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We present Molecular Dynamics (MD) simulations of liquid-vapor surfaces, and their Intrinsic Sam-
pling Method analysis, to get a quantitative test for the theoretical prediction of the capillary wave
(CW) effects on density correlation done by Bedeaux and Weeks (BW) in 1985. The results are con-
trasted with Wertheim’s proposal which is the first term in BW series and are complemented with
a (formally defined and computational accessible) proposal for the background of non-CW fluctua-
tions. Our conclusion is that BW theory is both accurate and needed since it may differ significantly
from Wertheim’s proposal. We discuss the implications for the analysis of experimental X-ray surface
diffraction data and MD simulations. Published by AIP Publishing. https://doi.org/10.1063/1.5049874

I. INTRODUCTION

Liquid surfaces are never still, capillary waves (CWs),
from nanometer to macroscopic wavelengths, are unavoidable
fluctuations, since the liquid phase itself depends on the bal-
ance between molecular attractions and thermal stirring set
by kT = 1/β. For long wavelengths, CWs are described in
terms of the surface tension γo, giving the thermodynamic
cost for the area increase in the corrugated surface. The
extension to the nanometric range is done with a wavevec-
tor dependent surface tension γ(q) = γo + Kq2 + · · · , to
include the surface bending modulus K and possibly effects
beyond it, but we have to describe how the CW spectrum
ends or merges into the normal (non-CW) fluctuations in the
liquid.

The Capillary Wave Theory (CWT)1–3 was developed
from the macroscopic to the mesoscopic scale. It predicts that,
with the z direction across the interface, the transverse size
of the system Lxy affects the mean density profile, formally
defined as the statistical average ρ(z) = 〈 ρ̂(~r)〉 of the density
operator ρ̂(~r) =

∑
i δ(~r −~ri), with the sum over the molecular

positions. However the CWT reduces the connection to the
molecular scale to set an empirical top in the CW spectrum
and a simple guess for an intrinsic density profile ρI(z). That
contrasts with van der Waals’ view, and its modern exten-
sion in density functional (DF) theories, that describes the
liquid surface in terms of a density profile ρDF(z), indepen-
dent of the system size and fully determined by the molecular
interactions.4

The key concept in the CWT is the intrinsic surface
(IS) which represents the instantaneous shape of the inter-
face as z = ξ(~x) =

∑
~q ξqei~q ·~x, with Fourier components

a)Electronic mail: pedro.tarazona@uam.es

ξq for wavevectors ~q on the ~x ≡ (x, y) plane. The ther-
mal fluctuations of the IS are assumed to give indepen-
dent Gaussian fluctuations for each ξq, with mean square
modulus

〈|ξq |
2〉 = 1/(q2 βγ(q)L2

xy), (1)

where we assume that Lxy is well below the capillary length
(typically millimeters for simple fluids on the Earth) so that
the surface fluctuations are limited by size rather than by
gravity.

Assuming that the intrinsic profile ρI(z) follows the IS
corrugations, in 1976 Wertheim analyzed the CW effects on
the density correlation

G(z, z′, |~x − ~x′ |) ≡ 〈 ρ̂(~r) ρ̂(~r ′)〉 − 〈 ρ̂(~r)〉〈 ρ̂(~r ′)〉, (2)

to show the presence of long ranged correlations on the surface
plane. The transverse Fourier transform of (2) should approach
a q = 0 divergence as

G(z, z′; q) =
ρ′(z)ρ′(z′)

q2 βγ(q)
+

[
regular terms

]
, (3)

restricted to the interfacial region by the derivative of the mean
density profile.2 The original prediction was made with γo,
rather than with a generic function γ(q); that amounts to treat
any surface bending contribution as part of the “regular terms”
which would also include any non-CW contribution to the den-
sity correlation. Over the last two decades, there has been an
important effort to extract γ(q) from X-ray diffraction exper-
iments,5–8 DF theories,9–15 and computer simulations12,16,17

based on Wertheim’s prediction. The results have been con-
fusing and puzzling, with very different predictions for γ(q)
depending on the assumptions made to represent the “regu-
lar” contributions,4,11–16,18–21 except for their consensus for
the thermodynamic limit γ(0) = γo.
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Soon after Wertheim’s proposal, Weeks22 pointed to
higher order CW terms in G(z, z′; q), which were further
analyzed by Bedeaux and Weeks23 (BW) in 1985.

The density correlation function was written as a series,
GBW(z, z′; q), of which Wertheim’s ∼q−2 term in (3) was
just the first (n = 1) element. The validity and rigour of
BW analysis within the CWT has been generally admit-
ted but, as those authors pointed, still GBW is not a real-
istic representation of (2) in a liquid surface because it
fully neglects the non-CW short-ranged fluctuations both in
the surface and the liquid bulk, which in (3) were thrown
into the “regular terms,” together with the n ≥ 2 terms
of BW series. Moreover, while in (3) G(z, z′; q) depends
only on γ(q) for the same q, BW series requires the full
CW spectrum, from the lowest wavevector imposed by sys-
tem size to its molecular top, to predict GBW(z, z′; q) at
any q.

