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β-glucan-induced trained immunity in monocytes confers long-term protection against 

secondary infections through activation of the dendritic cell-associated C-type lectin 1 

(Dectin-1)/ Phosphoinositide 3-kinase (PI3K)/ mammalian target of rapamycin (mTOR) 

pathway. While previous studies have addressed the characterization of this 

phenomenon, strategies to boost trained immunity deserve further investigation. Src 

homology 2 (SH2) domain-containing inositol 5'-phosphatase (SHIP)-1 is a 

hematopoietic-restricted phosphatase that limits PI3K activity and it is able to associate 

with Dectin-1 receptor. Therefore, we hypothesized that SHIP-1 targeting could 

modulate trained immunity mediated by Dectin-1 ligands. 

Herein, we found that β-glucan-trained macrophages from mice with a myeloid-

specific SHIP-1 deletion (LysMΔSHIP-1) enhanced proinflammatory cytokine 

production in response to lipopolysaccharide (LPS). Following β-glucan training, SHIP-

1-deficient macrophages exhibited increased phosphorylation of protein kinase B (also 

known as Akt, a downstream target of PI3K), and mTOR targets. These overactivation 

of the signaling pathway correlated with augmented glycolytic metabolism. 

Furthermore, enhanced training in the absence of SHIP-1 relied on epigenetic 

reprogramming, including histone methylation and acetylation.  

Trained LysMΔSHIP-1 mice produced increased proinflammatory cytokines 

upon rechallenge in vivo and were better protected against systemic Candida albicans 

infection compared with control littermates.  

Pharmacological inhibition of SHIP-1 enhanced trained immunity in vitro in 

mouse macrophages and human peripheral blood mononuclear cells (hPBMCs), and 

also improved protection conferred by immune training with C. albicans.  

These data establish a proof of concept for improvement of trained immunity, 

and place SHIP-1 as a target to achieve it. 
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La inmunidad entrenada inducida por β-glucano en monocitos confiere una protección 

a largo plazo frente a infecciones secundarias, mediante la activación de la ruta de 

señalización mediada por la lectina de tipo C asociada a célula dendrítica (en inglés, 

Dectin-1)/ fosfatidil inositol 3 quinasa (en inglés, PI3K)/ diana de rapamicina en células 

de mamífero (en inglés, mTOR). Mientras trabajos previos se han centrado en la 

caracterización de este proceso, no se conocen estrategias para potenciar la 

inmunidad entrenada. La inositol fosfatasa 5’ con dominios de homología 2 a Src 1 (en 

inglés, SHIP-1) es una fosfatasa que se expresa en el componente hematopoyético, 

limita la actividad de PI3K y es capaz de asociarse al receptor Dectin-1. Por tanto, 

hipotetizamos que la regulación de SHIP-1 podría modular la inmunidad entrenada 

mediada por ligandos de Dectin-1. 

En este trabajo encontramos que macrófagos entrenados con β-glucano 

procedentes de ratones con una depleción específica de SHIP-1 en el compartimento 

mieloide (LysMΔSHIP-1), producían una mayor cantidad de citoquinas inflamatorias 

en respuesta a lipopolisacárido. Tras el tratamiento con β-glucano, los macrófagos 

deficientes en SHIP-1 presentaban mayor fosforilación de la proteína quinasa B 

(también llamada Akt, diana de PI3K), y de efectores de mTOR. Esta sobreactivación 

de la ruta de señalización correlacionó con un aumento en el metabolismo glucolítico. 

Además, este entrenamiento potenciado en ausencia de SHIP-1 se basó en procesos 

de reprogramación epigenética, concretamente en la metilación y acetilación de 

histonas.  

Los ratones LysMΔSHIP-1 entrenados produjeron más citoquinas 

proinflamatorias ante un estímulo secundario in vivo y, en comparación con ratones 

silvestres, se protegieron mejor frente a una infección sistémica con Candida albicans. 

La inhibición química de SHIP-1 potenció la inmunidad entrenada in vitro en 

macrófagos de ratón y células mononucleares de sangre periférica humana y también 

mejoró la protección conferida por el entrenamiento con C. albicans.  

Estos datos establecen la prueba de concepto de mejora de inmunidad 

entrenada y emplazan a SHIP-1 como una diana para conseguirlo. 
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1. Immune system and immunological memory. 

1.1. Innate and adaptive immunity. 

The vertebrate immune system has been classically divided into two subcomponents: 

the innate and the adaptive compartment (Janeway et al., 2001, Delves P.J. et al., 

2017). 

The innate immune system comprises different cellular components, including 

monocytes, macrophages, neutrophils, dendritic cells (DCs), innate lymphoid cells or 

natural killer (NK) cells. It emerges as the first line of immune defense, as they trigger 

immediate effector mechanisms, and it has been classically assumed that innate 

immune cells are unable to build immunological memory (Janeway et al., 2001, Delves 

P.J. et al., 2017). Although innate immune cells lack antigen-specific receptors, they 

possess a variety of surface and intracellular receptors, called pattern-recognition 

receptors (PRRs). PRRs trigger immune responses after sensing microbial 

components (pathogen-associated molecular patterns -PAMPs), but also endogenous 

molecules expressed or released upon tissue damage (damage-associated molecular 

patterns -DAMPs). Examples of PRRs are Toll-like receptors (TLRs) such as TLR4, 

that recognizes LPS from Gram-negative bacteria, or C-type lectin receptors (CLRs) 

such as Dectin-1, that senses the fungal cell wall component β-glucan (Brubaker et al., 

2015).  

  Adaptive immunity, composed by T and B lymphocytes, requires however 

several days to mount an immune response that, in contrast to innate immunity, is 

specific for a particular antigen. In this regard, a first encounter with the pathogen 

enables T and B cells to induce a classical immunological memory based on the 

generation of specific long-term memory populations, that will allow to respond more 

efficiently to the same challenge in the future (Janeway et al., 2001, Delves P.J. et al., 

2017). 

1.2. “Memory” in innate immunity: studies from the past. 

The notion that innate immunity is unable to induce immunological memory has been 

challenged, particularly from studies in organisms that lack adaptive immunity. Studies 

in plants revealed the development of systemic acquired resistance against a broad 

variety of pathogens, including virus, bacteria or fungi (Reimer-Michalski and Conrath, 

2016, Durrant and Dong, 2004). Likewise, there are also evidences for nonspecific 
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pathogen-induced immunological memory in distinct species of invertebrates, which 

only respond to infections by innate immune mechanisms (Milutinovic and Kurtz, 

2016). 

Moving to vertebrates, early studies revealed that both Bacillus Calmette-Guérin 

(BCG), the tuberculosis vaccine, and a low-virulent strain of the fungus Candida 

albicans were able to confer protection against lethal systemic candidiasis (Bistoni et 

al., 1988, van 't Wout et al., 1992) or Schistosoma mansoni (Tribouley et al., 1978) in 

mice lacking adaptive immune system. These data were indicative of the generation of 

some sort of memory not based on adaptive immunity that interestingly, appeared to 

be nonspecific for the vaccination challenge. Supporting this notion, different 

observational and retrospective studies have reported the nonspecific effect of 

vaccines (Jensen et al., 1993, de Bree et al., 2018), such as the heterologous 

protection conferred by BCG against infections other than tuberculosis (Butkeviciute et 

al., 2018, Freyne et al., 2015). Early observations also evidenced the development of 

endotoxin tolerance, an unresponsive state of innate immune cells to respond against 

secondary challenges, when they had been pre-exposed to low concentrations of 

endotoxin (Biswas and Lopez-Collazo, 2009, Lopez-Collazo and del Fresno, 2013). 

Altogether, the term ‘trained immunity’ has been coined to define this innate immune 

memory that lead the innate immune system to an enhanced response to secondary 

challenges (Netea et al., 2011). 

 

2. Trained innate immunity. 

2.1. A global overview. 

Trained immunity is defined as a memory of innate immune system, where an 

encounter with a first stimulus (e.g. microbial insult) results in a subsequent enhanced 

nonspecific response by innate immune cells against a secondary challenge (the same 

or unrelated), thus providing long-term protection in case of infection (Netea et al., 

2016, Netea et al., 2011, Hamon and Quintin, 2016). 

In contrast to endotoxin tolerance phenomenon, the memory-induced 

decreased responsiveness on innate immune cells (Biswas and Lopez-Collazo, 2009), 

‘trained immunity’ term has been extensively referred to a memory-induced enhanced 
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responsiveness (Boraschi and Italiani, 2018), and it will be used in this way throughout 

this work. 

2.1.1. Trained innate immune cells. 

Trained immunity properties have been defined for distinct subsets of the innate 

immune system (Gardiner and Mills, 2016). Several studies demonstrated that NK cell 

memory can be developed after a previous challenge (Holmes and Bryceson, 2016) 

with, for instance, cytomegalovirus (Sun et al., 2009) or BCG (Kleinnijenhuis et al., 

2014b). Myeloid cells, particularly monocytes and macrophages, have also shown 

trained immunity properties upon priming with a wide variety of insults (Rusek et al., 

2018, Bekkering et al., 2016a). Importantly, trained immunity is independent of 

adaptive immunity, as demonstrated by the conferred heterologous protection in 

studies performed on immunodeficient mice lacking B and T cells (Quintin et al., 2012, 

Kleinnijenhuis et al., 2012, Kleinnijenhuis et al., 2014a, Bistoni et al., 1988).  

2.1.2. Training inducers. 

A wide variety of stimuli can train innate immune cells, particularly monocytes and 

macrophages (Leentjens et al., 2018). Among infectious agents, we could enumerate 

complete microorganisms such as BCG (Kleinnijenhuis et al., 2012) or C. albicans 

(Quintin et al., 2012), or microbial components such as muramyl dipeptide (Ifrim et al., 

2014) or the fungal cell wall component β-glucan (Quintin et al., 2012). Not only 

infectious but also endogenous inducers and metabolites such as oxidized low-density 

lipoprotein (oxLDL) (Bekkering et al., 2014), uric acid (Crisan et al., 2016a), bovine milk 

(van Splunter et al., 2018) or mevalonate (Bekkering et al., 2018) can induce trained 

immunity. 

2.1.3. Trained immunity hallmarks. 

Trained immunity is characterized by three key hallmarks: increased cytokine 

production upon rechallenge, changes in the metabolism and epigenetic 

reprogramming (Netea et al., 2015b, Netea et al., 2015a). 

Among those cytokines whose production is augmented after rechallenge in 

trained cells, we could find proinflammatory tumor necrosis factor α (TNFα), interleukin 

(IL)-6 and IL-1β (Ifrim et al., 2014, Quintin et al., 2012, Bekkering et al., 2016a, 

Walachowski et al., 2017). Interferon γ (IFN-γ) has also shown to be modulated, mainly 

by trained NK cells (Kleinnijenhuis et al., 2014b) (Ifrim et al., 2015). Modulation of IL-
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10 varied between studies (Quintin et al., 2012, Ifrim et al., 2013, Bekkering et al., 

2016a, Schrum et al., 2018).  

A noted shift from oxidative phosphorylation to aerobic glycolysis (Warburg 

effect) (Liberti and Locasale, 2016), likely due to a faster need of adenosine 

triphosphate (ATP) production (Liberti and Locasale, 2016), is the main change in 

cellular metabolism during the induction of β-glucan- (Cheng et al., 2014) or BCG-

mediated trained immunity (Arts et al., 2016b). Moreover, glutaminolysis and 

cholesterol synthesis are non-redundant pathways required for trained immunity to 

take place (Arts et al., 2016a). Finally, the tricarboxylic acid (TCA) cycle intermediates 

fumarate (Arts et al., 2016a) or acetyl coenzyme A (Netea et al., 2016) are known to 

affect histone-modifying enzymes involved in epigenetic reprogramming, the third 

hallmark of this phenomenon.  

Epigenetic reprogramming, mainly mediated by histone modifications, involves 

chromatin reorganization and is one of the basis for the long-lasting effect of trained 

immunity (Christ et al., 2016, Netea et al., 2016, van der Heijden et al., 2018, 

Dominguez-Andres et al., 2018). Genome-wide analyses have revealed the presence 

of three histone methylation marks, positively associated with gene expression: 

trimethylation in lysine 4 of histone H3 (H3K4me3) in active promoters, 

monomethylation in that residue (H3K4me1) that marks enhancers, and acetylation in 

lysine 27 of histone H3 (H3K27Ac) in both elements (Christ et al., 2016, Netea et al., 

2016). Consistent with the presence of these marks, trained immunity induction was 

prevented in the presence of both histone methylation and acetylation inhibitors 

(Quintin et al., 2012, Cheng et al., 2014, Ifrim et al., 2014). As a result, epigenetic 

modifications have been found at the level of important promoters for the training 

process (Saeed et al., 2014, Kleinnijenhuis et al., 2012), which makes chromatin more 

accessible and conditions gene expression patterns of trained cells upon stimulation 

with a secondary challenge.  

 In addition, recent studies have shown that modulation of bone marrow 

progenitors is also an integral component of trained immunity (Mitroulis et al., 2018, 

Kaufmann et al., 2018, Christ et al., 2018, Luo et al., 2015). This supports the long-

lasting effect of trained immunity (months and even years) (Kleinnijenhuis et al., 2014a) 

that is probably hard to attribute only to effects on terminally differentiated mature cells 

(Netea et al., 2016). Thus, β-glucan (Mitroulis et al., 2018), BCG (Kaufmann et al., 
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2018) and even cholesterol-containing western diet (Christ et al., 2018, Luo et al., 

2015) were able to reprogram and induce expansion of hematopoietic progenitors such 

as Lin-Sca-1+c-Kit+ cells (LSKs) and hematopoietic stem cells (HSCs), with a particular 

bias to the myeloid lineage. Thus, bone marrow-derived macrophages (BMDMs) 

generated from previously trained mice were also trained and showed improved 

clearance of Mycobacterium tuberculosis (Mtb) infection (Kaufmann et al., 2018). 

2.2. Candida albicans- and β-glucan-induced training. 

2.2.1. Systemic Candida albicans infection. 

Candida albicans is a dimorphic yeast and an opportunistic fungal pathogen that 

produces mucosal infections but also invasive candidiasis (Lionakis and Netea, 2013, 

Poulain, 2015), a systemic infection where kidney is the main target organ (Lionakis et 

al., 2011). Systemic candidiasis is the fourth leading cause of nosocomial bloodstream 

infection in the United States and mortality exceeds 40% (Lionakis and Netea, 2013). 

Regarding host immune response, innate PRRs recognize various PAMPs of 

Candida. β-glucan is a polysaccharide that constitutes the main cell wall component of 

certain bacteria and fungi (El Khoury et al., 2012), including C. albicans (Poulain and 

Jouault, 2004). Importantly, Dectin-1 is required for β-glucan recognition (Brown and 

Gordon, 2001) and control of fungal infections (Taylor et al., 2007). Furthermore, TLR2 

and TLR4 sense mannans whereas TLR9 within the cytosol recognizes fungal 

deoxyribonucleic acid (DNA); mannose receptor recognizes mannose-rich Candida 

structures (Lionakis and Netea, 2013).  

Upon a primary systemic infection, monocytes/macrophages are key phagocytic 

cells for protection against invasive candidiasis (Ngo et al., 2014, Qian et al., 1994, 

Dominguez-Andres et al., 2017), but it is also proposed that other immune cell types, 

including DCs (Whitney et al., 2014) or NK cells (Bar et al., 2014) may play a role. 

Notably, protection against systemic candidiasis is adaptive immunity-independent as 

shown by mice lacking both B and T cells (Jensen et al., 1993, Bar et al., 2014). 

Eventually, neutrophils are essential as final effectors for host defense against 

systemic C. albicans infection (Dejima et al., 2011). 

2.2.2. Candida-induced protection against secondary infections. 

Exposure to a low-virulent strain (PCA-2) or to a low dose of virulent (SC5314) C. 

albicans, as well as to β-glucan, protect mice from secondary lethal systemic 
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candidiasis (Bistoni et al., 1986, Quintin et al., 2012, Bistoni et al., 1988) or 

heterologous Staphylococcus aureus septicaemia (Di Luzio and Williams, 1978, 

Bistoni et al., 1986, Cheng et al., 2014, Marakalala et al., 2013). This acquired 

resistance does not rely on T, B or NK cells (Bistoni et al., 1986, Quintin et al., 2012, 

Bistoni et al., 1988), based on studies with mice lacking the adaptive immune system 

or treated with NK cell-depleting anti-asialo ganglioside-monosialic acid antibody, 

respectively. Nevertheless, this protection occurs in a myeloid-dependent manner, as 

protection was prevented by affecting macrophage function or monocyte recruitment 

(Bistoni et al., 1986, Quintin et al., 2012, Cheng et al., 2014, Bistoni et al., 1988). 

Moreover, mice pre-injected with both Candida and β-glucan, produce increased levels 

of TNFα, IL-6, IL-1β or IL-10 in serum when they are treated with LPS a week after, 

with variations in the cytokines depending on the model used (Quintin et al., 2012, 

Garcia-Valtanen et al., 2017, Arts et al., 2016a).  

2.2.3. Molecular mechanisms involved in trained immunity development. 

To define molecular mechanisms at the intracellular level, several trained immunity in 

vitro models have been developed. In vitro sensing of -glucan or heat-killed C. 

albicans induces trained immunity in human monocytes (Cheng et al., 2014),  hPBMCs 

(Ifrim et al., 2013, Quintin et al., 2012), purified murine splenic monocytes (Garcia-

Valtanen et al., 2017), peritoneal macrophages or BMDMs (Walachowski et al., 2017). 

These models are usually characterized by 24 hours of stimulation with the training 

inducer followed by a resting period without stimulus, and a final secondary challenge 

with the same or unrelated insult (Quintin et al., 2012, Ifrim et al., 2014). Of note, the 

resting period is a critical step, as it tries to reflect in vitro the long-lasting effect of 

trained immunity. While some studies in hPBMCs and monocytes followed a 6- or 7-

day resting period (Quintin et al., 2012, Ifrim et al., 2014), other studies (Ifrim et al., 

2013), especially in BMDMs (Walachowski et al., 2017), shortened or abolished this 

step. As a prototypical model, monocytes or macrophages can be primed with β-

glucan, washed, rested and secondarily rechallenged with LPS (Walachowski et al., 

2017, Cheng et al., 2014). As final outcome, although TNFα has become the most 

prototypical readout, increase in IL-6 and IL-1β production have been also 

demonstrated upon secondary challenge (Quintin et al., 2012, Ifrim et al., 2014, 

Bekkering et al., 2016a, Walachowski et al., 2017). Changes in IL-10 are more 

controversial, as some studies showed no effect upon training (Quintin et al., 2012), 
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whereas other also appreciated an increase (Bekkering et al., 2016a, Garcia-Valtanen 

et al., 2017). Finally, although not consistently evaluated, some reports also showed a 

β-glucan-dependent increase in viability, which could also support a final effect on 

enhanced immune response (Bekkering et al., 2016a, Garcia-Valtanen et al., 2017).  

Training of monocytes requires sensing of β-glucan by Dectin-1 receptor 

(Figure I1), as inhibition of the receptor with laminarin abolished training induction, as 

well as Dectin-1-deficient individuals failed to mount the trained response (Quintin et 

al., 2012). This Dectin-1-mediated training mostly relies on the activation of the PI3K/ 

mTOR pathway (Figure I1) (Cheng et al., 2014). Consistently, β-glucan stimulation 

induced phosphorylation of Akt, a downstream target of PI3K, mTOR and mTOR 

targets. Moreover, both the PI3K inhibitor wortmannin and the mTOR inhibitor 

rapamycin prevented induction of training (Cheng et al., 2014, Arts et al., 2016a).  

 

 

Figure I1. Integration of signaling and metabolic pathways in β-glucan-trained monocytes. 
(Adapted from (Netea et al., 2015a)). Recognition of β-glucan by Dectin-1 induces activation of 
Akt/mTOR pathway, among others, and metabolic rewiring, leading to epigenetic reprogramming of 
naïve monocytes. As a result, the β-glucan-trained cells shift towards glycolytic metabolism (a process 
known as Warburg effect), and display persistent epigenetic modifications, resulting in a stronger 
inflammatory phenotype upon rechallenge. 
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At the metabolic level, switch to glycolysis is the main signature of β-glucan 

trained monocytes (Figure I1). Indeed, the transcriptome of these cells revealed an 

induced expression of genes involved in the glycolytic pathway (Cheng et al., 2014). 

Furthermore, β-glucan trained monocytes showed a reduced oxygen consumption, 

increased glucose uptake and elevated lactate production on day 7 post-training 

(Cheng et al., 2014, Arts et al., 2016a). In addition, glutamine and cholesterol 

metabolism, and the TCA cycle, but not the pentose phosphate pathway, are also 

important metabolic pathways in β-glucan-induced trained immunity (Arts et al., 2016a, 

Dominguez-Andres et al., 2018). 

β-glucan training of monocytes/macrophages results in a global increase in 

histone H3 activating marks, mainly methylation and acetylation (Figure I1), revealed 

by genome-wide chromatin immunoprecipitation (ChIP)-seq assays (Quintin et al., 

2012, Saeed et al., 2014). Thus, H3K4me3 and H3K27Ac accumulation was found at 

promoters of important trained immunity-associated genes, including TNFα, IL-6, 

DECTIN-1 or mTOR pathway genes (Quintin et al., 2012, Cheng et al., 2014). 

Consistently, immune training with C. albicans or β-glucan was prevented in the 

presence of the histone methyltransferase inhibitor 5′-deoxy-5′-(methylthio)adenosine 

(MTA) but not when pre-treating with the histone demethylase inhibitor pargyline, used 

as a control (Quintin et al., 2012, Cheng et al., 2014, Ifrim et al., 2014). Likewise, 

supporting also the importance of acetylation, pre-incubation with the histone 

acetyltransferase inhibitor epigallocatechin-3-gallate (EGCG) before β-glucan 

stimulation also abolished trained immunity induction (Ifrim et al., 2014). Resveratrol, 

by activating the deacetylase sirtuin-1 had an identical effect (Cheng et al., 2014). 

Consistent with the divergent response observed during endotoxin tolerance 

phenomenon, the epigenetic program triggered in β-glucan trained macrophages 

differed from the one found in LPS-tolerant macrophages (Saeed et al., 2014, Foster 

et al., 2007, Hoeksema and de Winther, 2016). Moreover, the tolerant state could be 

reverted when stimulating those cells with β-glucan (Novakovic et al., 2016). 

 

3. SHIP-1 phosphatase. 

3.1. Regulation of PI3K/Akt pathway by inositol phosphatases. 

The class I PI3Ks are a large family of enzymes that are able to phosphorylate the 

phosphatidylinositol 4,5-biphosphate (PI(4,5)P2) to generate phosphatidylinositol 
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(3,4,5)-triphosphate (PI(3,4,5)P3) on the inner layer of the plasma membrane. Upon 

PI3K activation, the protein kinase Akt is recruited to the membrane, where it gets 

activated by different mechanisms (Eramo and Mitchell, 2016) (Figure I2). This Akt 

activation allows further activation of mTOR complex 1 (mTORC1) and subsequent 

mTOR targets such as eukaryotic translation initiation factor 4E (eIF4E)-binding protein 

1 (4EBP1) or ribosomal protein S6 (Dibble and Cantley, 2015). In this way, PI3K/Akt 

signaling has shown to regulate a plethora of processes including cell growth, 

proliferation, survival, autophagy, cell cycle progression, glucose uptake and 

metabolism (Eramo and Mitchell, 2016, Martini et al., 2014). 

PI3K activity is tightly counterbalanced by inositol 5’-phosphatases. PI(3,4,5)P3, 

product of PI3K, is dephosphorylated to yield phosphatidylinositol 3,4-biphosphate 

(PI(3,4)P2) by SHIP-1, its homolog SHIP-2, the inositol polyphosphate 5’-phosphatase 

(INPP5) E, the skeletal muscle- and kidney-enriched inositol phosphatase or the 

proline-rich inositol polyphosphate 5’-phosphatase. On the other hand, the 

phosphatase and tensin homolog (PTEN) also antagonizes PI3K activity by 

dephosphorylating PI(3,4,5)P3 in position 3, giving rise to PI(4,5)P2 (Figure I2) (Eramo 

and Mitchell, 2016, Billcliff and Lowe, 2014, Erneux et al., 2016). 

 

 

Figure I2. Regulation of PI3K pathway by inositol phosphatases. (Adapted from (Vo and Fruman, 
2015)). PI(4,5)P2 is phosphorylated by class I PI3Ks to transiently generate PI(3,4,5)P3. PI(3,4,5)P3 is 
dephosphorylated by PTEN and SHIP to yield PI(4,5)P2 or PI(3,4)P2, respectively. Akt is recruited to the 
membrane to be activated via binding PI(3,4,5)P3, and PI(3,4)P2 in some contexts. Akt, once activated, 
regulates a plethora of downstream pathways via mTORC1 phosphorylation.  



Introduction 

42 

 

3.2. SHIP-1 expression and regulation. 

Among inositol 5’-phosphatases, SHIP-1 phosphatase is encoded by the INPP5D gene 

and is predominantly expressed in the hematopoietic compartment, including HSCs, 

T, B and NK cells and the myeloid compartment, but also in osteoblasts (Kerr, 2011, 

Hazen et al., 2009). Although sharing 38% sequence homology, the expression pattern 

and function clearly differ from its homolog SHIP-2, as the latter is ubiquitously 

expressed (Rohrschneider et al., 2000). Finally, SHIP-1 expression can be regulated 

by proteasomal degradation (Ruschmann et al., 2010) or by micro-ribonucleic acid 

(miRNA or miR)-mediated degradation of transcripts, in particular by miR-155 

(O'Connell et al., 2010). 

Apart from the expression pattern, a second determinant of SHIP-1 signaling is 

its cell location, as recruitment to the plasma membrane is crucial for SHIP-1 to have 

access to its substrate PI(3,4,5)P3 (Pauls and Marshall, 2017). SHIP-1 recruitment to 

the plasma membrane can occur in association with adaptor proteins, scaffold proteins 

or by direct association with intracellular receptor chains via its SH2 domain. Direct 

binding can involve interaction with immunoreceptor tyrosine-based inhibitory motif 

(ITIM)-containing receptors such as Fc γ receptor (FcγR) IIB (Ono et al., 1996) or Ly49 

receptor in NK cells (Wang et al., 2002). SHIP-1 binds not only to inhibitory, but also 

to immunoreceptor tyrosine-based activation motifs (ITAM) such as the present in the 

B cell receptor (Pauls and Marshall, 2017, Manno et al., 2016) or hemi-ITAMs 

(hemITAM)-containing activatory receptors such as Dectin-1 (Blanco-Menendez et al., 

2015). In summary, SHIP-1 phosphatase has shown to interact with cytokine, growth 

factor but also with immune receptors, thus emerging as an intrinsic brake of immune 

cell signaling (Pauls and Marshall, 2017).  

3.3. SHIP-1 biology and cellular function. 

Considering its role in dampening receptor signaling, SHIP-1 affects different functions 

of a wide variety of cell subsets (Pauls and Marshall, 2017, Kerr, 2011). The 

phosphatase plays a role in maintaining the niche that supports HSC quiescence in 

the hematopoietic compartment (Hazen et al., 2009). Regarding adaptive immune 

system, SHIP-1 controls B cell development and function (Brauweiler et al., 2000).T 

cell priming and effector functions are also affected, as SHIP-1-deficient mice showed 

both increased regulatory T cells (Collazo et al., 2009, Collazo et al., 2012) and 

enhanced type 1 versus type 2 helper T cell ratio (Tarasenko et al., 2007). Moreover, 
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SHIP-1 regulates survival, homeostasis, repertoire diversity and IFN-γ production in 

NK cells (Gumbleton et al., 2017, Gumbleton et al., 2015, Trotta et al., 2005). In 

addition, SHIP-1 is also needed for DCs to efficiently prime T cells (Neill et al., 2007, 

Antignano et al., 2010a, Gold et al., 2015, Gold et al., 2016). 

Importantly, SHIP-1 plays a prominent role in myeloid biology and has shown to 

impact diverse macrophage effector functions (Kerr, 2011, Conde et al., 2011). On one 

hand, it is widely accepted that SHIP-1 negatively regulates multiple types of 

phagocytosis, including those mediated by FcγRs or complement receptor 3 (Cox et 

al., 2001, Tamura et al., 2009, Yao et al., 2017). However, while some studies have 

claimed that SHIP-1-deficient macrophages or granulocyte-macrophage colony-

stimulating factor (GM-CSF) bone-marrow-derived cells produced elevated levels of 

reactive oxygen species (ROS) (Ganesan et al., 2006, Blanco-Menendez et al., 2015, 

Wang et al., 2014), other showed that SHIP-1 enhanced this production (Kamen et al., 

2008). Regarding inflammatory cytokines, the role of SHIP-1 is also controversial. 

While some studies claimed that SHIP-1 contributed to cytokine production in 

macrophages (Hadidi et al., 2012), including LPS- and FcγR-induced proinflammatory 

cytokines (An et al., 2005, Ganesan et al., 2006), other authors conversely showed 

lower production in SHIP-1-deficient BMDMs (Fang et al., 2004). Although not formally 

addressed, these divergences could rely on differential regulation of TLR signaling by 

PI3K/Akt pathway depending on the context (Pourrajab et al., 2015, Troutman et al., 

2012). Finally, a critical role is attributed to SHIP-1 in endotoxin tolerance, as SHIP-1-

deficient BMDMs were hyperresponsive to LPS and they did not develop endotoxin 

tolerance (Sly et al., 2004). 

As result of the negative regulatory role of SHIP-1 in such a variety of cells and 

functions, SHIP-1-deficient mice display many inflammatory disorders including 

splenomegaly, hematopoietic abnormalities, autoantibody-mediated autoimmunity, 

allergic airway inflammation, consolidating pneumonia and Crohn’s disease-like ileitis 

(Helgason et al., 1998, Kerr et al., 2011, Maxwell et al., 2011, Oh et al., 2007). Lung 

and gut pathologies of these germline SHIP-1 knockout mice are characterized by 

abundant myeloid infiltration (Helgason et al., 1998, Kerr et al., 2011). Interestingly, 

specific deletion in either B cells, T cells, or DCs alone did not result in spontaneous 

allergic airway inflammation (Gold et al., 2015), although SHIP-1 absence in B cells 

led to an autoantibody-mediated disease (O'Neill et al., 2011).  Remarkably, the 
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combined deletion of SHIP-1 in T and myeloid cells led also to mucosal inflammatory 

disease (Park et al., 2014), although the specific deletion of SHIP-1 only in the myeloid 

compartment did not recapitulate any of these inflammatory symptoms (Maxwell et al., 

2014). 
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Taking into consideration first that trained immunity induced by C. albicans and β-

glucan in myeloid cells relies on Dectin-1 receptor and PI3K-dependent mechanisms, 

and second, that SHIP-1 phosphatase counterbalances PI3K function and is able to 

associate to Dectin-1, the general aim of this work was to evaluate whether SHIP-1 

targeting in myeloid cells could modulate β-glucan- and/or C. albicans-mediated 

immune training. For this purpose, the specific objectives of this thesis were: 

 

1. Evaluate the phenotype of trained SHIP-1-deficient macrophages in vitro, analyzing 

hallmarks of trained immunity. 

 

2. Address the effect of the specific deletion of SHIP-1 in the myeloid compartment in 

trained immunity properties in vivo and resistance to secondary infection in mice. 

 

3. Explore the chemical inhibition of SHIP-1 as a potential tool to modulate trained 

immunity. 

 



 

 

 

MATERIALS 

AND METHODS 
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1. Candida albicans. 

The clinical isolate Candida albicans SC5314 (Pitarch et al., 2016) was kindly provided 

by Professor Concha Gil (Complutense University, Madrid, Spain). The fungus was 

regularly refreshed and was grown on yeast extract-peptone-dextrose (YPD)-agar 

plates (Sigma) at 30ºC for 48h, in order to maintain the degree of virulence. 

2. Mouse strains and cells. 

Mice, all in C57BL/6 background, were bred at CNIC under specific pathogen-free 

conditions. Mouse colonies included Wild-type C57BL/6J (WT used for SHIP-1 

inhibition experiments), and conditional knockout mice under the control of the 

myeloid-specific promoter Lysozyme M (LysM): LysM+/+SHIP-1flox/flox (WT) and 

LysMCre/+SHIP-1flox/flox (LysMΔSHIP-1) (Collazo et al., 2012), which were kept as 

littermates. Experiments were conducted with 8- to 12-weeks-old age-matched mice 

(regardless gender). All animal procedures were reviewed and approved by Animal 

Ethics Committee at the CNIC, Madrid Autonomous University Ethics Committee, and 

the Community of Madrid authority. All animal procedures were compliant with the EU 

Directive 2010/63/EU and Recommendation 2007/526/EC regarding the protection of 

animals used for experimental and other scientific purposes, enforced by the Spanish 

law under Real Decreto 1201/2005. Mice were allocated randomly in the different 

experimental procedures. 

Mouse bone marrow-derived macrophage differentiation. To obtain BMDMs, 

both tibiae and femurs were collected, flushed with phosphate-buffered saline (PBS, 

Gibco) and spun down at 1650 revolutions per minute (rpm) for 5 minutes at 4º C. Cells 

were lysed using red blood cell (RBC) Lysis Buffer (Sigma) for 3 minutes at room 

temperature (RT) and filtered through 70 µm cell strainers (BD Biosciences). Cell 

suspensions were resuspended in Roswell Park Memorial Institute (RPMI) 1640 

medium (Sigma) supplemented with 10% heat-inactivated fetal bovine serum (FBS, 

Sigma), 1 mM pyruvate (Lonza), 100 µM non-essential aminoacids (Thermo Fisher 

Scientific), 2 mM L-glutamine, 100 U/ml penicillin, 100 µg/ml streptomycin (all three 

from Lonza) and 50 µM 2-mercaptoethanol (Merck), herein called R10; and plated in 

non-treated cell culture plates (100 x 15 mm, Corning) at 37ºC for 5 days, in a ratio of 

20 plates per mouse. This medium was supplemented with macrophage colony 
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stimulating factor (M-CSF) from 30% mycoplasma-free L929 cell supernatant. To that 

end, L929 cell line (ATCC® CCL-1TM) was grown in R10 on 175 cm2 cell culture flasks 

(Stemcell) and supernatants were obtained by filtering 15-days long cultures over 0.22 

µm Stericup Filter unit (Merck Millipore). At day 5, BMDMs were washed with PBS, 

detached in PBS supplemented with 5 mM ethylenediaminetetraacetic acid (EDTA, 

Life Technologies, and resulting buffer was called PBS/EDTA), counted by CASY® cell 

counter (Innovatis AG), plated in R10 on treated or non-treated cell culture plates 

depending on the assay at the required concentration and rested overnight before any 

stimulation. 

3. Human peripheral blood mononuclear cells. 

Buffy coats from healthy volunteers were obtained from Andalusian Biobank after 

approval by the local Instituto de Salud Carlos III (ISCIII) Research Ethics Committee 

(PI 36_2017).  

hPBMCs were isolated from those buffy coats by differential centrifugation on 

Biocoll Separating Solution (Cultek) at 700g for 30 minutes following the 

manufacturers’ instructions. hPBMCs-containing ring was washed twice in PBS and 

spun down at 1650 rpm for 5 minutes. Pellet was resuspended in Dulbecco's Modified 

Eagle Medium (DMEM, Sigma) supplemented with 10% heat-inactivated FBS, 100 µM 

non-essential aminoacids, 2 mM L-glutamine, 100 U/ml penicillin, 100 µg/ml 

streptomycin and 50 µM 2-mercaptoethanol, herein called D10, counted by CASY® 

cell counter, plated and rested 2 hours before stimulation. 

4. Trained immunity in vitro models.  

BMDMs. BMDMs (105) were plated in 96-well cell-culture treated plates (200-μl final 

volume, Corning) and stimulated with R10 or 100 μg/ml β-glucan (whole glucan 

particles, WGP) for 24h. Then, cells were washed and rested 3 days in culture medium 

(R10). At day 4, unless indicated, BMDMs were washed again and primed with 25 

ng/ml IFN-γ (BD Biosciences) for 24h. On day 5, a final wash was performed, and cells 

were stimulated with R10 or 1 μg/ml Escherichia coli LPS (EK, Invivogen). To analyze 

IL-1β production, following 4 hours of LPS challenge, cells were further stimulated for 

2 hours with 5 mM ATP (Sigma), needed for inflammasome activation and pro-IL-1β 

processing (Schroder and Tschopp, 2010), and supernatants were harvested for 
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enzyme-linked immunosorbent assay (ELISA). For TNFα and IL-6, supernatants were 

collected after 24h of LPS stimulation. 

When required, BMDMs were pre-incubated for 30 minutes prior to β-glucan 

stimulation with 500 μM 5′-deoxy-5′-(methylthio)adenosine (MTA, Sigma), 6 μM 

Pargyline (Sigma), 50 μM Resveratrol (Sigma),  50 μM epigallocatechin-3-gallate 

(EGCG, Sigma) or SHIP-1 inhibitor (SHIPi, 3α-aminocholestane, 3AC, Calbiochem) at 

the indicated doses. Inhibitors were also added after the first wash-out, before the 

resting period. 

To assess receptor expression and cell viability, 6·105 BMDMs were plated in 

non-treated 24-well plates in order to facilitate their detaching for further fluorescence-

activated cell sorting (FACS) (1200-μl final volume, Corning) and followed the training 

scheme described above. Dectin-1 expression was evaluated at day 0 prior to β-glucan 

addition. Cell viability and TLR4 expression were assessed on day 5 before LPS 

stimulation. At indicated times, cells were collected in PBS/EDTA and stained on ice-

cold FACS Buffer (PBS/EDTA plus 3% FBS) for flow cytometry analysis. 

For western blotting (WB) assays, 3·106 BMDMs were plated in non-treated 6-

well plates (3-ml final volume, Corning) and stimulated with R10 or 200 μg/ml β-glucan 

for given times. This increased concentration of β-glucan was used to maintain the 

mass:cell ratio used for 96-well plates. 

To address metabolic status, 3·106 BMDMs were plated in non-treated 6-well 

plates (3-ml final volume, Corning) and followed the training scheme described above 

but training with 200 μg/ml β-glucan (to keep mass:cell ratio). At day 4, without IFN-γ 

priming, cells were detached in PBS/EDTA, plated at 105 cells/well in 96-well Seahorse 

cell culture plates (200-μl final volume, Agilent Technologies) in sixtuplicates and 

rested overnight in R10 prior to the Seahorse XF glycolysis stress test (Agilent 

Technologies). When glycolytic metabolism was evaluated just after overnight 

stimulation with β-glucan, BMDMs (105) were directly plated in 96-well Seahorse cell 

culture plates (200-μl final volume, Agilent Technologies) and stimulated with R10 or 

100 μg/ml β-glucan the day after. 

hPBMCs. Total hPBMCs (5·105) were plated in cell culture treated 96-well plates (200-

μl final volume) and stimulated with 100 μg/ml β-glucan for 24h. Then, cells were 

washed and rested 6 days in culture medium (R10). At day 7, PBMCs were stimulated 
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with 1 μg/ml LPS (EK). When required, hPBMCs were pre-incubated for 30 minutes 

prior to β-glucan stimulation with 10 μM 3AC. Inhibitor was also added after the first 

wash-out, before the resting period. To assess cell viability, 3·106 total hPBMCs were 

plated in non-treated 24-well plates (1200-μl final volume, Corning) and followed the 

training scheme described here. At day 7, prior to LPS stimulation, cells were collected 

in PBS/EDTA and stained on ice-cold FACS Buffer for flow cytometry analysis.  

 

For normalization of cytokine production to the number of cells recovered, the fold cell 

number in each condition was calculated as follows: (live cell number/live non-trained 

WT cell number in average). In case of SHIP-1 inhibition experiments, 3AC non-treated 

cells were used as reference. Thus, cytokine production was normalized per cell 

number as (absolute cytokine value/fold cell number described above) in each 

condition. 

