and % > 0. Without loss of generality, we may take x0 = 0. So, by continuity, we
deduce v(x, t + θ) ≥ δ in B% × [0, τ], for some small δ > 0 and τ > 0.

Now, let us consider the function vθ(x, t) := v(x, t + θ) and the exterior cylinder

S := {|x| ≥ %} × (0, τ).

We compare vθ(x, t) with a “small” Barenblatt solution BM(x, t) (we mean that M is small) at time t = 0
and on the boundary of S. Recall that Barenblatt solutions have the self-similar form

BM(x, t) = t−α
[
CM + k

∣∣∣xt−
α
N
∣∣∣ p

p−1
]− p−1

γ̂

,

where α and k are positive constants defined in Subsection I, and CM > 0 depends on the mass.
The comparison at time t = 0 is immediate since vθ(x, 0) ≥ 0 and BM(x, 0) = 0 for all |x| ≥ %. Now,

let us take |x| = %. We want to show that vθ(|x| = %, t) ≥ BM(|x| = %, t) for all 0 ≤ t < τ. A simple
computation shows that we can rewrite the Barenblatt solution as

BM(|x| = %, t) =
t

1
γ̂[

CMt
αp

N(p−1) + k%
p

p−1

] p−1
γ̂

≤

(
τ

kp−1%p

) 1
γ̂

,

since 0 ≤ t < τ. Thus, since vθ(|x| = %, t) ≥ δ, it is sufficient to have(
τ

kp−1%p

) 1
γ̂

≤ δ, i.e. τ ≤ δγ̂kp−1%p.
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This condition is satisfied taking τ > 0 small enough. We may now use the Comparison Principle to
obtain the conclusion vθ(x, t) ≥ BM(x, t) in the whole of S.

In particular, we evaluate the comparison at t = τ, and we havev(x, τ + θ) ≥ δ if |x| ≤ %
v(x, τ + θ) ≥ BM(x, τ) if |x| ≥ %.

⇔

v(x, t1) ≥ δ if |x| ≤ %
v(x, t1) ≥ BM(x, t1 − θ) if |x| ≥ %,

where we set t1 = τ + θ. Let us fix %̃0 := %, 0 < ε̃ ≤ δ, and a0 := ε̃ %̃
p/γ̂
0 . By taking ε̃ > 0 smaller, we can

assume kp−1aγ̂0 < τ = t1 − θ. Now, we verify that

BM(x, t1 − θ) ≥ a0|x|−p/γ̂, for all |x| ≥ %̃0,

and some suitable constant CM > 0. Writing the expression for the Barenblatt solutions, the previous
inequality reads:

CM ≤
(t1 − θ)

1
p−1 − ka

γ̂
p−1

0[
aγ̂0 (t1 − θ)

αp
N

] 1
p−1

|x|
p

p−1 := K|x|
p

p−1 , for all |x| ≥ %̃0.

Note that the coefficient K of |x|p/(p−1) is positive thanks to our assumptions on ε̃ > 0. Now, since |x| ≥ %̃0,
we deduce that a sufficient condition so that the previous inequality is satisfied is CM ≤ K %̃ p/(p−1)

0 .
Consequently, we have shown that for all θ > 0, there exist t1 > θ, ε̃ > 0, and %̃0 > 0, such that

u(x, t1) ≥ v(x, t1) ≥ ũ0(x), for all x ∈ RN,

which is our thesis. �

We ask the reader to note that improved global positivity estimates were proved in [124, 196] and
[42] for the Porous Medium Equation. Now, with the next crucial lemma, we prove that the expansion
of the super-level sets of the solution u = u(x, t) of problem (1) with initial datum (3.6) is exponential
for all σ < σ∗ and large times. Before proceeding, we recall two important properties of the Barenblatt
solutions we will need in the next proof (cfr. with the introduction to Part I). The first one is the relation
between the Barenblatt solution with mass M > 0 and mass 1:

BM(x, t) = MB1(x,M−γ̂t), (3.7)

while the second are the estimates on the profile corresponding to the Barenblatt solution of mass
M > 0:

K2(1 + |ξ|p/γ̂)−1
≤ FM(ξ) ≤ K1|ξ|

−p/γ̂ for all ξ ∈ RN (3.8)

for suitable positive constants K1 and K2 depending on M > 0.

Lemma 3.5. Fix N ≥ 1. Let m > 0 and p > 1 such that 0 < γ̂ < p/N, and let 0 < σ < σ∗.
Then there exist t0 > 0 and 0 < ε̃0 < 1 which depend only on m, p, N and f , such that the following hold. For
all 0 < ε̃ ≤ ε̃0, there exists %̃0 > 0 (large enough depending on ε̃ > 0), such that the solution u = u(x, t) to
problem (1) with initial datum (3.6) satisfies

u(x, jt0) ≥ ε̃ in {|x| ≤ %̃0eσ jt0}, for all j ∈N+ = {1, 2, . . . }.
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Proof. We prove the assertion of the thesis by induction on j = 1, 2, . . . , assuming f (·) to be concave in
(0, 1). The case f (·) follows exactly as in the case of “slow” diffusion (cfr. with Lemma 2.7). Again, we
follow the ideas presented by Cabré and Roquejoffre in [47] and, later, in [182], for fractional diffusion.

Step0: Basic definitions. We set j = 1, 0 < σ < σ∗ and introduce some basic definitions and quantities
we will use during the proof. First of all, let C1 be the constant corresponding to the profile F1(·) (see
the introduction to Part I) and let K1 and K2 be defined as in (3.8) with M = 1. In order to avoid huge
expressions in the following of the proof, we introduce the constants

K :=
(
C(p−1)/γ̂

1 K−αγ̂1

)N/(αp)
and K̃ :=

K2

2
C

p−1
γ̂

1 . (3.9)

We fix 0 < δ < 1 sufficiently small such that

γ̂

p
λ > σ, λ := f (δ)/δ. (3.10)

Then, we consider t0 sufficiently large such that

K̃eλt0 ≥ 2α and
K2

2K1
eλt0 ≥ e

p
γ̂
σt0 (3.11)

(note that such a t0 exists thanks to (3.10)) and we define ε̃0 := δe−λt0 . Finally, fix 0 < ε̃ ≤ ε̃0 and choose
%̃0 large enough such that

%̃
p
0 ≥

Kγ̂1
λγ̂ ε̃ γ̂

. (3.12)

The choice of the subtle conditions (3.10), (3.11) and (3.12) will be clarified during the proof.
Step1: Construction of a sub-solution. We construct a sub-solution to problem (1), (3.6) inRN

× [0, t0].
First of all, we construct a Barenblatt solution of the form BM1(x, θ1) such that

BM1(x, θ1) ≤ ũ0(x) in RN. (3.13)

Since the profile of the Barenblatt solution is decreasing, we impose BM1(0, θ1) = ε̃ in order to satisfy
(3.13) in the set {|x| ≤ %̃0}. Moreover, using (3.8) and noting that 1 + αγ̂ = αp/N, it simple to get

BM1(x, θ1) ≤ K1θ
1
γ̂

1 |x|
−

p
γ̂ in RN

and so, it is sufficient to require K1θ
1
γ̂

1 = a0, so that (3.13) is valid in {|x| ≥ %̃0}. Thus, it is simple to
obtain the relations

M1 = K%̃N
0 ε̃ and θ1 = K−γ̂1 %̃

p
0 ε̃

γ̂ (3.14)

Now, consider the linearized problem∂tw = ∆pwm + λw in RN
× (0,∞)

w(x, 0) = ũ0(x) in RN (3.15)

and the change of variable

τ(t) =
1
λγ̂

[
1 − e−λγ̂t

]
, for t ≥ 0. (3.16)

Note that 0 ≤ τ(t) ≤ τ∞ := 1
λγ̂

and the function w̃(x, τ) = e−λtw(x, t) satisfies the “purely” diffusive
problem ∂τw̃ = ∆pw̃m in RN

× (0, τ∞)
w(x, 0) = ũ0(x) in RN.

(3.17)



CHAPTER 3. THE FISHER-KPP PROBLEM WITH “FAST” DIFFUSION 86

Since BM1(x, θ1) ≤ ũ0(x) ≤ ε̃ for all x ∈ RN, from the Comparison Principle we get

BM1(x, θ1 + τ) ≤ w̃(x, τ) ≤ ε̃ in RN
× (0, τ∞). (3.18)

Hence, using the concavity of f and the second inequality in (3.18) we get

w(x, t) = eλtw̃(x, τ) ≤ ε̃0eλt0 = δ, in RN
× [0, t0]

and so, since w ≤ δ implies f (δ)/δ ≤ f (w)/w, we have that w is a sub-solution to problem (1), (3.6) in
RN
× [0, t0]. Finally, using the first inequality in (3.18), we obtain

u(x, t) ≥ eλtw̃(x, τ) ≥ eλtBM1(x, θ1 + τ) in RN
× [0, t0]. (3.19)

Step2: Conclusion for t = t0 In this step, we show that the choices made in (3.10), (3.11) and (3.12)
allow us to find positive numbers %̃1 and a1 such that u(x, t0) ≥ ũ1(x) for all x ∈ RN, where

ũ1(x) :=

ε̃ = a1%̃
−p/γ̂
1 if |x| ≤ %̃1

a1|x|−p/γ̂ if |x| > %̃1
and %̃1 ≥ %̃0eσt0 ,

which implies the thesis for j = 1. Now, in order to find %̃1 and a1 we proceed with the chain of
inequalities in (3.19) for the values t = t0, τ0 = τ(t0) and |x| = %̃1. Imposing

%̃1

[
M−γ̂1 (θ1 + τ0)

]−α/N
≥ 1, (3.20)

using (3.8) and observing that (1 + z)−1
≥ (2z)−1 for all z ≥ 1, we look for %̃1 and a1 such that

u(x, t0)||x|=%̃1
≥ eλt0BM1(x, θ1 + τ0)||x|=%̃1

≥ eλt0K2M1+αγ̂
1 (θ1 + τ0)−α

1 + %̃
p
γ̂

1

[
M−γ̂1 (θ1 + τ0)

]− αp
Nγ̂

−1

≥
K2

2
eλt0M1+αγ̂

1 (θ1 + τ0)−α
{
%̃1

[
M−γ̂1 (θ1 + τ0)

]− αN }− p
γ̂

=
K2

2
eλt0(θ1 + τ0)

1
γ̂ %̃
−

p
γ̂

1

≥ ε̃ = a1%̃
−

p
γ̂

1 .

Thus, we get u(x, t0)||x|=%̃1
≥ ε̃ taking, for instance, %̃1 > 0 such that

K2

2
eλt0(θ1 + τ0)

1
γ̂ %̃
−

p
γ̂

1 = ε̃. (3.21)

Note that this choice of %̃1 > 0 performs the equality at the end of the previous chain and the value
a1 = K2

2 eλt0(θ1 + τ0)1/γ̂ is determined too.
Remark 1. Note that the conditions eλt0BM1(x, θ1 + τ0)||x|=%̃1

≥ ε̃ and (3.20) are sufficient to assure
u(x, t0) ≥ u1(x) inRN. Indeed, it is guaranteed in the set {|x| ≤ %̃1} since the profile F1(·) is non-increasing.

On the other hand, if |x| ≥ %̃1 we have |x|
[
M−γ̂1 (θ1 + τ0)

]−α/N
≥ 1 by (3.20) and so, following the chain

of inequalities as before, we get

u(x, t0) ≥
K2

2
eλt0(θ1 + τ0)

1
γ̂ |x|−

p
γ̂ = a1|x|

−
p
γ̂ = ũ1(x) in {|x| ≥ %̃1}.
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Now, in order to conclude the proof of the case j = 1, we must check that the conditions (3.20) and
(3.21) actually represent a possible choice and the value of t0, defined at the beginning, performs their
compatibility. The compatibility between (3.20) and (3.21) can be verified imposing

K2

2
eλt0(θ1 + τ0)

1
γ̂ = ε̃ %̃

p
γ̂

1 ≥ ε̃
[
M−γ̂1 (θ1 + τ0)

] αp
Nγ̂ ,

which can be rewritten using the definitions (3.14) as

K̃eλt0 ≥

(
1 +

τ0

θ1

)α
, (3.22)

Now, it is simple to verify that condition (3.12) implies τ∞ ≤ θ1 and so it holds τ0 ≤ θ1 too. Hence, a
sufficient condition so that (3.22) is satisfied and does not depend on ε̃ > 0 is

K̃eλt0 ≥ 2α,

i.e., our initial choice of t0 in (3.11) which proves the compatibility between (3.20) and (3.21).
Remark 2. Rewriting formula (3.21) using the definition of θ1, it is simple to deduce(

%̃1

%̃0

) p
γ̂

=
K2

2K1
eλt0

(
1 +

τ0

θ1

) 1
γ̂

(3.23)

and, using the second hypothesis on t0 in (3.11), it is straightforward to obtain %̃1 ≥ %̃0eσt0 . In particular,
we have shown

u(x, t0) ≥ ε̃ in {|x| ≤ %̃0eσt0},

i.e., the thesis for j = 1.

Iteration. Set t j := ( j + 1)t0, %̃ j := %̃0eσ jt0 and a j := ε̃ %̃
p/γ̂
j for all j ∈N and define

ũ j(x) =

ε̃ if |x| ≤ %̃ j

a j|x|−p/γ̂ if |x| > %̃ j.
(3.24)

We suppose to have proved that the solution of problem (1), (3.6) satisfies

u(x, t j−1) ≥ ũ j(x) in RN, for some j ∈N+

and we show u(x, t j) ≥ ũ j+1(x) in RN for the values %̃ j+1 and a j+1. From the induction hypothesis, we
have that the solution v(x, t) of the problem∂tv = ∆pvm + f (v) in RN

× (t j−1,∞)
v(x, t j−1) = ũ j(x) in RN (3.25)

is a sub-solution of problem (1), (3.6) inRN
× [t j−1,∞) which implies u(x, t) ≥ v(x, t) inRN

× [t j−1,∞) and
so, it is sufficient to prove v(x, t j) ≥ ũ j+1(x) in RN. Since we need to repeat almost the same procedure
of the case j = 1, we only give a brief sketch of the induction step.

Step1’. Construction of a sub-solution of problem (3.25), (3.24), in RN
× [t j−1, t j]. With the same

techniques used in Step1, we construct a Barenblatt solution BM j+1(x, θ j+1) ≤ ũ j(x) inRN with parameters

M j+1 = K%̃N
j ε̃ and θ j+1 = K−γ̂1 %̃

p
j ε̃

γ̂ (3.26)
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and a sub-solution of problem (3.25), (3.24): w(x, t) = eλ(t−t j−1)w̃(x, τ̃) in RN
× [t j−1, t j], where

τ̃(t) =
1
λγ̂

[
1 − e−λγ̂(t−t j−1)

]
, for t ≥ t j−1.

In particular, note that θ j+1 ≥ θ j ≥ . . . ≥ θ1, 0 ≤ τ̃(t) ≤ τ∞, τ̃(t j) := τ̃ j = τ0 and

v(x, t j) ≥ eλt0BM j+1(x, θ j+1 + τ̃ j).

Step2’. We have to study a chain of inequalities similar to the one carried out in Step2 verifying that

eλt0BM j+1(x, θ j+1 + τ̃ j)||x|=%̃ j+1
≥ ε̃.

Thus, imposing conditions similar to (3.20) and (3.21) and requiring their compatibility, we have to
check the validity of the inequality

K̃eλt0 ≥

(
1 +

τ0

θ j+1

)α
.

Since θ1 ≤ θ j+1, we have τ0 ≤ θ j+1 and so, a sufficient condition so that the previous inequality is
satisfied is K̃eλt0 ≥ 2α, which is guaranteed by the initial choice of t0. Finally, following the reasonings
of the case j = 1 it is simple to obtain the relation(

%̃ j+1

%̃ j

) p
γ̂

≥
K2

2K1
eλt0

(
1 +

τ0

θ j+1

) 1
γ̂

which implies
%̃ j+1 ≥ %̃ jeσt0 ≥ . . . ≥ %̃0eσ jt0 ,

and we complete the proof. �

Proof of Proposition 3.3. The previous lemma proves that for the sequence of times t j = ( jt0) j∈N+ and
for any choice of the parameter 0 < σ < σ∗, the solution of problem (1), (3.6) reaches a positive value ε̃
in the sequence of sets {|x| ≤ %̃0eσ jt0}where %̃0 > 0 is chosen large enough (in particular, we can assume
%̃0 ≥ 1).
Actually, we obtained a more useful result. First of all, note that, for all 0 < σ < σ∗, Lemma 3.5 implies

u(x, jt0) ≥ ε̃ in {|x| ≤ eσ jt0}, for all j ∈N+,

for all 0 < ε̃ ≤ ε̃0 = δe− f ′(0)t0 . Moreover, since conditions (3.11) are satisfied for all t0 ≤ t1 ≤ 2t0, we
can repeat the same proof of Lemma 3.5, modifying the value of ε̃0 and choosing a different value
ε̃0 = δe−2 f ′(0)t0 > 0, which is smaller but strictly positive for all t0 ≤ t1 ≤ 2t0. Hence, it turns out that for
all 0 < ε̃ ≤ ε̃0, it holds

u(x, t) ≥ ε̃ in {|x| ≤ eσt
}, for all t0 ≤ t ≤ 2t0.

Now, iterating this procedure as in the proof of Lemma 3.5, it is clear that we do not have to change
the value of ε̃0 when j ∈N+ grows and so, for all 0 < ε̃ ≤ ε̃0, we obtain

u(x, t) ≥ ε̃ in {|x| ≤ eσt
}, for all j ∈N+ and for all jt0 ≤ t ≤ ( j + 1)t0.

Then, using the arbitrariness of j ∈N+, we complete the proof. �
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Remark. Note that, to be precise, in the proof of Proposition 3.3, we have to combine Lemma 3.4
with Lemma 3.5 as follows. Let u = u(x, t) the solution of problem (1) with initial datum (3.2). We wait
a time t1 > 0 given by Lemma 3.4, in order to have

u(x, t1) ≥ ũ0(x) in RN,

for all %̃0 > 0 and some ε̃ > 0 depending on t1. Now, thanks to the Comparison Principle, we deduce
u(x, t + t1) ≥ ũ(x, t) in RN

× [0,∞), where we indicate with ũ = ũ(x, t) the solution of problem (1) with
initial datum ũ0 = ũ0(x). In this way, we deduce the statement of Lemma 3.5 for more general initial
data satisfying (3.2) and we can prove Proposition 3.3.

3.3 Proof of Theorem 3.1

We know focus on Theorem 3.1. We first prove Part (i) and then Part (ii). As the reader will see,
the proof of Part (i) strongly relies on some technical and non standard comparison techniques and
on known results concerning p-Laplacian type equations (see Section 3.5 and Section 3.6 for a short
review on these issues).

3.3.1 Proof of Theorem 3.1, Part (i)

Fix 0 < γ̂ < p/N, 0 < σ < σ∗ and set w := 1 − um in RN
× (0,∞). We will prove that for all ε > 0, there

exists tε > 0 such that
w(x, t) ≤ ε in {|x| ≤ eσt, t ≥ tε},

which is equivalent to the assertion of the thesis.
Step1: Reduction to a p-Laplacian type equation. Fix σ < ν < σ∗ and consider the inner set ΩI := {|x| ≤

eνt, t ≥ t1}, where t1 > 0 is initially arbitrary. We recall that Proposition 3.3 assures the existence of
ε̃ > 0 and t0 > 0 such that u ≥ ε̃ in the set {|x| ≤ eνt, t ≥ t0}. In particular, for all t1 ≥ t0, we have that
u = u(x, t) is bounded from below and above in the inner set:

ε̃ ≤ u ≤ 1 in ΩI. (3.27)

Moreover, it is not difficult to see that, setting a(x, t) = (1/m)u1−m and c(x, t) = f (u)/w, the function
w = 1 − um solves the problema(x, t)∂tw − ∆pw + c(x, t)w = 0 in RN

× (t1,∞)
w(x, t1) = 1 − [u(x, t1)]m in RN.

(3.28)

Using (3.27), it is simple to see that
a0 ≤ a(x, t) ≤ a1 in ΩI

where

a0 :=

(1/m)ε̃1−m if 0 < m < 1
1/m if m ≥ 1

a1 :=

1/m if 0 < m < 1
(1/m)ε̃1−m if m ≥ 1.

For what concerns c(x, t), it is bounded from below in ΩI:

c(x, t) ≥ c0 in ΩI,

where c0 > 0 and depends on ε̃ and m. Indeed, if 0 < m < 1 we have that c(x, t) = f (u)/(1 − um) ≥
f (u)/(1 − u) for all 0 ≤ u ≤ 1. Hence, we get our bound from below recalling (3.27) and noting that

f (u)
1 − u

∼ − f ′(1) > 0 as u ∼ 1.
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If m ≥ 1, we have the formula

c(x, t) =
f (u)

1 − um =
f (u)

(1 − u)(1 + u + . . . + um−1)
,

and so, since u ≤ 1 and arguing as in the case 0 < m < 1, we deduce

c(x, t) ≥ (1/m)
f (u)

1 − u
≥ c0 in ΩI

for some c0 > 0 depending on ε̃ and m. In particular, it follows that w = w(x, t) satisfies

a(x, t)∂tw − ∆pw + c0w ≤ 0 in ΩI, (3.29)

i.e., w = w(x, t) is a sub-solution for the equation in problem (3.28) in the set ΩI.
Step2: Construction of a super-solution. In this step, we look for a super-solution w = w(x, t) of

problem (3.28) with ∂tw ≤ 0 in RN
× (t1,∞). We consider the solution of the problema1∂tw − ∆pw + c0w = 0 in RN

× (t1,∞)
w(x, t1) = 1 + |x|λ in RN.

(3.30)

According to the resume presented in Section 3.6, problem (3.30) is well posed if 0 < λ < p/(p − 2)
when p > 2. Further assumptions are not needed when 1 < p ≤ 2. Furthermore, since c0 > 0 can be
chosen smaller and a1 > 0 larger, we make the additional assumption

c0

a1
= νλ. (3.31)

Now, we define the function

τ(t) :=


1

c0(2−p)

[
e(c0/a1)(2−p)(t−t1)

− 1
]

if 1 < p < 2
1
a1

(t − t1) if p = 2
1

c0(p−2)

[
1 − e−(c0/a1)(p−2)(t−t1)

]
if p > 2.

Note that τ = τ(t) is increasing with τ(t1) = 0 for all p > 1. Moreover, we define the limit of τ(t) as
t→∞with the formula

τ∞ :=
{
∞ if 1 < p ≤ 2

[c0(p − 2)]−1 if p > 2.

Then, the function w̃(x, τ) := e(c0/a1)(t−t1)w(x, t) (with τ = τ(t)) solves the “pure diffusive” problem∂τw̃ = ∆pw̃ in RN
× (0, τ∞)

w̃(x, 0) = 1 + |x|λ in RN.

As we explained in Section 3.6, for all τ1 ≥ 0 the problem∂τU = ∆pU in RN
× (τ1,∞)

U(x, τ1) = |x|λ in RN (3.32)

admits self-similar solutions U(x, τ + τ1) = τ−αλF(|x|(τ + τ1)−βλ), with self-similar exponents

αλ = −
λ

(1 − λ)p + 2λ
and βλ =

1
(1 − λ)p + 2λ

,
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and profile F(ξ) ≥ 0 with F′(ξ) ≥ 0 for all ξ ≥ 0, where we set ξ = |x|(τ + τ1)−βλ . Note that since we
assumed 0 < λ < p/(p − 2) when p > 2, the self-similar exponents are well defined with αλ < 0 and
βλ > 0 for all p > 1. Finally, recall that it is possible to describe the spacial “decay” of the self-similar
solutions for large values of the variable ξ = |x|(τ + τ1)−βλ , with the bounds

H2|x|λ ≤ U(x, τ + τ1) ≤ H1|x|λ, for all |x|(τ + τ1)−βλ ≥ h (3.33)

for a constant h � 0 large enough, see formula (3.57). Now, it is not difficult to see that w̃(x, τ) =
1 + U(x, τ + τ1), for all fixed delays τ1 ≥ 0. Moreover, we compute the time derivative:

∂tw(x, t) = ∂t

{
e−

c0
a1

(t−t1)[1 + U(x, τ + τ1)]
}

= −(τ + τ1)−αλ−1e−
c0
a1

(t−t1)
{ c0

a1
(τ + τ1)αλ+1 +

[ c0

a1
(τ + τ1) + αλτ

′

]
F(ξ) + βλτ

′ξF′(ξ)
}
,

where ξ = |x|(τ + τ1)−βλ and τ′ stands for the derivative respect with the variable t ≥ 0. Let’s set

Q(t) := (c0/a1)(τ + τ1) + αλτ
′.

Since, F(·), F′(·), and τ′(·) are non-negative and βλ > 0, in order to have ∂tw(x, t) ≤ 0, it is sufficient to
show Q(t) ≥ 0 for all t ≥ t1 and a suitable choice of τ1 > 0.

If p = 2, this follows from a direct and immediate computation, choosing τ1 > 0 large enough.
If 1 < p < 2, we may proceed similarly. It is simple to see that condition Q(t) ≥ 0 for t ≥ t1 reads

[1 + αλ(2 − p)]e(c0/a1)(2−p)(t−t1)
≥ 1 −

τ1

τ∞
.

Consequently, since 1 + αλ(2 − p) ≥ 0, it is sufficient to choose τ1 ≥ τ∞.
Finally, when p > 2 it holds τ′(t) ≤ 1/a1 for all t ≥ t1. Hence, it is simple to see that the choice

τ1 ≥ −αλ/c0 is a sufficient condition so that Q(t) ≥ 0 for all t ≥ t1. We stress that the choice of τ1 > 0 is
independent of t1 > 0.
Now, using the fact that ∂tw(x, t) ≤ 0 in RN

× (t1,∞) and that 0 ≤ a(x, t) ≤ a1 in ΩI, it is straightforward
to see that

a(x, t)∂tw − ∆pw + c0w ≥ 0 in ΩI. (3.34)

Step3: Comparison and conclusion. Now we compare the functions w and w, applying the Com-
parison Principle of Section 3.5. Hence, we have to check that the assumptions in Proposition 3.8 are
satisfied.

(A1). It is simple to see that it holds w(x, t1) ≤ w(x, t1) in RN. Indeed, we have w(x, t1) ≥ 1 while
w(x, t1) = 1 − [u(x, t1)]m

≤ 1.
(A2). We have to check that w ≤ w on the boundary of ΩI, i.e., on the set {|x| = eνt, t ≥ t1}. We use

the first estimate in (3.33):

w = e−(c0/a1)(t−t1)w̃(x, τ) = e−(c0/a1)(t−t1)[1 + U(x, τ + τ1)]

≥ e−(c0/a1)(t−t1)(1 + H2|x|λ) = e−(c0/a1)(t−t1)(1 + H2eνλt)

= e(c0/a1)t1(H2 + e−(c0/a1)t) ≥ 1 ≥ w in {|x| = eνt, t ≥ t1}.

First of all, we point out that the last equality in the preceding chain is satisfied thanks to the first
assumption in (3.31), i.e., c0/a1 = νλ.
Secondly, we note that the first inequality holds only if |x|(τ + τ1)−βλ ≥ h, which means

eνt
≥ h(τ + τ1)βλ . (3.35)
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As the reader can easily check, when p = 2, (3.35) is satisfied by taking t1 ≥ t0 so that eνt1 ≥ h
√
τ1. If

p > 2, it is sufficient to fix t1 ≥ t0 to have eνt1 ≥ h(τ∞ + τ1)βλ .
The case 1 < p < 2 is a little bit subtle. First of all, set bλ := 1/βλ = (1 − λ)p + 2λ and note that, thanks
to assumption (3.31), we have that (3.35) is automatically satisfied if

eνbλt
≥ hbλ

{
[c0(2 − p)]−1eνλ(2−p)(t−t1) + τ1

}
,

which, since bλ = p + λ(2 − p), is equivalent to

eνλ(2−p)t
{
eνpt
− [c0(2 − p)]−1hbλ

}
≥ hbλ

{
[c0(2 − p)]−1e−νλ(2−p)t1 + τ1

}
.

Finally, it is straightforward to see that the last inequality is satisfied for all t ≥ t1 ≥ t0 so that

eνλpt1 ≥ hbλ
{
2[c0(2 − p)]−1 + τ1

}
.

Hence, we have that condition (3.35) is satisfied for all p > 1 when t1 ≥ t0 is taken large enough.
(A3). To check this third assumption it is sufficient to combine (3.29) and (3.34), restricting they

validity to the set {|x| ≤ eνt, t ≥ t1}.
Hence, we deduce w ≤ w in {|x| ≤ eνt, t ≥ t1} by applying Proposition 3.8. So we have

w(x, t) ≤ w(x, t) = e−
c0
a1

(t−t1) [1 + U(x, τ + τ1)] ≤ e−
c0
a1

(t−t1) [1 + U(eνt, τ + τ1)
]

≤ e−
c0
a1

(t−t1) [1 + H1|x|λ
]
≤ e−

c0
a1

(t−t1) [1 + H1eνλt
]

in the set {|x| ≤ eνt, t ≥ t1}, thanks to (3.35).
Now, let us fix ε > 0 and take a time t′ε > 0, and a constant Hε > 0 such that

t′ε ≥ t1 −
a1 ln(ε/2)

c0
and Hλ

ε ≤
ε

2H1
e−

c0
a1

t1 .

These choices combined with the previous chain of inequalities give us

w(x, t) ≤ e−
c0
a1

(tε−t1)
+ Hλ

εH1e+
c0
a1

t1
≤
ε
2

+
ε
2
≤ ε,

in the set {|x| ≤ Hεeνt, t ≥ t′ε}. Finally, noting that {|x| ≤ eσt, t ≥ tε} ⊂ {|x| ≤ Hεeνt, t ≥ tε} for all σ < ν
and for some tε > 0 large enough, we complete the proof of the theorem using the arbitrariness of
σ < ν < σ∗. �

Remarks. We end this section with two remarks. First of all, we ask the reader to note that at
the beginning of the previous proof, we have made the change of variable w = 1 − um in order to
obtain problem (3.28), which has non-constant coefficients, but the diffusion operator simplifies to a p-
Laplacian. This is a considerable advantage since we can employ the well known theory of p-Laplacian
diffusion and non-integrable initial data (see Section 3.6 for more details and references) to construct
the super-solution given by problem (3.30). A different approach could be studying the existence,
uniqueness and regularity of solutions for the doubly nonlinear equation and non-integrable initial
data in the fast diffusion range 0 < γ̂ < p/N. Up to our knowledge, this theory has not been developed
yet.
Secondly, we point out that in the previous proof we have showed a slightly different result too, that
we state in the following corollary. It will be very useful in Section 3.4, where we will study the
behaviour of the solution u = u(x, t) on the set |x| = eσ∗t.
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Corollary 3.6. Let m > 0 and p > 1 such that 0 < γ̂ < p/N and let u = u(x, t) be the solution of the problem
(1) with initial datum (3.2). Suppose that there exist ν > 0, % > 0, ε > 0 and t0 > 0 such that

u(x, t) ≥ ε in {|x| ≤ %eνt
} for all t ≥ t0.

Then, for all 0 < ω < 1, there exist Cω > 0 large enough and tω ≥ t0 such that

u(x, t) ≥ ω in {|x| ≤ C−1
ω eνt
} for all t ≥ tω.

The proof coincides with the one of Theorem 3.1. Notice indeed that we have begun by assuming
that u ≥ ε := ε̃ in {|x| ≤ eνt, t ≥ t1} and for all ε > 0, we proved the existence of t′ε > 0 and Hε > 0 such
that

u(x, t) ≥ 1 − ε, in {|x| ≤ Hεeνt, t ≥ t′ε}.

We point out that in the previous statement the value of the exponent ν > 0 does not change. In the
proof of Theorem 3.1, we need to take σ < ν to obtain a “convergence inner set” not depending on Hε.
Indeed, in the second one we prove the convergence of the solution u = u(x, t) to the steady state 1 in
the set {|x| ≤ eσt

} for all σ < σ∗, while now the exponent ν > 0 is arbitrary.

3.3.2 Proof of Theorem 3.1, Part (ii)

This part is easier. Fix N ≥ 1, 0 < γ̂ < p/N, and σ > σ∗. First of all, we construct a super-solution for
problem (1), (3.2) using the hypothesis on the function f (·). Indeed, since f (u) ≤ f ′(0)u for all 0 ≤ u ≤ 1,
the solution of the linearized problem∂tu = ∆pum + f ′(0)u in RN

× (0,∞)
u(x, 0) = u0(x) in RN,

gives the super-solution we are interested in and, by the Comparison Principle, we deduce u(x, t) ≤
u(x, t) in RN

× (0,∞). Now, consider the change of the time variable

τ(t) =
1

f ′(0)γ̂

[
1 − e− f ′(0)γ̂t

]
, for t ≥ 0,

with 0 ≤ τ(t) ≤ τ∞ := 1
f ′(0)γ̂ . Then the function v(x, τ) = e− f ′(0)tu(x, t) solves the problem∂τv = ∆pvm in RN

× (0, τ∞)
v(x, 0) = u0(x) in RN.

From the properties of the profile of the Barenblatt solutions and the hypothesis on the initial datum
(3.2), it is evident that there exist positive numbers M and θ such that u0(x) ≤ BM(x, θ) in RN and so,
by comparison, we obtain

v(x, τ) ≤ BM(x, θ + τ) in RN
× (0, τ∞).

Now, since the profile of Barenblatt solutions satisfies F1(ξ) ≤ K1|ξ|
−

p
γ̂ for some constant K1 > 0 and for

all ξ ∈ RN (see (3.8)), we can perform the chain of upper estimates

u(x, t) ≤ u(x, t) = e f ′(0)tv(x, τ)

≤ e f ′(0)tBM(x, θ + τ) = e f ′(0)tM1+αγ̂(θ + τ)−αF1

(
x(M−γ̂(θ + τ))−α/N

)
≤ e f ′(0)tK1M1+αγ̂(θ + τ)−α(M−γ̂(θ + τ))

αp
Nγ̂ |x|−p/γ̂

≤ Ke f ′(0)t
|x|−p/γ̂,
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where we set K := K1(2τ∞)1/γ̂ and we used the first relation in (3.7) in the third inequality. Note that
we used that 1 + α = αp/N, too. Now, supposing |x| ≥ eσt in the last inequality, we get

u(x, t) ≤ Ke( f ′(0)−pσ/γ̂)t
→ 0 in {|x| ≥ eσt

} as t→∞,

since we have chosen σ > σ∗, completing the proof. �

3.4 Case f (u) = u(1 − u): Proof of Theorem 3.2

We devote this section to the proof of Theorem 3.2. A similar result was showed in [47] for the Fisher-
KPP equation with fractional diffusion. In particular, they studied the case of the fractional Laplacian
(−∆)1/2 and worked in dimension N = 1, see Theorem 1.6 of [47] for more details. In our setting, we
consider the classical reaction term f (u) = u(1 − u) and the problem∂tu = ∆pum + u(1 − u) in RN

× (0,∞)
u(x, 0) = u0(x) in RN (3.36)

where u0(·) satisfies (3.2), i.e., u0(x) ≤ C|x|−p/γ̂ and 0 ≤ u0 ≤ 1, for some constant C > 0. As always,
we do not pose restrictions on the dimension N ≥ 1, and we will work in the “fast diffusion” range
0 < γ̂ < p/N.

However, before proceeding with the proof, we dedicate some paragraphs to some heuristic
computations which are the “doubly nonlinear” version to the ones done by King and McCabe in
[133] for Porous Medium “fast” diffusion. So, we fix 0 < γ̂ < p/N and we consider radial solutions to
the equation in (3.36), which means

∂tu = r1−N∂r
(
rN−1
|∂rum

|
p−2∂rum

)
+ u(1 − u), r > 0, t > 0.

Note that the authors of [133] worked with a slightly different equation (they absorbed the multiplica-
tive factor mp−1 with a simple change of variables). We linearize the reaction term and we assume that
u = u(r, t) satisfies

∂tu = r1−N∂r
(
rN−1
|∂rum

|
p−2∂rum

)
+ u, for r ∼ ∞. (3.37)

Now, we look for a solution to (3.37) in the form u(r, t) ∼ r−p/γ̂G(t) for r ∼ ∞ which agrees with the
assumption (3.2) on the initial datum and with the linearization (3.37). It is straightforward to see that
for such solution, the function G = G(t) has to solve the equation

dG
dt

= G + κG1−γ̂, t ≥ 0 κ :=
(p − γ̂N)(mp)p−1

γ̂p . (3.38)

Note that since 0 < γ̂ < p/N, we have that κ is well defined and positive, while 1 − γ̂ = m(p − 1) > 0.
Equation (3.38) belongs to the famous Bernoulli class and can be explicitly integrated:

G(t) =
(
aeγ̂t
− κ

) 1
γ̂ , a ≥ κ, t ≥ 0.

Hence, for all fixed t ≥ 0, we obtain the asymptotic expansion for our solution

u(r, t) ∼ r−
p
γ̂
(
aeγ̂t
− κ

) 1
γ̂ , r ∼ ∞. (3.39)

Now, for all fixed r > 0, we consider a solution ζ0 = ζ0(r, t) to the logistic equation

∂tζ0 = ζ0(1 − ζ0), t ≥ 0,
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which describes the state in which there is not diffusion and the dynamics is governed by the reaction
term. We assume to have

u(r, t) ∼ ζ0(r, t) for t ∼ ∞,

where the leading-order term ζ0 = ζ0(r, t) satisfies

ζ0(r, t) ∼
φ(r)et

1 + φ(r)et , for t ∼ ∞, r ∼ ∞, (3.40)

for some unknown function φ = φ(r), with φ(r)→ 0, as r→∞. Now, matching (3.39) with (3.40) for t
large and r ∼ ∞, we easily deduce

φ(r) ∼ (ar−p)1/γ̂, for r ∼ ∞.

Thus, substituting φ(r) ∼ (ar−p)1/γ̂ in (3.40) and taking r ∼ eγ̂/pt for t ∼ ∞, we have

u(r, t) ∼
(ar−peγ̂t)1/γ̂

1 + (ar−peγ̂t)1/γ̂
=

âet

rp/γ̂ + âet
for t ∼ ∞, r ∼ eγ̂/pt, (3.41)

where â = a1/γ̂
≥ κ1/γ̂. The previous formula corresponds to a “similarity reduction” (see [133], pag.

2533) of the logistic equation with ζ0 = ζ0(r/eγ̂/pt).
Note that taking r ≥ eσt and σ > γ̂/p, we have u(r, t) ∼ 0 for t ∼ ∞ while if r ≤ eσt and σ < γ̂/p

we have u(r, t) ∼ 1 for t ∼ ∞. This means that setting σ∗ = γ̂/p, r(t) ∼ eσ∗t is a “critical” curve, in the
sense that it separates the region in which the solution u = u(r, t) converges to u = 0 to the one which
converges to u = 1. This is the formal proof of Theorem 3.1.

Let us now come back to the proof of Theorem 3.2. We divide the proof in two main parts. The first
one is devoted to prove the “upper bound” i.e., the first inclusion (3.5). In the second one, we show
the “lower bound” (the second inclusion (3.5)) which is the most difficult part. We point out that in
this part, we have to give to separate proofs for the ranges γ̂ ≤ p − 1 and γ̂ > p − 1.

3.4.1 Proof of Theorem 3.1: Upper bound

We begin to prove the first inclusion in (3.5), i.e., for all 0 < ω < 1, there exists a constant Cω > 0 large
enough such that it holds

{x ∈ RN : |x| > Cωeσ∗t} ⊂ {x ∈ RN : u(x, t) < ω} for all t ≥ 0,

where σ∗ = γ̂/p (recall that in this setting f ′(0) = 1).
We need to construct special super-solution. Thus, we repeat the computations carried out above,

by looking for radial solutions to the equation

∂tu = r1−N∂r
(
rN−1
|∂ru

m
|
p−2∂ru

m
)

+ u, r = |x| > 0,

with separate variables
u(r, t) = r−p/γ̂G(t), r > 0, t ≥ 0.

We have seen that the previous ansatz gives us (cfr with formula (3.39)) an explicit solution

u(x, t) = |x|−
p
γ̂
(
aeγ̂t
− κ

) 1
γ̂ ,

for all a > κ (the value of κ > 0 is given in (3.38)). We have thus built our super-solution to the equation
in (3.36). Now, in order to apply the Comparison Principle, we show u(x, 0) ≥ u0(x) inRN. We consider
the function

u0(x) =

 1 if |x| ≤ Cγ̂/p

C|x|−p/γ̂ if |x| ≥ Cγ̂/p,
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where C > 0 is taken as in (3.2), see also the beginning of this section. It is simple to see that we have
u0(x) ≥ u0(x) for all x ∈ RN. So, taking a ≥ k + Cγ̂, we have

u(x, 0) = (a − κ)
1
γ̂ |x|−

p
γ̂ ≥ C|x|−

p
γ̂ = u0(x) if |x| ≥ Cγ̂/p,

u(x, 0) = (a − κ)
1
γ̂ |x|−

p
γ̂ ≥ 1 = u0(x) if |x| ≤ Cγ̂/p.

Consequently, we have u(x, 0) ≥ u0(x) in RN and we obtain u(x, t) ≥ u(x, t) in RN
× [0,∞), by applying

the Comparison Principle.
We are ready to prove the first inclusion in (3.5). Thus, let us fix 0 < ω < 1 and consider x ∈ RN

satisfying u(x, t) > ω. Using the super-solution u(x, t) constructed before, we have

ω < u(x, t) = |x|−
p
γ̂
(
aeγ̂t
− κ

) 1
γ̂
⇒ |x|

p
γ̂ <

1
ω

(
aeγ̂t
− κ

) 1
γ̂ <

a1/γ̂

ω
et, t ≥ 0,

which, setting Cω =
(
a1/γ̂/ω

)γ̂/p
, implies

|x| < Cωe
γ̂
p t

= Cωeσ∗t, t ≥ 0,

and we conclude the proof of the first inclusion in (3.5).

3.4.2 Proof of Theorem 3.1: Lower bound

We want to show the second inclusion in (3.5): for all 0 < ω < 1, there exist Cω > 0 and tω large enough,
such that

{x ∈ RN : |x| < C−1
ω eσ∗t} ⊂ {x ∈ RN : u(x, t) > ω} for all t ≥ tω.

The idea consists in constructing a sub-solution u = u(x, t) that will act as a barrier from below and then
employ Corollary 3.6. Even though this idea was firstly used in [47], we stress that our construction is
completely independent by the previous one, and the comparison is not done in the whole space, but
only on a sub-region. Moreover, we will divide the range 0 < γ̂ < p/N in two sub-ranges: γ̂ ≤ p − 1
and γ̂ > p − 1. Of course, these two new ranges are always accompanied with the “fast” diffusion
assumption 0 < γ̂ < p/N. We will specify when we will need to distinguish between these different
cases. We divide the proof in some steps.

Step1. In this first step, we fix some important notations and we define the candidate sub-solution.
We know the following two facts:
• First, for all ε > 0 (small) and for all r0 > 0 (large), there exists tε,r0 > 0 (large enough) such that

u(x, t) ≥ 1 − ε in {|x| ≤ r0}, for all t ≥ tε,r0 .