Some controversy on the CWT use of ξ(~x) and ρI(z)
has been alive for many decades, with opponents consider-
ing that they were “mean-field concepts,” absent in a rigor-
ous statistical physics description of the interface. However,
any reluctance should be wiped away by the hard fact that
ξ(~x) and ρI(z) are now routinely evaluated in computer sim-
ulations, as practical tools to get a sharper molecular view
of fluid interfaces. The computational procedures, such as
the Intrinsic Sampling Method (ISM)24–26 and others,27–29

define ξ(~x) from the molecular positions {~ri} to test the CWT
assumptions and to make predictions about what could be
measured and computed from the more limited access to
{~ri} obtained in experiments and DF theories. The purpose
of this paper is to use the ISM to disentangle a non-CW
background Gbg(z, z; q) in the density correlation (2) from
the bare CW contribution ∆G = G − G bg. The same ISM
analysis provides consistently the mean square fluctuations
〈|ξq |2〉, or equivalently through (1) the function γISM(q), to be
used together with the mean density profile as the molecu-
lar inputs to build the mesoscopic BW theory. Therefore, we
may test directly the validity of BW series, as a representation
of the bare CW contribution ∆G to the density correlation,
and quantify the effect of its n ≥ 2 terms, beyond Wertheim’s
prediction, for realistic simple liquid surfaces in three
dimensions.

In Sec. II, we present the formal analysis for G(z, z′;
q) leading to BW series from CWT and to a non-CW back-
ground which includes the short-range effects of the molecular
packing in the dense liquid. The Molecular Dynamics (MD)
simulations are described in Sec. III, along with their ISM
analysis, for two pair interaction models, the first one is the
well-known Lennard-Jones (LJ) representation of simple liq-
uids, for which we have recently presented30 a successful
comparison of the MD-ISM results with Wertheim’s prediction
(3). To push the test further, we use here the soft-alkali (SA)
model,31,32 a simple pair interaction designed to give the low
ratio, T t/T c = 0.10, between the triple and critical temperatures
similar to the experimental values of some liquid metals for
which layered density profiles have been measured.33,34 The
results for the different contributions to G(z, z′; q) are reported
in Sec. IV, analyzed in terms of γ(q), and discussed in Secs. V
and VI.

II. THEORY
A. Mean and intrinsic density profiles

The CWT concepts could be formalized as a splitting in
two steps for the statistical average of any magnitude A, over
the full set of molecular positions {~ri},

〈A〉 =
〈
〈A〉{~ri }∈[ξ]

〉
ξ
, (4)

where {~ri} ∈ [ξ] in the inner trace represents the statistical
average over the molecular positions compatible with a fixed
interfacial shape, z = ξ(~x), and the outer trace corresponds to
the average over all the IS shapes.
〈A〉 should be independent of that splitting, in particular,

the mean density profile,

ρ(z) ≡
〈
ρ̂(~r )

〉
=

〈
ρI[~x, z − ξ(~x); ξ]

〉
ξ , (5)

is obtained from an “intrinsic” density distribution, which is
formally defined as a functional of the IS shape

ρI[~x, z; ξ] ≡
〈
ρ̂(~x, z + ξ(~x))

〉
{~ri }∈[ξ], (6)

given by the average over all the configurations compatible
with that z = ξ(~x) and shifted to follow it. In contrast with
ρ(z), the intrinsic density profile defined as

ρI(z) ≡
〈
ρI[~x, z; ξ]

〉
ξ (7)

should have a well-defined large Lxy limit because of the local
shift z + ξ(~x) used in (6). The CWT assumes that ρI[~x, z; ξ]
is self-averaged in large enough systems, so that ρI[~x, z; ξ]
≈ ρI(z) for any instantaneous shape of the IS, and (5) leads to
the usual CWT description of the surface fluctuation effects
on the density profile

ρ(z) ≈
〈
ρI(z − ξ(~x))

〉
ξ =

∫
dξ ρI(z − ξ)P(ξ), (8)

with the IS average 〈. . .〉ξ taken in terms of the probability
distribution P(ξ(~x)), at any ~x.

B. Bedeaux-Weeks theory for the density correlation

Wertheim,35 Weeks,22 and others extended (8) to a pre-
diction for the pair distribution. Following Bedeaux and
Weeks,23 we define the CW contribution to the density
correlation

GBW(z, z′,~x −~x ′) ≡
〈
ρI(z − ξ(~x))ρI(z

′ − ξ(~x′))
〉
ξ

− ρ(z)ρ(z′)

=

∫
dξ

∫
dξ ′ρI(z − ξ)ρI(z

′ − ξ ′)

×P(ξ, ξ ′, x′′) − ρ(z)ρ(z′), (9)

where P(ξ, ξ ′, x′′) is the pair height distribution at distance
x′′ = |~x −~x′ | on the surface plane.

Within the CWT hypothesis of independent Gaussian
distributions for each ξq, Bedeaux and Weeks23 got

P(ξ, ξ ′, x) = ˆexp

[
S(x)

∂2

∂ξ∂ξ ′

]
P(ξ)P(ξ ′)

=

∞∑
n=0

[S(x)]n

n!
∂nP(ξ)
∂ξn

∂nP(ξ ′)
∂ξ ′n

(10)
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with the height-height correlation function

S(|~x −~x′ |) =
〈
ξ(~x)ξ(~x′)

〉
ξ −

〈
ξ(~x)

〉
ξ

〈
ξ(~x′)

〉
ξ . (11)

The Fourier transform of P(ξ, ξ ′, x) is

P(ξ, ξ ′, q) =
∞∑

n=0

Sn(q)
n!

∂nP(ξ)
∂ξn

∂nP(ξ ′)
∂ξ ′n

(12)

with the Fourier transform of S(x) powers,

Sn(q) ≡
∫

d~x S(x)n ei~q ·~x. (13)

Replacing (12) in (9) gives

GBW(z, z′; q) =
∞∑

n=1

Sn(q)
n!

