Item Response Theory Models for Forced-Choice Questionnaires

by

Daniel Morillo

A dissertation submitted
to the Faculty of Psychology
in Universidad Autónoma de Madrid
in partial fulfillment of the requirements for the degree of
Philosophy Doctor in Clinical and Health Psychology

Supervised by: Dr. Francisco J. Abad, and Dr. Iwin M. Leenen
Mentored by: Dr. Vicente Ponsoda

July 2018
Madrid, Spain
Acknowledgements

There is many people I am in debt with respect to this dissertation. I feel that I would not have been able to accomplish this if it were not for the support of those that have provided me with their guidance, wisdom, and over all, affection. My supervisors have done an exceptional job helping me get to this point. To Iwin Leenen (Universidad Nacional Autónoma de México), Paco Abad, and Vicente Ponsoda (both from Universidad Autónoma de Madrid), I owe my most sincere gratitude. The rest of the people in our team have provided with invaluable support, ideas, and a critical points of view: Pedro Hontangas (Universidad de Valencia), Rodrigo Kreitchmann (Universidad Autónoma de Madrid), and Jimmy de la Torre (University of Hong Kong), many thanks to you. The faculty members in the School of Psychology, Universidad Autónoma de Madrid, and especially in the department of Social Psychology and Methodology have often been a source of intellectual challenges. I am especially in debt with Julio Olea, professor of psychometry in the Chair of Psychometric Models and Applications, whom along with Vicente put their trust in me in the beginnings of my research career, granting me the internship that allowed me to start my Ph.D. studies later on. The Ph.D. candidate research assistants have been an incredible support throughout these years. I feel so proud of having been part of such a collective, which came to be a reference model for other predoctoral collectives in our university. Some professors and researchers have given me the opportunity to make my first steps into the world of research, or have given me the opportunity to collaborate with their projects. To them I owe my most sincere thanks as well, especially, Mª Ángeles Quiroga (Universidad Complutense de Madrid), Roberto Colom (Universidad Autónoma de Madrid), and Belén López (Liverpool Hope University).

I can feel fortunate to have had the chance to “step out” and enrich my views in many ways. I am especially grateful with Anna Brown (Univerity of Kent in Canterbury) and Mark Hansen (CRESST, UCLA), who hosted me in Canterbury and L.A., respectively, and gave me
the opportunity to learn and develop my skills. Many people have given me support, advice, or even have made me challenge my points of view, giving me reasons to keep up. I would like to thank Minjeong Jeon (UCLA), Peter Bentler (UCLA), Juan Ramón Barrada (Universidad de Zaragoza), and Albert Maydeu (University of South Carolina) for this. Also, the people in the Junior Researcher Programme have given me a great opportunity to expand my skills and gain valuable experience. Among them I’d like to thank especially the supervisors, and the Junior Researchers in my team: Thanks so much to you all!

The last part is the most difficult one, for I fear I may forget someone. Friends and relatives are the most important support one can have, and it’s not different in my case. For these years, they have been a constant source of help and affection. Even when they have had to assume I would be unavailable for most of them: Manu, Javi “Fido”, Belén, Raúl “Moe”, Jorge “Yorch”, Raquel, Clara, Davide, Carol, and many more from the “Aluche” crew; those that have always been there, even in spite of their family duties: Javi, Dani (a constant source of “food for thought”), Giorgio, David “Palas”, Ruth, Olga and Pablo, Olga, Ana, and their families, my greatest thanks go to all of them; to the ones who started with me the journey of understanding those weird little creatures called “humans”, Gabi, Laura P., Kristti, Borja, María, Mari “Angus”, “El mago” Tony, Laura C., Alvarito, Bárbara “Baco”, Nilda, Lara, Andrés, Dani “Lutiako”, and many, many more… I can’t say how much I enjoyed that journey with you all! Carol, Natxo, and all the people in Alusamen, I’m so grateful for having had the opportunity of learning from you and sharing so many good moments. My family who have given me the most trust, support, and affection, have a special place; I want to especially thank my mother, my sister Marta, and my cousin Juan. Finally (last but not least), one person must have a special place, for she has endured the ups and downs of this dissertation as much as myself; to Fátima, my most special thanks and all my love.
Para Fátima.
Table of contents

Abstract ... 1
Resumen ... 3
Chapter 1: General introduction .. 5
 1.1. The development of the forced-choice format ... 6
 1.2. Understanding the forced-choice response format ... 7
 1.2.1. The validity of forced-choice questionnaire measures ... 9
 1.2.1.1. The forced-choice format as a means for controlling response biases 10
 1.2.1.2. The notion of ipsativity and its statistical approach 15
 1.2.1.3. Concluding remarks about the validity of FC ipsative measures 19
 1.3. The application of item response theory to multidimensional forced-choice data ... 20
 1.3.1. Early antecedents .. 20
 1.3.2. Foundations of IRT models for multidimensional forced-choice data 22
 1.3.3. The emergence of IRT models for multidimensional forced-choice data 25
 1.3.4. State-of-the-art IRT models .. 26
 1.4. Motivation of this dissertation .. 27
Study 1: A Dominance Variant under the Multi-Unidimensional Pairwise-Preference
Framework: Model Formulation and Markov Chain Monte Carlo Estimation 28
Study 2: Assessing and reducing psychometric issues in the design of multidimensional
forced-choice questionnaires for personnel selection ... 29
Study 3: Testing the invariance assumption of the MUPP-2PL model 29
Chapter 2: A Dominance Variant under the Multi-Unidimensional Pairwise-Preference
Framework: Model Formulation and Markov Chain Monte Carlo Estimation 31
 2.1. The MUPP-2PL Model .. 31
 2.1.1. Relationships of the MUPP-2PL to other models .. 36
 2.1.1.1. Relationship with the Multidimensional Compensatory Logistic Model 38
 2.1.1.2. Relationship with the TIRT model ... 38
 2.2. Bayesian Estimation of the MUPP-2PL ... 39
 2.2.1. Identification of latent trait and item parameters ... 40
 2.3. Simulation Study .. 41
 2.3.1. Design and data generation process ... 41
 2.3.2. MCMC analysis .. 42
 2.3.3. Goodness-of-recovery summary statistics ... 42
 2.3.4. Results ... 43
 2.3.4.1. Correlation parameters (\(\Sigma_{\theta}\)) .. 46
 2.3.4.2. Latent trait parameters (\(\Theta\)) ... 46
 2.3.4.3. Scale parameters (\(a\)) ... 46
 2.3.4.4. Intercept parameters (\(d\)) ... 47
4.3. Method .. 113
 4.3.1. Materials ... 113
 4.3.1.1. Instruments .. 113
 4.3.1.2. Participants ... 114
 4.3.2. Data analysis .. 115
 4.3.2.1. Estimation of the latent trait models ... 115
 4.3.2.2. Exploration of the violations of the invariance assumption 117
4.4. Results ... 118
 4.4.1. Dimensionality assessment of the GS questionnaire 118
 4.4.2. Tests of the invariance assumption ... 122
 4.4.3. Exploration of the violations of the invariance assumption 126
 4.4.3.1. Scale parameters ... 126
 4.4.3.2. Intercept parameters ... 127
4.5. Discussion .. 130
4.6. Conclusions ... 133
References ... 136
Chapter 5: General conclusions .. 141
 5.1. Summary of the most relevant findings .. 142
 5.2. Limitations and future research lines ... 144
Capítulo 6: Conclusiones generales .. 147
 6.1. Resumen de los hallazgos más importantes .. 148
 6.2. Limitaciones y líneas de investigación futuras 151
References ... 155
Appendices: Chapter 2 supplementary materials ... 167
Appendix A: MUPP-2PL model information function 167
Appendix B: Bayesian Estimation algorithm for the MUPP-2PL model estimation 168
 B.1. MCMC sampling scheme ... 168
 B.1.1. Step 1 (drawing $\Psi_{\theta}^{(t)}$) .. 168
 B.1.2. Step 2 (drawing $\theta^{(t)}$) ... 169
 B.1.3. Step 3 (drawing $a^{(t)}$) .. 170
 B.1.4. Step 4 (drawing $d^{(t)}$) .. 171
 B.2. Initialization of the chains .. 171
List of tables

Table 2.1. Mean Goodness-of-Recovery for Each Level of Questionnaire Length, Opposite-Polarity Block Proportion and Interdimensional Correlation for the MCMC estimates..44
Table 2.2. Mean Goodness-of-Recovery for Each Level of Questionnaire Length, Opposite-Polarity Block Proportion and Interdimensional Correlation for the TIRT estimates..48
Table 2.3. Structure, parameter estimates, correlations and empirical reliabilities (as variance of the latent trait estimates) of the 30-block forced-choice questionnaire........50
Table 3.1. Marginal means of the statistics and main effect sizes of the three-way ANOVA90
Table 4.1. Distribution of the FC blocks by trait ...114
Table 4.2. Diagnostic statistics of the unidimensional GS models, compared to the bi-factor models ..119
Table 4.3. Summary of results of the invariance assumption tests122
Table 4.4. Likelihood ratio test statistics of the constrained models125
Table 4.5. Number of non-invariant intercept parameters per item trait and block polarity 127
List of figures

Figure 1.1. The four quadrants of Coombs’ Theory of Data .. 21
Figure 1.2. Schematic representation of the mapping from a Quadrant I data multidimensional space (left) to a Quadrant III data unidimensional space (right) ... 23
Figure 1.3. Schematic representation of the mapping from a Quadrant II data multidimensional space (left) to a Quadrant III data unidimensional space (right) ... 24
Figure 2.1. MUPP-2PL model BCFs of three blocks .. 37
Figure 2.2. Plot of the estimates against the true values, across all replications, for the condition QL = 36, OPBP = 0, IC = .50 ... 45
Figure 2.3. Interaction effect between Opposite-Polarity Block Proportion (OPBP) and Questionnaire Length (QL) on the Mean Reliability (\(\hat{\rho}_M\)) ... 47
Figure 3.1. Graphical representation of three bidimensional (1 to 3) and two unidimensional (4 and 5) MUPP-2PL blocks, in a bidimensional latent space with correlation \(\rho_{12} = 0\) (left) and \(\rho_{12} = .5\) (right) ... 69
Figure 3.2. Effect of item directions on the information matrix .. 80
Figure 3.3. LSV index value based on the correlation block scale correlation \((\rho_{a_i})\), the number of blocks per dimension \((n_d)\), and the number of dimensions \((D)\) ... 85
Figure 3.4. LEV value based on the block scale correlation \((\rho_{a_i})\), the number of blocks per dimension \((n_d)\), the number of dimensions \((D)\), and the correlation sum per latent trait \((\sum \rho_\theta)\) 86
Figure 3.5. Interaction between the effects of the block scale correlation \((\rho_{a_i})\) the latent trait correlations \((\rho_\theta)\) on the mean reliability \((\hat{\rho}_M)\) .. 91
Figure 3.6. Scatterplot of the mean reliability \((\hat{\rho}_M)\) as a function of the LSV (top) and the LEV (bottom) ... 92
Figure 3.7. Scatterplot of the mean correlation bias \((\Delta_{\hat{\rho}_M})\) as a function of the LSV (top) and the LEV (bottom) ... 93
Figure 4.1. Distribution of the unidimensional scale parameter estimates of the GS items, with respect of the general factor scale parameters in the bi-factor models .. 119
Figure 4.2. Scatter plot of the GS items scale parameter estimates, on the general factor of the bi-factor models and on the common factor in the unidimensional models .. 120
Figure 4.3. Scatter plot of the GS items scale parameter relative bias, on the bi-factor item unidimensionality .. 121
Figure 4.4. Scatter plot of the FC-block scale parameter estimates against the corresponding GS-item estimates .. 123
Figure 4.5. Scatter plot of the block intercept estimates, against their values predicted from the item intercept parameters .. 124
Figure 4.6. Deviation of the non-invariant block intercept parameters with respect to their predicted values from the item intercept parameters ... 129
Abstract

Multidimensional forced-choice questionnaires are regarded as a means of controlling response bias. The application of these instruments has been held back historically by the ipsativity of their scores, which precludes inter-individual comparisons. Item response theory has only been applied recently, enabling them for normative scaling.

The present dissertation introduces the Multi-Unidimensional Pairwise Preference-2 Parameter Logistic model, an item response model for pairwise forced-choice questionnaires. It consists of three manuscripts, each with different aims. The first manuscript introduces the model and proposes a Bayesian estimation procedure for the joint estimation of structural and incidental parameters. It tests the model estimation under different conditions on a Monte Carlo study, and on empirical data, and compares the results with a procedure based on frequentist structural equation modelling.

The second manuscript considers the design of multidimensional forced-choice instruments for controlling response bias. It delves into the underpinnings of multidimensional item response theory to demonstrate how this design may lead to an empirical underidentification under certain conditions, implying a dimensional restriction. The manuscript proposes indices for assessing the dimensionality, and tests them and the consequences of the underidentification on simulated data.

The third manuscript tests the invariance assumption of the model, which implies that the item parameters remain unchanged when paired in forced-choice blocks. It proposes a methodology for testing the hypotheses, based on the Likelihood ratio of nested models. The method is then applied to empirical data from forced-choice and graded-scale responses, showing that the assumption largely holds. The manuscript also explores the conditions that are likely to induce violations of the invariance assumption, and proposes hypotheses and methods for testing them.
Resumen
Los cuestionarios de elección forzosa multidimensionales son considerados un medio para el control de los sesgos de respuesta. Históricamente, su aplicación se ha visto obstaculizada por la ipsatividad de sus puntuaciones, que impide hacer comparaciones entre individuos. Recientemente, se ha aplicado la teoría de respuesta al ítem en este contexto, la cual permite obtener medidas normativas.

Esta tesis presenta el modelo *Multi-Unidimensional Pairwise Preference-2 Parameter Logistic* para cuestionarios de pares de elección forzosa. Consta de tres manuscritos, cada uno con objetivos diferentes. El primero presenta el modelo y propone un procedimiento de estimación Bayesiana conjunta de los parámetros estructurales e incidentales. Pone a prueba dicha estimación en diferentes condiciones en un estudio de simulación, así como en datos empíricos, y compara sus resultados con un procedimiento frecuentista basado en modelos de ecuaciones estructurales.

El segundo manuscrito se centra en el diseño de cuestionarios de elección forzosa multidimensionales para controlar sesgos de respuesta. Profundiza en los fundamentos de la teoría de respuesta al ítem multidimensional, para demostrar cómo este diseño puede dar lugar a una indeterminación empírica, bajo ciertas condiciones que implican una restricción dimensional. Se proponen índices para evaluar la dimensionalidad, y se ponen a prueba con datos simulados las consecuencias de la indeterminación y la utilidad de estos índices.

El tercer manuscrito contrasta el supuesto de invarianza del modelo, el cual implica que los parámetros de los ítems no cambian cuando se combinan en bloques de elección forzosa. Propone un método para contrastar la hipótesis de invarianza basada en la razón de verosimilitudes de modelos anidados. Éste se aplica a datos empíricos, mostrando que el supuesto se cumple en gran medida. También explora las condiciones que pueden dar lugar a violaciones del supuesto de invarianza, y propone hipótesis y métodos para contrastarlas.
Industry and public organizations have been widely interested in the measurement of personality, interests, attitudes, and other types of non-cognitive psychological traits, especially for personnel selection (Ryan & Ployhart, 2014). There is ample evidence of the predictive validities of these measures in work performance settings and other contexts (see e.g. Bartram, 2005; Ones, Viswesvaran, & Schmidt, 1993; Poropat, 2009; van der Linden, te Nijenhuis, & Bakker, 2010). Forced-choice (FC) questionnaires are often demanded in order to assess those latent constructs (Salgado, Anderson, & Tauriz, 2015), due to their alleged capability to control response biases. However, the scores obtained from these instruments are problematic; due to their peculiar statistical properties, a classical test theory approach to these instruments has been largely criticized.

Fortunately, recent developments in item response theory (IRT) have shown promising applications to the data analysis of the responses yielded by these questionnaires (Brown, 2016a). The main reason for applying IRT to multidimensional FC data is the limitations of
their raw scores due to the property of ipsativity (Clemans, 1966). Personnel selection is basically a decision-making process that requires ordering candidates according to certain criteria (Ryan & Ployhart, 2014). However, ipsative measures only allow intra-individual comparisons (Cattell, 1944). The whole point of applying IRT is thus to obtain valid, normative measures that allow comparing individuals (Brown & Maydeu-Olivares, 2013). In order to apprehend the topic in its depth, we introduce the FC methodology in the following, starting with a brief historical background. Afterwards, we introduce the motivation for its development, and show how the issue of ipsativity has been a constant threat to the validity of multidimensional FC measures. We conclude with an overview of the development of IRT models applied to these instruments and the current state of the art. All of these will serve as background for motivating the development of the research presented in this dissertation.

1.1. The development of the forced-choice format

In the 1940’s, Paul Horst, in the U.S. Army, developed a new rating technique for measuring non-cognitive psychological traits. It was first reported by the Personnel Research and Procedures Branch of the US Army’s Adjutant General’s Office (Staff, Personnel Research Section, 1946), as a method for personality assessment (Merenda & Clarke, 1963; Travers, 1951). These were the beginnings of FC questionnaires.

From the very beginning, its advocates claimed many advantages over previously existing alternatives (Sisson, 1948): It could avoid the pervasive rater leniency bias (Sisson, 1948; Staff, Personnel Research Section, 1946), the score distributions were less skewed, and the influence of the ratee’s military rank was lower. In summary, the technique would preclude the raters’ ability to produce desirable outcomes, reducing measurement contamination by subjectivity.

Ultimately, these alleged advantages aimed for one purpose: A greater validity of the measures (Zavala, 1965). Indeed, higher validities than existing rating instruments, against a
peer-rating criterion were timely reported (Gordon, 1951; Sisson, 1948), leading to great enthusiasm. Along the seven decades since then, the industry has widely adopted the forced-choice method as a standard for the assessment of non-cognitive traits, along with a myriad of other testing formats. For example, a widely extended and standardized instrument, the Occupational Personality Questionnaire has a forced-choice as well as a graded-scale (GS) version (Bartram, Brown, Fleck, Inceoglu, & Ward, 2006).

Although the results looked promising, it did not take long until criticism emerged. Inquiries into the capability of the format to control for subjective biases, with both supporting and rejecting results (see Merenda & Clarke, 1963, p. 159, and references therein). In just a five-year period (from 1958 to 1963) plenty of studies provided evidence against the alleged bias-robustness of this technique (see Christiansen, Burns, & Montgomery, 2005, p. 270, and references therein). In the following years, massive psychometric breakthrough lead to a clearer understanding of the peculiar statistical nature of the scores FC instruments yielded (Clemans, 1966). Many academics argued that the properties of these data made them unsuitable for several research or applied purposes. Thus, insight or decision-making implying between-person comparisons, when based on FC responses, would be inherently flawed.

This tough criticism led the FC format into a deep trough of disillusion during the 1970s (Christiansen et al., 2005). Some scholars continued their research work into it nevertheless, trying to find evidence of its superiority, or at least its usefulness. It was only in the new century that attempts to apply IRT to the problem shed new light into the problem. This revolution has in turn led to a major breakthrough in the use of FC instruments. We can say that, nowadays, the FC format is receiving the attention and care it deserves.

1.2. **Understanding the forced-choice response format**

The forced-choice format is a type of item presentation procedure (Hicks, 1970), were the alternatives may be “adjectives, phrases, or short descriptive samples of behavior”
IRT MODELS FOR FORCED-CHOICE QUESTIONNAIRES

(Ghiselli, 1954, p. 202). In its original form (Sisson, 1948), the forced-choice format would be a special case of the paired comparisons procedure (Thurstone, 1927b). Although items were sometimes presented in pairs (Edwards, 1954; Saltz, Reece, & Ager, 1962), it was not conceived originally with such a restriction in mind. Indeed, its first known version (Staff, Personnel Research Section, 1946) presented the items in tetrads (Travers, 1951). We adopt here the term block (as in, e.g., Brown & Maydeu-Olivares, 2011) as a convention to refer to the basic response unit, independently of the number of items (i.e., be it pairs, triads, tetrads, etc.).

The idea behind its development would be to pair items measuring the (allegedly) same trait, but with different discriminations or validities (Bartlett, Quay, & Wrightsman, 1960). The least discriminant item would act as a suppressor (Sisson, 1948). If the suppressor item is endorsed, the block is scored as zero. In order to be effective in controlling biases, items should be paired attending to their preference index, a measure of the social desirability (SD; Paulhus, 1991) associated with a certain statement (Ghiselli, 1954; Sisson, 1948).

Early experiences apparently showed that respondents were reluctant to endorse items with unfavorable preference indices (Sisson, 1948). Also, forcing the raters to choose between a pair of alternatives restricted the score range (Dunnette, McCartney, Carlson, & Kirchner, 1962). These lead to the proposal of the former tetrad format, which combined a pair of socially desirable items with another one of socially undesirable items (Merenda & Clarke, 1963). This format, recommended originally by many researchers (Jackson, Wroblewski, & Ashton, 2000), was referred to as the dichotomous quartet method (Ghiselli, 1954; Gordon, 1951). The task required was to choose the item that was “most true” and “least true” (MOLE response format; Hontargas et al., 2015), which would reduce the rater reluctance (Sisson, 1948).

Generalization to other formats did not take long. Pairing only socially desirable items was an obvious choice, as it would prevent respondents to always endorse high-SD items as
IRT MODELS FOR FORCED-CHOICE QUESTIONNAIRES

“most true” and vice versa (Dunnette et al., 1962). Instruments also used blocks with three items or more (Allport, Vernon, & Lindzey, 1960). Other tasks, like ranking all the items in a block (RANK format; Hontangas et al., 2015) or picking just the one “most true” (PICK), were devised.

On the other hand, tasks which had evolved in parallel to the FC technique have been found to be equivalent to it: The Q-sort task (Block, 1961), proposed originally by Stephenson (1936) in his Experiment 1, can be considered a type of forced-choice task (Brown, 2016a). The task of assigning points to alternatives (Allport et al., 1960), or compositional questionnaire method (Brown, 2016b) would also be a forced-choice task. In summary, any task which implies comparing and ordering, totally or partially, a set of items or stimuli, may be regarded as a variant of the forced-choice method (Brown & Maydeu-Olivares, 2011).

More interesting was the proposal of the so called multidimensional FC, a format that will be our main concern. This format implied the use of items that, instead of being differentially valid against one criterion, had comparable validity, but against different criteria (Ghiselli, 1954; Hicks, 1970). Many studies carried out (Ghiselli, 1954; Gordon, 1951; Merenda & Clarke, 1963) and instruments (Allport et al., 1960; Edwards, 1954) developed in the early days leveraged on this new format, which soon replaced the original practice (Scott, 1968). This new format would be of critical interest in the forthcoming years: It would allow to measure several latent constructs simultaneously, while controlling for response biases at the same time. However, the popularization of the multidimensional FC format would also have critical consequences, setting off a controversy that has kept ringing until the present days.

1.2.1. The validity of forced-choice questionnaire measures

The controversy revolving around the validity of FC instruments is wide, and still ongoing, with arguments both in favor (Baron, 1996; Bartram, 2007; Bowen, Martin, & Hunt, 2002; Christiansen et al., 2005; Saville & Willson, 1991) and against (Closs, 1996; Heggestad,
IRT MODELS FOR FORCED-CHOICE QUESTIONNAIRES

Morrison, Reeve, & McCloy, 2006; Hicks, 1970; Merenda & Clarke, 1963). Two prominent topics have gathered the attention of researchers: (1) the ability to control response biases effectively, and (2) the statistical property of the scores known as ipsativity. The first one, already introduced, was present in the academic discussion from the very beginning (see, e.g.; Ghiselli, 1954). The second one called the attention of the researchers only after they gained awareness of its consequences (Clemans, 1966). In the following, we discuss these two topics, considering their effect on validity.

1.2.1.1. The forced-choice format as a means for controlling response biases

Control for subjective response biases was the very motivation that led to the development of the FC technique originally (Sisson, 1948). Bias in non-cognitive trait measurement would be defined as any systematic deviation of a response resulting from something other than the actual agreement or disagreement with the stimulus statement itself (Bartlett et al., 1960). That “something other” has usually been termed response style or response set (Rorer, 1965). Although their meaning is not exactly the same, there is certain ambiguity in the terminology, with different authors using them in different senses (Baumgartner & Steenkamp, 2001). The distinction is not always accepted though (Paulhus, 1991), and some authors use them interchangeably. We will use the term response style to speak indistinctively about both effects.

When it comes to high-stakes assessments (e.g., selection processes), the one type of response style that has received the most concern from researchers has been motivated distortion (Christiansen et al., 2005). Many studies had shown that attitude and personality questionnaires were susceptible to distortion by faking, making the score profiles more similar to the ideal one for the job position (Dunnette et al., 1962). Candidates would be manifesting impression management (Paulhus, 1984), a way of socially desirable responding intended to give the impression of fitting better the job or situation in question.
Other types of bias-generating response styles affected classical, GS instruments as well. *Acquiescence, central tendency* and *extreme tendency* (Paulhus, 1991) are some of these, which create a bias towards a certain response category or group of them in GS instruments. *Self-deception*, the other dimension along with impression management involved in SD, would affect how the respondents appraise their own personality traits (Paulhus, 1991). When the object of the rating is someone else, there may be a *halo effect* (Bartram, 2007; Borman, 1975), or a *leniency bias*, which was the one that originally motivated the U.S. Army development (Sisson, 1948). Allegedly, FC assessments could control the biasing effects of all of these response styles (Saville & Willson, 1991).

Equating in SD the response options of a block attending to their preference index was the key feature to make a FC instrument robust against bias (Sisson, 1948). In self-report measures, the operating principle (the *vehicle*, in Horn and Cattell’s, 1965, terms), would be a *projective one* (Gordon, 1951): Individuals would tend to perceive their own behaviors as more prevalent in their reference group. Being the response options equally desirable, “some validity would be expected since guessed subliminal discriminations tend to fall in the direction of the true measure” (p. 408).

Controversial evidence about the bias control was indeed present in the beginnings (Zavala, 1965) and is still nowadays. According to some, the FC research paradigm had a fundamental flaw that was being neglected: The undermining effect of response styles on validity, and the claim that FC instruments were the solution, were given for granted without much objection (Hicks, 1970). The last decades have seen researchers thoroughly investigating the effect, trying to settle down the discussion. The usual procedure for testing the effect of bias control consists of a preliminary scaling of the items in a SD dimension (Ghiselli, 1954). Attending to their resulting preference indices, they are grouped in pairs, tetrads, etc., to build the FC instrument. This instrument is then applied to a certain sample, comparing (within- or
between-subject) two conditions: honest (*direct*, or *straight-take* condition; Jackson et al., 2000) and faking (high-stakes) responding. The latter is usually accomplished using the *directed faking* paradigm: Asking the participants to respond “as if” they were applying for a job, intending to cause a good impression, etc. (see, e.g.; Bowen et al., 2002; Christiansen et al., 2005; Converse et al., 2010; Dunnette et al., 1962; Heggestad et al., 2006; Jackson et al., 2000; Martin, Bowen, & Hunt, 2002; O’Neill et al., 2016; Pavlov, Maydeu-Olivares, & Fairchild, 2018; Vasilopoulos, Cucina, Dyomina, Morewitz, & Reilly, 2006). Often a GS questionnaire is also applied, in order to compare the effect of the response style on the two instrument formats.

This experimental paradigm has found evidence favorable to the bias control effect. The validity of FC questionnaires against a criterion is less affected by directed faking instructions (Christiansen et al., 2005; Jackson et al., 2000). The scores they yield under both stake conditions have a lower standardized mean score difference than those from GS instruments. The distance of the FC scores to an ideal profile tends to be similar across simulated stake conditions, while the GS scores tend to be closer to this profile in the directed faking condition (Bowen et al., 2002; Martin et al., 2002). Finally, FC scores have higher divergent validity coefficients against impression management (Christiansen et al., 2005) or generic SD (Bowen et al., 2002) measures. Many studies however found no evidence that FC instruments were successful in reducing faking attempts (see Hicks, 1970, pp. 177–178, and references therein).

On the other side, criticism towards the directed faking paradigm addresses three topics: (1) that the faking behavior does not necessarily imply a validity reduction, (2) that FC measures are still susceptible to motivated distortion, and (3) that individual differences in motivated distortion introduce further systematic error. The deleterious effect of motivated distortion on validity of the measure has been questioned several times. The very fact that
scores change due to motivated distortion should not be regarded as evidence of invalidity (Scott, 1968). In order to arrive to such conclusion, the validity of the measure must be directly examined.

Empirical findings of FC measures being still susceptible to motivated distortion were already reported by Dunnette et al. (1962; see also, Vasilopoulos et al., 2006, p. 177, and references therein). A further concern were the individual differences in perceived social desirability (Saltz et al., 1962). Equating items on their mean preference index for a sample would not necessarily imply equating them for an individual (Scott, 1968), which would lead to systematic error and consequently to biased measures.

Individual differences in ability or motivation to fake would also play a role in the validity of FC measures. Christiansen et al. (2005) hypothesized that individuals would have an implicit job theory (also referred to as adopted schema; Converse et al., 2010), a cognitive representation of the trait profile for an ideal applicant. When in a high-stakes situation, applicants would adopt the appropriate schema and try to respond accordingly. Having an accurate implicit theory about the job requires cognitive ability, and performing in accordance to it is cognitively demanding. Therefore, those individual differences would make respondents more or less prone to adopt an appropriate schema and respond accordingly, thus contaminating the measure with other biases besides the response styles. Christiansen et al. (2005) found that target FC scores correlated with a measure of cognitive ability in a directed faking condition (.32 ≤ r ≤ .40), but not so in the straight-take condition (−.03 ≤ r ≤ .10). This conclusion was also arrived to by Vasilopoulos et al. (2006), who claimed that FC measures tap constructs that are fundamentally different to their GS counterparts (see also, Bartlett et al., 1960).

The argument of context-specific SD has been often brought up as well. Some studies that have found negative evidence have used different settings (general instead of job-specific
SD, e.g., Heggestad et al., 2006) and/or samples (e.g., Dunnette et al., 1962) for eliciting preference indices than those used for testing. Arguably, faking robustness would be optimal “when the set and group under which the attractiveness indices are obtained resemble those under which the scale is later administered” (Waters, 1965, pp. 188–189). When the item preference indices have been scaled with job-specific SD measures, the measures obtained have been more valid than when using a different job or a general context for SD scaling (e.g., Converse et al., 2010).

It is also noteworthy that many studies have used the dichotomous quartet format to test the faking resistance assumption (e.g., Heggestad et al., 2006; Vasilopoulos et al., 2006). This was the recommended format for faking studies originally, yet the very fact of grouping items with different preference indices makes them prone to response biases. While a conscientious respondent may endorse a low-SD item as “more true” and vice versa, thus contributing to the validity of the measure, the deceptive respondent will always rate the high-SD items above the low-SD ones (Gordon, 1951).

The validity of the conclusions drawn from the directed faking paradigm has also been questioned repeatedly (e.g., Scott, 1968). Evidence that participants fake their responses when instructed to do so does not imply that they would do so spontaneously. Indeed, actual high-stakes testing has shown less motivated distortion in FC than in GS measures (O’Neill et al., 2016). Moreover, this allows separating the effect of motivation (comparing actual high-stakes and directed faking conditions) from ability (directed faking versus straight-take), showing a higher spontaneous motivated distortion in GS instruments.