This is a direct consequence of Theorem 3.1.
• Secondly, by applying Lemma 3.4, we have that for all θ > 0, there exist t1 > θ, ε̃ > 0, and %̃0 > 0
satisfying

u(x, t1) ≥ ũ0(x) :=

ε̃ if |x| ≤ %̃0

a0|x|−p/γ̂ if |x| > %̃0
in RN,

where a0 := ε̃ %̃
p/γ̂
0 , see (3.6).

Now, for all m > 0 and p > 1 satisfying 0 < γ̂ < p/N, and N ≥ 1, we consider the constants

d1 := p/γ̂2(p − γ̂N), d2 := p/γ̂2[(p − 1)(p − γ̂) + γ̂(N − 1)], d3 := (p/γ̂)2−pm1−p. (3.42)
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Note that the assumption 0 < γ̂ < p/N guarantees that di are positive for all i = 1, 2, 3. The importance
of these constants will be clear later. Now, they are simply needed to choose r0 > 0. We take r0 large
(depending only on m, p, N and ε), satisfying

rp
0 ≥

dγ̂+1
2 (1 − ε)−γ̂

dγ̂1d3(γ̂ + 1)
ε−1 and rp

0 ≥
d2

2(d1 + d1/d2)γ̂−(p−1)

pd1d3
ε−1/γ̂. (3.43)

The first assumption will be needed in the range γ̂ ≤ p − 1, while the second when γ̂ > p − 1. Then we
take θ := tε,r0 and t0 := t1 > tε,r0 and we fix ε̃ > 0 and %̃0 > 0 corresponding to the value of t0 > 0.
We finally define the candidate sub-solution. We consider the function

u(r, t) =
et

bψ(r) + cet , r ≥ r0, t ≥ t0, and ψ(r) = rp/γ̂,

where, of course, r = |x|. Note that u = u(r, t) is a modified version of the approximated solution (3.41)
computed at the beginning of Section 3.4. Finally, we fix

c = (1 − ε)−1 > 1. (3.44)

The parameter b > 0 will be chosen in the next step, independently from c. We ask the reader to note
that c depends only on ε > 0. The fact that c > 1 will be important later.

Step2. Now, we consider the region R0 := {|x| ≥ r0} × [t0,∞) and, we show that

u(x, t0) ≤ u(x, t0) for |x| ≥ r0 and u(|x| = r0, t) ≤ u(|x| = r0, t) for t ≥ t0,

in order to assure that u(x, t) and u(x, t) are well-ordered at time t = t0 and on the boundary of R0.
• Comparison in {|x| ≥ r0} at time t = t0. Since both the parameters b and c are positive, we have

u(x, t0) ≤

 b−1et0 |x|−p/γ̂ for all x ∈ RN

b−1et0r−p/γ̂
0 for all |x| ≥ r0,

and so, comparing with ũ0 = ũ0(x), we obtain

u(x, t0) ≥ ũ0(x) ≥ u(x, t0) for all |x| ≥ r0,

by taking the parameter b > 0 large enough depending on r0 > 0 (but not on c):

b ≥ (et0/ε̃) max{%̃−p/γ̂
0 , r−p/γ̂

0 }.

• Comparison on the boundary {|x| = r0} × {t ≥ t0}. This part is simpler. Indeed, we have

u(|x| = r0, t) ≤ 1/c = 1 − ε ≤ u(|x| = r0, t), for all t ≥ t0,

thanks to our assumptions on t0 > 0 and c > 0, see (3.44).
Step3. In this step we prove that u = u(r, t) is a sub-solution of the equation in (3.36) in the region

R0. For the reader convenience, we introduce the expression

A(r, t) := bψ(r) + cet
⇒ u(r, t) = etA(r, t)−1.

We proceed by carrying out some computations. We have

∂tu = betψ(r)A(r, t)−2, −u(1 − u) = −et
[
bψ(r) + (c − 1)et

]
A(r, t)−2. (3.45)
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Now, we need to compute the radial p-Laplacian of um, which is given by the formula

−∆p,rum := −r1−N∂r
(
rN−1
|∂ru

m
|
p−2∂ru

m
)
.

First of all, setting B(t) := (mb)p−1e(1−γ̂)t > 0 and using the fact that (m+1)(p−1) = p− γ̂, it is not difficult
to obtain

|∂rum
|
p−2∂rum = −B(t)|ψ′(r)|p−2ψ′(r)A(r, t)γ̂−p,

where ψ′ = dψ/dr. Consequently, we have

−∆p,rum = B(t)r1−N∂r
[
rN−1
|ψ′(r)|p−2ψ′(r)A(r, t)γ̂−p

]
= B(t)|ψ′(r)|p−2A(r, t)γ̂−p−1

{[N − 1
r

ψ′(r) + (p − 1)ψ′′(r)
]
A(r, t) − b(p − γ̂)(ψ′(r))2

}
.

Combining the last quantity with the ones in (3.45) and multiplying by B(t)−1
|ψ′(r)|2−pA(r, t)1+p−γ̂, we

obtain
B(t)−1

|ψ′(r)|2−pA(r, t)1+p−γ̂
[
∂tu − ∆p,rum

− u(1 − u)
]

=
c − 1

(mb)p−1
e(1+γ̂)t

|ψ′(r)|2−pA(r, t)p−1−γ̂ +
[
(p − 1)ψ′′(r) +

N − 1
r

ψ′(r)
]
A(r, t) +

− b(p − γ̂)(ψ′(r))2.

Let us take ψ(r) = rp/γ̂ with ψ′(r) = (p/γ̂)r
p
γ̂
−1 and ψ′′(r) = (p/γ̂)

(
p/γ̂ − 1

)
r

p
γ̂
−2. Since

(p − 1)ψ′′(r)+
N − 1

r
ψ′(r) = d2 rp/γ̂−2,

(ψ′(r))2 = (p/γ̂)2r2(p/γ̂−1), |ψ′(r)|2−p = (p/γ̂)2−pr(2−p)(p/γ̂−1)

and recalling that A(r, t) = brp/γ̂ + cet, we substitute in the previous equation deducing

B(t)−1
|ψ′(r)|2−pA(r, t)1+p−γ̂

[
∂tu − ∆p,rum

− u(1 − u)
]

= −d3
c − 1
bp−1

e(1+γ̂)tr(2−p)(p/γ̂−1)
(
brp/γ̂ + cet

)p−1−γ̂
+ d2cetrp/γ̂−2

− bd1r2(p/γ̂−1),

where di > 0, i = 1, 2, 3 are chosen as in (3.42):

d1 := p/γ̂2(p − γ̂N), d2 := p/γ̂2[(p − 1)(p − γ̂) + γ̂(N − 1)], d3 := (p/γ̂)2−pm1−p.

Now, multiplying by r−2(p/γ̂−1) and setting ξ = etr−p/γ̂ > 0, it is not difficult to obtain

B(t)−1
|ψ′(r)|2−pr−2(p/γ̂−1)A(r, t)1+p−γ̂

[
∂tu − ∆p,rum

− u(1 − u)
]

= −d3
c − 1
bp−1

rp ξ1+γ̂
(
b + cξ

)p−1−γ̂
+ d2cξ − bd1

≤ −d3
c − 1
bp−1

rp
0 ξ

1+γ̂
(
b + cξ

)p−1−γ̂
+ d2cξ − bd1 := −Cr0(ξ),

for all r ≥ r0.
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Case γ̂ ≤ p − 1. To prove that u = u(r, t) is a sub-solution, it is sufficient to check that

Cr0(ξ) = d3
c − 1
bp−1

rp
0 ξ

1+γ̂
(
b + cξ

)p−1−γ̂
− d2cξ + bd1 ≥ 0, (3.46)

for all ξ > 0. We will prove the previous inequality in two separate intervals 0 ≤ ξ ≤ ξ0 and ξ ≥ ξ0,
where ξ0 > 0 will be suitably chosen.
Suppose 0 ≤ ξ ≤ ξ0. In this interval we have Cr0(ξ) ≥ −d2cξ0 + bd1 and so, a sufficient condition so that
(3.48) is satisfied (for 0 ≤ ξ ≤ ξ0) is

c ≤ (d1/d2) b ξ−1
0 . (3.47)

Suppose ξ ≥ ξ0 and assume (3.47) to be true. Since we are in the range γ̂ ≤ p−1, we have (b+cξ)p−1−γ̂
≥

bp−1−γ̂, and so

Cr0(ξ) ≥ C1,r0(ξ) := d3
c − 1

bγ̂
rp

0 ξ
1+γ̂
− d2cξ + bd1.

Now, we note that condition (3.47) not only implies Cr0(ξ) ≥ 0, but also C1,r0(ξ) ≥ 0 for all 0 ≤ ξ ≤ ξ0.
Hence, in order to prove that C1,r0(ξ) ≥ 0 for all ξ ≥ ξ0, it is sufficient to show that the minimum point
of C1,r0(·) is attained for some 0 < ξm ≤ ξ0. It is straightforward to compute the minimum point ξm of
C1,r0(·):

ξ
γ̂
m =

d2

d3(1 + γ̂)rp
0

c bγ̂

(c − 1)
.

For our purpose we may choose

ξ
γ̂
0 = ξ

γ̂
m =

d2

d3(1 + γ̂)rp
0

c bγ̂

(c − 1)
.

Now, since ξ0 depends on c, we need to check that our choice of ξ0 > 0 is compatible with (3.47), which
we have assumed to be true. Thus, substituting the value of ξ0 in (3.47), we obtain that the parameter
c has to satisfy the inequality

dγ̂+1
2

dγ̂1d3(γ̂ + 1)rp
0

c1+γ̂
≤ c − 1.

The crucial fact is that the previous expressions do not depend on b. Indeed, taking c = (1 − ε)−1 as in
(3.44), we can rewrite the previous inequality as

rp
0 ≥

dγ̂+1
2 (1 − ε)−γ̂

dγ̂1d3(γ̂ + 1)
ε−1,

which exactly our first assumption in (3.43) on r0 > 0. This proves that for all γ̂ ≤ p−1 and 0 < γ̂ < p/N,
the function u = u(r, t) is a sub-solution for the equation in (3.36) in the region R0 = {|x| ≥ r0} × [t0,∞).

Case γ̂ > p − 1. In this range the proof is similar, but there are some technical changes that have to
be highlighted. We rewrite Cr0(·) as

−Cr0(ξ) : = −d3
c − 1
bp−1

rp
0 ξ

1+γ̂
(
b + cξ

)p−1−γ̂
+ d2cξ − bd1

= −d3
c − 1
bp−1

rp
0

(
ξ

b + cξ

)γ̂−(p−1)
ξp + d2cξ − bd1.
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So, in order to show that u = u(r, t) is a sub-solution, we can verify that

Cr0(ξ) = d3
c − 1
bp−1

rp
0

(
ξ

b + cξ

)γ̂−(p−1)
ξp
− d2cξ + bd1 ≥ 0, (3.48)

for all ξ > 0. Again we will pick a “good” ξ0 > 0 and prove (3.48) in the intervals 0 ≤ ξ ≤ ξ0 and
ξ ≥ ξ0.
Suppose 0 ≤ ξ ≤ ξ0. As before, in this interval we have Cr0(ξ) ≥ −d2cξ0 + bd1 and so, taking again c as
in (3.47), i.e.

c ≤ (d1/d2) b ξ−1
0 ,

then (3.48) is automatically satisfied (for 0 ≤ ξ ≤ ξ0).
Now, suppose ξ ≥ ξ0 and assume again (3.47) to be true. Since we are in the range γ̂ > p − 1, the
function

ξ→
(

ξ
b + cξ

)γ̂−(p−1)

is increasing (in ξ), we have

Cr0(ξ) ≥ d3
c − 1
bp−1

rp
0

(
ξ0

b + cξ0

)γ̂−(p−1)
ξp
− d2cξ + bd1

≥ d3
c − 1
bp−1

rp
0

(
ξ0

b + (d1/d2)b

)γ̂−(p−1)
ξp
− d2cξ + bd1

=
d3(c − 1)

(1 + d1/d2)γ̂−(p−1)bp−1
ξ
γ̂−(p−1)
0 rp

0 ξ
p
− d2cξ + bd1 := C̃1,r0(ξ),

where we used (3.47) in the second inequality. Exactly as in the previous case, condition (3.47) implies
both Cr0(ξ) ≥ 0 and C̃1,r0(ξ) ≥ 0 for all 0 ≤ ξ ≤ ξ0. Hence, we show that the minimum point of C̃1,r0(·)
is attained for ξm = ξ0 and this gives us C̃1,r0(ξ) ≥ 0 for all ξ ≥ ξ0. The minimum point ξm of C̃1,r0(·) is
given by the formula:

ξ
p−1
m =

d2(1 + d1/d2)γ̂−(p−1)

pd3 ξ
γ̂−(p−1)
0 rp

0

c bγ̂

c − 1
.

So we ask ξm = ξ0, i.e.:

ξ
γ̂
0 =

d2(1 + d1/d2)γ̂−(p−1)

pd3 rp
0

c bγ̂

c − 1
.

Again we must check the compatibility between our choice of ξ0 > 0 and (3.47). So, we substitute the
value of ξ0 in (3.47) and we obtain the inequality

d2
2(1 + d1/d2)γ̂−(p−1)

pd1d3 rp
0

c
1+γ̂
γ̂ ≤ (c − 1)1/γ̂,

in the parameter c. Also in this this case is is really important that the previous expressions do not
depend on b. We take c = (1 − ε)−1 as in (3.44) and we rewrite the previous inequality as

rp
0 ≥

d2
2(1 + d1/d2)γ̂−(p−1)

pd1d3
ε−1/γ̂(1 − ε)(1+2γ̂)/[γ̂(1+γ̂)].

Since 1−ε ≤ 1 the last inequality is satisfied thanks to the assumption on r0 > 0 in (3.43). Hence, we have
showed that u = u(r, t) is a sub-solution for the equation in (3.36) in the region R0 = {|x| ≥ r0} × [t0,∞),
for the range γ̂ > p − 1, too.
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Consequently, for all 0 < γ̂ < p/N, we obtain

u(x, t) ≥ u(x, t) in {|x| ≥ r0} × [t0,∞),

thanks to the comparison at time t = t0 and on the boundary of R0 done in Step2. Note that the
Comparison Principle can be applied since 0 ≤ u(r, t) ≤ 1/c = 1 − ε in RN

× [0,∞) and f (u) = u(1 − u)
can be re-defined outside [0, 1 − ε] to be Lipschitz continuous.

Step4. In this last step, we conclude the proof. The following procedure holds for all 0 < γ̂ < p/N
(see also [47]). Thanks to Corollary 3.6, to deduce the second inclusion in (3.5):

∀ 0 < ω < 1, ∃ tω, Cω � 0 : {|x| < C−1
ω eσ∗t} ⊂ {u(x, t) > ω}, ∀t ≥ tω,

it is sufficient to prove u(x, t) ≥ ε in {|x| ≤ eσ∗t = eγ̂t/p
} × [t0,∞), for some ε > 0. So, in the set

{r0 ≤ |x| ≤ eσ∗t} × [t0,∞), we have

u(x, t) ≥ u(x, t) =
et

b|x|p/γ̂ + cet
≥

1
b + c

:= ε.

Note that the bound u(x, t) ≥ ε can be extended to the region {|x| ≤ r0}×[t0,∞), thanks to our assumption
on t0 and Theorem 3.1. Consequently, applying Corollary 3.6 with ν = σ∗, ε = 1/(b + c) and % = 1, we
end the proof of the theorem. �

3.5 A Comparison Principle in non-cylindrical domains

In this brief section, we give the proof of a Comparison Principle for a certain class of parabolic
equations with p-Laplacian diffusion. As mentioned in the introduction, a similar result have been
introduced in [47], but proved with different techniques. This comparison principle is crucial in the
study of the asymptotic behaviour of the general solutions of the Fisher-KPP problem, see Theorem
3.1.
Before proceeding we need to introduce some definitions. First of all, let r ∈ C1([0,∞);R) be a positive
and non-decreasing function, and consider the “inner-sets”

ΩT
I := {(x, t) ∈ RN

× [0,T) : |x| ≤ r(t)}, 0 < T ≤ ∞, with Ω∞I := ΩI.

Now, for all p > 1, we consider the equation

a(x, t)∂tu − ∆pu + c0u = 0 in RN
× (0,∞) (3.49)

where a = a(x, t) is a continuous function inRN
× (0,∞), with 0 < a0 ≤ a(x, t) ≤ a1 < ∞ in ΩI, c0 > 0 and

u0 ∈ L1(RN). The next definition is given following [40, 81]. See also [198], Chapter 8 for the Porous
Medium setting.

Definition 3.7. A nonnegative function u = u(x, t) is said to be a “local strong” super-solution to equation
(3.49) in ΩT

I if
(i) u ∈ Cloc(0,T : L2

loc(R
N)) ∩ Lp

loc(0,T : W1,p
loc (RN)), and ∂tu ∈ L2

loc(R
N
× (0,∞));

(ii) u = u(x, t) satisfies ∫
ΩT

I

[a(x, t)∂tu + c0u]η + |∇u|p−2
∇u∇η ≥ 0,

for all test function η ∈ C1
c (ΩT

I ), η ≥ 0.

A nonnegative function u = u(x, t) is said to be a “local strong” sub-solution to equation (3.49) in ΩT
I if

(i) u ∈ Cloc(0,T : L2
loc(R

N)) ∩ Lp
loc(0,T : W1,p

loc (RN)), and ∂tu ∈ L2
loc(R

N
× (0,∞));
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(ii) u = u(x, t) satisfies ∫
ΩT

I

[a(x, t)∂tu + c0u]η + |∇u|p−2
∇u∇η ≤ 0,

for all test function η ∈ C1
c (ΩT

I ), η ≥ 0.

Proposition 3.8. Consider two functions u = u(x, t) and u = u(x, t) defined and continuous in RN
× (0,∞).

Assume that:
(A1) u(x, 0) ≥ u(x, 0) in RN.
(A2) u(x, t) ≥ u(x, t) in ∂ΩI = {(x, t) ∈ RN

× (0,∞) : |x| = r(t)}.
(A3) Finally, assume that u = u(x, t) is a “local strong” super-solution and u = u(x, t) is a “local strong”
sub-solution to equation (3.49) in ΩT

I .

Then u ≥ u in ΩT
I .

Proof. Let’s fix 0 < T ≤ ∞. For all 0 < t < T, we define the subset of RN

ΩI,t := {x ∈ RN : |x| ≤ r(t)}.

We show that for all t > 0, it holds∥∥∥[u(t) − u(t)]+

∥∥∥
L1(ΩI,t)

≤

∥∥∥[u(0) − u(0)]+

∥∥∥
L1(RN), (3.50)

where [·]+ stands for the positive part. Consequently, we deduce the thesis thanks to assumption (A1).
We proceed with a standard argument, see for instance Chapter 8 of [198] for the Porous Medium
equation.
Let’s consider a function p ∈ C1(R) such that

0 ≤ p ≤ 1, p(s) = 0 for s ≤ 0, p′(s) > 0 for s > 0,

and a sequence w j ∈ C1(ΩT
I ) such that w j → u − u as j → ∞ in Lp

loc(0,T : W1,p
loc (RN)). Note that we can

assume
w j ≤ 0 on ∂ΩT

I = {(x, t) ∈ RN
× (0,T) : |x| = r(t)}

thanks to assumption (A2). Hence, if h ∈ C1
0([0,T]) with 0 ≤ h ≤ 1, we can take as test function

η j = p(w j)h(t), j = 1, 2, . . .

Thus, by the definition of sub- and super-solutions, it is simple to deduce∫
ΩT

I

[
a(x, t)∂t(u − u) + c0(u − u)

]
p(w j)h +

〈
|∇u|p−2

∇u − |∇u|p−2
∇u,∇w j

〉
p′(w j)h dxdt ≤ 0.

The second integral converges to∫
ΩT

I

〈
|∇u|p−2

∇u − |∇u|p−2
∇u,∇u − ∇u

〉
p′(u − u)h dxdt ≥ 0,

thanks to the fact that
〈
|b|p−2b− |a|p−2a, b− a

〉
≥ 0 for all a, b ∈ RN and p > 1, see the last section of [144].

Hence, taking the limit in the second integral we deduce∫
ΩT

I

[
a(x, t)∂t(u − u) + c0(u − u)

]
p(u − u)h dxdt ≤ 0,
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and, letting p(·)→ sign+(·) := [sign]+(·), we obtain∫
ΩT

I

a(x, t)∂t(u − u)sign+(u − u)h + c0(u − u)sign+(u − u)h dxdt ≤ 0.

Now, we have
d
dt

[ u − u ]+ = ∂t(u − u)sign+(u − u),

and, since [s]+ = s · sign+(s) ≥ 0, a(x, t) ≥ a0 > 0, and c0 > 0 we easily get∫ T

0

( ∫
ΩI,t

∂t[ u(t) − u(t) ]+dx
)
h(t) dt ≤ 0 for all h ∈ C1

c ([0,T]), 0 ≤ h ≤ 1.

Thus, thanks to arbitrariness of h, we deduce that∫
ΩI,t

∂t[ u(t) − u(t) ]+dx ≤ 0,

for all t > 0. Using assumption (A2) again, it is not difficult to deduce

d
dt

( ∫
ΩI,t

[ u(t) − u(t) ]+dx
)
≤ 0,

which implies ∥∥∥[u(t) − u(t)]+

∥∥∥
L1(ΩI,t)

≤

∥∥∥[u(0) − u(0)]+

∥∥∥
L1(ΩI,0) ≤

∥∥∥[u(0) − u(0)]+

∥∥∥
L1(RN),

i.e., the thesis. �

Remark. We point out that the functions we use in the proof of Theorem 3.1 satisfy the assumptions
of regularity required in the statement of Proposition 3.8, as we have remarked in the introduction.
See also the bibliography reported in the next section.

3.6 Self-similar solutions for increasing initial data

In this section, we recall some basic facts about the existence of Barenblatt solutions for the Cauchy
problem  ∂tu = ∆pu in RN

× (0,∞)

u(x, 0) = u0(x) in RN,
(3.51)

where p > 1. In particular, we focus on the specific initial datum

u0(x) = |x|λ, λ > 0. (3.52)

A more complete analysis of the self-similarity of the p-Laplacian Equation can be found in [126].
We have decided to dedicate an entire section to this topic since solutions to problem (3.51) play a
main role in the proof of Theorem 3.1. Moreover, we think it facilitates the reading and gives us the
occasion to present the related bibliography. Before proceeding with our analysis, we need to recall
some important properties about problem (3.51).
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Case p = 2. The existence and uniqueness of solutions to the Heat Equation for continuous non-
integrable initial has been largely studied, see Tychonov [193] and the references therein. In particular,
he proved that if the initial datum satisfies

|u0(x)| ≤ b exp
(
a|x|2

)
, for |x| ∼ ∞, (3.53)

for some positive a and b, then problem (3.51), (3.53) admits a unique (classical) solution defined in
RN
× (0, 1/(4a)). More work on this issue can be found in [208].

Case p > 2. This range was studied in [84], by DiBenedetto and Herrero. The authors showed that,
under the assumptions

u0 ∈ L1
loc(R

N) and u0(x) ≤ C|x|λ, as |x| → ∞ (3.54)

for some C > 0 and λ < p/(p − 2), there exists a unique weak solution to problem (3.51), (3.54) defined
in RN

× (0,∞) (see Theorem 1, Theorem 2, and Theorem 4 of [84]). Furthermore, they proved that
∂tu ∈ L2

loc(R
N
× (0,∞)) (i.e. u is a “local strong solution”) and the function (x, t) → ∇u(x, t) is locally

Hölder continuous in RN
× (0,∞) (see also [82]).

Case 1 < p < 2. The same authors (see [83]) considered problem (3.51) with 1 < p < 2 and nonnega-
tive initial data

u0 ∈ L1
loc(R

N) and u0(x) ≥ 0 in RN (3.55)

without any assumption on the decay at infinity of u0(·). First of all, they show existence and the
uniqueness of weak solutions to problem (3.51), (3.55) by using the Benilan-Crandall regularizing
effect, see [26]. Then they posed their attention on the regularity of these solutions when the initial
datum is a non-negative σ-finite Borel measure in RN, in the range 2N/(N + 1) := pc < p < 2. In
particular, they showed the existence and the uniqueness of a locally Hölder continuous weak solution
in RN

× (0,∞), with ∂tu ∈ L2
loc(R

N
× (0,∞)) (i.e. they are “local strong solutions”), with (x, t)→ ∇u(x, t)

locally Hölder continuous in RN
× (0,∞).

The sub-critical range 1 < p ≤ pc := 2N/(N + 1) was studied later by Bonforte, Iagar and Vázquez
in [40]. They proved new local smoothing effects when the initial datum is taken in Lr

loc(R
N) and p

sub-critical, and special energy inequalities which are employed to show that bounded local weak
solutions are indeed “local strong solutions”, more precisely ∂tu ∈ L2

loc(R
N
× (0,∞)). Then, thanks to

the mentioned smoothing effect and known regularity theory ([81] and [85]) they found that the local
strong solutions are locally Hölder continuous.

Barenblatt solutions for problem (3.51), (3.52). From now on we take U0(x) = |x|λ, λ > 0. We do not
make any other assumptions on λ > 0 if 1 < p ≤ 2, whilst when p > 2 we assume 0 < λ < p/(p − 2),
according to the theory developed in [84], and presented before. As mentioned before, the assumptions
on the parameter λ guarantees the existence, the uniqueness and the Hölder regularity of the solution
of problem (3.51), (3.52), for all p > 1.
We look for solutions in self-similar form

U(x, t) = t−αλF(|x|t−βλ),

where αλ and βλ are real numbers and F(·) is called profile of the solution. Let ξ = |x|t−βλ and write
F′ = dF/dξ. It is not difficult to compute

∂tU = −t−αλ−1(αλF(ξ) + βλξF′(ξ)), ∆pU = t−(αλ+βλ)(p−1)−βλξ1−N
(
ξN−1

|F′(ξ)|p−2F′(ξ)
)′
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and, by taking
2αλ + 1 = (αλ + βλ)p, (3.56)

we have αλ + 1 = (αλ + βλ)(p − 1) + βλ, and so we obtain the equation of the profile

ξ1−N
(
ξN−1

|F′(ξ)|p−2F′(ξ)
)′

+ βλξF′(ξ) + αλF(ξ) = 0.

Furthermore, since (3.56) guarantees that the equation in (3.51) is invariant under the transformation
Uk(x, t) = kαλU(kβλx, kt), k > 0, we use the uniqueness of the solution of problem (3.51), (3.52) to deduce

kαλ+λβλ |x|λ = Uk(x, 0) = U(x, 0) = |x|λ, for all k > 0.

Hence, we get αλ + λβλ = 0 and, combining it with (3.51), we obtain the precise expressions for the
self-similar exponents

αλ = −
λ

(1 − λ)p + 2λ
, βλ =

1
(1 − λ)p + 2λ

.

We point out that, thanks to the assumption 0 < λ < p/(p − 2) when p > 2, we have (1 − λ)p + 2λ > 0
for all p > 1, and so αλ < 0 while βλ > 0.

Properties of the Barenblatt solutions. We are going to prove that the profile F(·) of the Barenblatt so-
lutions is positive and monotone non-decreasing by applying the Aleksandrov’s Symmetry Principle.
Later, we show some asymptotic properties of the profile F(·).
Let U0(x) = |x|λ, with 0 < λ < p/(p − 2) and, for all j ∈ N, consider the approximating sequence of
initial data

U0 j(x) :=

|x|λ if |x| ≤ j
jλ if |x| ≥ j.

Note that U0 j(·) are both radial non-decreasing and bounded in RN. Now, consider the sequence of
initial data

v0 j(x) := jλ −U0 j(x) ∈ Cc(RN) and radial non-increasing,

and the sequence of solutions v j(x, t) to problem (3.51) with initial data v0 j(·), for all j ∈ N. Hence,
by applying the Aleksandrov’s Symmetry Principle, we deduce that for all times t > 0, the solutions
v j(·, t) are radially non-increasing in space too. Finally, we define the sequence U j(x, t) = jγ − v j(x, t)
which are radially non-decreasing in space and satisfy problem (3.51) with initial data U0 j, for all
j ∈ N. Hence, passing to the limit as j → ∞, we have U j(x, t) → U(x, t) and the limit U(x, t), solution
to problem (3.51) with initial datum U0(·), inherits the same radial properties of the sequence U j(x, t).
Now, we show the existence of two constants 0 < H2 < H1 such that the following asymptotic bounds
hold

H2|x|λ ≤ U(x, t) ≤ H1|x|λ, for |x|t−βλ ∼ ∞. (3.57)

Estimates (3.57) follow directly from that fact that U(x, t) → |x|λ as t → 0. Indeed, for all fixed
0 , x ∈ RN, we have that∣∣∣U(x, t) − |x|λ

∣∣∣ = t−αλ
∣∣∣F(ξ) − ξλ

∣∣∣ = |x|λ
∣∣∣∣∣F(ξ)
ξλ
− 1

∣∣∣∣∣, where ξ = |x|t−βλ .

Since, the left expression converges to 0 as t → 0, we deduce that F(ξ)/ξλ → 1, as ξ → ∞ and, from
this limit, we get (3.57). �
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Aleksandrov’s Symmetry Principle. The Aleksandrov-Serrin symmetry method was firstly intro-
duced in [5] and [177] to show monotonicity of solutions of both (eventually nonlinear) elliptic and
parabolic equations. Here, following [198], we give a short proof for the case of the “purely” diffusive
p-Laplacian equation in (3.51), for all p > 1.
Before proceeding with the statement, we fix some notations. Let H be an hyperplane inRN, Ω1 and Ω2
the two half-spaces “generated” by H, and Π : Ω1 → Ω2 the reflection with respect to the hyperplane
H.

Theorem 3.9. Let u ≥ 0 be a solution of the initial-value problem (3.51) with initial datum u0 ∈ L1(RN).
Suppose that

u0(x) ≥ u0(Π(x)) for all x in Ω1.

Then, for all times t > 0 it holds
u(x, t) ≥ u(Π(x), t) for all x in Ω1.

In particular, radial initial data generate radial solutions.

Proof. First of all, thanks to the rotation invariance of the equation in (3.51), we can assume H =
{x ∈ RN : x1 = 0} and Π(x1, x2, . . . , xN) = (−x1, x2, . . . , xN). Moreover, it follows that û(x, t) = u(Π(x), t)
satisfies problem (3.51) in RN

× (0,∞) with initial datum û0(x) = u(Π(x), 0).
Now, we have u0(x) ≥ u0(Π(x)) in Ω1 and u(x, t) = û(x, t) in H × (0,∞) = ∂Ω1 × (0,∞). Hence, since
the solution is continuous, we get the thesis by applying the Comparison Principle. Note that, to be
precise, we should consider solutions of the Cauchy-Dirichlet problem posed in the ball BR(0) with
zero boundary data. These solutions approximate u = u(x, t) and û = û(x, t). Consequently, we can
apply the Comparison Principle to these approximate solutions and, finally, pass to the limit as R→∞.
See Chapter 9 of [198] for more details.
If u0(·) is radial, we can apply the statement for all hyperplane H passing through the origin ofRN and
deducing that for all times t > 0, the solution u(·, t) is radial respect with the spacial variable too. �

3.7 Extensions, comments and open problems

We end the paper by discussing some open problems. Moreover, we present some final comments
and remarks to supplement our work.
As we have mentioned in the introduction, nonlinear evolution processes give birth to a wide variety
of phenomena. Indeed we have seen that solutions of problem (1) exhibit a travelling wave behaviour
for large times when γ ≥ 0, i.e. γ̂ ≤ 0, while infinite speed of propagation when 0 < γ̂ < p/N. It is
natural to ask ourselves what happens in the range of parameters γ̂ ≥ p/N that we call “very fast”
diffusion assumption.
However, respect to the Porous Medium and the p-Laplacian case, we have to face the problem of lack
of literature and previous works related to the doubly nonlinear operator (in this range of parameters).
For this reason, in the next paragraphs we will briefly discuss what is known for the Porous Medium
and the p-Laplacian case, trying to guess what could happen in the presence of the doubly nonlinear
operator. We stress that our approach is quite formal, but can be interesting since it gives a more
complete vision of the fast diffusion range, and allows us to explain what are (or could be) the main
differences respect to the range 0 < γ̂ < p/N.

The critical case γ̂ = p/N. This critical case was firstly studied by King [132] and later in [107] for
the Porous Medium setting, i.e. p = 2 and m = mc := (N − 2)+/N, with N ≥ 3. When N = 1, 2 it follows
m = 0, choice of parameter which goes out of our range and we avoid it. King studied the asymptotic
behaviour of radial solutions to the “purely” diffusive equation

∂tu = r1−N∂r
(
rN−1
|∂rum

|
p−2∂um

)
in R+

× [0,∞) (3.58)
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with p = 2, 0 < m ≤ mc, and N ≥ 3. Actually, he considered a slightly different equation absorbing
a factor mp−1 in the time varible and he studied the cases N = 2 and m = 0, too. Note that the choice
γ̂ = p/N corresponds to m = mc when p = 2.
In [132], the author described the asymptotic behaviour of radial solutions to equation (3.58), given by
the formula

u(r, t) ∼
(

(N − 2)t
r2 ln r

)N
2

, as t ∼ ∞ and t−N/(N−2) ln r ≥ η0,

where η0 is a constant depending on N and on the initial datum (see formula (2.34) of [132]). In
particular, it follows that the solutions of (3.58) have spacial power like decay r−N “corrected” by a
logarithmic term for r ∼ ∞. We are interested in seeing that an analogue decay holds when p > 1 and
γ̂ = p/N in the doubly nonlinear setting. We proceed as in [132], see Section 2.

Asymptotic behaviour for large r. Let’s take for a moment 0 < γ̂ < p/N. Seeking solutions u = u(r, t) to
equation (3.58) in separate form as in Step1 of Theorem 3.2, it is simple to see that if the initial datum
satisfies (3.2), then for all t > 0 we have

u(r, t) ∼ a t
1
γ̂ r−

p
γ̂ , for r ∼ ∞, (3.59)

for some suitable constant a > 0. Note that it corresponds to fix t > 0 and take the limit as r → ∞ in
the formula of the Barenblatt solutions, see Subsection I.
Now, motivated by the previous analysis, we fix N > p (in order to remain in the ranges m > 0 and
p > 1), γ̂ = p/N, and we look for solutions to equation (3.58) in the form

u(r, t) ∼ a tN/p r−NF(r), for r ∼ ∞,

for some correction function 0 ≤ F(r)→ 0 as r→ ∞ and some constant a > 0. In what follows we ask
rF′(r) = o(F(r)) as r→∞, too. It is simple to compute

∂tu ∼ (aN/p)t
N
p −1r−NF(r)

∂rum = mamt
Nm

p r−Nm−1F(r)m−1(−NF(r) + rF′(r)) ∼ −Nmam t
Nm

p r−Nm−1F(r)m

|∂rum
|
p−2∂um

∼ −(Nm)p−1a
N−p

N t
N−p

p r1−NF(r)
N−p

N

as r ∼ ∞, where we have used the fact that m(p − 1) = 1 − γ̂ = 1 − p/N. Hence, it is simple to see that
u = u(r, t) satisfies (3.58) if and only if

(mN)p−1a
N−p

N r
[
F(r)

N−p
N

]′
+ a(N/p)F(r) = 0.

Now, it is clear that a possible choice is F(r) = (ln r)−b, for some b > 0, and a straightforward computation
shows that the previous equation is satisfied by taking

a
p
N = mp−1(N − p)Np−2 and b =

N
p
,

so that for all t > 0, we obtain

u(r, t) ∼
(

ap/Nt
rp ln r

)N
p

, for r ∼ ∞, (3.60)

which generalizes the case p = 2 and m = mc.
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Barenblatt solutions for γ̂ = p/N. As was observed in [132] (see pag. 346), (3.60) does not re-
spect the self-similarity reduction of equation (3.58). Indeed, it admits “pseudo-Barenblatt” solu-
tions which, following the notation used in the introduction of Part I, can be written in the form
BD(x, t) = R(t)−NFD(xR(t)−1) where

FD(ξ) =
[
D + (1/N)|ξ|

p
p−1

]− (p−1)
p N

, ξ = xR(t)−1, R(t) = et,

and D > 0 is a free parameter (cfr. with [199] for the case p = 2). We point out that the profile FD(·)
satisfies the inequalities in (3.8) with γ̂ = p/N. However, these self-similar solutions (also called “of
Type III”, see [197]) are quite different from the ones in the range 0 < γ̂ < p/N. In particular, they
are eternal, i.e. defined for all t ∈ R and they do not converge to a Dirac Delta as t → 0 (see also
[46]). Finally, for all fixed t ∈ R, these self-similar solutions are not integrable respect with to the spacial
variable and show the spacial decay

BD(x, t) ∼ N
(p−1)N

p |x|−N, for |x| ∼ ∞.

Taking into account these facts, when γ̂ = p/N it seems reasonable to study problem (1) with nontrivial
initial datum satisfying

0 ≤ u0(x) ≤ 1 and u0(x) ≤ C (|x|p ln |x|)−
N
p for |x| ∼ ∞,

for some constant C > 0, and trying to extend the techniques used for the range 0 < γ̂ < p/N, to the
this critical case.
First of all, we can define σ∗ := f ′(0)/N by continuity (with the range 0 < γ̂ < p/N). Thus, it is possible
to repeat the proof of Part (ii) of Theorem 3.1 by using “pseudo-Barenblatt” solutions instead of the
usual ones. In this way, for all σ > σ∗, we show the convergence of the solutions to 0 in the “outer sets”
{|x| ≥ eσt

}, as t→∞.
Moreover, thanks to the asymptotic expansion (3.60) it should be possible to prove a version of Lemma
3.4 with

ũ0(x) :=

ε̃ if |x| ≤ %̃0

a0 (|x|p ln |x|)−
N
p if |x| > %̃0,

(3.61)

for a0 := ε̃
(
%̃

p
0 ln %̃0

)N/p
and some 0 < ε̃ < 1 and %̃0 > 1.

However, it is clear that the methods employed for showing Proposition 3.3 cannot be used in this case
too. Indeed, in the range 0 < γ̂ < p/N, this crucial proposition has been proved by constructing barriers
from below with Barenblatt solutions. This has been possible since the initial datum ũ0 = ũ0(x) in (3.6)
shares the same spacial decay of these self-similar solutions. In the critical case γ̂ = p/N, this property
would not be preserved as (3.60) suggests. In particular, “pseudo-Barenblatt” solutions cannot be
placed under an initial datum satisfying (3.61) and so the validity of Proposition 3.3 in this critical case
remains an open problem.

The range γ̂ > p/N. Before discussing the doubly nonlinear diffusion, let us recall what is known
in the Porous Medium setting in the corresponding range of parameters, 0 < m < mc := (N − 2)+/N,
p = 2, and N ≥ 3. Consider the Porous Medium Equation∂tv = ∆vm in RN

× (0,∞)
v(x, 0) = v0(x) in RN,

where v0 ∈ L1(RN)∩L∞(RN). It has been proved that the corresponding solution v = v(x, t) extinguishes
in finite time (see for instance [27, 132, 197] and the references therein). In other words, there exists a
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critical “extinction time” 0 < tc < ∞ such that v(·, t) = 0, for all t ≥ tc. Again, the cases m = 0, N = 1
and m = 0, N = 2 are critical and we refer to [197], Chapters 5 to 8.

Barenblatt solutions for γ̂ > p/N. So, even though there is not literature on the subject (at least to
our knowledge), it seems reasonable to conjecture that the doubly nonlinear diffusion shows a similar
property in the range γ̂ > p/N, with N > p. In particular, also in this case we have “pseudo-Barenblatt”
solutions written in the form

BD(x, t) = R(t)−N
[
D + (γ̂/p)

∣∣∣xR(t)−1
∣∣∣ p

p−1
]− p−1

γ̂
, (3.62)

where D ≥ 0 and, with a strong departure from the range 0 < γ̂ < p/N,

R(t) = [(N/|α|)(tc − t)]−
|α|
N ,

where tc > 0 is fixed and stands for the “extinction time”(cfr. with [197] pag. 194 or [199] for the case
p = 2, and with the introduction to Part I for the range 0 < γ̂ < p/N). The existence of this kind of
self-similar solutions (also said in [197] “of Type II”) strengthen the idea that a larger class of solutions
have an extinction time, i.e. they vanish in finite time.

Application to the Fisher-KKP equation. In Part (ii) of Theorem 3.1 we have seen that the linearized
problem ∂tu = ∆pum + f ′(0)u in RN

× (0,∞)
u(x, 0) = u0(x) in RN,

gives a super-solution to the Fisher-KPP problem (1) with nontrivial initial datum u0 ∈ L1(RN),
0 ≤ u0 ≤ 1. Again, with the change of variable

τ(t) =
1

f ′(0)γ̂

[
1 − e− f ′(0)γ̂t

]
, for t ≥ 0,

we deduce that the function v(x, τ) = e− f ′(0)tu(x, t) satisfies the problem∂τv = ∆pvm in RN
× (0, τ∞)

v(x, 0) = u0(x) in RN.
(3.63)

Now, set τ∞ := 1
f ′(0)γ̂ and note that 0 ≤ τ(t) ≤ τ∞. Now, let τc > 0 be the “extinction time” of the

solution of problem (3.63). Thus, we deduce v(·, τ) = 0, for all τ ≥ τc and, if τc < τ∞, it follows

0 ≤ u(·, t) ≤ u(·, t) = e f ′(0)tv(·, τ) = 0, for all τ ≥ τc,

which implies u(·, t) = 0 for all t ≥ τ∞ ln [τ∞/(τ∞ − τc)], and so the solution u = u(x, t) of the Fisher-KPP
problem (1) with initial datum u0 extinguishes in finite time, too. This conclusion holds under the
assumption τc < τ∞, which should be guaranteed if the the initial datum is “small enough” (in terms
of the mass), see [197] Chapter 5, for the Porous Medium setting. The analysis of the case in which the
initial mass is infinite is an interesting open problem.

Asymptotics for non-Fisher-KPP reactions. The problem of the long time behaviour of solutions to
problem (1) in the “fast” diffusion range can be posed for different kind of reactions, like reactions of
type C 3 or type C’ 4. It seems reasonable to conjecture that even in these different settings a “fast”
diffusion version of Theorem 2.2 and Theorem 2.2 can be proved for reactions of type C and type C’,
respectively. However, it is possibly harder to employ the proofs done in the Fisher-KPP setting w.r.t.
the “slow” and the “pseudo-linear” frameworks, where we have seen (cfr. with Chapter 2) that the
techniques used in Fisher-KPP case play a very important role in the others settings too.
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Introduction

The second part of thesis is devoted to the analysis of solutions to the space-time nonlocal equation

(∂τ − ∆)su = 0 in RN
× (−T, 0), (1)

where 0 < s < 1 and 0 < T < ∞ are fixed from the beginning. As explained in [19], fractional
powers of the Laplacian were introduced in the 40’s by Riesz (cfr. with [169, 170]) and have interesting
applications to physics and applied mathematics such as elasticity, fluid dynamics and finance. We
quote the works [14, 33, 71, 89, 153] in which some very interesting examples of applications are
presented.

