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Abstract

The results contained in this dissertation correspond to three problems
lying in the interface between harmonic analysis and analytic number theory,
which are described below. The memoir can be divided in two parts: the first
three chapters discuss the problem of determining the regularity of fractional
integral of classical modular forms, while the latter three deal with lattice
point counting problems.

Given a nonzero modular form f , we can expand it in the Fourier series
f(z) =

∑
n+κ≥0 e

2πi(n+κ)z/m. We can associated to this series for every α ∈ R
the formal series fα(x) =

∑
n+κ>0 e

2πi(n+κ)x/m which converges for α big
enough to a continuous function on the real line. The problem of determining
the regularity of the resulting functions when this procedure is applied to
Jacobi’s theta function θ(z) =

∑
n∈Z e

πin2z has attracted a great deal of
interest since Weierstrass presented one of these functions as an example
given by Riemann of a nowhere differentiable function [6, 7, 8, 9, 10, 11]. The
investigation of the regularity of functions obtained from arbitrary modular
forms has only been started recently [1, 5, 16]. In particular, an interesting
problem consisted in determining the pointwise Hölder exponent β(x) defined
by

β(x0) = sup
{
s : for some polynomial P one has f(x)−P (x) = O

(
|x−x0|s

)}
.

Another interesting problem consisted in determining the spectrum of sin-
gularities, i.e. determining the Hausdorff dimension of those sets where the
function attains a particular pointwise Hölder exponent. In both directions
there were many open questions, which have been essentially solved in chap-
ter 3 of this memoir. More concretely, we provide explicit formulas to deter-
mine the exponent β(x) associated to fα, which in some cases depends on
some Diophantine approximation properties of the real x; and we provide the
graph of the spectrum of singularities. We also determine an approximate
functional equation, similar to the one obtained by Duistermaat [6] for the
aforementioned “Riemann’s example”.

In the second half of the thesis we discuss lattice point counting problems.
Given a convex d-dimensional set K, we are interested in estimating the error
exponent

αK = inf
{
α : NK(R)−Rd|K| = O

(
Rα
)}

where |K| denotes the volume of K and NK(R) the number of points with
integer coordinates lying inside K after having applied a homothety fixing the
origin of ratio R. In general the problem of determining αK for a particular
convex body K is difficult and it has only been solved in very few cases. For
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example, the most paradigmatic case, “Gauss circle problem”, where K is a
circle in the plane, is still open. In the chapter 5 we prove that αK ≤ 1 when
K is the double revolution paraboloid given by

{
|y| ≤ c− (x21 + x22)

}
, result

which is also extended to a family of paraboloids having rational ellipses
as bases. This generalizes a result obtained by Popov for the parabola [15]
and improves some previous results given by Krätzel [12, 13]. This result is
expected to be sharp. The approach used to obtain these results consists in
applying the Poisson summation formula to translate the problem into the
estimation of an exponential sum, which happens to be related in this case
to Jacobi’s theta function. We can then employ a toy version of the circle
method to obtain the needed bounds. In the same chapter we also provide
lower bounds for αK under more restrictive hypothesis, proving that indeed
αK = 1 in many cases.

Finally in chapter 6 we consider three-dimensional convex bodies which
are of revolution and have smooth boundary with nonvanishing Gaussian
curvature. For these objects Chamizo proved in [2] that one has αK ≤ 11/8
provided that the third derivative of the generatrix does not vanish anywhere.
In this chapter we prove that the latter hypothesis can be weakened and the
result holds when all the zeros of the generatrix are of finite order. To obtain
this result we basically use the van der Corput method, although at some
point one has to consider Diophantine properties of the phase function which
bear some similarity with the case of the paraboloid trated in the previous
chapter.

The results of the chapters 3, 5 and 6 correspond to the articles [14], [3]
and [4]. The other three chapters contain introductory material.
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Resumen

Los resultados contenidos en esta tesis corresponden a tres problemas
que quedan en la interfaz entre el análisis armónico y la teoŕıa anaĺıtica de
números, y que se describen abajo. La tesis en si se puede considerar dividida
en dos partes: los primeros tres caṕıtulos tratan sobre la regularidad de las
integrales fraccionarias de formas modulares clásicas, y los tres últimos sobre
problemas de conteo de puntos del ret́ıculo.

Dada una forma modular no nula f , esta admite una expansión en serie de
Fourier f(z) =

∑
n+κ≥0 e

2πi(n+κ)z/m. A esta se le puede asociar para α ∈ R
la serie formal fα(x) =

∑
n+κ>0 e

2πi(n+κ)x/m, que converge a una función
continua en toda la recta real para α suficientemente grande. Determinar
la regularidad de las funciones que resultan de aplicar esta construcción a la
función theta de Jacobi θ(z) =

∑
n∈Z e

πin2z es un problema que ha generado
un gran volumen de bibliograf́ıa a ráız de que Weierstrass presentara una
de estas funciones como un ejemplo dado por Riemann de una función no
diferenciable en ningún punto [6, 7, 8, 9, 10, 11]. Las funciones obtenidas
a partir de formas modulares arbitrarias han empezado a ser consideradas
para su estudio recientemente [1, 5, 16]. En particular, era objeto del deseo
determinar el llamado exponente Hölder puntual β(x) definido por

β(x0) = sup
{
s : existe un polinomio P tal que f(x)−P (x) = O

(
|x−x0|s

)}
.

También era interesante determinar el espectro de singularidades, compuesto
por las dimensiones de Hausdorff de aquellos conjuntos donde la función
alcanza un exponente Hölder puntual en particular. En ambas direcciones
quedaban muchas cuestiones abiertas, que quedan esencialmente resueltas en
el caṕıtulo 3 esta tesis. Más concretamente, se dan fórmulas para determinar
el exponente β(x) asociado a fα, que en ciertos casos tiene que ver con temas
de aproximación diofántica del real x en cuestión; y se da el grafo del espectro
de singularidades. Además se determina una ecuación funcional aproximada,
al estilo de la hallada por Duistermaat [6] para el arriba mencionado “ejemplo
de Riemann”.

En la segunda mitad de la tesis se tratan problemas de conteo de puntos
del ret́ıculo. Dado un cuerpo convexo d-dimensional K, estamos interesados
en estimar el exponente de error

αK = inf
{
α : NK(R)−Rd|K| = O

(
Rα
)}

donde |K| denota el volumen de K y NK(R) el número de puntos de coorde-
nadas enteras que caen dentro de K después de haber sido dilatado por una
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homotecia fijando el origen de razón R. En general, una vez fijado K, de-
terminar αK es un problema dif́ıcil que sólo ha podido resolverse en algunos
casos particulares. Por ejemplo, el caso más paradigmático, el “problema del
ćırculo de Gauss”, cuando K es un ćırculo en el plano, aún está abierto. En
el caṕıtulo 5 se prueba αK ≤ 1 cuando K es el doble paraboloide de rev-
olución determinado por

{
|y| ≤ c − (x21 + x22)

}
, resultado que se extiende a

una familia de paraboloides cuyas bases son elipses racionales. Esto extiende
un resultado obtenido por Popov para para parábola [15] y mejora resultados
previos de Krätzel [12, 13]. Este resultado se espera que sea óptimo. La es-
trategia seguida para obtener estos resultados consiste en emplear sumación
de Poisson para sustituir el problema por el de acotar una suma exponen-
cial, que en este caso está relacionada con la función theta de Jacobi. Para
obtener las cotas necesarias se emplea una versión simplificada del método
del ćırculo. En el mismo caṕıtulo también se dan cotas inferiores para αK
bajo hipótesis ligeramente más fuertes, mostrando que efectivamente αK = 1
en muchos casos.

Finalmente en el caṕıtulo 6 se tratan cuerpos convexos de revolución
tridimensionales con frontera suave con curvatura de Gauss no nula. Para
estos objetos Chamizo probó en [2] que se tiene αK ≤ 11/8 pidiendo que la
tercera derivada de la función generatriz no se anulara en ningún punto. En
este caṕıtulo se prueba que basta con pedir que dicha generatriz, si se anula,
lo haga con ceros de orden finito. Para esto se utiliza esencialmente el método
de van der Corput, aunque en cierto punto hay que involucrar propiedades
diofánticas de la fase que recuerdan al problema del paraboloide tratado en
el caṕıtulo anterior.

Los resultados de los caṕıtulos 3, 5 y 6 corresponden a los art́ıculos [14],
[3] y [4]. Los otros tres caṕıtulos contienen material introductorio.
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Foreword

Dies diem docet

This dissertation, dear reader, is the reflection of the journey that a PhD repre-
sents. It can therefore be seen as a kind of journal, where the material, the difficulties
found along the way and their corresponding workarounds are presented more or less
in the chronological order they were encountered. In an attempt to make the jour-
ney as enjoyable as it was for me, the ideas are presented from the simplest to the
most complex —as is often the way in which they naturally arise in the mathemati-
cian mind when stepping into terra incognita. Following this principle we will take
a slight detour whenever possible to discuss the most paradigmatic case: simple,
transparent, yet sharing the main difficulties with the general case, before engaging
in meaningless technicalities.

Along the formal proofs I have also tried to pack all the intuition I have devel-
oped about the topic being considered, with the intention it could serve as a map
to others starting their own journey. Hopefully this will become common practice
in the near future, as mathematics is not only about theorems and rigor, but also
about ideas and intuition.
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Introduction:
Two tales connected to Jacobi’s theta function

The original objective proposed for this dissertation was to solve several small
but interesting problems, sharing the common feature that they lie in the intersection
between analytic number theory and harmonic analysis. If we had however to choose
a leitmotif a posteriori for the whole exposition it would definitely be Jacobi’s theta
function

(I.1) θ(z) =
∑
n∈Z

eπin
2z.

This function, clearly holomorphic in the upper half-plane by virtue of the uniform
convergence on compact sets, is intimately linked to the arithmetic properties of
the sequence of squares {n2} of the integer numbers. But this was not the main
reason why Jacobi studied it, as he was originally concerned with the theory of
elliptic integrals. In fact, he actually defined a more general function Θ, depending
on two complex variables, of which θ is only a particular case. For our purposes,
however, θ as defined in (I.1) will suffice, and therefore we will keep this notation
throughout this document. In the following section the interested reader will find
some brief notes about the original work of Jacobi. Later on we will provide a
historical introduction to the problems addressed in this dissertation.

I.1. Historical remarks

After seeing the derivation of the equation for the pendulum in high school I
remember being intrigued by the fact that the small angle approximation sin x ≈ x
seems unavoidable if one desires to obtain a closed expression for the law governing
its movement. Indeed, suppose we have a pendulum of length ` and denote by ν(t)
the angle from the vertical to the string at time t. Newton’s law F = ma then
translates to the differential equation

`ν ′′(t) + g sin ν(t) = 0,

where g denotes the acceleration due to gravity. If we multiply the equation by 2ν ′
and integrate from 0 to t, we obtain

(I.2) `
(
ν ′(t)

)2 − 2g cos ν(t) = −2g cos ν0.

We have named ν0 = ν(0) the initial angle, and we have also assumed the pendulum
is not moving at time zero, i.e. ν ′(0) = 0. Equation (I.2) only determines ν ′ up to
sign, but physical intuition tells us that its sign has to be negative if ν0 > 0, at least
for the first half-period, and therefore we must have

ν ′(t) = −
√

2g`−1( cos ν(t)− cos ν0
)
.

1



2 INTRODUCTION: TWO TALES CONNECTED TO JACOBI’S THETA FUNCTION

Since the variables are separated, and it is reasonable to assume that ν is injective
in each half-period, inverting the relationship between ν and t we may write

(I.3) − t
√

2g`−1 =
∫ ν

ν0

du√
cosu− cos ν0

.

At this point, however, we are stuck. No matter what we try it seems impossible
to solve the integral —and indeed it is.1 But a rigorous proof of this fact is out of
the scope of this exposition. Let us ignore this fact for now, and perform anyway
the change of variables sin(u/2) = v, reminiscent of the tangent of the half-angle
change of variables we were once taught as magically solving any integral involving
trigonometric functions. Writing k =

√
(1− cos ν0)/2 = sin(ν0/2) and v = kw,

equation (I.3) is then equivalent to

(I.4) t
√
g`−1 =

∫ 1

k−1 sin(ν/2)

dw√
(1− w2)(1− k2w2)

.

It is convenient at this point to deviate briefly from the case of the pendulum
and consider instead the general case of the indefinite integral

(I.5)
∫ x

c
R
(
t,
√
P (t)

)
dt

where c is a constant, R is a rational function and P a polynomial. Note (I.4)
provides a particular example of an integral of this kind where P is a polynomial
of fourth degree. If P had degree lower than three then we would have no problem
solving the integral. Indeed, if P is constant then the integrand reduces to a rational
function, and we know we can always express the integral in a closed form by means
of the logarithm

∫
t−1dt and the arctangent2 ∫ (1+ t2)−1dt functions. When degP =

1 or 2 essentially no new functions appear: in the first case the change of variables
v2 = P (t) reduces the integrand again to a rational function, while in the second
case we may complete squares to assume either P (t) = 1 − t2 or P (t) = 1 + t2.
We may then perform the change of variables t = sin u and tan(u/2) = v (or
its hyperbolic analogue) to reduce the integrand to a rational function. Note the
relationship between t and v is in both cases algebraic, ensuring the result is always
a composition of logarithm, arctangent and algebraic functions.

When degP ≥ 3 however this is no longer the case, and new transcendental
functions are required to express (I.5) in a closed form. The cases degP = 3 and 4
are very alike and particularly interesting, as these integrals appear in a natural way
in several classical problems. These include the computation of the arc-length of an
ellipse as a function of the angle, the distance to the Sun of a planet as a function
of time or the evolution of the pendulum, as we already know by (I.4). From the
first of these problems, the integral (I.5) borrows the name of elliptic integral when
P is any cubic or quartic polynomial, and the particular case

(I.6) F (x; k) =
∫ x

0

dt√
(1− t2)(1− k2t2)

,

incomplete elliptic integral of the first kind. The family of functions F (x; k) (de-
pending on the parameter k, which receives the name of modulus) together with two

1This means there is no closed formula representing the integral in terms of the variable ν and
involving only elementary functions: rational functions (or even algebraic functions), exponential,
logarithmic and trigonometric functions.

2If we allow the use of complex numbers then the logarithm suffices, as arctan x = (2i)−1 log(x−
i)/(x+ i).
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Figure I.1. The elliptic sine function for several values of the modulus
k. In the bottom image the x variable has been reescaled for each value of
k to make all periods match 2π.

families more, namely the elliptic integrals of the second and third kinds (which will
not be introduced here), suffice to express any elliptic integral (I.5) in a closed form.

It turns out it is much easier to study the inverse function of F ( · ; k) than to
study F itself. One of the reasons is that if one tries to employ properties of the
integral (I.6) to extend its domain of definition, one ends up with a multivaluated
function. This is analogous to what happens with the logarithm or the arcsine
functions, which may also be defined as the integrals

∫
t−1dt or

∫
(1 − t2)−1/2dt,

but it is often easier to define the exponential or sine functions first, study their
properties and then translate them to their inverses. Jacobi noticed this and, after



4 INTRODUCTION: TWO TALES CONNECTED TO JACOBI’S THETA FUNCTION

the work of Legendre and Abel, studied and named the inverse of F elliptic sine,
abbreviated sn and by definition satisfying F (sn(x, k); k) = x. With this notation
we may rewrite (I.4) as

(I.7) sin(ν/2) = −k sn
(√

g`−1(t− t0), k
)

for a certain constant t0. Equation (I.7) essentially solves the problem we had at
hand: providing a “closed” expression for the law describing how the pendulum
evolves. Of course, introducing the elliptic sine in the syllabus of a high school
course just to derive this formula would make little sense, but nevertheless (I.7)
could still be mentioned to discuss the behavior of the pendulum, at least when the
initial angle ν0 is large. Figure I.1 shows the aspect of sn for several values of the
modulus k. For example, in the figure it can be seen that the period of the pendulum
is not truly constant, but depends on the initial angle ν0, and in fact tends to infinity
when |ν0| approaches π (for |ν0| > π/2 the string has to be replaced by a rigid rod
for the experimental setup to make sense).

Note we can deduce from (I.6) that for k = 0 the elliptic sine coincides with the
usual sine function, recovering the classic law for the pendulum when the angle is
small. In fact, even when k 6= 0 the elliptic sine shares many features with the usual
sine. It also has a companion, the elliptic cosine cn, and together they satisfy many
formulas which are analogous to the usual trigonometric relations.3 In particular we
have addition formulas similar to those determining the values of the sine and cosine
functions for the sum of angles. Note that through the parametrization x = cos t,
y = sin t these formulas provide the usual group law for the unit circle. In the same
way the elliptic trigonometric functions can be used to parametrize a curve and
define a group law over it. These curves receive the name of elliptic curves, and are
of an outstanding importance in contemporary number theory.4

The reader acquainted with the theory of elliptic curves over the complex num-
bers will remember that these are always conformally equivalent to a torus con-
structed by quotienting the complex plane by a discrete subgroup, generated by two
linearly independent vectors (also known as a lattice). Meromorphic functions living
on the elliptic curve can then be identified with meromorphic functions on C hav-
ing two linearly independent complex periods. These functions receive the name of
elliptic functions. It should not surprise the reader after the aforementioned connec-
tion between elliptic trigonometric functions and elliptic curves that the former are
indeed elliptic functions: they admit meromorphic extensions to the whole complex
plane with two periods, only one of which is real. In fact, the addition formulas can
be used to carry on the addition law on the complex tori to the whole elliptic curve,
extending it to include the image of the complex points, and in this way the elliptic
functions provide not only a conformal map but also a group isomorphism.5

Elliptic functions can nevertheless be defined and studied with no reference to
elliptic curves whatsoever, and have interest on their own. A simple application of
Liouville’s theorem shows that the only entire elliptic functions are the constants.
This surprisingly simple fact provides a powerful tool to prove some deep relations

3It actually has two companions! The other one, the elliptic delta dn has no relevance for
the usual trigonometry because dn ≡ 1 when k = 0, but when k 6= 0 it irremediably appears
intermingled with sn and cn as part of the elliptic trigonometric relations.

4The modern definition of an elliptic curve is the locus of real (or complex points) satisfying
an equation of the form y2 = x3 + ax+ b for parameters a and b with 4a3 + 27b2 6= 0.

5Note this is also true for the usual trigonometric functions, which provide a group isomorphism
from (C/Z,+) to (C∗, ·) extending the one from (R/Z,+) to (S1, ·).
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between a priori seemingly unrelated functions. Indeed: any two functions which
are elliptic of the same periods and whose poles and zeros coincide —including
multiplicity— must be a constant multiple of each other. This fact was exploited by
Jacobi to construct alternative expressions for the elliptic trigonometric functions
from which to study their properties and compute particular values. This is where
the Jacobi theta function Θ comes into play. This function is defined by the following
series:

Θ(z; τ) =
∑
n∈Z

qn
2
e2πinz where q = eiπτ .

For a fixed τ in the upper half-plane it is entire in the z variable and satisfies

Θ(z + 1; τ) = Θ(z; τ) and Θ(z + τ ; τ) = q−1e−2πizΘ(z; τ),

i.e. it has a real period and “almost” a second complex one. These identities follow
by rearranging the series, which is possible due to the absolute convergence. As a
consequence, the quotient Θ(z+ τ/2; τ)/Θ(z+ (τ + 1)/2; τ) is an elliptic function of
periods 1 and 2τ . One can now perform a dilation in the z variable and adjust τ to
match the periods with those of the elliptic sine function. It can then be seen that
all the poles and zeros align, and therefore, multiplied by an appropriate constant,
this quotient provides another expression for sn. This and many other relations
were provided by Jacobi in [63]. In fact, he proved that any elliptic function can be
written as a linear combination of quotients of the function Θ and first derivatives
of them. This general theory however has long been superseded by the conceptually
simpler theory of Weierstrass, involving instead the function

℘(z) = 1
z2 +

∑
n,m∈Z

( 1
(z + n+ 2τm)2 −

1
(n+ 2τm)2

)
.

Weierstrass showed that any elliptic function can be written in an unique way in the
form G

(
℘(z)

)
+ ℘′(z)H

(
℘(z)

)
where G and H are rational functions. The Weier-

strass’s ℘-function can also be used to parametrize and define the group law on
elliptic curves, and this is often the approach chosen in modern treatises, such as
Koblitz’s [69].

Jacobi also found in the rigidity of elliptic functions, and in particular in the
machinery of theta functions, a useful tool to prove some surprising number-theoretic
identities. In this way he obtained his famous four-square theorem:

Theorem (Jacobi). The number of ways of representing an integer n as a sum of
four squares is exactly eight times the sum of its divisors if n is odd, and twenty
four times the sum of its odd divisors if n is even.

To illustrate the relation to theta functions, note that the coefficients of
(
Θ(0; τ)

)4,
considered as a power series in the variable q, are precisely the number of ways of
writing each integer as a sum of four squares. We can then build another power se-
ries in the variable q, whose coefficients are precisely the sums of divisors prescribed
by the statement of the theorem, and try to show that both power series must co-
incide. The problem is that neither of these functions depend on the variable z, in
which they “should” be elliptic, and filling this gap requires ingenuity. Nowadays we
know that it is easier to focus instead on the law by which both functions transform
in the variable τ , and use this to show they must be equal. The function Θ(0; τ),
which coincides with θ(τ) as defined in (I.1), turns out to be a modular form in
the variable τ . Although this notion will rigorously defined in chapter 2, let us say
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for now that this means that θ satisfies the transformation laws θ(τ + 1) = θ(τ)
and θ(−1/(4τ)) =

√
−2iτθ(τ). The important fact is that the vector space of all

modular forms which transform in the same way is finite-dimensional, and we have
effective bounds on its dimension. Therefore the proof of Jacobi’s four-square theo-
rem reduces to proving that the two power series in q are modular forms of the same
kind (one of them being θ4), and then computing a finite number of coefficients to
check they are equal.

In this exposition neither elliptic integrals nor elliptic functions will play any
role, but modular forms definitely will. One final historical remark about their
origin. When writing the elliptic sine as a quotient of theta functions, the variable
τ depends on the modulus k. After inverting this relation, the function k(τ) turns
out to be a modular form, and this is the reason they bear the adjective modular.

I.2. Riemann’s example

In 1872 Weierstrass presented a lecture in the Berlin Academy of Sciences on
the topic of function continuity and differentiability. The lecture started as follows:6

Until recently, it has been generally accepted that a well-defined
and continuous function of a real variable can only have a first
derivative whose value is indeterminate or becomes infinitely large
at isolated points. Even in the works of Gauss, Cauchy, Dirichlet
there is to my knowledge no statement doubting this, even though
these mathematicians were accustomed to being the strongest crit-
ics in their science. Only Riemann, as I heard from some of his
auditors, pronounced with certainty (in the year 1861, or perhaps
even earlier) that this assumption is incorrect and is for example
disproven by the function represented by the infinite series

∞∑
n=1

sin(n2x)
n2 .

Unfortunately, the proof by Riemann has not been published, and
does not appear either in his publications or through oral com-
munications. This is all the more regrettable, as I do not even
know for sure how Riemann addressed this himself to his audi-
ence. Those mathematicians who, after Riemann’s statement had
become known in wider circles, considered the matter, seemed to
believe (at least in their majority), that it is enough to prove the
existence of functions that are not differentiable in any small inter-
val. The existence of functions of this type can be easily proven,
and I believe therefore that Riemann only had in mind functions
with no derivative at any value of the argument. The proof that
the given trigonometric series is a function of this kind seems quite
difficult to me; however, one can easily construct continuous func-
tion of a real variable, for which one can prove with the easiest
means, that no value of x gives a well-defined derivative.

6Many thanks to Corentin Perret-Gentil for his help in this translation.
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In the last sentence Weierstrass is obviously talking about his famous family of
nowhere differentiable functions

(I.8)
∑
n≥0

an cos(bnπx),

for any choice of a, b satisfying 0 < a < 1, b a positive odd integer and ab > 1+3π/2.
The rest of the talk was focused on the properties of these functions and can be
consulted in german in [95].

The claims made by Weierstrass on the function

(I.9) ϕ(x) =
∑
n≥1

sin(n2πx)
n2

and its relation to Riemann are both surprising and unsettling. More so considering
that no proof regarding its differentiability was published until half a century later,
when Hardy in 1916 [42] developed a new method to study the differentiability of
Weierstrass’ function (I.8). The main idea can be sketched as follows: this function
coincides with the real part of the complex function

∑
aneπib

nz, holomorphic in the
upper half-plane, and the growth of the derivative of the latter as the variable z
approaches the real line is closely related to the differentiability of the former. The
right tool to formalize this relation is a pair of abelian and tauberian theorems, as
the decay introduced by the imaginary part of z regularizes the series in an analogous
way as how Abel summation works. Hardy not only employs this machinery to give
a new proof of the nowhere differentiability of (I.8), but also notices that the same
method applies to other functions, most notably ϕ. In this case ϕ coincides with the
imaginary part of

∑
n−2eπin

2z, function which is essentially a primitive of Jacobi’s
theta function θ defined in (I.1). Hardy was therefore able to refer to a previous
joint work with Littlewood [45] where they had studied the growth of θ near the
real line, among other related questions. In this way he succeeds in giving the first
(known) proof that the derivative of ϕ cannot exist in a dense set. In fact, the only
points where he was not able to determine the nondifferentiability of ϕ were the
rational numbers of the form odd/odd or even/(4n+ 3).

Could this, or a similar proof, have been known to Riemann? Hardy probably
was doubtful because, even though he does attribute the result to Riemann in [42],
he explicitly quotes Du Bois-Reymond as his source, who in [9] asserted:

For some years now, there has been much talk in the german
mathematical circles of the existence of functions without deriva-
tives, especially since Riemann’s disciples have declared that their
teacher claimed the non-differentiability of the series with term
sin(p2x)/p2. In any small interval there should be values of x
for which this series admits no derivative. To the best of my
knowledge none of the Riemann pupils procured proof of this, but
according to a statement by Weierstrass, Riemann’s assertion is
correct.

This was written in 1874, two years after the lecture in the Berlin Academy of
Sciences. The claim can therefore be suspiciously traced back to Weierstrass. Not
only that, but a letter reproduced in [13] also shows that it was Weierstrass himself
who pressed Du Bois-Reymond into including this remark in his paper. The letter,
written by the former to the latter, includes the following fragment:
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First of all I would consider it expedient to mention explicitly that
Riemann already in the year 1861 has pointed out to some of his
attenders that the function given by the series

∑∞
n=1 sin(n2x)/n2

is a function of the type that does not possess a derivative, that
he however has not revealed his proof to anyone, but has only
mentioned occasionally that it could be extracted from elliptic
function theory.

The matter is more carefully studied by Butzer and Stark in [13]. In particular
they found some correspondence from 1865 between Christoffel and Prym regard-
ing the question of the differentiability of the closely related series

∑
cos(n2x)/n2.

Only the letters from Christoffel are preserved, and although the replies are lost it
seems Prym attempted a proof of their nondifferentiability which did not convince
Christoffel, showing that at the time no proof had been communicated to them by
Riemann. In the same letters it is also mentioned that Christoffel had discussed
the problem with Weierstrass, possibly originating the confussion. If Prym did or
not discuss the matter with Riemann we do not know; neither if, supposing he did,
Riemann did provide a formal proof or just some intuition about the topic. Para-
phrasing the authors of [13], although none of the direct students of Riemann have
any detectable connection with it, who else other than Riemann had the imagination
to create such an intriguing example!

In any case, the function ϕ has become known in the literature as “Riemann’s
example of a nondifferentiable function” (or “Riemann’s example” for short), and
indeed Hardy already refers to it in this terms in [42]. Another half century would
have to pass for someone to finally settle the question of its differentiability at the
remaining points, namely those rationals of the form odd/odd or even/(4n + 3).
This was done by Gerver who, to everybody’s surprise, in 1969 proved that ϕ has
derivative −π/2 at every rational of the form odd/odd [35]. Some months later he
completed the picture, showing that ϕ is not differentiable at the rationals of the
form even/(4n + 3) [36]. The fact that ϕ is differentiable at some points could be
suspected from the aspect of its graph, shown in figure I.2, but of course plots this
detailed were not available at the time.

These results by Gerver, the link to Jacobi’s theta function, and probably also
the mystery surrounding its relation to Riemann, sparkled in the last fifty years a
remarkable amount of literature, regarding different aspects of the regularity of ϕ
and that of closely related functions. For example, Hardy had already considered in
his original paper [42] the functions

∑
n≥1 sin(n2πx)/n2α for various values of α >

1/2. After replacing the sine by a complex exponential, these functions essentially
correspond to “primitives” of the Jacobi theta function of order α. To give a concrete
meaning to this when α is not an integer one can resort to the Riemann-Liouville
integral:7

(I.10) Iαf(y) = − 1
Γ(α)

∫ ∞
y

f(t)(y − t)α−1 dt.

This functional satisfies many of the properties one should expect from a “fractional”
integral when evaluated at functions which are good enough, including the identities
IαIβf = Iα+βf , (I1f)′ = f and (Iαf)′ = Iα−1f for α > 1. To apply it to Jacobi’s
theta function, however, we run into the problem that θ is not well-defined on

7The Riemann-Liouville integral is usually defined as (Γ(α))−1 ∫ y
c
f(t)(y − t)α−1 dt for a base-

point c. We have chosen c = +∞ for convenience.
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Figure I.2. The aspect of “Riemann’s example” ϕ.

the real line. The solution is to apply it over a translated imaginary axis, after
carefully removing the value limt→∞ θ(it) = 1 to make it decay at infinity. The
reader can check, assuming we may interchange integration and summation, that for
gx(t) = θ(x+it)−1 we obtain Iαgx(y) = Cθα(x+iy), where θα(z) =

∑
n≥1 e

πin2z/n2α

and C is some constant depending on α. Hardy noticed this process can be inverted,
essentially by applying I−α. To avoid problems with convergence, however, he had
to replace the kernel of integration (x− t)−α−1 by a complex one. To illustrate this,
consider the functional

(I.11) Jαf(z) =
∫ +∞

−∞
f(t)(t− z)−α−1 dt for =z > 0.

Note that by Cauchy’s theorem the value of the following integral does not depend
on y as long as y > 0: ∫ +∞−iy

−∞−iy
eitt−α−1 dt.

Using this property the reader can also check, assuming again we may interchange
integration and summation, that Jαθα(z) = C ′(θ(z) − 1) for some constant C ′
depending on α.

We have plotted in figure I.3 the argument of the kernel (t− z)−α−1 for α = 1
when <z = 0 for different values of =z approaching 0. Note the graph remains
almost constant except for t ≈ <z, where the “sign” of the kernel undergoes a rapid
variation, which is faster the smaller =z is. Now, if f is very smooth around the
point x = <z, the integral (I.11) will have extra cancellation in a neighbourhood
of x, and as a result the divergence of Jαf(x + iy) when y → 0+ will be slower
than if |f | was integrated against |t− z|−α−1. If, on the contrary, f oscillates wildly
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Figure I.3. A continuous determination of the argument of the kernel
(t − z)−α−1 for α = 1 and different values of z = iy. Other values of
<z translate the graph horizontally, while other values of α reescale it
vertically.

around x, then for many small values of y it will resonate with the kernel, and the
size of Jαf(x + iy) for small y ≈ 0 will often resemble that obtained if |f | was
integrated against |t − z|−α−1. These heuristics are analogous to the fact that the
smoother a function is the faster its Fourier transform decays. The advantage of
this kernel over the complex exponential is that the oscillation is very localized,
capturing information about where the function has low or high regularity. This is
exactly what underlies the abelian an tauberian theorems exploited by Hardy in [42]
to study “Riemann’s example” ϕ and its generalizations θα. The same argument was
later expanded by Holschneider, Tchamitchian, and Jaffard [52, 64, 65] allowing
them to refine our knowledge on the regularity of these functions. At the time these
three articles were published the aforementioned properties attributed to (t−z)−α−1

had already been studied for wide class of kernels, within the formalism of wavelet
transforms. The wavelet transform of the function f with respect to the wavelet ψ
is defined as:8

(I.12) Wf(a, b) = 1
a

∫
R
f(t) ψ̄

(
t− b
a

)
dt for a > 0 and b ∈ R.

Note that if we take ψ(t) = (t+ i)−α−1 then Wf(y, x) = yαJαf(x+ iy). In general
the wavelet ψ must be a function which oscillates but at the same time has enough
decay for the integral to converge. There is not a unique definition, and each author
usually defines it as it is convenient for their purposes. For example, the axioms
chosen by Holschneider and Tchamitchian [52], or by Jaffard [64], allowed them to
prove different quantitative relations between the Hölder continuity of f at a point b
and the decay of the transform Wf(a, b) when a→ 0+, generalizing the abelian and
tauberian theorems originally provided by Hardy. Here Hölder continuity has to be
understood in the following generalized sense: we say that a function is β-Hölder
continous at x0 for some β > 0 if there exists a polynomial p for which

f(x) = p(x− x0) +O
(
|x− x0|β

)
.

The supremum of all β > 0 for which f is β-Hölder continous at a point is then called
the Hölder exponent of f at that point. Using this machinery these authors proved
in [52, 64, 65] the following refinement of the theorems of Hardy and Gerver: ϕ

8In the words of Holschneider and Tchamitchian [52], “This transform is a sort of mathematical
microscope, where 1/a is the enlargement and b is its position over the function to be analyzed.
The specific optic is determined by the wavelet itself”.
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has Hölder exponent 3/2 at those rational numbers of the form odd/odd, while it
has Hölder exponent 1/2 at the remaining rationals. They also tackled the question
of the regularity at the irrational numbers, which is more subtle. At these points
Hardy had already proved in [42] that the Hölder exponent of ϕ does not exceed
3/4. Jaffard in [65] was the first to compute this quantity precisely, showing that
the following theorem holds:

Theorem (Jaffard). Let x be an irrational number, and τx supremum of all the
values of τ for which there exist infinitely many rationals p/q not of the form odd/odd
satisfying |x − p/q| ≤ q−τ . The Hölder exponent of ϕ at x then coincides with the
quantity 1/2 + 1/(2τx).

The quantity τx can be regarded as a refinement of the usual notion of τ -
approximability: an irrational number x is said to be τ -approximable if there are
infinitely many rationals p/q for which |x − p/q| ≤ q−τ . It is remarkable that
the regularity of ϕ is so closely related to questions of Diophantine approximation!
A classic theorem of Jarník and Besicovitch states that the Hausdorff dimension
of the set of τ -approximable real numbers is precisely 2/τ [66] (cf. [7]). Jaffard
was able to extend this result to the set of τ -approximable numbers by rationals
odd/odd, proving that the Hausdorff dimension of the set of points where ϕ has
Hölder exponent β is 4β − 2 for β ∈ [1/2, 3/4]. Functions for which the Hausdorff
dimension of the sets {Hölder exp. = β} may attain an infinite number of different
values are refered to in the literature as multifractal, and they naturally arise in the
study of turbulence [33]. In fact “Riemann’s example” itself seems to be related to
a special case of the evolution of a vortex filament equation [54].

So far we have neglected a key ingredient in all the aforementioned proofs:
estimating the growth of Jacobi’s theta function near the real line. The first authors
to provide results in this direction were Hardy and Littlewood in [45], although the
aim of this article was actually to study problems of Diophantine approximation. In
a related previous article [44] they had studied whether given a polynomial p, an
irrational number θ and any α ∈ [0, 1) one can find a sequence an of integers such
that the fractional parts of p(an)θ converge to α. The answer is affirmative, and
intimately related to the behavior of the family of exponential sums

∑
n≤N e

2πikp(an)θ

indexed by k as N →∞. Their investigation was soon superseded by the beautiful
criterion given by Weyl (see [67]), which we include here for delight of the reader:

Theorem (Weyl’s criterion). A sequence un of real numbers is equidistributed
modulo 1 if, and only if, for all k ∈ Z+, 1

N

∑N
n=0 e

2πikun → 0 as N →∞.

Despite the generality of this result, Hardy and Littlewood had studied the
case p(x) = x2 in depth, and in particular the size of the quadratic exponential
sums

∑
|n|≤N e

πin2x. When x is a rational p/q and N = q these are the usual Gauss
sums whose size was precisely determined by Gauss. When x is irrational, however,
the question is not that simple. Hardy and Littlewood noticed that the size of the
sum can be related to the growth of |θ(x + iy)| as y → 0+. This is, as in the
previously presented case, because the truncated sum can be seen as a regularized
version of θ(z), this time by sharply truncating the series instead of introducing the
slowly decaying factor 1/n2α. More importantly, they had the insight that a lot of
information about the size of |θ(z)| can be obtained by ingeniously intermingling
the functional equations θ(z+ 2) = θ(z) and θ(−1/z) =

√
−izθ(z) in a way dictated

by the continuous fraction expansion of the number x = <z. Although this can
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be carried out as presented (using the functional equations to estimate |θ(z)| near
the real line and then translating the result to bound the size of

∑
|n|≤N e

πin2x,
cf. chapter 5) they found it easier to prove instead approximate analogues of the
functional equations for the sums

∑
|n|≤N e

πin2x with controlled error terms, and
then infer directly from this their size.

Following a similar idea, Duistermaat succeeded in deriving an approximate
functional equation for the function θ1 from the one satisfied by θ, and was able to use
this to extract more information about the behavior of “Riemann’s example” ϕ. In
the beautifully well-written article [24] he shows that the graph of ϕ, appropriately
shrinked around a rational point and slightly modified by a differentiable error term,
coincides again with itself. To illustrate the matter consider for a moment the
function f(x) = x sin(2π/x) and note it satisfies the functional equation f(x/(1 +
x)) = f(x)/(1 + x), where the transformation x/(1 + x) fixes 0 and slightly shrinks
or expands space around it. This forces f to oscillate wildly: indeed, any function
satisfying this equation is of the form xg(1/x) for some 1-periodic function g. A
very similar argument shows that ϕ behaves like Cx1/2 + x3/2g(1/x) around every
rational number, where the constant C and the periodic function g have to be chosen
depending on the rational number. Duistermaat then goes on to show that the
constant C is zero if an only if the rational is of the form odd/odd, and determines
the possible functions g that may appear in this expansion. In fact, not only he
provided new insight about the shape of the graph of ϕ around rational numbers,
but he was also able to exploit the approximate functional equation to show, before
Jaffard’s theorem, that the Hölder exponent at irrational numbers is bounded above
by 1/2 + 1/(2τx).

In both approaches described above —the wavelet transform and the approxi-
mate functional equation one— the essential fact is that the function θ is a modular
form. We will see in chapter 2 that every classical modular form satisfies a simi-
lar functional equation, and also admits a Fourier expansion essentially of the form∑
n≥0 ane

2πinz. We can therefore construct the series
∑
n≥0 n

−αane
2πinx, which can

be seen to converge to a continuous function for α big enough. This provides a source
of very interesting Fourier series, which are only differentiable in certain subsets of
the rational numbers when the parameter α is appropriately tuned, and satisfy ap-
proximate functional equations. The general study of these functions was initiated
by F. Chamizo in [14], who determined for which ranges of α the Fourier series con-
verge or diverge and characterized their differentiability under certain hypotheses.9
One example extracted from the introduction of [14] is the following:

(I.13)
∑

n≡±1 (mod 12)

sin(2πn2x)
n2 −

∑
n≡±5 (mod 12)

sin(2πn2x)
n2 .

This continuous function turns out to be only differentiable at the rational points,
having null derivative at each of them. Other similar examples can be found in [14],
together with some intriguing theorems relating the value of the derivative of these
“fractional integrals” to arithmetic properties of the underlying modular forms. For
example, the fact that the derivative of (I.13) vanishes at 0 is equivalent to the fact

9Roughly at the same time another article was published on the topic by Miller and Schmid
[77]. They focus on the case α = 1 for Maass forms —which are a non-holomorphic analogue of
classical modular forms— but there is some overlapping with Chamizo’s article [14]. Their approach
is basically the same as the one employed by Duistermaat in [24].
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that the L-function associated to the Dirichlet character χ modulo 12 determined
by χ(±1) = 1 and χ(±5) = −1 also vanishes at 0.

The study of the regularity of these fractional integrals was later continued by
Chamizo in a joint work with Petrykiewicz and Ruiz-Cabello [19], where they suc-
ceeded in computing the Hölder exponent only for very restricted ranges of α. Some
further results with the same restrictions but involving some Diophantine analysis,
which is essential to characterize the Hölder exponent at the irrational points, were
also included in Ruiz-Cabello’s PhD dissertation [83]. The weaknesses of their ap-
proach were the following: on the one hand they employed the same definition of
wavelet as Jaffard, while a slightly modified definition proves more useful; and on the
other hand they only provided a very rudimentary version of the approximate func-
tional equation. Their approach is also restricted to a particular family of classical
modular forms where the Diophantine analysis can be reduced to the notion of τ -
approximability by rationals as employed by Jaffard in the theorem above, where the
rationals are chosen from some congruence class. These deficiencies were addressed
by the author in the article [80], with the inestimable help of F. Chamizo. The
aforementioned techniques then are strong enough to prove analogues of the results
of Jaffard and Duistermaat in the setting of arbitrary classical modular forms, and
we devote chapter 3 of this dissertation to rigorously state and prove the theorems
included in [80].

I.3. Gauss’ circle problem

One of the main topics in Gauss’ Disquisitiones Arithmeticae were integral bi-
nary quadratic forms. A quadratic form is a homogeneous polynomial of degree two,
which is said to be binary if it depends on exactly two variables and integral if all
the coefficients are integer numbers. We are therefore talking about objects of the
form

(I.14) Q(x, y) = ax2 + bxy + cy2 where a, b, c ∈ Z.

An equivalent, sometimes more convenient, way of representing the same object is
as Q(~x) = ~xtA~x where A =

( a b/2
b/2 c

)
. In fact, for this reason, Gauss only considered

those forms with even b so that the matrix A has integer coefficients, but nowadays
it is common to let b be odd. We will offer in the next pages a glimpse of the general
theory of integral binary quadratic forms.10 The presented material is based on
the exposition by Cohn [22]. For the sake of simplicity, the adjectives binary and
integral will often be omitted.

When we evaluate an integral quadratic form in points with integer coordinates
we obtain again integer values. Which integer values arise in this fashion for a given
quadratic form is however a non-trivial problem. An even finer problem is to count
in how many ways each integer can be obtained, if this quantity happens to be finite.
To this end, we will say that the form Q represents n if the equation Q(x, y) = n
has an integer solution, and that it represents this integer k times if the number of
integer solutions is exactly k. For example, the “simplest” form Q(x, y) = x2 + y2

represents 5 eight times, because Q(±1,±2) = Q(±2,±1) = 5 and there is no other
way to obtain this integer. On the other hand it is easy to check that it never

10This may seem an exceedingly long disgression, however the author feels that the involved
ideas, which lead in a natural way to the definition of the class number and to Gauss’ circle problem,
are too often omitted from number theory introductions.
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represents 3. The general law underlying this phenomenon for this particular choice
of Q was studied by Fermat and Euler, and can be summed up in the following two
theorems:

Theorem (Genus). The form Q(x, y) = x2 + y2 represents a prime p if and only
if p ≡ 1 (mod 4) or p = 2. The representation is unique except for obvious changes
of sign and rearrangements of x and y.

Theorem (Composition). The form Q(x, y) = x2 + y2 satisfies the composition
law

(I.15) Q(x, y)Q(x′, y′) = Q(xx′ − yy′, x′y + xy′)

and therefore if it represents integers n and m, it also represents their product nm.
Moreover, every representation of an integer can be obtained by the composition
law from either representations of prime numbers or from the trivial representations
Q(±p, 0) = Q(0,±p) = p2 of squares of prime numbers.

From these two facts we deduce that Q represents an integer if and only if all its
prime divisors congruent to 3 modulo 4 appear in its factorization raised to an even
power. The simplicity of these two theorems is due to the fact that the form x2 + y2

is in many ways special, but weaker variants hold true for all quadratic forms.

Some simplifications are convenient at this point. Note first that if all three
coefficients of the form have a common divisor, then the problem of counting rep-
resentations can be reformulated in terms of the form obtained by dividing all co-
efficients by this common divisor. To this end a form (I.14) is called primitive if
gcd(a, b, c) = 1, and from now on we will assume that all the forms are of this kind.

The second simplification is more subtle: if we consider a linear transformation
of the plane x = αX + βY , y = γX + δY inducing a bijection of Z2 into itself,
then the quadratic form Q(X,Y ) also represents every integer exactly the same
number of times as Q(x, y) does, and hence for all purposes we may identify both
forms. We say then that the forms are equivalent. It is an easy exercise to check
that such transformations are the ones given by those matrices

( α β
γ δ

)
with integer

coefficients and determinant ±1, and that when composed with quadratic forms
they preserve the quantity d = b2−4ac, called the discriminant of the form. Indeed,
this second fact is evident from the matrix representation Q(~x) = ~xtA~x, as the
change of variables may we written ~x = M ~X for M with determinant ±1 and thus
invertible over Z. Note from the definition of discriminant d that it is always an
integer congruent to either 0 or 1 modulo 4, and reciprocally any such integer is the
discriminant of either the primitive form x2 − (d/4)y2 or x2 + xy + (d− 1)y2/4.

In some treatises quadratic forms are defined instead as a rank two lattice Λ ⊂
R2 endowed with a quadratic function Q : Λ → R. In this terminology, a rank n
lattice refers to a discrete additive subgroup of Rn isomorphic to Zn, and a quadratic
function is a function satisfying the axioms: i) Q(ax) = a2Q(x) for any a ∈ Z
and x ∈ Λ and ii) the function Q(x + y) − Q(x) − Q(y) is a bilinear form. Such
an approach can be found, for example, in [85] and has the advantage of being
basis-independent. After specifying an ordered basis of Λ as abelian group the
function Qmay then be identified with a concrete homogeneous polynomial of degree
two evaluated at Z2. Different bases of the same lattice produce equivalent forms;
and viceversa, equivalent forms may always be obtained from the same quadratic
function by different bases of the same lattice. Sometimes the lattice also carries
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extra structure which is not obvious from the quadratic form. One example of this
is provided by the lattice of Gaussian integers

Z[i] = {a+ bi : a, b ∈ Z} ⊂ C ≈ R2,

endowed by the quadratic function Q(z) = |z|2. The classical identity |z| · |z′| = |zz′|
satisfied by the modulus of complex numbers readily translates to the composition
law (I.15) given above.11

We can generalize the composition law to other forms in a similar way by
considering appropriate lattices obtained from algebraic number theory. We recall
some elementary notions. Given a finite extension K of Q we may find inside the
ring of algebraic integers (or number ring) O of K, consisting of those elements of K
whose monic minimal polynomial has integer coefficients. In many aspects O plays a
role analogous to Z, but often lacks unique factorization. This is not a big drawback
because unique factorization is recovered at the ideal level: every ideal of O factors
in an essentially unique way into prime ideals.12 Ideals of O are also isomorphic, as
abelian groups, to Zn where n is the degree of the extension K/Q, and in fact they
can be embedded in a more or less canonical way into Rn as rank n lattices. Since
we are interested only in binary forms it makes sense to restrict our discussion to
the case of extensions of degree two. These are always of the form K = Q(

√
D) for

some square-free integer D 6= 0, 1. The norm N : K → Q, defined as the product
of all the Galois conjugates, can be seen to be a quadratic function when restricted
to any ideal I of O. To be more explicit: the general element of O can always be
written in the form a+b

√
D and N(a+b

√
D) = a2−Db2. The canonical embedding

into R2 when D < 0 is just the usual identification C ≈ R2, while when D > 0 it
is given by a+ b

√
D 7→ (a+ b

√
D, a− b

√
D) ∈ R2. Hence the associated quadratic

function corresponds to the square of the Euclidean norm in the first case, and to
the square of the “singular norm” (x, y) 7→ √xy in the second case.

After we fix a basis of the ideal I as an abelian group, let us say α, β ∈ I, the
norm function on I can be identified with the homogeneous polynomial

Q(x, y) = N(αx+ βy) = N(α)x2 + (α′β + αβ′)xy +N(β)y2

where α′ and β′ are, respectively, the Galois conjugates of α and β. All three
coefficients lie in O∩Q = Z, and therefore Q has integer coefficients, but it need not
be primitive. In fact the gcd of all three coefficients can be seen to equal the index
of I in O, called the norm of the ideal and denoted by N(I). In this fashion we can
construct a primitive quadratic form N(I)−1Q(x, y) for every choice of an ideal and
a basis of such ideal. The forms obtained in this way always have discriminant d = D
if D is congruent to 1 modulo 4 and d = 4D otherwise, quantity which receives the

11The second statement in the composition theorem is more subtle. It follows from the fact
that in Z[i] every element factorizes into prime elements, whose norm are either a prime number (if
the element is not in Z) or the square of a prime number.

12This is actually the reason ideals bear that name: Dedekind devised them as “ideal” fac-
tors, which would be required for the fundamental theorem of arithmetic to hold in number rings.
Elements of the ring O can be identified, up to units, with principal ideals, and therefore all the
non-principal ideals constitute “missing factors” from the viewpoint of elements of O. An enlight-
ening example due to Hilbert where something analogous happens is the multiplicative set of all
integers congruent to 1 modulo 4. In this set we have 693 = 9× 77 = 21× 33, factorizations which
seem irreconcilable. After adding the missing factors 3, 7, 11 however the problem disappears, as
then both factorizations reveal to be the same with the factors grouped in two different ways:
(3× 3)× (7× 11) and (3× 7)× (3× 11).
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name fundamental discriminant of the field Q(
√
D); and actually any form of this

kind which is not negative definite can be constructed by this procedure. We are
going to restrict our attention to these forms, as the negative definite ones can be
replaced by their opposite, and the ones which have non-fundamental discriminant
require considering ideals of full-rank subrings of O called quadratic orders which lie
out of the scope of this survey.

When we replace the basis of I with another basis of the same ideal the above
procedure of course produces an equivalent quadratic form, but this may also happen
when we replace I by a different ideal. An example is given by the ideals I and aI,
where a is any non-unit of O of positive norm.13 Supposing there was no more
redundancy we could quotient the set of all ideals of O by the relation I ∼ J if and
only if there exist elements a, b ∈ O with norms of the same sign satisfying aI = bJ ,
to obtain a nice correspondence between classes of ideals and classes of quadratic
forms. In general however the picture is more complicated than this, as there are
ideals not related in any obvious way which give raise to equivalent forms.14 The
natural way to fix this turns out to be to consider a finer notion of equivalence
between quadratic forms: two quadratic forms are said to be properly equivalent if
they are related by a linear transformation with integer coefficients and discriminant
+1, thereby excluding the ones with discriminant −1. In other words, we require
the linear transformation to fix an orientation of the plane. This also forces us
to consider only those bases of ideals which are positively oriented, as determined
by the embedding into R2 described above. With these amendments we have the
following correspondence:

Theorem (Correspondence between ideals and forms). Let d a fundamen-
tal discriminant and O the number ring of Q(

√
d). Then:

(i) Any primitive quadratic form of discriminant d which is not negative defi-
nite can be obtained via the aforementioned procedure from some positively
oriented basis of some ideal of O; and viceversa all quadratic forms obtained
in this way are of this kind.