Finally, some authors have argued against the effectiveness in controlling biases by simply comparing an FC instrument in both high-stakes and straight-take conditions. However, this effectiveness is not an all versus nothing question (Vasilopoulos et al., 2006). Rather, its evaluation should always compare the difference between conditions in FC scores and GS
scores, defining effectiveness in relative terms. When such a design has been used, FC questionnaires have proven less susceptible to motivated distortion than their GS counterparts (Baron, 1996). In spite of this, the ipsative nature of the scores, largely overseen for decades, would threaten the validity of all the research with FC instruments. Its effect on validity could even be of such magnitude as to render useless any bias controlling effect.

1.2.1.2. The notion of ipsativity and its statistical approach

Two years before the introduction of the FC method (Staff, Personnel Research Section, 1946), Cattell (1944) had coined the term *ipsative*. The term referred to “scale units relative to other measurements on the person himself” (p. 294). In Cattell’s terminology, *ipsatization* refers to a within-individual standardization of the different test scores, so they were referenced to that person’s norm or baseline. Note the intended semantic parallelism to the *normalization* of a score across a whole population.

In the beginning, the consequences of ipsativity were largely neglected by FC designers and researchers. For example, Allport et al. (1960), despite mentioning some of the properties (score interdependence, negatively biased correlations), never made any mention to the term, and computed split-half score reliabilities nevertheless. Only when the researchers carefully analyzed the properties of FC instruments they noticed that the raw scores it yielded had ipsative properties. The first known reference to the ipsative properties of FC scores is in 1954 in Guilford’s handbook *Psychometric Methods* (as cited in Johnson, Wood, & Blinkhorn, 1988). It appeared in a research article for the first time in 1963, although it was again given no statistical consideration (Merenda & Clarke, 1963).

Several years later, other authors started referring to raw FC scores directly as “ipsative scores” (e.g., Clemans, 1966; Hicks, 1970). These scores should actually be regarded as “interactive” in Cattell’s terms. However, those authors were right in the sense that (in many cases) those measures did not require any transformation to ipsatize them—for this reason,
Hicks (1970, p. 169) called them *ipsative raw scores*, and claimed that they lacked the necessary information to obtain normative measures. Horn and Cattell (1965) had already addressed the problem, referring to these as *self-ipsative* measures. This term highlighted that the participants themselves transformed the attributes to generate the responses, in contrast to the ipsatization performed on interactive scores by a researcher.

The generalization of the term went even further, such that FC instruments themselves were sometimes referred to as ipsative (Martin et al., 2002; Smith, 1965). Researchers have pervasively used the term *ipsative* as synonymous of FC (e.g. Bartram, 2007; Christiansen et al., 2005; Closs, 1996; Johnson et al., 1988; Saville & Willson, 1991; Wang, Qiu, Chen, Ro, & Jin, 2017). This may lead to confusion, taking into account that FC scores are not always ipsative: The property actually emerges from the multidimensional FC format, but not from the original, unidimensional one. The original format, including suppressor items, would actually be unidimensional and lead to *normative FC measures* (Hicks, 1970). The dichotomous quartet method, as long as a respondent may receive a positive or negative score for one trait in a block (e.g., as a function of endorsing a high- or low-SD item, respectively, as “more like me”), does not necessarily produce ipsative scores.

Multidimensional FC formats however do not necessarily yield ipsative scores; it will depend on the scoring method. When the total score of a questionnaire summed across measures has no variability, the measure will be ipsative. A few authors put forth the capability of the dichotomous quartet format to yield normative measures (e.g., Heggestad et al., 2006). However, they failed to notice that the scores would be *de facto* ipsative when motivated distortion comes into play: A respondent trying to fake would only endorse a desirable items as “most like me”, and an undesirable one as “least like me” (Gordon, 1951), rendering the comparison of high- and low-SD items useless. Actually, there seems to be no other
explanation as to why Heggestad et al. obtain positive differences in all the FC scores between the directed faking and honest conditions.

Assuming all items are desirable (i.e., have high preference indices), a scoring method weighting them (e.g., on the basis of their relative discrimination index) might also yield normative scores (Ghiselli, 1954). Hicks (1970) argued therefore that ipsative scores derived “not necessarily from the item format, but rather from the scoring methods that are sometimes employed with items in a forced-choice format” (p. 167). He thus proposed a weak criterion of ipsativity (in contrast to the strong criterion of constant score sum); a test would be ipsative if “a score elevation on one attribute necessarily produces a score depression on other attribute” (p. 170). Certain FC instruments would then produce partial ipsativity, which ought to be quantified (Smith, 1965), and might provide normative information, at least partially (Heggestad et al., 2006).

Even under the weak criterion, ipsativity implies an interdependency among the trait scores. In the strong sense though, it further implies that the columns (or rows) of the covariance matrix among the scores sum to zero (Cornwell & Dunlap, 1994; Hicks, 1970; Calderón & Ximénez, 2014). This property leads to several consequences, critical for the interpretation of the scores, which Clemans (1966) discusses extensively. As a brief summary of the most critical, we can mention that (1) the correlation matrix is singular, (2) the average of the correlations in one column (or row) necessarily equals \(-1/(D - 1)\), being \(D\) the number of measures, and (3) the sum of the covariance terms of the ipsative scores with a criterion must be equal to zero. As a consequence of (2), it is straightforward that the more positive the correlations are among the actual latent trait dimensions, the worse the problem of ipsativity will be.

Many authors called the attention on the violations of the Classical Test Theory (CTT) assumptions implied by such properties. The collinearity of the scores implied correlated errors
(Meade, 2004), being the whole concept of error of difficult interpretation (Cornwell & Dunlap, 1994). An interdependence among the measures induced an inflation of the internal consistency indices (Tenopyr, 1988), possibly leading to a false confidence in the reliability of the measures. Validities would be largely overestimated (Johnson et al., 1988); correlations should not be subjected to factor analysis (Cornwell & Dunlap, 1994); means, standard deviations and correlations were not interpretable; and most importantly, scores would be inappropriate for inter-individual comparisons (Clemans, 1966; Cornwell & Dunlap, 1994).

Moreover, when it comes to FC instruments, there is an interdependence at the item level. This was already warned in the beginnings by Sisson (1948), who stated that items may “act differently in combination with other items than they do by themselves” (p. 380), and Scott (1968), who noted the “contamination of each item included in a particular scale by the other trait that is paired with it” (p. 240). However, only very recently this interdependence was given the attention it deserved, when Meade (2004) attempted to model the decision-making process for the first time.

When awareness of these problems raised, many researchers attempted to solve the problem in many different ways. The most common solution would be to essay different means of reducing ipsativity of multidimensional FC measures. One common solution was to use criterion-irrelevant, unscored traits (e.g., Christiansen et al., 2005; Converse et al., 2010; Jackson et al., 2000). This approach appears to be equivalent to using suppressor items. However, it solves the problem of collinearity superficially, and does not address two critical underlying issues: the distortion in the correlational structure (Cornwell & Dunlap, 1994), and the item level interdependence. The other common proposal was to increment the number of measured traits (Martin et al., 2002; Saville & Willson, 1991). The problem of collinearity is less serious the more the number of dimensions; therefore, according to some, a high number of traits would allow a sound use of ipsative scores.
Although these solutions were not satisfactory enough, the advocates of the FC method persevered in its defense. It was clear that ipsative scores precluded recovering a correlational structure. However, the interpretability of the scores was being criticized on purely theoretical grounds (Baron, 1996). The normative interpretability of the scores should be an empirical question though, involving validity evidence (Christiansen et al., 2005). There could be many reasons to consider multidimensional FC instruments, despite their ipsative properties. One should consider the relative effect of ipsativity, compared to response style biases (Baron, 1996); for example, Jackson, Neill and Bevan in 1973 (as cited in Christiansen et al., 2005) found similar indices of criterion-related validity between FC and GS formats. Other studies have found predictive validity of FC instruments for criteria such as employee turnover (Villanova, Bernardin, Johnson, & Danmus, 1994), or better predictive validity with a FC criterion instrument (Bartram, 2007) regardless of the format (FC or GS) of the predictor, using the Occupational Personality Questionnaire (Bartram et al., 2006). Additionally, evidence supports that ipsative scores provide at least some absolute information about trait scores. FC and GS scores have often been found to converge (Bowen et al., 2002); despite some very disparate cases (Closs, 1996), the profiles of both measures are quite similar in a vast majority of cases (Baron, 1996), and the examples given by Closs (1996) must be very uncommon, according to Baron (1996).

1.2.1.3. Concluding remarks about the validity of FC ipsative measures

That ipsative scores do not meet the assumptions of CTT is straightforward. Furthermore, the measurement level of FC instruments is essentially ordinal (Baron, 1996). Undoubtedly, ipsativity may have a harmful effect on validity. However, the same can be predicated from response biases. The FC format has a proven capability for at least reducing those biases, though further research is needed to shed light on the optimal conditions for bias control.
Nevertheless, whether ipsativity leads to inconsistent conclusions is a function of the amount of artefactual multicollinearity induced in the measure (Cornwell & Dunlap, 1994). It is reasonable to assume that, at least with a sufficient large number of dimensions, the effect of ipsativity may be comparable or even lower than the biasing effect of response styles (Bowen et al., 2002; Saville & Willson, 1991). Despite the conclusions of his statistical analysis, Clemans (1966) himself warns that a set of normative measures “should not be considered superior unless it can be demonstrated empirically that it does indeed contain more information” (p. 53).

Many researchers would not agree with these conclusions, though. In light of the concerns with ipsative scores, they still considered futile all the research about response biases and their control with FC instruments. Admittedly, information to retrieve normative measures should be a necessary condition to even considering the study of bias-controlling effects. The solution came after several decades of intensive debate, with the application of IRT models to the multidimensional FC method.

1.3. The application of item response theory to multidimensional forced-choice data

1.3.1. Early antecedents

The FC task yields stimulus-comparison data (Hicks, 1970); in Coombs’ (1960) terms, Quadrant III data (see Figure 1.1). Therefore, it can be considered as a specialized case of the comparative judgement task. The Law of Comparative Judgement (LCJ; Thurstone, 1927b, 1927a) was one of the first quantitative treatments given to the task of comparing two different stimuli, and can be considered thus as a direct precursor of IRT models for pairwise FC responses. Thurstone regarded the law as “basic . . . for all educational and psychological scales in which comparative judgements are involved” (1927a, p. 276). One may thus argue that Thurstone’s law would be a preliminary condition for subsequent theoretical developments that were to come.
The analysis of binary choice data from comparative judgement tasks led to the development of other models for scaling stimuli (Cermak, Lieberman, & Benson, 1982), some even accounting for between-subject effects (Takane, 1989). The paradigm of preference choice data (Luce, 1959) would generalize the binary choice case (Bradley & Terry, 1952), formulating *Luce’s Choice Axiom* (LCA). Based on the LCA, McFadden (1973) developed the *conditional logit* model for qualitative choice data, which could analyze the variables contributing to the relative preference of the alternatives.

In parallel, the first psychometric analysis for ipsative data was proposed by Stephenson (1936). His *Q-technique* of factor analysis would analyze data from either self-reported or performance measures, and provide evidence for psychological types (Johnson et al., 1988). The scores had to be transformed previously, by normalization first and then ipsatization (i.e.,

<table>
<thead>
<tr>
<th>Quadrant II</th>
<th>Quadrant I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Stimulus Data</td>
<td>Preferential Choice Data (Individual-Stimulus Difference Comparison)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quadrant III</th>
<th>Quadrant IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stimuli Comparison Data</td>
<td>Similarities Data (Stimuli-Differences Comparison)</td>
</tr>
</tbody>
</table>

Figure 1.1. The four quadrants of Coombs’ Theory of Data.

Adapted from Coombs (1960).
normative ipsative scores, Cattell, 1944). Interestingly, the Q-technique would not need the assumption that measures lie in the same continuum for all respondents (Stephenson, 1936), thus being an early proposal for the ipsative treatment of responses. Unlike many of the theories of that time, that made it appropriate for the analysis of solipsistic measures under certain conditions (Cattell, 1944).

1.3.2. Foundations of IRT models for multidimensional forced-choice data

Comparative judgement data are of application only to judgements of a single observer. In order to generalize them to a population, additional assumptions are needed (Thurstone, 1927a). However, the IRT framework for FC instruments would need to build on the foundations of a law of stimulus preference, such as the LCJ or LCA.

According to Hicks (1970), as Quadrant III data type FC responses “will usually tend to produce ipsative properties” (p. 170). However, as already discussed, this assertion would only apply to multidimensional models. The defining property of Quadrant III data is the judgement of the relative strength of a certain attribute (i.e., utility; Brown, 2016a) for two stimuli (Coombs, 1960). In terms of measurement, it implies an order or dominance relationship of two points (each representing a stimulus), which in all terms should be interpreted as a single dimension (see Figure 1.1).

However, when considering preference choices, Coombs actually speaks about Quadrant I data: This implies that respondents evaluate the relative distance in the measurement space of the object of assessment (e.g., in self-reported measures, themselves) to the stimuli among which they must choose. If they are to consider their relative preference, they will do so based on those relative distances to the stimuli; the preferred stimulus will be the one closer to oneself. Such a measurement theory would assume an unfolding model (Coombs, 1950).

Coombs points out though that Quadrant I data can be mapped into Quadrant III. This ambiguity will depend on the conception of stimulus the researcher holds. Some models may
assume that the respondent is actually reacting to the relative utility of the preferences aroused (i.e., utilities are regarded as stimuli). Therefore, the task would yield Quadrant III data, with the utility of a stimulus being an inversely proportional function of the Quadrant I preference distance. This way, multidimensional data can be mapped from a multidimensional preference distance space to a unidimensional utility space. Figure 1.2 represents this transformation.

![Figure 1.2](image)

Figure 1.2. Schematic representation of the mapping from a Quadrant I data multidimensional space (left) to a Quadrant III data unidimensional space (right). Utility u_{in} in the unidimensional space that yields Quadrant III data is inversely proportional to the distance measure d_{ji2} between person j and each stimulus i_n.

One may argue that the utility of a choice could be expressed as a function of the prevalence of a certain attribute on the object of assessment. For example, if we ask respondents to complete a personality self-report, they will assess how much the trait represented by a certain statement is present in themselves. Then, they would compare themselves to a stimulus and establish a dominance relationship between them. This would be a kind of individual-stimulus comparison, or Quadrant II data (Coombs, 1960). Because Quadrant II data are single-stimulus instead of stimulus-comparison data, Coombs’ theory does not consider a mapping from Quadrant II to Quadrant III. In FC questionnaires though, we
may assume that the utilities of the response options follow a dominance measurement model. This model would also be able to map a multidimensional trait space to a unidimensional utility space, through a cumulative instead of a distance response function. That is, a monotonically increasing or decreasing function, given by the relative position of the object of measurement and the stimulus in the trait continuum represented by the latter. Figure 1.3 illustrates a measurement model with these properties, and its mapping to a unidimensional utility space yielding Quadrant III data.

Figure 1.3. Schematic representation of the mapping from a Quadrant II data multidimensional space (left) to a Quadrant III data unidimensional space (right). Utility \(u_{i_n} \) in the unidimensional space that yields Quadrant III data is directly proportional to the relative position measure \(s_{j_{i_n}} \) of person \(j \) with respect to the stimulus \(i_{i_n} \), in its corresponding measurement direction.

Dominance and unfolding models make completely different assumptions, and lead to different results. There has been an intense debate regarding the prevalence of one or the other for measures of personality, attitudes, and non-cognitive traits in general. Such was this intensity, that the journal *Industrial and Organizational Psychology* dedicated a whole issue to the topic (see Drasgow, Chernyshenko, & Stark, 2010, and the response papers in volume 3,
issue 4 of Industrial and Organizational Psychology). The controversy referred to general IRT, but of course, it spread to FC measures as well. The two most prominent IRT traditions for analyzing multidimensional FC data have followed quite different courses, mainly due to assuming one of this measurement models each of them.

1.3.3. The emergence of IRT models for multidimensional forced-choice data

The first IRT model for pairwise preference data was formulated by Andrich (1989), assuming an unfolding model to account for the relative strength of the response options. He also proposed an original cognitive process for the pairwise choice behavior. Interestingly, he highlighted the close connections to the LCJ, and its equivalence to LCA. This model and the subsequent Hyperbolic Cosine Model (Andrich, 1995) were only of application to unidimensional measures though.

Based on the idea of Quadrant I multidimensional preference choice data, the Maximum Likelihood model for Multiple-Choice data (Takane, 1996) was introduced later on. It combined Coombs’ (1950) unfolding method of scaling with LCA (Luce, 1959), producing a response function for each choice. Two years later, it was extended to the Maximum Likelihood model for Successive-Choice data, of the type “pick any out of n” (Takane, 1998). However, although referred to as IRT models, these were intended for the scaling of stimuli only, and considered person parameters as incidental parameters to be marginalized out by integration.

Also based on Coombs’ (1950) unfolding method, McCloy, Heggestad, and Reeve (2005) proposed an IRT model for analyzing multidimensional FC responses. The authors claimed that it could retrieve normative information, while maintaining the fake-resistant properties of FC instruments. They tested their idea with a simulation study, but the model was lacking a mathematical formulation including an error term that could account for response intransitivity. Therefore, this model would be unsuitable for an application to actual, empirical data.
1.3.4. State-of-the-art IRT models

On that same year, Stark et al. (2005) introduced the MUPP model for the first time. This model drew on the same idea of unfolding a trait continuum. However, it was based on Roberts, Donoghue, and Laughlin’s (2000) Generalized Graded Unfolding Model. Unlike McCloy et al.’s, it implied a probabilistic response function based on Andrich’s (1989, 1995) assumption of stochastic independence of the evaluations. This made it suitable for empirical data applications. The authors continued to further develop the model (Chernyshenko et al., 2009; Chernyshenko, Stark, Drasgow, & Roberts, 2007), proposed computerized adaptive testing algorithms based on it (Stark, Chernyshenko, Drasgow, & White, 2012), and applied it to personnel selection contexts (Drasgow et al., 2012; Stark et al., 2014).

A few years later, the Thurstonian IRT (TIRT) model was introduced (Brown & Maydeu-Olivares, 2011), which was the multidimensional generalization of the Thurstonian ranking and paired-comparison models (Maydeu-Olivares & Böckenholt, 2005; Maydeu-Olivares & Brown, 2010). This model leveraged on Thurstone’s LCJ for combining the utilities of the item stimuli, and assumed a dominance measurement model. The interesting point of this development is that it drew on the concept of the paired comparison design matrix, introduced by Tsai and Böckenholt (2001). Applying a binary coding of comparative judgements (Maydeu-Olivares & Böckenholt, 2005), this model could fit the responses to instruments with more than two items per block (Brown & Maydeu-Olivares, 2012) and ranking tasks for the first time. Plenty of research and applications have emerged after its introduction; the invariance of the parameters has been studied (Lin & Brown, 2017), optimal design procedures have been developed (Yousfi & Brown, 2014) and, more importantly, research regarding response bias has been undertaken (Brown, Inceoglu, & Lin, 2017; Pavlov et al., 2018).
More recently, several other models have appeared. For example, Seybert (2013) proposed a new model for rank order responses, based on the MUPP model (Stark et al., 2005), but using the Hyperbolic Cosine Model (Andrich & Luo, 1993) as the item measurement model. The *Rasch Ipsative Model* (Wang et al., 2017), based as well on the MUPP assumption but with a Rasch (1961) measurement model was also introduced recently. The original TIRT model has also been extended to other task formats, like compositional questionnaire data (Brown, 2016b). All these new models can be considered variants of the original ones. What is even more interesting, all of them have their roots on either of the two basic choice theories, the LCJ, or LCA. This was noted by Brown (2016a), who proposed a unified framework for studying and understanding all the theoretical developments within the field of multidimensional FC item response models.

1.4. Motivation of this dissertation

For what we have exposed above, we can conclude that the field of multidimensional FC assessment is an appropriate field of knowledge for productive research. Both the academic context and the pressures from the industry contribute to create this setting, as there is wide interest in the applications of this type of measures. In such a scientific breeding ground, we deem appropriate to investigate concerns related to the FC format, and make theoretical developments addressed to fundamental problems of how IRT models can be applied to them.

The goal of this dissertation will be to study the methods for obtaining measures from multidimensional FC questionnaires, and the conditions for applying those methods in order to guarantee their validity. Our starting point will be the Multi-Unidimensional Pairwise Preference (MUPP) model (Stark, Chernyshenko, & Drasgow, 2005). This model can be criticized for the complexity of its mathematical expression; its assumptions lead to an *unfolding* model, with many parameters, and a rather intractable formulation. In such case, addressing theoretical issues of identification and model estimation may be overly complex.
The proposal of an alternative formulation that yields a more parsimonious model can overcome this restraint. Here we opted for proposing a dominance variant of the MUPP model. As we will discuss later, dominance models are often regarded as better fit for personality applications and other non-cognitive constructs. Our proposed variant is also more parsimonious, which allows better insights of its theoretical properties.

This dissertation has been structured as a manuscript compendium, composed by three studies. Each of them presents a problem and the methodology proposed to address it. Therefore, each one is a self-contained manuscript, presented in a separate chapter. A final chapter closes up the dissertation, discussing the main findings, limitations, and possibilities for future research lines. In the following, we briefly introduce the three manuscripts.

Study 1: A Dominance Variant under the Multi-Unidimensional Pairwise-Preference Framework: Model Formulation and Markov Chain Monte Carlo Estimation

The first study introduces an IRT model for multidimensional FC responses. It is a variant on the MUPP model (Stark et al., 2005), and thus applies to pairwise preference FC data. Unlike the original, this variant assumes a dominance measurement model for the items, the two-parameter logistic model (2PL; Birnbaum, 1968); consequently, it has been named MUPP-2PL model. The manuscript makes a theoretical analysis of its main properties, establishing a close relationship with the TIRT model (Brown & Maydeu-Olivares, 2011). It also introduces an MCMC algorithm for the joint estimation of structural and incidental parameters, and tests the estimation quality in a simulation study. Finally, it compares the results of the MCMC algorithm with the TIRT model estimation, with both simulated data and actual responses from a FC questionnaire.
Study 2: Assessing and reducing psychometric issues in the design of multidimensional forced-choice questionnaires for personnel selection

This study analyzes the methodological background for designing multidimensional FC instruments for controlling response style biases. When establishing the necessary conditions for such instruments, certain psychometric issues may emerge that prevent IRT modelling from obtaining valid normative measures. This manuscript develops further the multidimensional theory of the MUPP-2PL model, in order to lay the background for introducing those psychometric issues. It formalizes the problem mathematically, and proposes some indices to assess the impact it may have on the validity of the measures. Two simulation studies are presented: the first one tests the behavior of these indices; the second one tests the estimation of person parameters under more or less critical conditions. The manuscript finishes discussing the practical implications of the problem for past and future research, and proposing guidelines for optimal design of multidimensional FC instruments.

Study 3: Testing the invariance assumption of the MUPP-2PL model

The third and last study tests whether the assumptions that lead to conceive the MUPP-2PL model hold empirically. The model assumes a necessary condition for the measures to be valid: The invariance of the item parameters when paired in FC blocks. Therefore, a relationship with the 2PL model for unidimensional items exists, which allows comparing the estimation of items paired in FC blocks and applied in a GS format. The manuscript introduces a methodology for testing the parameter invariance, and applies it to multidimensional FC data obtained from an empirical sample. It also discusses the likely factors that may lead to the violation of that assumption, and proposes guidelines for future investigation about invariance in multidimensional FC questionnaires.
Chapter 2: A Dominance Variant under the Multi-Unidimensional Pairwise-Preference Framework: Model Formulation and Markov Chain Monte Carlo Estimation

Abstract

Forced-choice questionnaires have been proposed as a way to control some response biases associated with traditional questionnaire formats (e.g., Likert-type scales). Whereas classical scoring methods have issues of ipsativity, item response theory (IRT) methods have been claimed to accurately account for the latent trait structure of these instruments. In this paper, we propose the MUPP-2PL model, a variant within Stark, Chernyshenko, and Drasgow’s multi-unidimensional pairwise preference framework for items that are assumed to fit a dominance model. We also introduce a Markov chain Monte Carlo (MCMC) procedure for estimating the model’s parameters. We present the results of a simulation study, which shows appropriate goodness of recovery in all studied conditions. A comparison of the newly proposed model with Brown and Maydeu’s Thurstonian IRT model led us to the conclusion that both models are theoretically very similar and that the Bayesian estimation procedure of the MUPP-2PL may provide a slightly better recovery of the latent space correlations and a more reliable assessment of the latent trait estimation errors. An application of the model to a real dataset shows convergence between the two estimation procedures. However, there is also evidence that the MCMC may be advantageous regarding the item parameters and the latent trait correlations.

Keywords: Bayesian estimation, forced-choice questionnaires, ipsative scores, MCMC, multidimensional IRT.

Chapter 2:

A Dominance Variant under the Multi-Unidimensional Pairwise-Preference Framework: Model Formulation and Markov Chain Monte Carlo Estimation

In the context of noncognitive trait measurement, several authors have proposed the use of forced-choice questionnaires (FCQs) as an alternative to traditional Likert-scale response formats (e.g., Christiansen, Burns, & Montgomery, 2005; Saville & Willson, 1991) as the latter are particularly sensitive to response styles such as conscious distortion (Baron, 1996). FCQs consist of blocks of two or more items, each one typically measuring a single, a priori specified, underlying trait or dimension. The respondent’s task is to (partially) rank order the items in each block, according to how well they describe him or her, for example, by selecting the items that describes him or her best and/or worst.

FCQs have been criticized because traditional scores suffer from ipsativity. An individual’s ipsative scores (Cattell, 1944) are dependent on each other, and useless for interindividual comparisons (Cornwell & Dunlap, 1994). Ipsativity also leads to problems with assessing reliability and validity (Closs, 1996; Hicks, 1970).

Recently, some authors have proposed scoring procedures within the framework of item
response theory (IRT) which yield non-ipsative, normative scores from FCQ data. The multi-unidimensional pairwise preference (MUPP; Stark, Chernyshenko, & Drasgow, 2005) model and the Thurstonian IRT (TIRT; Brown & Maydeu-Olivares, 2011) model are the most well-known examples. The MUPP is a model for forced-choice blocks consisting of two items and assumes for each item a latent response process that follows the generalized graded unfolding model (GGUM; Roberts, Donoghue, & Laughlin, 2000). The TIRT models the probability of selecting an item along the lines of the Thurstone’s (1927) Law of Comparative Judgement, and has the advantage of allowing blocks of two or more items. Although the TIRT is essentially a factor model, it can be expressed in IRT terms as well (like other item factor models, see Takane & De Leeuw, 1987).

Arguably, the essential difference between both models relates to the underlying process for item evaluation. Stark et al.’s (2005) MUPP, by relying on the GGUM, assumes an unfolding process (i.e., the probability of endorsing an item is a single-peaked function of the latent trait), whereas the TIRT assumes a dominance process (i.e., with a monotonic item response function). Whether unfolding or dominance models are more suited for the analysis of noncognitive items is an ongoing controversy in the literature (for a detailed discussion, see Drasgow, Chernyshenko, and Stark’s focal article with commentaries in the 2010 December issue of *Industrial and Organizational Psychology*). Here, we mention some theoretical considerations as well as recent evidence in favor of dominance models. Firstly, certain constructs (e.g., pathological aspects of personality) seem to better conform to a dominance model (Carvalho, De Oliveira, Pessotto, & Vincenzi, 2015; Cho, Drasgow, & Cao, 2015). Secondly, dominance models are usually more parsimonious than unfolding models. Thirdly, scales formed by dominance items tend to have better psychometric properties, such as higher reliability and correlations with external criteria (Huang & Mead, 2014). Finally, items, rather than traits, are characterized by being dominance or unfolding, as a trait may actually be
measured by both types of items. In fact, some authors argue that unfolding models only yield a better fit for items in the middle of the trait continuum, but these items are difficult to write, are not invariant to reverse scoring, and may be equally well fit by a higher-dimensional dominance model (Brown & Maydeu-Olivares, 2010; Oswald and Shell, 2010). Given these arguments, one may consider replacing the GGUM in the original MUPP by a dominance model, as “there is nothing in the actual MUPP model that stops it from being populated with dominance items and, consequently, using a dominance model” (Brown & Maydeu-Olivares, 2010, p. 491).

The authors of both the TIRT and the MUPP have also presented their respective estimation procedures. The TIRT estimation, based on confirmatory factor analysis, estimates the item parameters and latent variance-covariance structure using a marginal bivariate-information method (Brown & Maydeu-Olivares, 2011, 2012). This procedure comes with some minor drawbacks: First, it disregards the correlation among component unicitics (in blocks that contain more than two items), which Brown and Maydeu-Olivares (2011) claim to have a negligible effect. Second, it ignores the estimation error associated with the structural parameters when the respondents’ latent trait values are estimated. This is a common drawback of multistep serial procedures that use estimates from a previous step as fixed values in a subsequent step. Third, in order to ensure quality estimation results, the TIRT requires that some blocks combine items of opposite polarity (Brown & Maydeu-Olivares, 2011), that is, direct items (e.g., “Complete tasks successfully”; “International Personality Item Pool,” n.d.) and inverse items (e.g., “Yell at people”). However, opposite-polarity blocks are less robust against responses biases, as the respondent would be prone to select the more desirable item, which are often considered the very reason to employ FCQs.

The MUPP estimation procedure only estimates the person parameters, assuming known values of the item parameters. The latter are typically obtained from a prior
IRT MODELS FOR FORCED-CHOICE QUESTIONNAIRES

administration and calibration of the items in a graded-scale format (Stark et al., 2005). Apart from being less efficient, such a strategy disregards the uncertainty in the item parameters as well and relies on the assumption that the item parameters are equivalent across response formats. Stark et al. further suggest the inclusion of unidimensional blocks (of which both items address the same dimension) for metric identification. However, these blocks require items with distant locations on the latent scale. This property may make them prone to response biases.

The remainder of this paper is organized as follows: Firstly, we present the MUPP-2PL model, a MUPP variant for dominance items, and discuss its relation with other multidimensional IRT models. Secondly, we cast the model in a Bayesian framework and propose an estimation algorithm for joint estimation of structural and person parameters. Thirdly, we evaluate the algorithm in a simulation study, with special attention to the above mentioned limitations of the original MUPP and TIRT estimation procedures. Fourthly, we present an empirical study to illustrate the practical use of the model. Finally, we conclude with a discussion. Throughout, whenever appropriate, the MUPP-2PL is compared with the TIRT model.

2.1. The MUPP-2PL Model

In the MUPP framework, the probability of person j choosing an item i_1 over item i_2 in block i is given by (Stark et al., 2005)

$$
P(Y_{ij} = 1) = \frac{P(X_{i_1j}=1)P(X_{i_2j}=0)}{P(X_{i_1j}=1)P(X_{i_2j}=0)+P(X_{i_1j}=0)P(X_{i_2j}=1)},$$

(2.1)

where Y_{ij} is a variable that denotes the selected item on the block (with a value of 1 if i_1 is the selected response, and 2 if it is i_2), and X_{i_1j} and X_{i_2j} are the latent responses on items i_1 and i_2, respectively, being equal to 1 if respondent j endorses the item, and 0 otherwise.