ν(n)(z)ν(n)(z′), (14)

where

ν(n)(z) =
∫ ∞
−∞

dξ
∂nρI(y)
∂yn

�����y=z−ξ
P(ξ) =

∂nρ(z)
∂zn . (15)

Wertheim’s pioneering prediction (3) corresponds to the n =
1 term of (14), with S1(q) = L2

xy 〈|ξq |
2〉 ≡ 1/(q2 βγ(q)), from

(1). The n ≥ 2 terms of the series may be built from ρ(z) and
γ(q), but in contrast with Wertheim’s term their contribution
for a given q depends on the full CW spectrum, to get S(x)
from γ(q) and Sn(q) through (13). This implies that the depen-
dence of GBW(z, z′; q) with the system size Lxy is not coming
only through the dependence of the density profile ρ(z) but
also through the coefficients Sn(q) for n ≥ 2. That will become
important when we use the CWT to extrapolate from MD boxes
to experimental X-ray beam sections used in surface diffrac-
tion experiments. At the other end of the CW spectrum, the
BW series depends also on its assumed molecular top, i.e.,
on the way in which the split average (4) is defined to sepa-
rate CW from non-CW fluctuations, which needs a well-tuned
choice of the ISM parameters. On top of that, a quantita-
tive comparison of GBW with the full density correlation G
could only be done if we take out the non-CW background
Gbg.

C. Non-CW contributions beyond
Bedeaux-Weeks theory

The split average used for the density profile in (5) and
(8) may be applied to the density correlation (2) and, with
the CWT assumption ρI[~x, z; ξ] ≈ ρI(z), we add and subtract
equivalent terms, to get

G(z, z′, |~x −~x′ |) ≡ 〈 ρ̂(~r) ρ̂(~r ′)〉 − 〈 ρ̂(~r)〉〈 ρ̂(~r ′)〉

≈
〈
ρ(2)

I [~x, z − ξ(~x),~x′, z′ − ξ(~x′); ξ]

− ρI[~x, z − ξ(~x); ξ] ρI[~x
′, z − ξ(~x′); ξ]

〉
ξ

+
〈
ρI(z − ξ(~x))ρI(z

′ − ξ(~x′))
〉
ξ − ρ(z)ρ(z′),

(16)

with the equivalent of (6) for the “intrinsic” (shifted) two-sites
density distribution as a functional of ξ(~x),

ρ(2)
I [~x, z,~x′, z′; ξ] ≡

〈
ρ̂(~x, z + ξ(~x)) ρ̂(~x′, z′ + ξ(~x′))

〉
{~ri }∈[ξ].

(17)

GBW in (9) and (14) is the last line in (16), so that the average
in the second and third lines gives a formal expression for the
non-CW background Gbg, consistently with the split average
used to get ρI(z) and S(x) in BW analysis.

A MD sampling of the intrinsic two-sites density distribu-
tion functional (17) is infeasible but, as done for ρI[~x, z; ξ] to
get (8), we assume that it is self-averaged. Then, the intrinsic
density correlation,

GI(z, z′, x′′) =
〈
ρ(2)

I [~x, z,~x′, z′; ξ]
〉
ξ
− ρI(z)ρI(z

′), (18)

is used to get the (shifted) average of ρ(2)
I and, from (16),

Gbg(z, z′, x′′) ≈
〈
GI(z − ξ(~x), z′ − ξ(~x′), x′′)

〉
ξ

=

∫
dξ

∫
dξ ′GI(z − ξ, z′ − ξ ′, x′′)P(ξ, ξ ′, x′′).

(19)

The average with P(ξ, ξ ′, x′′) in (9) was essential to get the
CW effects for long distances x′′, but it may be simplified
in (19) because GI(z, z, x′′) is short-ranged in x′′. Therefore,
we take the x′′ = 0 limit, P(ξ, ξ ′, x′′) ≈ δ(ξ − ξ ′)P(ξ), to
get

Gbg(z, z′, x′′) ≈
∫

dξ GI(z − ξ, z′ − ξ, x′′)P(ξ). (20)

Taking out this non-CW background gives the bare CW
contribution to the density correlations,

∆G
(
z, z′; q

)
≡ G

(
z, z′; q

)
− Gbg

(
z, z′; q

)
, (21)

directly from our MD simulations and consistently with the
ISM definition used to get (11) and (13) for the BW prediction
(14). In our previous work for the LJ surface,30 we had defined
GI(z, z′; q) as in (18), obtained it from MD simulations, and
used it as an intuitively appealing proposal for Gbg(z, z′; q).
The theoretical derivation given here formalizes the concept
and the convolution (20) provides the dependence of the non-
CW correlation background with the system size, consistently
with the density profile (8). Nevertheless, for the size of our
simulation box, there would be very little change if we take
Gbg ≈ GI.

III. MOLECULAR DYNAMIC SIMULATIONS

In order to check the theory of Bedeaux and Weeks, we
have studied the liquid-vapor interface of two very different
simple liquid models close to their triple points: the first one
is the well-known Lennard-Jones (LJ) potential (truncated
at rc = 4.4σ), with a ratio T t/T c = 0.56 between triple and
critical T ; the second model is the soft-alkali (SA) pairwise
interaction potential,31,32 with a soft repulsive core designed
to give a low triple point temperature, T t/T c = 0.10, similar
to the experimental values for some liquid metals. The low
triple point temperature allows us to study a very stiff cold
liquid surface, with high surface tension and very low CW
amplitudes.

We used the LAMPPS package36 to run canonical ensem-
ble NVT-MD simulations of liquid slabs coexisting with the
vapor, at kT close to the triple point temperature. For the LJ
system, we use T /T c = 0.63 and a rectangular box with periodic
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boundary conditions at Lxy = 41.82σ. The cold SA system is
simulated at T /T c = 0.12 and with Lxy = 36.10σ. The MD step
is dt = 5× 10−3σ

√
m/ε , and the Nose-Hoover thermostat was

set with a time constant 10 dt. For the initial configuration, we
used a previously equilibrated liquid bulk in a smaller cubic
box, then that box was replicated to fill a slab of thickness 3Lxy,
within the full simulation box, leaving initially empty a similar
volume. Each system was equilibrated in 2 × 106 MD steps, to
form thick liquid and vapor slabs. The thickness of the liquid
slab guarantees that the CW fluctuations at the two interfaces
are decoupled. We sampled 5000 configurations, separated by
5000 MD time steps. These long simulation runs are needed to
get good statistics for the slow CW fluctuations with the small-
est q. The same set of configurations was used to get βγoσ

2

= 1.50 ± 0.01 for LJ and βγoσ
2 = 10.71 ± 0.02 for SA, from

the integral of the virial expression for the pressure tensor
components.