(ii) Let I and J be two ideals of O and fix two positively oriented bases of them.
The forms thus obtained are properly equivalent if and only if I ∼ J .

Choose now bases α1, α2 of I, β1, β2 of J and γ1, γ2 of IJ , the product ideal.
There are integers aijk satisfying αiβj = aij1γ1 + aij2γ2, and therefore

(x1α1 + x2α2)(y1β1 + y2β2) =
(∑

i,j

aij1xiyj

)
γ1 +

(∑
i,j

aij2xiyj

)
γ2.

Taking norms, dividing by the norm of IJ , and using that the norm is multiplicative
for both elements and ideals, we obtain the composition law

QI(x1, x2)QJ(y1, y2) = QIJ

(∑
i,j

aij1xiyj ,
∑
i,j

aij2xiyj

)
,

13Choose bases α, β and aα, aβ ∈ aI and use N(aI) = |N(a)|N(I).
14An example can be sketched as follows: consider the forms 3x2+2xy+5y2 and 3x2−2xy+5y2,

which are both of fundamental discriminant −56 and equivalent. They arise from the ideals I and
J , generated (as abelian groups) by 3 and 1 +

√
−14, and by 3 and −1 +

√
−14, respectively. In

both lattices the shortest nonzero vectors are ±3, hence if aI = bJ we must have either a = b or
a = −b, and in both cases I = J , a contradiction.
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where QI is the quadratic form associated to the basis α1, α2 of I, and so on. If
we forget the points where we are evaluating the forms this also provides a product
law [QI ] · [QJ ] = [QIJ ] between classes of properly equivalent quadratic forms of
discriminant d. A very surprising and absolutely non-trivial fact is that, endowed
with the product thus defined, the set of such equivalency classes is a finite abelian
group, called the narrow class group of Q(

√
d). This group, of course, can also be

defined directly from the viewpoint of O by endowing the set of classes of ideals with
the ideal product.

Far more complicated examples of composition laws are obtained when the
narrow class group is not trivial. For example for d = −20 the narrow class group
is isomorphic to Z/2Z, its elements being given by the equivalence classes of the
quadratic forms Q1(x, y) = x2+5y2 and Q2(x, y) = 2x2+2xy+3y2. The composition
laws then are

Q1(x, y)Q1(x′, y′) = Q1(xx′ − 5yy′, x′y + xy′)
Q1(x, y)Q2(x′, y′) = Q2(xx′ − x′y − 3yy′, xy′ + 2x′y + yy′)
Q2(x, y)Q2(x′, y′) = Q1(2xx′ + xy′ + x′y − 2yy′, xy′ + x′y + yy′).

If one allows quadratic forms to be also related by matrices of determinant −1
(equivalence) then not only the correspondence theorem breaks down but it is also
impossible to define a meaningful group law, or even a well-defined product, on the
resulting set of classes. Gauss noticed this himself and introduced the notion of
proper equivalence in his Disquisitiones. He then was able to define the product law
and work out all the details, including the fact that the set of classes constitutes a
finite group. This was remarkably done without the modern algebraic machinery
(not even the definition of group!), relying instead on a convoluted casuistic and
elemental number theory manipulations, making the proof a real tour de force.

On the other hand, if we relax the equivalence relation of ideals by not requiring
the factors to have norms of the same sign then we obtain another finite abelian
group, called the class group ofQ(

√
d). This object is arguably more natural from the

algebraic point of view than its narrow version, but very often both groups coincide
(and when they do not the class group is always a quotient of the narrow class group
by a subgroup of order two). The order of the class group, called the class number
and denoted h(d), is an important but poorly-understood arithmetic function.15 In
the case d < 0, where both class groups have the same size, h(d) is also given by the
number of elements of a complete set of representatives Q1, . . . , Qh(d) of the proper
equivalence classes of positive definite forms of discriminant d.16 Understanding
how many times each integer n is represented by each of the forms Qi is in general
a very difficult problem, but there is a nice formula (also due to Gauss) giving the
total number R(n) of representations of the integer n provided by all the forms

15Many questions about the growth of h(d) are still open. For example, when d < 0 we have
h(d) = 1 only for d = −3,−4,−7,−8,−11,−19,−43,−67 and −163 (the Stark-Heegner theorem),
but the question of how many times h(d) = 1 is still open for d > 0. Gauss conjectured this should
happen infinitely often.

16For fundamental d > 0 the class number is either the number or half the number of proper
equivalence classes of forms. If d is not fundamental, the class number may also be defined in a
similar way, but considering only primitive forms. In general, the values of h(d) for non-fundamental
d are not that interesting, as they are easily related to sums of h(d) for fundamental d (theorem 2
of chapter XIII of [22]).
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Q1, . . . , Qh(d) at once (see §12.4 of [56]):

(I.16) R(n) = w
∑
m|n

(
d

m

)
, where w =


6 if d = −3,
4 if d = −4,
2 otherwise.

On the right hand side
(
d
m

)
stands for the Jacobi symbol (see chapter 5 of [23]).

Note this identity generalizes the genus theorem given above.17 The same formula
also holds when d > 0 with w = 1, but then it only counts a special kind of
representations (primary representations) which are finite in number (see chapter 6
of [23]). To avoid these technical details we assume d < 0 from now on.

The function R(n) as defined is very irregular, but in average its behavior is
quite smooth. In fact, assuming each Qi contributes more or less the same, the
average of R(n) must be proportional to h(d). Dirichlet succeeded in using this
idea to obtain a formula for computing the class number, the Dirichlet class number
formula. We are going to derive this formula following the exposition by Davenport
(chapter 6 of [23]). We start by considering, for convenience, the average of R(n)
only over those values of n coprime to d:

S(n) = 1
n

∑
m≤n

gcd(m,d)=1

R(m).

The idea is to expand this sum by substituting (I.16) and then using Dirichlet’s
hyperbola method to estimate the double sum:

nS(n) = w
∑

m1m2≤n
gcd(m1m2,d)=1

(
d

m1

)

=
∑

m1≤
√
n

(
d

m1

) ∑
m2≤n/m1

gcd(m2,d)=1

1 +
∑

m2<
√
n

gcd(m2,d)=1

∑
√
n<m1≤n/m2

(
d

m1

)
.

The first double sum is approximately nφ(|d|)|d|−1∑
m≤nm

−1( dm), where φ is Eu-
ler’s totient function, while the second double sum must be small because of the
cancellation provided by the character χd(·) = (d· ). Therefore

lim
n→∞

S(n) = w
φ(|d|)
|d|

∑
m≥1

1
m

(
d

m

)
= w

φ(|d|)
|d|

L(1, χd).

On the other hand, if for each quadratic form Q we define rQ(n) as the number of
representations of n by Q, then R(n) =

∑
i rQi(n) and

nS(n) =
h(d)∑
i=1

∑
m≤n

gcd(m,d)=1

rQi(m).

Let us forget for a second the coprimality condition. The sum
∑
m≤n rQ(m) can

be interpreted as the number of points with integer coordinates lying in the region of
17There is a further generalization due to Gauss. He noticed that sometimes each of the forms

Qi represent disjoint sets of integers, and therefore R(n) coincides with the number of represen-
tations coming from a specific Qi. This is the genus theory: each genus consists of forms which
essentially represent the same integers. When a genus contains more than one proper equivalence
class very little can be said about the representation problem (cf. §XIII.3 of [22]).
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the xy plane determined by Q(x, y) ≤ n. This quantity must be well approximated
by the volume of the region, as the points are well-distributed and the region has a
“simple” shape. The following rigorous argument of this fact is attributed to Gauss:
let us draw a square of side-length unity around each point with integer coordinates.
Any region formed by an union of these squares contains exactly as many points
with integer coordinates as area covers. Consider now the region Ω composed of
all those squares whose center lies inside the ellipse Q(x, y) ≤ n. By the previous
remark the area of Ω is exactly

∑
m≤n rQ(m). But the area of Ω is almost equal to

that of the ellipse: to make them coincide we just have to add or remove disjoint
pieces of those squares which intersect the contour Q(x, y) = n. Therefore∑

m≤n
rQ(m) = Vol{Q(x, y) ≤ n}+O

(
diam{Q(x, y) ≤ n}

)
.

Some elemental analysis shows that the area of the ellipse equals 2πn|d|−1/2, while
the error term is of order O(

√
n) for fixed d. Therefore

lim
n→∞

1
n

h(d)∑
i=1

∑
m≤n

rQi(m) = 2πh(d)
|d|1/2

.

If we restore the coprimality condition the same result is still true with an extra
factor φ(|d|)|d|−1. To see this note that if Q(n1, n2) = m then the residues of n1 and
n2 modulo d determine that of m. Hence our sum counts points (x, y) in the ellipse
Q(x, y) ≤ n whose coordinates are integers that modulo d lie in a certain subset of
Z/dZ×Z/dZ, which is easily shown to be of size φ(|d|)|d|. Considering squares this
time of side-length |d| instead of 1 we arrive, by the same argument, to

lim
n→∞

S(n) = 2πh(d)φ(|d|)
|d|3/2

.

Putting together the two expressions we have for the limit of S(n) we obtain
the Dirichlet class number formula:

(I.17) h(d) = w

2π |d|
1/2L(1, χd).

This result has deep implications; for example it readily shows that L(1, χ) does
not vanish when χ is a non-trivial real caracter, which is an essential ingredient of
Dirichlet’s theorem on the infinitude of primes in an arithmetic progression (see §1
of [23]). It can also be used as an efficient way of computing the class number h(d),
by either approximating L(1, χd) or by employing Gauss sums to express the value
of the L-function as a finite sum (see equations (17) and (18) of §6 of [23]).

There is evidence that Gauss already knew this formula almost forty years
before it was published by Dirichlet, and it is in this regard he came up with the
aforementioned argument used to count points with integer coordinates (“lattice
points”) in ellipses.18 In the simplest case, d = −4, we have h(d) = 1 (as shown, for
example, by the class number formula and the arctangent Taylor series), and the
only proper equivalence class of forms is represented by Q(x, y) = x2 + y2. Since

18For negative discriminants (as stated here) this formula can be found in Gauss’ article [34],
published in 1837, two years before Dirichlet published his work. Gauss motto “pauca sed matura”
(few, but ripe) would often led him to publish his work many years after coming up with an idea.
In this article Gauss counts points with integer coordinates in circles and ellipses by slicing them
into small squares, essentially as described above.
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R(n) = rQ(n), its sum N (R) =
∑
n≤R2 rQ(n) counts the number of lattice points

inside the circle x2 + y2 ≤ R2. Gauss’ argument shows

N (R) = πR2 +O(R).

If one estimates numerically the error term N (R) − πR2, they will notice that it
seems to become a lot smaller than this result suggests. For example, for R = 100
we have N (100) = 31417, while π104 = 31415.92...; the error term is smaller than
1 = 0.01R. For higher values of R this trend goes on. A sharper estimation of
the error term however would have to wait until 1906, when Sierpiński [89] proved,
using ideas from Voronoï, that

(I.18) N (R) = πR2 +O
(
R2/3).

This is surprising as no naive geometrical intuition shows us why the error term
should have power-savings over R. The problem of determining the infimum of the
values of α for which N (R) = πR2 + O(Rα) holds is still open, and has become
known as Gauss’ circle problem. The sharpest result at the time of writing this
dissertation is due to Bourgain and Watt [11], who using a method developed by
Huxley [59] have shown that for any α > 517/824 ≈ 0.627 the estimate above is
true.19 On the other hand, in 1915 Hardy and Landau [41, 73] proved independently
that N (R) = πR2 +O(

√
R) cannot hold, and Hardy went on to conjecture that the

error term should be O(R1/2+ε) for any ε > 0; i.e., the aforementioned infimum
should be 1/2.20

All modern techniques used to obtain non-trivial estimations for Gauss’ circle
problem make use, as a first step, of the Fourier transform via the Poisson summa-
tion formula.21 This translates the problem of bounding the error term into one of
bounding exponential sums. We are going to sketch a modern proof of Sierpiński’s
result (I.18) using these tools, to illustrate the underlying ideas.

We begin by considering χR the characteristic function of the circle of radius R
centered at the origin. Applying the Poisson summation formula,

N (R) =
∑
~n∈Z2

χR(~n) = πR2 +
∑

~06=~n∈Z2

χ̂R(~n).

19Voronoï’s original idea consists in approximating the circle by a convex inscribed polygon,
whose sides have slopes which are rational numbers p/q of bounded p and q. Huxley further
refined this method by replacing the straight edges by pieces of conics, idea originally developed
by Bombieri and Iwaniec [10] to study the size of ζ(1/2 + it). The method then becomes very
analytic and resembles the Hardy-Littlewood method, as the main contribution comes from those
pieces of the curve with slopes really close to those of the edges of the Voronoï-Sierpiński polygon.
See Huxley’s book [58] or the survey [57] for further detail. This method in the literature usually
receives the name of the discrete Hardy-Littlewood method.

20Some authors refer to the following heuristics: let Ai be the area of the circle lying inside
one of the one by one squares intersecting the boundary of the circle, and let Pi = 1 if the center of
the square lies inside the circle and Pi = 0 otherwise. Assuming the quantities Ai − Pi behave like
independent random variables with zero mean, and since there are about R of them, the central
limit theorem suggests the error of the circle problem to be bounded by R1/2+ε. Why the curvature
of the circle should imply the independence is not clear to me. This argument also seems to break
in higher dimensions.

21This result establishes the equality
∑

f(n) =
∑

f̂(n), essentially as long as both sums
converge, where f̂ is the Fourier transform of f and n runs over Z in both sums. An analogous
version holds if Z replaced by Zn. See the appendix for a proof.
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An “explicit” expression for the Fourier transform of χR can be given in terms of
Bessel’s function J1:

χ̂R(~ξ) = R
J1
(
2πR‖~ξ‖

)
‖~ξ‖

.

Substituting above and performing the change of variables ‖~n‖ =
√
n we arrive to

the identity

(I.19) N (R) = πR2 +R
∑
n≥1

r2(n)
J1
(
2πR
√
n
)

√
n

where r2(n) = rQ(n) denotes the number of different ways of expressing n as a sum
of two squares.

At this point we have to admit that the argument we have given to obtain
(I.19) is fallacious, as the lack of regularity of the function χR translates to a very
poor decay for its Fourier transform, making the convergence of the series

∑
χ̂R(~n)

a very subtle matter. Formula (I.19) is actually true when restricted to values of R
which are not the square root of an integer, as shown by Hardy [43], but the proof
is by no means this simple. Nevertheless we can still rigorously apply the Poisson
summation formula if we first mollify χR, obtaining a weaker version of (I.19) which
is enough for our purposes. With this objective in mind, we pick a radial bump
function η ∈ C∞(R2) satisfying for some h = h(R) ≤ 1 to be chosen later,

η ≥ 0,
∫
η = 1 and supp η ⊂ B(0, h).

Note that the difference between N (R) and
∑
χR ∗ η(~n) can always be bounded by

the number of points of Z2 lying in the annulus of radii R− h and R+ h, precisely
given by the sum ∑

(R−h)2≤m≤(R+h)2

r2(m).

We are going to employ that for any ε > 0 the bound r2(n)� nε holds. To see this
is true note first that the divisor function σ0, counting the number of divisors of an
integer, does satisfy σ0(n) ≤ nε for n big enough, since both sides are multiplicative
and the result is trivial for prime powers. Also by (I.16) we have r2(n) ≤ 4σ0(n),
and hence r2(n)� nε as claimed. Therefore,

N (R) +O
(
hR1+ε) =

∑
~n∈Z2

χR ∗ η(~n) = πR2 +
∑

~06=~n∈Z2

χ̂R(~n) · η̂(~n)

= πR2 +R
∑
n≥1

r2(n)η̂
(√
n
)J1

(
2πR
√
n
)

√
n

,

where we have written η̂(
√
n) instead of η̂(

√
n, 0) for the sake of clarity. Note that

the smoothness of η implies that η̂ is of fast decay, forcing the sum to converge. In
fact we may choose η satisfying that almost all the mass of η̂ lies in B(0, h−1−ε),
allowing us to truncate the sum up to a small error term O(h−εRε). Using widely
known asymptotics for J1 (cf. chapter VII of [94]), namely

(I.20) J1(x) ∼
√

2
πx

cos
(
x− π

4

)
� 1√

x
,



22 INTRODUCTION: TWO TALES CONNECTED TO JACOBI’S THETA FUNCTION

and the aforementioned bound r2(n)� nε we obtain

N (R) +O
(
hR1+ε) = πR2 +O

R1/2h−5ε/2 ∑
1≤n≤h−2−2ε

1
n3/4

+O
(
h−εRε

)
= πR2 +O

(
h−

1
2−3εR1/2

)
.(I.21)

Choosing now h = R−1/3 we conclude N (R) = πR2 +O
(
R2/3+ε) for any ε > 0.

The same proof may be adapted with minimal changes to remove the extra ε
in the following way: taking η(~x) = h−1η0(~x/h) for a fixed η0 not depending on h,
we obtain the uniform bound η̂(x)� min

(
1, (xh)−1). Summing by parts and using

the estimation obtained by Gauss for the circle,∑
n≥1

r2(n)
n3/4

∣∣η̂(√n)∣∣� ∑
1≤n≤h−2

r2(n)
n3/4 +

∑
n>h−2

r2(n)
hn5/4

= 3π(h−2)
1
4 + 5πh−1(h−2)−

1
4 +O(1).

This upper bound suffices to remove the ε on the right hand side of (I.21). To
remove the other one, note that the inequalities∑

~n∈Z2

χR−h ∗ η(~n) ≤ N (R) ≤
∑
~n∈Z2

χR+h ∗ η(~n)

imply, by the same argument leading to (I.21),{
N (R) ≤ π(R+ h)2 +O

(
h−

1
2 (R+ h)

1
2
)
,

N (R) ≥ π(R− h)2 +O
(
h−

1
2 (R− h)

1
2
)
.

Choosing, again, h = R−1/3, we conclude N (R) = πR2 +O
(
R2/3).

To go beyond Sierpiński’s exponent 2/3 one has to take advantage of the can-
cellation provided by the sign of the cosine in (I.20); i.e., one essentially has to find
non-trivial bounds for the exponential sum∑

n≥1
η̂
(√
n
)r2(n)
n3/4 e

(
R
√
n
)
.

Here e(x) stands for e2πix. Note we may assume η̂ > 0 by appropriately choosing η,
for example as a convolution of a function with itself. Summing by parts we can then
remove the smooth factor η̂(

√
n)n−3/4, reducing the problem to that of bounding

the exponential sum
∑
m≤n r2(m)e(R

√
m) in terms of R and n. To avoid the highly

irregular factor r2 it is convenient to take a step backwards and rewrite the sum as∑
m2

1+m2
2≤n

e
(
R
√
m2

1 +m2
2

)
.

Van der Corput devised a general method to estimate exponential sums of the
form

∑
e(φ(m)) for a smooth phase function φ : R→ R, consisting in two processes

which transform the sum, with the objective of arriving to an exponential sum of
shorter length. If this is achieved then one may trivially estimate the resulting sum
by the number of summands to obtain a non-trivial bound for the original sum.
The two procedures can be roughly described as either squaring the modulus of
the sum or applying Poisson’s summation formula, and the bounds obtained in this
way are referred to as van der Corput estimates. We will devote section §4.4 to
explain them in more detail. Even the simplest van der Corput estimates suffice to
obtain non-trivial results for Gauss’ circle problem beyond Sierpiński’s 2/3. Despite
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this the method has its limitations, and for this particular problem the proof of the
aforementioned result due to Bourgain, Watt and Huxley is more closely related to
the original ideas of Voronoï and Sierpiński than to those of van der Corput.

Nowadays Gauss’ circle problem is the most paradigmatic of a loosely defined
family of related problems, receiving the name of lattice point counting problems.
The objective is always estimating the number of points in a lattice (without loss
of generality Zd ⊂ Rd) that lie in a certain region, depending on one or more pa-
rameters. For example, the sum

∑
m≤n σ0(m), essentially the average of the divisor

function, can also be interpreted as counting the number of points with integer
coordinates lying in the two-dimensional hyperbolic region

{xy ≤ n, 1 ≤ x, y ≤ n}.

The volume of this region is n logn − n + 1, while the perimeter O(n). Gauss’
argument therefore shows that the average of the divisor function over the first n in-
tegers is asymptotically logn. This problem is usually regarded as Dirichlet’s divisor
problem. As with the circle problem the error term is actually smaller, and in fact
these two problems are closely related to each other [11]. Other examples of lattice
point counting problems arising from number theory include the average of the class
number [18] or the equidistribution of rational points on the unit sphere [25]. Even
some Diophantine approximation problems (such as well-approximability) can be
rephrased as determining if there are infinitely many points with integer coordinates
in certain regions.

The same techniques we have sketched so far can also be applied to many other
similar problems. In particular, to that of counting points with integer coordinates
lying inside a fixed d-dimensional convex body, after being dilated by a factor R > 0,
as long as its boundary is a smooth manifold and has positive Gaussian curvature.
The restriction on the curvature is necessary, as shown for example by the square
centered at the origin, for which the error term is infinitely often as big as the
perimeter.

Once the lattice point counting problem has been reformulated as bounding the
corresponding exponential sum, obtaining sharp estimates is usually a very difficult
task. To give a sense of the state of the art, let N (R) denote the number of points
with integer coordinates lying inside the convex body after being dilated by the
factor R > 0, V its volume for R = 1, d the dimension of the ambient space, and
assume the asymptotic N (R) = V Rd +O

(
Rα+ε) holds for any ε > 0. For the plane,

d = 2, the best known result has been obtained by Huxley [59] using a refinement of
the original ideas of Voronoï and Sierpiński, yielding α = 131/208 ≈ 0.63.22 When
d ≥ 3 the best known result is due to Guo [39], who used a bidimensional version of
the van der Corput method to obtain α = d−2+r(d), where r(d) = 73/158 ≈ 0.462
for d = 3 and r(d) = (d2 + 3d + 8)/(d3 + d2 + 5d + 4) for d ≥ 4. These results are
still quite far from the conjectured α = 1/2 for d = 2 (same as for the circle) and
α = d− 2 for d ≥ 3. See chapter 4 for more information.

If one adds extra hypotheses on the convex body, or restricts it to very particu-
lar shapes, sometimes the corresponding exponential sum is better understood and

22It might be possible to translate the result of Bourgain and Watt [11] for the circle, i.e.
α = 517/824, to any convex body in the plane satisfying the above hypothesis on the curvature.
This is because we do not know how to take advantage of the fact that the circle is a very special
region, and the techniques are rather generic.
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therefore one may obtain better bounds. One of these special cases is provided by
the parabolic region23 {

|y| ≤ R− x2/R
}
.

Popov [81] noticed that the corresponding exponential sum is quadratic, essentially∑
|n|≤N e(n2x), and therefore of the kind studied by Hardy and Littlewood. Us-

ing these ideas he was able to obtain the sharp exponent α = 1/2, precisely as
conjectured for the circle. We will give a simplified version of his proof in chapter 5.

Recall that we mentioned these sums may be estimated by considering them
a truncated version of Jacobi’s theta function, and then relating their size to the
size of |θ(x+ iy)| for y ≈ 0. This, in turn, can be bounded by using the functional
equation that θ satisfies for being a modular form. The advantage of this proof is
that it generalizes well to other modular forms, and in particular to the powers θk,
allowing us to obtain very sharp bounds for the k-dimensional exponential sums∑

n2
1+···n2

k
≤N

e
(
(n2

1 + · · ·n2
k)x
)

=
∑
n≤N

rk(n)e(nx),

where the function rk(n) counts the number of different ways of writing n as a sum
of k squares. These, for k = d− 1, correspond to the lattice point counting problem
associated to the d-dimensional paraboloid{

|xd| ≤ R−
1
R

d−1∑
i=1

x2
i

}
.

In [20] Chamizo and the author used these ideas to obtain the conjectured exponent
α = d− 2 for this family of paraboloids. The result is interesting for d = 3 because,
as far as the authors know, it constitutes the first non-trivial example of a three-
dimensional convex body for which the conjecture has been proved. In fact, the diffi-
cult step of the proof is precisely this special case, and then summation by parts suf-
fices to generalize the bound to any d > 3. The case d = 3 is also closely connnected
to binary quadratic forms, as the paraboloid is a dilation of {|z| ≤ 1−(x2 +y2)}, and
the exponential sum, a truncated version of θ2(z) =

∑
r2(n)eπinz. If one replaces

x2 + y2 by any other binary quadratic form Q(x, y) with integer coefficients, then
the exponential sum becomes a truncated version of θQ(z) =

∑
rQ(n)eπinz, which

turns out to be again a modular form called the theta function associated to Q. The
proof still works, mutatis mutandis, providing sharp exponents for a wider family of
“elliptic” paraboloids. This will be presented in chapter 5.

Although the results on parabolic regions have interest per se, Chamizo and
the author were lead to them while trying to gain intuition on a different problem.
The original objective was to generalize the main result of the article [15], which we
describe in what follows. Consider a convex body in three dimensions whose bound-
ary is a smooth surface with positive Gaussian curvature, containing the origin, and
invariant by rotations around the z-axis. Denote by f(r) the generatrix of the con-
vex body, parametrized by the radius r2 = x2 + y2 (see figure I.4). If one assumes
that the quotient f ′′′(r)/r never vanishes,24 then exploiting the extra symmetry it

23The boundary in this example is not smooth at two points, which we may regard as having
“infinite” Gaussian curvature. This is a minor technical problem of limited importance which will
be ignored for now.

24This should be understood in the following sense: f ′′′(r) never vanishes for 0 < r < r0 and
neither does f (4)(0) = limr→0+ f ′′′(r)/r. Note that f is a two-valued function and hence we must
ask this to hold for both branches.
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z

r

z= f(r)

Figure I.4. On the left an example of smooth and convex revolution
body. On the right its generatrix f parametrized by the radius r. Note f
is a two-valued function.

is possible to go beyond Guo’s result and obtain the exponent α = 11/8 = 1.375.
Improvements this big (0.087 over Guo’s exponent 231/158) are rare, specially when
dealing with exponential sums, but the nonvanishing condition —involving a third
derivative— makes this result by Chamizo not completely satisfactory. This is so
because heuristically only derivatives up to order two (with “geometrical” meaning)
should matter to determine the size of the error term. We therefore proposed to try
to weaken this hypothesis. A natural first step in this direction is to try to study
the most pathological case: the case when f ′′′ vanishes identically and therefore
the condition fails at every point, resulting in a paraboloid. After the investigation
it turned out that the techniques employed could not be readily translated to the
original problem (which is no surprise as the paraboloid is a very special and arith-
metic object) and instead we had to rely on a convoluted combination of van der
Corput estimates, which at some point did include an arithmetic argument vaguely
reminiscent of the one used for the paraboloid. In this way we succeeded in proving
that the exponent α = 11/8 still holds under the weaker hypothesis of asking all
the zeros of f ′′′(r)/r to be of finite order25. This, in particular, includes the case of
f being real analytic. The theorem was published in [21], and will be presented in
detail in chapter 6.

I.4. Outline of this document

This dissertation may be divided in two markedly different parts. Chapters 1,
2 and 3 focus on modular forms and their properties, while chapters 4, 5 and 6 are
concerned with lattice point counting problems. These two parts are not completely
independent, as chapter 5 depends upon some results obtained in §2.7.

The first two chapters can be thought as a very short course in classical holo-
morphic modular forms, for which we have assumed no background knowledge. All
the material exposed there can be found in standard books (some of them cited

25The point x0 is said to be a zero of finite order of the function g if g(x0) = 0 but for some
n > 0 we have g(n)(x0) 6= 0.
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in the corresponding chapters), except for the contents of section §2.7. This sec-
tion comprises two technical lemmas which are key to the results later exposed in
chapters 3 and 5, and were originally part of the articles [20, 80].

Chapter 3 builds upon the first two chapters, presenting the contents of the
article “On the regularity of fractional integrals of modular forms” [80], introduced
in §I.2.

Chapter 4 briefly describes the state of the art in lattice point counting theory,
and then introduces some widely used techniques. Again no background knowledge
has been assumed, and the material can be found in many standard textbooks.

Finally, chapters 5 and 6 focus on the problems introduced in §I.3, correspond-
ing to the articles “Lattice points in elliptic paraboloids” [20] and “Lattice points
in bodies of revolution II” [21].

Each of the three chapters presenting research material (chapters 3, 5 and 6)
includes a section named “Main results” where the original results are rigorously
stated and compared with the existing literature prior to them. These chapters
follow closely the content of the corresponding articles, although some parts are
more carefully explained and some proofs of technical lemmas borrowed from other
articles are included for convenience.

At the end of this dissertation the reader will find a short appendix containing
some widely used tools in analytic number theory. These are results that the author
found himself consulting again and again during the research.



CHAPTER 1

The modular group

In this chapter we introduce the modular group and some of its many arithmetic
properties. This group will play a fundamental role in chapter 2 when defining
modular forms. The presented results are chosen with the aim of helping the reader
develop some intuition on the underlying theory, should this be their first encounter
with the topic.

1.1. Lattices and the upper half-plane

We begin by providing some generalities about lattices. A lattice of rank n
for us will be a discrete subgroup of Rn isomorphic to Zn. Discrete means that we
may find a neighborhood around each point of the lattice containing only this point.
Equivalently, it is discrete if and only if it intersects every compact subset of Rn at
a finite number of points. A third equivalent condition: it is discrete if and only if
it is generated (as an abelian group) by a basis of Rn. A set of generators which is
a basis of Rn is called a basis of the lattice, and will bear the adjective positively
oriented if the linear map sending the canonical basis of Rn to the lattice basis has
positive determinant. This classifies all bases of the lattice in positively or negatively
oriented.

The group of matrices of size n × n with integer entries and determinant ±1
acts transivitely and freely on the bases of the lattice. In other words, given any
basis, the linear combinations of vectors dictated by the rows of the matrix always
provide another basis, and as we change the matrix we obtain all possible bases once
and only once. If we restrict to matrices of determinant +1 the same is true for the
set of positively (or negatively) oriented bases, while matrices of determinant −1
invert the orientation of each basis. Matrices of determinant ±n with n > 1 provide
all bases of sublattices of index n.

The group of all matrices of size n×n with integer entries and determinant +1
is called the special linear group of degree n over Z, denoted SLn(Z) or SL(n,Z).
The only one of interest to us is the one of degree 2. In the case of lattices of rank
two, a basis is positively oriented if and only if the angle measured from the first
vector of the basis to the second lies in the interval (0, π).

The fact that R2 may be identified with C gives us extra structure to play with.
Given a lattice Λ and a nonzero complex number λ the lattice λΛ = {λl : l ∈ Λ}
is the result of letting a rotation followed by a homothety (both with respect to the
origin) act on Λ. These two lattices have the same “shape”, although dilated and
tilted with respect to each other. The converse is also true: any two lattices which
may be made to coincide by a rigid motion fixing the origin must be related in this
way. Motivated by this, let L denote the set of all lattices of rank two and define the
map φ : L → P(C) sending a lattice Λ to the set of all quotients v2/v1, where (v1, v2)
runs through all positively oriented bases of Λ. The positive orientation of the basis
is equivalent to the condition =v2/v1 > 0, and therefore all these quotients lie the
upper half-plane H = {z ∈ C : =z > 0}. The map φ is clearly blind to rotations

27
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Figure 1.1. The set φ(Λ) where Λ is the lattice generated by v1 = (1, 0)
and v2 = (0.05, 1.1).

and homotheties, inducing a quotient map (also denoted in the same way by abuse
of notation) φ : L/C∗ → P(C). This latter map turns out to be also injective, for
if c ∈ φ(Λ1) ∩ φ(Λ2) we must have c = u2/u1 = v2/v1 for positively oriented bases
(u1, u2) and (v1, v2) of Λ1 and Λ2, respectively, and therefore λ = v1/u1 satisfies
λΛ1 = Λ2. In figure 1.1 the reader can see an example of one of the sets φ(Λ).

To study the image of φ in more depth, fix a lattice Λ and consider two positively
oriented bases (u1, u2) and (v1, v2). By the previous remarks we may find a matrix(
d c
b a

)
in SL2(Z) satisfying v1 = du1 + cu2 and v2 = bu1 + au2. Therefore

v2
v1

= bu1 + au2
du1 + cu2

=
au2
u1

+ b

cu2
u1

+ d
,

and the corresponding two points in the set φ(Λ) are related in this way. Motivated
by this we define an action of the SL2(Z) on the complex plane in the following way:
the result of the action of a matrix γ =

(
a b
c d

)
on a point z in the upper half-plane

is given by

(1.1) γz = az + b

cz + d
.

We have scrambled the rows and columns of the matrix to make it look pretty,
but the idea is clear: any two points in φ(Λ) related by the action of a matrix γ
correspond to bases (u1, u2) and (v1, v2) related by the matrix

(
d c
b a

)
, which also lies

in SL2(Z), and viceversa. We conclude therefore that the image φ(Λ) is the orbit of
a point in H under the action of SL2(Z). Note also that every orbit is represented
by some lattice, as z ∈ φ(Λz) where Λz is the lattice generated by 1 and z ∈ H. In
other words, φ induces a bijection L/C∗ ≈ SL2(Z)\H

That (1.1) defines an action follows from the interpretation we have just given,
but it can also be checked directly. It is an easy computation to see that δ(γz) =
(δγ)z for matrices γ, δ ∈ SL2(Z). Another simple computation shows that

(1.2) =γz = =(az + b)(cz̄ + d)
|cz + d|2

= =z
|cz + d|2

.

In particular, =z > 0 if and only if =γz > 0, and hence the action of SL2(Z) leaves
the upper half-plane H invariant.

This action is not faithful as the matrix γ ∈ SL2(Z) and its negative −γ act
exactly in the same way on H. This is because both matrices lead to the same
fractional linear transformation (or Möbius transformation) z 7→ (az + b)/(cz + d).
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It is therefore more natural to consider the action as coming from the quotient group
SL2(Z)/{±1}. This group, called the modular group, is the one we want to study,
although we might sometimes use this name also for SL2(Z) by abuse of notation.

One of the motivations to consider the notion of lattices modulo C∗ comes from
the theory of quadratic forms. Recall that a primitive integral binary quadratic form
of fundamental discriminant d < 0 which is positive definite can be obtained from a
positively ordered basis of an ideal in the number ring of Q(

√
d). These ideals are

a very special kind of lattices in C. Two of these lattices I and J generate properly
equivalent quadratic forms if and only if aI = bJ for some a, b ∈ O (which must have
positive norm because d < 0). In this case, I = λJ for λ = a/b, and reciprocally
if I = λJ for λ ∈ C then necessarily λ ∈ Q(

√
d) and therefore λ = a/b for some

a, b ∈ O. Hence the orbit φ(I) is an invariant of the proper equivalence class of
quadratic forms derived from I: forms Q(x, y) = |αx+ βy|2/N(I) where (α, β) is a
positively oriented basis of I. Note that if Q, as a function, is extended to C2 then
Q(x, y) = 0 if and only if either x = y = 0, x/y = −β/α or x/y = −β̄/ᾱ. We can use
this to skip the ideals altogether, associating directly to the form Q the unique point
z0 ∈ H which is a zero of the polynomial P (z) determined by P (−x/y) = y−2Q(x, y).
If Q(x, y) = ax2+bxy+cy2, this point has the explicit expression z0 = (b+

√
d)/(2a).

Also by the previous remarks, two forms are properly equivalent if and only if their
associated points lie in the same orbit modulo SL2(Z). If we consider Fd the set of
all the points (b+

√
d)/(2a) satisfying that a, b are integers, a > 0 and 4a | (b2− d),

then each point in Fd determines a unique primitive form of discriminant d, by
considering the minimal polynomial of this point appropriately scaled so that its
coefficients are coprime integers. We have therefore the following correspondence

Theorem. Primitive quadratic forms of fundamental discriminant d < 0 which are
positive definite are in one to one correspondence with points in Fd. Properly equiv-
alence classes are, from this point of view, orbits under the action of SL2(Z).

A similar theorem can be obtained relating indefinite primitive forms with a
class of hyperbolic geodesics on the upper half-plane, but this is out of the scope of
this exposition.1

A second motivation to study lattices modulo C∗ comes from the theory of
elliptic curves over C. Any such curve can be constructed as a complex torus C/Λ,
where Λ is a lattice; and two elliptic curves C/Λ1 and C/Λ2 are isomorphic2 if and
only if the lattices Λ1 and Λ2 are related via multiplication by a nonzero complex
constant. Due to the bijection induced by the map φ, the orbit space SL2(Z)\H
parametrizes all elliptic curves modulo isomorphism. Not only that, but there is
also a natural notion of topology on this space —and even of Riemann surface—
inherited from the one in H. This makes the theory of elliptic curves much richer.
Spaces like this one where each point represents an isomorphism class of some other
object are ubiquitous in modern mathematics and receive the name of moduli spaces
(modulus used as synonym of parameter).

1The interested reader can consult Siegel’s article [88]. In this article Siegel proves an as-
ymptotic formula previously stated by Gauss for the average of the class number for positive dis-
criminants weightened by the logarithm of the fundamental unit. Although Siegel exploits the
aforementioned relation between indefinite binary quadratic forms and hyperbolic geodesics, he was
not the first one to discover it. Apparently this was first noted by Fricke and Klein in [31].

2Isomorphic means there is a bijective holomorphic map preserving the identity element for the
group law. Such map is automatically a group homorphism.
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Figure 1.2. The fundamental domain F and its translations by the mod-
ular group: γ(F) for γ ∈ SL2(Z)/{±1}. The translations by the elements
T , T−1 and S defined in (1.3) are labeled.

1.2. The fundamental domain

The action of the modular group SL2(Z)/{±1} on H is neither free nor tran-
sitive, but it is faithful. The action is also good in the sense that the orbits are
discrete subsets of H. When this happens, and the group acts by continuous trans-
formations, it is often the case one can find a fundamental domain. This is a subset
of the space a group is acting upon which contains exactly one point of every orbit
(maybe with some exceptions) and which has nice topological properties, such as
connectedness, etc. The definition is rather vague on purpose, and is often adapted
to fit different contexts. In our case we will say that a region Ω ⊂ H is a fundamental
domain for the action of SL2(Z) if it has finitely many connected components, each
of them with piecewise smooth boundary, and satisfies that the translates {γΩ} for
γ ∈ SL2(Z)/{±1} cover the whole half-plane and only intersect on their bound-
aries. In other words, Ω tiles the half-plane by the action of the group SL2(Z). If Ω
satisfies the stronger property of containing exactly one point for every orbit, then
we say Ω is a strict fundamental domain.3 In any case, a fundamental domain is
never unique, as for example all the translates by the group satisfy again the same
properties. Which domain we choose to work with is up to us.

In our case we are going to choose the region

F = {z ∈ H : |z| ≥ 1, −1/2 ≤ <z ≤ 1/2},

shown in figure 1.2, as the fundamental domain, as it is often done in the literature.
We can make it strict by removing all the points in the boundary having negative
real part; the resulting domain will be denoted by F′. We are going to show F′ is a
strict fundamental domain in what follows.

Before we begin with the proof let us check that indeed the orbits are discrete.
Suppose, by contradiction, that the orbit of some z ∈ H accumulates at some point
z0 ∈ H, i.e. we can find a sequence of matrices γn ∈ SL2(Z) such that limn γnz = z0
for some z ∈ H but γnz 6= z0 for all n. Writing an, bn, cn and dn for the entries of γn,

3In this case Ω and γΩ may still intersect, but only at the fixed points of γ.
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Figure 1.3. We show in grey the possible location of cz (left) and cz+ d
(right) when c 6= 0 and z ∈ F (region with stripes). Note also that |cz+d| =
1 implies |z| = 1 and |c| ≤ 1.

we establish by (1.2) the existence of the limit limn |cnz + dn| = (=z/=z0)1/2 = `.
This also shows the existence of the limit limn |anz + bn| = |z0|`. Now, cnz + dn is
a point lying in the lattice generated by 1 and z, and hence the modulus |cnz + dn|
may only take discrete values. For the limit to exist the value of |cnz + dn| must
stabilize for n big enough, and this only leaves finitely many possibilities for cnz+dn.
Applying the same argument to anz + bn, we conclude that γnz may only take a
finite number of values for n big enough, contradicting the fact that it accumulates
at z0.

Key to the proof are two very important elements of SL2(Z), namely the ma-
trices

(1.3) S =
(

0 1
−1 0

)
, T =

(
1 1
0 1

)
.

The corresponding linear transformations, the inversion Sz = −1/z and the trans-
lation Tz = z + 1, generate the modular group. Equivalently, SL2(Z) is generated
by {−1, S, T}. We will show this along the way. The proof is loosely based in the
one given by Serre in [85].

We claim that by applying an appropriate combination of S and T we can move
any point z ∈ H into the region F. This can be done in the following way: we apply
T or T−1 until −1/2 ≤ <z ≤ 1/2 and then, if not in F, we apply S. Then we
repeat as many times as necessary. Note that by (1.2) we have =Sz = |z|−1=z and
therefore as long as z /∈ F and −1/2 ≤ <z ≤ 1/2 we keep increasing =z. Either this
process finishes or we obtain a sequence of points zn satisfying =zn → α for some
α > 0 and −1/2 ≤ <zn ≤ 1/2. In the latter case by compactness some subsequence
must accumulate, contradicting the fact that the orbits are discrete. This establishes
the claim. Therefore the process must finish. Note also that by applying T−1 (if
<z = 1/2) or S (if |z| = 1 and 0 < <z ≤ 1/2) we can always move the point into
the strict fundamental domain F′.

Now assume two distinct points z1, z2 ∈ F are related by a matrix γ of SL2(Z),
i.e. z2 = γz1. We claim that in this case these two points must have the same
imaginary part, lie on the boundary of F and be symmetric with respect to the
imaginary axis. To prove this, first note that rearranging the points if necessary we
may assume =z2 ≥ =z1. By (1.2) we have =z2 = =z1/|cz1 + d|2, but |cz1 + d| ≥ 1.
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This is clear if c = 0, and otherwise cz1 must lie in the region shown in the left part
of figure 1.3 and therefore cz1 + d must lie in the one shown in the right. Hence
=z2 = =z1 and |cz1 + d| = 1. This latter fact, again by geometry, implies either
c = 0 and d = ±1 or c = ±1 and |z1| = 1. In the first case, necessarily γ = ±T±1

and |<z1| = |<z2| = 1/2. In the second case, we may repeat the same analysis with
z1 = γ−1z2 to prove also |z2| = 1. In both cases, if z1 6= z2, the constraints force
them to lie symmetrically with respect to the imaginary axis.

The two claims together show so far that F′ contains one and only one point
in each orbit, i.e. it is a strict fundamental domain. To show that the group
SL2(Z)/{±1} is generated by S and T , we take any matrix γ ∈ SL2(Z) and consider
the point γ(2i), lying in H. We have shown there is an element η ∈ SL2(Z) in the
subgroup generated by S and T satisfying ηγ(2i) ∈ F′, but then ηγ must fix 2i.
The coefficients of the matrix representing ηγ must then satisfy a = d, b = −4c and
1 = a2 + 4c2. This implies ηγ = ±1 and therefore γ = ±η−1 can be written in terms
of S, T and its inverses.

We can use the existence of the fundamental domain to give a short proof of
the finiteness of the class number for a fundamental discriminant d < 0. Note
that by the previous remarks on the topic it suffices to show that Fd ∩ F contains
finitely many points. This is a simple verification: any element of Fd is of the
form (b +

√
d)/(2a), and the restriction on the imaginary part

√
|d|/(2a) ≥

√
3/2

limits the possible values of a, while for each of these the restriction on the real part
−1/2 ≤ b/(2a) ≤ 1/2 limits the possible values of b. If one translates more carefully
the condition of the point lying in F′ to the coefficients a, b and c = (b2 − d)/(4a)
we recover the following theorem by Gauss:

Theorem (Gauss). Every positive definite primitive quadratic form is properly
equivalent to one and only one form ax2 + bxy + cy2 satisfying either

−a < b ≤ a < c or 0 ≤ b ≤ a = c.

The procedure described above to move any point of H into F′ also tells us an
algorithmic way to compute this standard representative.

1.3. Continued fractions and the group structure

Continued fractions provide a system to represent real numbers different from
the usual decimal (or n-ary) expansions. The number is represented in the form
[a0; a1, . . . , an, . . .], where a0 is an arbitrary integer and the rest of the ai are strictly
positive integers, but not necessarily bounded. The main advantage is that a lot of
Diophantine approximation properties may be read from these coefficients.

Informally, the continued fraction expansion [a0; a1, . . . , an, . . .] represents the
real number

a0 + 1
a1 + 1

a2+···
.

One way to formalize this is to define inductively [x] = x, [a0;x] = a0 + 1/x,
[a0; a1, x] = a0 + 1/(a1 + 1/x) and, in general,

[a0; a1, . . . , an, x] = [a0; a1, . . . , an−1, an + 1/x].

We also define [a0; a1, a2, . . .] = limn[a0; a1, . . . , an], limit which always exists and
which may attain any real value depending on the coefficients. The proof of these
facts can be consulted in most number theory treatises, for example [68] or chapter X
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of [46]. We are going to include here some simple proofs concerning finite expansions
which will be used to obtain a presentation for the modular group. More concretely,
we are going to prove that any rational number admits a unique expression as a
finite continued fraction [a0; a1, . . . , an] where a0 is an arbitrary integer, the rest of
the ai are strictly positive integers and either n = 0 or an ≥ 2.

Let us show first the uniqueness. By induction, we have for n ≥ 1,

(1.4) [a0; a1, . . . , an] = [a0; y] where y = [a1; a2, . . . , an].

Using this and induction again we obtain the inequalities

(1.5) a0 ≤ [a0; a1, . . . , an] < a0 + 1,

where the first inequality is strict for n ≥ 1. Suppose now [a0; a1, . . . , an] =
[b0; b1, . . . , bm] where n ≤ m. By (1.5) we must have a0 = b0, and if n = 0
necessarily m = 0 and we are finished. Otherwise, by (1.4), the tails coincide
[a1; a2, . . . , an] = [b1; b2, . . . , bm] and an inductive argument finishes the proof.

We give now an algorithm closely related to Euclid’s showing the existence
of such expansion. Since [a0; a1, . . . , an] − k = [a0 − k; a1, . . . , an] we will only be
concerned with positive rational numbers. Let x = p/q where p and q are positive
coprime integers. The algorithm will consist in applying the map x 7→ x − 1 until
p < q (transforming p/q to its fractional part {p/q}), then performing the inversion
x 7→ 1/x and repeating. Note the quantity p+ q keeps decreasing and therefore we
are guaranteed to arrive sooner or later to x = 0. Once this happens we may apply
the operations in reverse order to x = 0 to obtain a continued fraction expression
for our original rational. To see this note that the two maps involved are provided
by the linear fractional transformations associated to T , defined in (1.3), and to

S̄ =
(

0 1
1 0

)
,

closely related to S also defined in (1.3). The algorithm therefore provides a sequence
of non-negative integers a0, . . . , an, where only a0 may vanish, satisfying

T−an S̄ T−an−1 S̄ · · · S̄ T−a1 S̄ T−a0x = 0.

Using S̄−1 = S̄, this is equivalent to

(1.6) x = T a0 S̄ T a1 S̄ · · · S̄ T an0,

and by (1.4) and induction this is also equivalent to x = [a0; a1, . . . , an]. Finally we
need to “fix” the expansion if an = 1 and n 6= 0. In this case we use the identity

[a0; a1, . . . , an−1, 1] = [a0; a1, . . . , an−1 + 1].

The matrix S̄ we introduced does not lie in SL2(Z) as it has determinant −1,
but with the help of the identities

S̄ Tn S̄x = S T−n Sx and S̄ Tn0 = S T−n0

we can rewrite (1.6) as

(1.7) x = T a0 S T−a1 S T a2 S · · · S T (−1)nan0.

Using this and the uniqueness result we are going to show that the modular group
can be presented as

SL2(Z)/{±1} = 〈S, T | S2 = (ST )3 = 1 〉.
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For this it suffices to show that given any word w in S and T whose associated
linear fractional transformation evaluates to the identity, we can use the two given
relations to transform the word itself to the identity. By using S2 = 1 and grouping
the T elements together we can always assume that w has the form

(1.8) w = T b0 S T b1 S · · · S T bn

for some integers bi ∈ Z, where only b0 and bn may vanish. First we show that we
can use the given relations to transform the word in such a way as to guarantee that
the sign of bi coincides with (−1)i for 1 ≤ i ≤ n, or for 1 ≤ i ≤ n− 1 if bn = 0. We
use induction on n. If n = 0 the condition is void, and if n = 1 the only non-trivial
case has b1 ≥ 1. If so we may write

w = T b0−1 T S T T b1−1 = T b0−1 S T−1 S T b1−1,

where we have used the identity T S T = S T−1 S. The latter word satisfies the
hypothesis.

Assume now the result is true for n− 1. Applying the induction hypothesis to
w (and updating the value of n if necessary) we may assume that only bn in (1.8)
has the wrong sign. If n is odd this means that bn ≥ 1. Write

w = T b0 S · · · S T bn−1−1 T S T T bn−1

= T b0 S · · · S T bn−1−1 S T−1 S T bn−1,

where we have used again T S T = S T−1 S. Since bn−1 had the appropriate sign,
bn−1 ≥ 1. If bn−1 ≥ 2 this word satisfies the requeriments. Otherwise bn−1 = 1 and

w = T b0 S · · · S T bn−2−1 S T bn−1.

Again bn−2 had the appropriate sign and therefore bn−2 ≤ −1. Hence this word
satisfies the requeriments. Finally, if n was even instead of odd, the same argument
using T−1 S T−1 = S T S instead works, taking special care if n = 2. Once this has
been established we may rename ai = (−1)ibi, an = (−1)n(bn +m), multiply on the
right by Tm and evaluate w at 0 to obtain the identity

T a0 S T−a1 S · · · S T (−1)nan0 = Tm0.

We may choose m so that these two continued fraction expansions are under the
above hypothesis for the uniqueness result to hold, and therefore we must have n = 0
and a0 = m, effectively showing that w = 1.

Throughout this proof we have been implicitely extending the action of SL2(Z)
to certain rational numbers. It is possible to extend it to all of them, but we have to
take into account the possibility of evaluating a linear fractional transformation at
its pole. The trick is to make the group act on the set Q∪ {∞} in the natural way:
given γ ∈ SL2(Z) and x ∈ Q then γx is the result of evaluating the linear fractional
transformation at x, except when x is its pole, case in which we define γx =∞. We
also define γ∞ = limx→∞ γx; this is, γ∞ = a/c if γ =

(
a b
c d

)
and c 6= 0 and γ∞ =∞

if c = 0. Using Bézout’s identity it is immediate that the action thus defined on
Q ∪ {∞} is transitive. The stabilizer of any point is therefore conjugated to the
stabilizer of ∞, which coincides with the subgroup generated by T . Another useful
fact is that if γx 6=∞ and x = p/q for coprime p and q then γx = (ap+bq)/(cp+dq),
where ap+ bq and cp+ dq are, again, coprime.
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Figure 1.4. The Ford circles.