Our main goal is to describe, as precisely as possible, the nodal properties of solutions to equation
(1). This is a significative difference w.r.t. the previous part, in which we studied nonnegative solutions
to parabolic reaction-diffusion equations. From now one, we will be mostly interested in sign-changing
solutions and the way in which these solutions approach their zero level set.

Nonlocal equations have been intensively studied in the last two decades and so, it is important to
relate our work to the existent literature. In particular, our results rely on some very recent papers of
Nyström and Sande [163], Stinga and Torrea [185], and Banerjee and Garofalo [19]. In the first two, the
authors came out with a “parabolic extension method” and proved smoothness of solutions, while in
the third one new monotonicity formulae and strong unique continuation properties of solutions to
equation (1) with potential were proved (we will come back on these references later).
As we did in Part I, in the following paragraphs we introduce the main concepts and some definitions
needed in the rest of the treatise, together with some important bibliographical review. The main
results and their proofs will be presented chapter by chapter.

A parabolic extension method

We now resume the extension method for solutions to equation (1). As in the elliptic setting (see for
instance Caffarelli and Silvestre [54]), the main idea is to extend functions defined on the space-time
RN
×R to a new space-timeRN

×R+ ×R, so that the “extensions” depend on N + 1 + 1 variables. The
significative fact is that these extensions satisfy a local parabolic equation on RN

× R+ × R and their
boundary Neumann derivative equals the nonlocal operator of the extended function. In the next
paragraphs we clarify this method following the papers [163, 185], and Section 2 and 3 of [19].

As in the above references, we introduce the Heat operator H := ∂t − ∆. For any 0 < s < 1, its
fractional power can be defined in terms of its Fourier’s transform

Ĥsu(η, ϑ) := (iϑ + |η|2)s û(η, ϑ),

for all functions u = u(x, t) belonging to the natural domain

dom(Hs) :=
{
u ∈ L2(RN+1) : (iϑ + |η|2)s û ∈ L2(RN+1)

}
.
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As showed in Theorem 1.1 of [185] and observed in [163], the first important fact is that the operator
Hs can be written for all (x, t) ∈ RN+1 as the parabolic hypersingular integral

Hsu(x, t) =
1

|Γ(−s)|

∫
∞

0

∫
RN

[u(x, t) − u(x − z, t − t′)]
GN(z, t′)

(t′)1+s dzdt′,

for all u ∈ dom(Hs) smooth enough (for instance u ∈ S(RN+1)), where GN = GN(x, t) is the standard
Gaussian probability density

GN(x, t) =
1

(4πt)N/2 e−
|x|2
4t x ∈ RN, t > 0.

From the above representation formula it is immediately seen that (1) is a nonlocal equation. Indeed,
changing variables x→ x − z and t′ → t − t′, we get

Hsu(x, t) =
1

|Γ(−s)|

∫ t

−∞

∫
RN

[u(x, t) − u(z, t′)]
GN(x − z, t − t′)

(t − t′)1+s dzdt′,

from which we deduce that the value of Hsu at a point (x, t) depends on all the past values of u = u(x, t).
Moreover, as explained in Corollary 1.4 of [185], the above integral formulation shows (without using
Fourier’s transform) that for functions u = u(x) not depending on t ∈ R, the operator Hs is the
Fractional Laplacian (−∆)s, namely

Hsu(x) = (−∆)su(x) = P.V.
∫
RN

u(x) − u(z)
|x − z|N+2s dz,

up to a multiplicative constant, while if u = u(t) does not depend on x ∈ RN we obtain the Marchaud’s
derivative (or extended Caputo’s derivative see for instance [148, 176] and the more recent work [34]):

Hsu(t) = (∂t)su(t) =
1

|Γ(−s)|

∫ t

−∞

u(t) − u(t′)
(t − t′)1+s dt′.

It is thus clear that equation (1) significantly differs from another interesting model of fractional
diffusion:

∂tu + (−∆)su = 0,

and its generalizations (see for instance the works of Vázquez et al. [41, 201] for the linear setting,
while [76, 77, 202] or [38, 39] for the nonlinear one). See also the papers of Figalli et al. [21, 48], where
the obstacle problem for the above nonlocal parabolic equation is studied and the recent paper of
Fernández-Real and Ros-Oton [100]. Possibly, the most important diversity is that our equation it is
nonlocal in both space and time, and “the random jumps are coupled with the random waiting times”
(cfr. with page 3894 of [185]). This is in contrast with the equation above, in which jumps and waiting
times are independent.

As we have anticipated, the second main issue concerns an extension property for functions
u ∈ dom(Hs) proved in Theorem 1.7 of [185] and Theorem 1 of [163] (see also Theorem 3.1 of [19]). We
recall it briefly adapting them to our setting and notations. Let u ∈ dom(Hs) and define the “extension”
of u = u(x, t) as

U(x, y, t) :=
∫
∞

0

∫
RN

u(x − z, t − t′)Ps
y(z, t′)dzdt′, (2)

where the “Poisson kernel” is defined by

Ps
y(x, t) :=

1
4sΓ(s)

GN(x, t)
y2s

t1+s e−
y2

4t (x, y) ∈ RN+1
+ , t > 0,
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and, setting a = 1 − 2s, it can be re-written (with a little abuse of notations) as

Pa
y(x, t) =

1
21−aΓ( 1−a

2 )
GN(x, t)

y1−a

t1+ 1−a
2

e−
y2

4t (x, y) ∈ RN+1
+ , t > 0. (3)

Then U = U(x, y, t) satisfies U(·, ·, y) ∈ C([0,∞),L2(RN+1)) and solves∂tU − y−a
∇ · (ya

∇U) = 0 in RN+1
+ × (−∞,∞),

U(x, 0, t) = u(x, t) in L2(RN+1),
(4)

and, furthermore, U = U(x, y, t) is smooth in RN+1
+ × (−∞,∞) and

−
22s−1Γ(s)
Γ(1 − s)

lim
y→0+

y1−2s∂yU(x, y, t) = Hsu(x, t) in L2(RN+1). (5)

With convention a := 1 − 2s, we will write

∂a
yU(x, t) := lim

y→0+
ya∂yU(x, y, t) = (1 − a) lim

y→0+

U(x, y, t) −U(x, 0, t)
y1−a ,

where the above limits are intended in the L2(RN+1) sense. So, as we have mentioned above, the
first main fact is that U = U(x, y, t) is defined on the “extended space” RN

× R+ × R but it satisfies a
well-known local parabolic equation (cfr. for instance with [65, 118]). On the other hand, we recover
the value Hsu(x, t) as a singular limit of the “boundary Neumann derivative” defined in (5). The crucial
idea is thus to get information on the solutions u = u(x, t) to the nonlocal equation (1) (posed in the all
space):

Hsu = 0 in RN
× (−∞,∞),

by studying the local “extended problem”
∂tU − y−a

∇ · (ya
∇U) = 0 in RN+1

+ × (−∞,∞),
U(x, 0, t) = u(x, t) in L2(RN+1)
limy→0+ ya∂yU(x, y, t) = 0 in L2(RN+1),

(6)

Working with the “extensions” has some technical advantages and, in particular, it allows us to bypass
the non-locality of our equation. The drawbacks are the fact that we are forced to work with the
fictitious variable y ∈ R+ (i.e. in a higher dimensional space) and then coming back to nonlocal
through the (nontrivial) limit (5).

A parabolic equation in the whole “extended” space

In view of what explained in the above paragraphs, we will study some asymptotic properties of a
class of solutions U = U(x, y, t) to the backward parabolic equation pose in the whole RN+1

∂tU + |y|−a
∇ · (|y|a∇U) = 0 in RN+1

× (0,T), (7)

where −1 < a < 1 and 0 < T < ∞ are fixed and ∇ = ∇x,y denotes the spacial gradient, while ∇· = ∇x,y·

the spacial divergence. The choice of working with a backward Heat Equation-type is purely formal
and will help us to keep the notations as simpler as possible. This is due to the fact that 0 < T < ∞ is
fixed and the time-inversion t→ −t transforms equation (7) into its more standard version:

∂tU − |y|−a
∇ · (|y|a∇U) = 0 in RN+1

× (−T, 0).
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Of course things heavily change when T = +∞ (we will see how in Chapter 5). Equation (7) deviates
from standard diffusion because of its criticality near the characteristic hyperplane {y = 0} given by
the singular coefficient of the drift-term:

|y|−a
∇ · (|y|a∇U) = ∆x,yU +

a
y
∂yU.

However, since the weight w(y) = ya belongs to theA2 Muckenhoupt class (see for instance [20, 156]),
it is included in a wider group of problems studied in the 80’s by Chiarenza and Serapioni [64, 65]
(see also [118, 127], and [97] for the elliptic setting). We quote also [36, 37, 86, 116] and the references
therein for more work on parabolic equations with weighted and nonlinear diffusion.
In those works the main goal was to establish a Harnack inequality for “weak solutions” to (7),
together with their Hölder regularity. W.r.t. to the existing literature, in the present work we are
mostly interested in giving a classification of the “blow-up profiles” of solutions to (7) in terms of re-
scaled eigenfunctions to a suitable related eigenvalue problem. This kind of classification is essential
for two main reasons: first of all, it is useful to establish the optimal Hölder regularity (which, at least
to our knowledge, is an open problem) and for giving qualitative information about the geometry and
regularity of the nodal set of solutions to (1).

W.r.t. [19, 185], a key feature of our work, is that our main result concerning the “blow-up
classification” of solutions to equation (7) will be obtained as a byproduct of the analysis of the
solutions to the boundary value Neumann problem type∂tU + y−a

∇ · (ya
∇U) = 0 in RN+1

+ × (0,T)
−∂a

yU = 0 in RN
× {0} × (0,T),

(8)

where we recall that ∂a
yU := limy→0+ ya∂yU(x, y, t), and the Dirichlet type one∂tU + y−a

∇ · (ya
∇U) = 0 in RN+1

+ × (0,T)
U = 0 in RN

× {0} × (0,T),
(9)

respectively, in the sense that the separate study of problems (8) and (9) (together with suitable
“reflection techniques”) will enable us deduce some important features of solutions to (7). The
deviances in the behaviour of solutions to problem (8) and (9) show themselves the behaviour of
solutions to corresponding spectral problems. This important fact implies that solutions to (7) possess
a wider class of possible “blow-up behaviours”.

On the other hand, as we have seen before, problem (8) is strictly connected to equation (1) through
the extension method. Consequently, in the last part of Chapter 5, we will focus on (1)-(8) to give a
detailed description on the nodal set of solutions to (1) finding some interesting deviances from the
classical results of Han and Lin (cfr. with [122, 143]) that we briefly present below out of completeness.

On the nodal set of local parabolic equations

In [122], Han and Lin studied the nodal set of solutions u = u(x, t) to

∂tu = ai j(x, t)∂i ju + bi(x, t)∂iu + c(x, t)u in Q1 ⊂ R
N
×R,

where ∂i and ∂i j indicate the first and second partial derivatives of U w.r.t. to the spacial variables (cfr.
with formula (1.1) of [122]), assuming the uniform ellipticity of the diffusion matrix ai j = ai j(x, t) on
Q1, and the ν-Hölder regularity of the coefficients in Q1:

‖ai j‖C2ν,ν(Q1) + ‖bi‖C2ν,ν(Q1) + ‖c‖C2ν,ν(Q1) < +∞, (10)
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for all i, j = 1, . . . ,N and some 0 < ν < 1/2 (cfr. with formulas (1.2) and (1.3) of Han and Lin’s paper).
Moreover, they worked with smooth solutions satisfying the “doubling property”(cfr. with formula
(1.5)): there exist C = C(N) > 0 and a positive integer d, such that, setting

‖u‖2(x,t),r :=
1

rN+2

∫
Qr(x,t)

u2, Qr(x, t) := Br(x) × (t − 7r2/8, t + r2/8),

it holds
‖u‖(x,t),r
‖u‖(x,t),r/2

≤ Cd, for all (x, t), r > 0 with Qr(x, t) ⊂ Q1. (11)

This is a non-degeneracy assumption needed by the authors to exclude solutions vanishing on
nonempty open subset of RN

× R (cfr. with Jones’s example [130]). Then, for this class of func-
tions they proved the following estimates on the Hausdorff dimension of the nodal set of u (cfr. with
Theorem 1.1 of [122]):

dimH (Γ(u)) ≤ N
dimH (S(u)) ≤ N − 1,

(12)

where we have set

Γ(u) := {(x, t) ∈ RN
× (0,T) : u(x, t) = 0} = u−1({0})

S(u) := {(x, t) ∈ Γ(u) : |∇xu| = 0} = u−1({0}) ∩ |∇xu|−1({0}),

It thus follows that Γ(u)∩Q1 is composed by the union of the locally C1 manifold Γ(u)∩Q1∩{|∇xu| > 0}
of Hausdorff dimension N and the (closed) set S(u) ∩ Q1 of Hausdorff dimension not greater than
N − 1.

In what follows we prevalently use the so-called “parabolic Hausdorff dimension” (cfr. for instance
with [63]). In its remarkable work, Chen [63] considered more general differential parabolic inequalities
(which contains the class of equations studied by Han and Lin) and proved estimates corresponding
to (12), in terms of “parabolic Hausdorff dimension”, i.e.

dimP(Γ(u)) ≤ N + 1
dimP(S(u)) ≤ N
dimH (Zt(u)) ≤ N − 1,

(13)

where Zt(u) := {x ∈ RN : u(x, t) = 0}, t > 0. One of the main goals of this second part is to establish
whether or not estimates like (12)-(13) hold for solutions to (1).

Organization of the chapters

The second part of the thesis is slightly shorter and organized in two chapters. As for the first part,
we give below a vague idea of its structure, devoting the first section of each chapter to the detailed
statements.

Chapter 4 contains the “preparatory material” on which the main results of the last chapter rely
on. In particular, we introduce the definitions of solutions to equation (7), and problems (8) and (9),
together with the associated functional setting. Moreover, we give the proof of an Almgren-Poon
type monotonicity formula for the class of solutions we consider. It is important to stress that this
monotonicity formula was already proved for a larger class of functions by Banerjee and Garofalo in
[19] (cfr. with Section 7) and formally derived by Stinga and Torrea in [185] (cfr. with Theorem 1.15).
We have decided to propose the proof for completeness.
As we will see, the study of the monotonicity of the Almgren-Poon quotient leads us to a Ornstein-
Uhlenbeck eigenvalue problem type. More precisely, the class of parabolically 2κ-homogeneous
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functions makes the Almgren-Poon quotient constantly equal to κ ∈ R, and κ must be an eigenvalue
of the just mentioned problem. This fact will be crucial in the last chapter and the blow-up procedure.
Consequently, a large part of the first chapter is devoted to the spectral analysis, from which we will
finally derive a sharp Gaussian-Poincaré type inequality, which will turn out to be a very useful tool
in the remaining part of the work.

Chapter 5 is the core of this second and final part. We start with a blow-up procedure in which
we prove that the “normalized” blow-up sequences converge in some suitable energy norms to a
linear combination of re-scaled eigenfunctions studied in Chapter 4. Then, through a second blow-up
procedure based on the validity of some Liouville type theorem (that we prove by using the Gaussian-
Poincaré inequality), we show that the “normalized” blow-up sequences converge to the same limit
locally uniformly on RN+1

× (0,∞). This last property is fundamental in the final part of the chapter,
where we focus on solutions to equation (1) and we study the properties of their nodal sets. In
particular, we will give information on the Hausdorff dimension of the “regular” and “singular” part
of the nodal set, together with an asymptotic expansion of the solutions near their nodal points.



Chapter 4

Almgren-Poon monotonicity formulas and
spectral analysis

In this chapter we introduce the basic definitions and notations used in the rest of the treatise and we
present some Almgren-Poon monotonicity formulas of parabolic type (already proved by Banerjee and
Garofalo [19], and Stinga and Torrea [185]). To be more concrete, we will see that the Almgren-Poon
quotient

t→ N(t,U) :=
t
∫
RN+1 |∇U|2(x, y, t) dµt(x, y)∫
RN+1 U2(x, y, t) dµt(x, y)

,

is a non-decreasing function along a certain class of solutions to equation (7). Here dµt = dµt(x, y)
is a suitable family of probability measures that will be introduced later (cfr. with formula (4.15)).
Moreover, it will follow that t → N(t,U) is constant if and only if U = U(x, y, t) is parabolically
homogeneous of some degree κ ∈ R, i.e., U(x, y, t) = δ2κU(δx, δy, δ2t), δ > 0, which is equivalent to
say that the “re-scaled version” Ũ(x, y, t) = U(

√
tx,
√

ty, t) satisfies the Ornstein-Uhlenbeck eigenvalue
problem type

−|y|−a
∇ · (|y|a∇Ũ) +

(x, y)
2
· ∇Ũ = κŨ in RN+1,

for all 0 < t < T. The study of this eigenvalue problem is the main part of this chapter.

4.1 Main result

As explained above, the study of the monotonicity of the Almgren-Poon quotient naturally leads us to
investigate the spectral properties of some Ornstein-Uhlenbeck type problems. In particular, we will
deal with the following three eigenvalue problems:−y−a

∇ · (ya
∇V) +

(x,y)
2 · ∇V = κV in RN+1

+

−∂a
yV = 0 in RN

× {0},
(4.1)

−y−a
∇ · (ya

∇V) +
(x,y)

2 · ∇V = κV in RN+1
+

V = 0 in RN
× {0},

(4.2)

and

− |y|−a
∇ · (|y|a∇V) +

(x, y)
2
· ∇V = κV in RN+1, (4.3)

where V = V(x, y) will belong to a suitable functional space. Note that in both (4.1)/(4.2) and (4.3)
we obtain the classical Ornstein-Uhlenbeck eigenvalue problem by taking a = 0. As we will see,
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an interesting fact is that the study of the eigenvalue problems (4.1) and (4.2) will give us enough
information for describing the set of eigenvalues and eigenfunctions to the third one. In the following
theorem we completely characterize the spectrum of the above problems and it is the main result of
this chapter.

Theorem 4.1. Fix −1 < a < 1. Then the following three assertions hold:
(i) The set of eigenvalues of the homogeneous Neumann problem (4.1) is

{κ̃n,m}n,m∈N, where κ̃n,m :=
n
2

+ m, n,m ∈N,

with finite geometric multiplicity. For any n0,m0 ∈N, the eigenspaces are given by

Vn0,m0 = span
{
Vα,m(x, y) = Hα(x)L( a−1

2 ),m(y2/4) : (α,m) ∈ J̃0

}
,

where
J̃0 :=

{
(α,m) ∈ ZN

≥0 ×N : |α| = n ∈N and κ̃n,m = κ̃n0,m0

}
,

while Hα(·) is a N-dimensional Hermite polynomial of order |α|, while L( a−1
2 ),m(·) is the mth Laguerre polynomial

of order (a − 1)/2. Furthermore, the set of eigenfunctions {Vα,m}α,m is an orthogonal basis of L2(RN+1
+ , dµ).

(ii) The set of eigenvalues of the homogeneous Dirichlet problem (4.2) is

{κ̂n,m}n,m∈N, where κ̂n,m :=
n
2

+ m +
1 − a

2
, n,m ∈N,

with finite geometric multiplicity. For all n0,m0 ∈N, the eigenspaces are given by

Vn0,m0 = span
{
Vα,m(x, y) = Hα(x) y1−aL( 1−a

2 ),m(y2/4) : (α,n) ∈ J0

}
,

where
Ĵ0 :=

{
(α,m) ∈ ZN

≥0 ×N : |α| = n ∈N and κ̂n,m = κ̂n0,m0

}
,

while now L( 1−a
2 ),m(·) is the mth Laguerre polynomial of order (1−a)/2. Again, the set of eigenfunctions {Vα,m}α,m

is an orthogonal basis of L2(RN+1
+ , dµ).

(iii) The set of eigenvalues of problem (4.3) is

{κn,m}n,m∈N = {κ̂n,m}n,m∈N ∪ {κ̃n,m}n,m∈N,

with finite geometric multiplicity (κ̃n,m and κ̂n,m are defined in part (i) and (ii), respectively). For any n0,m0 ∈N,
the eigenspaces corresponding to κ̂n0,m0 and κ̃n0,m0 are given by

Ṽn0,m0 = span
{
Ṽα,m(x, y) = Hα(x)L( a−1

2 ),m(y2/4) : (α,m) ∈ J̃0

}
,

V̂n0,m0 = span
{
V̂α,m(x, y) = Hα(x) y|y|−aL( 1−a

2 ),m(y2/4) : (α,m) ∈ Ĵ0

}
,

respectively, where J̃0 and Ĵ0 are defined in part (i) and (ii), respectively. Finally, similarly to the previous cases,
the set {Ṽα,m(x, y)}(α,m) ∪ {V̂α,m(x, y)}(α,m) is an orthogonal basis of L2(RN+1, dµ).

The proof of the above statement is based on some known results about Hermite and Laguerre
polynomials and the idea of “separating variables” (cfr. also with [99] from which we borrow some
ideas) and will be crucial to characterize the the “blow-up profiles” studied in the next chapter.

Finally, we mention that we will obtain some Gaussian-Poincaré type inequalities as almost imme-
diate consequences of this spectral analysis. This class of inequalities was known from long time (cfr.
with [22, 156, 187, 191]). However, since they will play an important role in the rest part of the work
and we give versions of them with optimal constants, we have decided to devote to them an entire
section.

Before proceeding with the proof, we need to introduce some important technical notions and the
Almgren-Poon type monotonicity formulas.
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4.2 “Fundamental solution”, functional spaces and definitions

We devote this section to the detailed derivation of a “fundamental solution”, the functional setting
and basic definitions. Since the last two are strongly related to the first one, we begin with the study
of the “fundamental solution”.

4.2.1 Derivation of the “fundamental solution”

For −1 < a < 1 fixed, we consider the diffusion problem∂tU − LaU = 0 in RN+1
+ × (0,∞)

−∂a
yU = 0 in RN

× {0} × (0,∞),
(4.4)

cfr. with problem (8), where we have introduced the definitions

LaU := y−a
∇ ·

(
ya
∇U

)
, ∂a

yU := lim
y→0+

ya∂yU.

As always, ∇· = ∇x,y· is the spacial divergence, ∇ = ∇x,y is the spacial gradient. We look for solutions
to problem (4.4) in the form

Ga(x, y, t) = GN(x, t)Ga+1(y, t). (4.5)

We are going to obtain a special solution to (4.4) already found in [185] (see Theorem 1.8, formula
(1.10)) by using different techniques. Here, inspired by [109], we present another approach based on
the ansatz (4.5). We stress from the beginning that the idea of “separating variables” is crucial in the
rest of the work.
Our procedure works as follows. Assume Ga = Ga(x, y, t) is smooth and has form (4.5). So, since

∇ ·
(
ya
∇Ga

)
= ∇x,y ·

{
ya
∇x,y

[
GN(x, t)Ga+1(y, t)

]}
= yaGa+1∆xGN + GN∂y

(
ya∂yGa+1

)
,

assuming y > 0 and substituting in (4.4), we obtain that

Ga+1 (∂tGN − ∆xGN) = GN
[
∂tGa+1 − y−a∂y

(
ya∂yGa+1

)]
,

which is automatically satisfied if GN = GN(x, t) and Ga+1 = Ga+1(y, t) satisfy∂tGN − ∆xGN = 0 in RN
× (0,∞)

GN > 0,
(4.6)

and, setting R+ := (0,∞), ∂tGa+1 − y−a∂y
(
ya∂yGa+1

)
= 0 in R+ × (0,∞)

Ga+1 > 0,
(4.7)

respectively. Equation (4.6) is the famous Heat Equation which possesses the self-similar solution

GN(x, t) =
1

(4πt)N/2 e−
|x|2
4t , (4.8)

well-defined and positive in RN
× (0,∞), with

∫
RN GN(x, t) dx =

∫
RN GN(x, 1) dx = 1, for all t > 0.

Let us look for self-similar solutions to problem (4.7), i.e., solutions in the form

Ga+1(y, t) = t−αg(t−βy),
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for some positive exponents α and β, and a profile g > 0. We have

∂tGa+1 = t−α−1[−αg(ξ) − βξg′(ξ)],

where ξ = t−βy. Similarly, it is easy to compute

y−a∂y
(
ya∂yGa+1

)
= t−α−2βξ−a(ξag′(ξ))′,

and so, taking β = 1/2, we can match we the previous equation to obtain the equation of the profile

ξ−a(ξag′(ξ))′ +
1
2
ξg′(ξ) + αg(ξ) = 0, ξ > 0. (4.9)

Note that if α = (a + 1)/2, we can re-write equation (4.9) as(
ξag′(ξ) +

1
2
ξa+1g(ξ)

)′
= 0,

which possesses the family of solutions

g(ξ) = Ce−
ξ2
4 , C > 0.

We will take
C =

1∫
∞

0 yae−y2/4dy
=

1
2aΓ( 1+a

2 )
, (4.10)

in order to have
∫
∞

0 yaGa+1(y, t)dy =
∫
∞

0 yaGa+1(y, 1)dy = 1 for all t > 0. Hence, we deduce the
expression for the special solution to the equation in (4.4):

Ga(x, y, t) = CN,at−
N+a+1

2 e−
|x|2+y2

4t =
1

2aΓ( 1+a
2 )

GN(x, t)
1

t
1+a

2

e−
y2

4t , (4.11)

where
CN,a :=

1
2aΓ( 1+a

2 )(4π)N/2
.

Note that ∂a
yGa = 0 in RN

× {0} × (0,∞) and so Ga satisfies the boundary condition of (4.4), too. From
now on, we will refer to Ga = Ga(x, y, t) as “fundamental solution” to problem (4.4). Note that our
choice of the normalization constant CN,a > 0 is different from the one in [185] (see Theorem 1.8). This
is due to the choice in (4.10) which will be convenient later. As pointed out in Remark 1.9 of [185] we
get the “Poisson kernel” (3) by taking the co-normal derivative of the “fundamental solution” with
parameter −a:

−y−a∂yG−a(x, y, t) = Pa
y(x, t) in RN+1

+ × (0,∞),

see also formula (2.3) of [54] for the elliptic case. Before moving on, we point out that the “fundamental
solution” Ga = Ga(x, y, t) has two remarkable features which will have substantial importance in the
rest of the present work. The first one is the scaling property:

Ga(x, y, t) = t−
N+a+1

2 Ga
(
t−1/2x, t−1/2y, 1

)
,

form which we deduce the second important feature which is a sort of conservation of “mass”:∫
RN+1

+

ya
Ga(x, y, t) dxdy =

∫
RN+1

+

ya
Ga(x, y, 1) dxdy = 1,
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Note that our choice of the constant CN,a > 0 is necessary to normalize the above integrals. From now
on, we denote with

dµt = dµt(x, y) := ya
Ga(x, y, t) dxdy, (4.12)

the probability measure on RN+1
+ , associated to the family of probability densities

(x, y)→ ya
Ga(x, y, t), for all t > 0,

abbreviating, for t = 1, dµ := dµ1. Finally, we anticipate that in some cases (cfr. with Section 4.4), we
will use the notations

dµx := GN(x, 1)dx =
1

(4π)N/2 e−
|x|2

4 dx, dµy :=
1

2aΓ( 1+a
2 )

yae−
y2

4 dy,

to denote the “marginals” of the measure dµ = dµ(x, y) w.r.t. to x ∈ RN and y > 0, respectively.

Important Remark. Since ∂a
yGa = 0 in RN

× {0} × (0,∞) it follows that the function

G̃a(x, y, t) :=
CN,a

2
t−

N+a+1
2 e−

|x|2+y2

4t , (4.13)

is a smooth solution to equation

∂tU − LaU = 0 in RN+1
× (0,∞), (4.14)

where now, with some abuse of notation, we set LaU := |y|−a
∇ · (|y|a∇U) (cfr. with Lemma 5.1 of [185]

or check it directly by repeating the above procedure for y < 0). We will call it “fundamental solution”
to equation (4.14) and, with more abuse of notation, we will denote it with Ga = Ga(x, y, t). Of course,
it satisfies the same properties of the fundamental solution in the half-space RN+1

+ . We will set again

dµt = dµt(x, y) := |y|aGa(x, y, t) dxdy, (4.15)

which is now a probability measure on RN+1, for all t > 0. Again we will abbreviate with dµ instead
of dµ1. Also in this case we will indicate with

dµy :=
1

21+aΓ( 1+a
2 )
|y|ae−

y2

4 dy,

the “marginal” of the measure dµ = dµ(x, y) w.r.t. to y > 0. We have decided not to distinguish
between the to kinds of “fundamental solutions” and related probability measures not to exceed in
notations. It will be always clear from the context in which framework we will work.

4.2.2 Functional setting and “strong solutions”

We have seen that the “fundamental solution” Ga = Ga(x, y, t) naturally defines a family of probability
measures on RN+1

+ . We thus define the family of Hilbert spaces

L2(RN+1
+ , dµt) :=

{
V = V(x, y) measurable:

∫
RN+1

+

V2(x, y) dµt(x, y) < +∞

}
, t > 0,

where dµt = dµt(x, y) is defined in (4.12), endowed with the natural L2 type norm. We anticipate that,
we will often simplify the notation to

L2
µt

:= L2(RN+1
+ , dµt) and L2

µ := L2(RN+1
+ , dµ).
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Then, we introduce the family of weighted Sobolev norms

‖V‖2
H1(RN+1

+ ,dµt)
:=

∫
RN+1

+

V2(x, y) dµt(x, y) + t
∫
RN+1

+

|∇V|2(x, y) dµt(x, y),

and the Hilbert spaces
H1(RN+1

+ , dµt) and H1
0(RN+1

+ , dµt),

obtained as the closure of the spaces C∞c (RN+1
+ ) and C∞c (RN+1

+ ) w.r.t. the norm ‖ · ‖H1(RN+1
+ ,dµt) defined

above, respectively. Again, we will abbreviate

H1
µt

:= H1(RN+1
+ , dµt), H1

0,µt
:= H1

0(RN+1
+ , dµt), H1

µ := H1(RN+1
+ , dµ), H1

0,µ := H1
0(RN+1

+ , dµ).

Finally, we will need some space-time L2-Sobolev type spaces:

L2(0,T; L2
µt

) :=
{

V = V(x, y, t) measurable :
∫ T

0
‖V(t)‖2

L2
µt

dt < +∞

}
L2(0,T; H1

µt
) :=

{
V = V(x, y, t) measurable :

∫ T

0
‖V(t)‖2

H1
µt

dt < +∞

}
L2(0,T; H1

0,µt
) :=

{
V = V(x, y, t) measurable :

∫ T

0
‖V(t)‖2

H1
0,µt

dt < +∞

}
,

which are again Hilbert spaces with the natural scalar product and associated norm.
In the same way, we consider the family of spaces

L2(RN+1, dµt) :=
{

V = V(x, y) measurable:
∫
RN+1

V2(x, y) dµt(x, y) < +∞

}
, t > 0,

where dµt = dµt(x, y) is defined in (4.15), for all t > 0. Again we will use the simplified notations

L2
µt

:= L2(RN+1, dµt) and L2
µ := L2(RN+1, dµ).

As before, considering the family of weighted Sobolev norms

‖V‖2H1(RN+1,dµt)
:=

∫
RN+1

V2(x, y) dµt(x, y) + t
∫
RN+1
|∇V|2(x, y) dµt(x, y),

we can define the family of spaces H1(RN+1, dµt) obtained as the closure of the space C∞c (RN+1) w.r.t.
the above norm. Also in this case we will abbreviate H1

µt
:= H1(RN+1, dµt) and H1

µ := H1(RN+1, dµ).
Finally, the Hilbert spaces L2(0,T; L2

µt
) and L2(0,T; H1

µt
) are defined as above substituting RN+1

+ with
RN+1. We are now ready to introduce the definition of “strong solution” to equation (7), and problems
(8) and (9).

Definition 4.2. A function U = U(x, y, t) is said to be a “strong solution” to equation (7) if the following
properties hold true:

• U ∈ L2(0,T; H1
µt

), with t∂tU +
(x,y)

2 · ∇U, LaU ∈ L2
loc(0,T; L2

µt
).

• The identity ∂tU +LaU = 0 is satisfied a.e. in RN+1
× (0,T).

Definition 4.3. A function U = U(x, y, t) is said to be a “strong solution” to problem (8) if the following
properties hold true:
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• U ∈ L2(0,T; H1
µt

), with t∂tU +
(x,y)

2 · ∇U, LaU ∈ L2
loc(0,T; L2

µt
).

• The identity ∂tU +LaU = 0 is satisfied a.e. in RN+1
+ × (0,T).

• −∂a
yU(x, t) := − limy→0+ ya∂yU(x, y, t) = 0 in L2(RN

× (0,T)).

Definition 4.4. A function U = U(x, y, t) is said to be a “strong solution” to problem (9) if the following
properties hold true:

• U ∈ L2(0,T; H1
0,µt

), with t∂tU +
(x,y)

2 · ∇U,LaU ∈ L2
loc(0,T; L2

µt
).

• The identity ∂tU +LaU = 0 is satisfied a.e. in RN+1
+ × (0,T).

• U = 0 in RN
× (0,T) in the sense of traces.

Some important comments about Definitions 4.2, 4.3 and 4.4. The concept of “strong solution” is
well-known in parabolic equations (see for instance Chapter 7 of [142] for linear diffusion, or Chapter
9 of [198] for nonlinear diffusion). However, before moving forward, we must clarify some aspects of
the above definitions. We mainly focus on “strong solutions” to equation (7), specifying which are the
main differences w.r.t. the other two cases.
• On “strong solutions”. First of all, we point out that classical solutions (satisfying the first require-
ments in Definition 4.2) are “strong solutions”, while smooth “strong solutions” are in fact classical
solutions. This easily follows from the definition. On the other hand, “strong solutions” are “weak
solutions” in the sense of Definition 2.1 of [65] (see also Lemma 5.1 of [185] or Definition 4.3 of [19]).
More precisely, the substantial difference between “weak” and “strong” solutions is that in the second
case the time derivative and the diffusion operator of solutions U = U(x, y, t) are required to belong to
the space L2

loc(0,T; L2
µt

). This is not the case in the “weak solutions” framework, where these derivatives
are allowed to be distributions. To see this, note that multiplying the relation ∂tU + LaU = 0 by the
test function

t|y|aGa(x, y, t)η(x, y, t),

where η belongs to L2(0,T; H1
µt

), and integrating overRN+1
× (t1, t2) (for any choice 0 < t1 < t2 < T), we

get the identity∫ t2

t1

∫
RN+1

[
t∂tU +

(x, y)
2
· ∇U

]
η dµt(x, y)dt =

∫ t2

t1

t
∫
RN+1
∇U · ∇η dµt(x, y)dt (4.16)

holds for all η ∈ L2(0,T; H1
µt

). Note that it suffices to take η ∈ L2
loc(0,T; H1

µt
), which is important to widen

the set of test functions. However, we have decided to follow the choice η ∈ L2(0,T; H1
µt

) not to weight
down the presentation.
In performing the above integration by parts, we have crucially used the remarkable property of the
“fundamental solution”

∇x,yGa(x, y, t) = −
(x, y)

2t
Ga(x, y, t), (x, y, t) ∈ RN+1

+ × (0,∞).

From the above integral formulation it is thus clear the reason for the requirement t∂tU +
(x,y)

2 · ∇U ∈
L2

loc(0,T; L2
µt

). Conversely, having LaU ∈ L2
loc(0,T; L2

µt
) too, and “integrating back” in (4.16), we easily

obtain ∂tU + LaU = 0 a.e. in RN+1
× (0,T) by the Test Lemma (note that we have strongly used the

fact that 0 < t1 < t2 < T are arbitrarily fixed). Note that this implies that we could have replaced the
second requirement in Definition 4.2 with the integral formulation (4.16). In the same way, we could
have asked that the identity∫

RN+1

[
∂tU +

(x, y)
2t
· ∇U

]
η dµt(x, y) =

∫
RN+1
∇U · ∇η dµt(x, y), (4.17)
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holds for a.e. 0 < t < T and all η ∈ L2(0,T; H1
µt

) (also in this case the choice η ∈ L2
loc(0,T; H1

µt
) would be

enough). This last identity will be very important in the proof of the monotonicity formulae (cfr. with
Lemma 4.5 and 4.6). The are versions of (4.16) and (4.17) for solutions to problems (8) and (9), which
are obtained in the same way, but by integrating on RN+1

+ instead of RN+1 (cfr. with (4.27)). Note that
for solutions (9), the test functions η are required to belong to L2(0,T; H1

0,µt
)

•Regularity and growth conditions. As we have seen above, “strong solutions” are “weak solutions”
and so, by Theorem 2.1 of [65] (see also the all Section 5 of [19], or [118, 127]) we deduce that any

“strong solution” is Hölder continuous in RN+1
× (0,T) (or RN+1

+ × (0,T)) for some suitable exponent
0 < ν < 1. Moreover, note that the use of Gaussian type spaces in the integral formulations (4.16) and
(4.17) is not standard, but it has the advantage to be very natural in the study of the monotonicity of
the Almgren-Poon type quotient (cfr. with Section 4.3):

t→ N(t,U) :=
t
∫
RN+1 |∇U|2(x, y, t) dµt(x, y)∫
RN+1 U2(x, y, t) dµt(x, y)

,

since for any nontrivial function U = U(x, y, t) with U(·, ·, t) ∈ H1(RN+1, dµt), 0 < t < T, the above
quotient is well-defined for a.e. 0 < t < T.
• Scaling and re-normalized equation/problems. Let U = U(x, y, t) be a “strong solution” to equation
(7). In the proof of the monotonicity formulae and the blow-up procedure, it will be useful to consider
the re-scaled version of U = U(x, y, t), defined by

Ũ(x, y, t) := U(
√

tx,
√

ty, t), (x, y) ∈ RN+1, t > 0. (4.18)

It is straightforward to see that, defining the Ornstein-Uhlenbeck type operator

−OaŨ := −
1
|y|aGa

∇ · (|y|aGa∇Ũ) = −|y|−a
∇ · (|y|a∇Ũ) +

(x, y)
2
· ∇Ũ,

then Ũ = Ũ(x, y, t) is a “strong solution” to

t∂tŨ + OaŨ = 0 in RN+1
× (0,T), (4.19)

in the sense that Ũ ∈ L2(0,T; H1
µ) with t∂tŨ, OaŨ ∈ L2

loc(0,T; L2
µ) and equation (4.19) is satisfied a.e.

RN+1
× (0,T). Note that, proceeding as before, we obtain the equivalent integral formulations for

(4.19). In the first one, we integrate both in space and time, to deduce that for each choice of of times
0 < t1 < t2 < T, the identity∫ t2

t1

t
∫
RN+1

∂tŨη dµ(x, y)dt =

∫ t2

t1

∫
RN+1
∇Ũ · ∇η dµ(x, y)dt (4.20)

holds for all η ∈ L2(0,T; H1
µ) (or η ∈ L2

loc(0,T; H1
µt

)). In the second one, we integrate in space to obtain

that Ũ = Ũ(x, y, t) satisfies

t
∫
RN+1

∂tŨη dµ(x, y) =

∫
RN+1
∇Ũ · ∇η dµ(x, y), (4.21)

for a.e. 0 < t < T and all η ∈ L2(0,T; H1
µ) (or as always η ∈ L2

loc(0,T; H1
µt

)). It is much important to

observe that testing with η ≡ 1, we obtain
∫
RN+1 ∂tŨ dµ(x, y) = 0 for all 0 < t < T, i.e., the “weighted

mean” of Ũ = Ũ(x, y, t) is constant in time

t→
∫
RN+1

Ũ(x, y, t) dµ(x, y) ≡ C, (4.22)
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for some suitable constant C ∈ R.
Now, if U = U(x, y, t) is a “strong solution” to problem (8) (resp. (9)), it follows that its re-scaling

Ũ = Ũ(x, y, t) satisfies Ũ ∈ L2(0,T; H1
µ) (resp. Ũ ∈ L2(0,T; H1

0,µ)), with t∂tŨ, OaŨ ∈ L2
loc(0,T; L2

µ), and it
satisfies the problem t∂tŨ + OaŨ = 0 in RN+1

+ × (0,T)
−∂a

yŨ = 0 (resp. Ũ = 0) in RN
× {0} × (0,T),

(4.23)

in the sense that the equation is satisfied a.e. in RN+1
+ × (0,T), while the boundary conditions in the

sense of Definitions 4.3 and 4.4. Note that in this case, the Ornstein-Uhlenbeck type operator is

−OaŨ := −
1

yaGa
∇ · (ya

Ga∇Ũ) = −y−a
∇ · (ya

∇Ũ) +
(x, y)

2
· ∇Ũ.

Again, we have that for each choice of of times 0 < t1 < t2 < T, the identity∫ t2

t1

t
∫
RN+1

+

∂tŨη dµ(x, y)dt =

∫ t2

t1

∫
RN+1

+

∇Ũ · ∇η dµ(x, y)dt (4.24)

holds for all η ∈ L2(0,T; H1
µ) and, similarly,

t
∫
RN+1

+

∂tŨη dµ(x, y) =

∫
RN+1

+

∇Ũ · ∇η dµ(x, y), (4.25)

for a.e. 0 < t < T and all η ∈ L2(0,T; H1
µ). For what concerns the time conservation of the “weighted

mean”, note that the function (cfr. with (4.22))

t→
∫
RN+1

+

Ũ(x, y, t) dµ(x, y),

is constant only for “strong solutions” to (8) (testing with constant is not allowed in the definition of
“strong solutions” to (9)). We now have all the elements necessary to move forward with our study.
In the next section we prove some Almgren-Poon type monotonicity formulae for “strong solutions”
to equation (7) and problems (8), (9).

4.3 Almgren-Poon type formulas and some applications

In this section, we will derive two parabolic Almgren-Poon type formulae which will be employed
later for showing the asymptotic behaviour of “strong solutions” to equation (7), and problems (8),
(9), respectively. We stress from the beginning that a similar monotonicity formula was firstly proved
for more regular functions by Stinga and Torrea in [185] and an “averaged” version of it by Banerjee
and Garofalo in [19] for non-smooth functions and in the more general setting of “weak solutions”. It
is important to stress that in the context of “strong solutions”, the proofs of the monotonicity formulae
are much easier than in the case of “weak solutions”, where very hard work is required to obtain
partial regularity of the “weak solutions” (cfr. with Section 5 and 6 of [19]). The choice of studying
“strong solutions” is intended to avoid this hard technical work, while focusing on the asymptotic
behaviour of blow-up sequences.

4.3.1 Poon-Almgren formula for solutions to problems (8) and (9)

Let −1 < a < 1 and 0 < T < ∞ be fixed, and let U = U(x, y, t) be a “strong solution” to problem (8) (cfr.
with Definition 4.3): ∂tU +LaU = 0 in RN+1

+ × (0,T),
−∂a

yU = 0 in RN
× {0} × (0,T),
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or (9) (cfr. with Definition 4.4): ∂tU +LaU = 0 in RN+1
+ × (0,T),

U = 0 in RN
× {0} × (0,T).

