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Resumen

Desvaŕıo laborioso y empobrecedor el de componer vastos libros;
el de explayar en quinientas páginas una idea cuya perfecta exposición

oral cabe en pocos minutos. Mejor procedimiento es simular que
esos libros ya existen y ofrecer un resumen, un comentario.

J.L. Borges. Ficciones.

Esta tesis aborda el estudio de la dinámica de la ecuación de Schrödinger en el régimen semiclásico,
es decir, cuando la longitud de onda de las soluciones es comparable con una escala de tamaño
~ > 0 con respecto a la métrica con la que se mide. El parámetro ~ en la literatura a veces
se identifica con la constante de Planck normalizada. El principio de correspondencia establece
que el comportamiento asintótico cuando ~→ 0+ de estas soluciones altamente oscilantes se rige
por la dinámica clásica subyacente. El estudio riguroso de este fenómeno recibe el nombre de
análisis semiclásico y se ha desarrollado ampliamente durante las últimas tres décadas, abarcando
numerosos problemas de ecuaciones en derivadas parciales lineales y no lineales.

Motivado por los resultados previos de Fabricio Macià y Gabriel Rivière sobre la dinámica
de la ecuación de Schrödinger asociada a pequeñas perturbaciones de sistemas completamente
integrables cuyo flujo es periódico, como la esfera con la métrica canónica o, más generalmente, las
variedades de Zoll, este trabajo estudia el problema análogo para perturbaciones de hamiltonianos
completamente integrables con flujo no necesariamente periódico, como el sistema de d osciladores
armónicos con frecuencias independientes o, más ampliamente, sistemas tipo KAM.

La tesis se divide en cuatro partes que siguen un hilo conductor: el estudio de la distribución
de Wigner, que describe la concentración o dispersión de la función de onda en el espacio de
fases (espacio de posiciones y momentos), asociada a soluciones de la ecuación de Schrödinger en
distintas situaciones y reǵımenes. Los puntos de acumulación de sucesiones de distribuciones de
Wigner cuando ~→ 0+ reciben el nombre de medidas semiclásicas.

En la primera parte de la tesis se obtienen resultados sobre las propiedades de propagación e
invarianza de las medidas semiclásicas dependientes del tiempo, es decir, asociadas a las soluciones
de la ecuación de propagación de Schrödinger. Asimismo, se muestran aplicaciones de estos resul-
tados para las soluciones de la ecuación de Schrödinger estacionaria. En concreto, se prueba que
una pequeña pertubación del oscilador armónico puede destruir los conjuntos minimales (toros in-
variantes) sobre los que las sucesiones de autofunciones pueden concentrarse si existen resonancias
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entre las frecuencias del oscilador. Sin embargo, si el vector de frecuencias es diofántico, esto es,
los cocientes entre sus componentes se aproximan “mal” por números racionales, se prueba que los
toros invariantes maximales asociados son más estables y pueden ser conjuntos de acumulación de
la enerǵıa de sucesiones de soluciones de la ecuación de Schrödinger dependiente del tiempo para
rangos de tiempo polinomialmente largos.

En la segunda parte de la tesis se estudia la distribución asintótica de los autovalores del
operador asociado a perturbaciones no autoadjuntas del oscilador armónico. Este problema está
relacionado con el estudio del decaimiento de la enerǵıa para soluciones de la ecuación de ondas
amortiguada. Los resultados obtenidos muestran la influencia de la perturbación en la franja del
plano complejo donde los autovalores pueden concentrarse y la escala a la que se produce dicha
concentración. Con hipótesis de analiticidad se prueba que los autovalores no pueden acumularse
cerca de la recta real, es decir, existe un gap espectral. En el caso diferenciable, la estimación es
más débil, pero permite obtener una cota sobre la norma de la resolvente del operador.

La tercera parte se ocupa del estudio de las medidas semiclásicas asociadas a perturbaciones
de campos vectoriales diofánticos sobre el toro. Se demuestra que para un conjunto cantoriano
de frecuencias, el espectro puntual del operador es estable. Para estas frecuencias se caracterizan
los puntos de acumulación de sucesiones de autofunciones o ĺımites cuánticos del operador per-
turbado. Este resultado puede verse como una versión semiclásica del teorema KAM clásico sobre
perturbaciones de campos vectoriales sobre el toro.

Finalmente, la cuarta y última parte de esta memoria estudia el problema de renormalización
desde el punto de vista semiclásico. Dada una perturbación acotada de un hamiltoniano lineal
con frecuencias diofánticas sobre el toro, se obtiene la existencia de un operador integrable (que
solo depende de las coordenadas acción) tal que sumado al operador perturbado lo “renormaliza”
dando lugar a un operador integrable y unitariamente equivalente al operador sin perturbar.
Como consecuencia, se obtiene que los conjuntos de ĺımites cuánticos y medidas semiclásicas de
sucesiones de autofunciones para el operador renormalizado coinciden con aquellos del operador
no perturbado.
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Abstract

This thesis adresses the study of the Schrödinger dynamics in the semiclassical regime, that is,
when the wave length of the solutions is comparable with a scale of size h > 0 with respect to
the metric size. This parameter h is sometimes identified with the normalized Planck constant.
The correspondence principle states that the asymptotic behavior of these solutions as h tends to
zero is governed by the underlying classical dynamics. The rigorous study of this phenomenon is
called semiclassical analysis and has been widely developed during the last three decades, covering
numerous problems of linear and nonlinear PDE. Motivated by the previous results of Fabricio
Macià and Gabriel Rivière on the dynamics of the Schrödinger equation associated with small
perturbations of completely integrable systems whose flow is periodic, such as the sphere with the
canonical metric or, more generally, the Zoll manifolds, this work studies the analogous problem
for perturbations of completely integrable Hamiltonians with not necessarily periodic flow, such
as the system of d harmonic oscillators with independent frequencies or, more generally, KAM
type systems. The thesis is divided in four parts that follow a common thread: the study of
Wigner’s distribution, which describes the concentration or dispersion of the wave function in
the phase space (space of positions and momenta), associated with solutions of the Schrödinger
equation in different situations and regimes. The accumulation points of sequences of Wigner
distributions as h tends to zero are called semiclassical measures. In the first part of the thesis some
results are obtained on the propagation and invariance properties of time-dependent semiclassical
measures, that is, associated with the solutions of the time-dependent Schrödinger equation. Also,
applications of these results are shown for the solutions of the stationary Schrödinger equation. In
particular, it is proved that a small perturbation of the harmonic oscillator can destroy the minimal
sets (invariant tori) on which sequences of eigenfunctions can be concentrated if resonances exist
between the oscillator frequencies. However, if the vector of frequencies is Diophantine, that is,
the quotients between its components are “badly” approximated by rational numbers, it is proved
that the associated maximal invariant tori are more stable and can be accumulation sets of the
sequence of Wigner distributions for solutions of the time-dependent Schrödinger equation for
polynomially long time ranges. In the second part of the thesis the asymptotic distribution of the
eigenvalues of the operator associated with non-selfadjoint perturbations of the harmonic oscillator
is studied. This problem is related to the study of the decay of energy for solutions of the damped
wave equation. The results obtained show the influence of the perturbation on the stripe of the
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complex plane where the eigenvalues can be concentrated and the scale at which this concentration
occurs. With analytical hypothesis, it is proved that the eigenvalues can not accumulate close to
the real line, that is, there is a spectral gap. In the smooth case, the estimate is weaker, but
it allows to obtain a bound on the resolvent norm of the non-selfadjoint operator. The third
part deals with the study of semi-classical measures associated with perturbations of Diophantine
vector fields on the torus. It is proved that for a Cantorian set of frequencies, the point spectrum of
the operator is stable. For these frequencies, the accumulation points of sequences of L2-densities
of eigenfunctions, or quantum limits, of the perturbed operator are characterized. This result can
be seen as a semiclassical version of the classic KAM theorem on perturbations of vector fields
on the torus. Finally, the fourth and last part of this report studies the renormalization problem
from the semi-classical point of view. Given a bounded perturbation of a linear Hamiltonian with
Diophantine frequencies on the torus, we obtain the existence of an integrable operator (which only
depends on the action coordinates) that, added to the system, renormalize it becoming integrable
and unitary equivalent to the non-perturbed operator. As a consequence, we obtain that the sets
of quantum limits and semi-classical measures of sequences of eigenfunctions for the renormalized
operator coincide with those of the unperturbed operator.
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valorar esta memoria.

En segundo lugar, estoy en deuda con mis compañeros del ICMAT, especialmente con Jorge
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Chapter 1

Introduction and main results

Respetable público... No, respetable público no, público solamente,
y no es que el autor no considere al público respetable, todo lo contrario, sino

que detrás de esta palabra hay como un delicado temblor de miedo y una especie
de súplica para que el auditorio sea generoso con la mı́mica de los actores y el
artificio del ingenio. El poeta no pide benevolencia, sino atención, una vez que

ha saltado hace mucho tiempo la barra espinosa de miedo que los autores
tienen a la sala.

F.G. Lorca. La zapatera prodigiosa.

1.1. Motivation

The results in this thesis pertain to the field known as Semiclassical Analysis, which is succintly
described by M. Zworski in the preface to [122] as:

Semiclassical analysis provides PDE techniques based on the classical-quantum (particle-
wave) correspondence. These techniques include such well-known tools as geometric
optics and the Wentzel-Kramers-Brillouin (WKB) approximation. Examples of pro-
blems studied in this subject are high-energy eigenvalue asymptotics or effective dy-
namics for solutions of evolution equations. From the mathematical point of view,
semiclassical analysis is a branch of microlocal analysis which, broadly speaking, ap-
plies harmonic analysis and symplectic geometry to the study of linear and non-linear
PDE.

The quantum-classical correspondence principle states that the laws of quantum mechanics,
valid at atomic scales, should tend to their classical (Newtonian) counterparts in the high-frequency
limit. Let us make this statement a bit more precise in a specific example.
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2 1. Introduction and main results

One of the most fundamental models in quantum mechanics is the Schrödinger equation, which
in its simplest form is: i∂tu (t, x) +

1

2
∆xu (t, x)−W (x)u(t, x) = 0, (t, x) ∈ R× Rd,

u|t=0 = u0, ‖u0‖L2(Rd) = 1.
(1.1)

The Schrödinger equation (1.1) is a mathematical model for the propagation of a free quantum
particle (an electron, for instance) in Rd. If u is a solution to (1.1) then for every measurable set
U ⊂ Rd and every t ∈ R, the quantity ∫

U

|u (t, x)|2 dx (1.2)

is the probability for the particle that was at t = 0 at the state u0, to be in the region U at time
t1.

In this setting, the correspondence principle roughly states that, if the characteristic length
scale over which the potential W varies significantly is much larger than the characteristic wave
length of a solution u to (1.1) then the probability density |u (t, ·)|2, which is called the position
density, should follow a propagation law based on classical mechanics. Classical or Newtonian
mechanics refers here to the Hamiltonian flow φHt corresponding to the classical Hamiltonian

H(x, ξ) :=
1

2
|ξ|2 +W (x), (x, ξ) ∈ Rd × Rd.

Recall that φHt (x0, ξ0) = (x(t), ξ(t)), where

ẋ = ∂ξH(x, ξ), ξ̇ = −∂xH(x, ξ), (x(0), ξ(0)) = (x0, ξ0).

In order to formulate a precise mathematical statement, let us suppose that we have normalized
the problem in order to have that the characteristic wave length of the solution under consideration
is equal to one. The potential varies at a macroscopic scale much larger than the wave length;
suppose this scale is of order 1/~ with ~ > 0 small. Therefore, if the microscopic variable for
the position is x, the potential can be written in those variables as W (~x). The corresponding
Schrödinger equation is:

i∂tu (t, x) +
1

2
∆xu (t, x)−W (~x)u (t, x) = 0.

If a change to macroscopic variables is performed:

t 7−→ T = ~t, x 7−→ X = ~x, u~ (T,X) =
1

~d/2
u

(
T

~
,
X

~

)
,

1The fact that |u(t, ·)|2 is a probability density for every t ∈ R follows from the fact that the L2-norm is conserved
by the evolution equation (1.1).



1.1. Motivation 3

then the semiclassical Schrödinger equation is obtained:

i~∂Tu~ (T,X) +
~2

2
∆Xu~ (T,X)−W (X)u~ (T,X) = 0. (1.3)

One expects that in the limit ~→ 0+ the position density |u~ (T, ·)|2 can be described in terms of
φHT

2. This can be readily verified when W = 0. Let (x0, ξ0) ∈ Rd × Rd and consider the sequence
of initial data:

u0
~ (x) =

1

(π~)d/4
e−
|x−x0|

2

2~ ei
ξ0
~ ·x. (1.4)

This type of sequence is usually known as a wave-packet or a coherent state centered at (x0, ξ0).
As ~→ 0+ the sequence (u0

~) concentrates near x0 and oscillates rapidly in the direction of ξ0. It
is straightforward to check that:∣∣u0

~ (x)
∣∣2 =

1

(πh)d/2
e−
|x−x0|

2

~ ⇀? δx0 (x) , as ~→ 0+,

where δx0 is the Dirac mass centered at x0 (the convergence takes place on the space of Radon
measures equipped with the weak-? topology).

An explicit computation involving the Fourier transform gives that u~, the corresponding
solutions to (1.3) issued from these initial data with W = 0 satisfy:

|u~(t, ·)(x)|2 = |ei~t∆x/2u0
~(x)|2 (1.5)

=
1

(π~ (1 + t2))d/2
e
− |x−x0−tξ0|

2

~(1+t2) ⇀? δx0+tξ0(x), as ~→ 0+,

Therefore, in the limit ~ → 0+, the position densities converge to the deterministic probability
density concentrated on a particle that propagates according to the Hamiltonian flow φHt , which
in the case W = 0 is simply:

(x, ξ) 7−→ (x+ tξ, ξ).

When W does not vanish identically one can no longer apply directly the Fourier transform and
perform an explicit computation. However, an analogous result holds: this is known as Egorov’s
theorem (see Section 2.5) and is one of the fundamental results in Semiclassical Analysis. In our
context it gives the following result.

Theorem 1.1 (Semiclassical limit). Let (u0
~) be the sequence defined in (1.4). Then the corres-

ponding solutions (u~) to (1.3) satisfy:

|u~(t, ·)|2 ⇀? δx(t), ~→ 0+, (1.6)

where x(t) is the projection on the x-variable of φHt (x0, ξ0).

2Be aware of the fact that the parameter ~ should not be identified to Planck’s constant; this notation for the
characteristic frequency may be unfortunate, but we maintain it as it is widely used in the literature.



4 1. Introduction and main results

The convergence in (1.6) is locally uniform in t ∈ R. Due to the dispersive nature of equation
(1.3) one cannot expect that (1.6) holds uniformly in time: for fixed ~ and as t increases, the
wave-packet eit/~(~2∆/2−W )u0

~ will become less and less concentrated around x (t). The study of
the simultaneous limits ~→ 0 and t→∞ is a notoriously difficult problem. In the most general
framework, it is known [32, 18, 53, 25] that (1.6) holds uniformly for

|t| ≤ TE(~) := Γ−1 log (1/~) , (1.7)

where Γ > 0 is a dynamical constant related to the Lyapunov exponents of the Hamiltonian flow
on the energy level H−1(H(x0, ξ0)). This upper bound TE(~), known as the Ehrenfest time, has
been shown to be optimal for some one-dimensional systems, see [33, 72].

Understanding the validity of the semiclassical limit for values of t beyond the Ehrenfest time
is a very difficult question, although some results have been proved for specific geometries and
initial data [25, 39, 95, 107]. However, the analysis becomes more tractable if one performs a
time average. The problem we will be interested in consists in averaging the probability position
densities |u~(t, ·)|2 over time intervals of size comparable with τ~, where

τ~ →∞ as ~→ 0+.

A simple change of variables shows that this amounts to study the accumulation points of the
family of measures ν~ defined on Rt × Rd

x obtained by scaling in time the position densities:

ν~(dt, dx) := |u~(τ~t, x)|2dx dt.

We will present next a brief account on known results regarding this and related problems.

Quantum limits

The type of problems we are interested in can be formulated in the context of a Riemannian
manifold. This generalization is convenient, since the corresponding classical dynamical system is
the geodesic flow of the manifold. Geodesic flows constitute a widely studied class of dynamical
systems, for which dynamical hypotheses can be formulated in geometric terms (curvature, for
instance), see [94] among many references.

Let (M, g) be a compact Riemannian manifold; we denote by dx the measure induced by
the Riemannian volume. Use this measure to define L2(M). From now on, ∆g will denote the
corresponding Laplace-Beltrami operator, which is selfadjoint on L2(M). We will consider real-
valued potentials W defined on M and, for the sake of simplicity, we will assume that they are
smooth functions. Consider now the semiclassical Schrödinger operator :

Ĥ~ := −~2

2
∆g +W (x) , (1.8)

which is selfadjoint over L2(M).
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The classical counterpart of Ĥ~ is the Hamiltonian H ∈ C∞(T ∗M) defined by:

H(x, ξ) :=
1

2
〈ξ, ξ〉g(x) +W (x), (x, ξ) ∈ T ∗M.

Above,
√
〈ξ, ξ〉

g(x)
stands for the Riemannian norm defined on covectors. Using the canonical

symplectic form in T ∗M one can define the Hamiltonian vector field XH , that is given locally by:

XH(x, ξ) = ∂ξH(x, ξ) · ∂x − ∂xH(x, ξ) · ∂ξ.

We denote by φHt the flow of XH ; this is a complete flow, since the level sets H−1(E) are compact.
Note that when W = 0, φHt is nothing but the geodesic flow on T ∗M .

We will again consider solutions of the Schrödinger equation:

i~∂t u~(t, x) = Ĥ~ u~(t, x), u~|t=0 = u0
~ ∈ L2(M). (1.9)

The unitary propagator e−i
t
~ Ĥ~ associated to (1.3) will be referred to as the semiclassical Schrödinger

flow.
Let (u0

~) be a sequence with ‖u0
~‖L2(M) = 1 and let (τ~) be a sequence of real numbers that

tends to infinity. We assume that moreover, the sequence is ~-oscillating, meaning that:

lim
R→∞

lim sup
~→0

∥∥1[0,R](−~2∆g)u
0
~
∥∥
L2(M)

= 1. (1.10)

Here, 1[0,R] stands for the characteristic function of the interval [0, R] and 1[0,R](−~2∆g) is defined
using the functional calculus of selfadjoint operators. It is possible to show that, modulo the
extraction of a subsequence, there exist a t-measurable family of probability measures νt defined
on M such that:

lim
~→0+

∫
R×M

ϕ(t, x)|e−i
τ~t
~ Ĥ~u0

~(x)|2dx dt =

∫
R×M

ϕ(t, x)νt(dx)dt, ∀ϕ ∈ Cc(R×M). (1.11)

This follows from the compactness of M . We will denote by N (Ĥ~, τ~) the set of all measures
obtained in this way, as (u0

~) varies among all ~-oscillating, normalized sequences in L2(M).

Problem 1. Characterize the set N (Ĥ~, τ~); that is find all probability measures νt that can be
obtained as an accumulation points in the sense of (1.11) for some sequence (u0

~) in in L2(M) that
is ~-oscillating and normalized.

Note that, since Ĥ~ is selfadjoint and has compact resolvent, its spectrum is discrete and
unbounded, and every solution to (1.3) can be expressed as a superposition of periodic oscillations:

u~(t, ·) =
∑

λ~∈Sp(Ĥ~)

e−i
t
~ Ĥ~ Πλ~u

0
~, (1.12)
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where Πλ~ is the projection in L2(M) onto the eigenspace associated to λ~. The position densities
of each term in this sum are invariant under time-scaling: If Ψ~ := Πλ~u

0
~, then

Ĥ~Ψ~ = λ~Ψ~ ⇒ |e
iτ~t
~ Ĥ~Ψ~|2 = |Ψ~|2;

and therefore, every normalized sequence (Ψ~) of eigenfunctions of Ĥ~ with eigenvalues λ~ lying in

a bounded set of R satisfies that any accumulation point of (|Ψ~|2) is in N (Ĥ~, τ~) for any sequence

of time-scales (τ~). Let us denote by N (Ĥ~) the set of all those accumulation points; with this
notation:

N (Ĥ~) ⊆ N (Ĥ~, τ~), ∀(τ~), lim
~→0+

τ~ =∞. (1.13)

Measures in N (Ĥ~) are called quantum limits ; by extension, we will refer to elements of N (Ĥ~, τ~)
as time-dependent quantum limits. A notoriously difficult problem is:

Problem 2. Identify all probability measures in M that are quantum limits for a given Schrödinger
operator Ĥ~; in other words, characterize the set N (Ĥ~).

Of course, a solution to Problem 1 for some time-scale τ = (τ~) automatically gives information
on Problem 2, because of (1.13). Problem 2 has received a lot of attention in the last fifty years;
the systematic study of Problem 1 is more recent. References [8, 83] provide a survey of these and
related problems.

In both cases, the answer to these questions involves global properties of the dynamics of the
classical Hamiltonian flow φHt . The cases that have been more studied are:

1. Chaotic dynamics. More precisely, φHt is ergodic, (non-uniformly) hyperbolic, or has the
Anosov property.

2. Regular dynamics. The flow φHt is completely integrable in the Liouville sense, or has a
certain (relatively large number) of Poisson-commuting first integrals.

For background on these concepts we refer to [91, 54].

Chaotic Dynamics

As stressed in [8], the fact that the Hamiltonian has well-understood chaotic properties would in
principle lead to expect that the the corresponding Schrödinger flow has good dispersive properties.
This motivates some very strong conjectures on the answer to Problems 1 and 2, such as the
quantum unique ergodicity conjecture (QUE) which we partly describe below. On the other hand,
these same chaotic properties make it difficult to approximate the Schrödinger dynamics by the
classical dynamics: the quantum-classical correspondence is only valid up to the Ehrenfest time,
and this leaves little hope to use it to prove those conjectures. From now on, we will assume
W = 0, so that Ĥ~ = −~2∆g and φHt is the geodesic flow.



1.1. Motivation 7

We first state a version of the Snirelman theorem (see [110] for the original work of Snirelman,
Zelditch [118] for the case of compact hyperbolic surfaces, Colin de Verdière [30] in the case of
eigenfunctions of the Laplacian for more general chaotic systems, Helffer, Martinez and Robert
[56] for semiclassical pseudodifferential operators, and Zelditch [120] in the case of C∗ dynamical
systems). Suppose that the geodesic flow is ergodic (with respect to the Liouville measure). Then

for every ε > 0 let (Ψ~,j) be an orthonormal basis of the span of the eigenspaces of Ĥ~ associated

to eigenvalues in [1− ε, 1 + ε]. Then there exist a subset Λ(~) ⊂ Sp(Ĥ~) ∩ [1− ε, 1 + ε] such that
Λ(~) has density one:

lim
~→0+

#Λ(~)

#Sp(Ĥ~) ∩ [1− ε, 1 + ε]
= 1,

and,

lim
~→0+, λ~,k∈Λ(~)

∫
M

φ(x)|Ψ~,k(x)|2dx =

∫
M

φ(x)dx, ∀φ ∈ C(M).

The result says that a typical sequence of eigenfunctions becomes equidistributed (in fact, the
original statement of Snirelman’s theorem expresses the stronger fact that equidistribution takes
place both in the “x-variable” and in the “ξ-variable”). At this level of generality, it is not
well understood if the whole sequence of eigenfunctions converges, or if there can be exceptional
subsequences with a different limiting behavior (that is, if we can take Λ(~) = Sp(Ĥ~)∩[1−ε, 1+ε]
or not). In other words, one wonders whether or not

N (Ĥ~) = {dx}. (1.14)

There are manifolds (or Euclidean domains) with ergodic geodesic flows, but with exceptional
subsequences of eigenfunctions [55], but these examples have only been found very recently, and
the proof is not constructive (the exceptional subsequences, whose existence is proved, are not
exhibited explicitly). Negatively curved manifolds have ergodic geodesic flows, but actually the
understanding of the chaotic properties of the flow is so good that one could hope to go beyond
the Snirelman theorem. It may seem surprising that the question is still widely open, even in the
case of manifolds of constant negative curvature (where the local geometry is completely explicit).
The QUE conjecture that (1.14) holds for eigenfunctions of the Laplacian on a negatively curved
compact manifold. It was stated by Rudnick and Sarnak [105, 103]. So far, the only complete result
is due to Lindenstrauss [24, 76], who proved the conjecture in the case when M is an arithmetic
congruence surface, and the eigenfunctions (Ψn) are common eigenfunctions of ∆g and of the Hecke
operators. There are partial results, due to Anantharaman [2]; Anantharaman and Nonnenmacher
[10]; and Rivière [101], which hold in great generality, on any compact negatively curved manifold
that show that concentration on sets of low Haussdorff dimension is not possible (a closed geodesic,
for instance). This type of results have been generalized to the time dependent equation, and in

particular can be applied to give some insight on the characterization of N (Ĥ~, ~−1), see [11].
Recently, Dyatlov and Jin [36] have shown that, in the case of surfaces of constant negative

curvature, elements in N (Ĥ~) must charge every open set U ⊂M .
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Regular Dynamics

When the geodesic flow is completely integrable, in the sense of Liouville, the situation is very
different. The Arnold-Liouville theorem shows that the classical phase space is foliated by families
of tori or cylinders that are invariant by the Hamiltonian flow. Moreover, the classical Hamiltonian
flow can be conjugated, by symplectic diffeomorphisms, to a flow on a cylinder that is of the form:

φGt : (x, ξ) 7−→ (x+ tdG(ξ), ξ), (x, ξ) ∈ (Tr × Rd−r)x × Rd
ξ , 0 < r ≤ d,

for some Hamiltonian G ∈ C∞(Rd) that only depends on the actions. We again refer to [91] for a
more precise statement of this result. Manifolds with this property include non-negative constant
curvature manifolds, compact-rank-one symmetric spaces, surfaces of revolution, Zoll manifolds,
harmonic oscillators, the hydrogen atom, etc.

One expects in this situation to have a wider variety of quantum limits, since the dispersive
effects exhibited by the Schrödinger flow are weaker than in the chaotic case. It turns out that
this intuition is partially true. Again, the results we describe next assume that W = 0; we thus
focus on the case Ĥ~ = −~2∆ and φHt is the geodesic flow.

In the case of the the sphere Sd endowed with its canonical metric, Jakobson and Zelditch [67]
proved that:

N (Ĥ~) = Conv{δγ : γ is a geodesic in Sd}. (1.15)

Above, δγ stands for the uniform probability measure on the closed curve γ. This result can
be proved using an explicit construction involving spherical harmonics (see for instance [83]).
Property (1.15) also holds in manifolds of constant positive curvature [17] or compact-rank-one

symmetric spaces [79]. One can also show that in all these cases N (Ĥ~, τ~) = N (Ĥ~) for every
time-scale τ~.

A natural question in this setting is that of understanding whether or not the same holds on a
Zoll manifold (that is, a manifold all whose geodesics are closed [21]). In [80] it is shown that in
this case:

N (Ĥ~, τ~) = Conv{δγ : γ is a geodesic in M}, provided that τ~ = o(~−2).

However, very recently Macià and Rivière [84] have shown the exitence of Zoll surfaces such that
(1.15) fails. The examples in [84] are Zoll surfaces of revolution; it turns out that there exist an

open set of geodesics such that δγ 6∈ N (Ĥ~) for γ in an open set in the space of geodesics.
On the torus Td := Rd/2πZd, the behavior of quantum limits is very different. Bourgain

proved that N (Ĥ~) ⊂ L1(Td); and in particular that quantum limits cannot concentrate on closed
curves, as was the case on the sphere (this result was reported in [66]). In that same reference,
Jakobson proved that for d = 2 the density of any quantum limit is a trigonometric polynomial,
whose frequencies satisfy a certain Pell equation. In higher dimensions, one can only prove certain
regularity properties of the densities, involving decay of its Fourier coefficients. These results are
based on arithmetic consideration (distribution of lattice points on spheres) and results on integer
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points on elliptic curves. Moreover, Jaffard [65] proved that any quantum limit charges any open
set:

f dx ∈ N (Ĥ~) =⇒
∫
U

f dx > 0, ∀U ⊆ Td open. (1.16)

This last result also holds for time-dependent quantum limits in N (Ĥ~, ~−1). Again, this result
is based on the explicit form of solutions in terms of Fourier series, combined with results on
Kahane’s theory of non-harmonic Fourier series.

One could wonder if there is a proof of these results based only on the dynamical properties
of the geodesic flow and that could encompass both results [66, 65]. This is the case, the result
was obtained by Macià [81, 82], Anantharaman and Macià [9]. Their proof is based on microlocal
methods adapted to the dynamics of the completely integrable geodesic flow and does not make
use of the explicit form of the solutions in terms of Fourier series. In fact, they prove a stronger
result that allows to deal with (non-semiclassical) perturbations of order one and time-dependent

quantum limits inN (Ĥ~, ~−1) (see also [22] for results in the non-perturbed case); it is also possible
to obtain more precise results on the regularity of the densities [1]. It turns out that this strategy
of proof is rather robust, and can be extended to more general completely integrable Hamiltonian
flows [4], at least in regions where global action-angle coordinate exist. It also allows to deal with
domains in the Euclidean space. Birkhoff’s conjecture state that the only such domains that have
integrable generalized geodesic (billiard) flow are disks and ellipses. Recently, Anantharaman,

Léautaud and Macià proved [6, 7] that the set of time-dependent quantum limits in N (Ĥ~, ~−1)
on the Euclidean unit disk D is of the form:

N (Ĥ~, ~−1) ⊆ {αf dx+ (1− α)δ∂D : α ∈ [0, 1], ‖f‖L1(D) = 1}.

The presence of the singular term δ∂D is due to the fact that action-angle coordinates become
degenerate at the boundary of the disk. in fact, it is easy to produce solutions such that their
quantum limit is δ∂D, the so called whispering-gallery modes. In addition, it is possible to show
that these results are stable under perturbation and that the densities of quantum limits charge
every open set U ⊆ D.

Weak perturbations

We conclude this motivation section presenting the class of systems that we will study more closely
in this thesis. The motivation comes from the rather simple observation that non-semiclassical
problems can be written and studied in semiclassical terms. For instance, if u solves the non-
semiclassical Schrödinger equation:

i∂tu(t, x) =

(
−∆g

2
+W (x)

)
u(t, x), (t, x) ∈ R×M, u|t=0 = u0, (1.17)
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then v~(t, ·) := u(t/~, ·) solves:

i~∂t v~(t, x) =

(
−~2∆g

2
+ ~2W (x)

)
v~(t, x), (t, x) ∈ R×M, v~|t=0 = u0. (1.18)

Analogously, if Ψ solves the eigenvalue problem:(
−∆g

2
+W (x)

)
Ψ(x) = λΨ(x), x ∈M, (1.19)

for λ > 0 big, then it is also a solution to the semiclassical problem:(
−~2∆g

2
+ ~2W (x)

)
Ψ(x) = Ψ(x), x ∈M, with ~ := λ−1/2 small. (1.20)

Both cases involve the perturbed semiclassical operator Ĥ~ := −~2∆g+~2W . Note that, in contrast
to the operator defined in (1.8), the potential is multiplied by the coefficient ~2 that tends to zero
as ~→ 0+. It is therefore, a purely quantum perturbation that vanishes in the semiclassical limit.
From this point of view, it makes sense to consider more general perturbed operators of the form:

P̂~ := Ĥ~ + ε~V̂~, (1.21)

where ε~ → 0 as ~ → 0+, and V̂~ is a uniformly bounded family of operators on L2(M). One

can define in a similar way the sets of quantum limits N (P̂~) and N (P̂~, τ~). This regime can be
viewed as an intermediate regime between the KAM. setting (which corresponds to ε small but
fixed), and the unperturbed regime ε = 0.

The series of works [79, 80, 81, 9, 4, 7, 6] already mentioned fit in this setting in the particular
case ε~ = ~2. It is natural then to ask if those results still hold under the presence of stronger
perturbations; this is not the case, as was proved by Macià and Rivière in a series of works
[84, 85, 86]. On the sphere, they showed that one no longer can concentrate in any geodesic;

only the ones that are critical points of the Radon transform of the symbol of V̂~. On the torus,
the situation is the opposite, the absolute continuous character of quantum limits of the Laplace
Beltrami operator is lost generically if one adds a potential, and singularities appear generically.
Again, this is related to the Radon transform of the perturbation. The proofs of these results
are based on quantum versions of the averaging method in classical mechanics, that go back to
Weinstein [115].

In this thesis we will deepen in this subject from several angles. In Chapter 3, we will consider
the perturbation problem for the quantum harmonic oscillator; Chapter 4 addresses the case of
non-selfadjoint perturbations, a subject that is closely related to the decay rates for the damped
wave equation. Chapters 5 and 6 consider KAM problems from the semiclassical point of view.
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Some notations

Before starting with the presentation of the main results of this thesis, we emphasize here some
notations that will appear along the text. Let (x~) and (y~) be two sequences of positive real
numbers. We will write

x~ . y~

if there exists some universal constant C > 0 such that x~ ≤ Cy~ for every ~ ∈ (0, 1]. We will also
write

x~ � y~

if lim~→0+ x~/y~ = 0. Finally, we will say that x~ ∼ y~ if lim~→0+ x~/y~ → 1.

1.2. Semiclassical measures for perturbed harmonic

oscillators

This initial part of the thesis is joint work with Fabricio Macià, and it is the content of the
preprint [13]. We study the dynamics of the semiclassical Schrödinger equation associated to
small perturbations of the quantum harmonic oscillator.

In order to justify the convenience of the semiclassical point of view adopted along this work,
we start by introducing the harmonic oscillator without the semiclassical parameter ~ and then
we will redefine it with ~ playing the role of a scaling parameter. To this aim, we first consider Ĥ
to be the quantum harmonic oscillator defined on L2(Rd) by3

Ĥ :=
1

2

d∑
j=1

ωj(∂
2
xj

+ x2
j), x ∈ Rd. (1.22)

The spectrum of Ĥ in L2(Rd) is given by the unbounded discrete set

SpL2(Rd)

(
Ĥ
)

=

{
λk =

d∑
j=1

(
kj +

1

2

)
ωj, k = (k1, . . . , kd) ∈ Nd, ωj > 0

}
.

Let (Ψk) be a sequence of normalized eigenfunctions of Ĥ with eigenvalues (λk)k∈Nd , we aim at
understanding the accumulation of mass of sequences of densities |Ψk(x)|2 as |k| → ∞. Unfortu-
nately4, one can verify that for any of these sequences,

|Ψk(x)|2 ⇀? 0, as |k| → ∞.
3One can show that Ĥ is the diagonal form of the operator ĤQ := 1

2

(
−∆x+x·Qx

)
, where Q is a positive-definite

symmetric real matrix of size d× d with eigenvalues {ω2
1 , . . . , ω

2
d}. Hence it is a particular example of Hamiltonian

of the form −∆x

2 +W with W = 1
2x ·Qx.

4Compare with the case Ĥ = − 1
2∆g on a compact Riemannian manifold M . In this case, the accumulation

points of L2-mass sequences of eigenfunctions (|Ψn|2) as λn → +∞ are probability measures on M .