1.4. Ford circles

The actions we have defined of SL2(Z) on H and on Q ∪ {∞} are, of course,
related. One way to make this explicit is by the use of Ford circles, introduced by
Ford in the beautifully written article [30]. These are defined as follows: for every
rational p/q, where p and q are coprime integers, q ≥ 1, we associate the circle of
radius 1/(2q2) tangent to the real line at the rational, i.e. centered at p/q+ i/(2q2).
We also associate a degenerate “circle” to ∞ consisting of all points z ∈ H with
=z ≥ 1. These circles, shown in figure 1.4, turn out to be either disjoint or tangent
to each other (see [30] for a proof), and they also have the important property of
being preserved by the action of SL2(Z). We are going to need in fact a slightly
more general result: if we denote by Fp/q(δ) the circle of radius δ/(2q2) tangent to
the real line at p/q, and by F∞(δ) the region {=z ≥ δ−1}, we also have

(1.9) γ
(
Fx(δ)

)
= Fγx(δ)

whenever γ ∈ SL2(Z) and x ∈ Q ∪ {∞}. The sets Fx(δ) receive the name of
generalized Ford circles or Speiser circles.

Lemma 1.1. Let p, q be coprime integers and δ > 0. Given z ∈ H, the following
conditions are equivalent:

(i) z ∈ Fp/q(δ).
(ii) |qz − p|2 ≤ δ=z.
(iii) γz ∈ F∞(δ) for any γ ∈ SL2(Z) satisfying γ(p/q) =∞.

It is to be understood that p/q =∞ if q = 0.

Proof. If q = 0 then p = ±1 and γ = ±Tn, and the equivalences are trivial. If
q 6= 0, writing z = x+ iy and squaring, (i) is equivalent to(

x− p

q

)2
+
(
y − δ

2q2

)2
≤ δ2

4q4 .

Expanding the second square and multiplying by q2 it is clear that (i) ⇐⇒ (ii).
The equivalence (ii) ⇐⇒ (iii) follows from formula (1.2) after noting that γ =
± ( ∗ ∗−q p ). �

We proceed to prove (1.9) now by cases. If either x = ∞ or γx = ∞, then
the identity follows from (i) ⇐⇒ (iii) applying the lemma either to γ or γ−1. If
x 6= ∞ 6= γx, we can choose η ∈ SL2(Z) satisfying ηx = ∞ and apply the previous
case to show

γ
(
Fx(δ)

)
= (γη−1)

(
F∞(δ)

)
= Fγx(δ).
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Figure 1.5. The Ford circles intersecting the vertical line over
√

2 =
[1; 2, 2, · · · ] appear highlighted. These intersected Ford circles lie over the
consecutive convergents: 1 = [1], 3/2 = [1; 2], 7/5 = [1; 2, 2], ...

Corollary 1.2. For δ = 1 the Ford circles Fx(δ) are either disjoint or tangent.
For δ ≥ 2 the Speiser circles Fx(δ) cover the upper half-plane.

Proof. Some elementary geometry shows that the distance between the centers of
Fp/q(1) and FP/Q(1) is given by

(1.10)
( 1

2q2 + 1
2Q2

)
+ (Pq − pQ)2 − 1

Q2q2 .

If p/q 6= P/Q then |Pq − pQ| ≥ 1 showing that the circles are either tangent or
disjoint.

For δ ≥ 2 note that the fundamental domain F is contained in F∞(δ). Since F
covers the plane when translated by the modular group, so does F∞(δ). �

As we vary δ the identity (1.9) gives us a fairly good sense of how γ ∈ SL2(Z)
acts on the upper half-plane once we know how it acts on Q ∪ {∞}. In particular,
the change of variables w = γz moves the region {=z ≥ δ−1} to the the Ford circle
Fγ∞(δ) in the w-variable, and hence if f : H→ C is any complex-valued function, the
function g(z) = f(γz) = f(w) behaves when =z →∞ as f does as w → γ∞ within
the generalized Ford circles. If we choose any other γ1 ∈ SL2(Z) satisfying also
γ1∞ = γ∞, then γ1 = ±γTn for some n ∈ Z and hence g1(z) = f(γ1z) = g(z + n)
is just a translation of g. If γ1∞ = x ∈ Q then note that γ1S0 = x and therefore
γ1S admits a decomposition in S and T of the form (1.7) whose coefficients for some
n are precisely the coefficients prescribed by the continued fraction expansion of x.
Therefore, in some sense, moving the ford circle over x to the Ford circle at infinity
by the action of the modular group requires applying translations and inversions in
a precise order to “undo” the continued fraction expansion.

It is due to Ford [30] that this process can also be read from the circles directly
(for δ = 1), with no intervention of the modular group. To see this, note that the
element γ = TnS moves F∞(1) to Fn(1), i.e. changing the value of n determines
in which of the tangent circles to F∞(1) we end up (see figure 1.4). Now, since
it preserves the Ford circles, the application w = γz must also send every tangent
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Figure 1.6. The Farey dissection of order 3. The members of the Farey
sequence are labeled, while their medians are indicated by ticks.

circle to F∞(1) to a tangent circle to Fn(1), so if z already lies in one of the former,
γz will lie in one of the latter. Hence if z = TmSu with u ∈ F∞(1) then choosing m
we can determine in which of the circles tangent to Fn(1) the variable w ends up.
We can write w = TnSTmSu and iterate this process: u = T kSv to reach all the
circles which are tangent to a tangent circle to Fn(1), etc. From (1.7) we see that the
continued fraction coefficients of the rational x are coordinates specifying the path
to take if we want to go from F∞(1) to Fx(1) jumping from tangent Ford circle to
tangent Ford circle. The coordinate system is laid as follows: 0 refers to the tangent
circle we came from, and then 1, 2, . . . specify consecutive tangent circles in one
direction and −1,−2, . . . in the other direction. If the circles are counted clockwise
or counter-clockwise depends on the parity of the number of circles we have already
traveled. The circles visited are also characterized by being those who intersect the
ray orthogonal to the real line at x, hence the continued fraction coefficients also
give the “tangency coordinates” specifying the circles we encounter as we descend
from x+ i∞ through this ray. This interpretation is also valid for any real number,
and for example we can see in figure 1.5 how to interpret the first coefficients for the
irrational

√
2.

The rationals associated to the Ford circles we visit when descending toward a
real number correspond to the partial continued fractions [a0], [a0; a1], etc. These
are called the convergents, and always provide rationals which best approximate the
real number among all rationals with the same of smaller denominator; this is clear
from the geometry of the Ford circles.4 Note that when x is irrational we intersect
infinitely many circles, recovering the classical Dirichlet’s theorem that states that
there infinitely-many rationals p/q satisfying |x− p/q| ≤ q−2. Speiser circles lead to
some refinements of this theorem, as the δ parameter is related to how close all the
points in the circle are to the base rational. In particular they can be used to give
a short proof of Hurwitz’s theorem, which states that if we replace the inequality
|x− p/q| ≤ q−2 with the stronger statement |x− p/q| ≤ Cq−2 then the same result
holds for every irrational number x if and only if C ≥ 1/

√
5 (see [30]).

1.5. The Farey sequence

Given any integer N , the Farey sequence of order N refers to all the rational
numbers in [0, 1] having denominator bounded above by N , arranged in order of
increasing size. These rational points can also be characterized as those lying at the
base of all the Ford circles Fp/q(1) intersected by the segment LN = {0 ≤ x ≤ 1, y =
1/N2}. They satisfy the following remarkable properties:

Proposition 1.3. Let p/q < P/Q be two consecutive rationals in the Farey sequence
of order N , written in their lowest terms. Then

4For other denominators best-approximants are always mediants of convergents (theorem 15 of
[68]).
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(i) Pq − pQ = 1.
(ii) N + 1 ≤ q +Q ≤ 2N .

(iii) p+ P

q +Q
− p

q
= 1
q(q +Q) and P

Q
− p+ P

q +Q
= 1
Q(q +Q) .

Proof. If any curve intersects two Ford circles in succession these must be tangent,
as the only way to leave a circle is through a tangency point, or through the common
boundary with a “curved triangle” whose two other sides correspond to tangent
circles (see figure 1.4, for a formal proof this fact it can be shown to be true when
leaving F∞(1) and then it must hold when leaving any other circle by transforming
the half-plane under the action of the modular group). Therefore any two Ford
circles intersected in succession by the segment LN are tangent, and formula (1.10)
shows (i) must hold. The rational (p+ P )/(q +Q) lies strictly in between p/q and
P/Q and therefore is not part of the Farey sequence. Hence q + Q ≥ N + 1, and
trivially q +Q ≤ 2N . Finally (iii) follows from (i). �

It is often the case we want to dissect the segment LN into smaller intervals,
in a way that every of the subintervals is appropriately close a rational p/q in the
sense that it is contained in Fp/q(δ) for some fixed δ. If δ < 2/

√
3 then this is

impossible because the Ford circles do not cover the half-plane, but if δ > 1 then the
intersections of LN with the Speiser circles might overlap. A “clean” way to do this
is the Farey dissection of order N . We associate to each rational p/q in the Farey
sequence of order N the interval

Ap/q =
[
p+ p−

q + q−
,
p+ p+

q + q+

)
,

where p−/q− < p/q < p+/q+ are consecutive rationals in this sequence (figure 1.6).
What we do with the endpoints of the interval is a matter of convenience, in our
case it will be useful to consider two half-intervals A0 = [0, 1/(N + 1)) and A1 =
[N/(N + 1), 1]. The intervals Ap/q are disjoint and cover [0, 1]. Moreover

(1.11) Fp/q(1/4) ∩ LN ⊂ Ap/q + i/N2 ⊂ Fp/q(2) ∩ LN .

To see this, let x be one of the edge points of Ap/q and z = x + i/N2. Then a
simple computation shows |qz− p|2 = δ(=z) for δ = N2/(q+Q)2 + q2/N4 which by
proposition 1.3 lies in [1/4, 2]. By (ii) of lemma 1.1 above this is equivalent to the
inclusions (1.11).

The concept of the Farey dissection trivially generalizes to other intervals and
to the continuum, considering the intervals associated to rationals p/q with q ≤ N
in the given interval or in the whole real line.

1.6. Geometry

We cannot finish this section without saying a few words about Poincaré’s model
of hyperbolic geometry in the upper half-plane. If we endow H with the arclength
element

ds =
√

(dx)2 + (dy)2

y
where z = x+ iy,

we obtain a riemannian manifold of constant curvature −1, where the group of
orientation-preserving isometries can be identified with SL2(R)/{±1} with the usual
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action.5 In particular all elements of the modular group preserve all the features of
the geometry on H, some of which described in what follows. Geodesics are either
vertical rays or half-circles whose center lies on the real line, while the angles coincide
with the Euclidean ones. In this sense the fundamental domain F is a hyperbolic
triangle, with inner angles π/3, π/3 and 0 and a missing vertex. The missing vertex
can be identified with the point ∞ in the “boundary”. In fact, as a topological
space the whole model can be compactified by adding the set of end-points of all
geodesics or limit points R ∪ {∞}. This construction is analogous to that of the
projective plane for the Euclidean plane. All the linear fractional transformations
have a well-defined action in this new space.

When seen in the Riemann sphere via the stereographic projection the upper
half-plane then becomes a disk on the sphere, and the set of limit points its boundary.
In fact, one can define an appropriate arclength element on the usual open unit disk
so that the resulting geometry is equivalent to the one described above and the set of
limit points coincides with the boundary of the disk. This is Poincaré’s disk model.
The metric spaces obtained when leaving the limit points aside are isometric and, in
fact, conformally equivalent in the usual sense, as in both cases the notion of angle
coincides with the Euclidean one. We will directly work with the disk model, but it
is important to keep in mind that the set of limit points R ∪ {∞} is topologically a
circle and in this sense the linear fractional transformations act continuously on it.

The orientation-preserving isometries on the upper half-plane can be classified
depending on the number and location of their fixed points (in a similar way to
what happens in the Euclidean plane). To describe this, let γ =

(
a b
c d

)
∈ SL2(R) be

distinct from ±1. The fractional linear transformation associated to γ fixes the point
∞ if and only if c = 0, and in this case the other fixed point is given by −b/(a− d).
If, on the contrary, c 6= 0 then the fixed points are given by the expression

(1.12) a− d±
√

∆
2c where ∆ = (a+ d)2 − 4.

Note that in any case the sign of ∆ determines the nature of the fixed points: if
∆ < 0 then γ has one fixed point lying in H, if ∆ = 0 then γ has one fixed point
lying in R ∪ {∞} and if ∆ > 0, γ has two fixed points lying in R ∪ {∞}. In the
first case we say the transformation is elliptic, in the second case parabolic and in
the third hyperbolic. There are isometries fixing any of these combinations of points,
and once the fixed points are chosen the resulting isometries form an uniparametric
group isomorphic to S1 in the elliptic case and to R in the other two. In figure 1.7
some examples of the orbits by these uniparametric groups can be seen.

Forcing the coefficients of the matrix to be integers imposes strong conditions
on the nature of the fixed points, as the following theorem shows.

Theorem 1.4. If a transformation in SL2(Z) is parabolic, the fixed point lies in
Q ∪ {∞}. If it is hyperbolic the fixed points are always a pair of Galois-conjugated
quadratic surds. If it is elliptic the fixed point is always in the orbit of i or ρ =
(1 + i

√
3)/2 modulo SL2(Z). There are transformations in SL2(Z) fixing any of the

above specified points.

5If we add the map z 7→ −z̄ we obtain the whole group of isometries. This group can be seen
to be isomorphic to S*L2(R)/{±1}, where S*L2(R) stands for the group of 2× 2 matrices with real
entries and determinant ±1. Under this isomorphism, the elements of negative determinant act via
the corresponding linear fractional transformation composed with complex conjugation.
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x x y

x

Figure 1.7. Examples of orbits when Poincaré’s upper half-plane is acted
by uniparametric groups of orientation-preserving isometries. In these ex-
amples the orbits are always circles. Two particular cases are missing:
parabolic transformations fixing ∞ are horizontal translations, while hy-
perbolic transformations fixing ∞ and x are Euclidean dilations fixing the
point x.

Proof. We recall the only transformations fixing∞ are the translations, which are
parabolic. Since the action of SL2(Z) on Q ∪ {∞} is transitive, there are parabolic
transformations fixing any rational point, and any transformation not equal to the
identity fixing a rational point must also be parabolic.

We can therefore assume c 6= 0, ∆ 6= 0 and that the fixed points are given by
(1.12). Note that ∆, if positive, cannot be a square as it would contradict the previ-
ous remark. Therefore when the transformation is hyperbolic the pair of fixed points
are complex-conjugated quadratic surds. To see that any pair of quadratic surds are
fixed by some hyperbolic transformation we appeal to the fact that any quadratic
surd has a periodic expansion as a continued fraction (theorem 177 of [46]). This
means, in view of (1.7) that there exist γ, η ∈ SL2(Z) satisfying that limn ηγ

n0 = x,
where x is one of the quadratic surds. Hence x = limn ηγ

n+10 = ηγη−1x or ηγη−1

fixes x, and ηγη−1 6= ±1 as otherwise x = η0 would be rational.
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Assume finally we are in the elliptic case. The transformation S fixes i, while
TS fixes ρ, and hence all points in these two orbits are admissible. If, on the other
hand, we are given a transformation which fixes a point in H, we can conjugate it by
an element of SL2(Z) to assume without loss of generality that the fixed point lies
in F′. The same proof we have given showing that F′ is a strict fundamental domain
now shows that the fixed point has modulus 1, and that the transformation satisfies
c = ±1. By (1.12) this implies that the real part of the fixed point ±(a− d)/2 must
be an integer multiple of 1/2, hence only leaving i and ρ as possibilities. �

Given any subgroup of SL2(R), the points fixed by parabolic transformations are
called cusps, while those fixed by elliptic transformations are called elliptic points.
This theorem shows that for SL2(Z) the cusps are Q∪{∞}, while the elliptic points
are the orbits of i and ρ. For any finite index subgroup of SL2(Z) the cusps are again
the same set, as for any parabolic transformation lying in SL2(Z) some power lies in
the subgroup, fixes the same point, and cannot be the identity as these transforma-
tions are not of finite order. The set of points fixed by hyperbolic transformations
is also preserved by the same argument, but some elliptic points may dissapear.





CHAPTER 2

Classical modular forms

In this chapter we introduce the concept of classical modular forms for arbitrary
finite index subgroups of the modular group and arbitrary multiplier systems. We
have to be quite selective regarding the results we present, as this topic is vast and
admits many generalizations in many different directions. We are going to start
by introducing the simplest case: modular forms for the whole modular group and
trivial multiplier system —although this was not historically the first case studied,
as Jacobi’s theta function is not of this kind— and then incrementally complicate
the definition.

A good basic reference for the simplest case is Serre’s book [85], while the first
chapter of [97] by Zagier provides a good survey on the different existing generaliza-
tions. Treatises covering in depth the analytic aspects are provided by Rankin [82]
and Iwaniec [61].

2.1. Classical modular forms for SL2(Z)

Let k ∈ R. A modular function of weight k is an analytic function f : H → C
satisfying the following invariance relation under the action of the modular group:

(2.1) f(γz) = (cz + d)kf(z) for every γ =
(
a b
c d

)
∈ SL2(Z).

Note that since γ and −γ act in the same way, if f is not identically zero this
immediately implies that k is an even integer. The value of k is called the weight of
the modular function.

Of course since the modular group is generated by S and T , equation (2.1) is
equivalent to the pair of conditions

(2.2)

f(z + 1) = f(z),

f(−1/z) = zkf(z).

The first one, in particular, shows that if we perform the change of variables q = e2πiz

the function g(q) = f(z) is well-defined and analytic on the punctured unit disk.
It therefore admits a Laurent expansion, which can be translated back to a Fourier
expansion for f :

f(z) =
∞∑

n=−∞
anq

n =
∞∑

n=−∞
ane

2πinz.

We say f is a modular form if an = 0 for n < 0 i.e. if the singularity in the variable
q is removable. We also say that it is a cusp form if it is a modular form and a0 = 0.
Note that it is a modular form if and only if lim=z→∞ f(z) ∈ C, and in this case
g(q) = a0 +O(q) and therefore f(z) converges exponentially fast to a0 as =z →∞.
On the other hand if a−1 6= 0 then f(q) must be Ω(|q|−1) and therefore |f(z)| cannot
be bounded by a polynomial in =z. Some books use this as shortcut to define which

43
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modular functions are modular forms: those which are bounded as =z →∞, or, as
we will see in §2.6, those which grow at most polynomically fast as =z → 0+.

Note that by the functional equation (2.1) the values of a modular function
are determined once we have specified the function on the fundamental domain F.
In the simplest case, when k = 0, the functions are invariant and therefore live in
the quotient space SL2(Z)\H. This space can be visualized as the result of gluing
together the sides of F as indicated by the transformations T and S. If we remove
the orbits of the elliptic points i and ρ, the resulting quotient is both a riemannian
manifold and a Riemann surface, and in particular there is a well-defined notion of
angle. Around the image of the points i and ρ in the quotient, however, we can
find neighbourhoods which do not have a full 2π circumference, as can be seen in
figure 1.2. In the case of i the angle is just π, while in the case of ρ the angle is 2π/3.
These can be visualized as “cone”-like singularities in the quotient SL2(Z)\H. If we
compactify the quotient by adding the missing point ∞, we also have a singularity
around it, but in this case with a neighbourhood of zero radians around it. These
three singularities can be resolved if we forget the metric and only care about the
complex structure, by adding ad hoc charts which “multiply” the angles around
them by the correct amount. These are similar to z2 and z3 for i and ρ and the
exponential change of variables we introduced earlier for∞. After this is done, we are
left with a compact Riemann surface where analytic functions precisely correspond
to modular forms of weight zero (see §2.2.5 of [82]). Of course we only have the
constants by Liouville’s theorem, but since SL2(Z)\H is an interesting space from
the number theoretic viewpoint (parametrizes elliptic curves over C, for example)
we want to construct non-trivial meromorphic functions over it. One way to do this
is by quotienting modular forms, as the functional equation (2.1) shows.1 This is
one motivation to study this kind of functions, similar to the original motivation
by Jacobi to study his theta function. A different, more pragmatic, motivation to
study modular forms is simply that there are many examples of interesting functions
arising from different contexts that satisfy (2.1), or generalizations of this equation.
A third motivation is that for k = 2 the differential form f(z) dz is invariant under
the action of SL2(Z), since a simple computation shows that (γz)′ = (cz + d)−2,
and therefore weight two modular forms provide holomorphic differential forms on
the Riemann surface obtained by compactifying SL2(Z)\H. This is the reason they
are called modular forms, the quotient space SL2(Z)\H being called the modular
curve. The differential forms thus obtained can then be integrated over paths on
the modular curve, leading to the important theory of Eichler–Shimura [28].

A different point of view is the following: suppose we have a complex-valued
function g : L → C, where L is the space of lattices, and that it is (−k)-homogeneous
in the sense that g(λΛ) = λ−kg(Λ) for every λ ∈ C∗ and every Λ ∈ L. If we define
f(z) = g(Λz), where Λz is the lattice generated by 1 and z ∈ H, then this function
f : H→ C captures all information about g. This is so because if α, β ∈ C constitute
a positively ordered based for Λ then g(Λ) = g(αΛβ/α) = α−kf(β/α). Moreover we
have the identity Λz = (cz+d)Λγz, as the lattice on the right hand side is generated
by cz + d and az + d, which constitutes another basis for Λz. This is precisely
(2.1) for f , and viceversa any f : H→ C satisfying (2.1) can be translated to some

1In fact, since the resulting Riemann surface is conformally equivalent to the Riemann sphere,
we know that the field of meromorphic functions can be generated by a single function. One such
function is the so-called j-invariant, which appears naturally in the theory of elliptic curves precisely
as an invariant of the isomorphism class of the curve (see §VII.3.3 of [85]).
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k-homogeneous function g on the space of lattices. This provides a cheap way to
construct examples, the simplest ones being Eisenstein series Ek(Λ) =

∑
06=λ∈Λ λ

−k,
or in the z-variable Ek(z) =

∑
~06=(n,m)∈Z2(nz+m)−k. This series absolutely converges

to a nonzero modular function for every even integer k ≥ 4, which is a modular form
of weight k since lim=z→∞Ek(z) = 2ζ(k). Using the taylor series for the cotangent
function it can be shown (see §VII.4 of [85]) that they admit the Fourier expansion

(2.3) Ek(z) = 2ζ(k) + 2(2πi)k

(k − 1)!
∑
n≥1

σk−1(n)qn

where q = e2πiz and σk−1(n) =
∑
d|n d

k−1. In general it is often the case that the
Fourier coefficients of modular forms are arithmetically interesting (and multiplica-
tive!) functions.

Modular forms (or modular functions) of a fixed weight form a C-vector space,
as can be easily shown from the linearity of (2.1) and the rest of properties. We can
also multiply modular forms (or functions) of weights k1 and k2 to obtain one of
weight k1 + k2, and therefore if we take them all together they generate a graded C-
algebra. We can also divide them, but then we have to be careful to avoid introducing
poles.

An important fact is that modular forms of a fixed weight are a finite-dimensional
vector space over C. A simple way to show the finiteness is by integrating the log-
arithmic derivative of a modular form around the boundary of the fundamental
domain F and employing the functional equation (2.1) to find a very particular ver-
sion of the Riemann-Roch formula, as done in §VII.3 of [85]. This formula provides
strong restrictions on the functions that happen to be modular forms, and can be
used to prove that the space of forms of weight k admits as a basis the set of all the
products En4Em6 for which 4n+ 6m = k, n ≥ 0, m ≥ 0 (corollary 2 of §VII of [85]).
In particular there are only nonzero modular forms when k ≥ 0 is an even integer,
and in this case the space of modular forms has dimension d = bk/12c if k ≡ 2
(mod 12) and d = bk/12c + 1 when k 6≡ 2 (mod 12). Moreover the first d Fourier
coefficients uniquely determine the modular form. Playing with these facts and the
expansion (2.3) it is not hard to find surprising relations between certain Dirichlet
convolutions of the functions σk−1.

The vector space of modular functions of a fixed weight, however, need not be
of finite dimension. This is similar to what happens in other areas of mathematics,
for example in PDEs. Consider as a model the heat equation on the real line. Once
the initial conditions have been stablished one can only ensure uniqueness of the
solution if one limits its growth at infinity. For modular forms, the equation is not
differential but functional, and the initial conditions can be thought as prescribing
a big enough but finite number of Fourier coefficients.

For weight 12 we have for the first time a nonzero cusp form, as the two mod-
ular forms E3

4 and E2
6 both have weight 12 and are linearly independent. Indeed,

the combination ∆ = 10800(20E3
4 − 49E2

6) is cuspidal, as is readily shown using the
identities ζ(4) = π4/90 and ζ(6) = π6/945. The fact that ∆ does not vanish identi-
cally can also be checked directly by computing the Fourier coefficient τ(1) = 1 of
the Fourier expansion ∆(z) =

∑
n≥1 τ(n)qn from (2.3). The function ∆ is called the

discriminant function, while τ(n) is called Ramanujan’s tau function. The latter was
notably introduced by Ramanujan in 1916, who conjectured that it was multiplica-
tive and for primes satisfied the bound |τ(p)| ≤ 2p11/2. The multiplicativeness was
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Figure 2.1. The modular forms E4, E6 and ∆ (top to bottom). As is
customary, in these plots a function f : C → C is represented by coloring
the complex plane. The lightness of a point z indicates the modulus |f(z)|,
where black means 0 and white ∞; while the hue indicates the argument
of f(z), the positive real numbers being red and the negative ones being
cyan.

proven by Mordell one year later (nowadays usually shown with help of the Hecke
operators, see §VII.5 of [85]), but the bound on its size would have to wait to 1974
when Deligne proved it as a consequence of Weil conjectures. Note the substantial
difference with the coefficients of the Eisenstein series, which for primes are of the
order pk−1, where k is the weight. Indeed, the coefficients of cusp forms are always
much smaller than the coefficients of non-cuspidal forms, as we will show in §2.6,
and sharp bounds are usually very deep results (cf. [25]).

The examples we have given, and in particular the Eisenstein series E4 and E6
and the discriminant function ∆, appear naturally in the theory of elliptic curves
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over C. The first two, when evaluated at a lattice Λ, provide the coefficients of the
Weierstrass form for the elliptic curve C/Λ, while the discriminant function coincides
with the discriminant of such polynomial (see §VII.2 of [85]). The j-invariant is —
as the name suggest— an invariant of the isomorphism class of the elliptic curve.
A plot of these functions is included in figure 2.1, where it is apparent how the
functional equation (2.1) relates their values among different Ford circles.

2.2. Multiplier systems

The vast majority of modular forms which one encounters “in the wild” do not
conform to the definition we have just given. This is for example the case of Jacobi’s
theta function θ, defined in (I.1). For this function, (2.2) has to be replaced with

(2.4)

θ(z + 2) = θ(z),

θ(−1/z) =
√
−iz θ(z).

The first equation is clearly satisfied by definition. To see the second holds we use
the fact that the gaussian f(x) = e−πx

2 is its own Fourier transform, and therefore
for g(x) = f(x

√
t) we have ĝ(ξ) = t−1/2f(x/

√
t). Applying Poisson’s summation

formula to g we obtain the second equation for z = it, and the identity principle
shows it must hold for any z ∈ H.

Note (2.4) almost mimics (2.2) for weight k = 1/2. We have however to acco-
modate two facts: firstly the group of transformations —generated in this case by
T 2 and S— is a finite index proper subgroup of SL2(Z). Secondly, there is an uni-
modular factor

√
−i multiplying the right hand side of the second equation. When

applying repeatedly these two equations we obtain a general functional equation sim-
ilar to (2.1) but with a different unimodular constant µγ for every transformation γ
in the transformation group.

Take now any finite index subgroup Γ of SL2(Z). We are interested in nonzero
functions f : H→ C satisfying for some k ∈ R,

(2.5) f(γz) = µγ(cz + d)kf(z) for every γ =
(
a b
c d

)
∈ Γ,

where µγ is an unimodular constant depending on γ. The power function, and
any logarithm we consider, will always correspond to the principal branch, with
argument determination in (−π, π]. Note we may assume without loss of generality
that −1 ∈ Γ, as otherwise we may simply add it to the subgroup and appropriately
choose µ−γ for every γ ∈ Γ to make (2.5) hold for the new group. Once this is done,
the functional equations corresponding to γ and −γ are redundant (in fact it is the
group Γ/{±1} the one acting), hence for the sake of simplicity we will often take γ
satisfying the following convention:

(2.6) c > 0, or c = 0 and d > 0, where (c, d) is the bottom row of γ.

Note these matrices do not form a group, simply a transversal set for Γ/{±1}.
For convenience we will also use the notation jγ(z) = cz+d. Note if z ∈ H then

(2.6) is equivalent to arg jγ(z) ∈ (π, 0]. The function jγ also satisfies the following
properties:

Proposition 2.1. For any γ, η ∈ SL2(R) and z, w ∈ H we have:

(i) jγη(z) = jγ(ηz)jη(z).
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(ii) jγ−1(z) =
(
jγ(γ−1z)

)−1.
(iii) (γw − z)jγ(w) = (w − γ−1z)jγ−1(z).
(iv) For any fixed k ∈ R, the following expression does not depend on z:

c(γ, η) =
(
jγ(ηz)

)k(
jη(z)

)k(
jγη(z)

)k .

Proof. The first property can be easily checked by substitution. Choosing η = γ−1

we obtain the second one. The third is equivalent using (ii) to w − u = (γw −
γu)jγ(w)jγ(u), where u = γ−1z, identity which can also be checked by substitution.

To show (iv) note that if u, v are complex numbers the quantity ukvk(uv)−k
depends only on the unique integer n for which arg u + arg v − arg(uv) = 2πn.
Hence if arg u, arg v and arg uv all vary continuously, the expression ukvk(uv)−k
must remain constant. Since in our case u = jγ(ηz), v = jη(z) and uv = jγη(z) due
to (i), it suffices to show that arg jσ(z) is a continuous function of z for z ∈ H and
for any σ ∈ SL2(R). This is a consequence of the fact that, depending on the sign of
the bottom row of σ, jσ(z) varies continuously and remains in one of the following
four regions: H, R+, R− or −H. �

The first property together with the associative law γ(ηz) = (γη)z imply that
if we want a nonzero function f to satisfy (2.5) then the constants µ must satisfy
for any γ, η ∈ Γ the identity

(2.7) µγη = c(γ, η)µγµη,

where the constant is given by (iv) of proposition 2.1. Any function γ 7→ µγ on Γ
satisfying |µγ | = 1, µ−1 = e(−k/2) (recall e(x) = e2πix) and (2.7) for all γη ∈ Γ is
called a multiplier system of weight k on Γ. If µγ = 1 for every γ ∈ Γ the multiplier
system is said to be trivial. Note also when the weight is an integer the multiplier
system is simply an homomorphism from Γ to S1 sending the matrix −1 to (−1)k.
For more information on multiplier systems we refer the reader to §3 of [82].

Once we have a multiplier system µ we do not have any obvious obstructions
to (2.5), in the sense that we may always construct nonzero continuous functions
f : H → C satisfying this functional equation. If f is also holomorphic we say it
is a modular function of weight k for Γ and multiplier system µ. Nonzero modular
functions can always be constructed for any weight k > 2 generalizing the Eisenstein
series described in the previous section (see §5.1 of [82]). On the other hand, if we
directly find a nonzero function satisfying (2.5) for some unimodular constants µγ
we can automatically guarantee they provide a multiplier system. In particular,
for Jacobi’s theta funcion θ the transformation group Γθ = 〈T 2, S,−1〉, sometimes
called the theta group, can be characterized as the set of matrices in SL2(Z) of the
form

( odd even
even odd

)
or
( even odd

odd even
)
, and the multiplier system is determined by µγ = 1 if

c = 0 and the incomplete Gaussian sum

µγ =

√ i

c

c−1∑
j=0

e
(
− dj2/(2c)

)−1

if c > 0.

A simple proof of these facts is provided by Duistermaat in §3 of [24]. The multiplier
is always an eighth root of the unity as it follows by completing and evaluating the
Gauss sum, or directly from the fact that (2.5) for an arbitrary γ ∈ Γθ must be
obtained by adequately composing the identites (2.4).
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An alternative and sometimes more convenient way of writing (2.5) involves the
slash operator. Given any γ ∈ GL2(R) with positive determinant we define the slash
operator |γ of weight k acting on the functions f : H→ C in the following way:

f |γ(z) =
(

det γ
)k/2 f(γz)(

jγ(z)
)k .

It depends on the weight k, but this dependence is usually omitted as k is fixed. The
slash operator satisfies the composition law (f |γ)|η = c(γ, η)f |γη, as can be readily
checked by substituting.

Using the slash operator, (2.5) admits the compact form

f |γ = µγf for any γ ∈ Γ.

The following proposition describes what happens when γ /∈ Γ.

Proposition 2.2. Suppose f : H → C is a nonzero modular function of weight k
for the subgroup Γ and multiplier system µ, and take γ ∈ GL+

2 (R). Then there is a
multiplier system ν of weight k for the group Γ′ = γ−1Γγ ∩ SL2(Z) such that f |γ is
a modular function of weight k for Γ′ and multiplier system ν.

Proof. The function f |γ is clearly holomorphic on H, as jγ(z) never crosses the
branch of wk. If we take η = γ−1σγ with σ ∈ Γ, the composition law for the slash
operator implies

(f |γ)|η = c(γ, η) f |σγ = c(γ, η) c(σ, γ)−1 (f |σ)|γ ,

and since f is a modular function for Γ,

(f |γ)|η = µσ c(γ, η) c(σ, γ)−1f |γ .

Since the constant νη = µσ c(γ, η) c(σ, γ)−1 is unimodular and f |γ is nonzero, this
shows at once that ν is a multiplier system for Γ′ and f |γ a modular function for Γ′
and ν. �

2.3. The action of finite order subgroups

Let Γ be a finite index subgroup of SL2(Z) and fix a set of representatives
η1, . . . , ηn of the right cosets of Γ, where n is the index [SL2(Z) : Γ]. The union
FΓ = ∪jηjF is always a fundamental domain for Γ.2 Indeed, the translates {γFΓ}γ∈Γ
cover the upper half-plane because SL2(Z) decomposes as ∪jΓηj , while two translates
can never intersect at an interior point because otherwise two translates of F would
also do. In fact, we can always choose the right-transversal η1, . . . , ηn so that both FΓ
and its interior are connected sets. This is a consequence of the following property:
let Ω be an union of translates of F satisfying that any translate of F sharing an
edge with Ω is related modulo Γ to some translate in Ω. Then H ⊂ ∪γ∈ΓγΩ, as we
can use elements of Γ to translate Ω and cover any translate of F sharing an edge
with Ω, and then again to cover any translate sharing an edge with the new set, and
recursively fill up the whole upper half-plane.

Suppose now that Ω is a connected component of FΓ. If Ω is a proper subset of
FΓ then some translate of F with an edge in common with Ω must be related modulo
Γ to some ηjF in a different component of FΓ. We may therefore adjust ηj to move
ηjF so it forms part of the connected component Ω, and repeat the procedure.

2In contrast, the set F′Γ = ∪jηjF′ is not always a strict fundamental domain because it may
contain some points in the orbits of i and ρ modulo SL2(Z) which are related modulo Γ.
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Figure 2.2. A fundamental domain for the group Γθ, comprising the
translates F, TF and TSF. It has as limit points the cusps ∞ and 1.

The aforementioned property also shows that Γ is finitely generated: if γ1, . . . ,
γr ∈ Γ are chosen so that ∪jγjFΓ covers all the translates of F sharing an edge with
FΓ, then immediately FΓ is also a fundamental domain for the subgroup generated
by the γj and −1. But since the translates γFΓ have disjoint interiors, this group
must necessarily coincide with Γ.

These simple ideas are a powerful tool to find fundamental domains. For the
theta group Γθ, for example, they easily lead to the fundamental domain F ∪ TF ∪
TSF, shown in figure 2.2.

When we let Γ act on the set of cusps Q∪{∞} the unique orbit modulo SL2(Z)
also breaks into finitely many orbits, but here we cannot guarantee the number of
orbits to equal the index of the group. The set {η1∞, . . . , ηn∞} always contains a
point in every orbit, but some orbits may contain more than one point. If x is a
cusp, its equivalence class will be denoted [x] when there is no ambiguity on which is
the group acting.3 The stabilizer of x in SL2(Z) is a subgroup isomorphic to Z, and
under this isomorphism the stabilizer of x in Γ corresponds to some subgroup mxZ
of index mx ≥ 1. The positive integer mx is called the width of the cusp x (with
respect to Γ). Two cusps in the same orbit modulo Γ have conjugated stabilizers
and therefore the same width, hence m[x] is well defined.

The width mx coincides with the number of translates ηjF in FΓ whose missing
vertex lies in the orbit [x]. We show this for x = ∞, while for other cusps is
similar. On the one hand, the width m∞ is the minimum positive integer m such
that Tm ∈ Γ. On the other hand, we can change the ηj so that all the ηjF having
the missing vertex in [∞] actually have ∞ as the missing vertex, and then again so
that they are of the form T jF for 0 ≤ j < m∞. Now, if there is a missing spot, we
must be able to fill it by translating some ηj0F by some γ ∈ Γ. But then the missing
vertex of this ηj0F must lie in [∞] and this implies γ = Tm for some 0 < m < m∞,
contradicting the choice of m∞.

As a consequence the index of Γ coincides with the sum of the widths of all the
orbits of cusps modulo Γ, i.e. [SL2(Z) : Γ] =

∑
m[x]. The number of equivalence

3Some authors use the term cusp to refer to the equivalence class instead of to the point.
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classes of cusps coincides with the “missing” points of the surface Γ\H which we must
add to compactify it. The compactified quotient again admits a structure of Riemann
surface after removing the singularities introduced by the elliptic transformations of
Γ and the added cusps.

All the equivalence classes of cusps modulo Γ are dense in R. In fact, we have
the following stronger result:

Proposition 2.3. Let Γ be a finite index subgroup of SL2(Z), α an irrational number
and x ∈ Q ∪ {∞}. Then there are infinitely many rationals p/q ∈ [x] satisfying∣∣∣∣α− p

q

∣∣∣∣ ≤ C

q2

for some constant C > 0 depending only on the group Γ.

Proof. The vertical ray {<z = x} cuts the boundary of infinitely many generalized
Ford circles for δ = 2 at a sequence of points zn = α + iyn where yn → 0+, and
for every n we can find some η ∈ SL2(Z) such that η(zn) lies in the segment I =
{=z = 1/2,−m∞/2 ≤ <z ≤ m∞/2}. This is so because we can transform the
Ford circle where zn lies to F∞(2) and then compose with a translation if necessary.
Decomposing η−1 = γηi for some i and γ ∈ Γ, we have γ−1zn ∈ ηiI. Since the
set ∪iηiI is compact, for some C big enough the Speiser circle Fx(C) contains this
union, and therefore zn ∈ Fγx(C). This implies the inequality we were looking for,
for p/q = γx. As there are finitely many equivalence classes of cusps the constant
C can be taken to be uniform. �

2.4. Expansion at the cusps

Let f : H→ C be a modular function with respect to Γ and multiplier system µ.
Let m∞ be the width of ∞. Then Tm∞ ∈ Γ and the functional equation (2.5) reads
f(z+m∞) = e(κ∞)f(z) where e(κ∞) = µTm∞ . If we define g(z) = f(m∞z)e(−κ∞z)
then g is holomorphic and 1-periodic, and therefore admits a Fourier expansion
g(z) =

∑∞
n=−∞ ane

2πinz. Translating this back to f ,

(2.8) f(z) =
∞∑

n=−∞
ane

2πi(n+κ∞)z/m∞ .

Theorem 2.4 (Expansion at the cusps). Given x ∈ Q ∪ {∞} and γ ∈ SL2(Z)
such that γx =∞, the modular function f admits the expansion

f(z) =
(
jγ(z)

)−k ∞∑
n=−∞

an e
2πi(n+κx)γz/mx ,

where mx is the width of the cusp x and 0 ≤ κx < 1, both depending only on the
class [x]. The modulus of the coefficients |am| also depends only on the class [x].
Moreover, when κx = 0 the coefficient a0 only depends on x, as long as γ is chosen
satisfying (2.6).

Proof. The expansion follows at once from (2.8) applied to the function f |γ−1 ,
which is modular by proposition 2.2. Note m∞ for the conjugated group is mx

for Γ. If γ1 is another matrix for which γ1x = ∞ then γ1 = ±Tmγ and by the
uniqueness of the Fourier expansion the κx must coincide. The an must also vary
by an unimodular constant, equal to e(m(n + κx)/mx)

(
± jγ(z)

)−k(
jγ(z)

)k. This
constant is 1 if m = κx = 0 and the sign is positive. Finally if x′ = ηx for some
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η ∈ Γ then γη−1x′ = ∞ and when we use this matrix to compute the expansion
we have f |ηγ−1 = c(η, γ−1)−1µηf |γ−1 , i.e. we obtain the same expansion up to the
unimodular constant c(η, γ−1)−1µη. �

In the proof we have applied the slash operator |γ−1 to the function f . The
resulting function is essentially f(γ−1z), with the extra factor

(
jγ(z)

)−k included to
keep the automorphy. Since γ−1z approaches x within Speiser circles when =z →∞,
we are effectively moving the cusp x to infinity to have a “better look” at how f
behaves close to x. Note that if two cusps belong to the same class modulo Γ the
functional equation guarantees that f behaves in a similar way at both of them, and
this is reflected in the statement of the theorem. Because of this there is essentially
only one expansion per class of cusps, which can be made unique by fixing one
particular choice of γ−1 for each of them.

Most authors also remove the width of the cusp in the expansion by hiding the
change of variables z 7→ mxz inside the linear fractional transformation appearing
in the exponent. This is done by expanding f |γ−1η instead of f |γ−1 , where η =(√

mx 0
0 1/√mx

)
. The matrix γ−1η usually receives the name of scaling matrix, and,

as mentioned above, fixing one choice of scaling matrix per class of cusps suffices
to make the Fourier expansion unique at every cusp. In this document we have
preferred to avoid the use of scaling matrices altogether; instead in §2.5 we will
show that under reasonable hypotheses we can rely on the trick of scaling f directly
to avoid having to keep track of the cusp width at infinity.

We say that f is a modular form of weight4 k for the group Γ and multiplier
system µ if it is a modular function, and in the expansion provided by theorem 2.4
for every γ ∈ SL2(Z) we always obtain a Fourier series with only non-negative
frequencies, i.e. n+ κx < 0 implies an = 0. Note it suffices to check this only once
for every orbit of cusps modulo Γ. Given a cusp x we define5 f(x) as the coefficient
a0 if κx = 0 and γ is chosen satisfying (2.6), or as 0 if κx > 0. If f(x) = 0 we say
that f is cuspidal at x, or for convenience (although this is nonstandard) that x is
cuspidal for f . This property, again, only depends on the orbit of x. If f is cuspidal
at every cusp then we say that f is a cusp form.

When f is a modular form the expansion (2.8) converges absolutely and uni-
formly over the Speiser circles F∞(δ) for δ > 0, and exponentially fast as δ → 0+.
Since the action of SL2(Z) preserves them, it is clear that the expansion provided by
theorem 2.4 converges absolutely and uniformly over Fx(δ) for δ > 0. This provides
a very precise approximation in these circles for small δ by truncating the Fourier
series:

Corollary 2.5. Let f be a modular form of weight k. Let p, q be coprime integers
satisfying either q > 0 or q = 0 and p = −1, and fix δ0 > 0. Then, as long as

4The weight is uniquely determined by theorem 2.4 for any nonzero f , for example by taking
γ = S and z = i/t and considering the growth of f as t→∞.

5Had we decided to use scaling matrices, by definition of the slash operator all Fourier coeffi-
cients would also be multiplied by mk/2

x . This different normalization, albeit unimportant, is also
common in the literature, and one should be aware of this when comparing results from different
sources. In particular it was used by the author in [80], leading to some minor differences between
the proofs of chapter 3 and those included in the article.
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z ∈ Fp/q(δ0), we have

f(z) = f(p/q)(
qz − p

)k +O
(
(=z)−k/2e−K=z|qz−p|−2)

,

where the constant K > 0 and the O-constant depend only on f and δ0.

Proof. Apply theorem 2.4 with some γ ∈ SL2(Z) whose lower row is (q,−p) and
x = p/q, and use (1.2) to obtain the bound∣∣∣∣f(z)− f(p/q)

(qz − p)k

∣∣∣∣ ≤ (=z)−k/2 tk/2gx(t),

where
gx(t) =

∑
n+κx>0

|an| e−2π(n+κx)t/mx

and t = =z|qz − p|−2. Since the condition z ∈ Fx(δ) is equivalent to t ≥ δ−1

by lemma 1.1, the absolute and uniform convergence of the expansion at the cusp
for f implies uniform convergence for the series defining gx in the sets t ≥ δ−1. In
particular, gx(t) ≤ C for t ≥ δ−1

0 /2. If we letK ′ = πκx/mx if κx > 0 andK ′ = π/mx

when κx = 0, for any t ≥ δ−1
0 ,

gx(t) = gx(t/2 + t/2) ≤ Ce−K′t.

For any 0 < K < K ′ we therefore have tk/2gx(t) � e−Kt, which is the bound we
were looking for. The uniformity of the constants follows from the fract that the
function gx only depends on the equivalence class of the orbit of x modulo Γ, and
therefore there are finitely many possibilities. �

The C-vector space of modular forms of weight k for a finite index subgroup and
a multiplier system is always finite-dimensional. As in the simplest case of forms for
the whole modular group and trivial multiplier system, this follows from a version of
Riemann-Roch for the compactification of the Riemann surface Γ\H, which can be
proved by integrating the logarithmic derivative of a modular form on the boundary
of every translate of F in the fundamental domain FΓ (see §4.2 of [82]). When taken
all the forms for the same group together they generate a graded C-algebra, as the
expansion at the cusps converges uniformly and can be termwise multiplied.

A new feature is that now the slash operator also relates them across different
subgroups:

Theorem 2.6. Suppose f : H → C is a nonzero modular form of weight k for the
finite index subgroup Γ and multiplier system µ, and take γ ∈ GL+

2 (R) satisfying
that the subgroup Γ′ = γ−1Γγ ∩ SL2(Z) is of finite index. Then there is a multiplier
system ν of weight k for Γ′ such that f |γ is a modular form of weight k for Γ′ and
multiplier system ν.

Proof. By proposition 2.2 the function f |γ is a modular function. To see it is a
modular form it suffices to see that for any η ∈ SL2(Z) the limit lim=z→∞

(
f |γ
)
|η(z)

exists. This follows from the composition law for the slash operator and the fact
that f is a modular form. �

As a consequence every modular form f always has some “companions” f |η1 , . . . ,
f |ηr where the ηi ∈ SL2(Z) are chosen satisfying ηi∞ = xi for a set of representatives
{xi} of the different orbits of cusps modulo Γ distinct from [∞] (corresponding to



54 2. CLASSICAL MODULAR FORMS

Figure 2.3. The modular form θ.

a choice of the scaling matrices). These modular forms, together with f itself, are
essentially the “different views” of f at different cusps.

We go back to the example of Jacobi’s theta function. Since the theta group
Γθ has only two equivalence classes of cusps with representants ∞ and 1 (see fig-
ure 2.2) to see that Jacobi’s theta function is a modular form we have only to
check lim=z→∞ θ|η(z) ∈ C with η(∞) = ∞ and η(∞) = 1. In the first case,
lim=z→∞ θ(z) = 1 follows from the definition. In the second case, however, we
require an explicit expression for θ|TS . At the same time, since 1, T, TS must be
right-transversal for Γθ, we can also compute, up to constant, all the possible func-
tions θ|η:

Proposition 2.7. Let q = eπiz. We have for θ(z) =
∑
n∈Z q

n2 the identities

θ|T (z) =
∑
n∈Z

(−1)nqn2 and θ|TS(z) =
√
−i
∑
n∈Z

q(n+1/2)2
.

Proof. The first identity is evident. For the second one we apply Poisson summa-
tion to the function f(x) = e−π(x+1/2)2t. Using that g(x) = e−πx

2 is its own Fourier
transform and elementary properties, we have f̂(ξ) = t−1/2eπiξe−πξ

2/t. Poisson sum-
mation then shows θ|T (−1/z) =

√
−iz

∑
n∈Z q

(n+1/2)2 for z = it. �

Hence lim=z→∞ θ|TS(z) = 0 and θ is cuspidal at [1] (this is clear in figure 2.3).
The Fourier expansion also shows κ1 = 1/2.

2.5. Congruence subgroups

In many treatises Jacobi’s theta function is defined as
∑
n∈Z e(n2z) instead,

i.e. as θ(2z) with our notation. The reason is that this is also a modular form,
as up to a constant it equals θ|σ where σ =

(√
2 0

0 1/
√

2

)
, as it can be checked that

σ−1Γσ ∩ SL2(Z) is a finite index subgroup. The advantage is that it is given by a
Fourier series with only integer frequencies, the disadvantage is that now the group
of simmetries is smaller, it has more equivalence classes of cusps and these are wider.
Nevertheless it will be useful to be able to reduce to such Fourier series to simplify
the forthcoming results.

To be able to do this for arbitrary modular forms we need the following two
conditions to hold:

(i) The group σ−1
m Γσm ∩ SL2(Z) is a subgroup of finite index of SL2(Z) for

every integer m, where σm is the scaling matrix
(√

m 0
0 1/

√
m

)
.

(ii) For every cusp x ∈ Q ∪ {∞} the parameter κx is a rational number.
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Condition (ii) also admits an equivalent formulation: using the definition of the
multiplier system for f |γ provided in the proof of proposition 2.2 it can be seen that
e(κx) = µη where η = γ−1Tmxγ and γx =∞. Moreover µηn = µnη for any integer n
and these matrices always have trace +2. Hence (ii) is satisfied if and only if µη is
a root of unity for any parabolic η ∈ Γ of positive trace.

Given any modular form f for Γ and µ satisfying the above properties, for
an appropriately chosen m the function f |σm is a again a modular form and has a
Fourier expansion at∞ (2.8) with only integer frequencies. Note that not necessarily
m∞ = 1, simply an = 0 when m∞ - n.

As we are going to show, condition (i) is automatically satisfied by any finite
index subgroup of SL2(Z), so it imposes no new restriction. Condition (ii) however
needs to be checked; an example of this is given in §6.4 of [82]. We are going to
assume it is satisfied by any multiplier system considered in the rest of this disser-
tation, although all the results can however be extended to remove this hypothesis
with little effort if needed.