Following [167, 185], we consider the quantities

H(t,U) :=
∫
RN+1

+

yaU2(x, y, t)Ga(x, y, t) dxdy,

I(t,U) :=
∫
RN+1

+

ya
|∇U|2(x, y, t)Ga(x, y, t) dxdy,

and the quotient

N(t,U) :=
tI(t,U)
H(t,U)

=
t
∫
RN+1

+
|∇U|2(x, y, t) dµt(x, y)∫

RN+1
+

U2(x, y, t) dµt(x, y)
, (4.26)

for all t > 0 such that H(t,U) , 0 (cfr. with Corollary 4.9). Note that all the integrals are well defined
for “strong solutions” U = U(x, y, t) to problems (8) and/or (9), for a.e. 0 < t < T.
Passing to the re-scaled version Ũ = Ũ(x, y, t) defined in (4.18) and using the intrinsic scaling of the
“fundamental solution”, it is easy to see that

H(t,U) =

∫
RN+1

+

yaŨ2(x, y, t)Ga(x, y, 1) dxdy =

∫
RN+1

+

Ũ2(x, y, t) dµ(x, y) := H(1, Ũ),

I(t,U) =
1
t

∫
RN+1

+

ya
|∇Ũ|2(x, y, t)Ga(x, y, 1) dxdy =

1
t

∫
RN+1

+

|∇Ũ|2(x, y, t) dµ(x, y) :=
1
t

I(1, Ũ),

and so the quotient has a scaling too:

N(t,U) =
tI(t,U)
H(t,U)

=
I(1, Ũ)

H(1, Ũ)
:= N(1, Ũ).

Let us proceed to the proof of the Almgren-Poon monotonicity type formula. Note that w.r.t. the proof
given in [185], our proof works for less regular solutions and it is presented from a point of view based
on scaling, which will be crucial in the rest of the paper (see in particular Section 4.4).

Lemma 4.5. (cfr. with Theorem 8.3 of [19] and Theorem 1.15 of [185]) Let U = U(x, y, t) be a function
satisfying

• U ∈ L2(0,T; H1
µt

), with t∂tU +
(x,y)

2 · ∇U ∈ L2
loc(0,T; L2

µt
).

• The identity ∫
RN+1

+

[
∂tU +

(x, y)
2t
· ∇U

]
η dµt(x, y) =

∫
RN+1

+

∇U · ∇η dµt(x, y), (4.27)

holds for a.e. 0 < t < T and all η ∈ L2(0,T; H1
µt

),

and let N(t,U) be defined as in (4.26). Then the function

t→ N(t,U)

is non-decreasing for a.e. 0 < t < T. Moreover, the quotient t→ N(t,U) is constant if and only if U = U(x, y, t)
is parabolically homogeneous of degree κ, for some κ ∈ R.
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Remark. First of all, we point out that the same statement holds for functions U = U(x, y, t) satisfying

• U ∈ L2(0,T; H1
0,µt

), with t∂tU +
(x,y)

2 · ∇U ∈ L2
loc(0,T; L2

µt
).

• Identity (4.27) holds for a.e. 0 < t < T and all η ∈ L2(0,T; H1
0,µt

).

We will give proof only for functions satisfying the assumptions in the statement of the lemma, since
the other case is almost identical. Secondly, we anticipate that during the proof we will pass to the
re-scaled version Ũ = Ũ(x, y, t), which satisfies Ũ ∈ L2(0,T; H1

µ), with t∂tŨ ∈ L2
loc(0,T; L2

µ) and the
integral relation (4.27) is transformed into (4.25). Finally, note that we could have decided to study the
monotonicity of the Almgren-Poon quotient t→ N(t,U) for “strong solutions” to problems (8) and (9)
which, as we have seen, is a class of functions satisfying the assumptions of Lemma 4.5. However,
in the blow-up procedure we will employ compactness techniques that allow to work with integral
formulations like (4.27) instead of point-wise ones. This is the motivation of our non standard choice
in the hypotheses of Lemma 4.5.

Proof. The proof is divided in four essential steps as follows.
Step1: Derivative of H(t,U). Let us fix 0 < t1 < t2 < T and let us pass for a moment to the re-

scaled version Ũ = Ũ(x, y, t). Since both Ũ and ∂tŨ belong to L2
loc(0,T; L2

µ), it follows that the function

t→ Ũ(·, ·, t) is absolutely continuous on [t1, t2] (cfr. with Chapter 5 of [96]) and, furthermore, it holds

d
dt
‖Ũ(t)‖2

L2
µ

= 2〈∂tŨ(t), Ũ(t)〉L2
µ
,

in the weak sense. Consequently, using that H(t,U) = H(1, Ũ) = ‖Ũ(t)‖2
L2
µ
, we deduce

H(t2,U) −H(t1,U) =

∫ t2

t1

d
dt
‖Ũ(t)‖2

L2
µ
dt = 2

∫ t2

t1

〈∂tŨ(t), Ũ(t)〉L2
µ

dt

= 2
∫ t2

t1

∫
RN+1

+

∂tŨ Ũ dµ(x, y)dt = 2
∫ t2

t1

1
t

∫
RN+1

+

|∇Ũ|2 dµ(x, y) dt

= 2
∫ t2

t1

1
t

I(1, Ũ) dt = 2
∫ t2

t1

I(t,U) dt,

where we have employed the integral relation (4.21) in the fourth equality with test η = Ũ, and the
fact that tI(t,U) = I(1, Ũ), in the last one. We have thus obtained

H′(t,U) = 2I(t,U) or equivalently H′(1, Ũ) =
2
t

I(1, Ũ)

in the weak sense. Note that since H′(1, Ũ) = 2
∫
RN+1

+
Ũ ∂tŨ dµ(x, y), we easily deduce

I(1, Ũ) = t
∫
RN+1

+

Ũ ∂tŨ dµ(x, y). (4.28)

Step2: Derivative of I(t,U). Now, testing the equation of Ũ = Ũ(x, y, t) (cfr. with (4.24)) with test
η = ∂tŨ, we see that∫ t2

t1

t
∫
RN+1

+

(∂tŨ)2 dµ(x, y)dt =

∫ t2

t1

∫
RN+1

+

ya
∇Ũ · ∇(∂tŨ)Ga dxdydt,
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from which we deduce that the r.h.s. is finite thanks to our integrability assumptions on ∂tŨ (note that
testing with η = ∂tŨ is not admissible by definition but one can proceed by suitable approximations).
On the other hand, from Fubini’s Theorem and well known properties of weak derivatives, we have∫ t2

t1

∫
RN+1

+

ya
∇Ũ · ∇(∂tŨ)Ga dxdydt =

1
2

∫ t2

t1

∫
RN+1

+

∂
∂t

(
|∇Ũ|2

)
ya
Ga dxdydt

=
1
2

[∫
RN+1

+

(
|∇Ũ|2(x, y, t2) − |∇Ũ|2(x, y, t1)

)
dµ(x, y)

]
=

1
2

[
I(1, Ũ(t2)) − I(1, Ũ(t1))

]
.

Consequently, we have obtained that

I′(1, Ũ) =
2
t

∫
RN+1

+

(t∂tŨ)2 dµ(x, y),

in the weak sense.
Step3: Derivative of N(t,U). We are now ready to prove that the function t → N(t,U) is monotone

non-decreasing. Using (4.28) and the expressions for H′(1, Ũ) and I′(1, Ũ), we deduce

I′(1, Ũ)H(1, Ũ) − I(1, Ũ)H′(1, Ũ)

=
2
t

∫
RN+1

+

Ũ2dµ(x, y)
∫
RN+1

+

(t∂tŨ)2 dµ(x, y) −
(∫
RN+1

+

Ũ t∂tŨ dµ(x, y)
)2 ≥ 0,

thanks to Cauchy-Schwartz inequality.
Step4: Final remarks. We are left to prove that the function t → N(t,U) is constant if and only if

U = U(x, y, t) is parabolically homogeneous of some degree.
Now, from the Cauchy-Schwartz inequality and the above inequality it follows that

N′(t,U) ≡ 0 for a.e. 0 < t < T if and only if t∂tŨ = κ(t)Ũ for a.e. 0 < t < T,

for some real function κ = κ(t). Consequently, for any 0 < t0 < T fixed, Ũ = Ũ(x, y, t) must have the
form

Ũ(x, y, t) = eK(t)Ũ0(x, y), (4.29)

for a.e. 0 < t0 ≤ t < T, where K(t) :=
∫ t

t0
κ(τ)/τ dτ, Ũ0(x, y) := Ũ(x, y, t0). On the other hand, taking

t∂tŨ = κ(t)Ũ in (4.25), we deduce that Ũ = Ũ(x, y, t) satisfies

κ(t)
∫
RN+1

+

Ũη dµ(x, y) =

∫
RN+1

+

∇Ũ · ∇η dµ(x, y), (4.30)

for 0 < t0 < t < T and all η ∈ L2(0,T; H1
µ) and so, the same equation is satisfied by Ũ0. Hence, since Ũ0

is constant w.r.t. the time variable t, it follows

κ(t) ≡ κ for all 0 < t0 ≤ t < T,

for some constant κ ∈ R and, by the arbitrariness of 0 < t0 < T, we get that κ(t) ≡ κ in (0,T). Note that
from (4.29), this implies that the function

t→
U(
√

tx,
√

ty, t)
tκ

(4.31)
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is constant in (0,T). Moreover, (4.30) holds with κ instead of κ(t), and so using (4.25):

κ

∫
RN+1

+

Ũη dµ(x, y) =

∫
RN+1

+

∇Ũ · ∇η dµ(x, y) = t
∫
RN+1

+

∂tŨη dµ(x, y),

for all η ∈ L2(0,T; H1
µ). Changing variables x→

√
tx and y→

√
ty in the first and the last integral, we

obtain ∫
RN+1

+

[
t∂tU +

(x, y)
2
· ∇U − κU

]
η dµt = 0,

for all η ∈ L2(0,T; H1
µt

), and so, by the Test Lemma, it follows

t∂tU +
(x, y)

2
· ∇U = κU a.e. in RN+1

+ × (0,T), (4.32)

which is equivalent to say that U = U(x, y, t) is parabolically κ-homogeneous: U(δx, δy, δ2t) =
δ2κU(x, y, t), for any δ > 0 (cfr. with [19, 185]). Note that we would have got relation (4.32) by
differentiating (w.r.t. time) the constant function (4.31).
Of course, the same homogeneity property holds also for Ũ = Ũ(x, y, t) which satisfies the problem−OaŨ = κŨ in RN+1

+ × (0,T),
−∂a

yŨ = 0 in RN
× {0} × (0,T)

where −OaŨ := −LaŨ +
(x,y)

2 · ∇Ũ (it is the Ornstein-Uhlenbeck type operator introduced in Subsection
4.2.2), in the sense that the identity∫

RN+1
+

∇Ũ · ∇η dµ(x, y) = κ

∫
RN+1

+

Ũη dµ(x, y),

is satisfied for a.e. 0 < t < T and all η ∈ L2(0,T; H1
µ). Note that, w.r.t. (4.32), the above equation

does not involve time derivatives but second order spacial derivatives. Consequently, the study of
the parabolically κ-homogeneous profiles is equivalent to the study of the Ornstein-Uhlenbeck type
problem introduced before, which we will present in detail in the next section. �

4.3.2 Poon-Almgren formula for solutions to equation (7)

Let −1 < a < 1 and 0 < T < ∞ be fixed. We now repeat the analysis carried out before, for “strong
solutions” to equation (7):

∂tU +LaU = 0 in RN+1
× (0,T),

where we recall that in this setting LaU := |y|−a
∇ · (|y|a∇U). As before, we consider the quantities

H(t,U) :=
∫
RN+1
|y|aU2(x, y, t)Ga(x, y, t) dxdy,

I(t,U) :=
∫
RN+1
|y|a|∇U|2(x, y, t)Ga(x, y, t) dxdy,

and the quotient

N(t,U) :=
tI(t,U)
H(t,U)

, (4.33)



CHAPTER 4. ALMGREN-POON MONOTONICITY FORMULAS AND SPECTRAL ANALYSIS 130

for a.e. 0 < t < T such that H(t,U) , 0. Again, H(t,U) and I(t,U) satisfy the scaling properties:

H(t,U) =

∫
RN+1
|y|aŨ2(x, y, t)Ga(x, y, 1) dxdy =

∫
RN+1

Ũ2(x, y, t) dµ(x, y) := H(1, Ũ),

I(t,U) =
1
t

∫
RN+1
|y|a|∇Ũ|2(x, y, t)Ga(x, y, 1) dxdy =

1
t

∫
RN+1
|∇Ũ|2(x, y, t) dµ(x, y) :=

1
t

I(1, Ũ),

where Ũ = Ũ(x, y, t) is defined in (4.18), and so the quotient has a scaling too:

N(t,U) =
tI(t,U)
H(t,U)

=
I(1, Ũ)

H(1, Ũ)
:= N(1, Ũ).

Lemma 4.6. Let U = U(x, y, t) be a function satisfying

• U ∈ L2(0,T; H1
µt

), with t∂tU +
(x,y)

2 · ∇U ∈ L2
loc(0,T; L2

µt
).

• Identity (4.17): ∫
RN+1

[
∂tU +

(x, y)
2t
· ∇U

]
η dµt(x, y) =

∫
RN+1
∇U · ∇η dµt(x, y),

holds for a.e. 0 < t < T and all η ∈ L2(0,T; H1
µt

),

and let N(t,U) be defined as in (4.33). Then the function

t→ N(t,U)

is non-decreasing for a.e. 0 < t < T. Moreover, the quotient t→ N(t,U) is constant if and only if U = U(x, y, t)
is parabolically homogeneous of degree κ, for some κ ∈ R. (We recall that in this framework we use the convention
L2
µt

= L2(RN+1, dµt) and H1
µt

= H1(RN+1, dµt)).

Proof. The proof is very similar to the previous one and we report it by completeness.
Step1: Derivative of H(t,U). This step formally coincides with Step1 of the proof of Lemma 4.5.

We just have to replace L2(RN+1
+ , dµt) by L2(RN+1, dµt), and using identity (4.17) instead of (4.27).

Consequently, it follows newly H′(t,U) = 2I(t,U) (i.e H′(1, Ũ) = 2t−1I(1, Ũ)) in the weak sense, and
from the fact that H′(1, Ũ) = 2

∫
RN+1 Ũ ∂tŨ dµ(x, y), we have again

I(1, Ũ) = t
∫
RN+1

Ũ ∂tŨ dµ(x, y).

Step2: Derivative of I(t,U). Proceeding as before, we test equation (4.17) with η = ∂tŨ and we
compute ∫ t2

t1

t
∫
RN+1

(∂tŨ)2 dµ(x, y)dt =

∫ t2

t1

∫
RN+1
|y|a∇Ũ · ∇(∂tŨ)Ga dxdydt

=
1
2

∫ t2

t1

∫
RN+1

+

∂
∂t

(
|∇Ũ|2

)
ya
Ga dxdydt

=
1
2

[
I(1, Ũ(t2)) − I(1, Ũ(t1))

]
,

using Fubini Theorem. This implies again

I′(1, Ũ) =
2
t

∫
RN+1

(t∂tŨ)2 dµ(x, y),
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in the weak sense.
Step3: Derivative of N(t,U). Exactly as before it is straightforward to compute

I′(1, Ũ)H(1, Ũ) − I(1, Ũ)H′(1, Ũ)

=
2
t

∫
RN+1

Ũ2dµ(x, y)
∫
RN+1

(t∂tŨ)2 dµ(x, y) −
(∫
RN+1

Ũ t∂tŨ dµ(x, y)
)2 ≥ 0,

thanks to Cauchy-Schwartz inequality.
Step4: Final remarks. This last step coincides with Step4 of Lemma 4.5. In the same methods, we

obtain that N′(t,U) ≡ 0 if and only if

t∂tU +
(x, y)

2
· ∇U = κU a.e. in RN+1

× (0,T),

which implies that U = U(x, y, t) is parabolically homogeneous of degree κ ∈ R. This time the equation
for Ũ = Ũ(x, y, t) is

−OaŨ = κŨ in RN+1
× (0,T)

for some κ ∈ R, where −OaŨ := −LaŨ +
(x,y)

2 · ∇Ũ, in the sense that the identity∫
RN+1
∇Ũ · ∇η dµ(x, y) = κ

∫
RN+1

Ũη dµ(x, y),

is satisfied for a.e. 0 < t < T and all η ∈ L2(0,T; H1
µ). Note that again the study of profiles making

constant the Almgren-Poon quotient is equivalent the study of the above eigenvalue problem. �

4.3.3 Some immediate applications of the Poon-Almgren monotonicity formula

We now focus on some immediate applications of the monotonicity formula proved in Lemma 4.5 and
Lemma 4.6. We will mostly show our results in the setting of Lemma 4.5 since the proof in the other
framework is almost identical.
We recall that we have proved that if U = U(x, y, t) satisfies the assumptions of Lemma 4.5, then the
function

t→ N(t,U) =
t I(t,U)
H(t,U)

=
t
∫
RN+1

+
ya
|∇U|2(x, y, t)Ga(x, y, t) dxdy∫

RN+1
+

yaU2(x, y, t)Ga(x, y, t) dxdy

is monotone non-decreasing for all t > 0 (and a similar result hold for functions U = U(x, y, t) satisfying
the assumptions in Lemma 4.6).

Corollary 4.7. Let U = U(x, y, t) be a nontrivial function satisfying the assumptions of Lemma 4.5. Then both
limits

lim
t→0+

N(t,U) = κ ≥ 0, lim
t→0+

t−2κH(t,U) ≥ 0,

exist and are finite (of course, N(t,U) and H(t,U) are defined as in (4.26)).

Proof. The limit κ ∈ [0,+∞] exists since N(t,U) is non-decreasing. Moveover, if κ = +∞, then
N(t,U) ≡ +∞ for any 0 < t < T and so, since

tI(t,U) = t
∫
RN+1

+

ya
|∇U|2(x, y, t)Ga(x, y, t) dxdy < +∞ for a.e. 0 < t < T,
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it follows that H(t,U) = 0 for a.e. 0 < t < T, i.e. U ≡ 0 in RN+1
+ × (0,T), which is a contradiction. For

what concerns the second limit, we have

d
dt

(
t−2κH(t,U)

)
= 2t−2κ−1H(t,U) [N(t,U) − κ] ≥ 0, t > 0, (4.34)

and so the limit limt→0+ t−2κH(t,U) exists. The fact that it is finite follows as before. �

Corollary 4.8. Let U = U(x, y, t) be a nontrivial function satisfying the assumptions of Lemma 4.5. Then for
any 0 < t0 < T, the following formulas hold

H(t,U) ≥ H(t0,U)
( t
t0

)2N(t0,U)
for all 0 < t ≤ t0, (4.35)

H(t,U) ≤ H(t0,U)
( t
t0

)2κ
for all 0 < t ≤ t0, (4.36)

where as before κ = limt→0+ N(t,U).

Proof. Remembering that H′(t,U) = 2I(t,U) (see the proof of Lemma 4.5):

H′(t,U)
H(t,U)

=
2I(t,U)
H(t,U)

=
2N(t,U)

t
≤

2Nt0(U)
t

, for all 0 < t ≤ t0,

where 0 < t0 < T is arbitrarily fixed. Integrating the previous inequality between t and t0, it is
straightforward to obtain (4.35). Similarly,

H′(t,U)
H(t,U)

=
2I(t,U)
H(t,U)

=
2N(t,U)

t
≥

2κ
t
, for all t > 0,

Integrating between t and t0 as before, we get (4.36), too. From another view point, we can note that
proving (4.36) is equivalent to prove that the function

t→ t−2κH(t,U)

is nondecreasing, and this fact easily follows from (4.34). �

The following corollary (of Lemma 4.5) is classical and we follow the proof done in [99, 167]. See also
the end of Section 6 of [19].

Corollary 4.9. (Weak unique continuation property w.r.t. to t) Let U = U(x, y, t) be a nontrivial function
satisfying the assumptions of Lemma 4.5. If there exists 0 < t0 < T such that

U(·, ·, t0) ≡ 0 a.e. in RN+1
+ ,

then U ≡ 0 a.e. in RN+1
+ × (0,T).

Proof. We begin the proof by showing that for any 0 < T < ∞ and any U = U(x, y, t) satisfying our
assumptions, it holds

U . 0 a.e in RN+1
+ × (0,T) ⇒ H(t,U) > 0 for all 0 < t < T. (4.37)

We proceed in three short steps as follows.
Step1. First, we note that

H(t0,U) = 0 for some t0 > 0 ⇒ H(t,U) = 0 for all 0 < t ≤ t0.
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This easily follows from the fact that H′(t,U) ≥ 0 for all t > 0.
Step2. Now, we show that

H(·,U) . 0 ⇒ H(t,U) > 0 for all t > 0.

Since H(·,U) . 0 there is t0 > 0 such that H(t0,U) > 0, which implies H(t,U) > 0 for all t ≥ t0. Now, let

t0 := inf {t0 > 0 : H(t0,U) > 0} .

If by contradiction t0 > 0, we deduce

0 = H(t0,U) ≥ H(t0,U)
(

t0

t0

)2N(t0,U)

> 0,

for some t0 < t0, which rises the desired contradiction.
Step3. Let T > 0. We show that

U . 0 a.e in RN+1
+ × (0,T) ⇒ H(t,U) > 0 for all 0 < t < T.

Assume U . 0 a.e. inRN+1
+ × (0,T). Hence, there is 0 < t0 < T such that U(·, ·, t0) . 0 and so H(t0,U) > 0.

From the previous step, we conclude H(t,U) > 0 for all 0 < t < T.
Step4: Conclusions. If U(·, ·, t0) ≡ 0 a.e in RN+1

+ it obviously follows that H(t0,U) = 0, and this
contradicts (4.37), unless U ≡ 0 in RN+1

+ × (0,T). �

Important Remark. The statements of Corollary 4.7, Corollary 4.8 and Corollary 4.9 hold true for
functions U = U(x, y, t) satisfying the assumptions of Lemma 4.6, where N(t,U) and H(t,U) are defined
in (4.33).

4.4 Proof of Theorem 4.1

As explained in the introduction, at the end of the proof of Lemma 4.5 (resp. Lemma 4.6), we have
found that the quotients in (4.26) (resp. (4.33)) are constant in time if and only if it holds−OaŨ = κŨ in RN+1

+ × (0,T)
−∂a

yŨ = 0 or Ũ = 0 in RN
× {0} × (0,T),

(resp. − OaŨ = κŨ in RN+1
× (0,T)),

for some κ ∈ R in a weak sense, where −OaŨ := −LaŨ +
(x,y)

2 · ∇Ũ and Ũ(x, y, t) := U
(√

tx,
√

ty, t
)
, and

U = U(x, y, t) satisfies the assumptions of Lemma 4.5, and so we are taken back to study problems
(4.1)/(4.2) and (4.3).
In what follows it will be useful to keep in mind that (4.3) is equivalent to (abbreviatingGa = Ga(x, y, 1))

−
1
|y|aGa

∇ · (|y|aGa∇V) = κV in RN+1, (4.38)

and similarly for problems (4.1) and (4.2). The importance of the formulation in (4.38) is clearer in the
following fundamental definition.

Definition 4.10. We proceed with three different definitions.
•A nontrivial function V ∈ H1(RN+1

+ , dµ) is said to be a “weak eigenfunction” to problem (4.1) with eigenvalue
κ ∈ R if ∫

RN+1
+

∇V · ∇η dµ(x, y) = κ

∫
RN+1

+

Vη dµ(x, y), for all η ∈ H1(RN+1
+ , dµ). (4.39)
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•A nontrivial function V ∈ H1
0(RN+1

+ , dµ) is said to be a “weak eigenfunction” to problem (4.2) with eigenvalue
κ ∈ R if ∫

RN+1
+

∇V · ∇η dµ(x, y) = κ

∫
RN+1

+

Vη dµ(x, y), for all η ∈ H1
0(RN+1

+ , dµ). (4.40)

•A nontrivial function V ∈ H1(RN+1, dµ) is said to be a “weak eigenfunction” to problem (4.3) with eigenvalue
κ ∈ R if ∫

RN+1
∇V · ∇η dµ(x, y) = κ

∫
RN+1

Vη dµ(x, y), for all η ∈ H1(RN+1, dµ). (4.41)

Before moving forward, we stress that using the fact that ∇Ga(x, y, 1) = −
(x,y)

2 Ga(x, y, 1), a simple
integration by parts shows that classical eigenfunctions to (4.1), (4.2) and (4.3) are a “weak eigenfunc-
tions” to (4.1), (4.2) and (4.3), respectively. Moreover, it is easily seen that smooth “weak eigenfunc-
tions” are classical eigenfunctions.

In the spectral analysis of problems (4.1), (4.2), and (4.3), the following one-dimensional eigenvalue
problem (where we set ψ′ = dψ/dy for simplicity)

− y−a (yaψ′
)′ + y

2
ψ′ = σψ, y > 0, (4.42)

which, similarly as before, is equivalent to

−
1

yaGa+1

(
yaGa+1 ψ

′
)′ = σψ, y > 0, (4.43)

will play an important role (here Ga+1 = Ga+1(y) = Ga(0, y, 1), cfr. with Subsection 4.2.1). This is due
to the fact that the “fundamental solution” defines a probability measure that can be written as the
product of two marginal measures, which are probabilities on the marginal spaces (cfr. with Section
4.2), and the differential Ornstein-Uhlenbeck operators type, defined in (4.1), (4.2) and (4.3) possess a
similar property (that we clarify later). For these reasons, we will devote an entire subsection to the
analysis of equation (4.42).

4.4.1 Spectral analysis for equation (4.42)

As anticipated before, we now focus on equation (4.42). More precisely, we will get information about
the following eigenvalue problems (corresponding to (4.1), (4.2) and (4.3)):−y−a (yaψ′

)′ + y
2 ψ
′ = σψ, for y > 0,

−∂a
yψ = 0 for y = 0,

(4.44)

−y−a (yaψ′
)′ + y

2 ψ
′ = σψ, for y > 0,

ψ = 0 for y = 0,
(4.45)

and
− |y|−a (

|y|aψ′
)′ + y

2
ψ′ = σψ, y , 0. (4.46)

In the following definition, we introduce the concept of “weak eigenfunction” to (4.44), (4.45), and
(4.46), respectively.

Definition 4.11. Again we proceed in three cases.
• A nontrivial function ψ ∈ H1(R+, dµy) is said to be a “weak eigenfunction” to problem (4.44) with eigenvalue
σ ∈ R if ∫

R+

ψ′η′ dµy = σ

∫
R+

ψη dµy, for all η ∈ H1(R+, dµy). (4.47)
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• A nontrivial function ψ ∈ H1
0(R+, dµy) is said to be a “weak eigenfunction” to problem (4.45) with eigenvalue

σ ∈ R if ∫
R+

ψ′η′ dµy = σ

∫
R+

ψη dµy, for all η ∈ H1
0(R+, dµy). (4.48)

• A nontrivial function ψ ∈ H1(R, dµy) is said to be a “weak eigenfunction” to problem (4.46) with eigenvalue
σ ∈ R if ∫

R
ψ′η′ dµy = σ

∫
R
ψη dµy, for all η ∈ H1(R, dµy). (4.49)

Note that in the previous definition we employ the probability measure dµy := Ga+1(y)dy in
problems (4.47) and (4.48), while its even extension in (4.49) (cfr. with Section 4.2).

We now carry out a detailed analysis of the spectrum of equation (4.42):

−y−a (yaψ′
)′ + y

2
ψ′ = σψ, y > 0.

In order to work in the framework as general as possible, we do not impose boundary conditions at y =
0 but only the following integrability conditions (which are necessary to have “weak eigenfunctions”)∫

∞

0
ψ2(y) yae−

y2

4 dy < +∞,

∫
∞

0

∣∣∣ψ′(y)
∣∣∣2 yae−

y2

4 dy < +∞. (4.50)

Our procedure will naturally distinguish the solutions with Dirichlet and/or Neumann boundary
conditions.

So, let us set ψ(y) = ζ(y2/4). It is easily seen that the equation for ζ = ζ(r), r = y2/4 is:

r
d2ζ

dr2 +
(
1 +

a − 1
2
− r

) dζ
dr

+ σζ = 0, r > 0, (4.51)

which can be seen as a Kummer Confluent Hypergeometric type equation, with

b1 = −σ and b2 = 1 +
a − 1

2
=

1 + a
2
,

and/or a Laguerre equation with

α =
a − 1

2
> −1.

A detail report about these topics is given in Appendix 4.6. We know that all solutions are given by

ζ(r) = A1M
(
−σ,

1 + a
2
, r

)
+ A2M̃

(
−σ,

1 + a
2
, r

)
, r > 0, (4.52)

where A1,A2 ∈ R, and M(·, ·, ·) and M̃(·, ·, ·) are the Kummer and the Tricomi functions, as explained in
the appendix mentioned above. We divide the analysis in three cases:
• Case σ ∈ N. As explained in Appendix 4.6, when σ = m ∈ N = {0, 1, . . .}, then to each σ = m it
corresponds a unique solution (up to multiplicative constants) to (4.51) given by the mth Laguerre
polynomial of order (a − 1)/2:

ζm(r) = L( a−1
2 ),m(r), r > 0, m ∈N,

and so, for any σ = m ∈N, we obtain the solutions to (4.42), given by

ψ̃m(y) = Ãmζm

(
y2

4

)
= ÃmL( a−1

2 ),m

(
y2

4

)
, y > 0, (4.53)
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where Ãm is an arbitrary real constant. Note that since {L( a−1
2 ),m}m∈N is an orthogonal basis for the space

L2(R+, dν) where dν(r) = r
a−1

2 e−rdr,

it is immediate to see that {ψ̃m}m∈N is an orthogonal basis for L2(R+, dµy).
Similarly, one could have used formula (4.52) for the explicit expression of all solutions to (4.51) and
note that for σ = m ∈N, we have

M
(
−m,

1 + a
2
, r

)
:= Q̃m(r) =

m∑
j=0

(−m) j

( 1+a
2 ) j

r j

j!
, r > 0,

while (cfr. with Appendix 4.6)

M̃
(
−m,

1 + a
2
, r

)
=

π

sin
(

1+a
2 π

)  M(−m, 1+a
2 , r)

Γ( 1−a
2 −m)Γ( 1+a

2 )
− r

1−a
2

M( 1−a
2 −m, 1 + 1−a

2 , r)

Γ(−m)Γ(1 + 1−a
2 )


=

Γ( 1−a
2 )

Γ( 1−a
2 −m)

Q̃m(r), r > 0,

where we have used the well-known properties of the Gamma function

1
Γ(−z)

= 0, z ∈N and
π

sin (zπ)
= Γ(1 − z)Γ(z), z < Z.

Consequently, it follows an equivalent expression for ψ̃m = ψ̃m(y) given by

ψ̃m(y) = ÃmQ̃m

(
y2

4

)
= Ãm

m∑
j=0

(−m) j

4 j j!( 1+a
2 ) j

y2 j, y > 0,

which is equivalent to the expression found in (4.53) in view of (4.65). In what follows we will adopt
the notation used in (4.53), but always keeping in mind that

L( a−1
2 ),m

(
y2

4

)
=

m∑
j=0

(−m) j

4 j j!( 1+a
2 ) j

y2 j, y > 0,

up to a multiplicative constant.
• Case σ <N but σ − (1 − a)/2 ∈N. If σ = (1 − a)/2 + m, m ∈N, it follows

M̃
(
−σ,

1 + a
2
, r

)
=

π

sin
(

1+a
2 π

) M(−σ, 1+a
2 , r)

Γ(−m)Γ( 1+a
2 )
− r

1−a
2

M(−m, 1 + 1−a
2 , r)

Γ(−σ)Γ(1 + 1−a
2 )


= −

2Γ( 1+a
2 )

(1 − a)Γ(− 1−a
2 −m)

r
1−a

2 P̃m(r), r > 0,

where we have employed again the properties of the Gamma function and we have defined

P̃m(r) = M
(
−m, 1 +

1 − a
2
, r

)
=

m∑
j=0

(−m) j

(1 + 1−a
2 ) j

r j

j!
, r > 0.

On the other hand,

M
(
−σ,

1 + a
2
, r

)
=

∞∑
j=0

(−σ) j

( 1+a
2 ) j

.
r j

j!
∼

Γ( 1+a
2 )

Γ(−σ)
err−σ−

1+a
2 , for r ∼ +∞,
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since σ < N (cfr. with (4.63)). From the above asymptotic expansion for r ∼ +∞, it is not difficult to
see that the function

y→M
(
−σ,

1 + a
2
,

y2

4

)
does not satisfies the first bound in (4.50) and so, we have to take A1 = 0. Consequently, for σ =
(1 − a)/2 + m, m ∈N, we deduce that

ζa,m(r) = Ãm r
1−a

2 P̃m(r) = Ãm

m∑
j=0

(−m) j

j!(1 + 1−a
2 ) j

r
1−a

2 + j, r > 0,

and so, coming back to the variable y (we recall that r = y2/4),

ψ̂m(y) = Ãm y1−aP̃m

(
y2

4

)
= Ãm

m∑
j=0

(−m) j

4 j j!(1 + 1−a
2 ) j

y1+2 j−a, y > 0.

Exactly as before, we can recall formula (4.64) to deduce L( 1−a
2 ),m(r) = M(−m, 1 + 1−a

2 , r) = P̃m(r) (up to a
multiplicative constant), and so

ψ̂m(y) = Ãm y1−aL( 1−a
2 ),m

(
y2

4

)
, y > 0. (4.54)

Again, since {L( 1−a
2 ),m}m∈N is an orthogonal basis for the space (note the difference in the measure νw.r.t.

the previous case)
L2(R+, dν) where now dν(r) = r

1−a
2 e−rdr,

it follows again that {ψ̂m}m∈N is an orthogonal basis for L2(R+, dµy).
• Case σ <N and σ − (1 − a)/2 <N. Proceeding as before, we get

ζ(r) =

A1 +
Γ( 1−a

2 )

Γ( 1−a
2 − σ)

A2

 ∞∑
j=0

(−σ) j

( 1+a
2 ) j

r j

j!
−

2Γ( 1+a
2 )

(1 − a)Γ(−σ)
A2 r

1−a
2

∞∑
j=0

( 1−a
2 − σ) j

(1 + 1−a
2 ) j

r j

j!
,

and so, since the coefficient in front of the first series as to be zero (for the same reason of the above
case), we deduce

ζ(r) =
2Γ( 1+a

2 )Γ( 1−a
2 − σ)

(1 − a)Γ( 1−a
2 )Γ(−σ)

A2 r
1−a

2

∞∑
j=0

( 1−a
2 − σ) j

(1 + 1−a
2 ) j

r j

j!
= A2r

1−a
2 M

(1 − a
2
− σ, 1 +

1 − a
2
, r

)
∼

Γ(1 + 1−a
2 )

Γ( 1−a
2 − σ)

A2 err−1−σ, for r ∼ +∞.

Exactly as before, the above expansion for r ∼ +∞ tells us that ψ(y) = ζ(y2/4) does not satisfies the first
bound in (4.50) and so we to take A2 = 0, i.e. A2 = A1 = 0.
• Conclusions. From the analysis carried out before, it follows that the set of eigenvalues for equation
(4.42) is given by

{̃σm}m∈N ∪ {̂σm}m∈N where σ̃m = m, σ̂m =
1 − a

2
+ m,

and to the eigenvalue σ̃m = m it corresponds (up to multiplicative constants) the eigenfunction

ψ̃m(y) = ÃmL( a−1
2 ),m

(
y2

4

)
, y > 0,
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where L( a−1
2 ),m(·) it the mth Laguerre polynomial of order (a−1)/2, whilst the eigenvalue σ̂m = (1−a)/2+m

possesses (up to multiplicative constants) the eigenfunction

ψ̂m(y) = y1−aL( 1−a
2 ),m

(
y2

4

)
, y > 0.

We point out that the existence of two distinct orthogonal basis of eigenfunctions of L2(R+, dµy) comes
from the fact that {ψ̃m}m∈N and {ψ̂m}m∈N are solutions to different eigenvalue problems. Indeed, for all
m ∈N, we have

ψ̃m(0) , 0 and ∂a
yψ̃m = 0,

while
ψ̂m(0) = 0 and ∂a

yψ̂m , 0,

which mean that the functions ψ̃m correspond to the eigenfunctions to equation (4.42) with homoge-
neous Neumann boundary condition at y = 0, i.e., to problem (4.44), while ψ̂m are the eigenfunctions to
equation (4.42) with homogeneous Dirichlet boundary condition at y = 0, i.e., to problem (4.45). Note
that it is not hard to verify that ψ̃m and ψ̂m are “weak eigenfunctions” to (4.44) and (4.45), respectively,
i.e. they satisfy (4.47) and (4.48), respectively. This easily follows by an integration by parts and noting
that ψ̃m and ψ̂m satisfy both bounds in (4.50). We have thus showed the following lemma.

Lemma 4.12. Fix −1 < a < 1. Then the following two assertions hold:
(i) The eigenvalues and the “weak eigenfunctions” to the homogeneous Neumann problem (4.44) are

σ̃m = m ∈N, ψ̃m(y) = ÃmL( a−1
2 ),m

(
y2

4

)
, y > 0,

where Ãm ∈ R is arbitrary and L( a−1
2 ),m(·) is the mth Laguerre polynomial of order (a − 1)/2.

(ii) The eigenvalues and the “weak eigenfunctions” to the homogeneous Dirichlet problem (4.45) are

σ̂m =
1 − a

2
+ m ∈N, ψ̂m(y) = Ãmy1−aL( 1−a

2 ),m

(
y2

4

)
, y > 0,

where Ãm ∈ R is arbitrary and L( 1−a
2 ),m(·) is the mth Laguerre polynomial of order (1 − a)/2. Finally, both sets

{ψ̃m}m∈N and {ψ̂m}m∈N are orthogonal basis of L2(R+, dµy).

Let us now consider equation (4.46):

−|y|−a (
|y|aψ′

)′ + y
2
ψ′ = σψ, y , 0.

We begin our analysis by noting that if ψ = ψ(y) is a “weak eigenfunction” to equation (4.46), then
ψ̃(y) = ψ(−y) is a “weak eigenfunction” too, and so are all their linear combinations. Consequently, it
suffices to consider solutions ψ+ = ψ+(y) to equation (4.42) (already analyzed before) and then using
their “reflections” (w.r.t. y = 0) to get all solutions to (4.46) defined for all y ∈ R.
From the analysis carried out in the proof of Lemma 4.12, we get that the only admissible values for σ
are

σ̃m := m with eigenfunctions ψ̃+
m(y) = ÃmL( a−1

2 ),m

(
y2

4

)
, m ∈N,

defined for all y > 0, satisfying ∂a
yψ

+
m = 0 and both bounds in (4.50), and

σ̂m :=
1 − a

2
+ m with eigenfunctions ψ̂+

m(y) = Ãmy1−aL( 1−a
2 ),m

(
y2

4

)
, m ∈N,
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defined for all y > 0, satisfying ψ̂+
m(0) = 0 and both bounds in (4.50). As always Ãm ∈ R and m ∈N.

We begin by focusing on ψ̂+
m = ψ̂+

m(y). Clearly, there are two different ways to build a solution to
equation (4.46) with σ = σ̂m, through “reflection” methods. An odd or an even extension:

ψ̂o
m(y) :=

ψ̂+
m(y) if y ≥ 0
−ψ̂+

m(|y|) if y < 0,
ψ̂e

m(y) :=

ψ̂+
m(y) if y ≥ 0
ψ̂+

m(|y|) if y < 0.
(4.55)

Note that both ψ̂o
m and ψ̂e

m satisfy both bounds in (4.50) (this follows from the analysis done in
Subsection 4.4.1). However, it is not difficult to see that the even extension (the second formula in
(4.55)) “produces” a candidate eigenfunction ψ̂e

m = ψ̂e
m(y) which is not a “weak eigenfunction” to

problem (4.3), i.e., it does not satisfy (4.41). Indeed, using the equation of ψ̂e
m = ψ̂e

m(y) it is not hard to
show that ∫

R
(ψ̂e

m)′η′ dµy = σ̂m

∫
R
ψ̂e

mη dµy − 2(1 − a)η(0), for all η ∈ H1(R, dµy), (4.56)

where we recall that dµy := |y|aGa+1(y)dy. On the other hand, repeating the same procedure for the
odd extension ψ̂o

m = ψ̂o
m(y), we get that (4.56) holds for ψ̂o

m without the extra term 2(1−a)η(0) (it cancels
thanks to the oddness of ψ̂o

m), and so ψ̂o
m = ψ̂o

m(y) is an eigenfunction associated to the eigenvalue σ̂m.
Repeating the same procedure for ψ̃+

m = ψ̃+
m(y) it is easily seen that its even reflection is a “weak

eigenfunction” corresponding to the eigenvalue σ̃m = m, while its odd extension cannot be a “weak
eigenfunction” since it has a jump discontinuity at y = 0.

Consequently, we can conclude that problem (4.46) has eigenvalues and corresponding “weak
eigenfunctions” defined by

σ̃m := m ψ̃m(y) = ÃmL( a−1
2 ),m

(
y2

4

)
, m ∈N,

σ̂m :=
1 − a

2
+ m ψ̂m(y) = Ãm y|y|−aL( 1−a

2 ),m

(
y2

4

)
, m ∈N,

defined for all y ∈ R. We stress that, using the parity and the oddness of ψ̃m = ψ̃m(y) and ψ̂m = ψ̂m(y),
respectively, we immediately see that (up to multiplicative constants)∫

R
ψ̃m(y)ψ̃n(y)dµy =

∫
R
ψ̂m(y)ψ̂n(y)dµy = δm,n for all m,n ∈N,

while ∫
R
ψ̃m(y)ψ̂n(y)dµy = 0 for all m,n ∈N,

so that it follows that the family {ψm}m∈N ∪ {ψ̂m}m∈N is an orthogonal set of L2(R, dµy). The fact that
the family {ψm}m∈N ∪ {ψ̂m}m∈N is a basis of L2(R, dµy) follows since both {ψ̃m}m∈N and {ψ̂m}m∈N are
orthogonal basis of L2(R+, dµy). We thus have proved the following lemma.

Lemma 4.13. Fix −1 < a < 1. Then the set of eigenvalues of problem (4.46) is

{̃σm}m∈N ∪ {̂σm}m∈N,

where σ̃m and σ̂m correspond to the eigenvalues of the Neumann problem (4.44) and of the Dirichlet on (4.45),
respectively, and are defined in Lemma 4.12. Moreover, the eigenfunctions corresponding to σ̃m are

ψ̃m(y) = ÃmL( a−1
2 ),m

(
y2

4

)
, y ∈ R,
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where Ãm ∈ R is arbitrary and L( a−1
2 ),m(·) is the mth Laguerre polynomial of order (a− 1)/2, while the eigenfunc-

tions corresponding to σ̂m are

ψ̂m(y) = Ãm y|y|−aL( 1−a
2 ),m

(
y2

4

)
, y ∈ R,

where Ãm ∈ R is arbitrary and L( 1−a
2 ),m(·) is the mth Laguerre polynomial of order (1 − a)/2. Finally, the set

{ψ̃m}m∈N ∪ {ψ̂m}m∈N is an orthogonal basis of L2(R, dµy).