12 1. Introduction and main results

As will be highlighted below, what underlines this phenomenon is that the L2-mass of the sequence
disperses on regions of diameter growing like

√
λk as |k| → ∞. Therefore, if we want to study

this distribution of mass, it is very convenient to rescale the problem, introducing a semiclassical
parameter ~ > 0 so that the eigenmodes are rescaled into

Ψk,~(x) := S~Ψk(x) =
1

~d/4
Ψk

(
x√
~

)
, k ∈ Nd.

This can be addressed considering the semiclassical harmonic oscillator Ĥ~ defined by

Ĥ~ := ~S~ĤS
∗
~ =

1

2

d∑
j=1

ωj
(
− ~2∂2

xj
+ x2

j

)
, ωj > 0. (1.23)

Note that the spectrum of Ĥ~ is just the spectrum of Ĥ multiplied by ~:

SpL2(Rd)

(
Ĥ~
)

= {λk,~ = ~λk, k ∈ Nd}.

Moreover, for every sequence (k~) ⊂ Nd such that

λ~ := λk~,~ → 1, as ~→ 0+,

and for every sequence (Ψk~,~) of normalized eigenfunctions of Ĥ~ with eigenvalues (λ~), there
exists a probability measure ν ∈ P(Rd), which we will call quantum limit, such that, modulo the
extraction of a subsequence,

|Ψk~,~|2 ⇀? ν, as ~→ 0+.

From the semiclassical point of view, Ĥ~ = Op~(H) is the semiclassical Weyl quantization (see
Section 2.2) of the symbol H given by the classical harmonic oscillator:

H(x, ξ) =
1

2

d∑
j=1

ωj
(
ξ2
j + x2

j

)
, (x, ξ) ∈ R2d, (1.24)

whose induced Hamiltonian flow will be denoted by φHt .

From now on we fix Ĥ~ to be defined by (1.23). Let ε = (ε~) ⊂ R+ be a sequence of positive

real numbers satisfying ε~ → 0+ as ~→ 0+, we consider a semiclassical perturbation of Ĥ~ of the
form

P̂~ := Ĥ~ + ε~V̂~, (1.25)

where V̂~ is the semiclassical Weyl quantization of a symbol V ∈ C∞(R2d;R) which is bounded
together with all its derivatives (i.e. it belongs to the class S0(R2d), see (2.20) in Section 2.3).

By the Calderón-Vaillancourt Theorem (see Lemma 2.5), V̂~ is a bounded operator on L2(Rd).
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Note that this operator is of the form (1.21) introduced in the previous section. We aim at
understanding the long-time dynamics of the Schrödinger equation(

i~ ∂t + P̂~
)
v~(t, x) = 0, v~(0, x) = u~ ∈ L2(Rd), (1.26)

as well as the asymptotic distribution of energy on the phase space of solutions of the stationary
problem

P̂~ Ψ~ = λ~ Ψ~, ‖Ψ~‖L2(Rd) = 1, (1.27)

as ~→ 0+. In order to study the asymptotic behavior of solutions of (1.26), we start by considering
sequences of initial data (u~) on L2(Rd) satisfying ‖u~‖L2 = 1. The distribution of energy of each
function uh on the phase space T ∗Rd = R2d can be described in terms of its related Wigner
distribution [117] (see Section 2.6). We recall that the Wigner distribution W ~

u~
∈ D′(R2d) of u~

is defined by the map

C∞c (R2d) 3 a 7−→
〈
u~,Op~(a)u~

〉
L2(Rd)

=: W ~
u~

(a),

where Op~(a) denotes the semiclassical Weyl quantization of the symbol a and we use the following
convention for the scalar product on L2(Rd):

〈f, g〉L2(Rd) =

∫
Rd
f(x)g(x)dx.

After possibly extracting a subsequence, there exists a positive Radon measure µ0 ∈M(R2d) such
that

W ~
u~
⇀? µ0, as ~→ 0+,

where the convergence takes place in the sense of distributions. The measure µ0 is called the
semiclassical measure associated to the (sub)sequence (u~) and it satisfies

0 ≤
∫
R2d

µ0(dx, dξ) ≤ 1. (1.28)

One can show, for instance using linear combinations of wave-packets, that every positive Radon
measure µ0 ∈ M(R2d) satisfying (1.28) can be obtained as the semiclassical measure of a norma-
lized sequence (u~). We will restrict our attention to those sequences (u~) with related semiclassical
measure µ0 ∈ P(H−1(1)) i.e., a probability measure on the level set H−1(1). This holds if the
sequence (u~) satisfies the following hypothesis of ~-oscillation associated to the harmonic oscilla-
tor5:

lim
δ→0+

lim
~→0+

‖1[1−δ,1+δ](Ĥ~)u~‖L2(Rd) = 1, (1.29)

5Compare with condition (1.10).
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where 1[1−δ,1+δ] stands for the characteristic function of the interval [1− δ, 1 + δ] and 1[1−δ,1+δ](Ĥ~)
is defined using the functional calculus for selfadjoint operators. That is, if

u~ =
∑

λ~∈Sp(Ĥ~)

Πλ~u~,

then
1[1−δ,1+δ](Ĥ~)u~ =

∑
λ~∈[1−δ,1+δ]

Πλ~u~.

We denote by v~(t) the sequence of solutions of (1.26) with initial data (u~). By Stone’s
Theorem (see Lemma 2.7), v~(t) is given by the unitary transformation

v~(t) = e−
it
~ P̂~u~, t ∈ R. (1.30)

The correspondence principle [45], [51], [77] (see Section 2.6.2) stablishes that if µ0 is the semi-
classical measure associated to the sequence (u~) then, for every t ∈ R, there exists a unique
semiclassical measure µ(t) for the sequence (v~(t)) and it satifies

µ(t) = (φHt )∗µ0,

where (φHt )∗ is the push-forward of the classical Hamiltonian flow φHt generated by H. Note that

the perturbation εhV̂~ does not influence the semiclassical measure µ(t) at this regime of time. The
situation changes if instead of considering the Wigner distribution at fixed time t, we introduce a
time scale τ := (τ~) such that

τ~ →∞, as ~→ 0+,

and we look at the Wigner distributions associated to the sequence (v~(tτ~)):

W τ,ε
~ (t)(a) :=

〈
v~(tτ~),Op~(a)v~(tτ~)

〉
L2(Rd)

, a ∈ C∞c (R2d), t ∈ R. (1.31)

As we have already mention in the motivation, we can not expect to have any limit object for
fixed t if the time scale (τ~) is larger than the Ehrenfest time (see Bambusi et. al. [18]). However,
as first done by Macià in [80], we can consider the Wigner distributions W τ,ε

~ as elements of the
space L∞(R,D′(R2d)). Modulo extracting a subsequence, one obtain the existence of a measure
µ ∈ L∞(R,M+(R2d)) such that, for every a ∈ C∞c (R2d) and for every ϕ in L1(R),

lim
~→0+

∫
R
ϕ(t)W τ,ε

~ (t)(a)dt =

∫
R

∫
R2d

ϕ(t)a(x, ξ)µ(t, dx, dξ)dt.

Moreover, the measure µ(t, ·) obtained is invariant by the flow φHt generated by the Hamiltonian
H (see Macià [80] and Section 2.6.4). The aim of this work is to study the extra invariance
or propagation properties satisfied by µ(t, ·) as the time scale τ grows up with respect to the
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perturbation scale ε. We denote by M(P̂~, τ~) the set of accumulation points of sequences (W τ,ε
~ )

as (u~) varies among normalized ~-oscillating sequences in the sense of (1.29). As we did in Section

1.1, we can also define the set N (P̂~, τ~) of measures ν ∈ L∞(R;P(Rd)) such that

lim
~→0+

∫
R×Rd

ϕ(t, x)|e−i
τ~t
~ P̂~u~(x)|2dx dt =

∫
R×Rd

ϕ(t, x)ν(t, dx)dt, ∀ϕ ∈ Cc(R× Rd).

By construction, ν ∈ N (P̂~, τ~) if and only if there exists if µ ∈ M(P̂~, τ~) (obtained from the
same sequence of initial data) such that, for almost every t ∈ R,

ν(t, x) =

∫
Rd
µ(t, x, dξ).

Analogously, we defineM(P̂~) to be the set of semiclassical measures associated to sequences (Ψ~)

of normalized eigenfunctions of P̂~ with eigenvalues λ~ → 1 and N (P̂~) to be the set of measures
ν obtained as weak limits

|Ψ~|2 ⇀? ν, as ~→ 0+.

Again, ν ∈ M(P̂~) if and only if there exists µ ∈ M(P̂~) (obtained form the same sequence of
eigenfunctions) such that

ν(x) =

∫
Rd
µ(x, dξ).

But in principle, and this is crucial to obtain propagation laws and invariance properties, the sets
M(P̂~) and M(P̂~, τ~) contain more information than N (P̂~) and N (P̂~, τ~), since they describe
the distribution of the sequence in the phase space and not only in the position variable

1.2.1. Long time dynamics for the Schrödinger equation

We next explain the propagation laws and flow invariances of elements of M(P̂~, τ~). Given the
vector of frequencies ω := (ω1, . . . , ωd) of the harmonic oscillator H, we consider the submodule

Λω := {k ∈ Zd : k · ω = 0}. (1.32)

The nontriviality of this set implies that the vector of frequencies is not irrational. As we will see
below, a major role in our study will be played by the average of the symbol V along the orbits
of the flow φHt . The average 〈a〉 of a symbol a ∈ C∞(R2d) by the flow φHt is defined by

〈a〉(x, ξ) := lim
T→∞

1

T

∫ T

0

a ◦ φHt (x, ξ)dt. (1.33)

This limit is well defined and the convergence takes place in the C∞(R2d) topology6.

6Recall that an → a in the C∞(R2d) topology if for every compact set K and every k ∈ N, ‖an − a‖Ck(K) → 0
as n→∞.
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Recall also that the harmonic oscillator H defines a completely integrable Hamiltonian system
on R2d (see Section 3.1). Indeed, a maximal set of linearly independent integrals {H1, . . . , Hd} is
given by the set of decoupled harmonic oscillators

Hj(x, ξ) =
1

2

(
ξ2
j + x2

j

)
, j ∈ {1, . . . , d}.

Note that {Hj, Hk} = 0, and hence these integrals are in involution. In particular, we can write
H as a function of H1, . . . , Hd. Precisely,

H = Lω(H1, . . . , Hd),

where Lω : Rd
+ → R is the linear form defined by Lω(E) = ω · E. Observe also that, for every

energy-tuple E = (E1, . . . , Ed) ∈ L−1
ω (1), the torus

TE := H−1
1 (E1) ∩ · · · ∩H−1

d (Ed) ⊂ H−1(1) (1.34)

is invariant by the Hamiltonian flow φHt . In general TE is not a minimal invariant set, since it can
be foliated by Kronecker invariant tori of smaller dimension. We now introduce the transformation

ΦH
τ := φHdtd ◦ · · · ◦ φ

H1
t1 , τ = (t1, . . . , td) ∈ Rd, (1.35)

and note that τ 7→ ΦH
τ is 2πZd-periodic, hence we can view it as a function defined on the torus

Td := Rd/2πZd. We consider also the Kronecker torus Tω defined by

Tω := Λ⊥ω /(2πZd ∩ Λ⊥ω ) ⊂ Td,

where Λ⊥ω denotes the linear space orthogonal to Λω. This torus stands for the minimal invariant
set of angle-coordinates where the orbits of φHt are dense. The dimension of Tω is dω = d− rk Λω.
This allows us to decompose any function a ∈ C∞(R2d) in a Fourier series as follows:

a(x, ξ) =
1

(2π)d

∑
k∈Zd

ak(x, ξ), ak(x, ξ) :=

∫
Td
a ◦ ΦH

τ (x, ξ)e−ik·τdτ,

note that ak ◦ ΦH
τ = ak e

ik·τ , and hence (see Section 3.1), write the average 〈a〉 as

〈a〉(x, ξ) =
1

(2π)d

∑
k∈Λω

ak(x, ξ) =

∫
Tω
a ◦ ΦH

τ (x, ξ)hω(dτ), (1.36)

where hω denotes the Haar measure on the torus Tω (i.e. the uniform probability measure on Tω).
We next define the following equivalence relation on H−1(1) to obtain the reduction by the action
of the Hamiltonian flow φHt : we say that two points z, z′ ∈ H−1(1) satisfy z ∼ω z′ if they share
the same minimal invariant set by φHt , i.e, OH(z) = OH(z′), where

OH(z) := {ΦH
τ (z) : τ ∈ Tω}.
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For any a ∈ C∞(R2d), we denote by 〈a〉ω the reduction of the average 〈a〉 on H−1(1)/ ∼ω. That
is, for every ρ ∈ H−1(1)/ ∼ω, denoting πω : H−1(1)→ H−1(1)/ ∼ω the projection,

〈a〉ω(ρ) = 〈a〉(z), ∀z ∈ H−1(1), πω(z) = ρ.

Another important issue to take into account is the Diophantine nature of the vector of fre-
quencies ω. It will also play an important role in our study, since it is related to the speed of
convergence of

1

T

∫ T

0

a ◦ φHt dt

to the average 〈a〉 as T → ∞ and, as we shall see, this is crucial when dealing with the classic
problem of small denominators in KAM theory.

Definition 1.1. A vector ω ∈ Rd
+ is called partially Diophantine if

|ω · k| ≥ ς

|k|γ−1
, ∀k ∈ Zd \ Λω, (1.37)

for some fixed constants ς > 0 and γ > d.

Remark 1.1. Here the vector ω is not required to be rationally independent. If rk Λω = 0 (when
the components of ω are rationally independent), then the condition (1.37) means simply that ω
is Diophantine in the usual way. However, in the particular case when rk Λω = d− 1, one has that
ω is always partially Diophantine, since it is of the form αk0, with α > 0 and k0 ∈ Nd. Indeed,

|ω · k| = α|k0 · k| ≥ α > 0, ∀k ∈ Zd \ Λω.

This case corresponds to the periodic harmonic oscillator. It is well known that the set of Dio-
phantine vectors has full Lebesgue measure (see for instance [34]). Hence the set of partially
Diophantine vectors has also full Lebesgue measure, since they contain the set of Diophantine
vectors.

We next state our first result:

Theorem 1.2. Let µ ∈ M(P̂~, τ~) and denote by µ0 the semiclassical measure associated to the
sequence of initial data used to generate µ. Then the following holds:

(i) If τ~ ε~ → 0+ then µ is constant with respect to t and, for every a ∈ Cc(R2d) and every t ∈ R:

µ(t)(a) = µ0(〈a〉).

(ii) If τ~ ε~ → 1 then µ is continuous with respect to t and, for every a ∈ Cc(R2d) and every
t ∈ R:

µ(t)(a) = µ0(〈a〉 ◦ φ〈V 〉t ),

where φ
〈V 〉
t denotes de Hamiltonian flow generated by 〈V 〉.
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(iii) If τ~ ε~ →∞ then µ has an additional invariance property. For almost every t ∈ R and every
s ∈ R:

(φ〈V 〉s )∗µ(t) = µ(t).

Remark 1.2. Note that the flows φHt and φ
〈V 〉
s commute (i.e. {H, 〈V 〉} = 0). Hence φ

〈V 〉
s preserves

the energy level H−1(1). Moreover, the action of φ
〈V 〉
s on H−1(1) is determined only by the values

of 〈V 〉ω but not on the values of 〈V 〉 transversally to H−1(1).

Remark 1.3. We emphasize that in the statement of Theorem 1.2 there is not restriction on the
size of the sequence ε = (ε~).

Remark 1.4. In the case rk Λω = 0, points (ii) and (iii) of Theorem 1.2 are empty since for every
z ∈ H−1(1), X〈V 〉 ∈ TzOH(z), where X〈V 〉 denotes the Hamiltonian vector field generated by 〈V 〉.
Indeed, in this case 〈V 〉 = I〈V 〉(H1, . . . , Hd), i.e. the average is taken over all of TE:

I〈V 〉(E1, . . . , Ed) = 〈V 〉(x, ξ), for all (x, ξ) ∈ TE, E = (E1, . . . , Ed) ∈ Rd
+.

Theorem 1.5 below will cover this case.

Observe that if τ~ ε~ → 0+, the first point of Theorem 1.2 implies that

M(P̂~, τ~) =M(H),

where M(H) denotes de set of probability measures supported on H−1(1) that are invariant by
the flow φHt (compare with Theorem 1.7 below). This is just the result of Macià [80] adapted to
the case of the harmonic oscillator. On the other hand, if τ~ ε~ → +∞, Theorem 1.2 implies in
particular that, if the critical set C(V ) defined by

C(V ) := {z ∈ H−1(1) : X〈V 〉
∣∣
z
∈ TzOH(z)},

satisfies C(V ) 6= H−1(1) then there exist infinetely many invariant tori OH(z) such that, for almost
every t ∈ R,

µ(t)
(
OH(z)

)
= 0.

In particular,
M(P̂~, τ~) 6=M(H),

since we exclude the delta measures not supported on critical orbits. This results in an adaptation
of the methods of Macià and Rivière [84, 85] for the harmonic oscillator. Otherwise, if the critical
set satisfies C(V ) = H−1(1), that is when 〈V 〉ω is a constant function, we can say something more,
provided that the vector ω is partially Diophantine.

Theorem 1.3. Assume that ω is partially Diophantine. Suppose also that 〈V 〉ω is identically

constant. Let µ ∈M(P̂~, τ~), denote by µ0 the semiclassical measure associated to the sequence of
initial data used to generate µ. Let V ð be the function defined by

V ð :=
1

2
{V ], V }, (1.38)
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where V ] is given by

V ](x, ξ) =
1

(2π)d

∑
k∈Zd\Λω

Vk(x, ξ)

ik · ω
. (1.39)

Then the following holds:

(i) If τ~ ε
2
~ → 0+ then µ is continuous with respect to t and, for every a ∈ Cc(R2d) and every

t ∈ R:
µ(t)(a) = µ0(〈a〉).

(ii) If τ~ ε
2
~ → 1 then µ is continuous with respect to t and, for every a ∈ Cc(R2d) and every

t ∈ R:
µ(t)(a) = µ0(〈a〉 ◦ φ〈V

ð〉
t ).

(iii) If τ~ ε
2
~ →∞ then µ has an additional invariance property. For almost every t ∈ R and every

s ∈ R:
(φ〈V

ð〉
s )∗µ(t) = µ(t).

Remark 1.5. In the periodic case ω = (1, . . . , 1), the function 〈V ð〉 has the simpler form

〈V ð〉 =
1

4π

∫ 2π

0

∫ t

0

{V ◦ φHs , V ◦ φHt }ds dt. (1.40)

Remark 1.6. It is not difficult to find examples of perturbations V ∈ S0(R2d) for which 〈V 〉ω is
constant but 〈V ð〉ω is not, see Example 3.1.

To prove Theorem 1.3, we will conjugate the operator P̂~ by some suitable unitary operator

so that the perturbation ε~V̂~ is averaged by the quantum flow ei
t
~ Ĥ~ up to order εN~ for arbitrary

large N . Let T > 0 and let Â~ := Op~(a) with a ∈ S0(R2d), we define its quantum average 〈Â~〉T
at time T by

〈Â~〉T :=
1

T

∫ T

0

e−i
t
~ Ĥ~ Â~ e

i t~ Ĥ~dt. (1.41)

The following is consequence of Egorov’s theorem (Lemma 2.8), which is exact since H is a
polynomial of degree two, the Calderón-Vaillancourt theorem (Lemma 2.5) and the fact that the

partial average 1
T

∫ T
0
a ◦ φHt dt converges to 〈a〉 as T →∞ in the C∞(R2d) topology:

Proposition 1.1. The limit
〈Â~〉 := lim

T→∞
〈Â~〉T (1.42)

is well defined in the strong operator L(L2)-norm, and it satisfies

〈Â~〉 = Op~(〈a〉).
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We will show in Section 3.2 that if ω is partially Diophantine then, for every N ∈ N, there
exists a sequence of unitary operators (UN,~) on L2(Rd) such that

P̂N
~ = U∗N,~

(
Ĥ~ + ε~V̂~

)
UN,~ = Ĥ~ + ε~〈V̂~〉+

N∑
j=2

εj~〈R̂j,~〉+O(εN+1
~ ),

where R̂1,~ = V̂~, and R̂j,~ are L2-bounded pseudodifferential operators. Let Rj(~) be the symbol

of R̂j,~, which can be expanded as

Rj(~) ∼
∞∑
k=0

rj,k ~k,

we have, in particular, 〈V ð〉 = 〈r2,0〉. Moreover, it could be possible that 〈V 〉ω and 〈V ð〉ω where
constant, but there was some first element rj,k in the series such that 〈rj,k〉ω was not identically
constant (see Example 3.2 for a particular case). The following result deals with this situation:

Theorem 1.4. Assume that ε~ = ~α for some α > 0. If there exists a function L = L(V ) given
by the sum of all terms rj,k in the series such that

〈L〉ω =
∑

δ~=εj~~k

〈rj,k〉ω (1.43)

is not constant, and such that the order δ~ is maximal with respect to this condition, then the three
alternatives of Theorem 1.2 hold replacing the critical scale τ~ ∼ 1/ε~ by τ~ ∼ 1/(εj~~k) and the
symbol 〈V 〉 by 〈L〉.

Remark 1.7. The assumption ε~ = ~α prevents patological situations. For instance, in principle it
could be possible that 〈R1(~)〉ω was not identically constant, but 〈r1,k〉ω ≡ 0 for all k ≥ 0. Then,
if ε~ � ~k for all k, the order of 〈R1(~)〉 would be larger than the one of 〈R2(~)〉, and we could
not find 〈L〉. Another patological situation could be that εj~ � ~ and 〈rj,0〉ω ≡ 0 for all j ≥ 1, but
〈r1,1〉ω was not identically constant. Again, we could not find 〈L〉.

Recall that, in the case rk Λω = 0, for every L ∈ C∞(R2d) one has 〈L〉 = I〈L〉(H1, . . . , Hd).
Thus points (ii) and (iii) of Theorems 1.3 and 1.4 are empty. Our result in this case reads:

Theorem 1.5. Suppose that ω is Diophantine (in particular, rk Λω = 0). Let τ be such that there
exists an integer N ≥ 1 verifying

τ~ε
N
~ → 0, as ~→ 0+.

Then, µ is continuous in the t variable and, for every a ∈ Cc(R2d) and every t ∈ R:

µ(t)(a) = µ0(〈a〉),
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hence M(P̂~, τ~) =M(H). More precisely, in this case:∫
R2d

〈a〉(x, ξ)µ0(dx, dξ) =

∫
L−1
ω (1)

I〈a〉(E) H∗µ0(dE),

where the measure H∗µ0 is given by the disintegration of the Liouville measure on the Lagrangian
tori TE: for every f ∈ Cc(Rd

+),∫
Rd+
f(E) H∗µ0(dE) :=

∫
R2d

f
(
H1(x, ξ), . . . , Hd(x, ξ)

)
µ0(dx, dξ).

Remark 1.8. The Diophantine assumption on ω is only necessary when τ~ε~ →∞. Otherwise, it
is sufficient to assume that rk Λω = 0.

1.2.2. Some improvements in 2D

In this section we assume d = 2 and we consider the periodic harmonic oscillator, ω = (1, 1). In
[50], Guillemin, Uribe and Wang proved the following. Given ε~ = ~2 fixed. Let I ⊂ R denote an
open interval in the image of H. For any λ ∈ I, let

S2
λ = H−1(λ)/S1

be the reduced space by the free S1 action generated by H. Denote by

〈V 〉λ : S2
λ → R

the reduction of 〈V 〉 at S2
λ. If, for all λ ∈ I, 〈V 〉λ is a perfect Morse function, that is, it has

only two critical points, a maximun and a minimun then, for every N ∈ N, there exists a Fourier
integral operator F~ that conjugates Ĥ~ + ~2V̂~ into the normal form

P̂N
~ = Ĥ~ + ~2G2

(
Op~(H1),Op~(H2)

)
+ · · ·+ ~NGN

(
Op~(H1),Op~(H2)

)
+ ~2R̂~ +O(~N+1),

where Gj is a two-variable smooth function for j = 2, 3, . . ., and R̂~ is a pseudodifferential operator
whose microsupport7 is disjoint from V := H−1(I). Moreover, the Fourier integral operator F~
quantizes a symplectic transformation κ~ = κ + O(~) that provides the normal form at classic
level. This means that, given a ∈ C∞c (V),

F~ Op~(a)F∗~ = Oph(κ
∗a) +O(~), (1.44)

where κ~ = κ + O(~) : R2d → R2d is symplectomorphism such that (H,V ) ◦ κ = (H,G2(H1, H2))
on V and

PN =
(
H + ~2V

)
◦ κ~ = H + ~2G2(H1, H2) + . . .+ ~NGN(H1, H2) +O(~N+1),

on V . In this case, we have:

7We say that (x, ξ) ∈ R2d does not belong to the microsupport of R̂~ if its symbol r(x, ξ, ~) vanishes to infinite
order in ~ in an open neighborhood of (x, ξ).
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Theorem 1.6. Assume d = 2, ω = (1, 1), and 〈V 〉λ is a perfect Morse function for all λ ∈ I 3 1.
Let κ and F be the transformations satisfying (1.44). Let τ be a time scale such that τ~~2 → ∞
and assume there exists an integer N ≥ 3 satisfying

τ~~N → 0+, as ~→ 0.

Then, µ does not depend on the t variable and, for every a ∈ Cc(V) and every t ∈ R:

µ(t)(a) = µ0

(
A(H,V )(a)

)
,

where the double average A(H,V )(a) is defined by

A(H,V )(a) := lim
T→∞

1

T

∫ T

0

〈a〉 ◦ φ〈V 〉t dt.

Remark 1.9. If a ∈ C∞c (V) then A(H,V )(a) ∈ C∞c (V). More precisely, as we shall show in the proof,
we have the explicit formula A(H,V )(a) = (κ∗)−1A(H1,H2)(κ

∗a), where

A(H1,H2)(a) :=
1

(2π)2

∫
T2

a ◦ φH1
t1 ◦ φ

H2
t2 dt1 dt2.

1.2.3. Weak limits of sequences of eigenfunctions

We next state some applications of our previous results in the study of the semiclassical measures
associated to sequences of solutions for the stationary problem

P̂~ Ψ~ = λ~ Ψ~, ‖Ψ~‖L2(Rd) = 1,

with λ~ → 1 as ~ → 0+. To fix ideas, we consider the set M(P̂~) of probability measures

obtained as semiclassical measures associated to sequences of normalized eigenfunctions for P̂~
with eigenvalues satisfying λ~ → 1. In particular, if ε = (ε~) vanishes identically, we denote the

corresponding set of measures by M(Ĥ~). One always has

M(P̂~) ⊂M(H), (1.45)

where recall thatM(H) is the set of probability measures supported on H−1(1) that are invariant
by the flow φHt , and the inclusion may be strict, even if ε~ ≡ 0, as we will show below. We aim

at understanding the influence of the perturbation ε~V̂~ on the concentration properties of the
elements of M(P̂~). Before looking at the perturbed operator P̂~ = Ĥ~ + ε~V̂~, we first explain

the situation for the nonperturbed harmonic oscillator Ĥ~, obtaining a complete characterization
of M(Ĥ~). Roughly speaking, the basic idea is the following: the more multiplicity that each
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eigenvalue of the sequence has, the more concentration that the related sequence of eigenfunctions
can reach. Observe that the spectrum of Ĥ~ is given by

SpL2(Rd)

(
Ĥ~
)

=

{
λk,~ =

d∑
j=1

~
(
kj +

1

2

)
ωj, k = (k1, . . . , kd) ∈ Nd

}
,

hence the multiplicity of each eigenvalue λk,~ depends on the arithmetic relations between com-
ponents of the vector of frequencies ω = (ω1, . . . , ωd). Considering the quotient set8 Nd/Λω, we
observe that, for every [k] ∈ Nd/Λω, if k, k′ ∈ [k] then λk,~ = λk′,~ (exact degeneracy of the eigen-
value). Thus, if we choose a sequence (k~, ~) ⊂ Nd × (0, 1] such that λk~,~ → 1 as ~ → 0+, then
the sequence k~ accumulates on the quotient set L−1

ω (1)/ [Λω], where [Λω] is the linear span of Λω

in Rd. For every [E] ∈ L−1
ω (1)/[Λω], we define M[E](H) to be the set of φHt -invariant probability

measures supported on ⋃
E∈[E]

TE ⊂ H−1(1),

where recall that TE is defined by (1.34) for every E ∈ L−1
ω (1). In particular, M[E](H) ⊂M(H)

for every [E] ∈ L−1
ω (1)/[Λω]. The following is a generalization of the result of Ojeda-Valencia and

Villegas-Blas [93, Prop. 5] for the non-periodic harmonic oscillator:

Theorem 1.7. For the nonperturbed harmonic oscillator Ĥ~:

M(H) ⊃M(Ĥ~) =
⋃

[E]∈L−1
ω (1)/[Λω ]

M[E](H).

Remark 1.10. If rk Λω = 0 then, for every E ∈ L−1
ω (1), [E] = {E}, that is,

L−1
ω (1)/[Λω] ' L−1

ω (1).

In this case,

M(Ĥ~) =
⋃

E∈L−1
ω (1)

{hE},

where hE is the Haar measure on the torus TE. On the other hand, if rk Λω = d − 1 (periodic
case) our result reduces to the one of [93, Prop. 5]:

M(Ĥ~) =M(H).

Note that, in this case, L−1
ω (1)/[Λω] = {L−1

ω (1)} and, for every E ∈ L−1
ω (1), M[E](H) =M(H).

In the perturbed case, the following result is consequence of Theorems 1.2, 1.3 and 1.4:

8The quotient set A/B ⊂ P(A) is defined as follows: [a] ∈ A/B if for all a, a′ ∈ [a], a− a′ ∈ B.
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Theorem 1.8. Let z ∈ H−1(1) such that

X〈L〉
∣∣
z
/∈ TzOH(z),

where OH(z) is the closure of the orbit of φHt issued from the point z and 〈L〉 is given by 〈V 〉,
(resp. 〈V ð〉 or

∑
〈rj,k〉) in the hypothesis of Theorem 1.2 (resp. the hypothesis of Theorems 1.3

or 1.4). In particular,

M(H) ⊃M(P̂~) 6=
⋃

[E]∈L−1
ω (1)/[Λω ]

M[E](H).

1.3. Distribution of eigenvalues for non-selfadjoint

harmonic oscillators

This part of the work is joint work with Gabriel Rivière and it is the content of the preprint [14].
The motivation comes from the study of the damped wave equation on Riemannian manifolds. Let
(M, g) be a compact Riemannian manifold, the damped wave equation is given by the following
partial differential equation:{ (

∂2
t −∆g + a(x)∂t

)
u(t, x) = 0,(

u(0, ·), ∂tu(0, ·)
)

= (u0, u1) ∈ H1(M)× L2(M),
(1.46)

where ∆g is the Laplace-Beltrami operator (see Section 2.7) and a ∈ C∞(M ;R+) is called damping
term. One can check that the energy

E(u, t) :=
1

2

(
‖∇gu(·, t)‖2

L2(M) + ‖∂tu(·, t)‖2
L2(M)

)
of every solution u to (1.46) tends to zero as t→∞. Rauch and Taylor gave in [100] a necessary
and sufficient condition for the existence of a uniform decay rate, that is, of a function f(t) → 0
as t→∞ such that:

E(u, t) ≤ f(t)E(u, 0), ∀(u0, u1) ∈ H1(M)× L2(M). (1.47)

In fact, (1.47) holds if and only if {a > 0} satisfies the so-called Geometric Control Condition:

∃T, c > 0, inf
z0∈S∗M

∫ T

0

a(φs(z0))ds ≥ c, (1.48)

where φs denotes the geodesic flow on M issued from z0. The decay rate must necessarily be of
exponential type: f(t) ≤Me−βt for t big enough.
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Studying the large time behavior of solutions of (1.46), Lebeau in [74] obtained a formula for
the exponential decay rate of energy in terms of the distribution of eigenvalues λ = α+ iβ ∈ C of
the non-selfadjoint problem(

−∆g + iλa(x)
)
v(x) = λ2v(x), v ∈ L2(M),

and of the average of a(x) along the geodesics of (M, g). Motivated by this work, Sjöstrand
in [109] showed that the eigenfrequencies lie in a strip of the complex plane which can be completely
determined in terms of the average of the damping term along the geodesic flow [109] (see also [100,
74] for earlier related results). Showing these results for the damped wave equation turns out to
be equivalent to obtaining analogous results for the following nonselfadjoint semiclassical problem:(

− ~2∆g + i~a(x)
)
vh(x) = λ~v~, λ~ = α~ + i~β~ ∈ C, v~ ∈ L2(M),

which has since then be the object of several works. More precisely, it was investigated how these
generalized eigenvalues are asymptotically distributed inside the strip determined by Sjöstrand and
how the dynamics of the underlying classical Hamiltonian influences this asymptotic distribution.
Mostly two questions have been considered in the literature. First, one can ask about the precise
distribution of eigenvalues inside the strip and this question was addressed both in the completely
integrable framework [57, 58, 59, 64, 60, 61, 62, 63] and in the chaotic one [3]. Second, it is natural
to ask how eigenfrequencies can accumulate at the boundary of the strip and also if one can get
resolvent estimates near the boundary of the strip. Again, this question has been explored both
in the integrable case [16, 5, 26] and in the chaotic one [28, 106, 92, 29, 102, 68].

We consider the second question in the case of completely integrable systems. More precisely,
we aim at describing the influence of the subprincipal symbol of the selfajoint part of our semi-
classical operators on the asymptotic distribution of eigenvalues but also on resolvent estimates.
For the sake of simplicity, we will restrict ourselves to the case of non-selfadjoint perturbations of
semiclassical harmonic oscillators on Rd but it is most likely that the methods presented here can
be adapted to deal with more general semiclassical operators associated with completely integrable
systems. In [16, Th. 2.3], Asch and Lebeau showed how a selfadjoint pertubation of the principal
symbol of the damped wave operator can create a spectral gap inside the spectrum in the high
frequency limit. We will also explain how this result can be extended in our context9. Recall that a
major ingredient in the proof of [16] and in the works of Hitrik-Sjöstrand [58, 59, 64, 60, 61, 62, 63]
is the analyticity of the involved operators.

One of the novelty of our work compared with the references above is that we will also explore
what can be said when we only suppose that the operators are smooth and how this is influenced
by the subprincipal symbols of the selfadjoint part as in [16]. This will be achieved by building
on the dynamical construction used for studying semiclassical Wigner measures of semiclassical
harmonic oscillators introduced in [13], see Section 1.2 above, and see also [84, 85] in the case of
Zoll manifolds.

9Observe that, compared with [16], our operators are not necessarily associated with a periodic flow.
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We now describe the spectral framework we are interested in. We fix ω = (ω1, . . . , ωd) to

be an element of Rd
+, and we set Ĥ~ to be the semiclassical harmonic oscillator given by (1.23).