In the original MUPP model, the probability functions at the right side of Equation 2.1 are item response functions described by the GGUM. To obtain the MUPP-2PL variant, we
replace the GGUM by the two-parameter logistic (2PL; Birnbaum, 1968) model. The block characteristic function (BCF) can then be written as

\[P_i(Y_{ij} = 1 | \theta_j) = \phi_L(\alpha_i \theta_{i1j} - \alpha_i \theta_{i2j} + d_i) = \frac{1}{1 + \exp[-(\alpha_i \theta_{i1j} - \alpha_i \theta_{i2j} + d_i)]}, \]

where \(\phi_L \) is the logistic function; \(\theta_j \) is a vector with a person’s positions on each of the \(D \) latent traits addressed by the FCQ; \(\theta_{i1j} \) and \(\theta_{i2j} \) are the coordinates of \(\theta_j \) in the dimensions addressed by items \(i_1 \) and \(i_2 \), respectively (which are the same if the block is unidimensional); \(\alpha_{i1} \) and \(\alpha_{i2} \) are the scale (discrimination) parameters of items \(i_1 \) and \(i_2 \), respectively; and \(d_i \) is the block intercept parameter, which combines the two item location parameters \(b_{i1} \) and \(b_{i2} \) involved in the 2PL; in particular, \(d_i = \alpha_{i2} b_{i2} - \alpha_{i1} b_{i1} \). (Note that the two location parameters cannot be uniquely identified; the implications of this underdetermination will be considered further in the discussion.) For all parameters in Equation 2.2, the range of allowable values comprises the full set of real numbers. In this respect, note that the sign of the scale parameter defines the item’s polarity; direct and inverse items have positive and negative polarity, respectively.

\[\{a_{i1}, a_{i2}, d_i\}, \]

are: block A = \{1, 1, 0\}, block B = \{1, 1, -2\}, and block C = \{2, 1, 0\}.

Figure 2.1 graphs the MUPP-2PL BCF for three bidimensional blocks with different item parameters. It illustrates how a change in the intercept translates the surface slope in the space. A change in the scale parameter rotates the slope (in addition to producing a net change
in the gradient), making the block more discriminating in the corresponding dimension. The information matrix of a questionnaire made up of bidimensional blocks is presented in Appendix A.

2.1.1. Relationships of the MUPP-2PL to other models

2.1.1.1. Relationship with the Multidimensional Compensatory Logistic Model

The MUPP-2PL model is algebraically equivalent to the multidimensional compensatory logistic model (MCLM; Reckase & McKinley, 1982), which is usually expressed as

\[P_i(Y_{ij} = 1 | \theta_j) = \phi_L(a_i \theta_j + d_i), \]

(2.3)

where \(a_i \) is a \(D \)-dimensional vector with the scale parameters of the \(i \)-th block, and \(d_i \) is the \(i \)-th block intercept parameter. Comparing Equations 2.2 and 2.3 reveals the following differences with respect to the implied constraints: (a) in the MUPP-2PL, each block addresses either one or two a priori specified dimensions, which in terms of Equation 2.3 comes down to restricting all but one or two scale parameters to 0; (b) the MCLM scale parameters are restricted to be positive, whereas in the MUPP-2PL they can be negative (note that the sign of the scale parameter associated with the second item in the block is inverted in Equation 2.2).

2.1.1.2. Relationship with the TIRT model

Consider the IRT formulation of the TIRT (Brown & Maydeu-Olivares, 2011, p. 473),

\[p(Y_{ij} = 1 | \eta_{i1j}, \eta_{i2j}) = \phi_N(\alpha_i + \beta_{i1} \eta_{i1j} - \beta_{i2} \eta_{i2j}), \]

(2.4)

where \(\phi_N \) is the cumulative normal distribution function; \(\eta_{i1j} \) and \(\eta_{i2j} \) are the coordinates of a \(D \)-dimensional latent trait vector \(\eta \) in the dimensions addressed by items \(i_1 \) and \(i_2 \), respectively; \(\beta_{i1} \) and \(\beta_{i2} \) are the slope parameters of items \(i_1 \) and \(i_2 \), respectively; and \(\alpha_i \) is the block intercept parameter.

It should be noted that, although the TIRT model is generally defined for blocks of two or more items, Equation 2.4 refers to the response probability of a binary outcome (i.e., the
result of a latent comparison between two items within a block that possibly includes more than two items). By considering pairwise comparisons only, Equation 2.4 directly models the response probability on a block and turns out to be equivalent to Equation 2.2, except for the probit versus logit link functions (which are known to be very closely related; Haley, 1952).

2.2. Bayesian Estimation of the MUPP-2PL

Given the responses of N persons on a questionnaire of n item blocks collectively measuring D underlying dimensions, and assuming independence among subjects and local independence across responses within subjects, the likelihood function for the MUPP-2PL is given by

$$L(Y|\theta, a, d) = \prod_{j=1}^{N} \prod_{i=1}^{n} \left[p_i^{y_{ij}}(\theta_j) Q_i^{y_{ij}^{-1}}(\theta_j) \right].$$

(2.5)

where Y is an $N \times n$ matrix of responses, θ is an $N \times D$ array of person latent trait parameters, a is an $n \times 2$ array of item scale parameters, and d is an $n \times 1$ array of item intercept parameters.

To estimate the person and item parameters simultaneously, we formulate the model in a Bayesian framework. The prior distributions are specified as follows:

(a) $\theta_j \ iid \sim \text{MVN}(\mu_\theta, \Sigma_\theta), j = 1, \ldots, N$, with μ_θ being a D-dimensional mean vector and Σ_θ a $D \times D$ covariance matrix. For identification purposes (see next subsection), μ_θ will be restricted to 0 and Σ_θ to a correlation matrix. The hyperprior distribution of Σ_θ will be assumed uniform, that is, all positive-definite matrices with diagonal elements of 1 are considered equally likely a priori.

(b) $|a_{ik}| \ iid \sim \text{lognorm}(\mu_a, \sigma_a^2), i = 1, \ldots, n, k = 1, 2$, with μ_a and σ_a being prespecified constants, for which we suggest values of 0.25 and 0.5, respectively. The sign of the a_{ik} is fixed a priori; in practical applications, it is typically derived from a content analysis of the item to reflect its polarity.

(c) $d_i \ iid \sim \text{N}(\mu_d, \sigma_d^2), i = 1, \ldots, n$, with μ_d and σ_d being prespecified constants. We suggest
values of 0 and 1 for these constants, respectively.

By Bayes’ theorem, the posterior density of the parameters is proportional to

\[
f(\theta, \Sigma_\theta, a, d|Y) \propto L(Y|\theta, \Sigma_\theta, a, d)f(\theta, \Sigma_\theta, a, d)
\]

\[
= \prod_{i=1}^{N} \prod_{i=1}^{n} \left[p_{i}^{2-y_{ij}}(\theta_{j})Q_{i}^{y_{ij}-1}(\theta_{j}) \right] \prod_{j=1}^{N} N(\theta_{j} | 0, \Sigma_\theta)
\]

\[
\prod_{i=1}^{n} \left[\text{lognorm}(a_{i1} | \mu_a, \sigma_a^2) \text{lognorm}(a_{i2} | \mu_a, \sigma_a^2) N(d_{i} | \mu_d, \sigma_d^2) \right].
\]

The MCMC algorithm we developed to sample from this posterior distribution is a Metropolis-Hastings (or Metropolis-within-Gibbs) algorithm. For an introduction to the MCMC methodology in the context of IRT model estimation, see Patz & Junker (1999a, 1999b). The proposed algorithm runs multiple chains, where each chain starts with a distinct set of initial values for the parameters; in each iteration, all parameters are successively updated by drawing them one by one from their conditional distribution given the most recent values for the other parameters. The chains run until they have converged, according to Gelman and Rubin’s (1992) statistic. A detailed description of the algorithm is provided in Appendix B.

2.2.1. Identification of latent trait and item parameters

Identifiability of the MUPP-2PL model is directly related to the MCLM.\(^2\) The origin and unit of each dimension must be fixed to identify the metric (De Ayala, 2009), which explains the restrictions applied to \(\mu_\theta\) and \(\Sigma_\theta\) in the previous section. Rotational indeterminacy may be another source of unidentifiability, but only if \(D = 2\) and each block is bidimensional. In other cases, the structural zeros in the rows (i.e., blocks) of the scale parameter matrix imply a triangular configuration (Thurstone, 1947), which solves this indeterminacy. For \(D = 2\), the inclusion of unidimensional blocks in the FCQ would resolve the rotational indeterminacy. However, if block \(i\) is unidimensional, then Equation 2.2 reduces to the 2PL model equation with a scale parameter equal to \(a_{i2} - a_{i1}\). Thus, the scale parameters cannot be uniquely

\(^2\)One may note that, in spite of the close relation between the MUPP-2PL and the TIRT models, results on identifiability cannot be interchanged, given that the Jacobian matrix differs in both models (Maydeu-Olivares, personal communication, July 31, 2013).
identified for unidimensional blocks.

As an aside, note that the TIRT model also suffers from rotational indeterminacy when applied to pairwise blocks measuring two dimensions. To solve this problem, Brown and Maydeu-Olivares (2011) suggested “fix[ing] the two factor loadings of the first pair” (p. 473). However, this may have a drawback, in the sense that the final solution may strongly depend on the values assigned to those loadings.

2.3. Simulation Study

2.3.1. Design and data generation process

We systematically manipulated the same three factors as in Brown and Maydeu-Olivares (2011), albeit at slightly different levels: (a) number of blocks that make up the questionnaire (QL: Questionnaire Length), 18 or 36; (b) the proportion of these blocks that combine items of opposite polarity (OPBP: Opposite-Polarity Block Proportion), 2/3, 1/3, or 0; and (c) the correlation between the latent traits (IC: Interdimensional Correlation), .00, .25, or .50.

The three factors were completely crossed, yielding 18 different conditions; for each condition, we simulated 100 data sets. Data sets were independently generated by the following four-step procedure. First, for each of 1,000 simulees, a three-dimensional latent trait vector was independently drawn from a trivariate normal distribution with mean vector \(\mathbf{0} \) and a covariance matrix \(\boldsymbol{\Sigma}_\theta \), with all variances equal to 1 and covariances \(\rho \) equal to the level of IC for the condition. Second, the (18 or 36) blocks were equally divided in three groups; in each group the items measured a pair of dimensions (either dimensions 1 and 2, 1 and 3, or 2 and 3). For each item, a scale parameter was independently drawn from a lognormal distribution, with both the log-mean and the log-sd parameters equal to .25. In each of the three groups, a proportion of the blocks was selected according to the level of OPBP, and one of their scale parameters was multiplied by \(-1\) to obtain the inverse items. The number of inverse items for
each dimension was kept constant across the three groups. Third, for each block, an intercept parameter was independently drawn from a normal distribution, with mean and variance equal to 0 and 0.25, respectively. Fourth, a data matrix \mathbf{Y} was generated by calculating for each cell the probability in Equation 2.2 based on the parameters drawn in the previous steps and converting this probability to a realized value of 1 or 2 by comparing it to a uniform random variate.

2.3.2. MCMC analysis

Each data set was analyzed applying the MCMC algorithm introduced in the previous section. We specified four independent chains, and ran 150,000 iterations for each data set. The first 50,000 draws were considered burn-in, and only every 25th draw was saved to the output file. Hence, the analysis of each data set yielded a total of $4 \times \frac{100,000}{25} = 16,000$ draws.

The chains were initialized with the procedure explained in Appendix B (the random noise covariance matrix for initializing the latent trait parameters had all diagonal elements equal to .5, and all off-diagonal elements equal to .375). They were considered to have converged if and only if for all parameters the value on Gelman and Rubin’s (1992) \hat{R} statistic (calculated across the 16,000 draws) was below 1.2. Thirteen out of the 1,800 datasets did not satisfy the convergence criterion and were reanalyzed using different starting values. For each parameter, the EAP estimate along with the 95%-credibility interval (CrI, defined by the posterior sample .025 and .975 quantiles) and the standard error was computed from the 16,000 posterior draws.

2.3.3. Goodness-of-recovery summary statistics

For each data set, we analyzed the four types of parameters separately: the off-diagonal elements in Σ_θ (three correlation parameters in total), latent traits in $\boldsymbol{\theta}$ (3,000 parameters), the scales in \mathbf{a}, (2 × QL parameters) and the intercepts in \mathbf{d} (QL parameters). Let ξ_l and $\hat{\xi}_l$ be a
IRT MODELS FOR FORCED-CHOICE QUESTIONNAIRES

generic notation of the true and the EAP estimate of a parameter, respectively, and L the number of parameters of the type under consideration. The following goodness-of-recovery (GOR) summary statistics were calculated for each parameter type, in each replication:

1. **Mean error**, defined as
 \[\text{ME}_\xi = \frac{\sum_{l=1}^{L}(\hat{\xi}_l - \xi_l)}{L}; \tag{2.7} \]

2. **Root mean squared error**, given by
 \[\text{RMSE}_\xi = \sqrt{\frac{\sum_{l=1}^{L}(\hat{\xi}_l - \xi_l)^2}{L}}; \tag{2.8} \]

3. **Proportion coverage by the 95% CrI**, that is, the proportion of parameters ξ_l, across all L parameters, that are contained in the CrI derived for the parameter.

In addition, a mean reliability was computed as

\[\bar{\rho}^2 = \frac{\sum_{a=1}^{A} r_{\theta_a d}^2 \theta_d}{3}; \tag{2.9} \]

from the latent trait estimates, and the correlations $r_{\theta a a}$ and $r_{\theta d d}$, between the true values and the estimates of a and d, respectively.

For each of the GOR statistics, we calculated the means across the 100 data sets in each of the 18 conditions and examined the contributions of the main and interaction effects of the three factors manipulated in the study by analysis of variance. We will focus on effects that are of moderate size at least ($\eta^2_p > .06$; Cohen, 1988).

2.3.4. Results

The mean results for the GOR statistics at each level of the three factors are presented in Table 2.1. Three general results, which hold across the four parameter types, stand out. First, the mean errors are very close to 0 in all conditions. This result indicates there is no systematic distortion of the estimates for any type of parameter in a particular direction. Figure 2.2 plots the estimates against the true values for each parameter type in one particular condition. It illustrates that no systematic bias appears in the estimation, except for a slight
Table 2.1.

Correlation matrix (Σ_θ)	Questionnaire Length		Opposite-Polarity Block Proportion		Interdimensional Correlation						
	18	36	η^2_θ	2/3	1/3	0	η^2_ϕ	.00	.25	.50	η^2_ϕ
Mean error	0.001	0.000	.000	-0.001	-0.001	0.003	0.002	-0.001	0.000	0.003	0.002
RMSE	0.052	0.038	.090	0.040	0.040	0.055	0.096	0.049	0.047	0.041	0.025
95%-CrI coverage	.958	.959	.000	.953	.958	.963	.003	.964	.948	.962	.001
Latent traits (Θ)											
Mean error	0.000	0.000	.000	-0.001	-0.002	0.003	0.011	0.000	0.001	0.000	0.002
RMSE	0.529	0.414	.872	0.433	0.438	0.544	0.842	0.469	0.474	0.471	0.001
95%-CrI coverage	.949	.949	.000	.949	.949	.949	.000	.949	.949	.949	.000
Mean reliability (ρ^2_θ)	0.717	.827	.835	.810	.806	.700	.812	.775	.770	.772	.008
Item scales (a)											
Mean error	0.010	0.005	.004	0.005	0.004	0.015	0.012	0.004	0.006	0.014	0.010
RMSE	0.198	0.164	.142	0.180	0.177	0.187	0.009	0.176	0.180	0.188	0.013
95%-CrI coverage	.950	.950	.000	.950	.950	.950	.000	.952	.949	.950	.002
True-Est. correlation	.983	.989	.147	.994	.992	.972	.632	.986	.986	.985	.003
Block intercepts (d)											
Mean error	0.000	-0.001	.000	0.000	0.000	-0.003	0.002	-0.002	0.000	0.000	0.001
RMSE	0.110	0.109	.001	0.111	0.110	0.107	0.005	0.112	0.110	0.106	0.010
95%-CrI coverage	.952	.952	.000	.956	.951	.951	.002	.953	.953	.951	.000
True-Est. correlation	.975	.976	.003	.974	.974	.978	.023	.975	.975	.977	.004

Note. RMSE = Root Mean Square Error; CrI = Credibility Interval. The η^2_θ values are the partial eta squared effect sizes associated with the main effect of the factor for the corresponding goodness-of-recovery statistic. The values in the other cells are the estimated marginal means of the goodness-of-recovery statistic across all replications for the corresponding factor level.
relative bias towards the mean in the extreme values. This effect, typical of Bayesian analyses, is attributable to the prior distribution. Second, in all conditions, the proportion of true parameters contained in the corresponding CrI is very close to the nominal level of 95%. This suggests that the estimation method correctly accounts for the uncertainty in the parameter estimates. Third, the factor IC does not explain differences in GOR in any relevant way ($\eta^2_p < .06$ for all GOR statistics, not only for the main effect of the IC factor but also for all interactions.

Figure 2.2. Plot of the estimates against the true values, across all replications, for the condition $QL = 36$, $OPBP = 0$, $IC = .50$.

IRT MODELS FOR FORCED-CHOICE QUESTIONNAIRES
that involve this factor). The latter result is somewhat unexpected and contrary to Brown and Maydeu-Olivares’s (2011), who find an inverse relationship between correlation and reliability. This difference might be due either to the estimation procedure or to the selected levels for each of the factors used in the study.

We now summarize the most important results for QL and OPBP on the precision of the estimates, as quantified by the RMSE and the correlation between true and estimated values. We differentiate among the four parameter types:

2.3.4.1. Correlation parameters (Σ_{θ})

A moderate main effect on $RMSE_{\hat{\rho}}$ was found for both QL and OPBP: Longer questionnaires yielded more precise estimates of the latent trait correlations. Including blocks of items with opposite polarity (be it 2/3 or 1/3 of the items) caused the latent correlations to be estimated with smaller errors.

2.3.4.2. Latent trait parameters (θ)

Large main effects of QL and OPBP were found for $RMSE_{\hat{\theta}}$ and $\overline{\rho_{\hat{\theta}}^2}$: Longer tests and a higher proportion of opposite-polarity blocks resulted in more precise estimates. Moreover, a moderate interaction (with $\eta_{\hat{\rho}}^2 = .12$) between QL and OPBP was found on $\overline{\rho_{\hat{\theta}}^2}$ (see Figure 2.3). Note that in the worst condition (i.e., 18 blocks with direct items only) the reliability of the estimates was .63, somewhat below what is typically required in practical applications. However, for questionnaires of 36 direct-item blocks, the reliability was adequate with a value of .77.

2.3.4.3. Scale parameters (a)

The precision of the estimates of the item scale parameters improved with the length of the questionnaire, although the improvement was relatively small. The presence of blocks that combine items of opposite polarity had an even smaller effect on the precision of the scale parameter estimates.
2.3.4.4. Intercept parameters (d)

The GOR of the intercept parameters was highly accurate, and the factors considered in this study barely had any effect. Arguably, sample size (which was kept constant at 1,000 individuals in the present study) is a more important factor affecting the quality of estimation of the item parameters (both intercepts and scales).

![Graph](image)

Figure 2.3. Interaction effect between Opposite-Polarity Block Proportion (OPBP) and Questionnaire Length (QL) on the Mean Reliability ($\bar{\rho}_0^2$).

2.3.5. Comparison with the TIRT estimation

The TIRT estimation procedure was applied to the same simulated data, and the same GOR indices were computed (see Table 2.2; in the case of the structural parameters, the mean coverage of the 95% confidence interval [CI], rather than of the CrI, was computed). A comparison of the results from both procedures (through repeated measures ANOVA) showed very little difference. We highlight here the two most relevant differences.
Table 2.2.

Mean Goodness-of-Recovery for Each Level of Questionnaire Length, Opposite-Polarity Block Proportion and Interdimensional Correlation for the TIRT estimates.

<table>
<thead>
<tr>
<th></th>
<th>Questionnaire Length</th>
<th>Opposite-Polarity Block Proportion</th>
<th>Interdimensional Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>18</td>
<td>36</td>
<td>.50</td>
</tr>
<tr>
<td>Correlation matrix (Σ_θ)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean error</td>
<td>-0.011</td>
<td>-0.007</td>
<td>.001</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.067</td>
<td>0.044</td>
<td>.071</td>
</tr>
<tr>
<td>95%-CI coverage</td>
<td>0.942</td>
<td>0.947</td>
<td>.000</td>
</tr>
<tr>
<td>Latent traits (θ)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean error</td>
<td>0.001</td>
<td>0.000</td>
<td>.000</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.532</td>
<td>0.416</td>
<td>.851</td>
</tr>
<tr>
<td>95%-CrI coverage</td>
<td>0.934</td>
<td>0.941</td>
<td>.079</td>
</tr>
<tr>
<td>Mean reliability (ρ_θ^2)</td>
<td>0.714</td>
<td>0.826</td>
<td>.810</td>
</tr>
<tr>
<td>Item scales (a)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean error</td>
<td>0.010</td>
<td>-0.002</td>
<td>.004</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.281</td>
<td>0.192</td>
<td>.008</td>
</tr>
<tr>
<td>95%-CI coverage</td>
<td>0.945</td>
<td>0.946</td>
<td>.000</td>
</tr>
<tr>
<td>True-Est. correlation</td>
<td>0.975</td>
<td>0.985</td>
<td>.053</td>
</tr>
<tr>
<td>Block intercepts (d)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean error</td>
<td>-0.002</td>
<td>-0.001</td>
<td>.000</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.122</td>
<td>0.115</td>
<td>.001</td>
</tr>
<tr>
<td>95%-CI coverage</td>
<td>0.951</td>
<td>0.948</td>
<td>.000</td>
</tr>
<tr>
<td>True-Est. correlation</td>
<td>0.972</td>
<td>0.974</td>
<td>.002</td>
</tr>
</tbody>
</table>

Note. RMSE = Root Mean Square Error; CI = Confidence Interval; CrI = Credibility Interval. The η_θ^2 values are the partial eta squared effect sizes associated with the main effect of the factor for the corresponding goodness-of-recovery statistic. The values in the other cells are the estimated marginal means of the goodness-of-recovery statistic across all replications for the corresponding factor level.
First, the coverage by the 95% CrIs of latent trait parameters by the TIRT procedure was significantly less accurate than by the MCMC 95% CrIs (93.7% vs. 95.0%; $\eta^2_P = .56$). Arguably, this probably relates to the joint estimation of item and person parameters by the MCMC procedure. Moreover, the coverage by the 95% TIRT CrIs was lower for QL = 18 (93.3%) than for QL = 36 (94.0%), whereas the MCMC CrIs maintained the coverage at the nominal level of 95.0% independently of test length.

Second, the latent trait correlations were more accurately estimated in the MCMC ($\text{RMSE}_\rho = .045$) than in the TIRT ($\text{RMSE}_\rho = .055$; $\eta^2_P = .07$). However, this difference was exclusively found in the conditions with direct items only ($\text{RMSE}_\rho = 0.055$ for MCMC versus $\text{RMSE}_\rho = 0.081$ for TIRT). In the opposite-polarity conditions both procedures performed at the same level ($\eta^2_P = .08$ for the interaction between OPBP and the estimation procedure).

2.4. Empirical Study

In this section, we briefly illustrate the application of the MUPP-2PL model to empirical data from a personality test. In particular, we applied a FCQ measuring the Big Five traits to a sample of 567 students from two Spanish universities. Sixteen cases were removed because of unresponded blocks, leaving 551 cases to analyze. The questionnaire, specifically assembled for this application, consisted of 30 blocks; its exact design is given in the first two columns of Table 2.3. We analyzed the responses with both the TIRT procedure and the MCMC algorithm. The latter was configured as in the simulation study. Convergence was found for both procedures.

The TIRT estimates obtained with Mplus showed an acceptable fit (RMSEA = 0.035, $p(\text{RMSEA} < 0.05) = 1.000$; CFI = .906; TLI = .888). The MCMC and TIRT structural parameter estimates (see Table 2.3) strongly correlated (.88 and .89 for the scale parameters of the first and second item, respectively, and over .99 for the intercept). The estimates obtained by both procedures were highly similar, with a few exceptions: The TIRT estimate of the first
IRT MODELS FOR FORCED-CHOICE QUESTIONNAIRES

Table 2.3.

Structure, parameter estimates, correlations and empirical reliabilities (as variance of the latent trait estimates) of the 30-block forced-choice questionnaire.

<table>
<thead>
<tr>
<th>Block</th>
<th>Dimension / polarity</th>
<th>item 1 scale</th>
<th>item 2 scale</th>
<th>intercept</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MCMC</td>
<td>TIRT</td>
<td>MCMC</td>
</tr>
<tr>
<td>1</td>
<td>OE+ Ag-</td>
<td>1.483</td>
<td>1.641</td>
<td>-1.373</td>
</tr>
<tr>
<td>2</td>
<td>Ag- ES+</td>
<td>-0.895</td>
<td>-0.757</td>
<td>0.680</td>
</tr>
<tr>
<td>3</td>
<td>Co- Ex+</td>
<td>-0.463</td>
<td>-0.070</td>
<td>1.220</td>
</tr>
<tr>
<td>4</td>
<td>Ex+ ES+</td>
<td>1.630</td>
<td>2.270</td>
<td>1.346</td>
</tr>
<tr>
<td>5</td>
<td>OE+ ES-</td>
<td>1.003</td>
<td>0.895</td>
<td>-1.098</td>
</tr>
<tr>
<td>6</td>
<td>OE+ Co+</td>
<td>1.254</td>
<td>1.181</td>
<td>1.189</td>
</tr>
<tr>
<td>7</td>
<td>Co+ OE-</td>
<td>1.446</td>
<td>1.516</td>
<td>-0.409</td>
</tr>
<tr>
<td>8</td>
<td>Ex+ OE-</td>
<td>1.191</td>
<td>1.251</td>
<td>-1.076</td>
</tr>
<tr>
<td>9</td>
<td>Ag- Co+</td>
<td>-0.709</td>
<td>-0.579</td>
<td>0.772</td>
</tr>
<tr>
<td>10</td>
<td>Co+ ES+</td>
<td>2.405</td>
<td>6.544</td>
<td>2.820</td>
</tr>
<tr>
<td>11</td>
<td>Co- Ag+</td>
<td>-1.048</td>
<td>-1.064</td>
<td>0.499</td>
</tr>
<tr>
<td>12</td>
<td>ES+ Co-</td>
<td>0.841</td>
<td>0.677</td>
<td>-0.836</td>
</tr>
<tr>
<td>13</td>
<td>Ex- Ag+</td>
<td>-0.579</td>
<td>-0.477</td>
<td>0.453</td>
</tr>
<tr>
<td>14</td>
<td>OE+ Ex-</td>
<td>1.475</td>
<td>1.566</td>
<td>-1.374</td>
</tr>
<tr>
<td>15</td>
<td>Ag+ Co+</td>
<td>1.391</td>
<td>1.471</td>
<td>0.618</td>
</tr>
<tr>
<td>16</td>
<td>Ag+ Ex+</td>
<td>0.535</td>
<td>0.097</td>
<td>0.488</td>
</tr>
<tr>
<td>17</td>
<td>OE+ ES+</td>
<td>0.578</td>
<td>0.448</td>
<td>0.768</td>
</tr>
<tr>
<td>18</td>
<td>Ex+ OE+</td>
<td>0.964</td>
<td>0.924</td>
<td>1.074</td>
</tr>
<tr>
<td>19</td>
<td>Ex+ Ag-</td>
<td>0.913</td>
<td>0.851</td>
<td>-0.990</td>
</tr>
<tr>
<td>20</td>
<td>Ag+ OE+</td>
<td>0.904</td>
<td>0.842</td>
<td>0.819</td>
</tr>
<tr>
<td>21</td>
<td>ES- Ag+</td>
<td>-1.521</td>
<td>-1.294</td>
<td>0.850</td>
</tr>
<tr>
<td>22</td>
<td>ES+ OE-</td>
<td>0.696</td>
<td>0.609</td>
<td>-1.119</td>
</tr>
<tr>
<td>23</td>
<td>Ag+ OE-</td>
<td>0.585</td>
<td>0.512</td>
<td>-0.474</td>
</tr>
<tr>
<td>24</td>
<td>ES- Ex+</td>
<td>-0.892</td>
<td>-0.720</td>
<td>1.020</td>
</tr>
<tr>
<td>25</td>
<td>OE+ Co-</td>
<td>0.541</td>
<td>0.366</td>
<td>-1.253</td>
</tr>
<tr>
<td>26</td>
<td>Ex- ES+</td>
<td>-0.515</td>
<td>-0.221</td>
<td>1.216</td>
</tr>
<tr>
<td>27</td>
<td>ES- Co+</td>
<td>-0.681</td>
<td>-0.529</td>
<td>0.939</td>
</tr>
<tr>
<td>28</td>
<td>Co+ Ex-</td>
<td>0.638</td>
<td>0.300</td>
<td>-1.330</td>
</tr>
<tr>
<td>29</td>
<td>Ex+ Co+</td>
<td>2.759</td>
<td>4.001</td>
<td>1.567</td>
</tr>
<tr>
<td>30</td>
<td>Ag+ ES+</td>
<td>1.155</td>
<td>1.162</td>
<td>1.354</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ES</th>
<th>Ex</th>
<th>OE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES</td>
<td>.721</td>
<td>.654</td>
<td></td>
</tr>
<tr>
<td>Ex</td>
<td>.624</td>
<td>.758</td>
<td></td>
</tr>
<tr>
<td>OE</td>
<td>-.232</td>
<td>-.248</td>
<td></td>
</tr>
<tr>
<td>Ag</td>
<td>.363</td>
<td>.355</td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td>.668</td>
<td>.783</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Ag</th>
<th>Co</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>.592</td>
<td>.541</td>
</tr>
<tr>
<td>Co</td>
<td>.250</td>
<td>.280</td>
</tr>
</tbody>
</table>

Notes. MCMC = Markov Chain-Monte Carlo; TIRT = Thurstonian IRT; ES = Emotional Stability; Ex = Extraversion; OE = Openness to Experience; Ag = Agreeableness; Co = Conscientiousness. The sign behind the dimension name indicates the item polarity. The values in bold are the empirical reliabilities.
scale parameter of block 3 and for both scale parameters of block 16 were close to zero, while the MCMC estimates had higher and more reasonable values. The two scale parameters of block 10 and the first one in block 29 received extremely high estimates (with large associated estimation errors) from the TIRT procedure. The corresponding estimates (and their estimation errors) by the MCMC procedure, however, turned out to be more reasonable, which can be attributed to the prior distributions.

Both procedures yielded very similar results for the latent trait correlations (see bottom part of Table 2.3). The TIRT estimates generally were more extreme though. In contrast, in the simulation study the TIRT correlation estimates tended to be more negatively biased. Thus, these results may be reflecting some phenomena not contemplated by the models. The pattern of correlations showed some differences as compared to the correlations among the NEO-PI-R traits in a representative Spanish sample of the general adult population (Costa & McCrae, 2008). The latter study reports positive correlations of Openness to Experience with Extraversion and Emotional Stability, whereas we found negative correlations. We also found substantially higher correlations of Extraversion with Emotional Stability and Agreeableness. However, it is unknown whether these differences result from the particular sample of students in our study or are an artifact of the forced-choice response format.