As presented in Fig. 1, the main difference between the
LJ (top) and the SA (bottom) surfaces is that, with our simu-
lation boxes, ρ(z) is monotonic for LJ, while the SA surface
has a strong layering structure. The CWT with γ(q) = γo may
be safely used to include through (8) the CW fluctuations in a
larger box, and we show the damping of the oscillatory struc-
ture in ρ(z) for a SA surface31,32 with a transverse size 32
Lxy. By contrast, the same increase of Lxy produces only a
very weak broadening of the monotonic ρ(z) in the LJ surface,
which would be hardly visible in Fig. 2.

A. The intrinsic sampling method

The evaluation of ξ(~x) and ρI(z) in computer simula-
tions provides a direct test to the CWT assumptions, and
their range of validity is shown to depend on the explicit

FIG. 1. MD-ISM results for the mean and intrinsic density profiles. Top panel:
LJ model at T /T c = 0.63 and bottom panel: SA model at T /T c = 0.12. Full line:
mean density profiles in the MD box; dotted line: intrinsic density profilesρI(z,
qm) at the sharpest resolution qm ' 2π/a0 (the vertical arrows proportional to
the δ-function peak at the IS); dashed line: intrinsic density profiles at optimal
resolutions for the matching with CWT, qmσ = 0.63 for LJ and qmσ = 0.70 for
SA. In the bottom panel, the full gray (cyan) line shows the CWT prediction
for the SA mean density profile in a system with a lateral size increased by a
factor of 32.

FIG. 2. Density correlation function in the LJ surface. Left column
qσ = 0.15, right column qσ = 0.45. First row: Wertheim’s term, i.e., GBW (z,
z′; q) at order n = 1; second row: full Bedeaux-Weeks series GBW (z, z′; q);
third row: the bare CW contribution∆G(z, z′; q); fourth row: the intrinsic GI(z,
z′; q); and fifth row: the total G(z, z′; q) directly from MD, excluding the ideal
self-correlation term ρ(z)δ(z − z′).

IS definition used to split the statistical averages (4). The
choice for that definition plays a role similar to that of a
local order parameter in terms of the molecular configura-
tion, to be used in a Landau-Ginzburg theory. The theoretical
scheme is independent of that choice, but a good definition
gives a wider range to match the molecular and the mesoscopic
descriptions.

The Intrinsic Sampling Method (ISM)25,26,37 is a practical
implementation of many-body definitions based on percolation
analysis.38,39 As in our previous work30 for the LJ surface, we
have applied the method to 5000 MD configurations for each
model. The algorithm is fully described in Ref. 26, and we use
the same parameters as in Ref. 25. The IS is represented by its
Fourier components ξq for any wavevector~q = 2π(nx, ny)/Lxy

with integer nx ,y and ξ0 ≡ 〈ξ(~x)〉 = 0 as the origin for z. The
upper wavevector limit, |qx |, |qy| ≤ qm, controls how closely
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the mathematical surface z = ξ(~x) follows the molecular posi-
tions, and the intrinsic profile has a parametric dependence on
it. In Fig. 1 we present, together with the mean density pro-
files, the intrinsic profiles (7) for the LJ and SA surfaces. At
the maximum resolution, qm = 2π/a0 (in terms of the inter-
molecular distance a0), ρI(z; q m) has a delta-function peak
(vertical arrows) at z = 0, as the molecular occupancy on the
IS, and a strong layering at the liquid side. At that maximum
resolution of the method, the CWT assumptions leading to (8)
are not fulfilled,37 but decreasing the value of the parameter
qm allows us to move gradually to the CWT range of validity.
The intrinsic profiles that we have used to test the GBW series
are also presented in Fig. 2. For the LJ system, (qm = 0.63/σ)
gives already a nearly monotonic density profile although some
oscillatory structure is observed in the derivative (not shown
here). For the SA surface, the ISM intrinsic profile with qm

= 0.70/σ is still strongly layered and qualitatively different
from the empirical monotonous shapes assumed in the theo-
retical analysis of the CWT predictions,23 but similar to those
inferred from the X-ray reflectivity data on cold liquid metal
surfaces.33,34

IV. THE DENSITY CORRELATION FUNCTION
A. MD results for G(z, z′; q)

The transverse Fourier transform of (2), for q , 0,

G(z, z′; q) =

〈 N∑
i,j=1

ei~q ·~xij

L2
xy
δ(z − zi)δ(z′ − zj)

〉
(22)

was averaged as a (z, z′) matrix with binning ∆z = σ/10. The
statistics from the two interfaces of the slab was accumulated,
with z and z′ referred to the instantaneous dividing plane at
each interface, to get ξ0 = 0. The bottom rows in Figs. 2 and
3 present G(z, z′; q) for LJ and SA, respectively, excluding
the ideal self-correlation term ρ(z)δ(z − z′) given by i = j in
(22). The left columns correspond to the lowest q within our
simulation box, q = 2π/Lxy; the right column is for q three
times larger. In the LJ surface (Fig. 2) at the lowest q, the
CW contribution proportional to ρ′(z)ρ′(z′)/q2 (shown in the
top frame) appears strong and clear in the full G(z, z′; q) as
a round maximum at the middle of the interface. Toward the
vapor (z, z′ < 0), the correlation dies out of the CW peak,
while toward the liquid, we observe the typical oscillatory
correlation in a dense liquid, which depends on |z − z′| as
shown by the diagonal bands. In the right column, the q−2

dependence of Wertheim’s CW peak reduces it by a factor of
9 with respect to the left column; the change of scale makes
more visible the layering structure, which in the liquid side is
essentially independent of q and dominates G(z, z′; q) for z, z′