5. In vivo models. 

Mice were trained with either two intraperitoneal injections of 1 mg β-glucan particles 

on days −7 and −4 or 2·104 Candida albicans intravenously on day -7. Sterile PBS was 

used as control.  When required, mice were intraperitoneally treated with 0.11 mg 3AC 

on days -8 and -7. 3AC was diluted in PBS 0.3% hydroxypropylcellulose (Sigma), with 

buffer alone used as control. As a reference, the secondary challenge (described next) 

was considered as day 0.  

One week later, mice were challenged intraperitoneally with PBS or 5 μg E. coli 

LPS (serotype O55:B5, Sigma) and blood was collected 60 minutes later to assess 

serum TNFα or 90 minutes later to evaluate serum IL-1β and IL-6. Serum was obtained 

by high-speed centrifugation of blood for 15 minutes. Alternatively, mice were lethally 

infected with 2·106 C. albicans and monitored daily for weight, general health and 

survival, following the institutional guidance.  

For quantitative polymerase chain reaction (qPCR) analysis of renal cytokines, 

RNA was purified from whole kidneys harvested in QIazol Lysis Reagent (Qiagen) at 

day 2 post-infection (p.i.). Kidney fungal burden at indicated time points p.i. was 

determined by plating organ homogenates obtained mechanically over 70 µm cell 

strainers (BD Biosciences) after slicing the tissue, in serial ten-fold dilutions on YPD 
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agar plates. Colony-forming units (CFUs) were counted after growth at 30ºC for 48 

hours and data are shown as CFUs per total kidney.  

6. ELISA. 

Mouse cytokines were analyzed in supernatants of BMDMs or sera using the following 

reagents: for IL-1β, Mouse IL-1β/IL-1F2 DuoSet, R&D Systems; for IL-6, Purified rat 

anti-mouse IL-6, Biotin rat anti-mouse IL-6 -both from BD Biosciences- and 

Streptavidin Horseradish Peroxidase Conjugate from Invitrogen; for TNFα: OptEIA 

ELISA kit (BD Biosciences) or TNFα DuoSet (R&D Systems).  TNFα in serum was 

quantified by using Mouse TNFα DuoSet (R&D Systems). 

Human cytokines were analyzed in supernatants of hPBMCs by using the 

Human IL-1β/IL-1F2 Duoset, Human IL-6 Duoset and Human TNFα DuoSet kits, all 

from R&D Systems. 

7. Western Blotting. 

Culture medium was removed form plated cells and cell lysates were prepared in 

radioimmunoprecipitation assay buffer containing protease and phosphatase inhibitors 

(Roche). Samples were run on Mini-PROTEAN TGX PRECAST Gels and transferred 

onto a nitrocellulose membrane (both from Bio-Rad Laboratories) for blotting with the 

following antibodies: β-Actin (C4) and SHIP-1 (P1C1) from Santa Cruz; phospho (p)Akt 

(Ser473, #4058S), Akt (#2920S), pS6 (Ser235/236, #4858T) and p4EBP1 (Thr37/46, 

#9459S), all from Cell Signaling. Alexa Fluor-680 (Life Technologies) or Qdot-800 

(Rockland) conjugated secondary antibodies were used. Gels were visualized in an 

Odyssey instrument (LI-COR) and band intensity was quantified by using ImageJ 

software (Bitplane). 

8. Antibodies and flow cytometry.  

Samples were stained with the appropriate antibody cocktails in ice-cold FACS Buffer 

at 4ºC for 15 minutes. Antibodies included mouse Phycoerythrin-anti-TLR4 

(BioLegend) and Alexa 647-anti-Dectin-1 (Bio-Rad). Dead cells were excluded by 

Hoechst 33258 (Invitrogen) incorporation. Purified anti-FcɣRIII/II (2.4G2, TONBO 

Bioscience) was used to block murine Fc-receptors at 4ºC for 10 minutes in all the 
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stainings. Events were acquired using FACSCanto 3L (BD Biosciences). Data were 

analyzed with FlowJo software (Tree Star). 

9. Glycolytic flux evaluation. 

The assay was performed in DMEM supplemented with 1 mM glutamine, 100 μg/ml 

penicillin and 100 μg/ml streptomycin. The pH was adjusted to 7.4 with KOH (herein 

called Seahorse medium). Cells were washed with PBS and 175 μl of Seahorse 

medium was added. Plates were incubated at 37°C without CO2 for 1h prior to the 

assay. Extracellular acidification rate (ECAR) was determined by using the glycolysis 

stress test in an XF-96 Extracellular Flux Analyzer (Agilent Technologies). Three 

consecutive measurements were performed under basal conditions and after 

sequential addition of 80 mM glucose (Merck), 9 μM oligomycin A (Sigma) and 500 

mM 2-deoxy-glucose (2DG, Sigma). As shown in Figure M1, basal and maximal 

glycolysis were defined as ECAR (mpH) after addition of glucose and oligomycin, 

respectively. Glycolytic reserve was defined as the difference between maximal and 

basal glycolysis.  

 

Figure M1. Profile of key parameters of glycolytic function resulting from glycolysis stress test. 
(Taken from (Pike Winer and Wu, 2014)). Basal glycolysis (or glycolysis) is defined as ECAR (mpH) 
upon saturating addition of glucose (blue area under the curve). Maximal glycolysis (or glycolytic 
capacity) is defined as maximum ECAR (mpH) reached following the addition of oligomycin (oligo), 
which effectively shuts down oxidative phosphorylation and results into glycolysis at maximum capacity 
(light green area). 2-deoxyglucose (2DG) fully abolishes glycolysis. Glycolytic reserve indicates the 
capability of a cell to respond to an energetic demand and is calculated by subtracting basal from 
maximal glycolysis. 
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10. Chromatin Immunoprecipitation analysis. 

Chromatin ImmunoPrecipitation (ChIP) was performed using the Magna ChIP A – 

Chromatin Immunoprecipitation kit together with the ChIPAb+ Trimethyl-Histone H3 

(Lys4) (H3K4me3) – ChIP validated antibody, both from Millipore-Merck, following the 

provider’s instructions. Cells were fixed with 1% formaldehyde for 10 minutes at RT, 

exposed to glycine to quench unreacted formaldehyde and washed twice with ice-cold 

PBS supplemented with the provided protease inhibitor cocktail. After scraping the 

cells in ice-cold PBS, they were pelleted, lysed and sonicated for 15 minutes (30 

seconds on/30 seconds off) at high intensity by using a Bioruptor UCD-200TM-TX 

water bath sonicator (Diagenode). Sonicates were diluted and incubated with 

antibodies plus protein A magnetic beads for 1 hour with rotation at 4 ºC. Beads were 

magnetically collected and washed extensively. Protein-DNA complexes were 

disrupted from the beads upon proteinase-K treatment and recovered DNA was 

purified.  

Immunoprecipitated DNA and input DNA were amplified by means of qPCR with 

specific primers for the promoter region of TNFα (Fw: 5’-

CAACTTTCCAAACCCTCTGC-3’; Rv: 5’-CTGGCTAGTCCCTTGCTGTC-3’) with input 

DNA to generate a standard curve. ChIP data are represented as a percentage of 

input. 

11. RNA extraction and quantitative PCR. 

RNeasy Plus Mini Kit, from Qiagen, was used for RNA extraction. Complementary DNA 

(cDNA) was prepared using the High Capacity cDNA reverse transcription kit (Applied 

Biosystems). qPCR was performed in a 7900-FAST-384 instrument (Applied 

Biosystems) by using the GoTaq qPCR master mix from Promega. Primers used in 

this work (synthetized by Sigma) were as follows: β-actin Fw: 5′-

GGCTGTATTCCCCTCCATCG-3′; β-actin Rv: 5′-CCAGTTGGTAACAATGCCATGT-

3′; IL-1β Fw: 5’-CTGAACTCAACTGTGAAATGCCA-3’; IL-1β Rv: 5’-

AAAGGTTTGGAAGCAGCCCT-3’; IL-6 Fw: CCGTGTGGTTACATCTACCCT-3’; IL-6 

Rv: 5’-CGTGGTTCTGTTGATGACAGT-3’ TNFα Fw: 5’-

CCCTCACACTCAGATCATCTTCT-3’; TNFα Rv: 5’-GCTACGACGTGGGCTACAG-3’; 

messenger RNA levels were normalized to β-Actin expression. Data are shown as 

relative expression to β-Actin (∆∆Ct). 
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12. Quantification and statistical analysis. 

The statistical analyses were performed using Prism software (GraphPad Software). 

Unless specified, statistical significance for comparison between two sample groups 

with a normal distribution (Shapiro-Wilk test for normality) was determined by two-

tailed paired or unpaired Student’s t-test. When groups were too small to estimate 

normality, Gaussian distribution was assumed. Comparison of survival curves was 

carried out by Log-rank (Mantel-Cox) test. Outliers were identified by means of Tukey’s 

range test. Differences were considered significant at p < 0.05 as indicated. Except 

when specified, only significant differences are shown. As indicated in figure legends, 

either a representative experiment or pool are shown, and the number of repetitions of 

each experiment and number of experimental units (either cultures or mice) is 

indicated. In vitro experiments are shown as a pool of experiments, where linked WT-

LysMΔSHIP-1 dots represent independent cultures that were processed within the 

same experiment. In this way, an internal comparison between genotypes can be 

visually done. Different conditions within the same genotype in a particular experiment, 

although not connected by a matter of clarity, were also paired analyzed and 

statistically significant differences are indicated by hashes (#). 
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1. Setting up a working in vitro model of trained immunity in 
mouse bone marrow-derived macrophages. 

1.1. Experimental design of a trained immunity model. 

To explore trained immunity modulation by myeloid cells, we designed a long-term 

trained immunity in vitro model for mouse macrophages, by adapting a published 

scheme for hPBMCs (Quintin et al., 2012). It consisted of 24 hours of stimulation with 

WGP from Saccharomyces cerevisiae, a purified particulate β-glucan which is a well-

established ligand for Dectin-1 receptor (Rosas et al., 2008), followed by a wash with 

fresh medium and a 3-day long resting period. Afterwards, BMDMs were primed with 

IFN-γ and stimulated the day after with LPS as heterologous secondary challenge. 

Medium was replaced before each step. TNFα, as prototypical trained immunity 

cytokine, was measured in supernatants 1 day later (Figure R1A). 

 

Figure R1. Experimental set-up of a trained immunity in vitro model in mouse BMDMs. (A) 
Graphical scheme of trained immunity in vitro model applied to WT BMDMs. Briefly, BMDMs were 
trained with 100 μg/ml of β-glucan. Cells were washed with fresh medium and rested for 3 days. At day 
4, BMDMs were primed with 25 ng/ml of IFN-γ for 24 hours and finally rechallenged with 1 μg/ml of LPS. 

TNFα was analyzed one day after. (B) BMDMs were stimulated (+) or not (-) with -glucan, washed, 
rested and primed at day 4 (+) or not (-) with IFN-γ prior to LPS stimulation, according to A. (Ø) represent 
BMDMs with no stimulation. TNFα in supernatants after 24 hours of LPS exposure was analyzed. Mean 
+ SEM from 5 independent experiments is shown. *p < 0.05, **p < 0.01, paired Student’s t-test. 
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Compared to non-trained BMDMs, previous β-glucan priming increased TNFα 

production in response to LPS challenge 5 days later (Figure R1B), reproducing 

trained immunity (Quintin et al., 2012). Of note, IFN-γ priming was needed to detect 

LPS-induced cytokine production, regardless of the induction of training (Figure R1B), 

and therefore was included when applying this in vitro model. 

1.2. SHIP-1 protein is induced upon β-glucan stimulation. 

To address the relevance of SHIP-1 phosphatase in Dectin-1-triggered trained 

immunity, BMDMs were stimulated with β-glucan and the expression of SHIP-1 was 

analyzed. In accordance with previous studies (O'Connell et al., 2009, Zhou et al., 

2006), SHIP-1 was expressed in steady state conditions in BMDMs. Compared to this 

basal expression level, β-glucan stimulation resulted in further induction of the 

phosphatase 24 hours later, with no plating-dependent effect on that induction (Figure 

R2). This would suggest that the phosphatase could play a role in β-glucan-induced 

trained immunity. 

 

Figure R2. SHIP-1 expression in BMDMs. BMDMs were exposed (+) or not (-) to β-glucan for 1 day. 
SHIP-1 expression was analyzed by WB and normalized to β-Actin. Representative experiment of 3 
performed. 

 

2. Characterization of trained SHIP-1-deficient macrophages. 

2.1. Efficient SHIP-1 deletion in LysM∆SHIP-1 macrophages. 

To further address the role of SHIP-1 in trained immunity phenomenon, we took 

advantage of the LysM∆SHIP-1 mouse model (Collazo et al., 2012). Consistently, 

BMDMs derived from these mice lacked expression of SHIP-1 phosphatase (Figure 

R3).  
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Figure R3. SHIP-1 protein is depleted in LysM∆SHIP-1 BMDMs. SHIP-1 expression in WT versus 
LysM∆SHIP-1 BMDMs was analyzed by WB and normalized to β-Actin. Representative experiment of 
6 performed. 

 

2.2. Expression of trained immunity-associated receptors is not 
affected by SHIP-1. 

We first evaluated the surface expression of the receptors involved in the sensing of 

both the training stimulus and the secondary challenge. Expression of Dectin-1, 

receptor for β-glucan, was comparable between WT and SHIP-1-deficient 

macrophages before training induction (Figure R4).  

 

Figure R4. Equivalent Dectin-1 surface expression on BMDMs in the absence of SHIP-1. Dectin-1 

expression in WT and LysMSHIP-1 BMDMs before β-glucan stimulation was analyzed by FACS. (A) 

FACS histograms representative of 4 independent experiments; (B) individual data and mean  SEM of 
mean fluorescence intensity (MFI) from a pool of 2 experiments are shown. (B) Each dot represents an 
independent cell culture and 3 BMDM cultures per experiment were performed.  

 

We also checked the expression of the LPS receptor TLR4 at day 5 prior to LPS 

challenge, in BMDMs previously trained or not with β-glucan. There were no 

differences in the expression levels of TLR4 between non-trained and trained BMDMs, 

as well as among WT and SHIP-1-deficient macrophages in each experimental 
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condition (Figure R5). These data would rule out a differential capacity of sensing 

relevant PAMPs for our study due to the lack of SHIP-1 in BMDMs. 

 

Figure R5. TLR4 expression on BMDMs is not affected by training or SHIP-1 deficiency. TLR4 

expression in WT and LysMSHIP-1 BMDMs before LPS stimulation according to model in Figure R1A 
was analyzed by flow cytometry. (A) FACS histograms from non-trained (left panel) or β-glucan-trained 

(right panel) BMDMs representative of 4 independent experiments; (B) individual data and mean  SEM 
of MFI from a pool of 2 experiments are shown. Each dot represents an independent cell culture and 3 
BMDM cultures per experiment were performed.  

 

2.3. SHIP-1 deletion does not affect trained macrophage numbers. 

-glucan-induced training has been shown to increase cell viability of mouse splenic 

(Garcia-Valtanen et al., 2017) and human monocytes (Bekkering et al., 2016a). 

Thereby, we evaluated cell number after applying our in vitro model and prior to LPS 

rechallenge. Concurring with previous results, -glucan training also increased the 

number of viable WT BMDMs compared to non-trained cells (Figure R6). Noteworthy, 

non-trained SHIP-1-deficient BMDMs revealed higher numbers compared to their WT 

counterparts. However, cells from both genotypes displayed comparable relative 

numbers upon training conditions (Figure R6). Taking these facts into consideration 

and to ensure the analysis of cell-intrinsic responses, as previously described 

(Bekkering et al., 2016a), whenever evaluating trained immunity parameters, such as 

cytokine production, data were normalized to the relative cell number present in each 

condition.  
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Figure R6. Relative number of BMDMs recovered after training and before LPS stimulation. WT 

and LysMSHIP-1 BMDMs were exposed (+) or not (-) to -glucan and IFN-γ-primed according to model 
in Figure R1A. At day 5 and before LPS stimulation, the number of viable BMDMs was determined by 
FACS based on Hoechst 33258 exclusion. Fold of cells was calculated by dividing live cell number in 
each experimental condition by the average number of WT non-trained cells in all the experiments. 
Individual data from 4 independent experiments are shown. **p < 0.01, paired Student’s t-test comparing 

WT and LysMSHIP-1. #p < 0.05, paired Student’s t-test comparing stimulated or not with -glucan 
within the same genotype. 

 

3. SHIP-1 deletion boosts β-glucan-induced training in 
macrophages. 

3.1. SHIP-1 modulates cytokine production upon β-glucan training. 

To formally evaluate the role of SHIP-1 phosphatase in trained immunity, WT and 

LysM∆SHIP-1 BMDMs were trained with β-glucan, washed, rested and further 

rechallenged with LPS. While IL-6 and TNFα were evaluated after 24 hours of LPS 

exposure, IL-1β was measured upon 4 hours of LPS stimulation plus 2 additional hours 

of ATP (needed for inflammasome activation and pro-IL-1β processing, (Schroder and 

Tschopp, 2010) (Figure R7A). Importantly, these analyses were performed on cells 

washed up to three times, with no remaining cytokines in the medium of -glucan-

trained BMDMs before LPS stimulation.  

First, SHIP-1 deletion did not impact on the LPS-induced inflammatory response 

under non-trained conditions (Figure R7B). Pre-incubation of BMDMs with β-glucan 

led to greater production of LPS-induced IL-1β and TNFα (Figure R7B, left and right 

panel). Remarkably, upon training conditions, the absence of SHIP-1 in macrophages 

resulted in an overproduction of these trained immunity-associated proinflammatory 

cytokines (Figure R7B, left and right panel). Nevertheless, this trained immunity 

phenomenon was not observed in terms of IL-6 production in this setting, as trained 
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WT BMDMs even produced significantly less cytokine than non-trained counterparts, 

with no effect of SHIP-1 phosphatase deletion (Figure R7B, middle panel). These 

data reflect that SHIP-1 adjusts LPS-induced proinflammatory cytokine production 

during β-glucan training, with some specificity depending on the cytokine analyzed.  

 

Figure R7. Trained SHIP-1-deficient macrophages show enhanced production of IL-1β and TNFα. 
(A) Scheme of trained immunity in vitro model applied to WT and LysM∆SHIP-1 BMDMs. As indicated 
in Figure R1A, BMDMs were trained with β-glucan and cells were washed and rested for 3 days. At day 
4, BMDMs were primed with IFN-γ for 24 hours and finally rechallenged with LPS. IL-6 and TNFα were 
analyzed after 24 hours. For IL-1β, LPS stimulation (4 hours) was followed by ATP addition for another 
2 hours. (B) BMDMs were stimulated (+) or not (-) with β-glucan or LPS (+ ATP for IL-1β), and IL-1β 
(left panel), IL-6 (middle panel) and TNFα production (right panel) were analyzed in supernatants 
according to A. Independent experiments (N=4-5) are shown. *p < 0.05, **p < 0.01, paired Student’s t-

test comparing WT and LysMSHIP-1. #p < 0.05, paired Student’s t-test comparing stimulated or not 

with -glucan within the same genotype. 

 

3.2. SHIP-1 regulates molecular and metabolic hallmarks of trained 
immunity. 

Considering that SHIP-1 deficiency boosts the production of proinflammatory 

cytokines, the final hallmark of trained immunity at the molecular level, we addressed 
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whether other key features of this phenomenon were also modulated by the 

phosphatase.  

3.2.1. SHIP-1 absence leads to overactivation of trained immunity-related 
molecular pathway.  

PI3K/Akt signaling is a canonical molecular pathway implicated in the development of 

trained responses (Cheng et al., 2014, Arts et al., 2016b). Thereby, we first evaluated 

phosphorylation of Akt kinase upon β-glucan exposure in BMDMs. As shown in Figure 

R8, in WT BMDMs, Akt was phosphorylated in response to β-glucan in a time-

dependent manner, peaking at 30 minutes of stimulation, similar to human monocytes 

(Cheng et al., 2014).  

 

Figure R8. β-glucan-induced Akt phosphorylation is increased in SHIP-1-deficient macrophages. 

WT and LysMSHIP-1 BMDMs were exposed to -glucan for the indicated time and pAkt and Akt were 
analyzed by WB. (A) Representative gel of 5 experiments performed. (B) Quantification of WB kinetics 

by ImageJ software. Relative band intensity is shown. Mean  SEM from a pool of 5 experiments 

performed. *p < 0.05, **p < 0.01, ***p<0.001, paired Student’s t-test comparing WT and LysMSHIP-1 
at any time point. 

 

Furthermore, SHIP-1-deficient macrophages showed increased and sustained 

phosphorylation of this kinase over time (Figure R8). Remarkably, a basal increase in 

Akt phosphorylation was found in LysM∆SHIP-1 macrophages, which concurs with 

previous results (Antignano et al., 2010b, Rajaram et al., 2009). However, this did not 
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result in an eventual cytokine overproduction unless β-glucan-induced training was 

established (Figure R7B). 

We also assessed the phosphorylation of downstream effectors of the pathway 

in response to β-glucan, particularly two mTOR targets: the ribosomal protein S6 and 

4EBP1 (Dibble and Cantley, 2015). In WT BMDMs, while S6 displayed two ways of 

phosphorylation, activation of 4EBP1 peaked at 5-15 minutes post-challenge (Figure 

R9). Again, SHIP-1-deficient macrophages revealed an increased phosphorylation of 

these targets that was more patent at later time points (Figure R9). 

 

Figure R9. Augmented phosphorylation of mTOR targets upon β-glucan in the absence of SHIP-

1. WT and LysMSHIP-1 BMDMs were exposed to -glucan for the indicated time and pS6, p4EBP1 
and β-Actin were analyzed by WB. (A) Representative gel of 5 experiments performed. (B) 
Quantification of WB kinetics for pS6 (left panel) and p4EBP1 (right panel) by ImageJ software. Relative 

band intensity is shown. Mean  SEM from a pool of 5 experiments performed. *p < 0.05, paired 

Student’s t-test comparing WT and LysMSHIP-1 at any time point. 

 

3.2.2. SHIP-1 deficiency results in enhanced glycolysis.  

Regarding metabolic changes, we assessed the extent of the glycolytic switch induced 

by β-glucan by measuring the ECAR in a glycolysis stress test, prior to the LPS 

rechallenge according to Figure R7A. Training with β-glucan increased the ECAR of 

WT BMDMs 5 days later (Figure R10). This was reflected at different levels, including 



Results 

69 

 

basal glycolysis (Figure R10B), maximal glycolysis (Figure R10C) and the glycolytic 

reserve (Figure R10D), which reveals the extent of the glycolytic capacity of these 

cells. Importantly, this switch to glycolysis was significantly more pronounced for all 

parameters of the glycolytic function in the case of trained SHIP-1-deficient 

macrophages (Figure R10). Of note, concurring with data on signaling pathway 

activation (Figure R8), a steady state enhanced glycolysis was detected in 

LysMSHIP-1 BMDMs (Figure R10), but it did not result in higher cytokine production 

unless -glucan-induced training was established (Figure R7B). 

 

Figure R10. Boosted glycolytic shift in SHIP-1-deficient BMDMs prior to LPS challenge.  According 

to Figure R7A, WT and LysMSHIP-1 BMDMs were left untreated (dashed lines) or treated for 1 day 
with β-glucan (solid lines), washed, rested for 3 days and re-plated in equal numbers for determination 
of ECAR. ECAR in a glycolysis stress test was analyzed upon sequential addition of glucose, oligomycin 
and 2DG as indicated (A). (B) Analysis of basal glycolysis, (C) maximal glycolysis and (D) glycolytic 

reserve. Mean  SEM (A) or individual data (B-D) of 5 independent cultures are shown. (B-D) **p < 0.01, 

paired Student’s t-test comparing WT and LysMSHIP-1. #p< 0.05, paired Student’s t-test comparing 

within the same genotype stimulated or not with -glucan. 
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We wondered whether this differential switch in the metabolism reflected a 

change developed along to the training process or whether it took place upon β-glucan 

priming. To address that, we evaluated glycolysis after an overnight β-glucan 

stimulation (Figure R11).  

 

Figure R11. SHIP-1 controls the extent of the early glycolytic metabolism. WT and LysMSHIP-1 

BMDMs were left untreated (dashed lines) or treated overnight with -glucan (solid lines) and ECAR 
was determined. ECAR in a glycolysis stress test was analyzed upon sequential addition of glucose, 
oligomycin and 2DG as indicated (A). (B) Analysis of basal glycolysis, (C) maximal glycolysis and (D) 

glycolytic reserve. Mean  SEM (A) or individual data (B-D) of 6 independent cultures are shown. (B-D) 

*p < 0.05, **p < 0.01, paired Student’s t-test comparing WT and LysMSHIP-1. #p< 0.05, paired 

Student’s t-test comparing stimulated or not with -glucan within the same genotype. 

 

This revealed that basal (Figure R11B) and maximal glycolysis (Figure R11C), 

and the glycolytic reserve (Figure R11D) were already increased in β-glucan primed 
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WT BMDMs. However, only the glycolytic reserve was further increased in the absence 

of SHIP-1, suggesting that this is the first metabolic difference associated to SHIP-1-

deficient BMDMs upon -glucan training. Again, and consistently with previous results, 

an enhanced glycolysis was detected in unstimulated LysMSHIP-1 BMDMs (Figure 

R11). Taking altogether, these results indicate that SHIP-1 controls the extent of the 

glycolytic metabolism.  

3.3. SHIP-1-induced effect relies on epigenetic histone modification. 

Epigenetic reprogramming is one of the key steps in the induction of trained immunity 

(Christ et al., 2016, Netea et al., 2016, van der Heijden et al., 2018, Dominguez-Andres 

et al., 2018). To address whether the regulatory role of SHIP-1 on trained immunity 

relied on epigenetics, we trained BMDMs as before and, at day 5 prior to LPS 

stimulation, we checked the presence of histone modifications by a ChIP assay. 

Particularly, we evaluated H3K4me3, at the level of TNFα promoter (Quintin et al., 

2012, Saeed et al., 2014) (Figure 12A).  

 

Figure R12. Histone methylation is critical for SHIP-1-mediated regulation of β-glucan training. 

(A) According to Figure R7A, WT and LysMSHIP-1 BMDMs were trained (+) or not (-) with β-glucan 
for 1 day, washed, rested for 4 days and ChIP against H3K4me3 was performed. Enrichment of that 
epigenetic mark on the TNFα promoter was analyzed by qPCR. Mean + SEM of 5 experiments 

performed is shown. *p < 0.05, paired Student’s t-test comparing WT and LysMSHIP-1. #p< 0.05, 

paired Student’s t-test comparing within the same genotype stimulated or not with -glucan. (B) WT and 

LysMSHIP-1 BMDMs were incubated (+) or not (-) with the methyltransferase inhibitor MTA or the 
histone demethylase inhibitor pargyline for 30 minutes previous to β-glucan training and after washing 
it out. TNFα production was analyzed in supernatants after LPS stimulation according to model in Figure 
R7A. Individual data corresponding to 3 independent experiments are shown. *p < 0.05, **p < 0.01, 

paired Student’s t-test comparing WT and LysMSHIP-1. 
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The training with β-glucan specifically enriched the presence of this activating 

epigenetic mark, which reflects a more open chromatin (Figure R12A). Moreover, this 

histone mark was much more abundant when training was induced in the absence of 

SHIP-1 (Figure R12A), concurring with final enhanced TNFα production (Figure R7B). 

To formally assess whether the SHIP-1-mediated effect on trained immunity 

depended on this epigenetic reprogramming coined after β-glucan stimulation, we 

trained BMDMs as in Figure R7A, but in the presence of epigenetic inhibitors. BMDMs 

were pre-treated for 30 minutes before β-glucan stimulation with different inhibitors, 

which were also included after the first wash-out. While MTA is a methyltransferase 

inhibitor that has been shown to prevent training induction, pargyline is a demethylase 

inhibitor which has been described not to have any effect in the training process 

(Quintin et al., 2012). Thus, pre-incubation with MTA inhibitor abolished all the SHIP-

1-mediated effect on β-glucan training, revealed in terms of TNFα production (Figure 

R12B). However, SHIP-1-dependent overproduction of TNFα was preserved when 

pargyline was present during training development (Figure R12B).  

 Finally, trained immunity development also relies on acetylation of histones, 

particularly on H3K27Ac (Saeed et al., 2014). EGCG is a histone acetyltransferase 

inhibitor that has been shown to abolish the training (Ifrim et al., 2014). Moreover, 

resveratrol activates the histone deacetylase sirtuin 1, which results in an equivalent 

effect (Cheng et al., 2014). Taking this into account, we trained BMDMs as before, but 

now in the presence of these epigenetic inhibitors, separately. Again, enhanced 

training in SHIP-1-deficient macrophages, revealed by TNFα overproduction, was 

abolished when cells were pre-treated with any of the histone acetylation inhibitors, 

either EGCG or resveratrol (Figure R13). 
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Figure R13. SHIP-1-dependent enhanced training relies on histone acetylation. WT and 

LysMSHIP-1 BMDMs were incubated (+) or not (-) with the histone acetyltransferase inhibitor EGCG 
or the histone deacetylase activator resveratrol for 30 minutes previous to β-glucan training when 
indicated (+) and after washing it out. TNFα production was analyzed in supernatants after LPS 
stimulation according to model in Figure R7A. Individual data corresponding to 4 independent 

experiments are shown. *p < 0.05, paired Student’s t-test comparing WT and LysMSHIP-1. 

 

 These results highlight SHIP-1 as a regulator of trained immunity by dampening 

the Akt/mTOR molecular pathway and the glycolytic switch, and relying on the 

epigenetic reprogramming induced by-glucans, paradigms of the training process. 

 

4. Myeloid-specific deletion of SHIP-1 improves trained 
immunity in vivo. 

4.1. Enhanced β-glucan-induced training in LysM∆SHIP-1 mice.  

The generation of trained immunity in vivo leads to cross-protection against diverse 

secondary infections (Hamon and Quintin, 2016, Netea et al., 2016, Netea et al., 2011), 

being PI3K signaling the canonical molecular pathway in myeloid cells implicated in 

the development of that trained response (Cheng et al., 2014, Arts et al., 2016b). On 

the other hand, SHIP-1-deficient macrophages showed heightened trained immunity 

properties compared to their WT counterparts in vitro.  

To explore whether training is also regulated in vivo by SHIP-1 in the myeloid 

compartment, as shown in vitro, mice were consecutively injected twice with β-glucan, 

as described (Cheng et al., 2014, Arts et al., 2016a). Initially, to investigate the 
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regulatory role of myeloid SHIP-1 on cytokine production under that trained conditions, 

mice were subjected to an LPS-induced endotoxemia model (Arts et al., 2016a) and 

serum proinflammatory cytokines, such as IL-1β, IL-6 and TNFα were measured 

(Figure R14A). Of note, under non-trained conditions, myeloid SHIP-1 deficiency only 

affected LPS-induced IL-6 production (Figure R14B, middle panel).  

 

Figure R14. β-glucan-trained LysM∆SHIP-1 mice show a boosted production of inflammatory 
cytokines in response to LPS. (A) In vivo training model by two consecutive intraperitoneal 
administrations of 1 mg of β-glucan and subsequent stimulation with 5 μg of LPS. Serum 

proinflammatory cytokines, including IL-1β, IL-6 and TNFα were measured. (B) WT and LysMSHIP-1 
mice were trained (+) or not (-) and rechallenged with LPS according to A. Serum was collected 60 

(TNFα) or 90 min (IL-1β and IL-6) afterwards. Mean  SEM of 2 pooled experiments is shown, including 

at least 5 mice per condition. *p < 0.05, unpaired Student’s t-test comparing WT and LysMSHIP-1. #p 

< 0.05, unpaired Student’s t-test comparing the same genotype stimulated or not with -glucan. 

 

LPS-induced levels of IL-6 and TNFα were increased in sera of WT mice 

receiving the -glucan pre-treatment (Figure R14B, middle and right panels), 

indicative of training induction (Quintin et al., 2012), while no training effect was 

observed for IL-1β in WT mice (Figure R14B, left panel). Importantly, and consistent 
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with former results in vitro, serum levels of all IL-1β, IL-6 and TNFα were further 

augmented in trained SHIP-1-deficient mice compared to trained WT counterparts 

(Figure R14B). These data reflect an exacerbated inflammatory response in trained 

LysM∆SHIP-1 mice and support the regulatory role of SHIP-1 on training also in vivo. 

Additionally, trained immunity has been revealed as a protective response 

against lethal systemic C. albicans infection, through a mechanism relying on 

monocytes and macrophages (Quintin et al., 2012). Thus, in order to demonstrate 

whether the enhanced trained immunity observed in SHIP-1-deficient mice would 

influence the protection to a secondary infection, after the training with β-glucan, mice 

were infected with a lethal dose of the clinical isolate C. albicans SC5314 (Pitarch et 

al., 2016) (Figure R15A) and survival was monitored.  

 

Figure R15. β-glucan-trained LysM∆SHIP-1 mice are better protected against lethal candidiasis. 
(A) In vivo training model by two consecutive intraperitoneal administrations of 1 mg of β-glucan and 

secondary lethal intravenous infection with 2·106 C. albicans. (B) WT and LysMSHIP-1 mice were 
trained (solid lines) or not (dashed lines) and infected according to A. Survival was monitored. A pool of 
2 experiments is shown including between 6 and 16 mice per group. **p < 0.01, Log-rank test between 

WT and LysMSHIP-1 mice. #p< 0.05, Log-rank test comparing β-glucan-trained or not within the same 
genotype. 

 

As shown in Figure R15B (dashed lines), all non-trained mice rapidly 

succumbed upon systemic candidiasis, indicating that SHIP-1 expression in the 

myeloid compartment is redundant for the primary response to lethal candidiasis. 

Nevertheless, trained immunity was induced by β-glucan as it expanded the lifespan 

of WT mice (Figure R15B, solid lines). This confirms that even in such harsh 

infectious conditions, trained immunity-mediated protection takes place. Importantly, 
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this conferred protection was further improved in LysMSHIP-1 mice, even with 

survivor animals at the end of the procedure (Figure R15B, solid lines). This 

observation indicated that SHIP-1 deletion in the myeloid compartment boosts the 

development of β-glucan-induced trained immunity protection against lethal infections 

in vivo. 

4.2. Improved C. albicans-conferred trained immunity in LysM∆SHIP-
1 mice.  

It has been described that the encounter with a nonlethal dose of C. albicans protects 

mice against a secondary lethal reinfection with the same pathogen (Quintin et al., 

2012). Thereby, we trained mice with a low dose of C. albicans. One week later, we 

subjected mice to a lethal systemic candidiasis as above (Figure R16A).  

 

Figure R16. C. albicans-trained LysM∆SHIP-1 mice are better protected against lethal reinfection. 
(A) In vivo training model by intravenous infection with a low dose of C. albicans (2·104) and secondary 

lethal reinfection with 2·106 Candida albicans one week later. (B) WT and LysMSHIP-1 mice were 
trained (solid lines) or not (dashed lines) and infected according to A. Survival was monitored. A pool of 
2 experiments is shown including between 7 and 13 mice per group as indicated. **p < 0.01, Log-rank 

test between WT and LysMSHIP-1 mice. #p< 0.05, Log-rank test comparing C. albicans-trained or not 
within the same genotype. 

 

Similar to Figure R15, non-trained mice died equally, starting as soon as day 2 

post-infection (Figure R16B, dashed lines). Concurring with results on β-glucan, 

trained immunity induced by Candida prolonged the survival of WT mice (Figure R16B, 
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solid lines). Again, mice with a specific deletion of SHIP-1 in the myeloid compartment 

were more resistant against such a harsh infection (Figure R16B, solid lines). 

 To more deeply characterize mechanisms that could support the enhanced 

survival observed in trained LysMSHIP-1 mice, we harvested kidneys from trained 

animals at day 2 post-secondary infection, as most of non-trained ones had already 

deceased. We first evaluated the abundance of trained immunity-involved cytokines in 

the whole kidney. Correlating to what had been observed in vitro, renal IL-1β and TNFα 

production was increased in Candida-lethally infected kidneys from trained 

LysMSHIP-1 mice (Figure R17, left and right panel). Again, no effect was 

appreciable when assessing IL-6 cytokine (Figure R17, middle panel).  

 

Figure R17. Increased levels of renal inflammatory cytokines in C. albicans-trained LysM∆SHIP-

1 mice. WT and LysMSHIP-1 mice were trained according to Figure R16A. Total renal cytokines at 
day 2 post-secondary infection were evaluated in trained mice by qPCR and referred to β-Actin levels. 

Single dots correspond to individual mice. Mean  SEM of 3 pooled experiments is shown, including at 

least 9 mice per condition. **p< 0.01, unpaired Student’s t-test comparing WT and LysMSHIP-1.  

 

Next, we evaluated renal fungal burden from those kidneys at different time 

points. Compared to WT mice, training in the absence of SHIP-1 led to a decreased 

amount of fungus in the infected kidneys, reaching statistical significance at day 3 post-

infection (Figure R18). These results could explain the increased survival that was 

appreciated afterwards in LysMSHIP-1 mice (Figure R16B). 
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Figure R18. C. albicans-trained LysM∆SHIP-1 mice show decreased renal fungal burden. WT and 

LysMSHIP-1 mice were trained according to Figure R16A. Renal fungal burden, determined as CFUs 
in total kidney, was evaluated at day 2 and 3 post-secondary infection in trained mice. Single dots 

correspond to individual mice. Mean  SEM of 3 pooled experiments is shown, including at least 7 mice 

per condition. **p< 0.01, unpaired Student’s t-test comparing WT and LysMSHIP-1. 

 

Altogether, these data indicate that SHIP-1 deficiency in the myeloid 

compartment modulates β-glucan- and Candida-induced trained immunity in vivo, 

improving response to pathogen-specific or heterologous challenges. 

 

5. Trained immunity is enhanced upon pharmacological 
SHIP-1 inhibition. 

The great relevance of the PI3K pathway in pathologies such as cancer, has promoted 

the study of the phosphatase SHIP-1 as a potential therapeutic target (Fernandes et 

al., 2013). To that end, distinct SHIP-1 inhibitors, such as 3AC (SHIPi) (Brooks et al., 

2010), have been developed. In order to extrapolate our results to a more clinically 

relevant context, we decided to use that inhibitor as a potential therapeutical tool to 

harness trained immunity. 

 

5.1 SHIP-1 inhibition boosts mouse immune training.  

5.1.1. In vitro. 

First, we tested the use of SHIPi in vitro. We applied our characterized trained immunity 

in vitro model to WT BMDMs (Figure R7A), but now including the pharmacological 

inhibition of SHIP-1 during training induction. Thus, macrophages were pre-exposed 
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to different doses of 3AC (SHIPi, IC50=13.5 μM; (Brooks et al., 2015)) 30 minutes 

before β-glucan stimulation and the inhibitor was also added after the first wash-out. 

TNFα was used as a prototypical readout after resting and secondary LPS stimulation 

(Figure R19A).  

 

Figure R19. SHIP-1-inhibited trained BMDMs show enhanced trained immunity in vitro. (A) In vitro 
experimental model applied to BMDMs, indicating when the SHIPi 3AC was added. BMDMs were 
incubated with SHIPi 30 minutes before β-glucan stimulation and the inhibitor was also included after 
the first wash-out at the indicated concentrations in B. (B) TNFα production was analyzed in 
supernatants of β-glucan-trained cells after LPS stimulation according to model in A. 4 independent 
experiments are shown. Data are represented as mean + SEM. Significance was assessed by paired 
Student’s t-test between SHIPi-treated and non-treated cells. **p < 0.01.  

 

As illustrated in Figure R19B, and compared to SHIPi non-treated β-glucan 

trained WT BMDMs, SHIP-1 inhibition increased LPS-induced TNFα production in a 

dose-dependent manner. Concurring with the narrow activity curve described for 3AC 

(Brooks et al., 2015), small differences in the concentration of the SHIPi resulted in 

relevant variations on final TNFα production. Of note, this measurement was only 

performed in -glucan-trained cells, as non-trained BMDMs did not survive the 5 day-

long in vitro culture in the presence of 3AC, while the inhibitor did not affect survival of 

trained BMDMs. This result indicates the conceivable use of this inhibitor as a 

therapeutic tool to improve trained immunity. 