4.4.2 End of the proof of Theorem 4.1

We begin by proving part (i) and (ii). As in Section 4.2 and following again the ideas of [109], we look
for solutions to problems (4.1) and/or (4.2) in “separate variables” form V(x, y) = ϕ(x)ψ(y), x ∈ RN,
y > 0. So, substituting into (4.1) and/or (4.2), it is not difficult to get(

−∆xϕ +
x
2
· ∇xϕ

)
ψ +

[
−y−a (yaψ′

)′ + y
2
ψ′

]
ϕ = κϕψ in RN+1

+ ,

where, as always, ψ′ = dψ/dy. Hence, we recover the eigenvalue κ ∈ R as the sum of ν ∈ R and σ ∈ R
eigenvalues to

− ∆xϕ +
x
2
· ∇xϕ = νϕ, x ∈ RN (4.57)

and equation (4.42):

−y−a (yaψ′
)′ + y

2
ψ′ = σψ, y > 0,

respectively.
Step1: Analysis of (4.57). Evidently (4.57) is the classical Ornstein-Uhlenbeck eigenvalue problem

in the all Euclidean space. It possesses the sequence of eigenvalues

νn =
n
2
, n ∈N = {0, 1, . . .},

and a eigenfunction basis composed by the so-called Hermite polynomials

Hα(x) = Hn1(x1) . . .HnN (xN), x = (x1, . . . , xN) ∈ RN,

where α = (n1, . . . ,nN) ∈ ZN
≥0 and Hn j(·), j = 1, . . . ,N, is the nth

j 1 dimensional Hermite polynomial (cfr.
with [25, 200] and Appendix 4.6).

Step2: Analysis of (4.42) and conclusion. The complete analysis has bee carried out in Subsection 4.4.1.
Consequently, part (i) and (ii) of Theorem 4.1 follow by combining the above mentioned facts about
Hermite polynomials and classical Ornstein-Uhlenbeck eigenvalue problem, with the statement of
Lemma 4.12. In particular, the fact that Ṽα,m(x, y) = Hα(x)L( a−1

2 ),m(y) and V̂α,m(x, y) = Hα(x) y1−aL( 1−a
2 ),m(y)

form an orthogonal basis of L2(RN+1
+ , dµ) comes from the fact that both Hα(x) and L( a−1

2 ),m(y) (resp.

y1−aL( 1−a
2 ),m(y)) are orthogonal basis for L2(RN, dµx) and L2(R+, dµy), respectively, since the measure

dµ = dµ(x, y) defined on RN+1
+ is obtained the measure product of dµx and dµy.

Let us now focus on part (iii). Exactly as before we look for solutions to problem (4.3) with form
V(x, y) = ϕ(x)ψ(y), x ∈ RN, y ∈ R and we obtain that V = V(x, y) is an eigenfunction with eigenvalue
κ = ν + σ if ϕ = ϕ(x) satisfies (4.57) and ψ = ψ(y) satisfies (4.46):

−|y|−a (
|y|aψ′

)′ + y
2
ψ′ = σψ, y , 0.

Since the analysis of the above equation has already been done, we deduce part (iii) of Theorem 4.1
exactly as before, but in this case we apply Lemma 4.13 instead of Lemma 4.12. We end the proof by
stressing that the family {Ṽα,m(x, y)}(α,m) ∪ {V̂α,m(x, y)}(α,m) is an orthogonal basis of L2(RN+1, dµ). This
follows exactly as before. �
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4.5 Some Gaussian-Poincaré type inequalities and application

In this section we study some applications of the spectral analysis carried out above. In particular,
we will show three Gaussian-Poincaré type inequalities that will easily follows from the spectral
decomposition of the space L2

µ through the eigenfunctions to problems (4.1), (4.2) and (4.3). There
is wide literature Gaussian-Poincaré inequalities. The ones we get in Lemma 4.14 and Theorem 4.15
are not completely new (cfr. for instance with the works of Talenti and Tomaselli [187] and [191], or
even Muckenhoupt [156] and Barthe and Roberto [22]). However, w.r.t. the above quoted papers, we
will obtain sharp inequalities with optimal constants. This is essentially due to the availability of a
orthogonal basis of eigenfunctions constructed in the previous section.
We end the paragraph by stressing that these kind of inequalities have a self interest (as the literature
show) and, moreover, they will play an important role in the proof of some Liouville type theorems,
essential tools to get L∞loc convergence of the blow-up sequences. Out of clarity, we proceed with the
one dimensional case.

4.5.1 One-dimensional Gaussian Poincaré inequality

In Subsection 4.4.1 we have studied eigenvalue problem (4.46):

−|y|−a (
|y|aψ′

)′ + y
2
ψ′ = σψ, y , 0,

where the above equation is intended in the “weak” sense (cfr. with Definition 4.11) and we have
proved Lemma 4.13 which completely characterizes the spectrum of the above equation. In particular,
it provides a basis of eigenfunctions {ψm}m∈N = {ψ̃m}m∈N ∪ {ψ̂m}m∈N for the space L2(R, dµy) (as in
Lemma 4.13), where, as always,

dµy =
1

21+aΓ( 1+a
2 )
|y|ae−

y2

4 dy.

Let us highlight a very elementary but crucial fact. We know that {ψm}m∈N ⊂ H1(R, dµy) and∫
R
ψ′mψ

′ dµy = σm

∫
R
ψmψ dµy, for all m ∈N,

and for any ψ ∈ H1(R, dµy), where {σm}m∈N = {̃σm}m∈N ∪ {̂σm}m∈N (as in Lemma 4.13). From the above
integral characterization, we easily deduce∫

R
ψ′mψ

′

n dµy = σm

∫
R
ψmψn dµy = σmδm,n, for all m,n ∈N, (4.58)

up to “normalization”, thanks to the L2(R, dµy)-orthogonality of the eigenfunctions (δn,m denotes the
Kronecker delta). This means that not only the eigenfunctionsψm = ψm(y) are orthogonal in L2(R, dµy),
but also in H1(R, dµy). We end this paragraph by stressing that (cfr. with Subsection 4.2.2) the space
L2(R, dµy) is the closure of the space C∞c (R) w.r.t. to the norm

‖ψ‖2
L2
µy

:=
∫
R
ψ2(y) dµy,

while H1(R, dµy) is the closure of the same space but w.r.t. to the norm

‖ψ‖2
H1
µy

:=
∫
R
ψ2(y) dµy +

∫
R

(ψ′)2(y) dµy.

A natural consequence of the spectral analysis is the following Gaussian Poincaré type inequality.
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Lemma 4.14. The following three statements hold:
(i) For any ψ ∈ H1(R, dµy), it holds∫

R
ψ2 dµy −

(∫
R
ψ dµy

)2

≤
2

1 − a

∫
R

(ψ′)2 dµy.

Furthermore, the equality is attained if and only if ψ(y) = A or ψ(y) = Ay|y|−a, A ∈ R.
(ii) For any ψ ∈ H1

0(R+, dµy), it holds∫
R+

ψ2 dµy ≤
2

1 − a

∫
R+

(ψ′)2 dµy.

Furthermore, the equality is attained if and only if ψ(y) = Ay1−a, A ∈ R.
(iii) For any ψ ∈ H1(R+, dµy), it holds∫

R+

ψ2 dµy −

(∫
R+

ψ dµy

)2

≤

∫
R+

(ψ′)2 dµy.

Furthermore, the equality is attained if and only if ψ(y) = A or ψ(y) = A(1 − 1−a
2 −

y2

4 ), A ∈ R.

Proof. Take ψ ∈ H1(R, dµy) with ψ :=
∫
R
ψ dµy, and consider ΨM :=

∑M
m=1 cmψm such that

ΨM → ψ − ψ in L2(R, dµy),

where, of course, cm :=
∫
R
ψψm dµy. Note that the sum ΨM starts from the first nonconstant eigenfunc-

tion, since ψ−ψ is orthogonal to the eigenspace generated by the constants. Now, using the definition
of “weak eigenfunction” and the orthogonality condition in (4.58), it is not difficult to see that∫

R
(Ψ′M)2 dµy =

∫
R

Ψ′Mψ
′ dµy for all M ∈N0,

i.e. Ψ′M and Ψ′M − ψ
′ are orthogonal in L2(R, dµy). Consequently, we have

0 ≤
∫
R

(ψ′ −Ψ′M)2dµy =

∫
R

(ψ′)2dµy − 2
∫
R

Ψ′Mψ
′dµy +

∫
R

(Ψ′M)2dµy =

∫
R

(ψ′)2dµy −

∫
R

(Ψ′M)2dµy,

and so
∫
R

(Ψ′M)2dµy ≤
∫
R

(ψ′)2dµy < +∞, uniformly in M ∈ N0 (note that here we have used the fact
that ψ ∈ H1(R, dµy)). Finally, from the above bound and employing (4.58) again, we have∫

R
(ψ′)2dµy ≥

∫
R

(Ψ′M)2 dµy =

M∑
m=1

c2
m

∫
R

(ψ′m)2 dµy =

M∑
m=1

σmc2
m

∫
R
ψ2

m dµy

≥ σ
M∑

m=1

c2
m

∫
R
ψ2

m dµy = σ

∫
R

Ψ2
M dµy,

where we have set σ := minm∈N0{σm} = σ̂0 = (1 − a)/2. Consequently, passing to the limit as M→ +∞,
we deduce ∫

R
(ψ′)2 dµy ≥

∫
R

(ψ − ψ)2 dµy =

∫
R
ψ2 dµy −

(∫
R
ψ dµy

)2

,

obtaining the desired inequality. The last part of the statement follows from the fact thatψ(y) = Ay|y|−a

is the first non constant eigenfunction to problem (4.46) (with eigenvalue σ̂0 = (1 − a)/2).
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The proof of (ii) and (iii) is very similar to the one of part (i) and we omit it (note that we just
have to use the bases of eigenfunctions {ψ̂m}m∈N for (ii) and {ψ̃m}m∈N for (iii), instead of {ψm}m∈N). We
just mention that in (ii) we work with the space H1

0(R, dµy) which does not contain constant functions
different from the trivial one (this is the reason because we do not need to employ the average of ψ
in Gaussian Poincaré inequality), while in (iii) it is easily seen that the first nonconstant eigenfunction

ψ(y) = A(1 − 1−a
2 −

y2

4 ), A ∈ R has zero mean (w.r.t. to the measure dµy). Note that since we are now
working with functions defined for y > 0, the normalization constant of the probability measure dµy
is different from the one of Lemma 4.14 (cfr. with Subsection 4.2.1). �

4.5.2 (N+1)-dimensional Gaussian Poincaré inequality

For the general case, we proceed as before. We consider problem (4.3):

−LaV +
(x, y)

2
· ∇V = κV in RN+1.

From Theorem 4.1 we know that it has the set of eigenvalues {κn,m}n,m∈N = {κ̂n,m}n,m∈N ∪ {κ̃n,m}n,m∈N
where

κ̃n,m :=
n
2

+ m, κ̂n,m :=
n
2

+ m +
1 − a

2
for all n,m ∈N,

while the set of eigenfunctions is {Vα,m}(α,m) = {Ṽα,m}(α,m) ∪ {V̂α,m}(α,m), where the eigenfunctions can be
of two types

Ṽα,m(x, y) = Hα(x)ψ̃m(y), V̂α,m(x, y) = Hα(x)ψ̂m(y), for all (α,m) ∈ ZN
≥0 ×N,

where as before ψ̃m(y) = L( a−1
2 ),m(y2/4) and ψ̂m(y) = y|y|−aL( 1−a

2 ),m(y2/4) and Hα(·) is a N-dimensional
Hermite polynomial of order |α|. We recall that similarly to the 1-dimensional case the set {Vα,m}(α,m) is
an orthogonal basis of L2(RN+1, dµ), where

dµ(x, y) =
1

21+aΓ( 1+a
2 )(4π)N/2

|y|ae−
|x|2+y2

4 dxdy.

Since the sets of eigenvalues and eigenfunctions are countable, we can drop one index and denote by
κ j the jth eigenvalue with corresponding eigenfunctions V j, j ∈ N. In this setting, we have that the
first nonzero eigenvalue depends on the parameter −1 < a < 1:

ν∗ := min
j∈N
{κ j , 0} =

1
2

min{1, 1 − a}.

This is the unique remarkable difference w.r.t. the 1-dimensional case. We thus have the following
theorem.

Theorem 4.15. The following three statements hold:
(i) For any V ∈ H1(RN+1, dµ), it holds∫

RN+1
V2 dµ −

(∫
RN+1

V dµ
)2

≤ Pa

∫
RN+1
|∇V|2 dµ,

where Pa := 1/ν∗ = 2/min{1, 1 − a}. Furthermore, the equality is attained if and only if V(x, y) = A or,
depending on −1 < a < 1:

V(x, y) =


Ax j if a < 0 for some j ∈ {1, . . . ,N}
Ax j if a = 0 for some j ∈ {1, . . . ,N + 1}
Ay|y|−a if a > 0,
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where A ∈ R and we have used the convention xN+1 = y.
(ii) For any V ∈ H1

0(RN+1
+ , dµ), it holds∫

RN+1
+

V2 dµ ≤
2

1 − a

∫
RN+1

+

|∇V|2 dµ.

Furthermore, the equality is attained if and only if V(x, y) = Ay1−a, A ∈ R.
(iii) For any V ∈ H1(RN+1

+ , dµ), it holds∫
RN+1

+

V2 dµ −
(∫
RN+1

+

V dµ
)2

≤ 2
∫
RN+1

+

|∇V|2 dµ.

Furthermore, the equality is attained if and only if V(x, y) = A or V(x, y) = Ax j, for some j ∈ {1, . . . ,N} and
A ∈ R.

Remark. Note that, since the Gaussian-Poincaré constants do not depend on the spacial dimension
N, they can be extended to infinite dimensional spaces (cfr. with Beckner [23]).

Proof. We begin by proving part (i), following the ideas of the case N = 1. Take V ∈ H1(RN+1, dµ)
with V :=

∫
RN+1 V dµ, and we approximate it with the sequence ΨJ :=

∑J
j=1 c jV j such that

ΨJ → V − V in L2(RN+1, dµ), c j :=
∫
RN+1

V jV dµ.

Proceeding as before, we easily find that∫
RN+1
|∇ΨJ |

2 dµ =

∫
RN+1
∇ΨJ∇V dµ for all J ∈N0,

and so
∫
RN+1 |∇ΨJ |

2 dµ ≤
∫
RN+1 |∇V|2 dµ. Hence,

∫
RN+1
|∇V|2dµ ≥

∫
RN+1
|∇ΨJ |

2 dµ =

J∑
j=1

c2
j

∫
RN+1
|∇V j|

2 dµ =

J∑
j=1

σ jc2
j

∫
RN+1

V2
j dµ

≥ ν∗

J∑
j=1

c2
j

∫
RN+1

V2
j dµ = ν∗

∫
RN+1

Ψ2
J dµ,

where now the minimum of the eigenvalues ν∗ := min j{κ j , 0} = min{1, 1 − a}/2. Passing to the limit
as J→∞we get the inequality of statement (i).
To prove the second part of the statement, let us firstly fix −1 < a < 0. In this case we have ν∗ = 1/2
and the corresponding eigenfunctions are V(x, y) = Ax j for j ∈ {1, . . . ,N}. We thus conclude by the
definition of “weak eigenfunction” and the fact that V(x, y) = Ax j has mean zero for any j ∈ {1, . . . ,N}
(w.r.t. the measure dµ). Similarly, if 0 < a < 1 it turns out that ν∗ = (1 − a)/2 and the corresponding
eigenfunctions are V(x, y) = Ay|y|−a (also in this case they have mean zero). Finally, if a = 0 we have
ν∗ = 1/2 and the eigenfunctions are V(x, y) = Ax j for j ∈ {1, . . . ,N} and V(x, y) = Ay (note that we get
back the classical statement, cfr. for instance with [23]). This conclude the proof of part (i).

To prove part (ii) and (iii) we employ the bases of eigenfunctions {V̂ j} j = {V̂(α,m)}(α,m) for (ii) and
{Ṽ j} j = {Ṽ(α,m)}(α,m) for (iii), instead of {V j} j = {V(α,m)}(α,m). Note that w.r.t. the proof of Lemma 4.14,
the first eigenvalue to the Neumann problem (4.2) is ν∗ = 1/2 with corresponding eigenfunctions
V(x, y) = Ax j for j ∈ {1, . . . ,N}. �
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4.6 Appendix: Hermite and Laguerre polynomials

In this brief appendix, we recall some very well known facts about the spectrum of the eigenvalue
problems

− ∆ϕ +
x
2
· ∇ϕ = νϕ, x ∈ RN, ν ∈ R, (4.59)

and

− r
d2ζ
dr
− (1 + α − r)

dζ
dr

= σζ, r > 0, µ ∈ R, (4.60)

known in literature as Ornstein-Uhlenbeck and Laguerre eigenvalue problems, respectively. The basic
reference is the classical book of Szegö [186]. For problem (4.59), we will refer also to the more recent
work [25, 200].

Review for problem (4.59). We divide the presentation in two cases, depending on the dimension
N = 1 or N ≥ 2.
• Case N = 1. As explained in Section 7 of the recent survey [200], the set of eigenvalues of problem
(4.59) is given by the half nonnegative integers

νn =
n
2
, n ∈N = {0, 1, . . .},

and the corresponding eigenfunctions are the Hermite polynomials {Hn}n∈N, given by the compact
formula (see Chapter 5 of [186])

H̃n(x) =
(−1)n

e−x2

dn

dxn

(
e−x2)

,

Hn(x) = H̃n

(x
2

)
x ∈ R, n ∈N,

or the recursive one

H̃n(x) =

(
2x −

d
dx

)
H̃n−1(x),

Hn(x) = H̃n

(x
2

)
x ∈ R, n ∈N0,

where H̃0(x) = 1. For instance:

H0(x) = 1, H1(x) = x, H2(x) = x2
− 2, H3(x) = x3

− 6x,

and so on, and their generating function is

eϑ(x−ϑ) =

∞∑
n=0

ϑn Hn(x)
n!

, x ∈ R.

Finally, the family {Hn}n∈N is an orthogonal basis of L2(R, dµ1
x), where

dµ1
x :=

1
√

4π
e−

x2
4 dx,

in the sense that if ϕ = ϕ(x) belongs to L2(R, dµ1
x), i.e., it is Lebesgue measurable and satisfies∫

R
ϕ2(x)dµ1

x < +∞,
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then

ϕ(·) =

∞∑
n=0

ϕnHn(·) in L2(R, dµ1
x),

where {ϕn}n∈N ⊂ R (see Chapter 5 of [186]) and they are orthogonal in the sense that∫
R
ϕm(x)ϕn(x)dµ1

x = 2nn! δn,m, n,m ∈N.

• Case N ≥ 2. In the multidimensional case, for any multi-index α = (n1, . . . ,nN) ∈ ZN
≥0, we set:

Hα(x) = Hn1(x1) . . .HnN (xN), x = (x1, . . . , xN) ∈ RN, (4.61)

where Hn j(·), j = 1, . . . ,N, is the nth
j 1-dimensional Hermite polynomial. Then the set {Hα}α∈ZN

≥0
(see

Theorem 11 of [25]) is an orthogonal basis of L2(RN, dµx), where

dµx =
1

(4π)N/2 e−
|x|2

4 , x ∈ RN.

The “decomposition” in (4.61), is due to the “factorization” property of the operator

Oxϕ := −∆xϕ +
x
2
· ∇xϕ.

Indeed, if x = (x1, x2) ∈ RN and ϕ(x) = ϕ1(x1)ϕ2(x2), it is straightforward to see that

Oxϕ = Ox(ϕ1ϕ2) = ϕ2Ox1ϕ1 + ϕ1Ox2ϕ2,

and so, we recover the eigenvalues νOx as the sum of the eigenvalues νOx1
and νOx2

, while the eigen-
functions ϕ(x) as the product of ϕ1 and ϕ2. From this observation it follows in particular that the
eigenvalues of Ox are the nonnegative half-integers even when the space dimension is higher than
one.
Finally, the space generated by the eigenfunctions of “order n”:

V|α| := span{Hα : |α| := n1 + . . . + nN = n}

is a subspace of L2(RN, dµx) of dimension

dimVα =

(
n + N − 1

n

)
.

For instance, we haveV0 = R,V1 = span{x j : j = 1, . . . ,N}, and so on.

Review for problem (4.60). For α > −1, we consider solutions to (4.60) defined on the half-real line
R+ = (0,+∞) or R+ = [0,+∞).
Let us firstly note that equation (4.60) is a Kummer confluent hypergeometric equation (cfr. with
Chapter 13 of [1]):

r
d2ζ

dr2 + (b2 − r)
dζ
dr
− b1ζ = 0, r > 0, (4.62)

with b1 = −σ and b2 = 1 + α. For any b1 ∈ R and b2 , 0, equation (4.62) possesses two independent
solutions

M(b1, b2, r) =

∞∑
j=0

(b1) j

(b2) j

r j

j!
, r > 0
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where (b) j := b(b + 1) . . . (b + j − 1), (b)0 := 1 and (·) j denotes the Pochhammer’s symbol (i.e. the rising
factorial), and

M̃(b1, b2, r) =
π

sin b2π

[
M(b1, b2, r)

Γ(1 + b1 − b2)Γ(b2)
− r1−b2

M(1 + b1 − b2, 2 − b2, r)
Γ(b1)Γ(2 − b2)

]
, r > 0.

The function M(b1, b2, ·) is called Kummer function (or confluent hypergeometric function) while
M̃(b1, b2, ·) is known as Tricomi function (or confluent hypergeometric function of the second kind). It
thus follows that all solutions to (4.62) are given by

ζ(r) = A1M(b1, b2, r) + A2M̃(b1, b2, r), r > 0,

where A1,A2 ∈ R. This two independent solutions have some remarkable properties that are needed
in our proofs. We briefly recall the most important ones.
• Properties of the Kummer function. First of all, we note that M(b1, b2, r) is finite for r ∼ 0+, while singular
for r ∼ +∞, depending on b1 ∈ R.
So, if −b1 = m ∈N = {0, 1, . . .}, then M(−m, b2, r) is a polynomial in r > 0:

M(−m, b2, r) =

m∑
j=0

(−m) j

(b2) j

r j

j!
, r > 0.

If −b1 <N, the function M(b1, b2, ·) behaves at infinity as follows (cfr. with formula 13.1.4 of [1]):

M(b1, b2, r) ∼
Γ(b2)
Γ(b1)

errb1−b2 , for r ∼ +∞. (4.63)

• Properties of the Tricomi function. From the expression of M̃(b1, b2·), it follows that the Tricomi function
can be singular for r ∼ 0+. In particular, if b2 > 1, it holds (cfr. with formulas 13.5.6, 13.5.7, 13.5.8 of [1])

M̃(b1, b2, r) ∼
Γ(b2 − 1)

Γ(b1)
r1−b2 , for r ∼ 0+. (4.64)

Now, coming back to equation (4.60):

−r
d2ζ
dr
− (1 + α − r)

dζ
dr

= σζ, r > 0, σ ∈ R,

it is well-known that for σ = m ∈N (i.e. −b1 ∈Nwith the notation of equation (4.62)), there is a unique
solution to (4.60) denoted with

ζ(r) = L(α),m(r), r > 0, m ∈N

and called mth Laguerre polynomial of order α > −1 (we mention that the usual way to refer to
Laguerre polynomials is L(α)

m and here we change notation to simplify the writing). It is well-known
that

L(α),m(r) =

(
m + α

m

)
M(−m, 1 + α, r), r > 0, m ∈N, (4.65)

where M(·, ·, ·) denotes the Kummer function introduced before. As for the Hermite, there are different
ways for generating all Laguerre polynomials, like the so called Rodrigues formula (cfr. with Chapter
5 of [186]):

L(α),m(r) =
1

m! rαe−r
dm

drm
(
rα+me−r) , r > 0, m ∈N,
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and/or

L(α),m(r) =

m∑
j=0

(−1) j
(
m + α
m − j

)
r j

j!
, r > 0, m ∈N,

(cfr. with the expression given in terms of Kummer and Tricomi functions). For instance:

L(α),0(r) = 1, L(α),1(r) = 1 + α − r, L(α),2(r) =
(1 + α)(2 + α)

2
− (2 + α)r +

r2

2
,

and so on. Moreover, it will be useful to keep in mind that

dL(α),m

dr
(r) = −L(α+1),m−1(r) r > 0,m ∈N0, (4.66)

which links the derivative of the mth Laguerre polynomial of order α with the (m − 1)th Laguerre
polynomial of order α + 1. Going on with the parallelism with Hermite polynomials, we have that
Laguerre polynomials generating function is

1
(1 − ϑ)1+α

e−
ϑ

1−ϑ r =

∞∑
m=0

ϑmL(α),m(r), r > 0.

Finally, we recall that the family {L(α),m(r)}m∈N is an orthogonal basis of L2(R+, dν), where

dν(r) := rαe−rdr,

in the sense that if ζ = ζ(r) belongs to L2(R+, dν), i.e., it is Lebesgue measurable and satisfies∫
∞

0
ζ2(r)dν(r) =

∫
∞

0
ζ2(r)rαe−rdr < +∞,

then

ζ(·) =

∞∑
m=0

ζ(α),mL(α),m(·) in L2(R+, dν),

where {ζ(α),m}m∈N ⊂ R (see Chapter 5 of [186]). In particular, we have the orthogonality condition∫
∞

0
L(α),m(r)L(α),n(r)dν(r) = Γ(1 + α)

(
n + α

n

)
δn,m, n,m ∈N.



Chapter 5

Blow-up analysis and nodal set of
solutions to equation (1)

This is the last chapter and it contains the most significative results of this second part. We focus on
the study of the asymptotic behaviour as λ→ 0+ of the “normalized blow-up family”

Uλ(x, y, t) :=
U(λx, λy, λ2t)√

H(λ2,U)
, λ > 0,

where U = U(x, y, t) is a “strong solution” to equation (7), or to problems (8)/(9), and H(·,U) is defined
as in Section 4.3. In this analysis the parabolically homogeneous profiles studied in Chapter 4 and the
decomposition of the space L2(RN+1, dµ) in orthogonal eigenfunctions play a crucial role. As we will
see, this blow-up procedure will be essential in the study of the nodal set of solutions to equation (1),
which is one of the most important aims of the entire work.

5.1 Main results

As we have said, in this chapter the blow-up procedure begins and we prove two main “blow-up
classification” results. The first one is prove in Section 5.2 by combining the monotonicity properties
of the Almgren-Poon quotient and the spectral analysis studied in the previous chapter.

Theorem 5.1. Let U = U(x, y, t) be a nontrivial “strong solution” to equation (7). Then there exist n0,m0 ∈N
such that the following assertions hold:

(i) The Almgren-Poon quotient N(t,U) (cfr. with the formula in (4.33)) satisfies

lim
t→0+

N(t,U) = κn0,m0 ,

where the admissible values for κn,m are

κn,m = κ̃n,m :=
n
2

+ m or κn,m = κ̂n,m :=
n
2

+ m +
1 − a

2
,

are the eigenvalues of problem (4.3), for any m,n ∈N.
(ii) For all T∗ > 0, we have as λ→ 0+

∫ T∗

0

∥∥∥∥∥∥∥∥λ−2κn0 ,m0 U(λx, λy, λ2t) − tκn0 ,m0

∑
(α,m)∈J0

vα,mVα,m

(
x
√

t
,

y
√

t

)∥∥∥∥∥∥∥∥
2

H1(RN+1,dµt)

dt→ 0,

149
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where vα,m are suitable constants, the sum is done over the set of indices

J0 := {(α,m) ∈ ZN
≥0 ×N : |α| = n ∈N and κn,m,= κn0,m0},

and the integration probability measure is defined in (4.15). Moreover,

Vα,m(x, y) :=
Vα,m(x, y)
‖Vα,m‖L2

µ

, α ∈ ZN
≥0, m ∈N,

are the normalized versions of the eigenfunctions Vα,m = Vα,m(x, y) to problem (4.3) corresponding to the
eigenvalue κn,m and defined in the statement of Theorem 4.1.

Some comments are now in order. First of all, we stress that the above theorem provides relevant
(and in some sense sharp) information about the behaviour of the “normalized” blow-up of solutions
to equation (7), in terms of explicit eigenfunctions, given by combinations of N-dimensional Hermite
polynomials and Laguerre polynomials of different orders. The second important fact is that we obtain
a version of the above theorem for the “extensions” of the solutions to the nonlocal equation (1):

Hsu = 0 a.e. in RN
× (−T, 0),

where 0 < s < 1 and T > 0 are fixed, H is the “Heat Operator” H := ∂τ − ∆, and u ∈ dom(Hs) (cfr. with
what explained in the introduction of Part II). As we have recalled before, the key fact in our approach
is that the function U = U(x, y, t) defined in (2) satisfies problem (6) and so:∂τU − y−a

∇ · (ya
∇U) = 0 in RN+1

+ ×R,

U(x, 0, τ) = u(x, τ) in L2(RN+1)

with
lim

y→0+
ya∂yU(x, y, τ) = ∂a

yU = 0 in L2(RN
× (−T, 0)).

The blow-up classification result for the extension of solutions to the nonlocal equation (1) is the
following.

Corollary 5.2. Let u ∈ dom(Hs) be a nontrivial solution to equation (1) and let U = U(x, y, τ) be defined as in
(2). Then there exist n0,m0 ∈N such that the following assertions hold:

(i) The Almgren-Poon quotient N(t,U) (cfr. with the formula in (4.26)) satisfies

lim
t→0+

N(t,U) = lim
t→0+

t
∫
RN+1

+
|∇U|2(x, y,−t) dµt(x, y)∫

RN+1
+

U2(x, y,−t) dµt(x, y)
= κ̃n0,m0 ,

where the admissible values for κ̃n,m are the eigenvalues to problem (4.1):

κ̃n,m =
n
2

+ m, n,m ∈N.

(ii) For all T∗ > 0, we have as λ→ 0+

∫ T∗

0

∥∥∥∥∥∥∥∥λ−2κ̃n0 ,m0 U(λx, λy,−λ2t) − tκ̃n0 ,m0

∑
(α,m)∈J̃0

vα,mVα,m

(
x
√

t
,

y
√

t

)∥∥∥∥∥∥∥∥
2

H1(RN+1
+ ,dµt)

dt→ 0,

where vα,m are suitable constants, the sum is done over the set of indices

J̃0 := {(α,m) ∈ ZN
≥0 ×N : |α| = n ∈N and κ̃n,m,= κ̃n0,m0},
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and the integration probability measure is defined in (4.12). Moreover,

Vα,m(x, y) :=
Vα,m(x, y)
‖Vα,m‖L2

µ

, α ∈ ZN
≥0, m ∈N,

are the normalized versions of the eigenfunctions Vα,m = Vα,m(x, y) to problem (4.1) corresponding to the
eigenvalue κ̃n,m and defined in the statement of Theorem 4.1.

Note that Theorem 5.2 gives a blow-up classification for the extension of solutions u = u(x, t) to
equation (1). It is natural to ask themselves whether it is possible to deduce a blow-up classification
for u = u(x, t), in terms of a suitable fractional Sobolev norm. However, w.r.t. the elliptic setting, in
the case of the operator (∂τ − ∆)s, it is not clear which is the formula linking the H1 type norm of the
extension U = U(x, y, t) and a fractional Sobolev norm of u = u(x, t) (cfr. with formula (3.7) of [54]) and,
moreover, if the H1-Gaussian type norm defined in RN+1

+ (as dµt = dµt(x, y)) possess a corresponding
fractional version on the trace RN

× {0}.
We complete the blow-up analysis showing that the convergence obtained in Theorem 5.1 is also

locally uniform in RN+1
× (0,T∗). To do that, some Liouville type results that we will show in Section

5.3 turn out to be essential. More precisely, we show the following theorem.

Theorem 5.3. Let U = U(x, y, t) be a “strong solution” to equation (7) and take n0,m0 ∈N such that

lim
t→0+

N(t,U) = κn0,m0 ,

where κn0,m0 are as in Theorem 5.1. Then, for any T∗ > 0 and any compact set K ⊂ RN+1
× (0,T∗), we have as

λ→ 0+ ∥∥∥∥∥∥∥∥λ−2κn0 ,m0 U(λx, λy, λ2t) − tκn0 ,m0

∑
(α,m)∈J0

vα,mVα,m

(
x
√

t
,

y
√

t

)∥∥∥∥∥∥∥∥
L∞(K)

→ 0,

where vα,m ∈ R, Vα,m = Vα,m(x, y) and J0 are defined as in the statement of Theorem 5.1.

As before, we obtain a corresponding version for the extensions of solutions to the nonlocal
equation (1).

Corollary 5.4. Let u ∈ dom(Hs) be a nontrivial solution to equation (1) and let U = U(x, y, τ) be defined as in
(2). Take n0,m0 ∈N such that

lim
t→0+

N(t,U) = lim
t→0+

t
∫
RN+1

+
|∇U|2(x, y,−t) dµt(x, y)∫

RN+1
+

U2(x, y,−t) dµt(x, y)
= κ̃n0,m0 ,

where κ̃n0,m0 are as in Corollary 5.2. Then, for any T∗ > 0 and any compact set K ⊂ RN+1
+ × (0,T∗), we have as

λ→ 0+ ∥∥∥∥∥∥∥∥λ−2κ̃n0 ,m0 U(λx, λy,−λ2t) − tκ̃n0 ,m0

∑
(α,m)∈J̃0

vα,mVα,m

(
x
√

t
,

y
√

t

)∥∥∥∥∥∥∥∥
L∞(K)

→ 0,

where vα,m ∈ R, Vα,m = Vα,m(x, y) and J̃0 are defined as in the statement of Corollary 5.2.

Now, to better describe the results concerning the analysis of the nodal set of solutions to equation
(1), we need to introduce some notations. So, let U = U(x, y, t) be a “strong solution” to problem (8)
and let

Γ(U) := {(x, y, t) ∈ RN+1
+ × (0,T) : U(x, y, t) = 0} = U−1({0})
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be its nodal set. For any p0 ∈ Γ(U) ∩ Σ, we consider the transformation

Up0(x, y, t) := U(x0 + x, y, t0 + t), (5.1)

and the Almgren-Poon quotient “centered at p0 = (X0, t0) = (x0, 0, t0)”:

N(p0, t,U) :=
(t − t0)I(p0, t,U)

H(p0, t,U)
, t > t0

where, setting Gp0
a (x, y, t) := Ga(x − x0, y, t − t0), we define

H(p0, t,U) :=
∫
RN+1

+

|y|aU2(x, y, t)Gp0
a (x, y, t) dxdy, t > t0

I(p0, t,U) :=
∫
RN+1

+

|y|a|∇U|2(x, y, t)Gp0
a (x, y, t) dxdy, t > t0.

Recall that
Σ := {(x, y, t) ∈ RN+1

+ × (0,T) : y = 0} = RN
× {0} × (0,T).

Now, setting H(0, t,U) := H(t,U), I(0, t,U) := I(t,U) (and consequently N(0, t,U) := N(t,U), cfr. with
(4.33)), it immediately seen that

H(p0, t,U) = H(0, t − t0,Up0),
I(p0, t,U) = I(0, t − t0,Up0),

N(p0, t,U) = N(0, t − t0,Up0), t > t0.

(5.2)

As a first important observation, we point out that the function

p0 → N(p0, t+
0 ,U) := lim

t→t+0
N(p0, t,U),

is upper semi-continuous on Γ(U)∩Σ. This easily follows from the fact that N(·, t+
0 ,U) is defined as an

infimum of a family of continuous functions t→ N(p0, t,U) (cfr. with Lemma 4.5).
Secondly, since problem (7) is invariant under translations of type (5.1), we deduce that both Corollary
5.2 and Corollary 5.4 still hold true, by replacing the blow-up Uλ(x, y, t) = λ−2κU(λx, λy, λ2t) with

Up0,λ(x, y, t) :=
Up0(λx, λy, λ2t)

λ2κ =
U(x0 + λx, λy, t0 + λ2t)

λ2κ , (5.3)

and the limit profiles Θ = Θ(x, y, t), with

Θp0(x, y, t) = tκ
∑

(α,m)∈J0

vα,mVα,m(x/
√

t, y/
√

t),

where κ = κ(p0) := limt→t+0
N(p0, t,U) and vα,m = vα,m(p0) may depend on p0. Of course, thanks to (5.2)

it must be
κ = κ(p0) ∈ K̃ := {κ̃n,m}n,m∈N, (5.4)

where, as always, κ̃n,m := n
2 + m. More precisely, for such p0 ∈ Γ(U) ∩ Σ and for all T∗ > 0, we have as

λ→ 0+ ∫ T∗

0

∥∥∥∥∥∥U(x0 + λx, λy, t0 + λ2t)
λ2κ −Θp0(x, y, t)

∥∥∥∥∥∥2

H1(RN+1
+ ,dµt)

dt→ 0. (5.5)

Similarly, for any compact set K ⊂ RN+1
+ × [0,T∗), it holds∥∥∥∥∥∥U(x0 + λx, λy, t0 + λ2t)

λ2κ −Θp0(x, y, t)

∥∥∥∥∥∥
L∞(K)

→ 0, as λ→ 0+.

The above observations motivate the following important definitions.
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Definition 5.5. Let U = U(x, y, t) be a “strong solution” to problem (8). For any κ ∈ K̃ , we define

Γκ(U) :=
{

p0 ∈ Γ(U) ∩ Σ : lim
t→t+0

N(p0, t,U) = κ

}
.

In particular, we set
R(U) := Γ1/2(U)
S(U) := Γ(U) \ R(U).

Definition 5.6. Let U = U(x, y, t) be a “strong solution” to problem (8) with p0 ∈ Γκ(U) and κ ∈ K̃ . We
define the set of all the possible “blow-up limits” of U at p0 as

Bκ(U) :=

Θp0(x, y, t) = tκn0 ,m0

∑
(α,m)∈J0

vα,mVα,m

(
x
√

t
,

y
√

t

) ,
where n0,m0 ∈ N are chosen so that κ = κn0,m0 (cfr. with (5.4)), while J0, vα,m, and Vα,m = Vα,m(·, ·) are as in
Corollary 5.2.
Furthermore, the “tangent map” of U at p0 is the unique Θp0 ∈ Bκ(U) such that for any compact set K ⊂

RN+1
+ × [0,∞)

U(x0 + λx, λy, t0 + λ2t)
λ2κ → Θp0(x, y, t) uniformly on K,

as λ→ 0+.

Remark. If u ∈ dom(Hs) is a nontrivial solution to (1), u(x, t) = u(x,−t) and U(x, y, t) = U(x, y,−t),
where U = U(x, y, τ) is the extension of u = u(x, τ) defined in (2), we will set

Γκ(u) := {(x0, τ0) ∈ Γ(u) : (x0,−τ0) ∈ Γκ(u)} for all κ ∈ K̃
R(u) := Γ1/2(u)
S(u) := Γ(u) \ R(u).

(5.6)

where Γκ(u) := Γκ(U) for all κ ∈ K̃ and R(u) := R(U) = Γ1/2(U). We are now ready to state the first
main theorem which gives a natural but not trivial dimensional estimate on the nodal set of solutions
to (1). Its proof is based the blow-up theorems stated above and a classical theorem called Federer’s
reduction principle (cfr. with Chen [63]).

Theorem 5.7. Let u ∈ dom(Hs) be a nontrivial solution to (1). Then the Hausdorff dimension of its nodal set
satisfies the bound:

dimP(Γ(u)) ≤ N + 1,

where dimP(E) denotes the “parabolic Hausdorff dimension” of a set E ⊂ RN
×R.

Once the bound above is established, we move forward with the analysis of the “regular” set
R(u) = Γ1/2(u). In particular, we clarify the relation between “regular points” and the limit of the
Almgren-Poon quotient “centered at p0” of “strong solutions” to problem (8). The main goal is to
prove the “regular” points are regular indeed.

Theorem 5.8. (Regularity of R(U)) The following two assertions hold.
(i) Let U = U(x, y, t) be a “strong solution” to problem (8) and let us define

R(U) := Γ1/2(U) =

{
p0 ∈ Γ(U) ∩ Σ : lim

t→t+0
N(p0, t,U) =

1
2

}
.
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Then, for any p0 = (x0, 0, t0) ∈ R(U) it holds ∇xU(p0) , 0.
(ii) Let u ∈ dom(Hs) be a nontrivial solution to (1) and let R(u) be defined as in (5.6). Then R(u) is a locally

C
1-manifold of Hausdorff dimension N.

We are thus left to study the “singular set” S(u) of u = u(x, τ) defined in (5.6):

S(u) := Γ(u) \ R(u) =
⋃

κ∈1+N2

Γκ(u) =
⋃

κ∈1+N2

{
(x0, 0,−t0) ∈ Γ(U) ∩ Σ : lim

t→t+0
N(p0, t,U) = κ

}
,

where, as always, U(x, y, t) = U(x, y,−t) and U = U(x, y, τ) is the extension of u = u(x, τ) defined in (2)
(cfr. with Definition 5.5).

This part contains the main novelties w.r.t. the classical case. Note indeed that Theorems 5.7 and
5.8 hold also for solutions to the classical Heat Equation, as explained in the introduction (cfr. with the
formulas in (12)-(13)). However, we will see that for solutions to (1) the dimensional estimate on the
singular set cannot be valid in this nonlocal framework (cfr. with the second formula in (12) and the
last to formulas of (13)). This can be easily guessed by taking N = 1 and noting that if U = U(x, y, t)
is a “strong solution” to problem (8) with (0, 0) ∈ Γ(U) and Almgren-Poon limit κ = 1, then its “blow
up limit” must be a linear combination of the “right” re-scaled eigenfunctions (cfr. with the end of
Section 5.2):

ΘA,B(x, y, t) = AΘ̃2,0(x, y, t) + BΘ̃0,1(x, y, t) = A(x2
− 2t) + B

[(1 + a
2

)
t −

y2

4

]
= Ax2 +

[1 + a
2

B − 2A
]

t −
B
4

y2.

In particular, taking A = 1, B = 4/(1 + a) and A = 0, B = 4/(1 + a), we obtain

Θ1, 4
1+a (x, y, t) = x2

−
y2

1 + a
, Θ0, 4

1+a (x, y, t) = 2t −
y2

1 + a
,

with traces on RN
×R

ϑ1, 4
1+a (x, t) := Θ1, 4

1+a (x, 0, t) = x2, ϑ0, 4
1+a (x, t) := Θ0, 4

1+a (x, 0, t) = 2t,

respectively. Consequently, since dimH (S(ϑ1, 4
1+a )) = dimH (S(ϑ0, 4

1+a )) = 1 , 0, we understand that the
non-locality of our operator plays a central role in the way in which “s-caloric functions” approach
their nodal sets. Similarly, recalling that

Zt(u) := {x ∈ RN : u(x, t) = 0},

we note that dimH (Z0(ϑ0, 4
1+a )) = 1 , 0 and so all the relations in (13) seems not hold, too.