To show all finite index subgroups satisfy (i) we need to introduce an important
class of subgroups, the congruence subgroups. The principal congruence subgroup of
order N , denoted by Γ(N), is the subgroup composed of all those matrices (entry-
wise) congruent to the identity modulo N . A congruence subgroup is any subgroup
containing Γ(N) for some N . As Γ(N) is a normal subgroup, being given by the
kernel of the homomorphism SL2(Z)→ SL2(Z/NZ), all congruence subgroups con-
taining Γ(N) may be identified with subgroups of SL2(Z/NZ). As a consequence
we can characterize the congruence subgroups as those that can be described by a
finite number congruences modulo some N . The minimum N for which Γ(N) is con-
tained in Γ is called the level of Γ. In particular the theta group Γθ is a congruence
subgroup of level 2.

If Γ is a congruence subgroup of level N then σ−1
m Γσm ∩ SL2(Z) is always a

congruence subgroup of level at most mN . To see this note that

σm

(
a b
c d

)
σ−1
m =

(
a bm
c/m d

)
.

Hence if γ ∈ Γ(mN) then σmγσ−1
m ∈ Γ(N) or γ ∈ σ−1

m Γ(N)σm. In particular Γ(m)
is always contained in σ−1

m SL2(Z)σm. For an arbitrary finite index subgroup Γ of
SL2(Z) we have

[Γ(m) : σ−1
m Γσm ∩ Γ(m)] ≤ [σ−1

m SL2(Z)σm : σ−1
m Γσm] <∞.

Hence σ−1
m Γσm ∩ SL2(Z) must also be of finite index in SL2(Z), which shows (i)

always holds.
A family of arithmetically relevant congruence subgroups are the Hecke con-

gruence subgroups Γ0(N), defined as the set of matrices which are upper triangular
modulo N . Analogously we also define Γ0(N) as the group of all matrices lower tri-
angular modulo N . A small computation shows that Γ0(4) ⊂ σ−1

2 Γθσ2, and therefore
θ(2z) is a modular form for Γ0(4).

2.6. Bounds

The functional equation and the regularity at the cusps forces modular forms
and their Fourier coefficients to have very particular growth rates. We give some
basic results in this section. The proofs are based on the ones given in [14].
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Assume f is a nonzero modular form of weight k ≥ 0 for the group Γ. The
non-negativity of the weight will be necessary.

Proposition 2.8. Let α0 = k/2 if f is cuspidal and α0 = k otherwise. We have

f(z)�
(
=z
)−α0 as =z → 0+.

Moreover this is sharp in the following sense:

(i) For every irrational number x there is a constant Cx > 0 such that

f(x+ iy) ≥ Cx y−k/2 for infinitely many values of y → 0+.

(ii) For every rational x not cuspidal for f there is a constant Cx > 0 such that

f(x+ iy) ≥ Cx y−k for infinitely many values of y → 0+.

Proof. We prove first the upper bound. Note it suffices to show the bound holds
uniformly for z = x + iy and 0 < y < 1/2. Since the upper half-plane is covered
by the Speiser circles Fp/q(2) (corollary 1.2), we can always find p/q such that
z ∈ Fp/q(2). Applying the cusp asymptotics given by corollary 2.5 and the inequality
y|qz − p|−2 ≥ 1/2 provided by lemma 1.1 we obtain

f(z)� |f(p/q)|y−k + y−k/2.

If x = p/q is a non-cuspidal rational point then the same expansion provided by
corollary 2.5 shows f(z)� y−k as y → 0+, which is assertion (ii).

We show now (i). If x is an irrational number, by proposition 2.3 the vertical
ray {<z = x} intersects the boundary of infinitely many generalized Ford circles
Fp/q(δ) with p/q ∈ [∞] for δ big enough, in a sequence of points zn = x+ iyn where
yn → 0+. Now, the function h(z) = (=z)k/2|f(z)| is Γ-invariant, as can be readily
checked from the functional equation (2.5) and (1.2), and therefore we must have
h(zn) = h(z′n) for some z′n lying in the boundary of F∞(δ). This readily implies
|f(zn)| ≥ Cy

−k/2
n for C = min=z=δ−1 h(z). To finish the proof it suffices to choose

δ in such a way that f does not vanish on the line {=z = δ−1}, which is always
possible as it is a periodic holomorphic function, guaranteeing C > 0. �

A sort of converse of this proposition is also true: the expansion at the cusps
(theorem 2.4) shows that any modular function which is not a modular form grows
at least exponentially fast when =z → 0+ on the Ford circles corresponding to some
rationals. Some authors use this as a shortcut for defining modular forms; they can
be defined as any modular function which grows at most polynomically fast when
=z → 0+.

In order to derive bounds for the truncated Fourier series of a modular form we
will use the fact the Dirichlet kernel satisfies the usual bounds even if evaluated in
the complex plane but not too far away from the real line:

Lemma 2.9. Let DN (x) =
∑
|n|≤N e(nx) and fix y0 > 0. Denote by ‖·‖Z the distance

to the nearest integer. Then

DN (x+ iy)� min
(
N, ‖x‖−1

Z
)
,

uniformly for x ∈ R and |y| ≤ y0/N .

This can be shown as usual, by either trivially estimating the series or using
the formula for the sum of a geometric series.
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Proposition 2.10. Let α0 = k/2 if f is cuspidal and α0 = k otherwise. The partial
sums in the Fourier expansion given by theorem 2.4 satisfy∑

n≤N
ane

2πi(n+κ)x/m � Nα0 logN,

uniformly for x ∈ R.

Proof. It suffices to prove the result for the expansion at ∞, as otherwise we
may apply the result to f |γ instead, and composing with a scaling matrix we can
moreover assume f is given by a Fourier series (2.8) with only integer frequencies,
which converges uniformly on the sets =z ≥ δ−1 for any δ ≥ 0. Hence∑

n≤N
ane

2πinx =
∫ 1

0
f(u+ i/N)DN (x− u− i/N) du.

Applying the bounds obtained in proposition 2.8 and ‖DN‖1 � logN , which follows
from lemma 2.9, we obtain the estimate. �

We provide in the next two propositions an estimation of the L2-norm of the
Fourier coefficients.

Proposition 2.11. If f is a cusp form the coefficients an of the Fourier expansion
given by theorem 2.4 satisfy ∑

n≤N
|an|2 � Nk.

Proposition. If f is not a cusp form the coefficients an of the Fourier expansion
given by theorem 2.4 satisfy ∑

n≤N
|an|2 � φ(N)

where φ is given by

φ(N) =


Nk if 0 < k < 1,
N logN if k = 1,
N2k−1 if k > 1.

We will only provide a proof for the cuspidal case, as we will not need the other
result. For a self-contained proof of the non-cuspidal case we refer the reader to
lemma 3.2 of [14]. Note that for weight k > 1 cusp forms always have coefficients
which are much smaller than non-cuspidal forms, and in fact these can sometimes
be interpretted as “error terms” in some problems in number theory. This is the
case, for example, for generalizations of the 4-squares theorem (see §7.4 of [82]) or
in the modularity theorem (see §4.4 of [97]). Note also that when applied to the
discriminant function ∆ this estimation can be interpreted as an average version of
the Ramanujan conjecture |τ(p)| ≤ 2p11/2.

Proof of proposition 2.11. Again it suffices to prove the result for the Fourier
expansion at ∞ with only integer frequencies. We consider the Γ-invariant function
h(z) = (=z)k/2|f(z)|, which by virtue of proposition 2.10 and the exponential decay
at ∞ it is uniformly bounded. Moreover we claim that we may find some constants
C, C ′ > 0 such that |{x : h(x + i/N) > C} ∩ [0, 1]| > C ′ for every integer N ≥ 0.
Using Parseval’s identity,

Nk � Nk
∫ 1

0
|h(u+ i/N)|2 du =

∑
n≥0
|an|2e−4πn/N .
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The upper bound implies at once∑
n≤N
|aN |2 � Nk.

On the other hand, for any constant K > 0, summing by parts and using the upper
bound, ∑

n≥KN
|an|2e−4πn/N � Nk−1e−2πK ∑

n≥KN
(n/N)ke−2πn/N � Nke−2πK ,

and therefore for K big enough,∑
n≤KN

|an|2 ≥
∑
n≥0
|an|2e−4πn/N −

∑
n>KN

|an|2e−4πn/N � Nk.

We still have to justify the previous claim. Let 0 < C1 < C2 be constants
to be determined later and consider the intervals |x − p/q| ≤ C2/(qN1/2) with
C1N

1/2 < q < C2N
1/2. For 2C3

2 < C1 these are disjoint and cover a positive portion
of the interval [0, 1]. Suppose that z = x+ i/N with x lying in one of those intervals
and let η ∈ SL2(Z) satisfying η(p/q) = ∞. We may decompose η−1 = γηi, where
γ ∈ Γ and ηi lies in a fixed right-transversal for Γ. Hence h(z) = hi(ηz) where
hi(z) = h(ηiz). By (1.2) we have 1/(2C2

2 ) ≤ =(ηz) ≤ 1/C2
1 and therefore it suffices

to show that we may choose C1 and C2 to ensure that every hi is bounded below in
that strip. This can be done by choosing C1 ≈ C2 both very small, as the Fourier
expansion (2.8) of f |ηi(z) shows that this function cannot have any zeros when =z
is big enough. �

2.7. Bounds (II)

In this section we provide more specific bounds obtained by F. Chamizo and
the author in [20, 80] with precise applications in mind. These will be crucial to
obtain the results in chapters 3 and 5.

Our first result relates the growth of a modular form f near an irrational number
with how close the rationals where f is not cuspidal are to the irrational in question.

Proposition 2.12. Let τ ≥ 2 and x0 a fixed irrational number. The following
holds:

(i) If all the rationals p/q not cuspidal for f satisfy

(2.9)
∣∣∣∣x0 −

p

q

∣∣∣∣� 1
qτ

then f(x+ iy)� y−(1− 1
τ )k + y−k|x− x0|

k
τ for 0 < y < 1/2.

(ii) If there are infinitely many rationals p/q not cuspidal for f satisfying

(2.10)
∣∣∣∣x0 −

p

q

∣∣∣∣� 1
qτ

then f(x0 + iy)� y−(1− 1
τ )k for infinitely many values of y → 0+.

Proof. (i) Let z = x+iy with 0 < y < 1/2. Then z must be contained in one of the
circles Fp/q(2). We will use again the expansion at the cusp given by corollary 2.5.
If p/q is cuspidal for f then:

f(x+ iy)� y−k/2 ≤ y−(1− 1
τ )k.
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If p/q is not cuspidal we have

f(x+ iy)� q−k
((

x− p

q

)2
+ y2

)−k/2
+ y−(1− 1

τ )k.

By hypothesis p/q satisfies (2.9) and therefore

q−k �
∣∣∣∣x0 −

p

q

∣∣∣∣k/τ � ∣∣∣∣x− p

q

∣∣∣∣k/τ + |x− x0|k/τ .

Hence:

f(x+ iy)�
∣∣∣∣x− p

q

∣∣∣∣k/τ
((

x− p

q

)2
+ y2

)−k/2
+ y−k|x− x0|k/τ + y−(1− 1

τ )k.

Arguing by cases depending on whether y ≤ |x − p/q| or not it readily shown that
the first term is � y−(1− 1

τ )k.
(ii) The case τ = 2 has already been established in proposition 2.8, so we may

assume τ > 2. By hypothesis there must exist an equivalence class of non-cuspidal
rationals modulo Γ for which infinitely many satisfy (2.10). For any of those rationals
p/q we choose z = x0 + iy with y = q−τ and note that

|qz − p|2

y
= q2+τ

(∣∣∣∣x0 −
p

q

∣∣∣∣2 + y2
)
� q2−τ .

Applying corollary 2.5 again we obtain:

|f(x0 + it)| = Cy−k/2
(

y

|qz − p|2

)k/2
+O

(
y−k/2e−Kq

τ−2)� y−k/2q(τ−2)k/2,

the constant C = |f(p/q)| not depending on p/q. Using q = y−1/τ the right hand
side equals y−(1− 1

τ )k. �

The other result we are going to include is a refinement of proposition 2.10 in
the non-cuspidal case of weight 1 (although the proof can also be adapted to obtain
refinements for other weights). It was inspired by the usual Hardy-Littlewood bound
for a quadratic exponential sum:

(2.11)
N∑

n=−N
e(n2x)� N

√
q

if
∣∣∣∣2x− p

q

∣∣∣∣ ≤ 1
qN

with q ≤ N.

A very simple proof with an extra error term
√
N logN can be consulted in §8.2

of [62]. The proof without the extra error term is much more demanding, and
essentially follows from the original paper of Hardy and Littlewood on Diophantine
approximation [45]. A more recent paper with an explicit statement and proof of
this result is [29].

If we square the bound we obtain

(2.12)
∑

(n,m)∈Q
e
(
(n2 +m2)x

)
� N2

q
with Q = [−N,N ]× [−N,N ].

We are going to need a similar bound but with the square Q replaced with a circle.
Luckily, in that case, the series we are trying to bound is

∑
n≤N r2(n)e(nx), and

we can exploit that this is a truncation of the Fourier series of θ2, a modular form,
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to give a very sharp estimate (in this regard, Hardy and Littlewood also exploit
that θ is a modular form to obtain their bound in [45]). The idea is again to
truncate the series by convolving by the Dirichlet kernel, integrating near the real
line, as it was done in the proof of proposition 2.11. But this time the segment over
which we are integrating will be broken into a Farey dissection, since by (1.11) in
each subinterval we have a good approximation of the modular form by the cusp
expansion. This is the principle behind the circle method, although when it is used
to obtain asymptotics one can only estimate the integral well in an inner subinterval
of each Ap/q (the so-called major arcs) and has to provide a rough upper bound in
the remaining part (minor arcs). For our purposes we only need to consider one
kind of arcs, greatly simplifying the proof.

Proposition 2.13. Let f be a modular form of weight 1, which admits an expansion
as a Fourier series with only integer frequencies f(z) =

∑
n≥0 ane(nz). For every

integer N ≥ 0 we consider the Farey dissection of the continuum of order bN1/2c.
Then ∑

n≤N
ane

2πinx � N(logN)2

q +N |qx− p|
if x ∈ Ap/q,

where the an are the Fourier coefficients of f and the O-constant only depends on
f .

When applied to θ2 this result shows that the bound (2.12) indeed holds when
Q is replaced by a circle losing at most a power of a logarithm. Although the proof
is not remarkably difficult, neither F. Chamizo nor I were able to find this result
stated anywhere in the literature and was included in the article [20]. Surprisingly,
shortly before the preprint was uploaded to arXiv a similar bound was uploaded in
the preprint [49], but only applying to the case when sum is truncated by a smooth
weight, which was not enough for our purposes.

For convenience we need some lemmas regarding the function

B(t) = min
(
N, ‖t‖−1

Z
)
.

Lemma 2.14. With the same hypothesis as in proposition 2.13,

f(x+ i/N)� q−1B(x− p/q) if x ∈ Ap/q,

the �-constant only depending on f .

Proof. By (1.11) the point z = x + i/N lies inside the Speiser circle Fp/q(2).
This means =γz ≥ 1/2 in the expansion provided by theorem 2.4, and the absolute
convergence and the finiteness of the equivalence classes of cusps at once imply the
uniform bound |f(z)| � |jγ(z)|−1 = q−1|z − p/q|−1 ≤ q−1B(x− p/q). �

Lemma 2.15. For t ∈ R we have

(B ∗B)(t) :=
∫ 1/2

−1/2
B(u)B(t− u) du� N

log(2 +N‖t‖Z)
2 +N‖t‖Z

.

Proof. Cauchy’s inequality gives (B ∗ B)(t) �
∫ 1
0 |B|2 � N . Using this and the

symmetry, we can assume 2N−1 < t < 1/2. If 0 < u < 1/2 it is clear that the
distance from t to u is smaller than the distance from t to −u. Hence B(t − u) ≥
B(t+u) and (B ∗B)(t) ≤ 2

∫ 1/2
0 B(u)B(t−u) du. This integral is less or equal than∫ N−1

0

N du

t− u
+
∫ t−N−1

N−1

du

u(t− u) +
∫ t+N−1

t−N−1

N du

u
+
∫ 1/2+N−1

t+N−1

du

u(u− t) ,
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that gives O
(
t−1 log(Nt)

)
evaluating or estimating the integrals. �

Proof of proposition 2.13. Assume for convenience 0 ≤ x < 1. We have∑
n≤N

ane(nx) =
∫ 1

0
f(u+ i/N)DN (x− u− i/N) du,

where DN is the Dirichlet kernel. By lemmas 2.9 and 2.14

(2.13)
∑
n≤N

ane(nx)�
∑
a/b

b−1
∫
Aa/b

B(u− a/b)B(x− u) du

where the sum ranges over the Farey sequence of [0, 1) of order bN1/2c. Trivially

Ia/b :=
∫
Aa/b

B(u− a/b)B(x− u) du ≤ (B ∗B)(x− a/b).

If a/b = p/q we employ lemma 2.15 (with an extra logarithm to absorb an error
term appearing later) to get

Ip/q �
N(logN)2

1 +N |x− p/q|
.

In the rest of the cases Ia/b � |x− a/b|−1 logN also by lemma 2.15 (this is the best
we can do as |x− a/b| � N−1 by proposition 1.3). Substituting in (2.13)

(2.14)
∑
n≤N

ane(nx)� N(logN)2

q +N |qx− p|
+ (logN)

∑
a/b6=p/q

|bx− a|−1.

Each summand attains its maximum when x is one of the end-points of Ap/q, both
of which are rational numbers P/Q with Q � N1/2 (see proposition 1.3). Hence
doubling the sum, it suffices to bound∑

a/b6=p/q
|bP/Q− a|−1 = Q

∑
m≤2N

m−1#
{
a/b : Pb−Qa = ±m

}
.

The last cardinality is O(1) because given any two solutions of Pbi − Qai = m (or
−m) the difference b1− b2 is a multiple of Q, but bi ≤ N1/2. Introducing this bound
in (2.14), the result follows. �

In fact, since we will need the bound we have just proved for functions which
are not modular forms, we state for convenience the facts we have used for the proof:

Corollary 2.16. Proposition 2.13 is true for any function having a Fourier ex-
pansion uniformly converging on the sets {=z ≥ δ−1} and satisfying the bound in
lemma 2.14.

2.8. Theta functions

Let Q be an integral binary quadratic form (I.14) which is positive definite. For
every integer n ≥ 0 let rQ(n) denote the number of representations of n by Q. We
are going to show that the function

θQ(z) =
∑
~n∈Z2

e2πiQ(~n)z =
∑
n≥0

rQ(n)e(nz)

is a modular form of weight 1 for some congruence group and some multiplier system.
Note in the particular case Q(x, y) = x2 + y2 this function coincides with θ2(2z),
which we have already seen to be a modular form of weight 1 for Γ0(4).
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This result is usually presented in a more general form, as
∑
~n P (~n)e(Q(~n)z) is

a modular form of weight r/2 + degP whenever P is an homogeneous polynomial
harmonic with respect to Q and Q a positive definite integral quadratic form on
r variables (see §10 of [61]). Here however, we need a generalization in another
direction. Let ~v = (α, β) ∈ R2 and consider

(2.15) rQ,~v(n) =
∑

Q(n1,n2)=n
e(αn1 + βn2).

The function

(2.16) θQ,~v(z) =
∑
~n∈Z2

e2πiQ(~n)z+2πi~n·~v =
∑
n≥0

rQ,~v(n)e(nz)

is holomorphic in the upper half-plane and transforms in a very similar way to a
theta function. In fact for some special values of ~v it coincides with some of the
so-called Jacobi modular forms, and in particular θQ,~0 = θQ. We are going to derive
the general transformation formula, adapted from chapter 4 of Siegel’s notes [87].

Some notation first. There is a unique symmetric matrix A with integer coef-
ficients such that Q(~x) = 1

2~x
tA~x. The inverse matrix A−1, however, need not have

integer coefficients, but its entries are rationals of denominator dividing detA ≥ 1.
In particular, the quotient A−1Z2/Z2 is well-defined and finite, and in fact contains
exactly detA elements. Let L be a set of representatives of this quotient; one such set
can be constructed by taking all the elements in Λ lying in the square [0, 1)× [0, 1).
For every member ~̀ ∈ L and γ =

(
a b
c d

)
∈ SL2(Z) not fixing ∞ we define the Gauss

sum

Gγ(~̀) = 1
c

∑
~g (mod c)

e

(
−aQ(~̀+ ~g)

c

)
,

where the sum runs over a complete set of representatives of Z2/cZ2. Indeed, ex-
panding Q by the formula Q(~x + ~y) = Q(~x) + ~x tA~y + Q(~y) and using that A~̀ has
integer components it is clear that each summand does not depend on the choice
of the representative ~g, and therefore changing the representative of ~̀ amounts to
reordering the sum.

Theorem 2.17. Let γ ∈ SL2(Z) not fixing ∞ and ~u = A−1~v. Then

jγ(z)θQ,~v(z) = δ(γ,~v)√
detA

∑
~̀∈L

Gγ(~̀)
∑

~x∈Z2+~̀
e
(
Q(~x+ c~u)γz − a~x · ~v

)
,

where δ(γ,~v) is a unimodular constant.

We will prove this theorem at the end of the section. The Gauss sums involved
satisfy the following properties

Lemma 2.18. We have |Gγ(~̀)| ≤
√

detA. Moreover if 2N | c where N is any
positive integer satisfying that the matrix NA−1 has integer entries, then |Gγ(~0)| =√

detA and Gγ(~̀) = 0 for ~̀ /∈ Z2.

Proof. The proof of the upper bound mimics the classical one. Squaring the Gauss-
ian sum,

|Gγ(~̀)|2 = 1
c2

∑
~g1,~g2 (mod c)

e

(
a~̀tA(~g2 − ~g1) + aQ(~g2)− aQ(~g1)

c

)
.
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Writing ~h = ~g2 − ~g1,

|Gγ(~̀)|2 = 1
c2

∑
~h (mod c)

e

(
a~̀tA~h+ aQ(~h)

c

) ∑
~g1 (mod c)

e

(
a~htA~g1

c

)
.

Let ~w = aA~h, and note that the sum
∑
~g1 e(~w

t~g1/c) vanishes unless ~w ≡ ~0 (mod c).
Hence

|Gγ(~̀)|2 =
∑

~h (mod c)
A~h≡~0 (mod c)

e

(
a~̀tA~h+ aQ(~h)

c

)
.

We are summing over those ~h ∈ Z2 modulo cZ2 satisfying A~h ∈ cZ2, hence on a
subset of representatives of cA−1Z2/cZ2. Hence the sum has at most #L = detA
summands.

When 2N | c then on the one hand all the members of cA−1Z2 have integer
coordinates, and therefore the sum has exactly detA summands; and on the other
~h = cA−1~h1 implies c | Q(~h). Now, the remaining sum can be seen as a character
of the group cA−1Z2/cZ2 summed over the whole group, and hence vanishes if and
only if for some ~h ∈ cA−1Z2 we have e(a~̀tA~h/c) 6= 1. If ~̀ /∈ Z2 then we can assume
that one of its components must lie in the strict interval (0, 1), say the first, and
then we can choose ~h = cA−1~e1 for ~e t1 = (1, 0). Note e(a`1) 6= 1 as a is coprime to c
and the denominator of `1 must be a divisor of 2N , and therefore of c. �

Combining lemma 2.18 and theorem 2.17 the following two corollaries are im-
mediate:

Corollary 2.19. Let N be a positive integer such that NA−1 has integer entries.
Then θQ is a modular form of weight 1 for Γ0(2N).

Corollary 2.20. The truncation of the Fourier series defining θQ,~v satisfies the
bounds of proposition 2.13 uniformly in ~v ∈ R2.

The first corollary follows from the transformation law, which in this case reads
jγ(z)θQ(z) = µ−1

γ θQ(γz) when γ ∈ Γ0(2N). The same formula also shows that
lim=z→∞ θQ|γ(z) = i(detA)−1/2Gγ−1(~0) for any γ ∈ SL2(Z). Note that in deriving
these results we have not used anything essential of binary forms, and indeed the
proof may be easily adapted to cover the case of theta functions associated to n-ary
quadratic forms.

The second corollary follows from estimating the exponential sum in the trans-
formation law termwise to show that the right hand side is uniformly bounded and
therefore we can apply corollary 2.16.

The proof of the transformation law is essentially Poisson summation, in the
form of the following lemma, applied to the sum defining θQ,~v in arithmetic progres-
sions.

Lemma 2.21. For any z ∈ Z and ~x ∈ C2 we have∑
~n∈Z2

e
(
Q(~n+ ~x)z

)
= i

z
√

detA
∑
~n∈Z2

e
(
−Q(A−1~n)/z + ~n · ~x

)
Proof. By the identity principle it suffices to show the result holds for z = it. We
are therefore going to apply Poisson summation in two variables to the function
f(~u) = exp{−2πQ(~u + ~x)t}. Note that since A is real, symmetric and positive
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definite there exists a nonsingular matrix L such that A = LtL. Therefore, if we
let h(~u) = exp{−π~u · ~u} then f(~u) = h

(
L(~u + ~x)

√
t
)
. Using ĥ = h and elementary

properties of the Fourier transform we can compute

f̂(~ξ) = e(~x · ~ξ)
t
√

detA
e−2πQ(A−1~ξ)/t.

The identity
∑
~n f(~n) =

∑
~n f̂(~n) is precisely the one stated for z = it. �

Proof of theorem 2.17. By the definition of θ~v(z) and separating classes modulo
c,

θQ,~v(z) =
∑

~g (mod c)

∑
~m∈Z2

e
(
Q(c~m+ ~g)z + (c~m+ ~g) ·A~u

)
.

Writing
(
jγ(z)−d

)
/c instead of z and completing squares, the phase can be expressed

as P1 + P2 with

P1 = jγ(z)
c

Q

(
c~m+ ~g + c~u

jγ(z)

)
and P2 = − c

jγ(z)Q(~u)− d

c
Q(c~m+ ~g).

Note that P2 does not change modulo 1 when ~m varies and we can put ~m = ~0. On
the other hand, by lemma 2.21,∑

~m∈Z2

e
(
P1
)

= i(detA)−1/2

cjγ(z)
∑
~m∈Z2

e

(
−Q(A−1 ~m)

cjγ(z) + c−1
(
~g + c~u

jγ(z)
)
· ~m
)
.

Under the change of variables ~x = A−1(−~m) with ~x = ~n + ~̀, where ~̀ ∈ L and
~n ∈ Z2, this phase corresponds to

P3 = −Q(~x) + c~v · ~x
cjγ(z) − c−1~g tA~x.

Let w = γz. Substituting
(
jγ(z)

)−1 = jγ−1(w) = −cw + a in P2 and P3,

e(P2+P3) = e
(
wQ(~x)+(cw−a)~v ·~x+c(cw−a)Q(~u)

)
e
(
− a
c
Q(~x)− 1

c
~g tA~x− d

c
Q(~g)

)
.

The last exponential is e
(
−aQ(~x+d~g)/c

)
because ad ≡ 1 (mod c) and A~x has integer

coefficients, and when we sum on ~g we obtain cGγ(~̀). It only remains to note that the
argument of the first exponential can be written as wQ(~x+c~u)−a~v ·~x−acQ(~u). �

2.9. Hecke newforms

In this section we provide a glimpse of the Atkin-Lehner theory of Hecke new-
forms. These objects will appear as examples in chapter 3.

In §2.5 we saw that if f is a modular form for Γ0(N) then both f and f |σm
are modular forms for Γ0(mN). Hence when we study the space of forms of a given
weight for Γ0(N) and a given multiplier system there might be some forms which
are not really new, but come from forms in Γ0(d) for some divisor d | N . We would
like to “remove” these forms and the subspace generated by them, but of course in
general the complement of a vector subspace is not unique. When we restrict our
attention to cusp forms, however, there is a well-defined inner product in the space
of modular forms: 〈f, g〉 =

∫
fḡ (=z)k dµ where µ is the hyperbolic measure and we

integrate over a fundamental domain for Γ0(N) (see §5.2 of [82]). We can therefore
take orthogonal complements with respect to this inner product.
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Moreover, for some particular choices of “nice” multiplier systems, there is a
rich theory of arithmetic operators acting on the space of cusp forms, called the
Hecke operators. We are not going to define them here, we refer the reader instead
to chapter 9 of [82]. In particular when the weight is an even integer and µγ = χ(d)
where χ is a Dirichlet character modulo N and d the lowest-right entry of γ (modular
forms of nebentypus χ), the Hecke operators are normal operators with respect to the
inner product and commute with each other, and therefore any invariant subspace
admits a basis of eigenvectors of all the Hecke operators. In particular cusp forms
which are eigenvectors of all Hecke operators are referred to as eigenforms.

Let M be space of cusp forms for Γ0(N) and nebentypus χ, and let M− be the
space spanned by all cusp forms arising from groups Γ0(d) for d | N , d < N . Then
M = M− ⊕M+ where M+ is the orthogonal complement to M−. Both spaces are
invariant under the action of the Hecke operators, and therefore admit a basis of
eigenforms. For M+ these eigenform can be seen to be uniquely determined up to
constant, and therefore we can take a canonical representative whose first nonzero
Fourier coefficient in the expansion at∞ is normalized to be 1. Each of these special
eigenforms are called newforms and provide a canonical basis for M+. When acted
upon by some |σd for d > 1 these belong to the space M− of a smaller group, and
they are referred to as oldforms. The oldforms can be seen to generate M−, and
hence together with the newforms provide a canonical basis for the whole space of
cusp forms.

Newforms are very important objects in modern algebraic number theory. The
online database [76] can be used to explore them and their relation to other math-
ematical objects, specially elliptic curves, for low level groups.





CHAPTER 3

Regularity of fractional integrals of modular forms

The contents of this chapter comprise the results of the article “On the regularity
of fractional integrals of modular forms” [80], and will be presented more or less in
the same order. The article represents the continuation of the research line started
by F. Chamizo in [14] and continued by Chamizo, Petrykiewicz and Ruiz-Cabello
in [19] and by Ruiz-Cabello in [83].

3.1. Hölder exponents

The regularity of a function may be studied in many different ways depending
on the applications in mind. In our case we are going to choose the same notions
that were already considered by Chamizo, Petrykiewicz and Ruiz-Cabello in [19].
These are inspired by the work of Jaffard, Seuret and Véhel in multifractal analysis
[65, 86].

The regularity will be measured in terms of different Hölder exponents, but in
order to define them first we need to introduce some function spaces. The functions
considered will be complex valued, defined in either all R or in an open subset of R.

• For 0 ≤ s ≤ 1 we define Λs(x0) as the set of all continuous functions which
satisfy a s-Hölder condition at x0, i.e,

|f(x)− f(x0)| � |x− x0|s as x→ x0.

We analogously define Λs(Ω) for a subset Ω ⊂ R as the set of all continuous
functions satisfying a uniform s-Hölder condition on Ω.
• For any s ≥ 0 we define Cs(x0) as the set of all continuous functions for
which there is some polynomial P satisfying

|f(x)− P (x− x0)| � |x− x0|s as x→ x0.

Note that we can always assume P is of degree smaller than s.
• For any 0 ≤ s ≤ 1 and any integer k ≥ 0 we define Ck,s(x0) as the set of all
continuous functions for which f (k) exists in an open interval I containing
x0 and verifies f (k) ∈ Λs(x0). Analogously one defines Ck,s(Ω) for an open
set Ω ⊂ R as the set of all continuous functions for which f (k) exists in Ω
and f (k) ∈ Λs(K) for every compact subset K ⊂ Ω.

Finally we also define the spaces Λslog, Cslog and Ck,slog by replacing |x−x0|s in the
previous definitions with |x− x0|s log |x− x0|.

Note for 0 ≤ s ≤ 1 we have Λs(x0) = Cs(x0) = C0,s(x0), and hence these spaces
constitute different generalizations of the notion of Hölder continuity. The three
Hölder exponents β, β∗ and β∗∗ are then defined in the following way:

β(x0) := sup{s : f ∈ Cs(x0)},

β∗(x0) := sup{k + s : f ∈ Ck,s(x0)},
67
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β∗∗(x0) := lim
I→{x0}

sup{k + s : f ∈ Ck,s(I)}.

In the last definition the limit is taken as I runs over a sequence of nested open
intervals whose intersection is {x0}.

The first exponent, β(x0), also called the pointwise Hölder exponent, is the
most local in nature and gives precise information about how well the function can
be approximated by a polynomial in arbitrarily small neighborhoods of x0, even
when no derivative exists near that point (note that P in the definition of Cs(x0)
generalizes the notion of Taylor polynomial when f cannot be differentiated dse − 1
times). This exponent also has the advantage of being the most easily studied
through the tool of the wavelet transform [65], as we will see in §3.4.

The second one, β∗(x0), also called the restricted local Hölder exponent, is more
demanding in the sense that f must be differentiable enough times for it to coincide
with β(x0). This is in some sense like imposing that the polynomial is the usual
Taylor polynomial of f . It was introduced in [19] as a compromise between the
exponents β and β∗∗.

Finally, β∗∗(x0), the local Hölder exponent, requires f not only to be differen-
tiable in open neighborhoods, but also its k-th derivative to satisfy a Hölder condi-
tion in them. The importance of this last one resides in the fact that it behaves well
under the action of a wide class of pseudo-differential operators, and for this reason
it was introduced by Seuret and Véhel in [86].

The inclusions Ck,s(I) ⊂ Ck,s(x0) ⊂ Ck+s(x0), the last one a consequence of
Taylor’s theorem, imply that these exponents satisfy the inequalities

β(x) ≥ β∗(x) ≥ β∗∗(x).

These inequalities are, in general, strict. For example the function f defined by
f(x) = x4 sin(x−2) if x 6= 0 and f(0) = 0 has β(0) = 4 > β∗(0) = 2 > β∗∗(0) = 4/3.1
We can even have β(x0) = ∞ and β∗∗(x0) = 0 for more extreme examples such as
f(x) = e−x

2 sin(ex−4) and f(0) = 0 = x0.

3.2. Main results

Let f be a nonzero modular form of weight2 r > 0 for a finite index subgroup Γ
of SL2(Z) and multiplier system µ. Then f has a Fourier expansion at∞ (cf. (2.8))

(3.1) f(mz) =
∑
n≥0

ane
2πi(n+κ)z.

Given α > 0 we define the α-fractional integral of f as the formal series (cf. [14,
19, 24, 64, 83])

(3.2) fα(mx) :=
∑

n+κ>0

an
(n+ κ)α e

2πi(n+κ)x.

1The only exponent difficult to compute is β∗∗(0). To see it equals 4/3, note that for x 6= 0
we have f ′(x) = 4x3 sin(x−2) − 2x cos(x−2) and taking x−2

n = πn and y−2
n = π(n + 1) we see that

supn |f ′(xn) − f ′(yn)|/|xn − yn|s = ∞ for any s > 1/3. On the other hand, f ′′(x) = O(x−2) and
by the mean value theorem 0 ≤ x ≤ y implies |f ′(x) − f ′(y)|/|x − y|1/3 � x−2|x − y|2/3. This
is bounded if |x − y| ≤ x3. Otherwise use f ′(x) = O(x) to bound the incremental quotient by
y/|x− y|1/3. Either y ≤ 2x or y − x ≥ y/2, and hence this latter expression is also bounded.

2The letter k is traditionally reserved for the weight of the modular form. In this chapter,
however, we will use r to avoid the notational clash with the functional spaces defined above.
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For example, =θ1(x) = 2ϕ(x) where θ is Jacobi’s theta function (I.1) and ϕ is
Riemann’s example (I.9).

For any γ ∈ GL+
2 (R) such that γ−1Γγ ∩ SL2(Z) has finite index in SL2(Z) the

function f |γ is again a modular form and we can also form (f |γ)α. To avoid excessive
use of subscripts we are going to introduce the nonstandard notation fγ to mean
the same as f |γ , and then we are going to define fγα :=

(
fγ
)
α
. In particular we may

always choose γ ∈ SL2(Z) with γ∞ = a for any cusp a ∈ Q ∪ {∞}, producing a
collection of related formal series

fγα(max) =
∑

n+κa>0

aan
(n+ κa)α

e2πi(n+κa)x.

From the remarks in §2.4 it follows that fγα is uniquely determined by the orbit of the
cusp a modulo Γ up to translation and multiplication by an unimodular constant.

Our first three theorems establish some global and local regularity properties
of fα. We define throughout this chapter α0 := r/2 if f is a cusp form and α0 := r
otherwise.

Theorem 3.1 (Global regularity). Let α > 0. The following holds:

(i) If α ≤ α0 the series (3.2) defining fα diverges in a dense set.
(ii) If α > α0 the series (3.2) defining fα converges uniformly to a continuous

function in all the real line. Moreover fα ∈ Cbα−α0c,{α−α0}(R) if α−α0 /∈ Z
and fα ∈ Cα−α0−1,1

log (R) otherwise.

(iii) If 0 < α − α0 ≤ 1 then fα /∈ C1,0(I) for any open interval I. The same is
true for <fα and =fα.

The statements in this theorem concerning the convergence or divergence of the
series (3.2) were known (proposition 3.1 of [14]). Part three is a generalization of
lemma 3.5 of [19].

For the remaining results stated in this section we will assume α > α0.

Theorem 3.2 (Local regularity at rationals). Let x be a rational number
and β(x), β∗(x) and β∗∗(x) the Hölder exponents of either fα, <fα or =fα. Then:

(i) If f is cuspidal at x then β(x) = 2α− r. Otherwise β(x) = α− r.
(ii) If f is a cusp form then

β∗(x) = [α− r/2] + min
(
1, 2{α− r/2}

)
.

If f is not a cusp form then

β∗(x) =
{
bα− rc+ min

(
1, 2{α− r}+ r

)
if f cuspidal at x and α− r /∈ Z,

α− r if f not cuspidal at x or α− r ∈ Z.

(iii) In any case β∗∗(x) = α− α0.
(iv) If 0 < α − α0 ≤ 1 then fα (resp. <fα, =fα ) is not differentiable at any

rational point which is not cuspidal for f . If x is cuspidal for f then fα
(resp. <fα, =fα ) is differentiable at x if and only if α > (r+ 1)/2, and in
this case the derivative is given by

f ′α(x) = (2π)α

(im)αΓ(α)

∫
(x)

(z − x)α−1f ′(z) dz,
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where (x) denotes the vertical ray connecting x with i∞, and the symbol
Γ(·) stands for the gamma function (not to be confused with the group Γ
associated to f).

Our previous knowledge on these Hölder exponents at rational points was very
poor, specially in the non-cuspidal case (cf. theorems 3.3, 3.4 and 3.6 of [19]). Part
(iv) is essentially contained in theorem 2.2 of [14].

The regularity at irrational points depends on how well these points can be
approximated by rationals which are not cuspidal for f . This is precisely measured
by the following quantity:3

(3.3) τx := sup
{
τ :

∣∣∣∣x− p

q

∣∣∣∣� 1
qτ

for infinitely many non-cuspidal rationals p
q

}
.

Note that the inequality τx ≥ 2 is always satisfied for any irrational number x and,
in fact, the number 2 is always contained in the set on the right hand side of (3.3),
as shown by proposition 2.3. On the other hand, when τx = ∞ we establish the
convention 1/τx = 0.

Theorem 3.3 (Local regularity at irrationals). Let x be any irrational
number and β(x), β∗(x) and β∗∗(x) the Hölder exponents of either fα, <fα or =fα.
Then:

(i) If f is a cusp form then β(x) = β∗(x) = β∗∗(x) = α− r/2.
(ii) If f is not a cusp form,

β(x) = α−
(

1− 1
τx

)
r,

β∗(x) =
{
bα− rc+ min

(
1, {α− r}+ r/τx

)
if α− r /∈ Z,

α− r if α− r ∈ Z,
β∗∗(x) = α− r.

Remark. Regarding the differentiability of these functions at irrational points we
could not prove anything beside the obvious results: it cannot be differentiable when-
ever β(x) < 1, while it must be for β(x) > 1.

The cuspidal case was already covered by theorem 3.1 of [19], while the non-
cuspidal case was previously only known for “Riemann’s example” [64] and for
modular forms for Γ0(N) under strong restrictions on α, result contained in propo-
sitions 3.15 and 3.17 of [83].

We have defined fσα as (fσ)α, and although these operators do not commute
the function (fσ)α is closely related to (fα)σ. The relation takes the shape of an
approximate functional equation for fα, resembling the one for f but modulo a
reasonably good error term. This approximate functional equation not only plays a
key role in the proof of the theorems stated above, but also has interest on its own.

Theorem 3.4 (Approximate functional equation). Let σ ∈ SL2(R) satisfying
that fσ is a modular form and x0 = σ∞ ∈ Q. Assume moreover that the lowest-left

3The symbol � could be replaced by ≤ in this definition without affecting the value of τx, but
this convention simplifies some arguments later on.



3.2. MAIN RESULTS 71

entry of σ is negative ( i.e. σ−1 satisfying (2.6)). Then there exist two nonzero real
constants A, B with B > 0, depending on σ, such that:

fα(x) = Ai−αf(x0)φ(x− x0) +B|x− x0|2α(x− x0)−rfσα
(
σ−1x

)
+ E(x)

where f(x0) = lim=z→∞ fσ(z) and

φ(x) =
{
xα−r if α− r /∈ Z,
xα−r log x if α− r ∈ Z.

The error term E(x) lies in the spaces C1,0(R \ {x0}
)
and C2α−r+1(x0).

When σ 6∈ SL2(Z) the value of f(x0) considered in this theorem might not
coincide with the one we have defined in §2.4; they differ in the nonzero complex
constant lim=z→∞

(
jγ(γ−1σz)

)r(
jσ(z)

)−r.
The error term in the approximate functional equation is essentially a polyno-

mial close to the point x0, and hence as x→ x0 the graph of fα looks like a deformed
version of that of fσα . As the latter is a periodic function and σx → ∞, this gives
these functions a “fractal look”, where some motif gets repeated an infinitude of
times near every rational (cf. figure I.2). When the theorem is applied to fγ and
σ = γ−1β for some γ, β ∈ SL2(Z) it also relates the graphs of fγα (close to the ratio-
nal x0 = σ∞) and fβα (globally). This will be explored in more detail in §3.7. When
σ ∈ Γ we have fσ = µσf , and if f(x0) = 0 the approximate functional equation
looks almost like (2.5). In this particular case the theorem essentially corresponds
to lemma 3.8 of [19], while for “Riemann’s example” ϕ it was originally obtained by
Duistermaat in [24].

Another particular case of Theorem 3.4 was known in the literature: when f is
a classical cusp form of even integer weight r > 2 and α = r − 1 the function fr−1
is known as the Eichler integral of f and the approximate equation is in fact exact,
the error term corresponding to the period polynomial of f of the Eichler-Shimura
theory (cf. [28]). We are going to recover this result as a corollary of (the proof) of
theorem 3.4:

Corollary 3.5. If f is a cusp form of weight r > 2 and α = r − 1 then the error
term E(x) in theorem 3.4 is given by

E(x) = (2π)r−1

(im)r−1Γ(r − 1)

∫
(x0)

(z − x)r−2f(z) dz.

If moreover r is an integer then E is a polynomial.

Theorem 3.3 shows that when f is not a cusp form the pointwise Hölder ex-
ponent β of fα at the irrational numbers ranges in a continuum between the values
α − r and α − r/2. An interesting concept to study in this case is that of the
spectrum of singularities, which measures in some rough sense how big are the sets
of points where each Hölder exponent is attained. It is defined as the function
d : [0,+∞) → [0, 1] ∪ {−∞} associating to each δ ≥ 0 the Hausdorff dimension of
the set {x : β(x) = δ} if this set is non-empty and −∞ otherwise (cf. [19, 64]). If
the image of d is not discrete then it is said that fα is a multifractal function. These
concepts arised from a conjecture made by Frisch and Parisi [33] in the context of
the study of turbulence. Examples of multifractal functions are scarce, and Jaffard
showed in [64] that “Riemann’s example” ϕ is indeed multifractal. Our last theo-
rem establishes this result for any form that is not cuspidal, as the cuspidal case had
already been resolved negatively in corollary 3.2 of [19].
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Theorem 3.6 (Spectrum of singularities). Let d be the spectrum of singular-
ities of either fα, <fα or =fα. Then:

(i) If f is a cusp form:

d(δ) =


1 if δ = α− r/2,
0 if δ = 2α− r,
−∞ otherwise.

(ii) If f is not a cusp form:

d(δ) =


2 + 2 δ−αr if α− r ≤ δ ≤ α− r/2,
0 if δ = 2α− r and f cuspidal at some rational,
−∞ otherwise.

The functions fα, <fα and =fα are therefore multifractal if and only if f is not
cuspidal.

The spectrum of singularities was known in the same cases as theorem 3.3. See
[19, 64] and theorem 3.7 of [83].

3.3. Approximate functional equation

Our starting point is going to be an integral representation for fα, given by the
following lemma. This is exactly the Riemann-Liouville integral (I.10) we mentioned
in the introduction.

Lemma 3.7. For α > α0 the series (3.2) converges uniformly to a continuous func-
tion fα, which admits the following integral representation

(3.4) fα(x) = (2π)α

(im)αΓ(α)

∫
(x)

(z − x)α−1(f(z)− f(∞)
)
dz.

Proof. Summing by parts (3.2) and using the estimates for partial sums given
in proposition 2.10 it is clear that the series converges uniformly and hence to a
continuous function. To prove the integral representation we start with

(3.5) fα(x+ iy) = (2π)α

mαΓ(α)

∫ ∞
0

tα−1(f(x+ iy + it)− f(∞)
)
dt,

identity that can be obtained from (3.1) integrating the series term by term because
of the uniform convergence (with exponential decay) in the region =z ≥ y. Now it
suffices to take the limit y → 0+ on both sides. The left hand side corresponds to
the Abel summation of a converging Fourier series, while in the right hand side the
dominated convergence theorem applies with the bounds obtained in proposition 2.8.

�

Having to deal with integrals of the kind (3.4) it is a natural question under
which hypotheses we can apply the differentiation under the integral sign theorem.
We prove here a particular version for convenience.

Lemma 3.8. Let γ ∈ SL2(R) and let I be a bounded open interval whose closure does
not contain the pole of γ. Let g(z, x) be a function differentiable with respect to x in
I and analytic for z ∈ H. Assume moreover that both g and gx = ∂g/∂x are jointly
continuous, have exponential decay when =z → +∞ in vertical strips, uniformly in
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x ∈ I, and that for some β > 0, η > 0 they satisfy the following estimates when
z → γ(x), also uniformly in x ∈ I:

g(z, x) = O
(
(z − γx)β+η−1(=z)−η

)
,

gx(z, x) = O
(
(z − γx)β+η−2(=z)−η

)
.

Then the function

F (x) =
∫

(γx)
g(z, x) dz defined for x ∈ I

is in Λβ(I) for 0 < β < 1, in Λ1
log(I) for β = 1 and in C1,0(I) for β > 1. In this last

case,
F ′(x) =

∫
(γx)

gx(z, x) dz for x ∈ I.

Proof. Assume x ∈ I and 0 < h < 1 satisfying x±h ∈ I. Using Cauchy’s theorem
together with the estimates for g we can write for 0 < u < 1 < v:

F (x± h)− F (x) =
∫ γx+iv

γx+iu

(
g(z, x± h)− g(z, x)

)
dz

+O

(
e−Kv + uβ + huβ−1 + hβ+η

uη

)
.

It is clear now that F must be continuous, as for each ε we may choose u and v so
that for h small enough |F (x± h)− F (x)| ≤ ε.

For the rest of the proof we choose u = h and v = +∞, so that the error term
is of the form O

(
hβ
)
. By the mean value theorem:

|F (x± h)− F (x)| � h

∫ γx+i∞

γx+ih
|gx(z, xz)| |dz|+O

(
hβ
)
.

Using the estimates for gx this last integral is of order O
(
hβ−1) for 0 < β < 1 and

of order O(log h) for β = 1.
Suppose now that β > 1. The estimates for gx justify the use of the dominated

convergence theorem, proving the existence and the formula for F ′. Finally, the ar-
gument used to prove that F is continuous can be applied directly to F ′ substituting
β by β − 1 to conclude that F ′ is also continuous. �

For the rest of this section we assume we are under the hypotheses of theo-
rem 3.4, i.e., σ is a fixed matrix in SL2(R) whose bottom-left entry is negative and
such that fσ is a modular form for a finite index subgroup of SL2(Z), x will denote
an arbitrary real number different from x0 = σ∞ ∈ Q and, for convenience, we also
put C0 = (2π)α/

(
(im)αΓ(α)

)
.

To avoid unnecessary distractions we will hide some extra terms that appear
during the subsequent manipulations inside the symbol (· · · ); we will deal with them
afterwards. The reader can check that all the missing terms appear in (3.6–3.9).

We start from lemma 3.7. Splitting the integral on the right hand side of (3.4)
and performing the change of variables z = σw we have:

fα(x) = C0

∫ x+2i

x
(z − x)α−1f(z) dz + (· · · )

= C0

∫
S

(σw − x)α−1(jσ(w)
)r−2(

fσ(w)− f(x0)
)
dw + (· · · ).
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where S corresponds to a subarc of the geodesic halfcircle with endpoints σ−1(x)
and σ−1(∞), and f(x0) = lim=z→∞ fσ(z) (see the remarks after the statement
of theorem 3.4). The integrand in the last equation has exponential decay when
=w → +∞. This and the bounds from proposition 2.8 allow us to apply Cauchy’s
theorem to replace S with two vertical rays starting at the endpoints of S and
projecting to i∞:

fα(x) = C0

∫
(σ−1x)

(σw − x)α−1(jσ(w)
)r−2(

fσ(w)− f(x0)
)
dw + (· · · ).

By (iii) of proposition 2.1 we have the relation (σw−x)jσ(w) = (w−σ−1x)jσ−1(x).
If we let C1 denote the constant C0e

−2πiα if x < x0 and C0 otherwise, substituting:

fα(x) = C1
(
jσ−1(x)

)α−1
∫

(σ−1x)
(w−σ−1x)α−1(jσ(w)

)r−α−1(
fσ(w)−f(x0)

)
dw+(· · · ).

Let φ(w) =
(
jσ(w)

)r−α−1 and denote by φ(σ−1x+) the limit of φ(w) when w → σ−1x

from the upper half-plane. Adding and subtracting φ(σ−1x+) =
(
jσ−1(x)

)α−r+1 and
using that jσ−1(x) = (−c)(x−x0) where c < 0 is the lowest-left entry of σ, we arrive
via lemma 3.7 to

fα(x) = B|x− x0|2α(x− x0)−rfσα (σ−1x) + (· · · )

for B = (mx0/m)α(−c)2α−r > 0.
The terms we have omitted so far are the following ones:

(· · · ) = −C0
(2i)α

α
f(∞) + C0

∫ x+i∞

x+2i
(z − x)α−1(f(z)− f(∞)

)
dz

(3.6)

+ C0f(x0)
∫ x+2i

x
(z − x)α−1(jσ−1(z)

)−r
dz

(3.7)

+ C0

(∫ x0+2i

x0
+
∫ x+2i

x0+2i

)
(z − x)α−1

(
f(z)− f(x0)(

jσ−1(z)
)r
)
dz

(3.8)

+ C(x− x0)α−1
∫

(σ−1x)
(w − σ−1x)α−1(φ(w)− φ(σ−1x+)

)(
fσ(w)− f(x0)

)
dw.