5.1.2. In vivo. 

In order to assess whether SHIP-1 inhibitor could be used under in vivo infectious 

conditions, we took advantage of the Candida albicans-induced trained immunity 

model described before (Figure R16A). Mice were subjected twice in consecutive days 

to SHIPi intraperitoneal administration (Figure R20A), according to a published 
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‘pulsatile’ regimen (Gumbleton et al., 2017). The second day of 3AC administration 

coincided with training with the low dose of C. albicans infection. One week afterwards, 

mice were lethally infected with the same fungus and survival was monitored. 

Concurring with previous results, non-trained mice rapidly succumbed, and inhibition 

of SHIP-1 did not affect survival of non-trained mice (Figure R20B, dashed lines), 

suggesting that the phosphatase is redundant during C. albicans lethal infection. 

Importantly, SHIP-1 inhibition further improved the protection to systemic candidiasis 

conferred by C. albicans training, (Figure R20B, solid lines), indicating that chemical 

inhibition of SHIP-1 boosts trained immunity in vivo. 

 

Figure R20. SHIP-1 inhibition improves training-based protection against lethal candidiasis. (A) 
In vivo model of training by a systemic infection with a low dose of Candida albicans (2·104) in the 
presence of SHIP-1i followed by a second lethal challenge (2·106) with the same pathogen. When 

indicated, 0.11 mg of the inhibitor was administered intraperitoneally. (B) Survival curve of diluent- 

(Control) or SHIPi-treated mice according to model in A. A pool of 2 experiments is shown including 
between 10 and 19 mice per group. **p < 0.01, Log-rank test between SHIPi-treated or not under the 
same experimental conditions (either trained or not). #p< 0.05, Log-rank test comparing C. albicans-
trained or not under the same treatment (either control or SHIPi-treated). 

 

5.2. Enhanced trained immunity in human peripheral blood 
mononuclear cells by inhibiting SHIP-1. 

Finally, we wondered whether SHIP-1-mediated enhancement of trained immunity 

could also work on human cells. For that, we tested the SHIPi inhibitor in hPBMCs from 

buffy coats obtained from healthy donors. Cells were subjected to a well-established 

trained immunity model in vitro for those cells (Quintin et al., 2012), but exposing them 
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to SHIP-1 inhibitor 30 minutes before β-glucan training. Next, hPBMCs were washed 

out, keeping them in SHIPi-containing medium and rested for 6 days. Finally, they were 

rechallenged with LPS and cytokines involved in the trained immunity phenomenon 

were evaluated (Figure R21A). As happening with mouse BMDMs, detection of 

cytokines was only performed in -glucan-trained hPBMCs, as SHIPi was toxic for non-

trained cells. Notably, the administration to hPBMCs of 10 μM of SHIPi during β-glucan 

training increased the production of IL-1β, IL-6 and TNFα after LPS stimulation (Figure 

R21B). 

 

Figure R21. SHIP-1 inhibition boosts trained immunity in hPBMCs. (A) In vitro experimental model 
applied to hPBMCs, indicating when SHIPi was added. Briefly, hPBMCs were pre-exposed to 10 μM 
SHIPi and trained with 100 μg/ml β-glucan. Cells were washed and rested in SHIPi-containing medium 
for 6 days. Finally, hPBMCs were rechallenged with 1 μg/ml of LPS and proinflammatory cytokines were 

measured after 24 hours. (B) IL-1β, IL-6 and TNF production was analyzed in supernatants of -
glucan-trained hPBMCs after LPS stimulation according to model in A. Samples from 7 independent 
buffy coats are shown. *p < 0.05, paired Student’s t-test between SHIP-1i-treated and non-treated cells.  

 

Thus, our data indicate that SHIP-1 can be targeted with pharmacological 

inhibitors both in mice and human cells to boost trained immunity.



  

 

 DISCUSSION 
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Development of trained immunity upon diverse triggering stimulus such as β-glucan 

(Cheng et al., 2014) or BCG vaccine (Arts et al., 2016b) relies on activation of the 

PI3K/Akt pathway. In fact, both β-glucan- and BCG-induced trainings were abolished 

in the presence of the PI3K inhibitor wortmannin (Cheng et al., 2014, Buffen et al., 

2014). On the other hand, former results in our laboratory indicated that Dectin-1, the 

main β-glucan receptor (Rosas et al., 2008), associates to SHIP-1 (Blanco-Menendez 

et al., 2015), a phosphatase critically involved in PI3K regulation (Eramo and Mitchell, 

2016). Taking this into account, we initially hypothesized that modulation of PI3K 

activity via SHIP-1 targeting, could result in the improvement of trained immunity 

induced by Dectin-1 ligands such as β-glucan or Candida albicans.  

 

1. Role of SHIP-1 upon β-glucan-/Candida-induced training.   

In accordance with previous studies (O'Connell et al., 2009, Zhou et al., 2006), SHIP-

1 protein was expressed in BMDMs in steady state conditions. Moreover, β-glucan 

stimulation augmented the basal expression of the phosphatase, which suggested a 

likely involvement of SHIP-1 in β-glucan-induced immune training of these myeloid 

cells. As summarized in Figure D1, SHIP-1 depletion led to an intrinsic enhancement 

of cytokine production in trained macrophages, particularly of TNFα and IL-1β, 

proinflammatory cytokines previously associated with trained immunity (Quintin et al., 

2012, Ifrim et al., 2014, Bekkering et al., 2016a, Walachowski et al., 2017). This 

outcome was accompanied by increased PI3K/Akt/mTOR pathway activation and 

enhancement of other trained immunity hallmarks such as the switch to glycolytic 

metabolism. That boosted immune training relied on epigenetic reprogramming, as 

both histone methylation and acetylation were key processes for SHIP-1-mediated 

effect on this trained immunity. In vivo, this turned into increased cytokine production 

upon rechallenge and better protection against reinfection in trained mice with a 

specific deletion of SHIP-1 in the myeloid compartment. Increase in proinflammatory 

cytokines and improved protection upon training were also achieved by means of 

SHIP-1 chemical inhibition and, finally, translated to trained hPBMCs. 
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Figure D1. Working model for SHIP-1-mediated effect on trained immunity at the molecular level. 
In WT macrophages, β-glucan training leads to activation of PI3K/Akt/mTOR pathway, which results in 
a switch to glycolysis and epigenetic reprogramming. Upon stimulation with a secondary challenge, 
trained cells produce high levels of proinflammatory cytokines such as IL-1β or TNFα (left). Under SHIP-
1-deficient settings, β-glucan priming results in an increased pathway activation, an enhanced shift to 
glycolytic metabolism and a more pronounced epigenetic reprogramming. Consistently, upon 
rechallenge, SHIP-1-deficient or SHIP-1-inhibited trained macrophages overproduce these 
proinflammatory cytokines (right). 

 

In vitro β-glucan-mediated induction of trained immunity has been previously 

described for human mononuclear phagocytes (Cheng et al., 2014), hPBMCs (Ifrim et 

al., 2013), purified murine splenic monocytes (Garcia-Valtanen et al., 2017), peritoneal 

macrophages and BMDMs (Walachowski et al., 2017). Compared to the latter study in 

BMDMs, where establishing a short-term trained immunity in vitro model (Walachowski 

et al., 2017), here we set up a long-term in vitro scheme, which better resembles the 

long-lasting effect that it is reached in this phenomenon. In our 6-day long in vitro 

protocol for BMDM training and challenge, a previous IFN-ɣ priming to detect any TNFα 

production upon LPS stimulation was needed, regardless of the β-glucan training 

induction. This concurs with classical activation of mouse macrophages, which 

establishes that these cells need a combination of two signals to be activated, a priming 

step and a triggering stimulus. For in vitro activation of mouse peritoneal macrophages 
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and BMDMs, a generally established protocol consists of priming macrophages with 

IFN-ɣ and subsequent stimulation, for instance, with a TLR ligand such as LPS (Mosser 

and Zhang, 2008). This two-step protocol allows the detection of cytokine production 

such as TNFα in response to LPS (Holden et al., 2014). This indeed would concur with 

the fact that BMDM differentiation in presence of M-CSF results in macrophages with 

a M2-like polarized state that could need to be primed to overcome M2 polarization 

and produce proinflammatory mediators upon TLR ligand stimulation (Ushach and 

Zlotnik, 2016, Hamilton, 2008). Supporting the notion that the use of IFN-ɣ for priming 

cytokine production is a particular feature of the mouse BMDM in vitro model, this 

priming was not necessary for any of the other in vivo or in vitro models tested. This 

fact also includes hPBMCs, where we reproduced an established and previously 

published trained immunity in vitro model (Quintin et al., 2012).  

β-glucan training and, additionally, SHIP-1 absence in β-glucan-trained 

macrophages, enhanced the production of IL-1β and TNFα. Conversely, neither 

training nor the SHIP-1-mediated effect was observed for IL-6 in BMDMs. The lack of 

effect in this particular cytokine could be explained by specific features of the in vitro 

model, such as the high IL-6 production detected already in non-trained conditions (in 

the order of ng/ml). Moreover, SHIP-1-dependent modulation of training was not 

observed either in terms of renal IL-6 in vivo. It has been described that, upon a 

particular stimulus, the involvement of differential molecular pathways accounts for 

diverse expression patterns of IL-6 compared to IL-1β and TNFα (Palmer et al., 2008, 

Lim et al., 2014, Khalaf et al., 2010, Keller et al., 2006). These pathways could be 

selectively modulated following β-glucan training and, in turn, differentially regulated 

by SHIP-1 upon training conditions. On the other hand, no training effect was 

appreciable for serum IL-1β in vivo upon challenge with LPS, whereas IL-6 was 

increased in non-trained LysMΔSHIP-1 mice, which could be explained because of the 

kinetics, dosage or experimental settings used (Quintin et al., 2012, Arts et al., 2016a). 

Still, the production of all these trained immunity-associated cytokines was boosted in 

SHIP-1-deficient mice upon β-glucan training. 

We barely appreciated effect of SHIP-1 on direct LPS-triggered production of 

proinflammatory cytokines, as no differences between WT and SHIP-1-deficient 

macrophages were found under non-trained conditions. This could be controversial 

according to previous studies claiming that SHIP-1 expression in macrophages 
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modulates cytokine production (An et al., 2005, Sly et al., 2004). The difference could 

reside on the fact that BMDMs in our model were stimulated with LPS after 5 days of 

in vitro procedure and not immediately after differentiation. Interestingly, the lack of 

effect of SHIP-1 without training would be reinforced by the similar epigenetic status 

found in non-trained WT versus SHIP-1-deficient BMDMs, as the amount of activating 

H3K4me3 mark at the TNFα promoter was equivalent. As epigenetics controls 

macrophage phenotype (de Groot and Pienta, 2018), a plausible explanation would be 

that this period in culture affected LPS-associated epigenetic modifications 

independently of SHIP-1 in non-trained cells, what would lead to a comparable 

response, but the analysis of BMDMs at day 0 would be needed to address this 

hypothesis. In any case, our data indicate that SHIP-1 regulates cytokine production 

upon trained conditions. 

PI3K-induced Akt signaling pathway controls a plethora of key processes 

including cell growth, proliferation and survival (Eramo and Mitchell, 2016). Some 

studies have associated trained immunity induction with enhanced survival, specifically 

described for murine spleen-derived and human monocytes (Garcia-Valtanen et al., 

2017, Bekkering et al., 2016a). Consistent with them, we recovered increased number 

of live WT cells upon β-glucan priming. Other studies however, have not considered a 

potential increase in viability upon training, and did not evaluate trained immunity 

readouts in a cell-based manner (Quintin et al., 2012, Cheng et al., 2014, Saeed et al., 

2014). Thereby, the final outcome could be overestimated due to an augmented 

number of cells. To ensure a cell-intrinsic analysis of trained immunity parameters, we 

plated cells equally before the assay (e.g. for glycolytic flux evaluation) or normalized 

cytokine production to the relative number of cells per condition. When doing that, we 

still observed an intrinsic effect on cytokine production and other hallmarks associated 

with trained immunity, further enhanced by SHIP-1 deletion or inhibition. This would 

accord with a previous study on human monocytes, where training was maintained 

after normalization to cell counts (Bekkering et al., 2016a). Nevertheless, it would 

disagree with the study from Garcia-Valtanen and colleagues, where an increased 

survival and not the β-glucan training effect explained the elevated cytokine production 

in spleen-derived and human monocytes. These divergences could be explicated 

because of the dosage, β-glucan source, glucan form or experimental settings, but 
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experimental procedures should be unified to make studies comparable and more 

reproducible.  

Consistent with regulation of PI3K signaling pathway, Akt overactivation upon 

SHIP-1 deletion entails a survival advantage that has been previously described (Liu 

et al., 1999, Rothchild et al., 2016, Antignano et al., 2010a). This fact was reproduced 

in non-trained SHIP-1-deficient BMDMs, whose numbers at the end of the in vitro 

protocol was approximately three-fold compared to their WT counterparts. However, 

although β-glucan training increased survival of WT cells, the number of β-glucan-

trained cells was comparable between WT and LysMSHIP-1 BMDMs. This could 

suggest either a maximal survival or proliferative capacity of SHIP-1-deficient 

macrophages in basal conditions that cannot be further increased upon training.  

The increased basal Akt phosphorylation found in SHIP-1-deficient BMDMs 

concurred with a similar trend on the activation of mTOR targets. Consistently, a steady 

state increase in glycolytic metabolism also occurred in SHIP-1-deficient BMDMs 

although it was further increased upon β-glucan training. However, this basally 

increased pathway activation and glycolytic switch was not translated into differential 

epigenetic modifications under non-trained conditions. Subsequently, it did not result 

in higher cytokine production upon rechallenge unless β-glucan-induced trained 

immunity was established, indicating a specific role of SHIP-1 upon training. 

Altogether, these data suggest that SHIP-1 deficiency generates a pro-glycolytic state 

that allows a divergent epigenetic reprogramming and a boosted inflammatory 

response only upon β-glucan-trained conditions.  

From our results in vivo, we are placing SHIP-1 as a target to improve β-glucan- 

and C. albicans-induced myeloid-dependent trained immunity, grounded in the 

conditional myeloid deletion of SHIP-1 driven by the LysM promoter. Cre recombinase, 

under the control of this myeloid promoter, has been extensively used to evaluate 

functions in monocytes and macrophages (Zhu et al., 2014, Han et al., 2013, Schappe 

et al., 2018), but also targets other populations such as neutrophils (Cross et al., 1988, 

Clausen et al., 1999). Although neutrophils are key mediators in C. albicans immune 

response (Dejima et al., 2011), there were no differences in the primary response to 

the fungus between WT and LysM∆SHIP-1 mice unless trained immunity was induced. 

Moreover, immune training has not been described for neutrophils, while a 
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fundamental role for C-C chemokine receptor type 2-expressing cells such as 

inflammatory monocytes and macrophages has been established (Quintin et al., 2012). 

These data, together with results in vivo, allow us to consider that the observed 

phenotype relies essentially in monocytes/macrophages. Nevertheless, evaluation of 

the intrinsic activity of neutrophils in WT and LysM∆SHIP-1 mice, under both non-

trained and trained conditions, would merit further investigation to formally discard an 

effect on this population. 

 

Enhancement of trained immunity by SHIP-1 targeting would concur with impaired 

induction of endotoxin tolerance under SHIP-1-deficient settings (Sly et al., 2004), as 

both innate memory processes could be considered as antagonistic. Thus, it would be 

interesting to further study whether SHIP-1-dependent metabolism could tip the scale 

toward the development of one memory program or the other in innate immune cells. 

 

Beyond SHIP-1 involvement, a key novelty of this work is the proof of concept of trained 

immunity improvement. To our knowledge, no strategies to potentiate the beneficial 

inflammatory behavior of trained innate immune cells have been proposed. In this line, 

in a short-term model of trained immunity in vitro, the exogenous addition of 

recombinant GM-CSF showed an accessory contribution to prime macrophages 

(Walachowski et al., 2017). However, GM-CSF was not directly involved in the β-

glucan-mediated long-lasting mechanism and could prime additional signals through 

the mitogen-activated protein kinase pathway (Borriello et al., 2016). Conversely, we 

are showing an intrinsic improvement by acting on the canonical trained immunity 

pathway, together with a long-lasting effect also appreciable in vivo.  

 

2. SHIP-1 inhibition. 

In addition to SHIP-1 genetic targeting, we are providing a pharmacological approach 

to reach it, namely, the use of the SHIP-1 inhibitor 3AC. This inhibitor provided a dose-

dependent modulation on cytokine production in trained BMDMs. This fact would allow 

a gradual modulation of trained immunity which could be adjusted depending on the 

desired effect. For instance, immune training could be boosted at maximum in case of 
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a harsh infection but could be also controlled to avoid excessive inflammation if 

needed. 

Due to the regulatory effect of SHIP-1 in receptor-triggered inflammatory 

responses (Pauls and Marshall, 2017), germline-deficient SHIP-1 mice display 

reduced lifespan due to gross inflammatory abnormalities, including splenomegaly, 

hematopoietic abnormalities, autoantibody-mediated autoimmunity, consolidating 

pneumonia and Crohn’s disease-like ileitis (Helgason et al., 1998, Kerr et al., 2011, 

Maxwell et al., 2011). Considering this excessive inflammation upon SHIP-1 

deficiency, 3AC in vivo administration has to be tightly regulated to avoid pleiotropic 

detrimental effects. Daily administration of 3AC has been used (Brooks et al., 2015, 

Fernandes et al., 2015), with no apparent effect on morbidity neither recapitulating the 

phenotype of full SHIP-1-deficient mice. Nevertheless, a pulsatile but not extended 

dosing strategy of 3AC in vivo has been described as successful anti-tumor 

immunotherapy (Gumbleton et al., 2017). Notably, this administration schedule was of 

particular interest for us to achieve SHIP-1 inhibition only during the training phase, not 

influencing directly the response to secondary lethal Candida albicans. Moreover, this 

regime allows to reduce toxic or side effects although still, they cannot be completely 

excluded. 

Indeed, in our hands, 3AC administration led to undesired toxicity in non-trained 

cells, both in BMDMs and hPBMCs. Thus, in the design of therapeutic uses of 3AC in 

the context of trained immunity, it is reasonable that both 3AC and the training stimulus 

should be administered at the same time to prevent deleterious effects of SHIPi. On 

the other hand, other pan-SHIP inhibitors (Fuhler et al., 2012, Russo et al., 2015)  and, 

more importantly, specific SHIP-1 inhibitors (K118) (Brooks et al., 2015, Srivastava et 

al., 2016)  have been also developed and tested. The existence of these battery of 

inhibitors opens the possibility to be also used for trained immunity modulation. 

It has been described that the SHIP-1 inhibitor 3AC could influence other mature 

cells than macrophages such as T cells (Collazo et al., 2012, Fernandes et al., 2015, 

Brooks et al., 2015) and NK cells (Fernandes et al., 2015). Concurring with this, 3AC 

administration enhanced anti-tumor effector functions of CD8+ T cells and NK cells 

(Gumbleton et al., 2017). Although 3AC could be influencing this cells, it is important 

to consider that the primary response to systemic candidiasis is independent of T cells 

(Jensen et al., 1993), and mainly relies on innate immune cells such as neutrophils 
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(Dejima et al., 2011), NK cells for neutrophil licensing (Bar et al., 2014) and monocytes 

(Ngo et al., 2014, Lionakis, 2014). Moreover, the C. albicans-induced training model 

that we have used is independent of T/B lymphocytes and NK cells, relying on myeloid 

cells (Quintin et al., 2012). This statement is also based on studies using the LysM-

Cre recombinase mouse model (Cheng et al., 2014). All these facts would reinforce 

the involvement of the innate rather than the adaptive immunity in the increased 

protection we observed, however we cannot rule out effects of 3AC in T or B cells that 

could occur in parallel and/or influence the final outcome in vivo. Finally, systemic 

inhibition of SHIP-1 could also influence other non-myeloid cells such as NK cells, 

where indeed trained immunity features have been also described (Hammer and 

Romagnani, 2017). In any case, considering the potential therapeutic use of SHIPi in 

vivo to enhance innate immune training, it would be interesting to fully dissect the 

actual cellular mechanism involved in its beneficial effect. 

Modulation of myeloid progenitors in the bone marrow has been shown as an 

integral component of trained immunity (Mitroulis et al., 2018, Kaufmann et al., 2018). 

Trained immunity inducers such as β-glucan (Mitroulis et al., 2018) or BCG (Kaufmann 

et al., 2018) expanded bone marrow progenitors including LSK and HSCs, with a 

particular bias to the myeloid lineage (multipotent progenitors -MPPs- and granulocyte-

macrophage progenitors). This expansion was associated with metabolic, epigenetic 

and transcriptional reprogramming of those progenitors (Kaufmann et al., 2018, 

Mitroulis et al., 2018) and finally resulted in reprogramming of trained-BMDMs and 

improved clearance of Mtb (Kaufmann et al., 2018). On the other hand, it has been 

also proved that 3AC administration expanded the HSC compartment (Brooks et al., 

2015), including LSKs, HSCs and MPPs. This expansion was accompanied by an 

increase in serum granulocyte colony-stimulating factor (Brooks et al., 2015), also 

augmented in bone marrow extracellular fluid upon training (Mitroulis et al., 2018). 

Taking altogether, further studies would be needed to decipher whether SHIP-1 could 

be also involved in trained immunity modulation by influencing bone marrow 

progenitors. In this regard, transfer of what Gumbleton and colleagues called 

hematolymphoid cells (bone marrow and splenocytes) from tumor-challenged, 3AC-

treated, long-term surviving mice, protected naïve recipients against tumor challenge 

(Gumbleton et al., 2017). This transferred protective immunological memory could 

emerge from an expansion of the T cell memory compartment due to SHIP-1 inhibition; 
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however, it could also be possible a training effect mediated by SHIP-1 inhibitor on 

transferred bone marrow progenitors.  

 

3. Expanding the implication of SHIP-1 in trained immunity. 

Our data directly link β-glucan-mediated training with SHIP-1. Nevertheless, it would 

not be surprising the involvement of this phosphatase in some other trained-related 

contexts, especially those mediated by PI3K/Akt signaling pathway.  

 For instance, BCG vaccination promotes trained responses against a variety of 

pathogens (Kleinnijenhuis et al., 2014a, Kleinnijenhuis et al., 2012, de Bree et al., 

2018) and confers cross-protection to Candida albicans  (Kleinnijenhuis et al., 2012) 

or human viral infections (Arts et al., 2018b). Interestingly, BCG vaccination induced 

the expression of the miR-155 (Huang et al., 2015) through PI3K signaling pathway in 

macrophages (Ghorpade et al., 2012). Notably, miR-155 is known to repress SHIP-1 

through direct interaction with the phosphatase RNA (O'Connell et al., 2009). In fact, 

this repression occurred upon BCG-triggered responses (Wang et al., 2014), resulting 

in modulation of ROS production by macrophages (Wang et al., 2014) and apoptotic 

cell death (Huang et al., 2015, Ghorpade et al., 2012). Thus, SHIP-1 could be a direct 

mediator of BCG-induced trained responses. In addition, SHIP-1 displayed an 

inhibitory function in the nucleotide-binding oligomerization domain-containing protein 

2 signaling (Conde et al., 2012), the BCG-mediated trained immunity pathway 

(Kleinnijenhuis et al., 2012, Arts et al., 2015), what could make interesting the 

combined use of SHIP-1 inhibitor with BCG to improve its training protective effect. In 

this way, SHIP-1 inhibition could represent a broad strategy to boost trained immunity. 

Trained immunity has been also proposed as adjunctive immunotherapy in 

cancer (Netea et al., 2017, Buffen et al., 2014, Stevens et al., 2016). On one hand, the 

enhanced effector functions of trained innate immune cells would help to eliminate 

microbes that could promote antigen-dependent lymphoproliferation (Stevens et al., 

2016). Moreover, immune training could enhance anti-tumor immunity by reversing the 

immunosuppressive tumor microenvironment (Netea et al., 2017, Buffen et al., 2014, 

Stevens et al., 2016). In this regard, a correlation has been established between BCG-

mediated training and bladder cancer (Buffen et al., 2014). Single nucleotide 

polymorphisms in autophagy genes that correlated with increased training, were also 
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associated with better prognosis in BCG-treated patients suffering bladder cancer 

(Buffen et al., 2014). On the other hand and considering the great relevance of PI3K 

pathway in cancer (Martini et al., 2014), there are also increasing applications of SHIP-

1 antagonists, including 3AC, with successful results in cancer treatment (Brooks et 

al., 2010, Fuhler et al., 2012, Gumbleton et al., 2017). Taking this into account, together 

with the improvement of trained immunity by SHIP-1 inhibition, it would be interesting 

to study the combo effect of SHIP-1 inhibition plus training induction in cancer 

immunotherapy.  

Although enhanced innate immune responses in trained immunity raise as an 

important host defense mechanism against infections, several maladaptive states that 

are based on excessive inflammation could result from trained immunity induction 

(Netea et al., 2016, Leentjens et al., 2018). In this regard, diverse endogenous danger 

signals from injured tissues can trigger long-term reprogramming of cytokine 

production through epigenetic regulation of transcriptional program (Crisan et al., 

2016b). Atherosclerosis has been extensively postulated as an example of such 

diseases (Christ et al., 2016, Leentjens et al., 2018, Bekkering et al., 2013). This is 

supported by oxLDL-mediated induction of trained immunity in human monocytes 

(Bekkering et al., 2016a, Bekkering et al., 2014) together with the trained immunity-like 

phenotype present in circulating monocytes from symptomatic atherosclerosis patients 

(Bekkering et al., 2016b). In this sense, metabolic and epigenetic reprogramming of 

innate immune cells could also sustain the proinflammatory phenotype observed 

during cardiovascular diseases (Hoogeveen et al., 2018).  

hPBMCs from patients with gout also display enhanced proinflammatory 

cytokine production, likely due to a harmful uric acid-induced training (Crisan et al., 

2016a, Crisan et al., 2017). Moreover, monocytes and macrophages of a wide variety 

of autoimmune diseases and autoinflammatory disorders, such as rheumatoid arthritis, 

systemic lupus erythematosus (Arts et al., 2018a) or Hyper-IgD syndrome (Bekkering 

et al., 2018) share a constitutive and damaging trained immunity-like phenotype in 

terms of cytokine production, metabolic changes and/or epigenetic rewiring. Under 

these settings, caution is needed about the potential deleterious effects of trained 

immunity in all these inflammatory processes, where SHIP-1 activators (Ong et al., 

2007, Viernes et al., 2014) such as AQX-1125 (Stenton et al., 2013b, Stenton et al., 
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2013a) rather than inhibitors, could be potentially used to ameliorate an excessive and 

detrimental activation of trained immunity. 

On the other hand, it has been shown that a single peripheral acute LPS 

administration induced microglia immune training, which led to microglial metabolic 

and epigenetic reprogramming, correlating with increased brain proinflammatory 

cytokines and exacerbated pathology in Alzheimer’s disease (AD) and stroke 

(Wendeln et al., 2018). Moreover, in the context of microglial priming, trained immunity 

has been postulated to contribute to brain aging (Haley et al., 2017) and 

neuropsychiatric disorders (Salam et al., 2017). Although the role of SHIP-1 

phosphatase in microglia and AD pathology is not fully understood (Malik et al., 2015), 

these evidences would suggest that SHIP-1 inhibition, by boosting microglia-

dependent training, could be detrimental for neurological disorders and stroke. 

In summary, our data indicate that the trained immunity process can be boosted. 

Moreover, SHIP-1 targeting by means of inhibitors could be proposed as potential 

pharmacological tools to improve trained immunity (Figure D2). 

 

Figure D2. Enhanced trained immunity phenomenon by targeting SHIP-1. Compared to previous 
described induction of trained immunity (black line), SHIP-1 targeting during Candida albicans or β-
glucan priming results in an enhanced trained immune response upon a secondary challenge (brown 
line), which is protective under infectious settings.  

 

This phenomenon has emerged as a potent branch for innate host defense, 

being postulated that trained immunity could be applied to reversion of sepsis-induced 

endotoxin tolerance (Novakovic et al., 2016) and especially treatment of infections 

(Quintin et al., 2012, Cheng et al., 2014). Nevertheless, deciphering mechanisms 

whereby it may be boosted will be crucial to face new challenges such as increasing 
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virulent and drug-resistant infections, and to design new-generation vaccines that 

combine both adaptive and innate immune memory (Netea et al., 2016, van der Meer 

et al., 2015). 
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1. The lack of SHIP-1 in macrophages boosts β-glucan-induced trained immunity, 

leading to increased LPS-induced production of IL-1β and TNFα. 

 

2. β-glucan-trained SHIP-1-deficient macrophages exhibit increased trained immunity 

molecular pathway activation and a more pronounced switch to glycolysis. 

 

3. The enhanced β-glucan training in macrophages through SHIP-1 deletion relies on 

epigenetic reprogramming, particularly on histone methylation and acetylation.  

 

4. β-glucan-trained mice with a specific SHIP-1 deletion in the myeloid compartment 

show an enhanced production of trained immunity-associated cytokines upon 

heterologous rechallenge and a better protection against secondary Candida 

albicans infection. 

 

5. Myeloid specific SHIP-1-deficient mice trained with a low dose of Candida albicans 

show increased renal proinflammatory cytokines and improved response against a 

lethal reinfection. 

 

6. Pharmacological inhibition of SHIP-1 boosts trained immunity in macrophages in 

vitro and improves protection to secondary lethal candidiasis conferred by Candida 

albicans training in vivo. 

 

7. Trained immunity in human peripheral blood mononuclear cells is enhanced by 

SHIP-1 inhibition. 
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1. La ausencia de SHIP-1 en macrófagos potencia la inmunidad entrenada inducida 

por β-glucano, lo que resulta en una mayor producción de IL-1β y TNFα en 

respuesta a LPS. 

 

2. Los macrófagos deficientes en SHIP-1 entrenados con β-glucano muestran una 

activación mayor de la ruta de señalización que media la inmunidad entrenada y 

un cambio a glucólisis más pronunciado. 

 

3. La mejora del entrenamiento con β-glucano mediante la ausencia de SHIP-1 

depende de procesos de reprogramación epigenética, en particular de metilación 

y acetilación de histonas. 

 

4. Los ratones que portan una depleción específica de SHIP-1 en el compartimento 

mieloide y son entrenados con β-glucano, producen una mayor cantidad de 

citoquinas asociadas al proceso de inmunidad entrenada cuando son expuestos a 

un estímulo heterólogo, y se protegen mejor frente a una infección secundaria con 

Candida albicans. 

 

5. Ratones deficientes en SHIP-1 en células mieloides y entrenados con una dosis 

baja de Candida albicans, producen más citoquinas proinflamatorias en el riñón y 

se protegen mejor frente a una reinfección letal.  

 

6. La inhibición farmacológica de SHIP-1 potencia la inmunidad entrenada en 

macrófagos in vitro y mejora la protección conferida por el entrenamiento con 

Candida albicans frente a una candidiasis secundaria letal. 

 

7. La inmunidad entrenada en células mononucleares de sangre periférica humana 

se potencia mediante la inhibición de SHIP-1. 



 

 

 BIBLIOGRAPHY   



Bibliography 

107 

 

AN, H., XU, H., ZHANG, M., ZHOU, J., FENG, T., QIAN, C., QI, R. & CAO, X. 2005. 
Src homology 2 domain-containing inositol-5-phosphatase 1 (SHIP1) negatively 
regulates TLR4-mediated LPS response primarily through a phosphatase 
activity- and PI-3K-independent mechanism. Blood, 105, 4685-4692. 

ANTIGNANO, F., IBARAKI, M., KIM, C., RUSCHMANN, J., ZHANG, A., HELGASON, 
C. D. & KRYSTAL, G. 2010a. SHIP is required for dendritic cell maturation. J 
Immunol, 184, 2805-2813. 

ANTIGNANO, F., IBARAKI, M., RUSCHMANN, J., JAGDEO, J. & KRYSTAL, G. 
2010b. SHIP negatively regulates Flt3L-derived dendritic cell generation and 
positively regulates MyD88-independent TLR-induced maturation. J Leukoc 
Biol, 88, 925-935. 

ARTS, R. J., BLOK, B. A., VAN CREVEL, R., JOOSTEN, L. A., AABY, P., BENN, C. 
S. & NETEA, M. G. 2015. Vitamin A induces inhibitory histone methylation 
modifications and down-regulates trained immunity in human monocytes. J 
Leukoc Biol, 98, 129-136. 

ARTS, R. J., NOVAKOVIC, B., TER HORST, R., CARVALHO, A., BEKKERING, S., 
LACHMANDAS, E., RODRIGUES, F., SILVESTRE, R., CHENG, S. C., WANG, 
S. Y., HABIBI, E., GONCALVES, L. G., MESQUITA, I., CUNHA, C., VAN 
LAARHOVEN, A., VAN DE VEERDONK, F. L., WILLIAMS, D. L., VAN DER 
MEER, J. W., LOGIE, C., O'NEILL, L. A., DINARELLO, C. A., RIKSEN, N. P., 
VAN CREVEL, R., CLISH, C., NOTEBAART, R. A., JOOSTEN, L. A., 
STUNNENBERG, H. G., XAVIER, R. J. & NETEA, M. G. 2016a. Glutaminolysis 
and Fumarate Accumulation Integrate Immunometabolic and Epigenetic 
Programs in Trained Immunity. Cell Metab, 24, 807-819. 

ARTS, R. J. W., CARVALHO, A., LA ROCCA, C., PALMA, C., RODRIGUES, F., 
SILVESTRE, R., KLEINNIJENHUIS, J., LACHMANDAS, E., GONCALVES, L. 
G., BELINHA, A., CUNHA, C., OOSTING, M., JOOSTEN, L. A. B., MATARESE, 
G., VAN CREVEL, R. & NETEA, M. G. 2016b. Immunometabolic Pathways in 
BCG-Induced Trained Immunity. Cell Rep, 17, 2562-2571. 

ARTS, R. J. W., JOOSTEN, L. A. B. & NETEA, M. G. 2018a. The Potential Role of 
Trained Immunity in Autoimmune and Autoinflammatory Disorders. Front 
Immunol, 9, 298. 

ARTS, R. J. W., MOORLAG, S., NOVAKOVIC, B., LI, Y., WANG, S. Y., OOSTING, M., 
KUMAR, V., XAVIER, R. J., WIJMENGA, C., JOOSTEN, L. A. B., REUSKEN, 
C., BENN, C. S., AABY, P., KOOPMANS, M. P., STUNNENBERG, H. G., VAN 
CREVEL, R. & NETEA, M. G. 2018b. BCG Vaccination Protects against 
Experimental Viral Infection in Humans through the Induction of Cytokines 
Associated with Trained Immunity. Cell Host Microbe, 23, 89-100 e5. 

BAR, E., WHITNEY, P. G., MOOR, K., REIS E SOUSA, C. & LEIBUNDGUT-
LANDMANN, S. 2014. IL-17 regulates systemic fungal immunity by controlling 
the functional competence of NK cells. Immunity, 40, 117-127. 

BEKKERING, S., ARTS, R. J. W., NOVAKOVIC, B., KOURTZELIS, I., VAN DER 
HEIJDEN, C., LI, Y., POPA, C. D., TER HORST, R., VAN TUIJL, J., NETEA-
MAIER, R. T., VAN DE VEERDONK, F. L., CHAVAKIS, T., JOOSTEN, L. A. B., 
VAN DER MEER, J. W. M., STUNNENBERG, H., RIKSEN, N. P. & NETEA, M. 



Bibliography 

108 

 

G. 2018. Metabolic Induction of Trained Immunity through the Mevalonate 
Pathway. Cell, 172, 135-146 e9. 

BEKKERING, S., BLOK, B. A., JOOSTEN, L. A., RIKSEN, N. P., VAN CREVEL, R. & 
NETEA, M. G. 2016a. In Vitro Experimental Model of Trained Innate Immunity 
in Human Primary Monocytes. Clin Vaccine Immunol, 23, 926-933. 

BEKKERING, S., JOOSTEN, L. A., VAN DER MEER, J. W., NETEA, M. G. & RIKSEN, 
N. P. 2013. Trained innate immunity and atherosclerosis. Curr Opin Lipidol, 24, 
487-492. 

BEKKERING, S., QUINTIN, J., JOOSTEN, L. A., VAN DER MEER, J. W., NETEA, M. 
G. & RIKSEN, N. P. 2014. Oxidized low-density lipoprotein induces long-term 
proinflammatory cytokine production and foam cell formation via epigenetic 
reprogramming of monocytes. Arterioscler Thromb Vasc Biol, 34, 1731-1738. 

BEKKERING, S., VAN DEN MUNCKHOF, I., NIELEN, T., LAMFERS, E., DINARELLO, 
C., RUTTEN, J., DE GRAAF, J., JOOSTEN, L. A., NETEA, M. G., GOMES, M. 
E. & RIKSEN, N. P. 2016b. Innate immune cell activation and epigenetic 
remodeling in symptomatic and asymptomatic atherosclerosis in humans in 
vivo. Atherosclerosis, 254, 228-236. 

BILLCLIFF, P. G. & LOWE, M. 2014. Inositol lipid phosphatases in membrane 
trafficking and human disease. Biochem J, 461, 159-175. 

BISTONI, F., VECCHIARELLI, A., CENCI, E., PUCCETTI, P., MARCONI, P. & 
CASSONE, A. 1986. Evidence for macrophage-mediated protection against 
lethal Candida albicans infection. Infect Immun, 51, 668-674. 

BISTONI, F., VERDUCCI, G., PERITO, S., VECCHIARELLI, A., PUCCETTI, P., 
MARCONI, P. & CASSONE, A. 1988. Immunomodulation by a low-virulence, 
agerminative variant of Candida albicans. Further evidence for macrophage 
activation as one of the effector mechanisms of nonspecific anti-infectious 
protection. J Med Vet Mycol, 26, 285-299. 

BISWAS, S. K. & LOPEZ-COLLAZO, E. 2009. Endotoxin tolerance: new mechanisms, 
molecules and clinical significance. Trends Immunol, 30, 475-487. 

BLANCO-MENENDEZ, N., DEL FRESNO, C., FERNANDES, S., CALVO, E., CONDE-
GARROSA, R., KERR, W. G. & SANCHO, D. 2015. SHIP-1 Couples to the 
Dectin-1 hemITAM and Selectively Modulates Reactive Oxygen Species 
Production in Dendritic Cells in Response to Candida albicans. J Immunol, 195, 
4466-4478. 

BORASCHI, D. & ITALIANI, P. 2018. Innate Immune Memory: Time for Adopting a 
Correct Terminology. Front Immunol, 9, 799. 

BORRIELLO, F., IANNONE, R., DI SOMMA, S., LOFFREDO, S., SCAMARDELLA, E., 
GALDIERO, M. R., VARRICCHI, G., GRANATA, F., PORTELLA, G. & 
MARONE, G. 2016. GM-CSF and IL-3 Modulate Human Monocyte TNF-alpha 
Production and Renewal in In Vitro Models of Trained Immunity. Front Immunol, 
7, 680. 

BRAUWEILER, A. M., TAMIR, I. & CAMBIER, J. C. 2000. Bilevel control of B-cell 
activation by the inositol 5-phosphatase SHIP. Immunol Rev, 176, 69-74. 

BROOKS, R., FUHLER, G. M., IYER, S., SMITH, M. J., PARK, M. Y., PARAISO, K. 
H., ENGELMAN, R. W. & KERR, W. G. 2010. SHIP1 inhibition increases 



Bibliography 

109 

 

immunoregulatory capacity and triggers apoptosis of hematopoietic cancer 
cells. J Immunol, 184, 3582-3589. 

BROOKS, R., IYER, S., AKADA, H., NEELAM, S., RUSSO, C. M., CHISHOLM, J. D. 
& KERR, W. G. 2015. Coordinate expansion of murine hematopoietic and 
mesenchymal stem cell compartments by SHIPi. Stem Cells, 33, 848-858. 

BROWN, G. D. & GORDON, S. 2001. Immune recognition. A new receptor for beta-
glucans. Nature, 413, 36-37. 