Finally, the empirical reliabilities (taken as the variance of the latent trait estimates) were relatively low, especially for Openness to Experience and Agreeableness. Interestingly, similar to the results of the simulation study, the MCMC yielded higher reliabilities than the TIRT procedure.

2.5. Discussion

In this paper we have proposed a new variant under the MUPP framework, which differs from Stark et al.’s (2005) original MUPP in two important ways. First, it assumes a dominance rather than an unfolding measurement model for the items. Apart from being more
parsimonious, a dominance model may be more appropriate for certain types of items (as argued in the introduction). Second, the Bayesian estimation procedure allows for the item and person parameters to be jointly estimated, which obviates the need for a previous calibration of the items. The simulation study shows good recovery of both the structural and person parameters, even when only three dimensions underly the FCQ. Note that a low number of latent dimensions generally implies more serious ipsativity issues (Clemans, 1966). Hence, the simulation results most probably generalize—or even turn out more favorable—with more than three dimensions.

An interesting possible extension to the new model (as well as to the original MUPP) consists in handling blocks of more than two items. Although Hontangas et al. (2015, 2016) make a theoretical proposal, a detailed exploration of the mathematical properties of their approach as well as the adaptation and testing of the estimation procedure are possible lines for further research.

We have discussed the near equivalence between the MUPP-2PL and Brown and Maydeu-Olivares’ (2011) TIRT model when applied to paired items. The similarity between both models parallels the relation between Luce’s Choice Axiom (1959/2005) and Thurstone’s Case V (Thurstone, 1927). Indeed, the underlying assumption in the MUPP framework (see Equation 2.1) is a formalization of Luce’s Choice Axiom (see also Andrich, 1989), whereas the TIRT is based upon Thurstone’s law of comparative judgment. Moreover, this theoretical equivalence translates empirically (as shown by the simulation study and application to real data). However, although both estimation procedures produce very similar results, we should consider that the MCMC algorithm: (a) rates more accurately the estimation errors associated with the latent traits (as the results on the CrIs show), (b) is more precise at recovering the latent space correlational structure, and (c) yields more reasonable estimates when there is little information in the data. Also, for the empirical application, the reliability estimates were higher
IRT MODELS FOR FORCED-CHOICE QUESTIONNAIRES

than with the TIRT. On the other hand, the TIRT procedure, as it relies on software for confirmatory factor analysis (e.g., in Mplus; Brown & Maydeu-Olivares, 2012), immediately provides statistics to assess global model fit, whereas the Bayesian approach, although being more versatile with respect to model checking and allowing for tests of specific model assumptions (see Gelman et al., 2014, Chs. 7 & 8), generally requires more efforts from the user to implement the procedures.

Both the authors of the MUPP and the TIRT model discuss two related (although distinct) drawbacks: Stark et al. (2005; Chernyshenko et al., 2009) suggest including unidimensional blocks in the test to identify the latent metric; likewise, Brown and Maydeu-Olivares (2011) conclude, based upon a theoretical analysis and simulation results, that opposite-polarity blocks should be included in the FCQ. These recommendations suggest that the quality of the MUPP and TIRT estimation results critically depends on responses given to such blocks; this being the case would cast doubts on the possible strengths of the forced-choice format to control response styles, as such blocks often imply a clearly distinct desirability between the items. The simulation study in this paper showed that, for the MUPP-2PL model, the person parameters can be reliably estimated even if the test consists exclusively of bidimensional, direct-item blocks. For the latter to be true, the test should include a sufficient number of items from each latent trait (under the conditions in our simulation study, 24 items per trait yielded a reliability of over .75). Nevertheless, unidimensional blocks could be included at the questionnaire designer’s discretion (taking into account the additional underdetermination affecting the scale parameters).

In the MUPP-2PL the location parameters of the items (similar to the latent utility means; Brown & Maydeu-Olivares, 2011) are not identified. If an estimate of these location parameters is desired, one may consider a pre-calibration of the items in a graded-scale format (as in the original MUPP procedure; Stark et al., 2005). However, there may be a risk of
introducing biases due to the format. Alternatively, the individual item location parameters can be estimated with the Bayesian algorithm proposed in this paper by using a more complex questionnaire design, where the same items are used across several blocks. In one of our ongoing research lines, we investigate how the blocks in the questionnaire should be composed to optimize certain aspects of the test (e.g., recovery of item locations, information optimization, or robustness against biases).

The application of a Bayesian joint estimation procedure to the original MUPP model should be quite straightforward (see also Wang, de la Torre, & Drasgow, 2015, who present an MCMC algorithm to estimate the GGUM parameters). However, the approach would primarily require a prior investigation to find out under what conditions the model is identified. In this regard, it is possible that the underdeterminations and the identification constraints affecting the MUPP model are similar to those found in the MUPP-2PL version.

As a conclusion, our extension of the MUPP framework offers an interesting generalization and applicability to a wider context, which includes dominance items. This extension also allows for a joint estimation of the item and person parameters by means of a Bayesian algorithm. The near equivalence with the TIRT model reveals properties that may also help to find a common framework, and allow for model comparison and selection.
IRT MODELS FOR FORCED-CHOICE QUESTIONNAIRES

References

IRT MODELS FOR FORCED-CHOICE QUESTIONNAIRES

105–127. doi:10.1080/08959280902743303

IRT MODELS FOR FORCED-CHOICE QUESTIONNAIRES

Huang, J., & Mead, A. D. (2014). Effect of personality item writing on psychometric properties...
of ideal-point and likert scales. Psychological Assessment, 26(4), 1162–1172. doi:10.1037/a0037273

Oswald, F. L., & Schell, K. L. (2010). Developing and scaling personality measures: Thurstone was right —But so far, Likert was not wrong. Industrial and Organizational Psychology, 3(4), 481–484. doi:10.1111/j.1754-9434.2010.01275.x

Rosenthal, J. S. (2011). Optimal proposal distributions and adaptive MCMC. In Handbook of
Markov Chain Monte Carlo (pp. 93–111). CRC Press.

Abstract

In order to control for biases from response styles, such as social desirability, forced-choice questionnaires need to follow a certain design pattern. When the response unit is a block with two items, we call it direct bidimensional pairs (DBP) design. This chapter expands the multidimensional IRT theory of the MUPP-2PL model for forced-choice questionnaires (Morillo et al., 2016), and shows that, under the DBP design, a certain empirical underidentification may arise, restricting the dimensionality in the data. We first demonstrate mathematically the conditions for this to happen. Then we introduce indices for assessing the dimensionality restriction of an instrument, and explore their properties with a simulation study. A second simulation study tests the estimation of person parameter under several conditions, differentially proximal to the empirical underidentificacion. The results show that under critical conditions the IRT person parameter estimates may have ipsative properties. The indices behave non-linearly with respect to the parameter estimates, so we propose to use them as cutoff criteria for assessing the instrument dimensionality. We discuss the use of the DBP design for controlling response biases, the consequences of the empirical underidentification for past and future research, the utility of the dimensional sensitivity indices, and the possible generalization our results. We also offer some basic guidelines for designing forced-choice instruments for different applications.

Keywords: ipsativity, IRT, multidimensional forced-choice questionnaires, MUPP-2PL, questionnaire design, response bias.
Chapter 3:
Assessing and Reducing Psychometric Issues in the Design of Multidimensional Forced-Choice Questionnaires for Personnel Selection

Forced-choice questionnaires (FCQs) are commonly used in high-stake contexts (e.g., personnel selection processes) to measure non-cognitive traits (personality, attitudes, etc.). In a high-stake context, impression management leads to a response bias favorable to the questionnaire taker called social desirability (SD; Hooper, 2007). The usefulness of FCQs is alleged to rely upon their ability to control the SD bias (Christiansen, Burns, & Montgomery, 2005).

An FCQ basic measurement unit is the block. One block is made up by two or more items. Each one is a statement a certain respondent may agree or disagree with. The respondent’s task consists of a total or partial ranking of the items within a block, according to the degree of agreement (Brown & Maydeu-Olivares, 2011). When a block is made up by a pair of items, choosing the one they agree the most with implies a total ranking of the pair.

Responses to a FCQ, when analyzed within a traditional Classical Test Theory framework, result in ipsative scores, which preclude comparisons between respondents.
Some authors (Brown & Maydeu-Olivares, 2011; Stark, Chernyshenko, & Drasgow, 2005) have proposed item response theory (IRT) methods to analyze the answers to FCQs. These procedures allow to obtain normative information from the responses. The MUPP-2PL (Morillo et al., 2016) is an IRT model for paired-item blocks. The response process modelled by the MUPP-2PL is based on two assumptions: (1) the agreement with each of the two items is independently evaluated (Stark et al., 2005), and (2) the probability of agreeing with an item is modeled by the 2-parameter logistic (2PL) model (Lord & Novick, 1968). Note that, as indicated by Morillo et al. (2016) this model is an instantiation of the Compensatory Multidimensional Logistic Model (MCLM; McKinley & Reckase, 1982). Also, it is quasi-equivalent to the Thurstonian IRT (TIRT; Brown & Maydeu-Olivares, 2011) model for the case of paired-item blocks (Brown, 2016; Morillo et al., 2016).

This work proposes certain design criteria that FCQs must follow in order to effectively control for SD responding. Assuming a MUPP-2PL model (Morillo et al., 2016), we will show that there may be certain estimation issues when such criteria are followed. The objective of this chapter is to describe these issues and propose a way of assessing and avoiding them. In the following, we first introduce the model. Next we explain the criteria for the design of SD-robust FCQs, and show that the MUPP-2PL model person parameters can be underidentified under certain conditions. Then, we propose a way of assessing the problem in a certain questionnaire. This will be investigated with a simulation study, presented afterwards. Finally, we wrap up with some conclusions about the underidentification and its assessment method.
their possible generalizability to a broader multidimensional IRT context, and some simple guidelines that may assist in designing proper FCQs.

3.1. MUPP-2PL for forced-choice blocks

In a MUPP-2PL forced-choice block, the probability $P_i(\theta) = p_i(u_i = 1|\theta)$ that a person characterized by a D-dimensional vector $\theta = (\theta_1, ..., \theta_D)$ in a latent space V^D chooses item 1 over item 2 in block i is given by (Morillo et al., 2016)

$$P_i(\theta) = \frac{1}{1 + \exp[-(a_{i1} \theta_{i1} - a_{i2} \theta_{i2} + l_i)]},$$ \hspace{1cm} (3.1)

being a_{i1} and a_{i2} the scale (discrimination) parameters of the i-th block items i_1 and i_2 respectively, \tilde{r}_1 and \tilde{r}_2 the dimensions addressed by each of these two items respectively, and l_i the i-th block intercept parameter. Note that a block may be bidimensional ($\tilde{r}_1 \neq \tilde{r}_2$), or unidimensional if both items tap the same dimension ($\tilde{r}_1 = \tilde{r}_2$). Equivalently to Equation 3.1, the MUPP-2PL model can be expressed in terms of the MCLM (McKinley & Reckase, 1982),

$$P_i(\theta) = \frac{1}{1 + \exp[-(a_i^T \theta + l_i)]},$$ \hspace{1cm} (3.2)

where $a_i = (a_{i1}, ..., a_{id}, ..., a_{Di})$ is a vector of block i’s scale parameters. If i is bidimensional, for each dimension $d \in [1, D]$, $a_{di} = a_{i1}$ if $\tilde{r}_1 = d$, $a_{di} = -a_{i2}$ if $\tilde{r}_2 = d$, and 0 otherwise. If i is unidimensional, for each dimension $d \in [1, D]$, $a_{di} = a_{i1} - a_{i2}$ if $\tilde{r}_1 = \tilde{r}_2 = d$, and 0 otherwise.

3.1.1. Graphical representation of MUPP-2PL blocks

A graphical representation of MUPP-2PL blocks may help understanding the issues we will discuss in the forthcoming sections. In order to create this representation, we will first obtain the multidimensional parameters of the model. As the blocks in the MUPP-2PL model are the equivalent of items in the MCLM, they can be characterized by similar parameters. For the latter, the multidimensional item difficulty (MID; Reckase, 1985) and the multidimensional
discrimination (MDISC; Reckase & McKinley, 1991) parameters have been proposed. These two parameters generalize the concepts of item difficulty and item discrimination to a multidimensional context. Applied to the MUPP-2PL model, a similar derivation can provide a multidimensional block location (MBL) and a multidimensional block scale (MBS).

3.1.1.1. Multidimensional block location

The MID (and equivalently, the MBL) is defined as “the direction from the origin of the multidimensional space to the point of greatest discrimination for the item and the distance to that point” (Reckase, 1985, pp. 408–409). To derive the expression of the MID, Reckase first finds the point of maximum slope of the Item Response Surface (IRS) in the direction from the origin of V^D to that point. Then, he computes the direction of the steepest slope at that point. In order to this, he adds the constraint that V^D is orthogonal. However, in the general Multidimensional IRT theory, we do not always expect the dimensions to be orthogonal; indeed, in domains where the MUPP-2PL model may be applied, such as personality measures (e.g. the Big Five), there is evidence that the dimensions are correlated (Mount, Barrick, Scullen, & Rounds, 2005; van der Linden, te Nijenhuis, & Bakker, 2010).

Considering that the MBL is invariant to rotation and dropping the orthogonality restriction, the MBL can be obtained by orthogonalizing V^D and computing it in this new orthogonal space. By applying a rotation matrix T^{-1}, the orthogonalized version θ^o of a vector θ in V^D is given by

$$\theta^o = T^{-1}\theta.$$ (3.3)

The transformation matrix T can be computed by e.g. the Gram-Schmidt method (Harman, 1970). This leads to a T' that is a square root matrix of the covariance matrix of the latent trait structure Σ; that is, $\Sigma = TT'$. To maintain the invariance property, the vector a_i' of block discrimination parameters must be transformed consequently by postmultiplying it by T (Reckase, 2009), that is,
IRT MODELS FOR FORCED-CHOICE QUESTIONNAIRES

\(a_i^o' = a_i'T. \) \hspace{1cm} (3.4)

Given this, Reckase’s (1985) Equation 3.10 can be expressed as

\[MBL_i = \frac{l_i}{\sqrt{a_i^o'Ta_i^o}} \] \hspace{1cm} (3.5)

Applying Equation 3.3,

\[MBL_i = \frac{-l_i}{\sqrt{a_i'T(a_i'T)^r}} = \frac{-l_i}{\sqrt{a_i'TT'a_i}} \]

\[= \frac{-l_i}{\sqrt{a_i'^{\Sigma}a_i}} \] \hspace{1cm} (3.6)

Note that a similar derivation is made by Zhang and Stout (1999); they define the function \(\langle a_i, a_j \rangle = a_i'^{\Sigma}a_j \) as the inner product in \(V^D \) for any \(a_i, a_j \in V^D \), and \(\|a_i\| = \sqrt{\langle a_i, a_i \rangle} \) as the length of \(a_i \) in \(V^D \). Their result is generalizable to any dominance multidimensional compensatory model, for which the probability of a correct answer to an item (in the cognitive measurement context) is a non-decreasing function of \(a_i'T\theta \). Although the MUPP-2PL is not a dominance model, these derivations can still be applied directly: As long as \(p_i(u_i = U_i|\theta) \) is a monotonic function of \(a_{di}\theta_d \) for all \(d \), it can be reparametrized as a dominance model for a certain block by simply defining \(\vartheta_d = -\theta_d \) if \(p_i(\theta) \) is a non-increasing function of \(a_{di}\theta_d \).

3.1.1.2. Multidimensional block scale

The \(MDISC \), and equivalently the \(MBS \), is defined “as a function of the slope of the [Item Response Surface] at the steepest point in the direction indicated by the \(MID \)” (Reckase & McKinley, 1991, p. 364), and “has the same relationship to \(MID \) than the [discrimination] parameter has to the [difficulty] parameter in unidimensional IRT” (p. 364). Operating on the item information matrix, they arrive at the expression of the \(MDISC \). The expression of the \(MBS \), equivalently to their Equation 9, is a generalization to the non-orthogonal space, as in the case of the \(MBL \). Applying the same derivation as in Equations 3.3 through 3.6, the \(MBS \) can be shown to generalize to the length of \(a_i \):
\[MBS_i = \|a_i\| = \sqrt{a_i' \Sigma a_i}. \]

3.1.1.3. Block measurement direction

The measurement direction of a block is the direction in \(V^D \) of the steepest slope of the Block Response Surface. The orthogonal projections of the \(MBS \) on the axes are given by (Harman, 1970) \(a_i' \Sigma / MBS_i \). Therefore, generalizing directly from the MCLM, the block direction is given by

\[\cos \alpha_i' = \frac{a_i' \Sigma}{MBS_i}, \]

where \(\alpha_i = (\alpha_{1i}, ..., \alpha_{di}, ..., \alpha_{Di}) \) is the vector of angles of block \(i \) with the axes in \(V^D \). Note that \(\alpha_{di} = 0 \) when \(d \neq i_1, i_2 \) for a bidimensional block, or \(d \neq i_1 = i_2 \) for a unidimensional block.

3.1.1.4. Vector representation

Taking advantage of the fact that a MUPP-2PL block is bidimensional at most, it can be easily represented in a bidimensional subspace \(V^2 \) of \(V^D \), with axes along dimensions \(d \) and \(d' \). The length of the vector is given by \(MBS_i \), its angles with the axes by \(\alpha_{i1} \) and \(\alpha_{i2} \), and its location by \(MBL_i \) in the direction given by \(\alpha_i \). Thus, the origin of the vector \(i \) is in \(o_i = MBL_i \cos \alpha_i \), and its end in \(e_i = (MBS_i + MBL_i) \cos \alpha_i \). Also, as any plotting device will interpret the coordinates as Cartesian, these values must be orthogonalized. The orthogonalization is given by Equation 3.3. To do a rotation that keeps the \(\theta_d \) in the horizontal axis, \(T \) must be defined as (Harman, 1970)

\[T = \begin{bmatrix} 1 & 0 \\ \rho_{dtr} & \sqrt{1 - \rho_{dtr}^2} \end{bmatrix}, \]

where \(\rho_{dtr} = \sigma_{d'tr} / \sqrt{\sigma_{dT}^2 \sigma_{d'T}^2} \) is the correlation between traits \(\theta_d \) and \(\theta_{d'tr} \), \(\sigma_{d'tr} \) is the covariance between \(\theta_d \) and \(\theta_{d'tr} \) (i.e., the off-diagonal element of \(\Sigma \) in \(d, d' \)), and \(\sigma_{dT}^2 \) and \(\sigma_{d'T}^2 \) the variances of traits \(\theta_d \) and \(\theta_{d'tr} \), respectively (i.e., the diagonal elements of \(\Sigma \) in \(d \) and \(d' \)).
Figure 3.1. Graphical representation of three bidimensional (1 to 3) and two unidimensional (4 and 5) MUPP-2PL blocks, in a bidimensional latent space with correlation $\rho_{12} = 0$ (left) and $\rho_{12} = .5$ (right). The block parameters are $a_{11} = 2, a_{12} = 2, l_1 = 0$; $a_{21} = 2, a_{22} = -0.5, l_2 = 1$; $a_{31} = -1.5, a_{32} = 1.5, l_3 = -0.8$; $a_{41} = 1.8, a_{42} = 1.3, l_4 = 1$; and $a_{51} = 1, a_{52} = -1.2, l_5 = -0.4$. The multidimensional parameters in the orthogonal space are $MBS_1 = 2.83, MBL_1 = 0$; $MBS_2 = 2.06, MBL_2 = -0.49$; $MBS_3 = 2.12, MBL_3 = 0.38$; $MBS_4 = 0.50, MBL_4 = -2; MBS_5 = 2.20, MBL_5 = 0.18$. The multidimensional parameters in the correlated space are $MBS_1 = 2, MBL_1 = 0$; $MBS_2 = 2.29, MBL_2 = -0.44$; $MBS_3 = 2.60, MBL_3 = 0.31; MBS_4 = 0.50, MBL_4 = -2; MBS_5 = 2.20, MBL_5 = 0.18$.

A sample representation of different blocks in a bidimensional space is given in Figure 3.1. For all bidimensional blocks (blocks 1 to 3), $\theta_{i1} = \theta_1$ and $\theta_{i2} = \theta_2$. Block 1 is direct homopolar, while blocks 2 and 3 are heteropolar. Block 2 is direct-inverse, and block 3 is inverse-direct, which has an effect on the measurement direction of the block. These items also show the effect of the intercept on the location; for block 1, the intercept l_1 is null, and so its location MBL_1 is. Block 2 has a positive intercept, making thus the probability generally
IRT MODELS FOR FORCED-CHOICE QUESTIONNAIRES

higher for a certain point in the latent space. Therefore, the axes origin has a probability higher than .5 and the block origin precedes it in the direction indicated by the vector. Block 3 has a negative intercept, so the opposite happens. Block 2 also shows the effect of different scale parameters in each dimension. Its first scale parameter is much larger than its second one, thus making the block more discriminative in \(\theta_1 \). The effect in the graphical representation is that the item is more parallel to this axis than to \(\theta_2 \).

Blocks 4 and 5 are unidimensional, being \(\theta_{11} = \theta_{12} = \theta_1 \) for the former, and \(\theta_{11} = \theta_{12} = \theta_2 \) for the latter. These vectors also showcase the combined effect of the scale parameters in unidimensional blocks. Block 4 is made up by two blocks with positive polarity, and thus the scale parameters counteract each other, yielding a rather low net scale parameter. Block 5 is heteropolar, and thus its scale parameters add up, yielding a highly informative block.

Each of the two panels represents a different latent space structure. On the left panel, the space is orthogonal. The second panel shows a correlated space. This panel shows how the measurement directions of the blocks change when dimensions are correlated. Note that, for the angles between the blocks and the axes to be properly represented, the \(\theta_2 \) axis must be plotted with an angle \(\beta_{12} = \arccos \rho_{12} \).

3.1.2. Multivariate information function of a FCQ

Given a FCQ with \(n \) blocks, its test information function \(I(\theta) \) for a response vector \(U = (u_1, \ldots, u_n) \) is computed as (Kendall, 1979),

\[
I(\theta) = -E \left[\frac{\partial^2}{\partial \theta^2} \ln L \right]. \tag{3.10}
\]

being \(L \) the likelihood of the MUPP-2PL model for a FCQ, given by

\[
L(U|\theta) = \prod_{i=1}^{n} P_i^{u_i} Q_i^{1-u_i}(\theta). \tag{3.11}
\]

where \(n \) is the number of blocks, \(P_i(\theta) \) is given by Equation 3.1, \(Q_i(\theta) = p_i(u_i = 2|\theta) = 1 - P_i(\theta) \) is the probability that a person chooses item 2 over item 1 in block \(i \), and \(u_i \) is the value
of a random variable U_i, which indicates the item within the block given as a response ($u_i \in \{1,2\}$). Deriving from Equations 3.10 and 3.11, $I(\theta)$ results in (Morillo et al., 2016)

$$
I(\theta) = \sum_{i=1}^{n} \begin{bmatrix}
 a_{1i}^2 & \cdots & a_{1i}a_{d_i} & \cdots & a_{1i}a_{D_i} \\
 \vdots & \ddots & \vdots & \ddots & \vdots \\
 a_{d_i}a_{1i} & \cdots & a_{d_i}^2 & \cdots & a_{d_i}a_{D_i} \\
 \vdots & \ddots & \vdots & \ddots & \vdots \\
 a_{D_i}a_{1i} & \cdots & a_{D_i}a_{d_i} & \cdots & a_{D_i}^2 \\
\end{bmatrix} \begin{bmatrix}
 P_i(\theta) \\
 Q_i(\theta) \\
\end{bmatrix}
$$

$$
= \sum_{i=1}^{n} a_i a_i^t P_i(\theta) Q_i(\theta). \tag{3.12}
$$

3.2. Binary forced-choice questionnaires for controlling social desirability

The properties of a forced-choice block depend on several other factors. We consider two of special relevance: polarity, and dimensionality. Polarity indicates the measurement direction of the items. In a dominance model (such as the 2PL), we say that an item is direct (i.e., it has positive polarity) when the probability of endorsing the response category indicating the strongest agreement with it is a monotonically non-decreasing function of the latent trait level. Conversely, we say that the item is inverse (and its polarity negative) if this function is monotonically non-increasing. In a FCQ modeled under the MUPP-2PL assumptions, a designer must decide among creating homopolar blocks (i.e., pairing only items with the same polarity), heteropolar blocks (pairing items with opposite polarity), or a combination of both.

Brown and Maydeu-Olivares (2011) conclude that a FCQ modeled under the TIRT with only five dimensions and 30 homopolar direct blocks (hence 12 blocks per dimension) has insufficient accuracy. They also advise against using homopolar inverse blocks, arguing that “[they provide] the same information as positive items, but can be confusing for respondents” (p. 485), and thus recommend combining both homopolar direct blocks and heteropolar blocks. However, Morillo et al. (2016) show evidence that it is possible to achieve acceptable reliabilities only with three dimensions and 12 homopolar direct blocks per dimension.

The polarity of the items may affect significantly the control a block can exert over the SD bias. Let the socially desirable extreme of a latent dimension be identified as the positive
pole. A direct item will thus have an *attraction* bias—the SD will incline the respondent to agree—while an inverse one will have a *rejection* bias. Therefore, a heteropolar block will prompt the respondent to choose the direct item due to the SD bias. It follows that, as a necessary condition for effective control over the SD bias, the two items in a block must have the same polarity. Hence, following Brown and Maydeu-Olivares (2011) recommendation to avoid homopolar inverse blocks, we propose the exclusive use of homopolar direct blocks as a design criterion for SD-robust FCQs.

A FCQ is usually designed to measure a multidimensional construct, which can be represented in a latent space \(V^D\). The dimensionality of a block indicates how many out of the \(D\) latent dimensions of \(V^D\) it measures. The MUPP-2PL model assumes that each item is unidimensional. Thus, there are only two possible cases: the block is either unidimensional (i.e., both items measure the same dimension) or bidimensional (i.e. each item measures a different dimension). As previous research has shown (Maydeu-Olivares & Brown, 2010; Morillo et al., 2016) and is stated in Equation 3.2, the item scale parameters of unidimensional blocks are underidentified. Furthermore, by its very nature, a unidimensional block may be as sensitive to SD bias as a graded-scale item (McCloy, Heggestad, & Reeve, 2005). Finally, although some authors state that unidimensional blocks are generally needed to identify the metric of the latent traits (Chernyshenko et al., 2009), at least in the MUPP-2PL model it is not the case (Morillo et al., 2016).

Based on the above, we assert that a SD-robust FCQ made up by paired items must meet as a necessary (but not sufficient) condition that: (1) all blocks are homopolar, and (2) the two items in a block tap different dimensions. When we additionally consider direct items only, we refer to such a paired-item FCQ with the term *direct bidimensional pairs* (DBP) design.
IRT MODELS FOR FORCED-CHOICE QUESTIONNAIRES

3.3. Empirical underidentification of the MUPP-2PL model in a DBP FCQ

The problem of dimensionality in multidimensional IRT has been extensively addressed (see Reckase, 2009; chapter 7, and references therein). Reckase makes an important distinction between “the number of dimensions on which the people taking the test differ and the number of dimensions on which test items are sensitive to differences” (p. 182). Each of these two may be a limiting factor, being “the number of dimensions needed to accurately model a matrix of item response data . . . the smaller of the dimensions or [sic] variation for the people and the dimensions of sensitivity for the test items” (p. 182).

The specifications of a FCQ will usually assume that the items are chosen and paired such that each of the D dimensions is measured by one block at least. The FCQ, by design, cannot make the response set have a dimensionality lower than D. The problem of dimensionality in the MUPP-2PL model can therefore be formulated in the following terms: Given a sample that varies in D latent traits of interest, a FCQ measuring these must be designed such that the resulting response set is D-dimensional. Therefore, the FCQ, as modeled by the MUPP-2PL, must be sensitive to those D dimensions. We call the ability of a FCQ to measure in a certain number of dimensions dimensional sensitivity. We say that a FCQ that does not fulfill the condition above is dimensionally restricted.

The problem of dimensional restriction has been pointed out elsewhere. Taking into account that the MCLM is applied to items while the MUPP-2PL’s equivalent unit would be the block,

For a single item or for n items that measure in exactly the same direction (i.e., $a_{1i} = a_{2i}, \forall i = 1, ..., n$), [the information matrix] is singular. This result, which can be generalized to higher ordered dimensions (i.e., dimensions beyond the first dimension), should be expected because in both cases the test would be, by definition, unidimensional. Hence, for $I(\Theta)$ to be positive definite, there
IRT MODELS FOR FORCED-CHOICE QUESTIONNAIRES

must be at least two items that measure different composites of two traits
(Ackerman, 1994, p. 259).

Despite the algebraic equivalence of the two models, this assertion does not directly
generalize to the MUPP-2PL: for \(D > 2 \), there must be at least two out of the \(n \) MUPP-2PL
blocks that measure different dimensions. Thus, such a FCQ will never be unidimensional.
However, two issues should be clarified in Ackerman’s assertion. First, it actually implies a
more general formulation than the one he uses to illustrate it: The fact that \(n \) MCLM items
measure in exactly the same direction is more accurately represented by \(a_{1i}/a_{2i} = k, \ k \in \mathbb{R}, \forall i \in [1, n] \). That is, the two discrimination parameters don’t need to be equal, but
proportional across items. Second, this condition is sufficient but not necessary for the test
information matrix to be singular. If all items in a \(D \)-dimensional test modeled by the MCLM
measure in the same direction, its \(D \)-variate information matrix will have rank 1. Nevertheless,
if they do not measure in the same direction, it may still be rank-incomplete.

It is worth noting that the fact that \(n \) MCLM items measure in exactly the same direction
is more accurately represented, for bidimensional items, by \(a_{1i}/a_{2i} = k, \ k \in \mathbb{R}, \forall i \in [1, n] \);
that is, the scale parameters don’t need to be equal, but proportional across items. Also note
that Ackerman states a condition of sufficiency, but not necessity, for the information matrix
to be singular. If all items in a \(D \)-dimensional test modeled by the MCLM measure in the same
direction, its \(D \)-variate information matrix will have rank 1. For \(D > 2 \), it may still be rank-
incomplete even if not all items measure in the same direction.

For a \(D \)-dimensional FCQ, whenever \(D > 2 \) there must be at least two out of \(n \) forced-
choice blocks that measure different traits. Therefore, all the blocks cannot measure in the
same direction, and Ackerman’s assertion does not generalize to the MUPP-2PL model.
However, there is at least one known condition in which a DBP design may lead to a
dimensionally restricted FCQ. This condition will happen when a certain alignment of the
blocks occurs, which makes them be confined in a hyperplane of dimension $D - 1$. The resulting FCQ, although intended to measure D dimensions, will be able to measure only a subspace of V^D. Consequently, each element of the latent trait estimate vector will be an estimator of a linear combination of the original, substantive latent traits. The result is an underidentification of the latent trait estimates, formalized in Theorem 1.

Theorem 1

*Given a FCQ in a D-dimensional space with n bidimensional MUPP-2PL blocks, and constants $k_1, ..., k_d, ..., k_D$ such that for any block i

\[
\frac{a_{i1}}{a_{i2}} = \frac{k_{i1}}{k_{i2}}
\]

*with $k_{i1}, k_{i2} = k_d$ if $i_1, i_2 = d \in [1, D]$, then the FCQ’s D-variate information matrix $I(\theta)$ is of rank $D - 1$.