& σ. The surface layering in the SA model (bottom panels of
Fig. 3) gives a very different density correlation. At the lowest
q, the CW contribution is also dominant, but instead of the
round maximum of the LJ system, we observe a checkerboard
structure produced by the alternating sign of ρ′(z)ρ′(z′). On
top of it, we observe the non-CW contribution, with diagonal
bands similar to that of the LJ, whose relative weight increases
with q.

FIG. 3. Density correlation function in the SA surface. Left column
qσ = 0.174, right column qσ = 0.522. First row: Wertheim’s term, i.e., GBW (z,
z′; q) at order n = 1; second row: full Bedeaux-Weeks GBW (z, z′; q); third
row: the bare CW contribution ∆G(z, z′; q); fourth row: the intrinsic GI(z, z′;
q); and fifth row: the total G(z, z′; q) directly from MD excluding the ideal
self-correlation term ρ(z)δ(z − z′).

B. The intrinsic and non-CW background correlations

The Fourier transform of the intrinsic density correla-
tion (18), GI(z, z′; q), is obtained changing zα (α = i, j) in
(22) by zα − ξ(~xα), with the IS obtained from the molecu-
lar positions in each sampled MD configuration.30 GI(z, z′;
q), as ρI(z), does not depend on Lxy, but it depends on the
ISM parameters used to define ξ(~x) from the molecular posi-
tions, the most relevant being the upper wavevector cutoff qm.
An IS defined to follow very closely the LJ molecular posi-
tions, qm ' 2π/a0, eliminates from GI not only the CW but
also some non-CW fluctuations.30 Decreasing qm, we reach
a rather broad range for this parameter in which GI(z, z′; q)
takes the expected aspect of strong layering, depending on
|z − z′| and weighted by the product of the intrinsic profiles
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ρI(z)ρI(z′). If we keep reducing the value of qm beyond that
range the CW fluctuations with q > qm are included in GI

as they are in G so that these CW fluctuations are eliminated
in ∆G.

The fourth rows in Figs. 2 (LJ) and 3 (SA) show GI(z, z′;
q) with the optimal choice qmσ = 0.63 for the LJ and 0.70 for
the SA, respectively. In both liquid surfaces, the effects of the
CW fluctuations in G(z, z′; q) have disappeared in GI(z, z′; q),
although the layering in Fig. 3, the SA surface shows up as a
structure along the main diagonal.

The probability distribution P(ξ) obtained along the same
MD-ISM is used to get the non-CW background of the den-
sity correlation Gbg in (19) which, as the full G and the
density profile, depends on the system size. The ideal-gas self-
correlation [i.e., the i = j terms in (22)] is exactly equal in (19)
so that it is fully eliminated in the bare CW contribution ∆G
in (21).

C. Bedeaux-Weeks series for the density correlation

From the MD-ISM, we get 〈| ξ̂q |
2〉 or equivalently through

(1) γISM(q). The height correlation S(x) =
∑

q,0〈| ξ̂q |
2〉ei~q~x is

directly obtained, and it shows the predicted long range decay
S(x) ∼ −log(x/Lxy) for 2π/qm � x � Lxy, associated with the
S1(q) ∼ q−2 behavior at low q. The coefficients Sn(q) for n ≥ 2
in the BW series (14) are obtained through numerical Fourier
transform of S(x) powers, and they have a finite q = 0 limit, i.e.,
they do not contribute to the long-range decay of GBW(z, z′;
q), but still they can give an important contribution which, in
contrast to S1(q) in Wertheim’s term, grows with the sampled
area.

The converge of BW series had been theoretically
explored under simple theoretical assumptions for the CW
spectrum and the intrinsic profile.40 Here we explore it with
〈|ξq |2〉 and ρ(z) directly obtained from MD simulations, with
the ISM optimized to define ξ(~x) from the molecular positions.
The top panels in Figs. 2 and 3 show Wertheim’s (n = 1) con-
tribution and below them the full BW series. For the lowest
q in the LJ surface (Fig. 2), the n = 1 term gives most of the
structure in GBW(z, z′; q), while at larger q, there are small
contributions of n ≥ 3, which break the perfect factorization
ρ′(z)ρ′(z′) of Wertheim’s prediction. The cold SA liquid has
a much stiffer surface, with βγoσ

2 = 10.5 versus 1.5 for the
LJ liquid. Assuming a monotonic intrinsic density profile (as
done in the original BW analysis23) that would imply a much
reduced effect of the n ≥ 2 terms in the GBW(z, z′; q) series
for the SA surface. However, as shown in Fig. 1, the intrinsic
profiles at the maximum resolution of the ISM are strongly
layered (both for LJ and SA); the stiffness of the cold liquid
interface keeps an oscillating tail in the SA density profile,
while the larger CW amplitude in the LJ system erases the
molecular packing effects in ρ(z) for similar sizes of the MD
box. The higher order derivatives of the SA profile reflect that
oscillating structure and grow fast (in absolute value) with the
order n. Therefore, for the SA interface (Fig. 3), the n > 1 terms
are visible for the lowest q and very strong for q three times
larger. In practice, we had to add up to n = 7 to get no visible
changes in the figure. The main effect of the n ≥ 2 terms it
is to introduce in GBW(z, z′; q) a (local-like) dependence on

|z − z′|, as that from the background correlations, but which
arises entirely from CW fluctuations.