Now, the first main result concerns the asymptotic behaviour and the differentiability of a solution
to problem (8) near nodal points in Γκ(U). Furthermore, it establishes the continuity of the tangent
map p0 → Θp0 , seen as a function from Γκ(U) to Bκ(U).

Theorem 5.9. (Continuous dependence of the “blow-up limits”) Let U = U(x, y, t) be a nontrivial “strong
solution” to problem (8), p0 = (X0, t0) ∈ Γκ(U), and Θp0 = Θp0(x, y, t) ∈ Bκ(U) its “tangent map” at p0 (cfr.
with Definition 5.6 and Theorem 5.1). Then the following assertions hold:

(i) We have as ‖(x, y, t)‖2 := |x|2 + y2 + t→ 0+

Up0(x, y, t) = Θp0(x, y, t) + o(‖(x, y, t)‖2κ).

(ii) The map p0 → Θp0 from Γκ(U) to Bκ(U) is continuous.



CHAPTER 5. BLOW-UP ANALYSIS AND NODAL SET OF SOLUTIONS TO EQUATION (1) 155

(iii) For any compact set K ⊂ Γκ(U) there exists a modulus of continuity σ = σ(K) with σ(0+) = 0, such
that as ‖(x, y, t)‖ → 0+

|Up0(x, y, t) −Θp0(x, y, t)| ≤ σ(‖(x, y, t)‖) ‖(x, y, t)‖2κ,

for any p0 ∈ K.

Finally, to state the last theorem of this treatise, we must give two more definitions inspired by the
work of Danielli, Garofalo, Petrosyan and To [71] (cfr. with Definition 12.9 of that paper).

Definition 5.10. Let u ∈ dom(Hs) be a nontrivial solution to (1) and (x0, τ0) ∈ Γκ(u). We define the spatial
dimension of Γκ(u) at (x0, τ0) as

dκ(x0,τ0) := dim
{
ξ ∈ RN : ξ · ∇x∂

α
x∂

j
tϑp0 = 0, for any α ∈ ZN

≥0, j ∈N with |α| + 2 j = 2κ − 1
}
,

where p0 = (x0,−τ0), ϑp0(x, t) = Θp0(x, 0, t) and Θp0 ∈ Bκ(U) is the “blow-up limit” of U = U(x, y, t) at p0.
Finally, for any d = 0, . . . ,N, we define

Γd
κ(u) :=

{
(x0, τ0) ∈ Γκ(u) : dκ(x0,τ0) = d

}
.

Finally, we introduce the notion of “space-like” and “time-like” manifolds.

Definition 5.11. (Definition 12.11 of [71]) A (d+1)-dimensional manifoldM ⊂ RN
×R (with d = 0, . . . ,N−1)

is said to be “space-like” of classC1,0 if it can be locally represented as a graph of aC1,0 function g : Rd
×R→ RN−d

(xd+1, . . . , xN) = g(x1, . . . , xd, t),

up to rotation of coordinate axis in RN.
A N-dimensional manifoldM ⊂ RN

×R is said to be “time-like” of class C1 if it can be locally represented
as a graph of a C1 function g : RN

→ R
t = g(x1, . . . , xN).

We can now state our “Structure of the singular set theorem”. Its proof is based on the techniques
due to Garofalo and Petrosyan [112] (elliptic setting) and Danielli, Garofalo, Petrosyan and To [71]
(parabolic setting), based based on a ingenious combination of the Implicit function theorem and a
parabolic version of the Whitney’s extension theorem, which we recall later.

Theorem 5.12. (Structure of the singular set) Let u ∈ dom(Hs) be a nontrivial solution to (1). Then the set Γd
κ(u)

is contained in a countable union of (d + 1)-dimensional “space-like” C1,0 manifolds for any d = 0, . . . ,N − 1
while ΓN

κ (u) is contained in a countable union of N-dimensional “time-like” C1 manifolds.

The presentation of the main results is ended so that we can proceed with their proofs.

5.2 Blow-up analysis I: proof of Theorem 5.1 and Corollary 5.2

In the following paragraphs the blow-up analysis starts. Following some ideas of [99], our approach
is based on the monotonicity formulae obtained in Section 4.3 and a priori compactness results in
C

0 (t1, t2; B) type spaces where 0 < t1 < t2 < ∞ and B is a Banach space (see [179] or Lemma 5.13).
W.r.t. Section 7 of [19] and [71], where the authors considered average versions of H(t,U) and I(t,U)
(cfr. with Section 4.3), our methods are possibly naiver but suffice for our purposes. All the proof
relies on the following compactness criterion that we recall for clarity.

Lemma 5.13. (Simon [179, Corollary 8]) Let X ⊂ B ⊆ Y be Banach spaces satisfying the following two
properties:
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• X is compactly embedded in Y.

• There exist 0 < θ < 1 and C > 0 such that ‖V‖B ≤ C‖V‖1−θX ‖V‖θY, for all V ∈ X ∩ Y.

Fix −∞ < t1 < t2 < +∞ and 1 ≤ p, r ≤ ∞. Let F be a bounded family in Lp(t1, t2; X), with ∂F /∂t bounded in
Lr(t1, t2; Y). Then the following two assertions hold true:

• If θ(1 − 1/r) ≤ (1 − θ)/p then F is relatively compact in Lp(t1, t2; B), for all p < p∗, where 1/p∗ =
(1 − θ)/p − θ(1 − 1/r).

• If θ(1 − 1/r) > (1 − θ)/p then F is relatively compact in C0(t1, t2; B),

where we recall that C0(t1, t2; B) := {V : [t1, t2]→ B continuous : ‖V‖C0(t1,t2;B) < ∞}, where

‖V‖C0(t1,t2;B) := max
t∈[t1,t2]

‖V(t)‖B.

We will apply the above criterion taking X = H1
µ = H1(RN+1, dµ) and B = Y = L2

µ = L2(RN+1, dµ)
and p = r = ∞. To do so, we have to prove the following lemma.

Lemma 5.14. The space H1
µ = H1(RN+1, dµ) is compactly embedded in L2

µ = L2(RN+1, dµ).

Proof. Let {U j} j be a bounded sequence in H1
µ. Up to subsequences, we can assume the existence of

a function U ∈ H1
µ such that U j ⇀ U (weakly) in H1

µ and we must prove that

U j → U (strongly) in L2
µ,

as j→ +∞. Let us set V j := U j −U. For any A > 0, we can write∫
RN+1

V2
j dµ(x, y) =

∫
BA

V2
j dµ(x, y) +

∫
Bc

A

V2
j dµ(x, y), (5.7)

where, following [19], we have defined

BA := {(x, y) ∈ RN+1 : |x|2 + y2 < A2
} with Bc

A = RN+1
\ BA.

Now, since the measures |y|a dxdy and |y|aGa(x, y, 1) dxdy are equivalent on BA, we obtain that the first
term in the r.h.s. of (5.7) goes to zero as j→ +∞, thanks to the well-known H1(BA, |y|a) ↪→ L2(BA, |y|a)
compact immersions type (cfr. for instance with [97, 165]). Consequently, we are left to prove that also
the second integral in the r.h.s. of (5.7) is converging to zero as j→ +∞.

To do so, we repeat the procedure carried out in [19] (cfr. with Lemma 7.4) with some modifications
due to our slightly different framework. Before moving forward, we recall the definition of the
“fundamental solution” and how it splits into the product of two Gaussians:

Ga(x, y, t) = GN(x, t)Ga+1(y, t) =
1

(4πt)
N
2

e−
|x|2
4t

1
21+aΓ( 1+a

2 )
1

t
1+a

2

e−
y2

4t ,

and that the following two log-Sobolev type inequalities hold (cfr. with Lemma 7.7 of [71] or formulas
(7.16)-(7.17) of [19]):

log

 1

ca
∫
| f |>0Ga(·, 1)


∫
RN+1

f 2
Ga(·, 1) ≤ 2

∫
RN+1
|∇ f |2Ga(·, 1), (5.8)
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for all f ∈ H1(RN+1, dµ), and

log

 1∫
| f |>0 GN(·, 1)


∫
RN

f 2GN(·, 1) ≤ 2
∫
RN
|∇ f |2GN(·, 1), (5.9)

for all f ∈ H1(RN, dµx). Note that, w.r.t. [71] and/or [19], in (5.8) we have introduced the quantity
ca := 21+aΓ( 1+a

2 )/
√

4π due to the different normalization constant of the “fundamental solution”.
Now, fix ε > 0, and take A > 4 large enough such that

ca

∫
Bc

A/2

Ga(x, y, 1) dxdy ≤ e−1/ε,

∫
Bc

A/2

GN(x, 1) dx ≤ e−1/ε, (5.10)

where BA := {x ∈ RN : |x| < A}with Bc
A = RN

\BA. As explained in [19], (5.8) cannot be directly applied
to estimate the integral ∫

Bc
A

V2
j dµ(x, y) =

∫
Bc

A

V2
j |y|

a
Ga(x, y, 1)dxdy,

due to some regularity issues. So, we write∫
Bc

A

|y|aV2
j Ga(x, y, 1)dxdy =

∫
R̃A

|y|aV2
j Ga(x, y, 1)dxdy +

∫
RA

|y|aV2
j Ga(x, y, 1)dxdy, (5.11)

where
R̃A := Bc

A ∩ (RN
× {|y| ≤ A/2}) and RA := Bc

A ∩ (RN
× {|y| > A/2}).

Let us start with estimating the first integral in the r.h.s. of (5.11). For any (x, y) ∈ R̃A, we have both
|x|2 + y2

≥ A2 and y2
≤ A2/4, so that |x| ≥ (

√
3/2)A ≥ A/2. Consequently,∫

R̃A

|y|aV2
j (x, y)Ga(x, y, 1)dxdy ≤

∫ A/2

−A/2
|y|aGa+1(y, 1)

(∫
{|x|≥(

√
3/2)A}

V2
j (x, y)GN(x, 1) dx

)
dy.

Now, if ϕ ∈ C∞c (RN) is a radially decreasing cut-off function satisfying ϕ = 1 in BA/2 and ϕ = 0 outside
BA with |∇ϕ| ≤ 1, we firstly observe that∫

{|x|≥(
√

3/2)A}
V2

j (x, y)GN(x, 1) dx ≤ C
∫
RN

V2
j (x, y)[1 − ϕ(x)]2GN(x, 1) dx,

for some constant C > 0 depending only on ϕ and for a.e. y ∈ R (the above inequality can be directly
verified using the properties of the cut-off function ϕ = ϕ(x)). Secondly, observing that the second
inequality in (5.10), together with the fact that∫

|V j(1−ϕ)|>0
GN(x, 1) dx ≤

∫
Bc

A/2

GN(x, 1) dx

implies

log

 1∫
|V j(1−ϕ)|>0 GN(·, 1)

 ≥ 1
ε

we deduce (by applying (5.9) with f = V j(1 − ϕ)):∫
RN

V2
j (x, y)[1 − ϕ(x)]2GN(x, 1) dx ≤ εC

∫
RN

[
V2

j + |∇xV j|
2
]

GN(x, 1) dx ≤ εC,
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where C > 0 is constant independent of j ∈ N (this follows from the properties of ϕ = ϕ(x) and since
{V j} j is bounded in H1

µ). Consequently, we obtain∫
R̃A

|y|aV2
j (x, y)Ga(x, y, 1)dxdy ≤ εC

∫ A/2

−A/2
|y|aGa+1(y, 1) dy ≤ εC,

where C > 0 is new constant not depending on j ∈ N. Let us focus the second integral in the r.h.s. of
(5.11). We introduce the new cut-off functions

• ϕ ∈ C∞c (RN+1) with ϕ = 1 in BA/2 and ϕ = 0 outside BA with |∇x,yϕ| ≤ 1.

• ϕ̃ ∈ C∞c (R) with ϕ̃(y) = 1 for |y| ≤ A/4 and ϕ̃(y) = 0 for |y| ≥ A/2 with |ϕ̃′| ≤ 1,

and we immediately see that∫
RA

|y|aV2
j Ga(x, y, 1)dxdy ≤

∫
RN+1
|y|aV2

j [1 − ϕ(x, y)]2[1 − ϕ̃(y)]2
Ga(x, y, 1)dxdy.

Now, exactly as in [19] (cfr. with formula (7.24)), we set f = |y|a/2V j(1 − ϕ)(1 − ϕ̃) and we estimate

|∇ f |2 ≤ C
[
|y|a(V2

j + |∇V j|
2) + |y|a−2V2

j (1 − ϕ)2(1 − ϕ̃)2
]
≤ C|y|a(V2

j + |∇V j|
2),

where C > 0 independent of j ∈N. The last inequality follows since for any |y| ≥ A/4, we have

|y|a−2V2
j (1 − ϕ)2(1 − ϕ̃)2

≤ |y|a−2V2
j ≤ |y|

aV2
j ,

where we have used the properties of the support of ϕ̃ = ϕ̃(y) and the fact the we have chosen A > 4
from the beginning. Consequently, applying (5.8) (with f = |y|a/2V j(1 − ϕ)(1 − ϕ̃)), we get∫

RA

|y|aV2
j Ga(x, y, 1)dxdy ≤ εC

∫
RN+1
|y|a

[
V2

j + |∇V j|
2
]
Ga(x, y, 1) dxdy ≤ εC,

where we have used the first inequality in (5.10) and the uniform H1
µ bound on the V′js. Summing up,

from (5.11) and the above bounds, we have got∫
Bc

A

|y|aV2
j Ga(x, y, 1)dxdy ≤ εC,

which completes the proof, by the arbitrariness of ε > 0. �

Remark. An almost identical proof allows to show that the space H1
µ = H1(RN+1

+ , dµ) is compactly
embedded in L2

µ = L2(RN+1
+ , dµ).

We are now ready to prove Theorem 5.1. We anticipate that w.r.t. to the above mentioned
papers, we first obtain a convergence result in the space L2(t∗,T∗; H1

µ) (and also in C0(t∗,T∗; L2
µ)) for

any 0 < t∗ < T∗ < ∞, and then, in a second moment, we will improve it obtaining convergence in
L2(0,T∗; H1

µ).
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Proof of Theorem 5.1. We divide the proof in several steps.
Step1: Basic definitions. For −1 < a < 1 and 0 < T,T∗ < ∞ fixed, we consider a nontrivial “strong

solution” (cfr. with Definition 4.2) U = U(x, y, t) to (7):

∂tU +LaU = 0 in RN+1
× (0,T).

We recall that in particular U = U(x, y, t) satisfies (4.17):∫
RN+1

[
∂tU +

(x, y)
2t
∇U

]
η dµt(x, y) =

∫
RN+1
∇U∇η dµt(x, y),

for a.e. 0 < t < T and all η ∈ L2(0,T; H1
µt

). We then define the “normalized blow-up” family

Uλ(x, y, t) :=
U(λx, λy, λ2t)√

H(λ2,U)
, λ > 0,

where H(·,U) is defined at the beginning of Subsection 4.3.2. As a preliminary observation, it is not
difficult to see that for any λ > 0, Uλ = Uλ(x, y, t) is a “strong solution” to equation

∂tUλ +LaUλ = 0 in RN+1
× (0,T/λ2),

and (4.17) holds for Uλ = Uλ(x, y, t), too. Now, we define

H(t,Uλ) :=
∫
RN+1
|y|aU2

λ(x, y, t)Ga(x, y, t) dxdy,

I(t,Uλ) :=
∫
RN+1
|y|a|∇Uλ|

2(x, y, t)Ga(x, y, t) dxdy,

for t ∈ (0,T/λ2). By scaling we have

H(t,Uλ) =
H(λ2t,U)√

H(λ2,U)
, I(t,Uλ) =

λ2I(λ2t,U)√
H(λ2,U)

and so the frequency function corresponding to Uλ:

N(t,Uλ) :=
tI(t,Uλ)
H(t,Uλ)

, satisfies N(t,Uλ) = N(λ2t,U), 0 < t < T/λ2.

Finally, we consider the family

Ũλ(x, y, t) := Uλ

(√
tx,
√

ty, t
)
, 0 < t < T/λ2, λ > 0,

which is a “normalized” and “re-scaled” version of Uλ = Uλ(x, y, t). Note that by scaling we have

Ũλ ∈ L2(0,T/λ2; H1
µ), t∂tŨλ ∈ L2(0,T/λ2; L2

µ),

and moreover, Ũλ = Ũλ(x, y, t) is a “strong solution” to (4.19):

t∂tŨλ +
1
|y|aGa

∇ · (|y|aGa∇Ũλ) = 0 in RN+1
× (0,T/λ2). (5.12)

In particular, it holds

t
∫
RN+1

∂tŨλ η dµ(x, y) =

∫
RN+1
∇Ũλ∇η dµ(x, y), (5.13)
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for a.e. 0 < t < T/λ2 and all η ∈ L2(0,T/λ2; H1
µ). Before moving forward, we need to make an important

observation. For a.e. 0 < t < T, the linear functional

η(t)→
∫
RN+1

+

∇Ũλ(t)∇η(t) dµ(x, y), η ∈ H1
µ

is well-defined and continuous on H1
µ. Consequently, by the Hahn-Banach Theorem it can be contin-

uously extended to a linear functional Ft
λ defined and continuous on the all L2

µ, with

‖Ft
λ‖(L2

µ)? ≤ ‖Ũλ(t)‖H1
µ
, for a.e. 0 < t < T.

On the other hand, from the Riesz Theorem, there exists a function f t
λ ∈ L2

µ such that

〈Ft
λ, η(t)〉 =

∫
RN+1

f t
λ η(t) dµ(x, y), η(t) ∈ L2

µ,

and so, matching with (5.13), we get t∂tŨλ(t) = f t
λ in L2

µ for a.e. 0 < t < T. In particular, since
‖Ft
λ‖ = ‖ f t

λ‖, we obtain

‖∂tŨλ(t)‖L2
µ
≤

1
t
‖Ũλ(t)‖H1

µ
for a.e. 0 < t < T/λ2. (5.14)

Step2: Uniform bounds for Ũλ. Let us assume 1 ≤ T∗ < ∞ (the case 0 < T∗ < 1 is easier). Using the
scaling properties of Ga = Ga(x, y, t), it can be easily seen that∫

RN+1
|y|aŨ2

λ(x, y, t)Ga(x, y, 1) dxdy =
1

H(λ2,U)

∫
RN+1
|y|aU2(x, y, λ2t)Ga(x, y, λ2t) dxdy

=
H(λ2t,U)
H(λ2,U)

, λ > 0,
(5.15)

and, furthermore,∫
RN+1
|y|a|∇Ũλ|

2(x, y, t)Ga(x, y, 1) dxdy =
λ2t

H(λ2,U)

∫
RN+1
|y|a|∇U|2(x, y, λ2t)Ga(x, y, λ2t) dxdy

=
λ2tI(λ2t,U)

H(λ2,U)
= N(λ2t,U)

H(λ2t,U)
H(λ2,U)

, λ > 0.

Now, assume both t ∈ (0,T∗] and λ ∈ (0, 1/
√

T∗]. Using the monotonicity of the functions t → H(t,U)
and t→ N(t,U) (cfr. with the proof of Lemma 4.6) and formula (4.35) of Corollary 4.8, we obtain

H(λ2t,U)
H(λ2,U)

≤
H(λ2T∗,U)
H(λ2,U)

≤ T2N(λ2T∗,U)
∗ ≤ T2N1

∗ ,

where we have set N(λ2t,U) ≤ N(1,U) := N1 < ∞ and used that λ2t ≤ 1. Consequently, we deduce∫
RN+1

Ũ2
λ(x, y, t) dµ(x, y) ≤ T2N1

∗ ,

∫
RN+1
|∇Ũλ|

2(x, y, t) dµ(x, y) ≤ N1T2N1
∗ ,

for a.e. 0 < t ≤ T∗ and all 0 < λ ≤ 1/
√

T∗. The last two formulas imply that the family

{Ũλ}λ∈(0,1/
√

T∗] is uniformly bounded in L∞(0,T∗; H1
µ), (5.16)

where we recall that H1
µ := H1(RN+1, dµ). Furthermore, from (5.14), we get that

‖∂tŨλ(t)‖L2
µ
≤

N1T2N1
∗

t
for a.e. 0 < t ≤ T∗, and all 0 < λ ≤ 1/

√
T∗
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From this last bound we deduce that for any 0 < t∗ < T∗ the family

{∂tŨλ}λ∈(0,1] is uniformly bounded in L∞(t∗,T∗; L2
µ). (5.17)

So it turns out that the family {Ũλ}λ∈(0,1] is relatively compact in C0
(
t∗,T∗; L2

µ

)
for all fixed 0 < t∗ < T∗,

where L2
µ := L2(RN+1, dµ) (cfr. for instance with Corollary 8 of [179]).

Step3: Compactness and properties of the limit. So, for any λn → 0+ and any fixed 0 < t∗ < 1, we can
extract a sub-sequence λn j → 0+ (that we rename λ j := λn j by convenience) such that

Ũλ j → Θ̃ in C0
(
t∗,T∗; L2

µ

)
, as j→ +∞, (5.18)

where Θ̃ ∈
⋂

t∗∈(0,T∗) C
0
(
t∗,T∗; L2

µ

)
. Note that a priori the sequence λ j depends on 0 < t∗ < T∗. However,

an easy diagonal procedure (that we skip not to weight down our presentation) allows us to eliminate
this dependence.
Let us now present some important properties of the limit Θ̃ = Θ̃(x, y, t). First of all, since ‖Ũλ(·, ·, 1)‖L2

µ
=

1 for all λ > 0 (cfr. (5.15) with t = 1), it follows

‖Θ̃(·, ·, 1)‖L2
µ

= 1,

too and so the limit is not trivial (this crucial property follows since we have normalized the blow-up
family Uλ = Uλ(x, y, t)). Moreover, (5.16) and (5.17) allow us to take the subsequence λ j → 0+ such
that

Ũλ j ⇀ Θ̃ weakly in L2(t∗,T∗; H1
µ),

∂tŨλ j ⇀ ∂tΘ̃ weakly in L2(t∗,T∗; L2
µ),

for all 0 < t∗ < T∗. This follows from the fact that L2(t∗,T∗; H1
µ) ⊂ L∞(t∗,T∗; H1

µ) and L2(t∗,T∗; L2
µ) ⊂

L∞(t∗,T∗; L2
µ), and from the reflexivity of L2(t∗,T∗; H1

µ) and L2(t∗,T∗; L2
µ). Consequently, thanks to the

previous two convergence properties and the arbitrariness of 0 < t∗ < T∗, it satisfies

t
∫
RN+1

∂tŨη(t) dµ(x, y) =

∫
RN+1
∇Ũ∇η(t) dµ(x, y),

for a.e. t∗ < t < T∗ and for all η(t) ∈ H1
µ (cfr. with (5.13)). Now subtracting the equations of Ũλ j and Ũ,

respectively, and testing with η(t) = (Ũλ j − Θ̃)(t) ∈ H1
µ we get

t
〈
∂t(Ũλ j − Θ̃)(t), (Ũλ j − Θ̃)(t)

〉
L2
µ

=

∫
RN+1
|∇(Ũλ j − Θ̃)(t)|2 dµ(x, y), for a.e. t∗ ≤ t ≤ T∗,

and so, integrating between t∗ and T∗, we easily find∫ T∗

t∗
‖(Ũλ j − Θ̃)(t)‖2

L2
µ

+ ‖∇(Ũλ j − Θ̃)(t)‖2
L2
µ

dt

=
1
2

[
‖(Ũλ j − Θ̃)(t∗)‖2L2

µ
+ ‖(Ũλ j − Θ̃)(T∗)‖2L2

µ

]
→ 0, as j→ +∞,

thanks to (5.18). Note that we have used that 2(∂t(Ũλ j − Θ̃), Ũλ j − Θ̃)L2
µ

= ∂t(‖Ũλ j − Θ̃‖2
L2
µ
) and integrated

by parts (w.r.t. t). This implies

Ũλ j → Θ̃ in L2
(
t∗,T∗; H1

µ

)
, as j→ +∞. (5.19)
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Step4: Properties of the re-scaling of Ũλ. Consequently, scaling back to Uλ = Uλ(x, y, t), for any
0 < t∗ < T∗, it holds

lim
j→+∞

∫ T∗

t∗

∥∥∥Uλ j(·, ·, t) −Θ(·, ·, t)
∥∥∥2

H1(RN+1,dµt)
dt→ 0, as j→ +∞, (5.20)

lim
j→+∞

sup
t∈[t∗,T∗]

∥∥∥Uλ j(·, ·, t) −Θ(·, ·, t)
∥∥∥2

L2(RN+1,dµt)
→ 0, as j→ +∞, (5.21)

where we recall that

Uλ(x, y, t) := Ũλ

(
x
√

t
,

y
√

t
, t
)

and Θ(x, y, t) := Θ̃

(
x
√

t
,

y
√

t
, t
)
.

Note that from weak convergence we obtain also

N(t,Uλ j) :=
tI(t,Uλ j)

H(t,Uλ j)
=

t
∫
RN+1 |y|a|∇Uλ j |

2(x, y, t)Ga(x, y, t) dxdy∫
RN+1 |y|aU2

λ j
(x, y, t)Ga(x, y, t) dxdy

→ N(t,Θ) =
tI(t,Θ)
H(t,Θ)

,

for a.e. t∗ < t < T∗, as j→ +∞, where

H(t,Θ) :=
∫
RN+1
|y|aΘ2(x, y, t)Ga(x, y, t) dxdy,

I(t,Θ) :=
∫
RN+1
|y|a|∇Θ|2(x, y, t)Ga(x, y, t) dxdy.

Moreover, by scaling, it turns out that Θ = Θ(x, y, t) satisfies (4.17) in RN+1
× (t∗,T∗):∫

RN+1

[
∂tΘ +

(x, y)
2t
· ∇Θ

]
η dµt(x, y) =

∫
RN+1
∇Θ · ∇η dµt(x, y), (5.22)

for a.e. t∗ < t < T∗ and all η(t) ∈ H1
µt

. Consequently, the function t → N(t,Θ) is well-defined and
non-decreasing in (t∗,T∗) (recall that H(t,Θ) > 0 for all t∗ < t < T∗, in view of Corollary 4.9, since Θ . 0
).

Step4: The limit is a re-scaled eigenfunction. Now, since N(t,Uλ j) = N(λ2
j t,U), we can fix t∗ < t < T∗

and take the limit as j→ +∞ to obtain

N(t,Uλ j)→ κ := lim
t→0

N(t,U), as j→ +∞,

for a.e. t∗ < t < T∗. Consequently,

N(t,Θ) ≡ κ, for a.e. t∗ < t < T∗, (5.23)

and so, as in the proof of Lemma 4.6, the re-scaled version Θ̃(x, y, t) = Θ(
√

tx,
√

ty, t) must be a “weak”
eigenfunction to the Ornstein-Uhlenbeck eigenvalue problem type (4.3), in the sense that the identity∫

RN+1
∇Θ̃ · ∇η(t) dµ(x, y) = κ

∫
RN+1

Θ̃ η(t) dµ(x, y), (5.24)

is satisfied for a.e. t∗ < t < T∗ and all η(t) ∈ H1
µ. From the above identity, it thus follows that κ is an

eigenvalue of the Ornstein-Uhlenbeck operator Oa (cfr. with Section 4.4) and we complete the proof
of part (i).
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Note that, from Lemma 4.5 (cfr. with Step4) we know that the function t→ t−κΘ̃(x, y, t) is constant in
time (cfr. with (4.31)) and so, if

Θ̃(x, y, t)
tκ

= V(x, y),

where of course V = V(x, y) still satisfies (5.24), we deduce

Θ(x, y, t) = tκV
(

x
√

t
,

y
√

t

)
,

for a.e. (x, y, t) ∈ RN+1
× (t∗,T∗), obtaining a precise expression for the blow-up limits in terms of linear

combinations of “re-scaled” eigenfunctions to problem (4.3).
Step5: Uniqueness of the blow-up. We complete the proof of the theorem by showing that (5.20) and

(5.21) do not depend on the subsequences λn and λn j . We begin by showing that

lim
t→0+

t−2κH(t,U) > 0.

Note that from Corollary 4.7 we have that the above limit exists finite and it is nonnegative. Note that
it gives an improvement of formula (4.36) for small times, in the sense that

H(t,U) ∼ Ct2κ as t ∼ 0+, (5.25)

for some constant C > 0. This will be important later. Now, assume by contradiction t−2κH(t,U) → 0
as t→ 0+ and consider the family of eigenfunctions{

Vα,m = Vα,m(x, y) : α ∈ ZN
≥0 with |α| = n, n ∈N,m ∈N

}
,

found in Theorem 4.1. We thus obtain an orthonormal basis of L2
µ defining

Vα,m(x, y) =
Vα,m(x, y)
‖Vα,m‖L2

µ

, α ∈ ZN
≥0 with |α| = n, n ∈N,m ∈N.

Now, by scaling, we have that the “not-normalized blow-up” of U = U(x, y, 1):

Uλ(x, y, 1) :=
√

H(λ2,U) Uλ(x, y, 1) = U(λx, λy, λ2) (5.26)

belongs to H1
µ for a.e. 0 < λ ≤ 1/

√
T∗ and so we can write

Uλ(x, y, 1) =
∑
α,m

uα,m(λ)Vα,m(x, y) in L2
µ,

where the coefficients are given by

uα,m(λ) =

∫
RN+1

Uλ(x, y, 1)Vα,m(x, y) dµ(x, y).

Note that by the orthonormality of the eigenfunctions Vα,m = Vα,m(x, y) and the usual scaling proper-
ties, it easy to see that

H(λ2,U) =

∫
RN+1

[
Uλ(x, y, 1)

]2
dµ(x, y)

=

∫
RN+1

∑
α,m

uα,m(λ)Vα,m(x, y)


2

dµ(x, y) ≥ u2
α,m(λ),
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for any α ∈ ZN
≥0, m ∈N, so that the assumption t−2κH(t,U)→ 0 as t→ 0+ implies

λ−2κuα,m(λ)→ 0 as λ→ 0+, (5.27)

where we have used the fact that H(λ2,U) = H(1,Uλ). Now, from the regularity assumptions on Uλ,
we have that

d
dλ

Uλ(x, y, 1) =
∑
α,m

u′α,m(λ)Vα,m(x, y) in L2
µ. (5.28)

On the other hand,

d
dλ

Uλ(x, y, 1) = (x, y) · ∇U(λx, λy, λ2) + 2λ∂tU(λx, λy, λ2)

=
2
λ

[
(x, y)

2
∇Uλ(x, y, 1) + ∂tUλ(x, y, 1)

]
for a.e. (x, y) ∈ RN+1,

and so, testing with |y|aη(x, y)Ga(x, y, 1) we obtain∫
RN+1

dUλ

dλ
η dµ(x, y) =

2
λ

∫
RN+1
∇Uλ
∇η dµ(x, y),

for η ∈ H1
µ. Moreover, since Vα,m = Vα,m(x, y) are solutions to (4.41) with κ = κn,m (defined in the

statement of Theorem 4.1), we deduce

2
λ

∫
RN+1
∇Uλ
∇η dµ =

2
λ

∑
α,m

uα,m(λ)
∫
RN+1
∇Vα,m∇η dµ

=
2
λ

∑
α,m

κn,muα,m(λ)
∫
RN+1

Vα,mη dµ,

and so, matching with (5.28) and using the orthogonality of Vα,m = Vα,m(x, y), we get

u′α,m(λ) =
2κn,m

λ
uα,m(λ) for all α ∈ ZN

≥0 with |α| = n, n ∈N,m ∈N.

Thus, integrating between 0 < λ < λ ≤ 1, we find

λ−2κn,muα,m(λ) = λ−2κn,muα,m(λ), (5.29)

and so, letting λ → 0+ and using (5.27) (recall that κ = κn,m for some n,m ∈ N as showed in Step4), it
follows uα,m(λ) = 0 for all 0 < λ ≤ 1 which implies Uλ

≡ 0, getting the desired contradiction.
Now, let us assume (5.25) to be valid and proceed with the second part of the proof. In Step4 we

have showed that if U = U(x, y, t) is a “strong solution” to equation (7), then for any 0 < t∗ < T∗ < ∞
and for any sequence λn → 0+, there exists a subsequence λ j = λn j such that (cfr. with (5.20) and
(5.21))

lim
j→+∞

∫ 1

t∗

∥∥∥Uλ j(·, ·, t) −Θ(·, ·, t)
∥∥∥2

H1(RN+1,dµt)
dt→ 0, as j→ +∞,

lim
j→+∞

sup
t∈[t∗,T∗]

∥∥∥Uλ j(·, ·, t) −Θ(·, ·, t)
∥∥∥2

L2(RN+1,dµt)
→ 0, as j→ +∞,

where

Uλ(x, y, t) :=
U(λx, λy, λ2t)√

H(λ2,U)
, Θ(x, y, t) := tκ V

(
x
√

t
,

y
√

t

)
,
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and V = V(x, y) is a “weak” eigenfunction to (4.3):

−LaV +
(x, y)

2
· ∇V = κV in RN+1.

Moreover, we know that κ = κn,m for some n,m ∈ N where κn,m are defined in the statement of
Theorem 4.1.
Now, if n0,m0 ∈N are such thatκ = κn0,m0 andVα0,m0 is the associated eigenspace, and Vα,m = Vα,m(x, y)
are the normalized eigenfunctions, we have that

V(x, y) =
∑

(α,m)∈J0

vα,mVα,m(x, y) in L2
µ,

where J0 :=
{
(α,m) ∈ ZN

≥0 ×N : |α| = n ∈N and κn,m = κn0,m0

}
. Consequently, in view of (5.25), we can

re-write the above convergence properties as

∫ T∗

t∗

∥∥∥∥∥∥∥∥λ−2κ
j U(λ jx, λ jy, λ2

j t) − tκ
∑

(α,m)∈J0

vα,mVα,m

(
x
√

t
,

y
√

t

)∥∥∥∥∥∥∥∥
2

H1(RN+1,dµt)

dt→ 0, (5.30)

sup
t∈[t∗,T∗]

∥∥∥∥∥∥∥∥λ−2κ
j U(λ jx, λ jy, λ2

j t) − tκ
∑

(α,m)∈J0

vα,mVα,m

(
x
√

t
,

y
√

t

)∥∥∥∥∥∥∥∥
2

L2(RN+1,dµt)

→ 0, (5.31)

as j→ +∞. In particular, taking t = 1 (recall that we are assuming T∗ ≥ 1 for simplicity), we deduce

λ−2κ
j U(λ jx, λ jy, λ2

j )→
∑

(α,m)∈J0

vα,mVα,m(x, y) in L2
µ. (5.32)

So, in other to prove that (5.30) and (5.31) hold for any subsequence λn j → 0+, or, equivalently, hold for
λ→ 0+, we are left to show that the coefficients vα,m0 are independent from bothλn and its subsequence
λn j . Thus, proceeding as in the first part of this step, we expand

U(λx, λy, λ2) =
∑
α,m

uα,m(λ)Vα,m(x, y),

in series of normalized eigenfunctions. So, multiplying (5.32) by |y|aVα,m(x, y)Ga(x, y, 1) and integrating
on RN+1, we get

λ−2κ
j uα,m(λ j)→ vα,m as j→ +∞,

where we have used again the orthogonality of the eigenfunctions Vα,m = Vα,m(x, y). On the other
hand, exactly as before (cfr. with (5.29)), it holds

λ−2κn,muα,m(λ) = λ−2κn,muα,m(λ),

for all 0 < λ < λ ≤ 1/
√

T∗ which means that the function

λ→ λ−2κuα,m(λ) = λ−2κ
∫
RN+1

U(λx, λy, λ2)Vα,m(x, y) dµ(x, y),

is constantly equal to vα,m for all 0 < λ < 1/
√

T∗. It follows in particular that vα,m depends neither on
λn nor on λn j . This shows the uniqueness of the blow-up limit.
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Step6: Improved convergence. Now, for any 0 < t < T∗ and 0 < λ < 1/
√

T∗, we consider Uλ(x, y, t) =
λ−2κn0 ,m0 U(λx, λy, λ2t) and

Θ(x, y, t) = tκn0 ,m0 V
(

x
√

t
,

y
√

t

)
= tκn0 ,m0

∑
(α,m)∈J0

vα,mVα,m

(
x
√

t
,

y
√

t

)
,

for some vα,m ∈ R, and n0,m0 ∈ N are suitably chosen (cfr. with part (i)). So far, we have proved that
for all 0 < t∗ < T∗, it holds (cfr. with (5.19))

lim
λ→0

∫ T∗

t∗
‖Uλ −Θ‖2L2

µt
+ t ‖∇Uλ − ∇Θ‖2L2

µt
dt = 0,

and we want to get

lim
λ→0

∫ T∗

0
‖Uλ −Θ‖2L2

µt
+ t ‖∇Uλ − ∇Θ‖2L2

µt
dt = 0. (5.33)

So, we assume by contradiction that there exists ε > 0 and a subsequence λ j → 0 (as j → +∞), such
that ∫ T∗

0

∥∥∥Uλ j −Θ
∥∥∥2

L2
µt

+ t
∥∥∥∇Uλ j − ∇Θ

∥∥∥2

L2
µt

dt ≥ ε, (5.34)

for all large j ∈ N. Now, since Sλ j := Uλ j −Θ still satisfies the assumptions of Lemma 4.6, we known
that (cfr. with Step1 of the above quoted lemma):

2
∫ t2

t1

I(t,Sλ j) dt = H(t2,Sλ j) −H(t1,Sλ j),

for any choice of times 0 < t1 < t2 < T∗ and so, taking t2 = t∗ and t1 → 0, we deduce∫ t∗

0

∫
RN+1
|∇Sλ j |

2 dµt(x, y)dt ≤
1
2

∫
RN+1

S2
λ j

(x, y, t∗) dµt∗(x, y) =
1
2

H(t∗,Sλ j).

Furthermore, setting ν∗ = min{1, 1− a}/2 and applying the Gaussian-Poincaré inequality (cfr. Theorem
(4.15), part (i)), we get∫ t∗

0

∫
RN+1

S2
λ j

dµt(x, y)dt ≤
1
ν∗

∫ t∗

0
t
∫
RN+1
|∇Sλ j |

2 dµt(x, y)dt

≤
t∗
ν∗

∫ t∗

0

∫
RN+1
|∇Sλ j |

2 dµt(x, y)dt ≤
t∗

2ν∗
H(t∗,Sλ j),

so that it follows ∫ t∗

0

∥∥∥Uλ j −Θ
∥∥∥2

L2
µt

+ t
∥∥∥∇Uλ j − ∇Θ

∥∥∥2

L2
µt

dt ≤ t∗
(1 + ν∗

2ν∗

)
H(t∗,Sλ j).

Note that, in view of (5.18) we can assume H(t∗,Sλ j) = ‖Uλ j − Θ‖L2(RN+1,dµt∗ ) ≤ C for all large j ∈ N,
where C > 0 is constant not depending on λ j. It thus follows∫ t∗

0

∥∥∥Uλ j −Θ
∥∥∥2

L2
µt

+ t
∥∥∥∇Uλ j − ∇Θ

∥∥∥2

L2
µt

dt ≤ Ct∗,

for all fixed 0 < t∗ < T∗, where C > 0 is a new constant not depending on λ j. Consequently, (5.34)
begins ∫ T∗

t∗

∥∥∥Uλ j −Θ
∥∥∥2

L2
µt

+ t
∥∥∥∇Uλ j − ∇Θ

∥∥∥2

L2
µt

dt ≥ ε −
∫ t∗

0

∥∥∥Uλ j −Θ
∥∥∥2

L2
µt

+ t
∥∥∥∇Uλ j − ∇Θ

∥∥∥2

L2
µt

dt

≥ ε − Ct∗ >
ε
2
,
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if 0 < t∗ < ε/(2C), and we obtain the desired contradiction since the l.h.s. must converge to 0 as λ j → 0.
On the other hand, we have proved that

lim
λ→0

sup
t∈[t∗,T∗]

‖Uλ −Θ‖2L2
µt

= lim
λ→0

sup
t∈[t∗,T∗]

H(t,Uλ −Θ) = 0.

However, since the function t → H(t,Uλ − Θ) is non-decreasing, it follows supt∈[t∗,T∗] H(t,Uλ − Θ) =
supt∈(0,T∗] H(t,Uλ −Θ) and so

lim
λ→0
‖Uλ −Θ‖2

C0(0,T;L2
µt ) := lim

λ→0
sup

t∈(0,T∗]
‖Uλ −Θ‖2L2

µt
(5.35)

The proof is now completed. �

Remark. We point out that formula (5.25) implies that

ctκ ≤ H(t,U) ≤ Ctκ for t ∼ 0+,

for some 0 < c < C. These are fundamental relations and will be crucial in the proof of Lemma 5.20.

Proof of Corollary 5.2. Let u ∈ dom(Hs) be a solution to (1):

Hsu = 0 a.e. in RN
× (−T, 0),

where 0 < s < 1 and T > 0 are fixed and H is the “Heat Operator” H := ∂τ − ∆. Then if a := 2s − 1 and
U = U(x, y, t) is defined as in (2), it follows by Section 5 and 8 of [19]) that U(x, y, t) := U(x, y,−t) is a
“strong solution” to problem (8):∂tU + y−a

∇ · (ya
∇U) = 0 in RN+1

+ × (0,T)
−∂a

yU = 0 in RN
× {0} × (0,T),

satisfying by regularity (cfr. with Corollary 1.3 of [183] and Theorem 5.1 of [19]):

U(x, 0, t) = U(x, 0,−t) = u(x,−t) for all (x, t) ∈ RN
× (0,T).