*Proof. Without loss of generality, suppose the FCQ is composed by $D(D - 1)/2$ subtests, each of them composed by n_{dd} blocks where item 1 measures dimension d and item 2 measures dimension d', with $d, d' \in [1, D], d < d'$. That is, n_{12} blocks measure dimensions 1 and 2, n_{13} blocks measure dimensions 1 and 3, ... and $n_{(D-1)D}$ blocks measure dimensions $D - 1$ and D. The information matrix $I_{dd'}(\theta)$, equivalent to Equation 3.12 for each of these bidimensional subtests, is expressed as

\[
I_{dd'}(\theta) = \sum_{i=1}^{n_{dd'}} \left[\frac{a_{di}^2}{a_{di}a_{d'bi}} \frac{a_{d'bi}^2}{a_{d'bi}} \right] W_i(\theta),
\]

where $W_i(\theta)$ takes the value $P_i(\theta)Q_i(\theta)$.

Applying Equation 3.14, $I(\theta)$ in Equation 3.12 can be expressed as the sum across the $D(D - 1)/2$ subtests. The resulting information matrix, when $d, d' = r, c$, being r and c the element row and column respectively, is
Expressing Equation 3.13 in MCLM parameterization (see Equation 3.2) results in

\[
a_{d1}'/a_{d1} = -k_{d1}/k_d, d = \widehat{c}_1, d' = \widehat{c}_2, \text{ and applying it to Equation 3.14 results in}
\]

\[
I_{d'd'}(\theta) = \sum_{i=1}^{n_{d'd'}} \left[\begin{array}{cc}
\frac{a_{d1}}{k_d} & -\frac{k_{d1}}{k_d} a_{d1}'
\end{array} \right] W_i(\theta)
\]

(3.16)

and, subsequently, Equation 3.15 can be rewritten as

\[
I(\theta) =
\]

\[
\left[\begin{array}{ccc}
\sum_{d=2}^D \sum_{i=1}^{n_{d'd'}} a_{d1}^2 W_i(\theta) & \cdots & -\frac{k_{d1}}{k_d} \sum_{i=1}^{n_{d'd'}} a_{d1}'^2 W_i(\theta) \\
\vdots & \ddots & \vdots \\
-k_{d1} \sum_{i=1}^{n_{d'd'}} a_{d1}^2 W_i(\theta) & \cdots & \sum_{d=d=2}^D \sum_{i=1}^{n_{d'd'}} a_{d1}^2 W_i(\theta) \\
-k_{d1} \sum_{i=1}^{n_{d'd'}} a_{d1}^2 W_i(\theta) & \cdots & \sum_{d=1}^{D-1} k_{d1} \sum_{i=1}^{n_{d'd'}} a_{d1}'^2 W_i(\theta)
\end{array} \right].
\]

(3.17)

Let \(I^{(d)}(\theta)\) be the information matrix of a FCQ intended to measure a subspace \(V^d\) formed by the first \(d\) dimensions of \(V^D\). From Equation 3.16, it is self-evident that

\[
\text{rank} \left(I^{(2)}(\theta) \right) = 1: \text{its second row can be substituted by the sum of the second row and the first one multiplied by } k_{d1}/k_d, \text{ giving a matrix } \tilde{I}^{(2)}(\theta) \text{ of rank 1. Let } I^{(d)}(\theta) \text{ be an echelon matrix derived from } I^{(d)}(\theta) \text{ applying Gaussian elimination. By definition, rank} \left(I^{(d)}(\theta) \right) = \\
\text{rank} \left(I^{(d)}(\theta) \right) \text{ being rank}(-) \text{ the rank of a matrix. We assume that}
\]

(a) \text{rank} \left(I^{(d)}(\theta) \right) = \text{rank} \left(\tilde{I}^{(d)}(\theta) \right) = d - 1.

Then, proving that

(b) if (a) is true for \(I^{(D-1)}(\theta)\), then it is true for \(I^{(D)}(\theta) = I(\theta)\),

Theorem 1 will be proven by induction for any \(D > 1\).

Equation 3.12 can be expressed as
\[\mathbf{I}(\theta) = \begin{bmatrix} I^{(D-1)}(\theta,0) \\ 0^{(D-1)} \end{bmatrix} + \Delta I^{(D)}(\theta), \] (3.18)

where \(0^{(L)}\) is a null column vector of length \(L\), and \(\Delta I^{(D)}(\theta)\) is

\[\Delta I^{(D)}(\theta) = \begin{bmatrix} \sum_{i=1}^{n_1D} a_{1i}^2 W_i(\theta) & \cdots & 0 & \cdots & -k_D \sum_{i=1}^{n_1D} a_{1i}^2 W_i(\theta) \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & \sum_{i=1}^{n_{cD}} a_{ci}^2 W_i(\theta) & \cdots & -k_D \sum_{i=1}^{n_{cD}} a_{ci}^2 W_i(\theta) \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ -\frac{k_D}{k_1} \sum_{i=1}^{n_1D} a_{1i}^2 W_i(\theta) & \cdots & -\frac{k_D}{k_c} \sum_{i=1}^{n_{cD}} a_{ci}^2 W_i(\theta) & \cdots & \sum_{d=1}^{D-1} \frac{k_D}{k_d} \sum_{i=1}^{n_{dD}} a_{di}^2 W_i(\theta) \end{bmatrix}. \] (3.19)

We can assume a rank-equivalent echelon matrix

\[\tilde{\mathbf{I}}(\theta) = \tilde{\mathbf{I}}^{(D-\gamma)}(\theta) + \Delta \tilde{\mathbf{I}}^{(D)}(\theta) = \begin{bmatrix} \tilde{I}^{(D-1)}(\theta) \quad 0^{(D-1)} \end{bmatrix} + \Delta \tilde{\mathbf{I}}^{(D)}(\theta), \] (3.20)

such that \(\text{rank}(\tilde{\mathbf{I}}^{(D-\gamma)}(\theta)) = D - 2\), by Equation 3.18 and proposition (a). Given that the elements in the diagonals of \(\tilde{\mathbf{I}}^{(D-\gamma)}(\theta)\) and \(\Delta \tilde{\mathbf{I}}^{(D)}(\theta)\) are non-negative, they never cancel out, and thus the rank of their sum will be the largest of their ranks, that is

\[\text{rank}(\tilde{\mathbf{I}}(\theta)) = \max \left(\text{rank}(\tilde{\mathbf{I}}^{(D-\gamma)}(\theta)), \text{rank}(\Delta \tilde{\mathbf{I}}^{(D)}(\theta)) \right) = \max \left(D - 2, \text{rank}(\Delta \tilde{\mathbf{I}}^{(D)}(\theta)) \right). \] (3.21)

Multiplying each row in \(\Delta \tilde{\mathbf{I}}^{(D)}(\theta)\) by \(\prod_{f=1}^{D} k_f\), summing across rows, and substituting in row \(D\) results in \(\Delta \tilde{\mathbf{I}}^{(D)}(\theta)\), that is

\[\Delta \tilde{\mathbf{I}}^{(D)}(\theta) = \begin{bmatrix} \prod_{f=1}^{D} k_f \sum_{i=1}^{n_1D} a_{1i}^2 W_i(\theta) & \cdots & 0 & \cdots & -k_D \sum_{i=1}^{n_1D} a_{1i}^2 W_i(\theta) \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & \prod_{c=1}^{c} k_f \sum_{i=1}^{n_{cD}} a_{ci}^2 W_i(\theta) & \cdots & -k_D \sum_{i=1}^{n_{cD}} a_{ci}^2 W_i(\theta) \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 0 \end{bmatrix}. \] (3.22)

Equation 3.22 shows that \(\text{rank}(\Delta \tilde{\mathbf{I}}^{(D)}(\theta)) = D - 1\), as its last row is a null vector. From Equation 3.21 it follows that \(\text{rank}(\mathbf{I}(\theta)) = \text{rank}(\tilde{\mathbf{I}}(\theta)) = D - 1\), and therefore \(\text{rank}(\mathbf{I}(\theta)) = D - 1\).
Theorem 1 shows a condition that leads to a dimensionally restricted FCQ due to the MUPP-2PL model being underidentified. However, this condition depends on the questionnaire, rather than the model itself. Therefore, we say that the MUPP-2PL is empirically underidentified in such a case.

The issue of dimensional restriction is also manifest in the $n \times D$ matrix A of scale parameters of a FCQ, being

$$A = \begin{bmatrix} a_1' \\ \vdots \\ a_i' \\ \vdots \\ a_n' \end{bmatrix}.$$

(3.23)

If the condition in Equation 3.13 holds, this matrix will also be singular, showing a certain collinearity among its columns, implying a dimensionally restricted FCQ. This statement, which is asserted in Theorem 2, will prove to be especially useful to derive some indices that allow diagnosing the dimensional sensitivity of a FCQ.

Theorem 2

Given a FCQ in a D-dimensional space with n bidimensional MUPP-2PL blocks, and constants $k_1, ..., k_D$ such that for any block i Equation 3.13 is satisfied, then the FCQ’s matrix of scale parameters A will have rank $D - 1$.

Proof. The rank of A is equal to the rank of its Gramian (Gentle, 2007)

$$A' A = \sum_{i=1}^{n} \begin{bmatrix} a_{1i}^2 & a_{1i} a_{di} & a_{1i} a_{Di} \\ \vdots & \vdots & \vdots \\ a_{di} a_{1i} & a_{di}^2 & a_{di} a_{Di} \\ \vdots & \vdots & \vdots \\ a_{Di} a_{1i} & a_{Di} a_{di} & a_{Di}^2 \end{bmatrix}.$$

(3.24)

Equivalently to the proof of Theorem 1, we can assume the FCQ is composed by $D(D - 1)/2$ subtests measuring dimensions d and d', with $d, d' \in [1, D], d < d'$, each of them with $n_{dd'}$
blocks. Then, Equation 3.24 can be expressed by Equation 3.15 with \(W_i(\theta) = 1 \). Consequently, Theorem 2 is proven by analogy with Theorem 1. ■

3.4. Quality indices for assessing a FCQ dimensional sensitivity

A certain pool of items can be paired in several different ways. From Equation 3.12 it follows that the marginal information in a certain dimension depends on the values of the scale parameters in that dimension. For all the possible combinations of items in the pool, the expected marginal information will be very similar, depending only on the resulting block intercepts \(l_i \). In practice, a FCQ is very unlikely to be assembled in such a way that leads to the MUPP-2PL empirical underidentification—in other words, the probability of the underidentification happening is null. However, the way the items are paired may lead to certain situations that approximate Equation 3.13.

Consider the different situations illustrated in Figure 3.2, where different FCQs are represented in a bidimensional space. Panels A through C show a FCQ where a highly discriminative item in \(\theta^{1}_{1} \) has been paired with a lowly discriminative item in \(\theta^{1}_{2} \), and vice versa. These two blocks form a sufficiently wide angle to ensure the FCQ provides enough bidimensional information. Panels D through F however, show a situation where highly discriminative items in \(\theta^{1}_{1} \) and \(\theta^{1}_{2} \) have been paired together, and the same for lowly discriminative items. In this case, both blocks measure in an almost parallel direction. The result is a FCQ that can only measure in one certain latent space composite, say the direction \(\theta^{1}_{1} - \theta^{1}_{2} \) (i.e., the bisector of the second-fourth quadrants). Generalizing to FCQs with more than two blocks, we can see that if they all measure in a very similar direction the pairs of scale parameters will have a highly positive correlation. On the other side, if their dimensions are widespread across the latent space, the pairs of scale parameters will have a negative correlation, or will be uncorrelated.
Two relevant effects are dependent on the way the items are paired: If the combination of the items results in a situation close to the dimensionally restricted FCQ (1) the test information function will be close to singular, and (2) the resulting marginal estimation errors in the error covariance matrix will be very high. The first effect will consequently lead to nearly collinear latent trait estimates, implying that their correlation matrix will be $D - 1$-dimensional itself. The correlations among this estimates will have a negative bias in the same manner as the ipsative scores. The second effect will result in an undermined reliability of the latent trait estimates.

As we show in Figure 3.2, the latent space structure has an effect on the dispersion of the information as well. Panels A and D show an uncorrelated bidimensional latent space. In panels B and E, there is a mild positive correlation; this has the effect of slightly increasing the angle between the block vectors, favoring a more widespread information, even in the case of
the ill-paired items. However, increasing the correlation also has two drawbacks: (1) it decreases the norm (i.e. the MBS) of homopolar blocks, and (2) it moves their origin (i.e. the MBL) away from the origin. These two effects combined will make the item less informative, and translate its maximum information to a region of the latent space with low trait density. Therefore, increasing the correlation will reduce the reliability of the latent trait estimates.

This pattern of better directional information but lower reliability increases with the correlation, up to a certain point, where the dimensions are so highly correlated they become nearly parallel. In this case, the angle between the blocks in panel C approaches a straight angle, making the measurement direction almost unidimensional again. In panel F we see that the norm of the angles has decreased to the point where they barely provide any information in the direction of the quadrant bisector, which is approximately perpendicular to both axes.

Ideally, a FCQ will be made up by a combination of blocks like those in the upper and the lower panels of Figure 3.2. Nevertheless, the combined effects illustrated by the two different pairings will lead to having a dimensionally restricted FCQ when the dimensions are highly correlated. This phenomenon is expected though, given that highly correlated dimensions tend to collapse into a single one.

In the following, we will propose certain indices to assess the dimensional sensitivity of a FCQ, based on the properties of the matrix of scale parameters.

3.4.1. Least Singular Value

The singular value decomposition is a type of matrix factorization that obtains, among other factors, a diagonal matrix of non-negative real values, called singular values (Gentle, 2007). The singular values of the matrix A of scale parameters can be used to compute its rank, which is equal to the number of nonzero singular values in the singular value decomposition. However, if we assume that A is rank-complete, its best approximation \tilde{A} of rank $D - 1$ has Frobenius norm (Eckart & Young, 1936)
\[\| \tilde{\mathbf{A}} \|_F = \sqrt{\sum_{i=1}^{D-1} \xi_i^2}, \]
\[(3.25) \]

being \(\xi_i \) the \(i \)-th singular value of \(\mathbf{A} \). Then, we define the Frobenius distance of two matrices as the the Frobenius norm of their difference (Gentle, 2007). Thus, the Frobenius distance of \(\tilde{\mathbf{A}} \) to \(\mathbf{A} \) will be

\[\| \mathbf{A} - \tilde{\mathbf{A}} \|_F = \sqrt{\sum_{i=1}^{D} \xi_i^2 - \sum_{i=1}^{D-1} \xi_i^2} = \xi_D, \]
\[(3.26) \]

From Theorem 2, it follows that if the condition in Equation 3.13 for the empirical underidentification is met, then \(\mathbf{A} \) can be reproduced by a matrix of rank \(D - 1 \), and thus \(\tilde{\mathbf{A}} = \mathbf{A} \) and \(\| \mathbf{A} - \tilde{\mathbf{A}} \|_F = 0 \). If the condition in Equation 3.13 is not met, \(\mathbf{A} \) can still be very close to \(\tilde{\mathbf{A}} \), resulting in a Frobenius distance close to 0. Thus \(\| \mathbf{A} - \tilde{\mathbf{A}} \|_F \), can be interpreted as an index of dimensional sensitivity of a FCQ. Consequently, we can define the least singular value (LSV) as

\[LSV = \min(\varsigma(\mathbf{A})) = \xi_D, \]
\[(3.27) \]

being \(\varsigma(\mathbf{X}) \) the vector of singular values of a matrix \(\mathbf{X} \), and \(\min(\mathbf{x}) \) the element with the minimum value of a vector \(\mathbf{x} \). Note that the singular values, apart from the values of the matrix themselves, depend on the size of the factored matrix. Therefore, both the number of dimensions and the number of blocks may have an effect on the value of the LSV. These effects will be explored later on in Simulation study 1.

3.4.2. Least Eigenvalue

The LSV does not take into account the latent space structure. As Figure 3.2 illustrates, a moderately positive correlation between the latent trait dimensions can make them more disperse, improving the directional dispersion of the information. An alternate index that takes into account the latent space correlations can be obtained from the orthogonalized scale parameters. Applying Equation 3.4, an orthogonalized version of matrix \(\mathbf{A} \) can be computed, as
\[A^o = AR. \] (3.28)

The Gramian matrix \(A^o'A^o \) of this orthogonalized matrix has eigenvalues that are the squares of the singular values of \(A^o \) (Gentle, 2007):

\[\lambda(A^o'A^o) = \zeta^2(A^o), \] (3.29)

being \(\lambda(X) \) the vector of singular values of a matrix \(X \). \(A^o'A^o \) can be premultiplied by \(R \) and postmultiplied by \(R^{-1} \) (or premultiplied by \(R^{-1} \) and postmultiplied by \(R' \)), thus resulting in a similar matrix that has the same eigenvalues as \(A^o'A^o \) (Gentle, 2007):

\[
\lambda(A^o'A^o) = \lambda(R'R'AR) = \lambda(RR'ARR^{-1}) = \lambda(\Sigma'A'I) = \lambda(\Sigma'A) \quad \text{(3.30a)} \\
= \lambda(R'^{-1}R'R'AR') = \lambda(IA'A\Sigma) = \lambda(A'A\Sigma). \] (3.30b)

Given that the eigenvalues are just a quadratic function of the singular values, the Least Eigenvalue (LEV),

\[LEV = \min(\lambda(A'A\Sigma)) = \min(\lambda(\Sigma'A)) \] (3.31)

can be interpreted as the squared Frobenius distance of \(\tilde{A}^o \) to \(A^o \). Consequently, the LEV can be regarded as a dimensional sensitivity index that takes into account the correlations among the latent space dimensions. As happens with the LSV, its value will not depend only on the values of \(A \) and \(\Sigma \), but also on their sizes. In Simulation study 1, these effects are also explored.

3.5. Simulation Study 1

In order to investigate the properties of the two proposed indices, we simulated parameters for DBP FCQs in different conditions that were likely to affect their values. There are two factors that may affect the values of the LSV and LEV, apart from the absolute values of the scale parameters: the size of the matrix \(A \), and the distance to the empirical underidentification expressed in Equation 3.13. We can manipulate the size of the matrix by using different numbers of blocks and latent dimensions.

To manipulate the distance to the empirical underidentification without changing the marginal distributions of the scale parameters, we propose the following: To generate block
scale parameters by drawing values from a bivariate lognormal distribution with a constant vector as position (log-mean) parameter, and constant values in the diagonal elements of its scale (log-variance) parameter. To obtain a certain expected correlation between the scale parameters of each block, manipulate the off-diagonal elements of the log-variance parameter (Tarmast, 2001). With this procedure, we can manipulate the directional variability of the blocks without varying the expected marginal information in each latent dimension (i.e. elements in the diagonal of the information matrix). Thus, by simply changing one parameter, different conditions of item pairing can be represented: A high positive correlation among block scale parameters will stand for a situation similar to the one depicted in the lower row of Figure 3.2, where high-discrimination items have been paired among themselves (and the same for low- or medium- discrimination items). On the other side, a high negative correlation will stand for a situation where the items have been carefully paired in order to maximize the directional dispersion of the blocks.

3.5.1. Design and method

The factors manipulated and their levels were: (1) The correlation between the scale parameters \(\rho_{a_i} \), with levels -.70 (which is close to the minimum possible for a positive-definite log-variance matrix; see (Tarmast, 2001), -.35, .00, .35, and .70, (2) the number of blocks per dimension \(n_d = \sum_{d'=1, d' \neq d}^D n_{dd'} \), with levels 12, 24, and 36, and (3) the number of latent dimensions \(D \), with levels 2 through 5. For each condition, 100 replications were simulated. In each condition, \(n_{dd'} \times D \) pairs of scale parameters \((a_{i_1}, a_{i_2}) \), one for each block \(i \), were drawn from a bivariate lognormal distribution with log-mean parameter (.25, .25) and diagonal elements in the log-variance parameter equal to .25. The off-diagonal elements of the log-variance parameter were chosen to yield the value of \(\rho_{a_i} \) for that condition. Then, a matrix \(A \) was built, first creating a null matrix with \(n_{dd'} \times D \) rows and \(D \) columns, then substituting
elements \((i, d)\) and \((i, d')\) by \(a_{i1}\) and \(-a_{i2}\), respectively, for each block \(i\) (being \(d = \tilde{i}_1\) and \(d' = \tilde{i}_2\)).

The values of the LSV and four LEVs with different correlation matrices \(\Sigma\) were computed for each of the 100 replications in each condition. The correlations \(\rho_\theta\) were all equal in each matrix \(\Sigma\). The sum of all the correlations affecting each dimension \(\sum \rho_\theta\) was kept constant in each case, thus being the value of the correlation \(\rho_\theta = \sum \rho_\theta / (D - 1)\). The values of \(\sum \rho_\theta\) used were .0, .3, .6, and .9.

For the LSV and each of the four LEVs in each condition an average and its standard error was obtained from the 100 replications. These averages were then plot along with their error bars. The results can be seen in Figures 3.3 and 3.4.

Figure 3.3. LSV index value based on the correlation block scale correlation \((\rho_{a_i})\), the number of blocks per dimension \((n_d)\), and the number of dimensions \((D)\).

3.5.1. Results and discussion

As expected, the LSV decreases with \(\rho_{a_i}\). This result is expected from Theorem 2, as higher correlated scale parameters imply more proximity to the condition expressed in Equation 3.13. Factor \(n_{dt}\) also affects the value of the LSV, indicating that its value depends on the number of blocks in the FCQ. However, the relevant magnitude is not the total number
Figure 3.4. LEV value based on the block scale correlation (ρ_{α}), the number of blocks per dimension (n_d), the number of dimensions (D), and the correlation sum per latent trait ($\sum \rho_{\theta}$).
of blocks in the questionnaire, but the number of blocks per dimension. On the other side, the number of dimensions D only affects the LSV slightly when the number of blocks is low. For 24 or more blocks per dimension its effect becomes negligible.

As Equation 3.29 states, the vector of squared singular values of a matrix X is equal to the vector of eigenvalues of its Gramian $X'X$. Therefore, if Σ is an identity matrix, the LEV is equal to the squared LSV. Thus, the values shown in the top row of Figure correspond to the squares of the values in Figure 3.3. When the latent space correlations ρ_{θ} increase, the LEV increases slightly as well, indicating that the measuring directions of the blocks tend to have more variability, as illustrated in Figure 3.2. For $D = 2$ and $\sum \rho_{\theta} = .9$, the value of ρ_{θ} is .9—in this situation, depicted in panels C and F of Figure 3.2, the two dimensions tend to collapse, making the LEV decrease drastically. These results clearly show the sensitivity of the LEV to the latent space structure, which the LSV does not account for.

3.6. Simulation Study 2

We conducted another simulation study to test the predictive capability of the dimensional sensitivity indices. The conditions were chosen in order to generate sufficient variability in their values while keeping the parameters within a realistic range. Thus, we expected that the results allowed to compare the quality of the latent trait estimations with the indices.

We wanted to represent three widespread conditions of item pairing: one where high-discrimination items have been paired among themselves (and the same for low-discrimination items), one where the items have been purposely paired in such a way to try to maximize the directional dispersion of the blocks, and an intermediate one where the items have been randomly paired. These conditions could stand for three different ways of pairing the same items, from worst (using a wrong criterion that would yield a low directional variability of the blocks) to best (carefully pairing the items attending to the magnitude of their scales, in order
to maximize the directional variability of the blocks). In order to this, we used the procedure described in Simulation study 1, where the correlation between scales could be manipulated to simulate the effect of item pairing.

As seen before, the number of blocks per dimension also affects the values of the LSV and LEV, so it was manipulated as well. The number of latent trait dimensions however affects neither of them, so its value was kept constant to three, given it is the minimum number of dimensions that solves the rotational underidentification of the MUPP-2PL (Morillo et al., 2016). Finally, as the correlations between latent trait dimensions affect the LEV—and presumably the accuracy of the estimation (Brown & Maydeu-Olivares, 2011)—it was manipulated as well, following Morillo et al. (2016).

3.6.1. Design and method

The following factors were manipulated: (1) the number of blocks (n), with levels 18 and 36 (i.e., 6 and 12 blocks per pair of dimensions, respectively); (2) the correlation between the block scale parameters (ρ_{ai}) with levels -.7, .0, and .7, and (3) the latent trait correlations (ρ_{θ}) with levels .00, .25, and .50. For each of the 18 conditions resulting from the complete crossing of these three factors, 100 replications were generated. For each replication, 1,000 respondents to a DBP FCQ were simulated, using the following procedure. First, 1,000 latent trait vectors were sampled from a trivariate normal distribution with a null vector as mean and a covariance matrix Σ, where the variances were equal to one and all the covariances were equal to the level of ρ_{θ}. Second, n blocks were generated; scale parameters were sampled with the procedure and parameters described in Simulation study 1, choosing the off-diagonal elements of the distribution log-variance parameter such that the correlation between the scales was equal to ρ_{ai}. Intercept parameters were sampled from a univariate normal distribution, with mean 0 and variance 0.25. For each replication, the LSV was computed from the block scale parameters, and the LEV from these and the matrix Σ. Finally, a matrix of responses to
the FCQ was simulated, with the response probability for each person and block modeled by the MUPP-2PL.

Latent trait estimates were computed using a MCMC procedure similar to Morillo et al.’s (2016), but setting the structural parameters (block parameters and latent trait covariance matrix) to their true values. 25,000 samples from the posterior distribution were drawn from each of four independent chains. The first 10,000 samples from each chain were discarded as burn-in, and one in 25 of the remaining 15,000 were kept, making a total amount of 2,400 samples from each posterior distribution. The \hat{R} convergence statistic (Gelman & Rubin, 1992) was less than 1.02 for all parameters in all of the replications. From the posterior distribution samples, the EAP estimate of each respondent latent trait vector was obtained.

3.6.2. Data analysis

The following statistics were computed for each replication:

(a) The mean reliability ($\hat{\rho}_{\theta\theta}^2$) as an indicator of the estimate precision, computed as the average of the squared correlations between the latent trait parameters and their EAP estimators.

(b) The mean correlation bias ($\Delta_{\theta\theta}^r$) as an indicator of the distortion of the dimensionality of the estimates, computed as the average difference between the correlations of the true latent trait parameters and the correlations of the EAP estimates. (Note that negatively biased correlations between the estimates indicate a trend to artificially induce collinearity in the EAP estimates.)

For each of these statistics a three-way ANOVA with the three factors as independent variables was conducted. To assess the capability of the LSV and LEV to forecast the dimensionality of the estimates, their correlations with $\Delta_{\theta\theta}^r$ were computed. Their relationship with $\Delta_{\theta\theta}^r$ was also explored graphically to make a more accurate interpretation.
All simulations, estimations and statistical analyses were performed using R software, version 3.1.2, except the analyses of variance, which were made with IBM SPSS version 20.

3.6.3. Results

3.6.3.1. Analysis of Variance

Given the statistical power of the simulation study, all effects were significant (\(\alpha = .05\)) in both analyses. Therefore, we focus the analysis of the results on the large-size effects, according to Cohen’s (1988) criterion of a cutoff value of .14 for the \(\eta^2\) statistic.

Table 3.1.

<table>
<thead>
<tr>
<th>Number of blocks (n)</th>
<th>(\bar{\rho}_{\theta}^2)</th>
<th>(\bar{\Delta}_{\theta \theta}^r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>0.618</td>
<td>-0.211</td>
</tr>
<tr>
<td>36</td>
<td>0.741</td>
<td>-0.142</td>
</tr>
<tr>
<td>(\eta^2_{\theta})</td>
<td>0.759</td>
<td>0.356</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Block scale correlation ((\rho_{\alpha_i}))</th>
<th>(\bar{\rho}_{\theta}^2)</th>
<th>(\bar{\Delta}_{\theta \theta}^r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-.7</td>
<td>0.755</td>
<td>-0.076</td>
</tr>
<tr>
<td>0</td>
<td>0.705</td>
<td>-0.135</td>
</tr>
<tr>
<td>.7</td>
<td>0.579</td>
<td>-0.319</td>
</tr>
<tr>
<td>(\eta^2_{\theta})</td>
<td>0.819</td>
<td>0.829</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Latent trait correlations ((\rho_{\theta}))</th>
<th>(\bar{\rho}_{\theta}^2)</th>
<th>(\bar{\Delta}_{\theta \theta}^r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.00</td>
<td>0.704</td>
<td>-0.216</td>
</tr>
<tr>
<td>.25</td>
<td>0.673</td>
<td>-0.193</td>
</tr>
<tr>
<td>.50</td>
<td>0.661</td>
<td>-0.120</td>
</tr>
<tr>
<td>(\eta^2_{\theta})</td>
<td>0.211</td>
<td>0.431</td>
</tr>
</tbody>
</table>

Note. \(\bar{\rho}_{\theta}^2\) = Mean reliability; \(\bar{\Delta}_{\theta \theta}^r\) = Mean correlation bias; \(\eta^2_{\theta}\) = Observed effect size for the main effect of each factor.
Table 3.1 shows the main effects marginal means estimated by the analyses, along with their effect sizes. All major effects were large; on the contrary, all of the interaction effects had sizes below .14, except for the interaction between ρ_{α_i} and ρ_{θ} for the $\eta_\theta^2 = .233$. As shown in Table 3.1, ρ_{θ}^2 was higher for $n = 36$ than $n = 18$. The interaction between ρ_{α_i} and ρ_{θ} for this statistic is shown in Figure 3.5. In general, ρ_{θ}^2 decreased with the values of both ρ_{α_i} and ρ_{θ}. However, there was barely any difference for $\rho_{\alpha_i} = -.7$, while for $\rho_{\alpha_i} = .7$, ρ_{θ}^2 was lower the higher the value of ρ_{θ}.

As for $\Delta_{\theta\theta}^{\hat{r}}$, its value was negative for all conditions. Its absolute value was greater for $n = 18$ than for $n = 36$. It also increased with the value of ρ_{α_i}, and decreased with the value of ρ_{θ}. Interestingly, the results for $\Delta_{\theta\theta}^{\hat{r}}$ went in the same direction as ρ_{θ}^2, except for the latter. Also, contrary to ρ_{θ}^2, no relevant interaction effect was found between ρ_{α_i}, and ρ_{θ} ($\eta_\theta^2 = .069$).

![Figure 3.5](image)

Figure 3.5. Interaction between the effects of the block scale correlation (ρ_{α_i}) the latent trait correlations (ρ_{θ}) on the mean reliability (ρ_{θ}^2). LTC = latent trait correlations.
3.6.3.2. Dimensional sensitivity indices

Correlations between the dimensional sensitivity indices and the dependent variables were very high: .901 for the LSV, and .799 for the LEV, with \(\bar{\rho}_\theta^2 \), and .812 for the LSV, and .757 for the LEV, with \(\Delta_{\theta \theta r} \). Given these values, it may seem that the LSV is a better predictor of the reliability and the accuracy of the estimators’ dimensionality. In Figures 3.6 and 3.7 however, we can see that the relationships between the two indices and the two statistics are non-linear. The LSV showed less overlap between the point clouds of the values of \(n \) and \(\rho_\theta \) than the LEV.

\[\text{Figure 3.6. Scatterplot of the mean reliability (} \overline{\rho}_\theta^2 \text{) as a function of the LSV (top) and the LEV (bottom). In each panel, the levels of a different factor have been colored: From left to right, the number of blocks (} n \text{), the block scale correlation (} \rho_{ae} \text{), and the latent trait correlations (} \rho_\theta \text{).} \]
IRT MODELS FOR FORCED-CHOICE QUESTIONNAIRES

Figure 3.7. Scatterplot of the mean correlation bias ($\overline{\Delta_{\theta\theta^r}}$) as a function of the LSV (top) and the LEV (bottom). In each panel, the levels of a different factor have been colored: From left to right, the number of blocks (n), the block scale correlation (ρ_{ai}), and the latent trait correlations (ρ_{θ}).