BRUBAKER, S. W., BONHAM, K. S., ZANONI, I. & KAGAN, J. C. 2015. Innate immune 
pattern recognition: a cell biological perspective. Annu Rev Immunol, 33, 257-
290. 

BUFFEN, K., OOSTING, M., QUINTIN, J., NG, A., KLEINNIJENHUIS, J., KUMAR, V., 
VAN DE VOSSE, E., WIJMENGA, C., VAN CREVEL, R., OOSTERWIJK, E., 
GROTENHUIS, A. J., VERMEULEN, S. H., KIEMENEY, L. A., VAN DE 
VEERDONK, F. L., CHAMILOS, G., XAVIER, R. J., VAN DER MEER, J. W., 
NETEA, M. G. & JOOSTEN, L. A. 2014. Autophagy controls BCG-induced 
trained immunity and the response to intravesical BCG therapy for bladder 
cancer. PLoS Pathog, 10, e1004485. 

BUTKEVICIUTE, E., JONES, C. E. & SMITH, S. G. 2018. Heterologous effects of infant 
BCG vaccination: potential mechanisms of immunity. Future Microbiol, 13, 
1193-1208. 

CHENG, S. C., QUINTIN, J., CRAMER, R. A., SHEPARDSON, K. M., SAEED, S., 
KUMAR, V., GIAMARELLOS-BOURBOULIS, E. J., MARTENS, J. H., RAO, N. 
A., AGHAJANIREFAH, A., MANJERI, G. R., LI, Y., IFRIM, D. C., ARTS, R. J., 
VAN DER VEER, B. M., DEEN, P. M., LOGIE, C., O'NEILL, L. A., WILLEMS, 
P., VAN DE VEERDONK, F. L., VAN DER MEER, J. W., NG, A., JOOSTEN, L. 
A., WIJMENGA, C., STUNNENBERG, H. G., XAVIER, R. J. & NETEA, M. G. 
2014. mTOR- and HIF-1alpha-mediated aerobic glycolysis as metabolic basis 
for trained immunity. Science, 345, 1250684. 

CHRIST, A., BEKKERING, S., LATZ, E. & RIKSEN, N. P. 2016. Long-term activation 
of the innate immune system in atherosclerosis. Semin Immunol, 28, 384-393. 

CHRIST, A., GUNTHER, P., LAUTERBACH, M. A. R., DUEWELL, P., BISWAS, D., 
PELKA, K., SCHOLZ, C. J., OOSTING, M., HAENDLER, K., BASSLER, K., 
KLEE, K., SCHULTE-SCHREPPING, J., ULAS, T., MOORLAG, S., KUMAR, V., 
PARK, M. H., JOOSTEN, L. A. B., GROH, L. A., RIKSEN, N. P., ESPEVIK, T., 
SCHLITZER, A., LI, Y., FITZGERALD, M. L., NETEA, M. G., SCHULTZE, J. L. 
& LATZ, E. 2018. Western Diet Triggers NLRP3-Dependent Innate Immune 
Reprogramming. Cell, 172, 162-175 e14. 

CLAUSEN, B. E., BURKHARDT, C., REITH, W., RENKAWITZ, R. & FORSTER, I. 
1999. Conditional gene targeting in macrophages and granulocytes using 
LysMcre mice. Transgenic Res, 8, 265-277. 

COLLAZO, M. M., PARAISO, K. H., PARK, M. Y., HAZEN, A. L. & KERR, W. G. 2012. 
Lineage extrinsic and intrinsic control of immunoregulatory cell numbers by 
SHIP. Eur J Immunol, 42, 1785-1795. 



Bibliography 

110 

 

COLLAZO, M. M., WOOD, D., PARAISO, K. H., LUND, E., ENGELMAN, R. W., LE, C. 
T., STAUCH, D., KOTSCH, K. & KERR, W. G. 2009. SHIP limits 
immunoregulatory capacity in the T-cell compartment. Blood, 113, 2934-2944. 

CONDE, C., GLOIRE, G. & PIETTE, J. 2011. Enzymatic and non-enzymatic activities 
of SHIP-1 in signal transduction and cancer. Biochem Pharmacol, 82, 1320-
1334. 

CONDE, C., RAMBOUT, X., LEBRUN, M., LECAT, A., DI VALENTIN, E., DEQUIEDT, 
F., PIETTE, J., GLOIRE, G. & LEGRAND, S. 2012. The inositol phosphatase 
SHIP-1 inhibits NOD2-induced NF-kappaB activation by disturbing the 
interaction of XIAP with RIP2. PLoS One, 7, e41005. 

COX, D., DALE, B. M., KASHIWADA, M., HELGASON, C. D. & GREENBERG, S. 
2001. A regulatory role for Src homology 2 domain-containing inositol 5'-
phosphatase (SHIP) in phagocytosis mediated by Fc gamma receptors and 
complement receptor 3 (alpha(M)beta(2); CD11b/CD18). J Exp Med, 193, 61-
71. 

CRISAN, T. O., CLEOPHAS, M. C., OOSTING, M., LEMMERS, H., TOENHAKE-
DIJKSTRA, H., NETEA, M. G., JANSEN, T. L. & JOOSTEN, L. A. 2016a. 
Soluble uric acid primes TLR-induced proinflammatory cytokine production by 
human primary cells via inhibition of IL-1Ra. Ann Rheum Dis, 75, 755-762. 

CRISAN, T. O., CLEOPHAS, M. C. P., NOVAKOVIC, B., ERLER, K., VAN DE 
VEERDONK, F. L., STUNNENBERG, H. G., NETEA, M. G., DINARELLO, C. A. 
& JOOSTEN, L. A. B. 2017. Uric acid priming in human monocytes is driven by 
the AKT-PRAS40 autophagy pathway. Proc Natl Acad Sci U S A, 114, 5485-
5490. 

CRISAN, T. O., NETEA, M. G. & JOOSTEN, L. A. 2016b. Innate immune memory: 
Implications for host responses to damage-associated molecular patterns. Eur 
J Immunol, 46, 817-828. 

CROSS, M., MANGELSDORF, I., WEDEL, A. & RENKAWITZ, R. 1988. Mouse 
lysozyme M gene: isolation, characterization, and expression studies. Proc Natl 
Acad Sci U S A, 85, 6232-6236. 

DE BREE, L. C. J., KOEKEN, V., JOOSTEN, L. A. B., AABY, P., BENN, C. S., VAN 
CREVEL, R. & NETEA, M. G. 2018. Non-specific effects of vaccines: Current 
evidence and potential implications. Semin Immunol. pii:S-1044-
5323(18)30011-3 

DE GROOT, A. E. & PIENTA, K. J. 2018. Epigenetic control of macrophage 
polarization: implications for targeting tumor-associated macrophages. 
Oncotarget, 9, 20908-20927. 

DEJIMA, T., SHIBATA, K., YAMADA, H., HARA, H., IWAKURA, Y., NAITO, S. & 
YOSHIKAI, Y. 2011. Protective role of naturally occurring interleukin-17A-
producing gammadelta T cells in the lung at the early stage of systemic 
candidiasis in mice. Infect Immun, 79, 4503-4510. 

DELVES P.J., MARTIN S.J., BURTON D.R. & I.M., R. 2017. Roitt's Essential 
Immunology, Wiley-Blackwell. 



Bibliography 

111 

 

DI LUZIO, N. R. & WILLIAMS, D. L. 1978. Protective effect of glucan against systemic 
Staphylococcus aureus septicemia in normal and leukemic mice. Infect Immun, 
20, 804-810. 

DIBBLE, C. C. & CANTLEY, L. C. 2015. Regulation of mTORC1 by PI3K signaling. 
Trends Cell Biol, 25, 545-555. 

DOMINGUEZ-ANDRES, J., FEO-LUCAS, L., MINGUITO DE LA ESCALERA, M., 
GONZALEZ, L., LOPEZ-BRAVO, M. & ARDAVIN, C. 2017. Inflammatory 
Ly6C(high) Monocytes Protect against Candidiasis through IL-15-Driven NK 
Cell/Neutrophil Activation. Immunity, 46, 1059-1072 e4. 

DOMINGUEZ-ANDRES, J., NOVAKOVIC, B., LI, Y., SCICLUNA, B. P., GRESNIGT, 
M. S., ARTS, R. J. W., OOSTING, M., MOORLAG, S., GROH, L. A., ZWAAG, 
J., KOCH, R. M., TER HORST, R., JOOSTEN, L. A. B., WIJMENGA, C., 
MICHELUCCI, A., VAN DER POLL, T., KOX, M., PICKKERS, P., KUMAR, V., 
STUNNENBERG, H. & NETEA, M. G. 2018. The Itaconate Pathway Is a Central 
Regulatory Node Linking Innate Immune Tolerance and Trained Immunity. Cell 
Metab. pii:S1550-4131(18)30568-0. 

DURRANT, W. E. & DONG, X. 2004. Systemic acquired resistance. Annu Rev 
Phytopathol, 42, 185-209. 

EL KHOURY, D., CUDA, C., LUHOVYY, B. L. & ANDERSON, G. H. 2012. Beta glucan: 
health benefits in obesity and metabolic syndrome. J Nutr Metab, 2012, 851362. 

ERAMO, M. J. & MITCHELL, C. A. 2016. Regulation of PtdIns(3,4,5)P3/Akt signalling 
by inositol polyphosphate 5-phosphatases. Biochem Soc Trans, 44, 240-252. 

ERNEUX, C., GHOSH, S., RAMOS, A. R. & EDIMO, W. E. 2016. New Functions of 
the Inositol Polyphosphate 5-Phosphatases in Cancer. Curr Pharm Des, 22, 
2309-2314. 

FANG, H., PENGAL, R. A., CAO, X., GANESAN, L. P., WEWERS, M. D., MARSH, C. 
B. & TRIDANDAPANI, S. 2004. Lipopolysaccharide-Induced Macrophage 
Inflammatory Response Is Regulated by SHIP. The Journal of Immunology, 
173, 360-366. 

FERNANDES, S., BROOKS, R., GUMBLETON, M., PARK, M. Y., RUSSO, C. M., 
HOWARD, K. T., CHISHOLM, J. D. & KERR, W. G. 2015. SHIPi Enhances 
Autologous and Allogeneic Hematolymphoid Stem Cell Transplantation. 
EBioMedicine, 2, 205-213. 

FERNANDES, S., IYER, S. & KERR, W. G. 2013. Role of SHIP1 in cancer and 
mucosal inflammation. Ann N Y Acad Sci, 1280, 6-10. 

FOSTER, S. L., HARGREAVES, D. C. & MEDZHITOV, R. 2007. Gene-specific control 
of inflammation by TLR-induced chromatin modifications. Nature, 447, 972-978. 

FREYNE, B., MARCHANT, A. & CURTIS, N. 2015. BCG-associated heterologous 
immunity, a historical perspective: experimental models and immunological 
mechanisms. Trans R Soc Trop Med Hyg, 109, 46-51. 

FUHLER, G. M., BROOKS, R., TOMS, B., IYER, S., GENGO, E. A., PARK, M. Y., 
GUMBLETON, M., VIERNES, D. R., CHISHOLM, J. D. & KERR, W. G. 2012. 
Therapeutic potential of SH2 domain-containing inositol-5'-phosphatase 1 
(SHIP1) and SHIP2 inhibition in cancer. Mol Med, 18, 65-75. 



Bibliography 

112 

 

GANESAN, L. P., JOSHI, T., FANG, H., KUTALA, V. K., RODA, J., TROTTA, R., 
LEHMAN, A., KUPPUSAMY, P., BYRD, J. C., CARSON, W. E., CALIGIURI, M. 
A. & TRIDANDAPANI, S. 2006. FcgammaR-induced production of superoxide 
and inflammatory cytokines is differentially regulated by SHIP through its 
influence on PI3K and/or Ras/Erk pathways. Blood, 108, 718-725. 

GARCIA-VALTANEN, P., GUZMAN-GENUINO, R. M., WILLIAMS, D. L., HAYBALL, J. 
D. & DIENER, K. R. 2017. Evaluation of trained immunity by beta-1, 3 (d)-glucan 
on murine monocytes in vitro and duration of response in vivo. Immunol Cell 
Biol, 95, 601-610. 

GARDINER, C. M. & MILLS, K. H. 2016. The cells that mediate innate immune memory 
and their functional significance in inflammatory and infectious diseases. Semin 
Immunol, 28, 343-350. 

GHORPADE, D. S., LEYLAND, R., KUROWSKA-STOLARSKA, M., PATIL, S. A. & 
BALAJI, K. N. 2012. MicroRNA-155 is required for Mycobacterium bovis BCG-
mediated apoptosis of macrophages. Mol Cell Biol, 32, 2239-2253. 

GOLD, M. J., ANTIGNANO, F., HUGHES, M. R., ZAPH, C. & MCNAGNY, K. M. 2016. 
Dendritic-cell expression of Ship1 regulates Th2 immunity to helminth infection 
in mice. Eur J Immunol, 46, 122-130. 

GOLD, M. J., HUGHES, M. R., ANTIGNANO, F., HIROTA, J. A., ZAPH, C. & 
MCNAGNY, K. M. 2015. Lineage-specific regulation of allergic airway 
inflammation by the lipid phosphatase Src homology 2 domain-containing 
inositol 5-phosphatase (SHIP-1). J Allergy Clin Immunol, 136, 725-736 e2. 

GUMBLETON, M., SUDAN, R., FERNANDES, S., ENGELMAN, R. W., RUSSO, C. 
M., CHISHOLM, J. D. & KERR, W. G. 2017. Dual enhancement of T and NK 
cell function by pulsatile inhibition of SHIP1 improves antitumor immunity and 
survival. Sci Signal, 10, 5353. 

GUMBLETON, M., VIVIER, E. & KERR, W. G. 2015. SHIP1 intrinsically regulates NK 
cell signaling and education, resulting in tolerance of an MHC class I-
mismatched bone marrow graft in mice. J Immunol, 194, 2847-2854. 

HADIDI, S., ANTIGNANO, F., HUGHES, M. R., WANG, S. K., SNYDER, K., SAMMIS, 
G. M., KERR, W. G., MCNAGNY, K. M. & ZAPH, C. 2012. Myeloid cell-specific 
expression of Ship1 regulates IL-12 production and immunity to helminth 
infection. Mucosal Immunol, 5, 535-543. 

HALEY, M. J., BROUGH, D., QUINTIN, J. & ALLAN, S. M. 2017. Microglial Priming as 
Trained Immunity in the Brain. Neuroscience. pii: S030-4522(17)30929-6. 

HAMILTON, J. A. 2008. Colony-stimulating factors in inflammation and autoimmunity. 
Nat Rev Immunol, 8, 533-544. 

HAMMER, Q. & ROMAGNANI, C. 2017. About Training and Memory: NK-Cell 
Adaptation to Viral Infections. Adv Immunol, 133, 171-207. 

HAMON, M. A. & QUINTIN, J. 2016. Innate immune memory in mammals. Semin 
Immunol, 28, 351-358. 

HAN, M. S., JUNG, D. Y., MOREL, C., LAKHANI, S. A., KIM, J. K., FLAVELL, R. A. & 
DAVIS, R. J. 2013. JNK expression by macrophages promotes obesity-induced 
insulin resistance and inflammation. Science, 339, 218-222. 



Bibliography 

113 

 

HAZEN, A. L., SMITH, M. J., DESPONTS, C., WINTER, O., MOSER, K. & KERR, W. 
G. 2009. SHIP is required for a functional hematopoietic stem cell niche. Blood, 
113, 2924-2933. 

HELGASON, C. D., DAMEN, J. E., ROSTEN, P., GREWAL, R., SORENSEN, P., 
CHAPPEL, S. M., BOROWSKI, A., JIRIK, F., KRYSTAL, G. & HUMPHRIES, R. 
K. 1998. Targeted disruption of SHIP leads to hemopoietic perturbations, lung 
pathology, and a shortened life span. Genes Dev, 12, 1610-1620. 

HOEKSEMA, M. A. & DE WINTHER, M. P. 2016. Epigenetic Regulation of Monocyte 
and Macrophage Function. Antioxid Redox Signal, 25, 758-774. 

HOLDEN, J. A., ATTARD, T. J., LAUGHTON, K. M., MANSELL, A., O'BRIEN-
SIMPSON, N. M. & REYNOLDS, E. C. 2014. Porphyromonas gingivalis 
lipopolysaccharide weakly activates M1 and M2 polarized mouse macrophages 
but induces inflammatory cytokines. Infect Immun, 82, 4190-4203. 

HOLMES, T. D. & BRYCESON, Y. T. 2016. Natural killer cell memory in context. Semin 
Immunol, 28, 368-376. 

HOOGEVEEN, R. M., NAHRENDORF, M., RIKSEN, N. P., NETEA, M. G., DE 
WINTHER, M. P. J., LUTGENS, E., NORDESTGAARD, B. G., NEIDHART, M., 
STROES, E. S. G., CATAPANO, A. L. & BEKKERING, S. 2018. Monocyte and 
haematopoietic progenitor reprogramming as common mechanism underlying 
chronic inflammatory and cardiovascular diseases. Eur Heart J, 39, 3521-3527. 

HUANG, J., JIAO, J., XU, W., ZHAO, H., ZHANG, C., SHI, Y. & XIAO, Z. 2015. MiR-
155 is upregulated in patients with active tuberculosis and inhibits apoptosis of 
monocytes by targeting FOXO3. Mol Med Rep, 12, 7102-7108. 

IFRIM, D. C., JOOSTEN, L. A., KULLBERG, B. J., JACOBS, L., JANSEN, T., 
WILLIAMS, D. L., GOW, N. A., VAN DER MEER, J. W., NETEA, M. G. & 
QUINTIN, J. 2013. Candida albicans primes TLR cytokine responses through a 
Dectin-1/Raf-1-mediated pathway. J Immunol, 190, 4129-4135. 

IFRIM, D. C., QUINTIN, J., JOOSTEN, L. A., JACOBS, C., JANSEN, T., JACOBS, L., 
GOW, N. A., WILLIAMS, D. L., VAN DER MEER, J. W. & NETEA, M. G. 2014. 
Trained immunity or tolerance: opposing functional programs induced in human 
monocytes after engagement of various pattern recognition receptors. Clin 
Vaccine Immunol, 21, 534-545. 

IFRIM, D. C., QUINTIN, J., MEERSTEIN-KESSEL, L., PLANTINGA, T. S., JOOSTEN, 
L. A., VAN DER MEER, J. W., VAN DE VEERDONK, F. L. & NETEA, M. G. 
2015. Defective trained immunity in patients with STAT-1-dependent chronic 
mucocutaneaous candidiasis. Clin Exp Immunol, 181, 434-440. 

JANEWAY, C. A., JR., TRAVERS, P., WALPORT, M. & J.D., C. 2001. Immunobiology: 
The immune system in health and disease,  Garland Science. 

JENSEN, J., WARNER, T. & BALISH, E. 1993. Resistance of SCID mice to Candida 
albicans administered intravenously or colonizing the gut: role of 
polymorphonuclear leukocytes and macrophages. J Infect Dis, 167, 912-919. 

KAMEN, L. A., LEVINSOHN, J., CADWALLADER, A., TRIDANDAPANI, S. & 
SWANSON, J. A. 2008. SHIP-1 increases early oxidative burst and regulates 
phagosome maturation in macrophages. J Immunol, 180, 7497-7505. 



Bibliography 

114 

 

KAUFMANN, E., SANZ, J., DUNN, J. L., KHAN, N., MENDONCA, L. E., PACIS, A., 
TZELEPIS, F., PERNET, E., DUMAINE, A., GRENIER, J. C., MAILHOT-
LEONARD, F., AHMED, E., BELLE, J., BESLA, R., MAZER, B., KING, I. L., 
NIJNIK, A., ROBBINS, C. S., BARREIRO, L. B. & DIVANGAHI, M. 2018. BCG 
Educates Hematopoietic Stem Cells to Generate Protective Innate Immunity 
against Tuberculosis. Cell, 172, 176-190 e19. 

KELLER, C., HELLSTEN, Y., STEENSBERG, A. & PEDERSEN, B. K. 2006. 
Differential regulation of IL-6 and TNF-alpha via calcineurin in human skeletal 
muscle cells. Cytokine, 36, 141-147. 

KERR, W. G. 2011. Inhibitor and activator: dual functions for SHIP in immunity and 
cancer. Ann N Y Acad Sci, 1217, 1-17. 

KERR, W. G., PARK, M. Y., MAUBERT, M. & ENGELMAN, R. W. 2011. SHIP 
deficiency causes Crohn's disease-like ileitis. Gut, 60, 177-188. 

KHALAF, H., JASS, J. & OLSSON, P. E. 2010. Differential cytokine regulation by NF-
kappaB and AP-1 in Jurkat T-cells. BMC Immunol, 11, 26. 

KLEINNIJENHUIS, J., QUINTIN, J., PREIJERS, F., BENN, C. S., JOOSTEN, L. A., 
JACOBS, C., VAN LOENHOUT, J., XAVIER, R. J., AABY, P., VAN DER MEER, 
J. W., VAN CREVEL, R. & NETEA, M. G. 2014a. Long-lasting effects of BCG 
vaccination on both heterologous Th1/Th17 responses and innate trained 
immunity. J Innate Immun, 6, 152-158. 

KLEINNIJENHUIS, J., QUINTIN, J., PREIJERS, F., JOOSTEN, L. A., IFRIM, D. C., 
SAEED, S., JACOBS, C., VAN LOENHOUT, J., DE JONG, D., 
STUNNENBERG, H. G., XAVIER, R. J., VAN DER MEER, J. W., VAN CREVEL, 
R. & NETEA, M. G. 2012. Bacille Calmette-Guerin induces NOD2-dependent 
nonspecific protection from reinfection via epigenetic reprogramming of 
monocytes. Proc Natl Acad Sci U S A, 109, 17537-17542. 

KLEINNIJENHUIS, J., QUINTIN, J., PREIJERS, F., JOOSTEN, L. A., JACOBS, C., 
XAVIER, R. J., VAN DER MEER, J. W., VAN CREVEL, R. & NETEA, M. G. 
2014b. BCG-induced trained immunity in NK cells: Role for non-specific 
protection to infection. Clin Immunol, 155, 213-219. 

LEENTJENS, J., BEKKERING, S., JOOSTEN, L. A. B., NETEA, M. G., BURGNER, D. 
P. & RIKSEN, N. P. 2018. Trained Innate Immunity as a Novel Mechanism 
Linking Infection and the Development of Atherosclerosis. Circ Res, 122, 664-
669. 

LIBERTI, M. V. & LOCASALE, J. W. 2016. The Warburg Effect: How Does it Benefit 
Cancer Cells? Trends Biochem Sci, 41, 211-218. 

LIM, M. X., PNG, C. W., TAY, C. Y., TEO, J. D., JIAO, H., LEHMING, N., TAN, K. S. & 
ZHANG, Y. 2014. Differential regulation of proinflammatory cytokine expression 
by mitogen-activated protein kinases in macrophages in response to intestinal 
parasite infection. Infect Immun, 82, 4789-4801. 

LIONAKIS, M. S. 2014. New insights into innate immune control of systemic 
candidiasis. Med Mycol, 52, 555-564. 

LIONAKIS, M. S., LIM, J. K., LEE, C. C. & MURPHY, P. M. 2011. Organ-specific innate 
immune responses in a mouse model of invasive candidiasis. J Innate Immun, 
3, 180-199. 



Bibliography 

115 

 

LIONAKIS, M. S. & NETEA, M. G. 2013. Candida and host determinants of 
susceptibility to invasive candidiasis. PLoS Pathog, 9, e1003079. 

LIU, Q., SASAKI, T., KOZIERADZKI, I., WAKEHAM, A., ITIE, A., DUMONT, D. J. & 
PENNINGER, J. M. 1999. SHIP is a negative regulator of growth factor receptor-
mediated PKB/Akt activation and myeloid cell survival. Genes Dev, 13, 786-
791. 

LOPEZ-COLLAZO, E. & DEL FRESNO, C. 2013. Pathophysiology of endotoxin 
tolerance: mechanisms and clinical consequences. Crit Care, 17, 242. 

LUO, Y., CHEN, G. L., HANNEMANN, N., IPSEIZ, N., KRONKE, G., BAUERLE, T., 
MUNOS, L., WIRTZ, S., SCHETT, G. & BOZEC, A. 2015. Microbiota from 
Obese Mice Regulate Hematopoietic Stem Cell Differentiation by Altering the 
Bone Niche. Cell Metab, 22, 886-894. 

MALIK, M., PARIKH, I., VASQUEZ, J. B., SMITH, C., TAI, L., BU, G., LADU, M. J., 
FARDO, D. W., REBECK, G. W. & ESTUS, S. 2015. Genetics ignite focus on 
microglial inflammation in Alzheimer's disease. Mol Neurodegener, 10, 52. 

MANNO, B., OELLERICH, T., SCHNYDER, T., CORSO, J., LOSING, M., NEUMANN, 
K., URLAUB, H., BATISTA, F. D., ENGELKE, M. & WIENANDS, J. 2016. The 
Dok-3/Grb2 adaptor module promotes inducible association of the lipid 
phosphatase SHIP with the BCR in a coreceptor-independent manner. Eur J 
Immunol, 46, 2520-2530. 

MARAKALALA, M. J., WILLIAMS, D. L., HOVING, J. C., ENGSTAD, R., NETEA, M. 
G. & BROWN, G. D. 2013. Dectin-1 plays a redundant role in the 
immunomodulatory activities of beta-glucan-rich ligands in vivo. Microbes Infect, 
15, 511-515. 

MARTINI, M., DE SANTIS, M. C., BRACCINI, L., GULLUNI, F. & HIRSCH, E. 2014. 
PI3K/AKT signaling pathway and cancer: an updated review. Ann Med, 46, 372-
383. 

MAXWELL, M. J., DUAN, M., ARMES, J. E., ANDERSON, G. P., TARLINTON, D. M. 
& HIBBS, M. L. 2011. Genetic segregation of inflammatory lung disease and 
autoimmune disease severity in SHIP-1-/- mice. J Immunol, 186, 7164-7175. 

MAXWELL, M. J., SRIVASTAVA, N., PARK, M. Y., TSANTIKOS, E., ENGELMAN, R. 
W., KERR, W. G. & HIBBS, M. L. 2014. SHIP-1 deficiency in the myeloid 
compartment is insufficient to induce myeloid expansion or chronic 
inflammation. Genes Immun, 15, 233-240. 

MILUTINOVIC, B. & KURTZ, J. 2016. Immune memory in invertebrates. Semin 
Immunol, 28, 328-342. 

MITROULIS, I., RUPPOVA, K., WANG, B., CHEN, L. S., GRZYBEK, M., GRINENKO, 
T., EUGSTER, A., TROULLINAKI, M., PALLADINI, A., KOURTZELIS, I., 
CHATZIGEORGIOU, A., SCHLITZER, A., BEYER, M., JOOSTEN, L. A. B., 
ISERMANN, B., LESCHE, M., PETZOLD, A., SIMONS, K., HENRY, I., DAHL, 
A., SCHULTZE, J. L., WIELOCKX, B., ZAMBONI, N., MIRTSCHINK, P., 
COSKUN, U., HAJISHENGALLIS, G., NETEA, M. G. & CHAVAKIS, T. 2018. 
Modulation of Myelopoiesis Progenitors Is an Integral Component of Trained 
Immunity. Cell, 172, 147-161 e12. 



Bibliography 

116 

 

MOSSER, D. M. & ZHANG, X. 2008. Activation of murine macrophages. Curr Protoc 
Immunol, Chapter 14, Unit 14 2. 

NEILL, L., TIEN, A. H., REY-LADINO, J. & HELGASON, C. D. 2007. SHIP-deficient 
mice provide insights into the regulation of dendritic cell development and 
function. Exp Hematol, 35, 627-639. 

NETEA, M. G., JOOSTEN, L. A., LATZ, E., MILLS, K. H., NATOLI, G., 
STUNNENBERG, H. G., O'NEILL, L. A. & XAVIER, R. J. 2016. Trained 
immunity: A program of innate immune memory in health and disease. Science, 
352, aaf1098. 

NETEA, M. G., JOOSTEN, L. A., VAN DER MEER, J. W., KULLBERG, B. J. & VAN 
DE VEERDONK, F. L. 2015a. Immune defence against Candida fungal 
infections. Nat Rev Immunol, 15, 630-42. 

NETEA, M. G., JOOSTEN, L. A. B. & VAN DER MEER, J. W. M. 2017. Hypothesis: 
stimulation of trained immunity as adjunctive immunotherapy in cancer. J 
Leukoc Biol, 102, 1323-1332. 

NETEA, M. G., LATZ, E., MILLS, K. H. G. & O&APOS;NEILL, L. A. J. 2015b. Innate 
immune memory: a paradigm shift in understanding host defense. Nature 
immunology.16, 675-679. 

NETEA, M. G., QUINTIN, J. & VAN DER MEER, J. W. 2011. Trained immunity: a 
memory for innate host defense. Cell Host Microbe, 9, 355-361. 

NGO, L. Y., KASAHARA, S., KUMASAKA, D. K., KNOBLAUGH, S. E., JHINGRAN, A. 
& HOHL, T. M. 2014. Inflammatory monocytes mediate early and organ-specific 
innate defense during systemic candidiasis. J Infect Dis, 209, 109-119. 

NOVAKOVIC, B., HABIBI, E., WANG, S. Y., ARTS, R. J. W., DAVAR, R., 
MEGCHELENBRINK, W., KIM, B., KUZNETSOVA, T., KOX, M., ZWAAG, J., 
MATARESE, F., VAN HEERINGEN, S. J., JANSSEN-MEGENS, E. M., 
SHARIFI, N., WANG, C., KERAMATI, F., SCHOONENBERG, V., FLICEK, P., 
CLARKE, L., PICKKERS, P., HEATH, S., GUT, I., NETEA, M. G., MARTENS, 
J. H. A., LOGIE, C. & STUNNENBERG, H. G. 2016. beta-Glucan Reverses the 
Epigenetic State of LPS-Induced Immunological Tolerance. Cell, 167, 1354-
1368 e14. 

O'CONNELL, R. M., CHAUDHURI, A. A., RAO, D. S. & BALTIMORE, D. 2009. Inositol 
phosphatase SHIP1 is a primary target of miR-155. Proc Natl Acad Sci U S A, 
106, 7113-7118. 

O'CONNELL, R. M., KAHN, D., GIBSON, W. S., ROUND, J. L., SCHOLZ, R. L., 
CHAUDHURI, A. A., KAHN, M. E., RAO, D. S. & BALTIMORE, D. 2010. 
MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory 
T cell development. Immunity, 33, 607-619. 

O'NEILL, S. K., GETAHUN, A., GAULD, S. B., MERRELL, K. T., TAMIR, I., SMITH, M. 
J., DAL PORTO, J. M., LI, Q. Z. & CAMBIER, J. C. 2011. Monophosphorylation 
of CD79a and CD79b ITAM motifs initiates a SHIP-1 phosphatase-mediated 
inhibitory signaling cascade required for B cell anergy. Immunity, 35, 746-756. 

OH, S. Y., ZHENG, T., BAILEY, M. L., BARBER, D. L., SCHROEDER, J. T., KIM, Y. 
K. & ZHU, Z. 2007. Src homology 2 domain-containing inositol 5-phosphatase 



Bibliography 

117 

 

1 deficiency leads to a spontaneous allergic inflammation in the murine lung. J 
Allergy Clin Immunol, 119, 123-131. 

ONG, C. J., MING-LUM, A., NODWELL, M., GHANIPOUR, A., YANG, L., WILLIAMS, 
D. E., KIM, J., DEMIRJIAN, L., QASIMI, P., RUSCHMANN, J., CAO, L. P., MA, 
K., CHUNG, S. W., DURONIO, V., ANDERSEN, R. J., KRYSTAL, G. & MUI, A. 
L. 2007. Small-molecule agonists of SHIP1 inhibit the phosphoinositide 3-kinase 
pathway in hematopoietic cells. Blood, 110, 1942-1949. 

ONO, M., BOLLAND, S., TEMPST, P. & RAVETCH, J. V. 1996. Role of the inositol 
phosphatase SHIP in negative regulation of the immune system by the receptor 
Fc(gamma)RIIB. Nature, 383, 263-266. 

PALMER, C. D., MUTCH, B. E., WORKMAN, S., MCDAID, J. P., HORWOOD, N. J. & 
FOXWELL, B. M. 2008. Bmx tyrosine kinase regulates TLR4-induced IL-6 
production in human macrophages independently of p38 MAPK and NFkappaB 
activity. Blood, 111, 1781-1788. 

PARK, M. Y., SRIVASTAVA, N., SUDAN, R., VIERNES, D. R., CHISHOLM, J. D., 
ENGELMAN, R. W. & KERR, W. G. 2014. Impaired T-cell survival promotes 
mucosal inflammatory disease in SHIP1-deficient mice. Mucosal Immunol, 7, 
1429-1439. 

PAULS, S. D. & MARSHALL, A. J. 2017. Regulation of immune cell signaling by 
SHIP1: A phosphatase, scaffold protein and potential therapeutic target. Eur J 
Immunol.47, 932-945. 

PIKE WINER, L. S. & WU, M. 2014. Rapid analysis of glycolytic and oxidative substrate 
flux of cancer cells in a microplate. PLoS One, 9, e109916. 

PITARCH, A., NOMBELA, C. & GIL, C. 2016. Seroprofiling at the Candida albicans 
protein species level unveils an accurate molecular discriminator for 
candidemia. J Proteomics, 134, 144-162. 

POULAIN, D. 2015. Candida albicans, plasticity and pathogenesis. Crit Rev Microbiol, 
41, 208-217. 

POULAIN, D. & JOUAULT, T. 2004. Candida albicans cell wall glycans, host receptors 
and responses: elements for a decisive crosstalk. Curr Opin Microbiol, 7, 342-
349. 

POURRAJAB, F., YAZDI, M. B., ZARCH, M. B., ZARCH, M. B. & 
HEKMATIMOGHADDAM, S. 2015. Cross talk of the first-line defense TLRs with 
PI3K/Akt pathway, in preconditioning therapeutic approach. Mol Cell Ther, 3, 4. 

QIAN, Q., JUTILA, M. A., VAN ROOIJEN, N. & CUTLER, J. E. 1994. Elimination of 
mouse splenic macrophages correlates with increased susceptibility to 
experimental disseminated candidiasis. J Immunol, 152, 5000-5008. 

QUINTIN, J., SAEED, S., MARTENS, J. H. A., GIAMARELLOS-BOURBOULIS, E. J., 
IFRIM, D. C., LOGIE, C., JACOBS, L., JANSEN, T., KULLBERG, B. J., 
WIJMENGA, C., JOOSTEN, L. A. B., XAVIER, R. J., VAN DER MEER, J. W. 
M., STUNNENBERG, H. G. & NETEA, M. G. 2012. Candida albicans infection 
affords protection against reinfection via functional reprogramming of 
monocytes. Cell Host Microbe, 12, 223-232. 

RAJARAM, M. V., BUTCHAR, J. P., PARSA, K. V., CREMER, T. J., AMER, A., 
SCHLESINGER, L. S. & TRIDANDAPANI, S. 2009. Akt and SHIP modulate 



Bibliography 

118 

 

Francisella escape from the phagosome and induction of the Fas-mediated 
death pathway. PLoS One, 4, e7919. 

REIMER-MICHALSKI, E. M. & CONRATH, U. 2016. Innate immune memory in plants. 
Semin Immunol, 28, 319-327. 

ROHRSCHNEIDER, L. R., FULLER, J. F., WOLF, I., LIU, Y. & LUCAS, D. M. 2000. 
Structure, function, and biology of SHIP proteins. Genes Dev, 14, 505-520. 

ROSAS, M., LIDDIARD, K., KIMBERG, M., FARO-TRINDADE, I., MCDONALD, J. U., 
WILLIAMS, D. L., BROWN, G. D. & TAYLOR, P. R. 2008. The induction of 
inflammation by dectin-1 in vivo is dependent on myeloid cell programming and 
the progression of phagocytosis. J Immunol, 181, 3549-3557. 

ROTHCHILD, A. C., SISSONS, J. R., SHAFIANI, S., PLAISIER, C., MIN, D., MAI, D., 
GILCHRIST, M., PESCHON, J., LARSON, R. P., BERGTHALER, A., BALIGA, 
N. S., URDAHL, K. B. & ADEREM, A. 2016. MiR-155-regulated molecular 
network orchestrates cell fate in the innate and adaptive immune response to 
Mycobacterium tuberculosis. Proc Natl Acad Sci U S A, 113, 6172-6181. 

RUSCHMANN, J., HO, V., ANTIGNANO, F., KURODA, E., LAM, V., IBARAKI, M., 
SNYDER, K., KIM, C., FLAVELL, R. A., KAWAKAMI, T., SLY, L., TURHAN, A. 
G. & KRYSTAL, G. 2010. Tyrosine phosphorylation of SHIP promotes its 
proteasomal degradation. Exp Hematol, 38, 392-402, 402 e1. 

RUSEK, P., WALA, M., DRUSZCZYNSKA, M. & FOL, M. 2018. Infectious Agents as 
Stimuli of Trained Innate Immunity. Int J Mol Sci, 19. 

RUSSO, C. M., ADHIKARI, A. A., WALLACH, D. R., FERNANDES, S., BALCH, A. N., 
KERR, W. G. & CHISHOLM, J. D. 2015. Synthesis and initial evaluation of 
quinoline-based inhibitors of the SH2-containing inositol 5'-phosphatase (SHIP). 
Bioorg Med Chem Lett, 25, 5344-5348. 

SAEED, S., QUINTIN, J., KERSTENS, H. H., RAO, N. A., AGHAJANIREFAH, A., 
MATARESE, F., CHENG, S. C., RATTER, J., BERENTSEN, K., VAN DER ENT, 
M. A., SHARIFI, N., JANSSEN-MEGENS, E. M., TER HUURNE, M., MANDOLI, 
A., VAN SCHAIK, T., NG, A., BURDEN, F., DOWNES, K., FRONTINI, M., 
KUMAR, V., GIAMARELLOS-BOURBOULIS, E. J., OUWEHAND, W. H., VAN 
DER MEER, J. W., JOOSTEN, L. A., WIJMENGA, C., MARTENS, J. H., 
XAVIER, R. J., LOGIE, C., NETEA, M. G. & STUNNENBERG, H. G. 2014. 
Epigenetic programming of monocyte-to-macrophage differentiation and trained 
innate immunity. Science, 345, 1251086. 

SALAM, A. P., PARIANTE, C. M. & ZUNSZAIN, P. 2017. Innate Immune Memory: 
Implications for Microglial Function and Neuroprogression. Mod Trends 
Pharmacopsychiatry, 31, 67-78. 

SCHAPPE, M. S., SZTEYN, K., STREMSKA, M. E., MENDU, S. K., DOWNS, T. K., 
SEEGREN, P. V., MAHONEY, M. A., DIXIT, S., KRUPA, J. K., STIPES, E. J., 
ROGERS, J. S., ADAMSON, S. E., LEITINGER, N. & DESAI, B. N. 2018. 
Chanzyme TRPM7 Mediates the Ca(2+) Influx Essential for 
Lipopolysaccharide-Induced Toll-Like Receptor 4 Endocytosis and Macrophage 
Activation. Immunity, 48, 59-74 e5. 

SCHRODER, K. & TSCHOPP, J. 2010. The inflammasomes. Cell, 140, 821-32. 



Bibliography 

119 

 

SCHRUM, J. E., CRABTREE, J. N., DOBBS, K. R., KIRITSY, M. C., REED, G. W., 
GAZZINELLI, R. T., NETEA, M. G., KAZURA, J. W., DENT, A. E., 
FITZGERALD, K. A. & GOLENBOCK, D. T. 2018. Cutting Edge: Plasmodium 
falciparum Induces Trained Innate Immunity. J Immunol, 200, 1243-1248. 

SLY, L. M., RAUH, M. J., KALESNIKOFF, J., SONG, C. H. & KRYSTAL, G. 2004. LPS-
induced upregulation of SHIP is essential for endotoxin tolerance. Immunity, 21, 
227-239. 