Keeping in mind this fact, we claim that the following assertions hold true (cfr. with the statement of
Theorem 5.1). There exist n0,m0 ∈N such that

(i) The Almgren-Poon quotient N(t,U) (cfr. with the formula in (4.26)) satisfies

lim
t→0+

N(t,U) = κ̃n0,m0 ,

where
κ̃n,m :=

n
2

+ m m,n ∈N

are the eigenvalues of problem (4.1) (cfr. with the statement of Theorem 4.1, part (i)).
(ii) For all T∗ > 0, we have as λ→ 0+

∫ T∗

0

∥∥∥∥∥∥∥∥λ−2κ̃n0 ,m0 U(λx, λy, λ2t) − tκ̃n0 ,m0

∑
(α,m)∈J̃0

vα,mVα,m

(
x
√

t
,

y
√

t

)∥∥∥∥∥∥∥∥
2

H1(RN+1
+ ,dµt)

dt→ 0, (5.36)

where vα,m are suitable constants, the sum is done over the set of indices

J̃0 := {(α,m) ∈ ZN
≥0 ×N : |α| = n ∈N and κ̃n,m,= κ̃n0,m0},
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and the integration probability measure is given in the statement of Corollary 5.2. Similarly, for
Vα,m = Vα,m(x, y) which are the normalized versions of the eigenfunctions Ṽα,m = Ṽα,m(x, y) to problem
(4.1) corresponding to the eigenvalue κ̃n,m and defined by:

Ṽα,m(x, y) = Hα(x)L( a−1
2 ),m(y2/4),

where Hα(·) is a N-dimensional Hermite polynomial of order |α|, while L( a−1
2 ),m(·) is the mth Laguerre

polynomial of order (a − 1)/2 (cfr. with the statement of Theorem 4.1, part (i)).
The proof of the above claims is immediate since it almost coincides with the one of Theorem

5.1 proved above. The main ingredients are the monotonicity of the Almgren-Poon quotient and the
spectral properties of parabolically homogeneous solutions studied in Section 4.4. Both these aspect
have been investigated in Subsection 4.3.1 and Section 4.4 for “strong solutions” to problem (8). It
is thus straightforward to repeat the above proof by replacing the “quantities” related to “strong
solutions” to equation (7) with the corresponding quantities related to “strong solutions” to problem
(8). We just mention that the main difference w.r.t. the previous case is that the only admissible
eigenvalues are the half-integers with corresponding eigenfunctions according to part (i) of Theorem
4.1. Finally, it is immediately seen that the statement of Corollary 5.2 follows by using the definition
of U(x, y, t) = U(x, y,−t) in claims (i) and (ii). �

Examples. Out of clarity, we complete the section with some concrete examples of “blow-up profiles”.
Let us put ourselves in the easiest case when the spacial dimension is N = 1 and denote by

Θ̃α,m(x, y, t) = tκ̃n,mVα,m

(
x
√

t
,

y
√

t

)
= tκ̃n,mHn

(
x
√

t

)
L( a−1

2 ),m

(
y2

4t

)
,

the “blow-up profile” corresponding to κ̃n,m = n
2 + m (i.e. to the eigenfunction Vα,m = Vα,m(x, y)). Then

we have:
κ̃0,0 = 0 Θ̃0,0(x, y, t) = 1

κ̃1,0 =
1
2

Θ̃1,0(x, y, t) = x

κ̃2,0 = 1 Θ̃2,0(x, y, t) = x2
− 2t

κ̃0,1 = 1 Θ̃0,1(x, y, t) =
(1 + a

2

)
t −

y2

4

κ̃3,0 =
3
2

Θ̃3,0(x, y, t) = x(x2
− 6t)

κ̃1,1 =
3
2

Θ̃1,1(x, y, t) = x
[(1 + a

2

)
t −

y2

4

]
κ̃4,0 = 2 Θ̃4,0(x, y, t) = x4

− 12x2t + 12t2

κ̃2,1 = 2 Θ̃2,1(x, y, t) = (x2
− 2t)

[(1 + a
2

)
t −

y2

4

]
κ̃0,2 = 2 Θ̃0,2(x, y, t) =

1
8

[
(1 + a)(3 + a)t2

− (3 + a)y2t +
y4

4

]
.

On the other hand, since the “blow-up profiles” corresponding to κ̂n,m = n
2 + m + 1−a

2 = κ̃n,m + 1−a
2

satisfy:

Θ̂α,m(x, y, t) = tκ̂n,mVα,m

(
x
√

t
,

y
√

t

)
= tκ̂n,mHn

(
x
√

t

)
y
√

t

∣∣∣∣∣∣ y
√

t

∣∣∣∣∣∣−a

L( 1−a
2 ),m

(
y2

4t

)
= tκ̃n,m y|y|−aHn

(
x
√

t

)
L( 1−a

2 ),m

(
y2

4t

)
,
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we easily see that

κ̂0,0 =
1 − a

2
Θ̂0,0(x, y, t) = y|y|−a

κ̂1,0 =
2 − a

2
Θ̂1,0(x, y, t) = xy|y|−a

κ̂2,0 =
3 − a

2
Θ̂2,0(x, y, t) = y|y|−a(x2

− 2t)

κ̂0,1 =
3 − a

2
Θ̂0,1(x, y, t) = y|y|−a

[(3 − a
2

)
t −

y2

4

]
κ̂3,0 =

4 − a
2

Θ̂3,0(x, y, t) = x(x2
− 6t)y|y|−a

κ̂1,1 =
4 − a

2
Θ̂1,1(x, y, t) = xy|y|−a

[(3 − a
2

)
t −

y2

4

]
κ̂4,0 =

5 − a
2

Θ̂4,0(x, y, t) = y|y|−a(x4
− 12x2t + 12t2)

κ̂2,1 =
5 − a

2
Θ̂2,1(x, y, t) = y|y|−a(x2

− 2t)
[(3 − a

2

)
t −

y2

4

]
κ̂0,2 =

5 − a
2

Θ̂0,2(x, y, t) =
1
8

y|y|−a
[
(3 − a)(5 − a)t2

− (5 − a)y2t +
y4

4

]
.

5.3 Liouville type theorems

In this section we present some Liouville type theorems. The first result will be obtained as an
easy application of the monotonicity formulae proved in Lemma 4.5 and Lemma 4.6, the Gaussian
Poincaré inequalities proved in Section 4.5, and Theorem 5.1, while the second one requires a different
monotonicity formula of Alt-Caffarelli-Friedman type, that we prove in Subsection 5.3.1. Again this
new monotonicity formula easily follows from the Gaussian-Poincaré inequality (cfr. with Theorem
4.15), combined with Theorem 5.1.

5.3.1 Alt-Caffarelli-Friedman monotonicity formula

In this short subsection, we prove a “mono-species” Alt-Caffarelli-Friedman ([8]) monotonicity formula
(cfr. for instance with [14, Lemma 5.4], [49, Theorem 1.1.4], [53, Theorem 12.11], [72, Section 2]), which
turns out to be an easy consequence of the Gaussian-Poincaré type inequalities proved in Theorem
4.15. As always we set

ν∗ =
1
2

min{1, 1 − a},

and we prove the following lemma.

Lemma 5.15. (Alt-Caffarelli-Friedman monotonicity formula) The following three statements hold:
(i) Let U = U(x, y, t) be a “strong solution” to equation (7). Then the function

t→ J(t,U) :=
1

t2ν∗

∫ t

0

∫
RN+1
|∇U|2(x, y, τ) dµτ(x, y)dτ (5.37)

is nondecreasing for all 0 < t < T and it is constant if and only if U(x, y, t) = A or, depending on −1 < a < 1:

U(x, y, t) =

Ax j if a ≤ 0 for some j ∈ {1, . . . ,N + 1}
Ay|y|−a if a ≥ 0,
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where A ∈ R and we have used the convention xN+1 = y.
(ii) Let U = U(x, y, t) be a “strong solution” to problem (8). Then the function

t→ J(t,U) :=
1
t

∫ t

0

∫
RN+1

+

|∇U|2(x, y, τ) dµτ(x, y)dτ (5.38)

is nondecreasing for all 0 < t < T and it is constant if and only if U(x, y, t) = A or U(x, y, t) = Ax j for some
j ∈ {1, . . . ,N} and A ∈ R.

(iii) Let U = U(x, y, t) be a “strong solution” to problem (9). Then the function

t→ J(t,U) :=
1

t1−a

∫ t

0

∫
RN+1

+

|∇U|2(x, y, τ) dµτ(x, y)dτ (5.39)

is nondecreasing for all 0 < t < T and it is constant if and only if U(x, y, t) = Ay1−a and A ∈ R.

Proof. We begin by proving assertion (i). First of all, we have

J′(t) = −
2ν∗

t2ν∗+1

∫ t

0

∫
RN+1
|∇U|2 dµτ(x, y)dτ +

1
t2ν∗

∫
RN+1
|∇U|2 dµτ(x, y), (5.40)

for all 0 < t < T. Furthermore, testing the equation with η = U, we get∫ t

0

∫
RN+1
|∇U|2 dµτ(x, y)dτ =

∫ t

0

∫
RN+1
|y|a∇U · ∇UGa(x, y, τ) dxdydτ

=

∫ t

0

∫
RN+1
|y|aU∂τUGa dxdydτ −

∫ t

0

∫
RN+1
|y|aU∇U · ∇Ga dxdydτ

=
1
2

∫ t

0

∫
RN+1
|y|a∂τ

(
U2

)
Ga dxdydτ +

1
2

∫ t

0

∫
RN+1
|y|aU2∂τGa dxdydτ

=
1
2

∫
RN+1

∫ t

0
|y|a∂τ

(
U2
Ga

)
dxdydτ

≤
1
2

∫
RN+1

U2(x, y, t) dµt(x, y)

where we have used the equations of U = U(x, y, t) and Ga = Ga(x, y, t), and the identity

2
∫
RN+1
|y|aU∇U · ∇Ga dxdy = −

∫
RN+1

U2
∇ · (|y|a∇Ga) dxdy,

for a.e. 0 < τ < T. Consequently, combining (5.40) and the above estimate, it suffices to prove

1
t2ν∗+1

{
t
∫
RN+1
|∇U|2 dµt(x, y) − ν∗

∫
RN+1

U2 dµt(x, y)
}
≥ 0,

which can be easily re-written as
t
∫
RN+1 |∇U|2 dµt(x, y)∫
RN+1 U2 dµt(x, y)

≥ ν∗, (5.41)

and, passing to the re-normalized variables Ũ(x, y, t) = U(x/
√

t, y/
√

t, t), as∫
RN+1 |∇Ũ|2 dµ(x, y)∫
RN+1 Ũ2 dµ(x, y)

≥ ν∗, (5.42)
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which turns out to be valid by the definition of ν∗ = min{1, 1−a}/2 and the Gaussian-Poincaré inequality
proved in Theorem 4.15, part (i) (note that we can always assume that Ũ(·, ·, t) has zero mean for all
t > 0, as in the proof of Lemma 5.16).

To complete the proof, we firstly fix −1 < a ≤ 0 (so that ν∗ = 1/2) and note that Theorem 4.15
implies that the equality is attained in (5.42) if and only if

Ũ(x, y, t) = A(t)x j i.e. U(x, y, t) =
√

tA(t) x j,

for some j ∈ {1, . . . ,N + 1} and function A = A(t) (recall the re-labeling convention xN+1 = y). Since
such U = U(x, y, t) must be a solution to (7) and it satisfies ∇ · (|y|a∇U) = 0, we deduce that A(t) = 1/

√
t

(up to multiplicative constants), completing the proof in the case −1 < a ≤ 0. In the case 0 ≤ a < 1
(ν∗ = (1 − a)/2), we proceed in the same way, noting that the equality is attained in (5.42) if and only if

Ũ(x, y, t) = A(t) y|y|−a i.e. U(x, y, t) = t
1−a

2 A(t) y|y|−a.

Consequently, taking A(t) = t
a−1

2 (up to multiplicative constants), we conclude the proof of the case
0 ≤ a < 1, too.

The proofs of part (ii) and (iii) are very similar to the one just presented and we skip them. We
just mention that it is enough to repeat the above procedure using the integral formulation for “strong
solutions” to (8) and (9), and the “right” Gaussian-Poincaré inequality (cfr. with part (ii) and (iii) of
Theorem 4.15). �

Remark. Let J = J(t,U) be defined as in (5.37). Then, from the fact that∫ t

0

∫
RN+1
|∇U|2 dµτ(x, y)dτ ≤

1
2

∫
RN+1

U2(x, y, t) dµt(x, y) =
1
2

H(t,U), (5.43)

for all t > 0, it easily follows that J = J(t,U) is in fact well-defined and positive (except for constant
functions), for all t > 0. Note that, in view of the proof of Theorem 5.1 (cfr. with formula (5.25)), we
have H(t,U) ∼ Ct2ν∗ for t ∼ 0+ which gives us∫ t

0

∫
RN+1
|∇U|2 dµτ(x, y)dτ ≤ Ct2ν∗ , for t ∼ 0+, (5.44)

and a suitable constant C > 0. Moreover, the converse inequality in (5.44) holds too, for any nonconstant
solutions U = U(x, y, t) (that, as always, we can assume to have zero mean w.r.t. dµt = dµt(x, y), for all
t > 0). Indeed, from (5.41), we get

1
ν∗

J(t,U) ≥
1

t2ν∗

∫ t

0

1
τ

∫
RN+1

U2(x, y, τ) dµτ(x, y)dτ =
1

t2ν∗

∫ t

0

H(τ,U)
τ

dτ

≥
1

t2ν∗+1

∫ t

0
H(τ,U) dτ ≥

C
t2ν∗+1

∫ t

0
τ2ν∗ dτ ≥ C > 0, for t ∼ 0+,

where we have used formula (5.25) again. Consequently, we have∫ t

0

∫
RN+1
|∇U|2 dµτ(x, y)dτ ∼ Ct2ν∗ , for t ∼ 0+,

and as an immediate consequence, we obtain limt→0+ J(t,U) > 0 when U = U(x, y, t) is nonconstant.
The very same observations hold if we replace the functional (5.37) with (5.38) and/or (5.39), with
simple modifications.
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5.3.2 Liouville type theorems

Let us now pass to the proof of some Liouville type results. In this context, it is important to stress
that we focus on the global quantitative behaviour of “strong solutions”, instead of the local one (this is
easily seen, for instance, in the interest of the asymptotic behaviour of the quantity H(t,U) as t → ∞,
instead of t→ 0+). In what follows we employ the following definition of “parabolic distance”:

d2(x, y, t) := |x|2 + |y|2 + t, for all (x, y, t) ∈ RN+1
× (0,∞).

Note that it is not a distance in the usual sense, since the triangular inequality does not hold, but it is
invariant under parabolic dilatations, in the sense that d(x, y, t) =

√
t d(x/

√
t, y/
√

t, 1).

Lemma 5.16. The following three statements hold.
(i) Let U = U(x, y, t) be a “strong solution” to equation (7) in RN+1

× (0,∞) (i.e. T = ∞) and assume it
satisfies the bound

U2(x, y, t) ≤ C[1 + d2ν(x, y, t)], (5.45)

for some C > 0 and some exponent ν > 0 satisfying

0 < ν < min{1, 1 − a}.

Then U is constant in RN+1
× (0,∞).

(ii) Let U = U(x, y, t) be a “strong solution” to problem (8) in RN+1
+ × (0,∞) (i.e. T = ∞) and assume it

satisfies the bound in (5.45) for some C > 0 and some exponent ν > 0 satisfying

0 < ν < 1.

Then U is constant in RN+1
+ × (0,∞).

(iii) Let U = U(x, y, t) be a “strong solution” to problem (9) in RN+1
+ × (0,∞) (i.e. T = ∞) and assume it

satisfies the bound in (5.45) for some C > 0 and some exponent ν > 0 satisfying

0 < ν < 1 − a.

Then U is identically zero in RN+1
+ × (0,∞).

Proof. We begin by proving part (i). First of all, we note that for any ν > 0, if U = U(x, y, t) satisfies
the point-wise bound (5.45), it holds

H(t,U) =

∫
RN+1
|y|aU2(x, y, t)Ga(x, y, t) dxdy

≤ C
∫
RN+1
|y|a

[
(|x|2 + |y|2 + t)ν + 1

]
Ga(x, y, t) dxdy

= C + tν
∫
RN+1
|y|a(|x|2 + |y|2 + 1)νGa(x, y, 1) dxdy ≤ Ctν,

(5.46)

for a suitable constant C > 0 and t > 0 large. Now, set as always κ := limt→0+ N(t,U) and assume by
contradiction that U = U(x, y, t) is non constant.

Let us start with the case κ > 0. In this case, it must be

κ ≥
1
2

min{1, 1 − a} := ν∗, (5.47)

since κ > 0 has to be an eigenvalue of problem (4.3) (cfr. with Theorem 5.1) and 1/2 and (1 − a)/2 are
the first nontrivial eigenvalue depending on −1 < a < 0 or 0 < a < 1, respectively (cfr. with Theorem
4.1). Now, in Step5 of Theorem 5.1, we have shown that

lim
t→0+

t−2κH(t,U) := C > 0,
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for some positive constant C > 0. Moreover, proceeding as in Corollary 4.8, it holds

H′(t,U)
H(t,U)

≥
2κ
t
, for all t > 0,

and so, integrating between 0 < t0 < t and t, we get

H(t,U) ≥ t−2κ
0 H(t0,U)t2κ, for all 0 < t0 ≤ t.

Consequently, taking the limit as t0 → 0+ we finally obtain H(t,U) ≥ Ct2κ for all t > 0 and so, thanks
to (5.47), we deduce

H(t,U) ≥ Ctmin{1,1−a} = Ct2ν∗ ,

for t > 0 large enough, which is in contradiction with the bound from above in 5.46, unless U = U(x, y, t)
is constant.

Now, assume that κ = 0. In this case, the bound in (5.46) is still true, but instead of the last
bound from below, we just get H(t,U) ≥ C for all t > 0, which is not enough to immediately deduce
the desired contradiction. So, we pass to the re-scaling Ũ(x, y, t) = U(

√
tx,
√

ty, t) and we recall that
Ũ(t) ∈ H1(RN+1, dµ) for all t > 0. Consequently, we can apply the Gaussian Poincaré inequality of
Theorem 4.15, part (i), to deduce∫

RN+1
Ũ2(t) dµ −

(∫
RN+1

Ũ(t) dµ
)2

≤ Pa

∫
RN+1
|∇Ũ|2(t) dµ, for all t > 0, (5.48)

where Pa := 1/ν∗ = 2/min{1, 1− a}. Note that we can assume
∫
RN+1 Ũ(t) dµ = 0 for all t > 0. Indeed, we

have already seen that the function

t→
∫
RN+1

Ũ(t) dµ

is constant (cfr. with (4.22)) and, since Ũ = Ũ(x, y, t) satisfies a linear equation, we can replace Ũ by

Ũ(x, y, t) −
∫
RN+1

Ũ(t) dµ,

to get a “strong solution” to equation (7) with zero mean for all t > 0. Consequently, (5.48) can be
easily re-written as

ν∗ =
1
2

min{1, 1 − a} ≤ N(1, Ũ),

and, since the l.h.s. is strictly positive, while the r.h.s. is converging to zero as t → 0+, we get a
contradiction unless Ũ ≡ 0 and we conclude the proof of part (i) (note that we get Ũ ≡ 0 since we have
assumed that Ũ as zero mean for any t > 0)

For what concerns part (ii) and (iii), it is easily seen that the proof of part (i) works also in these
different settings with straightforward modifications. The most significative is that we have to employ
the “right” Gaussian Poincaré inequality proved in Theorem 4.15, depending on the problem (Neuman
or Dirichlet) satisfied by U = U(x, y, t). �

Lemma 5.17. The following three statements hold.
(i) Let U = U(x, y, t) be a “strong solution” to equation (7) in RN+1

× (0,∞) (i.e. T = ∞) and assume it
satisfies the bound

|∇U(x, y, t)|2 ≤ C d2ν(x, y, t), (5.49)

for some C > 0 and some exponent ν ∈ R satisfying

ν < min{0,−a}.
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Then U is constant in RN+1
× (0,∞).

(ii) Let U = U(x, y, t) be a “strong solution” to problem (8) in RN+1
+ × (0,∞) (i.e. T = ∞) and assume it

satisfies the bound in (5.49) for some C > 0 and some exponent ν ∈ R satisfying

ν < 0.

Then U is constant in RN+1
+ × (0,∞).

(iii) Let U = U(x, y, t) be a “strong solution” to problem (9) in RN+1
+ × (0,∞) (i.e. T = ∞) and assume it

satisfies the bound in (5.49) for some C > 0 and some exponent ν ∈ R satisfying

ν < −a.

Then U is identically zero in RN+1
+ × (0,∞).

Proof. As before, we prove part (i), while (ii) and (iii) follow similarly. W.r.t. to the above proof, the
present one is based on the monotonicity of the functional t → J(t,U) defined in (5.37) instead of the
Almgren-Poon quotient t→ N(t,U).

So, if (5.49) holds true, then

J(t,U) =
1

t2ν∗

∫ t

0

∫
RN+1
|∇U|2(x, y, τ) dµτ(x, y)dτ

≤
C

t2ν∗

∫ t

0

∫
RN+1

(|x|2 + |y|2 + τ)ν dµτ(x, y)dτ

≤
C

t2ν∗

∫ t

0
τνdτ =

C
t2ν∗−ν−1

→ 0,

as t→ +∞, thanks to the assumption on ν ∈ R. From Lemma 5.15 it thus follows that J(t,U) = 0 for any
t > 0, and so, since the measure dµt = dµt(x, y) is nonnegative, it follows |∇U| = 0 a.e. in RN+1

× (0,∞),
i.e. U = U(x, y, t) is constant. �

Remark. Note that the above two Liouville type results have a quite different nature. In the first one,
the “critical growth condition” is imposed one the function U = U(x, y, t), whilst, in the second, a sort
of decaying property of the norm of the gradient is required. Finally, note that a independent proof
could have been proposed by using the Gaussian-Poincaré inequality (Theorem 4.15) and repeating
the proof of Lemma 5.16.

5.4 Blow-up analysis II: proof of Theorem 5.3 and Corollary 5.4

In this section we go forward with study of the asymptotic behaviour of the normalized blow-up
sequence studied in Theorem 5.1 by showing Theorem 5.3. To do so, we adapt a very ingenious
technique firstly employed in [189, 190] to study the elliptic framework, to the parabolic one. The
method is based on a blow-up-of-the-blow-up sequence and on the construction of two auxiliary
sequences combined with the application of Liouville type results proved in Lemma 5.16.

Proof of Theorem 5.3. Let U = U(x, y, t) be a “strong solution” to equation (7). As in Section 5.2, we
consider the blow-up sequence

Uλ(x, y, t) =
U(λx, λy, λ2t)

λ2κ , κ := lim
t→0+

N(t,U),
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so that Uλ = Uλ(x, y, t) satisfies the same equation in RN+1
× (0,T/λ2), λ > 0. Moreover, we us fix a

time T∗ > 0 and a compact set K ⊂ RN+1
× (0,T∗) (note that since λ→ 0, we can assume also T∗ < T/λ2).

The first step of the proof consists in showing that the family {Uλ}λ is uniformly bounded in the Hölder
space C2ν,ν(K) for any 0 < ν < ν∗ = min{1, 1 − a}/2, i.e.,

‖Uλ‖L∞(K) + [Uλ]C2ν,ν(K) ≤ C,

for some constant C > 0 independent of λ > 0, where the symbol [ · ]C2ν,ν(K) denotes the Hölder semi-
norm. Note that it suffices to prove the above bound with K = Q1/2 := B1/2 × (3/4, 1) and deduce the
general case through standard covering and/or scaling procedures.

IfQ1 := B1× (0, 1), a uniform bound for ‖Uλ‖L∞(Q1) can be obtained through the Harnack inequality
proved by Chiarenza and Serapioni in Theorem 2.1 of [65] (note that from L2

−L∞ estimates we already
know that Uλ is locally bounded, cfr. with Lemma 2.1 of [65] and/or formula (5.7) of [19]). Indeed,
applying that theorem to the family of solutions Uλ = Uλ(x, y, t) we easily deduce that

sup
Q1

|Uλ| ≤ C inf
Q1

|Uλ|, λ > 0,

for some constant C > 0 independent ofλ > 0, whereQ1 := B1×(6, 7). Consequently, if by contradiction,
there exists a sequence λ j → 0 such that ‖Uλ j‖L∞(Q1) → +∞ as j→ +∞, we obtain that

Uλ j(x, y, t)→ +∞ for all (x, y, t) ∈ Q
1
,

for any subset Q
1
⊂ Q1, obtaining a contradiction with the L2(0,T∗,H1

µt
)-convergence type of Theorem

5.1 toward locally uniformly bounded profiles.
For what concerns the Hölder semi-norm, we assume the uniform bound of ‖Uλ‖L∞(Q1), and we

show that for any 0 < ν < ν∗ = min{1, 1 − a}/2, there exists a constant C > 0 (independent of λ > 0),
such that

[Uλ]C2ν,ν(Q1/2) := sup
Q1/2

|Uλ(X1, t1) −Uλ(X2, t2)|
(|X1 − X2|2 + |t1 − t2|)ν

≤ C, (5.50)

where we have set by convenience X := (x, y) ∈ RN+1 and |X| =
√
|x|2 + |y|2. More precisely, for any

0 < ν < ν∗ := min{1, 1 − a}/2, we will show

[ηUλ]C2ν,ν(Q1) ≤ C, (5.51)

where η = η(X, t) is a smooth function satisfying
η(X, t) = 1 for (X, t) ∈ Q1/2

0 < η(X, t) ≤ 1 for (X, t) ∈ Q1 \Q1/2

η(X, t) = 0 for (X, t) ∈ ∂Q1,

where ∂Q1 := [∂B1 × (0, 1)] ∪ [B1 × {0}] ∪ [B1 × {1}]. From the definition of η = η(X, t), (5.50) easily
follows from (5.51).

Step1: Reductio ad absurdum and first definitions. Assume by contradiction that (5.51) does not hold,
i.e. there exists 0 < ν < ν∗ and a sequence λ j → 0+ as j→ +∞ such that

[ηUλ j]C2ν,ν(Q1) = sup
Q1

|η(X1, t1)Uλ j(X1, t1) − η(X2, t2)Uλ j(X2, t2)|

(|X1 − X2|2 + |t1 − t2|)ν
:= L j → +∞,

as j→ +∞. We may assume that for any j ∈N, L j is achieved by (X1, j, t1, j), (X2, j, t2, j) ∈ Q1, i.e.

L j :=
|η(X1, j, t1, j)Uλ j(X1, j, t1, j) − η(X2, j, t2, j)Uλ j(X2, j, t2, j)|

r2ν
j

, (5.52)
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for any index j ∈N, where, for future simplicity, we have defined

r j := (|X1, j − X2, j|
2 + |t1, j − t2, j|)

1
2 , j ∈N.

From (5.52), we immediately deduce the bound

L j ≤
‖Uλ j‖L∞(Q1)

r2ν
j

|η(X1, j, t1, j) − η(X2, j, t2, j)|,

and so, since we know that Uλ j is uniformly bounded inQ1, we get that r j → 0 as j→ +∞. Furthermore,
from the same bound on L j and the smoothness of η = η(X, t), it is easily seen that

dist((X1, j, t1, j), ∂Q1)
r j

+
dist((X2, j, t2, j), ∂Q1)

r j
≥

L jr2ν−1
j

L‖Uλ j‖L∞(Q1)
,

where L > 0 is taken such that |η(X1, t1) − η(X2, t2)| ≤ L(|X1 − X2|
2 + |t1 − t2|)

1
2 and, since 0 < 2ν < 1, we

get
dist((X1, j, t1, j), ∂Q1)

r j
+

dist((X2, j, t2, j), ∂Q1)
r j

→ +∞, (5.53)

as j→ +∞.
Step2: Auxiliary sequences. Following the ideas of [189, Section 6] and [190, Section 4], the remaining

part of the proof is based on the analysis of two different sequences:

W j(X, t) := η(X̂ j, t̂ j)
Uλ j(X̂ j + r jX, t̂ j + r2

j t)

L jr2ν
j

,

W j(X, t) :=
(ηUλ j)(X̂ j + r jX, t̂ j + r2

j t)

L jr2ν
j

,

(5.54)

for any sequence of points P̂ j = (X̂ j, t̂ j) ∈ Q1 and

(X, t) ∈ Q j = (Q1 − P̂ j)/r j = B1/r j(X̂ j) × (−̂t j/r2
j , (1 − t̂ j)/r2

j ), j ∈N.

The definitions of the new sequences in (5.54) are motivated by two crucial facts. The first one, is that
the Hölder semi-norm of order 0 < ν < ν∗ of W j = W j(X, t) is bounded independently of j ∈N:

[W j]C2ν,ν(Q j) = 1 for all j ∈N.

This easily follows by the definition of W j = W j(X, t), L j and r j. On the other hand, the first sequence
satisfies the notable equation

∂tW j +L
j
aW j = 0 in RN+1

× (−̂t j/r2
j , (1 − t̂ j)/r2

j ), (5.55)

where L j
aW = |̂y jr−1

j + y|−a
∇ · (|̂y jr−1

j + y|a∇W j) and X̂ j = (̂x j, ŷ j), for all j ∈N, with W j(0, 0) = W j(0, 0).
Another important feature of these two sequences is that they are asymptotically equivalent on compact
sets of RN+1

×R. Indeed, if K ⊂ RN+1
×R is compact and (X, t) ∈ K, we have

|W j(X, t) −W j(X, t)| ≤
‖ηUλ j‖L∞(Q1)

r2ν
j L j

|η(X̂ j + r jX, t̂ j + r2
j t) − η(X̂ j, t̂ j)|

≤ L
‖ηUλ j‖L∞(Q1)

r2ν−1
j L j

(|X|2 + t)
1
2 → 0,
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as j→ +∞ (recall that r j → 0, L j → +∞, and 2v < 1). In particular, it follows

‖W j −W j‖L∞(K∩Q j) → 0 as j→ +∞. (5.56)

Furthermore, from the bound above and recalling that W j = W j(X, t) is ν-Hölder continuous with
W j(0, 0) = W j(0, 0), it is easily seen that

|W j(X, t) −W j(0, 0)| ≤ |W j(X, t) −W j(X, t)| + |W j(X, t) −W j(0, 0)|

≤ C

 1
r2ν−1

j L j
(|X|2 + t)

1
2 + (|X|2 + t)ν

 ,
from which we deduce the existence of a constant C > 0 depending on the compact set K ⊂ RN+1

×R
such that

sup
(X,t)∈K∩Q j

|W j(X, t) −W j(0, 0)| ≤ C. (5.57)

These last two properties will be crucial in the next step.
Step3: Asymptotic behaviour of (X1, j, t1, j) and (X2, j, t2, j). We now show that the sequences (X1, j, t1, j)

and (X2, j, t2, j) approach the characteristic manifold Σ = {(x, y) ∈ RN+1 : y = 0} as j → +∞. More
precisely, we prove the existence of a constant C > 0 such that

dist((X1, j, t1, j),Q1 ∩ Σ)
r j

+
dist((X2, j, t2, j),Q1 ∩ Σ)

r j
≤ C, (5.58)

for j ∈N large enough. Arguing by contradiction, we assume that

dist((X1, j, t1, j),Q1 ∩ Σ)
r j

+
dist((X2, j, t2, j),Q1 ∩ Σ)

r j
→ +∞ as j→ +∞.

Let us take (X̂ j, t̂ j) = (X1, j, t1, j) in the definition of W j = W j(X, t) and W j = W j(X, t), so that, thanks to
(5.53),

Q j
→ RN+1

×R or Q j
→ RN+1

× (0,∞) as j→ +∞.

In what follows, we will assume Q j
→ RN+1

× R since the other case can be treated similarly. Now,
consider the new sequences

Z j(X, t) := W j(X, t) −W j(0, 0),

Z j(X, t) := W j(X, t) −W j(0, 0),
(5.59)

and let j ∈ N be large enough such that K ⊂ Q j, where K ⊂ RN+1
× R is a fixed compact set. Since

the sequence {Z j} j∈N is uniformly bounded in K with uniformly bounded ν-Hölder semi-norm, we
can apply Ascoli-Arzelà Theorem to deduce the existence of a continuous function Z ∈ C(K), uniform
limit of Z j = Z j(X, t) as j→ +∞ (we stress that the uniform L∞ bound for {Z j} j∈N follows from having
subtracted the value W j(0, 0) = W j(0, 0) to W j = W j(X, t) and using their Hölder continuity). Note
that, using a standard covering argument and the arbitrariness of K, we get that Z j → Z uniformly
on compact sets of RN+1

× R and, by (5.56) and (5.57), we get Z j → Z uniformly on compact sets of
RN+1

×R, too. Furthermore, from the definition of Z j = Z j(X, t)

|Z j(X1, t1) − Z j(X2, t2)| = |W j(X1, t1) −W j(X2, t2)| ≤ (|X1 − X2|
2 + |t1 − t2|)ν,

for any choice (X1, t1), (X2, t2) ∈ RN+1
× R and j ∈ N large enough. Consequently, taking j → +∞ in

the above inequality, we obtain Z ∈ C2ν,ν(RN+1
×R), for any 0 < ν < ν∗ = min{1, 1 − a}/2. In particular,

it satisfies
|Z(x, y, t)| ≤ C(1 + (|X|2 + |t|)ν] ≤ C(1 + d2ν(x, y, t)) (5.60)
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for any (x, y, t) ∈ RN+1
×R+, 0 < 2ν < min{1, 1 − a}, and some C > 0.

Now, multiplying the equation of Z j = Z j(X, t) by |̂y jr−1
j + y|aϕ (note that Z j satisfies the same equation

of W j), where ϕ = ϕ(X, t) is any test function belonging to C∞0 (RN+1
×R), and integrating by parts both

in space and time, we easily see that∫
R

∫
RN+1

[
|1 + r j ŷ−1

j y|a∂tϕ − ∇ ·
(
|1 + r j ŷ−1

j y|a∇ϕ
)]

Z j dxdydt = 0.

Hence, exploiting the fact that |1 + r j ŷ−1
j y|a → 1 on any compact set ofRN+1

×R and using the uniform
convergence of the sequence Z j = Z j(X, t), we pass to the limit as j → +∞ in the above relation to
conclude ∫

R

∫
RN+1

(
∂tϕ − ∆x,yϕ

)
Z dxdydt = 0,

for any ϕ ∈ C∞0 (RN+1
×R). In particular, this implies that Z = Z(X, t) is a “backward caloric function”

inRN+1
×R+, in the “very weak sense”. Consequently, from the classical regularity theory of the Heat

Equation, the bound in (5.60), and the Liouville type theorem proved in Lemma 5.16 (part (i) with
a = 0, see also the classical Hirschman’s paper [125]), we immediately deduce that Z = Z(X, t) must be
constant. Now, since we have chosen (X̂ j, t̂ j) = (X1, j, t1, j), it follows

(X2, j, t2, j) − (X̂ j, t̂ j)
r j

=
(X2, j, t2, j) − (X1, j, t1, j)

(|X1, j − X2, j|2 + |t1, j − t2, j|)
1
2

→ (X2, t2),

for some (X2, t2) ∈ Q1, up to subsequences, and so, using the uniform convergence and the uniform
Hölder bound on W j = W j(X, t), we get

1 =

∣∣∣∣∣∣∣W j

X2, j − X̂ j

r j
,

t2, j − t̂ j

r2
j

 −W j

X1, j − X̂ j

r j
,

t1, j − t̂ j

r2
j


∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣Z j

X2, j − X̂ j

r j
,

t2, j − t̂ j

r2
j

 − Z j

X1, j − X̂ j

r j
,

t1, j − t̂ j

r2
j


∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣Z j

X2, j − X̂ j

r j
,

t2, j − t̂ j

r2
j

 − Z j(0, 0)

∣∣∣∣∣∣∣→ |Z(X2, t2) − Z(0, 0)| = 1,

(5.61)

as j → +∞, i.e. Z = Z(x, t) is nonconstant, in contradiction with the Liouville type theorem. This
conclude the proof of (5.58).

Step4: Final part of the proof of (5.50). In view of (5.58) and the arbitrariness of P̂ j = (X̂ j, t̂ j) ∈ Q1

in the definition of W j = W j(X, t) and W j = W j(X, t) (cfr. with (5.54)), we can choose P̂ j = (X1, j, t1, j) =
(x1, j, 0, t1, j) ∈ Σ, for all j ∈ N. Consequently, it follows that W j = W j(X, t) is a “strong solution” to the
equation (instead of (5.55)):

∂tW j +LaW j = 0 in RN+1
× (−̂t j/r2

j , (1 − t̂ j)/r2
j ) (5.62)

and, repeating the procedure followed in Step3 together with the L2(0,T∗; H1
µt

) type convergence proved
in Theorem 5.1, we deduce that the limit function Z = Z(X, t) (of the sequences in (5.59)) satisfies∫

RN+1

[
∂tZ +

(x, y)
2t
· ∇Z

]
η dµt(x, y) =

∫
RN+1
∇Z · ∇η dµt(x, y),
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for a.e. 0 < t < T and all η ∈ L2
loc(0,T; H1

µt
), together with the global bound (5.60). It thus follows that

Z = Z(X, t) must be constant (it suffices to apply Lemma 5.16 again) while (5.61) holds also in this case.
This gives the final contradiction.

Step5: Uniqueness of the blow-up limit. Having shown (5.50), we can assume that there exists a
subsequence λ j → 0+ and a locally bounded continuous function Θ = Θ(x, y, t) such that for any T∗ > 0
and compact set K ⊂ RN+1

× (0,T∗), it holds

‖Uλ j −Θ‖L∞(K) → 0,

as j→ +∞. On the other hand, setting as always

Θ(x, y, t) = tκn0 ,m0

∑
(α,m)∈J0

vα,mVα,m

(
x
√

t
,

y
√

t

)
,

where vα,m ∈ R, Vα,m = Vα,m(x, y) and J0 are defined as in the statement of Theorem 5.1, and n0,m0 ∈N
are chosen such that κ = κn0,m0 , we have

‖Uλ −Θ‖L2(0,T∗;H1
µt ) → 0,

as λ→ 0+. Now, we note that∫
K
|Θ −Θ|2dµt(x, y)dt ≤ ‖Uλ j −Θ‖2L∞(K)

∫ T∗

0

∫
RN+1

dµt(x, y)dt + ‖Uλ j −Θ‖2
L2(0,T∗;L2

µt )

= T∗‖Uλ j −Θ‖2L∞(K) + ‖Uλ j −Θ‖2
L2(0,T∗;L2

µt )
→ 0,

as j → +∞, from which we deduce Θ = Θ on any compact set K ⊂ RN+1
× (0,T∗) (note that the

continuity of the limit profiles is used) and conclude the proof of the theorem. �

Important remark. We end the section by pointing out an easy but interesting consequence of the
above theorem. If U = U(x, y, t) is a locally bounded “strong solution” to equation (7) (let us say
‖U‖L∞(Q) ≤ C), then U = U(x, y, t) is uniformly bounded in some Hölder space

[U]C2ν,ν(Q1/2) ≤ C for all 0 < ν < ν∗ :=
1
2

min{1, 1 − a}, (5.63)

and some constant C > 0 not depending on U = U(x, y, t). This fact can be easily obtained by repeating
the above proof, replacing Uλ by U and it is very significative since it is the first quantitative Hölder
estimate of solutions to (7). We stress that Hölder continuity of solutions to (7) was already proved by
Chiarenza and Serapioni in [65] and by Banerjee and Garofalo in [19], but in those cases the “interval
of Hölderianity” was not studied. Note that the above bound is almost optimal, in the sense that there
are “strong solutions” to (7) satisfying (5.63) with ν = ν∗. A simple example for the case 0 < a < 1 is
given by the function U(x, y, t) = y|y|−a, while, for −1 < a ≤ 0, U(x, y, t) = x.

Proof of Corollary 5.4. The proof of this corollary is almost identical to the above one. Defining
U(x, y, t) = U(x, y,−t), where U = U(x,u, τ) is the extension of u ∈ dom(Hs) solution to (1) (cfr. with
the proof of Corollary 5.2), we have that the even extension of U = U(x, y, t) w.r.t. the variable y is a
“strong solution” to (7). We can thus repeat the proof of Theorem 5.3 by applying Corollary 5.2 instead
of Theorem 5.1. �

As an easy consequence of Theorem 5.3/Corollary 5.4, we obtain a “strong unique continuation”
property for solutions to equation (1).
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“Strong unique continuation” properties for solutions to elliptic and parabolic equations have a long
story and have been intensively studied in both the elliptic and parabolic framework, for both local
and nonlocal equations. In the elliptic case we quote the works of Garofalo and Lin [110, 111] for the
local framework, and Fall and Felli [98] for the nonlocal one (see also Rüland [173, 174]). For what
concerns the parabolic framework, the first result was given by Poon in [167] (see also more recent
results in [92, 93] and [209]) for the local case. For the nonlocal setting, a “strong unique continuation”
theorem have been proved by Banerjee and Garofalo in [19] for equation (1) with potential. Even
though their result is stronger and more general, we have decided to present the proof since it easily
follows from Theorem 5.3/Corollary 5.4.

Corollary 5.18. (Banerjee and Garofalo, Theorem 1.2. of [19]) Let u ∈ dom(Hs) be a solution to equation (1)
and assume it vanishes of infinite order at (0, 0) ∈ Qr := Br × (−r2, 0], i.e.,

sup
Qr

|u| = O(r2n) as r→ 0, (5.64)

for all n > 0. Then u ≡ 0 in RN
× (−T, 0).

Proof. Let u ∈ dom(Hs) be a solution to (1), satisfying the assumption in (5.64) and U = U(x, y,−t) its
extension defined as in (2). Assume by contradiction u . 0 and define

uλ(x,−t) = λ−2κu(λx,−λ2t), Uλ(x, y,−t) = λ−2κU(λx, λy,−λ2t) λ > 0,

for all 0 < t < T, where, as always
κ := lim

t→0+
N(t,U),

with the convention U(x, y, t) = U(x, y,−t). From the regularity results of [185] (see also [19]) and the
definition of the extension, we have that

uλ(x,−t) = Uλ(x, 0,−t) in RN
× (0,T).

On the other hand, for any fixed (x,−t) ∈ Qr with r > 0 small enough, we get by (5.64):

|uλ(x,−t)| = λ−2κ
|u(λx,−λ2t)| ≤ Cλ2(n−κ)r2n

→ 0 as λ→ 0+,

for all n > κ. However, from Corollary 5.4, we know that

Uλ(x, y,−t)→ tκ
∑

(α,m)∈ J̃0

vα,m
‖Vα,m‖L2

µ

Hα

(
x
√

t

)
L( a−1

2 ),m

(
y2

4t

)
as λ→ 0+,

uniformly onQ+
r := B+

r × (−r2, 0] = {(x, y) ∈ Br, y ≥ 0} × (−r2, 0]. In particular, using the continuity (up
to y = 0) of Uλ and the fact that L( a−1

2 ),m(0) = Am , 0 (cfr. with Section 4.6), we get

uλ(x,−t)→ tκ
∑

(α,m)∈ J̃0

vα,mAm

‖Vα,m‖L2
µ

Hα

(
x
√

t

)
as λ→ 0+,

uniformly on Qr which, since Hα . 0 in Qr, gives the desired contradiction. �

Corollary 5.19. Let U = U(x, y, t) be a “strong solution” to equation (7) and assume it vanishes of infinite
order at (0, 0) ∈ Qr := Br × [0, r2), i.e.,

sup
Qr

|U| = O(r2n) as r→ 0

for all n > 0. Then U ≡ 0 in RN+1
× (0,T).
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Proof. The proof is very similar to the one above and we skip it. In this case, it suffices to work with
“strong solutions” to (7) and applying Theorem 5.3 instead of Corollary 5.4. �

5.5 Nodal properties of solutions to equation (1)

In this final part of the work, we employ the theory developed in the previous sections to get in-
formation about the Hausdorff dimension, regularity and structure of the nodal set of solutions to
equation (1). As we have mentioned in the introduction, the decisive tools turn out to be the blow-up
classification of Section 5.2 and Section 5.4 and classical theorems as Federer’s Reduction Principle
(cfr. with Theorem 5.25) and Whitney’s Extension Theorem (cfr. with Theorem 5.26), together with
some “easier” technical results.

We begin with two preliminary results. Firstly, we prove that Γκ(U) is Fσ. Secondly, we will study
the decaying properties of solutions to problem (8) near their nodal points of order κ ∈ K̃ . Both of
them will turn out to be crucial in the proof of Theorem 5.12.