D. The bare CW density correlation

The third rows in Figs. 2 and 3 show the bare CW con-
tribution (21), taking the non-CW background out of the full
density correlation G. In the LJ surface (Fig. 2), the round CW
peak in G(z, z′; q) is perfectly well reproduced by ∆G(z, z′; q)
and the diagonal oscillatory tail, from the dense liquid correla-
tions, is eliminated. The cold SA liquid (Fig. 3) shows strong
surface layering but it is still clear that ∆G(z, z′; q) extracts the
CW peak, nearly clean of non-CW correlations, even when the
latter dominate the total G(z, z′; q).

We have now two complementary routes to get the CW
contribution to the density correlation. One is the GBW series
built with ρ(z) and S(x) obtained from the MD-ISM; the other
is the bare CW correlation ∆G, obtained from the full G in (2)
and (22) and with our proposal for the non-CW background
(19). The visual agreement between their representations in
the second and third rows of Figs. 2 and 3 is complemented by
a more quantitative assay in Sec. V, as well as for the relevance
of taking the full BW series, rather than Wertheim’s (n = 1)
term.

V. DISCUSSION

Wertheim’s analysis (3) implies that for very small q the
CW fluctuations give the eigenmode of the density correlation
with the largest eigenvalue λ0(q) ∼ q−2, and with eigenfunc-
tion 〈z|CW〉very close to ρ′(z). In a previous study,30 following
an early proposal by Stecki,18 we had proposed to diagonal-
ize ∆G(z, z′; q) [or G(z, z′; q)] as the best way to get the
bare (or dressed) CW representation. The “normal mode”
surface tension was defined (in the usual bra-ket notation)
as

βγNM(q) ≡
〈ρ′ |ρ′〉

q2λ0(q)
=
〈ρ′ |ρ′〉

q2

〈CW|CW〉
〈CW|∆G|CW〉

≈

[
∫ dz ρ′(z)2

]2

q2
∫ dz ∫ dz′ρ′(z)∆G(z, z′; q)ρ′(z′)

. (23)

That amounts to consider the first term in (3) as the full CW
contribution, i.e., to define the “regular terms” as any contribu-
tion orthogonal to |ρ′〉, as proposed by Blokhuis et al.13,14 Our
previous analysis of the LJ surface gave a very good agreement
between γNM(q) and the direct ISM result γISM(q) obtained
through (1).

In Fig. 4, we use (23) with BW series instead of ∆G,
to show the effect of truncating (14) at different orders.
Wertheim’s (n = 1) term alone gives back precisely the sur-
face tension γISM(q) used as an input and represented by the
continuous lines. Adding n = 2 does not change it because
ρ′′(z) is orthogonal to ρ′(z), but extending the BW series to
n ≥ 3 gives both a quantitative assay for the convergence of
the series and a measure of the error made when Wertheim’s
term is considered the only CW contribution to the pair
correlation.

In the LJ surface (with our simulation box), the n = 3
contribution is visible but small, and higher orders are negli-
gible. As obtained in our previous study,30 the result γNM(q)
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FIG. 4. The adimensional βγNM(q)σ2 ≡
〈ρ′ |ρ′〉

(q/σ)2λ0(q)
from (23), with

Bedeaux-Weeks series, GBW (z, z′; q), truncated at different orders, for LJ
(top) and SA (bottom). Full line (black) n = 1, circles (black) n ≤ 3, triangles
(red) n ≤ 5, and squares (blue) n ≤ 7. The dashed line (green) indicates the
theoretical prediction for the GBW (z, z′; q) for a system with a lateral size
32 times that of the present simulation. The inset in the top panel shows the LJ
results with log-scale for q, which as used in Ref. 7 to represent the analysis
of experimental data.

≈ γISM(q) indicates that with a good representation of the non-
CW contributions, as the only “regular terms” in G(z, z′; q),
Wertheim’s prediction (3) could be safely used to get γ(q)
in agreement with its direct (ISM) evaluation. By contrast,
the layered ρ(z) in the cold SA surface enhances the n = 3
contribution and gives γNM(q) well below the input γISM(q).
We could still discern the contributions up to n = 7, but they
have a minor effect. We know that these high n terms in the
BW series are still pure CW contributions to the density cor-
relations and the difference between the estimated γNM(q)
and the direct ISM result gives the error made when the full
CWT prediction (14) is interpreted as (3), as it has been often
done in the analysis of experimental and computer simulation
results.

The main advantage of a good quantitative matching
between MD-ISM and CWT is that we may use the latter, on
its safe side, to extrapolate the density correlations to Lxy much
larger than the simulation box, as done in Fig. 1 for ρ(z). That
is crucial for the interpretation of experimental X-ray diffrac-
tion data, which sample the liquid surface over the section
of the beam, with Lxy of the order of a micrometer. Within
the interpretation of the CW signal as the n = 1 term of BW
series the only effect of increasing Lxy is to make accessible
a finer mesh and smaller values of q. The continuous (black)
lines in Fig. 4 correspond to the interpolation/extrapolation of
γISM(q) from our MD box to Lxy = 1338.24σ. This extended
γISM(q) is used in (1) and (8) to get the (slightly smoother)
mean density profile and in (14) to get GBW(z, z′; q) for that
large Lxy. The dashed (green) lines give the result of (23) with
this full BW series in the large box, and it is now well below
the actual γISM(q), in contrast to what was observed in our
MD box. Therefore, the interpretation of the largest eigen-
value of GBW(z, z′; q) as its n = 1 term would produce a gross

underestimation of γ(q) not only in the cold SA liquid surface
but also in the typical simple liquid surface represented by
the LJ model, when Lxy is large. The inset shows γISM(q) and
γNM(q) with log-scale for q, as used in Fig. 4 of Mora et al.7 to
represent the inferred γ(q) for several molecular liquids, which
give qualitatively similar shapes. The apparent reduction of the
surface tension with increasing q, which had also been reported
for water,41 was interpreted as an effect of long-range dis-
persion forces.11 That interpretation had been questioned by
two of us on the basis of an ISM analysis,42 and the present
results suggest an alternative explanation, the role of the higher
order terms in Bedeaux-Weeks series when they are forced
into the functional form of Wertheim’s prediction. The depth
of the minimum in γNM(q) could be increased just considering
larger Lxy.