SRIVASTAVA, N., IYER, S., SUDAN, R., YOUNGS, C., ENGELMAN, R. W., 
HOWARD, K. T., RUSSO, C. M., CHISHOLM, J. D. & KERR, W. G. 2016. A 
small-molecule inhibitor of SHIP1 reverses age- and diet-associated obesity 
and metabolic syndrome. JCI Insight, 1. 

STENTON, G. R., MACKENZIE, L. F., TAM, P., CROSS, J. L., HARWIG, C., 
RAYMOND, J., TOEWS, J., CHERNOFF, D., MACRURY, T. & SZABO, C. 
2013a. Characterization of AQX-1125, a small-molecule SHIP1 activator: Part 
2. Efficacy studies in allergic and pulmonary inflammation models in vivo. Br J 
Pharmacol, 168, 1519-1529. 

STENTON, G. R., MACKENZIE, L. F., TAM, P., CROSS, J. L., HARWIG, C., 
RAYMOND, J., TOEWS, J., WU, J., OGDEN, N., MACRURY, T. & SZABO, C. 
2013b. Characterization of AQX-1125, a small-molecule SHIP1 activator: Part 
1. Effects on inflammatory cell activation and chemotaxis in vitro and 
pharmacokinetic characterization in vivo. Br J Pharmacol, 168, 1506-1518. 

STEVENS, W. B., NETEA, M. G., KATER, A. P. & VAN DER VELDEN, W. J. 2016. 
'Trained immunity': consequences for lymphoid malignancies. Haematologica, 
101, 1460-1468. 

SUN, J. C., BEILKE, J. N. & LANIER, L. L. 2009. Adaptive immune features of natural 
killer cells. Nature, 457, 557-561. 

TAMURA, N., HAZEKI, K., OKAZAKI, N., KAMETANI, Y., MURAKAMI, H., TAKABA, 
Y., ISHIKAWA, Y., NIGORIKAWA, K. & HAZEKI, O. 2009. Specific role of 
phosphoinositide 3-kinase p110alpha in the regulation of phagocytosis and 
pinocytosis in macrophages. Biochem J, 423, 99-108. 

TARASENKO, T., KOLE, H. K., CHI, A. W., MENTINK-KANE, M. M., WYNN, T. A. & 
BOLLAND, S. 2007. T cell-specific deletion of the inositol phosphatase SHIP 
reveals its role in regulating Th1/Th2 and cytotoxic responses. Proc Natl Acad 
Sci U S A, 104, 11382-11387. 

TAYLOR, P. R., TSONI, S. V., W5ILLMENT, J. A., DENNEHY, K. M., ROSAS, M., 
FINDON, H., HAYNES, K., STEELE, C., BOTTO, M., GORDON, S. & BROWN, 
G. D. 2007. Dectin-1 is required for beta-glucan recognition and control of fungal 
infection. Nat Immunol, 8, 31-38. 

TRIBOULEY, J., TRIBOULEY-DURET, J. & APPRIOU, M. 1978. [Effect of Bacillus 
Callmette Guerin (BCG) on the receptivity of nude mice to Schistosoma 
mansoni]. C R Seances Soc Biol Fil, 172, 902-904. 

TROTTA, R., PARIHAR, R., YU, J., BECKNELL, B., ALLARD, J., 2ND, WEN, J., DING, 
W., MAO, H., TRIDANDAPANI, S., CARSON, W. E. & CALIGIURI, M. A. 2005. 
Differential expression of SHIP1 in CD56bright and CD56dim NK cells provides 



Bibliography 

120 

 

a molecular basis for distinct functional responses to monokine costimulation. 
Blood, 105, 3011-3018. 

TROUTMAN, T. D., BAZAN, J. F. & PASARE, C. 2012. Toll-like receptors, signaling 
adapters and regulation of the pro-inflammatory response by PI3K. Cell Cycle, 
11, 3559-3567. 

USHACH, I. & ZLOTNIK, A. 2016. Biological role of granulocyte macrophage colony-
stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-
CSF) on cells of the myeloid lineage. J Leukoc Biol, 100, 481-489. 

VAN 'T WOUT, J. W., POELL, R. & VAN FURTH, R. 1992. The role of BCG/PPD-
activated macrophages in resistance against systemic candidiasis in mice. 
Scand J Immunol, 36, 713-719. 

VAN DER HEIJDEN, C., NOZ, M. P., JOOSTEN, L. A. B., NETEA, M. G., RIKSEN, N. 
P. & KEATING, S. T. 2018. Epigenetics and Trained Immunity. Antioxid Redox 
Signal, 29, 1023-1040. 

VAN DER MEER, J. W., JOOSTEN, L. A., RIKSEN, N. & NETEA, M. G. 2015. Trained 
immunity: A smart way to enhance innate immune defence. Mol Immunol, 68, 
40-44. 

VAN SPLUNTER, M., VAN OSCH, T. L. J., BRUGMAN, S., SAVELKOUL, H. F. J., 
JOOSTEN, L. A. B., NETEA, M. G. & VAN NEERVEN, R. J. J. 2018. Induction 
of Trained Innate Immunity in Human Monocytes by Bovine Milk and Milk-
Derived Immunoglobulin G. Nutrients, 10. 

VIERNES, D. R., CHOI, L. B., KERR, W. G. & CHISHOLM, J. D. 2014. Discovery and 
development of small molecule SHIP phosphatase modulators. Med Res Rev, 
34, 795-824. 

VO, T. T. & FRUMAN, D. A. 2015. INPP4B Is a Tumor Suppressor in the Context of 
PTEN Deficiency. Cancer Discov, 5, 697-700. 

WALACHOWSKI, S., TABOURET, G., FABRE, M. & FOUCRAS, G. 2017. Molecular 
Analysis of a Short-term Model of beta-Glucans-Trained Immunity Highlights 
the Accessory Contribution of GM-CSF in Priming Mouse Macrophages 
Response. Front Immunol, 8, 1089. 

WANG, J., WU, M., WEN, J., YANG, K., LI, M., ZHAN, X., FENG, L., LI, M. & HUANG, 
X. 2014. MicroRNA-155 induction by Mycobacterium bovis BCG enhances ROS 
production through targeting SHIP1. Mol Immunol, 62, 29-36. 

WANG, J. W., HOWSON, J. M., GHANSAH, T., DESPONTS, C., NINOS, J. M., MAY, 
S. L., NGUYEN, K. H., TOYAMA-SORIMACHI, N. & KERR, W. G. 2002. 
Influence of SHIP on the NK repertoire and allogeneic bone marrow 
transplantation. Science, 295, 2094-2097. 

WENDELN, A. C., DEGENHARDT, K., KAURANI, L., GERTIG, M., ULAS, T., JAIN, 
G., WAGNER, J., HASLER, L. M., WILD, K., SKODRAS, A., BLANK, T., 
STASZEWSKI, O., DATTA, M., CENTENO, T. P., CAPECE, V., ISLAM, M. R., 
KERIMOGLU, C., STAUFENBIEL, M., SCHULTZE, J. L., BEYER, M., PRINZ, 
M., JUCKER, M., FISCHER, A. & NEHER, J. J. 2018. Innate immune memory 
in the brain shapes neurological disease hallmarks. Nature, 556, 332-338. 

WHITNEY, P. G., BAR, E., OSORIO, F., ROGERS, N. C., SCHRAML, B. U., 
DEDDOUCHE, S., LEIBUNDGUT-LANDMANN, S. & REIS E SOUSA, C. 2014. 



Bibliography 

121 

 

Syk signaling in dendritic cells orchestrates innate resistance to systemic fungal 
infection. PLoS Pathog, 10, e1004276. 

YAO, H., ZHANG, H., LAN, K., WANG, H., SU, Y., LI, D., SONG, Z., CUI, F., YIN, Y. 
& ZHANG, X. 2017. Purified Streptococcus pneumoniae Endopeptidase O 
(PepO) Enhances Particle Uptake by Macrophages in a Toll-Like Receptor 2- 
and miR-155-Dependent Manner. Infect Immun, 85. 

ZHOU, P., KITAURA, H., TEITELBAUM, S. L., KRYSTAL, G., ROSS, F. P. & 
TAKESHITA, S. 2006. SHIP1 negatively regulates proliferation of osteoclast 
precursors via Akt-dependent alterations in D-type cyclins and p27. J Immunol, 
177, 8777-8784. 

ZHU, L., YANG, T., LI, L., SUN, L., HOU, Y., HU, X., ZHANG, L., TIAN, H., ZHAO, Q., 
PENG, J., ZHANG, H., WANG, R., YANG, Z., ZHANG, L. & ZHAO, Y. 2014. 
TSC1 controls macrophage polarization to prevent inflammatory disease. Nat 
Commun, 5, 4696. 



 

 

 APPENDIX 



Appendix 

125 

 

Publication derived from this work 

 

Saz-Leal P.*, Del Fresno C.*, Brandi P., Dungan O.M., Chisholm J.D., Kerr W.G., 

Sancho D. 2018.  Targeting SHIP-1 in Myeloid Cells Enhances Trained Immunity and 

Boosts Response to Infection. Cell Reports. Accepted.       

https://doi.org/10.1016/j.celrep.2018.09.092. 

 

Other publications during PhD training 

 

Del Fresno C.*, Saz-Leal P.*, Enamorado M., Wculek S.K., Martínez-Cano S., Blanco-

Menéndez N., Schulz O., Gallizioli M., Miró-Mur F., Cano E., Planas A., Sancho D. 

(2018). DNGR-1 in dendritic cells limits tissue damage by dampening neutrophil 

recruitment. Science, 362 (6214):351-356. * (Co-first authors). 

 

Domínguez-Soto Á., Simón-Fuentes M., de Las Casas-Engel M., Cuevas V.D., López-

Bravo M., Domínguez-Andrés J., Saz-Leal P., Sancho D., Ardavín C., Ochoa-Grullón 

J., Sánchez-Ramón S., Vega M.A., Corbí A.L. (2018). IVIg Promote Cross-Tolerance 

against Inflammatory Stimuli In Vitro and In Vivo. J Immunol, 201 (1): 41-52. 

 

Del Fresno C., Iborra S, Saz-Leal P., Martínez-López M., Sancho D. (2018). Flexible 

Signaling of Myeloid C-Type Lectin Receptors in Immunity and Inflammation. Front 

Immunol, 9:804 

 
 
  



Report
Targeting SHIP-1 in Myelo
id Cells Enhances Trained
Immunity and Boosts Response to Infection
Graphical Abstract
Highlights
d b-Glucan-induced trained immunity is enhanced by SHIP-1

deletion in macrophages

d SHIP-1 regulates molecular, metabolic, and epigenetic

hallmarks of trained immunity

d Myeloid SHIP-1 deficiency improves protection conferred by

trained immunity

d SHIP-1 pharmacological inhibition enhances trained

immunity in mice and human cells
Saz-Leal et al., 2018, Cell Reports 25, 1–9
October 30, 2018 ª 2018 The Authors.
https://doi.org/10.1016/j.celrep.2018.09.092
Authors

Paula Saz-Leal, Carlos del Fresno,

Paola Brandi, ..., John D. Chisholm,

William G. Kerr, David Sancho

Correspondence
dsancho@cnic.es

In Brief

Trained immunity leads to long-term

protection, but strategies to boost it

require further investigation. Saz-Leal

et al. show that myeloid SHIP-1 deletion

enhances trained immunity, improving

the response to pathogen-specific or

heterologous challenges.

Pharmacological inhibition of SHIP-1 also

potentiates this phenomenon, thereby

revealing a potential tool to harness

trained immunity.

mailto:dsancho@cnic.es
https://doi.org/10.1016/j.celrep.2018.09.092


Q1

Please cite this article in press as: Saz-Leal et al., Targeting SHIP-1 in Myeloid Cells Enhances Trained Immunity and Boosts Response to Infection,
Cell Reports (2018), https://doi.org/10.1016/j.celrep.2018.09.092
Cell Reports

Report
Targeting SHIP-1 in Myeloid Cells Enhances
Trained Immunity and Boosts Response to Infection
Paula Saz-Leal,1,6 Carlos del Fresno,1,6 Paola Brandi,1 Sarai Martı́nez-Cano,1 Otto M. Dungan,2 John D. Chisholm,2

William G. Kerr,2,3,4,5 and David Sancho1,7,*
1Immunobiology Lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, Madrid, 28029, Spain
2Department of Chemistry, Syracuse University, Syracuse, NY 13210, USA
3Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY 13210, USA
4Pediatrics Department, SUNY Upstate Medical University, Syracuse, NY, USA
5Centre d’Immunologie de Marseille-Luminy, Marseille, France
6These authors contributed equally
7Lead Contact
*Correspondence: dsancho@cnic.es

https://doi.org/10.1016/j.celrep.2018.09.092
SUMMARY

b-Glucan-induced trained immunity in myeloid cells
leads to long-term protection against secondary
infections. Although previous studies have charac-
terized this phenomenon, strategies to boost trained
immunity remain undefined.We found that b-glucan-
trained macrophages from mice with a myeloid-
specific deletion of the phosphatase SHIP-1
(LysMDSHIP-1) showed enhanced proinflammatory
cytokine production in response to lipopolysaccha-
ride. Following b-glucan training, SHIP-1-deficient
macrophages exhibited increased phosphorylation
of Akt andmTOR targets, correlatingwith augmented
glycolytic metabolism. Enhanced training in the
absence of SHIP-1 relied on histone methylation
and acetylation. Trained LysMDSHIP-1 mice pro-
duced increased amounts of proinflammatory
cytokines upon rechallenge in vivo and were
better protected against Candida albicans infection
compared with control littermates. Pharmacological
inhibition of SHIP-1 enhanced trained immunity
against Candida infection in mouse macrophages
and human peripheral blood mononuclear cells. Our
data establish proof of concept for improvement
of trained immunity and a strategy to achieve it by
targeting SHIP-1.

INTRODUCTION

Innate immune cells challenged with certain stimuli undergo

long-lasting changes that result in improved response to a sec-

ond challenge by the same or different microbial insult, a process

referred to as trained immunity (Quintin et al., 2012). Stimuli

driving trained immunity lead to a shift to aerobic glycolysis

(Arts et al., 2016b), accompanied by sustained changes in the

epigenome, mainly via histone methylation and acetylation (Ne-

tea et al., 2016). Among trained immunity inducers, exposure to a

low dose of Candida albicans or the fungal cell wall component
This is an open access article under the CC BY-N
CELREP
b-glucan protects mice from secondary lethal systemic candidi-

asis (Bistoni et al., 1986) or heterologous Staphylococcus aureus

septicemia (Di Luzio and Williams, 1978). This acquired resis-

tance does not rely on T/B lymphocytes or natural killer (NK) cells

but occurs in a myeloid-dependent manner (Cheng et al., 2014;

Quintin et al., 2012).

The C-type lectin receptor Dectin-1 is critical for Candida albi-

cans or b-glucan sensing, leading to immune training of mono-

cytes (Quintin et al., 2012). These primed macrophages show

heightenedproduction of proinflammatory cytokines toawide va-

riety of insults (Ifrim et al., 2013; Quintin et al., 2012). Dectin-1-

mediated training relies on activation of the PI3K (phosphoinosi-

tide 3-kinase)/mTOR (mammalian target of rapamycin) pathway

(Cheng et al., 2014). PI3K-induced Akt signaling is tightly regu-

lated by phosphoinositide phosphatases, which counterbalance

PI3K activity (Eramo and Mitchell, 2016). Among those phospha-

tases, the hematopoietic-restricted SHIP-1 (SH2-containing

inositol 50-phosphatase 1) (Kerr, 2011) is of particular interest, as

weshowed that it binds to the intracellular tail of Dectin-1 receptor

in granulocyte-macrophage colony-stimulating factor (GM-CSF)

bone marrow-derived cells (Blanco-Menéndez et al., 2015).

Because Candida albicans-induced trained immunity relies on

Dectin-1 and PI3K signaling, and SHIP-1 couples to Dectin-1

and counteracts PI3K function, we postulated that SHIP-1 tar-

geting could modulate trained immunity triggered by Dectin-1.

Our results indicate that SHIP-1 has a regulatory role in

b-glucan-induced training, affecting all hallmarks involved in

that process. Moreover, in vivo SHIP-1 deficiency in the myeloid

compartment improves protection conferred by trained immu-

nity. Notably, enhanced proinflammatory cytokine production

and better protection was also achieved by pharmacological

SHIP-1 inhibition in both mice and human peripheral blood

mononuclear cells (PBMCs), providing a potential therapeutic

approach to boost trained immunity.

RESULTS

SHIP-1 Deletion Boosts b-Glucan-Induced Trained
Immunity in Macrophages
Dectin-1 sensing of b-glucan induces trained immunity in

myeloid cells, including PBMCs (Ifrim et al., 2013) or bone
Cell Reports 25, 1–9, October 30, 2018 ª 2018 The Authors. 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. SHIP-1 Deletion Boosts b-Glucan-Induced Trained Immunity in Macrophages

(A) SHIP-1 expression by WB, normalized to b-actin, in bone marrow-derived macrophages (BMDMs) exposed (+) or not (�) to b-glucan (whole glucan particles)

for the indicated time. Representative experiment of three performed.

(B) SHIP-1 protein expression in BMDMs. Representative experiment of six performed.

(C) Trained immunity in vitro model in mouse BMDMs. See also Figure S1A.

(D and E) Dectin-1 expression in BMDMs before b-glucan stimulation (D) or TLR4 expression both under non-trained (left) or b-glucan-primed (right) conditions,

just before LPS stimulation (E), according to Figure 1C. FACS histograms representative of four independent experiments. See also Figures S1B and S1C.

(F) BMDMswere stimulated (+) or not (�) with b-glucan or LPS, and IL-1b (left), IL-6 (middle), and TNFa production (right) was analyzed in supernatants according

to Figure 1C.

See also Figure S2. Independent experiments (n = 4 or 5) are shown. *p < 0.05 and **p < 0.01, paired Student’s t test comparing wild-type (WT) and LysMDSHIP-1.

#p < 0.05, paired Student’s t test comparing stimulated or not with b-glucan within the same genotype.
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marrow-derived macrophages (BMDMs) (Walachowski et al.,

2017). We initially stimulated BMDMs with purified particulate

b-glucan from S. cerevisiae, a well-known ligand for Dectin-1

(Rosas et al., 2008). SHIP-1 basal expression in BMDMs was

further induced after 1 day of b-glucan stimulation (Figure 1A).

To study the potential involvement of SHIP-1 in Dectin-1-

triggered trained immunity, we generated BMDMs from wild-

type (WT) mice or mice bearing a myeloid-specific deletion of

SHIP-1 in the myeloid compartment (LysMDSHIP-1) (Collazo

et al., 2012) (Figure 1B). Next, we adapted the proposed

in vitro long-term scheme of trained immunity (Quintin et al.,

2012) to IFN-g-primed BMDMs, evaluating whether training
2 Cell Reports 25, 1–9, October 30, 2018
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with b-glucan boosts cytokine production in response to

lipopolysaccharide (LPS) (Figure 1C). Of note, as previously

described (Mosser and Zhang, 2008), IFN-g priming was

required to detect LPS-induced cytokines in BMDMs (Fig-

ure S1A), regardless of the induction of training. Surface expres-

sion of the receptors involved in b-glucan (Dectin-1; Figures 1D

and S1B) and LPS (TLR4; Figures 1E and S1C) recognition

were comparable between WT and LysMDSHIP-1 BMDMs. We

found that b-glucan-induced training resulted in increased cell

viability in WT BMDMs (Figure S2), concurring with previous re-

sults (Bekkering et al., 2016; Garcia-Valtanen et al., 2017). Non-

trained SHIP-1-deficient BMDMs showed higher viability than
9
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their WT counterparts, but the relative cell number after b-glucan

training was similar between genotypes (Figure S2). To ensure

the analysis of cell-intrinsic responses as described (Bekkering

et al., 2016), cytokine production was normalized to the relative

cell number present in each treatment.

Pre-incubation of WT BMDMs with b-glucan prompted

a greater production of IL-1b and TNFa in response to LPS

(Figures 1F and S1A), reproducing trained immunity (Quintin

et al., 2012). Notably, b-glucan-trained LysMDSHIP-1 BMDMs

showed an increased production of these trained immunity-

associated cytokines compared with trained WT BMDMs (Fig-

ure 1F). Conversely, IL-6 was not induced following training or

in the absence of SHIP-1 in this setting (Figure 1F). Of note,

SHIP-1 deletion did not affect any of these inflammatory re-

sponses under non-trained conditions. These data indicate

that SHIP-1 modulates the extent of LPS-induced proinflamma-

tory cytokine production specifically during b-glucan training.

SHIP-1 Regulates Molecular andMetabolic Hallmarks of
Trained Immunity
We tested whether the boost in b-glucan training in the absence

of SHIP-1 was accompanied by regulation of key hallmarks

involved in the process. Regarding the molecular pathway, Akt

was phosphorylated in response to b-glucan in a time-depen-

dent manner in WT BMDMs (Figure 2A, left, and Figure S3A),

concurring with previous results (Cheng et al., 2014). Notably,

LysMDSHIP-1 BMDMs showed significantly increased and sus-

tainedAkt phosphorylation upon b-glucan stimulation (Figure 2A,

left, and Figure S3A). The analysis of mTOR targets, S6 and

4EBP1, also revealed a maintained and significantly increased

phosphorylation during the treatment with b-glucan in SHIP-1-

deficient BMDMs (Figure 2A, right, and Figure S3B). Of note, a

basal activation of the Akt pathway occurs in LysMDSHIP-1

BMDMs. This is consistent with previous results in which the

absence of SHIP-1 was associated with Akt overactivation and

survival advantage (Antignano et al., 2010), which would concur

with our results in non-trained BMDMs (Figure S2).

Next, we measured the extracellular acidification rate (ECAR)

in b-glucan-trained BMDMs in a glycolysis stress test prior to

LPS stimulation (Figure 2B). Training with b-glucan for 5 days

increased ECAR inWTBMDMs, ametabolic shift that was signif-

icantly boosted in trained SHIP-1-deficient BMDMs (Figure 2B),

as reflected by enhanced basal (Figure 2C) and maximal (Fig-

ure 2D) glycolysis, together with a higher glycolytic reserve (Fig-

ure 2E). Increase in glycolytic reserve is the first metabolic signa-

ture associated with SHIP-1-deficient BMDMs upon b-glucan

training (Figure S4). Consistent with data on signaling pathway

activation (Figures 2A and S3), basal enhanced glycolysis was

found in LysMDSHIP-1 BMDMs (Figures 2C–2E and S4),

although it did not result in higher cytokine production unless

b-glucan-induced training was established (Figure 1F). These

results suggest that SHIP-1 controls the extent of the glycolytic

switch. Therefore, SHIP-1 deficiency may promote a pro-

glycolytic state that could boost inflammatory response upon

b-glucan-trained conditions.

To assess whether SHIP-1 could affect epigenetic reprogram-

ming induced by b-glucan, we tested the presence of the acti-

vating histone 3 Lys4 trimethylation (H3K4me3) (Cheng et al.,
CELREP
2014; Quintin et al., 2012). Chromatin immunoprecipitation

(ChIP) analysis showed that H3K4me3 was specifically enriched

by b-glucan training at TNFa promoter in WT BMDMs and

further augmented in trained SHIP-1-deficient macrophages

(Figure 2F), concurring with final enhanced TNFa production

(Figure 1F). Moreover, inhibition of histone methyltransferases

using 50-deoxy-50-(methylthio)adenosine (MTA) (Quintin et al.,

2012) abolished TNFa overproduction in the absence of

SHIP-1 upon training, whereas the histone demethylase inhibitor

pargyline (Quintin et al., 2012) did not have any effect (Figure 2G).

Considering that b-glucan-induced training relies also on histone

acetylation, training in the presence of the histone deacetylase

activator resveratrol (Cheng et al., 2014) or the histone acetyl-

transferase inhibitor EGCG (Ifrim et al., 2014) inhibited the

enhanced TNFa produced by trained SHIP-1-deficient macro-

phages (Figure 2H). These results highlight SHIP-1 as a regulator

of trained immunity by dampening the Akt/mTOR molecular

pathway and the glycolytic switch and relying on the epigenetic

reprogramming induced by b-glucan.

Myeloid-Specific Deletion of SHIP-1 Improves Trained
Immunity In Vivo

The generation of trained immunity in vivo leads to cross-protec-

tion against diverse secondary infections (Netea et al., 2016).

Signaling through PI3K is the canonical molecular pathway impli-

cated in the development of these trained responses (Arts et al.,

2016a; Cheng et al., 2014). To test the role of myeloid SHIP-1

in cytokine production under b-glucan training in vivo, WT and

LysMDSHIP-1 mice were challenged with LPS after training

with b-glucan (Cheng et al., 2014), and serum cytokines were

measured (Figure 3A). LPS-induced levels of IL-6 and TNFa

were increased in sera from WT mice upon b-glucan pre-treat-

ment (Figure 3B), indicative of the generation of a trained

response (Quintin et al., 2012). Notably, serum levels of IL-1b,

IL-6, and TNFa were further increased in LysMDSHIP-1 trained

mice compared with trained WT mice (Figure 3B), supporting

the regulatory role of SHIP-1 upon b-glucan training also in vivo.

Protective response against lethal systemic Candida albicans

infection by trained immunity relies on monocytes and macro-

phages (Quintin et al., 2012). After training with b-glucan, WT

and LysMDSHIP-1 mice were intravenously infected with a lethal

dose of the clinical isolate C. albicans SC5314 (Figure 3C). Both

WT and LysMDSHIP-1 non-trained mice rapidly succumbed

upon these infectious conditions (Figure 3D, dashed lines), indi-

cating that SHIP-1 expression in the myeloid compartment is

redundant for the primary response to lethal candidiasis. The

protective effect of b-glucan administration against a lethal

C. albicans infection was significantly improved in LysMDSHIP-1

mice compared with WT littermates (Figure 3D, solid lines).

As trained immunity can be defined as a protection mecha-

nism from secondary lethal C. albicans infection induced by

a nonlethal encounter with the same pathogen (Quintin

et al., 2012), we trained mice with a low dose of C. albicans

followed by a lethal dose of the fungus (Figure 3E). Again, the

training stimulus enlarged the survival time of WT mice

and LysMDSHIP-1 trained mice were more resistant than WT

to lethal systemic candidiasis (Figure 3F, solid lines). Notably,

we observed enhanced production of IL-1b and TNFa inCandida
Cell Reports 25, 1–9, October 30, 2018 3
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Figure 2. SHIP-1 Regulates Molecular and Metabolic Hallmarks of Trained Immunity

(A) BMDMs were exposed to b-glucan for the indicated time, and phospho-Akt, Akt, phospho-S6, phospho-4EBP1, and b-actin were analyzed by WB.

Representative experiment of five performed. See also Figure S3.

(B–E) BMDMs were left untreated (dashed lines) or treated for 1 day with b-glucan (solid lines), washed, rested for 3 days, and re-plated in equal numbers for

determination of extracellular acidification rate (ECAR) in a glycolysis stress test upon sequential addition of glucose, oligomycin, and 2-deoxyglucose (2DG) as

indicated (B). Analysis of basal glycolysis (C), maximal glycolysis (D), and glycolytic reserve (E). See also Figure S4. Mean ± SEM (B) or individual data (C–E) of five

independent cultures are shown.

(F) BMDMs were trained (+) or not (�) with b-glucan for 1 day, washed, and rested for 4 days and chromatin immunoprecipitation (ChIP) against H3K4me3 was

performed in which enrichment on the TNFa promoter was analyzed using qPCR. Mean ± SEM of five independent experiments is shown.

(G and H) BMDMs were incubated (+) or not (�) with the methyltransferase inhibitor 50-deoxy-50-(methylthio)adenosine (MTA), the histone demethylase inhibitor

pargyline (G), the histone deacetylase activator resveratrol, or the histone acetyltransferase inhibitor EGCG (H) for 30 min before b-glucan training and after

wash-out. TNFa production was analyzed in supernatants after LPS stimulation according to Figure 1C. Individual data corresponding to three (G) or four (H)

independent experiments are shown.

In (C)–(H), *p < 0.05 and **p < 0.01, paired Student’s t test comparingWT and LysMDSHIP-1. In (C)–(F), #p < 0.05, paired Student’s t test comparing stimulated or

not with b-glucan within the same genotype.
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lethally infected kidneys from LysMDSHIP-1 trained mice (Fig-

ure 3G), together with a decreased renal fungal burden (Fig-

ure 3H). These data indicate that SHIP-1 deficiency in myeloid
4 Cell Reports 25, 1–9, October 30, 2018
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cells enhances b-glucan- and Candida-induced trained immu-

nity in vivo, improving the response to pathogen-specific or het-

erologous challenges.
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Figure 3. Myeloid-Specific Deletion of

SHIP-1 Improves Trained Immunity In Vivo

(A) In vivomodel of training by two intraperitoneal

(i.p.) b-glucan injections and secondary i.p. LPS

challenge for measuring serum cytokines.

(B) Mice were treated according to Figure 3A.

Serum was collected after 60 min (TNFa) or

90 min (IL-1b and IL-6) of LPS challenge, and

cytokines were analyzed.

(C) In vivo model of training as in (A) but with

secondary Candida albicans lethal infection.

(D) Survival curve according to Figure 3C.

(E) In vivo model of training by a systemic infec-

tion with a low dose of C. albicans followed

by a secondary lethal challenge with the same

pathogen.

(F) Survival curve according to Figure 3E.

(G and H) Renal cytokines on day 2 post-infection

(p.i.) (G) and kidney fungal burden (H) at indicated

time points p.i. were evaluated in trained mice,

following model in Figure 3E.

In (B), (G), and (H), single dots correspond to

individual mice. Mean ± SEM of two (B and H) or

three (G) pooled experiments is shown, including

at least 5 mice per condition. *p < 0.05 and

**p < 0.01, unpaired Student’s t test comparing

WT and LysMDSHIP-1. #p < 0.05, unpaired Stu-

dent’s t test comparing the same genotype

stimulated or not with b-glucan. In (D) and (F), a

pool of two experiments is shown, including

between 6 and 16 mice per group as indicated.

**p < 0.01, log rank test between WT and

LysMDSHIP-1 mice. #p < 0.05, log rank test

comparing trained or not with b-glucan (D) or

C. albicans (F) within the same genotype.
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Pharmacological Inhibition of SHIP-1 Enhances Trained
Immunity
The relevance of the PI3K pathway in distinct pathologies has

promoted the development of chemical SHIP-1 phosphatase in-

hibitors such as 3a-aminocholestane (3AC; SHIPi) (Brooks et al.,

2010). We thus tested 3AC as a potential tool to boost trained

immunity. BMDMs were trained with b-glucan in presence of

different doses of 3AC (half maximal inhibitory concentration

[IC50] = 13.5 mM; Brooks et al., 2015), and LPS-induced TNFa

was measured (Figure 4A). Upon b-glucan training, SHIP-1 inhi-

bition boosted TNFa production in a dose-dependent manner

(Figure 4B).

To analyze the effect of 3AC SHIPi under in vivo infectious

conditions, mice were administered SHIPi twice on consecu-

tive days following the published regimen (Gumbleton

et al., 2017), and coincident with the second day of 3AC

administration, mice were trained with a low dose of

C. albicans. Seven days later, mice were lethally infected

with the same fungus (Figure 4C). Inhibition of SHIP-1 did

not affect the survival of non-trained mice (Figure 4D, dashed
CELREP 5579
lines) but improved the survival of

Candida-trained mice (Figure 4D, solid

lines).

To further explore the potential rele-

vance of the use of 3AC SHIPi, we
trained human PBMCs in the presence of SHIPi, rested and stim-

ulated with LPS, and cytokine production was measured (Fig-

ure 4E). This scheme mirrors the stimulation pattern proposed

for human PBMCs elsewhere (Quintin et al., 2012). Importantly,

SHIP-1 inhibition boosted all IL-1b, IL-6, and TNFa production

in these b-glucan-trained human PBMCs (Figure 4F). Thus,

our data indicate that SHIP-1 can be targeted with pharmacolog-

ical inhibitors in both mice and human cells to boost trained

immunity.

DISCUSSION

Herein, we define SHIP-1 in myeloid cells as a target to improve

trained immunity. Additionally, we provide a pharmacological

approach, the SHIP-1 inhibitor 3AC, improving training-induced

resistance to Candida infection and trained immunity in human

PBMCs. Because modulation of myeloid progenitors in the

bone marrow is an integral component of trained immunity (Mi-

troulis et al., 2018), and 3AC administration expands the hemato-

poietic stem cell compartment (Brooks et al., 2015), SHIP-1
Cell Reports 25, 1–9, October 30, 2018 5
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Figure 4. Pharmacological Inhibition of

SHIP-1 Enhances Trained Immunity

(A) In vitro experimental model applied to mouse

BMDMs, indicating when the SHIP-1 inhibitor

(SHIPi) 3a-aminocholestane (3AC) was added.

(B) Mouse BMDMs were incubated with the SHIPi

at the indicated concentrations. TNFa production

was analyzed in supernatants of b-glucan-trained

cells after LPS stimulation according to Figure 4A.

Mean + SEM of four independent experiments is

shown. **p < 0.01, paired Student’s t test between

SHIPi-treated and non-treated cells.

(C) In vivomodel of training by a systemic infection

with a low dose of Candida albicans in the pres-

ence of SHIPi followed by a second lethal chal-

lenge with the same pathogen. When indicated,

the inhibitor was administered intraperitoneally.

(D) Survival curve of 0.3% hydroxypropylcellulose

(control) or SHIPi-treated mice according to Fig-

ure 4C. A pool of two experiments is shown,

including between 10 and 19 mice per group as

indicated. **p < 0.01, log rank test between trained

control and SHIPi-treated. #p < 0.05, log rank test

comparing trained or not with C. albicans within

the same treatment.

(E) In vitro experimental model applied to human

peripheral blood mononuclear cells (PBMCs)

indicating when SHIPi was added.

(F) IL-1b, IL-6, and TNFa production was analyzed

in supernatants of b-glucan-trained human

PBMCs after LPS stimulation according to Fig-

ure 4E. Samples from seven independent donors

are shown. *p < 0.05, paired Student’s t test.
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inhibition could also influence this compartment. Although

Candida-induced training and the primary response to the fun-

gus are T/B cell independent (Bär et al., 2014; Quintin et al.,

2012), systemic inhibition of SHIP-1 can also influence NK and

T cells (Gumbleton et al., 2017), and we cannot rule out indirect

effects on non-myeloid cells.

We show that SHIP-1 inhibition potentiates the canonical

PI3K/Akt activation pathway, which alsomediates trained immu-

nity in response to other stimuli such as the bacillus Calmette-

Guérin (BCG) vaccine (Arts et al., 2016a). SHIP-1 inhibition could

represent a broad strategy to boost trained immunity. Indeed,

SHIP-1 displays an inhibitory function in NOD2 signaling (Condé

et al., 2012), the BCG-mediated trained immunity pathway

(Kleinnijenhuis et al., 2012). Considering that BCG vaccination

confers cross-protection to human viral infections (Arts et al.,

2018b), SHIP-1 inhibitor could improve the protective effect of

BCG.

Enhanced trained immunity could raise as an important host

defense mechanism against infections or sepsis (Netea et al.,

2016). However, because diverse endogenous danger signals

from injured tissues can trigger innate immune memory hall-

marks (Crișan et al., 2016b), caution is needed regarding the

potential deleterious function of boosting trained immunity in

diseases characterized by excessive inflammation. This notion

could apply to atherosclerosis (Leentjens et al., 2018), cardio-
6 Cell Reports 25, 1–9, October 30, 2018
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vascular events (Hoogeveen et al., 2017), gout (Crișan et al.,

2016a), and a variety of autoimmune diseases and autoinflam-

matory disorders such as rheumatoid arthritis, systemic lupus

erythematosus, and hyper-IgD syndrome (Arts et al., 2018a), in

which monocytes and macrophages share a detrimental trained

immunity-like phenotype. Similarly, boosting microglia-depen-

dent training (Wendeln et al., 2018) through SHIP-1 inhibition

could be detrimental for neurological disorders and stroke.

Under these settings, SHIP-1 activators such as AQX-1125

(Stenton et al., 2013) could be potentially used to ameliorate

an excessive and detrimental activation of trained immunity.

In conclusion, although studies on trained immunity have

focused on the characterization of this phenomenon, strategies

to enhance trained immunity deserve further investigation. Our

data indicate that the trained immunity process can be boosted

by targeting SHIP-1 in myeloid cells. Moreover, SHIP-1 inhibitors

could be proposed as potential pharmacological tools to

improve trained immunity in clinical settings in which enhance-

ment of inflammatory responses is beneficial.
EXPERIMENTAL PROCEDURES

Mice and Human Samples

Mice were bred at Centro Nacional de Investigaciones Cardiovasculares

(CNIC) under specific pathogen-free conditions. WT C57BL/6J mice were
9
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used for SHIP-1 inhibition experiments. LysM+/+SHIP-1flox/flox (WT) and

LysMCre/+SHIP-1flox/flox (LysMDSHIP-1) (Collazo et al., 2012) were kept as lit-

termates. Experiments were conducted with 8- to 12-week-old age-matched

mice (regardless of gender). Experiments were approved by the animal ethics

committee at CNIC and conformed to Spanish law under Real Decreto 1201/

2005. Animal procedures were also performed in accordance to European

Union (EU) Directive 2010/63EU and Recommendation 2007/526/EC.

Buffy coats from healthy volunteers were obtained from the Andalusian

Biobank after ethical approval was obtained from the local Instituto de Salud

Carlos III (ISCIII) Research Ethics Committee (PI 36_2017).

Trained Immunity In Vitro Models

BMDMs

BMDMs (105) were plated in 96-well plates (200 mL final volume; Corning) and

stimulated with R10 or 100 mg/mL b-glucan (whole glucan particles [WGPs];

Biothera) for 24 hr. Then, cells were washed and rested 3 days in culture me-

dium. On day 4, unless indicated, BMDMswere washed again and primed with

25 ng/mL IFN-g (BD Biosciences) for 24 hr. On day 5, a final wash was per-

formed, and cells were stimulated with R10 or 1 mg/mL standard Escherichia

coli LPS (EK; Invivogen). To measure IL-1b production, following 4 hr of LPS

challenge, cells were further stimulated for 2 hr with 5mMATP (Sigma-Aldrich),

needed for inflammasome activation and pro-IL-1b processing (Schroder and

Tschopp, 2010), and supernatants were harvested for ELISA assay. For TNFa

and IL-6, after 24 hr of LPS stimulation, supernatants were collected for ELISA.

When required, BMDMs were pre-incubated for 30 min prior to b-glucan

stimulation with 500 mM MTA, 6 mM pargyline, 50 mM resveratrol, and

50 mM (-)-epigallocatechin-3-gallate (EGCG) (all from Sigma-Aldrich). SHIP-1

inhibitor (SHIPi; 3AC; Calbiochem) was also used at the indicated doses on

b-glucan-trained BMDMs (toxic for non-trained cells). Inhibitors were also

added in the first wash-out, before the resting period.

To assess receptor expression and cell viability, 6 3 105 BMDMs were

plated in non-treated 24-well plates (1,200 mL final volume; Corning) and fol-

lowed the training scheme described above. Dectin-1 expression was evalu-

ated on day 0 prior to b-glucan addition. Cell viability and TLR4 expression

were assessed on day 5 before LPS stimulation. At indicated times, cells

were collected in PBS/EDTA and stained on ice-cold fluorescence-activated

cell sorting (FACS) buffer (PBS/EDTA plus 3% fetal bovine serum [FBS]) for

flow cytometry analysis.

For western blotting (WB) assays and ChIP analysis, 3 3 106 BMDMs were

plated in six-well plates (3 mL final volume; Corning) and stimulated with R10

or 200 mg/mL b-glucan (to maintain mass/cell ratio) for given times. ChIP was

performed on day 5, without IFN-g priming, as detailed below.

To address metabolic status, 3 3 106 BMDMs were plated in non-treated

6-well plates (3 mL final volume; Corning) and followed the training scheme

described above but with 200 mg/mL b-glucan (to maintain mass/cell ratio).