We will study the spectral properties of nonselfadjoint perturbations of Ĥ~. We now fix two
smooth functions A and V in C∞(R2d,R) all of whose derivatives are bounded. We set the Weyl
quantization of these smooth symbols:

Â~ := Op~(A), and V̂~ := Op~(V )

(see Section 2.2). These are selfadjoint operators which are bounded on L2(Rd) thanks to the
Calderón-Vaillancourt Theorem (see Lemma 2.5). We are aiming at describing the asymptotic
properties of the following nonselfadjoint operator in the semiclassical limit ~→ 0:

P̂~ := Ĥ~ + ε~V̂~ + i~Â~, (1.49)

where ε~ → 0 as ~→ 0. More precisely, we focus on sequences of (pseudo-)eigenvalues

λ~ = α~ + i~β~

such that there exist β ∈ R and (v~)~→0+ in L2(Rd) so that

(α~, β~)→ (1, β), as ~→ 0, and P̂~ v~ = λ~ v~ + r~, ‖v~‖L2 = 1. (1.50)

Here r~ should be understood as a small remainder term which will be typically of order o(~).
This allows us to deal with the case of quasimodes which is important to get resolvent estimates.
Recall from [109, Th. 5.2] that true eigenvalues exist10 and that, counted with their algebraic
multiplicity, they verify a Weyl asymptotics as ~ → 0. It follows from the works of Rauch-
Taylor [100], Lebeau [74] and Sjöstrand [109, Lemma 2.1] that:

Proposition 1.2. Let (λ~ = α~ + i~β~)~→0+ be a sequence of (cuasi-)eigenvalues verifying (1.50)
with β~ → β and r~ = o(~). Then, one has

β ∈
[

min
z∈H−1(1)

〈A〉(z), max
z∈H−1(1)

〈A〉(z)

]
. (1.51)

We include a proof of this proposition in Section 4.2. Note that one always has

min
z∈H−1(1)

A(z) ≤ A− := min
z∈H−1(1)

〈A〉(z) ≤ A+ := max
z∈H−1(1)

〈A〉(z) ≤ max
z∈H−1(1)

A(z),

where the inequalities may be strict. In some particular important cases the damping function A
satisfies the so called geometric-control condition:

10This article deals with the case of non-selfadjoint perturbations of the Laplacian, which can be faithfully
transferred to our case.
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(GC) For every z ∈ H−1(1) there exists T ∈ R such that A ◦ φHT (z) > 0.

As a consequence of Proposition 1.2, if A ≥ 0 and it satisfies the condition (GC), then β > 0.

In particular, there exists a spectral gap in the spetrum of P̂~ near the real axis.
Let us now explain our main results which show how the selfadjoint term V̂~ influences the way

that the eigenvalues may accumulate on the boundary of the interval given by Proposition 1.2.
Recall that, if we come back to the damped wave equation, studying such a problem is related to
the way that the energy of the waves decay (see e.g. [29]). The main assumption on the functions
A and V will be the following weaker geometric-control condition:

(WGC) For every z ∈ H−1(1) ∩ 〈A〉−1(0) there exists T ∈ R such that 〈A〉 ◦ φ〈V 〉T (z) > 0, where

φ
〈V 〉
t is the Hamiltonian flow generated by 〈V 〉.

Note that this condition implies that undamped trajectories are moved to damped ones through
the flow φ

〈V 〉
t . As we shall see, ensuring this dynamical property depends on the Diophantine

properties of ω. Recall that, to each ω, one can associate the submodule

Λω := {k ∈ Zd : ω · k = 0}. (1.52)

When the rank of Λω is equal to 0, our geometric control condition can only be satisfied if 〈A〉 > 0,
since rk Λω = 0 implies that each average is constant on each invariant Lagrangian torus, so it is
a function of the actions. Hence, two averages Poisson-commute: {〈V 〉, 〈A〉} = 0. A typical case
in which our dynamical condition holds is when H−1(1) ∩ 〈A〉−1(0) consists in a disjoint union of
a finite number of minimal φHt -invariant tori (OH(zk))k=1,...,N . In this case, condition (WGC) is
equivalent to say that the Hamiltonian vector field X〈V 〉 satisfies

∀1 ≤ k ≤ N, ∀z ∈ OH(zk),
d

dt

(
φ
〈V 〉
t (z)

) ∣∣∣
t=0

/∈ OH(zk).

1.3.1. The smooth case

First, we will assume an extra condition on the vector of frequencies ω of the harmonic oscillator
H. We recall that ω := (ω1, . . . , ωd) ∈ Rd

+ is partially Diophantine if it satisfies (1.37). To keep an
example in mind, note that the vector ω = (1, . . . , 1) is obviously partially Diophantine.

In the smooth case, our main result reads as follows:

Theorem 1.9. Let ω be partially Diophantine. Suppose that 〈A〉 ≥ 0 on H−1(1), and that A and
V satisfies the geometric-control condition (WGC). Assume also that

ε~ � ~2.

Then, for every sequence (λ~ = α~+i~β~)~→0+ of (quasi-)eigenvalues verifying (1.50) with reminder
term r~ satisfying ‖r~‖ = o(~ε~),

β~ � ε~.
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This result shows that, under a certain geometric control condition, eigenvalues cannot accu-
mulate too fast on the real axis as ~ → 0. We emphasize that, compared with the analytic case
treated in [16], our result apply a priori to quasimodes. Hence, it also yields the following resolvent
estimate in the smooth case. For every R > 0, and every ~ > 0, there exists some constant CR > 0
such that, for ~ > 0 small enough,

=λ
~
≤ Rε~ ⇒

∥∥(P̂~ − λ
)−1∥∥

L(L2)
≤ CR

~ε~
, (1.53)

which is usefull regarding energy decay estimates and asymptotic expansion of the corresponding
semigroup (see e.g. [29]).

When 〈A〉 > 0 everywhere on H−1(1), our Theorem is exactly the result of Rauch-Taylor [100]
and Lebeau [74] adapted to the case of the harmonic oscillator. If A ≥ 0 then the Diophantine
property on the vector ω is not required, and the proof of Theorem 1.9 can be simplified a bit (see
[14]). Our proof will crucially use the Fefferman-Phong inequality (hence the Weyl quantization)
and this allows us to reach perturbations of size ε~ � ~2. If we had dealt with more general
completely integrable systems (e.g. on compact manifolds), we would have probably been able to
use the Garding inequality and it would have lead us to the stronger restriction ε~ � ~.

1.3.2. The analytic case

We now consider the case when the functions A and V enjoy some analyticity properties. This
will be achieved by following a method introduced by Asch and Lebeau in the case of the damped
wave equation on the 2-sphere [16]. We will explain how to adapt this strategy in the framework
of harmonic oscillators which are not necessarly periodic. Hence, the upcoming results should be
viewed as an extension of Asch-Lebeau’s construction to semiclassical harmonic oscillators and
as an illustration on what can be gained via analyticity compared with the purely dynamical
approach used to prove Theorem 1.9. Yet, we emphasize that the argument presented here only
holds for true eigenmodes, i.e. r~ = 0 in (1.50). In particular, it does not seem to yield any
resolvent estimate like (1.53) which is crucial to deduce some results on the semigroup generated

by P̂~.

Definition 1.2. Let s > 0. We say that a ∈ L1(R2d) belongs to the space As if

‖a‖s :=

∫
R2d

|â(w)|es|w| dw <∞,

where â denotes the Fourier transform of a and |w| the Euclidean norm on R2d. Let also ρ > 0,
we introduce the space Aρ,s of functions a ∈ L1(R2d) such that

‖a‖ρ,s :=
1

(2π)d

∑
k∈Zd
‖ak‖s eρ|k| <∞, (1.54)
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where

ak(z) =

∫
Td
a ◦ ΦH

τ (z)e−ik·τ dτ, k ∈ Zd.

Remark 1.11. By the Calderón-Vaillancourt theorem (Lemma 4.4), one has

∀ a ∈ As, ‖Op~(a)‖L(L2) ≤ Cd,s‖a‖s. (1.55)

Our next result reads:

Theorem 1.10. Assume that ω is partially Diophantine and that 〈A〉 ≥ 0. Suppose also that A
and V satisfy the geometric-control condidition (WGC) and belong to the space Aρ,s for some
fixed ρ, s > 0. If ε~ ≥ ~ then there exists ε := ε(A, V ) > 0 such that, for any solution to (1.50)
with r~ = 0,

β ≥ ε. (1.56)

Moreover, if ε~ � ~ then, for all T > 0 such that

T <
σ2

2‖〈V 〉‖s
, (1.57)

where σ < min{ρ, s/3}, the following holds:

β ∈
[

min
z∈H−1(1)

1

T

∫ T

0

〈A〉 ◦ φ〈V 〉t (z), max
z∈H−1(1)

1

T

∫ T

0

〈A〉 ◦ φ〈V 〉t (z)

]
. (1.58)

Remark 1.12. The analytic assumption of Theorem 1.10 and the condition (WGC) imply that
the set H−1(1) ∩ 〈A〉−1(0) consists of a disjoint union of a finite number of minimal invariant tori
(OH(zk))k=1,...,N . Then, (1.58) gives an explicit lower bound of β > 0.

This Theorem shows that eigenvalues of the non-selfadjoint operator P̂~ cannot accumulate on
the boundary of the strip given by Proposition 1.2. This means that there is a spectral gap. As
was alredy mentionned, this result extends Asch-Lebeau’s one [16, Th. 2.3] to our context. Again,
we emphasize that, compared with Theorem 1.9, it only deals with the case of true eigenvalues
and that it does not seem that a resolvent estimate can be easily deduced from the proof below.

1.4. Quantum limits for KAM families of vector fields

on the torus

In this part of the thesis, we focus on the study of quantum limits for some families of vector
fields on the torus. It will appear together with the results of the next section in an article by the
author [12].
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Let Td := Rd/(2πZd) be the flat torus equipped with the flat metric, we consider the ~-
homogeneous operator

P̂ω,~ := ω · ~Dx + v(x;ω) · ~Dx −
i~
2

Div v(x;ω),

where ω ∈ Rd, v ∈ C∞(Td × Rd;Rd) is a vector field depending on the parameter ω, and we use
the notation

Dx = (Dx1 , . . . , Dxd), Dxj := −i∂xj .

This operator generates the transport along the vector field Xv(ω) := ω + v(x;ω), meaning that
the solution to the Schrödinger equation(

i~∂t + P̂ω,~
)
u~(t, x) = 0; u~(0, x) = u0

~(x) ∈ L2(Td)

is given by

u~(t, x) = u0
~(φ

Xv(ω)
t (x))

√
|dφXv(ω)

t (x)|,

where φ
Xv(ω)
t is the flow generated by the vector field Xv(ω), and the operator P̂ω,~ is selfadjoint

thanks to the component −i~Div v/2.
Note that the operator

L̂ω,~ := ω · ~Dx (1.59)

on L2(Td) is not elliptic and hence its point-spectrum, given by

Spp
L2(Td)

(
L̂ω,~

)
= {~ω · k : k ∈ Zd},

is highly unstable under perturbations, in the sense that the point spectrum could be transformed
into continuous spectrum by the perturbation. However, we will use classical KAM theory to show
that under certain conditions on the perturbation v, the spectrum of P̂ω,~ is stable for a Cantor
set of frequencies ω, modulo a translation in the vector ω. As was shown by Wenyi and Chi in
[116], this KAM stability is equivalent to the hypoellipticity of the operator P̂ω,~.

The operator P̂ω,~ is the Weyl quantization of the linear Hamiltonian

Pω(x, ξ) = Lω(ξ) + v(x;ω) · ξ,

where

Lω(ξ) := ω · ξ.

In [89], Moser introduced a new approach to the study of quasiperiodic motions by considering the
frequencies of the Kronecker tori as independent parameters. We refer to the work of Pöschel [98]
for a brief introduction to the subject. If Ω ⊂ Rd is a compact Cantor set of frequencies satisfying
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some Diophantine condition (see condition (1.60) below) and the perturbation v is sufficiently
small in some suitable norm, then there exists a close-to-the-identity change of coordinates

ϕ : Ω→ Rd

so that the related set of Hamiltonians Pϕ(ω) can be canonically conjugated (frequency by fre-
quency) into the constant linear hamiltonian on T ∗Td with frequency ω. More precisely, for every
ω ∈ Ω there exists a canonical transformation Θω : T ∗Td → T ∗Td so that

Θ∗ωPϕ(ω)(x, ξ) = Lω(ξ).

In particular, the hamiltonian Pϕ(ω) is completely integrable for every ω ∈ Ω.

We focus on the study of the high-energy structure of the eigenfunctions of P̂ω,~. Precisely,
we will study the set of quantum limits of the system, that is, the weak-? accumulation points of
sequences of L2-densities of eigenfunctions. We next recall the precise definition of quantum limit
in this setting:

Definition 1.3. We say that a probability measure ν ∈ P(P−1
ω (1)) is a quantum limit of P̂ω,~ if

there exist a sequence λ~ of eigenvalues for P̂ω,~ such that λ~ → 1 as ~→ 0, and a related sequence
of L2-normalized eigenfunctions (Ψ~) satisfying:

|Ψ~(x)|2dx ⇀? ν, as ~→ 0,

where the convergence takes place in the weak-? topology for Radon measures. We will denote by
N (P̂ω,~) the set of quantum limits of P̂ω,~.

As we have already mention in the motivation, several previous works deal with the study of
quantum limits in the completely-integrable and the KAM settings. Zelditch in [119] and [121]
studied the high energy distribution of eigenfunctions of the Laplace-Beltrami operator in some
completely integrable systems. Other related works are those of Toth [112], Jakobson and Zelditch
[67], Toth and Zelditch [113], Anantharaman, Fermanian-Kammerer and Macià [4], and Macià and
Rivière [84, 85]. The case of the Laplacian (+W ) on the flat torus has deserved special attention.
The works of Bourgain [22], Jakobson [66], Anantharaman and Macià [9], and Bourgain, Burq
and Zworski [23] deal with this case. Quantum limits in this setting are shown to be absolutely
continuous. If the classical system is close to completely integrable, in the sense that the classical
KAM theorem applies, then the persistence of invariant tori at classic level is expected to imply
an analogous result at quantum level. Most of the works dealing with this case are based on the
construction of quasimodes, or approximate eigenfunctions, studying the asymptotic properties of
oscillation and concentration of these quasimodes around the classical invariant tori, but do not
conclude analogous results for the quantum limits associated to the true eigenfunctions of the
system. The foundations of this study of quasimodes for KAM systems can be found in Lazutkin
[73]. Construction of quasimodes with exponentially small error terms is given by Popov [96]
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and [97]. In a recent work, Gomes [46] applies this result to discard quantum ergodicity for these
systems.

Perturbations of L̂ω,~ have been studied by Graffi and Paul [48]. They showed that some

particular analytic bounded perturbations of L̂ω,~ with Diophantine assumptions on ω remain
integrable. Actually, they prove the convergence of the quantum normal form providing an exact
quantization formula for these systems (see Section 1.5 below).

We consider P̂ω,~ with frequencies ω in a small neighborhood of a Cantor set of Diophantine
vectors Ω ⊂ Rd satisfying:

|k · ω| ≥ ς

|k|γ−1
, k ∈ Zd \ {0}, (1.60)

for some constants ς > 0 and γ > d. For any ρ > 0, let Ωρ be the complex neighborhood of Ω
given by

Ωρ := {z ∈ Cd : dist(z,Ω) < ρ},
and, given s > 0, we consider also the complex neighborhood of the d-torus

Ds := {z ∈ Td + iRd : |=z| < s}.

We introduce the following family of linear symbols on T ∗Td:

Definition 1.4. A function V ∈ Cω(T ∗Td × Ωρ) belongs to the space of linear symbols Ls,ρ if

V (x, ξ;ω) = ξ · v(x;ω) =
∑
k∈Zd

ξ · v̂(k;ω)ek(x), (1.61)

for some v ∈ Cω(Ds × Ωρ;Cd), where v̂(k;ω) ∈ Cd is the kth-Fourier coefficient of v:

v̂(k;ω) :=
〈
v(·;ω), ek

〉
L2(Td)

, ek(x) :=
eik·x

(2π)d/2
, k ∈ Zd,

and
|V |s,ρ := sup

ω∈Ωρ

∑
k∈Zd
|v̂(k;ω)|e|k|s <∞. (1.62)

The space
(
Ls,ρ, | · |s,ρ

)
is a Banach space. We denote Ls ⊂ Ls,ρ the subspace of symbols that do

not depend on ω ∈ Ωρ.

Let s, ρ > 0, and let V ∈ Ls,ρ be real analytic. We consider the family of operators given by

P̂ω,~ := L̂ω,~ + Op~
(
V (·;ω)

)
, (1.63)

where

Op~(V ) := v · ~Dx −
i~
2

Div v

is the semiclassical Weyl quantization of V (see Section 2.7.1).

Our first result of this part is the following:
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Theorem 1.11. Let s, ρ > 0 and V ∈ Ls,ρ be real analytic and assume

|V |s,ρ ≤ ε, (1.64)

where ε is a small positive constant depending only on s, ρ, γ and ς. Then there exists a real
change of frequencies ϕ : Ω→ Ωρ such that the point-spectrum of P̂ϕ(ω),~ is

Spp
L2(Td)

(
P̂ϕ(ω),~

)
= {~ω · k : k ∈ Zd},

and, for every ω ∈ Ω, there exists a diffeomorphism θω : Td → Td of the torus homotopic to the
identity so that

N (P̂ϕ(ω),~) =

{
1

(2π)d
(θω)∗dx

}
.

Moreover,
sup
ω∈Ω
|ϕ(ω)− ω| ≤ C1|V |s,ρ, sup

x∈Td
|θω(x)− x| ≤ C2|V |s,ρ,

where C1 and C2 are positive constants depending only on s, ρ, γ and ς,

To prove Theorem 1.11, we will use a classical KAM theorem about perturbations of analytic
vector fields on the torus. We will recall a work of Pöschel [99] which uses a new idea of Rüssmann
[104] that simplifies the KAM-iteration argument. On the other hand, we will use Egorov’s theorem
to establish the classic-quantum duality and obtain our result in terms of the quantum system.
The approach is similar to that of Bambusi et. al. in [19], in which they obtain reducibility for a
class of perturbations of the quantum harmonic oscillator.

If we consider semiclassical perturbations of the form

P̂ ε
ω,~ := L̂ω,~ + ε~ Op~

(
V (·;ω)

)
,

with ε~ → 0 as ~→ 0, then the following holds:

Corollary 1.1. Let ρ, s > 0 and let V ∈ Ls,ρ be real analytic. Then there exists a sequence of
real maps ϕ~ : Ω→ Ωρ satisfying

lim
~→0

sup
ω∈Ω
|ϕ~(ω)− ω| = 0,

so that P̂ ε
ϕ~(ω),~ has pure point spectrum and

N (P̂ ε
ϕ~(ω),~) =

{
1

(2π)d
dx

}
.

The proof of Theorem 1.11 is divided in two parts. First we prove that the family P̂ϕ(ω),~

is unitarily equivalent to L̂ω,~. This shows the stability of the spectrum along this family. The
following holds:
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Theorem 1.12. Let s, ρ > 0 and V ∈ Ls,ρ be real analytic verifying (1.64). Then, there exist a
real change of coordinates ϕ : Ω→ Ωρ satisfying

sup
ω∈Ω
|ϕ(ω)− ω| ≤ C1|V |s,ρ,

and a family of unitary operators Ω 3 ω 7−→ Uω on L2(Td) such that

U∗ω P̂ϕ(ω),~ Uω = L̂ω,~. (1.65)

Remark 1.13. In particular, if V = 0 then ϕ = Id and Uω = Id.

The second part of the proof of Theorem 1.11 will follow by applying Egorov’s theorem, compa-
ring the quantum limits of P̂ϕ(ω),~ with those of L̂ω,~. We will also study the sequences of Wigner

distributions associated to the eigenfunctions of P̂ϕ(ω),~ and its weak-? limits: the semiclassical
measures of the system (see Section 2.6).

If µ is the semiclassical measure associated to a sequence of eigenfunctions (e~) of L̂ω,~ with
related eigenvalues λ~ → 1, then µ is in fact a positive Radon measure on the level-set Td×L−1

ω (1).
Indeed, by Lemma 2.4 below, for every a ∈ C∞c (T ∗Td),

0 =
〈

Op~(a)(L̂ω,~ − λ~)e~, e~
〉
L2(Td)

=
〈

Op~(a(Lω − λ~))e~, e~
〉
L2(Td)

+O(~),

and hence ∫
T ∗Td

a(x, ξ)
(
Lω(ξ)− 1

)
µ(dx, dξ) = 0.

If moreover the measure µ turns out to be a probability measure, then its projection onto the
position space

ν(x) =

∫
L−1
ω (1)

µ(x, dξ)

is the quantum limit of the sequence. But since L−1
ω (1) is not compact, there exist some sequences

of eigenfunctions that oscillate too fast so that the only weak-? accumulation point of the related
sequence of Wigner measures is the zero measure. However, there can exist quantum limits also
for that high-oscillating sequences although they can not be obtained as projections of the related
semiclassical measures. As we will see, this is not an important difficulty in our case, since we can
apply Egorov’s theorem directly to the projection of the Wigner distributions onto the position
space, by testing against functions that only depends on x before passing to the weak-? limit.

Recall that the Hamiltonian flow generated by Lω is given by

φLωt (x, ξ) = (x+ tω, ξ), (x, ξ) ∈ T ∗Td.

If ω is nonresonant (its components are rationally independent over the rationals), then the flow
φLωt is uniquely ergodic on each torus Td×{ξ}, meaning that the unique probability measure that
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is invariant by φLωt and is supported on Td×{ξ} is the Haar measure hTd×{ξ} of the torus Td×{ξ}.
This translates into a quantum result. Let Mω be the set defined by

Mω :=
⋃

ξ∈L−1
ω (1)

{
hTd×{ξ}

}
, (1.66)

the following standard result holds:

Proposition 1.3. Let ω ∈ Rd be nonresonant, meaning that rk Λω = 0. Let M
(
L̂ω,~

)
be the set

of non-vanishing semiclassical measures of sequences of eigenfunctions for L̂ω,~ with eigenvalues
λ~ → 1. Then

M
(
L̂ω,~

)
=Mω.

Moreover,

N (L̂ω,~) =

{
1

(2π)d
dx

}
.

For the sake of completeness, we will include a proof of Proposition 1.3 in Section 5.4. With
respect to the perturbed operator P̂ω,~, our result reads:

Theorem 1.13. Let s, ρ > 0 and V ∈ Ls,ρ be real analytic verifying (1.64). Let M
(
P̂ϕ(ω),~

)
be the set of probability measures obtained as semiclassical measures of sequences of normalized
eigenfunctions (Ψ~) of the Hamiltonian P̂ϕ(ω),~ with associated sequence of eigenvalues satisfying
λ~ → 1 as ~→ 0. Then, there exists a symplectomorphism Θω : T ∗Td → T ∗Td such that

M
(
P̂ϕ(ω),~

)
= (Θω)∗Mω :=

⋃
ξ∈L−1

ω (1)

{
(Θω)∗hTd×{ξ}

}
,

where (Θω)∗ is the pushforward of Θω. In particular, if V = 0, then Θω = Id. Moreover, there
exists a diffeomorphism θω : Td → Td homotopic to the identity such that

Θω(x, ξ) =
(
θω(x), [(∂xθω(x))T ]−1ξ

)
,

and it satisfies
sup
ω∈Ω

sup
x∈Td
|θω(x)− x| ≤ C2|V |s,ρ.

Remark 1.14. The unitary operator Uω obtained in Theorem 1.12 and the diffeomorphism θω are
related by:

Uωψ(x) = ψ(θω(x))
√
|dθω(x)|.
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1.5. Renormalization of semiclassical KAM operators

Another interesting problem of KAM theory which can be studied from the semiclassical point
of view is the renormalization problem. Let Td be the flat torus, as in the previous section, we
consider the linear symbol Lω : Rd → R defined by

Lω(ξ) = ω · ξ, (1.67)

where the vector of frequencies ω satisfies the Diophantine condition (1.60). The renormalization
problem in the classical framework [42], [44] asks if, given a small analytic perturbation V of the
linear Hamiltonian Lω, with V = V (x, ξ; ε) defined on Td×Rd× [0, ε0] for some ε0 > 0 sufficiently
small, there exists another function R = R(ξ; ε) on Rd×[0, ε0], called counterterm in the literature,
such that the renormalized Hamiltonian

Q(x, ξ; ε) = Lω(ξ) + V (x, ξ; ε)−R(ξ; ε)

is integrable and canonically conjugate to the unperturbed hamiltonian. This was conjectured by
Gallavotti in [42] and first proven by Eliasson in [38]. This result can be regarded as a control
theory theorem. Despite the fact that small perturbations of Lω could generate even ergodic
behavior (see Katok [70]), this shows that modifying in a suitable way the completely integrable
part of the Hamiltonian, the system remains stable. Renormalization techniques have been studied
by several authors in the context of quantum field theory, as well as its connection with KAM
theory [27, 40, 42, 43, 71, 108].

Our goal is to prove a semiclassical version of the renormalization problem. We consider the
semiclassical Weyl quantization of Lω:

L̂ω,~ := Op~(Lω) = ω · ~Dx. (1.68)

Let (ε~)~ be a semiclassical scaling such that

ε~ ≤ ~, (1.69)

and let V ∈ Cω(T ∗Td;R) be a bounded real analytic function. We aim at performing a quantum
KAM iteration procedure to construct a counterterm R~ = R~(V ) ∈ Cω(Rd), uniformly bounded
in ~ ∈ (0, 1], so that the quantum Hamiltonian

Q̂~ := L̂ω,~ + ε~ Op~(V −R~) (1.70)

is unitarily equivalent to the unperturbed operator L̂ω,~. This will show that the spectrum of

the operator L̂ω,~ + ε~ Op~(V ) can be stabilized by adding the counterterm ε~ Op~(R~) to the

system. Moreover, we will study the set of quantum limits of Q̂~ and the set of semiclassical
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measures associated to sequences of eigenfunctions for the operator Q̂~. We will show that these
sets coincide with those of the unperturbed operator L̂ω,~.

In a related work, Graffi and Paul [48] showed that the perturbed operator

P̂~ = L̂ω,~ + Op~(Vω)

can be conjugated to a convergent quantum normal form for a specific class of bounded analytic
perturbations of the form

Vω(x, ξ) = V (x, ω · ξ), (x, ξ) ∈ T ∗Td, (1.71)

(see Gallavotti [42] for a discussion of this condition). As a consequence, it could be possible to
show that the set of semiclassical measures is stable under perturbations of this type, without
necessity of renormalization. Despite the fact that we need to assume that δ~ ≤ ~, we consider
more general perturbations than the ones of (1.71). The main difference in our approach is the
substitution of the particular dependence on ω · ξ of V , which is stable under the conjugacies
employed by Graffi and Paul in their work, by the addition of the renormalization function R~.

We emphasize that, compared to [37], [38] and [44], our work is not based on the study of the
convergence of Lindstedt series, and we do not know how to adapt their approach to this problem.
Alternatively, we will use an algorithm similar to that of Govin et al. [47] to construct a normal
form, obtaining the counterterm R~ step by step. We expect that condition (1.69) is not sharp.
One should be able to manage perturbations of order O(1).

We will deal with semiclassical perturbations Op~(V ) whose symbol V belongs to a suitable
Banach space of bounded analytic functions. Similarly as we did in Section 1.3.2, we consider the
following spaces of analytic functions (compare with those spaces of Definition 1.2 in the Euclidean
case).

Definition 1.5. Given s > 0, we define the Banach space As(Rd) of functions f ∈ Cω(Rd;R) such
that

|f |s :=

∫
Rd
|f̂(η)| e|η|s dη <∞,

where f̂ denotes the Fourier transform of f . We introduce also the Banach space As(T ∗Td) of
analytic functions g ∈ Cω(T ∗Td;R) such that

‖g‖s :=
∑
k∈Zd
|ĝ(k, ·)|s e|k|s <∞,

where

ĝ(k, ξ) :=
1

(2π)d

∫
Td
g(x, ξ)e−ix·k dx, k ∈ Zd.
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By the Calderón-Vaillancourt Theorem (see Lemma 6.1), the semiclassical Weyl quantization
Oph(a) of a symbol a ∈ As(T ∗Td) satisfies

‖Op~(a)‖L(L2) ≤ Cd,s‖a‖s,

for all ~ ∈ (0, 1].
We next proceed to state our result about the phase-space distribution of energy of sequences

of eigenfunctions of the operator Q̂~. The following holds:

Theorem 1.14. Let ω ∈ Rd be a strongly non resonant frequency satisfying (1.60), and let V be
a real valued function that belongs to As(T ∗Td) for some fixed s > 0. Assume that

‖V ‖s ≤ ε, (1.72)

where ε > 0 is a small constant that depends only on s, % and γ. Let (ε~) be a sequence of
positive real numbers satisfying ε~ ≤ ~. Then, there exists a sequence of integrable11 counterterms
R~ = R~(V ) ∈ As/2(Rd) such that ‖R~‖s/2 . ‖V ‖s, uniformly in ~ ∈ (0, 1], and

Spp
L2(Td)

(
Q̂~
)

= Spp
L2(Td)

(
L̂ω,~

)
= {~ω · k : k ∈ Zd}.

Moreover, denoting by M
(
Q̂~
)

the set of probability measures obtained as semiclassical measures

of sequences of normalized eigenfunctions of the Hamiltonian Q̂~ with eigenvalues verifying λ~ → 1
as ~→ 0,

M
(
Q̂~
)

=M
(
L̂ω,~

)
=Mω,

and the set of quantum limits of Q̂~ is precisely

N (Q̂~) =

{
1

(2π)d
dx

}
.

Remark 1.15. In the case ε~ � ~, condition (1.72) can be removed.

11That is, R~ is a function only of the action variable ξ ∈ Rd.



Chapter 2

Basics of semiclassical analysis

Del pensamiento querŕıa yo ayudarme,
si él me obedeciese a mi contento.

D. Hurtado de Mendoza. Canciones.

One of the goals of this thesis is understanding the process of quantization of classical dynamical
systems, and how classical dynamics affect the asymptotic properties of the quantum system.
The subject of semiclassical analysis starts from the so called correspondence principle between
classical and quantum dynamics. Roughly speaking, the high energy behavior of a quantum system
is expected to be governed by the dynamics devoloped by its classical counterpart. By “high
energy” we mean a scale in the frequencies of size 1/~ compared to the classical or macroscopic
scale, where ~ > 0 denotes a small parameter called semiclassical parameter, which sometimes is
identified with the normalized Planck’s constant. Asymptotically as the semiclassical parameter ~
tends to zero, the classical dynamics emerge and influence the properties of the quantum system.

In this chapter we introduce some notions and tools of semiclassical analysis and recall some
standard results in the field. This is a brief presentation of the basics that we will use and extend
along the work. For an extensive treatment of the subject, we refer to the books of Dimassi and
Sjöstrand [35], Martinez [87], and Zworski [122].

2.1. The problem of quantization

In semiclassical analysis we deal with quantum systems that come from classical Hamiltonian
systems. A set of classical particles moving according to the action of certain conservative forces is
described in the phase space, namely the space of possible positions and momenta of each particle.
We assume that the set of possible positions of the system defines a differentiable manifold M of
dimension d. The phase space is then T ∗M , its cotangent bundle. We denote by (x, ξ) the local
variables on T ∗M standing for position and momentum respectively.

39
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A classical observable a : T ∗M → R is a smooth function that recovers concrete information
from the system. For example, the functions

(x, ξ) 7→ xj, (x, ξ) 7→ ξj,

for j ∈ {1, . . . , d}, are called respectively the position and momentum observables.
We shall denote by H : T ∗M → R the observable associated to the total energy of the system,

called the Hamiltonian. For instance, if (M, g) is a Riemannian manifold then the Hamiltonian

H(x, ξ) :=
1

2
〈ξ, ξ〉g(x) +W (x), W ∈ C∞(M ;R), (2.1)

given by the sum of the kinetic energy and the potential energy, is a paradigmatical example of
Hamiltonian, where

〈ξ, ξ〉g(x) =
d∑

j,k=1

gjk(x) ξjξk, (gjk) = (gjk)
−1,

is the inner product defined on the fiber T ∗xM by the metric g given in local coordinates by the
matrix (gjk), and W is the potential.

Given a point of the phase space, one can determine the past and future evolution of the system
according to the Hamilton equations. More precisely, from the Hamiltonian H one can defines a
vector field XH on T (T ∗M), called Hamiltonian vector field, via the identity

XH(a) = {H, a}, a ∈ C∞(T ∗M),

where {·, ·} denotes the Poisson bracket, which is given in local coordinates by

{H, a}(x, ξ) :=
d∑
j=1

(
∂ξjH ∂xja− ∂xjH ∂ξja

)
(x, ξ).

If the Hamiltonian H is good enough, the vector field XH generates a global-in-time flow φHt on
T ∗M satisfying

∂t φ
H
t (x, ξ) = XH

∣∣
φHt (x,ξ)

, (x, ξ) ∈ T ∗M, t ∈ R. (2.2)

For example, if H is bounded together with all its derivatives (hence H ∈ S0(T ∗M), see definition
(2.20) below) or, in the case when H is given by the total energy (2.1), (M, g) is geodesically
complete and V is bounded from below, then the hamiltonian vector field XH generates a global-
in-time flow φHt . Thus the evolution of any observable a ∈ C∞(T ∗M) is determined by the
differential equation:

∂t a ◦ φHt (x, ξ) = {H, a} ◦ φHt (x, ξ), (x, ξ) ∈ T ∗M, t ∈ R.
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From this, we observe that any observable a ∈ C∞(T ∗M) that commutes with H, in the sense that

{H, a} = 0,

is a conserved quantity by the flow φHt . In particular, the total energy H is a conserved quantity.
To finish this elementary review on classical hamiltonian dynamics, we set the commutator

relations of the position and momentum observables:

{xj, xk} = 0, {ξj, ξk} = 0, {ξj, xj} = δjk. (2.3)

Now, with any Hamiltonian system we want to associate a quantum system satisfying some
fundamental axioms due to Heisenberg, Schrödinger, Dirac, von Neumann and others [41], [88],
known as the postulates of Quantum Mechanics. We start by defining the set of possible quantum
states associated to the classic states (x, ξ) ∈ T ∗M . This set can be considered to be the projective
space of L2(M), that is:(

L2(M) \ {0}
)/
∼, ψ ∼ ψ′ if ψ = ρψ′, ρ ∈ C \ {0}.

The problem of quantization consists in constructing a map

C∞(M ;R) 3 a 7→ Op~(a), ~ > 0,

from the set of classic observables to the space of (non bounded) linear operators on L2(M). As
we will see, the semiclassical parameter ~ will localize the observable in a suitable energy level in
T ∗M . For the sake of simplicity, we introduce the process of quantization in the case M = Rd,
and later on we will explain how to generalize it to the case of general smooth manifolds.