To get a quantitative comparison between GBW(z, z′; q)
and ∆G(z, z′; q) for any q, we may use their projections on
the (non-orthogonal) basis given by the n-th order deriva-
tives of the density profile. Truncating the basis to n ≤ m,
we define the symmetric m × m matrices A and B, with
elements

Ai,j = 〈ρ
(i) |ρ(j)〉, and Bi,j = 〈ρ

(i) |∆G|ρ(j)〉. (24)

The equivalent matrix BBW from the projections of GBW

(z, z′; q) (15) may be written as BBW = ACBWA, for a diag-
onal matrix with CBW

n,n = Sn(q)/n!. The inverse matrix A−1

may be used to get CBW = A−1BBWA−1, so that CBW
1,1 = S1(q)

= 1/(q2 βγISM(q)), when BW series is built on the ISM result
for S(x). Then we may assume the same deconstruction applies
to (24) and get the matrix C = A−1BA−1 that describes ∆G, to
extract from its (1, 1) element a deconstructed (dc) surface
tension function

γdc(q) ≡
kT

q2C1,1
=

kT

q2 ∑
i,j A−1

1,i Bi,jA−1
j,1

. (25)

As shown in the upper panel in Fig. 5, for the LJ surface in our
MD box we get γ c(q) ≈ γNM(q) ≈ γISM(q) since Wertheim’s
term is the only relevant contribution to BW series and we had
already probed its accuracy describing the bare CW contribu-
tion ∆G. By contrast, for the SA surface in the lower panel of
the figure, the NM hypothesis (23) applied to∆G gives a result
as poor as when applied to GBW in Fig. 4, but the deconstruc-
tion procedure gives back a γdc(q) quite close to the γISM(q)
direct result. We have used truncations up to m = 7, but m = 3
already gives most of the effect.

We include in Fig. 5 the NM results from the total G(z, z′;
q) which, as already shown in our previous work30 for the LJ
surface, gives a very flat γNM(q) ≈ γo up to a sharp physical
cutoff qu ≈ 0.3/σ at which the CW mode merges into the band
of non-CW fluctuations. That is represented in the figure by the
result of (23) with the largest eigenvalue of Gbg. The relevance
of the n ≥ 2 terms in BW series for the cold SA surface pro-
duces very different results. The NM result for the “dressed”
CW in the full G(z, z′; q) produces a γ(q) which is quite below
that for the bare CW in ∆G, which were already well below
γdc(q)≈ γISM(q). That makes clear the relevance of taking into
account both the non-CW background and the n ≥ 2 terms of
BW series in any attempt to “read” the CW spectrum in this
cold liquid surface, even within the limits of our MD simulation
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FIG. 5. The adimensional βγNM(q)σ2 ≡
〈ρ′ |ρ′〉

(qσ)2λ0(q)
from (23), for the LJ

(top) and SA (bottom) surfaces. Empty symbols are γNM(q) from the eigen-
values of the bare density correlation ∆G(z, z′; q) (black squares), of the
total G(z, z′; q) (red up-triangles), and of the non-CW background correlation
Gbg(z, z′; q) (blue down-triangles). The latter should not be interpreted as a
surface tension since Gbg has no CW term at all, but it is presented to show
its merging with the results from the total G at large q. Full green circles are
the deconstructed γdc(q) from (25). The black dashed line is the direct ISM
results for γ(q), and the red dotted line is the virial surface tension γo.

box. These two contributions are entangled, since the layering
structure at the surface produces a strong hybridization of the
CW fluctuations with the bulk-like fluctuations in Gbg, and
that produces the smooth merging of the highest eigenvalues
of G and Gbg in contrast with their sharp crossing for the LJ
fluid. The possible application to the full G of the deconstruc-
tion procedure for γdc(q), as applied to ∆G, is not explored
here.

VI. CONCLUSIONS

The main conclusion of the present work is that Bedeaux-
Weeks theory for the capillary wave effects on the density
correlations at a liquid surface is both quantitatively accurate
and needed since Wertheim’s (n = 1) term does not give a full
account of those effects. The good agreement between the bare
CW contribution, defined with our approximation for the non-
CW background (19), strongly supports BW analysis within
the CWT and our proposal for Gbg, using the MD-ISM results
to close the circle in opposite directions and to meet each other,
GBW ≈ ∆G, with high quantitative accuracy.