The factors seem to have effects on $\overline{\rho_{\theta}^2}$ that neither the LSV nor the LEV seem able to account for. Their values were higher for $n = 36$ than $n = 18$, but the two cloud points are separated except for some overlapped values. The effect is clearer for the LSV, while the LEV seems to be more homogeneous, independently of the factor levels. The latter seems also to better discriminate the levels of ρ_{ai} than the former. The LEV however seems to be more affected by ρ_{θ}, appearing three well-differentiated cloud points for the levels of this factor. This means that for more correlated traits, the LEV had lower values even though reliabilities were still acceptable.
Regarding $\Delta_{\hat{\theta}^T}$, both indices similarly discriminated the conditions for $\rho_{\alpha_i} = .7$, and were insensitive to the levels of n and ρ_{θ}. In the case of the LEV, for the combination of $n = 18$ with $\rho_{\theta} = .50$ there were replicas with a very close-to-zero $\Delta_{\hat{\theta}^T}$ (being its value even positive in some of them), that had a relatively low LEV nevertheless, in the range of about 5 to 15. This effect also happened for the LSV (with values between 2 and 4), though less pronounced. Table 3.1 shows that this condition was very favorable for recovering non-distorted correlations. However, as seen in the lower row of Figure 3.4, for correlations like these, which sum up to 1 for each latent trait, the LEV started to get lower.

3.6.4. Discussion

We can reach to three main conclusions from the results of the analyses of variance. First, when we approach the situation expressed Theorems 1 and 2 (i.e., the block scale parameters are more positively correlated), the estimates are less reliable. The correlations among the latent trait estimates are also more distorted in this situation, being more negative than the correlations between the true parameters. Second, increasing the number of blocks measuring each dimension not only improves the reliability of the estimates, but reduces the distortion of their correlations. Finally, a positive correlation between the latent traits undermines the reliability, but gives estimates that better respect the structure of the latent space. This implies that the marginal information of the latent trait estimates is somewhat lower, while the estimation errors are less correlated. This is consistent with the theoretical predictions, as the directional distribution of the blocks improves with positive correlations. However, the blocks MBSs get lower with increasing latent trait correlations, thus undermining the empirical reliabilities.

Regarding the dimensional sensitivity indices, both of them are more strongly related with the mean correlation bias than with the reliability. This result was expected, given that both indices are supposed to inform of the latent space distortion. The LSV has a higher positive
correlation with the mean correlation bias than the \textit{LEV}, so it seems to be a better predictor of the latent space distortion, in principle. However, the non-linearity among the relationships of these indices explains this phenomenon. The \textit{LEV} is in fact less affected by variables that are irrelevant to the dimensional sensitivity of the FCQ, namely, the latent trait correlations and the questionnaire length. This allows a clearer cutoff for a quality criterion.

Although this simulation proves the effect of item pairing on the quality of the estimations, we should highlight the limitations to the external validity of the results. The dimensional sensitivity of a FCQ may be manipulated in some other ways apart from the correlation between the block scale parameters. In the simulation studies we have kept the marginal distributions constant, although both their central tendency and variability may affect the results as well. Other manipulations may represent empirical situations more faithfully, which may yield to better understanding on the behavior of the FCQs and the dimensional sensitivity indices we have proposed.

3.7. General discussion

In this study we have proposed a way to design FCQs robust against the SD bias. The DBP design involves the use of bidimensional, homopolar-direct blocks; these conditions are arguably necessary—though not sufficient—for controlling this bias effectively. However, we have proven that the MUPP-2PL model is likely to be empirically underidentified for a questionnaire designed under these criteria. In sight of these results, several points deserve special attention.

3.7.1. DBP design of forced-choice questionnaires

One may argue that the DBP conditions are not strictly necessary to design a SD-robust FCQ. Indeed, when a FCQ combines homopolar and heteropolar blocks, the directional variability of the blocks is much better and thus poses no issues of dimensional restriction. The condition of only homopolar blocks exclusively comes from the consideration that there is a
socially desirable pole on each trait scale. That is, social desirability is a monotonical function of the latent trait value.

There is evidence that for extremely high levels of desirable traits, the outcome may actually be negative; this phenomenon has been termed the *too-much-of-a-good-thing effect* (Pierce & Aguinis, 2013). For example, Conscientiousness is considered one of the most valid and most general predictors of job performance (Barrick, Mount, & Judge, 2001). However, for very high levels, the relationship with performance becomes negative (Le et al., 2011). Arguably, this is caused by paying too much attention to small details in detriment of more important goals (Mount, Oh, & Burns, 2008), and adhering too rigidly to rules, thus inhibiting adaptation to changes (Le Pine, Colquitt, & Erez, 2000). Previous research also states that job applicants’ implicit theories may account for this curvilinear relationship, and thus those applicants may avoid endorsing response categories that are too high on a trait continuum (Kuncel & Tellegen, 2009).

In conclusion, we may hypothesize that, for a high location in the socially desirable pole of a scale, inverses items may actually be more desirable than direct ones. Pairing such inverse items with direct items may lead to SD-robust blocks. Therefore, one could assemble SD-robust FCQs without restricting the choice to homopolar blocks. Exploring this possibility is a challenge that may be addressed by future research.

3.7.2. MUPP-2PL empirical underidentification

Simulation study 2 leads to the conclusion that the distribution of the scale parameters may be close to the empirical underidentification. In such a circumstance, the distortion in the IRT estimates are similar to those affecting the ipsative scores reported by Meade (2004). However, when the items are carefully paired, such that the correlation of the block scales is low (or even negative), both the reliability and the correlations of the latent traits are good enough, even with as low as 12 blocks per dimension. These results go against Brown and
Maydeu’s (2011, p. 489) assertion that 12 blocks per dimension would give below-standard precisions, despite the quasi-equivalence of the MUPP-2PL and the TIRT models.

There are two factors that may explain these divergent conclusions. In first place, they make this particular assertion from a FCQ intended to measure a five-dimensional latent space. As we saw in Simulation study 2, higher correlations lead to lower reliabilities. Given the values of the correlations used in their Simulation study 2 (Brown & Maydeu-Olivares, 2011, p. 486), we can expect the reliabilities they obtain to be even lower. In fact, there is a negative relationship between the reliability of each dimension and the sum of its correlations (see the results for actual reliability in Table 7, p. 488).

More important than that is the difference between the scale parameter distributions used. There are relevant differences in the absolute values: The mean of the marginal distributions were 1.433 in our study; in theirs (p.479) they were 1.699\(^3\) when the factor loadings are translated into the logistic IRT metric (the mean sample values for the two dimensions were 1.532 and 1.506 respectively, see Table 1 in Brown & Maydeu-Olivares, 2011, p. 477). Even though the expected values are higher in theirs, it is the correlation among these parameters which plays a critical role in this phenomenon. As the authors points out, when factor loadings of utilities are similar, the model cannot be identified in respect to factor covariances—one factor collapses. So, looking at these old simulations now I would have made factor loadings much more different in +/- condition. (A. Brown, personal communication, March 28, 2014).

In fact, the factor loadings they used for their simulations, when translated to IRT metric, have an expected correlation of .785 (see Footnote 1) being .666 their sample correlation. This is even closer to the empirical underidentification than the one we used in Simulation study 2.

\(^3\) Both the mean of the marginal distributions and the correlation were estimated by simulation, using \(10^7\) replications (all Monte Carlo errors \(< 5 \times 10^{-5}\)).
One important conclusion from this is that, when assembling FCQs following a DBP design, one must take care to get as far as possible from the empirical underidentification. One way to achieve this is by pairing some low-discrimination and high-discrimination items in the same block and, in other blocks addressing the same dimensions, high-discrimination with low-discrimination items. The resulting FCQ should have enough variability of the block directions to avoid that they are close to being proportional (as in Equation 3.13). This recommendation becomes especially relevant when the choices are limited by the pool of items to be paired, as these will already set an upper bound to the marginal information that can be achieved in each latent dimension. Thus, the only way to achieve lower estimation errors and less dimensionally distorted latent trait estimates is by pairing the items wisely to maximize the directional dispersion of the questionnaire information.

On the other hand, note that, despite these caveats, correlations among latent trait estimates tend to be more negative than they should. For this reason, using the EAP estimators as input variables for other models should be done carefully, since their correlations will almost certainly be distorted. When designing a FCQ for a certain application, the test practitioner or the researcher may want to have a clear idea of the application it is intended for beforehand—depending on it, they may be more interested in maximizing the reliability, the construct validity of the scores (by reducing the correlational distortion among them) or both.

3.7.3. Dimensional sensitivity indices

The proposed dimensional sensitivity indices show reasonable properties to predict the distortion in the latent trait correlations. When the test designer has prior knowledge on the items that will be used to create a questionnaire (e.g. the factor loadings in applications with Likert-type scales) they can use it to estimate the LSV. If knowledge about the latent space structure is also available, it would be advisable to obtain an estimate of the LEV. As a quality criterion, we propose cutoffs of about 3 for the LSV and 10 for the LEV. These values,
according to our results, give a lower bound of the mean latent trait correlation distortions of about -0.2. (Note that in Figures 3.6 and 3.7 these values screen out all the conditions where BSC = -0.7).

Two things are noteworthy regarding the dimensional sensitivity indices however: First, these indices are useful to provide evidence that a FCQ is well designed. However, even for well-designed DBP questionnaires they may give below-standard values; this may lead to false rejections of FCQs that actually have a proper design. This is especially true when there are few blocks per dimension, as seen in the results of Simulation study 2. Second, it should be noted that the two indices are rather general; neither of them provides an accurate insight about the estimation quality for more local aspects of the latent space. They also disregard the information provided by the block intercept parameters, which may be critical when we want to maximize the questionnaire quality in certain regions of the latent space. Also, it may be interesting to propose indexes that focus on diagnosing the quality of the questionnaire for specific latent dimensions.

3.7.4. Generalization of the results

The algebraic equivalence between the MUPP-2PL and the MCLM model opens doors to a possible extrapolation of the results presented here to the latter model. The results presented here generalize Ackerman’s assertion to other situations that may also affect other realizations of the MCLM. Moreover, the quasi-equivalence to the TIRT model allows a possible generalization of some of these results to it, at least regarding two-item blocks.

The possibility of applying these results to formats with more than two items per block as well can be a future research line. Indeed, Brown (2016) reports identification issues when using latent factor models with certain special properties, and gives an example of a FCQ with three triplets measuring three latent dimensions. Our results give a rationale for the case of
paired blocks, and may explain that a DPB design yields to convergence issues in certain scenarios (e.g., Simulation study 1 in Brown & Maydeu-Olivares, 2011).

Of course, whether these generalizations are valid or not is still an open question. For other models like the original MUPP (Stark et al., 2005) for example, it is unknown how the variability in the discrimination parameters can affect the empirical identification of the model. This may be also a future research line.
IRT MODELS FOR FORCED-CHOICE QUESTIONNAIRES

References

IRT MODELS FOR FORCED-CHOICE QUESTIONNAIRES

IRT MODELS FOR FORCED-CHOICE QUESTIONNAIRES

Chapter 4: Testing the invariance assumption of the MUPP-2PL model

Abstract

The formulation of the MUPP-2PL model for multidimensional forced-choice questionnaires makes two assumptions, that we call measurement and independence assumption. Their combination leads to the invariance assumption, which implies that the block parameters can be predicted from the parameters of the items applied in a single-stimulus or graded-scale format. This study tests the invariance assumption empirically, comparing the parameter estimates of both formats. We applied a total of 226 items designed to address the Big Five personality dimensions to a sample of 705 undergraduate students. These same items were paired in bidimensional forced-choice blocks and applied to a subsample of 396 of the previous participants. We fit a bi-factor model to the items first, in order to estimate the condition of sufficient unidimensionality. Then, a general model with the items and blocks was fit using the Maximum Likelihood estimation with robust error estimates. We tested the equivalence of the block parameter estimates and their predictions from the item parameters estimating a restricted model for each parameter and applying a Likelihood Ratio test, computing the strictly-positive Satorra-Bentler chi-square statistic. The assumption was found to hold reasonably well, especially for the scale (i.e., discrimination) parameters. In the cases it was violated, we explored the likely factors that lead to violations of the invariance assumption in the different parameters. We conclude discussing the practical implications of the results, and discussing the formulation of accurate hypotheses for testing the violations of the invariance assumption.

Keywords: forced-choice questionnaires, invariance, IRT, Likelihood Ratio test, MUPP-2PL.
Chapter 4:

Testing the invariance assumption of the

MUPP-2PL model

Forced-choice Questionnaires (FCQs) are a type of psychological measurement instruments used in the evaluation of non-cognitive traits such as personality, preferences and attitudes (see e.g., Saville & Willson, 1991). However, its use has been limited to very specific applications due to the ipsativity of the direct scores they yield (Cattell, 1944). Ipsativity is a property that has three consequences: (1) the violation of the Classical Test Theory assumptions (Hicks, 1970), (2) a distortion of the reliability and construct validity, and (3) the impossibility of making between-person comparisons (Cornwell & Dunlap, 1994).

Some authors have recently proposed Item Response Theory (IRT) models as an alternative to direct scoring. These would allow obtaining normative estimates of the trait levels. The MUPP model (Stark, Chernyshenko, & Drasgow, 2005) was the first of these proposals; it is characterized mainly by being a model for two-item blocks, and by assuming that each item’s measurement model is an ideal point model. The Thurstonian IRT model (TIRT; Brown & Maydeu-Olivares, 2011), based on Thurstone's Law of Comparative
Judgment (1927), followed in chronological order. It is applicable to blocks with more than two items, and assumes a *dominance* measurement model—the probability of agreement with each response option follows a cumulative normal probability function.

The MUPP-2PL model (Morillo et al., 2016) is a variant of the MUPP; as such, it applies to two-item blocks as well. It differs from the original MUPP in that the probability of agreement with each response option is modeled by a dominance function: it assumes that a 2-parameter logistic (2PL; Birnbaum, 1968) curve models the responses to each item. As a consequence, this model is a special case of the more general Bradley-Terry-Luce model (Bradley & Terry, 1952; Luce, 1959). Given the similarity between a logistic model and a cumulative normal probability model (Haley, 1952), the MUPP-2PL and the TIRT models are almost equivalent when applied to paired items (Brown, 2016; Morillo et al., 2016).

The assumptions the MUPP-2PL model is based on can be defined as (1) the *measurement assumption*, and (2) the *independence assumption* (Morillo et al., 2016). According to the first one, the probability that person \(j \) agrees with item \(i_p \) (where \(p \in \{1,2\} \) stands for the item position within the block) would be given by

\[
P\left(x_{i_p,j} = 1 \mid \theta_{ij}\right) = \phi_L\left(a_{i_p} \left(\theta_{i_p,j} - b_{i_p}\right)\right),
\]

(4.1)

where \(x_{i_p,j} \) is a random variable indicating the agreement of \(j \) with item \(i_p \) (with a value of 1 if they agree, and 0 if they disagree), \(\theta_j \) the coordinate vector of \(j \) in the \(D \)-dimensional latent space \(\theta \) assessed by the instrument, \(\phi_L(\cdot) \) the logistic function, \(\theta_{i_p,j} \) the component of \(\theta_j \) in the dimension \(i_p \) (measured by item \(i_p \)), and \(a_{i_p} \) and \(b_{i_p} \) the characteristic parameters of \(i_p \). These parameters can be interpreted, respectively, as a *scale* parameter and a *location* parameter; \(a_{i_p} \) would indicate how sensitive or discriminant \(i_p \) is to differences in \(\theta_{i_p} \), while \(b_{i_p} \) would be the point in \(\theta_{i_p} \) where \(P\left(x_{i_p,j} = 1 \mid \theta_{j}\right) = .5 \) (i.e., a *point of indifference*). Note that the fact that
only measures θ_{ip} is implicit in the measurement assumption—each item in a forced-choice (FC) block is unidimensional.

The independence assumption implies that the decisions on the agreement with each response option are independent events. Note that this does not imply a statistical independence of the two decision events; i.e., it does not imply that the probability of choosing each response category is given by the joint probability of the independent decision events. That could lead to incompatible outcomes. Rather, it means that the response probability is a combination of the two independent probabilities, as the two agreement decisions are taken independently of one another. Mathematically, this assumption is expressed as

$$P_i(y_{ij} = p|\theta_j) = \frac{p(x_{ij} = 1|\theta_j)p(x_{iq} = 0|\theta_j)}{p(x_{ij} = 1|\theta_j)p(x_{iq} = 0|\theta_j)+p(x_{ij} = 0|\theta_j)p(x_{iq} = 1|\theta_j)},$$

where y_{ij} is a variable indicating the item chosen as a response (with a value of p if item i_p is chosen), and x_{iq} (with $q \in \{1,2\}, q \neq p$) a random variable indicating the agreement of j with item i_q (with a value of 1 if they agree, and 0 if they disagree), being i_q the item not chosen as a response in the pair. Combining both assumptions, the probability of a person j to select item i_1 in block i made up by items i_1 and i_2, would be given by (Morillo et al., 2016)

$$P_i(y_{ij} = 1|\theta_j) = \Phi_L(a_i^1\theta_{i_1j} - a_i^2\theta_{i_2j} + d_i),$$

where d_i is the intersection parameter of i:

$$d_i = a_{i_2}b_{i_2} - a_{i_1}b_{i_1}.$$

(Note that, unless the design implies repeating items in several blocks, the location parameters of the items b_{i_1} and b_{i_2} are underidentified when presented in a FC format.)

The measurement assumption implies that if an item i_p were presented independently in a dichotomous response format, the probability of j of agreeing with it would also be given by Equation 4.1. It follows then that it is possible to present i_1 and i_2 in a dichotomous format and test whether the parameter of the FC block are equivalent to the parameters of the
dichotomous items. It also follows from the two MUPP-2PL assumptions that a_{ip} is independent of which other item i_p is paired with, and that d_i is a linear combination of the two independent location parameters b_{i_1} and b_{i_2}. We call this the invariance assumption, as it follows that the item and block parameters are invariant to both the format (FC versus dichotomous) and the within-block context (i.e., which other item a certain item is paired with).

The invariance assumption is prevalent in the design of forced-choice instruments (see, e.g., Stark et al., 2005), albeit largely untested; the literature has not subjected this assumption to abundant scrutiny so far. Lin and Brown (2017) performed a retrospective study on massive data from FCQs applied to personnel selection. Applying the TIRT model, they compared the parameters in two formats: A partial-ranking task with four items per block (most/least like me), and a complete-ranking task with three items per block (after dropping one item from each block). They found that the parameters largely fulfilled the invariance assumption. They also identified possible sources of bias that might result in a violation of the invariance assumption and interpreted them as within-block context effects—variations of the item parameters due to the other item(s) in the same block. However, we should highlight that (1) they did not compare the FC format with the items individually applied in a graded-scale (GS) format, and (2) one can argue that context effects are just one amongst many possible sources of lack of invariance.

4.1. A test of the invariance assumption with graded scale items and forced-choice blocks

The traditional format of presenting non-cognitive items in questionnaires is the GS or Likert format. This format implies a series of responses graded in their level of agreement with the statement of the item. The Graded Response model (GRM; Samejima, 1968) can be applied to the data from a GS questionnaire. The additional response categories in the scale (compared to a dichotomous format) provide additional information that leads to more accurate latent trait estimates (Lozano, García-Cueto, & Muñiz, 2008). According to the GRM, the response probability of person j to each of the $m + 1$ response categories of item i_p is given by
IRT MODELS FOR FORCED-CHOICE QUESTIONNAIRES

\[
P(x_{ipj} = k | \theta_j) = \begin{cases}
1 - \phi_L \left(a_i^* \theta_{ipj} + g_{ipk+1} \right) & \text{if } k = 0 \\
\phi_L \left(a_i^* \theta_{ipj} + g_{ipk} \right) - \phi_L \left(a_i^* \theta_{ipj} + g_{ipk+1} \right) & \text{if } 0 < k < m, \\
\phi_L \left(a_i^* \theta_{ipj} + g_{ipk} \right) & \text{if } k = m
\end{cases}
\]

(4.5)

where \(x_{ipj}\) is a random variable that indicates the response of \(j\) to the item \(i_p\), \(k \in [0, m]\), \(k \in \mathbb{Z}\) is the value of \(x_{ipj}\) indicating a response category, \(a_i^*\) is the scale parameter of item \(i_p\), and \(g_{i,k}\) is the intercept parameter for the probability of choosing category \(k\) or higher in item \(i_p\) (the rest of the symbols defined as in Equations 4.1 and 4.2). Note that when \(m = 1\) and there are two response categories, then Equation 4.5 is reduced to the 2PL model expressed in Equation 4.1, with \(g_{ip1} = g_{ip} = -a_i^* b_{ip}\).

When \(m > 1\), we may consider a recoding of the response \(x_{ipj}\) to \(x'_{ipj}\), such that for an arbitrary response category \(k'\), \(0 < k' \leq m\), \(x'_{ipj} = 0\) if \(x_{ipj} < k'\), and \(x'_{ipj} = 1\) if \(x_{ipj} \geq k'\). That is, a threshold \(k'\) can be applied to the responses of the GS item \(i_p\) such that \(x'_{ipj}\) is coded as 1 if \(x'_{ipj}\) is equal to or higher than \(k'\), and 0 otherwise. This recoding implies representing the responses to the Likert-type items in a dichotomous format.

According to the GRM, when dichotomizing a GS item, parameter \(a_i^*\) is expected to remain unchanged (Samejima, 1968). The location parameter of the dichotomized item response for threshold \(k'\) is given by

\[
b_{ipk'} = -g_{ipk'}/a_i^*.
\]

(4.6)

Applying Equation 4.6 to Equation 4.4, the intercept parameter \(d_i\) of block \(i\) can be predicted from a \(d_{ikr}\) parameter computed from its items \(i_1\) and \(i_2\), which is expressed as

\[
d_{ikr}^* = g_{i1k'} - g_{i2k'}.
\]

(4.7)

Therefore, we can assume an expected parametric equivalence between a FC block and its constituent items, given by \(a_i = a_i^*\) and \(d_i = d_{ikr}^\star\) for a given threshold category \(k'\).
We must make a caveat here, since none of the b_{ipkr} parameters can be considered equivalent to the actual b_{ip}. As we stated before, the latter represents the point in the θ_{ip} continuum where $P \left(x_{ipj} = 1 \mid \theta_j \right) = .5$ in Equation 4.1, when such a statement is presented as a dichotomous item. When we perform a dichotomization of a GS format as stated above, the k' threshold category chosen does not necessarily imply that any of the b_{ipkr} parameters coincide with the b_{ip} parameter from the dichotomous presentation as given by Equation 4.6. We consider however that the equivalence given by the assumptions that lead to Equation 4.6 justify considering and assessing the linear combination of item intercept parameters, as given in Equation 4.7, as a proxy for the block intercept parameter.

4.2. Aim of the study

Items in personality questionnaires are usually applied in a GS format. In addition, they hardly ever fit a unidimensional model—rather, personality researchers develop broadband items that fit a bi-factor model accounting for specific-content facets. To develop a FCQ we may use the GS item parameters as proxies of the expected block parameters. This may help us pair the items following proper design criteria, as well as predict the properties of the resulting questionnaire. However, such a procedure assumes invariance of the block parameters.

The purpose of this study is thus to test the invariance assumption of the MUPP-2PL model. In order to this, we will compare the parameters of a set of items designed to measure personality variables, applying them in the two aforementioned formats: FC, and GS. The following hypotheses will be tested: (1) the scale parameters of the items (a_{ip}) are independent of the format (FC or GS), and (2) the intersection parameters of the FC blocks (d_i) can be accurately predicted from a linear combination of the intercept parameters of its items (g_{ipkr}) applied in the GS format.
IRT MODELS FOR FORCED-CHOICE QUESTIONNAIRES

Furthermore, we will explore the likely sources of bias that induce violations of the invariance assumption. We will aim to identify sources of bias at three levels: individual item, FC block, and questionnaire. Whenever possible, we will try to give tentative explanations to these phenomena, and discuss further research designs that may allow formulating and testing precise hypotheses about the violations of the invariance assumption.

4.3. Method

4.3.1. Materials

A dataset consisting of responses to a GS questionnaire and a FCQ was used for this study. Both instruments shared a large number of items and were answered by a common group of participants, so they were suitable to verify these hypotheses. The contents of this dataset are described below.

4.3.1.1. Instruments.

Graded-scale questionnaire. It consisted of 226 GS items presented in a five-point Likert scale (completely disagree – disagree – neither agree nor disagree – agree – completely agree). The items were designed to measure the dimensions of the Big Five model (McCrae & John, 1992), following a bi-factor model. This model assumes a general dimension representing the substantive trait, as well as six specific dimensions representing residual variances of item clusters, associated with their content (Holzinger & Swineford, 1937).

Forty-four items were applied for each of the five traits. 122 of these items were direct (i.e., positively keyed), and 98 were inverse (i.e., negatively keyed; see Chapter 2); polarity was aimed to be balanced among the different traits, with 22 to 26 direct items and 18 to 22 inverse items per trait. The remaining six items were directed items, applied with the intention of controlling the quality of each participant’s responses (Maniaci & Rogge, 2014). The items were distributed in two booklets, with 113 items each, with the directed items at positions 26, 57 and 88, and 23, 55 and 87 in the first and second booklet, respectively.
Forced-choice questionnaire. A third booklet consisted of 98 FC bidimensional blocks. Out of them, 79 were made up from items from the GS questionnaire (except for 13 pairs, which contained a direct item from the GS booklets, paired with an inverse item not included in that instrument). There were also sixteen additional blocks made up by items from a different application, and three directed blocks (at positions 25, 43 and 76) to control for response quality. Table 4.1 summarizes the frequency distribution of the FC blocks by pair of traits. Out of the 79 blocks with items from the GS questionnaire, 24 were formed by two direct items (homopolar blocks); the remaining 55 were heteropolar, consisting of a direct and an inverse item, being the direct one always in the first position.

Table 4.1.

Distribution of the FC blocks by trait.

<table>
<thead>
<tr>
<th>Item 1</th>
<th>Neuroticism</th>
<th>Extraversion</th>
<th>Agreeableness</th>
<th>Openness</th>
<th>Conscientiousness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neuroticism</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Extraversion</td>
<td>5</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Agreeableness</td>
<td>4</td>
<td>3</td>
<td>-</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Openness</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Conscientiousness</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>-</td>
</tr>
</tbody>
</table>

4.3.1.2. Participants

705 undergraduate students from the first and third courses in the Faculty of Psychology (Autonomous University of Madrid) answered the GS questionnaire on optical mark reader-ready response sheets. Eight response vectors were dropped due to having too many missing responses (more than 68), and two more because of failing the directed items (more than one error). Of the remaining 695, 396 also responded to the FCQ on another optical mark reader-ready sheet. No response vectors were dropped due to missing responses (only 12 vectors had
just one missing response), but four were deleted due to failing one or more directed blocks, leaving 392 valid vectors.

4.3.2. Data analysis

4.3.2.1. Estimation of the latent trait models

The questionnaires were analyzed with multidimensional IRT models using the robust maximum likelihood (MLR) method (Yuan & Bentler, 2000). 64-bit Mplus 7.0 software (Muthén & Muthén, 1998-2012) for Windows was used for all analyses. Package MplusAutomation 0.7-1 (Hallquist & Wiley, 2018) for 64-bit R 3.4.3 (R Core Team, 2017) was used to automate some of the analysis procedures.

Graded-scale questionnaire. Since the items were designed attending to a bi-factor model, it was straightforward that unidimensional models would not fit the data. However, unidimensionality is a necessary condition for the measurement assumption of the MUPP-2PL to hold. A unidimensional model may be estimated albeit not fitting the data, obtaining relatively unbiased parameters, as long as the explained common variance (ECV; Ten Berge & Sočan, 2004) of the general dimension in the bi-factor model is not too low (Rodriguez, Reise, & Haviland, 2016). Therefore, an exploratory bi-factor model was also estimated for each dimension in order to diagnose the quality of the unidimensional parameter estimates. Six specific dimensions and a general one were specified, and an iterative Schmid-Leimann rotation was applied (Abad, Garcia-Garzon, Garrido, & Barrada, 2017). Taking the scale parameters on the general dimension as a benchmark for comparison, the correlation, mean relative bias, and root mean square bias (RMSB) of the unidimensional scale parameters were computed. The item ECV (I-ECV) index (Stucky, Thissen, & Orlando Edelen, 2013) was also computed, as a measure of unidimensionality for each item. This index is given by the proportion of the item common variance explained by the general dimension. Items where most of the common variance is attributable to this will have an I-ECV close to one; highly
multidimensional items on the other hand, with common variance highly due to specific facets, will have I-ECV values close to zero. Given that we assumed the unidimensional models would fit the data significantly worse than their bi-factor counterparts would, we omitted testing the significance of the nested model comparisons.

Tests of the invariance assumption. Once the unidimensional models were fit and their quality assessed (no items had to be dropped due to misspecification), a model was fit to the item and block responses altogether. Due to computational limitations, models with each triplet of dimensions were fit in a first place, which included correlated uniquenesses between each block and its two corresponding GS items. Given that the ML estimation and its variants don’t allow for correlated uniqueness, these were set by using a two-tier model approach (Cai, 2010), where a common specific dimension was defined where both an item and the FC block it was in loaded. The loadings on these specific factors were set to 1 for the items, to 1 for the blocks where that item appeared in the first position, and to -1 for the blocks where it appeared in the second position.

The resulting unique covariances in those models were non-significant and negligible in the vast majority of cases, so fitting a model with independent uniquenesses and all the Big-Five trait dimensions was attempted. However, as had also happened in the tests with dimension triplets, the full-dimensional model had convergence issues with Extraversion. Therefore, the items tapping Extraversion and the blocks containing an Extraversion item were dropped. The responses to the remaining 47 blocks and the 86 GS items included in those were finally fitted to a model with the remaining four dimensions.

For this model, the block parameter values predicted from the items, a_{ip}^* and d_{ik}^*, were computed. For the intercept parameters, the four possible values of k' were used. The block parameter estimates were correlated with their predictions, and the prediction error was
obtained for each parameter. The mean error, mean relative error, and root mean square error (RMSE) were computed for each prediction type.

A constrained model was fit for each possible restriction given by the invariance assumption: Equal scales for a block and each of its corresponding GS items, and a constraint on the block and item intercepts given by Equation 4.7 (using the four possible values of k'). This would result in six contrasts per block, for a total of 282 constrained models. However, given that the GS-item parameters were not available for 8 items (out of the 13 taken from a previous application as explained above, excluding five of them measuring Extraversion), only the first scale parameter of the corresponding blocks could be tested for invariance, and therefore 242 constrained models were estimated.