We first define the quantum observables associated to the position and momentum observables.
Given a state ψ ∈ L2(M) of a quantum system with ‖ψ‖L2 = 1, we define the position observable

Q̂j and the momentum observable P̂j acting on ψ by

Q̂j ψ(x) := xj ψ(x) (2.4)

P̂j ψ(x) := −i~ ∂xjψ(x). (2.5)

The meaning of the position observable Q̂j comes from the interpretation of the wave function of
a system as a probability wave. Precisely, the probability of finding the system with wave function
ψ in a Borel set B ⊂ Rd is given by〈

1{x∈B}ψ, ψ
〉
L2(Rd)

=

∫
B

|ψ(x)|2dx,

where 1{x∈B} denotes the indicator function of the set B. For any Borel set B ⊂ R, if we denote
Πj(B) the operator of multiplication by 1{xj∈B}, then the probability of finding xj in the borelian



42 2. Basics of semiclassical analysis

set B ⊂ R is 〈Πj(B)ψ, ψ〉L2 . The projection valued measure Πj can be associated to the selfadjoint

operator Q̂j via the spectral theorem [41]. Precisely, we have

Q̂j =

∫
R
λ dΠj(λ), Πj(B) = 1{xj∈B}(Q̂j).

Hence the expected value of the operator Q̂j is

〈
Q̂j ψ, ψ

〉
L2(Rd)

=

∫
R
λ〈dΠj(λ)ψ, ψ〉L2(Rd) =

∫
Rd
xj|ψ(x)|2dx.

On the other hand, the interpretation of the momentum operator P̂j is based on the Fourier
decomposition of the wave function. Defining the semiclassical Fourier transform F~ by

F~ψ(ξ) :=
1

(2π~)d/2

∫
Rd
ψ(x)e−

i
~x·ξdx, ξ ∈ Rd,

we have, by the inverse Fourier formula,

ψ(x) =
1

(2π~)d/2

∫
Rd

F~ψ(ξ)e
i
~x·ξdξ.

This means that any wave function ψ can be viewed as a superposition of plain waves e
i
~x·ξ/(2π~)d/2,

each of them oscillating with frequency ξ/~. The “momentum” associated to each plain wave of
this form is identified with ξ via the De Broglie relation [87], [88]. Hence, for any Borel set B ⊂ Rd,
the probability of having momentum in the set B is given by

〈
1{ξ∈B}F~ψ,F~ψ

〉
L2(Rd)

=

∫
B

|F~(ξ)|2dξ.

We obtain that

P̂j = F−1
~ Q̂j F~.

One can check the following commutator relations for the position and momentum observables:

[Q̂j, Q̂k] = 0, [P̂j, P̂k] = 0, [P̂k, Q̂j] = −i~ δjk Id . (2.6)

Some desirable conditions for the map a 7→ Op~(a) are to associate the classical observables

xj and ξj to the quantum observables Q̂j and P̂j respectively, and the constant observables c with
the quantum operators c Id. This preserves the basic commutator relations (2.3) and (2.6) and
allows to define the Heisenberg group establishing the parallelism between the generators of the
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algebras of classic and quantum observables, [41]. Moreover, one would like the algebra of the
classic observables itself to be conserved, that is:

Op~(a+ ρ b) = Op~(a) + ρ Op~(b), ρ ∈ C, (2.7)

Op~(a) Op~(a) = Op~(a
2), (2.8)

[Op~(a),Op~(b)] = −i~Op~({a, b}). (2.9)

Unfortunately, some easy examples working with a = x1 and b = ξ1, see [41], show that one can
not expect to obtain such a procedure of quantization satisfying all these conditions. However,
in the semiclassical regime ~ → 0, as we will see in the following sections, one can construct a
procedure of quantization so that the conditions above are all satisfied modulo small error terms
in ~.

Commutator relations (2.3) and (2.6) are also the basis of the Heisenberg uncertainty principle.
The following holds:

Lemma 2.1 ([122, Thm. 3.9], Uncertainty principle). We have

〈
Q̂j ψ, ψ

〉
L2(Rd)

〈
P̂j ψ, ψ

〉
L2(Rd)

≥ ~2

4
‖ψ‖4

L2(Rd). (2.10)

This shows that the wave function can not be arbitrarily localized simultaneously in position x
and momentum ξ. As we will see later, in the semiclassical limit ~→ 0 the uncertainty principle
can be neutralized by adjusting properly the scales of concentration and oscillation of the wave
function (see Remark 2.4 of Section 2.6.1).

2.2. Weyl’s quantization

There are several ways to associate an operator with a given observable a ∈ C∞(R2d). In this
framework, the observable a is often called the symbol of the operator. Along this thesis we will
work mostly with the Weyl quantization, which has good properties in several settings.

Definition 2.1. Let a ∈ S (R2d) be a symbol in the Schwartz class, we define its Weyl quantization
Op~(a) by

Op~(a)ψ(x) :=
1

(2π~)d

∫
R2d

a

(
x+ y

2
, ξ

)
ψ(y)e

i
~ (x−y)·ξ dy dξ, ψ ∈ S (Rd). (2.11)

This definition can be extended for more general symbols. See [122, Chp. 4] for a discussion
on the most common symbol classes.
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Examples.

1. If a(x, ξ) = ξα, with α = (α1, . . . , αd) ∈ Nd, then

Op~(a) = (~D)α, D := −i∇x.

2. If H(x, ξ) =
1

2
|ξ|2 +W (x), with W ∈ C∞(Rd), then

Op~(H) = −~2

2
∆ +W (x).

This means that the quantization of the total energy is the semiclassical Schrödinger ope-
rator.

3. If H(x, ξ) = X(x) · ξ, with X ∈ C∞(Rd;Rd), then

Op~(H) = X(x) · ~D +
~
2i

Div(X).

We hereafter refer to any operator of the form Op~(a) as a semiclassical pseudodifferential
operator. One of the most important properties of the Weyl quantization is that the formal
adjoint of Op~(a) is

Op~(a)∗ = Op~(a). (2.12)

In particular, if a is real, then Op~(a) is formally selfadjoint. We will later show that, for a very
general class of symbols a, the operator Op~(a) is bounded on L2(Rd), in which case Op~(a) is
selfadjoint provided that a is real.

2.3. Symbolic calculus

In this section we study the algebra of Weyl’s pseudodifferential operators. First, it is convinient
to introduce the Schrödinger representation on L2(Rd), see [41]. It provides the basic commutator
relations between Weyl’s operators.

Definition 2.2. The semiclassical Schrödinger representation U~ on L2(Rd) is defined by the
unitary group

U~(w) : L2(Rd)→ L2(Rd), w = (y, η) ∈ R2d,

acting as

U~(w)ψ(x) := e
i
~y·x+ i

2~y·η ψ(x+ η). (2.13)
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Defining, for any w = (y, η) ∈ R2d, the linear form Lω given by

Lw(z) = w · z = y · x+ η · ξ, z = (x, ξ) ∈ R2d,

one can check from (2.13) the following commutator relations:

U~(w)∗ = U~(−w), U~(w)U~(w
′) = e

i
2~{Lw,Lw′}U~(w + w′), w, w′ ∈ R2d. (2.14)

Moreover, the unitary operator U~(w) is itself the Weyl quantization of a very simple symbol,
given by the complex exponential of the linear form Lw. Precisely, the following holds:

Lemma 2.2 ([122, Thm. 4.7]). For every w ∈ R2d:

Op~(e
i
~Lw) = U~(w). (2.15)

This lemma allows to write the Weyl quantization of any symbol as a Fourier decomposition.
Indeed, we can write

a(z) =
1

(2π~)d

∫
R2d

â~(w)e
i
~Lw(z)dw, z = (x, ξ) ∈ R2d, (2.16)

where the semiclassical Fourier transform â~ is given by

â~(w) :=
1

(2π~)d

∫
R2d

a(z)e−
i
~Lw(z)dz, w ∈ R2d.

Then, using (2.16) and Lemma 2.2, the semiclassical Weyl’s quantization of a symbol a ∈ S (R2d)
reads

Op~(a)ψ(x) =
1

(2π~)d

∫
R2d

â~(w) Op~
(
e
i
~Lw(z)

)
ψ(x)dw =

1

(2π~)d

∫
R2d

â~(w)U~(w)ψ(x)dw.

This expression is very usefull to get the laws of composition of Weyl’s operators. Using the
commutator relations (2.14), we observe that the composition of two Weyl’s pseudodifferential
operators is again a Weyl’s pseudodifferential operator. Indeed,

Op~(a) Op~(b) = Op~(a]~b),

where the new symbol a]~b is given by the Moyal product:

a]~b(z) =
1

(2π~)2d

∫
R4d

â~(w)̂b~(w
′)e

i
2~{Lw,Lw′}e

i
~Lw+w′ (z)dw′ dw.

Note also that, denoting ζ := (w,w′) ∈ R4d, and defining

A(ζ) :=
1

2
{Lw, Lw′},
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we have
a]~b(x, ξ) =

(
F−1

~ e
i
~A(ζ) F~ c

)∣∣∣x=y
ξ=η

,

where
c(x, y, ξ, η) = a(x, ξ)b(y, η),

and F~ : S (R4d)→ S (R4d) is the semiclassical Fourier transform on R4d. Using Taylor’s theorem

to expand the exponential e
i
~A(ζ) as

e
i
~A(ζ) =

N∑
k=0

1

k!

(
iA(ζ)

~

)k
+

1

N !

(
iA(ζ)

~

)N ∫ 1

0

(1− t)Ne
it
~ A(ζ)dt,

we obtain the following asymptotic expansions for the Moyal product a]~b, which show that,
modulo small ~-errors, the algebra of classical observables is preserved, at least in the Schwartz
class:

Lemma 2.3 ([122, Thm. 4.12]). We have, for N = 0, 1, . . .,

a]~b(x, ξ) =
N∑
k=0

ik~k

k!
A(D)k

(
a(x, ξ)b(y, η)

)∣∣∣∣y=x
η=ξ

+OS (~N+1), ~→ 0, (2.17)

where

A(D) :=
1

2

(
Dξ ·Dy −Dx ·Dη

)
.

In particular,

a]~b = ab+
~
2i
{a, b}+OS (~2), (2.18)

and

[a, b]~ := a]~b− b]~a =
~
i
{a, b}+OS (~3). (2.19)

Remark 2.1. The notation ϕ = OS (~N) means that for all multiindices α, β,

|ϕ|α,β := sup
z∈R2d

|zα∂β ϕ(z)| ≤ Cα,β~N .

This symbolic calculs can be extended to more general classes of symbols. Let us define, for
m ∈ Z, the family

Sm(R2d) :=
{
a ∈ C∞(R2d) : ‖∂αz a‖L∞(R2d) ≤ Cα(1 + |z|2)m/2, α ∈ N2d

}
. (2.20)

The following holds:
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Lemma 2.4 ([122, Thm. 4.18, Thm 9.5]). If a ∈ Sm1(R2d) and b ∈ Sm2(R2d), then

a]~b ∈ Sm1+m2(R2d),

and
Op~(a) Op~(b) = Op~(a]~b)

as operators mapping S (Rd) to S (Rd). Moreover,

a]~b = ab+
~
2i
{a, b}+OSm1+m2 (~2),

and

[a, b]~ =
~
i
{a, b}+OSm1+m2 (~3).

2.4. Operators on L2

Since we will work mostly on the Hilbert space L2(Rd), (or more generally L2(M)), where the
Schrödinger formalism is formulated naturally, it is important to state how pseudodifferential
operators, with symbols in a suitable class, act on this space.

Lemma 2.5 ([122, Thm. 4.23], Calderón-Vaillancourt theorem). If the symbol a belongs to
S0(R2d), then

Op~(a) : L2(Rd)→ L2(Rd)

is bounded, with

‖Op~(a)‖L(L2) ≤ Cd
∑
|α|≤Nd

~|α|/2 sup
z∈R2d

|∂αa(z)|,

where the constants Cd > 0 and Nd ∈ N depend only on the dimension d, and ‖ · ‖L(L2) denotes
the strong operator norm. In particular,

‖Op~(a)‖L(L2) ≤ Cd‖a‖L∞(R2d) +O(~1/2).

Remark 2.2. The bound O(~1/2) can be improved up to O(~), see [122, Thm. 13.13].

If the symbol a is non negative, then one can also get a lower bound for the operator Op~(a).
The following lemma will be a key ingredient in the proof of Theorem 1.9:

Lemma 2.6 ([122, Thm. 4.32], Sharp Garding inequality, Fefferman-Phong inequality). Assume
a ∈ S0(R2d) and

a ≥ 0, on R2d.

Then there exist constants C > 0 and ~0 > 0 such that〈
Op~(a)ψ, ψ

〉
L2(Rd)

≥ −C~2‖ψ‖2
L2(Rd),

for all 0 < ~ ≤ ~0 and ψ ∈ L2(Rd).
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2.5. Egorov’s theorem

In this section we recall a fundamental result relating classical and quantum dynamics, known in
the mathematical literature as Egorov’s theorem (see [25], [122, Chp. 11]).

We assume that, comparing with Section 2.1, we have a smooth family of real Hamiltonians
H(t;x, ξ) on R2d, with t ∈ [0, T ]. It defines a flow φHt according to the differential equation{

∂t φ
H
t =

(
φHt
)
∗XH , (0 ≤ t ≤ T ),

φH0 = Id .
(2.21)

The quantum analog of equation (2.21) is the following operator equation:{
~Dt U~(t) + U~(t) Op~(H) = 0, (0 ≤ t ≤ T ),

U~(0) = Id .
(2.22)

The existence of a unitary operator U~ solving (2.22) is not always true, even if the solution of
(2.21) exists. If the Hamiltonian H does not depend on time, then U~ exists provided that Op~(H)
is selfadjoint on L2(Rd). In this case, we have:

Lemma 2.7 ([122, Thm. C.13], Stone’s Theorem). Suppose Op~(H) is a (possibly unbounded)
selfadjoint operator on L2(Rd). Then

U~(t) := e−
it
~ Op~(H), t ∈ R,

defines a strongly continuous unitary group satisfying:

1. U~(t)U~(s) = U~(t+ s), and U~(t)∗ = U~(−t).

2. limt→0 ‖U~(t)ψ − ψ‖L2(Rd) = 0, for every ψ ∈ L2(Rd).

3. ~Dt U~(t) + U~(t) Op~(H) = 0, and U~(0) = Id.

On the other hand, if the Hamiltonian H depends on the time variable, the selfadjointness of
Op~(H(t, ·)) for every 0 ≤ t ≤ T is not sufficient to ensure the existence of U~(t) solving (2.22).
However, if the family H(t, ·) belongs smoothly to the class S0(R2d), then the unitary operator
U~(t) solving (2.22) exists for every t ∈ R, see [122, Thm. 10.1]. The same holds if H(t, ·) belongs
to Sk(R2d) uniformly in t and, moreover, it satisfies:

sup
t∈[0,T ]

sup
z∈R2d

|∂nt ∂αzH(t, z)| ≤ Cn,α(1 + |z|2)k/2, n ∈ N, α ∈ N2d,
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and H(t, ·) is uniformly elliptic, meaning that

|H(t, z)| ≥ (1 + |z|2)k/2

C
− C,

for a time-independent constant C, see [122, Thm. 10.3].

The Egorov’s theorem relates the propagator of equation (2.22) with this of equation (2.21) at
symbolic level, modulo a small error term in ~:

Lemma 2.8 ([25], Egorov’s Theorem). Let a ∈ S (R2d). Then, for 0 ≤ t ≤ T , we have

U~(−t) Op~(a)U~(t) = Op~
(
a ◦ φHt

)
+R~(t), (2.23)

where ‖R~(t)‖L(L2) ≤ ρ(|t|)~2 for some continuous function ρ : R+ → R+ with ρ(0) = 0. In the
particular case when H(t, x, ξ) is a polynomial in (x, ξ) of degree at most two, then R~ ≡ 0.

Conjugation in the left hand side of (2.23) follows the Heisenberg picture of quantum mechanics.
The assertion is that the evolution of Op~(a) by the quantum unitary propagator U~(t) is well
approximated up to time T by the classical flow.

2.6. Semiclassical measures

In this section we introduce one of the main objects of study in this thesis: the notion of semi-
classical or Wigner measure. We consider a sequence of wave functions (ψ~) as ~ → 0. With
slightly abuse of notation, we use the same notation for the index of the sequence (ψ~) and for
the semiclassical parameter. What we mean is that, with each index of the sequence (ψ~), we
associate an element of a sequence of parameters (~) such that ~→ 0. Since we will have to take
subsequences frequently, it would make the reading difficult to highlight the indices every time
and, anyway, this notation will remain consistent.

One way to understand the asymptotic properties of a given sequence of wave functions (ψ~) as
~→ 0+ is to look at its associate sequence of position densities |ψ~(x)|2 and at its related sequence
of momentum densities |F~ψ~(ξ)|2. If the sequence (ψ~) is normalized in L2(Rd), then, modulo
extracting a subsequence, there exist positive Radon measures ν1 ∈M(Rd

x) and ν2 ∈M(Rd
ξ) such

that
|ψ~(x)|2 ⇀? ν1, |F~ψ~(ξ)|2 ⇀? ν2,

where the convergence takes place in the weak-? topology for Radon measures. However, since
the physics behind the quantum and classic mechanics occur on the phase space T ∗Rd rather than
on the position space Rd

x or the momentum space Rd
ξ , we need a way of studying the sequence

(ψ~) directly on the phase space to catch all the relevant information involved in the asymptotic
propagation of the wave function.
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In 1932, Wigner [117] introduced the later on called Wigner quasiprobability distribution, try-
ing to adapt the statatistical-mechanic formalism to the quantum theory. The Wigner distribution
is defined by the map:

W ~
ψ : C∞c (R2d) 3 a 7−→

〈
Op~(a)ψ, ψ

〉
L2(Rd)

∈ C.

For each classical observable a ∈ C∞c (R2d), the Wigner distribution localizes the wave function
on the support of a simultaneously in position and momentum. One can check that W ~

ψ has the
following expression:

W ~
ψ(x, ξ) =

∫
Rd
ψ

(
x− ~

2
v

)
ψ

(
x+

~
2
v

)
eiξ·v

dv

(2π)d
.

In particular, ∫
Rd
W ~
ψ(x, ξ) dξ = |ψ(x)|2,

∫
Rd
W ~
ψ(x, ξ) dx = |F~ψ(ξ)|2,

hence, W ~
ψ contains more information that |ψ(x)|2 and |F~ψ(ξ)|2 separately.

By Calderón-Vaillancourt theorem (Lemma 2.5), given a L2-normalized sequence (ψ~), we have
the estimate

|W ~
ψ~

(a)| ≤ C‖a‖L∞(R2d) +O(~).

Thus (W ~
ψ~

) is a bounded sequence in the space of distributions D′(R2d), and then the sequence

(W ~
ψ~

) has at least one accumulation point µ ∈ D′(R2d) (with respect to the inductive limit weak-?

topology in D′(R2d)). Moreover, using the density of C∞c (R2d) in Cc(R2d) and a diagonal extraction
argument together with the Riesz Representation Theorem (see [122, Thm. 5.2]), one can show
that µ is actually a complex Radon measure on R2d. Furthermore, the distribution µ turns out to
be real and nonnegative, hence it is a positive Radon measure µ ∈M(R2d). Indeed, by the sharp
Garding inequality (Lemma 2.6), for every a ∈ C∞c (R2d) such that a ≥ 0, one has

|W ~
ψ~

(a)| ≥ −C~2,

then, taking limit ~→ 0, this implies∫
R2d

a(x, ξ)µ(dx, dξ) ≥ 0.

The measure µ is called the semiclassical or Wigner measure of the (sub)sequence (ψ~). The notion
of semiclassical measure was introduced by Gérard [51, 52], Lions and Paul [78], and Tartar [111].
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2.6.1. Properties and examples

We next clarify some aspects of the above definition and provide some examples to illustrate the
main properties of semiclassical measures. Let (ψ~) be a L2-normalized sequence of wave functions
and suppose that:

|ψ~(x)|2 ⇀? ν1, as ~→ 0,

|F~ψ~(x)|2 ⇀? ν2, as ~→ 0,

for some Radon measures ν1, ν2 ∈M(Rd). Suppose moreover that µ ∈M(R2d) is the semiclassical
measure of the sequence (ψ~). Then the following holds for every a ∈ Cc(Rd):∫

R2d

a(x)µ(dx, dξ) ≤
∫
Rd
a(x)ν1(dx), (2.24)∫

R2d

a(ξ)µ(dx, dξ) ≤
∫
Rd
a(ξ)ν2(dξ). (2.25)

In general, equality in (2.24) and (2.25) may not hold. This is due to the non-compactness of
T ∗Rd = Rd

x × Rd
ξ , which allows some loss of mass of W ~

ψ~
at infinity as |x| → ∞ or |ξ| → ∞. The

following restrictions prevent this loss of mass to occur.

Definition 2.3. We define the following dual properties:

1. We say that the sequence (ψ~) is compact at infinity provided that

lim sup
~→0

∫
|x|≥R

|ψ~(x)|2dx→ 0, as R→∞. (2.26)

2. We say that the sequence (ψ~) is ~-oscillating if

lim sup
~→0

∫
|ξ|≥R

|F~ψ~(ξ)|2dξ → 0, as R→∞. (2.27)

We next state the main properties of semiclassical measures:

Lemma 2.9. Let (ψ~) be a L2-normalized sequence. The following hold:

1. (ψ~) is ~-oscillating if and only if

ν1(x) =

∫
Rd
µ(x, dξ).
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2. (ψ~) is compact at infinity if and only if

ν2(ξ) =

∫
Rd
µ(dx, ξ).

3. Let (ψ~) be ~-oscillating and compact at infinity. If ψ~ → ψ strongly in L2(Rd) then

µ(x, ξ) = |ψ(x)|2δ0(ξ).

4. If ψ~ ⇀ ψ in L2(Rd) then
µ(x, ξ) ≥ |ψ(x)|2δ0(ξ).

Remark 2.3. Points 3 and 4 show that µ can be viewed as a measure of the defect of compacity
of the sequence (ψ~). In fact, semiclassical measures are often called microlocal defect measures,
see Gérard [52] and Macià [83].

Examples.

1. Oscillating sequence. Let

ψ~(x) := ψ(x)e
i
ε~
x·ξ0 ,

where ε~ → 0 as ~→ 0, ξ0 ∈ Rd and ψ ∈ L2(Rd) with ‖ψ‖L2(Rd) = 1. Then

µ(x, ξ) =


|ψ(x)|2 δ0(ξ) if ~� ε~,

|ψ(x)|2 δξ0(ξ) if ~ = ε~,

0 if ~� ε~.

2. Concentrating sequence. Let

ψ~(x) :=
1

ε
d/2
~

ψ

(
x− x0

ε~

)
,

where x0 ∈ Rd. Then

µ(x, ξ) =


‖ψ‖2

L2(Rd)
δx0(x) δ0(ξ) if ~� ε~,

δx0(x)|F1ψ(ξ)|2 if ~ = ε~,

0 if ~� ε~.

3. Wave packet or Coherent state. Let

ψ~(x) :=
1

ε
d/2
~

ψ

(
x− x0

ε~

)
e
i
~x·ξ0 ,

with ε~ � ~. Then
µ(x, ξ) = ‖ψ‖2

L2(Rd)δx0(x)δξ0(ξ).
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Remark 2.4. Despite the fact that the uncertainty principle (Lemma 2.1) prevents each function
ψ~ to concentrate simultaneusly in both position and momentum variables, point 3 shows that,
adjusting the scale of concentration as ε~ � ~, it is possible to localize in the point (x0, ξ0) as
~→ 0. As we will see in the next section, this is the germ of the correspondence principle.

2.6.2. The Correspondence Principle

Semiclassical measures allow to formalize in a rigorous manner the correspondence principle be-
tween classical and quantum dynamics. Consider the semiclassical Schrödinger operator given
by

Ĥ~ := Op~(H) = −1

2
~2∆ +W (x),

where

H(x, ξ) =
1

2
|ξ|2 +W (x)

is the classical Hamiltonian consisting of the sum of the kinetic and the potential energy. We
assume that W ∈ C∞(Rd) is Lipschitz continuous and bounded from below. Then the Hamilton
equation (2.21) is globally well posed, hence the hamiltonian flow

φHt : R2d → R2d, t ∈ R

is globally defined. Analogously, if V ∈ L∞loc(Rd) is essentially bounded from below, then the

operator Ĥ~ is selfadjoint on L2(Rd) and hence, by the Stone’s theorem (Lemma 2.7), it generates a

unitary group e−
it
~ Ĥ~ solving the quantum equation (2.22). Therefore, the semiclassical Schrödinger

equation (
i~ ∂t + Ĥ~

)
ψ~(t, x) = 0, ψ~(0, x) = ψ0

~(x) ∈ L2(Rd) (2.28)

has a unique and globally defined solution ψ(t, x) given by

ψ~(t, x) = e−
it
~ Ĥ~ ψ0

~(x),

that satisfies ‖ψ~(t, x)‖L2(Rd) = ‖ψ0
~(x)‖L2(Rd).

Using semiclassical measures and Egorov’s theorem (Lemma 2.8), one can formalize the corres-
pondence principle in the following way:

Theorem 2.1 ([51, 78]). Let (ψ0
~) be a normalized sequence of initial data for the equation (2.28).

Assume that µ0 ∈ M(R2d) is the semiclassical measure of the sequence (ψ~). Then, for every
t ∈ R, there exists a semiclassical measure µ(t, ·) ∈ M(R2d) for the sequence ψ~(t, ·) of solutions
of (2.28) with data (ψ0

~), and it satisfies:∫
R2d

a(x, ξ)µ(t, dx, dξ) =

∫
R2d

a ◦ φHt (x, ξ)µ0(dx, dξ), a ∈ Cc(R2d). (2.29)
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Note that identity (2.29) is equivalent to the fact that µ(t, ·) is obtained as the push-forward
of µ0 along φHt ; this can be written as:

µ(t, ·) =
(
φHt
)
∗µ0, t ∈ R.

Corollary 2.1. Suppose the hypothesis of Theorem 2.1 hold. Then, for every t ∈ R and a ∈
Cc(Rd), the following holds:

lim
~→0

∫
Rd
a(x)|ψ~(t, x)|2dx =

∫
R2d

a ◦ πx ◦ φHt (x, ξ)µ0(dx, dξ),

where πx : Rd
x × Rd

ξ → Rd
x is the canonical projection.

2.6.3. Semiclassical measures and the Schrödinger equation

We next state some standard results concerning the semiclassical measures obtained from sequences
of approximate solutions of the Schrödinger equation. Let us consider, for the sake of simplicity
(we could consider more general elliptic selfadjoint operators), the semiclassical harmonic oscillator

Ĥ~ defined on L2(Rd) by

Ĥ~ :=
1

2

d∑
j=1

ωj(−~2∂2
xj

+ x2
j), ωj > 0.

The following hold:

Lemma 2.10 ([122, Thm. 5.3]). Consider a sequence (v~) normalized in L2(Rd) such that(
Ĥ~ − λ~

)
v~ = o(1), λ~ → 1, as ~→ 0+.

Then
supp µ ⊂ H−1(1)

for any semiclassical measure µ associated with the sequence (v~).

Lemma 2.11 ([122, Thm. 5.4]). Consider a sequence (v~) normalized in L2(Rd) such that(
Ĥ~ − λ~

)
v~ = o(~), λ~ → 1, as ~→ 0+.

Then ∫
R2d

{H, a}(x, ξ)µ(dx, dξ) = 0

for all a ∈ C∞c (R2d) and any semiclassical measure µ associated with the sequence (v~).

Remark 2.5. This shows that the semiclassical measure µ is invariant by the hamiltonian φHt flow
generated by H. In other words, (

φHt
)
∗µ = µ, ∀t ∈ R.
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2.6.4. Time-dependent semiclassical measures

In this section we recall some facts about time-dependent semiclassical measures instroduced by
Macià in [80] adapted to the case of perturbed harmonic oscillators.

We cosider the Hamiltonian P̂~ = Ĥ~+ε~V̂~ introduced in Section 1.2. Let (u~) be a normalized
and ~-oscillating sequence in L2(Rd). For a given semiclassical scale τ = (τ~) such that

τ~ →∞, as ~→ 0+,

we denote the Wigner distribution by

W τ,ε
~ (a) :=

〈
v~(tτ~),Op~(a)v~(tτ~)

〉
L2 , a ∈ C∞c (R2d),

where v~(t) is the soultion of the Schrödinger equation(
i~ ∂t + P̂~

)
v~(t, x) = 0, v~(0, x) = u~(x).

Using the Calderón-Vaillancourt theorem, we deduce∣∣∣∣∫
R
W τ,ε

~ (a(t))dt

∣∣∣∣ . ∑
|α|≤Kd

~|α|/2
∫
R
‖∂αx,ξa(t, ·)‖L∞(R2d)dt, a ∈ C∞c (Rt × R2d

x,ξ).

Hence the sequence (W τ,ε
~ ) is relatively compact in D′(Rt × R2d

x,ξ). In particular, for any accumu-

lation point µ of this sequence and every a ∈ C∞c (Rt × R2d
x,ξ), one has∣∣∣∣∣

∫
Rt×R2d

x,ξ

a(t, x, ξ)µ(dt, dx, dξ)

∣∣∣∣∣ .
∫
R
‖a(t, ·)‖L∞(R2d)dt.

Thus, µ can be extended to a continuous linear form on L1(R, Cc(R2d)). Therefore, the limit
distribution t 7→ µ(t, ·) belongs to L∞(R,MC(R2d)), where MC(R2d)) denotes the set of finite
complex measures on R2d. For any converging subsequence in D′(Rt × R2d

x,ξ) we note that the

following also holds: for every ϕ ∈ L1(R) and for every a ∈ C∞c (R2d),

lim
~→0+

∫
R
ϕ(t)W τ,ε

~ (a(t, ·))dt =

∫
R

∫
R2d

ϕ(t)a(x, ξ)µ(t, dx, dξ)dt.

Finally, by the Garding inequality, the limit distribution is in fact a real and positive measure for
a. e. t ∈ R. Using Egorov’s theorem, one can also verify that for a. e. t ∈ R, µ(t, ·) is invariant
by the Hamiltonian flow φHt .
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2.7. Pseudodifferential operators on manifolds

In this section we extend the process of quantization to differentiable manifolds. To this aim, it is
very convenient to use symbols in the Kohn-Nirenberg classes. For every m ∈ Z, we set

Sm := {a ∈ C∞(R2d) : ‖∂αx∂
β
ξ a‖L∞(R2d) ≤ Cα,β(1 + |ξ|2)(m−|β|)/2, α, β ∈ Nd}. (2.30)

This family is very well behaved under changes of coordinates. Precisely, the following holds:

Lemma 2.12 ([122, Thm 9.4]). Given a diffeomorphism γ : Rd → Rd such that

|∂αγ(x)|, |∂αγ−1(x)| ≤ Cα, α ∈ Nd.

Then, for each symbol a ∈ Sm(R2d), its pull-back

γ∗a(x, ξ) := a
(
γ(x), [∂xγ(x)−1]T ξ

)
also belongs to Sm(R2d).

Let M be a manifold of dimension d, and let T ∗M be its cotangent bundle. Assume we have
an atlas A = (Uj, γj)j∈J of homeomorphisms between open sets

γj : Vj → Uj, Uj ⊂M, Vj ⊂ Rd,

satisfying the usual compatibility conditions.

Definition 2.4. We say that a ∈ Sm(T ∗M) if a ∈ C∞(T ∗M) and, for every chart (Uj, γj) ∈ A ,
the function

γ∗j a : T ∗Vj → C

belongs to Sm(Vj × Rd) under the identification

T ∗Vj ' Vj × Rd ⊂ R2d.

By Lemma 2.12, this definition does not depend on the choice of the atlas A . We now consider
a locally finite partition of unity {χj}j∈J associated to the atlas A , that is∑

j∈J

χj(x) ≡ 1, χj ∈ C∞c (Uj).

Given symbol a ∈ Sm(T ∗M), we define its Weyl’s quantization by

Op~(a)ψ(x) =
∑
j∈J

(
Âj,~ χjψ

)
(x), (2.31)
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where

Âj,~ = (γ−1
j )∗Op~

(
γ∗j (χja)

)
γ∗j .

We denote Op~(a) ∈ Ψm(M) if a ∈ Sm(T ∗M). Obviously, this definition is by no means intrinsic,
it depends on the atlas A as well as on the partition of unity. However, one can define the symbol
of an operator A ∈ Ψm(M) in the equivalent class

Sm(T ∗M)
/
~Sm−1(T ∗M),

see [122, Thm 14.1]. We will not be more precise at this point because along this thesis we will
focus on the cases M = Rd and M = Td (the flat torus). This last case deserves special atention,
so we will dedicate the following section to deal with it.

If (M, g) is a Riemannian manifold, one can consider the quantization of the Hamiltonian (2.1).

In this case, there exists an intrisic operator Ĥ~ given by

Ĥ~ := −~2∆g + V (x),

that quantizes the symbol H , where ∆g is the Laplace-Beltrami operator ∆g := Divg(∇g·). Here
the gradient and the divergence are taken with respect to the Riemannian metric g. In a local
chart:

∆g =
1√

det g

d∑
j,k=1

∂xj
(√

det ggjk∂xk
)
.

In terms of pseudodifferential operators:

−~2∆g = Op~(H) + i~Op~(r) + ~2 Op~(m),

where m ∈ C∞(M) is a function of x alone, that only depends on the derivatives up to order two
of the metric g, and the function r is given in local coordinates by

r(x, ξ) =
1√

det g(x)

d∑
j,k=1

gjk(x)∂xj
√

det g(x)ξk.

This shows that

−~2∆g = Op~(H), mod ~Ψ1(M).

2.7.1. Weyl’s quantization on the torus

In this section we assume M = Td, the flat torus defined by

Td := Rd/2πZd,
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equipped with the standard flat metric. Its cotangent bundle T ∗Td is identified with the product
space T ∗Td ' Td×Rd. There are several ways to define the Weyl quantization on T ∗Td. Of course,
one is to use the general definition for manifolds introduced in the previous section. However,
the particular structure of the torus allows to choose a canonical way of quantization by taking
advantage of the definition of Td as a quotient space of Rd. The key observation is to note that
the operator Op~(a) defined in the usual Euclidean case, with symbol a ∈ C∞(T ∗Td) seen as a
(2πZd)-periodic function in the x variable, preserves the space of periodic distributions D′(Td),
namely the space of distributions u ∈ D′(Rd) satisfying

〈u, φ〉 = 〈u, φ(·+ 2πk)〉, k ∈ Zd, φ ∈ C∞c (Rd).

This approach allows to justify all the symbolic calculus and main theorems obtained in the
Euclidean case also for the torus case. See [9] and [122, Section 5.3.1] for further details.

On the other hand, from the point of view of the intuition of the dynamics on the “quantum”
phase space of the torus, it is maybe more illustrative to motivate the Weyl quantization from
the definition of position and momentum observables, as we did in the Euclidean case. The main
difference lies in the definition of the momentum observable P̂j, which in this case has discrete
spectrum, comparing with the Euclidean momentum.

We define the position and momentum observables on L2(Td) by

Q̂j ψ(x) := xj ψ(x), (2.32)

P̂j ψ(x) := −i~ ∂xjψ(x). (2.33)

The Fourier transform of ψ ∈ L2(Td) is defined by

ψ̂(k) :=
〈
ψ, ek

〉
L2(Td)

, ek(x) :=
1

(2π)d/2
eik·x, k ∈ Zd,

where we use the usual convention for the scalar product〈
ψ, ϕ

〉
L2(Td)

:=

∫
Td
ψ(x)ϕ(x)dx.