(3.9)

The terms (3.6) and (3.8) make sense for any x ∈ R and are infinitely many times dif-
ferentiable with respect to this variable. The other ones are studied in the following
lemmas, which complete the proof of theorem 3.4:

Lemma 3.9. The term (3.7) admits an expansion of the form:

Ai−αf(x0)φ(x− x0) + E(x)

where φ is defined in the statement of theorem 3.4. The constant A is real and
nonzero and the error term E(x) is infinitely many times differentiable.

Lemma 3.10. The term (3.9) lies both in C1,0(R \ {x0}
)

and in the class
O
(
|x− x0|2α−r+1) when x→ x0.
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Proof of lemma 3.9. We may assume that f is not cuspidal at x0, since otherwise
(3.7) is equal to zero. Note that in this case by hypothesis α > r. Renaming x− x0
to x if necessary we may further assume x0 = 0. Hence up to a nonzero constant of
the form Ai−αf(x0) we have to expand asymptotically the function

(3.10) g(x) =
∫ 2i

0

zα−1

(x+ z)r dz.

We will suppose for the moment that 0 < x < 1 and α− r /∈ Z. We have

g(x) = x−r
∫ 2xi

0

zα−1(
1 + z

x

)r dz +
∫ 2i

2xi

zα−r−1(
1 + x

z

)r dz.
In the first integral we perform a linear change of variables, while in the second one
we substitute the Laurent expansion(

1 + x

z

)−r
=
∑
k≥0

(
−r
k

)
xkz−k

which is uniformly convergent in the region |z| ≥ 2x. Integrating term by term the
expression now results

g(x) = xα−r
∫ 2i

0

zα−1

(1 + z)r dz +
∑
k≥0

(
−r
k

)
xk

α− r − k
zα−r−k

∣∣∣∣∣
2i

2xi

= xα−r

∫ 2i

0

zα−1

(1 + z)r dz −
∑
k≥0

(
−r
k

)
(2i)α−r−k

α− r − k

+ h(x).(3.11)

where h(x) is a function given by a power series which converges in a neighborhood
of 0. Note that the expression within brackets is a constant A′ satisfying

A′ =
∫ T

0

zα−1

(1 + z)r dz −
∑
k≥0

(
−r
k

)
Tα−r−k

α− r − k

for any complex T with |T | > 1 and arg T 6= π: the right hand side is indeed constant
as can be easily checked by differentiating with respect to T . Hence

A′ = lim
T→+∞

∫ T

0

tα−1

(1 + t)r dt−
∑

0≤k<α−r

(
−r
k

)
Tα−r−k

α− r − k


=
∫ ∞

0
tα−1

 1
(1 + t)r −

∑
0≤k<α−r

(
−r
k

)
1

tr+k

 dt.

The sum corresponds to the Taylor expansion of order bα−rc of the function (1+ξ)−r
multiplied by ξr and evaluated at ξ = 1/t. Since all the derivatives of this function
have constant sign for ξ > 0 we deduce A′ 6= 0. Although the exact value of A′ is
unimportant, using the integral formula for the error term in the Taylor expansion
one can easily obtain a closed formula in terms of beta functions.

Suppose now that α − r is an integer. The same argument can be carried on,
but when integrating the Laurent series term by term the term corresponding to
k = α− r is now transformed into a logarithm. This term results(

−r
α− r

)
xα−r log z

∣∣∣∣∣
2i

2xi

=
(
−r
α− r

)
xα−r

(
− log(x/i) + log 2− log T

)
(T = 2i).
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The first summand corresponds to the main term, while the other two should be
merged into A′. This is relevant, as we will need A′ ∈ R in order to handle the case
x < 0. We may replace (3.11) with:

(3.12) g(x) = −
(
−r
α− r

)
xα−r log(x/i) +A′xα−r + h(x).

Finally if x < 0, we go back to (3.10) and notice that

g(x) = (−1)α−rg(−x),

and the very same equation is also satisfied by the main and error terms in equations
(3.11) and (3.12). Therefore we may apply the results we have obtained for x > 0.

�

Proof of lemma 3.10. Because of the extra cancelation as w → σ−1x provided
by the second factor inside the integral in (3.9) and the exponential decay given
by the third factor when =z → +∞, lemma 3.8 can be applied with η = α0 and
β + η = α + 1. This shows that (3.9) is in C1,0(R \ {x0}

)
(and in fact it is possible

to do a little better with a repeated application of the lemma).
For the second estimate, it suffices to show that

(3.13)
∫

(σ−1x)
(w−σ−1x)α−1(φ(w)−φ(σ−1x+)

)(
fσ(w)−f(x0)

)
dw � |x−x0|α−r+2

when x→ x0. Notice that for w = σ−1x+ it we have

φ(w) =
(
jσ(w)

)r−α−1 =
( 1

(−c)(x− x0) + ict

)r−α−1

where c is the bottom-left entry of σ. Therefore applying the mean value theorem
we obtain for |x− x0| ≤ 1:

|φ(w)− φ(σ−1x+)| �
{
t|x− x0|α−r+2 t ≤ |x− x0|−1

tr−α−1 t ≥ |x− x0|−1 .

We divide now the integration domain in three intervals and use these estimates,
together with the trivial ones for fσ, to show that the left hand side of (3.13) is

� |x− x0|α−r+2
(∫ 1

0
tα
(
1 + t−α0

)
dt+

∫ |x−x0|−1

1
tαe−Kt dt

)

+
∫ ∞
|x−x0|−1

tr−2e−Kt dt.

This proves (3.13), since the first two integrals are convergent and the last one has
exponential decay when x→ x0. �

Proof of corollary 3.5. If f is a cusp form then (3.7) and the first summand
of (3.6) vanish. Moreover since α = r − 1 the function φ in (3.9) is constant, and
hence this term also vanishes. The remaining terms are:

(· · · ) = C0

(∫ x0+2i

x0
+
∫ x+2i

x0+2i
+
∫ x+i∞

x+2i

)
(z − x)α−1f(z) dz

= (2π)α

(im)αΓ(α)

∫
(x0)

(z − x)α−1f(z) dz. �
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3.4. Wavelet transform

The wavelet transform was presented in the introduction (I.12) as the integral
transform

Wf(a, b) = 1
a

∫
R
f(t) ψ̄

(
t− b
a

)
dt for a > 0 and b ∈ R.

where ψ has to be a wavelet, which we did not define rigorously. Actually, there is
no unique definition: a wavelet can be any function which oscillates and at the same
time has enough decay for the integral defining W to converge, and different defini-
tions of the concept of wavelet can be found in the literature. In this dissertation
we are going to stick to the following: given α > 0, a wavelet is a smooth function
ψ : R→ C satisfying:

(i) ψ(k)(x)�
(
1 + |x|

)−α−1 for all k ≤ dαe.
(ii)

∫
R x

kψ(x) dx = 0 for 0 ≤ k < α.
(iii) Either ∫ ∞

0
|ψ̂(ξ)|2 dξ

ξ
=
∫ ∞

0
|ψ̂(−ξ)|2 dξ

ξ
= 1

or
ψ̂(ξ) = 0 if ξ < 0 and

∫ ∞
0
|ψ̂(ξ)|2 dξ

ξ
= 1.

These axioms are adapted from the ones used by Jaffard [65, §2] to study “Riemann’s
example”. The differences with the definition employed by Jaffard are subtle but
important, and will allow us to avoid the very unnatural hypothesis that appear in
the main theorems of the article [19].

Note (i) of the axioms implies that ψ̂ exists and is ε-Hölder for some small ε,
and together with (ii) this justifies the integrability of |ψ̂(ξ)|2/ξ. The decay of ψ
also shows that Wf is well-defined for any bounded measurable function f : R→ C.
If we moreover ask f to be continuous and periodic, with vanishing integral on each
period, and satisfying f̂(ξ) = 0 for ξ < 0 in the distributional sense4 in case the
same is satisfied by ψ, then the following inversion formula holds:

(3.14) f(x) =
∫
R+

∫
R
Wf(a, b)ψ

(
x− b
a

)
db da

a2 .

The proof of the inversion formula can be found in [52] with weaker hypotheses,
but nevertheless we will provide an adapted version here for convenience. The outer
integral in (3.14) in principle has to be understood as an improper Riemann integral,
but in our applications it will be absolutely convergent.

The wavelet transform allows us to reformulate questions concerning the regu-
larity of f in a point x0 as questions about the growth of its wavelet transform W in
a neighborhood of the corresponding point (0+, x0), as it is shown by the following
two theorems:

Theorem 3.11. Let 0 < β < α and f as above. If f ∈ Cβ(x0) then

Wf(a, b)� aβ + |b− x0|β

when (a, b)→ (0+, x0).
4This means that whenever φ is a compactly supported (or of fast decay) smooth function

whose support is contained in {x < 0} we have
∫
f(ξ)φ̂(ξ) dξ = 0. See §3.8 of [12].
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Theorem 3.12. Let 0 < β′ < β < α and f as above. If

Wf(a, b)� aβ + aβ−β
′ |b− x0|β

′

when (a, b) → (0+, x0) then f ∈ Cβ(x0) if β is not an integer and f ∈ Cβlog(x0)
otherwise.

The bounds involving Wf(a, b) in these two theorems may also be written in
the forms aβ

(
1 + |b−x0|

a

)β
and aβ

(
1 + |b−x0|

a

)β′
, respectively, from where it is clear

that the second one constitutes a strengthening of the first.

Remark. The last two theorems are adapted from proposition 1 of Jaffard’s arti-
cle [65] for our definition of wavelet. With our notation, the use of the definition
employed by Jaffard would require the extra hypothesis bβc ≤ bαc−1 in the theorems,
which was the problem encountered in [19]. Note also that the logarithm appearing
in theorem 3.12 when β is an integer is neglected in [65] (and in fact, the proof for
β ≥ 1 left to the reader). Indeed, the approximate functional equation (theorem 3.4)
shows that the logarithm may very well be necessary for some functions satisfying
the hypotheses ( cf. §3.7).

Proof of the inversion formula. (Adapted from [52]) Assume first we are in
the first case of axiom (iii). Let ε > 0 and

gε(x) =
∫ 1/ε

ε

∫
R
Wf(a, b)ψ

(
x− b
a

)
db da

a2 .

We must show limε→0+ gε(x) = f(x). Substituting the definition ofWf and applying
Fubini twice,

(3.15) gε(x) =
∫ +∞

−∞
f(t)

∫ 1/ε

ε

1
a3

∫ +∞

−∞
ψ̄

(
t− b
a

)
ψ

(
x− b
a

)
db da dt.

The change of variables (x− b)/a 7→ b in the inner integral shows

gε(x) =
∫ +∞

−∞
f(t)

∫ 1/ε

ε

1
a2h

(
t− x
a

)
da dt

where h(t) =
∫+∞
−∞ ψ̄(t + b)ψ(b) db. We perform now the change of variables (t −

x)/a 7→ a, obtaining

gε(x) =
∫ +∞

−∞

f(t)
t− x

∫ (t−x)/ε

ε(t−x)
h(a) da dt

=
∫ +∞

−∞
f(t)

(1
ε
M
(
(t− x)/ε

)
− εM

(
ε(t− x)

))
dt

for M(t) = t−1 ∫ t
0 h(τ) dτ . We claim M ∈ L1(R) and

∫
M = 1. If so, using that f is

continuous and periodic with vanishing integral in each period,

lim
ε→0+

1
ε

∫ +∞

−∞
f(t)M

(
(t−x)/ε

)
dt = f(x) and lim

ε→0+
ε

∫ +∞

−∞
f(t)M

(
ε(t−x)

)
dt = 0,

the first equality because ε−1M(t/ε) is an approximation of the identity and the
second because of a Riemann-Lebesgue lemma adapted for f , or directly integrating
by parts since M is smooth. Hence limε→0+ gε(x) = f(x).

To prove the claim we first need show∫ 0

−∞
h(τ) dτ =

∫ ∞
0

h(τ) dτ = 0.
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Note from the definition of h that h(t)� (1 + |t|)−α−1, and hence h ∈ L1(R). Also,
by the Plancherel formula, h(t) =

∫
R e(−tξ)|ψ̂(ξ)|2 dξ. Therefore∫ t

0
h(τ) dτ =

∫ t

0

∫ +∞

−∞
e(−τξ)|ψ̂(ξ)|2 dξ dτ = − 1

2πi

∫ +∞

−∞
|ψ̂(ξ)|2e(−tξ) dξ

ξ
,

where we have used Fubini and (iii) of the wavelet axioms. By the Riemann-
Lebesgue lemma this vanishes when t→ ±∞.

Hence for t > 0 (resp. t < 0) we have M(t) = −t−1 ∫+∞
t h(τ) dτ (resp. M(t) =

t−1 ∫ t
−∞ h(τ) dτ) and therefore M(t)� (1 + |t|)−α−1, implying M ∈ L1(R). For any

ε > 0 consider Mε(t) = (t− iε)−1 ∫ t
0 h(τ) dτ , and apply Fubini to write∫ T

−T
Mε(t) dt = − 1

2πi

∫ +∞

−∞
|ψ̂(ξ)|2

∫ T

−T

e(−tξ)
t− iε

dt
dξ

ξ
.

An application of Cauchy’s theorem and a direct estimation shows that the inner
integral equals 2πiH(−ξ)e2πεξ +O

(
min(|ξT |−1, log(T/ε))

)
where H is the Heaviside

function: H(ξ) = 1 for ξ > 0 and H(ξ) = 0 for ξ < 0. Substituting and carefully
taking the limit first when T →∞ and then when ε→ 0 we obtain∫ +∞

−∞
M(t) dt =

∫ ∞
0
|ψ̂(−ξ)|2 dξ

ξ
= 1.

Finally suppose that the wavelet ψ satisfies instead the second part of axiom
(iii). Then ψ + ψ̄ is a wavelet satisfying the first part of (iii) and therefore the
inversion formula holds for it. But Wf has the same values with respect to both
wavelets, and the same is true for the inner integral in (3.15). This essentially
follows from the Plancherel formula, but in the first case to avoid working with the
distribution f̂ it is convenient to apply directly the definition of supp f̂ ⊂ {x ≥ 0}
with some smoothing and truncation (see footnote 4). In fact,

∫
fφ̂ = 0 for any

continuous function φ ∈ L1(R) supported in {x ≥ 0} and satisfying φ̂ ∈ L1(R). �

Proof of theorem 3.11. We can assume without loss of generality x0 = 0. By
hypothesis there is a polynomial P of degree strictly smaller than β such that

|f(x)− P (x)| � |x|β,

estimate which we may assume to hold globally. Hence, by the axioms (i) and (ii)
of the wavelet definition,

Wf(a, b)� 1
a

∫
R
|f(t)− P (t)|

∣∣∣∣ψ ( t− ba
)∣∣∣∣ dt

� 1
a

∫
R

|t|β(∣∣∣ t−ba ∣∣∣+ 1
)α+1 dt

� aβ
∫
R

|t|β(
|t|+ 1

)α+1 dt+ |b|β
∫
R

dt(
|t|+ 1

)α+1

� aβ + |b|β. �

In order to prove theorem 3.12 we shall use the inversion formula (3.14), which
for convenience will be written in the following way:

(3.16) f(x) =
∫
R+
ω(a, x) da

a
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where

(3.17) ω(a, x) = 1
a

∫
R
Wf(a, b)ψ

(
x− b
a

)
db.

We prove first some estimates for ω. In particular they show that the integral
in (3.16) is absolutely convergent for x sufficiently close to x0.

Lemma 3.13. Under the hypotheses of theorem 3.12 the function x 7→ ω(a, x) is
infinitely many times differentiable and satisfies for all k ≤ dαe and for some δ > 0:

∂kω

∂xk
(a, x)� a−k−1,(3.18)

∂kω

∂xk
(a, x)� aβ−k + aβ−β

′−k|x− x0|β
′ for a ≤ 1, |x− x0| ≤ δ.(3.19)

Proof. It is clear that Wf(a, b) is uniformly bounded and ψ and all its derivatives
up to dαe have decay (axiom (i)). Therefore we may differentiate (3.17) under the
integral sign obtaining

(3.20) ∂kω

∂xk
(a, x) = 1

ak+1

∫
R
Wf(a, b)ψ(k)

(
x− b
a

)
db.

Integrating by parts in the definition of Wf(a, b) and using that the integral
over each period of f vanishes it is readily seen that Wf(a, b)� a−1. Plugging this
into (3.20) one obtains (3.18).

To prove (3.19) we first assume without loss of generality that x0 = 0, and that
the bounds in the statement of theorem 3.12 hold uniformly in the neighborhood
a ≤ 1 and |b| ≤ 2δ. We have for a ≤ 1 and |x| ≤ δ:

∂kω

∂xk
(a, x)� 1

ak+1

∫
|b|≤2δ

aβ + aβ−β
′ |b|β′(∣∣∣x−ba ∣∣∣+ 1
)α+1 db+ 1

ak+1

∫
|b|>2δ

db(∣∣∣x−ba ∣∣∣+ 1
)α+1

� aβ−k + aβ−β
′−k

∫
R

|x− at|β′(
|t|+ 1

)α+1 dt+ 1
ak

∫
t>δ/a

dt

(t+ 1)α+1

� aβ−k + aβ−β
′−k|x|β′ . �

Proof of theorem 3.12. Again we can assume x0 = 0. Let N = bβc if β is not
an integer and N = β − 1 otherwise, i.e. N = dβe − 1. We perform a Taylor
expansion of order N on ω:

ω(a, x) =
N∑
k=0

∂kω

∂xk
(a, 0)x

k

k! + E(a, x).

Using the bounds of lemma 3.13 we can plug this into (3.16) to obtain

f(x) = P (x) +
∫
R+
E(a, x) da

a

for certain polynomial P of degree N < β. It suffices to prove that the integral term
has the right behavior when x→ 0.

We split the integral. In the range a ≤ |x| we use (3.19) with either x = 0 or
k = 0 to obtain∣∣∣∣∣

∫
a≤|x|

E(a, x) da
a

∣∣∣∣∣ ≤
∫
a≤|x|

|ω(a, x)| da
a

+
N∑
k=0

|x|k

k!

∫
a≤|x|

∣∣∣∣∣∂kω∂xk
(a, 0)

∣∣∣∣∣ daa � |x|β.
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In the complementary range, assuming that β is not an integer, we use the formula
for the Taylor error term together with (3.19):∣∣∣∣∣

∫
a≥|x|

E(a, x) da
a

∣∣∣∣∣ ≤ |x|N+1

(N + 1)!

∫
a≥|x|

∣∣∣∣∣∂N+1ω

∂xN+1 (a, ξa,x)
∣∣∣∣∣ daa � |x|β.

When β is an integer the same argument works using (3.19) in the range |x| ≤
a ≤ 1 and (3.18) in the range a ≥ 1. The right hand side has to be replaced by
|x|β log |x|. �

Following [19, 65] we apply these theorems to fα, where f is a modular form,
with ψ(x) = (x + i)−α−1. The reader can easily verify that ψ satisfies the axioms
(i) and (ii) of our definition of wavelet. In order to check axiom (iii) we compute
ψ̂. The integral

ψ̂(ξ) =
∫
R

e−2πiξx

(x+ i)α+1 dx

vanishes for ξ ≤ 0 by Cauchy’s theorem. For ξ > 0 we perform a change of variables
obtaining

ψ̂(ξ) = ξαe−2πξ
∫
R+ξi

e−2πiz

zα+1 dz

and by Cauchy’s theorem the integral on the right hand side is a constant with
respect to ξ. The exact value of the constant is not important, since ψ need not
be normalized for theorems 3.11 and 3.12 to hold, although it can be explicitly
computed by means of Hankel’s contour integral for the reciprocal of the gamma
function (cf. [96, §12.22]).

It is also clear that fα is a periodic function (since we have assumed κ∞ ∈ Q cf.
§2.5), with vanishing integral on each period, and whose Fourier transform (in the
distributional sense) is supported only in the positive frequencies. To compute its
wavelet transform with respect to ψ it suffices to compute the one for g(x) = e2πiλx.
This can be done using some basic properties of the Fourier transform:

(3.21) Wg(a, b) = e2πiλb ¯̂
ψ(λa) =

{
Caαλαe2πiλ(b+ai) λ > 0
0 λ ≤ 0.

Hence

(3.22) Wfα(a, b) = C ′aα
(
f(b+ ai)− f(∞)

)
.

Corollary 3.14. If for some 0 < β < α one has fα ∈ Cβ(x0) then

f(b+ ai)� aβ−α + a−α|b− x0|β

when (a, b)→ (0+, x0). Reciprocally, if for some 0 < β′ < β < α one has

f(b+ ai)� aβ−α + aβ−β
′−α|b− x0|β

′

when (a, b) → (0+, x0), then fα ∈ Cβ(x0) if β is not an integer and fα ∈ Cβlog(x0)
otherwise. Moreover both statements remain true if one replaces fα by its real or
imaginary parts.

Proof. The part of the theorem concerning fα follows at once from theorems 3.11
and 3.12 and (3.22). Also note that if fα ∈ Cβ(x0) or fα ∈ Cβlog(x0) then the same
must hold for the real and the imaginary parts of fα.
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On the other hand, <fα and =fα are bounded functions, and hence their wavelet
transforms are well defined. By rewriting the sine and cosine functions involved in
their Fourier series as sums of exponentials and applying (3.21) one obtains

Wfα(a, b) = 2W<fα(a, b) = 2iW=fα(a, b).

Since the inversion formula (3.14) was not used in the proof of theorem 3.11, we
may apply this theorem to <fα and =fα. �

3.5. Proof of the regularity theorems

This section contains the proofs of theorems 3.1, 3.2 and 3.3.

Lemma 3.15. For any integer k < α − α0 we have fα ∈ Ck,0(R) and f
(k)
α =

(2πi/m)kfα−k. If moreover fα cannot be continuously differentiated k + 1 times
in any open interval containing a point x, then

β∗(x) = k + min
(
1, βα−k(x)

)
,

where βα−k denotes the pointwise Hölder exponent of fα−k. This formula extends to
<fα and =fα if both these functions satisfy the nondifferentiability hypothesis and
their pointwise Hölder exponents coincide.

Proof. Since α−k > α0 the series defining fα−k converges uniformly (lemma 3.7),
and therefore can be integrated term by term. This shows fα ∈ Ck,0(R) and that
the formula for f (k)

α holds. The rest follows from the definition of β∗. �

In order to prove theorems 3.1 and 3.2 we anticipate two very simple facts which
will come in handy. Applying corollary 3.14 with the bounds from proposition 2.8
we obtain β(x) = α− r/2 for f cuspidal and x irrational and β(x) = α− r for f not
cuspidal and x any non-cuspidal rational. In the rest of cases, β(x) ≥ α − α0. The
same results hold for the pointwise Hölder exponent of both <fα and =fα.

Proof of theorem 3.1. (i) (Adapted from proposition 3.1 of [14]) If the series
defining fα converges at a certain point for α < α0 then summing by parts the series
defining fα0 must also converge at that point, and therefore we may reduce to this
case.

Suppose first that f is cuspidal, we will prove that fr/2 diverges at any irrational
point x. We can assume, rescaling f , that m = 1 and κ = 0. Considering the kernels
of summability ϕ1(u) = e−2πu(ur/2 + 1) and ϕ2(u) = e−2πu (see §A.3), we have:

lim
y→0+

yr/2f(x+ iy) = lim
y→0+

(∑
n>0

Anϕ1(ny)−
∑
n>0

Anϕ2(ny)
)

= 0

with An = an
nr/2

e2πinx, as long as fr/2 converges at x; but this contradicts proposi-
tion 2.8.

Suppose now that f is not cuspidal. We prove that fr is not Abel summable
at any non-cuspidal rational point x. If this were not the case then by (3.5) of
lemma 3.7 we would have for some ` ∈ C,

` = lim
y→0+

fr(x+ iy) = lim
y→0+

(2π)r

mrΓ(r)

∫ ∞
y

(t− y)r−1(f(x+ it)− f(∞)
)
dt.

But since by the expansion at the cusp the term f(x + it) behaves like Ct−r for
small t, the right hand side diverges.
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(ii) By lemma 3.15 the function fα is continuously differentiable k times, where
k = bα−α0c if α−α0 is not an integer and k = α−α0−1 otherwise. The result now
follows from applying lemma 3.8 to the integral representation given by lemma 3.7
for fα−k.

(iii) Suppose first that f is not cuspidal. If α−r < 1 then neither fα nor its real
or nor its imaginary part are differentiable at any non-cuspidal rational, since they
are at most (α − r)-Hölder at these points. Only the limit case α = r + 1 remains.
But in this case we may appeal to theorem 3.4, since 2α − r = r + 2 > 1 implies
that both the second term and the error term are differentiable at the rational x0,
and the first term is not if x0 is non-cuspidal. A more detailed analysis shows that
neither the real nor the imaginary parts of the function Cx log x are differentiable
at 0 for any complex constant C, and hence the same applies for both <fα and =fα.

(Adapted from lemma 3.7 of [19]) Suppose now that f is cuspidal, and rescaling
m = 1 and κ = 0. If fα is in C1,0(I) then by theorem 3.4 it is also in C1,0(γ(I)) for
any γ ∈ Γ. It follows that f ′α must exist and be continuous everywhere, for example
by choosing γ with the pole inside I so that γ(I) covers a whole period of fα. This is
possible because the equivalence class [∞] is dense (proposition 2.3). Integrating by
parts in

∫ 1
0 f
′
α(x)e(−nx) dx to obtain the Fourier coefficients of f ′α and using Bessel’s

inequality,

‖f ′α‖2 �
∑
n>0

|an|2

n2α−2 .

But the right hand side diverges for α− r/2 ≤ 1 as can be checked by summing by
parts and using the estimates of proposition 2.11.

Finally assume that either <fα or =fα is in C1,0(I). Since the constant B in
theorem 3.4 is real, the same argument works as long as we can find γ ∈ Γ with the
pole in I and µγ ∈ {±1}. One such matrix can be constructed as follows: pick a
rational number x ∈ I and let η ∈ Γ be a parabolic matrix fixing x of positive trace
with negative bottom-left entry. Since limn→∞ η

−n∞ = x, for n big enough ηn has
its pole inside I. Moreover µη is a root of unity and µηn = µnη (see §2.5). Hence we
can choose γ = ηn for a carefully chosen n. �

Proof of theorem 3.2. Let x0 be a rational number.
(i) If f is not cuspidal at x0 then we already know β(x0) = α− r. Hence may

assume that f is cuspidal at x0. Choose a matrix σ ∈ SL2(Z) with negative bottom-
left entry satisfying σ∞ = x0 and apply theorem 3.4. We deduce that fα ∈ C2α−r(x0)
and that fα /∈ C2α−r+ε(x0) for any ε > 0, since the term σ−1x diverges to ∞ when
x→ x0 and fσα is a nonconstant periodic function. Hence β(x0) = 2α−r. The same
must be true for <fα and =fα as long as neither <fσα nor =fσα are constants. This is
indeed the case as fσα corresponds to a Fourier series with only positive frequencies.

(ii) The exponent β∗ is determined by applying lemma 3.15 with k = [α− α0]
if α− α0 /∈ Z and k = α− α0 − 1 otherwise (cf. theorem 3.1).

(iii) To determine β∗∗ note first that theorem 3.1 implies β∗∗(x) ≥ α−α0. Since
this exponent also satisfies β∗∗(x) ≤ lim inft→x β(t), as can be readily seen from its
definition, and we have β(x) = α−α0 for a dense set (the irrational numbers if f is
cuspidal and the non-cuspidal rationals otherwise) we conclude β∗∗(x) = α− α0 for
all x.

(iv) The case x0 non-cuspidal has already been treated in the proof of theo-
rem 3.1, part (iii). Hence we may suppose that f is cuspidal at x0. We appeal again
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to theorem 3.4 but now we will use the explicit expression for the error term (cf. §3.3):

fα(x) = B|x− x0|2α(x− x0)−rfσα (σ−1x) + (3.6) + (3.8) + (3.9).

Terms (3.6) and (3.8) are everywhere differentiable, while term (3.9) can be differ-
entiated at x0 by lemma 3.10. Hence fα is differentiable at x0 if and only if the first
summand is. Since fσα is bounded, nonconstant and periodic this will happen if and
only if 2α − r > 1. The same must be true for the real and imaginary parts of fα,
as neither <fσα nor =fσα are constants.

Hence whenever f ′α(x0) exists it is given by the sum of the derivatives of the
terms (3.6) and (3.8) evaluated at x0 (the other terms have vanishing derivative at
x0). Differentiating under the integral sign and integrating by parts one obtains the
desired formula. �

Proof of theorem 3.3. Let x0 an irrational number. The pointwise Hölder expo-
nent β(x0) is deduced by applying corollary 3.14 to the estimates of proposition 2.8
if f is a cusp form (see remark above) and of proposition 2.12 otherwise. The expo-
nent β∗(x0) follows from lemma 3.15, while β∗∗(x0) was already determined in the
proof of theorem 3.2, part (iii). �

3.6. Spectrum of singularities

In order to prove theorem 3.6 we will need some tools from Diophantine approx-
imation theory. More concretely we will need a refinement of the following classic
theorem:

Theorem 3.16 (Jarník-Besicovitch). Let τ ≥ 2. The Hausdorff dimension of
the set

Aτ :=
{
x :

∣∣∣∣x− p

q

∣∣∣∣� 1
qτ

for infinitely many rationals p
q

}
is 2/τ . Moreover, if we denote by Ht the t-dimensional outer Hausdorff measure,
H2/τ (Aτ ) =∞.

For the proof of theorem 3.16 when τ > 2 we refer the reader to Jarnik’s original
paper [66].5 The theorem appearing there corresponds to the stronger Diophantine
condition |x− p/q| ≤ q−τ , but the result can be readily translated to our statement.
The case τ = 2 follows from Dirichlet’s approximation theorem.

Throughout this section we are going to reserve the bold letters a, b, . . . to
denote cusps, and we are going to write a ∼ b to denote that these two cusps lie
in the same orbit modulo Γ, i.e., that [a] = [b] or b = γ(a) for some γ ∈ Γ. The
theorem we need is the following, which takes into account that rational numbers
are well distributed among the different classes of cusps.

Theorem 3.17. Let a be a cusp for Γ and τ ≥ 2. The Hausdorff dimension of the
set

Aa
τ :=

{
x :

∣∣∣∣x− p

q

∣∣∣∣� 1
qτ

for infinitely many rationals p
q
∼ a

}
is 2/τ . Moreover, if we denote by Ht the t-dimensional outer Hausdorff measure,
H2/τ (Aa

τ

)
=∞.

Theorem 3.17 is a particular case of more general results about Fuchsian groups
(cf. [91]). We provide here an elementary proof based on theorem 3.16.

5See [7] for a survey in English.
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Proof. Note that we may assume without loss of generality that Γ is a normal
subgroup of SL2(Z). Indeed, if this is not the case, we simply replace Γ with the
biggest normal group it contains, i.e., the intersection of all its conjugates. The
normality of Γ implies that the action of SL2(Z) on the equivalence classes of cusps
modulo Γ is well-defined.

Let γ be any matrix in SL2(Z) and x an irrational number in Aa
τ . We claim that

if p/q is a rational number in a neighborhood of x and q′ denotes the denominator of
γ(p/q) then q′ � q, the implicit constant depending on x and γ. Indeed q′ = cp+dq,
and p � q because |p/q| ∼ |x|. From this together with the mean value theorem
applied to |γ(x) − γ(p/q)| we deduce that γ(x) ∈ Aγ(a)

τ . The argument can also be
applied to γ−1 and therefore:

(3.23) γ(Aa
τ ) = Aγ(a)

τ .

For any Lipschitz function h with Lipschitz constant C and any set Ω we have

(3.24) Ht
(
h(Ω)

)
≤ CtHt(Ω).

This follows from the definition of Hausdorff outer measure. We want to apply this
to prove that all the sets Aa

τ have roughly the same size when a ranges through a set
of representatives of the equivalence classes of the cusps modulo Γ, but the Möbius
transformation γ is not Lipschitz in any neighborhood of its pole. This problem has
a simple workaround. Let m be the width of the cusp∞ and I any interval of length
m not containing the pole of γ, and whose image J = γ(I) is also of length m. Then
from (3.23) we have

γ(Aa
τ ∩ I) = Aγ(a)

τ ∩ J
Aa
τ +m = Aa

τ .

Applying (3.24),
Ht(Aγ(a)

τ )� Ht(Aa
τ ).

The opposite inequality is also true and hence the Hausdorff dimension of the set
Aa
τ must be independent of a. Since we also know by theorem 3.16 that Aτ =

⋃
aA

a
τ

has dimension 2/τ , we conclude that all the Aa
τ must have exactly that dimension.

It is also immediate that H2/τ (Aa
τ

)
=∞. �

Corollary 3.18. Let 2 ≤ τ ≤ ∞. The Hausdorff dimension of the set {x : τx = τ}
is 2/τ .

For the definition of τx see (3.3).

Proof. Assume τ > 2 and let Ξ be a set of representatives of the equivalence classes
of cusps at which f is not cuspidal. We have the identity

{x : τx = τ} =
⋂
τ ′<τ

⋃
a∈Ξ

Aa
τ ′ \

⋃
τ ′>τ

⋃
a∈Ξ

Aa
τ ′ .

By theorem 3.17 the set on the right hand side has Hausdorff dimension at most
2/τ . On the other hand from the same theorem one deduces that for τ < +∞ we
have

H2/τ
( ⋂
τ ′<τ

⋃
a∈Ξ

Aa
τ ′

)
=∞, H2/τ

( ⋃
τ ′>τ

⋃
a∈Ξ

Aa
τ ′

)
= 0.

This implies the other inequality for the Hausdorff dimension.



86 3. REGULARITY OF FRACTIONAL INTEGRALS OF MODULAR FORMS

The case τ = 2 follows from the fact that τx ≥ 2 for every irrational number x
(see proposition 2.3), while by the above argument the set {x : τx > 2} has vanishing
Lebesgue measure. �

Proof of theorem 3.6. The set {x : β(x) = δ} is completely determined by
theorems 3.2 and 3.3. Its Hausdorff dimension in the case of cuspidal f is immediate,
while if f is non-cuspidal it follows from corollary 3.18. �

3.7. Examples

In the rest of this chapter we are going to apply the developed machinery to
some interesting examples, namely Jacobi’s theta function and newforms for Γ0(N).
The included graphics have been plotted using SageMath [84], and the same software
system has been used to compute the Fourier coefficients of newforms. The data
points were calculated using simple C++ programs.

3.7.1. “Riemann’s example”. We are going to discuss some features of the
graph of Riemann’s example (I.9), plotted in figure I.2. The material in this section
is not new: a similar but more detailed exposition is given by Duistermaat in [24].
Our analysis, however, is readily applicable to any other modular form.

Riemann’s example ϕ satisfies 2ϕ(x) = =θ1(x). As we discussed in chapter 2,
Jacobi’s theta function θ is a modular form of weight 1/2 for the theta group Γθ,
consisting of all matrices in SL2(Z) of the form

( odd even
even odd

)
or
( even odd

odd even
)
. The Γθ-

orbit of 0 corresponds to∞ together will all the rationals p/q with either p even and
q odd, or p odd and q even. All the remaining rationals (p/q with both p and q odd)
constitute the Γθ-orbit of 1. The modular form θ is cuspidal at 1 but not at 0 and the
associated multipliers µγ are always 8th roots of unity. All theses facts are proved
assuming no background knowledge in Duistermaat’s exposition [24], although they
can also be deduced with some work from proposition 2.7.

A direct application of the regularity theorems suffices to recover Hardy’s and
Gerver’s theorems (see §I.2) and determine the Hölder exponents of ϕ at every
point. Its spectrum of singularities, first obtained by Jaffard in [64], also follows
from theorem 3.6.

Jacobi’s function θ is classically denoted ϑ3, as it has two companions which are
also modular forms of weight 1/2 for conjugated groups of Γθ (cf. proposition 2.7):

θ̃(z) = ϑ2(z) =
∑
n∈Z

e(n+ 1
2)2

πiz and θ(z + 1) = ϑ4(z) =
∑
n∈Z

(−1)nen2πiz.

The nomenclature θ̃ is not standard but we employ it here as a convenient way to
avoid problems with subscripts.

By proposition 2.7, given any matrix σ ∈ SL2(Z) the modular form θσ is either
a constant multiple of ϑ2 = θ̃, ϑ3 = θ or ϑ4(z) = θ(z+ 1), the constant being an 8th
root of unity. Since θσ is cuspidal at ∞ if and only if θ

(
σ(∞)

)
= 0, one concludes

that:

θσ(z) =
{
Cθ(z) or Cθ(z + 1) if σ(∞) ∈ [0],
Cθ̃(z) if σ(∞) ∈ [1].

We now apply theorem 3.4 with α = 1, r = 1/2, to study the behavior of
ϕ = 1

2=θ1 in the neighborhood of a given rational point x0. The resulting expansion
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Figure 3.1. Detail of ϕ near 1/2, 1/3 and 2/3, respectively.
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Figure 3.2. Graphs of <θ1 (top-left), =θ1 (top-right), <θ1+=θ1 (bottom-
left) and =θ̃1 (bottom-right).

around x0 is of the form:

ϕ(x) = =
[
C
√
x− x0

]
+ =

[
C ′(x− x0)3/2f1(σ−1x+ τ)

]
+ h(x).

The constant C is nonzero if and only if x0 ∈ [0], and in this case f = θ. Otherwise
f = θ̃. The constant C ′ is always nonzero, and both constants have the argument
of an 8th root of unity. Finally, τ is either 0 or 1.

Some deductions are immediate. The first one being that ϕ has singularities
of square root type at every rational of the form odd/even or even/odd (either at
one side or both sides of the rational). The second one is that at either side of
any rational number ϕ mimics the graph of some periodic function, namely =C ′f1
if x > x0 or −<C ′f1 if x < x0. Note that as σ−1 has a simple pole at x0, this
pattern repeats indefinitely towards the rational, with its amplitude decreasing as
a 3/2 power of the remaining distance and its frequency roughly proportional to
|x − x0|−1. See figure 3.1 for some examples of this behavior, where some square
root singularities are also clearly visible.

Since the argument of C ′ is an integer multiple of π/4 we also deduce that =C ′f1
(or −<C ′f1) is, up to a positive constant factor, either <f1, =f1 or <f1 + =f1, or
the mirror image of one of these three functions, i.e., the result of performing the
change of variables x 7→ −x either in the domain, in the codomain or both. The
situation is even simpler when f = θ̃, as the functional equation θ̃(z + 1) =

√
i θ̃(z)

implies that all these functions are then translates of each other and therefore we
need only to consider =θ̃1. Hence the graph of =C ′f1 (or −<C ′f1) corresponds, up to
symmetries, to one of the four genuinely distinct patterns that appear in figure 3.2.
Note that in figure 3.1 all four patterns appear.
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Figure 3.3. Left: Plot of −<f9/5, where f is the newform on Γ0(14).
Right: detail of <f9/5 at 1/2. This rational is not in [∞], but the matrix
σ = ( 7 3

14 7 ) satisfies σ(∞) = 1/2 and f |σ = −f .

A different kind of self-similarities, modulo a C1,0 error term, may be found
around fixed points of transformations lying in Γθ, as deduced from theorem 3.4 by
letting x approach the fixed point of the transformation. Note that by theorem 1.4
this includes all quadratic surds. In this case the “zooming” factor given by the
derivative of σx at the fixed point x0 has magnitude different than 1 (as jσ(x0) is
irrational), and therefore the pattern repeats in a geometric progression towards x0.

3.7.2. Cusp forms for Γ0(N). Fix an arbitrary integer N ≥ 1 and let f be
a cusp form of integer weight r for the group Γ0(N) and trivial multiplier system.
Note that r must necessarily be an even integer. For any α > r/2 the function fα
is well-defined and we may consider g = <fα or =fα. Under these conditions by
theorem 3.4 we have for every rational x0 ∈ [∞],

(3.25) g(x) = B|x− x0|2α−rg(σ−1x) + E(x)

for some σ ∈ SL2(R) satisfying σ−1x0 = ∞ and the function E lying in the spaces
C1,0(R \ {x0}

)
and C2α−r+1(x0). An interesting question is whether an approximate

functional equation of the form (3.25), with B real and E with the same regularity,
relating g with itself, exists for other rational numbers. Note this will happen for the
rational x0 as long as we are able to find some σ ∈ SL2(R) satisfying σ−1x0 =∞ and
such that fσ = f |σ equals Cf for a real constant C (and this is likely a necessary
condition). In this section we provide sufficient conditions for this to hold and study
some examples.

Some notation first. For every prime p we denote by [n]p the largest power of
p dividing n, and for every divisor Q | N satisfying gcd(Q,N/Q) = 1 we define the
matrix

ωQ :=
(
Qx y
Nz Qw

)
, x, y, z, w ∈ Z, detωQ = Q,

which is unique up to left and right multiplication by elements of Γ0(N). The
matrices ωQ are called Atkin-Lehner involutions and satisfy Q−1ω2

Q ∈ Γ0(N) and
ωQωQ′ = some ωQQ′ whenever gcd(Q,Q′) = 1. For the sake of clarity we also set
ωp := ω[N ]p for each prime p | N . Finally for any integer n > 0 we consider the
matrix

Sn :=
(

1 1/n
0 1

)
,
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Figure 3.4. Plot of =f7/4 where f is the newform on Γ0(45).

which corresponds to a translation by 1/n.
Note that if we want f |σ = Cf , then f must be a modular form for both Γ0(N)

and σ−1Γ0(N)σ. Hence a good place to look for σ is in the normalizer of Γ0(N).
A theorem of Atkin and Lehner stated without proof in [2] assures that when N is
not divisible by 4 nor 9 this normalizer is generated by Γ0(N) and the Atkin-Lehner
involutions ωp for primes p | N . When N is divisible by 4 or by 9 one has to include
some extra generators: S2 if [N ]2 = 4 or 8, S4 if [N ]2 = 16 or 32 and S8 if 64 | N ;
and S3 if 9 | N . Note that we are considering the normalizer of Γ0(N) as a group
of linear fractional transformations, as otherwise one also needs to include any real
multiple of the previous generators. This theorem also provides the structure of the
quotient group of the normalizer of Γ0(N) over Γ0(N) itself (which we do not need),
although this part seems to have some mistakes and a corrected version is proved
by Bars in [3].

Asai observed in [1] that the Atkin-Lehner involutions act transitively on Q if
and only if N is square-free. The following proposition is a generalization of this
fact.

Proposition 3.19. The normalizer of Γ0(N) acts transitively on Q if and only if
N = 2a3bN ′ for some a < 8, b < 4 and a square-free integer N ′ not divisible by 2
nor 3.

Proof. Assume first that N is of the prescribed form and let u/v be an arbitrary
rational number, gcd(u, v) = 1. It suffices to show that u/v is related modulo the
normalizer to some u′/v′ with gcd(u′, v′) = 1 and N | v′, as these rationals comprise
the orbit of ∞ modulo Γ0(N). We do this by stages, first relating it to a rational
whose denominator is divisible by N ′, then adding 2a and finally 3b.
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Figure 3.5. Left: Detail of =f7/4 around 1/3 where f is the newform
on Γ0(45). Right: Graph of the imaginary part of the right hand side of
(3.26).

Write N ′ = p1 · · · pn for distinct primes p1, . . . , pn. We may assume upon
reordering of the pi that p1 · · · pm | v and pi - v for m < i ≤ n. Choosing
Q = 2a3bpm+1 · · · pn we have

u′/v′ = ωQ(u/v) = Qxu+ yv

N
(
zu+ w v

N/Q

) .
The numerator of the right hand side is not divisible by any of the pi as a consequence
of the determinant condition imposed on ωQ and therefore N ′ | v′.

Hence assume that from the beginning N ′ | v. This divisibility property is
preserved by ω2, S2, S4 and S8. We show now we may find a related u′/v′ with
2aN ′ | v′. Let 2s = [v]2 and assume that s < a, since otherwise we are finished. It is
easy to check that if u′/v′ = ω2(u/v) then [v′]2 = 2a−s if 2 - u and 2a | v′ if 2 | u. In
the latter case we are finished, while in the former applying ω2 if necessary we may
assume s ≤ ba/2c. We now apply repeatedly S2, S4 or S8 to arrive to a rational
with s = 0, and the image of this rational by ω2 satisfies s ≥ a.

The same argument can now be applied mutatis mutandis to add the factor 3b
to the denominator. This finishes the proof of the direct implication.

To prove that the normalizer action is not transitive when N is not of the
prescribed form it suffices to show a proper subset of Q invariant under this action.
Suppose first that for some prime p 6= 2, 3 we have p2 | N and pc = [N ]p. Then
one such set is that of the rational numbers u/v with [v]p = ps and 0 < s < c.
The invariance of this set follows from the following facts: the translations and the
Atkin-Lehner involutions ωQ with p - Q leave [v]p invariant, while [v′]p = pc−s for
u′/v′ = ωQ(u/v) with p | Q.

The remaining cases are 28 | N or 34 | N . If 28 | N then a ≥ 8 and one such
set is that of the rational numbers u/v with [v]2 = 2a/2 if a is even and [v]2 = 2ba/2c
or [v]2 = 2ba/2c+1 if a is odd. An analogous set works when 34 | N . �

If a cusp form f satisfies f |σ = Cσf , where Cσ is a real constant, for every σ
lying in the normalizer of Γ0(N), then we may guarantee the approximate functional
equation (3.25) to exist around every rational number in the orbit of ∞ modulo
this normalizer, and hence around every rational if the action of the normalizer is
transitive. Suppose now that f is a newform (see §2.9). Atkin and Lehner proved
in [2] that f |ωp = ±f for every prime p | N . In the same paper they also prove that
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Figure 3.6. Left: Plot of <f7/4 where f is the newform on Γ0(49). Right:
Detail around 1/7.

when 4 | N all the even coefficients of f vanish, and therefore f |S2 = −f . If these
transformations suffice to generate the normalizer, then the previous remarks apply.

When we have to include S3, S4 or S8 to generate the normalizer, however,
this breaks down, as it is not generally true that f |Sn = Cf for a real constant
C. A workaround exists when the space of cuspidal forms has dimension 1. In this
case, f |η is again a constant multiple of f for any η in the normalizer of Γ0(N),
and therefore all these matrices commute under the action of the slash operator. As
a consequence, f |η = f |ωQS = ±f |S for some Q | N and some translation S. The
matrix σ = ηS−1 now lies in the normalizer of Γ0(N) and satisfies σ(∞) = η(∞) and
f |σ = ±f . Therefore, if the normalizer acts transitively on Q, so does the subgroup
consisting of those matrices σ for which f |σ = ±f .

We conclude that the following are sufficient conditions to ensure that there
is an approximate functional equation (3.25) around every rational number: (i)
N = 2aN ′ with a < 4 and N ′ odd and square-free, or (ii) the space of cusp forms
on Γ0(N) has dimension 1 and N = 2a3bN ′ with a < 8, b < 4 and N ′ square-free
and not divisible by 2 nor 3.

To end the section we give some examples of modular forms for which an equa-
tion like (3.25), relating g to itself, is unlikely to exist around some rational numbers.
These are of weight 2 and therefore associated to modular abelian varieties over Q.
By direct examination of the table of newforms found at [76] we see that the lowest
value of N for which neither of the previous conditions is satisfied is N = 45, as the
associated space of cusp forms happens to be of dimension 3, containing an oldclass
generated by the newform on Γ0(15). Denote by f the newform on Γ0(45) and by h
the one on Γ0(15). These are associated to the isogeny classes of the elliptic curves

y2 + xy = x3 − x2 − 5 and y2 + xy + y = x3 + x2,

respectively. The matrix σ = S3ω45, where ω45 is the Atkin-Lehner involution
determined by x = w = 0, y = 1 and z = −1, lies in the normalizer of Γ0(45) and
sends ∞ to 1/3. The function f |σ is therefore again a modular form for Γ0(45), and
in fact it has the following decomposition:

f |σ(z) = 1
2f(z)− i 1

2
√

3
h(z)− i3

√
3

2 h(3z).

To obtain the coefficients one first decomposes f |S3 by directly comparing coeffi-
cients, and then applies |ω45 . The Atkin-Lehner eigenvalues are tabulated in [76],
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and the action of this operator on oldforms is described by lemma 26 of [2]. As an
immediate consequence

(3.26) fσα (x) = 1
2fα(x)− i

2
√

3
hα(x)− i

2 · 3α−3/2hα(3x).

In figure 3.4 we have plotted g = =f7/4, while in figure 3.5 the reader can compare
the imaginary part of the right hand side of (3.26) for α = 7/4 with aspect of the
graph of g near σ(∞) = 1/3.

The lowest value of N for which the normalizer is not transitive on Q and there
is some nonzero newform is N = 49. This newform is associated to the isogeny class
of the curve

y2 + xy = x3 − x2 − 2x− 1.

The cusp 1/7 is not related to ∞, not even by the normalizer, and in figure 3.6
the reader can appreciate how for g = <f7/4 the aspect of the repeating pattern
around 1/7 and that of the global graph seem to differ, making it unlikely for a
self-similarity relation like (3.25) to hold.





CHAPTER 4

Lattice point counting problems

In this chapter we provide a general framework for this family of problems,
of which particular cases will be discussed in chapters 5 and 6, together with very
general tools to address them.

4.1. Definitions and conjectures

Let K ⊂ Rd be a compact body with non-empty interior, and for every R > 1
denote by NK(R) (or N (R) if there is no possible confusion) the number of points
in Zd lying in K after being dilated by the factor R, i.e,

N (R) = #
{
~n ∈ Zd : ~n/R ∈ K

}
.

For convenience we will also use the notation RK = {~x : ~x/R ∈ K}, so that
N (R) = #Zd ∩ RK. As described in the introduction, the lattice point counting
problem associated to K consists in estimating the error term

E(R) = N (R)− |K|Rd,

where |K| stands for the d-dimensional volume of K. Sometimes, when specified,
we will replace in these definition either the way we count the points in N (R) or the
main term |K|Rd in E(R) with appropriate versions for the region at hand. In any
case, we are interested in the optimal exponent

αK = inf
{
α > 0 : E(R) = O(Rα)

}
.

Under mild hypotheses, Lipschitz boundary for example, the argument by Gauss
sketched in §I.3 shows αk ≤ d − 1, and the d-dimensional unit cube is an example
where this is sharp. When there is curvature, however, one can usually do better. In
this regard, we say thatK is a smooth convex body if its boundary is a smooth (d−1)-
dimensional submanifold of Rd whose Gaussian curvature is positive everywhere.
The following table summarizes the best known upper bounds for the exponent αK
for smooth convex bodies and for the particular family of balls, and the conjectured
value for both cases:

d smooth convex body d-dimensional ball conjecture
2 αK ≤ 131/208 Huxley [59] αK ≤ 517/824 Bourgain, Watt [11] 1/2
3 αK ≤ 231/158 Guo [39] αK ≤ 21/16 Heath-Brown [47] 1
≥ 4 αK ≤ d− 2 + r(d) Guo [39] αK = d− 2 d− 2

In the bottom-left entry, r(d) = (d2 + 3d+ 8)/(d3 + d2 + 5d+ 4).