On day 4, without IFN-g priming, cells were detached in PBS/EDTA, plated

at 105 cells/well, and rested overnight in R10 prior to the Seahorse XF glycol-

ysis stress test (Agilent Technologies). When glycolytic metabolism was eval-

uated after overnight stimulation with b-glucan, BMDMs (105) were directly

plated in 96-well Seahorse cell culture plates (200 mL final volume; Agilent

Technologies) and stimulated with R10 or 100 mg/mL b-glucan the following

day.

PBMCs

Total PBMCs (5 3 105) were plated in 96-well plates (200 mL final volume) and

stimulated with 100 mg/mL b-glucan for 24 hr. Then cells were washed and res-

ted for6days inculturemedium.Onday7,PBMCswerestimulatedwith1mg/mL

LPS (EK).After 24hr, supernatantswerecollected for IL-1b, IL-6, andTNFamea-

surement by ELISA. When required, b-glucan-trained PBMCs were pre-incu-

bated for 30 min with 10 mM 3AC (toxic for non-trained cells). Inhibitor was

also added together with the first wash-out, before the resting period.

To assess cell viability, 3 3 106 total PBMCs were plated in 24-well plates

(1,200 mL final volume; Corning) and followed the training scheme described

here. On day 7, prior to LPS stimulation, cells were collected in PBS/EDTA

and stained on ice-cold FACS buffer for flow cytometry analysis.

For normalization of cytokine production, the fold cell number in each con-

dition was calculated as follows: live cell number/live cell number in average

non-trained WT, according to Figure S2. In case of SHIP-1 inhibition experi-
CELREP
ments, non-treated cells were used as reference. Thus, cytokine production

was normalized per cell number as (absolute cytokine value/fold cell number)

in each condition.

In Vivo Models

Mice were trained with either two intraperitoneal (i.p.) injections of 1 mg

b-glucan particles on days �7 and �4 or 2 3 104 Candida albicans intrave-

nously (i.v.) on day �7. Sterile PBS was used as control. One week later,

mice were challenged with 5 mg E. coli LPS (serotype O55:B5; Sigma-Aldrich)

i.p., and blood was collected 60 min later to assess serum TNFa (Mouse TNFa

DuoSet; R&D Systems) or 90 min later to evaluate serum IL-1b and IL-6. Alter-

natively, mice were lethally infected with 23 106C. albicans i.v. andmonitored

daily for weight, general health, and survival, following institutional guidance.

For qPCR analysis of renal cytokines, RNA was purified from whole kidneys

on day 2 post-secondary infection (p.i.). Kidney fungal burden at indicated

time points p.i. was determined by plating organ homogenates obtained me-

chanically over 70 mm cell strainers (BD Biosciences) after slicing the tissue, in

serial dilutions on YPD agar plates; colony-forming units (CFUs) were counted

after growth at 30�C for 48 hr, and data are shown as CFUs in total kidney.

When required, mice were i.p. treated with 0.11 mg 3AC on days �8 and

�7. 3AC was diluted in PBS 0.3% hydroxypropylcellulose (Sigma-Aldrich),

used as control.

Quantification and Statistical Analysis

The statistical analysis was performed using Prism (GraphPad Software).

Unless specified, statistical significance for comparison between two sample

groups with a normal distribution (Shapiro-Wilk test for normality) was deter-

mined using two-tailed paired or unpaired Student’s t test. When groups

were too small to estimate normality, a Gaussian distribution was assumed.

Comparison of survival curves was carried out using the log rank (Mantel-

Cox) test. Outliers were identified by means of Tukey’s range test. Differences

were considered significant at p < 0.05 as indicated. Except when specified,

only significant differences are shown. As indicated in figure legends, either

a representative experiment or a pool is shown, and the number of repetitions

of each experiment and number of experimental units (either cultures or mice)

is indicated. In vitro experiments are shown as a pool of experiments, in

which linked WT-LysMDSHIP-1 dots represent independent cultures that

were processed within the same experiment. In this way, an internal compar-

ison between genotypes can be visually done. Different conditions within the

same genotype in a particular experiment, although not connected by amatter

of clarity, were also pair-analyzed, and statistically significant differences are

indicated by pound signs (#).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and four figures and can be found with this article online at https://doi.org/
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Figure S1 Experimental set-up of trained immunity in vitro model applied to BMDMs, related to 
Figure 1. 
(A) WT and LysMDSHIP-1 BMDMs were stimulated (+) or not (-) with b-glucan and primed (+) or not (-
) with IFN-γ prior to LPS stimulation, according to the model in Figure 1C. (Ø) represent BMDMs 
without any stimuli. TNFα in supernatants was analyzed. Mean ± SEM from five independent 
experiments is shown. (B) Dectin-1 surface expression was analyzed by FACS in WT and LysMDSHIP-1 
BMDMs before b-glucan stimulation. (C) TLR4 surface expression was analyzed by FACS in WT and 
LysMDSHIP-1 BMDMs both under non-trained (-) or b-glucan primed (+) conditions, before LPS 
stimulation. (B, C) Individual data and mean ± SEM from a pool of two experiments is shown including 
three BMDMs cultures per experiment. Each dot represents an independent cell culture. 
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Figure S2. Relative amount of BMDMs recovered before LPS stimulation, related to Figure 1. WT 
and LysMDSHIP-1 BMDMs were exposed (+) or not (-) to b-glucan according to model in Figure 1C. At 
day 5 and before LPS stimulation, the number of viable BMDMs was determined. Fold cell number was 
calculated by dividing live cell number in each experimental condition by the average number of WT 
non-trained cells in all the experiments. Individual data from four independent experiments are shown. 
**p < 0.01, paired Student’s t-test comparing WT and LysMDSHIP-1. #p< 0.05, paired Student’s t-test 
comparing stimulated or not with b-glucan within the same genotype. 
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Figure S3. Quantification of WB kinetics, related to Figure 2. WT and LysMDSHIP-1 BMDMs were 
exposed to b-glucan for the indicated time and phospho-Akt, Akt (A), phospho-S6, phospho-4EBP1 and 
b-Actin (B) analyzed by WB and quantified by ImageJ software. Relative band intensity is shown. Mean 
± SEM from a pool of five experiments performed. *p < 0.05, **p < 0.01, ***p>0.001, paired Student’s 
t-test comparing WT and LysMDSHIP-1 at any time point. 
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Figure S4. SHIP-1 controls the extent of the early glycolytic metabolism, related to Figure 2. (A-D) 
WT and LysMDSHIP-1 BMDMs were left untreated (dashed lines, A) or treated overnight with b-glucan 
(solid lines, A) and extracellular acidification rate (ECAR) was determined. ECAR in a glycolysis stress 
test was analyzed upon sequential addition of glucose, oligomycin and 2-deoxyglucose (2DG) as 
indicated (A). Analysis of basal glycolysis (B), maximal glycolysis (C) and glycolytic reserve (D). (A-D) 
Mean ± SEM (A) or individual data (B-D) of six independent cultures are shown. (B-D) *p < 0.05, **p < 
0.01, paired Student’s t-test comparing WT and LysMDSHIP-1. #p< 0.05, paired Student’s t-test 
comparing stimulated or not with b-glucan within the same genotype. 
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Supplemental Experimental Procedures 

 

Candida albicans 
Candida albicans (strain SC5314, kindly provided by Prof. C. Gil, Complutense University, Madrid, 
Spain) was grown on YPD-agar plates (Sigma) at 30ºC for 48h. 
 

In vitro cell differentiation and culture 

Mouse bone marrow-derived macrophage differentiation. To obtain mouse bone marrow-derived 
macrophages (BMDMs) from WT and LysMΔSHIP-1 mice, femurs were collected and flushed, and red 
blood cells were lysed using RBC Lysis Buffer (Sigma) for 3 minutes at room temperature (RT). Cell 
suspensions were plated in non-treated cell culture plates (Corning) in RPMI 1640 (Sigma) supplemented 
with 10% heat-inactivated fetal bovine serum (FBS, Sigma), 1 mM pyruvate (Lonza), 100 µM non-
essential aminoacids (Thermo Fisher Scientific), 2 mM L-glutamine, 100 U/ml penicillin, 100 µg/ml 
streptomycin (all three from Lonza) and 50 µM 2-mercaptoethanol (Merck), herein called R10, plus M-
CSF (30% mycoplasma-free L929 cell supernatant) at 37ºC for 5 days. At day 5, BMDMs were detached 
in phosphate buffered saline (PBS, Gibco) supplemented with 5 mM EDTA (PBS/EDTA, Life 
Technologies), counted, plated in R10 at the required concentration and rested overnight before any 
stimulation. 

Peripheral blood mononuclear cells (PBMCs). PBMCs were isolated by differential centrifugation using 
Biocoll Separating Solution (Cultek). Cells were washed twice in PBS, resuspended in DMEM (Sigma) 
supplemented with 10% heat-inactivated FBS, 100 µM non-essential aminoacids, 2 mM L-glutamine, 100 
U/ml penicillin, 100 µg/ml streptomycin and 50 µM 2-mercaptoethanol, herein called D10; counted and 
plated for stimulation. 
 
ELISA 
 
Mouse cytokines were analyzed in supernatants of BMDMs using the following reagents: for IL-1β, 
Mouse IL-1β/IL-1F2 DuoSet, R&D Systems; for IL-6, Purified rat anti-mouse IL-6, Biotin rat anti-mouse 
IL-6-both from BD Biosciences- and Streptavidin Horseradish Peroxidase (HRP) Conjugate from 
Invitrogen; for TNFa, OptEIA ELISA kit, BD Biosciences.  
Human cytokines were analyzed in supernatants of PBMCs by using the Human IL-1β/IL-1F2 Duoset, 
Human IL-6 Duoset and Human TNFa DuoSet kits, all from R&D Systems. 
 

Western Blot 

Cell lysates were prepared in RIPA buffer containing protease and phosphatase inhibitors (Roche). 
Samples were run on Mini-PROTEAN TGX PRECAST Gels and transferred onto a nitrocellulose 
membrane (both from Bio-Rad Laboratories) for blotting with the following antibodies: β-Actin (C4) and 
SHIP-1 (P1C1) from Santa Cruz; pAkt (Ser473, #4058S), Akt (#2920S), pS6 (Ser235/236, #4858T) and 
p4EBP1 (Thr37/46, #9459S), all from Cell Signaling. Alexa Fluor-680 (Life Technologies) or Qdot-800 
(Rockland) conjugated secondary antibodies were used. Gels were visualized in an Odyssey instrument 
(LI-COR) and band intensity was quantified by using ImageJ software (Bitplane). 

 

Antibodies and flow cytometry  

Samples were stained with the appropriate antibody cocktails in ice-cold FACS Buffer at 4ºC for 15 
minutes. Antibodies included mouse PE-anti-TLR4 (BioLegend) and APC-anti-Dectin-1 (Bio-Rad). Dead 
cells were excluded by Hoechst 33258 (Invitrogen) incorporation. Purified anti-FcɣRIII/II (2.4G2, 
TONBO Bioscience) was used to block murine Fc-receptors at 4ºC for 10 minutes in all the stainings. 
Events were acquired using FACSCanto 3L (BD Biosciences). Data were analyzed with FlowJo software 
(Tree Star). 
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Glycolytic flux evaluation 

The assay was performed in DMEM supplemented with 1mM glutamine, 100 µg/ml penicillin, 100 µg/ml 
streptomycin. The pH was adjusted to 7.4 with KOH (herein called Seahorse medium). Cells were 
washed with PBS and 175µl of Seahorse medium was added. Plates were incubated at 37°C without 
CO2 for 1h prior to the assay. Extracellular acidification rate (ECAR) was determined by using the 
glycolysis stress test in an XF-96 Extracellular Flux Analyzer (Agilent Technologies). Three consecutive 
measurements were performed under basal conditions and after sequential addition of 80 mM glucose 
(Merck), 9 µM oligomycin A (Sigma) and 500 mM 2-deoxy-glucose (2DG, Sigma). Basal and maximal 
glycolysis were defined as ECAR after addition of glucose and oligomycin, respectively. Glycolytic 
reserve was defined as the difference maximal and basal glycolysis.  

 

Chromatin immunoprecipitation (ChIP) analysis 

ChIP was performed using the Magna ChIP A – Chromatin Immunoprecipitation kit together with the 
ChIPAb+ Trimethyl-Histone3 (Lys4) (H3K4me3) – ChIP validated antibody, both from Millipore-Merck, 
following the provider’s instructions. In brief, cells were fixed with 1% formaldehyde for 10 minutes at 
RT, exposed to glycine to quench unreacted formaldehyde and washed twice with ice-cold PBS 
supplemented with the provided protease inhibitor cocktail. After scraping the cells in ice-cold PBS, they 
were pelleted, lysed and sonicated for 15 minutes (30 seconds on/30 seconds off) at high intensity by 
using a Bioruptor UCD-200TM-TX water bath sonicator (Diagenode). Sonicates were diluted and 
incubated with antibodies plus protein A magnetic beads for 1 hour with rotation at 4 ºC. Beads were 
magnetically collected and washed extensively. Protein-DNA complexes were disrupted from the beads 
upon proteinase-K treatment and recovered DNA was purified. Immunoprecipitated DNA and input DNA 
were amplified by means of quantitative PCR with specific primers for the promoter region of TNFα (Fw: 
5’-CAACTTTCCAAACCCTCTGC-3’; Rv: 5’-CTGGCTAGTCCCTTGCTGTC-3’) with input DNA to 
generate a standard curve. ChIPdata are represented as a percentage of input. 

 

RNA extraction and quantitative-PCR 

RNeasy Plus Mini Kit, from Qiagen, was used for RNA extraction. cDNA was prepared using the High 
Capacity cDNA reverse transcription kit (Applied Biosystems, Foster City, CA). Quantitative PCR was 
performed in a 7900-FAST-384 instrument (Applied Biosystems) by using the GoTaq qPCR master mix 
from Promega. Primers used in this work (synthetized by Sigma) were as follows: β-actin Fw: 5′-
GGCTGTATTCCCCTCCATCG-3′; β-actin Rv: 5′-CCAGTTGGTAACAATGCCATGT-3′; IL-1β Fw: 
5’-CTGAACTCAACTGTGAAATGCCA-3’; IL-1β Rv: 5’-AAAGGTTTGGAAGCAGCCCT-3’; IL-6 
Fw: CCGTGTGGTTACATCTACCCT-3’; IL-6 Rv: 5’-CGTGGTTCTGTTGATGACAGT-3’ TNFα Fw: 
5’-CCCTCACACTCAGATCATCTTCT-3’; TNFα Rv: 5’-GCTACGACGTGGGCTACAG-3’; mRNA 
levels were normalized to b-Actin expression. Data are shown as relative expression to β-Actin (DDCt). 

 

 



IMMUNOLOGY

DNGR-1 in dendritic cells limits
tissue damage by dampening
neutrophil recruitment
Carlos del Fresno1*†, Paula Saz-Leal1*, Michel Enamorado1‡, Stefanie K. Wculek1,

Sarai Martínez-Cano1, Noelia Blanco-Menéndez1, Oliver Schulz2, Mattia Gallizioli3,

Francesc Miró-Mur3, Eva Cano4, Anna Planas3,5, David Sancho1†

Host injury triggers feedback mechanisms that limit tissue damage. Conventional type

1 dendritic cells (cDC1s) express dendritic cell natural killer lectin group receptor-1 (DNGR-1),

encoded by the gene Clec9a, which senses tissue damage and favors cross-presentation of

dead-cell material to CD8+ T cells. Here we find that DNGR-1 additionally reduces host-

damaging inflammatory responses induced by sterile and infectious tissue injury in mice.

DNGR-1 deficiency leads to exacerbated caerulein-induced necrotizing pancreatitis and

increased pathology during systemic Candida albicans infection without affecting fungal

burden. This effect is B and Tcell–independent and attributable to increased neutrophilia in

DNGR-1–deficient settings. Mechanistically, DNGR-1 engagement activates SHP-1 and

inhibits MIP-2 (encoded by Cxcl2) production by cDC1s during Candida infection. This

consequently restrains neutrophil recruitment and promotes disease tolerance.Thus, DNGR-

1–mediated sensing of injury by cDC1s serves as a rheostat for the control of tissue damage,

innate immunity, and immunopathology.

A
fter sterile or infectious insults, injured tis-

sues expose or release alarm signals that

are detected by specific innate immune re-

ceptors onmyeloid cells (1). This triggers an

inflammatory response, which promotes

the recruitment ofmyeloid cells into the damaged

organ. This innate immune response must be

tightly regulated to avoid additional tissue

damage (2).

Among myeloid cell sensors of tissue damage,

dendritic cell natural killer lectin group receptor-1

(DNGR-1; Clec9a gene) is a C-type lectin receptor

(CLR) that detects F-actin exposed by damaged

cells (3, 4). DNGR-1 is mainly expressed by mouse

and human conventional type 1 dendritic cells

(cDC1s), including CD103
+
CD11b

−

DCs in periph-

eral tissues (5, 6). DNGR-1 favors the cross-

presentation of dead cell–associated antigens to

CD8
+
Tcells (7–9).However,whetherDNGR-1plays

any role in innate immunity is unknown. To

address this issue, we used a mouse model of

caerulein-induced acute necrotizing pancreati-

tis (Fig. 1A), which results in massive acinar

cell death, leading to the infiltration of myeloid

cells. This, in turn, triggers further pathology

and edema (10). Upon caerulein treatment, there

was increased pancreatic infiltration by neutro-

phils, but not monocytes, in DNGR-1–deficient

(Clec9a
gfp/gfp

) mice compared with that observed

inwild-type (WT)mice (Fig. 1B). Neutrophil num-

bers in the bone marrow (BM) and blood were

similar in both genotypes (fig. S1), ruling out an

effect of DNGR-1 deficiency on neutrophil ontog-

eny and suggesting a local recruitment effect.

As a nongenetic approach, we used aDNGR-1–

blocking antibody (7, 11). Receptor blockade phe-

nocopied the exacerbated pancreatic infiltration

of neutrophils (Fig. 1C) but not monocytes (fig.

S2A). Enhancedneutrophilia uponDNGR-1 block-

ade was lost in Batf3
−/−

mice (Fig. 1D and fig.

S2B), which lack functional cDC1s (12), indicat-

ing that cDC1s are the key mediators. Pancreatic

CXCR2-mediated neutrophil infiltration is path-

ological in acute pancreatitis (13). Consistently,

caerulein-treated Clec9a
gfp/gfp

mice displayed ex-

acerbated pancreatitis with increased serum

lipase concentrations (Fig. 1E) and extended pan-

creatic edema (Fig. 1F).

The rapid kinetics of neutrophil infiltration

suggested the involvement of an innate immune

response. To test this, Rag1
−/−

(lacking B and

T cells) and Rag1
−/−

Clec9a
gfp/gfp

mice were sub-

jected to caerulein-induced acute pancreatitis.

Notably, the absence of DNGR-1 resulted in en-

hanced neutrophil infiltration (Fig. 1G and fig.

S2C) and increased circulating lipase concen-

trations (Fig. 1H) in B and T cell–deficient mice.

Thus, after tissue damage, DNGR-1 expressed on

cDC1s regulates the recruitment of neutrophils

without the involvement of B and T cells.

A reduction of neutrophil-mediated immu-

nopathology is associated with disease toler-

ance upon infection, which limits the impact

of damage-generating infectious challenges on

host fitness without affecting pathogen burden

(14, 15). To test whether DNGR-1 affects disease

tolerance, we used systemic Candida albicans

infection, which generates extensive renal tissue

necrosis (16). DNGR-1–deficient mice showed in-

creased morbidity and mortality upon systemic

candidiasis (Fig. 2, A and B), despite having a

similar fungal burden (Fig. 2C). Extended pathol-

ogy in the absence of DNGR-1 correlated with

increased neutrophil infiltration in the kidney

(Fig. 2, D and E). Neutrophil numbers in BM or

blood of WT and Clec9a
gfp/gfp

mice were similar

(fig. S3). DNGR-1 blockade in infected mice phe-

nocopied increased neutrophilia (Fig. 2F), which

was prevented in BATF3-deficient mice (Fig. 2G),

indicating that cDC1s mediate the effect. Of note,

Rag1
−/−

Clec9a
gfp/gfp

mice also showed increased

renal neutrophil numbers (Fig. 2H) and reduced

survival after infection (Fig. 2I). Monocyte re-

cruitment into Candida-infected kidneys was not

significantly increased in any of the DNGR-1–

deficient conditions (right panel of Fig. 2D and

fig. S4). Thus, DNGR-1 dampens the recruitment

of neutrophils to damaged tissues in both ster-

ile and infectious settings in a B and T cell–

independent manner.

Neutrophil-mediated renal immunopathology

causes acute kidney failure and mortality during

systemic candidiasis (17, 18). Consistently, C.

albicans–infected Clec9a
gfp/gfp

mice showed exac-

erbated kidney damage, with increased terminal

deoxynucleotidyl transferase–mediated deoxyur-

idine triphosphate nick end labeling (TUNEL)–

positive cells (Fig. 2J), increased concentrations of

serum creatinine (Fig. 2K), and enhanced expres-

sion of kidney injurymolecule-1 (KIM-1) (Fig. 2L).

Kidney neutrophilia was increased inClec9a
gfp/gfp

mice three days after infection (Fig. 2M), along

with enhanced KIM-1 expression (Fig. 2N). Thus,

exacerbated renal damage caused by neutrophils

could underlie increased pathology in Candida-

infected Clec9a
gfp/gfp

mice.

We tested whether DNGR-1–regulated neutro-

philia drives tissue damage in sterile pancreatitis

(Fig. 3A). Partial depletion of neutrophils with an

antibody against Ly6G (anti-Ly6G, or 1A8 anti-

body) (fig. S5) reverted the enhanced edematous

lesions found in isotype-treated Clec9a
gfp/gfp

mice

upon caerulein treatment (Fig. 3B). Assessing the

impact of neutrophils in C. albicans infection is

more complex, because the depletion of neutro-

phils is lethal (19). To circumvent this, we first

used fungizone to eliminate the fungus starting at

day 3 postinfection (Fig. 3C and fig. S6A), after

initial tissue damage by the infection (Fig. 2N).

Removal of C. albicans did not affect the exac-

erbated neutrophil infiltration (Fig. 3D) or renal

damage (Fig. 3E) observed in Clec9a
gfp/gfp

mice.

Thus, after the initial damage, the presence of

fungus was not essential for the DNGR-1–

dependent effect. Neutrophil depletion with 1A8

antibody in the presence of fungizone (Fig. 3, C

and F, and fig. S6B) prevented the enhanced renal

damage found in isotype-treated Clec9a
gfp/gfp

mice

(Fig. 3, G and H), even though fungal burden

was equivalent between genotypes (Fig. 3I).
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Thus, neutrophil influx is the cellular mecha-

nism driving the pathology in Candida-infected

Clec9a
gfp/gfp

mice.

To decipher the mechanisms underlying the

regulatory role of DNGR-1 on cDC1s in neutro-

phil infiltration, we used F-actin–myosin II com-

plexes as DNGR-1 ligand (DNGR-1L) to robustly

trigger the receptor (20). PlatedDNGR-1L triggered

signaling through the DNGR-1–SYK axis in B3Z-

NFAT reporter cells (7) in a dose- (fig. S7A) and

DNGR-1–dependent manner (fig. S7B). Then, we

used a cDC1 cell line (MutuDC) (21) that expresses

DNGR-1 as well as Dectin-1 (fig. S8A), a CLR

critically involved in C. albicans recognition (22).

Stimulation of MutuDCs with the Dectin-1 ago-

nists whole b-glucan particles (WGP) or heat-

killed C. albicans (23) induced the expression of

proinflammatory factors such as Tnf, Cxcl2, and

Egr2. Thiswas reduced by concomitant exposure

to DNGR-1L (Fig. 4A and fig. S8, B and C). Con-

sistently, DNGR-1 triggering attenuated phos-

pholipase Cg2 (PLCg2) phosphorylation and IkB

degradation in response toWGP (Fig. 4B). DNGR-

1 triggering had no impact on the response to toll-

like receptor 9 (TLR9) ligand CpG (Fig. 4C and

fig. S8, D and E), indicating specificity in the

pathways modulated. Using a blocking antibody

(fig. S8F), we confirmed that the effect elicited

by DNGR-1L was DNGR-1 dependent (fig. S8G).

Regulatory phosphatases can couple to some

immunoreceptor tyrosine-based activation motif

(ITAM)–containing receptors (24, 25). As DNGR-1

bears a hemi-ITAM (hemITAM) motif (7), we

tested phosphatase activation upon DNGR-1L

sensing. DNGR-1L induced SHP-1 phosphoryl-

ation (Fig. 4D) without affecting other CLR-

related regulatory mechanisms (26, 27) (fig. S8H).

Treatment with the SHP inhibitor NSC-87877

(NSC) abolished the regulatory effect of DNGR-1L

on responses elicited byWGP (Fig. 4E). Moreover,

mice with SHP-1 depletion in the CD11c
+
com-

partment (CD11cDSHP-1) (28), including cDC1s,

phenocopied the exacerbated neutrophil infiltra-

tion observed in DNGR-1–deficient mice (Fig. 4F

and fig. S9). These observations are consistent

with an involvement of SHP-1 in the molecular

mechanism that adjusts inflammatory responses

in cDC1s after DNGR-1 engagement.

MIP-2 (encoded by Cxcl2) is a CXCR2 ligand

fundamental for neutrophil mobilization from

the BM (29) and local recruitment to C. albicans–

infected tissues (30). We hypothesized that the

MIP-2–CXCR2axis could bemediating theboosted

neutrophilia in the absence of DNGR-1. Admin-

istration of pepducin, a peptide that inhibits

CXCR2 signaling (13), reverted the enhanced renal

neutrophil recruitment observed in Clec9a
gfp/gfp

upon Candida infection (Fig. 4G). To dissect the

contribution of DNGR-1 to the MIP-2–mediated

process in vivo, we infected mice with C. albicans.

After 60 hours, we measured Cxcl2 expression in

the renal immune infiltrate (fig. S10). Of all 10

immune populations tested, only neutrophil

del Fresno et al., Science 362, 351–356 (2018) 19 October 2018 2 of 6

Fig. 1. DNGR-1 regulates neutrophil infiltration and tissue damage

during acute pancreatitis. (A) Acute pancreatitis was induced by

intraperitoneal injection of caerulein hourly for 6 hours in WTand DNGR-1–

deficient (Clec9agfp/gfp) mice. Phosphate-buffered saline (PBS) injection

was used as a control. Animals were analyzed 12 hours after the last

injection. (B) Infiltrating neutrophils (left) and monocytes (right) in

pancreas quantified by flow cytometry. (C and D) Anti–DNGR-1

(a-DNGR-1) or isotype control antibodies were intraperitoneally injected

into WT (C) or WT and Batf3−/− (D) mice on the day before (day −1) and

the day of (day 0) caerulein injection. Infiltrating neutrophils in pancreas

were quantified by flow cytometry. (E) Concentrations of lipase were

detected in serum from peripheral blood. U/L, units per liter.

(F) Hematoxylin and eosin (H&E) staining in pancreatic sections (left).

Representative images of n = 5 pancreata per experimental condition.

Percentages of edematous area (right). (G and H) Rag1−/− and

Rag1−/−Clec9agfp/gfp mice were subjected to pancreatitis as indicated in

(A). Infiltrating neutrophils in pancreas quantified by flow cytometry

(G) and serum lipase concentrations (H) are shown. In (B) to (H), each dot

represents a single mouse. Data are means ± SEM of a representative

experiment (N ≥ 2 independent experiments). Significance was assessed

by unpaired Student’s t test between genotypes (B), (E), (F), (G), and

(H) or treatments (C) and (D); *P < 0.05, and **P < 0.01.
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frequencies were increased in Clec9a
gfp/gfp

mice

(fig. S11). Cxcl2 was expressed by neutrophils,

macrophages, cDC2s, and cDC1s, but expression

was enhanced only in cDC1s in Clec9a
gfp/gfp

mice (Fig. 4H). This suggests that DNGR-1 limits

Cxcl2 expression in cDC1s during C. albicans

infection.

To investigate the relevance of this increased

MIP-2 production by cDC1s on neutrophil

recruitment under DNGR-1–deficient conditions,

we generated mixed BM chimeric mice with

specific MIP-2 deficiency in cDC1s (Batf3
−/−

:

Cxcl2
−/−

) (see methods and fig. S12). After infec-

tion with C. albicans, DNGR-1 blockade gener-

ated an exacerbated renal neutrophil recruitment

del Fresno et al., Science 362, 351–356 (2018) 19 October 2018 3 of 6

Fig. 2. DNGR-1 controls neutrophil recruitment and pathology asso-

ciated with systemic candidiasis. C. albicans was intravenously injected

into WTand Clec9agfp/gfpmice. (A and B) Weight loss (A) and survival rate

(B) were recorded.The dotted line in (A) shows the no-weight-loss reference.

(C to E) After 6 days postinfection, renal fungal burden was detected (C), renal

infiltrated neutrophils (left) and monocytes (right) were quantified by flow

cytometry (D), and H&E staining was performed (E) (arrows indicate

neutrophil accumulation). d.l., detection limit; CFU, colony forming unit. (Fand

G) Anti–DNGR-1 or isotype control antibodies were intraperitoneally injected

in WT (F) or WTand Batf3−/− (G) mice on day −1 and daily after infection;

infiltrating renal neutrophils were analyzed by flow cytometry. (H and I) Rag1−/−

and Rag1−/−Clec9agfp/gfp mice were infected as indicated. Renal neutrophils

(day 6 postinfection) were quantified by flow cytometry (H), and survival rate

was determined (I). (J) 4′,6-diamidino-2-phenylindole (DAPI) and TUNEL

staining in renal sections (left) and the percentage of TUNEL-positive cells

(right). (K and L) Serum creatinine concentrations (K) and KIM-1 relative

expression in total kidney (L) in WTand Clec9agfp/gfp Candida-infected mice.

b-actin expression was used for normalization. (M and N) Number of renal

neutrophils (M) and KIM-1 expression in total kidney (N) at the indicated times

postinfection. In (A), (C), (D), (F), (G), (H), and (M), data are means ± SEM of

a representative experiment (N ≥ 2 independent experiments), including at

least five mice per condition. (B) and (I) show representative experiments

(N ≥ 2 independent experiments) with n ≥ 9mice per genotype. In (C), (D), (F),

(G), (H), (K), and (M), each dot represents a single mouse. (E) and (J) show

representative images of n ≥ 5 kidneys per condition. In (K), (L), and (N), data

are means ± SEM of ≥2 pooled experiments (n ≥ 5 mice per experimental

condition in each independent experiment). Significance was assessed by two-

way analysis of variance (ANOVA) with Bonferroni post hoc test (A), log-rank (B)

and (I), or unpaired Student’s t test between genotypes (C), (D), (H), (J), (K), (L),

(M), and (N) or treatments (F) and (G); *P < 0.05, **P < 0.01, and ***P < 0.001.
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in Batf3
−/−

:WT control chimeras (Fig. 4I). This

boosted neutrophilia was lost in Batf3
−/−

:Cxcl2
−/−

chimeras (Fig. 4I), thus relying onMIP-2 produced

by cDC1s.

Furthermore, we crossed Clec9a
gfp/gfp

and

Cxcl2
−/−

mice to further generate chimeric mice

with cDC1s lacking both DNGR-1 and MIP-2

(Batf3
−/−

:Clec9a
gfp/gfp

Cxcl2
−/−

). Upon systemic

candidiasis,Batf3
−/−

:Clec9a
gfp/gfp

chimeras showed

an exacerbated neutrophil infiltration into the

kidney compared with Batf3
−/−

:WT control chime-

ras (Fig. 4J). Notably, this boosted neutrophiliawas

lost in Batf3
−/−

:Clec9a
gfp/gfp

Cxcl2
−/−

mice (Fig. 4J).

Thus, in the absence of DNGR-1, MIP-2 produced

by BATF3-dependent cDC1s is a keymediator for

the enhanced neutrophil recruitment.

Infiltration of immune cells within injured

tissues must balance pathogen control with

increased damage caused by the inflammatory

response. In particular, early infiltration by neu-

trophils to damaged tissues must be carefully reg-

ulated, because these cells can cause further tissue

destruction (13, 17, 18). Disease tolerance to in-

fections comprises mechanisms involved in the
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Fig. 3. DNGR-1 restrains tissue damage by dampening neutrophil-

mediated immunopathology. (A) Representative scheme of pancreatitis

induction. 1A8 neutrophil-depleting antibody or isotype (iso) control

were administered intraperitoneally, as indicated. (B) H&E staining in

pancreatic sections (left) and percentages of edematous area (right).

Representative images of n ≥ 6 pancreata per experimental condition.

(C) Representative scheme of C. albicans infection; fungizone or PBS

together or alone with 1A8 antibody or isotype control were intra-

peritoneally administered as indicated. (D to I) C. albicans was intra-

venously injected in WT and Clec9agfp/gfp mice. After 6 days postinfection,

renal-infiltrating neutrophils were quantified by flow cytometry (D)

and (F), and KIM-1 expression in total kidney was measured (E) and

(G). (H and I) Serum creatinine concentrations (H) and renal fungal burden

(I). In (B) and (D) to (I), data are means ± SEM of a representative

experiment (N ≥ 2 independent experiments), including at least five

mice per condition. Each dot represents a single mouse. Significance

was assessed by unpaired Student’s t test between genotypes;

*P < 0.05, **P < 0.01, and ***P < 0.001.
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Fig. 4. DNGR-1 activates SHP-1 and

controls neutrophil infiltration by

dampening MIP-2 expression in

cDC1s. (A to E) MutuDCs untreated or

exposed to DNGR-1 ligand (DNGR-1L),

were stimulated with WGP or CpG

where indicated. Tnf, Cxcl2, and Egr2

expression was measured by quantita-

tive polymerase chain reaction after

4 hours of stimulation (A); fold induc-

tion versus nonstimulated cells is

shown. Immunoblot analysis was per-

formed with the indicated antibodies

(B). P-PLCg2, phosphorylated PLCg2. In (C), Tnf and Cxcl2 expression were

measured as in (A). Egr2 expression was not induced in response to CpG.

MutuDCs were exposed to DNGR-1L and analyzed by immunoblot (D). P-SHP-1,

phosphorylated SHP-1. In (E), Tnf, Cxcl2, and Egr2 expression was measured in

cells either preincubatedwith theSHP-inhibitorNSC (+) or not (−) and stimulated

as in (A). (F to J) Mice were intravenously infected with C. albicans. Renal

infiltrating neutrophils were quantified after 6 days in CD11cDSHP-1 and WT

littermates (F) andpepducin orcontrol peptide-treatedWTandClec9agfp/gfpmice

(G). In (H), relativeCxcl2 expression by immune cells in the kidney wasmeasured

60 hours postinfection. In (I) and (J), renal infiltrating neutrophils were quantified

at day 6post infection. In (I), lethally irradiatedB6/SJLCD45.1 recipientmicewere

reconstitutedwith amixture of 50%BATF3-deficient BMcells (CD45.2, producing

MIP-2 but lacking cDC1s) and 50%MIP-2–deficient BM cells (CD45.2, Cxcl2−/−

mice).Thus, Batf3−/−:Cxcl2−/− chimeric mice are defective for MIP-2 production

only in cDC1s compared with control BM chimeras (Batf3−/−:WT). Anti–DNGR-

1 or isotype control antibodies were intraperitoneally injected on day −1 and daily

after infection. In (J), neutrophil numbers are shown for the following mixed BM

chimeric mice, generated as in (I): (i) Batf3−/−:WTcontrol chimeras; (ii) Batf3−/−:

Clec9agfp/gfp, which generate cDC1s lacking DNGR-1; (iii) Batf3−/−:Cxcl2−/−, which

produce MIP-2–deficient cDC1s; and (iv) Batf3−/−:Clec9agfp/gfp Cxcl2−/−, which

generate cDC1s lacking both DNGR-1 and MIP-2. For (I) and (J), all cDC1s in the

kidney were of donor origin (fig. S12, A and C), and the number of reconstituted

cDC1s were equal in the different chimeric mice (fig. S12, B and D). In (A), (C),

(E), and (H), data are means + SEM of pooled experiments, including N ≥ 3

individual cultures or≥4mice per condition (N ≥ 4 independent experiments). For

(B) and (D), N ≥ 2 representative immunoblots. In (F), (G), (I), and (J), data are

means ± SEM of two pooled experiments. Each dot represents a single mouse.

SignificancewasassessedbypairedStudent’s t test betweenDNGR-1L–treatedor

untreated (A), (C), and (E) or between genotypes (H) or unpaired between

genotypes (F), (G), (I), and (J); *P < 0.05, **P < 0.01, and ***P < 0.001.
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control of tissue damage. This concept of “tissue

damage control” is not restricted to infections

and can also be applied to the regulation of dam-

age from sterile inflammation (14, 31). Notably,

mediators involved in tissue damage control un-

der both sterile and infectious conditions can be

shared (31). Our data suggest that DNGR-1 acts

as a shared checkpoint for sterile and infectious

tissue damage control. Detection of tissue dam-

age by cDC1s through DNGR-1 would act as a

checkpoint for neutrophil infiltration and further

immunopathology. Deficient sensing of tissue

damage in the absence of DNGR-1 leads to high-

er production of MIP-2 by cDC1s. This increased

MIP-2 production can ignite neutrophil infiltra-

tion that drives immunopathology within the

damaged organ (fig. S13). Thus, DNGR-1 acts as a

necrosis-sensing receptor that, depending on the

inflammatory context, may promote a regulatory

tissue damage–control mechanism by cDC1s or

may contribute to cross-priming during adaptive

immunity–related responses (7–9). This capacity

to develop two different host protective functions

and the regulation and implications of this dual

role remain to be investigated.
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IVIg Promote Cross-Tolerance against Inflammatory Stimuli

In Vitro and In Vivo

Ángeles Domı́nguez-Soto,* Miriam Simón-Fuentes,* Mateo de las Casas-Engel,*

Vı́ctor D. Cuevas,* Marı́a López-Bravo,† Jorge Domı́nguez-Andrés,† Paula Saz-Leal,‡

David Sancho,‡ Carlos Ardavı́n,† Juliana Ochoa-Grullón,x Silvia Sánchez-Ramón,x

Miguel A. Vega,* and Angel L. Corbı́*

IVIg is an approved therapy for immunodeficiency and for several autoimmune and inflammatory diseases. However, the molecular

basis for the IVIg anti-inflammatory activity remains to be fully explained and cannot be extrapolated from studies on animal

models of disease. We now report that IVIg impairs the generation of human monocyte–derived anti-inflammatory macrophages

by inducing JNK activation and activin A production and limits proinflammatory macrophage differentiation by inhibiting

GM-CSF–driven STAT5 activation. In vivo, IVIg provokes a rapid increase in peripheral blood activin A, CCL2, and IL-6 levels,

an effect that can be recapitulated in vitro on human monocytes. On differentiating monocytes, IVIg promotes the acquisition of

altered transcriptional and cytokine profiles, reduces TLR expression and signaling, and upregulates negative regulators of TLR-

initiated intracellular signaling. In line with these effects, in vivo IVIg infusion induces a state tolerant toward subsequent stimuli

that results in reduced inflammatory cytokine production after LPS challenge in human peripheral blood and significant pro-

tection from LPS-induced death in mice. Therefore, IVIg conditions human macrophages toward the acquisition of a state of

cross-tolerance against inflammatory stimuli, an effect that correlates with the net anti-inflammatory action of IVIg in vivo. The

Journal of Immunology, 2018, 201: 41–52.

E
xtensive macrophage accumulation is one of the hall-

marks of inflammatory responses. During inflammation,

monocytes egress from the bone marrow into the circu-

lation (1, 2) and migrate into inflamed tissues (1, 3–5), where they

give rise to distinct macrophage and dendritic cell subsets under

the influence of tissue cellular and extracellular cues (6, 7). The

high sensitivity of monocytes to the surrounding milieu is exem-

plified by their distinct responses to GM-CSF and M-CSF, which

drive differentiation into functionally different macrophages (8).