Lemma 5.20. Let U = U(x, y, t) be a nontrivial “strong solution” to problem (8). Then:
(i) The set R(U) is relatively open in Γ(U).
(ii) For any κ = 1, 3

2 , 2, . . ., the set Γκ(U) is a union of countably many closed sets.

Proof. Part (i) directly follows from the upper semi-continuity of the map

p0 → N(p0, t+
0 ,U) := lim

t→t+0
N(p0, t,U),

and Corollary 5.2, which gives us

R(U) =

{
p0 ∈ Γ(U) ∩ Σ : lim

t→t+0
N(p0, t,U) =

1
2

}
=

{
p0 ∈ Γ(U) ∩ Σ : N(p0, t+

0 ,U) < 1
}
.

For what concerns part (ii) we note that thanks to formula (5.25), we have

Γκ(U) =

∞⋃
j=1

E j E j :=
{

p0 ∈ Γκ(U) :
1
j
t2κ
≤ H(p0, t,U) < jt2κ, as t ∼ 0

}
, (5.65)

for any 1 ≤ j ∈ N. Consequently, it is enough to show that all the E j’s are closed sets. We show
that for any fixed 1 ≤ j ∈ N and p0 ∈ E j, it holds p0 ∈ E j. It is instantly seen that for such p0, the
inequalities in (5.65) hold by continuity, while, since the function p0 → N(p0, t+

0 ,U) (cfr. with (5.2)) is
upper semi-continuous, we get that N(p0, t+

0 ,U) ≥ κ. Finally, if by contradiction N(p0, t+
0 ,U) = κ > κ,

combining formula (5.25) with κ = κ and (5.65), we easily get

1
j
t2κ
≤ H(p0, t,U) < jt2κ, as t ∼ 0,

which is contradiction. Consequently, p0 ∈ Γκ(U) and so p0 ∈ E j. �

Lemma 5.21. (“Regularity”) Let U = U(x, y, t) be a nontrivial “strong solution” to problem (8), with p0 =
(X0, t0) ∈ Γκ(U). Then there exists a constant C > 0, such that

sup
B+

r (X0)×(t0,t0+2r2)

|U| ≤ Cr2κ, as r→ 0.
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Proof. Again we take (X0, t0) = (0, 0) and we begin with the following observation. If |x|2 + y2 < r2

and 6r2 < t < 7r2, for some r > 0, we easily see that

7t−
N+a+1

2 ≥ r−(N+a+1), e−
|x|2+y2

4t ≥ e−
1

24 ,

so that ∫ 7r2

6r2

∫
B+

r

dµt(x, y)dt ≥ Cr−(N+a+1)
∫ 7r2

6r2

(∫
B+

r

|y|a dxdy
)

dt ≥ Cr2,

for some C > 0. Now, using Theorem 2.1 of [65] again (or formula (5.12) of [19]) and the above estimate,
we get  sup

B+
r ×(0,2r2)

|U|


2

≤ C
(

inf
B+

r ×(6r2,7r2)
|U|

)2

≤ C

∫ 7r2

6r2

∫
B+

r
U2 dµt(x, y)dt∫ 7r2

6r2

∫
B+

r
dµt(x, y)dt

≤
C
r2

∫ 7r2

6r2

∫
B+

r

U2 dµt(x, y)dt ≤
C
r2

∫ 7r2

6r2

∫
RN+1

+

U2 dµt(x, y)dt.

Consequently, in view of (5.25), we deduce for r ∼ 0:∫ 7r2

6r2

∫
RN+1

+

U2 dµt(x, y)dt =

∫ 7r2

6r2
H(t,U) dt ≤ C

∫ 7r2

6r2
t2κ dt ≤ Cr4κ+2,

which, matching with the above chain of inequalities, it follows

sup
B+

r ×(0,2r2)

|U| ≤ Cr2κ, as r→ 0,

i.e., the thesis. �

5.5.1 Proof of Theorem 5.7 and Theorem 5.8

As the title of the section subsection suggests, we now pass to the problem of estimating the Hausdorff
dimension of the nodal set of solutions to (1) and, as explained above, we will make use of the so
called Federer’s Reduction Principle (cfr. for instance with Simon [178, Appendix A], or Lin [143,
Section 2]). Its parabolic version of it is less employed in literature and so, out of completeness, we
review it in the next paragraphs. We follow the notable work of Chen [63, Section 8], simplifying its
quite general setting to our more specific framework. We begin with the definition of Hausdorff and
parabolic Hausdorff dimension.

Definition 5.22. (Parabolic Hausdorff dimension, [63, Definition 8.1]) For any E ⊂ RN
×R, any real number

d ≥ 0, and 0 < δ ≤ ∞, we define

P
d
δ(E) := inf


∞∑
j=1

rd
j : E ⊂

∞⋃
j=1

Qr j(x j, t j) with 0 < r j < δ

 ,
where, as always

Qr(x, t) :=
{
(x′, t′) ∈ RN

×R : |x − x′| < R, |t − t′| < R2
}
.

Then we define the “d-dimensional cylindrical Hausdorff measure” by

P
d(E) := lim

δ→0+
P

d
δ(E) = sup

δ>0
P

d
δ(E).

We call “parabolic Hausdorff dimension” of E, the number

dimP(E) := inf
{
d ≥ 0 : Pd(E) = 0

}
= sup

{
d ≥ 0 : Pd(E) = +∞

}
.
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Before moving forward, we recall that the above definition is just a parabolic version of the more
classical “spherical Hausdorff” measure (Hausdorff dimension, resp.). Indeed, if E ⊂ RN, d ≥ 0, and
0 < δ ≤ ∞, we define

H
d
δ (E) := inf


∞∑
j=1

rd
j : E ⊂

∞⋃
j=1

Br j(x j) with 0 < r j < δ

 ,
where now Br(x) is the ball of radius r > 0, centered at x. Consequently, the “d-dimensional spherical
Hausdorff measure” can be defined as

H
d(E) := lim

δ→0+
H

d
δ (E) = sup

δ>0
H

d
δ (E).

The “Hausdorff dimension” of E is the number

dimH (E) := inf
{
d ≥ 0 : Hd(E) = 0

}
= sup

{
d ≥ 0 : Hd(E) = +∞

}
.

Let us start with the following lemma.

Lemma 5.23. ([63, Lemma 8.2]) The following two assertions hold:
(i) For any linear subspace E ⊂ RN and any −∞ ≤ a < b ≤ +∞, it holds

dimP(E × (a, b)) = dimH (E) + 2.

In particular, dimP(RN
×R) = N + 2.

(ii) For any set E ⊂ RN
×R, any point p0 = (x0, t0) ∈ RN

×R, and λ > 0, define

Ep0,λ =
E − p0

λ
:=

{
(x, t) ∈ RN

×R : (x0 + λx, t0 + λ2t) ∈ E
}
.

Then
Pd
δ(Ep0,λ) = λ−dPd

δ(E),

for any d ≥ 0 and δ > 0.

The above lemma clarifies the relation between the more natural Hausdorff dimension and the
little bit more ambiguous parabolic Hausdorff dimension (for which dimP(RN

× R) = N + 2!). This
(maybe strange) fact is actually quite natural if the natural parabolic scaling is taken into account.

Definition 5.24. (Locally asymptotically self-similar family, cfr. with [63, Definition 8.3])
Let F ⊂ L∞loc(R

N
×R) be a family of functions and consider a map

S : F → C := {C ⊂ RN
×R : C is closed}.

Moreover, define the “blow-up family”

up0,λ,%(x, t) =
u(x0 + λx, t0 + λ2t)

%
,

for any p0 = (x0, t0) ∈ RN
×R and λ, % > 0. We say that the pair (F ,S) is a “locally asymptotically self-similar

family” if it satisfies the properties (A1), (A2) and (A3) below.
(A1) (Closure under re-scaling, translation and normalization) For any Qλ(x0, t0) ⊂ Q1(0, 0), % > 0 and

u ∈ F , it holds
up0,λ,% ∈ F .



CHAPTER 5. BLOW-UP ANALYSIS AND NODAL SET OF SOLUTIONS TO EQUATION (1) 184

(A2) (Convergence of the normalized “blow-up sequence”) For any p0 ∈ Q1(0, 0), u ∈ F and λ j → 0+, there
exist a number κ ∈ R and a function ϑp0 ∈ F parabolically κ-homogeneous such that as j→ +∞, up to pass to
a subsequence of λ j, it holds

up0,λ j,λ2κ
j
→ ϑp0 locally uniformly in RN

×R.

Moreover, if up0,λ j,λ2κ
j
→ ϑp0 and up0,λ j,λ2k

j
→ θp0 , then κ = k and ϑ = θ.

(A3) (Singular Set assumptions) The map S : F → C satisfies the following properties:
(i) For any Qλ(x0, t0) ⊂ Q1(0, 0), % > 0 and u ∈ F , it holds

S(up0,λ,%) = (S(u))p0,λ .

(ii) For any p0 ∈ Q1(0, 0), u, ϑp0 ∈ F , κ ∈ R and λ j → 0+ such that up0,λ j,λ2κ
j
→ ϑp0 uniformly on compact

sets of RN
×R, the following “continuity property” holds: for any ε > 0, there exists jε > 0 such that

S(up0,λ j,λ2κ
j

) ∩Q1(0, 0) ⊆ {p ∈ RN
×R : dist(p,S(ϑp0)) < ε}, for all j ≥ jε.

(iii) If u ∈ F and κ ∈ R are such that up0,λ,λ2κ = u for all (x0, t0) ∈ RN
×R and λ > 0, then S(u) = ∅.

Remark. Some comments are now in order. In Definition 8.3 of [63], the author present a much
more general definition that we have decided to adapt to our specific context. Note in particular that
we have replaced the heavy notation g(x0, t0;λ, 1/%)u with the simpler one up0,λ,%. Moreover, we have
eliminated the assumptions (A1.1), (A1.2), and (A3.2) (of [63]) since they are immediate in our case.
Moreover, the second part of (A1.3) and (A1.4) (of [63]) corresponds to (i) and (iii) of (A3), respectively,
and finally, (A2), (A3.1) and (A3.3) (of [63]), corresponds to our assumption (A2).

We are now ready to state Federer’s reduction principle.

Theorem 5.25. (Federer’s Reduction Principle, Chen [63, Theorem 8.5])
Let (F ,S) be a “locally asymptotically self-similar family” and assume there exists at least one u ∈ F such that
S(u) ∩Q1(0, 0) , ∅. Then:

(i) There exists an integer 0 ≤ d ≤ N + 1 such that for all u ∈ F it holds

dimP [S(u) ∩Q1(0, 0)] ≤ d.

(ii) There exist u ∈ F , κ ∈ R and a linear subspace of RN
×R such that

E(0,0),λ = E, for any λ > 0, S(u) = E, dimP E = d,

and
up0,λ,λ2κ = u for any λ > 0 and p0 ∈ E.

Proof of Theorem 5.7. The statement is obtained as by product of Federer’s theorem and the blow-up
classification of Sections 5.2 and 5.4. So, if u ∈ dom(Hs) is a nontrivial solution to (1) and u(x, t) =
u(x,−t), we define

F := {u ∈ dom(Hs) : u is a non trivial solution to equation (1)} ⊂ L∞loc(R
N
×R).

Note that the family F satisfies assumption (A1) of Definition 5.24 thanks to the properties of the
operator (∂τ −∆)s such as linearity. Now, let U = U(x, y, τ) the extension of u = u(x, τ) defined as in (2)
so that U(x, y, t) = U(x, y,−t) satisfies problem (8). From Corollary 5.4 we have

Up0,λ j → Θp0 locally uniformly in RN+1
+ ×R+,
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as j → +∞, where Θp0 ∈ Bκ(U) is the unique (parabolically κ-homogeneous) “tangent map” of U at
p0 ∈ Γ(U) ∩ Σ = Γ(u) (see Definitions 5.6 and 5.6) and λ j → 0. Consequently,

up0,λ j → ϑp0 locally uniformly in RN
×R+,

as j → +∞, where ϑp0(x, t) := Θp0(x, 0, t) and up0,λ j(x, t) = Up0,λ j(x, 0, t). Since Θp0 is parabolically
κ-homogeneous for some κ ≥ 0, we deduce that assumption (A2) Definition 5.24 is satisfied too, by
taking

up0,λ j,% j(x, t) = up0,λ j(x, t) (with % j := λ2κ
j ).

Now, let us consider the map
S : u→ S(u) := Γ(u) ∈ C,

since Γ(U)∩Q1∩Σ is closed by the continuity of U = U(x, y, t). Moreover, by the uniform convergence of
Up0,λ towards their “tangent maps” Θp0 (cfr. with Theorem 5.3), we easily see that also the assumption
(A3) (of Definition 5.24) is satisfied and so, (F ,S) is a “locally asymptotically self-similar family”.
Hence, in view of Federer’s Reduction Principle, we conclude the proof since d ≤ N + 1. �

We end this subsection by proving Theorem 5.8, which focuses on the analysis of the “regular”
points of the nodal set R(u) of solutions to equation (1).

Proof of Theorem 5.8. From the blow up classification of Corollary 5.4 and the spectral Theorem 4.1,
we know that as λ→ 0

Up0,λ =
U(x0 + λx, λy, t0 + λ2t)

λ
→ Θp0(x, y, t) =

N∑
i=1

v jx j

uniformly on compact sets of RN+1
+ × (0,T), where v j , 0 at least for some j = 1, . . . ,N. Consequently,

if (e j)N+1
i=1 is the standard basis of RN+1 and v j , 0, it holds

∂xiU(p0) = lim
λ→0+

U(p0 + λei) −U(p0)
λ

= vi,

thanks to the above convergence and that U(p0) = 0 (here δi j is the Kronecker delta). It thus follows
∇xU(p0) , 0 (note that however ∂tU(p0) = 0). Part (i) is thus proved.

For what concerns part (ii), it is enough to apply the Implicit function theorem at point p0 ∈ R(U)
and use part (i). �

5.5.2 Proof of Theorem 5.9 and Theorem 5.12

We begin with the proof of Theorem 5.9. We point that its last part will be crucial in the application of
Whitney’s theorem, in the proof of Theorem 5.12.

Proof. Part (i) easily follows from Theorem 5.3. Indeed, assuming for simplicity p0 = (0, 0) ∈ Γκ(U)
and taking K = Q+

1 = B+
1 × (0, 1), we have as λ→ 0+

o(1) = sup
(x,y,t)∈Q+

1

|Uλ(x, y, t) −Θ(x, y, t)| = sup
(x,y,t)∈Q+

1

∣∣∣∣∣∣U(λx, λy, λ2t)
λ2κ −

Θ(λx, λy, λ2t)
λ2κ

∣∣∣∣∣∣
= λ−2κ sup

(x,y,t)∈Q+
λ

|U(x, y, t) −Θ(x, y, t)|,

where Q+
λ := B+

λ × (0, λ2).
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To prove part (ii) we follow the ideas of Theorem 14.4 of [71]. As in Remark 12.7 of that paper, we
point out that since Bκ(U) is a finite dimensional space composed by parabolically κ-homogeneous
polynomials, the continuity of the function p0 → Θp0 can be verified w.r.t. any norm on Bκ(U). We
proceed in two separate steps.

Step1: Monneau’s and Weiss’ type monotonicity formulae. Taking the norm C0(0, 1; L2
µt

) (cfr. with
Lemma 5.13) and repeating the above scaling procedure using the C0(0, 1; L2

µt
) convergence (instead of

the uniform one), we have that for any p0 ∈ Γκ(U) (cfr. with (5.35) with T∗ = 1):

1
λ4κ

max
t∈[0,λ2]

‖Up0(t) −Θp0(t)‖2
L2
µt

=
1
λ4κ

max
t∈[0,λ2]

H(t,Up0 −Θp0)→ 0 as λ→ 0+.

On the other hand, we easily see that

1
λ4κ

max
t∈[0,λ2]

H(t,Up0 −Θp0) =
H(λ2,Up0 −Θp0)

λ4κ
, λ > 0,

thanks to the monotonicity of the function t → H(t,Up0 − Θp0) (cfr. with Section 4.3). Now, we claim
that the function

t→Mκ
Up0 ,Θp0

(t) :=
H(t,Up0 −Θp0)

t2κ , (5.66)

is monotone non-decreasing (note that this does not follows immediately from (4.36) since we are
replacing Up0 with Up0 − Θp0). The map t → Mκ

Up0 ,Θp0
(t) defined in (5.66) is a Monneau type function

(cfr. with [154, 155]) and its derivative can be easily computed as follows

d
dt

Mκ
Up0 ,Θp0

(t) = −2κt−2κ−1H(t,U∗p0
) + 2t−2κI(t,U∗p0

)

=
2

t2κ+1

[
tI(t,U∗p0

) − κH(t,U∗p0
)
]

=
2
t

Mκ
Up0 ,Θp0

(t)
[
N(t,U∗p0

) − κ
]

:=
2
t

Wκ
Up0 ,Θp0

(t),

where we have set U∗p0
:= Up0−Θp0 and used the fact that H′(t,U∗p0

) = 2I(t,U∗p0
). The map t→Wκ

Up0 ,Θp0
(t)

is known in literature as Weiss type function (cfr. with [206, 207]).
We point out that in Theorem 13.4 of [71] the authors introduced Monneau’s and Weiss’ type functions
which are a sort of averaged versions of ours. In this framework, these “averaged” versions are not
needed.

Now, as the reader can easily see, if U = U(x, y, t) has Almgren-Poon limit κ at p0 and tangent map
Θp0 ∈ Bκ(U), we have that the Weiss type function

t→Wκ
Up0 ,0

(t) := Mκ
Up0 ,0

(t)
[
N(t,Up0) − κ

]
=

H(t,Up0)

t2κ

[
N(t,Up0) − κ

]
,

is monotone non-decreasing (since it is the product of two non-decreasing functions, cfr. with (4.36)
and Lemma 4.5), nonnegative and Wκ

Θp0 ,0
≡ 0 (cfr. with Lemma 4.5 again and use the homogeneity of

Θp0). Consequently, if we show that

Wκ
Up0 ,Θp0

(t) = Wκ
Up0 ,0

(t) for all 0 < t < 1,

we deduce that the Monneau’s function t → Wκ
Up0 ,Θp0

(t) is monotone non-decreasing, as claimed. So,
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we have

t2κWκ
Up0 ,0

(t) = t2κ
[
Wκ

Up0 ,0
(t) + Wκ

Θp0 ,0
(t)

]
=

{
t
[
I(t,Up0) + I(t,Θp0)±

]
− κ

[
H(t,Up0) + H(t,Θp0)

]}
=

[
tI(t,Up0 −Θp0) − κH(t,Up0 −Θp0)

]
+ 2

[
t
∫
RN+1

+

∇Θ · ∇U dµt
− κ

∫
RN+1

+

ΘU dµt
]

= t2κWκ
Up0 ,Θp0

(t) + 2
[∫
RN+1

+

∇Θ̃ · ∇Ũ dµ − κ
∫
RN+1

+

Θ̃Ũ dµ
]

= t2κWκ
Up0 ,Θp0

(t) for all 0 < t < 1,

as desired. Note that we have passed to the re-scaled versions Ũ(x, y, t) = U(
√

tx,
√

ty, t) and Θ̃(x, y, t) =

Θ(
√

tx,
√

ty, t), and used the definition of weak eigenfunction as in Definition 4.10 (recall that we can
test with Ũ since Ũ(t) ∈ H1

µ for any 0 < t < 1). We can thus conclude that the function

λ→
1
λ4κ

max
t∈[0,λ2]

H(t,Up0 −Θp0) =
H(λ2,Up0 −Θp0)

λ4κ
= Mκ

Up0 ,Θp0
(λ2),

is monotone non-decreasing for 0 < λ < 1.
Step2: End of the proof of part (ii). For ε > 0 fixed, we take λε > 0 such that

Mκ
Up0 ,Θp0

(λε) =
H(λ2

ε,Up0 −Θp0)

λ4κ
ε

<
ε
2
, Mκ

Up0 ,Up1
(λε) =

H(λ2
ε,Up0 −Up1)

λ4κ
ε

<
ε
2
,

where p1 ∈ Γκ(U) satisfies |p0 − p1| < δε and δε > 0 is small enough depending on ε > 0 and p0 (here we
have simply used the C0(0, 1; L2

µt) continuous dependence Up0 on p0 ∈ Γ(U)). Consequently,

Hκ
Up1 ,Θp0

(λε) =
H(λ2

ε,Up1 −Θp0)

λ4κ
ε

≤
H(λ2

ε,Up1 −Up0)

λ4κ
ε

+
H(λ2

ε,Up0 −Θp0)

λ4κ
ε

< ε,

where, similar to [71], we have used the continuity of the map Γ(U) 3 p → Up w.r.t. the norm
C

0(0, 1; L2
µt

). Thus, from the monotonicity of λ → Hκ
Up0 ,Θp0

(λ) and the fact the both p0, p1 ∈ Γκ(U), it
follows

max
t∈[0,1]

‖Up1,λ(t) −Θp0(t)‖2
L2
µt
≤ Hκ

Up1 ,Θp0
(λε) < ε, for all 0 < λ < λε,

and so, taking the limit as λ→ 0+, we obtain

max
t∈[0,1]

‖Θp1(t) −Θp0(t)‖2
L2
µt
< ε,

which completes the proof of part (ii).
Finally, to prove part (iii) we combine what showed in the above part and the Harnack inequality

proved by Chiarenza and Serapioni in [65]. So, we fix a compact set K ⊂ Γκ(U), ε > 0 and p0 ∈ K and
we take λε, δε > 0 such that

‖Up,λ −Θp‖
2
C0(0,1;L2

µt )
< ε for all 0 < λ < λε,

for any p ∈ K satisfying |p0 − p| ≤ δε (this immediately follows from part (ii)). Now, covering K with a
finite union of cylinders Qδε(pi) with pi ∈ K, we deduce the existence of a constant C > 0 such that

‖Up,λ −Θp‖
2
L2(0,1;L2

µt )
≤ ‖Up,λ −Θp‖

2
C0(0,1;L2

µt )
< Cε for all 0 < λ < λε,
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for all p ∈ K, since C0(0, 1; L2
µt

) ⊂ L2(0, 1; L2
µt

). Consequently, to end the proof, it is enough to show that

sup
B+

1×(0,2)

|Up,λ −Θp| ≤ C‖Up,λ −Θp‖L2(0,1;L2
µt ), (5.67)

for some constant C > 0. Indeed, using the homogeneity of Θp = Θp(x, y, t), we get

sup
B+
λ
×(0,2λ2)

|Up −Θp| ≤ Cελ2κ,

which implies the thesis, thanks to the arbitrariness of ε > 0. So, we prove (5.67) by miming the proof
of Lemma 5.21. We set W = Up −Θp and we begin with the following observation. If |x|2 + y2 < λ2 and
6λ2 < t < 7λ2, for some λ > 0, we easily see that

7t−
N+a+1

2 ≥ λ−(N+a+1), e−
|x|2+y2

4t ≥ e−
1
24 ,

so that ∫ 7λ2

6λ2

∫
B+
λ

dµt(x, y)dt ≥ Cλ−(N+a+1)
∫ 7λ2

6λ2

∫
B+
λ

|y|a dxdy

 dt ≥ Cλ2,

for some C > 0. Now, using Theorem 2.1 of [65] again (or formula (5.12) of [19]) and the above estimate,
we get  sup

B+
λ
×(0,2λ2)

|W|


2

≤ C

 inf
B+
λ
×(6λ2,7λ2)

|W|

2

≤ C

∫ 7λ2

6λ2

∫
B+
λ

W2 dµt(x, y)dt∫ 7λ2

6λ2

∫
B+
λ

dµt(x, y)dt

≤
C
λ2

∫ 7λ2

6λ2

∫
B+
λ

W2 dµt(x, y)dt ≤
C
λ2

∫ 7λ2

6λ2

∫
RN+1

+

W2 dµt(x, y)dt

≤ C
∫ 1

0

∫
RN+1

+

W2
λ dµt(x, y)dt,

where C > 0 is a new constant. This complete the proof of (5.67) and part (iii). �

We are almost ready to show our “Structure of the singular set theorem”. Its proof is based on the
techniques due to Garofalo and Petrosyan [112] (elliptic setting) and Danielli, Garofalo, Petrosyan and
To [71] (parabolic setting). They are based on a ingenious combination of the Implicit function theorem
and a parabolic version of the Whitney’s extension theorem, which we recall for completeness.

Theorem 5.26. (Parabolic Whitney’s extension, [71, Theorem B.1]) Let E be a compact subset of RN
× R,

f : E→ R a continuous function, and { fα, j}|α|+2 j≤2m with f0,0 = f and m ∈N, α ∈ ZN
≥0 a multi-index. Assume

that there exist a family of moduli of continuity {ωα, j}|α|+2 j≤2m such that

fα, j(x, t) =
∑

|β|+2i≤2m−|α|−2 j

fα+β, j+i(x0, t0)

β!i!
(x − x0)β(t − t0)i + Rα, j(x, t; x0, t0)

and
|Rα, j(x, t; x0, t0)| ≤ ωα, j(‖(x − x0, t − t0)‖)‖(x − x0, t − t0)‖2m−|α|−2 j.

Then there exists a function F ∈ C2m,m(RN
×R) such that F = f on E and ∂αx∂

j
tF = fα, j on E, for |α|+ 2 j ≤ 2m.

Together with the above result, we will use the following lemma, which explains the importance
of having introduced the notion of “time-like” manifold (cfr. with Definition 5.11).
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Lemma 5.27. (“Time-like” singular points) Let u ∈ dom(Hs) be a nontrivial solution to (1), (x0, τ0) ∈ ΓN
κ (u).

Then
ϑp0(x, t) = Ctbκc,

for some nonzero C ∈ R, where the symbol b·c denotes the floor function and, as always, ϑp0(x, t) = Θp0(x, 0, t)
and Θp0 ∈ Bκ(U) is the “blow-up limit” of U = U(x, y, t) at (x0, 0,−τ0).

Proof. Let us assume for simplicity (x0, τ0) = (0, 0) and set ϑ := ϑp0 . From the homogeneity of
ϑ = ϑ(x, t), we can write

ϑ(x, t) =
∑

|α|+2 j=2κ

aα, j
α! j!

xαt j, with aα, j = ∂αx∂
j
tϑ(0, 0). (5.68)

On the other hand, the fact that (0, 0) ∈ ΓN
κ (u) means that

∂xi∂
α
x∂

j
tϑ(0, 0) = 0,

for any multi-index α ∈ ZN
≥0 and j = 0, . . . , bκc such that |α| + 2 j = 2κ − 1, and all i = 1, . . . ,N.

Consequently, it follows
∂
β
x∂

j
tϑ(0, 0) = 0,

for any multi-index β ∈ ZN
≥0 and j = 0, . . . , bκc such that |β|+ 2 j = 2κ and |β| = |α|+ 1, and so, the unique

nonzero coefficient in the sum (5.68) turns out to be a0,bκc and proof is completed. �

Proof of Theorem 5.12. Let u ∈ dom(Hs) be a nontrivial solution to (1) and define u(x, t) := u(x,−t)
(with extension U = U(x, y, t)). Following the ideas of [71, Theorem 12.12], we divide the proof in two
steps.

Step1: Parabolic Whitney’s extension. Let p0 = (x0, t0) ∈ Γκ(u) (cfr. with (5.6)) and let ϑκp0
(x, t) :=

Θp0(x, 0, t), where, as always, Θp0 = Θp0(x, y, t) ∈ Bκ(U) is the “blow-up limit” of U = U(x, y, t) at
p0 = (x0, 0, t0). Since, ϑp0 is a parabolically κ-homogeneous polynomial of degree 2κ, we can write it in
the form

ϑp0(x, t) =
∑

|α|+2 j=2κ

aα, j(x0, t0)
α! j!

xαt j, (5.69)

where α ∈ ZN
≥0, j = 0, 1, . . . ≤ κ, and the coefficient functions p0 → aα, j(p0) are continuous on Γκ(u),

thanks to part (ii) of Theorem 5.9. Now, we define

fα, j(x, t) :=

0 if |α| + 2 j < 2κ
aα, j(x, t) if |α| + 2 j = 2κ,

for any α ∈ ZN
≥0 and j = 0, 1, . . . ≤ κ. We proceed by proving the following claim.

CLAIM: Let K = E j for some j ∈ N, where E j = ∩n>κEn
j and En

j are defined in (5.65). Then for any
(x0, t0), (x, t) ∈ K,

fα, j(x, t) =
∑

|β|+2i≤2κ−|α|−2 j

fα+β, j+i(x0, t0)

β!i!
(x − x0)β(t − t0) j + Rα, j(x, t; x0, t0), (5.70)

with
|Rα, j(x, t; x0, t0)| ≤ σα, j(‖(x − x0, t − t0)‖)‖(x − x0, t − t0)‖2κ−|α|−2 j, (5.71)

where σα, j are suitable modulus of continuity (depending on K).
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CLAIM’s proof. The case |α| + 2 j = 2κ follows by the continuity of the functions p0 → aα, j(p0) on
Γκ(u), by taking

Rα, j(x, t; x0, t0) = aα, j(x, t) − aα, j(x0, t0).

The case 0 ≤ |α| + 2 j < 2κ is harder. According to Taylor expansion theory, we define

Rα, j(x, t; x0, t0) := −
∑

(β,i)≥(α, j):
|γ|+2i=2κ

aβ,i(x0, t0)

(β − α)!(i − j)!
(x − x0)β−α(t − t0)i− j

= −∂αx∂
j
tϑp0(x − x0, t − t0), t ≥ t0.

Now, assume by contradiction, there is no modulus of continuity σα, j = σα, j(·) such that (5.71) is
satisfied, i.e., there are sequences pl := (xl, tl), p0l := (x0l, t0l) ∈ K,

δl := ‖(xl − x0l, tl − t0l)‖ → 0 as l→ +∞,

such that

|Rα, j(x, t; x0, t0)| =

∣∣∣∣∣∣∣∣∣∣∣
∑

(β,i)≥(α, j):
|γ|+2i=2κ

aβ,i(x0, t0)

(β − α)!(i − j)!
(x − x0)β−α(t − t0)i− j

∣∣∣∣∣∣∣∣∣∣∣
≥ σ‖(xl − x0l, tl − t0l)‖2κ−|α|−2 j, for all l ≥ 0.

(5.72)

Defining the families

up0l,δl(x, t) =
up0l(δlx, δ2

l t)

δ2κ
l

, (ξl, θl) :=

xl − x0l

δl
,

tl − t0l

δ2
l

 ,
we may assume (up to subsequences) (x0l, t0l)→ (x0, t0) ∈ K and (ξ0l, ϑ0l)→ (ξ0, θ0) ∈ B1 × (−1, 1), and
so, from Corollary 5.4, it follows

‖up0l,δl − ϑp0‖L∞(QR) ≤ ‖up0l,δl − up0,δl‖L∞(QR) + ‖up0,δl − ϑp0‖L∞(QR) → 0,

as l→∞, for any QR = BR × (0,R2). The same holds true for the sequence

upl,δl(x, t) =
upl(δlx, δ2

l t)

δ2κ
l

,

so that
up0l,δl → ϑp0 in L∞(QR)
upl,δl → ϑp0 in L∞(QR),

(5.73)

and, consequently,
‖up0l,δl(· + ξl, · + θl) − upl,δl(·, ·)‖L∞(BR×(−R2,R2)) → 0

‖upl,δl(·, ·) − up0l,δl(· − ξl, · − θl)‖L∞(BR×(−R2,R2)) → 0,
(5.74)

for any R > 0. Now, as in [71], we proceed by splitting the remaining part of the proof in two cases:
(i) There are infinitely many indexes l ∈N such θl ≥ 0.
(ii) There are infinitely many indexes l ∈N such θl ≤ 0.

Let us start with case (i). After passing to a subsequence, we can assume θl ≥ 0 for any l ∈N. So, since
θl ≥ 0, for any (x, t) ∈ Q1 we have (x − ξl, tl − θl) ∈ Q2 := B2 × (−4, 4) and, furthermore,

‖ϑp0(·, ·) − ϑp0(· − ξ0, · − θ0)‖L∞(Q1) ≤ ‖ϑp0 − upl,δl‖L∞(Q1)

+ ‖upl,δl(·, ·) − up0l,δl(· − ξ0, · − θ0)‖L∞(Q1)

+ ‖up0l,δl(· − ξ0, · − θ0) − ϑp0(· − ξ0, · − θ0)‖L∞(Q1) → 0,
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as l → +∞, thanks to (5.73) and (5.74). Consequently, using the real analyticity of the polynomial
ϑp0 = ϑp0(x, t), it follows

ϑp0(x + ξ0, t + θ0) = ϑp0(x, t) for all (x, t) ∈ RN
×R,

and so
∂αx∂

j
tϑp0(ξ0, θ0) = ∂αx∂

j
tϑp0(0, 0) = 0 for all |α| + 2 j < 2κ.

On the other hand, diving both sides of (5.72) by δ2κ−|α|−2 j
l ad taking the limit as l→ +∞, we obtain

|∂αx∂
j
tϑp0(ξ0, θ0)| =

∣∣∣∣∣∣∣∣∣∣∣
∑

(β,i)≥(α, j):
|γ|+2i=2κ

aβ,i(x0, t0)

(β − α)!(i − j)!
ξ
β−α
0 θ

i− j
0

∣∣∣∣∣∣∣∣∣∣∣ ≥ σ > 0,

in contradiction with the computation above. The proof of case (ii) is almost identical to the previous
one and we skip it (we just have to using the first convergence in (5.74) instead of the second one).

We have thus verified the assumptions of Whitney’s Theorem. Consequently, we deduce the
existence of a function F ∈ C2κ,bκc(RN

×R) such that

∂αx∂
j
tF = fα, j in K,

for all |α| + 2 j ≤ 2κ, where b·c denotes the floor function.
Step2: Implicit function theorem. Let (x0, t0) ∈ Γd

κ ∩ K and d = 0, . . . ,N. As in [71, Theorem 12.12] we
consider two subcases.

Let us begin by assuming d = 0, . . . ,N − 1. For these choices of the dimension, we have that there
are multi-indexes αi and nonnegative integers ji with |αi| + ji = 2κ − 1 such that

vi = ∇x∂
αi
x ∂

ji
t ϑp0 = ∇x∂

αi
x ∂

ji
t F(x0, t0) for i = 1, . . . ,N − d,

are linearly independent vectors. At the same time, in view of Lemma 5.21, we have

Γd
κ(u) ∩ K ⊂

N−d⋂
i=1

{
(x, t) ∈ RN

×R : ∂αi
x ∂

ji
t F(x, t) = 0

}
,

and so, using the linear independence of the vi’s and the Implicit function theorem, we immediately
conclude that Γd

κ(u) ∩ K is contained in a (d + 1)-dimensional “space-like” C1,0 manifold (cfr. with
Definition 5.11). Finally, recalling that we have chosen K = E j (for some arbitrary j ∈ N) and since
Γκ(u) = ∪ j∈NE j (cfr. with Lemma 5.20), the proof in the case d = 0, . . . ,N − 1 is ended.

Assume now d = N and (x0, t0) ∈ ΓN
κ ∩ K. Hence from Lemma 5.27, we deduce

∂bκct F(x0, t0) = ∂bκct ϑp0 , 0,

while
ΓN
κ ∩ K ⊂

{
(x, t) ∈ RN

×R : ∂bκc−1
t F(x, t) = 0

}
,

and so, for the Implicit function theorem we get that ΓN
κ ∩K is contained in a N-dimensional “time-like”

C
1 manifold. The proof is then completed. �

5.6 Extensions, comments and open problems

We end the paper discussing some possible extensions and open problems.
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On the nodal set of solutions to equation (7). Different from the rest of the work, in Section 5.5 we
have focused on solutions to equation (1). It is thus natural to ask themselves which are the nodal
properties of “strong solutions” to (7) near/on the set Σ (recall that far away from Σ the dimensional
estimates on the regular and singular set still hold). This problem seems to be nontrivial due to the
“odd” component of solutions. However, we can easily adapt the proof of Proposition 5.8 to prove
the following result.

Proposition 5.28. Let U = U(x, y, t) be a smooth “strong solution” to equation (7). The following two
assertions hold.

(i) Let us define

R(U) := Γν∗(U) =

{
p0 ∈ Γ(U) ∩ Σ : lim

t→t+0
N(p0, t,U) = ν∗ =

1
2

min{1, 1 − a}
}
.

Then, for any p0 = (x0, 0, t0) ∈ R(U) it holds

∇
a
x,yU(p0) :=

(
∇xU, lim

y→0
|y|a∂yU

)
(p0) , (0, 0),

where by definition

lim
y→0
|y|a∂yU(p0) := (1 − a) lim

y→0

U(x0, y, t0) −U(x0, 0, t0)
y|y|−a .

(ii) R(U) is a locally C1-manifold of Hausdorff dimension N + 1.

Proof. Let us start from part (i). If −1 < a < 0 we have ν∗ = 1/2 and the proof of Proposition 5.8
applies here. On the other hand, if 0 < a < 1, we have ν∗ = (1 − a)/2 and as λ→ 0

Up0,λ =
U(x0 + λx, λy, t0 + λ2t)

λ1−a → Θp0(x, y, t) = y|y|−a,

uniformly on compact sets ofRN+1
× (0,T) (and up to a nonzero multiplicative constant). So, as before,

lim
y→0
|y|a∂yU(x0, y, t0) = ±(1 − a) lim

λ→0+

U(x0,±λ, t0)
λ1−a = 1 − a , 0,

and we conclude the proof of the case 0 < a < 1, too.
To prove part (ii), it is enough to apply the Implicit function theorem once the transformation

z = y|y|−a (which changes |y|a∂yU to ∂zU) is performed. �

Nonlocal equations with potentials. A very important remark is that our results also apply to
solutions to equation (1) with potential, namely:

Hsu = V(x, t)u in RN+1, (5.75)

with potential V = V(x, t) satisfying suitable assumptions as in formula (1.2) of [19]. This fact can
be easily seen combining the monotonicity formula proved in Section 6 of [19] and their blow-up
procedure. The main point is that the blow-up sequences of the extensions of solutions to (5.75)
converge to solutions to problem (8), in which there is not potential. Consequently, we can apply the
blow-up classification of Corollary 5.2 and Corollary 5.4, together with the results on the stratification,
structure and regularity of the nodal set.
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Other extensions. In [185], the study of solutions u = u(x, t) to

Hsu = 0 in RN+1

(or generalizations of it), where as always Hs = (∂τ−∆)s, relies on the well-known semigroups formula
(see [183, 184])

Hs f (x) =
1

Γ(−s)

∫ +∞

0

(
e−τH f (x) − f (x)

) dτ
τ1+s ,

for 0 < s < 1, functions f ∈ S(RN) and positive real operators H, and on the fact the above formula
holds true for operators H ∈ C, with Re(H) > 0 (this comes from the fact that the function z → zs can
be analytically continued to Re(z) > 0). As pointed out by the authors of [185] (see Remarks 2.3, 4.1
and 5.2) most of the results proved in [185] can be adapted to more general operators in the form

Hs = (∂τ − L)s,

where Lu(x) = ∇·(A(x)∇u) is an elliptic operator in divergence form on a bounded domain Ω ⊂ RN with
suitable boundary conditions, or L = ∆M, where ∆M is the Laplace-Beltrami operator on a Riemannian
manifold, or L = ∆h is the “discrete Laplacian” (see [66]), and so on. It is thus natural conjecture
that it is possible to adapt our methods to prove new Almgren-Poon monotonicity formulas to study
blow-up classifications and nodal properties of more general fractional operators.

Miming [99], another possible extension is the study of equation (1) with Hardy type potentials
and nonlinear sources:

Hsu +
a(x/|x|)
|x|2s u + f (x, t,u) = 0 in RN

× (−T, 0),

with suitable assumptions on a = a(x/|x|) and f (x, t,u). As mentioned above, the classical case s = 1
was treated in [99] where the authors studied the blow-up sequences near the singular point x = 0
with the decisive use of Gaussian-Hardy type inequalities. When 0 < s < 1, the analysis of this kind
of equations is motivated by the so-called “nonlocal” Hardy type inequality (cfr. with formula (2.1) of
[105]): ∫

RN
|x|−2s

|v(x)|2 dx ≤ C−1
s,N

∫
RN
|ξ|2s
|v̂(ξ)|2dξ, v ∈ C∞c (RN), (5.76)

valid for any 0 < 2s < N, where v̂ = v̂(ξ) is the Fourier transform of v = v(x) and

Cs,N := 22s Γ2((N + 2s)/4)
Γ2((N − 2s)/4)

.

Inequality (5.76) was proved independently by different authors (see for instance [24, 123, 211]), but
the corresponding Gaussian version (cfr. with Lemma 2.1 of [99]) seems not to be known. It is thus
left to us to understand the role played by a “nonlocal” Gaussian-Hardy inequality in the blow-up
analysis of solutions to nonlocal parabolic equations with Hardy potentials.

Reaction-diffusion systems with strong competition. Reaction-diffusion systems with strong com-
petitions have been widely studied in these last years. For the elliptic setting we quote the works
of Caffarelli et al. [8, 50, 53] and Terracini et al. [70, 67, 68, 69, 162, 188] (local framework) and
[51, 52, 189, 190, 203] (nonlocal framework). The parabolic case is less studied and to our knowledge
there is literature for the local setting only (see the papers of Dancer et al. [72, 73, 74, 205]). It is thus
left to study the parabolic nonlocal version of the above mentioned papers, namely

(∂t − ∆)sui = fi(t, x,ui) − βup
i

∑
j,i

ai ju
q
j for i = 1, . . . ,M
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in the limit case of β → +∞, for suitable choices of p, q > 0, functions fi(·) and interaction coefficients
ai j = a ji (0 < s < 1 is fixed from the beginning). The main interest in the systems above is that (at least
for the elliptic setting) it can be proved the existence of segregated solutions (in the regime β → +∞),
i.e., solutions of the type

u = (u1, . . . ,uM) with ui · u j = 0 for i , j.

Consequently, if the same property is established for the nonlocal parabolic setting, the study of both
the optimal Hölder regularity of segregated solutions and the qualitative/quantitative properties of
the free boundary (i.e. the set in which ui = 0 for any i = 1, . . . ,M) seems to be very interesting and
challenging open problems.



Bibliography

[1] M. Abramowitz, I. A. Stegun. “Handbook of mathematical functions, with formulas, graphs, and
mathematical tables”, National Bureau of Standards Applied Mathematics Series, 55, 1972.

[2] F. Achleitner, C. Kuehn. Traveling waves for a bistable equation with nonlocal diffusion, Adv. Differ-
ential Equations 20 (2015), 887–936.

[3] M. Agueh. Asymptotic behavior for doubly degenerate parabolic equations, C. R. Math. Acad. Sci. Paris
337 (2003), 331–336.
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[166] P. Poláčik. Threshold solutions and sharp transitions for nonautonomous parabolic equations on RN,
Arch. Ration. Mech. Anal., 199 (2011), 69–97.

[167] C. C. Poon. Unique continuation for parabolic equations, Comm. Partial Differential Equations 21
(1996), 521–539.
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