Some comments on these results. The bound for the exponent for bidimensional
smooth convex bodies was obtained by Huxley, and until very recently it was also the
best known upper bound for the exponent of the Gauss’ circle problem (unit disk).
Bourgain and Watt used decoupling to improve it to 517/824 for both the Gauss

95
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circle problem and the Dirichlet divisor problem.1 In principle the same techniques
should yield the same exponent, or at least an improvement, over Huxley’s result.

In three or more dimensions the best known result for smooth convex bodies
is due to Guo, who used a bidimensional version of the van der Corput method.
For the three-dimensional ball, the exponent 21/16 was obtained by Heath-Brown,
building upon previous ideas of Chamizo and Iwaniec [17]. The same technique was
also applied successfully by Chamizo, Cristobal and Ubis [16] to rational ellipsoids
in three dimensions.

The result for balls in four or more dimensions is classic, and we provide a
proof below based on Jacobi’s four square theorem for the case where the ball is
centered at the origin. The same exponent also applies to rational ellipsoids. The
heuristic here is that the characteristic function of the set of the squares {n2} is
a very arithmetic function, but as a one convolves it with itself it gains regularity.
Hence r2 is fairly arithmetic, r3 shows regularity if one stays away from some “bad”
values of the argument, r4(n) oscillates slightly between n/ log logn and n log logn
and rk(n) � nk/2−1 for k ≥ 5 (cf. corollary 11.3 of [61]). Since the sum

∑
n≤R2 rk(n)

does some further regularization, the conjectured exponent is obtained for dimension
4 too. The inequality αK ≥ d−2 also follows from these asymptotics for rk(n), as the
error term E(R) has jump discontinuities of size the number of points with integer
coordinates lying on the boundary of K, and therefore it is an Ω-function of this
quantity. In particular, E(R) = Ω(Rd−2) for d ≥ 3 (for d = 3 see [26]). Similar
arguments work if rk is replaced by rQ for an arbitrary rational quadratic form Q
in k variables.

When d ≥ 5 then the error term for both balls and rational ellipsoids satisfies
the upper bound E(R) = O

(
Rd−2), and hence the ε may be dropped. This is also

classical. For a proof of this result we refer the reader to Fricker’s book [32] (Satz 1
of §21).

For irrational ellipsoids much less is known. The inequality αK ≤ d − 2 was
finally achieved by Bentkus and Gotze in [5] for d ≥ 9 and later Gotze extended the
result in [37] to d ≥ 5. Surprisingly, the error term is, in contrast with the rational
case, E(R) = o

(
Rd−2), and this led to a proof of a conjecture by Davenport and

Lewis stating that the gaps of the image of Zd under irrational quadratic forms tend
to zero as one gets further away from the origin [6].

The conjectured exponent 1/2 for the circle problem comes from a lower bound
for αK proved independently by Hardy and Landau [41, 73]. In other cases the
conjectured exponents are folklore.

We will comment some more results on lattice point counting problems in the
subsequent chapters, and prove some new ones. The interested reader may consult
the survey [60] for further information on this topic.

We sketch now the proof of αK ≤ d−2 whenK is the unit d-dimensional ball and
d ≥ 4. The first observation is that it suffices to prove N (R) = CR4 +O

(
R2 logR

)
for d = 4 and some constant C. Indeed, this implies N (R) = CdR

d +O
(
Rd−2 logR

)
for every d ≥ 5 by slicing the d-dimensional ball or radius R into parallel (d − 1)-
dimensional balls, applying the estimation to each of them and summing up all the
resulting (d − 1)-dimensional volumes with help of the Euler-Maclaurin formula.
This bound for E(R) is not sharp, and in fact E(R) = O

(
Rd−2) for d ≥ 5, but it

1In the latter case, E(N) =
∑

n≤N σ0(n)−N logN−N(2γ−1) where γ is the Euler-Mascheroni
constant, and R = N1/2.
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suffices to obtain the right exponent. Note also that Cd must equal the volume of
the d-dimensional unit ball by Gauss’ argument.

Hence assume d = 4. Then by Jacobi’s theorem N (R) =
∑
n≤R2 r4(n), and

r4(n) = 8
∑
d|n d if n is odd and r4(n) = 24

∑
d|n, d odd d if n is even. The idea is

to use Dirichlet’s hyperbola method to estimate this double sum with a good error
term. We will only do this for the first sum, as an analogous computation gives the
asymptotics for the second one. Put S =

∑
n≤N,n odd r4(n) and write

S =
∑
n≤N
n odd

∑
d|n

d≤
√
n

d +
∑
n≤N
n odd

∑
d|n

d≤
√
n

n

d
−

∑
n≤N

n odd square

√
n

=
∑

d≤
√
N

d odd

d
∑

d≤d1≤N/d
d1 odd

1 +
∑

d≤
√
N

d odd

∑
d≤d1≤N/d
d1 odd

d1 + O(N)

=
∑

d≤
√
N

d odd

(
N

2 −
3d2

4 + N2

4d2 +O(N/d+ d)
)

+ O(N).

Note now that
∑
d≤
√
N, d odd d

−2 = C−
∑
d>
√
N, d odd d

−2, and by the Euler-Maclaurin
formula this latter sum is 1/(2

√
N) +O(1/N). Hence S = CN2/4 +O(N logN).

4.2. The exponential sum

Most results in lattice point counting theory are obtained by first translating
the problem to that of bounding an exponential sum. To do this the characteristic
function of the dilated body is smoothed by convolving by a mollifier and then
Poisson summation is applied. This is the approach taken in the introduction to
give a proof of Sierpiński’s result, where we used that the Fourier transform of the
characteristic function of the unit disk has a explicit expression for which good
asymptotics hold. In general we cannot hope to be able to compute the Fourier
transform of the characteristic function of K, but if K is assumed to be a smooth
convex body then it is possible to obtain good asymptotics nevertheless. This was
first done by Hlawka in [51], with the error term later improved by Herz [50]. We
need the latter result. Although the proof provided by Herz is rather convoluted,
the interested reader can find a much more down to earth approach in chapter 7 of
Hörmander’s book [53] (corollary 7.7.15). The result states that whenever K ⊂ Rd
is a smooth convex body and χ its characteristic function,

(4.1) χ̂(~ξ) =
e
(
g(−~ξ)− (d− 1)/8

)
2πi‖~ξ‖(d+1)/2

√
κ(−~ξ)

−
e
(
− g(~ξ) + (d− 1)/8

)
2πi‖~ξ‖(d+1)/2

√
κ(~ξ)

+O

(
1

‖~ξ‖(d+3)/2

)
,

where g(~ξ) = sup{~x · ~ξ : ~x ∈ K} and κ(~ξ) stands for the Gaussian curvature at
the point whose unit outer normal is ~ξ/‖~ξ‖. The proof essentially consists in an
application of the stationary phase principle. This principle states that the main
contribution to an integral of the form

∫
f(~x)e

(
tφ(~x)

)
d~x as t→∞ comes principally

from neighborhoods of the zeros of ∇φ(~x), i.e. where the phase function φ becomes
stationary, as for the rest of points tφ changes rapidly and for reasonably good
functions f the integral has a fair amount of cancellation. Now, χ̂(~ξ) =

∫
K e(−~x ·

~ξ) d~x, and this integral practically vanishes except in a thin neighborhood around the
boundary ∂K of K. There the phase becomes stationary at the zeros of ∇(~x · ~ξ)|∂K ,
i.e. at the points where the suprema defining g(~ξ) and g(−~ξ) are attained. By
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geometric considerations these are points where the unit outer normal equals±~ξ/‖~ξ‖.
Hence χ̂(~ξ) ≈

∫
∂K e

(
− g(~ξ) +H+(~x)

)
d~x+

∫
∂K e

(
g(−~ξ) +H−(~x)

)
d~x where H± are

the Hessians at the points where the unit outer normal equals ±~ξ/‖~ξ‖, and whose
determinant is the Gaussian curvature at those points. Estimating these integrals
one arrives to (4.1).

We are going to carry out the argument sketched above to relate the error
term in the lattice point count problem E(R) to the corresponding exponential sum
explicitly in the case d = 3, as we only need this case. This is contained in the
following proposition. Of course, an analogous result may be obtained from (4.1)
with little effort for any d ≥ 2.

Proposition 4.1. Let K ⊂ R3 be a smooth convex body. Let η be a smooth even
function with support inside [−1, 1] and satisfying η(0) = 1 and that the Fourier
transform of η

(
‖~x‖

)
is a non-negative function. Fix ε > 0 and 0 < c < 2. Then for

any R > 2 there exists R′ ∈ (R− 1, R+ 1) satisfying

(4.2) E(R) = −R
′

π

∑
~06=~n∈Z3

η
(
δ‖~n‖

)cos
(
2πR′g(~n)

)
‖~n‖2

√
κ(~n)

+O
(
R2+εδ

)
for δ = R−c and g and κ as before.

This kind of results are usually regarded in the literature as truncated Hardy-
Voronoï formulas, as Voronoï [92] was the first to prove an explicit formula for the
sum

∑
n≥0 σ0(n)η(n) where η is a smooth function of fast decay. An analogous

formula for
∑
n≥0 r2(n)η(n) was also suggested by Voronoï [93], and later rigor-

ously proved independently by Sierpiński [89] and Hardy [41]. These formulas may
be truncated with an error term to obtain a rather similar expression to (4.2) for
Dirichlet’s divisor and Gauss’ circle problems.

To apply proposition 4.1 note that we can construct a function η satisfying
all the hypotheses by picking a real nonzero even smooth function η1 supported
in [−1/2, 1/2] and then choosing η(x) = Cη2 ∗ η2(x, 0, 0) where η2(~x) = η1

(
‖~x‖

)
and C > 0 is an appropriate constant. As η2 is radial, so is η2 ∗ η2 and η

(
‖~x‖

)
=

Cη2 ∗η2(~x). Hence the Fourier transform of this function equals Cη̂2
2, which is non-

negative as η̂2 is real because η2 is an even real function. Despite this very particular
construction, we have a fair amount of freedom to choose η. It is interesting that
since neither E(R) nor the order of magnitude of the error term depend on η, the
exponential sum must have the same amount of cancellation independently of how
we are truncating it.

To have an idea of how powerful this result is we may bound the sum on
the right hand side of (4.2) term by term, disregarding all cancellation, to obtain
E(R) � R1+c + R2−c+ε. Choosing c = 1/2 we have E(R) � R3/2+ε for all ε > 0,
i.e. αK ≤ 3/2. This is the analogue of Sierpiński’s result for the circle. The
very same argument carried on for an arbitrary number of dimensions d ≥ 2 shows
αK ≤ d(d− 1)/(d+ 1), a result first obtained by Hlawka in [51].

To gain some intuition when there is cancellation it is better to consider first
what happens with an unidimensional sum S =

∑
n≤N n

αe
(
φ(n)

)
for some α. Sum-

ming by parts, S �
∑
n≤N−1 |Sn|nα−1 + |SN |nα, where SN =

∑
n≤N e

(
φ(n)

)
. These

exponential sums, if the values of φ(n) modulo 1 are uncorrelated, should be ex-
pected to have square root cancellation, i.e. to be of size N1/2. If the values of φ(n)
are only “slightly” correlated, one should expect the size of the exponential sum to
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increase as a power of N between the square root bound and the trivial bound N .
Let us say |SN | � N1−s. Substituting above, S � N1+α−s + logN , and hence up
to a logarithm (which may not appear) we have gained N−s over the trivial bound
N1+α which is obtained by estimating the original sum termwise. The same heuris-
tics apply for sums for the form

∑
n≤N f(n)e

(
φ(n)

)
where f is a reasonably good

function.
Back to the formula (4.2), suppose after summing by parts in three variables

we have a power savings of order N−s in the exponential sum. Since the sum is
of “length” R3c, we should expect a bound E(R) � R1+c−3cs + R2−c+ε and taking
c = 1/(2 − 3s) (for s ≤ 1/2) we obtain αK ≤ 1 + (1 − 3s)/2. The conjecture
would therefore be obtained for s = 1/3. This might seem feasible, being far away
from square root cancellation, but the current methods for handling d-dimensional
exponential sums are very poor. Not only that, but also for these exponential sums
we cannot expect nothing close to square root cancellation to hold, and s = 1/3
seems to be at the boundary of what is true as shown, for example, by the known
Ω-results for the sphere. In fact, it is a better idea to think of the sum as a triple
sum, in each of the variables n1, n2, n3, each one of length Rc. Then the conjecture
corresponds to having square-root cancellation in two of the three sums, as then
we would have the bound Rc+c/2+c/2 =

(
R3c)1−s for s = 1/3. The third sum

would then provide no additional cancellation. The same heuristics carried on in
dimension d ≥ 2 show that for d = 2 the conjecture corresponds to having square-
root cancellation in only one of the two iterated sums, and for d ≥ 3 we expect to
have square-root cancellation in two of the d iterated sums.

Proof of proposition 4.1. (Adapted from proposition 2.1 of [15]) We prove the
result assuming first that K contains the origin in its interior. Also, without loss
of generality, we may assume ε is arbitrarily small, in particular 0 < ε < 1. Let φ
be the Fourier transform of the function η

(
‖ · ‖

)
, and write φδ(~ξ) = δ−3φ(~ξ/δ), the

Fourier transform of η
(
δ‖ · ‖

)
. Since

∫
φ = η(0) = 1 and φ is of fast decay, for every

k ≥ 1 we have∫
‖~t‖≤δ1−ε

φδ(~t) d~t = 1 +O
(
δk
)

and
∫

‖~t‖≥δ1−ε

φδ(~t) d~t = O
(
δk
)

as δ → 0+. This is, almost all the mass is concentrated in the ball of radius δ1−ε.
As K is convex with smooth boundary, there is some constant C > 0 such that

for r small enough, any ball of radius r with the center inside K lies entirely inside
(1 + Cr)K and any ball of radius r whose center is not in K lies entirely outside
(1− Cr)K (see figure 4.1). Taking r = R−1δ1−ε and dilating by R we have

(
φδ ∗ χR1

)
(~x) ≤ χR(~x) +O

(
δk
)

and
(
φδ ∗ χR2

)
(~x) ≥ χR(~x) +O

(
δk
)
,

where χR stands for the characteristic function of RK, R1 = R − Cδ1−ε and R2 =
R+ Cδ1−ε. This is the step where it is crucial that φδ ≥ 0.

Hence, by the continuity of φδ∗χR in R, there exists some R′ such that |R−R′| ≤
Cδ1−ε and ∑

~n∈Z3

(
φδ ∗ χR′

)
(~n) = N (R) +O

(
R3δk

)
.
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P

(1 + Cr)K

K

(1− Cr)K
α

C‖P‖r

C‖P‖r

C‖P‖r sinα

C‖P‖r sinα

Figure 4.1. A ball of radius r (with unnamed center) lies outside K. Let
P be the intersection point of the segment joining the center of the ball
with the origin and the boundary of K. The tangent planes to K at P , to
(1+Cr)K at (1+Cr)P and to (1−Cr)K at (1−Cr)P are parallel, drawn
as horizontal lines in the picture, at a distance C‖P‖r sinα to each other.
As the actual boundary of (1−Cr)K deviates from the tangent plane very
little for small r, it suffices to choose C satisfying C‖P‖ sinα > 1 to ensure
that the ball cannot intersect (1− Cr)K.

In particular for δ small enough, R−1 < R′ < R+1. Apply now Poisson summation
to the sum on the left,

E(R) =
(
R′
)3|K| −R3|K|+

∑
~06=~n∈Z3

η
(
δ‖~n‖

)
χ̂R′(~n) +O

(
R3δk

)
.

Substituting χ̂R′(~ξ) =
(
R′
)3
χ̂(R′~ξ) in (4.1) above we obtain the estimation

χ̂R′(~n) + χ̂R′(−~n) = − R′

π‖~n‖2

(
cos

(
2πR′g(~n)

)√
κ(~n)

+
cos

(
2πR′g(−~n)

)√
κ(−~n)

)
+O

( 1
‖~n‖3

)
.

Hence

E(R) = −R
′

π

∑
~06=~n∈Z3

η
(
δ‖~n‖

)cos
(
2πR′g(~n)

)
‖~n‖2

√
κ(~n)

+O
(
R2δ1−ε +R3δk + log δ

)
.

Substituting δ = R−c, renaming ε and choosing k big enough, the error term is
O
(
R2+εδ

)
.

Suppose now that the origin does not lie in the interior of K. The number
of points with integer coordinates inside RK does not vary if we translate K by a
multiple amount of 1/R in any direction, and hence for all purposes we may replace
K with a translation K ′ whose interior contains the origin, which is always possible
for R big enough. The Fourier transform of RK also coincides with that of RK ′,
leaving the same right hand side in (4.2). �

4.3. Vaaler-Beurling polynomials

An essential ingredient of the proof of proposition 4.1 was Poisson summation in
all the variables. In chapter 5 however we will find a situation where it is convenient
to do Poisson summation only in one of the variables to arrive to an exponential
sum. This usually leads to weaker results than doing Poisson summation in every
variable, as the resulting exponential sum is harder to manage. However the special
geometry of the problem we will be concerned with, the paraboloids (cf. I.3), results
in the exponential sum being as difficult to bound as the one obtained by full Poisson
summation, and the lack of regularity of the boundary would require an ad hoc proof
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0.2 0.4 0.6 0.8 1

-0.4

-0.2

0.2

0.4

ψ(x)∑
0< |n| 10

e(nx)

2πin∑
0< |n| 30

e(nx)

2πin

Figure 4.2. The saw-tooth function ψ and its approximation by two dif-
ferent truncated Fourier polynomials of degrees 10 and 30. The Gibbs
phenomenon is the constant overshooting of the Fourier polynomials that
can be seen close to the integer points.

of the asymptotics (4.1) for χ̂ in this case if we want to apply proposition 4.1 directly.
More about this will be discussed in the chapter itself.

Here we present a “simple” way to do Poisson summation in one variable to
transform a lattice point counting problem into an exponential sum. Consider the
usual Poisson summation,

∑
n f(n) =

∑
n f̂(n). In the language of distributions this

can also be written

(4.3)
∑
n∈Z

δ(x− n) =
∑
n∈Z

e(nx),

where δ is the usual Dirac delta: a “function” having the value 0 everywhere except
at the origin, where it has the value ∞, and integrates 1. Indeed, multiplying by
f , integrating in R and interchanging integration and summation be obtain the
usual Poisson summation formula, and in fact by truncating these sums with an
appropriate error term and taking the limit this leads to a different proof of the same
result (note the truncated exponential sums are just the usual Dirichlet kernel). If
we pass in (4.3) the term corresponding to n = 0 from the right hand side to the
left hand side and formally integrate we obtain

(4.4) − ψ(x) =
∑
n6=0

e(nx)
2πin where ψ(x) = x− bxc − 1/2.
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This is the usual Fourier expansion for the saw-tooth function ψ, which actually
converges to the right value for any x /∈ Z. This identity is also equivalent to
Poisson summation, as can be shown by applying the Euler-Maclaurin formula
to
∑
n f(n) and substituting in the error term

∫
f ′(x)ψ(x) dx the Fourier expan-

sion above. If we can interchange summation and integration, the resulting terms
(2πin)−1 ∫ f ′(x)e(nx) can be integrated by parts back to f̂(n).

Suppose now that K ⊂ R2 is given by |y| ≤ f
(
|x|
)
for some function f strictly

decreasing in [0, x0] with f(x0) = 0, and denote by g the inverse function.2 We
are going to formally apply Poisson summation in the second variable of the sum∑
~n χK ∗ η(~n) to see at which the exponential sum we would arrive if we follow the

conventional route. After Poisson summation and subtracting the main term,

E ≈
∑

06=m∈Z

∫ ∑
n∈Z

χK ∗ η(n, y)e(−my) dy.

Expanding the definition of convolution and applying Fubini a couple of times,

E ≈
∑

06=m∈Z

∫
η̂s(m)

∫
G(s, t)e(−mt) dt ds

where ηx(y) = η(x, y) and G(s, t) =
∑
n χK(n − s, t). It is not hard to see that

G(s, t) may also be written bg(t) + {s}c+ bg(t)− {s}c+ 1. Performing the change
of variables t = f(x) and integrating by parts, since ∂

∂tbtc =
∑
n δ(n− t) we have

E ≈ −
∫ ∑

06=m∈Z

∑
|n+{s}|≤x0

η̂s(m)
e
(
−mf(n+ {s})

)
2πim ds

−
∫ ∑

06=m∈Z

∑
|n−{s}|≤x0

η̂s(m)
e
(
−mf(n− {s})

)
2πim ds

up to some boundary terms which are hopefully small.
Now let us do something different. NoteN = 2

∑
nbf(n)c+2bx0c and substitute

bxc = x−1/2−ψ(x). Since
∑
n f(n) can be sharply estimated via de Euler-Maclaurin

formula, we also have

E ≈ −2
∑
|n|≤x0

ψ
(
f(n)

)
≈ −2

∑
0 6=m∈Z

∑
|n|≤x0

e
(
mf(n)

)
2πim ,

where we have substituted (4.4). The second approximation symbol is there because
we do not know a priori how often f(n) is an integer. Note this error term is
similar to the one we had obtained via Poisson summation, except for the lack of
the outer average in s and the mollifier η̂s. The former difference for applications
is not often that important, but the latter together with the non-absolute and non-
uniform convergence make estimating this kind of sums a difficult task. One can find
in the literature truncated versions of (4.4) with an error term (cf. (4.18) of [62]),
the problem is that this error term blows up close to the integer numbers. This is
due to the Gibbs phenomenon, depicted in figure 4.2 (see also §II.9 of [98]). Luckily
for us, it is possible to perturb slightly the Fourier coefficients of ψ to obtain a finite
trigonometric polynomial which approximates well ψ while staying either above or
either below of this function for all x:

2The choice of R2 is made for the sake of simplicity. All the heuristics presented will still be
valid in more than two dimensions.
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ψ(x)
Q+(x)
Q−(x)

Figure 4.3. The saw-tooth function ψ and the Vaaler-Beurling polyno-
mials Q+ and Q− of degree 10.

Proposition 4.2. For every integer M ≥ 0 there exists trigonometric polynomials
Q±(x) =

∑
|m|≤M a±me(mx) such that Q−(x) ≤ ψ(x) ≤ Q+(x) with a±0 � M−1 and

a±m � m−1 for 0 < |m| ≤M .

A particular construction of such Q± was given by Vaaler and Beurling, which
also have the interesting property of being extremizers. Indeed, among all trigono-
metric polynomials of degree at most M staying above (resp. under) ψ, Q+ (resp.
Q−) is the one which minimizes

∣∣ ∫ 1
0 Q

+∣∣. This result is stated as “Vaaler’s lemma”
in §1.2 of [78], and proved in §1.3 of the same book.3 The polynomials, for K = 10
are shown in figure 4.3.

Now we can make the previous argument rigorous, as

N −
∑
|x|≤x0

f(n) ≤
∑
|x|≤x0

Q+(f(n)
)
� x0

M
+

∑
06=|m|≤M

1
m

∣∣∣∣∣∣
∑
|n|≤x0

e
(
mf(n)

)∣∣∣∣∣∣ ,
and a similar formula for Q−. Note we have lost the cancellation in m, but in our
applications it will not be important, and moreover the coefficients of Q± are explicit
(see §1.2 of [78]) should one need finer control over this.

3In this book the saw-tooth function ψ is modified to take the value 0 at the integer numbers,
which makes the identity (4.4) hold for every x ∈ R.
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4.4. The van der Corput method

Suppose we want to estimate S =
∑N
n=0 e

(
φ(n)

)
for some reasonably good

function φ. The van der Corput method provides two procedures which transform
the sum S into a different exponential sum, with the hope that the new exponential
sum will be shorter and therefore easier to estimate. These procedures are called
process A and process B, and will be informally discussed in what follows. Although
there is an algorithm to decide the optimal sequence of processes A and B to apply
to S under quite strong hypothesis on φ (see §5 of [38]), verifying these hypothesis is
often nontrivial. When these hypothesis are not met the van der Corput method has
to be combined with other methods of estimating exponential sums. In fact, some
of these other methods are known to yield, for some particular sums, results beyond
what is possible by purely applying A and B processes (see §7 of [38]). The story
gets even more convoluted if the exponential sum depends on several variables, as
one can either apply multidimensional methods to the whole sum or unidimensional
methods to the inner-most sum. Long story short, there is no general recipe, making
the estimation of exponential sums kind of an art.

The interested reader will find rigorous proofs of the two processes and many
applications in Graham and Kolesnik’s book [38] and chapter 8 of Iwaniec and
Kowalski’s book [62]. Also for simplicity we will apply the arguments directly to S,
but in practice φ usually behaves like some power of n and therefore it is a better
idea to divide the domain of the sum S diadically and estimate instead sums of the
form

∑
n�N e

(
φ(n)

)
.

The process B essentially consists in performing Poisson summation on the
exponential sum. To do this let χ be a mollifier smooth function having the value 1
in [0, N ] and 0 outside [−1/2, N + 1/2]. Then

S =
∑
n∈Z

χ(n)e
(
φ(n)

)
≈
∑
n∈Z

∫ N

0
e
(
φ(x)− nx) dx.

Now this is not an exponential sum anymore, but we can apply the stationary phase
principle explained above to estimate the integral under reasonable assumptions.
The phase becomes stationary when φ′(x) = n, which occurs at most once if φ′ is
injective, in particular if we assume φ′′ > 0. Let xn be the point satisfying φ′(xn) = n
if any. If no such xn exists or xn /∈ [0, N ] then the integral is negligible because it
has a lot of cancellation. Otherwise (cf. lemma 3.4 of [38]),∫ N

0
e
(
φ(x)− nx

)
dx ≈

e
(
φ(xn)− nxn + 1/8

)√
φ′′(xn)

.

Hence

(4.5) S ≈
√
i
∑

xn∈[0,N ]

e
(
φ(xn)− nxn

)√
φ′′(xn)

.

This can now be summed by parts to remove the smooth factor 1/
√
φ′′(xn), and

S may be bounded in terms of shorter sums
∑
e
(
φ(xn) − nxn

)
. The resulting sum

therefore has length at most φ′(N)−φ′(0)+1. This process is therefore advantageous
when the variation of φ′ is small. This is the heuristic, at least, because if the
variation were too small, that would mean φ would be almost linear and the sum of
the geometric series shows the above result is too good to be true. Indeed the size



4.4. THE VAN DER CORPUT METHOD 105

of

(4.6)
N∑
n=0

e(An+B) = e(B)
e
(
A(N + 1)

)
− 1

e(A)− 1

is close to N when A is close to being an integer. Of course, some error terms we have
neglected blow up when φ′′ ≈ 0, and so does every term of the resulting sum, and
hence we would better say that process B is advantageous when φ′′ is “reasonably
small”. A rigorous statement of process B is contained in lemma 3.6 of [38] (see also
exercise 3 of §8.3 of [62] for a version with summands of arbitrary modulus).

When φ′′ is too big we can usually reduce its size by process A, also called
performing a Weyl step. The idea is simple: if we square |S|,

|S|2 =
∑

0≤n,m≤N
e
(
φ(n)− φ(m)

)
and φ(n)−φ(m) = (n−m)φ′(xn,m). If N is small, so must be n−m, and for many
reasonable functions the derivative has less variation than the function itself. Hence
we are essentially replacing φ′′ by φ′′′.

Usually N is not so small, and the trick is to break the sum S into smaller sums
and square each of them. For simplicity suppose H | N and the sum S runs from
n = 0 to n = N − 1. Then by Cauchy-Schwarz,

|S|2 ≤ N

H

N/H−1∑
k=0

∣∣∣∣∣∣
(k+1)H−1∑
n=kH

e
(
φ(n)

)∣∣∣∣∣∣
2

= N

H

N/H−1∑
k=0

∑
kH≤n,m≤(k+1)H−1

e
(
φ(n)− φ(m)

)
.

Writing n = m+` and separating by cases on whether ` is positive, negative or zero,

|S|2 ≤ N2

H
+ N

H

∑
1≤`≤H

∣∣∣∣∣∣
N/H−1∑
k=0

∑
kH≤m,m+`≤(k+1)H−1

e
(
φ(m+ `)− φ(m)

)∣∣∣∣∣∣ .
Now φ(m+ `)−φ(m) ≈ `φ′(m) for H reasonably small. This is done with a prettier
approach in §2.3 of [38]. Note that the length of the sum can be though to stay
invariant (the sum over ` is an average as we are dividing over H; the other ones
have combined length N). Nevertheless, even if we were able to prove square-root
cancellation in the resulting sum for H = N this would result in |S| � N3/4:
performing a Weyl step has the cost of, at best, halving any power-savings we can
get from the resulting exponential sum.

If on the other hand we find that process B fails because φ′′ is too small, then
we can still prove that the sum has cancellation as long as φ′ stays away from the
integers (note φ′ plays the same role as A in (4.6)). This is usually called the
Kuzmin-Landau lemma, which we prove next.

Proposition 4.3 (Kuzmin-Landau). If φ continuously differentiable, φ′ is mono-
tone and ‖φ′‖Z ≥ λ > 0, then S � λ−1.

Proof. (Adapted from theorem 2.1 of [38], argument originally due to Mordell [79])
By conjugating S if necessary we may assume that φ′ is increasing, and by substi-
tuting φ(n) by φ(n)− kn for an appropriate integer k that λ ≤ φ′ ≤ 1− λ.

If S was truly a geometric series, φ(n) = An, then writing e(An) =
(
e(A(n +

1)) − e(An)
)
/
(
e(A) − 1

)
would telescope the series. We follow the same idea and
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write

S =
N−1∑
n=0

(
e
(
φ(n+1))−e

(
φ(n)

))
Cn+e

(
φ(N)

)
where Cn = 1

e
(
φ(n+ 1)− φ(n)

)
− 1

.

Summing by parts,

S =
N−1∑
n=1

e
(
φ(n)

)(
Cn−1 − Cn

)
+ e

(
φ(N)

)(
CN−1 + 1

)
− e

(
φ(0)

)
C0

≤
N−1∑
n=1

∣∣Cn−1 − Cn
∣∣+ ∣∣C0

∣∣+ ∣∣CN−1
∣∣+ 1.

Note we have 1/(e(η) − 1) = −1
2
(
1 + i cotan(πη)

)
, and hence writing ηn = φ(n +

1)− φ(n),

S ≤ 1
2

N−1∑
n=1

∣∣∣∣ 1
tan(πηn−1) −

1
tan(πηn)

∣∣∣∣+ 1∣∣ tan(πη0)
∣∣ + 1∣∣ tan(πηN−1)

∣∣ + 2.

By the mean value theorem, ηn is an increasing function of n, lying between λ and
1− λ. Hence the series telescopes and the bound | cotan(πηn)| � λ−1, valid for all
n, shows S � λ−1. �

The simplest van der Corput estimate is obtained by applying process B to S
and then estimating the resulting sum term by term. Assume φ′′(x) � λ. If (4.5)
were true as is, we would obtain S � (Nλ+ 1)λ−1/2. This bound is still true, even
if we rigorously take into account the neglected error terms (cf. lemma 3.6 of [38]).

Proposition 4.4 (van der Corput’s lemma). If φ has two continuous deriva-
tives and 0 < λ ≤ |φ′′(x)| ≤ αλ then S � αNλ1/2 + λ−1/2.

There is a much simpler proof of this result which we can provide here, as it
does not require the previous detour through process B.

Proof. (Adapted from theorem 2.2 of [38]) The idea is to apply the Kuzmin-
Landau bound whenever possible. Conjugating the series, if necessary, we may
assume φ′′ is everywhere positive, and hence φ′ is monotone increasing. Note also
we may assume λ ≤ 1, as otherwise the trivial estimation provides a better bound.
Fix δ > 0 to be chosen later, and let Ω = {0 ≤ x ≤ N : ‖φ′‖Z ≥ δ}. By the mean
value theorem, φ′(N)− φ′(0) ≤ Nαλ, and therefore Ω consists of at most Nαλ+ 2
intervals. Hence ∑

n∈Ω
e
(
φ(n)

)
� (Nαλ+ 2)δ−1.

On the other hand, the complement of Ω in [0, N ] contains at most Nαλ+3 intervals,
delimited by the points where φ′(x) = n± δ or the limits of the interval [0, N ]. By
the mean value theorem, each of these have length (φ′)−1(n+ δ)− (φ′)−1(n− δ) =
2δ/φ′′(ξ) ≤ 2δλ−1. Hence the trivial estimation yields∑

n/∈Ω
e
(
φ(n)

)
≤ (Nαλ+ 3)(2δλ−1 + 1).

Choosing δ = λ1/2 we obtain the right bound. �
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The general strategy of the van der Corput method can therefore be summa-
rized as applying process A until the second derivative is in the range of either
applying Kuzmin-Landau or process B, and if in the latter case repeat. Note also
that Kuzmin-Landau extracts the cancellation from φ′, the van der Corput lemma
above from φ′′, this very same lemma after a process A would extract the cancel-
lation from φ′′′, etc. The same method can also be understood as expanding φ by
its Taylor series in short intervals, and extracting the cancellation from the first
monomial with a coefficient of the right size (see §8.2 of [62]). In fact, the Weyl
step was first used by Weyl in the case where φ is a polynomial, to reduce S to
a geometric series and show that if the leading coefficient is not a rational with
denominator dividing (deg φ)! then S � N1−γ for some γ > 0. This together with
Weyl’s criterion (see §2 of the introduction) shows that the sequence {φ(n)}n∈Z is
equidistributed modulo 1 if the leading coefficient of φ is irrational.

In chapter 6 we will require another use of the Weyl step. Imagine we have an
exponential sum in two variables S =

∑
n,mw(n)e

(
φ(n,m)

)
where w is a function

which changes size wildly, for example an arithmetic function, but is bounded above
by W . We can still consider the exponential sum in m and apply the method above,
but here the cancellation obtained by the van der Corput method might be very
poor. For example if the sum in n is much longer than the one in m, any power-
savings we can get are probably going to have a bigger effect if we can get them in
the n variable. Although we cannot use the cancellation in n directly because we
do not know w well enough, we can use the variation of φ with respect to n to show
that the cancellation in m must be most of the time smaller than we would expect.
Squaring |S| and using Cauchy-Schwarz,

|S|2 ≤ NW 2 ∑
n≤N

∣∣∣∣∣∣
∑
m≤M

e
(
φ(n,m)

)∣∣∣∣∣∣
2

= NW 2 ∑
n≤N

∑
m≤M

∑
|`|≤M

e
(
φ(n,m+ `)− φ(n,m)

)
= N2MW 2 +NW 2<

∑
n≤N

∑
m≤M

∑
0<`≤M

e
(
φ(n,m+ `)− φ(n,m)

)

� N2MW 2 +NW 2 ∑
m≤M

∑
0<`≤M

∣∣∣∣∣∣
∑
n≤N

e
(
φ(n,m+ `)− φ(n,m)

)∣∣∣∣∣∣ .
As a toy example, if we assume we have the same power-savings in the original sum
in m and in the inner sum of the Weyl step, admitting bounds respectively of M1−γ

and N1−γ , γ ≤ 1/2, then for N ≥M2 the Weyl step produces the best bound.





CHAPTER 5

Lattice points in elliptic paraboloids

This chapter focuses in the results contained in the article “Lattice points in
elliptic paraboloids” [20], joint work with F. Chamizo.

5.1. Main results

The classical and most paradigmatic lattice point counting problems —Gauss’
circle problem and Dirichlet’s divisor problem— correspond to two of to the simplest
conics, the circle x2 + y2 ≤ 1 and the hyperbola xy ≤ 1. More arbitrary rational
ellipses and hyperbolas appear when deriving Dirichlet’s class number formula (see
§3 of the introduction and chapter 6 of [23]). For all these problems (and probably
for much more arbitrary bidimensional shapes) the best known result is Bourgain
and Watt’s αK ≤ 517/824 (cf. §4.1).

The remaining conic, the parabola, did not attract much attention until very
recently. As with the hyperbola, it has the problem of not being closed, and therefore
has to be somehow truncated. Popov in 1975 was the first to consider a parabolic
region, counting the number of points with integer coordinates in the region 0 ≤
x ≤ A, 0 ≤ y ≤ x2/B where B is an integer, A is an arbitrary positive real number,
B ≤ A and the points lying in the x-axis are counted with weight 1/2.1 For this
problem he obtained an error term of size O

(
A1/2), not depending on B. Note that

by setting A = RA0 and B = RB0 we obtain αK ≤ 1/2 under the formalism of §4.1:
for this region it is surprisingly simple to obtain the conjecture that is currently
out of reach for the circle and the hyperbola. In fact, we will provide a version of
Popov’s proof, further simplified by the use of the Vaaler and Beurling polynomials
and standard bounds for quadratic exponential sums, in section 5.2 below. For
simplicity we will phrase the result in terms of the number of points with integer
coordinates in the region

(5.1) P2 =
{
|y| ≤ c− (x− β)2},

but the same proof works for the regions considered by Popov.
An elementary argument shows that αP2 ≥ 1/2 when β = 0 and c is a rational

number, an hence for these cases αP2 = 1/2. We will revisit this result also in §5.2,
and find for the particular choice β = 0 and c = 1 an exact formula for the error
term E(R) in terms of a sum of L-functions evaluated at 1. In particular, this will
show for this particular choice of P2 that

(5.2) E(R) = Ω−
(
R1/2 exp(a

√
logR/ log logR)

)
for any a <

√
2.

1This is very common when counting lattice points in regions where there is a fixed straight
edge. Usually the region formed by adjoining the reflection through the straight edge has better
properties in terms of curved boundary, and therefore this one has a better chance of having a
small error exponent αK . Since the points in the straight edge are shared between the two halves,
if one wants to obtain a small error exponent for each of the parts these points must be necessarily
counted with weight 1/2. The same phenomenon underlies the coefficient 1/2 appearing in the
Euler-Maclaurin formula (cf. §A.4).

109
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The same proof also generalizes to c ∈ Z. This result also contrasts with the lit-
erature for the circle and the hyperbola, where it is not known whether E(R) =
Ω
(
R1/2(logR)1/2+ε) for any ε > 0, but it is thought to be unlikely [40, 90].

In higher dimensions the balls and ellipsoids have been throughout studied. In
particular, the conjecture is known in the rational case for d ≥ 4 and in the irrational
for d ≥ 5. In three dimensions the best known result for the ball is Heath-Brown’s
αK ≤ 21/16 also valid for rational ellipsoids (cf. §4.1). The same error exponent also
holds for the average of the class number, which can be regarded as a lattice point
counting problem in a three-dimensional region delimited by hyperboloids [18].

Again, one can find very little literature regarding parabolic regions. The nat-
ural analogue of the set P2 defined above is the elliptic paraboloid

(5.3) P =
{
(~x, y) ∈ Rd−1 × R : |y| ≤ c−Q(~x+ ~β)

}
,

where Q is a positive definite quadratic form, ~β is a fixed vector in Rd−1 and c a
positive constant. The particular case ~β = 0 was considered in a slightly different
form by Krätzel in [71, 72], where he showed that Hlawka’s result αP ≤ d(d −
1)/(d+1) holds in general and moreover that the conjecture αP ≤ d−2 holds under
the strong assumptions d ≥ 5 and Q either rational or diagonal. Partial results
were given under weaker rationality assumptions in terms of the coefficient matrix
A = (aij) of Q. In particular, Krätzel obtained αP ≤ d − 5/3 for d ≥ 3 as long as
a12/a11, a22/a11 ∈ Q. We improve these results:

Theorem 5.1. If a12/a11, a22/a11 ∈ Q then the inequality αP ≤ d− 2 holds for any
d ≥ 3.

As with the parabola we will also provide Ω-results for the error term in the
case ~β = 0, c ∈ Q and Q rational, which show that theorem 5.1 is sharp under these
hypotheses.

Theorem 5.2. Suppose ~β = 0, c ∈ Q and Q rational. Then for d ≥ 3 we have
E(R) = Ω

(
Rd−2η(R)

)
where

η(R) =


exp

(
a logR

log logR

)
for any a < log 2 when d = 3,

log logR when d = 4,
√

log logR when d = 5,
1 when d ≥ 6.

In particular, αP = d− 2.

Note that in theorem 5.1 no assumptions are imposed on the remaining coef-
ficients, and therefore this result extends the upper bound αP ≤ d − 2 not only to
d = 3, 4 and ~β 6= 0, but also to a wider family of higher-dimensional paraboloids
for which Krätzel’s result does not apply. The key step in the proof are the bounds
we obtained in §2.7 employing what can be considered a toy version of the circle
method, as these can be applied to the associated exponential sum because for the
region P it essentially corresponds to a truncated theta series. Bounds this precise
are out of reach for the exponential sums arising in most lattice point problems,
and this accounts for the striking difference between our theorem and what is cur-
rently known for ellipsoids and hyperboloids. In fact, to the best of my knowledge,
theorem 5.1 constitutes the first sharp result for a lattice point problem in three
dimensions.
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Note also that (5.2) and theorem 5.2 show that when 2 ≤ d ≤ 5 the ε in
the bound for the error term E(R) = O

(
RαP+ε) cannot be dropped (for d = 2

under the stronger assumption c ∈ Z). In contrast, when d ≥ 6 the lattice point
discrepancy is actually O

(
Rd−2), as shown by applying Euler-Maclaurin summation

to the corresponding asymptotics for the number of lattice points in the dilated
(d − 1)-dimensional ellipsoid {Q(~x) ≤ 1} (see §4.1). For irrational paraboloids our
method does not provide an answer as to whether the ε is really necessary.

5.2. The parabola

Let us start with the short proof of Popov’s result for the region (5.1). Since
the number of points with integer coordinates in RP2 does not vary if we displace
this set an integer amount in the x direction, we may assume that Rβ ∈ [0, 1). Let
f(x) = c− (x− β)2, and note that we have

1
2N (R) =

∑
f(n/R)≥0

(⌊
Rf(n/R)

⌋
+ 1

2

)
= R

∑
f(n/R)≥0

f(n/R)−
∑

f(n/R)≥0
ψ
(
Rf(n/R)

)
.(5.4)

The first sum is easily seen to equal R|P2|+O(1/R) by an application of the Euler-
Maclaurin formula. Using the Vaaler–Beurling polynomials of degree bR1/2c (propo-
sition 4.2), this implies

E(R)� R1/2 +
∑

0<|m|≤R1/2

1
m

∣∣∣∣∣∣
∑

f(n/R)≥0
e

(
m

R
n2 − 2βmn

)∣∣∣∣∣∣ .
The exponential sum runs over the integers in the interval [Rβ−Rc1/2, Rβ+Rc1/2],
which may be replaced with [−Rc1/2, Rc1/2] at the cost of adding and subtracting a
finite number of terms. By the Hardy-Littlewood bound (2.11), which is also valid
with a linear term inside the exponential, and which admits a very simple proof if
we add the extra error term R1/2 logR (see §8.2 of [62]),

Sm =
∑

|n|≤Rc1/2
e

(
m

R
n2 − 2βmn

)
� R

q
1/2
m

+R1/2 logR

where pm/qm is a rational satisfying

(5.5)
∣∣∣∣2mR − pm

qm

∣∣∣∣ ≤ 1
qmbRc1/2c

with qm ≤ bRc1/2c,

which is guaranteed to exist by Dirichlet’s approximation theorem.2 Assume first
that c ≥ 1, and note that this together with the condition (5.5) ensures pm 6= 0 and
qm � Rpm/(2m). Hence

(5.6)
∑

0<|m|≤R1/2

|Sm|
m
� R1/2 ∑

0<|m|≤R1/2

1
(mpm)1/2 +R1/2(logR)2.

2When applying Dirichlet’s approximation theorem to a random real, |x− p/q| ≤ (qN)−1 with
q ≤ N , typically q � N1−ε. This follows from the fact that

∑
q≤N q

−1φ(q) � N where φ stands
for Euler’s totient function (theorem 330 of [46]), by showing that the area covered by the intervals
[x− 1/(qN), x+ 1/(qN)] for q ≤ Nδ tends linearly to zero as δ → 0+. Note that if we always had
qm � R1−ε in the proof above the result would be immediate. In some sense, the remaining part
of the proof consists in showing that this is true for x = m/R in the sense of the given average.
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Now, 1 ≤ pm � m by pm � 2mqm/R and #{m : pm = p} ≤ Rε for each p, as
pm = p implies |2mqm − Rp| ≤ 2 by (5.5) and therefore m divides some integer in
the interval [Rp− 2, Rp+ 2]. Hence∑

1≤m≤M

1
p

1/2
m

≤ Rε
∑

1≤p�M

1
p1/2 � RεM1/2

and summing by parts in (5.6) we obtain E(R)� R1/2+ε.
The case c < 1 remains. The only thing that breaks down in this case is that

when 2m/R is too small (pm = 0) the Hardy-Littlewood bound as presented only
provides the trivial estimation. This is because the Farey dissection is too rough and
does not distinguish 2m/R from zero. The solution is simple. A trivial modification
of the proof provided in [62] shows that the same bound holds if we replace (5.5) by∣∣∣∣2mR − pm

qm

∣∣∣∣ ≤ 1
qmbKRc1/2c

with qm ≤ bKRc1/2c

for some fixed K > 0. It suffices to take K = c−1/2.

One may find surprising that it is possible to obtain the conjecture only applying
Poisson summation in one variable. One heuristic explanation could be the following:
the exponential sum —up to a linear term— corresponds to a truncated version of
Jacobi’s theta function evaluated at m/R. Applying Poisson summation in the
n variable then it is essentially equivalent to the transformation formula θ(z) =
(−iz)−1/2θ(−1/z) (cf. §2.2). But either before or after the Poisson summation the
sum left to estimate is a truncated version of a modular form, and these we know
quite well. Since the Poisson summation does not increase the overall cancellation
of the sum, it just makes it easier to spot, it seems plausible that in this case it is
unnecessary.

The same proof will be essentially repeated in the next section for the case of
a paraboloid in R3, but this time using the bounds of proposition 2.13 instead of
Hardy-Littlewood’s bound, as the exponential sum will be a truncated version of θ2

or a similar theta function of weight 1. The same heuristics are valid in this case,
and will allow us to use again the shortcut of the Vaaler and Beurling polynomials.

Note that in the proof of proposition 2.13, which was based on a toy version of
the circle method, the main contribution comes from the piece of the integral lying
over the Ford circle associated to the rational p/q, close to x. The expansion on
this cusp (theorem 2.4) is obtained by transforming the modular form via the slash
operator by a matrix sending p/q to∞. This matrix is essentially applying S and T
to undo the continued fraction expansion of p/q until we obtain ∞ (cf. §1.3). Since
applying S essentially amounts to applying Poisson summation, morally it should
not matter if instead we directly transform the original truncated exponential sum
via translations x 7→ x+ 1 and the process B of the van der Corput method (§4.4),
in a way dictated by the continued fraction expansion of p/q. This is in fact the
idea behind Hardy and Littlewood’s work [45], where they do this directly with the
truncated series of the θ function, as for weight smaller than one the circle method
has problems of convergence. This also means that one can bypass modular forms
altogether and use the van der Corput method directly to obtain the same result,
but of course the machinery developed in chapters 1 and 2 is a very convenient way
of carrying this out with little effort.

Aside from proving the upper bound for αP2 , Popov in his article [81] also
remarked that when c ∈ Q and β = 0 one had αP2 = 1/2. For this it suffices to show
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that we can find arbitrarily large values of R for which there are at least R1/2 points
on the boundary of RP2, as then E(R) will necessarily have jump discontinuities of
this size and we will have E(R) = Ω

(
R1/2). If c = a/b we may take R = b2N2 for

any large integer N as then all the points in the boundary of RP2 whose abscissa
is an integer multiple of bN have integer coordinates. There are approximately
2(a/b)1/2R1/2 such points.

In fact, it is possible to give an exact formula for E(R) when both c and the
dilation factor R are integers, from which we can prove the stronger Ω-result (5.2).
This is done by substituting the saw-tooth function ψ by its Fourier series directly
instead of using the Vaaler and Beurling polynomials, and then evaluating explicitly
the resulting quadratic Gauss sums. In this way we obtain a formula relating the
error term for this lattice point problem to the class number associated to a family
of imaginary quadratic fields. This relation with the class number was pointed out
by Professor Antonio Córdoba in the early 90’s while he was the Ph.D. advisor of
F. Chamizo.

When c is an arbitrary rational number one might be able to obtain similar
Ω-results by employing estimates of incomplete quadratic Gauss sums (see [74]).

For the sake of simplicity we are only going to consider the case β = 0 and
c = 1. Hence for the rest of this section we will assume that P2 is determined by
the inequality |y| ≤ 1− x2.

Theorem 5.3. Let N be an odd positive integer and let N∗ be the largest square
dividing N . Then

N (N) = |P2|N2 + 1
3 + 2

√
N∗ − 4

π

∑
d|N

d≡3 (4)

√
dL(1, χ−d)

where L(1, χ−d) is the L-function corresponding to the Kronecker symbol χ−d =(
−d
·

)
.

With some effort the result can be extended, with modifications, to cover the
even case.

Two particular cases of theorem 5.3 deserve special attention, and will be used
to obtain the aforementioned one-sided Ω-results.

Corollary 5.4. If the prime factors of N are of the form 4k + 1, then

E(N) = 1
3 + 2

√
N∗.

Corollary 5.5. If N is squarefree then

E(N) = 7
3 − 4

∑
d|N

d≡3 (4)

ωdh(−d)

where h(−d) is the class number of the integer ring of Q(
√
−d) and ωd = 1 except

for ω3 = 1/3.

Proof. Apply Dirichlet class number formula (I.17) in theorem 5.3 for the funda-
mental discriminant −d. �
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Proof of theorem 5.3. By (5.4),

N (N) = 2
N∑

n=−N

(
N − n2

N

)
− 2

N∑
n=−N

ψ
(
− n2

N

)
.

The first sum is (4N2 − 1)/3 and the area is |P2| = 8/3. Then

E(N) = −2
3 − 2

N∑
n=−N

ψ
(
− n2

N

)
= 1

3 − 4
N∑
n=1

ψ
(
− n2

N

)
.

The Fourier series of ψ (4.4) converges to ψ(x) when x is not an integer and to 0
otherwise. Hence

ψ(x) = =
∞∑
m=1

e(−mx)
πm

+
{

0 if x 6∈ Z,
−1/2 if x ∈ Z.

Note that N divides n2 exactly
√
N∗ times in the range 1 ≤ n ≤ N , and hence

(5.7) E(N) = 1
3 + 2

√
N∗ − 4

π

∞∑
m=1

1
m
=G(m;N)

whereG(m;N) is the quadratic Gauss sum
∑N
n=1 e

(
mn2/N

)
. Let dm = N/ gcd(m,N),

the evaluation of =G(m;N) reads (see exercise 4 of §3.5 of [62])

=G(m;N) =

0 if dm ≡ 1 (mod 4),
N√
dm

(
mdm/N
dm

)
if dm ≡ 3 (mod 4).