Then we can decompose the wave function ψ as

ψ(x) =
∑
k∈Zd

ψ̂(k)ek(x).

Note that the spectrum of P̂j is the discrete subset of R given by

SpL2(Td)

(
P̂j
)

= {~kj : k ∈ Zd}, j ∈ {1, . . . , d}.
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In this sense the momentum is quantized. On the other hand, the operators Q̂j and P̂j still satisfy
the commutator identities (2.6).

Similarly, given a ∈ C∞(T ∗Td), we define

â(k, ξ) :=
〈
a(·, ξ), ek

〉
L2(Td)

, k ∈ Zd,

and then
a(x, ξ) =

∑
k∈Zd

â(k, ξ)ek(x), (x, ξ) ∈ T ∗Td.

We also regard the Fourier decomposition of a in both (x, ξ) ∈ T ∗Td. It is convinient to write it
under a Lebesgue-Stieltjes integral. We consider the product measure on Zd := Zd × Rd defined
by:

κ(l, η) = KZd(l)⊗ LRd(η), (l, η) ∈ Zd, (2.34)

where LRd denotes the Lebesgue measure on Rd, and

KZd(l) :=
∑
k∈Zd

δ(l − k), l ∈ Zd.

For any Schwartz function a ∈ S (T ∗Td), we define:

(
Fa
)
(w) :=

1

(2π)2d

∫
T ∗Td

a(z)e−iz·w dz, z = (x, ξ) ∈ T ∗Td, (2.35)

where w = (k, η) ∈ Zd. Then:

a(z) =

∫
Zd

(
Fa
)
(w)eiLw(z) κ(dw), (2.36)

where
Lw(z) := w · z, z ∈ T ∗Td.

Analogously as we did in the Euclidean case, we introduce the semiclassical Schrödinger represen-
tation on L2(Td):

Definition 2.5. The semiclassical Schrödinger representation U~ on L2(Td) is defined by the
unitary group

U~(w) : L2(Td)→ L2(Td)

acting as

U~(w)ψ(x) := eik·x+ i
2
k·~η ψ(x+ ~η), (2.37)

for every w = (k, η) ∈ Zd and every ~ ∈ (0, 1]. Note the different scaling comparing with (2.13).
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It is easy to check from (2.37) that the semiclassical Schrödinger representation satisfies the
following conmutator relations:

U~(w)∗ = U~(−w), U~(w)U~(w
′) = e

i~
2
{Lw,Lw′}U~(w + w′), w, w′ ∈ Zd, (2.38)

where {·, ·} denotes the Poisson bracket (compare with (2.14)). We use the Schrödinger represen-
tation to define directly the Weyl quantization via the following:

Definition 2.6 (Semiclassical Weyl’s quantization). Let a ∈ S (T ∗Td), we define the semiclassical
Weyl quantization Op~(a) acting on ψ ∈ L2(Td) by

Op~(a)ψ(x) :=

∫
Zd

(
Fa
)
(w)U~(w)ψ(x)κ(dw).

The composition of two pseudodifferential operators on the torus can be obtained by using
Definition 2.6 and commutator formula (2.38). In terms of the Moyal product:

Op~(a) Op~(b) = Op~(a]~b),

where the Moyal product ]~ is given by

a]~b(z) =

∫
Z2d

(
Fa
)
(w′)

(
F b
)
(w − w′)e

i~
2
{Lw′ ,Lw−w′}eiLw(z)κ(dw′)κ(dw). (2.39)

This can also be written as

a]~b(x, ξ) =
∑
k,l∈Zd

â

(
k, ξ +

~(l − k)

2

)
b̂

(
l − k, ξ − ~k

2

)
el(x). (2.40)

Regarding the action of the Weyl quantization in terms of Fourier decomposition, the following
is an inmediately consequence of Definition 2.6:

Lemma 2.13. For every a ∈ S (T ∗Td) and ψ ∈ L2(Td):

Op~(a)ψ(x) =
∑
j,k∈Zd

â

(
j − k, ~(j + k)

2

)
ψ̂(k)ej(x). (2.41)

The notions of Wigner distribution and semiclassical measures can be extended to the case
of manifolds. Note that, in the particular case of the torus, the Wigner distribution of a wave
function ψ ∈ L2(Td) can be written using (2.41) as

W ~
ψ(a) =

∑
j,k∈Zd

â

(
j − k, ~(j + k)

2

)
ψ(k)ψ(−j), a ∈ C∞c (T ∗Td). (2.42)
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Finally, the Weyl quantization defined above can be extended for more general symbols, in the
same way we explained for the Euclidean case. We define, for m ∈ Z:

Sm(T ∗Td) :=
{
a ∈ C∞(T ∗Td) : ‖∂βξ a‖L∞(R2d) ≤ Cβ(1 + |ξ|2)m/2, β ∈ Nd

}
. (2.43)

We conclude this chapter with a version of Calderón-Vaillancourt theorem on the torus:

Lemma 2.14 ([48, Prop 3.5]). Let a ∈ S0(T ∗Td). Then

‖Op~(a)‖L(L2) ≤ Cd
∑
|α|≤Nd

‖∂αxa‖L∞(T ∗Td).

In particular, only derivatives in x are requiered to estimate the strong operator norm of Op~(a),
compared with Lemma 2.5.



Chapter 3

Semiclassical measures for
perturbed harmonic oscillators

Hab́ıa sin embargo horas tristes, como todo
el mundo tiene, en que uno créıa no haber

logrado lo más mı́nimo, y le parećıa que solo
los procesos destinados desde el principio a

un feliz resultado terminaban bien.

F. Kafka. El Proceso.

In this chapter we focus on the study of the semiclassical measures of solutions of the Schrödinger
equations (1.26) and (1.27) generated by the perturbed harmonic oscillator:

P̂~ := Ĥ~ + ε~V̂~,

where Ĥ~ is given by (1.23), the operator V̂~ = Op~(V ) has symbol V ∈ S0(R2d), and ε~ → 0
as ~ → 0+. Section 3.1 is devoted to introduce some basic facts about the classic dynamical
system associated to the harmonic oscillator. In particular, in Section 3.1.1 we will show how
to solve the cohomological equations appearing in the process of averaging. In Section 3.2 we
explain the averaging method in the selfadjoint case, and we use it to obtain a normal form via
conjugating P̂~ by a suitable unitary operator up to order N ≥ 1. In Section 3.3 we focus on the
time-dependent Schrödinger equation, proving Theorems 1.2, 1.3, 1.4 and 1.5. The particular case
of the periodic harmonic oscillator in 2D is treated in Section 3.3.1, where we prove Theorem 1.6.
Finally, in Section 3.4 we study the semiclassical measures associated to sequences of solutions of
the stationary problem, giving the proof of Theorems 1.7 and 1.8.

63



64 3. Semiclassical measures for perturbed harmonic oscillators

3.1. The classical harmonic oscillator

We start by recalling the basic properties of the dynamical system associated to the Hamiltonian

H(x, ξ) =
1

2

d∑
j=1

ωj
(
ξ2
j + x2

j

)
, ω = (ω1, . . . , ωd) ∈ Rd

+, (x, ξ) ∈ R2d.

The Hamilton equations corresponding to H are given by{
ẋj = ωjξj,

ξ̇j = −ωjxj, j = 1, . . . , d.
(3.1)

Hence we can write the solution of this system as a superposition of d-independent commuting
flows as follows:(

x(t), ξ(t)
)

= φHt (x, ξ) := φHdωdt ◦ · · · ◦ φ
H1
ω1t(x, ξ), (x, ξ) ∈ R2d, t ∈ R,

where

Hj(x, ξ) =
1

2
(ξ2
j + x2

j), j ∈ {1, . . . , d},

and φ
Hj
t (x, ξ) denotes the associated Hamiltonian flow. In other words, the solution of (3.1) can

be written in terms of the unitary block matrices(
xj(t)

ξj(t)

)
=

(
cos(ωjt) sin(ωjt)

− sin(ωjt) cos(ωjt)

)(
xj

ξj

)
, j = 1, . . . , d. (3.2)

Observe that each flow φ
Hj
t is periodic with period Tj = 2π.

For any function a ∈ C∞c (R2d), it is clear that a ◦ φHt = a ◦ ΦH
tω, where recall that

ΦH
τ = φH1

t1 ◦ · · · ◦ φ
Hd
td
, τ = (t1, . . . , td) ∈ Td,

and then we can write its average 〈a〉 by the flow φHt as

〈a〉(x, ξ) := lim
T→∞

1

T

∫ T

0

a ◦ φHt (x, ξ)dt = lim
T→∞

1

T

∫ T

0

a ◦ ΦH
tω(x, ξ)dt. (3.3)

This limit is well defined and it takes place in the C∞(R2d) topology.
The energy hypersurface H−1(E) ⊂ R2d is compact for every E ≥ 0 and, due to the complete

integrability of the system, each of these hypersurfaces is foliated by Kronecker tori that are
invariant by the flow φHt . Considering the submodule

Λω := {k ∈ Zd : k · ω = 0} (3.4)
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we can define the minimal torus contained in the space of angles τ ∈ Td:

Tω := Λ⊥ω /(2πZd ∩ Λ⊥ω ),

where Λ⊥ω denotes the linear space orthogonal to Λω. The dimension of Tω is dω = d − rk Λω.
Kronecker’s theorem states that the family of probability measures on Td defined by

1

T

∫ T

0

δtω dt

converges (in the weak-? topology) to the normalized Haar measure hω on the subtorus Tω ⊂ Td.
Moreover, the family of functions 1

T

∫ T
0
a ◦ φHt dt converges to 〈a〉 in the C∞(R2d) topology, and

〈a〉(x, ξ) =

∫
Tω
a ◦ ΦH

τ (x, ξ)hω(dτ), (3.5)

and in particular, if a ∈ C∞(R2d) then 〈a〉 ∈ C∞(R2d). Observe that 1 ≤ dω ≤ d. In the case
dω = 1 and ω = ω1(1, . . . , 1), the flow φHt is 2π/ω1-periodic. On the other hand, if dω = d, then,
for every a ∈ C∞(R2d), there exists I〈a〉 ∈ C∞(Rd) such that

〈a〉(z) = I〈a〉(H1(z), . . . , Hd(z)).

In particular, for every a and b in C∞(R2d), one has {〈a〉, 〈b〉} = 0 whenever dω = d.

3.1.1. Cohomological equations

In the process of averaging, we will deal with cohomological equations [34, Sec. 2.5] as

{H, f} = g, (3.6)

where g ∈ C∞(R2d) is a smooth function such that 〈g〉 = 0. We look for a function f ∈ C∞(R2d)
solving (3.6) and preserving as much as possible the smooth properties of g. For any f ∈ C∞(R2d),
we can write f ◦ ΦH

τ as a Fourier series:

f ◦ ΦH
τ (x, ξ) =

∑
k∈Zd

fk(x, ξ)
eik·τ

(2π)d
, fk(x, ξ) :=

∫
Td
f ◦ ΦH

τ (x, ξ)e−ik·τdτ. (3.7)

Note that fk ◦ ΦH
τ (x, ξ) = fk(x, ξ)e

ik·τ . This combined with (3.3) gives:

〈f〉(x, ξ) =
1

(2π)d

∑
k∈Λω

fk(x, ξ) =

∫
Tω
f ◦ ΦH

τ (x, ξ)hω(dτ). (3.8)
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Observe that if f is a solution of (3.6), then so is f + λ〈f〉 for any λ ∈ R, since {H, 〈f〉} = 0.
Thus we can try to solve the equation for 〈f〉 = 0 fixed, imposing

f(x, ξ) =
1

(2π)2d

∑
k∈Zd\Λω

fk(x, ξ).

Writing down

{H, f} =
d

dt

(
f ◦ ΦH

tω

)
|t=0 =

1

(2π)d

∑
k∈Zd\Λω

ik · ω fk =
1

(2π)d

∑
k∈Zd\Λω

gk,

we obtain that the solution of (3.6) is given (at least formally) by

f(x, ξ) =
1

(2π)d

∑
k∈Zd\Λω

1

ik · ω
gk(x, ξ). (3.9)

It is not difficult to see that, unless we impose some quantitive restriction on how fast |k · ω|−1

can grow, the solutions given formally by (3.9) may fail to be even distributions (see for instance
[34, Ex. 2.16.]). But if ω is partially Diophantine, and g ∈ C∞(R2d) is such that 〈g〉 = 0, then
(3.9) defines a smooth solution f ∈ C∞(R2d) of (3.6).

Finally, the following lemma gives a simpler formula for the solutions of (3.6) in the periodic
case. We assume for symplicity ω = (1, . . . , 1).

Lemma 3.1. If ω = (1, . . . , 1), then the solution of the cohomological equation (3.6) is given by
the explicit formula

f =
−1

2π

∫ 2π

0

∫ t

0

g ◦ φHs ds dt, (3.10)

provided that 〈f〉 = 〈g〉 = 0.

Proof. From the identity
d

dt
(g ◦ φHt ) = {H, g} ◦ φHt ,

we have that

g ◦ φHt − g = {H,
∫ t

0

g ◦ φHs ds}.

Then,

〈g〉 − g =
1

2π

∫ 2π

0

(g ◦ φHt − g) dt =
1

2π

∫ 2π

0

{H,
∫ t

0

g ◦ φHs ds} dt,

and therefore the solution f of (3.6) is given by

f = − 1

2π

∫ 2π

0

∫ t

0

g ◦ φHs ds dt, (3.11)

provided that 〈g〉 = 〈f〉 = 0.
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3.2. The averaging method

The averaging method is a technique arising in classical and quantum mechanics (see Moser [90],
Weinstein [115], Guillemin [49], Arnold [15], Uribe [114], Colin de Verdière [31]), that appears in
the analysis of perturbed completely integrable systems. Roughly speaking, it consists in averaging
the perturbation along the orbits of the completely integrable system to a given order. This section
is devoted to prove the following:

Proposition 3.1. If ω is partially Diophantine then, for every N ∈ N, there exists a sequence of
unitary operators (UN,~) on L2(Rd) such that

P̂N
~ := U∗N,~

(
Ĥ~ + ε~V̂~

)
UN,~ = Ĥ~ +

N∑
j=1

εj~〈R̂j,~〉+OL(L2)(ε
N+1
~ ), (3.12)

where R̂1,~ = V̂~, and R̂j,~ are L2-bounded pseudodifferential operators that do not depend on N .
Moreover, ∥∥UN,~ Op~(a)U∗N,~ −Op~(a)

∥∥
L(L2)

= OL(L2)(ε~), for all a ∈ C∞c (R2d). (3.13)

Proof. We fix N ≥ 1 arbitrary. Consider F1 ∈ S0(R2d) to be chosen later, and denote its Weyl

quantization by F̂1,~ = Op~(F1). We define the following unitary operator:

U1(t) := exp

[
−itε~

~
F̂1,~

]
=
∞∑
j=0

1

j!

(
−itε~

~
F̂1,~

)j
, t ∈ [0, 1], (3.14)

where the series converges in the L(L2)-norm provided that F̂1,~ is a bounded operator on L2(Rd).

We denote U1 = U1(1) and conjugate P̂~ = P̂ 0
~ := Ĥ~ + ε~V̂~ by U1, obtaining:

P̂ 1
~ := U∗1 P̂ 0

~ U1 = Ĥ~ + ε~V̂~ +
N∑
j=1

εj~
j!

(
i

~

)j
Adj

F̂1,~
(Ĥ~)

+
N−1∑
j=1

εj+1
~
j!

(
i

~

)j
Adj

F̂1,~
(V̂~) + εN+1

~ T̂~,

where AdjP (Q) := [P,Adj−1
P (Q)], Ad0

P (Q) = Q, and the Taylor reminder T̂~ is given by

T̂~ =

∫ 1

0

(1− t)N

N !

(
i

~

)N+1

U1(t)∗AdN+1

F̂1,~
(Ĥ~)U1(t)dt

+

∫ 1

0

(1− t)N−1

(N − 1)!

(
i

~

)N
U1(t)∗AdN

F̂1,~
(V̂~)U1(t)dt.
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We set F1 to be the solution of the cohomological equation

i

~
[F̂1,~, Ĥ~] = 〈V̂~〉 − V̂~, (3.15)

where the quantum average 〈V̂~〉 (recall Proposition 1.1) is given by

〈V̂~〉 = lim
T→∞

1

T

∫ T

0

e−i
t
~ Ĥ~ V̂~ e

i t~ Ĥ~dt = Op~(〈V 〉).

Note that the commutator in the left is equal to Op~({F1, H}), since H is a polynomial of degree
two, hence equation 3.15 at symbol level is just

{H,F1} = V − 〈V 〉, (3.16)

and we can find the solution F1 ∈ S0(R2d) with 〈F1〉 = 0 provided that ω is partially Diophantine
(see Section 3.1.1). Precisely,

F1 = V ] =
1

(2π)d

∑
k∈Zd\Λω

1

ik · ω
Vk, Vk :=

∫
Td
V ◦ ΦH

τ e
−ik·τdτ. (3.17)

In the periodic case, ω = (1, . . . , 1), F1 has the simpler expression

F1 = − 1

2π

∫ 2π

0

∫ t

0

(V − 〈V 〉) ◦ φHs ds dt, (3.18)

given by Lemma 3.1. Thus

P̂ 1
~ = U∗1 P̂ 0

~ U1 = Ĥ~ + ε~〈V̂~〉+
N∑
j=2

εj~R̂
1
j,~ + εN+1

~ T̂~. (3.19)

The remainder terms R̂1
j,~ in (3.19) can be computed explicitely:

R̂1
j,~ =

1

j!

(
i

~

)j−1

Adj−1

F̂1,~

(
〈V̂~〉+ (j − 1)V̂~

)
, j = 2, . . . , N. (3.20)

Using equation (3.15), one can also deduce the following formula for T̂~:

T̂~ =

∫ 1

0

(1− t)N−1

N !

(
i

~

)N
U1(t)∗AdN

F̂1,~

(
(1− t)〈V̂~〉+ (N − 1− t)V̂~

)
U1(t)dt.

Moreover, by the symbolic calculus for Weyl pseudodifferential operators, the Calderón-Vaillancourt
theorem and the fact that U1(t) is unitary, we have T̂~ = OL(L2)(1).
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We next proceed to show the induction step. Assume that we have constructed the Hamiltonian
(3.12) until order 1 ≤ k − 1 ≤ N − 1. More precisely, suppose there exist k − 1 unitary operators

Uj := exp

[
−iε

j
~
~
F̂j,~

]
, j = 1, . . . , k − 1,

such that

P̂ k−1
~ := U∗k−1 · · · U∗1 P̂ 0

~ U1 · · · Uk−1 = Ĥ~ +
k−1∑
j=1

εj~〈R̂
k−1
j,~ 〉+

N∑
j=k

εj~R̂
k−1
j,~ +O(εN+1

~ ).

We next set a unitary operator

Uk := exp

[
−iε

k
~
~
F̂k,~

]
so that

P̂ k
~ := U∗k P̂ k−1

~ Uk = Ĥ~ +
k∑
j=1

εj~〈R̂
k
j,~〉+

N∑
j=k+1

εj~R̂
k
j,~ +O(εN+1

~ ).

First, expanding the left hand side, we have:

P̂ k
~ = Ĥ~ +

k−1∑
j=1

εj~〈R̂
k−1
j,~ 〉+

N∑
j=k

εj~R̂
k−1
j,~

+
∑
1≤l
lk≤N

εlk~
1

l!
Adl

F̂k,~
(Ĥ~)

+
k−1∑
j=1

∑
1≤l

lk+j≤N

εlk+j
~

1

l!

(
i

~

)l
Adl

F̂k,~
(〈R̂k−1

j,~ 〉)

+
N∑
j=k

∑
1≤l

lk+j≤N

εlk+j
~

1

l!

(
i

~

)l
Adl

F̂k,~
(R̂k−1

j,~ ) +O(εN+1
~ ).

The following conditions are sufficient to prove the induction step:

R̂k
j,~ = R̂k−1

j,~ , for 1 ≤ j ≤ k; (3.21)

i

~
[F̂k,~, Ĥ~] = 〈R̂k

k,~〉 − R̂k
k,~. (3.22)
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Note that the cohomological equation (3.22) can be solved using Section 3.1.1 due to the fact that
the commutator in the left is exact since H is a polynomial of degree two and then the equation
reduces to its classical counterpart for the whole symbol Rk

k,~. Moreover, for every k+ 1 ≤ j ≤ N ,

the remainder terms R̂k
j,~ are given by:

(a) If j = k + j′, for 1 ≤ j′ ≤ k − 1:

R̂k
j,~ = R̂k−1

j,~ +
i

~
[F̂k,~, 〈R̂k−1

j′,~ 〉]. (3.23)

(b) If j = 2k:

R̂k
j,~ = R̂k−1

j,~ +
i

2~
[F̂k,~, 〈R̂k−1

k,~ 〉+ R̂k−1
k,~ ].

(c) If j = lk + j′, for l ≥ 2 and 1 ≤ j′ ≤ k − 1:

R̂k
j,~ = R̂k−1

j,~ +
1

l!

(
i

~

)l
Adl

F̂k,~
(〈R̂k−1

j′,~ 〉)

+
l−1∑
m=1

1

m!

(
i

~

)m
Adm

F̂k,~
(R̂k−1

(l−m)k+j′,~).

(d) If j = lk, for l ≥ 3:

R̂k
j,~ = R̂k−1

j,~ +
1

l!

(
i

~

)l−1

Adl−1

F̂k,~
(〈R̂k−1

k,~ 〉+ (l − 1)R̂k−1
k,~ )

+
l−2∑
m=1

1

m!

(
i

~

)m
Adm

F̂k,~
(R̂k−1

(l−m)k,~).

Therefore, the unitary operator ÛN,~ := U1 · · · UN satisfies (3.12) with

R̂j,~ := R̂N
j,~, 1 ≤ j ≤ N.

Finally, (3.13) holds since

ÛN,~ Op~(a)Û∗N,~ = Op~(a)− iε~
~

[F̂1,~,Op~(a)] +OL(L2)(ε
2
~),

and [F̂1,h,Op~(a)] = OL(L2)(~) for all a ∈ C∞c (R2d).
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Remark 3.1. We have the following explicit formulas. The remainder term R̂2,~ is given by

R̂2,~ =
i

2~
[F̂1,~, 〈V̂~〉+ V̂~], (3.24)

and its principal symbol is, see (3.17),

r2,0 =
1

2
{V ], 〈V 〉+ V }. (3.25)

3.3. Transport and invariance

In this section we prove Theorems 1.2, 1.3 and 1.4.

Proof of Theorem 1.2. Given a ∈ C∞c (R2d), denote Â~ := Op~(a). Let 〈Â~〉 be the quantum

average of Â~ given by (1.42), the Wigner distribution W τ,ε
~ (t) satisfies the differential equation

d

dt
W τ,ε

~ (t)(〈a〉) =
iτ~
~

〈
[Ĥ~ + ε~V̂~, 〈Â~〉]v~(tτ~), v~(tτ~)

〉
L2
, t ∈ R. (3.26)

Since

[Ĥ~, 〈Â~〉] =
~
i

Op~({H, 〈a〉}) = 0,

we can use the commutator rule for Weyl pseudodifferential operators to obtain

iτ~
~

[Ĥ~ + ε~V̂~, 〈Â~〉] = τ~ε~ Op~({V, 〈a〉}) +O(τ~ε~~2). (3.27)

If τ~ε~ → 0 then, after integrating both sides of (3.26) on the interval t ∈ [0, t0] and taking limits
as ~→ 0+, the following holds for every t0 ∈ R:

µ(t0)(〈a〉) = µ0(〈a〉).

Since µ(t0) is invariant by the flow φHt , and hence µ(t)(a) = µ(t)(〈a〉) for all t, this concludes the
proof of (i) of Theorem 1.2.

We next prove part (ii). Recall that {H, 〈a〉}. Integrating (3.26) on t ∈ [0, t0], letting ~→ 0+,
and using the pseudodifferential calculus, give that, for every t0 ∈ R:

µ(t0)(〈a〉)− µ0(〈a〉) =

∫ t0

0

µ(t)({V, 〈a〉})dt. (3.28)

Moreover, since µ(t) is invariant by the flow φHt we have, for every t ∈ R,

µ(t)({V, 〈a〉}) = µ(t)({〈V 〉, 〈a〉}).
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Using this and (3.28) with a ◦ φ〈V 〉−t instead of a, and noting that

〈a ◦ φ〈V 〉−t 〉 = 〈a〉 ◦ φ〈V 〉−t ,

provided that {H, 〈V 〉} = 0, we obtain

d

dt

(
µ(t)

(
〈a ◦ φ〈V 〉−t 〉

))
= µ(t)

(
{〈V 〉, 〈a ◦ φ〈V 〉−t 〉}

)
− µ(t)

(
{〈V 〉, 〈a〉} ◦ φ〈V 〉−t

)
= 0.

Therefore,
µ(t)(a) = µ(t)(〈a〉) = µ0(〈a〉 ◦ φ〈V 〉t ), ∀t ∈ R, ∀a ∈ C∞c (R2d).

Since the space C∞c (R2d) is dense in Cc(R2d), this completes the proof of point (ii).
For the large regime τ~ε~ → +∞ we use integration by parts in (3.26) to show that, for every

ϕ ∈ C1
c (R),∫

R
ϕ′(t)

〈
〈Â~〉v~(tτ~), v~(tτ~)

〉
L2
dt = −iτ~

~

∫
R
ϕ(t)

〈
[P̂~, 〈Â~〉]v~(tτ~), v~(tτ~)

〉
L2
dt.

By (3.27), we obtain ∫
R
ϕ(t) 〈Op~({V, 〈a〉})v~(tτ~), v~(tτ~)〉 dt = O

(
(τ~ε~)

−1
)
.

Taking the limit ~→ 0+ and using once more that µ(t) is invariant by φHt show that∫
R
ϕ(t)µ(t)({V, 〈a〉})dt =

∫
R
ϕ(t)µ(t)({〈V 〉, 〈a〉})dt = 0.

By density of C1
c (R) in L1(R), this concludes the proof of part (iii) and hence of Theorem 1.2.

We next show a particular example of perturbation V ∈ S0(R2d) such that 〈V 〉ω is constant
but 〈V ð〉ω is not:

Example 3.1. Assume d = 2 and ω = (1, 1) for simplicity. We will use action-angle coordinates
(τ, E) ∈ T2 × R2

+ defined by

(x, ξ) = ΦH
τ (
√

2E, 0), (x, ξ) ∈ R4, (3.29)

where we use the notation
√

2E = (
√

2E1,
√

2E2). By (1.36), we can take V such that Vk(x, ξ) ≡ 0
for every k ∈ Λ(1,1). This ensures that 〈V 〉 ≡ 0. On the other hand, we have

V ð =
1

2
{V ], V } =

1

(2π)4

∑
j,k∈Z2\Λ(1,1)

1

2i(k1 + k2)
{Vk, Vj} =

1

(2π)2

∑
l∈Z2

V ð
l , (3.30)
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where

V ð
l =

1

(2π)2

∑
j,l−j∈Z2\Λ(1,1)

1

2i(l1 − j1 + l2 − j2)
{Vl−j, Vj}, l ∈ Z2. (3.31)

Thus

〈V ð〉 =
1

(2π)2

∑
l∈Λ(1,1)

V ð
l , (3.32)

and we still have a lot of freedom to choose the coefficients Vj for j /∈ Λ(1,1). Indeed, let χ ∈ C∞c (R2
+)

be not identically zero in L−1
ω (1), and assume that the support of χ is contained in the open set

Ωε := {E = (E1, E2) ∈ R2
+ : E1 · E2 > ε}, ε > 0.

We define, for every r ∈ R2
+,

Vj(
√

2E, 0) :=

{
χ(E), if j ∈ {(1, 0), (−1, 0)};
0, otherwise.

Note that, since the change to action-angle coordinates (3.29) is a canonical transformation,

{V(±1,0) ◦ ΦH
τ (
√

2E, 0), V(∓1,0) ◦ ΦH
τ (
√

2E, 0)} = {χ(E)e±iτ1 , χ(r)e∓iτ1} = ∓2iχ(E) · ∂E1χ(E),

and hence

V ð
(0,0)(
√

2E, 0) =
1

2i
{χ(E)eiτ1 , χ(r)e−iτ1}+

1

−2i
{χ(E)e−iτ1 , χ(E)eiτ1}

= −2χ(E) · ∂E1χ(E).

Therefore, we have 〈V 〉 ≡ 0 and

〈V ð〉 ◦ ΦH
τ (
√

2E, 0) = V ð
(0,0)(
√

2E, 0) = −2χ(E) · ∂E1χ(E),

which satisfies that 〈V ð〉ω is not identically constant provided that the gradient ∂E(χ · ∂E1χ)(E)
is not proportional to ω = (1, 1) for some E ∈ L−1

ω (1) (recall that, in action-angle coordinates,
H ◦ ΦH

τ (
√

2E, 0) = ω · E, hence XH = (ω, 0)).

Proof of Theorems 1.3 and 1.4. Let N ≥ 1, by Lemma 3.1, there exists a sequence of unitary
operators (UN,~) on L2(Rd) such that

P̂N
~ = U∗N,~

(
Ĥ~ + ε~V̂~

)
UN,~ = Ĥ~ + ε~〈V̂~〉+

N∑
j=2

εj~〈R̂j,~〉+O(εN+1
~ ).
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Let Rj(~) be the full symbol of R̂j,~ (recall Lemma 2.4) expanded as

Rj(~) ∼
∞∑
k=0

rj,k ~k.

The symbol L = L(V ) is obtained as the sum of all terms rj,k in the series such that

〈L〉ω =
∑

δ~=εj~~k

〈rj,k〉ω (3.33)

is not constant, and such that the order δ~ is maximal with respect to this condition. In the
hypothesis of Theorem 1.3, by Remark 3.1,

L(V ) = r2,0 =
1

2
{V ], 〈V 〉+ V }.

Note, in particular, that

〈r2,0〉 = 〈V ð〉 =
1

2
〈{V ], V }〉.

Using (3.13), we have

W τ,ε
~ (t)(a) =

〈
v~(tτ~), UN,~ Op~(a)U∗N,~v~(tτ~)

〉
L2 +O(ε~)

=
〈
U∗N,~v~(tτ~),Op~(a)U∗N,~ v~(tτ~)

〉
L2 +O(ε~)

= W̃ τ,ε
~ (t)(a) +O(ε~),

where W̃ τ,ε
~ is the Wigner distribution associated to the Schrödinger equation

i~∂t v′~(t) = P̂N
~ v′~(t), v′~|t=0 = u′~ = U∗N,~u~.

Taking limits as ~ → 0+ it follows that both distributions W τ,ε
~ and W̃ τ,ε

~ converge to the same
semiclassical measure µ.

Now, take a ∈ C∞c (R2d), and denote Â~ := Op~(a). The following Wigner equation holds:

d

dt
W̃ τ,ε

~ (t)(〈a〉) =
iτ~
~

〈
[P̂N

~ , 〈Â~〉]v′~(tτ~), v′~(tτ~)
〉
L2
. (3.34)

Using the pseudodifferential calculus and (3.33), we obtain:

iτ~
h

[P̂N
~ , 〈Â~〉] = τ~ε

j
~~

k Op~({〈L〉, 〈a〉}) + o(τ~ε
j
~~

k). (3.35)
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From this point, the proof of points (i), (ii) and (iii) follows the same lines of the proof of Theorem
1.2, replacing the critical scale τ~ ∼ 1/ε~ by τ~ ∼ 1/(εj~~k).

It remains to prove the assertion of Remark 1.5. Note that

V ] ◦ φHt − V ] =

∫ t

0

d

ds
(V ◦ φHs )ds =

∫ t

0

{H,V ]} ◦ φHs ds =

∫ t

0

(V − 〈V 〉) ◦ φHs ds

= −t〈V 〉+

∫ t

0

V ◦ φHs ds.

Thus,

〈V ð〉 =
1

2
〈{V ], V }〉

=
1

4π

∫ 2π

0

{V ] ◦ φHt , V ◦ φHt }dt

=
1

4π

∫ 2π

0

{V ] − t〈V 〉+

∫ t

0

V ◦ φHs ds, V ◦ φHt }dt

=
1

4π

∫ 2π

0

∫ t

0

{V ◦ φHs , V ◦ φHt } dsdt.

This concludes the proof.

We next show an example of perturbation V ∈ S0(R2d) such that 〈V 〉ω and 〈V ð〉ω ≡ 0 but
〈L〉ω is not identically constant:

Example 3.2. Assume that ε~ � ~1/2, hence the first term of largest order after r2,0 is r3,0, which
has order ε3

~. By (3.20), (3.21) and (3.23), we have

r3,0 =
1

3!
{V ], {V ], 〈V 〉+ 2V }}+ {F2,0, 〈V 〉},

where F2,0 solves the cohomological equation {H,F2,0} = r2,0 − 〈r2,0〉 and 〈F2,0〉 = 0. Thus

〈r3,0〉 =
1

3!
〈{V ], {V ], 〈V 〉+ 2V }}〉.

Let χ ∈ C∞c (R2
+) as in Remark 3.1, we set, for every E ∈ R2

+,

Vj(
√

2E, 0) :=

{
χ(E), if j ∈ J := {(1, 0), (2, 0), (−3, 0)};
0, otherwise.
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Clearly, 〈V 〉 = 〈V ð〉 ≡ 0. Then

〈r3,0〉 =
1

3
〈{V ], {V ], V }}〉.

On the other hand, we define the set

J ] J := {j + k : j, k ∈ J , j 6= k} = {(3, 0), (−2, 0), (−1, 0)},

and notice that, for every l ∈ J ] J , there exists a unique par j(l), k(l) ∈ J such that j(l) + k(l) = l.
Therefore, by (3.30) and (3.31),

{V ], V }l ◦ ΦH
τ (
√

2E, 0) =
1

(2π)2

(
1

2ij
(l)
1

− 1

2ik
(l)
1

)
{χ(E)eij

(l)
1 τ1 , χ(E)eik

(l)
1 τ1}

=
Cl

(2π)2
χ(E) · ∂E1χ(E)eil·τ ,

for every l ∈ J ] J = {(3, 0), (−2, 0), (−1, 0)}, where

Cl =
(j

(l)
1 − k

(l)
1 )2

2j
(l)
1 k

(l)
1

,

while {V ], V }l = 0 for l ∈ Z2 \ (J ] J). In particular, this and (3.32) show that 〈V ð〉 ≡ 0. Finally,
since

{V ], {V ], V }} ◦ ΦH
τ (
√

2E, 0) =
1

(2π)4

∑
l,k∈Zd\Λ(1,1)

1

i(k1 + k2)
{Vk, {V ], V }l} ◦ ΦH

τ (
√

2E, 0)

=
1

(2π)6

∑
k∈J

∑
l∈J]J

Cl
ik1

{χ(E)eik1τ1 , χ(E) · ∂E1χ(E)eil1τ1},

we obtain

〈r3,0〉 ◦ ΦH
τ (
√

2E, 0) =
1

3
〈{V ], {V ], V }}〉 ◦ ΦH

τ (
√

2E, 0)

=
χ(E)

3(2π)6

(
2∂E1χ(E)2 + χ(E)∂2

E1
χ(E)

) ∑
l∈J]J

Cl

=
−3χ(E)

(2π)6

(
2∂E1χ(E)2 + χ(E)∂2

E1
χ(E)

)
.