For each of the constrained models, a likelihood ratio test against the unrestricted model was performed as follows: a strictly positive χ^2_{S-B} statistic (Satorra & Bentler, 2010) was first computed using the procedure explained by Asparouhov and Muthén (2010). Using a confidence level of .05, the Bonferroni correction for multiple comparisons was applied to these tests, giving a value of $\alpha = .05/242 = 2.07 \times 10^{-4}$. The parameters for which the p-value of the likelihood ratio test was less than α were considered non-invariant.

4.3.2.2. Exploration of the violations of the invariance assumption

In order to identify possible sources of non-invariance, several factors were considered and consequently explored. Invariance was studied in terms of significance of the parameter likelihood ratio test and the absolute deviation from the prediction. At the item level, we explored whether violations of the measurement assumption lead in turn to violations in the invariance assumption: Given the items were designed following a bi-factor model, it could be expected that item multidimensionality (i.e. high loadings on the specific facet dimension) would affect the invariance assumption through a violation of the MUPP-2PL measurement
assumption. Also at the item level, item properties (trait measured and polarity) were explored as possible sources of invariance.

At the block level, we explored the effects of the item properties (dimension and polarity) when paired together. The properties of a certain item by itself can only affect the block parameters that depend on that item. Therefore, effects on the parameters that should depend only on the other item must be necessarily violations of the independence rather than the measurement assumption.

At the questionnaire level, we studied whether there was any generality that could explain deviations from the model prediction for all the blocks. For example, FC-format specific biases affecting could have a differential effect on the parameters as a function of the item position. Such deviations should be regarded as a general violation of the measurement assumption. Finally, we analyzed whether there was any association among the invariance of the different parameter types.

4.4. Results

4.4.1. Dimensionality assessment of the GS questionnaire

The results of assessing the dimensionality of each trait measured by the GS items are shown in Table 4.2. The ECV was rather low, informing a weak degree of unidimensionality, especially for the Conscientiousness dimension. However, under certain circumstances, the parameter estimates from the unidimensional model may be similar enough to the bi-factor estimates even when unidimensionality is not too strong, even when the unidimensional model clearly misfits the data (Reise, 2012).4

Table 4.2 shows that the unidimensional scale estimates correlated strongly with their bi-factor counterparts, giving evidence of a reasonably good approximation. The histogram in

4 Note that the claims of this author about the percentage of uncontaminated correlations cannot be directly applied to the present context, as this index makes sense only within the context of confirmatory bi-factor analysis. However, given the resulting ECVs, the estimates from the unidimensional models were considered apt to be compared to the bi-factor model estimates, in order to assess their bias.
Table 4.2.

Diagnostic statistics of the unidimensional GS models, compared to the bi-factor models.

<table>
<thead>
<tr>
<th>Dimension</th>
<th>ECV (%)</th>
<th>Correlation</th>
<th>Mean relative bias</th>
<th>RMSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neuroticism</td>
<td>48.21</td>
<td>.990</td>
<td>-0.098</td>
<td>0.270</td>
</tr>
<tr>
<td>Openness to Experience</td>
<td>45.48</td>
<td>.984</td>
<td>-0.051</td>
<td>0.269</td>
</tr>
<tr>
<td>Agreeableness</td>
<td>48.52</td>
<td>.988</td>
<td>-0.079</td>
<td>0.207</td>
</tr>
<tr>
<td>Conscientiousness</td>
<td>34.44</td>
<td>.987</td>
<td>-0.026</td>
<td>0.218</td>
</tr>
</tbody>
</table>

Note. ECV = Explained common variance; RMSB = Root mean square bias.

Figure 4.1. Distribution of the unidimensional scale parameter estimates of the GS items, with respect of the general factor scale parameters in the bi-factor models.
Figure 4.1 shows that the relative bias (in absolute value) was between 0 and 40% in the majority of cases, with a 69% below 20%. However, some of the values may have been too biased, being this bias as high as an 84% in a few cases.

Figure 4.2. Scatter plot of the GS items scale parameter estimates, on the general factor of the bi-factor models and on the common factor in the unidimensional models.

Figure 4.2 shows the scatter plot of the scale parameter estimates on the unidimensional model against the corresponding estimates in the general dimension of the bi-factor model. We can see that the unidimensional estimates had a general bias trend toward zero (i.e. a negative relative bias). The positive, low-value parameters, on the other hand, had a positive bias trend.
Figure 4.3 plots the relative bias against the I-ECV, as an indicator of the item relative unidimensionality. A trend line, computed with a loess smoother (Cleveland & Devlin, 1988) with a span parameter of .75, is overlaid on the scatter plot. We can clearly identify the two effects: On one side, the general shrinking trend of around a 10-15% that affected all the items, regardless of polarity or dimensionality (i.e., an underestimation, in absolute value); on the other, the stretching trend (or absolute value overestimation) of the items with a low I-ECV. Arguably, the low discriminating items were the ones mainly affected by multidimensionality, therefore their positive relative bias (mainly the direct ones, which dominate the multidimensional end of the spectrum).

Figure 4.3. Scatter plot of the GS items scale parameter relative bias, on the bi-factor item unidimensionality. I-ECV = item explained common variance. + = positive (direct item); - = negative (inverse item).
Summing up, some of the item scale estimates in the unidimensional models might be too biased for the acceptable standards, which should not be higher than about 15% (Muthén, Kaplan, & Hollis, 1987). However, they approximated relatively well the ordering of the bi-factor scale estimates, and we considered them appropriate for the subsequent tests of the invariance assumption. Nevertheless, we will need to consider these results when interpreting the comparison of the GS-item parameter estimates with their FC-block counterparts.

4.4.2. Tests of the invariance assumption

The correlations of the block parameter estimates with their predictions from the item estimates are given in Table 4.3, along with the descriptive statistics of the prediction errors (columns *Correlations* through *RMSE*). Firstly, we can see that the correlations were very high in all the cases; all of them were above .900 except for the intercept estimates predicted using the first threshold category. The third threshold category yielded the highest correlation with the block intercept estimates. Both the mean error and the RMSE of the intercept estimates

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Estimate statistics</th>
<th>Non-invariant parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Correlations Mean error</td>
<td>MRE</td>
</tr>
<tr>
<td>Scales</td>
<td>.928</td>
<td>-0.132</td>
</tr>
<tr>
<td>Intercept (Threshold 1)</td>
<td>.870</td>
<td>0.737</td>
</tr>
<tr>
<td>Intercept (Threshold 2)</td>
<td>.905</td>
<td>0.712</td>
</tr>
<tr>
<td>Intercept (Threshold 3)</td>
<td>.936</td>
<td>0.521</td>
</tr>
<tr>
<td>Intercept (Threshold 4)</td>
<td>.908</td>
<td>0.108</td>
</tr>
</tbody>
</table>

Note. MRE = Mean relative error. RMSE = Root mean square error.
were consistently lower the higher the threshold category was. The mean error was always positive for the intercept estimates, in contrast to that of the scale parameters, which was negative. The mean relative error was negative for all cases, manifesting a generalized underestimation of the block parameters in absolute value. For the intercept estimates, the third category yielded the lowest mean relative error and, followed by the fourth one. The lowest RMSE in contrast was for the fourth category, while it was highest for the first and second one.

Figure 4.4. Scatter plot of the FC-block scale parameter estimates against the corresponding GS-item estimates. The linear regression trend is shown in yellow. Non-invariant scale parameters are annotated with the block code.
Figure 4.5. Scatter plot of the block intercept estimates, against their values predicted from the item intercept parameters. The linear regression is shown in yellow.

Figures 4.4 and 4.5 show how the estimates approximated their predicted values, for the scale and intercept parameters, respectively. These scatter plots show the tendency of the block parameter estimates to be shrinked towards 0 with respect to their predicted counterparts, as the yellow regression lines show when compared to the first-third quadrant bisector. In the lower right quadrant of Figure 4.4, we can also see that three of the items reverse their sign when paired in a FC block. Their values in the GS items are already very low though, and they are not significantly different from 0, so this is likely due to estimation error. Also, Figure 4.5
Table 4.4.

Likelihood ratio test statistics of the constrained models.

<table>
<thead>
<tr>
<th>Block</th>
<th>Trait</th>
<th>Polarity</th>
<th>Scale 1</th>
<th>Scale 2</th>
<th>Threshold 1</th>
<th>Threshold 2</th>
<th>Threshold 3</th>
<th>Threshold 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Ne</td>
<td>+</td>
<td>4.265</td>
<td>0.041</td>
<td>4.777</td>
<td>0.973</td>
<td>1.826</td>
<td>0.018</td>
</tr>
<tr>
<td>3</td>
<td>Co</td>
<td>+</td>
<td>0.169</td>
<td>13.569</td>
<td>22.846*</td>
<td>20.248*</td>
<td>0.781</td>
<td>26.151*</td>
</tr>
<tr>
<td>4</td>
<td>Ne</td>
<td>-</td>
<td>0.698</td>
<td>0.699</td>
<td>0.015</td>
<td>1.556</td>
<td>0.000</td>
<td>0.847</td>
</tr>
<tr>
<td>5</td>
<td>Ag</td>
<td>+</td>
<td>5.693</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Op</td>
<td>+ -</td>
<td>3.363</td>
<td>0.000</td>
<td>22.008*</td>
<td>43.794*</td>
<td>2.868</td>
<td>6.674</td>
</tr>
<tr>
<td>7</td>
<td>Ne</td>
<td>+ +</td>
<td>0.099</td>
<td>0.008</td>
<td>2.624</td>
<td>2.295</td>
<td>7.616</td>
<td>23.668*</td>
</tr>
<tr>
<td>8</td>
<td>Ne</td>
<td>+ +</td>
<td>1.041</td>
<td>0.652</td>
<td>13.644</td>
<td>7.948</td>
<td>8.705</td>
<td>15.025*</td>
</tr>
<tr>
<td>9</td>
<td>Op</td>
<td>+</td>
<td>0.104</td>
<td>0.002</td>
<td>0.465</td>
<td>3.441</td>
<td>1.212</td>
<td>4.470</td>
</tr>
<tr>
<td>10</td>
<td>Op</td>
<td>+ +</td>
<td>1.348</td>
<td>4.221</td>
<td>3.492</td>
<td>17.281*</td>
<td>14.777*</td>
<td>11.227*</td>
</tr>
<tr>
<td>11</td>
<td>Co</td>
<td>+ +</td>
<td>8.297</td>
<td>6.531</td>
<td>0.881</td>
<td>2.005</td>
<td>0.300</td>
<td>0.020</td>
</tr>
<tr>
<td>12</td>
<td>Ag</td>
<td>+ +</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Ag</td>
<td>+ +</td>
<td>12.815</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Op</td>
<td>+</td>
<td>0.000</td>
<td>1.041</td>
<td>2.870</td>
<td>2.102</td>
<td>9.132</td>
<td>9.788</td>
</tr>
<tr>
<td>15</td>
<td>Op</td>
<td>+ -</td>
<td>7.889</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Op</td>
<td>+ +</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Ne</td>
<td>+ -</td>
<td>10.504</td>
<td>0.497</td>
<td>6.830</td>
<td>1.677</td>
<td>1.366</td>
<td>0.190</td>
</tr>
<tr>
<td>19</td>
<td>Co</td>
<td>+ -</td>
<td>6.011</td>
<td>4.612</td>
<td>5.199</td>
<td>14.056*</td>
<td>17.741*</td>
<td>16.432*</td>
</tr>
<tr>
<td>20</td>
<td>Co</td>
<td>+ -</td>
<td>0.939</td>
<td>5.427</td>
<td>0.033</td>
<td>9.103</td>
<td>11.148</td>
<td>8.357</td>
</tr>
<tr>
<td>21</td>
<td>Co</td>
<td>+ -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Co</td>
<td>+ -</td>
<td>6.845</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Op</td>
<td>+ +</td>
<td>6.777</td>
<td>1.160</td>
<td>55.315*</td>
<td>112.783*</td>
<td>73.753*</td>
<td>120.913*</td>
</tr>
<tr>
<td>24</td>
<td>Ne</td>
<td>+ +</td>
<td>4.071</td>
<td>5.572</td>
<td>19.170*</td>
<td>69.386*</td>
<td>53.257*</td>
<td>14.807*</td>
</tr>
<tr>
<td>25</td>
<td>Ag</td>
<td>+ -</td>
<td>6.396</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Ag</td>
<td>+ +</td>
<td>2.342</td>
<td>0.000</td>
<td>16.840*</td>
<td>0.128</td>
<td>4.143</td>
<td>1.892</td>
</tr>
<tr>
<td>27</td>
<td>Ag</td>
<td>+ +</td>
<td>3.484</td>
<td>9.199</td>
<td>0.662</td>
<td>10.178</td>
<td>19.252*</td>
<td>19.584*</td>
</tr>
<tr>
<td>28</td>
<td>Ag</td>
<td>+ +</td>
<td>0.982</td>
<td>2.312</td>
<td>0.930</td>
<td>15.908*</td>
<td>13.339</td>
<td>7.297</td>
</tr>
<tr>
<td>29</td>
<td>Ag</td>
<td>+ +</td>
<td>12.368</td>
<td>1.380</td>
<td>0.067</td>
<td>0.309</td>
<td>0.126</td>
<td>6.317</td>
</tr>
<tr>
<td>30</td>
<td>Ag</td>
<td>+ +</td>
<td>1.216</td>
<td>3.725</td>
<td>7.926</td>
<td>3.754</td>
<td>5.119</td>
<td>0.064</td>
</tr>
<tr>
<td>31</td>
<td>Op</td>
<td>+ +</td>
<td>1.054</td>
<td>4.382</td>
<td>14.746*</td>
<td>40.338*</td>
<td>38.894*</td>
<td>14.396*</td>
</tr>
<tr>
<td>32</td>
<td>Op</td>
<td>+ +</td>
<td>1.162</td>
<td>0.649</td>
<td>8.776</td>
<td>7.711</td>
<td>4.930</td>
<td>0.169</td>
</tr>
<tr>
<td>33</td>
<td>Ne</td>
<td>+ +</td>
<td>6.703</td>
<td>5.239</td>
<td>32.031*</td>
<td>20.390*</td>
<td>32.124*</td>
<td>0.060</td>
</tr>
<tr>
<td>34</td>
<td>Ag</td>
<td>+ +</td>
<td>1.673</td>
<td>0.563</td>
<td>35.046*</td>
<td>18.378*</td>
<td>13.353</td>
<td>8.642</td>
</tr>
<tr>
<td>35</td>
<td>Op</td>
<td>+ +</td>
<td>4.791</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Ag</td>
<td>+ -</td>
<td>2.761</td>
<td>1.447</td>
<td>22.953*</td>
<td>13.443</td>
<td>10.677</td>
<td>2.256</td>
</tr>
<tr>
<td>37</td>
<td>Co</td>
<td>+ +</td>
<td>2.178</td>
<td>0.115</td>
<td>5.849</td>
<td>3.716</td>
<td>4.006</td>
<td>2.503</td>
</tr>
<tr>
<td>38</td>
<td>Ag</td>
<td>+ -</td>
<td>0.329</td>
<td>6.730</td>
<td>0.750</td>
<td>4.650</td>
<td>0.899</td>
<td>0.186</td>
</tr>
<tr>
<td>39</td>
<td>Ne</td>
<td>+ +</td>
<td>27.545*</td>
<td>5.641</td>
<td>4.086</td>
<td>0.007</td>
<td>0.045</td>
<td>1.289</td>
</tr>
<tr>
<td>40</td>
<td>Ne</td>
<td>+ +</td>
<td>0.985</td>
<td>14.054*</td>
<td>20.062*</td>
<td>12.814</td>
<td>9.107</td>
<td>8.092</td>
</tr>
</tbody>
</table>

*Note. Ne = Neuroticism; Ag = Agreeableness; Op = Openness; Co = Conscientiousness. * = significant at \(\alpha = 2.07 \times 10^{-4} \).*
shows clearly how the third and fourth threshold categories yield better predictions of the block intercept estimates, as seen in Table 4.3.

The results of the likelihood ratio tests of the constrained models are given in Table 4.4 and summarized in the last two columns of Table 4.3. The null hypothesis of model equivalence was rejected for only two scale parameters. These are annotated in Figure 4.4 with their block code, which shows that they have a clearly high, negative deviation from the predicted value.

In the case of the intercept parameters, their predicted value was not invariant in 10 to 15 cases, depending on the item threshold category considered. The fourth one had the lowest number of non-invariant parameters, followed by the third one with 12. The second one had the highest number. The intercept estimate was invariant for all the threshold categories in 17 out of the 39 blocks for which the intercept parameter could be predicted (43.6%). Only in three of them the intercept parameter was found to be non-invariant for all the categories. The rest of the blocks had non-invariant intercept parameters in one to three threshold categories.

4.4.3. Exploration of the violations of the invariance assumption

4.4.3.1. Scale parameters

The problem of the likely sources of non-invariance was difficult to address for the scale parameters, due to the high rate of invariance. Explorations based on the statistical decision of invariance could not be done, but the value of the prediction error could be explored in relation to some factors. At the item level, it was plotted against its I-ECV. Visual inspection revealed no association between the two magnitudes. At the block level, the prediction errors were also plotted against the I-ECV of the pairing item, revealing no association either. At the questionnaire level, there only seemed to be the aforementioned general shrinking effect of the scale values. This could indicate an overall scaling factor affecting the items when presented in an FC format.
4.4.3.2. Intercept parameters

Regarding the invariance of the intercept parameters, threshold category used for the prediction seemed to play a role in its violation. The second category was the one that yielded less invariant parameters, while the fourth one yielded the more, with only 10 non-invariant parameters. This pattern was consistent across traits and polarities, as Table 4.5 shows.

Plotting the prediction error of the non-invariant intercept parameters in relation to the properties of the items and blocks can help study their possible effects on the invariance. This

<table>
<thead>
<tr>
<th>Threshold category</th>
<th>Number of parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>Neuroticism</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Openness</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Agreeableness</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Conscientiousness</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Note. Homo. = number of homopolar blocks; Hetero. = number of heteropolar blocks.
plot is shown in Figure 4.6. This figure illustrates how most of the intercept parameters had a positive prediction error, regardless of the traits or polarities of the items involved, or the threshold category. The fourth category was an exception, as there was an equal number of positive and negative errors among the non-invariant parameters. Moreover, there was an association between prediction error sign and polarity for this threshold category, as most of the negative errors were in homopolar blocks (i.e., with a direct item in second position), while most of the positive errors were in heteropolar blocks.

In Figure 4.6 we can also study how consistent the test results are across categories in more detail. Error sign was inconsistent across threshold categories for two blocks (blocks 3 and 56). In most cases, the test was significant either for only one (blocks 7, 10, 58, 61, 42, 72, and 79) or for two categories (blocks 13, 69, 6, 21, and 59). Only two of them were completely consistent across threshold categories, being significant and with the same sign for the four of them (blocks 66 and 54), and six (blocks 32, 68, 20, 23, 31, and 48) were consistent for three of the categories.

Considering these results, the analysis at the item level shows that the traits addressed may play a role in the violations of the invariance assumption. Neuroticism items were the most present in blocks where the intercept parameter was non-invariant, followed by Openness. The less numerous ones were the items tapping Agreeableness. Regarding item multidimensionality, the intercept error was relatively constant across the different values of the items I-ECV indicator. Therefore, multidimensionality of the items had no apparent association with the non-invariance of the intercept parameters.

At the block level, the item position seemed to interact with the trait: Most of the items tapping Neuroticism in non-invariant blocks were in the second position; in the first position however, there were less items tapping Neuroticism than other traits. Openness items, on the other hand, were more prevalent in the first position among those with non-invariant intercept
Figure 4.6. Deviation of the non-invariant block intercept parameters with respect to their predicted values from the item intercept parameters.
parameters. Regarding polarity, given the questionnaire design (with all inverse items in second place) its effect at the item and block levels could not be studied separately. However, none of the block polarities had a clear superior effect on the lack of invariance than the other. Finally, at the questionnaire level, we can see that there is an apparent shrinking effect on the intercept parameters, similar to the finding in the scale parameters. This may imply a violation of the measurement assumption given by a scaling factor.

4.5. Discussion

From the results above, we can conclude that, in general, the invariance assumption is fulfilled in the FC format. Significance testing is highly controversial nowadays, and many researchers advocate for an analysis of the effect size of the differences (Peng, Chen, Chiang, & Chiang, 2013; Wilkinson, 1999). In our study, apart from the high rates of invariance, we found high correlations between the parameters of the two formats, but for some parameters the difference between the predicted and the estimated values were of a relatively high magnitude. Nevertheless, we could identify certain phenomena that seem to be involved in the violations of the invariance assumption. There was a general trend of the parameters to be underestimated (in absolute value), as the mean relative errors show. Though assuming the GS items were unidimensional exerted a shrinking effect on their parameters, the block parameters themselves were even more shrunk with respect to the item parameters in the unidimensional models. This result points to a likely general violation of the measurement assumption in the form of a scaling factor, which affects both the scale and the intercept parameters. This violation would affect all the parameters in a similar fashion, and could be estimated when assessing the invariance, leading to a hypothesis of partial or conditional invariance.

Apart from that, some of the parameters did not pass the invariance test, yielding evidence of violations of the invariance assumption. The intercept parameters were the most affected, whereas only two scale parameters were non-invariant. Due to this low rate of non-
invariance, the violations of invariance on the scale parameters were difficult to interpret. Apart from the hypothetical scale shrinking discussed above, no violation of the measurement assumption seemed to play a specific role in these parameters, given that item multidimensionality and prediction error were unrelated.

Regarding the intercept parameters, we have seen that the violations of the invariance assumption depends at least in part on the threshold category used to predict the intercept parameter values. In fact, only a few estimates deviated from the prediction in a consistent manner. Arguably, given the central response category was an *indifference category* (i.e., *neither agree nor disagree*), the more centered a threshold category k' was in the GS items, the closer the location parameters $b_{kp,k'}$ must have been to the location parameter b_{ip} of that item when presented in a dichotomous format. Therefore, one would think that central categories should be more reliable predictors. Contrary to this, our results showed that the higher the category, the better the predictions were, being the third and (specially) the fourth category the best ones. If higher threshold categories give better predictions of the block intercept parameter, a violation of the measurement assumption must be taking place, implying the location parameters are actually closer to those categories and therefore are negatively biased when paired in a FC block.

We also found indications that some properties of the items might be affecting the invariance of the intercept parameters. *Neuroticism* and *Openness* seemed to be more involved in the non-invariant intercept parameters. Moreover, violations of invariance were more prevalent with *Neuroticism* items in the second position and *Openness* items in the first one, suggesting a complex interaction effect among the two latent traits, item position within the block, and a possible response bias. Given that most of the intercept parameters were positively deviated with respect to their prediction, it is likely that such a bias tends to create an attraction effect on the first item in the block.
There is another possible explanation however, which would imply violations of both the measurement and independence assumption. As Figure 4.5 shows, a majority of the intercept values were negative. Given the aforementioned underestimation of the absolute values, it is not surprising that most of the non-invariant values had a positive prediction error; indeed, only four of the intercept estimates that resulted non-invariant for some threshold category were positive and, unsurprisingly, their prediction error was negative. These were blocks 3, 7, 10, and 13 (see Figure 4.6). However, we have seen that the actual item location may be negatively biased in the FC blocks. Considering the violations of the invariance, there are two factors that lead to think the fourth threshold category predictions are more accurate: First, this category has the least number of non-invariant parameters. Second, it is the only category that yields evenly distributed positive and negative prediction errors among those. The remaining threshold categories, however, give a vast majority of positively deviated block intercepts, which could be explained by the questionnaire-level violation of the measurement assumption: the combined effects of the scaling factor and the location bias. Finally, a block-specific effect of the items would induce a violation of the independence assumption, leading to an increased attractiveness of one item or the other.

If we focus on the fourth threshold category, we see that polarity seems to be associated with the prediction error sign, as four out of five of the negative errors occur in homopolar blocks (i.e. were the second item is direct), and the opposite happens in heteropolar blocks. This would imply that the second item would tend to be relatively more attractive in homopolar direct blocks, while in heteropolar blocks, the direct item would be relatively less attractive. In conclusion, if we accounted for the hypothetic general violation of the measurement assumption (scaling factor and item location bias), the resulting non-invariant parameters would probably be more interpretable as violations of the independence assumption, possibly related to the item polarities and measured traits.
4.6. Conclusions

We have provided evidence that we can assume invariance between the GS and the FC formats. This fact has a great practical relevance, since it enables building FC blocks based on the parameters of the individual items. Given that there are many applications of personality questionnaires in GS formats, our results legitimate the design of FC blocks using the already known parameters of the items as a proxy for the block parameters. In addition to the obvious reduction in costs of reusing prior applications of GS questionnaires, this may be useful in optimizing certain design criteria of FCQs. In addition, if the violations of the invariance assumption happened to have negligible impact on the measurement, the application of such a method would be rather straightforward.

Nevertheless, taking into account the possible violations of the invariance assumption should be paramount for research purposes. Three phenomena may have a relevant effect on the invariance. First, if solid evidence is found of a shrinking effect, this would be detrimental to the information of the FCQ (Morillo et al., 2016) and should be consequently considered. However, it is a constant effect across blocks, and thus should be relatively easy to predict. Nevertheless, we could obtain a more accurate prediction of this effect by accounting for item multidimensionality. Extending the MUPP-2PL model in order to consider specific-facet content would be an improvement in this sense.

Second, we found evidence for a likely bias on the intercept parameters: The high threshold category values seemed to be better predictors of their values, pointing to a negative bias of the item location parameters when paired in a FC block. However, this phenomenon might be interpreted instead as a positive bias in the GS items, such as an acquiescent response style (Messick, 1966). The exploration of this bias may be an interesting research line, given the FC format is often claimed to neutralize some response styles endemic to the GS format.
Applying methods specifically aimed for this purpose, such as random intercept item factor analysis (Maydeu-Olivares & Coffman, 2006), could help in this sense.

Finally, there is some evidence that blocks tapping certain dimensions and with certain polarity patterns may be more sensitive to violations of the invariance assumption. These violations are a rich source of hypotheses on their own. For example, one could apply experimental FC blocks designed to induce or mitigate non-invariance, and test the subsequent predictions.

This study has some limitations worth highlighting. Firstly, the available dataset did not allow for an accurate manipulation of all the relevant factors. Researchers should overcome two limitations in further studies: (1) To design FCQs that balance the order of the inverse item in heteropolar blocks, and (2) to calibrate the parameters of the whole item set in both formats. Using a different response format for the items could also be advantageous, such as an even number of GS response categories, or a dichotomous format. More complete response vectors would also be desirable, as the present one was lacking a large amount of responses for the FC blocks in comparison with the items.

Secondly, the Neuroticism items complicated the interpretation of the results somehow. We may safely assume that Neuroticism represents the undesirable pole of its dimension (with Emotional stability in the desirable one), while the remaining traits would be interpreted as desirable. As stated in Chapter 2, the polarity of a latent dimension is arbitrary, and therefore one can revert it without any consequence from the modelling point of view. Reframing the Neuroticism scale as Emotional stability would benefit the interpretation of the parameter deviations, as we could always identify the positive pole with the desirable one.

Finally, it is worth pointing the problems found when estimating the models with the Extraversion trait. We could not find convergence due to the latent correlation matrix becoming singular, as the correlations between the dimension of Extraversion and the others
approached 1. This may suggest some property of the FC format affecting specifically this dimension. Whatever the actual explanation is, it should not be overlooked, if we want the results to be fully extrapolated to the Big Five model, and to other theoretical models the FC format may be applied to.

Wrapping up, this study introduces a methodology that allows testing the assumptions of the MUPP-2PL model for paired FC blocks. The application of this method may open up further research lines, as the ones stated previously. Furthermore, the comparison between FC blocks and GS could allow for disambiguating between the MUPP-2PL and the TIRT models; although both models predict similar results when applied to FC blocks, it is not so when the parameters are compared across response formats. While the invariance in the MUPP-2PL model is given by the equality of the parameters in an IRT metric, in the TIRT it is given by their equality in a factorial metric. In conclusion, we expect this proposal to contribute to developing and enriching the field of study of FCQs to a significant degree.
IRT MODELS FOR FORCED-CHOICE QUESTIONNAIRES

References

IRT MODELS FOR FORCED-CHOICE QUESTIONNAIRES

Chapter 5:

General conclusions

The present dissertation has introduced the MUPP-2PL model, a variant of the MUPP model (Stark et al., 2005) with a dominance measurement assumption. In the first study, we have introduced the model and a MCMC algorithm for the Bayesian joint estimation of the structural and incidental parameters. We have tested the MUPP-2PL model and its estimation through the algorithm under simulation conditions and with empirical data, and compared the results with the TIRT model (Brown & Maydeu-Olivares, 2011).

In the second one, we have applied this methodology to the study of empirical issues that may affect the validity of the measures. More precisely, we have demonstrated that the model may be empirically underidentified in the conditions needed to control bias due to response styles. We have demonstrated that the measures can be distorted due to a dimensional restriction of the latent space the instrument is designed to measure.

In the third and last study, we have tested the invariance assumption underlying the MUPP-2PL model. We have found evidence that the assumption largely holds on empirical
IRTV MODELS FOR FORCED-CHOICE QUESTIONNAIRES

grounds, and explored the conditions under which it may not. Furthermore, we have laid the
foundations for a methodology for future studies testing hypotheses regarding the violations of
this assumption.

We have discussed these three studies separately from one another. However, we may
also arrive to some general conclusions from the results of the three studies and the
relationships among them. Next, we present a summary of the most relevant findings of these
studies, with a brief discussion of their implications. Following it, we discuss the limitations
of this dissertation and future research lines stemming from the present findings.

5.1. Summary of the most relevant findings

1. A variant of the MUPP model (Stark et al., 2005) under a dominance measurement
assumption can be formulated and identified; it has been called the MUPP-2PL model. This
model is more parsimonious than the original MUPP model. In addition, it may be more
appropriate than the original when the latent agreement to the items in a block is a monotonical
function of the trait level.

2. When data represents responses to a multidimensional pairwise FC questionnaire,
both the MUPP-2PL and the TIRT model (Brown & Maydeu-Olivares, 2011) can be applied.
Under these conditions, the two models are quasi-equivalent. Scaling factor aside, their
parameters and estimation methods are interchangeable with negligible consequences.

3. A Bayesian procedure for estimating structural and incidental parameters jointly is
feasible. The method is based on Markov-Chain Monte Carlo simulation, and an
implementation in R (R Core Team, 2017) has been developed. Despite its high computational
intensiveness, it gives highly accurate results. These results are satisfactory even under two
allegedly unfavorable conditions: without unidimensional blocks, and without blocks with
different polarity combinations (i.e., heteropolar blocks).

4. The new Bayesian estimation procedure outperforms the estimation method
proposed for the TIRT model, based on analysis of bivariate information through confirmatory factor analysis (Brown & Maydeu-Olivares, 2012). Particularly, it yields more accurate estimation errors for the incidental parameters, a better estimation of the latent space correlational structure, and more reasonable estimates when empirical information is scant. Arguably, the first result is due to the joint estimation of structural and incidental parameters, the second to the use of full information, and the third to the Bayesian features of the algorithm.

5. The direct bidimensional pairs (DBP) design for FC questionnaires, intended to control for bias associated with response styles, may suffer from an empirical underidentification we may call dimensional restriction. This condition necessarily leads to (a) a notable reduction of the reliability, and (b) distortion of the correlations among the latent trait estimates, in the form of negative bias. These properties are the same attributed to ipsative scores. Similar to them, the distortion of the latent trait estimates will be worse the more positive the actual latent dimension correlations are.