When dm is fixed and 1 ≤ m ≤ M , the quantity mdm/N runs over all positive
integers coprime to dm in the range 1, . . . , bMd/Nc. Hence substituting in (5.7) we
have

N2(N)− |P2|N2 = 1
3 + 2

√
N∗ − 4

π

∑
d|N

d≡3 (4)

√
d
∞∑
m=1

1
m

(m
d

)
.

By the quadratic reciprocity law for the Jacobi-Kronecker symbol (exercise 3 and
(3.43) of §3.5 of [62]), the innermost sum equals L(1, χ−d). �

From corollaries 5.4 and 5.5 the following refinement of the Ω-result R1/2 is
immediate.

Proposition 5.6. The error term satisfies

E(R) = Ω+
(
R1/2) and E(R) = Ω−

(
R1/2 log logR

)
.

Proof. The first statement follows by taking N a square in corollary 5.4. For the
second one we remark that the main result of [4] asserts that there are infinitely
many primes p ≡ 3 (mod 4) satisfying h(−p)/√p � log log p. It suffices to take
N = p for any such prime p in corollary 5.5. �

The upper bound h(−d)/
√
d� log log d is known to hold under the generalized

Riemann hypothesis [75]. Any hope to obtain a better Ω−-result from corollary 5.5
therefore must take advantage of the sum of class numbers, and for this we need uni-
form lower bounds over certain families of discriminants. Fortunately Heath-Brown
proved an astonishing result that, in some way, shows the absence of exceptional
zeros for large multiples of some primes in a fixed set [48]. Even more astonishing
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is the short and elementary proof of this fact. In its original form the result claims
that if S is a fixed set of more than 5052 odd primes then for any sufficiently large
integer d there exists a prime pd ∈ S satisfying L(1, χ−pdd)� (log d)−1/9. Since the
original text seems to be hard to find, we provide here a version with a slightly more
general statement. This version can also be found stated without proof by Blomer
in [8].

Proposition 5.7 (Heath-Brown). Fix ε > 0 and let S be a set of primes congru-
ent to 3 modulo 4, of cardinality #S > (1 + 2/ε)4. There is an integer N > 0 such
that for every n ≥ N , n ≡ 1 (mod 4), there is some pn ∈ S satisfying

L(1, χ−npn)� (logn)−ε.

The hypotheses regarding the congruence classes of n and the primes in S
modulo 4 are only included for the sake of simplicity, to ensure that n, −p and −np
are fundamental discriminants and therefore the Kronecker symbol χd is well-defined
for them.

Proof. We are going to assume L(1, χ−np) ≤
(

lognp
)−ε for every p ∈ S and from

here deduce that the set S must be smaller than (1+2/ε)4. All the implicit constants
in the argument may depend on S.

It is convenient to translate the bound on L(1, χ−np) into a bound for L(σ, χ−np)
for some σ > 1, as here the Euler product converges well. For this we use the mean
value theorem. Note that L′(σ, χ−np)� (logn)2 (see (11) of chapter 14 of [23]) and
hence

(5.8) L(σ0, χ−np) = L(1, χ−np) +O
(
|σ0 − 1|(logn)2)� (logn)−ε

for σ0 = 1 + (logn)−2−ε.
Considering the Euler product of L(σ0, χ−np) omitting the factors corresponding

to the primes in S,

(5.9) logL(σ0, χ−np) =
∑′

m≥1

Λ(m)
mσ0 logmχ−np(m) +O(1)

where Λ is the usual von-Mangoldt function and the prime indicates we are summing
only over those m coprime to P =

∏
p∈S p. Since (5.8) implies(

logL(σ0, χ−np) +O(1)
)2 ≥ ε2(1 + o(1)

)
(log logn)2,

substituting (5.9) and summing over p ∈ S,∑′

m1≥1

∑′

m2≥1

Λ(m1)Λ(m2)
(m1m2)σ0 logm1 logm2

∑
p∈S

χ−np(m1m2) ≥ ε2
(
1 + o(1)

)
(log logn)2#S.

Using χ−np(m) = χn(m)χ−p(m) and dividing into classes modulo P , the left hand
side is bounded above by

P∑′

a1=1

P∑′

a2=1

∣∣∣∑
p∈S

χ−p(a1a2)
∣∣∣L(a1)L(a2) with L(a) =

∑
m≡a (mod P )

Λ(m)
mσ0 logm.

If we drop the conditionm ≡ a (mod P ) in the sum defining L(a) then this quantity
becomes log ζ(σ0) = (2 + ε) log logn+ o(1). In general the congruence condition can
be detected by summing over all characters modulo P :

φ(P )L(a) = log ζ(σ0) +
∑

χ (mod P )
χ(a) logL(σ0, χ),
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= (2 + ε) log logn+O(1),

where φ stands for Euler’s totient function. Hence, substituting above,

1
φ2(P )

P∑′

a1=1

P∑′

a2=1

∣∣∣∑
p∈S

χ−p(a1a2)
∣∣∣ ≥ ε2

(2 + ε)2
(
1 + o(1)

)
#S.

For any k coprime to P the equation xy ≡ k (mod P ) has exactly φ(P ) solutions,
and therefore the left hand side squared is

1
φ2(P )

 P∑′

k=1

∣∣∣∑
p∈S

χ−p(k)
∣∣∣
2

≤ 1
φ(P )

∑
p1∈S

∑
p2∈S

P∑′

k=1
χp1p2(k) = #S.

This, together with the previous inequality, shows
√

#S ≤ (1 + 2/ε)2(1 + o(1)
)
, a

contradiction. �

Using Heath-Brown’s result we can prove (5.2):

Proof of (5.2). Let S be the set of the first 34 + 1 primes p ≡ 3 (mod 4) and fix
an integer d0 large enough so that the aforementioned result of Heath-Brown holds
for any d ≥ d0. Choose N = N ′

∏
p∈S p in corollary 5.5, where N ′ is the product of

the primes p ≡ 1 (mod 4) in the interval [d0, x] for any large x. Then by the class
number formula,

∑
d|N

d≡3 (4)

ωdh(−d)�
∑
d|N ′
d6=1

√
pdd

log d �
√
N ′

logN
∏
p|N ′

(
1 + p−1/2)+ o(1).

The result now follows by noting that by the prime number theorem in arith-
metic progressions, the logarithm of the product over the primes is asymptotically√

2 logN ′/ log logN ′ and N ′ � N . �

5.3. Elliptic paraboloids

The proof of theorem 5.1 for d = 3 will follow closely the proof we have given
of Popov’s result for the parabola. In this case we can exploit the full rationality
of the quadratic form Q. When d ≥ 4 we will just slice the paraboloid into three-
dimensional paraboloids and then glue the results together via the Euler-Maclaurin
formula. To carry this out succesfully we need the error term to be uniformly
bounded in terms of the parameters c and ~β. For convenience we state here this
slightly more precise version of theorem 5.1.

Theorem 5.8. Let P be as in (5.3) with d ≥ 3. Assume that the coefficient matrix
A = (aij) of Q satisfies a12/a11, a22/a11 ∈ Q. Then for each fixed ε > 0, C > 0,

N (R) = |P|Rd +O
(
Rd−2+ε)

holds uniformly for R ≥ 1, 0 < c < C and ~β ∈ Rd−1. The implicit constant depends
on C and Q.

Proof of theorem 5.8, case d = 3. Prescaling P by a constant amount we may
suppose that Q is integral. We may also assume that the vector (α1, α2) = R~β
lies in [0, 1)× [0, 1), since N (R) is 1-periodic in these variables. Finally we assume
c > 4R−2 because both N (R) and |P|R3 are O(R) when c� R−1.
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Writing f(x, y) =
(
cR2 −Q(x+ α1, y + α2)

)
/R we have

(5.10)
1
2N (R) =

∑∑
f(n1,n2)≥0

(
bf(n1, n2)c+ 1

2
)

=
∑∑

f(n1,n2)≥0
f(n1, n2)−

∑∑
f(n1,n2)≥0

ψ
(
f(n1, n2)

)
.

Let χ the characteristic function of Q(x + α1, y + α2) ≤ cR2. Applying the
Euler-Maclaurin formula firstly in n2 and secondly in n1, we have

∑∑
f(n1,n2)≥0

f(n1, n2) =
∑

|n1|�R
√
c

(∫
χ(n1, y)f(n1, y) dy +O(1)

)

=
∫
χ(x, y)f(x, y) dydx+O(R)

and the last integral is, of course, 1
2 |P|R

3.
Using the Vaaler and Beurling polynomials of degree M = bc1/2Rc (proposi-

tion 4.2), we get from (5.10)

E(R)�
M∑
m=1

|Sm|
m

+R1+ε

where
Sm =

∑∑
Q(n1,n2)≤M2

e

(
m

R

(
Q(n1 + α1, n2 + α2)−Q(α1, α2)

))
.

The summation domain has been changed at the cost of adding or removing at most
O(R) terms. Note this sum is exactly a truncated version of θQ,~v defined in (2.16),
evaluated at m/R. Hence by corollary 2.20,

(5.11) Sm �
M2+ε

qm +M2|qmm/R− pm|

where the rational pm/qm is determined by the intervalApm/qm of the Farey disection
of order M where m/R lies. In particular, by proposition 1.3 it satisfies

(5.12)
∣∣∣∣mR − pm

qm

∣∣∣∣ ≤ 1
qm(M + 1) with qm ≤M.

Let Ω be the set of all m in the interval [1,M ] for which pm 6= 0, and note that for
these m we have qm � Rpm/m. Neglecting the term M2|qmm/R− pm| in (5.11),

∑
m∈Ω

|Sm|
m
�M2+εR−1 ∑

m∈Ω

1
pm

= M2+εR−1 ∑
p�M2R−1

1
p

#{m : pm = p}.

The last cardinality is O
(
R1+ε/M

)
as pm = p and (5.12) imply that m must divide

an integer in the interval [Rpm−R/M,Rpm +R/M ]. This shows that the sum over
Ω is O

(
R1+ε).

For the remaining terms pm = 0 and qm = 1, and (5.11) implies

∑
m/∈Ω

|Sm|
m
� RM ε

∑
m≥1

1
m2 � R1+ε.

Hence, as claimed, E(R)� R1+ε. �
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Proof of theorem 5.8, case d > 3. Write ~x = (~x1, ~x2) and ~β = (~β1, ~β2) with
~x1, ~β1 ∈ R2 and ~x2, ~β2 ∈ Rd−3. Let A be the matrix of Q and partition it as

A =
(
A1 B

Bt A2

)
,

where A1 = (aij)2
i,j=1 and A2 = (aij)d−1

i,j=3. We have the identity Q(~x) = Q1(~x1 +
~γ)+Q2(~x2), where Q1 (resp Q2) is the positive definite quadratic form associated to
A1 (resp. A2−BtA1B), and ~γ = A−1

1 B~x2. This is essentially “completing squares”.
Therefore, renaming ~γ,

(5.13) Q(~x+ ~β) = Q1(~x1 + ~γ) +Q2(~x2 + ~β2).

Given ~n2 ∈ Zd−3, let us denote by P~n2 the three-dimensional slice of P obtained
by fixing ~x2 = ~n2/R, and by N~n2(R) the number of lattice points it contains after
being dilated with scale factor R. By the three-dimensional case of this theorem
and the decomposition (5.13),

N (R) =
∑
~n2

N~n2(R) =
∑
~n2

|P~n2 |R
3 +O

(
Rd−2+ε),

both sums extended to the domain Q2(~n2 + R~β2) ≤ cR2. A simple computation
shows

|P~n2 | =
π√

detA1

(
c−Q2(~n2/R+ ~β2)

)2
.

Applying the Euler-Maclaurin formula iteratively in one variable at a time we find
π√

detA1

∑
~n2

(
c−Q2(~n2/R+ ~β2)

)2 = π√
detA1

∫ (
c−Q2(~x2/R)

)2
d~x2 +O

(
Rd−5)

and the main term in the right hand side is |P|Rd−3. �

As in the last section, we are going to assume from now on that c ∈ Q and ~β = 0
in order to obtain the Ω-results contained in theorem 5.2. The idea will be the same:
showing that for arbitrarily large values of R, the number of points in the boundary
of RP, which will be denoted by B(R), is Ω

(
Rd−2η(R)

)
, where η is the function

defined in the statement of the theorem. Some reductions first: note that without
loss of generality we may assume c ∈ Z, and let Q = a

bQ
∗ where Q∗ is a primitive

integral quadratic form. We also assume that R ∈ Z+, so that for each ~n ∈ Zd−2

with Q∗(~n) = Rn and abn ≤ cR we have that the lattice point (b~n, cR − abn) is
counted by B(R). In other words,

(5.14) B(R) ≥
∑
n≤αR

rQ∗(Rn) with α = c

ab

where rQ∗(k) is the number of representations of k by the quadratic form Q∗. For
the remaining proofs we will not need to refer to Q anymore, and therefore we will
write Q instead of Q∗ for the sake of notational simplicity.

Proof of theorem 5.2, case d = 3. Let r1, r2, . . . , rk be the solutions of

Q(r, 1) ≡ 0 (mod R)

and for each 1 ≤ j ≤ k and a fixed 0 < δ < 1/2 define

Cj =
{
(x, y) ∈ Z2 : |y| ≤ δR, |x| ≤ δR, x ≡ rjy (mod R)

}
.
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Choosing δ2 < λ−1α with λ the greatest eigenvalue of the matrix of Q, we have
that Q maps Cj into multiples of R less than αR2. Hence the sum in (5.14) is at
least #

⋃
j Cj . If we restrict y to gcd(y,R) = 1 then the sets Cj become disjoint,

consequently

(5.15) B(R) ≥ kmin
j

#Cj − k#
{
y ∈ Z : |y| < R, gcd(y,R) > 1

}
.

For each fixed j, consider the remainders of 0rj , 1rj , 2rj ,. . . , bδRcrj when divided by
R. By the pigeonhole principle, if we subdivide [0, R) into dδ−1e equal subintervals,
at least δR/dδ−1e of the remainders lie in the same subinterval. In this way, we have
at least δR/dδ−1e pairs (u`, v`) such that 0 ≤ v` ≤ δR and all u` ≡ rjv` lie in the
same subinterval of length R/dδ−1e. Hence (u` − u1, v` − v1) ∈ Cj and it follows
#Cj ≥ δR/dδ−1e. In this way, (5.15) assures

(5.16) B(R) ≥ k δ
2R

1 + δ
+ 2k

(
φ(R)−R

)
,

where φ stands for Euler’s totient function. For large x, take R as the product of
the primes x ≤ p ≤ 2x such that

(
∆
p

)
= 1 where ∆ is the discriminant of Q. By the

prime number theorem in arithmetic progressions, we have

(5.17) logR ∼ x

2 and φ(R)
R

=
∏
p|R

(
1− p−1) = 1 +O

( 1
log x

)
.

The congruence Q(r, 1) ≡ 0 admits two solutions modulo each of these primes p.
Then by our choice of R we have that k equals 2 to the number of such primes
that is at least (logR)/ log(2x). Substituting this and (5.17) in (5.16), we get the
expected result. �

Proof of theorem 5.2, case d = 4. Combining theorem 1 of [8] and theorem 2
of [27] we have

(5.18) rQ(n) = rgen
Q (n) +O

(
n13/28+ε) for n 6∈ S

where S is a finite union of sets of the form {tjm2 : m ∈ Z} for some tj ∈ Z.
Here rgen

Q is the average number of representations by forms belonging to the same
genus as Q that can be computed with Siegel mass formula (see §20.4 of [62] for the
definitions and details). In lemma 6 of [16] this formula was written as

(5.19) rgen
Q (n) = 4π

√
2n√
D

∑
d2|n

d−1U(n/d2)L(1, χ−2Dn/d2)

where D is the determinant of (the matrix associated to) Q, L is the L-function
corresponding to the Kronecker symbol χm modulo m = −2Dn/d2 and U is a
certain 8D2-periodic function which is non-negative and not identically zero.

Assume gcd(R, 2D) = 1 and for each d2 | R choose nd such that U(ndR/d2) 6= 0,
then (5.18) and (5.19) together with (5.20) imply

(5.20) B(R)� R
∑
d2|R

d−1Ld(R) +O
(
R27/14+ε)

where

Ld(R) =
∑
n∈A

L(1, χ−2DRn/d2) with A =
{
n � R : Rn 6∈ S, n ≡ nd (mod 8D2)

}
.
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If Ld(R)� R, choosing R =
∏

2D<p≤x p
2 we have logR ∼ 2x and

B(R)� R2 ∏
2D<p≤x

(
1 + p−1)+O

(
R27/14+ε)� R2 log logR.

It remains to prove Ld(R) � R. Expanding the L-functions, we can write
Ld(R) as

S1 +S2 +S3 :=
∑
m1

1
m1

∑
n∈A

χdn(m1)+
∑
m2

χ−2DR′(m2)
m2

∑
n∈A

χn(m2)+
∑
n∈A

∑
m3

χdn(m3)
m3

where dn = −2DR′n, R′ = R/d2, m1 runs over the squares in [1, R1+ε], m2 over
the non-squares coprime to 2DR′ in the same interval and m3 > R1+ε. Trivially,
S1 � R. By Pólya-Vinogradov inequality S3 �

∑
n∈AR

−ε � R1−ε. There are
O(R1/2) values of n � R with Rn ∈ S that when added to A give a negligible
contribution O(R1/2 logR) to S2, and hence we can drop the condition Rn /∈ S
in S2. On the other hand, the congruence condition n ≡ nd can be detected in-
serting

∑
χ χ(n)χ(nd)/φ(8D2) where χ runs over the characters modulo 8D2. Since

gcd(m2, 2DR′) = 1, the product χ(n)χn(m2) as a function of n is a non-principal
character modulo 8D2m2 and Pólya-Vinogradov inequality proves S2 � R1/2+ε.
Therefore, simply bounding below S1 by the summand corresponding to m1 = 1, we
conclude Ld(R) ∼ S1 � R. �

Proof of theorem 5.2, case d ≥ 5. For d ≥ 6 we have by corollary 11.3 of [61]
the estimate rQ(m) � m(d−3)/2 as long as m is sufficiently large and Q(~x) ≡ m is
solvable modulo 27D3 with D the determinant of Q. Taking m = Rn with R a large
multiple of 27D3, both conditions are fulfilled and the result follows from (5.14).

If d = 5, corollary 11.3 of [61] gives for 27D3 | R

(5.21) B(R)� R
∑
n≤αR

n
∏
p|Rn

(
1 + χD(p)p−1) with χD(p) =

(
D

p

)
.

Let PD the product of the primes p ≤ x such that χD(p) = 1. By the prime
number theorem in arithmetic progressions, we have

logPD ∼
x

2 and
∏
p|PD

(
1 + p−1)� √

log x ∼
√

log logPD.

Choosing R = 27D3PD in (5.21), we have

B(R)� R
∏
p|PD

(
1 + p−1) · ∑

n≤αR
n
∏
p|n

(
1− p−1).

The sum equals that of φ(n), that is comparable to R2 (theorem 330 of [46]). �



CHAPTER 6

Lattice points in revolution bodies

This chapter focuses in the results contained in the article “Lattice points in
revolution bodies (II)” [21], joint work with F. Chamizo.

6.1. Main results

In §4.1 we saw the huge difference between the known results for lattice point
counting problems associated to general smooth convex bodies and to balls. In
particular, in three dimensions, the best known upper bound for αK in the former
case is Guo’s αK ≤ 231/158 ≈ 1.462, while for the unit ball we have Heath-Brown’s
αB ≤ 21/16 = 1.3125. The improvement, slightly below 0.15, is usually a huge
gap when dealing with cancellation of exponential sums, and is made possible only
thanks to the arithmetic of quadratic forms.1

F. Chamizo noted in [15] that if one assumes rotational symmetry around a
coordinate axis then one can obtain intermediate results even from the simplest van
der Corput’s estimates. He considered three-dimensional smooth convex bodies of
the form

(6.1) K =
{
(x, y, z) ∈ R3 : f2(r) ≤ z ≤ f1(r), 0 ≤ r ≤ r∞

}
where r =

√
x2 + y2.

In other words, K is the solid generated by the rotation around the z-axis of
the curve

γ(t) =


(
t, 0, f1(t)

)
0 ≤ t ≤ r∞(

2r∞ − t, 0, f2(2r∞ − t)
)

r∞ ≤ t ≤ 2r∞

z

r

z= f1(r)

z= f2(r)

r∞

Theorem 1.1 of [15] reads:

Theorem. Let K ⊂ R3 be a smooth convex body which is also body of revolution,
and suppose that the functions 1

rf
′′′
i (r) (extended by continuity to r = 0) do not

vanish for 0 ≤ r < r∞, where i = 1, 2. Then the inequality αK ≤ 11/8 holds.

1To put this into context, note that the last improvement of Gauss’ circle problem goes
from Huxley’s 131/208 ≈ 0.62981 to Bourgain and Watt’s 517/824 ≈ 0.62743, barely 0.00238
of difference.

121
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Note that 11/8 = 1.375 is actually closer to Heath-Brown’s than to Guo’s result.
Nevertheless Chamizo had to assume the very unnatural hypothesis concerning the
nonvanishing of the third derivative of the generatrix function. The reason for this is
that the exponential sum was estimated via an application of a Weyl step followed
by van der Corput’s lemma, and hence one must control that the size of a third
derivative of the phase is neither too big nor too small (cf. §4.4). Although this
third derivative is in principle mixed —the Weyl step and the van der Corput es-
timation happening in different variables— these two variables become interlinked
by the rotational symmetry of the convex body. It is in fact in this way that the
two variables are “glued” together into only one variable running over a longer in-
terval, allowing for greater power savings from the application of the van der Corput
method. At the end of the day the mixed third derivative of the phase function can
actually be seen to correspond to the third derivative of the generatrix.

When this kind of conditions involving derivatives of the phase function come
into play it is usually a defect of the method used to estimate the exponential sum.
If the third derivative becomes too small, since each derivative is usually smaller
than the last, it means that the affected portion of the exponential sum must be
treated with methods which involve derivatives of lesser degree. In practice, however,
things are often not that simple, and this kind of conditions have been historically
a hassle, even when obtaining results for the circle and divisor methods (see [55]
and [70]). The advent of the discrete Hardy-Littlewood method [57, 58] has more
or less resolved this issue for d = 2, but the problem still persists when d > 2. In
fact, most of the technical part of Guo’s paper [39] revolves around showing that
some combinations of partial derivatives never vanish all of them at the same time.

In the article [21] we did not succeed at removing the nonvanishing condition,
but we were able to replace it with the following much weaker version:

Theorem 6.1. Let K ⊂ R3 be a smooth convex body of revolution, and suppose that
the third derivative of the generatrix functions f ′′′i only have zeros of finite order for
0 ≤ r < r∞, where i = 1, 2. Then the inequality αK ≤ 11/8 holds.

By zeros of finite order we mean that f ′′′i (r) = 0 implies we can find an integer
n > 3 such that f (n)

i (r) 6= 0. In particular, this is satisfied whenever the boundary
of K is real-analytic. The result also holds if in the definition (6.1) we take r =√
Q(x− α, y − β) with Q a positive definite rational quadratic form and α, β ∈ R.

In other words, theorem 6.1 extends to the case in which the horizontal sections are
rational ellipses with a common center when projected onto the xy-plane.

The idea of the proof is the following: we transform the problem via Poisson
summation into estimating an exponential sum, as it is customary; and then slice
the sum diadically in pieces corresponding to the zeros of f ′′′i (r). For the pieces
where van der Corput’s lemma falls short the phase is almost linear, and we are in
position to apply the Kuzmin-Landau lemma. This, by itself, is not good enough, as
the derivative of the phase function might happen to be close to an integer way too
often. Showing that this cannot be the case requires —in some ranges— studying
certain Diophantine properties of a Taylor coefficient of the phase function. This
goes beyond the utterly analytic treatment in the classical (van der Corput’s) theory
of exponential sums and vaguely resembles to the situation in [10] (the seminal paper
for the discrete Hardy-Littlewood method) in which the arithmetic properties of the
Taylor coefficients play a fundamental role.
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While working on this problem, the first obvious step was to look into those
examples which seem the most pathological, and in this case the nonvanishing hy-
pothesis is blatantly violated when both functions fi are second order polynomials,
i.e. K is a revolution paraboloid (or, more generally, an elliptic paraboloid). This
is precisely the problem treated in chapter 5, for which the conjecture was obtained
in the rational case thanks to the automorphic properties of the exponential sum.
In some sense a related phenomenon is happening here, as very close to a zero of
1
rf
′′′
i (r) the function fi(r) essentially looks like a parabola, and some of the arith-

metic leaks in in the form of the aforementioned Diophantine properties of the Taylor
coefficient. Since we are only aiming for the exponent 11/8 (as we cannot do bet-
ter anyway because most of the boundary of K cannot be well approximated by
parabolas), an adapted version using the van der Corput method is enough and we
can skip modular forms altogether.

Since we are only involving derivatives up to order three, theorem 6.1 should
remain true if K is of class C3 and the zeros of f ′′′i are isolated and f ′′′i decays as
a fixed power of the distance to the closest zero. When the zeros are dense or of
“infinite order” the method fails because one has to chop the exponential sum into
too many pieces, most of them too small to have appreciable cancellation. This,
together with the fact that in the most extreme case one obtains not only the 11/8
but the full conjecture, leads me to believe that the remaining hypothesis is still an
artifact of the methods used, and the exponent 11/8 should hold for any revolution
convex body of this regularity. Sadly, this is probably out of reach with the existing
methods.

6.2. The exponential sum

Our starting point is the truncated Hardy-Voronoï formula provided by propo-
sition 4.1, which for convenience we copy here:

(6.2) E(R) = −R
′

π

∑
~06=~n∈Z3

η
(
δ‖~n‖

)cos
(
2πR′g(~n)

)
‖~n‖2

√
κ(~n)

+O
(
R2+εδ

)
.

In this formula η is a certain even non-negative smooth function compactly supported
in [−1, 1], δ = R−c for some fixed 0 < c < 2, R′ depends on R in a non-explicit way
but always stays at a fixed distance from it, g is defined by g(~n) = sup{~x·~n : ~x ∈ K}
and κ(~n) stands for the Gaussian curvature of the boundary of K at the point whose
unit outer normal is ~n/‖~n‖.

As we commented in chapter 4, the larger c is chosen the smaller the error term
is, but also the longer the exponential sum becomes, and since the van der Corput
method provides power savings on the length of the sum, the larger the corresponding
bound will be. Usually one leaves c as an unknown, works out all the details and
then chooses the value of c which balances both error terms. Once this is done one
can either write the article this way, or directly fix c to the value that magically
makes all extra error terms vanish. Chamizo’s original article [15] is written in the
first way, which is a good starting point for the reader who wants to know where
the 11/8 comes from and why it cannot be improved using these techniques. Here,
however, since the proof is substantially more convoluted, it results more convenient
to directly fix c = 5/8.

When K is a body of revolution body all the functions of ~n involved in the
expression (6.2) for E are invariant under rotations on the first two variables. Writing
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~n = (n1, n2,m) and n = n2
1 + n2

2, and grouping the terms with common n,
(6.3)

E(R) = −R
′

π
<
∑
n>0

∑
06=m∈Z

r2(n)η
(
δ
√
n+m2) e(R′h(n,m)

)
(n+m2)

√
κ1(n,m)

+O
(
R11/8+ε)

where h(n,m) = g
(√
n, 0,m

)
and κ1(n,m) = κ

(√
n, 0,m

)
. Note we have estimated

trivially the terms corresponding to nm = 0.
Before continuing we are going to take a moment to examine the case when

K is not a revolution body with respect to the z-axis, but it is defined in terms
of r =

√
Q(x− α, y − β) for Q a positive definite quadratic form with rational

coefficients. Note we can always write K = B−1K ′ + ~τ , where K ′ is a revolution
body, B is a 3 × 3 matrix whose top-left 2 × 2 block B1 satisfies ~xtBt

1B1~x = Q(~x)
and the rest of the matrix coincides with the identity, and ~τ = (α, β, 0)t. A simple
computation shows g(~n) = g′(B−t~n) + ~τ · ~n where g′ is the function associated to
K ′. To take advantage of the invariance of g′ we must group the terms of the sum
according to n = Q∗(n1, n2), where Q∗(~x) = ~xtB−1

1 B−t1 ~x is the dual form of Q,
whose associated matrix is the inverse of that of Q. Indeed,

e
(
R′g(~n)

)
= e

(
R′h′(n,m)

)
· e
(
R′(αn1 + βn2)

)
if Q∗(n1, n2) = n,

with h′(n,m) = g′
(√
n, 0,m

)
. Also without loss of generality, prescaling K, we may

assume Q∗ has integer coefficients and hence n runs over the integers.
Conveniently, we also have

‖~n‖2
√
κ(~n) = | detB| ‖B−t~n‖2

√
κ′
(
B−t~n

)
.

This can be shown directly from the definition of Gaussian curvature,2 but a shortcut
is to use the properties of the Fourier transform, together with the expression we
have for g in terms of g′, to see that the substitution is possible in the expansion
(4.1), and then follow again the steps of the proof of proposition 4.1. In any case,
to fully exploit the geometry of the problem at hand we must go back to this proof
anyway, and check that the function η

(
δ‖~n‖

)
may be replaced by η

(
δ‖B−t~n‖

)
under

the same hypotheses.
With these modifications we can now carry out the argument above, grouping

the terms corresponding to the same value of n = Q∗(n1, n2) together, and recover
(6.3) with r2 replaced by rQ∗,~v (defined in (2.15)) for ~v = R′(α, β)t, the functions h′
and κ′ corresponding to the revolution body K ′ and an extra factor | detB|−1. For
the sake of simplicity we will denote rQ∗,~v by r∗2 and drop the prime on h and κ.
The upper bound r∗2(n)� nε holds in general by virtue of (I.16), justifying that we
can neglect the terms with nm = 0.

The next step is to sum by parts in (6.3) to remove all factors but the arithmetic
function r∗2 and the exponential. It is important this is done after grouping the
terms, as if we had summed by parts directly in (6.2) the resulting exponential sum
would have been supported in rectangular boxes and grouping the terms in circles
(or ellipses) would result impossible.

2In general, if M is any invertible 3 × 3 matrix, the Gaussian curvature of MK is related to
that of K by the formula

κMK(~n) · ‖~n‖4(detM)2 = κK
(
M t~n

)
· ‖M t~n‖4.

This is stated without proof in [15].
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To sum by parts it is best to first divide the sum (6.3) into two halves, depending
on the sign of m. In fact, it suffices to estimate the half S+ corresponding to m > 0
(which, as we will see below, arises from the north half ofK delimited by f1). Indeed,
by the properties of the Fourier transform, the sum corresponding to the specular
reflection of K through the plane z = 0 is exactly the same sum, but with the sign
of m reversed. Therefore if we succeed at estimating the half S+ for every K, the
same argument applied to its specular reflection yields the same bound for the other
half.

Summing by parts in two variables in this case is particularly easy because all
boundary terms vanish as η is compactly supported (see the appendix). Hence,
writing the main term in integral form,

S+ = − R′

π|detB|<
∫∫ ∑

n≤u

∑
m≤v

r∗2(n)e
(
R′h(n,m)

) ∂2

∂u∂v

η
(
δ
√
u+ v2)

(u+ v2)
√
κ1(u, v)

du dv,

the integral extended over the rectangle [1, δ−2]× [1, δ−1]. Multiplying and dividing
the integrand by u+ v2 and estimating trivially,

(6.4) S+ � sup
N,M2≤δ−2

R1+ε

N +M2

∣∣∣∣∣∣
∑

1≤n≤N

∑
1≤m≤M

r∗2(n)e
(
R′h(n,m)

)∣∣∣∣∣∣ ,
as long as we can guarantee∫∫

(u+ v2)
∣∣∣∣∣ ∂2

∂u∂v

η
(
δ
√
u+ v2)

(u+ v2)
√
κ1(u, v)

∣∣∣∣∣ du dv � Rε.

After performing the change of variables u 7→ u2 and changing to polar coordinates
(note κ1(u2, v) = κ(u, 0, v) depends smoothly on the angle θ = arctan v/u), the
integral becomes ∫∫

ρ3
∣∣∣∣∣ ∂2

∂u∂v

η(δρ)
ρ2
√
κ(θ)

∣∣∣∣∣ dρ dθ.
The operator ∂2

∂u∂v decomposes as sum of differential operators in polar coordinates
which, neglecting the dependence on θ, are of the form ∂2

∂ρ2 , ρ−1 ∂
∂ρ or ρ−2. This

shows the integral is bounded by
∫ δ−1

1
(
ρ−1 + δ + δ2ρ

)
dρ� logR.

Now that (6.4) is established we can cut the sum dyadically to prepare it for the
van der Corput method. Actually, what we really want is to cut the sum dyadically
in the image of the partial derivative of h involved in the van der Corput estimation,
to make sure we control its size in each piece. If the zeros and poles of this function
are of finite order, this amounts to splitting the domain of the sum dyadically around
these points. In our case we will see in §6.4 that the size of the appropriate partial
derivative essentially depends on |f ′′′1 (r)| for r =

(
f ′1
)−1(√

n/m
)
, and hence the sum

should be split dyadically as n/m2 approaches the squares of slopes of f1 at the
points where f ′′′1 either vanishes or diverges.

Since we are only dealing with half of the sum S+, the contour function f2
will not make any appearance in the rest of the chapter, and therefore we can
conveniently rename f1 to f . Let 0 = r0 < r1 < · · · < rj0−1 be the zeros of f ′′′
in [0, r∞), which are necessarily finite in number as they are of finite order and
f ′′′ diverges as r → r∞, and fix any rj0 satisfying rj0−1 < rj0 < r∞. Denote
uj = (f ′(rj))2 for 0 ≤ j ≤ j0. We split the summation domain of (6.4) dyadically in
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... .... ....
0 = u0 u1 uj0 − 1 uj0 2uj0 4uj0

u0 + u1

2

uj0 − 1 + uj0
2

Figure 6.1. The dyadic decomposition of the sum S+.

m as m → ∞, and in n/m2 as it approaches either some uj or ∞ (see figure 6.1),
obtaining smaller sums of the form

(6.5) S(U1, U2,M) =
∑∑

U1≤n/m2<U2
M≤m<2M

1≤n≤N

r∗2(n)e
(
Rh(n,m)

)
.

For simplicity we have also renamed R′ to R. The dependence in N will not bear any
importance in the rest of the proof and for the sake of clarity we make it implicit.

The trivial estimate S(U1, U2,M) � Rε(U2 − U1)M3 + RεM shows we can
neglect all the pieces sufficiently close to each uj , leaving at most O(logR) pieces to
estimate. Theorem 6.1 therefore follows from the following two theorems. The part
0 ≤ n/m2 < uj0 of the double sum in (6.4) is covered by theorem 6.2, while the part
n/m2 ≥ uj0 is covered by theorem 6.3 (note U ≤ N/M2 or the sum is empty).

Theorem 6.2. Given ε > 0 and 0 ≤ j < j0, for any R > 1, 2M ≤ R5/8 and
0 < U ≤ (uj+1 − uj)/4 we have∣∣S(uj+1 − 2U, uj+1 − U,M)

∣∣+ ∣∣S(uj + U, uj + 2U,M)
∣∣�M2R3/8+ε.

Theorem 6.3. Given ε > 0, for any R > 1, 2M ≤ R5/8 and uj0 ≤ U ≤ R5/4M−2

we have
S(U, 2U,M)� UM2R3/8+ε.

6.3. Weyl step

In order to be able to estimate the sum S given by (6.5) using the van der
Corput method we must first get rid of the arithmetic function r2. We do this by
performing a Weyl step (cf. §4.4).

Proposition 6.4. Let S as before and fix ε > 0. For any 1 ≤M ≤ R5/8, 0 < U1 <
U2 ≤ R5/4 and 1 ≤ L�M , satisfying U2 − U1 = U and U2L+ 1� UM , we have∣∣S(U1, U2,M)

∣∣2 � Rε(U2M6L−1 + UM3T )

where T = T (U1, U2,M,L) is given by

(6.6) T = 1
L

∑
1≤`≤L

∣∣∣∣∣∣∣∣
∑∑

U1≤n/(m+`)2, n/m2<U2
M≤m,m+`<2M

1≤n≤N

e
(
R
(
h(n,m+ `)− h(n,m)

))∣∣∣∣∣∣∣∣.

Proof. Consider

ψn,m =
{
e
(
Rh(n,m)

)
if U1 ≤ n/m2 < U2, M ≤ m < 2M and n ≤ N,

0 otherwise.
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It suffices to prove the inequality when L is an integer. We may therefore write

LS =
∑

M−L≤m<2M

∑
U1m2≤n<U2(m+L)2

r∗2(n)
∑

1≤`≤L
ψn,m+`.

The length of the first sum is�M and the length of the second one� UM2, hence
squaring and applying Cauchy-Schwarz,

L2S2 � RεUM3 ∑
M−L≤m<2M

∑
U1m2≤n<U2(m+L)2

∑
1≤`1,`2≤L

ψn,m+`1ψn,m+`2 .

Separating the diagonal contribution `1 = `2 and interchanging the summation
order, which can be done because ψn,m keeps track of the summation domain,

L2S2 � RεU2M6L+RεUM3<
∑

1≤`2<`1≤L

∑
n

∑
m

ψn,m+`1ψn,m+`2 .

To obtain the desired inequality it is enough to perform the change of variables
m 7→ m− `2 and group the terms corresponding to each value of ` = `1 − `2. �

6.4. The function h

In this section we prove the estimates we need about the function h. Note that
the convexity of −f implies that −f ′ : [0, r∞)→ R+ is one-to-one, and therefore its
inverse function φ is well-defined.

Lemma 6.5. We have the identity
∂

∂m
h(n,m) = F

(
n/m2) where F (u) = f

(
φ(
√
u)
)
.

Proof. The supremum sup{~x · ~n : ~x ∈ K} defining g(~n) is clearly attained on
a point ~x0 on the boundary of K which is a critical point for the function ~x · ~n.
By geometrical considerations this can only happen if the tangent plane at ~x0 is
orthogonal to ~n, leaving only two possibilities for ~x0. The supremum is therefore
always attained on the point whose unit outer normal vector coincides with ~n/‖~n‖.

After the previous considerations, the function h(n,m) = g
(√
n, 0,m

)
form > 0

must be univocally determined by

h(n,m) = r
√
n+ f(r)m where f ′(r) = −

√
n

m
.

Differentiating implicitly with respect to m,

∂

∂m
h(n,m) =

√
n

mf ′′(r)

(√
n

m
+ f ′(r)

)
+ f(r).

The first term vanishes, while f(r) = F
(
n/m2) as desired. �

The estimates for h near the “bad” points uj will depend on the order of van-
ishing of f ′′′(r). By definition, each uj is the preimage by the function φ(

√
u) of a

zero rj of f ′′′(r), except the last one which is added for convenience. If rj 6= 0 we
define dj as the unique non-negative integer satisfying f ′′′(r) � (r− rj)dj as r → rj .
For r0 = 0 we define d0 as the unique non-negative integer satisfying f ′′′(r) � r2d0+1

as r → 0+. We also set d∞ = −5/2.

Lemma 6.6. We have F ′(u) � (1 + u)−3/2 for 0 ≤ u <∞. We also have F ′′(u) 6= 0
for u 6= uj, 0 ≤ j ≤ j0, and

F ′′(u) � (u− uj)dj as u→ uj and F ′′(u) � ud∞ as u→∞.
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Proof. Let k(r) denote the curvature of r 7→
(
r, f(r)

)
, which admits the explicit

formula

(6.7) f ′′(r) = k(r)
(
1 + |f ′(r)|2

)3/2
,

and set c(u) = k
(
φ(
√
u)
)
. Differentiating F and recalling that φ is the inverse

function of −f ′ we have F ′(u) =
[
2f ′′

(
φ(
√
u)
)]−1. Differentiating again and using

(6.7) in the form f ′′
(
φ(
√
u)
)

= c(u)(1 + u)3/2 we obtain

F ′(u) = 1
2c(u)(1 + u)3/2 ,

F ′′(u) =
f ′′′
(
φ(
√
u)
)

4
(
c(u)

)3(1 + u)9/2u1/2
.

Now all but the last claim of the lemma is clear as c(u) � 1 and φ(
√
u) has

nonvanishing derivative for u > 0, and behaves like C
√
u for some C 6= 0 as u→ 0+.

To establish the last claim, we note that by (6.7) and L’Hôpital’s rule,

k(r∞) = lim
r→r∞

f ′′(r)∣∣f ′(r)∣∣3 = lim
r→r∞

−f ′′′(r)
3
(
f ′(r)

)2
f ′′(r)

= lim
u→∞

−f ′′′
(
φ(
√
u)
)

3c(u)(1 + u)3/2u
.

Therefore f ′′′
(
φ(
√
u)
)
� u5/2 when u→∞, and F ′′(u) � u−5/2. �

We use lemma 6.6 to give estimates for some derivatives of h.

Proposition 6.7. Let (n,m) ∈
(
R+)2 with m �M . If n/m2 < uj0 let U be distance

of n/m2 to the closest ui, say uj. If n/m2 ≥ uj0 take U = n/m2 and j =∞. Then

∂3h

∂n2∂m
(n,m) � Udj

M4 .

Proof. By lemma 6.5 the partial derivative is m−4F ′′(n/m2) and the result follows
from lemma 6.6. �

Proposition 6.8. Let (n,m) ∈
(
R+)2 with m � M and fix j with dj > 0. If

U = |n/m2 − uj | is small enough, then

∂3h

∂n∂m2 (n,m) � 1
M3 .

Proof. The partial derivative here is −2m−3(F ′′(n/m2)n/m2 + F ′(n/m2)
)
. By

lemma 6.6 the function F ′ remains positive and bounded in bounded subintervals
of R+, while F ′′(n/m2)n/m2 → 0 when U → 0. �

Proposition 6.9. Let (n,m) ∈
(
R+)2 with m � M and fix j with dj > 0. If

U = |n/m2 − uj | is small enough and 1 ≤ ` ≤ UM ,

∂h

∂n
(n,m+ `)− ∂h

∂n
(n,m) = Cj

`

m(m+ `) +O

(
`Udj+1

M2

)
for some constant Cj 6= 0.

Proof. We express the left hand side as∫ `

0

∂2h

∂n∂m
(n,m+ t) dt =

∫ `

0
F ′
(

n

(m+ t)2

)
dt

(m+ t)2
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=
∫ `

0

[
F ′(uj) +

∫ n/(m+t)2

uj

F ′′(v) dv
]

dt

(m+ t)2

= F ′(uj)
`

m(m+ `) +O

(
`Udj+1

M2

)
.

To bound the error term we have applied lemma 6.6 noting that n/(m+ t)2 − uj =
O(U) for 0 ≤ t ≤ UM . �

6.5. The van der Corput estimate

In this section we use the estimates we have just obtained, together with the
van der Corput lemma, to estimate the sum (6.5) in certain ranges, covering part
of theorems 6.2 and 6.3. Up to here there is nothing essentially new in comparison
with Chamizo’s original article [15], and in fact if dj = 0 for all 1 ≤ j ≤ j0 we
readily recover the original version of theorem 6.1.

To simplify the proofs, we will assume from now on that UM ≥ R3/8, as
otherwise the trivial estimate S � RεUM3 + RεM suffices to prove the desired in-
equalities. We will also refer to the arguments of S in the statements of theorems 6.2
and 6.3 as U1 and U2 for the sake of convenience.

Proposition 6.10. Let R, M , U , U1 and U2 be as in the hypotheses of either
theorem 6.2 or 6.3, setting j =∞ in the second case. Then∑

n

e
(
R(h(n,m + `) − h(n,m))

)
� R1/2`1/2U (dj+2)/2 + R−1/2`−1/2U−dj/2M2,

where the range of the summation is U1(m+ `)2 ≤ n < min
(
U2m

2, N
)
for m �M .

Proof. By the mean value theorem and proposition 6.7 we have

∂2

∂n2
(
h(n,m+ `)− h(n,m)

)
= `

∂3h

∂n2∂m
(n, m̃) � `U

dj

M4 .

Applying now the van der Corput lemma (proposition 4.4),∑
n

e
(
R(h(n,m+ `)− h(n,m))

)
� UM2(R`UdjM−4)1/2 +

(
R`UdjM−4)−1/2

.

This concludes the proof. �

Proposition 6.11. Theorem 6.2 holds when dj = 0, 1, or when dj ≥ 2 and U �
R−5/(8dj−8).

Proof. Note that since U2 � 1 we are in position to apply proposition 6.4 as long
as we take L ≤ UM . Using proposition 6.10 to bound T (U1, U2,M,L) we obtain

(6.8) R−εM−4|S|2 � L−1U2M2 +R1/2L1/2U (dj+4)/2 +R−1/2L−1/2U (2−dj)/2M2.

We choose L = min
(
R1/2U−dj , UM

)
. If L = R1/2U−dj then using M ≤ R5/8

we obtain M−4|S|2 � R3/4+ε, as desired. Hence assume L = UM and Udj+1 <
R1/2M−1. We have

R−εM−4|S|2 � UM +R1/2U (dj+5)/2M1/2 +R−1/2U (1−dj)/2M3/2.

Using the inequality Udj+1 < R1/2M−1 on the second summand and the hypotheses
of this proposition we conclude again M−4|S|2 � R3/4+ε. �
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Proof of theorem 6.3. We proceed similarly as in the previous proof. Note that
now U2 � U and we may take 1 ≤ L ≤M in proposition 6.4. Using proposition 6.10
to bound T (U1, U2,M,L) we obtain exactly the same bound (6.8) with d∞ = −5/2:

R−εM−4|S|2 � L−1U2M2 +R1/2L1/2U3/4 +R−1/2L−1/2U9/4M2.

The choice L = min
(
R1/2,M

)
also works in exactly the same way, using U ≤

R5/4M−2 and M ≤ R5/8 (or M ≤ R1/2 if L = M), to show M−4|S|2 � U2R3/4+ε.
�

6.6. Diophantine approximation of the phase

As U gets smaller than R−5/(8dj−8) the van der Corput estimate is not good
enough to prove theorem 6.2 anymore. The reason is that the phase of the exponen-
tial sum in (6.6) is almost linear in n, as proposition 6.9 shows, and the oscillation
is not captured by a second derivative test.

Throughout this section we will assume that R, M , U , U1, U2 and j are as in
the statement of theorem 6.2, UM ≥ R5/8 (see comments in §6.5) and M ≤ m <
2M . Let Im,` =

[
U1(m + `)2,min(U2m

2, N)
]
, which we may assume non-empty by

restricting the possible values of m, and define the quantities

φ`(n,m) = R

(
∂h

∂n
(n,m+ `)− ∂h

∂n
(n,m)

)
,

Φ`(m) = min
x∈Im,`

‖φ`(x,m)‖Z.

The function φ` is the derivative of the phase of the exponential sum in n appearing
in T defined by (6.6). Since by proposition 6.7 this function is monotone in n, we
can apply Kuzmin-Landau’s lemma (proposition 4.3) yielding the bound∣∣∣∣∣ ∑

n∈Im,`

e
(
R(h(n,m+ `)− h(n,m))

)∣∣∣∣∣� (
Φ`(m)

)−1
.

Suppose we can find another bound H` for the same exponential sum, this time
uniform in m, to apply in those cases when Φ` ≈ 0. Then knowing very little
about the distribution of the values Φ`(m) we can find a good bound for T . The
underlying idea here is to gain from some control of the spacing. In [10] and [59] this
is accomplished via large sieve inequalities, while we introduce the spacing through
the following simple result:

Lemma 6.12. Assume we have a finite sequence of points am ∈ [0, 1
2 ] satisfying for

some A,B ≥ 0 the following condition:

#{m : am ≤ x} ≤ A+Bx for every 0 ≤ x ≤ 1/2.

Then for any H > 0 we have∑
m

min{H, a−1
m } ≤ AH +B

(
1 + | logH|

)
.

Assuming, in our setting, that A`, B` and H` are functions of ` satisfying that
`A`H` and `B` are non-decreasing, and H` is bounded above and below by powers
of R, it follows from this result that for any fixed ε > 0,

(6.9) T (U1, U2,M,L)� Rε
(
ALHL +BL

)
.
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Proof of lemma 6.12. Let us say that the finite sequence is 0 ≤ a1 ≤ a2 ≤ · · · ≤
aN ≤ 1/2, and assume B > 0 (as the case B = 0 is trivial). Note that, by hypothesis,
m ≤ A + Bam. Let f : [0, 1

2 ] → R be any non-increasing function and extend it to
the negative real numbers as the constant function f(0). Then∑

m

f(am) ≤
∑
m

f

(
m−A
B

)
≤ B

∫ 1/2

−A/B
f(x) dx = Af(0) +B

∫ 1/2

0
f(x) dx.

The result follows applying this inequality with f(x) = min{H,x−1}. �

The upper bound H` will be either the trivial estimate UM2, or the second
term in the van der Corput estimate given by proposition 6.10 (the first one may
be neglected in the range U � R−5/(8dj−8), UM ≥ R3/8). The pair (A`, B`) will be
given by one of the following two propositions.

Proposition 6.13. Assume Udj+1M is small enough and 1 ≤ ` ≤ UM . Then

#{m : Φ`(m) ≤ x} � 1 + R`

M2 +M

(
1 + M2

R`

)
x for any 0 ≤ x ≤ 1/2.

Proof. Choose for each pair (m, `) a point xm ∈ Im,` (depending implicitly on `)
satisfying

Φ`(m) = ‖φ`(xm,m)‖Z.

By the mean value theorem, φ`(xm+1,m+ 1)− φ`(xm,m) equals

R`
∂3h

∂n∂m2 (x1, y1) +R`(xm+1 − xm) ∂3h

∂n2∂m
(x2, y2),

for some points (x1, y1), (x2, y2) lying in the rectangle

[U1(m+ `)2, U2(m+ 1)2]× [m,m+ `+ 1].

The function x/y2 over this rectangle satisfies

U1(1− 4M−1) ≤ x/y2 ≤ U2(1 + 4M−1),

and since UM ≥ R3/8 we have |uj − xi/y2
i | � U for i = 1, 2. Using the estimates

provided by propositions 6.7 and 6.8,

(6.10) φ`(xm+1,m+ 1)− φ`(xm,m) � R`

M3 +O

(
R` · UM2 · U

dj

M4

)
� R`

M3 ,

the sign of the left hand side being always the same.
Since M ≤ m < 2M , we deduce from (6.10) that the number of integers k

satisfying |φ`(xm,m)−k| ≤ 1/2 for some m is at most a constant times 1 +R`M−2.
On the other hand we also deduce from (6.10) that for each of those k and any x ≥ 0

#{m : |φ`(xm,m)− k| ≤ x} � 1 +R−1`−1M3x.

Therefore,

#{m : Φ`(m) ≤ x} �
(

1 + R`

M2

)(
1 + M3

R`
x

)
for every 0 ≤ x ≤ 1/2. �

Proposition 6.14. Fix ε > 0. For U small enough and 1 ≤ ` ≤ UM we have

#{m : Φ`(m) ≤ x} � Rε
(
1 +R`Udj+1 +M2x

) (
0 ≤ x ≤ 1/2

)
.
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Proof. Let Cj the constant involved in proposition 6.9, and assume that we have∥∥∥∥Cj R`

m(m+ `)

∥∥∥∥
Z
≤ x for some x ≥ 0.