Then L = r3,0 satisfies that 〈L〉ω is not identically constant provided that the gradient vector field
∂E
(
2χ · (∂E1χ)2 + χ2 · ∂2

E1
χ
)
(E) is not proportional to ω = (1, 1) for some E ∈ L−1

ω (1).
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Proof of Theorem 1.5. First, we apply Lemma 3.1 to conjugate the Hamiltonian Ĥ~ + ε~V̂~ into
P̂N
~ given by (3.12). Recall, from Section 3.1, that the average of a symbol a is given by

〈a〉(x, ξ) =

∫
Tω
a ◦ ΦH

τ hω(dτ).

Since rk Λω = 0, it follows that Λω = {0} and then Tω = Td. We can rewrite the average of a as

〈a〉(x, ξ) = I〈a〉(H1, . . . , Hd)(x, ξ),

where I〈a〉 ∈ C∞(L−1
ω (1)) is defined by

I〈a〉(E) = 〈a〉(x, ξ), ∀(x, ξ) ∈ TE.

By the Whitney extension theorem, there exists an extension of I〈a〉 to a smooth function I〈a〉 ∈
C∞c (Rd). Then, using the functional calculus for semiclassical pseudodifferential operators (see for
instance [35, Chp. 8]), the following holds:

〈Â~〉 = Op~(〈a〉) = I〈a〉(Op~(H1), . . . ,Op~(Hd)) +O(~).

Then 〈
〈Â~〉v~, v~

〉
L2

=
〈
I〈a〉(Op~(H1), . . . ,Op~(Hd)) v~, vh

〉
L2 +O(~).

On the other hand,

[〈R̂j,~〉,Op~(Hk)] =
~
i

Op~({〈Rj(~)〉, Hk}) = 0, k = 1, . . . , d.

Therefore, the following identity holds:

[〈R̂j,~〉, I〈a〉(Op~(H1), . . . ,Op~(Hd))] = 0.

In view of this, we have that

iτ~
~

[P̂N
~ , I〈a〉(Op~(H1), . . . ,Op~(Hd))] = O(τ~ε

N
~ ).

Since τ~ε
N
~ → 0 as ~ → 0, from the Wigner equation (3.34) with I〈a〉(Op~(H1), . . . ,Op~(Hd))

instead of 〈Â~〉, by the same argument used to prove part (i) of Theorem 1.2, we deduce that in
this regime

µ(t)(a) = µ0(〈a〉),

for all t and all a ∈ Cc(R2d), which concludes the proof of the first part of Theorem 1.5.
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For the second part we reason as follows. The disintegration Theorem gives, for H∗µ0-a.e.
E ∈ L−1

ω (1), the existence of a family of probability measures µE(x, ξ) supported on TE such that∫
R2d

〈a〉(x, ξ)µ0(dx, dξ) =

∫
L−1
ω (1)

∫
TE
〈a〉(x, ξ)µE(dx, dξ)H∗µ0(E). (3.36)

Since
〈a〉(x, ξ) = I〈a〉(H1, . . . , Hd)(x, ξ),

we have ∫
R2d

a(x, ξ)µ0(dx, dξ) =

∫
L−1
ω (1)

∫
TE
〈a〉(x, ξ)µE(dx, dξ) H∗µ0(dE)

=

∫
L−1
ω (1)

∫
TE
I〈a〉(H1, . . . , Hd)(x, ξ)µE(dx, dξ) H∗µ0(dE)

=

∫
L−1
ω (1)

I〈a〉(E)

∫
TE
µE(dx, dξ) H∗µ0(dE)

=

∫
L−1
ω (1)

I〈a〉(E) H∗µ0(dE),

since the µE are probability measures.

3.3.1. The 2D case

In this section we prove Theorem 1.6.

Proof of Theorem 1.6. According to [50, Sect. 3.], there exists a symplectomorphism κ : V → V
such that:

(H, 〈V 〉) ◦ κ = (H,G2(H1, H2)). (3.37)

This implies that the following diagram is commutative for every λ ∈ I:

H−1(λ) H−1(λ)

S2
λ S2

λ

κ

πλ πλ

κλ

and then
〈V 〉λ ◦ κλ = G2(H1, H2)λ. (3.38)
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Since 〈V 〉λ is a perfect Morse function, so is G2(H1, H2)λ, and then, for every λ ∈ I, the only two

orbits of the flow φHt contained in H−1(λ) that are invariant by the flow φ
G2(H1,H2)
t are the two

orbits:
γj(λ) = H−1

j (0) ∩H−1(λ), j = 1, 2.

These orbits correspond to the two critical values of 〈V 〉λ. As a consequence, since the Hamiltonian
vector fields XG2(H1,H2) and XH satisfy

XG2(H1,H2) = ∇G2 · (XH1 +XH2),

XH = ω · (XH1 +XH2),

then ∇G2|(E1,E2) is not proportional to ω = (1, 1) for every E ∈ {E ∈ L−1
ω (λ) : E1 · E2 6= 0}.

Then:

lim
T→∞

∫ T

0

〈a〉 ◦ φG2(H1,H2)
t dt =

1

(2π)2

∫
T2

a ◦ ΦH
τ dτ = A(H1,H2)(a), a ∈ C∞c (V). (3.39)

Now we proceed as in the proofs of Theorems 1.3 and 1.4. Let W̃ τ,ε
~ (t) be the Wigner distri-

bution acting as
W̃ τ,ε

~ (t)(a) :=
〈
F∗~v~(tτ~),Op~(a)F∗~v~(tτ~)

〉
L2 .

By (1.44), W̃ τ,ε
~ (t) converges weakly, modulo a subsequence, to the semiclassical measure κ∗µ(t).

Using the Wigner equation

1

τ~

d

dt
W̃ τ,ε

~ (t)(a) =
i

~
〈
[P̂N

~ ,Op~(a)]F∗~v~(tτ~),F∗~v~(tτ~)
〉
L2 ,

and taking limits as ~ → 0+, we obtain that κ∗µ is invariant by the flows generated by H and
G2(H1, H2) in the regime τ~~2 →∞. Thus

µ(t)(a) = µ(t)
(
(κ∗)−1A(H1,H2)(κ

∗a)
)
,

for all t ∈ R and all a ∈ C∞c (V). By (3.38), one can show that

A(H,V )(a) = (κ∗)−1A(H1,H2)(κ
∗a),

for every a ∈ C∞c (V). Finally, if there exists N ≥ 3 such that τ~~N → 0, we observe, by Whitney’s
extension theorem and the functional calculus for pseudodifferential operators, that, for all a ∈
C∞c (V), there exists I〈a〉 ∈ C∞c (Rd) such that

Op~(AH1,H2(a)) = I〈a〉(Op~(H1),Op~(H2)) +O(~).

Then, since

[I〈a〉(Op~(H1),Op~(H2)), Gk(Op~(H1),Op~(H2))] = 0, k = 2, . . . ,
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we have that
iτ~
~

[P̂N
~ , I〈a〉(Op~(H1),Op~(H2))] = O(τ~~N).

Combining this with the Wigner equation

d

dt
W̃ τ,ε

~ (t) =
iτ~
~
〈[P̂N

~ , I〈a〉(Op~(H1),Op~(H2))]F∗~v~,F∗~v~〉+O(~),

and taking limit ~→ 0+, we obtain:

µ(t)(κ∗a) = µ0(κ∗A(H1,H2)(a)), ∀a ∈ C∞c (V),

i.e.,
µ(t)(a) = µ0(A(H,V )(a)), ∀a ∈ C∞c (V).

3.4. Weak limits of sequences of eigenfunctions

This section is devoted to prove Theorems 1.7 and 1.8.

Proof of Theorem 1.7. We recall that the spectrum of Ĥ~ is given by

λk,~ =
d∑
j=1

~
(
kj +

1

2

)
ωj, k ∈ Nd.

For any index k ∈ Nd, we define the finite set [k] ∈ Nd/Λω of indeces that provide the same
eigenvalue λk,~:

[k] := {m ∈ Nd : m− k ∈ Λω}.
The multiplicity of the eigenvalue λk,~ is precisely the cardinal Nk ∈ N of [k]. On the other hand,
the associated eigenstates are given by suitable linear combinations of the semiclassical Hermite
functions (ψk,~)k∈Nd . Each Hermite function is defined by:

ψk,~(x) =
1

(π~)d/4

d∏
j=1

Hkj

(
xj√
~

)
e−

x2j
2~ , k = (k1, . . . , kd) ∈ Nd, (3.40)

where Hkj are the Hermite polynomials. Hence, any normalized eigenfunction ϕk,~ of Ĥ~ with
associated eigenvalue λk,~ has the form

ϕk,~ =
∑
m∈[k]

σm,~ ψm,~,
∑
m∈[k]

|σm,~|2 = 1. (3.41)
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To facilitate the calculations, we will exploit the Bargmann space representation of the harmonic
oscillator (see for instance Berezin and Shubin [20]). We consider the Hilbert space of holomorphic
functions

H~ := L2
hol

(
Cd, e−

|z|2
2~

dz dz

(2π~)d/2

)
.

The Bargmann transform B~ : L2(Rd)→ H~ is the isomorphism defined by the following integral
operator:

B~ u(z) :=
1

(π~)d/4

∫
Rd

exp

[
− 1

2~
(|z|2 + |x|2 − 2

√
2z · x)

]
u(x)dx.

Under the Bargmann transform, the eigenfunctions of the harmonic oscillator have a particular
convenient form:

B~ ψk,~(z) =
zk(

(2~)|k|k!
)1/2

, k ∈ Nd, zk = zk11 · · · z
kd
d ,

while the harmonic oscillator Ĥ~ itself is conjugated into

B~ Ĥ~ B−1
~ = ~

d∑
j=1

ωj

(
zj

∂

∂zj
+

1

2

)
.

Moreover, the Bargmann transform B~ intertwins anti-Wick operators with Toeplitz operators.
Identifying Cd with R2d via z = x+ iξ, the following holds:

B~ OpAW
~ (a)B−1

~ = T~(a),

where the anti-Wick quantization of a is defined by

OpAW
~ (a) := Op~(e

~∆/4a),

and the Toeplitz operator T~(a) : H~ → H~ is given by

T~(a) = Π~M(a),

where M(a) defines the multiplication operator on L2
(
Cd , e−

|z|2
2~ dz dz

)
, and

Π~ : L2

(
Cd, e−

|z|2
2~

dz dz

(2π~)d/2

)
→ H~

is the orthogonal projection onto the holomorphic subspace. The Anti-Wick quantization and the
Weyl quantization are equivalent in the semiclassical limit. Indeed, one can show that

OpAW
~ (a) = Op~(a) +OL(L2)(~), a ∈ C∞c (R2d). (3.42)
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The point of introducing the Bargmann representation is to calculate more easily the semiclas-
sical measures associated to sequences of eigenfunctions of the harmonic oscillator. The following
identity holds: 〈

ψm,~,OpAW
~ (a)ψm′,~

〉
L2 =

1

C~,m,m′

∫
Cd
zma(z)zm

′
e−
|z|2
2~ dz dz, (3.43)

where

C~,m,m′ = πd(2~)d+
|m|+|m′|

2 (m!)
1
2 (m′!)

1
2 . (3.44)

Lemma 3.2 (Concentration on a minimal set). Let z0 ∈ H−1(1), then

hOH(z0) ∈M(Ĥ~),

where hOH(z0) is the Haar measure on the minimal set

OH(z0) = {ΦH
τ (z0) : τ ∈ Tω}. (3.45)

Proof. We consider a sequence (k~, ~) such that

~k~ → E0 := (H1(z0), . . . , Hd(z0)) , as ~→ 0.

In particular, λk~,~ → H(z0) = 1. Let us consider the set K~ of indices with same energy as k~

and at distance smaller or iqual than ~−1/2:

K~ := [k~] ∩Bk~(~−1/2), Bk~(~−1/2) := {m ∈ Nd : |m− k~| ≤ ~−1/2}, (3.46)

and denote by N~ ∈ N the cardinal of K~. We consider the particular sequence of eigenfunctions
(ϕ~) given by

ϕ~ :=
1

N
1/2
~

∑
m∈K~

ψm,~.

By (3.42), the associated Wigner distributions satisfy:〈
ϕ~,Op~(a)ϕ~

〉
L2 =

〈
ϕ~,OpAW

~ (a)ϕ~
〉
L2 +O(~).

On the other hand:〈
ϕ~,OpAW

~ (a)ϕ~
〉
L2 =

1

N~

∑
m,m′∈K~

〈
ψm,~,OpAW

~ (a)ψm′,~
〉
L2

=
1

N~

∑
m∈K~

∑
l∈K~−{m}

〈
ψm,~,OpAW

~ (a)ψm+l,~
〉
L2 .

By (3.43),

〈ψm,~,OpAW
~ (a)ψm+l,~

〉
L2 =

1

C~,m,m+l

∫
Cd
zma(z)zm+le−

|z|2
2~ dz dz.

We will require the following intermediate lemma:
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Lemma 3.3. Let m ∈ Nd and l ∈ Nd − {m}. Define

zm,l,~ :=
(√

~(2m1 + l1 + 1), . . . ,
√

~(2md + ld + 1), 0, . . . , 0
)
∈ R2d.

Then

1

C~,m,m+l

∫
Cd
zma(z)zm+le−

|z|2
2~ dz dz =

Λ(m, l)

(2π)d

∫
Td
a ◦ ΦH

τ (zm,l,~)e
il·τdτ +O

(
~1/2

1 + |l|d+1

)
,

as ~→ 0, where

Λ(m, l) :=
1

[m!(m+ l)!]
1
2

d∏
j=1

Γ

(
2mj + lj + 2

2

)
,

Γ denotes the Gamma function, and the constant in the O(·) depends only on a ∈ C∞c (R2d) and
not on m, l ∈ Zd.

Remark 3.2. Note that
Λ(m, l)→ 1, as |m|, |m+ l| → ∞.

Proof. Taking polar coordinates

z = ΦH
τ (r, 0), τ ∈ Td, r = (r1, . . . , rd) ∈ Rd

+,

we have: ∫
Cd
zma(z)zm+le−

|z|2
2~ dz dz =

∫
Rd+

∫
Td
a ◦ ΦH

τ (r, 0)eil·τ
d∏
j=1

r
2mj+lj+1
j e−

r2j
2~ drdτ.

Now, we perform the following change of variables, shifting the center to zm,l,k and zooming by
1/(2~)1/2:

rj =
√

2~sj +
√

~(2mj + lj + 1), sj ∈

[
−
√

2mj + lj + 1

2
,∞

)
, j = 1, . . . , d.

We want to show that

(2~)
d
2

C~,m,m+l

d∏
j=1

r
2mj+lj+1
j e−

r2j
2~ ≤ Cde

− |s|
2

2 , (3.47)

for some constant Cd > 0 depending only on the dimension d. Indeed, by the following inequality

(
√

2s+
√
B)Be−

(
√
2s+
√
B)

2

2

≤ e−
s2

2

(
B

e

)B
2

, s ≥ −
(
B

2

) 1
2

, B ≥ 0,
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we have

r
2mj+lj+1
j e−

r2j
2~ ≤ e−

s2j
2 e−

2mj+lj+1

2

(
~(2mj + lj + 1)

) 2mj+lj+1

2 .

Using Stirling’s formula
n! ≥

√
2πnn+ 1

2 e−n, n ≥ 1,

this can be bounded by

e−
s2j
2 e−

2mj+lj+1

2

(
~(2mj + lj + 1)

) 2mj+lj+1

2 ≤ e−
s2j
2

(
~2mj+lj+1(2mj + lj + 1)!
√

2π(2mj + lj + 1)
1
2

) 1
2

.

Recall, from (3.44), that

C~,m,m+l = πd(2~)d+
|m|+|m+l|

2

[
m!(m+ l)!

] 1
2 .

Then, using the following standard property of the Gamma function1:

Γ(2x) . x
1
2 Γ(x)222x−1 . x

1
2 Γ(x− α)Γ(x+ α)22x−1, x ≥ 0,

with

x =
2mj + lj + 2

2
, α =

lj
2
,

we conclude (3.47).

On the other hand, denoting

ã(r, τ) := a ◦ ΦH
τ (r, 0), (r, τ) ∈ Rd

+ × Td,

and using Taylor’s theorem, we can expand

a ◦ ΦH
τ (zm,l,~ +

√
2~s, 0) = a ◦ ΦH

τ (zm,l,~) +
√

2~s ·
∫ 1

0

∂r ã
(
zm,l,~ + t

√
2~s, τ

)
dt.

Since a ∈ C∞c (R2d), its Fourier coefficients decay faster than any polynomial. In particular,

‖∂r ã−l‖L∞(Rd+) ≤
C

1 + |l|d+1
, l ∈ Zd,

where, recalling (3.7),

ã−l(r) := a−l(r, 0) =

∫
Td
a ◦ ΦH

τ (r, 0)eil·τdτ, r ∈ Rd
+.

1The notation . means that the inequality holds modulo multiplication by some universal constant.
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Therefore, since ∫ ∞
0

r2mj+lj+1e−
r2j
2~ drj =

1

2
Γ

(
2mj + lj + 2

2

)
(2~)

2mj+lj+2

2 ,

we obtain∣∣∣∣ 1

C~,m,m+l

∫
Cd
zma(z)zm+le−

|z|2
2~ dz dz − Λ(m, l)

(2π)d

∫
Td
a ◦ ΦH

τ (zm,l,~)e
il·τdτ

∣∣∣∣
≤ Cd~

1
2‖∂r ã−l‖L∞(Rd)

∫
Rd+
|s|e−

|s|2
2 ds = O

(
~1/2

1 + |l|d+1

)
.

We now proceed to finish the proof of Lemma 3.2. For every m ∈ K~,

1

C~,m,m+l

∫
Cd
zma(z)zm+le−

|z|2
~ dz dz =

Λ(m, l)

(2π)d

∫
Td
a ◦ ΦH

τ (zm,l,~)e
il·τdτ +O

(
~1/2

1 + |l|d+1

)
,

hence 〈
ϕ~,OpAW

~ (a)ϕ~
〉
L2 =

∑
m∈K~

∑
l∈K~−{m}

Λ(m, l)

(2π)dN~

∫
Td
a ◦ ΦH

τ (zm,l,~)e
il·τdτ +O

(
~1/2

)
.

By definition (3.46), for every m ∈ K~,

~|k~ −m| = O(~1/2), as ~→ 0.

Then, setting

z∗0 :=
(√

2H1(z0), . . . ,
√

2Hd(z0), 0, . . . , 0
)
∈ H−1(1),

we have
sup
m∈K~

sup
l∈K~−{m}

|zm,l,~ − z∗0 | = o(1), as ~→ 0.

Using Remark 3.2 and definition (3.46), we observe that

sup
m∈K~

sup
l∈K~−{m}

(
Λ(m, l)− 1

)
= o(1), as ~→ 0.

Then, since ⋃
m∈K~

(
K~ − {m}

)
=
(
K~ −K~

)
→ Λω, as ~→ 0+,
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where K~ −K~ = {m−m′ : m,m′ ∈ K~}, and the limit is taken in the sense of sets,

lim
~→0

〈
ϕ~,OpAW

~ (a)ϕ~
〉
L2 =

1

(2π)d

∑
l∈Λω

al(z
∗
0).

By the Poisson summation formula:

1

(2π)d

∑
l∈Λω

eil·τ = hω,

which is just (1.36), we obtain

lim
~→0

〈
ϕ~,Op~(a)ϕ~

〉
L2 =

1

(2π)d

∑
l∈Λω

al(z
∗
0) =

∫
Tω
a ◦ ΦH

τ (z∗0)hω(dτ).

Finally, we define

Ĥ~ :=
(

Op~(H1), . . . ,Op~(Hd)
)

and set τ0 ∈ Td such that ΦH
τ0

(z∗0) = z0. By Egorov’s theorem,

e−
i
~ τ0·Ĥ~ Op~(a)e

i
~ τ0·Ĥ~ = Op~(a ◦ ΦH

τ0
), a ∈ C∞c (R2d). (3.48)

Thus, the sequence of rotations along the torus TE:

ϕ̃~ := e
i
~ τ0·Ĥ~ϕ~

is also a sequence of eigenfunctions with same related sequence of eigenvalues, and it satisfies

〈
ϕ̃~,Op~(a)ϕ̃~

〉
L2 →

∫
Tω
a ◦ ΦH

τ (z0)hω(dτ).

In other words,

hOH(z0) ∈M(Ĥ~),

as we wanted to prove.

Lemma 3.4 (Closed convex hull of minimal-set measures). The following holds:

M(Ĥ~) ⊃
⋃

[E]∈L−1
ω (1)/[Λω ]

M[E](H).
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Proof. For any z ∈ H−1(1), denote

E(z) :=
(
H1(z), . . . , Hd(z)

)
.

First, we show that given two points z0, z1 ∈ H−1(1) such that

E(z0)− E(z1) ∈ [Λω] , OH(z0) ∩ OH(z1) = ∅, (3.49)

we can find, for any 0 ≤ δ ≤ 1, a normalized sequence of eigenfunctions (ϕδ~) with associated
semiclassical measure given by

µδ = δhOH(z0) + (1− δ)hOH(z1). (3.50)

Indeed, using the same construction of the proof of Lemma 3.2, we can find two sequences (k~0, ~),
(k~1, ~) such that k~0 − k~1 ∈ Λω (so they have the same energy) for all ~,

~k~ι → Eι :=
(
H1(zι), . . . , Hd(zι)

)
, as ~→ 0,

and two sequences of eigenfunctions (ϕ0
~), (ϕ1

~) such that

Wϕι~
⇀ hO(z∗ι ), ι = 0, 1,

where
z∗ι :=

(√
2H1(zι), . . . ,

√
2Hd(zι), 0, . . . , 0

)
∈ H−1(1).

Then, setting

ϕ̃ι~ := e
i
~ τι·Ĥ~ϕι~,

where zι = ΦH
τι (z

∗
ι ), we obtain (3.50) for δ ∈ {0, 1}. Since OH(z0) ∩ OH(z1) = ∅, we can use ([51],

Prop. 3.3) to obtain, for the sequence of eigenfunctions given by

ϕ̃δ~ := ϕ̃0
~

√
δ + ϕ̃1

~
√

1− δ,

that
Wϕ̃δ~

⇀ µδ.

Now, by Krein-Milman Theorem, if µ ∈M([E]), then it can be obtained as a limit of the form

µ = lim
N→∞

N∑
j=1

cj(N)hOH(zj), (3.51)

where the limit is considered in the weak-? sense, 0 ≤ cj(N) ≤ 1,
∑N

j=1 cj(N) = 1, zj ∈ R2d, and

E(zj)− E(zj′) ∈ [Λω] , OH(zj) ∩ OH(zj′) = ∅, for all j 6= j′.
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For each zj, we assume that there exists a sequence of eigenfunctions (ϕj~) with same sequence of
eigenvalues such that its semiclassical measure is λOH(zj). Then take

ϑN~ :=
N∑
j=1

√
cj(N)ϕj~,

which is also an eigenfunction (despite it is not estrictly normalized, asymptotically it is). Since

lim
~→0
〈ϑN~ ,Op~(a)ϑN~ 〉L2(Rd) =

∫
R2d

a(x, ξ)

(
N∑
j=1

cj(N)hOH(zj)

)
(dx, dξ)

for all N , and using (3.51), we can extract a diagonal subsequence (~n) such that

lim
n→∞
〈ϑNn~n ,Op~n(a)ϑNn~n 〉L2(Rd) =

∫
R2d

a(x, ξ)µ(dx, dξ).

The result holds.

It remains to show that

M(Ĥ~) ⊂
⋃

[E]∈L−1
ω (1)/[Λω ]

M[E](H).

We will use the following intermediate lemma:

Lemma 3.5. Given a sequence (k~, ~) such that

k~~→ E0 =
(
E0

1 , . . . , E
0
d

)
∈ L−1

ω (1).

Let (m~, ~) be any other sequence with m~ ∈ [k~], and let a ∈ C∞c (R2d) such that

supp a ∩
⋃

E∈[E0]

TE = ∅, (3.52)

and [E0] is the equivalent class of E0 in L−1
ω (1)/[Λω]. Then the following holds for every index

l ∈ [k~]− {m~}:

〈ψm~,~,OpAW
~ (a)ψm~+l,~

〉
L2 = O

(
~1/2

1 + |l|d+1

)
,

where the O(·) depends only on a2.

2From (3.52) we actually expect O(~∞).
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Proof. Observe that

lim
~→0

dist
(
[E0], {~m~ : m~ ∈ [k~]}

)
= 0. (3.53)

Then, by Lemma 3.3,

∣∣〈ψm,~,OpAW
~ (a)ψm+l,~

〉
L2

∣∣ ≤ Λ(m~, l)

(2π)d
|a−l(zm~,l,~)|+O

(
~1/2

1 + |l|d+1

)
.

The result follows by using the hypothesis (3.52) for ~ sufficiently small, provided that

lim
~→0

sup
l∈[k~]−{m~}

dist

 ⋃
E∈[E0]

TE, zm~,l,~

 = 0.

Finally, let µ ∈ M(Ĥ~) be the semiclassical measure of some sequence ϕk~,~ with eigenvalues
λk~,~ → 1. By compacity of the set L−1

ω (1), there exists E0 ∈ L−1
ω (1) and a subsequence (k~, ~)

such that

~k~ → E0, as ~→ 0.

By (3.41), any associated eigenfunction has the form

ϕ~ =
∑
m∈[k~]

σm,~ψm,~,

and then, using (3.42), we can write〈
ϕ~,Op~(a)ϕ~

〉
L2 =

∑
m,m′∈[k~]

σm,~σm′,~
〈
ψm,~,OpAW

~ (a)ψm′,~
〉
L2 +O(~)

=
∑
m∈[k~]

∑
l∈[k~]−{m}

σm,~σm+l,~
〈
ψm,~,OpAW

~ (a)ψm+l,~
〉
L2 +O(~),

Since

supp(a) ∩
⋃

E∈[E0]

TE = ∅,

by Lemma 3.5, for every m ∈ [k~] and l ∈ [k~]− {m}:

〈ψm,~,OpAW
~ (a)ψm+l,~

〉
L2 = O

(
~1/2

1 + |l|d+1

)
.
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Thus, using Cauchy-Schwartz inequality,∑
m∈[k~]

∑
l∈[k~]−{m}

∣∣σm,~σm+l,~
〈
ψm,~,OpAW

~ (a)ψm+l,~
〉
L2

∣∣
≤
∑
m∈[k~]

∑
l∈[k~]−{m}

|σm|2 ×O
(

~1/2

1 + |l|d+1

)
= O(~1/2).

Therefore, any weak accumulation point of the sequence (W ~
ϕ~

) is supported on the set
⋃
E∈[E0] TE.

In other words:
µ ∈M[E](H),

for some [E] ∈ L−1
ω (1)/[Λω].

Proof of Theorem 1.8. Assume there exists a sequence (Ψ~) of eigenfunctions of Ĥ~ + ε~V̂~ with
associated semiclassical measure µ such that

µ(OH(z)) > 0. (3.54)

For every time scale τ = (τ~), the sequence of Wigner distributions associated to the functions

ϕτ~(t) := e−
itτ~
~ (Ĥ~+ε~V̂~)Ψ~ = e−

itτ~
~ λ~Ψ~

has the same weak limit µ. Then µ is invariant by the flow φ
〈L〉
t . This and the assumption

X〈L〉
∣∣
z
/∈ TzOH(z)

clearly contradict (3.54).



Chapter 4

Distribution of eigenvalues for
non-selfadjoint harmonic oscillators

Querido Rubén, los versos debieran publicarse
con todo su proceso, desde lo que usted llama

monstruo hasta la manera definitiva. Tendŕıan
entonces un valor como las pruebas de aguafuerte.

R. M. del Valle-Inclán. Luces de Bohemia.
El Marqués de Bradomı́n a Rubén Daŕıo.

In this chapter we focus on the study of the asymptotic distribution of eigenvalues for the non-
selfadjoint semiclassical operator (1.49):

P̂~ = Ĥ~ + ε~V̂~ + i~Â~,

where Ĥ~ is given by (1.23),

V̂~ = Op~(V ), Â~ = Op~(A), V, A ∈ S0(R2d),

and ε~ → 0 as ~→ 0. We prove Theorems 1.9 and 1.10. In Section 4.1 we explain the averaging
method for non-selfadjoint operators following the works of Sjöstrand [109] and Hitrik [57], and

we use it to obtain a normal form via conjugating P̂~ by a suitable Fourier integral operator.
In Section 4.2 we study the properties of the semiclassical measures associated to sequences of
quasimodes for P̂~ and, from these properties, we prove Theorem 1.9. Section 4.3 is devoted to
develop some tools of analytic symbolic calculus. Finally, in Section 4.4 we give the proof of
Theorem 1.10, which is based on a second conjugation of P̂~ by another Fourier integral operator
with analytic symbol.

91
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4.1. The averaging method in the non-selfadjoint case

We first recall how to perform a semiclassical averaging method in the context of nonselfadjoint
operators. This consists in averaging both the operators V̂~ and Â~ by the quantum flow generated
by Ĥ~ via conjugation by a suitable Fourier integral operator. Given a ∈ S0(R2d), we recall that
the quantum average 〈Op~(a)〉 of the operator Op~(a) was given by (1.41) and Proposition 1.1:

〈Op~(a)〉 := lim
T→∞

1

T

∫ T

0

ei
t
~ Ĥ~ Op~(a)e−i

t
~ Ĥ~ dt. (4.1)

Moreover, by Egorov’s theorem (see Lemma 2.8 ), which is exact in this case since H is polynomial
of order two:

〈Op~(a)〉 = Op~(〈a〉).

We also require the following nonselfadjoint version of Egorov’s theorem:

Lemma 4.1 (Non-selfadjoint Egorov’s theorem). Let G~(t) be a family of Fourier integral operators
of the form

G~(t) := e
it
~ (Ĝ1,~−i~Ĝ2,~), t ∈ R,

where Ĝj,~ = Op~(Gj) for Gj ∈ S0(R2d) and j = 1, 2. Then, for every t ∈ R and every a ∈ S0(R2d),
the following holds:

G~(t) Opw~ (a)G~(−t) = Opw~ (a ◦ φG1
t ) +Ot(~).

Proof. By [69, Thm. III.1.3.], the family G~(t) defines a strongly continuous semigroup on L2(Rd)
such that

‖G~(t)‖L(L2) ≤ e|t|‖Ĝ2,~‖L(L2) . (4.2)

Let t ≥ 0. For every r ∈ [0, t], we define

ar := a ◦ φG1
t−r.

By the product rule:

d

dr

(
G~(r) Op~(ar)G~(−r)

)
= G~(r)

(
i

~
[Ĝ1,~,Op~(ar)] + [Ĝ2,~,Op~(ar)] + Op~(∂rar)

)
G~(−r).

Using the symbolic calculus for Weyl pseudodifferential operators, we have

i

~
[Ĝj,~,Op~(ar)] = Op~({Gj, ar}) +O(~2), j = 1, 2.
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Moreover:
∂rar = −{G1, ar}.

These facts and (4.2) give:

G~(t) Op~(a)G~(−t)−Op~(a ◦ φG1
t ) =

∫ t

0

d

dr

(
G~(r) Op~(ar)G~(−r)

)
dr = Ot(~).

The goal of this section is to prove the following:

Lemma 4.2. There exists a Fourier integral operator F~ such that

P̂ †~ := F~P̂~F−1
~ = Ĥ~ + ε~〈V̂~〉+ i~〈Â~〉+ R̂~, (4.3)

where the reminder term R̂~ = Op~(R) satisfies:

Op~(<R) = OL(L2)(ε
2
~ + ~2), Op~(=R) = OL(L2)(ε~~). (4.4)

Proof. We define
F̂~ = Op~(F ) := Op~(ε~F1 + i~F2),

where F1 and F2 are two real valued and smooth functions on R2d that will be determined later
on. We make the assumption that all the derivatives of F1 and F2 are bounded. For every t in
[0, 1], we set

F~(t) = e
i
~ tF̂~ .

We shall denote F~ = F~(1) and we will study the properties of the conjugated operator

P̂ †~ := F~P̂~F−1
~ ,

for appropriate choices of F1 and F2. Precisely, we define the symbols F1 and F2 as the solutions
of the following cohomological equations (see Section 3.1.1):

{H,F1} = V − 〈V 〉, (4.5)

{H,F2} = A− 〈A〉. (4.6)

Observe that Fj are real valued for j = 1, 2. Using Taylor’s theorem we can write the conjugated

operator P̂ †~ as

P̂ †~ = F~P̂~F−1
~ = Ĥ~ + ε~V̂~ + i~Â~ +

i

~
[F̂~, Ĥ~]

+
i

~

∫ 1

0

F~(t)[F̂~, ε~V̂~ + i~Â~]F~(t)
−1dt

+

(
i

~

)2 ∫ 1

0

(1− t)F~(t)[F̂~, [F̂~, Ĥ~]]F~(t)
−1dt.
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Recall that, by the symbolic calculus for Weyl pseudodifferential operators,

i

~
[F̂j,~, Ĥ~] = Oph({Fj, H}), j = 1, 2.

Since F1 and F2 solve cohomological equations (4.5) and (4.6), we obtain

P̂ †~ = Ĥ~ + ε~〈V̂~〉+ i~〈Â~〉+ R̂~,

where

R̂~ = Op~(R) =
i

~

∫ 1

0

F~(t)[F̂~, K̂~(t)]F~(t)
−1dt, (4.7)

and
K̂~(t) = t(ε~V̂~ + i~Â~) + (1− t)(ε~〈V̂~〉+ i~〈Â~〉), t ∈ [0, 1].

The symbol of K̂~(t) is given by

K(t) = t(ε~V + i~A) + (1− t)(ε~〈V 〉+ i~〈A〉),

thus

Op~
(
<K(t)

)
= OL(L2)(ε~), Op~

(
=K(t)

)
= OL(L2)(~).

Using the pseudodifferential calculus one more time, one can show that

Op~
(
<[F,K(t)]~

)
= OL(L2)(ε

2
~ + ~2),

Op~
(
=[F,K(t)]~

)
= OL(L2)(ε~~),

where recall that [A,B]~ is the symbol of the commutator [Op~(A),Op~(B)]. Finally, observe that
Lemma 4.1 implies in particular that conjugation by F~(t) preserves the order of the real and

imaginary parts of the principal symbol. Then we obtain that the reminder term R̂~ satisfies

Op~(<R) = OL(L2)(ε
2
~ + ~2), Op~(=R) = OL(L2)(ε~~). (4.8)

4.2. Study of semiclassical measures

Note that, after conjugation by F~, the eigenvalue equation (1.50) is transformed into:

P̂ †~ v
†
~ = λ~ v

†
~ + r†~, ‖v†~‖L2 = 1, (4.9)
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where λ~ = α~ + i~β~, (α~, β~)→ (1, β) as ~→ 0+, and

v†~ =
F~v~

‖F~v~‖L2(Rd)

, r†~ =
F~r~

‖F~v~‖L2(Rd)

= o(~ε~).