GM-CSF promotes proinflammatory macrophages (human mono-

cyte–derived macrophages differentiated in the presence of GM-

CSF [GM-MØ]) (9, 10) characterized by the expression of a

“proinflammatory gene set” (11, 12). Conversely, M-CSF leads to

tissue repair and anti-inflammatory/homeostatic macrophages

(human monocyte–derived macrophages differentiated in the

presence of M-CSF [M-MØ]) with robust IL-10–producing

ability in response to pathogenic stimuli (9, 10, 13), which

are transcriptionally defined by the expression of an “anti-

inflammatory gene set” (11, 12, 14). Human GM-MØ and

M-MØ are considered as proinflammatory and anti-inflammatory

macrophages based on their respective profiles of stimuli-induced

cytokines (9, 10, 15, 16) and because their specific gene signatures

resemble those of macrophages from rheumatoid arthritis joints

and tumor-associated macrophages, respectively (17). An ade-

quate shift between the pro- and anti-inflammatory functions of

macrophages is required for elimination of inflammatory insults

and tissue repair (18, 19). Because deregulated macrophage

polarization leads to the onset and maintenance of chronic in-

flammation (20–25), strategies for modulating macrophage po-

larization are of therapeutic use in chronic inflammatory diseases

(26–30).

IVIg is a preparation of highly purified polyclonal and poly-

specific IgG isolated from plasma of thousands of healthy donors.

Besides substitutive treatment of patients with primary and sec-

ondary Ab deficiencies, IVIg is currently used in a large and

growing number of autoimmune and systemic inflammatory dis-

orders (31–34), as it exerts immunomodulatory effects on a variety

of immune cells (31, 35, 36). Several non–mutually exclusive

mechanisms have been proposed to explain the IVIg immuno-

regulatory action, including the sialic acid content of the Fc por-

tion of the Abs and the interaction with ITAM-bearing Fc

receptors (31, 32, 35–43). We have previously reported that IVIg
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skews human and mouse macrophage polarization through FcgR-

dependent mechanisms (44) and that the IVIg immunomodulatory

activity is dependent on the polarization state of the responding

macrophage, as IVIg limits the proinflammatory transcriptome

and functions of GM-MØ but favors the acquisition of proin-

flammatory properties in M-MØ (44). In fact, IVIg potentiates

inflammatory tissue-damaging responses in murine models of

stroke and sepsis (44) and reduces tumor growth and metastasis in

tumor models (44). However, extrapolation of the IVIg effects

from animal models of disease to human pathology is not obvi-

ous because IVIg is prophylactically administered in most

animal studies, whereas IVIg is used as a therapeutic strategy in

humans (40).

We now report that IVIg modulates M-CSF– and GM-CSF–

driven in vitro macrophage differentiation through distinct mo-

lecular mechanisms and conditions monocytes in vivo to acquire a

state of tolerance against inflammatory stimuli. These findings

provide novel insights into the anti-inflammatory activity of IVIg

in vivo.

Materials and Methods
Macrophage differentiation, cell culture, and treatments

Human monocytes were purified from PBMCs by magnetic cell sorting
using anti-CD14 microbeads (Miltenyi Biotec) (.95% CD14+ cells) and
cultured at 0.5 3 106 cells/ml for 7 d in RPMI 1640 supplemented with
10% FCS and either 1000 U/ml GM-CSF or 10 ng/ml M-CSF (Immu-
noTools) to generate GM-MØ or M-MØ, respectively. Cytokines and
IVIg (10 mg/ml; Privigen, CSL Behring) were added every 2 d, reaching
20–23 mg/ml of Igs at the end of the 7-d differentiation process. For
activation, macrophages were treated with Escherichia coli 055:B5 LPS
(10 ng/ml) for 24 h. Whenever indicated, a neutralizing Ab against hu-
man activin A (100 ng/ml; R&D Systems) was used. Murine bone
marrow–derived macrophages differentiated in the presence of GM-CSF
(GM-BMDMs) were generated using murine GM-CSF (1000 U/ml;
PeproTech).

Quantitative real-time PCR

Total RNAwas extracted using the RNeasy Mini Kit or the AllPrep DNA/
RNA/Protein Mini Kit (Qiagen). cDNAwas synthesized using the Reverse
Transcription System kit (Applied Biosystems) (45). Oligonucleotides were
designed with Universal ProbeLibrary software (Roche Life Sciences).
Quantitative real-time PCR (qRT-PCR) was performed using custom-made
microfluidic gene cards (Roche Life Sciences) or standard plates on a
LightCycler 480 (Roche Life Sciences) (12). Where indicated, a panel of
28 genes differentially expressed between GM-MØ and M-MØ (and in-
cluded within the previously defined proinflammatory gene set and anti-
inflammatory gene set) was analyzed (11, 12). Assays were made in
triplicate, and results were normalized according to the mean of the ex-
pression levels of HPRT, SDHA, and TBP. Results were expressed using
the DDCT method for quantitation.

Western blot

Cell lysates were subjected to SDS-PAGE and transferred onto an
Immobilon-P polyvinylidene difluoride membrane (Millipore). After
blocking the unoccupied sites with 5% BSA, protein detection was
carried out with Abs against total and phosphorylated ERK1/2, total and
phosphorylated JNK, IkBa, phosphorylated IRF3, phosphorylated
STAT5, phosphorylated SHIP-1, A20 (Cell Signaling Technology), total
and phosphorylated STAT1, phosphorylated STAT3 (BD Biosciences), or
phosphorylated SHP-1 (Cell Signaling Technology) and using the
SuperSignal West Pico Chemiluminescent system (Pierce). Protein
loading was normalized using a mAb against GAPDH (sc-32233; Santa
Cruz Biotechnology) or an Ab against human vinculin (Sigma-Aldrich).

Clinical samples and ex vivo LPS tolerance

Peripheral blood was obtained from 36 patients receiving IVIg therapy
(400 mg/kg body weight), both before and after (5 h) IVIg infusion, and
serum or plasma was recovered using standard procedures. Patients had
been previously diagnosed with either common variable immunodeficiency
and other inflammatory disorders (n = 18) or recurrent reproductive failure
of inflammatory cause (n = 18). To assess cross-tolerance to LPS in ex vivo

experiments, peripheral blood obtained from 10 patients receiving IVIg
therapy, both before and after IVIg infusion, was maintained for 12 h at
room temperature and treated with PBS or LPS (10 ng/ml) for 10 h, and
plasma was recovered using standard procedures. Where indicated,
monocytes were isolated from the peripheral blood of IVIg-treated patients
using anti-CD14 microbeads (Miltenyi Biotec). All patients gave informed
consent, and the Hospital Universitario Clı́nico San Carlos ethics com-
mittee approved the study.

In vivo endotoxin tolerance

For survival studies, mice (n = 20 mice per group) received PBS or IVIg
i.p. (400 ml of a 100 mg/ml solution, 40 mg/mouse). After 26 h, mice were
challenged i.p. with LPS (9 mg/kg in saline). Mouse survival was moni-
tored every 12 h for 5 d. For survival studies, statistical analysis was
performed using the Mantel–Cox log-rank test (**p , 0.01).

Flow cytometry

Phenotypic analysis was carried out by flow cytometry as described pre-
viously (46) using either a mAb specific for human TLR4 (sc-13593; Santa
Cruz Biotechnology) or an isotype-matched control Ab (Chemicon) and
followed by staining with FITC-labeled Fab goat anti-mouse IgG. All
incubations were done in the presence of 50 mg/ml human IgG to prevent
binding through the Fc portion of the Abs.

ELISA

Culture supernatants from untreated or LPS-treated (24 h) human macro-
phages and plasma from patients were assayed for the presence of cytokines
using a commercially available ELISA for human TNF-a, IL-12p40 (BD
Pharmingen), CXCL10, IL-6, IL-10 (BioLegend), and activin A (R&D
Systems). ELISA was performed following the protocols supplied by the
manufacturers.

Statistical analysis

Unless otherwise indicated and for comparisons of means, statistical
analysis was performed using the Student t test, and a p value ,0.05 was
considered significant (*p , 0.05, **p , 0.01, ***p , 0.001).

Results
IVIg blocks the acquisition of the anti-inflammatory

transcriptional signature of M-MØ through JNK activation and

activin A production

Peripheral blood monocytes are the immediate precursors of

macrophages within inflamed tissues (47). Because IVIg modu-

lates polarization of human macrophages (44), we sought to assess

the IVIg effects on the ability of monocytes to differentiate into

macrophages in vitro. To that end, monocytes were differentiated

in the presence of therapeutic doses of IVIg. IVIg infusion as a

replacement therapy (48) or as immunosuppressive therapy (31,

32, 36) raises peripheral blood IgG to 15–35 mg/ml (48–50) and

increases IgG blood concentration by an average of 1.8-fold

(mean of maximal IgG levels after IVIg infusion of 16.9 mg/ml).

Therefore, monocytes were differentiated with either M-CSF or

GM-CSF and with IVIg reaching a final concentration of 20–30

mg/ml at the end of the macrophage differentiation protocol. The

presence of IVIg along M-CSF–driven differentiation generated

macrophages (human monocyte–derived macrophages differenti-

ated in the presence of M-CSF and IVIg [IVIg/M-MØ]) with

significantly lower expression of the whole M-MØ–specific anti-

inflammatory gene set and higher expression of several transcripts

of the GM-MØ–specific proinflammatory gene set (Fig. 1A) (12,

51). The IVIg-induced transcriptomic changes were observed with

IVIg concentrations as low as 1 mg/ml (Supplemental Fig. 1A)

and were already detected 48 h after exposure to IVIg (Fig. 1B).

The IVIg-induced changes were also evident at the protein level

after 48 h of IVIg exposure, as indicated by the loss of expression

of MAFB (Fig. 1C), which controls expression of most genes of

the anti-inflammatory gene set (14), and the huge increase in the

production of activin A (Fig. 1D), which drives the generation of

42 IVIg PROMOTES CROSS-TOLERANCE IN VIVO

 b
y
 g

u
est o

n
 O

cto
b

er 2
2
, 2

0
1
8

h
ttp

://w
w

w
.jim

m
u
n
o
l.o

rg
/

D
o
w

n
lo

ad
ed

 fro
m

 



FIGURE 1. IVIg blocks the acquisition of the anti-inflammatory transcriptional signature of M-MØ through JNK activation and activin A production. (A)

Relative expression of the indicated genes in IVIg/M-MØ, as determined by qRT-PCR. The experiment was done on monocytes from five independent

donors, and shown is the mean 6 SEM. (B) Expression of the indicated genes in monocytes differentiated under the influence of M-CSF with or without

IVIg for 2, 5, or 7 d, as determined by qRT-PCR. Two independent experiments were performed and one of them is shown. In (A) and (B), results show the

expression of each gene in IVIg/M-MØ relative to its expression in M-MØ. (C) Immunoblot analysis of MAFB protein levels in monocytes exposed to IVIg

for 2 or 5 d. Protein levels of vinculin were determined in parallel to control for protein loading. Densitometric quantification of the relative MAFB protein

levels in three independent experiments is shown in the lower panel. The expression of MAF in monocytes cultured for 2 d in the absence of IVIg was

arbitrarily set to 1. (D) Activin A levels in culture supernatants of monocytes differentiated with M-CSF for the indicated periods of time and either in the

absence or presence of IVIg. Each determination was performed in triplicate, and shown is the mean 6 SEM of seven independent experiments. (E)

Relative expression of the indicated genes in IVIg/M-MØ generated in the presence of 100 ng/ml of a blocking anti–activin A Ab (Anti-ActA) or an

isotype-matched Ab (IgG), as determined by qRT-PCR. Shown are the relative mRNA levels of each gene (relative to TBP RNA levels) referred to its

expression level when differentiation was done in the presence of an isotype-matched Ab (IgG). The experiment was done on monocytes from two in-

dependent donors, and one of the experiments is shown. (F) Immunoblot analysis of p-JNK, p-ERK, total JNK, and total ERK (Figure legend continues)
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macrophages with proinflammatory activity (11, 12). The rele-

vance of the IVIg-induced activin A production was demonstrated

by the ability of a neutralizing anti–activin A Ab to partially

reverse the IVIg-induced transcriptional changes (Fig. 1E).

Moreover, IVIg/M-MØ–conditioned medium also exhibited an

enhanced ability to limit tumor cell proliferation (data not

shown), an activin A–dependent function that is exclusive to

proinflammatory GM-MØ (12).

Regarding intracellular signaling, in M-CSF–exposed monocytes,

IVIg did not affect the activation state of ERK or NF-kB (Fig. 1F,

data not shown) but induced JNK phosphorylation (Fig. 1F), partly

via Syk activation (Supplemental Fig. 2). The IVIg-induced JNK

phosphorylation is particularly relevant because JNK activity drives

the generation of macrophages with proinflammatory activity (52). In

fact, the IVIg-induced transcriptional changes could also be impaired

by inhibition of JNK activation, as evidenced by the weaker increase

of INHBA (the activin A–encoding gene) and FLT1 and the lower

downregulation of FOLR2 and TLR7 (Fig. 1G). Because JNK acti-

vation contributes to INHBA expression (Fig. 1G) but also accelerates

MAFB degradation (53), these results indicate that IVIg limits the

transcriptional differentiation of monocytes into anti-inflammatory

macrophages by triggering JNK activation and activin A production

(Fig. 1H).

IVIg inhibits GM-CSF–induced STAT5 activation and impairs

the acquisition of the GM-CSF–dependent transcriptional

profile of proinflammatory GM-MØ

GM-CSF is a key driver of tissue inflammation whose levels are

increased in blood from patients with inflammatory disorders, and

it has become a therapeutic target in inflammatory diseases (54).

We next evaluated the effect of IVIg on the GM-CSF–driven

differentiation of human GM-MØ. The continuous presence of

IVIg significantly impaired the upregulation of members of the

proinflammatory gene set that characterizes proinflammatory GM-

MØ (11, 12) (Fig. 2A) in a dose-dependent manner (Supplemental

Fig. 1A). Like in the case of M-MØ, IVIg modulated gene ex-

pression after a single dose (48 h) (Fig. 2B). Interestingly, com-

parison of the transcriptional profile of macrophages generated in

the absence or presence of IVIg revealed that the huge tran-

scriptomic differences between GM-MØ and M-MØ (11, 12) are

blunted when differentiation takes place in the continuous pres-

ence of IVIg and that IVIg/M-MØ exhibit a transcriptional profile

that resembles the profiles of GM-MØ and human monocyte–

derived macrophages differentiated in the presence of GM-CSF

and IVIg (IVIg/GM-MØ) (Supplemental Fig. 1B). Thus, thera-

peutic concentrations of IVIg inhibit the transcriptional response

of monocytes toward M-CSF or GM-CSF, impairing the genera-

tion of M-MØ or GM-MØ. In the case of GM-CSF–driven mac-

rophage differentiation, IVIg exposure further increased the

GM-CSF–induced phosphorylation of JNK in human monocytes

(Fig. 2C, left panel). This IVIg-dependent enhancement of JNK

activation did not translate into higher levels of activin A (Fig.

2A), probably because GM-CSF–induced JNK phosphorylation

suffices to yield maximal INHBA gene expression. More impor-

tantly, IVIg drastically reduced the GM-CSF–induced STAT5

phosphorylation in human monocytes (Fig. 2C, right panel).

Therefore, the ability of IVIg to impair the acquisition of the GM-

CSF–dependent transcriptional profile correlates with its capacity

to block STAT5 activation, which allows us to conclude that IVIg

inhibits the transcriptional response of monocytes toward M-CSF

or GM-CSF by distinct mechanisms.

IVIg disrupts the LPS responsiveness of proinflammatory

GM-MØ and anti-inflammatory M-MØ

The defining functional feature of M-MØ and GM-MØ is their

capacity to preferentially produce high levels of IL-10 and CCL2

(M-MØ) or proinflammatory cytokines (TNF-a, IL-12p40) (GM-MØ)

in response to TLR ligands (13). Thus, we next compared the LPS

responsiveness of macrophages generated in the absence (M-MØ,

GM-MØ) or presence of IVIg (IVIg/M-MØ, IVIg/GM-MØ).

Compared to M-MØ, IVIg/M-MØ exhibited a significantly lower

production of LPS-induced CCL2, IL-10, and CXCL10 (reduction

of LPS inducibility to 4.5% in M-MØ, p = 33 1024) (Fig. 3A, left

panels) as well as higher levels of LPS-induced TNF-a and IL-

12p40 (Supplemental Fig. 1C). The distinct cytokine response of

M-MØ and IVIg/M-MØ was also evident upon exposure to TLR2

ligands such as Pam3Cys or lipoteichoic acid (Fig. 3A, left pan-

els). By contrast, IVIg/GM-MØ displayed a significantly lower

LPS-induced expression of TNF-a, IL-12p40, CXCL10 (reduction

of LPS inducibility to 0.06% in GM-MØ, p = 2 3 1027) (Fig. 3A,

right panels), IL-10, and IL-6 (Supplemental Fig. 1C), and a

similar reduction was also observed in response to TLR2 ligands

(Fig. 3A, right panels). Moreover, the effect of IVIg was not

limited to stimuli-induced cytokines because assessment of the

expression of genes whose LPS inducibility is cell type–specific

(V.D. Cuevas and A.L. Corbı́, unpublished observations) revealed

that LPS enhanced the expression of NLRP3 in IVIg/M-MØ (a

property that is unique to GM-MØ), whereas LMNB1 expression

(whose LPS inducibility is M-MØ-specific) was not upregulated

by LPS in IVIg/M-MØ (Fig. 3B). Furthermore, LPS treatment

reduced LMNB1 expression in IVIg/GM-MØ (but not in GM-MØ)

and upregulated NLRP3 expression in GM-MØ (but not in IVIg/

GM-MØ) (Fig. 3B). Therefore, therapeutic concentrations of IVIg

severely modify the LPS responsiveness of macrophages gener-

ated in the presence of either M-CSF or GM-CSF.

Monocyte exposure to IVIg impairs LPS-initiated signaling

and enhances the expression of negative regulators of

NF-kB signaling

To identify the molecular basis for the IVIg ability to disrupt the

LPS-induced cytokine production in human macrophages, we

analyzed whether IVIg alters LPS-initiated intracellular signals.

IVIg/M-MØ exhibited lower levels of LPS-induced ERK activa-

tion and IkBa degradation than M-MØ (Fig. 4A, left panels), and

a similar result was found upon LPS stimulation of IVIg/GM-MØ

and GM-MØ (Fig. 4A, right panels). The LPS-induced activation

of IRF3 and STAT3 was also significantly lower in IVIg/M-MØ

and IVIg/GM-MØ than in M-MØ and GM-MØ (Fig. 4B). More-

over, and in line with the diminished production of LPS-induced

CXCL10 (Fig. 3A), the LPS-induced activation of STAT1 was

in monocytes cultured with M-CSF overnight, starved for 2 h in M-CSF–free and serum-free medium, and then treated with IVIg before stimulation with

M-CSF for 15 min. Protein levels of ERK, JNK, and vinculin were determined in parallel to control for protein loading. In each case, three independent

experiments were performed, and one experiment is shown. (G) Relative expression of the indicated genes in IVIg/M-MØ generated in the absence

(DMSO) or in the presence of the JNK inhibitor SP600125 (30 mM), as determined by qRT-PCR. Shown are the relative mRNA levels of each gene (relative

to TBP RNA levels) referred to its expression level when differentiation was done in the presence of DMSO. Three independent experiments were done and

one of them is shown. (H) Schematic representation of the effects of IVIg on the acquisition of the anti-inflammatory gene profile by human monocytes.

*p , 0.05, **p , 0.01, ***p , 0.001.
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also lower in IVIg/M-MØ and IVIg/GM-MØ (Fig. 4B). The

weaker LPS-initiated signaling seen in macrophages generated in

the presence of IVIg correlated with a diminished TLR4 cell

surface expression (Fig. 4C) and reduced TLR4 mRNA levels

(Fig. 4D) in both IVIg/M-MØ and IVIg/GM-MØ. Therefore, the

presence of therapeutic levels of IVIg during macrophage differ-

entiation imposes a strong reduction in the signaling pathways that

drive LPS-induced cytokine expression.

FIGURE 2. IVIg impairs the acquisition of the proinflammatory transcriptional signature of GM-MØ. (A) Relative expression of the indicated genes in

IVIg/GM-MØ, as determined by qRT-PCR. The experiment was done on monocytes from five independent donors, and shown is the mean 6 SEM. (B)

Kinetics of the expression of the indicated genes along the differentiation of IVIg/GM-MØ, as determined by qRT-PCR. Two experiments were done on

macrophages from independent donors, and one of them is shown. In (A) and (B), results show the expression of each gene in IVIg/GM-MØ relative to its

expression in GM-MØ. (C) Immunoblot analysis of p-JNK (left panel) and p-STAT5 (right panel) in freshly isolated human monocytes untreated (-) or

treated with IVIg before stimulation with GM-CSF for 15 min (for p-JNK) or 2 h (for p-STAT5). Protein levels of vinculin were determined in parallel

to control for protein loading. Three independent experiments were performed whose densitometric analyses are shown. *p , 0.05, **p , 0.01,

***p , 0.001.
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The fact that IVIg treatment leads to lower LPS-induced sig-

naling and cytokine production is reminiscent of the endotoxin

tolerance phenomenon (55). In fact, the acquisition of an LPS

refractory state is compatible with the lower level of cell surface

TLR4 and the weaker LPS-induced NF-kB activation seen in

IVIg/M-MØ and IVIg/GM-MØ (Fig. 4A, 4C). To provide evi-

dence for an IVIg-induced LPS refractory state in human

macrophages, the expression and activation states of negative

regulators of the LPS-initiated signaling pathway were assessed in

IVIg/M-MØ and IVIg/GM-MØ. Compared with M-MØ, IVIg/M-

MØ exhibited a higher expression of A20, an inhibitor of NF-kB

activation (55) (Fig. 4E). Similarly, and compared with GM-MØ,

IVIg/GM-MØ contained 1) higher levels of p-SHIP-1, which

controls the PI3K cellular signaling pathway (56, 57); 2) consid-

erably higher levels of A20, which inhibits NF-kB activation and

contributes to limiting inflammation (58); and 3) higher levels of

p-SHP-1, which negatively regulates TLR-mediated production of

proinflammatory cytokines via inhibition of NF-kB and MAPK

activation (59) (Fig. 4F). Therefore, macrophages generated in the

presence of IVIg exhibit a number of features (diminished LPS-

triggered intracellular signaling, reduced TLR4 expression, and

higher p-SHIP-1, p-SHP-1, and A20 expression) that are com-

patible with IVIg promoting a state of cross-tolerance to LPS on

differentiating monocytes.

IVIg treatment leads to a state of cross-tolerance to

LPS in mice

Although IVIg exerts anti-inflammatory actions in mouse models

of inflammatory disease (60, 61), its mechanisms of action differ

between human and mouse, and results obtained with IVIg in

mouse animal models of disease cannot be easily extrapolated

(40). Despite this, we initially turned to the mouse system to

determine the cell surface receptors implicated in the IVIg action

and to assess the potential ability of IVIg to promote cross-

tolerance to LPS. IVIg was found to modulate the phenotypic

and functional profile of proinflammatory GM-BMDM (51, 62), as

IVIg/GM-BMDM showed altered expression of polarization-

specific genes (Inhba, Clu, Emr1) (51) (Fig. 5A) and produced

FIGURE 3. IVIg alters TLR responsiveness of M-MØ

and GM-MØ. (A) Production of IL-10, CCL2, and

CXCL10 in M-MØ and IVIg/M-MØ (left panels) or

TNF-a, IL12p40, and CXCL10 in GM-MØ and IVIg/

GM-MØ (right panels) that were either left untreated (-)

or stimulated with 10 ng/ml LPS, 10 mg/ml Pam3CSK4,

or 5 mg/ml LTA for 24 h, as determined by ELISA. Each

determination was done in triplicate, and shown is the

mean 6 SEM of three independent experiments. (B)

NLRP3 and LMNB1 mRNA expression levels in un-

treated (-) and LPS-treated (10 ng/ml, 4 h) M-MØ, IVIg/

M-MØ, GM-MØ, and IVIg/GM-MØ, as determined by

qRT-PCR. Results are expressed as relative mRNA lev-

els (relative to TBP RNA levels). Mean 6 SEM of

three independent experiments is shown. *p , 0.05,

**p , 0.01, ***p , 0.001.
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FIGURE 4. Human macrophage differentiation in the presence of IVIg impairs TLR4 signaling and enhances the expression of negative regulators of

NF-kB signaling. (A) Immunoblot analysis of IkBa and p-ERK in M-MØ, IVIg/M-MØ (left panels), GM-MØ, and IVIg/GM-MØ (right panels) that were

either untreated (-) or treated with 10 ng/ml LPS for 15 min. (B) Immunoblot analysis of p-IRF3, p-STAT3, and p-STAT1 in M-MØ, IVIg/M-MØ (left

panels), GM-MØ, and IVIg/GM-MØ (right panels) that were either untreated (-) or treated with 10 ng/ml LPS for 2 h. Protein levels of GAPDH, STAT1,

and vinculin were determined in parallel to control for protein loading. In each case, three independent experiments were performed, and one experiment is

shown. (C) Cell surface expression of TLR4 (empty histograms) in M-MØ and IVIg/M-MØ (left panels) or GM-MØ and (Figure legend continues)
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lower levels of LPS-induced Tnf-a and Il-6 (Fig. 5B). The latter

effects were dependent on Fcg receptors, as deletion of Fcgr3,

Fcgr2, or Fcer1g prevented the IVIg-mediated decrease in the

LPS-induced secretion of Tnf-a and Il-6 (Fig. 5C), thus demon-

strating that functional activating Fcg receptors are required for

the IVIg inhibition on the acquisition of proinflammatory func-

tions in mouse macrophages. Because IVIg exerts a similar

functional effect on human and mouse macrophages in vitro, the

ability of IVIg to promote cross-tolerance to LPS was assessed

using the endotoxin shock mouse model. To that end, mice were

i.p. treated with IVIg (400 ml, 100 mg/ml) 26 h before receiving

an i.p. injection of a lethal dose of LPS. IVIg-treated mice

exhibited significantly higher survival than mice that had been

pretreated with PBS (Fig. 5D). Therefore, in agreement with its

ability to limit macrophage responses to LPS in vitro, IVIg is

capable of inducing a state of endotoxin tolerance in mice.

IVIg infusion enhances inflammatory cytokine levels in

peripheral blood

To evaluate whether IVIg can also promote tolerance to LPS in vivo

in patients receiving IVIg therapy, we initially determined the

ability of IVIg to alter the production of inflammatory cytokines

in vivo. Cytokine determination on the peripheral blood of

IVIg-treated patients with either immunodeficiency/inflammatory

pathologic conditions (in which IVIg infusion increases IgG

concentration from 11 to 19 mg/ml) (Fig. 6A, left panel) or re-

current reproductive failure of inflammatory causes (in which IVIg

increases IgG concentration from 9.4 to 14.6 mg/ml) revealed a

significant increase of IL-6, CCL2, and activin A 5 h after IVIg

infusion (Fig. 6A, right panel). In vitro assessment of monocyte

responses to IVIg (10 mg/ml) showed that IVIg is also capable of

increasing the production of activin A, CCL2, and IL-6 from

CD14+ monocytes from healthy donors (Fig. 6B). Therefore, in-

fusion of IVIg results in enhanced levels of activin A, CCL2, and

IL-6 in peripheral blood. Because the production of these cyto-

kines by monocytes also increased after IVIg treatment in vitro,

these results are compatible with IVIg promoting tolerance toward

other stimuli in vivo.

IVIg infusion promotes monocytes to acquire tolerance toward

inflammatory stimuli

The ability of IVIg to induce tolerance in vivo was then evaluated

through the analysis of blood samples obtained from IVIg-treated

patients. In the first set of experiments, CD14+ and CD142 cells

IVIg/GM-MØ (right panels) from two independent donors, as determined by flow cytometry. Background fluorescence was determined using an isotype-

matched Ab (gray histograms). The percentages of marker-positive cells and mean intensity of fluorescence (MIF) are indicated in each case. (D) Relative

expression of the indicated TLR genes in M-MØ and IVIg/M-MØ (upper panel) and GM-MØ and GM-MØ plus IVIg (lower panel), as determined by qRT-

PCR. Results are expressed as relative expression (relative to TBP mRNA levels) and refer to the expression level of each gene in GM-MØ. Shown is the

mean6 SEM of three independent experiments. (E) Immunoblot analysis of p-SHIP-1 and A20 on M-MØ and IVIg/M-MØ derived from three independent

monocyte preparations. Protein levels of vinculin were determined in parallel to control for protein loading. Densitometric quantification of the immu-

noblots relative to vinculin levels is shown in the lower panel. (F) Immunoblot analysis of p-SHIP-1, A20, and p-SHP-1 on GM-MØ and IVIg/GM-MØ

derived from three independent monocyte preparations. Protein levels of vinculin were determined in parallel to control for protein loading. Densitometric

quantification of the immunoblots relative to vinculin levels is shown in the lower panel. *p , 0.05, **p , 0.01, ***p , 0.001.

FIGURE 5. Effects of IVIg on mouse GM-BMDM differentiation and LPS responses in vivo. (A) Expression of polarization-associated genes in GM-

BMDM and IVIg/GM-BMDM generated from C57BL/6 bone marrow, as determined by qRT-PCR. Relative expression indicates the expression of each

marker relative to the expression of the Tbp gene. Shown is the mean 6 SEM of three independent experiments. (B) LPS-induced release of Tnf-a and Il-6

from GM-BMDM and IVIg/GM-BMDM. Each determination was done in triplicate, and shown is the mean 6 SEM of three independent experiments. (C)

LPS-induced release of Tnf-a and Il-6 from GM-BMDM and IVIg/GM-BMDM generated from the bone marrow of wild type (WT), Fcer1g2/2, Fcgr22/2,

and Fcgr32/2 mice. Each determination was done in triplicate, and shown is the mean 6 SEM of four independent experiments. (D) Survival of C57BL/6

mice pretreated with PBS or IVIg (40 mg/mouse) and then challenged 26 h later with a lethal dose of LPS (9 mg/kg). *p , 0.05, **p , 0.01.
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were isolated from the peripheral blood of patients both before

and after IVIg infusion, and the production of LPS-induced TNF-

a and IL-6 was determined in vitro. As shown in Fig. 7A and 7B,

both cytokines were exclusively produced by CD14+ monocytes,

and more importantly, the LPS-upregulated levels of both cyto-

kines were significantly lower in CD14+ monocytes isolated from

post-IVIg blood samples. Therefore, IVIg infusion renders

monocytes less responsive toward a later stimulation by LPS.

Next, and to confirm the induction of IVIg-mediated tolerance to

LPS in whole blood, samples of peripheral blood were collected

from patients both before and after IVIg infusion, maintained at

room temperature for 12 h, and later challenged with either PBS or

FIGURE 6. IVIg infusion leads to in-

creased levels of inflammatory cytokines

in peripheral blood in vivo and in mono-

cytes in vitro. (A) Activin A, CCL2, and

IL-6 levels in plasma or serum of patients

with common variable immunodeficiency

and other inflammatory disorders (n = 18,

left panels) or recurrent reproductive fail-

ure of inflammatory cause (n = 18, right

panels), both before (pre-IVIg) and 5 h

after IVIg infusion (post-IVIg). Each de-

termination was performed in triplicate,

and shown is the mean 6 SEM. (B)

Activin A, CCL2, and IL-6 levels pro-

duced by CD14+ monocytes from healthy

subjects and either untreated (-) or exposed to

IVIg (10 mg/ml) for 5 h. Eight independent

experiments were performed, and shown is

the mean 6 SEM. *p , 0.05, **p , 0.01.

FIGURE 7. In vivo IVIg infusion promotes tolerance toward LPS. (A) Schematic representation of the experimental procedure used to assess LPS

responsiveness of CD14+ and CD142 cells isolated from the peripheral blood of IVIg-treated patients. (B) Whole blood was collected from IVIg-treated

patients both before (pre-IVIg) and after receiving IVIg infusion (post-IVIg). After 12 h, CD14+ and CD142 cells were isolated and treated with PBS (-) or

LPS, and the levels of TNF-a and IL-6 were determined 8 h after stimulation. Each determination was performed in triplicate, and shown is the mean 6

SEM of seven independent experiments. (C) Schematic representation of the experimental procedure used to assess IVIg-induced tolerance to LPS in the

peripheral blood of IVIg-treated patients. (D) Whole blood was collected from IVIg-treated patients both before (pre-IVIg) and after receiving IVIg in-

fusion (post-IVIg). After 12 h, blood was treated with PBS or LPS, and the levels of TNF-a and IL-6 were determined 10 h after stimulation. Each

determination was performed in triplicate, and shown is the mean 6 SEM of 10 independent experiments. *p , 0.05.
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LPS (Fig. 7C). TNF-a and IL-6 were exclusively detected in LPS-

treated blood samples, but significantly lower levels of both cy-

tokines were found in the blood samples collected after IVIg

infusion (Fig. 7D). Therefore, infusion of IVIg results in weaker

proinflammatory cytokine response toward LPS in vivo, and this

effect can be fully recapitulated with peripheral blood monocytes

ex vivo (Fig. 7B). These results confirm that IVIg is capable of

inducing a state of cross-tolerance to LPS in vivo and lead to the

proposal that promotion of cross-tolerance toward other patho-

logic inflammatory stimuli underlies the net anti-inflammatory

effect exerted by IVIg in vivo.

Discussion
The immunomodulatory action of IgG has widened the range of

pathologic conditions for which IVIg therapy is either approved or

has shown benefit (63, 64). Because of its beneficial actions on

inflammatory pathologic conditions and its ability to limit tumor

progression (44, 65, 66), we hypothesized that IVIg exerts its

therapeutic action through modulation of the macrophage polari-

zation state, whose deregulated control contributes to chronic in-

flammatory pathologic conditions, and found that IVIg shifts

macrophage polarization at the functional and transcriptional

levels (44). We now report that IVIg impairs the monocyte

priming ability of M-CSF or GM-CSF through JNK activation and

enhancement of activin A production (in the case of M-CSF) and

also inhibits the GM-CSF–induced STAT5 activation. Besides,

IVIg impairs the acquisition of the specific gene profiles and

the TLR responses of proinflammatory and anti-inflammatory

monocyte-derived macrophages. Importantly, the ability of IVIg

to alter the LPS-induced macrophage cytokine profile correlates

with the appearance of molecular parameters that limit TLR-

initiated intracellular signaling and that characterize the state of

endotoxin tolerance. In fact, we present evidence that IVIg pro-

motes tolerance to LPS (cross-tolerance) in an endotoxin shock

mouse model in vivo and that IVIg infusion results in weaker

proinflammatory cytokine responses toward LPS in the peripheral

blood of IVIg-treated patients.

Molecular analysis of the effects of IVIg has also led us to

demonstrate that IVIg limits numerous intracellular signaling

pathways in both human monocytes (GM-CSF–initiated STAT5

activation) and GM-MØ (LPS-triggered ERK, NF-kB, STAT1,

and IRF3 activation). Blockade of intracellular signaling pathways

is a common strategy for induction of tolerance. In the case of

IVIg-treated human macrophages, the acquisition of the cross-

tolerance state correlates with the appearance of molecular pa-

rameters that characterize desensitization in response to an

inflammatory stimulus. Specifically, IVIg exposure results in

lower TLR4 expression and higher levels of p-SHIP-1, p-SHP-1,

and A20, all of which impair or inhibit LPS-triggered intracellular

signaling. Therefore, IVIg shares with other tolerance-inducing

agents the ability of increasing the expression of negative regu-

lators of NF-kB signaling. Thus, A20 has been found to be partly

responsible for the IVIg suppression of RANKL-induced osteo-

clastogenesis and TNF-a–induced bone resorption after engage-

ment of Fcg receptors (67). Therefore, similar to the case of LPS

on human macrophages, IVIg might also induce a cross-tolerance

state for RANKL and TNF-a, which share the NF-kB–activating

activity with LPS.

The ability of IVIg to promote a tolerance state in macrophages

can also explain its cell context–dependent effects. We previously

showed that IVIg inhibits the proinflammatory functions of GM-

MØ but enhances proinflammatory properties in M-MØ (44) and

concluded that IVIg effects are cell type–dependent. However,

NF-kB activation contributes to proinflammatory cytokine production

in GM-MØ and IL-10 production in M-MØ. Considering that

IVIg impairs NF-kB activation through the increase of negative

regulators of NF-kB in both GM-MØ and M-MØ, this common

molecular mechanism might underlie the opposite outcome of

IVIg exposure in both types of macrophages: lower inflamma-

tory cytokine production in GM-MØ and lower IL-10 production

in M-MØ. Therefore, the opposite consequences of IVIg expo-

sure to GM-MØ and M-MØ appear to be primarily a conse-

quence of the distinct effector functions of both macrophage

subtypes.

The capacity of IVIg to enhance the release of monocyte-derived

cytokines, both in vitro and in vivo, clearly illustrates its monocyte-

activating ability. The finding that activin A is one of the IVIg-

induced cytokines has relevant implications and might also

contribute to reconcile the pro- and anti-inflammatory actions of

IVIg previously reported. Activin A is a member of the TGF-b

family of factors (68) whose expression is high in inflammatory

pathologic conditions (e.g., inflammatory bowel disease, rheu-

matoid arthritis, bacterial septicemia) and is induced with faster

kinetics than other proinflammatory cytokines after LPS IV in-

jection (69). Interestingly, activin A modulates inflammatory re-

sponses because it displays both proinflammatory and regulatory

activities that resemble those exhibited by IVIg. Therefore, it is

tempting to speculate that activin A critically contributes to the

in vivo actions of IVIg. An additional implication of the IVIg-

promoted increase of activin A relates to the function of activin A

in promoting oocyte maturation, endometrial repair, decidualiza-

tion, and maintaining pregnancy and to the fact that deregulation

of the activin activities results in disorders of female reproduction

and pregnancy (70). Previous reports indicate that low-dose IVIg

overcome recurrent spontaneous abortions in women suffering

from IgG subclass deficiency (71) and enhance clinical pregnancy

and live birth rates in patients with recurrent reproductive failure

of inflammatory cause (72). Therefore, the increase in activin A

blood levels secondary to IVIg infusion might also contribute to

the beneficial effects of IVIg on women with recurrent repro-

ductive failure, a hypothesis that deserves further studies.

Numerous molecular and cellular mechanisms have been pre-

viously proposed to contribute to the IVIg immunoregulatory

activity (31, 35, 37). The results reported in this article indicate

that monocytes (and monocyte-derived macrophages) are involved

in the effects of IVIg in vivo because IVIg infusion enhances the

levels of monocyte-derived cytokines (e.g., activin A, CCL2, IL-6)

in peripheral blood and alters the monocyte cytokine profile and

macrophage differentiation capability in vitro. Therefore, IVIg

targets monocytes (and monocyte-derived macrophages) and leads

to the acquisition of a cross-tolerance state that underlies the ap-

parent contradiction between its proinflammatory effects on

monocytes and M-MØ in vitro and its immunosuppressive action

in vivo (32, 41). According to this explanation, IVIg would shift

monocytes/macrophages toward the acquisition of a proin-

flammatory profile, making IVIg-conditioned cells less sensitive

to a subsequent exposure to TLR ligands. Consequently, IVIg-

primed monocytes would be weakly responsive to further stimu-

lation by any danger signals (e.g., TLR ligands) found after their

entry into inflamed tissues. Therefore, monocyte exposure to IVIg

would result in a lower level of macrophage activation within

inflamed tissues and, consequently, would limit tissue damage

(and pathologic conditions) triggered by an ongoing injury or an

inflammation-provoking insult (danger signals or inflammatory

stimuli). This hypothesis is supported by the ability of IVIg in-

fusion to trigger an almost immediate increase in the level of in-

flammatory cytokines in peripheral blood, a result also reported by

others (73, 74), and is compatible with the well-known therapeutic

50 IVIg PROMOTES CROSS-TOLERANCE IN VIVO

 b
y
 g

u
est o

n
 O

cto
b

er 2
2
, 2

0
1
8

h
ttp

://w
w

w
.jim

m
u
n
o
l.o

rg
/

D
o
w

n
lo

ad
ed

 fro
m

 



benefits of IVIg in diseases like Kawasaki disease (75) and de-

myelinating polyneuropathy/Guillain–Barré syndrome (76), in

which macrophages contribute to pathologic conditions.
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G. Baujat, Á. Domı́nguez-Soto, P. Sánchez-Mateos, M. M. Escribese,
A. Castrillo, et al. 2017. MAFB determines human macrophage anti-
inflammatory polarization: relevance for the pathogenic mechanisms operating
in multicentric carpotarsal osteolysis. J. Immunol. 198: 2070–2081.