6. A FC instrument designed under the DBP principle, although not fulfilling the conditions for the empirical underidentification, may be close enough to it to have identification issues. We may refer to the distance of the instrument information matrix to the empirical underidentification as its dimensional sensitivity. This property can be quantified, and its magnitude estimated using two proposed indices: the least singular value (LSV), and the least eigenvalue (LEV).

7. We have proposed cutoff criteria for these two indices, which are useful to assess the property of dimensional sensitivity of an instrument. However, neither the LSV nor the LEV capture all the relevant phenomena related to the dimensional restriction of a DBP FC instrument. Therefore, these indices should not be used for attempting to maximize the dimensional sensitivity.

8. The invariance assumption of the MUPP-2PL model can be tested using a nested
model comparison method. We have showcased the Likelihood Ratio test applied to the dataset of empirical responses to a FC questionnaire measuring the Big-Five personality model (McCrae & John, 1992).

9. This method has provided evidence in favor of the invariance assumption of the MUPP-2PL model parameters. Therefore, estimates from the graded response model (Samejima, 1968), applied to a graded-scale instrument made up by the individual items of the FCQ, may yield accurate predictions of the MUPP-2PL model parameters.

10. The item scale estimates especially fulfill the invariance assumption. Therefore, their predictions can be used to estimate the dimensional sensitivity of a pairwise multidimensional FC instrument using the LSV and LEV, attending to its item pairings.

11. The violations of the invariance assumption seem to follow at least partially predictable patterns. Global translation and/or scaling transformations may affect the whole FC format, while individual block parameters may deviate from their predictions due to factors such as item dimensions or polarities.

5.2. **Limitations and future research lines**

The most important limitation is probably the fact that all the theoretical developments are only applicable to pairwise FC instruments. However, we believe that these contributions are relevant enough for two reasons: On one hand, this format is widely popular and is used in many instruments; on the other, our results lay the foundations for future theoretical developments on other formats with more than two items. Similarly, the connections to the most important IRT models for FC instruments, the MUPP and the TIRT models, allows considering the generalizability of these results. For example, the MUPP model is known to suffer from underidentification issues (Ponsoda, Leenen, De la Torre, Morillo, & Hontangas, 2013). The relationship between the two models allows hypothesizing that their properties may be also related, although it is not clear yet whether they will be comparable. Similar
IRT MODELS FOR FORCED-CHOICE QUESTIONNAIRES

theoretical developments may also be applied to other response formats besides the pairwise preference (e.g. with more than two items per block). Independently of the number of items per block, the TIRT model is empirically underidentified under certain conditions (that imply homopolar blocks with items all tapping different dimensions) which yield a rank-restricted loading matrix (Brown, 2016a). The high similarity of this property to the dimensional restriction condition described in Chapter 3 leads to consider that one will likely find, for these response formats, very similar results.

There are also other pending issues before we can be confident of the robustness of FC instruments against motivated distortion. The DBP design is not a sufficient condition for controlling response styles. At least several questions that have not been addressed here may be relevant: How to pair the items according to their preference indices, and what impact this pairing may have on the model properties. In addition, we must test the invariance assumption under different experimental conditions; in Chapters 1 and 4, we only used a straight-take condition with a very restricted sample (undergraduate students). Following Waters (1965), we need studies conducted under assorted high-stakes conditions and/or with different target populations in order to safely generalize the results. Finally, the design of bias-robust instruments with heteropolar blocks would be a challenging project, as discussed in Chapter 3.

Another promising application of our results is in building multidimensional FC computerized adaptive tests of non-cognitive traits. In order to exploit the full capabilities of the FC method, an adaptive instrument should be able to assemble blocks on-line. A major restraint for this is the underidentification of the item location parameters. An interesting research line would be to build FC questionnaires with items previously calibrated in a GS format, which overcomes that limitation. However, the fulfillment of the invariance assumption is a necessary condition for that. As discussed in Chapter 4, an experimental design (varying the pairings in location, dimension tapped, polarity, etc.) may also allow testing for
specific hypotheses of non-invariance. This would in turn yield insights about pairing conditions to avoid.

It is also worth considering that in Chapter 4 we tested the invariance assumption on a design with blocks of mixed polarities. Those results are not straightforwardly extrapolable to the DBP-design case, even less if dimensional sensitivity is compromised. However, it is worth highlighting that the dimensional restriction of an instrument does not imply a distortion in the structural parameter estimates. If the underidentification is local to incidental parameters, it may be possible that block parameters can be still accurately recovered. This would allow calibrating items for adaptive testing even under unfavorable conditions without much concern.

The Bayesian estimation procedure introduced in Chapter 2, and used in the second simulation study of Chapter 3, gave very accurate results. However, there are some drawbacks and possible future developments. First, no model fit indices have been introduced yet; ongoing developments in the field of Bayesian statistics may allow proposing and testing such indices. Second, the intensive consumption of computational resources of the algorithm may be greatly optimized. Using compiled code and/or graphical computing would imply a great improvement in terms of computation time. Other optimization strategies that may be explored are on-line convergence testing, stopping-rule optimizations, and better adaptive sampling, all of which would improve its implementation.

The Bayesian joint estimation method introduced in Chapter 1 could not be applied in Chapter 3 to test the invariance assumption. Apart from the lack of model fit indices, another obstacle was the need for a general modeling framework that allows specifying restrictions and nesting. Fortunately, nowadays there are several open source initiatives offering solutions to these kind of problems, such as the R packages lavaan (Rosseel, 2012) and mirt (Chalmers, 2012). In the near future, we would like to join this movement by developing a new version of the MCMC algorithm that is ready to use with such state-of-the-art modeling software.
Capítulo 6:

Conclusiones generales

Esta tesis ha presentado el modelo MUPP-2PL, una variante del modelo MUPP (Stark et al., 2005) bajo un supuesto de medida de dominancia. En el primer estudio, hemos presentado el modelo y un algoritmo MCMC para la estimación Bayesiana conjunta de los parámetros estructurales e incidentales. Hemos puesto a prueba el modelo MUPP-2PL y su estimación a través de dicho algoritmo, tanto en condiciones de simulación como con datos empíricos, y hemos comparado sus resultados con el modelo TIRT (Brown & Maydeu-Olivares, 2011).

En el segundo, hemos aplicado esta metodología al estudio de cuestiones empíricas que pueden afectar a la validez de las medidas. Concretamente, hemos demostrado que, bajo las condiciones necesarias para controlar los sesgos debidos a estilos de respuesta, el modelo puede estar empíricamente indeterminado. Hemos demostrado que el espacio latente que el instrumento está diseñado para medir puede sufrir de una restricción dimensional, dando lugar a distorsión en las medidas.
En el tercer y último estudio, hemos contrastado el supuesto de invariancia que subyace al modelo MUPP-2PL. Hemos hallado evidencia empírica de que el supuesto se cumple en gran medida, y hemos explorado las condiciones bajo las cuales puede no cumplirse. Además, hemos propuesto una metodología para contrastar las hipótesis acerca de las violaciones de este supuesto en futuros estudios.

Hemos interpretado los resultados de estos tres estudios por separado. Sin embargo, también podemos llegar a algunas conclusiones generales a partir de los tres y las relaciones entre ellos. A continuación, presentamos un resumen de los hallazgos más relevantes, con una breve discusión de sus implicaciones. Después, comentamos las limitaciones de esta tesis y las futuras líneas de investigación derivadas de los hallazgos expuestos.

6.1. Resumen de los hallazgos más importantes

1. Se puede formular e identificar una variante del modelo MUPP (Stark et al., 2005) bajo el supuesto de medida de dominancia; esta variante se le ha denominado modelo MUPP-2PL. Este modelo es más parsimonioso que el MUPP original. Además, puede ser más apropiado que el original cuando el nivel latente de acuerdo con los ítems de un bloque es una función monótona del rasgo latente.

2. Tanto el modelo MUPP-2PL como el modelo TIRT (Brown & Maydeu-Olivares, 2011) se pueden aplicar a las respuestas a un cuestionario de elección forzosa multidimensional por pares. En estas condiciones, ambos modelos son cuasi-equivalentes. Obviando el factor de escala, sus parámetros y métodos de estimación se pueden intercambiar sin consecuencias significativas.

3. Es factible aplicar un procedimiento bayesiano de estimación conjunta de los parámetros estructurales e incidentales. Dicho procedimiento se basa en simulación de Markov-Chain Monte Carlo, y hemos desarrollado una implementación en R (R Core Team, 2017). A pesar de su alto coste computacional, proporciona resultados de muy alta precisión.
Éstos son satisfactorios incluso bajo dos condiciones presuntamente desfavorables: sin bloques unidimensionales y sin bloques con diferentes combinaciones de polaridad (i.e., bloques heteropolares).

4. El nuevo procedimiento Bayesiano de estimación supera al método de estimación propuesto para el modelo TIRT, basado en análisis factorial confirmatorio de información bivariada (Brown y Maydeu-Olivares, 2012). En particular, produce errores de estimación más precisos para los parámetros incidentales, una mejor estimación de las correlaciones del espacio latente, y estimaciones más razonables condiciones de escasez de información empírica. Asumimos que el primer resultado se debe a la estimación conjunta de los parámetros, el segundo al uso de información completa, y el tercero a las características Bayesianas del algoritmo.

5. El diseño de pares bidimensionales directos (DBP; por direct bidimensional pairs) para cuestionarios de elección forzosa, propuesto para el control de los sesgos debidos a estilos de respuesta, puede dar lugar a una indeterminación empírica, que hemos denominado restricción dimensional. Esta condición conduce necesariamente a (a) una importante reducción de la fiabilidad, y (b) un sesgo negativo en las correlaciones entre las estimaciones de rasgo latente. Estas propiedades son las mismas que se atribuyen a las puntuaciones ipsativas. Al igual que en éstas, la distorsión de las estimaciones de rasgo latente empeoran cuanto más positivas son las correlaciones reales entre las dimensiones latentes.

6. Un instrumento de elección forzosa con diseño DBP, aun no cumpliendo la condición para la indeterminación empírica, puede estar lo suficientemente cerca de ésta como para tener problemas de identificación. Podemos referirnos a la distancia entre la matriz de información del instrumento y la indeterminación empírica como sensibilidad dimensional. Esta propiedad puede cuantificarse y se puede estimar su magnitud utilizando los dos índices propuestos: el menor valor singular (LSV; por least singular value) y el menor autovalor (LEV;
7. Estos dos índices son útiles para evaluar la propiedad de sensibilidad dimensional de un instrumento, y hemos propuesto puntos de corte mínimos para los mismos. Sin embargo, ninguno de los dos puede dar cuenta de todos los fenómenos relevantes asociados a la restricción dimensional de un instrumento de elección forzosa con diseño DBP. Por lo tanto, estos índices no deben utilizarse para intentar maximizar la sensibilidad dimensional.

8. El supuesto de invariancia del modelo MUPP-2PL puede contrastarse utilizando un método de comparación de modelos anidados. Hemos mostrado el uso de la razón de verosimilitudes aplicada a las respuestas empíricas a un cuestionario de elección forzosa para el modelo de personalidad Big-Five (McCrae & John, 1992).

9. Este método ha proporcionado evidencia favorable al supuesto de invariancia de los parámetros del modelo MUPP-2PL. Por lo tanto, se pueden obtener predicciones precisas de los parámetros del modelo MUPP-2PL para un cuestionario de elección forzosa partiendo de las estimaciones del modelo de respuesta graduada (Samejima, 1968) aplicadas a un cuestionario con los ítems aplicados individualmente en formato de escala graduada.

10. Las estimaciones de los parámetros de escala de los ítems cumplen el supuesto de invariancia con alta precisión. Por lo tanto, las predicciones a partir de los ítems de escala graduada pueden utilizarse para estimar la sensibilidad dimensional de un instrumento de elección forzosa multidimensional por pares utilizando el LSV y el LEV, según el emparejamiento de los ítems.

11. Las violaciones del supuesto de invariancia parecen seguir patrones parcialmente predecibles al menos. Parece haber fenómenos de traslación y/o escalado que afectan al formato de elección forzosa en general. Los parámetros de los bloques individuales pueden desviarse de sus predicciones debido a factores como los rasgos o las polaridades de sus ítems constituyentes.
6.2. Limitaciones y líneas de investigación futuras

La limitación más importante de esta tesis es probablemente el hecho de que todos los desarrollos teóricos son aplicables solamente a instrumentos de elección forzosa por pares. Sin embargo, creemos que estas contribuciones son suficientemente relevantes por dos razones: Por un lado, este formato es muy popular y se utiliza en muchos instrumentos; por otro, nuestros resultados sientan las bases para futuros desarrollos teóricos en otros formatos de respuesta con más de dos ítems. De igual modo, las relaciones del modelo MUPP-2PL con los modelos de teoría de respuesta al ítem más importantes para cuestionarios de elección forzosa, los modelos MUPP y TIRT, permiten considerar la generalizabilidad de estos resultados. Por ejemplo, se sabe que el modelo MUPP padece problemas de indeterminación (Ponsoda, Leenen, De la Torre, Morillo y Hontangas, 2013). La relación entre los dos modelos permite hipotetizar que sus propiedades también pueden estar relacionadas, aunque aún no está claro que sean comparables. También pueden aplicarse desarrollos teóricos similares a otros formatos de respuesta distintos de las preferencias por pares (por ejemplo, con más de dos ítems por bloque). Independientemente del número de elementos por bloque, el modelo TIRT está empíricamente indeterminado bajo ciertas condiciones (que implican bloques homopolares con ítems de diferentes dimensiones), las cuales dan lugar a una matriz de pesos de rango incompleto (Brown, 2016a). La alta similitud de esta propiedad con la condición de restricción dimensional descrita en el Capítulo 3 nos lleva a asumir que, muy probablemente, se encontrarán resultados muy similares para estos formatos de respuesta.

Hay también otras cuestiones pendientes, antes de que podamos confiar en la robustez de los instrumentos de elección forzosa frente a los intentos de distorsión de las respuestas. Cabe reseñar que el diseño DBP no es una condición suficiente para el control de los estilos de respuesta. Varias preguntas, que no han sido abordadas aquí, pueden ser relevantes: Cómo emparejar los ítems según sus índices de preferencia, y qué impacto puede tener el
emparejamiento en las propiedades del modelo. Además, debemos contrastar el supuesto de invariancia bajo diferentes condiciones experimentales; en los Capítulos 1 y 4, sólo se utilizó una condición de honestidad con una muestra muy restringida (estudiantes de grado). De acuerdo con Waters (1965), necesitamos estudios bajo condiciones diversas de altas consecuencias y/o con diferentes poblaciones objetivo, para poder generalizar los resultados fiablemente. Por último, un proyecto ambicioso puede ser diseñar instrumentos resistentes a los sesgos de respuesta con bloques heteropolares, como argumentamos en el Capítulo 3.

La construcción de tests adaptativos informatizados multidimensionales de elección forzosa para la medida de rasgos no cognitivos es otra aplicación prometedora de estos resultados. Para aprovechar al máximo las capacidades del método de elección forzosa, un instrumento adaptativo debería ser capaz de ensamblar los bloques sobre la marcha. Una limitación importante para esto es la indeterminación de los parámetros de posición de los ítems. Una línea de investigación interesante sería la construcción de cuestionarios de elección forzosa con ítems previamente calibrados en formato de escala graduada, superando dicha limitación. Sin embargo, el cumplimiento del supuesto de invariancia es una condición necesaria para ello. Como se argumentó en el Capítulo 4, un diseño experimental (variando los emparejamientos de ítems por posición, rasgo, polaridad, etc.) también permitiría contrastar hipótesis específicas de violación de la invarianza. Esto, a su vez, arrojaría luz sobre condiciones de emparejamiento que deberían evitarse.

Es importante también tener en cuenta que en el Capítulo 4 contrastamos el supuesto de invarianza en un diseño con polaridades de bloque mixtas. Estos resultados no son directamente extrapolables al caso del diseño DBP, menos aún si la sensibilidad dimensional se ve comprometida. Sin embargo, la restricción dimensional de un instrumento no implica necesariamente una distorsión en las estimaciones de los parámetros estructurales. Si la indeterminación empírica es local a los parámetros incidentales, es posible que los parámetros
de bloque puedan aún ser recuperados con precisión. Esto permitiría calibrar ítems para tests adaptativos, incluso bajo condiciones desfavorables, sin mayores consecuencias.

El procedimiento de estimación Bayesiana presentado en el Capítulo 2, y utilizado en el segundo estudio de simulación del Capítulo 3, dio resultados muy precisos. Sin embargo, existen algunos inconvenientes, así como posibles desarrollos futuros. En primer lugar, no se ha propuesto aún ningún índice de ajuste del modelo; la evolución actual en el campo de las estadística Bayesiana puede permitir proponer y probar estos índices. En segundo lugar, el consumo intensivo de recursos computacionales del algoritmo puede ser optimizado en gran medida. El uso de código compilado y/o computación gráfica implicaría una mejora sustancial en tiempo de cálculo. Otras estrategias de optimización a explorar, que mejorarían su implementación, son la evaluación de la convergencia en línea, la optimización de las reglas de parada, o mejoras en el muestreo adaptativo.

El método de estimación Bayesiana conjunta presentado en el Capítulo 1 no pudo aplicarse en el Capítulo 3 al problema del contraste de invariancia. Aparte de la falta de índices de ajuste del modelo, otro obstáculo era la necesidad de un marco general de modelado que permitiese especificar restricciones y modelos anidados. Por suerte, a día de hoy existen iniciativas de código abierto que ofrecen soluciones a este tipo de problemas, tales como los paquetes de R lavaan (Rosseel, 2012) y mirt (Chalmers, 2012). En el futuro próximo, desearíamos unirnos a este movimiento, desarrollando una nueva versión del algoritmo MCMC que pueda usarse directamente con este software de modelado de última generación.
IRT MODELS FOR FORCED-CHOICE QUESTIONNAIRES

References

IRT MODELS FOR FORCED-CHOICE QUESTIONNAIRES

162
IRT MODELS FOR FORCED-CHOICE QUESTIONNAIRES

IRT MODELS FOR FORCED-CHOICE QUESTIONNAIRES

165
Appendices:

Chapter 2 supplementary materials

Appendix A:

MUPP-2PL model information function

Given the algebraical equivalence with the MCLM, the information function of the MUPP-2PL model can be straightforwardly obtained by applying the appropriate constraints to that of the former model. Ackerman (1994) derived the information function for the bidimensional case of the MCLM. Considering only bidimensional items, and applying his Equation 2.7 to the multidimensional case of the MUPP-2PL results in

\[
I(\theta_j) = \sum_{i=1}^{n} \begin{bmatrix}
 a_{11}^2 P_i(\theta_j) Q_i(\theta_j) & a_{11} a_{21} P_i(\theta_j) Q_i(\theta_j) & \cdots & a_{11} a_{D_i} P_i(\theta_j) Q_i(\theta_j) \\
 a_{21} a_{11} P_i(\theta_j) Q_i(\theta_j) & a_{21}^2 P_i(\theta_j) Q_i(\theta_j) & \cdots & a_{21} a_{D_i} P_i(\theta_j) Q_i(\theta_j) \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{D_i} a_{11} P_i(\theta_j) Q_i(\theta_j) & a_{D_i} a_{21} P_i(\theta_j) Q_i(\theta_j) & \cdots & a_{D_i}^2 P_i(\theta_j) Q_i(\theta_j)
\end{bmatrix},
\]

(A.1)

where, if \(d \) stands for the latent dimension, \(a_{di} = a_{i1} \) if \(d = \tilde{\imath}_1 \), \(a_{di} = -a_{i2} \) if \(d = \tilde{\imath}_2 \), and 0 otherwise. \(P_i(\theta_j) \) is short-hand notation for \(P_i(Y_{ij} = 1|\theta_j) \) in Equation 2.2, and \(Q_i(\theta_j) = 1 - P_i(\theta_j) = P_i(Y_{ij} = 2|\theta_j) \).
Appendix B:

Bayesian Estimation algorithm for the MUPP-2PL model estimation

B.1. MCMC sampling scheme

We implemented a fixed-scan Metropolis-within-Gibbs algorithm (Chib & Greenberg, 1995; Geyer, 2011; Patz & Junker, 1999b) to obtain a sample from the full posterior distribution in Equation 2.6. The sampling scheme is an iterative process, which starts from some initial values for the latent trait, scale, and intercept parameters; each iteration \(t (t = 1, 2, \ldots, M) \) consists of four successive steps. In each step the parameters of a particular type are updated by drawing from their conditional distribution. An R 3.0.2 routine of this algorithm is available from the authors upon request.

B.1.1. Step 1 (drawing \(\Sigma_\theta^{(t)} \))

As explained before, \(\Sigma_\theta \) is restricted to a correlation matrix. Due to this restriction, \(\Sigma_\theta^{(t)} \) cannot be directly sampled from a known distribution (Liu, 2008). Instead, we propose to use a Metropolis step as suggested by Liu (2008):

- A generalized candidate prior \(\tilde{\Sigma}_\theta^* \) is drawn from a generalized candidate proposal distribution

\[
\tilde{\Sigma}_\theta^* \sim \text{Inv } - \text{Wishart}(N + D, \mathbf{e}' \mathbf{e}),
\]

(\text{B.1})

where \(\mathbf{e} \) is a \(N \times D \) matrix such that

\[
\mathbf{e} = \{e_{j1}, \ldots, e_{jd}, \ldots, e_{jD}; \sum_{j=1}^{N} e_{jd}^2 = 1; \forall d \in [1, D]\},
\]

(\text{B.2})

\[
\theta_{jd}^{(t-1)} = E^{-1} e_{jd}; \forall j \in [1, N], \forall d \in [1, D],
\]

(\text{B.3})

and \(E \) is a \(D \times D \) expansion parameter matrix such that \(\tilde{\Sigma}_\theta = E \Sigma_\theta E \).

- \(\tilde{\Sigma}_\theta^* \) is transformed to \(\Sigma_\theta^* \) through

\[
\Sigma_\theta^* = E^{-1} \tilde{\Sigma}_\theta^* E^{-1}.
\]

(\text{B.4})

- Candidate sample \(\Sigma_\theta^* \) is accepted with probability
\[
\pi = \min \left\{ 1, \left(\frac{|\Sigma_{\theta}|}{|\Sigma_{\theta}^{(t-1)}|} \right)^{(D+5)} \right\},
\]
(B.5)

- If \(\Sigma_{\theta}^* \) is accepted, then \(\Sigma_{\theta}^{(t)} = \Sigma_{\theta}^* \); otherwise, \(\Sigma_{\theta}^{(t)} = \Sigma_{\theta}^{(t-1)} \).

Note that there the tuning parameter in equations A1 and A5 (Liu, 2008) has been omitted here for simplicity, as it is set to a zero matrix.

B.1.2. Step 2 (drawing \(\theta^{(t)} \)).

For each person \(j (j = 1, \ldots, N) \), a \(D \)-dimensional latent trait vector \(\theta_j^{(t)} \) is sampled from the full conditional distribution, which can be shown to be proportional to

\[
f \left(\theta_j | \Sigma_{\theta}^{(t)}, \theta_1^{(t)}, \ldots, \theta_{j-1}^{(t)}, \theta_{j+1}^{(t)}, \ldots, \theta_N^{(t-1)}, a^{(t-1)}, d^{(t-1)}, Y \right)
\propto f \left(\theta_j | \Sigma_{\theta}^{(t)} \right) f \left(Y_j | \theta_j, a^{(t-1)}, d^{(t-1)} \right).
\]
(B.6)

Then, applying the property of independence across respondents, the likelihood of the \(j \)-th examinee’s response vector, conditional on the parameter samples \(a^{(t-1)} \) and \(d^{(t-1)} \) is

\[
f \left(Y_j | \theta_j, a^{(t-1)}, d^{(t-1)} \right) = \prod_{i=1}^{n} \left[p_i^{2-Y_{ij}(\theta_j)} q_i^{Y_{ij}-1}(\theta_j) \right].
\]
(B.7)

As the distribution in Equation B.6 is not recognized as an easy-to-sample-from standard distribution, a random-walk Metropolis step (Tierney, 1994) is implemented as follows:

- A candidate \(\theta_j^* \) is drawn from a \(D \)-dimensional multivariate normal proposal distribution

\[
\theta_j^{(t)} \sim \mathcal{N} \left(\theta_j^{(t-1)}, c_j^2 I_D \right),
\]
(B.8)

where \(I_D \) is a \(D \)-dimensional identity matrix and \(c_j^2 \) is a tuning factor needed to obtain reasonable acceptance rates as suggested by Gelman, Roberts, and Gilks (1996). The latter constant is adapted in the burn-in phase of the algorithm (Rosenthal, 2011); we suggest an initial value of 0.25 for \(c_j^2 \) (\(\forall j \in [1, N] \)).

- The candidate \(\theta_j^* \) is accepted with probability
\[
\pi = \min \left\{ 1, \frac{f(\mathbf{y}_i | \mathbf{\theta}_j, \mathbf{a}^{(t-1)}, \mathbf{d}^{(t-1)})}{f(\mathbf{y}_i | \mathbf{\theta}_j, \mathbf{a}^{(t-1)}, \mathbf{d}^{(t-1)})} \right\}.
\]
(B.9)

- If \(\mathbf{\theta}_j^* \) is accepted, then \(\mathbf{\theta}_j^{(t)} = \mathbf{\theta}_j^* \); otherwise, \(\mathbf{\theta}_j^{(t)} = \mathbf{\theta}_j^{(t-1)} \).

B.1.3. Step 3 (drawing \(\mathbf{a}^{(t)} \)).

For each block \(i \) \((i = 1, \ldots, n) \), the two scale parameters are sampled from the full conditional distribution

\[
f(a_{i_1}, a_{i_2} | \Sigma^{(t)}_{\mathbf{\theta}}, \mathbf{a}^{(t)}, a_{i_1}, \ldots, a_{(i-1)_2}, a_{(i+1)_2}, \ldots, a_{n_1}, a_{n_2}),
\]

\[
a_{(i-1)_2}, a_{(i+1)_2}, \ldots, a_{n_2}^{(t-1)}, d_i^{(t-1)}, \mathbf{Y} \quad \mathbf{B.10}
\]

\[
\propto f(a_{i_1}) f(a_{i_2}) f(\mathbf{y}_i | \mathbf{\theta}^{(t)}, a_{i_1}, a_{i_2}, d_i^{(t-1)}),
\]

where

\[
f(\mathbf{y}_i | \mathbf{\theta}^{(t)}, a_{i_1}, a_{i_2}, d_i^{(t-1)}) = \prod_{j=1}^n \left[p_i^{2-y_{ij}}(\mathbf{\theta}_j^{(t)}) q_i^{y_{ij}-1}(\mathbf{\theta}_j^{(t)}) \right].
\]
(B.11)

is the likelihood of the response vector associated with the \(i \)-th block.

Similar to the previous step, in order to draw from the distribution in Equation B.10 a random-walk Metropolis step is implemented as follows:

- A candidate \((a_{i_1}, a_{i_2})^* \) is drawn from the bivariate normal distribution

\[
(a_{i_1}, a_{i_2})^* \sim N((a_{i_1}, a_{i_2})^{(t-1)}, c_{\alpha i}^2 \mathbf{I}_2),
\]
(B.12)

where \(\mathbf{I}_2 \) is a bidimensional identity matrix and \(c_{\alpha i}^2 \) is again a tuning factor, which is adaptively modified during the burn-in phase. We suggest initializing this constant at 0.15.

- The obtained candidate \((a_{i_1}, a_{i_2})^* \) is accepted with probability

\[
\pi = \min \left\{ 1, \frac{f((a_{i_1}, a_{i_2})^*) f(\mathbf{y}_i | \mathbf{\theta}^{(t)}, (a_{i_1}, a_{i_2})^*, d_i^{(t-1)})}{f((a_{i_1}, a_{i_2})^{(t-1)}) f(\mathbf{y}_i | \mathbf{\theta}^{(t)}, (a_{i_1}, a_{i_2})^{(t-1)}, d_i^{(t-1)})} \right\}.
\]
(B.13)
IRT MODELS FOR FORCED-CHOICE QUESTIONNAIRES

- If \((a_{i1}, a_{i2})^*\) is accepted, then \((a_{i1}, a_{i2})^{(t)} = (a_{i1}, a_{i2})^*\); otherwise, \((a_{i1}, a_{i2})^{(t)} = (a_{i1}, a_{i2})^{(t-1)}\).

B.1.4. Step 4 (drawing \(d_i^{(t)}\)).

The intercept parameter \(d_i\) for each block \(i\) is drawn from the corresponding full conditional distribution, given by

\[
f(d_i|\theta^{(t)}, \mathbf{a}^{(t)}, d_1^{(t)}, \ldots, d_{j-1}^{(t)}, d_{j+1}^{(t)}, \ldots, d_N^{(t-1)}, \mathbf{Y}) \propto f(d_i)f\left(Y_i|\theta^{(t)}, (a_{i1}, a_{i2})^{(t)}, d_i\right),
\]

where \(f\left(Y_i|\theta^{(t)}, (a_{i1}, a_{i2})^{(t)}, d_i\right)\) is given by Equation B.11.

A sample from the latter distribution is obtained through the following random-walk Metropolis step:

- A candidate \(d_i^*\) is drawn from the univariate normal distribution

\[
d_i^* \sim N\left(d_i^{(t-1)}, c_{di}^2\right),
\]

with \(c_{di}^2\) an adapting tuning factor, for which we suggest an initial value of 0.30.

- The obtained candidate \(d_i^*\) is accepted with probability

\[
\pi = \min\left\{1, \frac{f(a_{i1})f\left(Y_i|\theta^{(t)}, (a_{i1}, a_{i2})^{(t)}, d_i^*\right)}{f(a_{i1})f\left(Y_i|\theta^{(t)}, (a_{i1}, a_{i2})^{(t)}, d_i^{(t-1)}\right)}\right\}.
\]

- If \(d_i^*\) is accepted, then \(d_i^{(t)} = d_i^*\); otherwise, \(d_i^{(t)} = d_i^{(t-1)}\).

B.2. Initialization of the chains

The previous scheme draws sample \(t\) from the stationary distribution assuming that sample \(t-1\) belongs to that very distribution. In order to this, reasonable starting values must be obtained for the samples. This ensures that stationarity is achieved in a finite number of iterations.

Starting values for the individual’s latent traits are obtained from a heuristic
approximation based on traditional ipsative scoring. An individual’s score on a dimension is calculated by summing up the chosen items measuring that dimension, with direct items contributing a value of +1 and inverse items a value of −1. Then, these scale scores are standardized per dimension across persons. Next, random noise from a D-dimensional multivariate normal distribution is added to the D-dimensional vector of standardized scale scores. This distribution has zero means and a covariance matrix that makes the resulting initial values have correlations approximately equal to 0. The result is then again standardized and used as the initial value for the person’s latent trait vector.

The starting values for the scale parameters are drawn from their prior distribution. The intercept parameters for the n blocks are initialized using the following procedure: First, the proportion of endorsement of the first item in each block is obtained; subsequently these proportions are standardized across all blocks; then, random noise from a normal distribution with mean 0 and variance 0.25 is added to each standardized proportion; and finally the obtained values are standardized again.