Let (v†~) be a sequence satisfying (4.9). We consider the Wigner distribution W ~
v†~
∈ D′(R2d) (see

Section 2.6.3) associated to v†~:

W ~
v†~

: C∞c (R2d) 3 a 7−→ W ~
v†~

(a) :=
〈

Opw~ (a)v†~, v
†
~
〉
L2(Rd)

.

By Lemma 2.10, modulo extracting a subsequence, there exists a probability measure µ† ∈
P(H−1(1)) such that

W ~
v†~
⇀ µ†.

Proof of Proposition 1.2. From the identity (4.9), we have〈
P̂ †~ v

†
~, v
†
~
〉
L2 = λ~‖v†~‖

2
L2 +

〈
r†~, v

†
~
〉
L2 .

Taking imaginary parts, using ‖v†~‖L2 = 1 and r†~ = o(~ε~), we obtain:〈
〈Â~〉v†~, v

†
~
〉
L2 = β~ + o(ε~).

Recall that 〈Â~〉 = Op~(〈A〉) and hence, modulo the extraction of a subsequence,

lim
~→0+

〈
〈Â~〉v†~, v

†
~
〉
L2 =

∫
H−1(1)

〈A〉(z)µ†(dz).

Therefore:

β =

∫
H−1(1)

〈A〉(z)µ†(dz),

and the result holds.

Lemma 4.3. Let µ† be a semiclassical measure associated to the sequence (v†~). Then

suppµ† ⊂
{
z ∈ H−1(1) : β = 〈A〉(z)

}
. (4.10)

Proof. Denote, for any two operators P and Q:

bP,Qc := PQ+QP,

the anticommutator. Using the symbolic calculus for Weyl pseudodifferential operators, we have,
for every a ∈ C∞c (R2d),〈

[Ĥ~ + ε~〈V̂~〉,Op~(a)]v†~, v
†
~
〉
L2(Rd)

=
~
i

〈
Op~({H, a})v

†
~, v
†
~
〉
L2(Rd)

+O(ε~~).
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On the other hand, using identity (4.9), we also have〈
[Ĥ~ + ε~〈V̂~〉,Op~(a)]v†~, v

†
~
〉
L2(Rd)

= i~
〈
b(〈Â~〉 − β~),Op~(a)cv†~, v

†
~
〉
L2(Rd)

+O(ε~~)

= i~
〈

Op~
(
2a(〈A〉 − β~)

)
v†~, v

†
~
〉
L2(Rd)

+O(ε~~).

Then, taking limit ~→ 0+, the following equation holds:∫
R2d

{H, a}µ†(dz) = −
∫
R2d

2a
(
〈A〉(z)− β

)
µ†(dz).

This is equivalent to ∫
R2d

a(z)µ†(dz) =

∫
R2d

a ◦ φHt (z) e2t(〈A〉(z)−β)µ†(dz), (4.11)

for every t ∈ R. Moreover, for every a ∈ C∞c (R2d) such that a = 〈a〉, identity (4.11) implies:

0 =

∫
R2d

〈a〉(z)
(
1− e2t(〈A〉(z)−β)

)
µ†(dz), ∀t ∈ R. (4.12)

If z0 /∈ {z ∈ H−1(1) : β = 〈A〉(z)}, then we can fix a to be a smooth function that does not vanish
in a small neighborhood of z0. As a consequence, 〈a〉 does not vanish in a small neigborhood of
of the Kronecker tori issued from z0. Then µ†(〈a〉) = 0. This implies that z0 does not belong to
the support of µ† and concludes the proof.

Proof of Theorem 1.9. Let us now reproduce the same argument but suppose that a = 〈a〉, im-
plying in particular that {H, 〈a〉} = 0. From this, since <R = O(ε2

~ + ~2), we get

〈
[Ĥ~ + ε~〈V̂~〉+ Op~(<R),Op~(〈a〉)]v

†
~, v
†
~
〉
L2(Rd)

=
~ε~
i

〈
Op~({〈V 〉, 〈a〉})v

†
~, v
†
~
〉
L2(Rd)

+O(ε2
~~ + ε~~2 + ~3).

As before, one still has〈
[Ĥ~ + ε~〈V̂~〉+ Op~(<R),Op~(〈a〉)]v

†
~, v
†
~
〉
L2(Rd)

= 2i~
〈

Op~(〈a〉(〈A〉 − β~ + =R ~−1))v†~, v
†
~
〉
L2(Rd)

+O(‖r†~‖) +O(ε~~2).
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Hence,〈
Op~

((
2(〈A〉 − β~ + =R ~−1) + ε~X〈V 〉

)
〈a〉
)
v†~, v

†
~
〉
L2(Rd)

= O(‖r†~‖~
−1) +O(ε2

~) +O(ε~~),

where X〈V 〉 is the Hamiltonian vector field of 〈V 〉. Suppose now that 〈A〉 ≥ 0 and 〈a〉 ≥ 0. Using

the Fefferman-Phong inequality (Lemma 2.6) and the assumption ‖r†~‖ = o(ε~~), one gets that

2β~
〈

Op~ (〈a〉) v†~, v
†
~
〉
L2(Rd)

− 2
〈

Op~
(
=R ~−1〈a〉

)
v†~, v

†
~
〉
L2(Rd)

≥ ε~
〈

Op~
(
X〈V 〉〈a〉

)
v†~, v

†
~
〉
L2(Rd)

+O(~2) + o(ε~).

Now, we would like to show that β~/ε~ → +∞. To that end, we proceed by contradiction and
suppose that, up to an extraction, one has 2β~

ε~
→ c0 ∈ R+ (in particular β = 0). Recalling that

R was defined by (4.7), we can use the Weyl pseudodifferential calculus (see Section 2.3) and
Theorem 4.1 to show that there exists a symbol R0 ∈ S0(R2d) which does not depend on ~ such
that

=R ~−1 = ε~R0 + o(ε~), as ~→ 0.

Finally, using that ε~ � ~2 and Lemma 4.3 (note that if β = 0 then suppµ† ⊂ H−1(1)∩〈A〉−1(0)),
one obtains the existence of some constant C ≥ 0 which does not depend on a such that, after
letting ~→ 0+,

(c0 + C)µ† (〈a〉) ≥ µ†
(
X〈V 〉〈a〉

)
.

This implies that
d

dt

(
e−(c0+C)t

∫
R2d

〈a〉 ◦ φ〈V 〉t dµ†
)
≤ 0, ∀t ∈ R,

where φ
〈V 〉
t is the flow generated by X〈V 〉. Hence, for every t ≥ 0,∫

R2d

〈a〉 ◦ φ〈V 〉t (z)µ†(dz) ≤ e(c0+C)t

∫
R2d

〈a〉(z)µ†(dz). (4.13)

By condition (WGC) and compacity of the set H−1(1) ∩ 〈A〉−1(0), there exist some T > 0 such
that ∫ T

0

〈A〉 ◦ φ〈V 〉t (z)dt ≥ ε0 > 0, ∀z ∈ H−1(1) ∩ 〈A〉−1(0).

Let U be a small neighborhood of H−1(1). Taking a ∈ Cc(U) such that

〈a〉(z) = 〈A〉(z), ∀z ∈ H−1(1),

we obtain, by (4.13) and Lemma 4.3:

ε0 ≤
∫ T

0

∫
R2d

〈a〉 ◦ φ〈V 〉t (z)µ†(dz)dt ≤ 0,

which yields the expected contradiction and concludes the proof of the Theorem.
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4.3. Symbolic calculus in the spaces As
In order to prove Theorem 1.10, we start by introducing some basic lemmas about the spaces As.
First of all, we prove the following version of Calderón-Vaillancourt theorem:

Lemma 4.4 (Calderón-Vaillancourt Theorem). Let s > 0. For any a ∈ As(T ∗Td), the following
holds:

‖Op~(a)‖L(L2(Td)) ≤ Cd,s‖a‖s, (4.14)

for all ~ ∈ (0, 1].

Proof. By the standard Calderón-Vaillancourt theorem (Lemma 2.5), for any a ∈ C∞(T ∗Td),

‖Op~(a)‖L(L2(Td)) ≤ Cd
∑
|α|≤Kd

sup
z∈R2d

|∂αz a(z)|.

Then, using

sup
t≥0

tme−ts =
(m
se

)m
, m > 0, (4.15)

we obtain

sup
z∈R2d

|∂αz a(z)| ≤
∫
R2d

|wα||â(w)|dw ≤
(
|α|
se

)|α| ∫
R2d

|â(w)|e|w|sdw = Cα,s‖a‖s,

where â denotes the Fourier transform of a in R2d.

Let a, b ∈ As, the operator given by the composition Op~(a) Op~(b) is another pseudodifferential
operator with symbol c given by the Moyal product c = a]~b, which can be written by the following
integral formula (see Section 2.3):

c(z) = a]~b(z) =
1

(2π)4d

∫
R4d

â(w′)̂b(w − w′)e
i~
2
{Lw′ ,Lw−w′}eiw·zdw dw′, (4.16)

Recall the notation for the commutator

[a, b]~ := a]~b− b]~a.

Given a, F ∈ As, the following conjugation formula holds formally:

e
t
~ Op~(F ) Op~(a)e−

t
~ Op~(F ) = Op~(Ψ

F
~,ta),

where

ΨF
~,ta :=

∞∑
j=0

1

j!

(
it

~

)j
Ad]~,jF (a), t ∈ R, (4.17)

and
Ad]~,jF (a) = [F,Ad]~,j−1

F (a)]~, Ad]~,0F (a) = a.

The main goal of this section is to prove the following sharper version of the Egorov’s theorem:
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Lemma 4.5 (Analytic Egorov’s Theorem). Let 0 < σ < s/2. Consider the family of Fourier
integral operators {G~(t) : t ∈ R} defined by

G~(t) := e
it
~ (Ĝ1,~−i~Ĝ2,~),

where Ĝj,~ = Op~(Gj) and Gj ∈ As are real valued for j = 1, 2. Assume

Γ :=
|t|
(
‖G1‖s + ~‖G2‖s

)
σ2

≤ 1

2
.

Then, for every a ∈ As:

1. ΨG1−i~G2
~,t a ∈ As−σ.

2. a ◦ φG1
t ∈ As−σ.

3. ‖ΨG1−i~G2
~,t a− a ◦ φG1

t ‖s−2σ = Ot(~).

Before proceeding to the proof, we need some preliminary results.

Lemma 4.6. For every a, b ∈ As,
‖ab‖s ≤ ‖a‖s‖b‖s.

Proof. The proof makes use of the definition of ‖ · ‖s and the Young’s convolution inequality:

‖ab‖s =

∫
R2d

|âb(w)|es|w|dw

=

∫
R2d

∣∣∣∣∫
R2d

â(w − w′)̂b(w′)dw′
∣∣∣∣ es|w|dw

≤
∫
R2d

∫
R2d

|â(w − w′)|es|w−w′||̂b(w′)|es|w′|dw′ dw

≤ ‖a‖s‖b‖s.

Lemma 4.7. Let a, b ∈ As. Then, for every 0 < σ1 + σ2 < s, [a, b]~ ∈ As−σ1−σ2 and:

‖[a, b]~‖s−σ1−σ2 ≤
2~

e2σ1(σ1 + σ2)
‖a‖s‖b‖s−σ2 .
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Proof. By (4.16), we have

[a, b]~(z) = 2i

∫
R4d

â(w′)̂b(w − w′) sin

(
~
2
{Lw′ , Lw−w′})

)
eiw·z

(2π)4d
dw′ dw.

Then, using that
|{Lw′ , Lw−w′}| ≤ 2|w′||w − w′|, (4.18)

we obtain:

‖[a, b]~‖s−σ1−σ2

≤ 2~
(2π)4d

∫
R4d

|â(w′)||w′||̂b(w − w′)||w − w′|e(s−σ1−σ2)(|w−w′|+|w′|)dw′ dw

≤ 2~
(2π)4d

(
sup
r≥0

re−σ1r
)(

sup
r≥0

re−(σ1+σ2)r
)
‖a‖s‖b‖s−σ2

≤ 2~
e2σ1(σ1 + σ2)

‖a‖s‖‖s−σ2 .

Lemma 4.8. Let a, b ∈ As and 0 < σ < s. Then there exists Cσ > 0 such that

‖ i
~

[a, b]~ − {a, b}‖s−σ ≤ Cσ ~2‖a‖s‖b‖s. (4.19)

Proof. First write:

[a, b]~(z) + i~{a, b}(z)

= 2i

∫
R4d

â(w′)̂b(w − w′)
(

sin

(
~
2
{Lw′ , Lw−w′}

)
− ~

2
{Lw′ , Lw−w′}

)
eiw·z

(2π)4d
dw′ dw.

Using that

sin(x) = x− x2

2

∫ 1

0

sin(tx)(1− t)dt, x ∈ R,

and (4.18), we obtain:

‖[a, b]~ + i~{a, b}‖s−σ

≤ 4~3

(2π)4d

∫
R4d

|â(w′)||w′|3|̂b(w − w′)||w − w′|3e(s−σ)(|w−w′|+|w′|)dw′ dw

≤ Cσ ~3‖a‖s‖b‖s−σ2 .
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Lemma 4.9. Assume a, F ∈ As. Let 0 < σ < s and t ∈ R such that

Γ =
|t|‖F‖s
σ2

≤ 1

2
,

then ∥∥ΨF
~,ta− a

∥∥
s−σ ≤ Γ‖a‖s.

Proof. By definition (4.17), we have

‖ΨF
~,ta− a‖s−σ ≤

∞∑
j=1

1

j!

(
|t|
~

)j
‖Ad]~,jF (a)‖s−σ.

Now, for every j ≥ 1, we use Lemma 4.7 j-times to obtain

‖Ad]~,jF (a)‖s−σ ≤
2j~jj2j

e2jσ2jj!
‖a‖s‖F‖js.

By the Stirling formula,
jj

ej−1j!
≤ 1, j ≥ 1,

we finally obtain

‖ΨF
~,ta− a‖s−σ ≤

∞∑
j=1

|t|j‖F‖js
e2σ2j

‖a‖s ≤ Γ‖a‖s.

Corollary 4.1. Let a, F ∈ As. Assume F is real valued. Let 0 < σ < s and t ∈ R such that

Γ :=
|t|‖F‖s
σ2

≤ 1

2
,

then

‖a ◦ φFt − a‖s−σ ≤ Γ‖a‖s.

Proof. The proof use the same estrategy as the one of Lemma 4.9. Note that Lemma 4.7 also
holds for ~{a, b} instead of [a, b]~.

Proof of Lemma 4.5. Observe that point (1) is direct consequence of Lemma 4.9, while point (2)
is just Corollary 4.1. Let t ≥ 0. For every r ∈ [0, t], we define

ar := a ◦ φG1
t−r.
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By the Leibniz rule:

d

dr

(
ΨG1−i~G2

~,r ar
)

= ΨG1−i~G2
~,r

(
i

~
[G1, ar]~ + [G2, ar]~ + ∂rar

)
.

Moreover,
∂rar = −{G1, ar}.

Using Lemma 4.8, we have

‖ i
~

[Gj, ar]~ − {Gj, ar}‖s−σ = O(~2), j = 1, 2.

Finally, using these facts and Lemma 4.9 we conclude that:

‖ΨG1−i~G2
~,t a− a ◦ φG1

t ‖s−2σ ≤
∫ t

0

‖ d
dr

(
ΨG1−i~G2

~,r ar
)
‖s−2σdr = Ot(~).

To conclude the section, we prove the following:

Lemma 4.10. If a ∈ As then 〈a〉 ∈ As and ‖〈a〉‖s ≤ ‖a‖s.

Proof. By (3.5), we can write the Fourier transform of 〈a〉 as

〈̂a〉(w) =

∫
Tω
â ◦ ΦH

τ (w)hω(dτ).

Moreover, since â ◦ ΦH
τ (w) = â ◦ΦH

τ (w) thanks to unitary matrices (3.2), we have that 〈̂a〉 = 〈â〉.
Thus, using unitary matrices (3.2) one more time:

‖〈a〉‖s =

∫
R2d

|〈â〉(w)|es|w|dw

≤
∫
Tω

∫
R2d

|â ◦ ΦH
τ (w)|es|w|dw hω(dτ)

=

∫
R2d

|â(w)|es|w|dw = ‖a‖s.
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4.4. Existence of spectral gap in the analytic case

This section is devoted to prove Theorem 1.10. We recall from Section 4.1 that the non-selfadjoint
operator P̂~ = Ĥ~+ε~V̂~+i~Â~ was conjugated by a Fourier integral operator F~ to a new operator
P̂ †~ given by

P̂ †~ = Ĥ~ + ε~〈V̂~〉+ i~〈Â~〉+ R̂~.

In the analytic case, we can obtain the following analytic estimates on the remainder R̂~ (recall
that in this case we assumed that ε~ ≥ ~):

Proposition 4.1. If A, V ∈ Aρ,s, then for every σ < min{ρ, s/2}, the symbol R of the remainder

R̂~ = Op~(R) satisfies
‖<R‖s−2σ = O(ε2

~), ‖=R‖s−2σ = O(ε~~).

Proof. First we estimate the analytic norms of the solutions of the cohomological equations (4.5)
and (4.6). By (1.37), for every σ < ρ the following holds:

‖F1‖s ≤ ‖F1‖ρ−σ,s ≤
Cνν

(σe)ν
‖V ‖ρ,s,

‖F2‖s ≤ ‖F2‖ρ−σ,s ≤
Cνν

(σe)ν
‖A‖ρ,s.

On the other hand, recalling that the symbol of K̂~(t) is given by

K(t) = t(ε~V + i~A) + (1− t)(ε~〈V 〉+ i~〈A〉),

we use Lemma 4.10 to obtain

‖<K(t)‖s = O(ε~), ‖=K(t)‖s = O(~).

From this and Lemma 4.7, one can show that:

‖<[F,K(t)]~‖s−σ = O(ε2
~),

‖=[F,K(t)]~‖s−σ = O(ε~~).

Finally, for ~ sufficiently small, the condition

Γ~ =
~
σ2
‖F‖s−σ ≤

1

2

holds. Then we use Lemma 4.5 to conclude that

‖<R‖s−2σ = O(ε2
~), ‖=R‖s−2σ = O(ε~~).
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Lemma 4.11. Assume ε~ = ~ and σ < min{ρ, s/3}. Let F3 ∈ As−2σ, define the Fourier integral
operator

F̃~ := e
δ
~ Op~(〈F3〉), δ > 0.

Then there exists δ0 = δ0(s, σ, F3) > 0 such that, for every 0 < δ ≤ δ0,

P̂ ††~ := F̃~P̂
†
~ F̃
−1
~ = Ĥ~ + ~〈V̂~〉+ i~〈Â~〉 − iδ~Op~({〈F3〉, 〈V 〉}) + R̂′~,

where the remainder term R̂′~ = Op~(R
′) satisfies

‖R′‖s−3σ = O(δ2~). (4.20)

Proof. Recall that, by (4.17), for every a ∈ As−2σ we have

F̃~ Op~(a)F̃−1
~ = Op~

(
Ψ
−i〈F3〉
~,δ/~ a

)
,

where the symbol Ψ
−i〈F3〉
~,δ/~ a can be expanded as

Ψ
−i〈F3〉
~,δ/~ a =

∞∑
j=0

1

j!

(
δ

~

)j
Ad]~,j〈F3〉(a)

= a+
δ

~
[〈F3〉, a]~ +

(
δ

~

)2 ∫ 1

0

(1− t)Ψ−i〈F3〉
~,tδ/~

(
[〈F3〉, [〈F3〉, a]~]~

)
dt.

Using Lemmas 4.7 and 4.9, we obtain the existence of some δ0 = δ0(s, σ, F3) > 0 so that the
following estimate holds for every 0 < δ ≤ δ0:∥∥∥∥Ψ

−i〈F3〉
~,δ/~ a− a− δ

~
[〈F3〉, a]~

∥∥∥∥
s−3σ

≤ Cσδ
2‖a‖s−2σ. (4.21)

We use this estimate for a = ~〈V 〉, a = i~〈A〉 and a = R given by Proposition 4.1. Moreover, by
Lemma 4.8,

δ

~
Op~

(
[〈F3〉, ~〈V 〉]~

)
= −iδ~Op~

(
{〈F3〉, 〈V 〉}

)
+O(δ~3).

On the other hand,

[Op~(〈F3〉), Ĥ~] =
~
i

Op~({〈F3〉, H}) = 0,

hence F̃~Ĥ~F̃−1
~ = Ĥ~. The result then holds.
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Lemma 4.12. Assume ε~ � ~ and σ < min{ρ, s/3}. Let F3 ∈ As−2σ, define the Fourier integral
operator

F̃~ := e
1
ε~

Op~(〈F3〉).

Then
P̂ ††~ := F̃~P̂

†
~ F̃
−1
~ = Ĥ~ + ε~〈V̂~〉+ i~〈Â~〉 − i~Op~({〈F3〉, 〈V 〉}) + R̂′~,

where the remainder term R̂′~ = Op~(R
′) satisfies

‖R′‖s−3σ = o(~). (4.22)

Proof. By (4.17), for every a ∈ As−2σ, we have

F̃~ Op~(a)F̃−1
~ = Op~

(
Ψ
−i〈F3〉
~,1/ε~ a

)
,

where now the symbol Ψ
−i〈F3〉
~,1/ε~ a can be expanded as

Ψ
−i〈F3〉
~,1/ε~ a =

∞∑
j=0

1

j!

(
1

ε~

)j
Ad]~,j〈F3〉(a)

= a+
δ

ε~
[〈F3〉, a]~ +

(
1

ε~

)2 ∫ 1

0

(1− t)Ψ−i〈F3〉
~,t/ε~

(
[〈F3〉, [〈F3〉, a]~]~

)
dt.

Using Lemmas 4.7 and4.9 we obtain the following estimate for ~ sufficiently small:∥∥∥∥Ψ
−i〈F3〉
~,1/ε~ a− a−

1

ε~
[〈F3〉, a]~

∥∥∥∥
s−3σ

= O

(
~2

ε2
~

)
· ‖a‖s−2σ. (4.23)

We use this estimate for a = ε~〈V 〉, a = i~〈A〉 and a = R given by Proposition 4.1. Moreover, by
Lemma 4.8,

1

ε~
Op~

(
[〈F3〉, ε~〈V 〉]~

)
= −i~Op~

(
{〈F3〉, 〈V 〉}

)
+O(~3).

Finally, the result holds after observing that

[Op~(〈F3〉), Ĥ~] =
~
i

Op~({〈F3〉, H}) = 0,

and hence F̃~Ĥ~F̃−1
~ = Ĥ~.

Proof of Theorem 1.10. Assume first that ε~ = ~. Set

v††~ :=
F̃~F~v~

‖F̃~F~v~‖L2

.
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By the identity 〈
P̂ ††~ v††~ , v

††
~
〉
L2 = λ~‖v††~ ‖

2
L2 ,

we can use the Lemma 4.11 and take imaginary parts to get〈
Op~(〈A〉 − δ{〈F3〉, 〈V 〉})v††~ , v

††
~
〉
L2 = β~ +O(δ2).

Recall that −{〈F3〉, 〈V 〉} = X〈V 〉〈F3〉. Thus, modulo extracting a subsequence, there exists a
probability measure µ†† ∈ P(H−1(1)) such that

lim
~→0

〈
Op~(〈A〉+ δX〈V 〉〈F3〉)v††~ , v

††
~
〉
L2 =

∫
H−1(1)

(
〈A〉(z) + δX〈V 〉〈F3〉

)
µ††(dz).

Then

β =

∫
H−1(1)

(
〈A〉(z) + δX〈V 〉〈F3〉

)
µ††(dz) +O(δ2). (4.24)

Observe that, since 〈A〉 and 〈V 〉 are analytic, condition (WGC) implies that, for every point
z ∈ H−1(1) ∩ 〈A〉−1(0), there exists T > 01 such that∫ T

0

〈A〉 ◦ φ〈V 〉t (z)dt > 0.

Now define

〈F3〉(z) =
1

T

∫ T

0

∫ t

0

〈A〉 ◦ φ〈V 〉s (z) ds dt, z ∈ R2d. (4.25)

By Lemma 4.5, for T sufficiently small, 〈F3〉 ∈ As−σ. Moreover,

X〈V 〉〈F3〉 =
1

T

∫ T

0

〈A〉 ◦ φ〈V 〉t (z)dt > 0, ∀z ∈ H−1(1) ∩ 〈A〉−1(0).

Finally, substituting 〈F3〉 defined by (4.25) in (4.24) and taking δ > 0 sufficiently small, we obtain

β ≥ min
z∈H−1(1)

{
(1− δ)〈A〉(z) +

δ

T

∫ T

0

〈A〉 ◦ φ〈V 〉t (z)

}
+O(δ2) = ε(A, V ) > 0.

It remains to show (1.58) provided that ε~ � ~. Let T > 0 satisfying

T <
σ2

2‖〈V 〉‖s
, (4.26)

1Note that this T can be taken as small as necessary since the function t 7→ 〈A〉 ◦ φ〈V 〉
t (z) is analytic and then

it can not be flat at t = 0.



4.4. Existence of spectral gap in the analytic case 107

where σ < min{ρ, s/3}. Note that the function 〈F3〉 solves the cohomological equation

{〈V 〉, 〈F3〉} = A〈V 〉T (A)− 〈A〉, A〈V 〉T (A) :=
1

T

∫ T

0

〈A〉 ◦ φ〈V 〉t dt, (4.27)

and, moreover, by Corollary 4.1 and condition (4.26), it satisfies ‖〈F4〉‖s−σ ≤ 2T‖〈A〉‖s. We now
consider the Fourier integral operator

F̃~ := e
1
ε~

Op~(〈F3〉),

which verifies, in view of cohomological equation (4.27), that

P̂ ††~ = F̃~P̂
†
~ F̃
−1
~ = Ĥ~ + ε~〈V̂~〉+ i~〈Â~〉 − i~Op~({〈F4〉, 〈V 〉}) + R̂′~

= Ĥ~ + ε~〈V̂~〉+ i~Op~(A
〈V 〉
T (A)) + R̂′~.

By Lemma 4.12, the remainder term R̂′~ = Op~(R
′) satisfies

‖R′‖s−3σ = o(~)

provided that ε~ � ~. Finally, as we did before, we can set

v††~ :=
F̃~F~v~

‖F̃~F~v~‖L2

.

By the identity 〈
P̂ ††~ v

††
~ , v

††
~
〉
L2 = λ~‖v††~ ‖

2
L2 ,

we can take imaginary parts to get〈
Op~(A

〈V 〉
T (A))v††~ , v

††
~
〉
L2 = β~ + o(1).

Then, modulo the extraction a subsequence, there exists a probability measure µ†† ∈ P(H−1(1))
such that

β =

∫
H−1(1)

A〈V 〉T (A)(z)µ††(dz). (4.28)

The result then holds.



Chapter 5

Quantum limits for KAM families of
vector fields on the torus

—Siempre está usted descubriendo mediterráneos, amigo Mairena.

—Es el destino ineluctable de todos los navegantes, amigo Tortolez.

A. Machado. Juan de Mairena.

This chapter is devoted to the study of the asymptotic properties of solutions of the eigenvalue
problem

P̂ω,~ Ψ~ = λ~ Ψ~, ‖Ψ~‖L2(Td) = 1, (5.1)

where the semiclassical operator P̂ω,~ is given by

P̂ω,~ := ω · ~Dx + v(x;ω) · ~Dx −
i~
2

Div v(x;ω),

with ω ∈ Rd belonging to some neighborhood of a Cantor set of Diophantine frequencies, and
v ∈ Cω(Td × Rd;Rd). In Section 5.1 we state Egorov’s theorem in the particular case of linear
Hamiltonians. In Section 5.2 we recall a classical KAM theorem due to Moser [89] on small
perturbations of Diophantine vector fields on the torus. For the sake of simplicity, we will assume
analyticity of the involved vector fields but it is most likely that our results remain valid with
more general regularity assumptions. In the proof of the classical KAM theorem we will follow the
work of Pöschel [99] that simplifies the KAM iterative argument. In Sections 5.3 and 5.4 we prove
the main results of this chapter concerning the phase-space accumulation of mass of sequences of
eigenfunctions of P̂ω,~ as ~→ 0.

5.1. Egorov’s theorem for linear Hamiltonians

In this section we state Egorov’s theorem in the particular case of Hamiltonians with linear symbols
(see Section 2.5 for the general statement).

109
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Given V (x, ξ) = ξ ·v(x) and W (x, ξ) = ξ ·w(x) with v, w ∈ C∞(Td), as a consequence of (2.40),
we have:

[V,W ]~(x, ξ) =
~
i
{V,W}(x, ξ) =

~ ξ
i
·
(
[∂xw(x)]v(x)− [∂xv(x)]w(x)

)
, (5.2)

where {·, ·} stands for the Poisson bracket. Let

FT := {F (t, x, ξ) = ξ · f(t, x), f ∈ C∞([0, T ]× Td)}

be a smooth family of hamiltonians, we consider the classical system of Hamilton equations{
ẋ(t) = f(t, x(t)),

ξ̇(t) = −[∂xf(t, x(t))] ξ(t), 0 ≤ t ≤ T.
(5.3)

The solution of (5.3) for initial data (x, ξ) ∈ T ∗Td is given by the symplectic lift of the diffeomor-
phism φft :

ΦF
t (x, ξ) =

(
φft (x), [(∂xφ

f
t (x))T ]−1ξ

)
, (5.4)

where φft is the flow on Td solving the first equation of (5.3) with φf0(x) = x.
Reciprocally, let {φt : Td → Td : t ∈ [0, T ]} be a smooth family of diffeomorphisms of the

torus, then, denoting

f(t, x) =
d

dt
φt(x),

we can define the smooth family of linear hamiltonians

FT := {F (t, x, ξ) = ξ · f(t, x), f ∈ C∞([0, T ]× Td)},

with related flow ΦF
t given by (5.4).

As for the quantum counterpart, given F (x, ξ) = ξ · f(x) with f ∈ C∞(Td), the operator
Op~(F ) is essentially selfadjoint on H1(Td). Then, by Stone’s Theorem,{

UF
~ (t) := e−

i
~ tOp~(F ) : t ∈ R

}
defines a family of unitary operators on L2(Td). To be precise, the propagator is given by the
unitary transfer operator associated with the diffeomorphism φft :

UF
~ (t)u(x) = u

(
φft (x)

)√
| det dφft (x)|. (5.5)

More generally, let

FT := {F (t, x, ξ) = ξ · f(t, x), f ∈ C∞([0, T ]× Td)}
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be a smooth family of linear hamiltonians, then the operator equation{
~DtU

F
~ (t) + UF

~ (t) Op~(F ) = 0

UF
~
∣∣
t=0

= I, 0 ≤ t ≤ T,
(5.6)

has a unique solution of unitary operators {UF
~ (t)}0≤t≤T on L2(Td) given by (5.5), where φft in

this case denotes the flow associated to the time-dependent vector field f = f(t, x).

Lemma 5.1 (Egorov’s theorem for linear Hamiltonians). Let

FT := {F (t, x, ξ) = ξ · f(t, x), f ∈ C∞([0, T ]× Td)}

be a smooth family of linear hamiltonians and let V (x, ξ) := ξ · v(x) with v ∈ C∞(Td). Then

UF
~ (−t) Op~(V )UF

~ (t) = Op~(V ◦ ΦF
t ), 0 ≤ t ≤ T, (5.7)

where ΦF
t : T ∗Td → T ∗Td is the classical flow generated by the Hamiltonian F = F (t, ·).

Remark 5.1. Notice that this is an exact Egorov’s theorem.

Proof. The identiy is clearly true for t = 0. The left-hand-side of (5.7) satisfies the Heisenberg-von
Neumann equation

d

dt

(
UF
~ (−t) Oph(V )UF

~ (t)
)

=
i

~
[

Op~(F ), UF
~ (−t) Op~(V )UF

~ (t)
]
.

On the other hand, the right-hand-side of (5.7) satisfies the equation

d

dt
Op~(V ◦ ΦF

t ) = Oph({F, V ◦ ΦF
t }).

Then we have

d

ds

(
UF
~ (−s) Op~(V ◦ ΦF

t−s)U
F
~ (s)

)
= UF

~ (−s)
(
i

~
[
Op~(F ),Op~(V ◦ ΦF

t−s)
]
−Op~({F, V ◦ ΦF

t−s})
)
UF
~ (s),

and thus

UF
~ (−t) Op~(V )UF

~ (t)−Op~(V ◦ ΦF
t )

=

∫ t

0

UF
~ (−s)

(
i

~
[
Op~(F ),Op~(V ◦ ΦF

t−s)
]
−Op~({F, V ◦ ΦF

t−s})
)
UF
~ (s)ds.
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We observe that V ◦ ΦF
t is a linear symbol of the form:

V ◦ ΦF
t (x, ξ) = v ◦ φft (x) · [(∂xφft (x))T ]−1ξ,

where φft : Td → Td is the diffeomorphism of Td given by the solution of the evolution equation{
ẋ(t) = f(t, x(t)),

x(0) = x.

Using the exact formula for the commutator of two linear symbols, we obtain

i

~
[
Op~(F ),Op~(V ◦ ΦF

t−s)
]

= Op~({F, V ◦ ΦF
t−s}). (5.8)

We will also use the following version of Egorov’s theorem:

Lemma 5.2. Let
FT := {F (t, x, ξ) = ξ · f(t, x), f ∈ C∞([0, T ]× Td)}

be a smooth family of linear hamiltonians. Then, for every a ∈ C∞c (T ∗Td):

UF
~ (−t) Op~(a)UF

~ (t) = Op~(a ◦ ΦF
t ) +OT (~2), 0 ≤ t ≤ T, (5.9)

where the OT is taken in the L2 → L2 strong operator norm.

The proof is standard and follows the same scheme as the one given in the proof of Lemma 5.1.
The commutator appearing instead of (5.8) is not exact in this case, but it can be bounded using
the commutator rule for pseudodifferential calculus and the Calderón-Vaillancourt theorem. The
error term ~2 is genuine of the Weyl quantization. We omit the details here and refer the reader
to [25].

5.2. A classical KAM theorem

In this section we recall the result of Pöschel [99]. We use the Diophantine property (1.60) for
the sake of simplicity, but the more general Rüssmann condition considered in [99] would be valid
aswell.

Theorem 5.1 ([99]). Let Ω ⊂ Rd be a compact set of strongly nonresonant frequencies, that is,
ω ∈ Ω satisfies (1.60). Let s, ρ > 0 and V ∈ Ls,ρ such that

|V |s,ρ = ε <
ρ

16
≤ ς

32λγ
, (5.10)
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where λ is so large that

r := 8γ

(
1 + log λ

λ

)
<
s

2
. (5.11)

Then there exists a real map ϕ : Ω → Ωρ, and for every ω ∈ Ω a real analytic diffeomorphism θω
of the d-torus such that, denoting

Θω(x, ξ) =
(
θω(x), [(∂xθω(x))T ]−1ξ

)
,

the following holds: (
Lϕ(ω) + V (·;ϕ(ω))

)
◦Θω = Lω. (5.12)

Moreover,

sup
ω∈Ω
|ϕ(ω)− ω| ≤ 7ε, sup

ω∈Ω
sup
x∈Td
|θω(x)− x| ≤ r ς−1λγε. (5.13)

5.2.1. Symbolic calculus in the spaces Ls

We first prove the following two technical lemmas.