15. Allavena, P., A. Sica, C. Garlanda, and A. Mantovani. 2008. The Yin-Yang of
tumor-associated macrophages in neoplastic progression and immune surveil-
lance. Immunol. Rev. 222: 155–161.

16. Murray, P. J., J. E. Allen, S. K. Biswas, E. A. Fisher, D. W. Gilroy, S. Goerdt,
S. Gordon, J. A. Hamilton, L. B. Ivashkiv, T. Lawrence, et al. 2014. Macrophage
activation and polarization: nomenclature and experimental guidelines. Immunity
41: 14–20.

17. Soler Palacios, B., L. Estrada-Capetillo, E. Izquierdo, G. Criado, C. Nieto,
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Myeloid C-type lectin receptors (CLRs) are important sensors of self and non-self that 
work in concert with other pattern recognition receptors (PRRs). CLRs have been pre-
viously classified based on their signaling motifs as activating or inhibitory receptors. 
However, specific features of the ligand binding process may result in distinct signaling 
through a single motif, resulting in the triggering of non-canonical pathways. In addition, 
CLR ligands are frequently exposed in complex structures that simultaneously bind dif-
ferent CLRs and other PRRs, which lead to integration of heterologous signaling among 
diverse receptors. Herein, we will review how sensing by myeloid CLRs and crosstalk 
with heterologous receptors is modulated by many factors affecting their signaling and 
resulting in differential outcomes for immunity and inflammation. Finding common fea-
tures among those flexible responses initiated by diverse CLR-ligand partners will help 
to harness CLR function in immunity and inflammation.

Keywords: lectin receptors, signaling, monocytes, macrophages, dendritic cells, innate immunity, inflammation

DiveRSiTY OF SiGNALiNG MODULeS iN MYeLOiD  
C-TYPe LeCTiN ReCePTORS (CLRs)

The expression of diverse pattern recognition receptors (PRRs), including differential expression 
of CLRs, provides different subsets of immune cells with a repertoire to interpret and respond 
distinctly to the information coming from the environment. Myeloid cells are central for initiation 
and regulation of innate and adaptive immunity or tolerance and the CLR repertoire essentially 
contributes to myeloid cell function. We previously proposed a classification of myeloid CLRs 
based on their intracellular signaling motifs (1). While signaling motifs allow to predict effector 
responses following sensing by CLRs, this canonical response is subjected to modulation by the 
physical nature, affinity, and avidity of the ligand (2). Based on their intracellular signaling motifs, 
myeloid CLRs can be classified into the following broad categories (Figure 1): immunoreceptor 
tyrosine-based activating motif (ITAM)-coupled CLRs, hemi-ITAM-(hemITAM)-bearing CLRs, 
immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing CLRs, and a group of CLRs 
lacking typical signaling motifs (1, 3, 4).

Immunoreceptor tyrosine-based activating motif-coupled CLRs have a classical ITAM motifs in 
their intracellular tail, consisting of YXXL tandem repeats, or can interact with ITAM-containing 
adaptor proteins, as Fc receptor γ (FcRγ) chain or DNAX-activation protein 12 (DAP12) (5). The 
majority of them, including Dectin-2 (CLEC6A in human, Clec4n in the mouse), Mincle (CLEC4E), 
MCL (CLEC4D), BDCA-2 (human CLEC4C), DCAR (mouse Clec4b1), DCAR1 (mouse Clec4b2), 
and mannose receptor (MR) (MRC1, CD206) utilize the FcRγ chain adaptor, while MDL-1 
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FiGURe 1 | Canonical signaling modules in myeloid C-type lectin receptors (CLRs). Based on canonical intracellular signaling motifs, myeloid CLRs can be classified 
into immunoreceptor tyrosine-based activating motif (ITAM)-coupled CLRs, hemi-ITAM-(hemITAM)-bearing CLRs, immunoreceptor tyrosine-based inhibitory motif 
(ITIM)-containing CLRs, and a group of CLRs lacking typical signaling motifs. Mincle, Dectin-1, DCIR, DC-SIGN, and their corresponding canonical signaling 
pathways and adaptors are depicted as prototypical examples of each category.
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(CLEC5A) interacts with DAP12 (6–12). Hemi-ITAM-bearing 
CLRs contain a single tyrosine within an YXXL motif in their 
cytoplasmic domain (13, 14). Dectin-1 (CLEC7A), CLEC-2 
(CLEC1B), DNGR-1 (CLEC9A), and SIGN-R3 (mouse Cd209d) 
belong to the hemITAM-based CLRs category (15–20).

These ITAM or hemITAM CLRs are considered activat-
ing receptors that couple to the spleen tyrosine kinase (Syk) 
(Figure  1) (15, 21, 22). Phosphorylation of the tyrosine(s) 
in the ITAM or hemITAM motifs generates docking sites for 
the SH2 domains of Syk, which undergoes a conformational 
change that permits autophosphorylation and activation 
(23). Mincle acts as a prototypical activating CLR after rec-
ognition of glycolipids in the cell wall of some fungal and 
bacterial pathogens (24–26). Through the full ITAM of the 
FcRγ chain adaptor, Mincle couples to Syk and activates Vav 
proteins and PKCδ, which lead to downstream activation of 
CARD9/Bcl10/Malt1 and MAPK pathways, thus resulting in 
the induction of several cytokines and chemokines, including 
TNF-α, macrophage inflammatory protein 2 (MIP-2; CXCL2), 
keratinocyte-derived chemokine (KC; CXCL1), and IL-6 (7, 
27, 28). Production of inflammatory cytokines by myeloid 
cells, together with the generation of Th1 and Th17 responses, 
contribute to protective immunity upon recognition of some 
Mincle ligands (29–38).

Spleen tyrosine kinase activation downstream of the hemI-
TAM-bearing CLR Dectin-1 leads to similar signaling pathways 
to those described for Mincle (Figure  1), with activation of 
the CARD9/Bcl10/Malt-1 module that promotes canonical  
NF-κB signaling (27, 28, 39). Dectin-1 can also activate MAPK 
(40, 41), NFAT through phospholipase C-γ2 (42, 43), and a 

Syk-independent non-canonical NF-κB activation relying on 
the activation of the Raf-1 kinase (44). These integrated path-
ways mediate production of reactive oxygen species (ROS) and 
cytokines, such as IL-1β, IL-6, IL-10, IL-12, TNF-α, and IL-23 
to drive Th1 and Th17 differentiation, being essential for the 
development of antifungal immune responses (45–48). This  
axis is also activated in response to intestinal fungi, where 
Dectin-1 contributes to gut homeostasis (49).

Immunoreceptor tyrosine-based inhibitory motif- 
containing CLRs negatively regulate signaling initiated by 
kinase-associated heterologous receptors through the recruit-
ment of tyrosine phosphatases, such as Src homology region 
2 domain-containing phosphatase (SHP)-1 or -2 (Figure  1). 
Myeloid CLRs included in this group are human DCIR 
(CLEC4A), mDcir1 (Clec4a2), mDcir2 (Clec4a4), Clec12a 
(MICL, DCAL-2, KLRL1, CLL1), MAgH (CLEC12B), and 
Ly49Q (1, 50, 51). The ITIMs of both hDCIR and mDCIR1 have 
been shown to mediate inhibitory signaling through activation 
of the phosphatases, SHP-1 and SHP-2 (52–54). Activation of 
hDCIR on dendritic cells (DCs) leads to inhibition of TLR8-
mediated IL-12 and TNF-α production and TLR9-induced 
IFN-α production (55, 56). Sensing endogenous ligands by 
DCIR modulates innate immunity to pathogens, such as 
Plasmodium or Mycobacterium (57, 58).

Myeloid CLRs that do not bear evident ITAM or ITIM 
domains include MMR (MRC1), DEC-205 (LY75), human 
DC-SIGN (CD209), mouse SIGN-R1 (Cd209b), Langerin 
(CD207), human MGL (CLEC10A), mouse Mgl1 (Clec10a), 
mouse Mgl2 (Mgl2), CLEC-1 (CLEC1A), human DCAL-1 
(CLECL1), LOX-1 (OLR1), and LSECtin (CLEC4G). As an 
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TAbLe 1 | Myeloid C-type lectin receptors (CLRs) surveyed in this review.

Signaling module Common 
name

Gene 
name

Source of flexible signaling Signaling pathwaya Flexibility outcomeb

No immunoreceptor 
tyrosine-based 
activating motif (ITAM) 
or immunoreceptor 
tyrosine-based inhibitory 
motif (ITIM)

DC-SIGN CD209 Homotetramerization LSP1–KSR1–CNK–Raf-1 Intrinsic (80)
Sensing self and non-self LSP1–IKKε–Bcl3 Inhibitory (113–115)

KSR1–CNK–Raf-1 Activating (59, 110)
Heterologous modulation (?) Activating (148)

Raf-1–MEK Inhibitory (112)

Heterotrimerization DC-SIGN/MR/MDL-1 DNAX-activation protein 12 (DAP12) Activating (86)

 ITAM MDL-1 CLEC5A Heterotrimerization DC-SIGN/MR/MDL-1 DAP12 Activating (86)
Mannose 
receptor (MR)

MRC1 Heterotrimerization DC-SIGN/MR/MDL-1 DAP12 Activating (86)

Inhibitory ITAM Fc receptor γ (FcRγ)–Grb2−SHP-1 Inhibitory (12)
Dectin-2 CLEC6A, 

Clec4n
Heterodimerization Dectin-2/MCL FcRγ–spleen tyrosine kinase (Syk)–

NF-κB p65
Activating (85)

MCL CLEC4D Heterodimerization Mincle/MCL FcRγ–Syk Activating (81–84) 
Mincle CLEC4E Heterodimerization Mincle/MCL FcRγ–Syk Activating (81–84) 

Inhibitory ITAM FcRγ–Syk–SHP-1 Inhibitory (91, 92)
Sensing self Retarded Syk Inhibitory (104, 105)

FcRγ–Syk Activating (7, 100–103)
Heterologous modulation FcRγ−Syk Activating (140, 141, 143)

FcRγ−Syk–PKB–Mdm2 Inhibitory (146)

hemITAM CLEC-2 CLEC1B Homodimerization Syk Intrinsic (75, 76)
DNGR-1 CLEC9A Motif context Syk Intrinsic (19, 60–64)
Dectin-1 CLEC7A Subcellular location Syk Intrinsic (67–70)

Ligand size-conditioned subcellular location Syk–MAPK–reactive oxygen species Intrinsic (71–74)
Phosphatase association SHP-1–PTEN–FcRγ SHIP-1 Inhibitory (93, 94)

SHP-2–Syk Activating (95)
Heterologous modulation Syk Activating (124–126)

PI3K–mTOR–HIF-1α Activating (130–134)
Syk–Pyk2–ERK–SOCS-1 Inhibitory (128)

ITIM DCIR CLEC4A, 
Clec4a2

Activating ITIM IFNI–STAT1 SHP-2 hijacking (?) Activating (58)
Sensing self and non-self (?) Activating (57)

SHP-2/SHIP-1 Inhibitory (108, 109)

aDescribed in the indicated reference. In case it was not studied in depth, it might be incomplete.
bThis column indicates the inflammatory balance provided by each source of signaling flexibility. “Intrinsic” refers to specific responses triggered by particular CLRs.
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example, DC-SIGN intracellular tail is associated with a signa-
losome composed of the scaffold proteins LSP1, KSR1, and 
CNK and the kinase Raf-1 in unstimulated DCs (59) (Figure 1). 
Similar to other CLRs in this group, DC-SIGN cannot promote 
DCs activation or cytokine secretion per se, but it rather modu-
lates signaling by heterologous receptors (see below) or engages 
the endocytic machinery contributing to antigen processing 
and presentation to T cells (3).

Along this review, we will provide illustrative examples of 
how signaling pathways triggered by a CLR coupled to a par-
ticular canonical motif can vary depending on many factors. We 
will focus on Mincle, Dectin-1, DNGR-1, DCIR, and DC-SIGN 
as myeloid CLRs representative of each category of signaling 
motif. Table 1 includes the signaling module coupled to each 
CLR surveyed in this review, common and gene names, category 
of flexible signaling source, signaling pathway involved, and 
the inflammatory outcome provided by such flexibility. In this 
Table 1, CLRs are grouped based on the signaling module they 
bear (left column) and graphically illustrates how the signal-
ing pathways triggered by these receptors are more complex 
and versatile (right columns) than expected by their signaling 
modules.

SiGNALiNG FLeXibiLiTY beYOND THe 
CANONiCAL MOTiFS

Motif Context and Receptor Location 
Modulate Signaling
Classifications of receptors based on intracellular structural 
motifs stand on the fact that those domains determine the 
molecular signaling pathways initiated after ligand recognition 
(1). However, in addition to the basic ITAM and ITIM motifs, 
subtle variations in the context of the canonical motifs pro-
foundly affect the signal delivered. For example, DNGR-1 is a 
DC-specific hemITAM-bearing receptor that detects dead cells 
and promotes cross-presentation in sterile or infectious settings, 
without contributing to inflammation (Figure 2A), in contrast to 
the close-related Dectin-1 (19, 60–63). This deficiency to promote 
cytokine production through DNGR-1 hemITAM was linked to 
an isoleucine that precedes the tyrosine in DNGR-1 hemITAM 
and rescued by mutation to the glycine present in Dectin-1 hemI-
TAM (60). Signaling flexibility can thus be intrinsically provided 
by the amino acid sequence of those motifs present in a CLR. 
In this regard, residues in the neck region of DNGR-1 allow the 
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FiGURe 2 | Signaling flexibility downstream of C-type lectin receptors (CLRs). Signaling triggered downstream of CLRs goes beyond the canonical modules  
present in their intracellular domains and can be modulated by different processes. Some examples of such plasticity are represented. (A) DNGR-1 promotes 
cross-presentation of antigens to CD8+ T cells, yet not directly contributing to inflammation. (b) Mincle and MCL dimerize, boosting phagocytosis, and spleen 
tyrosine kinase (Syk)-mediated inflammatory responses. (C) Sensing of a soluble ligand from Leishmania by Mincle triggers an inhibitory immunoreceptor tyrosine-
based activating motif conformation downstream of Fc receptor γ (FcRγ), where SHP-1 dampens inflammatory responses triggered by heterologous receptors.  
(D) The phosphatase SHP-2 acts as a scaffold downstream of Dectin-1 and FcRγ-coupled CLRs, facilitating the recruitment of Syk and its inflammatory signaling. 
(e) Both self and non-self ligands share signaling pathways downstream of DC-SIGN depending on whether they are mannosylated or fucosylated glucans.
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receptor to adopt different conformations that depend on pH and 
ionic strength, modulating its function as the receptor progresses 
through the endocytic pathway (64). Even the inflammatory 
response of mouse and human Dectin-1 to the same ligand 
varies because of minor interspecies variations in the signaling 
motif, with low valency ligands inducing proinflammatory genes 
through human but not mouse Dectin-1 (65).

Receptor location also affects CLR signaling and functions.  
A single CLR may be expressed in different cell types (66) as 
diverse isoforms that may differ in subcellular location. For 
example, two isoforms of Dectin-1 have been described to bind 
β-glucans (67); isoform A is characterized by the presence of a 
stalk region including an N-linked glycosylation site, which is 
missing in isoform B (68). This glycosylation determines the cell 
surface expression of isoform A, while non-glycosylated isoform 
B is retained intracellularly, thus conditioning the response to 
ligands (69) and the sensitivity to proteolytic cleavage (70).

The subcellular location of a CLR may not only depend on 
intrinsic features in its sequence, but also on the size of the 
particle where the ligand is recognized. For example, “frustrated” 
phagocytosis mediated by Dectin-1 in response to ligands 
exposed in large particles leads to enhanced cytokine response 
and ROS production compared with soluble ligands (71–73). 
Blockade of Dectin-1 internalization following ligand exposure 
leads to sustained MAPK activation (72), suggesting that endocy-
tosis dampens Dectin-1 production of cytokines. Thus, formation 
of a phagocytic synapse by particulate β-glucan redistributes 
Dectin-1 and phosphatases along the cellular membrane, favor-
ing proinflammatory signals including ROS production (73). 
In addition, the size of the ligand-containing particle and the 

consequent location of the receptor, can lead to qualitatively dif-
ferent responses. Dectin-1-mediated phagocytosis dampens the 
nuclear translocation of neutrophil elastase, controlling the extent 
of neutrophil extracellular traps (NET) formation in response 
to small pathogens (bacteria or yeast). Consequently, Dectin-1 
blockade or deficiency leads to enhanced NETosis, as observed in 
response to non-phagocytic large pathogens (hyphae) (74).

Thus, the expected canonical response based on signaling 
modules can be altered both by slight modifications in motif 
context and the subcellular location of CLRs, taking into account 
that the latter may be affected by the size of the ligand recognized.

Multimerization of CLRs for Signaling
The signal transduction through several myeloid CLRs may 
also depend on their capacity to form dimers or multimers 
with other CLRs. CLRs bearing hemITAMs may require two 
phosphorylated tyrosines in a homodimer to bind Syk. It has 
been shown that CLEC-2 preexists as a dimer that aggregates fol-
lowing ligand binding (75, 76). The hemITAM motif of CLEC-2 
is crucial for blood-lymph separation during development  
(77, 78). Of note, thrombus stability is dependent on CLEC-2 
but not on the hemITAM, revealing a hemITAM-independent 
signaling for CLEC-2 (79).

DC-SIGN provides another example of homomultimeriza-
tion, despite lacking ITAM or ITIM domains. This CLR appears 
assembled as a tetramer, allowing multiple interactions with 
diverse pathogens that differ in size, but also increasing ligand 
avidity (80). In addition, some CLRs form heterodimers, such as 
MCL and Mincle (11, 81). These two CLRs are interrelated as they 
both sense the mycobacterial glycolipid trehalose-6,6-dimycolate 
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(TDM), triggering an FcRγ-dependent pathway (11). Indeed, 
MCL and Mincle are co-regulated and depend on each other for 
their mutual surface expression (82, 83). However, the association 
of MCL with FcRγ in this complex is species-specific, being direct 
in mouse cells (11) but requiring Mincle in rat (81). Thus, the 
interaction between these CLRs would facilitate MCL signaling 
capacity via association with Mincle and translocation to the 
plasma membrane. On the other hand, Mincle would benefit 
the endocytic capacity of MCL (Figure 2B) and both receptors 
could increase affinity or specificity for their ligands (84). MCL 
also forms a heterodimeric pattern-recognition receptor with 
Dectin-2 (85), which has a high affinity for α-mannans on the 
surface of Candida albicans (C. albicans) hyphae.

Cooperative interaction is also found in the case of dengue 
virus binding with high affinity to MR and DC-SIGN, receptors 
that subsequently handle the virus to the lower affinity receptor 
CLEC5A, which mediates signal transduction (86).

All these examples illustrate how multimerization of CLRs, 
forming either homo- or hetero-complexes, facilitates a coopera-
tive response to the ligand.

is the Function of CLRs inhibitory  
or Activating?
Another layer of complexity in CLR signaling stems from the 
ability of a single CLR to bind different ligands through its plastic 
C-type lectin domain. For instance, depending on their relative 
affinity or avidity, ligands may fine-tune signaling pathways 
downstream of ITAM motifs. Whereas the binding of high-
avidity ligands to these receptors induces activating signals, the 
binding of low-avidity ligands leads to hypophosphorylation of 
the ITAM domain and preferential association of SH2-containing 
phosphatases like SHP-1, a configuration known as “inhibitory 
ITAM” (87). Although FcαRI receptor, which associates for sign-
aling with the FcRγ chain, is the paradigmatic example of this 
inhibitory pathway (88–90), we have shown that CLRs associated 
with FcRγ chain may behave in the same fashion.

As an example, Mincle senses a soluble ligand derived from 
Leishmania that induces phosphorylation of SHP-1 coupled to 
FcRγ chain, inhibiting DC activation through heterologous 
receptors (Figure  2C) (91). In addition, SHP-1 contributes to 
deceleration of phagosome maturation upon TDM binding, sug-
gesting an inhibitory signal downstream of Mincle during phago-
cytic processes (92). MR binds the FcRγ chain and, upon sensing 
Mycobacterium tuberculosis, recruits SHP-1 to the phagosome, 
thus limiting PI(3)P generation and delaying fusion with the 
lysosome, which promotes M. tuberculosis growth (12). Following 
treatment of DCs with curdlan or depleted zymosan (lacking 
TLR-stimulating properties), Dectin-1 signaling is modulated by 
the association of SHP-1 and PTEN to the FcRγ chain, hindering 
cytokine expression, DC maturation, and T-cell proliferation (93). 
ROS production downstream of Dectin-1 sensing of C. albicans 
is also tightly regulated by the SH2-domain containing inositol  
5′ phosphatase (SHIP)-1 in response to Dectin-1 ligands (94). 
Thus, association of phosphatases to “activating” CLRs depending 
on the ligand nature, binding affinity, or avidity may contribute to 
maintenance of immune homeostasis.

Conversely, tyrosine phosphatases can contribute to activa-
tion. Contrary to SHP-1, the related tyrosine phosphatase 
SHP-2 acts as a scaffold, facilitating the recruitment of Syk to 
Dectin-1 or the adaptor FcRγ chain (95) (Figure  2D). In this 
way, DC-derived SHP-2 was crucial in  vivo for the induction 
of TNF-α, IL-6, IL-12, and Th1 and Th17 anti-fungal responses 
upon C. albicans infection (95).

Immunoreceptor tyrosine-based inhibitory motif-coupled 
receptors can also deliver an activating signal. In a model of 
tuberculosis infection in non-human primates, DCIR deficiency 
impairs STAT1-mediated type I IFN signaling in DCs, leading 
to increased production of IL-12 and differentiation of T lym-
phocytes toward Th1. Thus, DCIR-deficient mice with increased 
Th1 immunity control M. tuberculosis better than WT animals, 
but also shown increased inflammation in the lungs mediated 
by TNF-α and inducible nitric oxide synthase (iNOS) (58). This 
study suggests that DCIR acts as an activating receptor for the 
STAT1-type I IFN signaling, and speculates that DCIR may 
function as a molecular sink binding unphosphorylated inac-
tive SHP-2, therefore, limiting SHP-2′s capacity to deactivate 
STAT1.

The examples explained above illustrate a lack of correspond-
ence between the canonical motif coupled to a CLR and the 
resulting signaling pathway. Association to kinases would lead to 
activating routes, while association to phosphatases would result 
in regulatory pathways, with some exceptions like the SHP-2-
mediated CLR-induced activation (95). Association of kinases 
or phosphatases could be related to the strength of the initiating 
signal, with suboptimal phosphorylation leading to phosphatase 
binding to the hypo-phosporylated ITAM (inhibitory ITAM) 
(87). Due to the signaling flexibility offered by CLRs, a detailed 
empiric analysis for each CLR-ligand interaction in terms of type 
of ligand, concentration, and kinetics of exposition would be 
required to predict the signaling outcome.

Dealing with Self and Non-Self
C-type lectin receptors act as plastic receptors, some of them 
detecting self-ligands, other detecting non-self ligands, and 
many of them acting as dual receptors sensing self and non-self. 
It is possible that CLRs will behave as activating receptors when 
they sense non-self ligands, while CLRs bearing an ITIM motif 
will preferably bind self to dampen inflammation. However, in 
opposition to non-dangerous self, also known as “self-associated 
molecular patterns” (96, 97), Polly Matzinger proposed the exist-
ence of dangerous-self (damage-associated molecular patterns or 
DAMPs) exposed and/or released upon necrotic cell death (98, 
99). In addition, tissue damage signals concomitant to infection 
can contribute to effector responses. Thus, DNGR-1 senses tissue 
damage concomitant with viral infections and facilitates antigen 
processing of viral antigens for cross-presentation to CD8+ 
T cells, decoding the antigenicity rather than the adjuvanticity of 
the cargo (60–63). Some examples of CLRs dealing with self and 
non-self ligands are explained below.

Mincle is a plastic CLR promoting proinflammatory signals 
after sensing glycolipids in the cell wall of bacteria and fungi 
(24–26), but also sensing damaged self in the form of soluble SAP-
130 following necrosis (7). Mincle sensing of β-glucosylceramide 
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(100) or cholesterol sulfate (101) promotes immunopathology 
(102, 103). Conversely, there are reports suggesting that Mincle 
sensing of SAP-130 can also drive immunosuppression (104). 
Moreover, human albumin abolishes innate immunity by directly 
binding Mincle receptor in the microglia after subarachnoid 
hemorrhage (105). Thus, Mincle is an example of CLR that deals 
with self and non-self ligands that may result in activating or 
inhibitory signals. However, the correlation of sensing self with 
an inhibitory response and sensing non-self with an activating 
response is not established. In this regard, non-self signals from 
pathogens may mimic self-inhibitory signals to escape immune 
surveillance, which could be the case for Mincle sensing of 
Leishmania (91).

DCIR is a myeloid CLR endowed with an ITIM motif that 
behaves as a self PRR. DCIR maintains the homeostasis of the 
immune system (106), since aged mice deficient for this CLR 
spontaneously develop several autoimmune disorders (107). 
Intravenous immunoglobulins bearing sialic acid induce a 
DCIR-mediated negative signal in DCs via SHP-2 and SHIP-1 
that promotes Treg differentiation and dampens allergy (108). 
DCIR self-sensing can also occur in the context of infection, thus 
modulating the inflammatory response. DCIR-deficient mice 
exhibited severe inflammatory disease following Chikungunya 
virus infection (109). However, reduced adaptive T-cell responses 
in DCIR-deficient mice following cerebral malaria caused by 
Plasmodium berghei renders them more resistant (57). Since no 
evidence for direct interactions between DCIR and Chikungunya 
virus and P. berghei exists, we could hypothesize that DCIR may 
be recognizing DAMPs released during infection.

DC-SIGN illustrates how a single CLR deals differently 
with a variety of self and non-self ligands. DC-SIGN binds 
high mannose and fucose (LeX, LeY, LeA, LeB) that can 
be exposed in a variety of self receptors, such as ICAM-2, 
ICAM-3, CEACAM-1, Mac1 and CEA, or non-self proteins 
(structures in pathogens, including viruses, bacteria, fungi, 
and eukaryote parasites) (3, 110–115). Upon binding of man-
nosylated glucans, either self as those present on ICAM-3 
(110) or non-self from M. tuberculosis (59), DC-SIGN couples 
to a LSP1–KSR1–CNK signalosome, leading to activation of 
Raf-1 and acetylation of the NF-κB p65 subunit, which results 
in enhancement of proinflammatory responses, including 
IL-12p70 and IL-6, although also promotes IL-10 transcrip-
tion (59) (Figure  2E). In contrast, DC-SIGN recognition of 
fucosylated glucans as presented in self proteins, such as Mac1 
(113) or non-self pathogens (Helicobacter pylori) (114), leads 
to dissociation of the LSP1-based signalosome and leaves just 
LSP1 associated with DC-SIGN. Phosphorylated LSP1 sub-
sequently recruits IKKε and CYLD. IKKε activation inhibits 
CYLD deubiquitinase activity, facilitating nuclear transloca-
tion of ubiquitinated Bcl3 that represses TLR-induced pro-
inflammatory cytokine expression, enhancing expression of 
IL-10 and Th2-attracting chemokines, and thus promoting Th2 
polarization (114) (Figure 2E). In addition, IKKε collaborates 
with type I IFNR signaling to induce and activate the transcrip-
tion factor ISGF3 that induces IL-27p28, a key cytokine for 
induction of T follicular helper cells (115). These results point 
to DC-SIGN as a dual receptor that, depending on the nature 

of the ligand, contributes to maintain homeostasis or initiates 
the immune response against some pathogens.

All these examples illustrate how a single CLR can trigger 
different signaling pathways depending on the recognition of self 
or non-self ligands. Current understanding of these processes is 
based on the study of individual CLRs. Deciphering common 
signaling patterns for self versus non-self sensing would allow 
harnessing immunity and inflammation by CLRs.

MODULATiON OF HeTeROLOGOUS 
SiGNALiNG bY MYeLOiD CLRs

In addition to the diverse response of a single CLR depending 
on the stimulus, it is fascinating how these signaling pathways 
interact with signals from heterologous receptors and lead to 
complex responses to stimuli that are simultaneously detected by 
several myeloid PRRs expressed in myeloid cells [see also Ref. 
(116, 117) for reviews focused on this topic]. In this section, we 
illustrate some examples of how myeloid CLRs cross-talk with 
surrounding heterologous receptors.

Dectin-1 Affects Simultaneous and 
Deferred Signaling Through Heterologous 
Receptors
Dectin-1 triggers a response after sensing infectious agents, 
such as diverse fungi and mycobacteria (118), Salmonella 
typhimurium (119) or Leishmania infantum (120). Dectin-1 may 
also promote proinflammatory signals following the detection 
of endogenous factors, such as vimentin from atherosclerotic 
plaques (121), galectin-9 from pancreatic carcinoma (122), or 
N-glucans on tumor cells (123). In addition to a prototypical 
activating CLR, Dectin-1 modulates signals simultaneously 
triggered through other PRRs. Dectin-1 cooperates with signals 
from TLR2/MyD88 to increase proinflammatory cytokine 
production (124–126). This synergy is exerted at the level of 
effector responses resulting in increased production of TNF-α, 
IL-12, and ROS (124) (Figure 3A, left). Dectin-1 also positively 
cooperates in the full activation of the NLRP3 inflammasome, 
participating in the priming and generation of pro-IL-1β and 
the induction of ROS required for NLRP3 activation (127). 
Conversely, Dectin-1 stimulation with depleted zymosan in bone 
marrow macrophages leads to Syk and Pyk2-ERK-dependent 
activation of SOCS-1 that downregulates IL-10 and IL-12p40 
production induced by TLR9 stimulation (128) (Figure  3A, 
right). This effect would contribute to the Dectin-1 signature in 
priming Th17 responses (40, 128). In addition, Dectin-1 protects 
against chronic liver disease by suppressing TLR4 signaling. 
This effect is mediated by reducing TLR4 and CD14 expression, 
which are regulated by Dectin-1-dependent macrophage colony 
stimulating factor expression (129).

Apart from direct modulation of signaling pathways triggered 
simultaneously, Dectin-1 can leave a footprint that affects deferred 
signaling by heterologous receptors, a process named as trained 
immunity (130). Trained immunity after sensing of C. albicans 
or purified β-glucan via Dectin-1 results in enhanced protec-
tion to a lethal challenge with Candida and cross-protection 
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TLR-induced IL-10 and IL-27p28 (left). Moreover, DC-SIGN sensing of the salivary protein Salp15 from the tick vector Ixodes scapularis dampens inflammatory 
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to Staphylococcus aureus infection (130, 131). This increased 
protection upon a later infection is linked to increased proin-
flammatory responses to delayed rechallenge with different 
TLR ligands, such as LPS or Pam3Cys4 (130) (Figure  3B), or 
bacteria, i.e., Bacteroides fragilis, Escherichia coli, Staphylococcus 
aureus, Borrelia burgdorferi, or M. tuberculosis (130, 132, 133).  
In monocytes, Dectin-1 signaling triggers the PI3K-Akt path-
way, leading to activation of mTOR and HIF-1α (131). This leads 
to a shift from oxidative phosphorylation to aerobic glycolysis. 
Accumulation of fumarate, associated with glutamine replenish-
ment of the TCA cycle, inhibits KDM5 histone demethylases,  
a key step for induction of monocyte epigenetic reprogramming 

that underlies the long-lasting effects of trained immunity  
(130, 134) (Figure 3B).

Apart from β-glucan or Candida, several other self and non-
self ligands, such as chitin (135), BCG vaccine (136), and uric 
acid (137) induce trained immunity (137, 138). It would thus 
not be surprising that more CLRs could contribute to trained 
immunity. In this regard, although C. albicans mannans, poten-
tially sensed by MR, Dectin-2, or Mincle (46), have shown not 
to prime human monocytes directly (130), they are essential for  
C. albicans-induced training (133). Furthermore, both Dectin-1 
and MR are needed to trigger glycolysis upon C. albicans stimula-
tion (139); this glycolytic switch constitutes a critical metabolic 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


8

del Fresno et al. Flexible Signaling of Myeloid CLRs

Frontiers in Immunology | www.frontiersin.org April 2018 | Volume 9 | Article 804

step in trained immunity induction (131, 139). Trained immunity 
triggered by Dectin-1 and potentially other CLRs is thus a con-
sequence of metabolic switch and epigenetic programming that 
affects deferred heterologous signaling.

Mincle-Triggered Regulatory Responses
As described before, Mincle triggers an FcRγ-mediated activat-
ing signal in response to different stimuli. In addition, Mincle 
engagement can deliver regulatory responses affecting signaling 
pathways triggered by heterologous PRRs, such as TLRs or other 
CLRs, for example, Dectin-1. This section will explore modula-
tion of heterologous receptors by Mincle.

Mincle is induced following TLR activation (7). Following 
sensing of Fonsecaea pedrosoi, Mincle triggers an incomplete 
inflammatory response that requires synergistic TLR stimulation 
to induce a potent proinflammatory response (Figure 3C, left), 
needed to clear the infection in a mouse model of chromoblas-
tomycosis (140). This cooperative activation through Mincle 
and TLRs is particularly effective in human newborn DCs. 
Co-stimulation using the Mincle agonist trehalose-6,6-dibe-
henate and the TLR7/8 agonist R848 led to enhanced caspase-1 
and NF-κB activation, Th1 polarizing cytokine production and 
autologous Th1 polarization (141).

However, Mincle exhibits a dual role in promotion and subse-
quent resolution of inflammation. Mycobacteria express ligands 
for TLRs which induce expression of Mincle that can then detect 
TDM and contribute to inflammation. Mincle via the Syk/p38 
axis can also lead to eIF5A hypusination that increases transla-
tion efficiency of iNOS, which is transcriptionally induced by 
TLR2 ligation (142). In this way, Mincle favors NO production 
that inhibits late-stage activation of NLRP3 inflammasome in 
TDM-induced inflammation, contributing to termination (142). 
Similarly, TLR2 sensing of Corynebacterium induces robust 
Mincle expression, which cooperatively detects corynebacterial 
glycolipids favoring production of granulocyte colony stimulat-
ing factor and NO (143).

Dectin-1 and Mincle are involved in the recognition of 
Fonse caea monophora, a pleomorphic fungus also responsible 
for chromoblastomycosis (144, 145). Signaling triggered by 
Dectin-1 initiates protective immunity against the fungus by 
activating IRF1 and IL-12p35 transcription. However, these 
responses are dampened by the Mincle/Syk axis, in a process 
involving PI3K/PKB-mediated activation of the E3 ubiquitin 
ligase Mdm2, leading to degradation of IRF1 and repression 
of IL-12p35 production (Figure 3C, right). In this way, Mincle 
sensing of F. monophora dampens induction of protective Th1 
immunity triggered by Dectin-1 (146). Mincle is also targeted 
by Leishmania parasites to evade the priming of Th1 immu-
nity initiated by DCs. As explained above, Mincle recruits 
SHP-1 to an inhibitory ITAM configuration in the coupled 
FcRγ chain, and this results in inhibition of DC activation 
by heterologous receptors sensing Leishmania or LPS (91) 
(Figure 2C). Mincle ligation can also reduce TLR4-mediated 
inflammation, whereas Mincle deletion or knockdown results 
in exaggerated inflammation in response to LPS. This effect 
is mediated through the control of TLR4 correceptor CD14 
expression (147).

Tailoring immunity Through DC-SiGN
DC-SIGN engagement does not generally induce the expression 
of cytokines by itself, but rather modulates responses initiated 
by TLRs. Thus, glycans from the helminth Fasciola hepatica 
are recognized by DC-SIGN leading to enhanced TLR-induced 
IL-10 and IL-27p28, triggering a tolerogenic program that 
differentiates naive CD4+ T  cells into regulatory T  cells (148) 
(Figure 3D, left). However, the interaction of DC-SIGN with the 
salivary protein Salp15 from the tick Ixodes scapularis dampens 
inflammatory responses triggered by Borrelia burgdorferi. Raf-1 
activation downstream of DC-SIGN sensing Salp15 results in 
MEK-dependent decrease of IL-6 and TNF mRNA stability and 
impaired nucleosome remodeling at the IL-12p35 promoter, 
modulating TLR-induced DC activation and T cell proliferation 
(112) (Figure 3D, right).

All these examples clearly illustrate how signaling pathways 
triggered by CLRs can have an impact on responses mediated 
by surrounding heterologous receptors, adding an extra layer of 
complexity to our understanding of CLR-mediated responses.

CONCLUDiNG ReMARKS

Classical sorting of myeloid CLRs based on the structure of the 
C-type lectin domain does not have functional significance. 
A more recent classification based on the presence of ITAM, 
hemITAM, or ITIM intracellular signaling motifs associated with 
the receptors has been useful as a starting point to predict the 
functional outcome of signaling CLRs (1). However, many factors 
may alter the expected canonical response. Minor variations in 
the context of the canonical motifs result in different signaling 
and effector outcomes (60, 65). Subcellular location depending 
on the isoform (69) or conformation of the receptor based on 
specific residues (64) also affects the function of the receptor. 
CLR signaling also depends on the size of the particle, where 
the ligand is recognized, affecting quantitatively the strength of 
the reaction (71–73) and also leading to qualitatively different 
responses (74, 149). Cooperative binding and signal transduction 
may be a consequence of multimerization. There are examples of 
homodimerization (75, 76) and formation of hetero-complexes 
(11, 81, 84–86). Hetero-complexes result in a mutual benefit for 
involved receptors, combining avidity for the ligand, capacity for 
endocytosis and/or signal transduction capabilities.

The plasticity of the C-type lectin domain allows binding 
to different ligands that, depending on their relative affinity or 
avidity, may trigger activating or inhibitory signaling pathways 
downstream of the same motifs. For example, low-avidity ligands 
drive a Syk-dependent association with SHP-1 to the ITAM 
domain (87, 88, 90), with a growing list of examples illustrating 
CLRs coupled to the FcRγ chain (12, 91–93). Conversely, tyrosine 
phosphatases may contribute to activation (95) and ITIM-
containing CLRs may trigger activating signals (58). These results 
evidence the fine regulation of signaling though a single receptor 
based on differential interaction with diverse ligands, leading 
to the hypothesis that sensing self-ligands through CLRs could 
drive tolerance while non-self ligands could provoke immunity. 
However, dangerous-self could rather contribute to immunity 
and some non-self ligands could inhibit immune response for 
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evasion, making the final outcome of a single response rather 
unpredictable. In addition, the concerted sensing of complex 
ligands by a variety of PRRs leads to complex integrated 
responses. CLRs may affect signals of heterologous receptors that 
are simultaneously triggered, either enhancing or modulating the 
response (59, 91, 115, 124–126, 128, 142, 146). Of note, Dectin-1 
induces a metabolic switch and epigenetic programming that 
affects deferred heterologous signaling (130, 131). In conclusion, 
understanding how different signaling pathways triggered by 
CLRs and heterologous receptors act in concert during sensing 
self and non-self remain a fascinating endeavor.

Research in the field of CLRs has gained much attention con-
sidering the diversity of members, ligands, expression pattern on 
clinically relevant cellular populations and their relevant func-
tion on the initiation, and regulation of immunity and inflam-
mation. Some of these features have been illustrated here and 
offer multiple possibilities to harness CLR-triggered responses. 
However, CLR manipulation may lead to unexpected outcomes 
and needs to be tested empirically. In addition, deciphering 
molecular signatures common to signaling pathways triggered 
by CLRs in response to different ligands will help to understand 
their precise role in immunity and inflammation.
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