This means that there exists an integer k = k(m, `) satisfying

|CjR`− km(m+ `)| ≤ m(m+ `)x�M2x.

In particular,mmust divide a certain integer km(m+`) lying in the interval centered
at CjR` of half-length a constant times M2x. Since there are O(1 +M2x) of these
integers, and each has at most O(Rε) divisors, we conclude

#
{
m :

∥∥CjR`/(m(m+ `))
∥∥
Z ≤ x

}
� Rε

(
1 +M2x

)
.

Replacing x by x+O
(
R`Udj+1M−2) the result follows from proposition 6.9. �

This last argument is remarkably similar to the one used in §5.2 to prove Popov’s
result for the parabola, and later employed again in the same chapter for counting
points inside elliptic paraboloids. They are, in some sense, the same argument. In
chapter 5 it was used to show that the coefficient m/R of the quadratic form in
n forming part of the phase function was very seldom close to rational numbers
with big denominators. Recall we only did Poisson summation in one variable; if
we had done it in every variable then this coefficient would essentially had been
replaced by its inverse R/m (similarly to how theta functions transform, cf. §2.8).
In this setting the same divisibility argument can be adapted to show that R/m
is seldom close to a rational of small denominator. Now, here we were forced to
apply a Weyl step to get rid of the function r∗2(n), gaining one derivative in the
m variable, essentially replacing R/m by R/m2 (nevermind the parameter `). The
same divisibility argument still shows that R/m2 is seldom close to a rational number
with small denominator, although for our purposes we only need to know that it is
seldom close to an integer (k may be replaced by p/q in the previous proof to obtain
a stronger result).

If we compare the spacing provided by propositions 6.13 and 6.14, we notice
that the slope of the bound is much more step in the second case, but also in this
case the independent term decreases to Rε as U → 0. This makes sense, the first
proposition gains spacing from purely analytic methods, blind to whether the curve
looks like a parabola or not. On the other hand, the second proposition is obtaining
the spacing by using arithmetic properties of this curve, so it can only work well
if the curve is really close to a parabola, and this happens precisely when we are
really close to some uj . Comparing the independent terms we might expect the
bounds derived from proposition 6.14 to be sharper when M2Udj+1 � R−ε, and in
particular when U � R−5/(4dj+4)−ε. This is pretty close to the truth, as we see below
in the statements of propositions 6.15 and 6.16, where the +4 in the denominator
of the exponent is replaced by either −16 or +24. The proof of the first one uses
exclusively the bounds derived from proposition 6.13, while the second one uses only
the ones derived from proposition 6.14.

The following two propositions, together with proposition 6.11 in §6.5, complete
the proof of theorem 6.2, and hence also the proof of theorem 6.1.

Proposition 6.15. If U � R−5/(8dj+8) for a sufficiently small constant then theo-
rem 6.2 holds when dj ≤ 4, or when dj ≥ 5 and U � R−5/(4dj−16).



6.6. DIOPHANTINE APPROXIMATION OF THE PHASE 133

Proof. We apply proposition 6.4 to bound S with L = R−3/4U2M2, which always
lies in the interval [1, UM ]. Using (6.9) with (AL, BL) given by proposition 6.13
(note the hypotheses imply Udj+1M is small enough) we obtain

(6.11) R−εM−4|S|2 � R3/4 + UHL

M

(
1 + RL

M2

)
+ U

(
1 + M2

RL

)
.

We choose either HL = UM2 or HL = R−1/8U−(dj+2)/2M (second term in proposi-
tion 6.10) depending on whether RL/M2 ≤ 1 or not. In the first case, the right
hand side of (6.11) may be bounded above by R3/4 + U2M + R−1/4U−1, and
using M ≤ R5/8 and U ≥ R−1/4 (from UM ≥ R3/8) we conclude M−4|S|2 �
R3/4+ε. In the second case, the right hand side of (6.11) may be bounded above
by R3/4 + R1/8U−(dj−4)/2 + U , which also leads to M−4|S|2 � R3/4+ε under the
hypotheses of this proposition. �

Proposition 6.16. Theorem 6.2 holds when U � R−5/(4dj+24).

Proof. We proceed similarly as in the proof of proposition 6.15. We apply again
proposition 6.4 to bound S with L = R−3/4U2M2, and use (6.9) with (AL, BL) given
by proposition 6.14 to obtain

(6.12) R−εM−4|S|2 � R3/4 + UHL

M

(
1 +RLUdj+1)+ UM.

We choose either HL = UM2 or HL = R−1/8U−(dj+2)/2M depending on whether
RLUdj+1 ≤ 1 or not. In the first case (6.12) shows that M−4|S|2 � R3/4+ε is
satisfied trivially, while in the second case the right hand side of (6.12) may be
bounded above by R3/4 +R1/8U (dj+6)/2M2 + UM , which also leads to M−4|S|2 �
R3/4+ε under the hypothesis of this proposition. �





Appendix: toolbox

A.1. Poisson summation

Let f : R → C be a function with decay f(x) = O
(
x−1−ε) and uniformly

ε-Hölder for some ε > 0. Then ∑
n∈Z

f(n) =
∑
n∈Z

f̂(n).

To prove the formula above note that∑
|n|≤N

f̂(n) =
∫ +∞

−∞
f(t)DN (t) dt =

∑
n∈Z

∫ 1/2

−1/2
f(n− t)DN (t) dt

where DN is the Dirichlet kernel of order N . By Fubini we may interchange the last
sum with the integral to obtain∑

|n|≤N
f̂(n) =

∫ 1/2

−1/2
g(−t)DN (t) dt

where g(x) =
∑
n∈Z f(n + x). When we take the limit N → ∞ the right hand side

corresponds to the Fourier series of the periodic function g evaluated at 0, and hence
converges to g(0) provided that g has some regularity at this point. Since

|g(h)− g(0)| ≤
∑
|n|≤M

|f(n+ h)− f(n)|+O
(
M−ε

)
�Mhε +M−ε,

taking M = bh−ε/(ε+1)c we see that g is ε2/(ε+ 1)-Hölder at zero.
The d-dimensional version of the same formula states

∑
~n∈Zd f(~n) =

∑
~n∈Zd f̂(~n)

provided that f(x) = O
(
x−d−ε

)
and f is uniformly ε-Hölder in each variable for some

ε > 0. To prove this result one can either adapt the proof above or, maybe under
slightly stronger regularity hypotheses to ensure f̂ has enough decay, iterate the
one-dimensional Poisson formula in each of the variables.

A.2. Summation by parts

The idea is simple: we know how to bound
∑m
n=1 an for every m and we want

to bound
∑m
n=1 anbn, where the bn vary “smoothly”. We can do the following: let

SN =
∑N
n=1 an and put S0 = 0. Then an = Sn − Sn−1 and

m∑
n=1

anbn =
m∑
n=1

(Sn − Sn−1)bn =
m∑
n=1

Snbn −
m−1∑
n=0

Snbn+1

=
m−1∑
n=1

Sn(bn − bn+1) + Smbm.

Now we can estimate the sum termwise, using a crude bound or the mean value
theorem to estimate |bn − bn+1| and the bounds we had for Sn. An equivalent
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form, sometimes easier to estimate, for the sum on the right hand side when bt is a
differentiable function of t is −

∫m
1 S[t] dbt.

Exactly the same idea can be carried out in k variables. Let SN1,...,Nk =∑
1≤ni≤Ni an1,...,nk with the convention SN1,...,Nk = 0 if any Ni ≤ 0. Then to isolate

an1,...,nk we must apply a kind of inclusion-exclusion principle. For example, for
k = 2 we have an1,n2 = Sn1,n2 − Sn1−1,n2 − Sn1,n2−1 + Sn1−1,n2−1, as is easily shown
by a diagram. In general,

an1,...,nk =
∑

δi∈{0,1}
(−1)δ1+···+δkSn1−δ1,...,nk−δk .

Multiplying by bn1,...,bk , summing again and performing in each sum the reindexing
we obtain the general summation by parts formula:∑

ni≤mi
an1,...,nkbn1,...,nk =

∑
ni≤mi−1

Sn1,...,nk

∑
δi∈{0,1}

(−1)δ1+···+δkbn1+δ1,...,nk+δk + Ω

where Ω are the boundary terms given by

Ω =
∑

∅6=Π⊂{1,...,k}

∑
ni=mi for i∈Π
ni≤mi−1 for i/∈Π

Sn1,...,nk

∑
δi=0 for i∈Π

δi∈{0,1} for i/∈Π

(−1)δ1+···+δkbn1+δ1,...,nk+δk .

Note the formula admits a more compact form, as this expression for Π = ∅ evaluates
to the sum we have set apart above. Also, as with the unidimensional case, the right-
most sum can be turned into integrals for ease of estimation when b is a differentiable
function of its subindices. In this case it equals:

(−1)k−#Π
[ ∫

· · ·
∫

ni≤ti≤ni+1 for i/∈Π

(∏
i/∈Π

∂

∂ti

)
bt1,...,tk

∏
i/∈Π

dti

]
ti=ni for i∈Π

.

A.3. Kernels of summability

Let an be a sequence of complex numbers summing a, i.e. a =
∑
n≥0 an.

Suppose we have another sequence bn(t) depending on a parameter t ∈ R+, uniformly
bounded in n and t, satisfying limt→∞ bn(t) = 1 for all t > 0 and for some constant
C > 0, ∑

n≥0
|bn+1(t)− bn(t)| < C for any t > 0.

Then
a = lim

t→∞

∑
n≥0

anbn(t).

Of course the point where we are taking the limit is unimportant. The usual Abel
summation, for example, corresponds to bn(t) = tn and t → 1−. A much more
general theorem is provided by Zygmund in theorem III.1.2 of [98].

The proof of the result is as follows. Without loss of generality we may assume
a = 0, subtracting a constant from a0 otherwise. Hence for every ε > 0 we may find
some N > 0 such that the partial sums Sn =

∑n
m=0 am are bounded by ε for every

n ≥ N . Summing by parts,∣∣∣∣∣
∞∑
n=1

anbn(t)
∣∣∣∣∣ ≤

N−1∑
n=0
|Sn| |bn+1(t)− bn(t)|+ ε

∑
n≥N
|bn+1(t)− bn(t)|.

The second term is bounded by Cε while the first one goes to zero as t→∞.



A.4. EULER-MACLAURIN FORMULA 137

A.4. Euler-Maclaurin formula

The Euler-Maclaurin formula is a powerful relation between sums and integrals
which works in both ways: it can be used to estimate integrals by sums or, in
our case, to estimate sums involving (hopefully) easier-to-estimate integrals. The
formula states that for any k ≥ 0, a, b ∈ Z and f ∈ C2k+1([a, b]),

b∑
n=a

f(n) =
∫ b

a
f(t) dt+ f(a) + f(b)

2

+
k∑

m=1

B2m
(2m)!

(
f (2m−1)(b)− f (2m−1)(a)

)

+ 1
(2k + 1)!

∫ b

a
B2k+1

(
{t}
)
f (2k+1)(t) dt.

The sum on the right hand side is understood to vanish for k = 0. The last term,
although explicit, is usually regarded as the error term. The polynomial Bn(x) is
the n-th Bernoulli polynomial, defined inductively by B1(x) = x − 1/2, B′n(x) =
nBn−1(x) and

∫ 1
0 Bn(x) dx = 0, and for n ≥ 2, Bn = Bn(0) = Bn(1) the n-th

Bernoulli number. In particular, B2k+1
(
{t}
)
is a 1-periodic function with vanishing

integral on each period. If f ∈ C2k+2([a, b]), integrating by parts, the error term
equals

B2k+2
(2k + 2)!

(
f (2k+1)(b)− f (2k+1)(a)

)
+O

(
var

a≤x≤b
f (2k+1)(x)

)
where var stands for the total variation. The formula is also often employed with
non-integer limits A and B, in which case it may be applied to a = dAe and b = bBc.

To prove the formula, note it suffices to show

f(a) + f(a+ 1)
2 =

∫ a+1

a
f(t) dt+

k∑
m=1

B2m
(2m)!

(
f (2m−1)(a+ 1)− f (2m−1)(a)

)

+ 1
(2k + 1)!

∫ a+1

a
B2k+1

(
t− a

)
f (2k+1)(t) dt,

as then summing this formula over a, a+ 1, . . . , b− 1 we obtain the formula above.
The latter formula is just an exercise of integration by parts, starting from the
integral

∫ a+1
a 1 · f , as ∂

∂tB1(t− a) = 1 and ∂
∂tn
−1Bn(t− a) = Bn−1(t− a). One has

to use Bn(0) = Bn(1) = Bn for n ≥ 2, the n-th Bernoulli number, which vanishes
for n odd. All these facts can be shown from the generating series text/(et − 1) =∑
n≥0Bn(x)tn/n!.





Introducción y conclusiones1, 2

El objetivo inicialmente propuesto para esta tesis fue el de resolver varios pro-
blemas, pequeños pero con cierto interés, pertenecientes a la intersección entre la
teoría analítica de números y el análisis armónico. Si tuvieramos sin embargo que
elegir a posteriori un leitmotiv para esta exposición, sería sin duda la función theta
de Jacobi:

(II.1) θ(z) =
∑
n∈Z

eπin
2z.

Esta función, claramente holomorfa en el semiplano superior, resulta ser una forma
modular. Esto significa que satisface una ecuación funcional con respecto a la acción
del grupo SL2(Z) sobre el semiplano superior, y que es de crecimiento como mucho
polinomial cuando =z → 0+.

Jacobi fue el primero en estudiar sistemáticamente las propiedades de esta fun-
ción, a raíz de su trabajo [63] sobre integrales elípticas. Una integral elíptica es una
función de la forma

(II.2)
∫ x

c
R
(
t,
√
P (t)

)
dt

donde c es una constante, R una función racional y P un polinomio de grado tres o
cuatro. Estas integrales aparecen de manera natural al intentar calcular la longitud
de un arco de elipse (de aquí la nomenclatura), así como en ciertos problemas de
índole física, incluyendo la evolución de la distancia al Sol de un planeta y la del
ángulo de un péndulo, en función del tiempo.

Toda integral elíptica (II.2) admite una expresión cerrada en términos de fun-
ciones elementales si a estas añadimos tres familias de funciones especiales: las inte-
grales elípticas incompletas de primera, segunda y tercera especie. En particular, las
de primera especie, son funciones de la forma

F (x; k) =
∫ x

0

dt√
(1− t2)(1− k2t2)

,

donde el parámetro k recibe el nombre de módulo.
Resulta que en lugar de estudiar directamente la función F (x; k) es mucho más

conveniente centrarse en su función inversa. Esto es análogo a lo que pasa con las
funciones logaritmo o arcoseno, que ambas admiten definiciones sencillas en términos
de una integral, pero sus inversas, la exponencial y el seno, disfrutan de mejores
propiedades analíticas. En particular, son funciones univaluadas y enteras en todo

1Este capítulo se incluye para cumplir con la normativa de la Universidad Autónoma de Madrid
referente a tesis presentadas en un idioma extranjero. Sintetiza el contenido del capítulo introduc-
torio y de las secciones §3.2, §5.1 y §6.1

2This chapter is included to comply with the regulations of the Universidad Autónoma de
Madrid regarding dissertations written in a foreign language. It synthesizes the contents of the
introductory chapter and of sections §3.2, §5.1 and §6.1.
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Figura II.1. La función seno elíptico para varios valores del módulo k.
En la imagen de abajo la variable x ha sido reescalada para cada valor de
k con el fin de que todos los periodos tengan longitud 2π.

el plano complejo. De manera análoga, el seno elíptico sn, definido por la relación
F (sn(x, k); k) = x, es una función univaluada meromorfa en todo el plano complejo.
Esta función fue estudiada por Legendre y Abel, y más tarde en profundidad por
Jacobi. En la figura II.1 se puede apreciar su gráfica para x real: el seno elíptico es
un función periódica cuyo periodo depende del valor del módulo k.

Sorprendentemente el seno elíptico, para k 6= 0 (ya que para k = 0 coinci-
de con el seno usual), tiene un segundo periodo complejo. Es a raíz de esto que a
las funciones meromorfas en el plano complejo que tienen dos periodos linealmente
independientes sobre R se las llama funciones elípticas. Estas funciones son asombro-
samente rígidas, y de hecho las únicas funciones elípticas enteras son las constantes.
Se deduce de este hecho que siempre que tengamos dos funciones elípticas cuyos
periodos coincidan y cuyos ceros y polos también, una de ellas ha de ser un múl-
tiplo constante de la otra. Esto constituye una poderosa herramienta para probar
identidades que a priori no son en absoluto obvias.

Jacobi se dió cuenta de que la función de dos variables

Θ(z; τ) =
∑
n∈Z

qn
2
e2πinz donde q = eiπτ
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para τ fijo en el semiplano superior es 1-periódica en la variable z, y casi τ -periódica
en esta misma variable. Más concretamente cumple

Θ(z + 1; τ) = Θ(z; τ) y Θ(z + τ ; τ) = q−1e−2πizΘ(z; τ),

y de aquí se deduce que el cociente Θ(z+ τ/2; τ)/Θ(z+ (τ + 1)/2; τ) es una función
elíptica de periodos 1 y 2τ . Tras ajustar constantes, el valor de τ y dilatar ade-
cuadamente la variable z, Jacobi prueba usando la rigidez de las funciones elípticas
que este cociente provee una expresión alternativa para el seno elíptico. Esta nueva
expresión resulta útil tanto a la hora de probar formalmente ciertas propiedades de
sn como a la hora de calcular valores numéricamente, ya que Θ viene dada por una
serie de convergencia exponencial.

Jacobi además se percató de que la funcion Θ, siendo en la variable τ/2 una serie
de Fourier soportada en los cuadrados, se puede emplear para obtener información
sobre este conjunto de enteros. Fue mediante esta conexión que fue capaz de probar
su famoso teorema de los cuatro cuadrados:

Teorema (Jacobi). El número de formas de representar un entero n como suma
de cuatro cuadrados coincide con ocho veces la suma de sus divisores si n es impar,
y veinticuatro veces la suma de sus divisores impares si n es par.

Este teorema se puede reformular como una identidad entre dos series genera-
trices en q, una de las cuales viene dada por

(
Θ(0; τ)

)4. Probar que son la misma
función, sin embargo, no es sencillo ya que ninguna de las dos funciones depende
de la variable z, en la cual uno podría explotar la rigidez de las funciones elípticas.
Jacobi consiguió solventar esto a base de pasar por otras identidades intermedias
que involucran funciones que sí son elipticas, y luego especializando z = 0 [63].
La manera moderna de probar el mismo resultado se basa directamente en la ley de
transformación en la variable τ , que en este caso coincide con la de la forma modular
θ(τ) = Θ(0; τ) introducida en (II.1) (cf. §7.4 of [82]). De hecho, el adjetivo modular
viene de aquí: de la relación con k, el parámetro del seno elíptico, ya que cuando
se escribe sn como cociente de funciones theta el módulo k y la variable τ quedan
relacionados precisamente por una función que cumple esta ley de transformación.

Además de con las integrales elípticas, las formas modulares también están
íntimamente relacionadas con las curvas elípticas. De hecho, fueron las integrales
elípticas las que dieron origen a estas últimas. Tal y como el seno y el coseno para-
metrizan el círculo, y cumplen fórmulas de adición que se pueden usar para dotar
al círculo de su estructura de grupo usual; de la misma manera el seno elíptico,
junto con dos funciones trigonométricas elípticas más, parametrizan una curva en
un espacio tridimensional, y cumplen leyes de adición que dotan a dicha curva de
una estructura de grupo. Estas curvas luego se vio que eran equivalentes a las cur-
vas planas dadas por ecuaciones de la forma y2 = x3 + ax + b con 4a3 + 27b2 6= 0,
forma más conveniente. Si se añaden los puntos complejos que “faltan” estas curvas
resultan equivalentes a toros obtenidos al cocientar el plano complejo por un retícu-
lo, y aquí de nuevo hacen aparición las funciones elípticas como aquellas funciones
que cocientan bien y “viven” en la curva elíptica. Al final el adjetivo “elíptico” deja
patente la interrelación entre estos objetos, aunque a menudo se olvide mencionar
el origen común que tienen en el cómputo de la longitud de ciertos arcos de elipses.

La noción de forma modular, hoy en día, engloba una rica familia de funciones
que aparecen por doquier en teoría de números. Concretemos más su definición: una
forma modular es una función holomorfa f : H → C, de crecimiento a lo sumo
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polinomial cuando =z → 0+, que se transforma de la siguiente manera:

(II.3) f(γz) = µγ(cz + d)rf(z) para todo γ =
(
a b
c d

)
∈ Γ,

donde Γ es un subgrupo de índice finito de SL2(Z), γz = (az + b)/(cz + d), µγ
es una constante unimodular dependiendo de γ y al real positivo r (unívocamente
determinado por f) se lo denomina el peso de la forma modular. De esta definición
se deduce (ver capítulo 2) que f posee un desarrollo como serie de Fourier

(II.4) f(z) =
∑

n+κ∞≥0
ane

2πi(n+κ∞)z/m∞

donde n recorre los enteros, 0 ≤ κ∞ < 1 y m∞ es un entero positivo. Los coeficientes
an ∈ C son de crecimiento a lo sumo polinomial, y por tanto después de integrar
formalmente suficientes veces esta serie converge uniformemente cuando z ∈ R a una
función continua en la recta real. Generalizando esto, definamos para α > 0 la serie
formal

(II.5) fα(z) =
∑

n+κ∞>0

an
(n+ κ∞)α e

2πi(n+κ∞)z/m∞ .

La serie fα, de converger, es esencialmente una “integral α-ésima” de la función f .
La acción del subgrupo Γ sobre H que aparece en la definición de forma modular

se extiende trivialmente a una acción sobre R∪{∞}, y esto le otorga a fα un aspecto
fractal muy particular. Por ejemplo, en la figura II.2 hemos incluido el grafo de la
función

ϕ(x) =
∑
n≥1

sin(n2πx)
n2 ,

que con la notación de arriba coincide con 1
2=θ1. Esta función tiene una larga y

controvertida historia, siendo mencionada por primera vez por Weierstrass en una
charla que da frente a la academia de ciencias de Berlín en 1872. En esta charla,
centrada en funciones con poca regularidad, Weierstrass comenta que ϕ fue propues-
ta por Riemann a sus estudiantes como ejemplo de una función no diferenciable en
ningún punto, pero que, sin embargo, él no ve sencillo probarlo y prefiere presentar
de manera alternativa el (ahora más conocido) ejemplo∑

n≥0
an cos(bnπx)

para a, b satisfaciendo 0 < a < 1, b un entero positivo impar y ab > 1 + 3π/2.
A raíz de este comentario muchos autores se han interesado por la regularidad

de ϕ, y por la veracidad de las afirmaciones de Weierstrass. En particular, Butzer
y Stark [13] analizan el tema a partir de unas cartas que fueron encontradas de
Christoffel dirigida a Prym (el primero antiguo estudiante de Riemann), en las que
comentan el asunto, y la evidencia apunta a que la función ϕ jamás fue mencionada
por Riemann, y Weierstrass debió hacerse la idea equivocada a raíz de alguna con-
fusión con alguno de los estudiantes de Riemann. A pesar de esto, como los propios
autores de este artículo lo expresan, la evidencia no es sólida y quién si no Riemann
podía tener el ingenio necesario para concebir un ejemplo así.

En cualquier caso la función ϕ ha pasado a la historia conocida como “el ejem-
plo de Riemann de una función no diferenciable” (abreviadamente “el ejemplo de
Riemann”). El primero en publicar algún resultado sobre la misma fue Hardy, quien
prueba en 1916 [42], casi cincuenta años después de la intervención de Weierstrass,
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Figura II.2. El aspecto del “ejemplo de Riemann” ϕ.

que ϕ no tiene derivada en ningún irracional, ni tampoco en ningún racional sal-
vo, tal vez, en aquellos de la forma impar/impar ó par/(4n + 3). Otros cincuenta
años tendrían que pasar para que Gerver completara el resultado de Hardy [35, 36]
mostrando que ϕ no es diferenciable en aquellos racionales de la forma par/(4n+ 3)
pero sí lo es en los de la forma impar/impar, teniendo en estos derivada −π/2. Es-
to último se puede apreciar en la figura II.2 aunque, por supuesto, en la época de
Weierstrass o de Hardy era imposible conseguir una gráfica tan detallada de ϕ.

El resultado de Hardy se basa en una ingeniosa transformada integral que, apli-
cada a ϕ, devuelve θ. Esta es esencialmente un inverso de la integral de Riemann-
Liouville. Utilizando esta transformada como nexo, Hardy relaciona la regularidad
de ϕ en un punto de la recta real con el comportamiento de θ en el semiplano superior
cerca de este punto. Esto, más la ecuación funcional (II.3) que liga el tamaño de θ
cerca de un punto real con propiedades diofánticas del real en cuestión (objetivo del
artículo [45] desarrollado con anterioridad por Hardy en compañía de Littlewood) le
permiten a Hardy derivar su teorema. Esta misma idea ha sido rescatada reciente-
mente bajo el formalismo de la transformada ondícula, permitiendo a Holschneider,
Tchamitchian y Jaffard refinar los resultados de Hardy y Gerver [52, 64, 65] dando
información más precisa sobre qué condiciones Hölder cumple la función ϕ en cada
punto. En concreto, determinan el llamado exponente Hölder puntual

β(x0) = sup{s : f ∈ Cs(x0)}

donde Cs(x0) denota el espacio de aquellas funciones continuas cumpliendo para
algún polinomio P la desigualdad

|f(x)− P (x− x0)| � |x− x0|s cuando x→ x0.
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Jaffard va más allá, y es capaz de determinar también el llamado espectro de
singularidades de ϕ [64]. Este, para una función continua, se define como la aplica-
ción d : [0,∞)→ [0, 1]∪{−∞} que asocia a cada δ > 0 la dimensión de Hausdorff del
conjunto {x : β(x) = δ} si este conjunto es no vacío y −∞ en caso contrario. Jaffard
se da cuenta de que β en el caso del “ejemplo de Riemann” en los puntos irracionales
depende de cómo de bien se pueden aproximar dichos puntos por racionales de la
forma impar/impar, y es capaz de adaptar a tal efecto el clásico resultado de Jarník
y Besicovitch [66] para determinar la dimensión de estos conjuntos.

Por otro lado, Duistermaat en [24] encuentra un enfoque alternativo para tratar
la regularidad de ϕ, especialmente cerca de los racionales. Esto lo consigue integrando
la ecuación funcional (II.3) para obtener una ecuación funcional aproximada, válida
para ϕ, con un término de error que es posible controlar cerca de ciertos racionales.
De aquí deduce que alrededor de algunos racionales, a un lado o a los dos, aparecen
singularidades de tipo raíz cuadrada, las cuales son apreciables a simple vista en
la figura II.2 (por ejemplo, alrededor de 0 y a la izquierda de 1/2). Más aún, la
ecuación funcional explica la autosemejanza del grafo cerca de algunos racionales
(0, por ejemplo), alrededor de los cuales aparece una versión deformada del propio
grafo de ϕ repitiéndose con amplitud decreciente.

Ambos enfoques (tanto el de Hardy como el de Duistermaat) tienen en común
que el ingrediente principal es la ecuación funcional que cumple θ por ser una for-
ma modular (II.3). Cabe la pregunta de si para otras formas modulares se puede
hacer algo parecido. La respuesta es afirmativa, y estas técnicas con las adecuadas
modificaciones se pueden aplicar para estudiar en general la función fα definida
por (II.5). Esta investigación fue comenzada por F. Chamizo en [14], y continua-
da por Chamizo, Petrykiewicz y Ruiz-Cabello en [19] y por Ruiz-Cabello en [83],
trabajos en los que se consiguió determinar el exponente Hölder puntual bajo res-
tricciones muy fuertes en el tipo de formas consideradas y en los valores de α y del
peso de la forma modular r. Esto se debe por un lado a que emplearon la misma
definición de ondícula que Jaffard, cuando una versión ligeramente modificada re-
sulta más adecuada para tratar este problema, y por otro a que sólo consideraron la
ecuación funcional aproximada en una versión muy rudimentaria. El autor consiguió
en [80], con la inestimable ayuda de F. Chamizo, subsanar estos déficits y obtener
los teoremas que detallamos a continuación.

Nos hace falta introducir un poco de notación. Dada una matriz γ ∈ GL+(R)
definimos la función

fγ(z) = (det γ)r/2 f(γz)(
jγ(z)

)r
donde jγ(z) denota el denominador de la transformación fraccional lineal asociada
a γ. Si el grupo γ−1Γγ ∩ SL2(Z) vuelve a ser un subgrupo de índice finito, se de-
duce de la definición de forma modular (ver capítulo 2) que la función fγ es, de
nuevo, una forma modular para este nuevo grupo. En particular admite un desa-
rrollo de Fourier (II.4) que tiene asociada una integral formal (II.5). A esta última
la denotamos por fγα . Si la serie de Fourier (II.4) asociada a fγ carece de término
independiente se dice que f es cuspidal en γ∞, y si es cuspidal en todo racional se
dice que f es una forma cuspidal. Aquí, aunque no es estándar, también diremos por
conveniencia que el racional γ∞ es (o no) cuspidal para f . Además establecemos
α0 = r/2 si f es una forma cuspidal y α0 = r en caso contrario.

Teorema (Regularidad global). Sea α > 0. Se cumple:
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(i) Si α ≤ α0 la serie formal (II.5) definiendo fα diverge en un conjunto denso.
(ii) Si α > α0 la serie formal (II.5) definiendo fα converge uniformemente a

una función continua en toda la recta real. Además, fα admite dα−α0e−1
derivadas, y la última derivada es {α− α0}-Hölder continua si α− α0 /∈ Z
y s-Hölder continua para todo s < 1 en caso contrario.

(iii) Si 0 < α − α0 ≤ 1 entonces ni fα, ni su parte real ni imaginaria, son
derivables con continuidad en ningún intervalo I.

Teorema (Regularidad local en los racionales). Sea α > α0 y x un número
racional, y sea β(x) el exponente Hölder puntual de fα, <fα ó =fα. Entonces β(x) =
2α − r si f es una forma cuspidal y β(x) = α − r en caso contrario. Si además
0 < α−α0 ≤ 1 entonces fα (resp. <fα, =fα ) no es diferenciable en ningún racional
que no sea cuspidal para f . Si x es cuspidal para f entonces fα es diferenciable en
x si y sólo si α > (r + 1)/2, y en este caso la derivada viene dada por

f ′α(x) = (2π)α

(im)αΓ(α)

∫
(x)

(z − x)α−1f ′(z) dz,

donde (x) denota la semirrecta vertical que conecta x con i∞.

La regularidad en los irracionales depende de cómo de bien se aproximan estos
por racionales que no sean cuspidales para f . Más concretamente, de la siguiente
cantidad:

τx := sup
{
τ :

∣∣∣∣x− p

q

∣∣∣∣� 1
qτ

para infinitos racionales p
q
no cuspidales

}
.

Siempre se tiene la desigualdad τx ≥ 2 (ver prop. 2.3) y si τx = ∞ establecemos la
convención 1/τx = 0. Bajo estas consideraciones,

Teorema (Regularidad local en los irracionales). Sea α > α0 y x un
número irracional, y sea β(x) el exponente Hölder puntual de fα, <fα ó =fα. Si f
es una forma cuspidal entonces β(x) = α− r/2. En caso contrario,

β(x) = α−
(

1− 1
τx

)
r.

Además de estos teoremas de regularidad también somos capaces de probar una
ecuación funcional aproximada, al estimo de la de Duistermaat, que permite extraer
información precisa sobre el comportamiento de las integrales fraccionarias fα cerca
de los números racionales.

Teorema (Ecuación funcional aproximada). Sea σ ∈ SL2(R) una matriz sa-
tisfaciendo que fσ es una forma modular y que x0 = σ∞ ∈ Q. Asumamos además
que el elemento inferior izquierdo de σ es negativo. Entonces existen dos constantes
reales no nulas A, B con B > 0, dependiendo de σ, satisfaciendo:

fα(x) = Ai−αf(x0)φ(x− x0) +B|x− x0|2α(x− x0)−rfσα
(
σ−1x

)
+ E(x)

donde f(x0) = ĺım=z→∞ fσ(z) y

φ(x) =
{
xα−r si α− r /∈ Z,
xα−r log x si α− r ∈ Z.

El término de error E(x) es diferenciable con continuidad en R \ {x0} y pertenece
al espacio C2α−r+1(x0).
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Como se ha mencionado arriba, también podemos generalizar el resultado de
Jaffard determinando el espectro de singularidades d para fα en general. Cuando la
imagen de d no es discreta se dice que la función en cuestión es multifractal.

Teorema (Espectro de singularidades). Sea d el espectro de singularidades
de fα, <fα o de =fα. Entonces:

(i) Si f es una forma cuspidal:

d(δ) =


1 si δ = α− r/2,
0 si δ = 2α− r,
−∞ en caso contrario.

(ii) Si f no es una forma cuspidal:

d(δ) =


2 + 2 δ−αr si α− r ≤ δ ≤ α− r/2,
0 si δ = 2α− r y f es cuspidal en algún racional,
−∞ en caso contrario.

Las funciones fα, <fα y =fα son, por tanto, multifractales si y sólo si f no es
cuspidal.

Todos estos teoremas fueron publicados en el artículo “On the regularity of
fractional integrals of modular forms” y las pruebas aparecen detalladas en el capí-
tulo 3 de esta tesis. De hecho, en dicho capitulo no solo determinamos el exponente
Hölder puntual, sino que además complementamos estos resultados determinando
dos exponentes más relacionados, que miden diferentes aspectos locales de la regu-
laridad de fα. Estos exponentes aparecen en las investigaciones previas realizadas
por Chamizo, Petrykiewicz y Ruiz-Cabello [19].

El resto de la tesis versa sobre problemas de conteo de puntos del retículo. El
objetivo de los mismos, en una formulación bastante general, es la de estimar el
número de puntos con coordenadas enteras que quedan dentro de una región de Rd
que depende de uno o más parámetros, según estos parámetros varían. Nosotros nos
vamos a centrar en una familia particular de estos problemas: estamos interesados en
contar puntos de coordenadas enteras en RK, donde K ⊂ Rd es una región convexa
fija que queda dilatada por el factor R → ∞. Denotemos por N (R) el número
de puntos de coordenadas enteras que queda dentro de RK para cada R > 1. En
particular nos interesa particularmente el exponente

αK = ı́nf
{
α > 0 : N (R)− |K|Rd = O

(
Rα
)}
,

donde |K| denota la medida de Lebesgue d-dimensional de K.
El origen de estos problemas se ubica en la prueba de la fórmula del número

de clases de Dirichlet. Dicha fórmula, publicada por Dirichlet en 1839, en el caso de
discriminante d < 0 corresponde a la identidad

(II.6) h(d) = w

2π |d|
1/2L(1, χd)

donde h(d) es el número de clases asociado al cuerpo de números Q
(√
d
)
, el carácter

χd viene dado por el símbolo de Kronecker
(
d
·
)
y w vale 6 para d = −3, vale 4 para

d = −4 y vale 2 en el resto de los casos. Por supuesto en aquella época la teoría de
cuerpos de números estaba aún mayormente por desarrollar, pero el número de clases
se entendía como el número de formas cuadráticas ax2 + bxy + cy2 con coeficientes
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enteros y discriminante b2 − 4ac = d que existen módulo relación de equivalencia
por matrices en SL2(Z). Esta misma definición es la que lleva más o menos direc-
tamente a una prueba de la identidad (II.6), esencialmente aplicando el método de
la hipérbola de Dirichlet a la suma de carácteres w

∑
m|n

(
d
m

)
, que proporciona el

número R(n) de representaciones del entero n por un conjunto de representantes
completo de las clases de equivalencia de formas cuadráticas de discriminante d. El
argumento completo puede ser consultado en la versión en inglés de la introducción
de esta tesis o en el capítulo §6 del libro de Davenport [23]. El punto clave está en
interpretar geométricamente la cantidad

∑
n≤N R(n) como el número de puntos de

coordenadas enteras dentro de las h(d) elipses dadas por Qi(x, y) ≤ N , donde Qi
recorre dichos representantes, cantidad que asintóticamente crece como la suma de
las áreas delimitadas por dichas elipses.

La fórmula del número de clases (II.6), al menos para el caso de discriminante
negativo, era conocida por Gauss con anterioridad. De hecho, el lector puede com-
probar que esta aparece en el artículo [34], publicado dos años antes que el trabajo
de Dirichlet. De hecho, se piensa que Gauss estaba al tanto de dicha fórmula des-
de hacía muchos años, pero su lema “pauca sed matura” (pocos, pero maduros) le
impedía publicar los resultados hasta haber extraído el máximo partido de los mis-
mos. En particular, en este artículo, para probar la fórmula Gauss da un argumento
elemental demostrando que cuando K es una elipse el exponente αK definido an-
teriormente está acotado superiormente por 1. Este argumento consiste en cortar
el plano en cuadrados de lado uno centrados en los puntos de coordenadas ente-
ras; estableciendo una relación biunívoca entre cada cuadrado de área unidad y su
punto central. Al final, contar puntos de coordenadas enteras contenidos en la elip-
se es casi como contar cuadrados de lado uno contenidos en la elipse, excepto por
aquellos cuadrados que tocan el borde de la elipse. La cantidad de estos cuadrados
“malos” es del mismo orden que el diámetro que la elipse, y por tanto crece como
R, en contraposición al área que crece como R2. Este mismo argumento aplicado en
general a un cuerpo convexo K cualquiera d-dimensional con frontera suave muestra
αK ≤ d− 1.

En honor a Gauss, el problema de determinar αK cuando K es el círculo unidad
del plano centrado en el origen recibe el nombre de problema del círculo de Gauss.
Este problema no solo ha atraído una gran atención, sino que sigue abierto en la
actualidad. El primero en mejorar el resultado de Gauss fue Sierpiński [89], quien
en 1906 usando ideas de Voronoï prueba αK ≤ 2/3. La cota para αK se ha ido
mejorando lentamente; actualmente la mejor conocida es αK ≤ 517/824 obtenida
por Bourgain y Watt en 2017 [11]. Por otro lado, Hardy y Landau en 1915 [41, 73]
prueban independientemente αK ≥ 1/2, estableciendo αK = 1/2 como la conjetura
más extendida hasta la actualidad.

Hoy en día existen multitud de artículos en la literatura en los que se obtienen
cotas más o menos fuertes para αK cuandoK pertece a diversas familias concretas de
cuerpos convexos. La mayor parte de estos resultados hacen uso de la transformada
de Fourier como primer paso, en la forma de sumación de Poisson, para transformar
el problema de acotar el término de error N (R)− |K|Rd por el de acotar una suma
exponencial. Con el fin de ilustrar estas ideas esbozamos a continuación una prueba
moderna del anteriormente mencionado resultado de Sierpiński para el círculo. Note-
mos que si χR es la función característica del círculo de radio R centrado en el origen,
la suma

∑
~n χR(~n) coincide justamente con N (R), mientras que χ̂R(~0) = |K|Rd, con
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lo que podemos pensar que el término de error viene dado por
∑
~n6=~0 χ̂R(~n). Sin em-

bargo la poca regularidad de la función χR impide que esta última suma converja,
haciendo falaz la aplicación de la fórmula de sumación de Poisson. La solución es
regularizar antes χR convolucionando con una función suave de soporte compacto.
En efecto, elijamos para cierto h = h(R) ≤ 1 una función meseta radial η ∈ C∞(R2)
satisfaciendo

η ≥ 0,
∫
η = 1 y supp η ⊂ B(0, h).

Para cualquier ε > 0, la suma
∑
~n χR∗η(~n) se ha modificado en a lo sumo O

(
hR1+ε),

ya que la diferencia con
∑
~n χR(~n) queda mayorada por el número de puntos de

coordenadas enteras en la corona circular de radios R+h y R−h; es decir, mayorada
por ∑

(R−h)2≤m≤(R+h)2

r2(m)

donde r2(m) denota el número de maneras de escribir m como suma de dos cua-
drados. La función r2 cumple la cota r2(m) � mε para todo ε > 0 (véase §16.9 de
[46]), con lo que queda justificada la afirmación anterior. Por tanto,

N (R) +O
(
hR1+ε) =

∑
~n∈Z2

χR ∗ η(~n) = πR2 +
∑

~06=~n∈Z2

χ̂R(~n) · η̂(~n)

= πR2 +R
∑
n≥1

r2(n)η̂
(√
n
)J1

(
2πR
√
n
)

√
n

,

donde hemos escrito η̂
(√
n
)
en lugar de η̂

(√
n, 0

)
y J1 denota la función de Bessel

de primera especie. Sustituyendo la archiconocida estimación asintótica (cap. VII
de [94])

(II.7) J1(x) ∼
√

2
πx

cos
(
x− π

4

)
� 1√

x
,

obtenemos

N (R) +O
(
hR1+ε) = πR2 +O

R1/2h−5ε/2 ∑
1≤n≤h−2−2ε

1
n3/4

+O
(
h−εRε

)
= πR2 +O

(
h−

1
2−3εR1/2

)
.

Basta ahora elegir h = R−1/3.
El mismo argumento permite obtener cotas mejores si se aprovecha la cance-

lación proveniente del signo del coseno en (II.7). En general, cuando K ⊂ Rd con
d ≥ 2 se puede proceder de la misma manera siempre y cuando la frontera de K sea
suficientemente regular. En particular, si K es un cuerpo convexo cuya frontera es
una variedad (d − 1)-dimensional con curvatura de Gauss positiva (lo que llamare-
mos un cuerpo convexo suave) se tienen estimaciones asintóticas para χ̂R análogas
a (II.7) y el problema de acotar αK también se reduce a la estimación de una suma
exponencial. Para esto último es común emplear el método de van der Corput [38],
aunque para ciertas familias de cuerpos muy particulares la suma exponencial se
conoce bien y cabe aplicar otras técnicas. Para cuerpos convexos suaves la conjetura
(que debe tomarse con un poco de precaución) más extendida es αK ≤ 1/2 para
d = 2 (análogamente a lo que pasa con el círculo) y αK = d− 2 para d ≥ 3. Nuestro
desconocimiento a la hora de tratar sumas exponenciales, sin embargo, hace que
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para muy pocas familias de cuerpos se sepan obtener estos resultados. Por ejemplo,
para las bolas y para los elipsoides racionales se ha probado la conjetura para d ≥ 4,
y para los irracionales si d ≥ 5 [37]. El mejor resultado para d = 2 (el círculo) es el
ya mencionado de Bourgain y Watt, y para d = 3 (la esfera) se sabe αK ≤ 21/16,
probado por Heath-Brown [47]. Para cuerpos convexos suaves en general las mejores
cotas superiores conocidas son αK ≤ 131/208 por Huxley [59], y αK ≤ d− 2 + r(d)
con r(d) = 78/158 para d = 3 y r(d) = (d2 + 3d+ 8)/(d3 + d2 + 5d+ 4) para d ≥ 4,
ambos resultados por Guo [39]. Todo esto está contado con mucho más detalle en
el capítulo 4 de esta memoria.

En el artículo [15] F. Chamizo muestra que para cuerpos convexos suaves tri-
dimensionales que sean invariantes por rotaciones respecto al eje z basta con las
estimaciones más sencillas de van der Corput para obtener αK ≤ 11/8. Compárese
con lo que se sabe para la esfera (αK ≤ 21/16) y en general (αK ≤ 213/158). Sin
embargo, a la hora de obtener este resultado fue necesario imponer que la tercera
derivada de la generatriz de K no se anulara en ningún punto. Más concretamente,
si K es el sólido de revolución generado por rotación alrededor del eje z de la curva

γ(t) =


(
t, 0, f1(t)

)
0 ≤ t ≤ r∞(

2r∞ − t, 0, f2(2r∞ − t)
)

r∞ ≤ t ≤ 2r∞

z

r

z= f1(r)

z= f2(r)

r∞

entonces se pedía que ninguna de las funciones 1
rf
′′′
i (r) (extendidas por continuidad

a r = 0) se anulara en 0 ≤ r < r∞. Este tipo de condiciones aparecen a menudo al
aplicar el método de van der Corput, y no suelen ser síntoma de ningún fenómeno
subyacente inherente al problema en cuestión, sino simplemente resultado de nuestra
incapacidad para entender bien dichas sumas. Con esta idea en mente nos propusimos
F. Chamizo y yo eliminar, o al menos debilitar, la condición sobre 1

rf
′′′
i (r). Para ello

el primer paso fue estudiar el caso más patológico: cuando f ′′′i (r) es idénticamente
nula para i = 1, 2. La forma resultante es la del doble paraboloide de revolución

(II.8)
{
|z| ≤ c− (x2 + y2)

}
,

para c > 0. Este cuerpo de revolución no tiene frontera suave: la frontera es singular
en z = 0, pero aún así cumple la interesante propiedad de que la suma exponencial
obtenida tras realizar sumación de Poisson es una versión truncada de la forma
modular θ2, donde θ es la función theta de Jacobi (II.1). Esto permite usar una
versión simplificada del método del círculo para dar cotas lo suficientemente fuertes
sobre la suma exponencial como para deducir αK ≤ 1:

Teorema. Sea K el paraboloide de base elíptica
{
|z| ≤ c − Q(~x)

}
, donde Q es

una forma cuadrática (d− 1)-dimensional, definida positiva, cuya matriz A = (aij)
cumple a12/a11, a22/a11 ∈ Q. Entonces αK ≤ d− 2.

La prueba de este resultado está contenida en el capítulo 5 de esta memoria, y
en el artículo “Lattice points in elliptic paraboloids” [20] (conjunto con F. Chamizo).
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Al comparar nuestro resultado con la literatura existente nos dimos cuenta de que
el caso bidimensional (el de la doble parábola

{
|y| ≤ c − x2}) había sido resuelto

1975 por Popov [81], y su análogo en dimensión superior (II.8) había sido conside-
rado por Krätzel en 1991 y 1997 [71, 72] obteniendo resultados más débiles que el
del teorema enunciado. Hasta donde nos ha sido posible indagar, nuestro resultado
proporciona el primer ejemplo de cuerpo tridimensional curvado para el cual se ha
conseguido demostrar la conjetura. Tanto en el artículo de investigación como en el
capítulo correspondiente de esta memoria aprovechamos para dar también algunos
Ω-resultados más fuertes que los hasta ahora conocidos para casos particulares de
la parábola y de los paraboloides en d ≥ 3.

De vuelta al problema original concerniendo cuerpos de revolución convexos
suaves, resultó que las técnicas utilizadas para el paraboloide eran demasiado parti-
culares para ser inmediatamente aplicables al problema de debilitar la condición de
no anulabilidad de 1

rf
′′′
i (r). Sin embargo si dan cierta intuición de qué ocurre cuando

estas funciones tienen ceros de orden muy grande. Supongamos que los ceros de f ′′′i
son aislados. Si son de orden pequeño, entonces refinando los argumentos del ar-
tículo original de Chamizo [15] mediante una aplicación más enrevesada del método
de van der Corput se recupera la cota αK ≤ 11/8. Cuando los ceros son de orden
mayor, la parte de la suma exponencial correspondiente a un entorno pequeño de la
frontera de K cerca del cero de f ′′′i resulta tener cierta aritmética (al fin y al cabo
en esta zona la forma de K es muy similar a la de un paraboloide de revolución), y
de nuevo podemos recuperar αK ≤ 11/8 involucrando un argumento reminiscente al
empleado para acotar la suma exponencial en el problema del paraboloide. Al final,
mezclando ambos enfoques, obtenemos:

Teorema. Supongamos que K es un cuerpo convexo, de frontera suave, curvatura
de Gauss positiva e invariante por rotaciones alrededor del eje z. Si además las fun-
ciones generatriz fi definidas arriba cumplen que los ceros de sus terceras derivadas
f ′′′i son de orden finito, entonces αK ≤ 11/8.

En particular este teorema abarca el caso de cuerpos con frontera analítica. Para
probar este resultado dedicamos el capítulo 6 de esta memoria, contenido también
incluido en el artículo “Lattice points in revolution bodies (II)” [21] (conjunto con
F. Chamizo).
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List of symbols

Vinogradov-Landau-Hardy notation:

f � g |f(x)| ≤ C|g(x)| for some nonzero constant C, specially in
the neighborhood of a point.

f � g Same as g � f .
f � g We have f � g � f , i.e. C1|g(x)| ≤ |f(x)| ≤ C2|g(x)| for

nonzero constants C1 and C2.
f ∼ g Neither f nor g vanish in the neighborhood of a point and

lim f/g = 1.
f = O(g) Same as f � g.
f = o(g) If g does not vanish, lim f/g = 0. In general, this means

we can write f = gh for some function h with lim h = 0.
f = Ω(g) The negation of f = o(g). In other words, for some con-

stant C > 0 one has |f(x)| ≥ C|g(x)| for infinitely many
values of x close to a certain point.1

f = Ω+(g) Equivalent to max
(
f(x), 0

)
= Ω(g).

f = Ω−(g) Equivalent to min
(
f(x), 0

)
= Ω(g).

ε An arbitrarily small quantity which may vary from instance
to instance.

Functions related to the fractional part of a number:

bxc Integer part of x, i.e. biggest integer n satisfying n ≤ x.
dxe Ceil of x, i.e. smallest integer n satisfying n ≥ x.
{x} Decimal part of x, equivalent to x− bxc.
‖x‖Z Distance from x to the nearest integer.
ψ(x) Saw-tooth function ψ(x) = x− bxc − 1/2.2

e(x) Equivalent to exp
(
2πix

)
.

Other symbols:

‖ · ‖p p-norm of either a vector or a function.
‖ · ‖ 2-norm of either a vector or a function. Equivalent to ‖·‖2.

~vt or At Transpose of either the vector ~v or the matrix A.
~v · ~w Inner product between ~v and ~w.
#Ω Cardinality of the set Ω.
:= Left hand side is defined as the right hand side.

1Not to be confused with Knuth’s version widely used in computer science.
2The symbol ψ is also used to denote a wavelet in §3.4.
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154 LIST OF SYMBOLS

θ(x) Jacobi’s theta function, defined by (I.1).
ϕ(x) “Riemman’s nondifferentiable example”, defined by (I.9).
H The upper half-plane {z ∈ C : =z > 0}.

F or FΓ Fundamental domain of either SL2(Z) or Γ. See §1.2, §2.3.
Fx(δ) Speiser circle over x of radius δ, defined in §1.4.
Ax Interval associated to x in a Farey dissection, see §1.5.
N (R) Number of lattice points in RK, see §4.1.
αK Error exponent inf{α : N (R)− |RK| = O(Rα)}, see §4.1.

GLn(R) Group of invertible n× n matrices over the ring R.
GL+

n (R) Group of invertible n × n matrices over the real numbers
with positive determinant.

SLn(R) Group of n× n matrices with determinant equal to 1 over
the ring R.

All the remaining symbols are either standard or locally defined in the same
section or chapter where they are used.
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