The results for the cold SA surface make clear the need of
the full GBW series, rather than Wertheim’s proposal which has
been systematically used in the attempts to extract an extended
surface tension γ(q) from surface diffraction experiments, MD
simulations, and DF theories. The strong surface layering of
the cold SA surface is similar to that observed in X-ray diffrac-
tion of liquid metal surfaces33,34 and enhances the role of the
higher order derivatives of the density profile in BW series.
The MD results for the LJ surface (or, those not shown here
for the SA model at higher temperature) with monotonous
density profiles may suggest that Wertheim’s analysis is good

enough; however, even in those systems the terms n ≥ 3 in BW
series become important when the liquid surface is sampled
over larger areas, as those set by the X-ray beams with Lxy of
several hundreds of molecular diameters. Therefore we have to
question the analysis of experiments done under the assump-
tion that all the “regular terms” in (3) could be extracted as
non-CW fluctuations. In fact, the shape of γ(q) extracted from
some experimental data looks very similar to what we get in
Fig. 4 when the full GBW series is analysed as being given by
Wertheim’s functional form.7,41

Although the higher order terms in BW series force us to
use a more cumbersome analysis, from the full access to the
bare CW contribution ∆G(z, z′; q), we may accurately decon-
struct the series and recover the γISM(q) used as a molecular
input into the CWT to get GBW(z, z′; q). Therefore, we con-
firm a main conclusion of our previous work, i.e., after taking
out the non-CW background in G(z, z′; q), the two-particle
correlation ∆G(z, z′; q) contains the relevant information to
extract a γ(q), very close to that given by the N−particle per-
colation analysis of the ISM with optimized parameters, and
which may be regarded as a good physical representation for
the bare CW fluctuations.

Such deconstruction of γ(q) appears infeasible from the
much more limited access to the density correlations provided
by X-ray diffraction, giving the surface structure factor, i.e.,
the integral of G(z, z′; q) over z and z′ through the X-ray
penetration region, and with the off-specular signal as a way
to extract the non-CW background. It is important to realize
that the success of the simpler normal mode analysis (i.e., the
irrelevance of the n > 1 terms in BW series) for the LJ sur-
face applies only over a restricted Wertheim’s window for the
system size 10σ . Lxy . 100σ, such that it allows enough
CW broadening of the intrinsic profile to give smooth ρ(z) in
the simulation box, but still keeps low contributions from the
higher Sn(q) terms in BW series. Wertheim’s window is closed
(or shifted to computationally unreachable large sizes) in the
cold SA surface that probably is a qualitatively good represen-
tation of more realistic liquid metal surface simulations with
respect to the CW effects.

A key point to achieve the good matching between ∆G
and GBW is the definition of the intrinsic surface shape from
the molecular positions. The ISM defines ξ(~x) in a way that
separates (as much as possible) the fluctuations in the shape
of the IS from the density fluctuations measured on that sur-
face, and that provides a clear cut distinction between the
bare and dressed CW fluctuations.30 Within the theoretical
formalization in Sec. II, that separation between the IS undu-
lations and the instantaneous density on that surface [i.e.,
ρ̂(~x, z) for z = ξ(~x)] corresponds to make as good as pos-
sible the CWT assumption of self-averaging for the intrin-
sic density ρI[~x, z; ξ] ≈ 〈ρI[~x, z; ξ]〉ξ ≡ ρI(z). However,
the N-particle percolation analysis used by the ISM implies
to know the molecular structure far beyond what is acces-
sible in experiments, as it extracts from MD simulations a
large amount of information that is discarded in the tradi-
tional one-site (density profiles) and two-site (correlations)
averages.

We may conclude that the quantitative matching between
the molecular description of liquid surfaces in computer
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simulations and their mesoscopic analysis within the CWT
has been fully achieved, the key point being a sound and
computable definition for the intrinsic surface shape from the
molecular positions. We had first tried simpler proposals, like
a local Gibbs-surface balance in the number of particles within
narrow prims,22 but they cannot efficiently separate CW from
bulk-like fluctuations in the liquid.37 Stillinger’s early idea of
a percolation based definition38 was finally implemented with
the ISM and similar percolation-based methods, at a higher but
(nowadays) affordable computational cost. The ISM allows
us to extract from MD simulations the intrinsic profile, the
intrinsic non-CW correlation and the function γ(q) that con-
sistently represent the CW spectrum because (with the choice
of its internal parameters) it achieves an optimized separation
between the CW of the interface and the local density fluctua-
tions controlled by the compressibility of the liquid. With that,
we may safely use the CWT to predict the correlation structure
in much larger systems or limited only by the Earth gravity.
The connection with density functional theories is still not
so well established, although all the results presented here add
support to the main line of convergence. The optimal wavevec-
tor used to define the non-CW background corresponds to
set a limit of 2π/qm ≈ 10σ for the shortest capillary wave-
lengths that could be included within the framework of the
CWT, and a DF approximation with a good description of the
non-local effects of the molecular packing may be assumed to
give a fair quantitative description of the density correlations
up to that wavelength. The suggestion is that ρDF(z) should
be interpreted as the mean density profile of the liquid sur-
face with an effective transverse size LDF, or equivalently4

as the intrinsic profile ρI(z, qm) used here to connect MD-
ISM and the CWT. We may add now a similar interpretation
for the correlation function GDF(z, z′; q) as a representation
of Gbg(z, z′; q). However, the validity of these interpreta-
tions should be established in the context of the different
levels of approximation that are included in the generic DF
formalism.
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12F. Höfling and S. Dietrich, Europhys. Lett. 109, 46002 (2015).
13E. M. Blokhuis, J. Kuipers, and R. L. C. Vink, Phys. Rev. Lett. 101, 086101

(2008).
14E. M. Blokhuis, J. Chem. Phys. 130, 014706 (2009).
15E. Chacón and P. Tarazona, J. Phys.: Condens. Matter 28, 244014

(2016).
16F. Sedlmeier, D. Horinek, and R. Netz, Phys. Rev. Lett. 103, 136102

(2009).
17E. Chacón and P. Tarazona, J. Phys.: Condens. Matter 17(45), S3493

(2005).
18J. Stecki, J. Chem. Phys. 107, 7967 (1997).
19A. O. Parry, C. Rascón, G. Willis, and R. Evans, J. Phys.: Condens. Matter

26, 355008 (2014).
20A. O. Parry, C. Rascon, and R. Evans, Phys. Rev. E 91, 030401(R)

(2015).
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