Lemma 5.3. Let V ∈ Ls
1 and W ∈ Ls′. Then, for 0 < r < min{s, s′},

|{V,W}|r ≤
1

e

(
1

s− r
+

1

s′ − r

)
|V |s|W |s′ .

Proof. By definition,

V (x, ξ) = ξ · v(x) =
∑
k∈Zd

ξ · v̂(k)ek(x),

W (x, ξ) = ξ · w(x) =
∑
k∈Zd

ξ · ŵ(k)ek(x).

We have

[∂xv(x)]w(x) =
∑
k,l∈Zd

(
ik · ŵ(l)

)
v̂(k)ek+l(x) =

∑
k,l∈Zd

(
ik · ŵ(l − k)

)
v̂(k)el(x),

[∂xw(x)]v(x) =
∑
k,l∈Zd

(
il · v̂(k)

)
ŵ(l)ek+l(x) =

∑
k,l∈Zd

(
i(l − k) · v̂(k)

)
ŵ(l − k)el(x).

1That is V (x, ξ) = v(x) · ξ. We emply lower case letters to denote the vector depending on x.
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Then, using the second equality of (5.2) and the Young’s convolution inequality,

|{V,W}|r ≤
∑
k,l∈Zd

(
|k|+ |l − k|

)
|v̂(k)||ŵ(l − k)|e|l|r

≤
∑
k,l∈Zd

(
|k|+ |l − k|

)
|v̂(k)|e|k|r|ŵ(l − k)|e|l−k|r

≤
(

sup
t≥0

te−(s−r)t + sup
t≥0

te−(s′−r)t
) ∑
k,l∈Zd

|v̂(k)|e|k|s|ŵ(l − k)|e|l−k|s′

≤ 1

e

(
1

s− r
+

1

s′ − r

)(∑
k∈Zd
|v̂(k)|e|k|s

)(∑
l∈Zd
|ŵ(l)|e|l|s′

)

≤ 1

e

(
1

s− r
+

1

s′ − r

)
|V |s|W |s′ .

Lemma 5.4. Let F ∈ Ls+λσ with 0 < σ < s and λ > 0. If

β :=
|F |s+λσ
σ

≤ 1

2
,

then
|V ◦ ΦF

t |s−σ ≤ (1 + βt)e1/λ|V |s, 0 ≤ t ≤ 1.

Proof. The proof follows by estimating the Lie series expansion of V ◦ ΦF
t . Formally, we have

V ◦ ΦF
t =

∞∑
n=0

tn

n!
AdnF (V ),

where AdnF (V ) = {F,Adn−1
F (V )} for n ≥ 1 and Ad0

F (V ) = V . By the preceding lemma, for every
n ≥ 1,

|AdnF (V )|s−σ = |{F,Adn−1
F (V )}|s−σ

≤
(

1

eσ
+

1

eλσ

)
|Adn−1

F (V )|s−n−1
n
σ‖F‖s+λσ

=
n

eσ

(
1 +

1

λn

)
|Adn−1

F (V )|s−n−1
n
σ‖F‖s+λσ.
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Applying this step n times, we obtain

|AdnF (V )|s−σ ≤
( n
eσ

)n
e1/λ‖V ‖s‖F‖ns+λσ.

Summing up and replacing σ−1|F |s+λσ by β we get

|V ◦ ΦF
t |s−σ ≤ e1/λ|V |s

∞∑
n=0

1

n!

(
nβt

e

)n
.

With the Stirling estimate

n! ≥ nn

en−1
, n ≥ 1,

and 0 ≤ βt ≤ 1/2, we conclude that

∞∑
n=0

1

n!

(
nβt

e

)n
≤ 1 +

∑
n≥1

(βt)n

e
≤ 1 + βt.

5.2.2. Outline of the proof

We first recall the general structure of the iterative KAM argument. We aim at finding suitable
sequences of positive real numbers (sj)j≥1, (ρj)j≥1 so that

s = s0 > s1 > · · · → s− 2r > 0,

ρ = ρ0 > ρ1 > ρ2 > · · · → 0,

for some 0 < r < s/2, a sequence of real analytic maps ϕN : ΩρN → Ωρ, and a sequence of real
analytic transformations θN : DsN × ΩρN → Ds such that, denoting

ΘN(x, ξ;ω) := (θN(x;ω), [(∂xθN(x;ω))T ]−1ξ),

the following holds: (
LϕN (ω) + V (·;ϕN(ω))

)
◦ΘN(·;ω) = Lω + VN(·;ω). (5.14)

Moreover, the remainder term VN ∈ LsN ,ρN satisfies

|VN |sN ,ρN ≤ qN |V |s,ρ (5.15)
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for some universal constant 0 < q < 1, and the transformation (ϕN , θN) satisfies the following
uniform estimates:

sup
ω∈ΩρN

|ϕN(ω)− ω| ≤ 7ε, sup
ω∈ΩρN

sup
z∈DsN

|θN(z;ω)− z| ≤ rς−1 λγε. (5.16)

The proof concludes by applying Weierstrass and Montel theorems to obtain, modulo a subse-
quence, a real map

ϕ = lim
N→∞

ϕN ,

and a real analytic diffeomorphism of the torus Td,

θω = lim
N→∞

θN(·;ω),

verifying (5.12) and (5.13).

5.2.3. Step Lemma

The key ingredient in the proof of Theorem 5.1 is the following step lemma, which will be iterated
successively.

Lemma 5.5. Let 0 < σ < s/2, and λ ≥ 1. Set α = 1− e−λσ, and let V ∈ Ls,ρ be such that

|V |s,ρ = ε < min
{ ρ

2α
,
ς

4λγ

}
, ρ ≤ ς

2λγ
. (5.17)

Then there exist two real analytic functions ψ : Ωρ−2ε → Ωρ and φ : Ds−2σ × Ωρ−2ε → Ds such
that, denoting

Φ(x, ξ;ω) = (φ(x;ω), [(∂xφ(x;ω))T ]−1ξ),

the following holds: (
Lψ(ω) + V (·;ψ(ω))

)
◦ Φ(·;ω) = Lω + V +(·;ω), (5.18)

where

|V +|s−2σ,ρ−2ε ≤ qε,

and

q = (1− α + α2β)(1 + β)eα, β := 2ς−1λγε.

Moreover,

sup
ω∈Ωρ−2ε

|ψ(ω)− ω| ≤ αε, sup
z∈Ds−2σ

sup
ω∈Ωρ−2ε

|φ(z;ω)− z| ≤ βσ.
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Proof. The idea of the proof is to split V into an infrared part V1 and a (mostly) ultraviolet part
V2 and obtain Φ as the time-1-map of a flow ΦF

t , with F solving the cohomological equation

{Lω, F} = V1 − 〈V1〉, (5.19)

where
〈V1〉(ξ;ω) := ξ · v̂(0;ω).

Using Taylor’s theorem, one can write

(Lω + V ) ◦ ΦF
1 = Lω + {F,Lω}+

∫ 1

0

(1− t){F, {F,Lω}} ◦ ΦF
t dt

+ V1 +

∫ 1

0

{F, V1} ◦ ΦF
t dt+ V2 ◦ ΦF

1 .

Substituting the cohomological equation (5.19), this can be simplified as

(Lω + V ) ◦ ΦF
1 = Lω + 〈V1〉+R,

where

R =

∫ 1

0

{F,Wt}dt+ V2 ◦ ΦF
1 ,

and
Wt = tV1 + (1− t)〈V1〉, t ∈ [0, 1].

The transformation ψ will be obtained as the inverse, defined in a suitable subdomain of Ωρ, of
the map

ω 7−→ ω + v̂(0;ω).

This yields (
Lψ(ω) + V (·;ψ(ω))

)
◦ Φ

F (·;ψ(ω))
1 (·;ψ(ω)) = Lω +R(·;ψ(ω)).

Finally, defining
V +(·;ω) := R(·, ψ(ω)), Φ(·;ω) := Φ

F (·;ψ(ω))
1 (·;ψ(ω)),

we obtain (5.18).
Now we proceed to the heart of the proof. Define

V2(x, ξ;ω) :=
∑
|k|≥λ

ξ · v̂(k;ω)ek(x) + (1− α)
∑
|k|<λ

ξ · v̂(k;ω)e|k|σek(x).

Since e−λσ = 1− α,
|V2|s−σ,ρ ≤ (1− α)|V |s,ρ = (1− α)ε.
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On the other hand, the remainder term V1 is a trigonometric polynomial

V1(x, ξ;ω) =
∑

0≤|k|<λ

ξ · v̂1(k;ω)ek(x), v̂1(k, ω) := (1− (1− α)e|k|σ)v̂(k;ω),

which can be bounded in a stronger norm | · |s+σ̃,ρ, with σ̃ = σ(1− α)/α:

|V1|s+σ̃,ρ ≤ sup
0≤t≤λ

(1− (1− α)etσ)etσ̃
∑
|k|<λ

sup
ω∈Ωρ

|v̂(k;ω)|e|k|s ≤ αε.

The cohomological equation (5.19) is solved by

F (x, ξ;ω) = ξ · f(x;ω) =
∑

0<|k|<λ

ξ · v̂1(k;ω)

ik · ω
ek(x).

For any ω ∈ Ωρ we can choose ω0 ∈ Ω with

|ω − ω0| < ρ ≤ ς

2λγ
,

and hence, in view of Λ(λ) = λ∆(λ),

|k · (ω − ω0)| ≤ |k||ω − ω0| ≤ λρ ≤ λς

2λγ
=

ς

2λγ−1
.

On the other hand, as ω0 satisfies (1.60), we have

|k · ω| ≥ |k · ω0| − |k · (ω − ω0)| ≥ ς

λγ−1
− ς

2λγ−1
=

ς

2λγ−1
.

Then, using α = 1− e−λσ ≤ λσ and the definition β := 2ς−1λγε, we get

|F |s+σ̃,ρ ≤ 2ς−1λγ−1|V1|s+σ̃,ρ ≤ 2ς−1λγ−1αε ≤ βσ. (5.20)

In particular, by (5.17), |F |s+σ̃,ρ ≤ σ, so the function f(·;ω) generates a flow

φft (·;ω) : Ds−2σ → Ds−σ

such that

sup
z∈Ds−2σ

|φft (z;ω)− z| ≤ sup
z∈Ds−2σ

∫ t

0

|f(φfu(z;ω);ω)|du ≤ βσ,

for all ω ∈ Ωρ and all t ∈ [0, 1]. We define φ := φf1 .
To estimate V +, observe that

|Wt|s+σ̃,ρ ≤ t|V1|s+σ̃,ρ + (1− t)|〈V1〉|s+σ̃,ρ ≤ αε,
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and

(s+ σ̃)− (s− σ) =
1− α
α

σ + σ =
σ

α
.

Lemma 5.3 thus implies

|{F,Wt}|s−σ,ρ ≤
α

σ
|Wt|s+σ̃,ρ|F |s+σ̃,ρ ≤ λγ2ς−1α2ε2 = α2βε.

Since F satisfies (5.20), we can apply Lemma 5.4 to obtain∫ 1

0

|{F,Wt} ◦ ΦF
t |s−2σdt ≤ (1 + β)eα|{F,Wt}|s−σ ≤ α2β(1 + β)eαε.

Analogously,
|V2 ◦ ΦF

t |s−2σ ≤ (1 + β)eα|V2|s−σ ≤ (1− α)(1 + β)eαε.

Both estimates together yield the stated estimate of V +.
It remains to prove the existence of a map ψ : Ωρ−2ε → Ωρ such that

ψ(ω + v̂(0;ω)) = ω.

It follows from the following lemma:

Lemma 5.6. Assume f : Ωρ → Cd is analytic and

sup
ω∈Ωρ

|f(ω)− ω| ≤ ε <
ρ

2
.

Then f has an analytic inverse ψ : Ωρ−2ε → Ωρ, and

sup
ω∈Ωρ−2ε

|ψ(ω)− ω| ≤ ε.

Proof. By the Cauchy’s inequality, for any 0 < ρ′ < ρ− 2ε,

sup
ω∈Ωρ′+ε

|Df(ω)− ω| ≤
supω∈Ωρ |f(ω)− ω|

ρ− (ρ′ + ε)
≤ ε

ρ− (ρ′ + ε)
< 1.

Therefore, the operator
T : ψ 7→ Id−(f − Id) ◦ ψ

defines a contraction on the space of analytic maps

Aρ,ρ′,ε := {ψ : Ωρ′ → Ωρ , sup
ω∈Ωρ′

|ψ(ω)− ω| ≤ ε}.

Its unique fixed point ψ is the analytic inverse of f on Ωρ′ . Letting ρ′ → ρ − 2ε we obtain the
claim. Note that we can take the limit since, for all ρ′ < ρ− 2ε,

ψ : Ωρ′ → Ωρ,

hence we can define ψ in the open set Ωρ−2ε.
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Finally, since

sup
ω∈Ωρ

|v̂(0;ω)| ≤ |V1|s,ρ ≤ αε <
ρ

2
,

Lemma 5.6 implies the existence of ψ : Ωρ−2ε → Ωρ such that

ψ(ω + v̂(0;ω)) = ω,

and
sup

ω∈Ωρ−2ε

|ψ(ω)− ω| ≤ αε.

This concludes the proof of the step lemma.

5.2.4. Iteration

We explain now how to iterate the Step Lemma. First observe that one can fix 0 < α < 1 and
0 < β ≤ 1/2 so that

q = (1− α + α2β)(1 + β)eα < 1.

One possible choice of the constants is α = 1/2 and β = 1/16. This provides

q ≈ 9

10
.

Now assume ε0, s0, ρ0, λ0 > 0 satisfy the following initial condition:

|V |s0,ρ0 = ε0 < min

{
1− q
2α

ρ0,
ςβ

2λγ0

}
, ρ0 ≤

ς

2λγ0
, (5.21)

Define geometric sequences

εN = ε0q
N , ρN = ρ0q

N , λN = λ0q
−N/γ.

and define also σN and sN through

1− α = e−λNσN , sN+1 = sN − 2σN .

With these sequences, one can apply the Step Lemma repeatedly. Indeed,

εNλ
γ
N = ε0λ

γ
0 < β ≤ 1

2
, ρNλ

γ
N = ρ0λ

γ
0 <

ς

2
,

and

εN <
1− q

2
ρN ,

ρN − 2εN
ρN+1

=
ρ0 − 2ε0

qρ0

≥ 1.
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Then we obtain sequences ψN : ΩρN → ΩρN−1
and φN : DsN × ΩρN → DsN−1

such that, defining:

ϕ0 := Id : Ωρ0 → Ωρ0 ,

ϕN := ψ1 ◦ · · · ◦ ψN : ΩρN → Ωρ0 ,

ϕj,N := ϕ−1
j ◦ ϕN : ΩρN → Ωρj , j = 0, . . . , N,

θN := φ1(·;ϕ1,N(·)) ◦ · · · ◦ φN(·;ϕN,N(·)) : ΩρN ×DsN → Ds0 ,

ΘN :=
(
θN , [(dxθN)T ]−1

)
,

identity (5.14) and estimate (5.15) hold. Note that

φj(·;ϕj,N(ω)) = φ
fj,N
t |t=1, j = 1, . . . , N, (5.22)

where fj,N = fj(·;ϕj,N(ω)) and the fj are obtained at each application of the step lemma. More-
over,

sup
ω∈ΩρN

|ϕN(ω)− ω| ≤
N−1∑
j=0

sup
ω∈ΩρN

|ϕj,N(ω)− ϕj+1,N(ω)|

≤
N−1∑
j=0

sup
ω∈Ωρj

|ψj(ω)− ω|

≤ αε0

N−1∑
j=0

qj ≤ αε0

1− q
,

and

sup
z∈DsN

sup
ω∈ΩρN

|θN(z;ω)− z| ≤
N−1∑
j=0

sup
ω∈Ωρj

sup
z∈Dsj

|φj(z;ω)− z|

≤ β
N−1∑
j=0

σj.

It remains to prove that, for λ0 sufficiently large, the sequence (sj) converges to a positive number.
Indeed,

∞∑
N=1

1

λN
≤ 1

λ0

∫ ∞
0

qu/γdu =
1

λ0

γ

log q−1
.
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Then, requiring λγ0 ≥ q−1, we obtain

∞∑
N=0

1

λN
≤ 1

log q−1

γ(1 + log λ0)

λ0

.

From this, it follows that

r :=
∞∑
N=0

σN =
∑
N≥0

log(1− α)−1

λN
≤ log(1− α)

log q−1
· γ(1 + log λ0)

λ0

.

Hence, by choosing λ0 sufficiently large, we can achieve that r < s/2, and thus

sN → s− 2r > 0.

The choice of the constants α = 1/2 and β = 1/16 provides

log(1− α)

log q
≤ 8.

Thus, the hypothesis of Theorem 5.1 are sufficient to obtain (5.21) and thus to initialize the Step
Lemma.

5.2.5. Isotopic deformation of the diffeomorphism θω

In this section we prove the following:

Proposition 5.1. There exists a smooth isotopy Hω : [0, 1]× Td → Td so that

Hω(0, ·) = Id, Hω(1, ·) = θω.

Proof. The diffeomorphism θω : Td → Td is given by

θω = lim
N→∞

θN(·;ω) = lim
N→∞

φ
f1,N
t ◦ · · · ◦ φfN,Nt

∣∣
t=1
,

for some real analytic functions fj,N : Ds−2r → C. With the notation of (5.22),

fj,N(z) = fj(z;ϕj,N(ω)), j = 1, . . . , N.

We recover the time dependence to define:

HN(t; z) = φ
f1,N
t ◦ · · · ◦ φfN,Nt (z), t ∈ [0, 1].

The sequence (HN) is uniformly bounded in z ∈ Ds−2r. Moreover, it is uniformly bounded and
equicontinuous in t ∈ [0, 1]. Indeed, the following holds:
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Lemma 5.7. Let 0 < 2r < s′ < s. Then, for every N ≥ 1:

sup
t∈[0,1]

sup
z∈Ds−2r

|HN(t, z)− z| ≤ r,

sup
t∈[0,1]

sup
z∈Ds′−2r

∣∣∣∣ ddtHN(t; z)

∣∣∣∣ ≤ reΓr;

where

Γ :=
1

e(s− s′)
.

Proof. For every 1 ≤ j ≤ N ,

d

dt
φ
fj,N
t (z) = fj,N(φ

fj,N
t (z))

φ
fj,N
0 (z) = z

 . (5.23)

Denoting Fj,N(x, ξ) := ξ · fj,N(x), by (5.20) and Section 5.2.4,

sup
z∈Ds−r

|fj,N(z)| ≤ |Fj,N |s−r ≤ σj−1, (5.24)

where the sequence (σj) satisfies

r =
∞∑
j=0

σj <
s

2
.

By (5.23) and (5.24),

sup
z∈Ds−2r

|φfj,Nt (z)− z| ≤ sup
z∈Ds−2r

∫ t

0

|fj,N(φfj,Nu (z))|du ≤ σj−1,

and thus

sup
z∈Ds−2r

|HN(t, z)− z| ≤
N−1∑
j=0

σj ≤ r.

On the other hand,

d

dt
∂zφ

fj,N
t (z) =

[
∂zfj,N

(
φ
fj,N
t (z)

)]
∂zφ

fj,N
t (z).
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Since ∂zφ
fj,N
0 (z) = Id and, in view of (5.24), for every 2r < s′ < s,

sup
z∈Ds′−r

|∂zfj,N(z)| ≤ |∂zFj,N |s′−r

≤
∑
k∈Zd
|k||f̂j,N(k)|e|k|(s′−r)

≤ sup
u≥0

u e−u(s−s′)|Fj,N |s−r

≤ σj−1

e(s− s′)
= Γσj−1,

we can use the Gronwall inequality to obtain

sup
z∈Ds′−r

|∂zφ
fj,N
t (z)| ≤ eΓσj−1 .

Therefore, using the chain rule

d

dt
(φft ◦ g(t, z)) = f

(
φft ◦ g(t, z)

)
+
[
∂zφ

f
t (g(t, z))

] d
dt
g(t, z)

successively, we get

sup
t∈[0,1]

sup
z∈Ds′−2r

∣∣∣∣ ddtHN(t, z)

∣∣∣∣ ≤ σ0 + eΓσ0σ1 + · · ·+ eΓ(σ0+···+σN−2)σN−1 ≤ reΓr.

Then by Arzela-Ascoli and Montel theorems, modulo extracting a subsequence, there exists a
limit Hω(t, z) which is analytic in the variable z ∈ Ds′−2r and continuous in the variable t ∈ [0, 1].
Moreover, Hω(1, ·) = θω and Hω(0, ·) = Id.

Finally, by the Whitney approximation theorem [75, Thm. 6.29], there exists a smooth homo-
topy

Hω : [0, 1]× Td → Td

with Hω(0, ·) = Id and Hω(1, ·) = θω. This concludes the proof of Proposition 5.1.
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5.3. Construction of the unitary operator Uω
Proof of Theorem 1.12. By Proposition 5.1, there exists a smooth homotopy Hω : [0, 1]×Td → Td
such that

Hω(0, x) = x, Hω(1, x) = θω(x).

We define the vector field

f(t, x) :=
d

dt
Hω(t, x),

and the associated smooth family of hamiltonians

FT = {F (t;x, ξ) = f(t, x) · ξ, t ∈ [0, 1]}. (5.25)

We construct the operator Uω as the solution at time t = 1 of the operator equation{
~DtU

F
~ (t) + UF

~ (t) Op~(F ) = 0

UF
~
∣∣
t=0

= I, 0 ≤ t ≤ 1,
(5.26)

for the family (5.25). Finally, the exact Egorov’s theorem given by Lemma 5.1 implies

U∗ω P̂ϕ(ω),~ Uω = Op~
(
(Lϕ(ω) + V (·;ϕ(ω))) ◦ ΦF

1

)
,

and, since
Θω(x, ξ) := ΦF

1 (x, ξ) =
(
θω(x), (∂xθω(x)T )−1ξ

)
,

we conclude using Theorem 5.1:

U∗ω P̂ϕ(ω),~ Uω = Op~
(
(Lϕ(ω) + V (·;ϕ(ω))) ◦Θω

)
= L̂ω,~.

5.4. Semiclassical measures and quantum limits

In this section we prove Theorems 1.11 and 1.13. First we give the proof of Proposition 1.3:

Proof of Proposition 1.3. We recall that the point-spectrum of L̂ω,~ is given by

Spp
L2(Td)

(
L̂ω,~

)
= {λk,~ = ~ω · k : k ∈ Zd}.

Each eigenvalue has multiplicity equal to 1 due to the nonresonant condition on ω. The associated
eigenfunction is just

ek(x) =
eik·x

(2π)d/2
.
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By a direct calculation using identity (2.42) for the Wigner distribution on the torus, for every
test function a ∈ C∞c (T ∗Td), the following holds:

W ~
ek

(a) =
1

(2π)d

∫
Td
a(x, ~k) dx, k ∈ Zd.

Equivalently, W ~
ek

= hTd×{~k}. Given a sequence

λkj ,~j = ~j ω · kj → 1, as ~j → 0, (5.27)

the only possible accumulation points of the sequence (~jkj) are precisely those points ξ ∈ L−1
ω (1),

and then the only possible accumulation points of subsequences of measures (Wekj
) are hTd×{ξ} for

some ξ ∈ L−1
ω (1). Reciprocally, any point ξ ∈ L−1

ω (1) can be obtained as the limit of a sequence
(~jkj) satisfying (5.27), and hence any measure hTd×{ξ} is the semiclassical measure associated to

a sequence of eigenfunctions. In other words, µ ∈M
(
L̂ω,~

)
if an only if µ = hTd×{ξ} for some point

ξ ∈ L−1
ω (1).

The second assertion is trivial since

|ek(x)|2 =
1

(2π)d
, k ∈ Zd.

Proof of Theorems 1.11 and 1.13. Since

L̂ω,~ = U∗ω P̂ϕ(ω),~ Uω,

where Uω is unitary on L2(Td), the spectrum of P̂ϕ(ω),~ is the same as the spectrum of L̂ω,~, and
the eigenfunctions are precisely

Ψk = Uωek, k ∈ Zd.

Then, applying Lemma 5.2,

W ~
Ψk

(a) = W ~
ek

(a ◦Θω) +O(~2), a ∈ C∞c (T ∗Td),

and similarly, using (5.5),∫
Td
b(x)|Ψk(x)|2dx =

∫
Td
b ◦ θω(x)|ek(x)|2dx, b ∈ C∞(Td), (5.28)

and then the proofs of Theorems 1.11 and 1.13 reduce to the proof of Proposition 1.3.
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Proof of Corollary 1.1. We can fix constants 0 < ~0 ≤ 1, s0 = s, 0 < ρ0 ≤ ρ and r0 such that,
for every 0 < ~ ≤ ~0, conditions (5.10) and (5.11) hold for ε~V instead of V . Then, applying
Theorem 5.1, there exist ϕ~ : Ω→ Ωρ and θω,~ : Td → Td satisfying(

Lϕ~(ω) + ε~V (·;ϕ(ω))
)
◦Θω,~ = Lω,

where Θω,~ =
(
θω,~, [(dθω,~)

T ]−1
)
, and

sup
ω∈Ω
|ϕ~(ω)− ω| ≤ C1ε~, sup

ω∈Ω
sup
x∈Td
|θω,~(x)− x| ≤ C2ε~.

Thus we can apply Theorem 1.12 to obtain a sequence of unitary operators U εω,~ conjugating

P̂ ε
ϕ~(ω),~ into L̂ω,~. Using the same argument as in the proof of Theorem 1.11, we apply (5) to

conclude ∫
Td
b(x)|Ψk,~(x)|2dx =

∫
Td
b ◦ θω,~(x)|ek(x)|2dx

=

∫
Td
b(x)|ek(x)|2dx+O(ε~),

for every b ∈ C∞(Td). The result then holds by Proposition 1.3.



Chapter 6

Renormalization of semiclassical KAM
operators

Cet univers désormais sans mâıtre ne lui parâıt ni stérile ni futile. Chacun
des grains de cette pierre, chaque éclat minéral de cette montagne plein de nuit,

à lui seul, forme un monde. La lutte elle-même vers les sommets suffit
à remplir un coeur d’homme. Il faut imaginer Sishyphe heureux.

A. Camus. Le mythe de Sishyphe.

This chapter is devoted to study the renormalization problem in the semiclassical framework.
Given V ∈ As(T ∗Td), we aim at finding an integrable counterterm R~ = R~(V ) ∈ As/2(Rd) that
only depends on ξ so that the operator

Q̂~ = L̂ω,~ + ε~ Op~(V −R~)

is unitarily equivalent to the unperturbed operator L̂ω,~. In Section 6.1 we will construct a normal

form for Q̂~ which will allow us to obtain R~ step by step. Precisely, we will use an algorithm
similar to that of Govin et. al. in [47] for the finite dimesional case. Our proof of the convergence
will use standard ideas of classic KAM theory adapted to the Weyl pseudodifferential calculus for
analytic symbols. In Section 6.2 we will obtain the characterization of the set of quantum limits
and semiclassical measures for Q̂~. The key ingredient will be a precise estimate of the remainder
terms appearing in the analytic symbolic calculus.

6.1. KAM iterative algorithm

In this section we explain the iterative argument we will use to prove Theorem 1.14. First of all,
we redefine the spaces of analytic symbols we will work with all along this chapter:

129
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Definition 6.1. Given s > 0, we define the Banach space As(Rd) of functions f ∈ Cω(Rd;R) such
that

|f |s :=

∫
Rd
|f̂(η)| e|η|s dη <∞,

where f̂ denotes the Fourier transform of f . We introduce also the Banach space As(T ∗Td) of
analytic functions g ∈ Cω(T ∗Td;R) such that

‖g‖s :=
∑
k∈Zd
|ĝ(k, ·)|s e|k|s <∞,

where

ĝ(k, ξ) :=
1

(2π)d

∫
Td
g(x, ξ)e−ix·k dx, k ∈ Zd.

The main part of the proof of Theorem 1.14 is based on the following quantum version of the
renormalization problem:

Theorem 6.1. Let ω ∈ Rd be a strongly non resonant frequency satisfying (1.60), and let V be a
real valued function that belongs to As(T ∗Td) for some fixed s > 0. Assume that ε~ ≤ ~, and

‖V ‖s ≤
ς

64

( √
s

2(γ − 1)

)2(γ−1)

. (6.1)

Then there exist unitary operators U~ : L2(Td) → L2(Td), and counterterms R~ ∈ As/2(Rd) such
that

U~
(
L̂ω,~ + ε~ Op~(V −R~)

)
U∗~ = L̂ω,~. (6.2)

Moreover,
|R~|s/2 ≤ 2‖V ‖s, ~ ∈ (0, 1].

Remark 6.1. If ε~ � ~ then condition (6.1) can be removed.

6.1.1. Strategy

We will start from the full renormalized operator Q̂~ with R̂~ as unknown and then we will
construct U~ and R̂~ by an iterative algorithm. We will find the renormalization function R~ as
an infinite sum of the form

R~ :=
∞∑
j=1

Rj,~,

where each Rj,~ will be determine at each step of the iteration and the sum will be proven to
converge in As/2(Rd). We initially set V1 := V , and consider

Q̂1,~ := Q̂~ = L̂ω,~ + ε~

(
Op~(V1)−

∞∑
j=1

Op~(Rj,~)

)
. (6.3)
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As in the previous normal forms constructed so far, the goal is to average the term V1 by the
quantum flow generated by L̂ω,~ and estimate the remainder terms. Given a ∈ C∞(T ∗Td) with
bounded derivatives, we define the average of its semiclassical Weyl quantization Op~(a) by

〈Op~(a)〉 := lim
T→∞

1

T

∫ T

0

e
it
~ L̂ω,~ Op~(a) e−

it
~ L̂ω,~ dt. (6.4)

The limit is well defined in the strong L(L2)-norm for operators, since

1

T

∫ T

0

a ◦ φLωt (x, ξ)dt =
1

T

∫ T

0

a(x+ tω, ξ)dt

converges to 〈a〉 in the C∞(T ∗Td) topology, where

〈a〉(ξ) := lim
T→∞

1

T

∫ T

0

a ◦ φLωt (x, ξ) dt =
1

(2π)d

∫
Td
a(x, ξ)dx =

1

(2π)d/2
â(0, ξ). (6.5)

By Egorov’s theorem, which is exact in this case since Lω is a polynomial of degree one, we have

〈Op~(a)〉 = Op~(〈a〉).

In the first step of the iteration, we set R1,~ := 〈V1〉 and consider a unitary operator of the
form

U1,~(t) := e
itε~
~ Op~(F1) =

∞∑
j=0

1

j!

(
itε~
~

)j
Op~(F1)j, t ∈ [0, 1],

where Op~(F1) will be chosen to solve the cohomological equation

i

~
[L̂ω,~,Op~(F1)] = Op~(V1 −R1), 〈V1 −R1〉 = 0. (6.6)

We will show in Section 6.1.2 how to solve this cohomological equation. Moreover, the Diophantine
condition (1.60) on ω will allow us to bound the solution F1 in a suitable spaceAs−σ(T ∗Td) provided

that V1 ∈ As(T ∗Td). We denote U1,~ = U1,~(1) and define Q̂2,~ := U1,~ Q̂1,~ U
∗
1,~. Using Taylor’s

theorem we expand this expression as

Q̂2,~ = L̂ω,~ +
iε~
~

[Op~(F1), L̂ω,~] + ε~ Op~(V1 −R1)

+

(
iε~
~

)2 ∫ 1

0

(1− t)U1,~(t)[Op~(F1), [Op~(F1), L̂ω,~]]U1,~(t)
∗dt

+
iε2

~
~

∫ 1

0

U1,~(t)[Op~(F1),Op~(V1 −R1)]U1,~(t)
∗dt

− ε~
∞∑
j=2

U1,~ Op~(Rj,~)U
∗
1,~.
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Using this and the cohomological equation (6.6),

Q̂2,~ = L̂ω,~ + ε~

(
Op~(V2,~)−

∞∑
j=2

U1,~ Op~(Rj,~)U
∗
1,~

)
,

where

Op~(V2,~) =
iε~
~

∫ 1

0

tU1,~(t)[Op~(F1),Op~(V1 −R1)]U1,~(t)
∗dt. (6.7)

This concludes the first step of the iteration.

Now we proceed to explain the induction step. Assume we have constructed unitary operators
U1,~, . . . , Un−1,~ and counterterms R1,~, . . . , Rn−1,~ so that

Q̂n,~ = Un−1,~ · · ·U1,~ Q̂1,~ U
∗
1,~ · · ·U∗n−1,~ = L̂ω,~ + ε~

(
Op~(Vn,~)−

∞∑
j=n

Ên,j,~

)
,

where

Ên,j,~ := Un−1,~ · · ·U1,~ Op~(Rj,~)U
∗
1,~ · · ·U∗n−1,~.

At symbol level, Ên,j,~ = Op~(En,j,~), where

En,j,~ = Ψ
ε~Fn−1

~,1 ◦ · · · ◦Ψε~F1

~,1 Rj,~, j ≥ n.

We will find Rn,~ to be the unique solution of the following equation (see Lemma 6.5 below):

〈En,n,~〉 = 〈Ψε~Fn−1

~,1 ◦ · · · ◦Ψε~F1

~,1 Rn,~〉 = 〈Vn,~〉. (6.8)

We next consider the unitary operator

Un,~(t) := e
itε~
~ Op~(Fn,~) =

∞∑
j=0

1

j!

(
itε~
~

)j
Op~(Fn,~)

j, t ∈ [−1, 1],

where Op~(Fn,~) solves the cohomological equation

i

~
[L̂ω,~,Op~(Fn,~)] = Op~(Vn,~ − En,n,~), 〈Vn,~ − En,n,~〉 = 0. (6.9)
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As in the first step, we denote Un,~ := Un,~(1). Defining Q̂n+1,~ := Un,~ Q̂n,~ U
∗
n,~, we use Taylor’s

theorem to expand

Q̂n+1,~ = L̂ω,~ +
iε~
~

[Op~(Fn,~), L̂ω,~] + ε~ Op~(Vn,~ − En,n,~)

+

(
iε~
~

)2 ∫ 1

0

(1− t)Un,~(t)[Op~(Fn,~), [Op~(Fn,~), L̂ω,~]]Un,~(t)
∗dt

+
iε2

~
~

∫ 1

0

Un,~(t)[Op~(Fn,~),Op~(Vn,~ − En,n,~)]Un,~(t)∗dt

− ε~
∞∑

j=n+1

Un,~ Op~(En,j,~)U
∗
n,~.

With this and the cohomological equation (6.9), we obtain

Q̂n+1,~ = L̂ω,~ + ε~

(
Op~(Vn+1,~)−

∞∑
j=n+1

Op~(En+1,j,~)

)
,

where

Op~(Vn+1,~) =
iε~
~

∫ 1

0

tUn,~(t)[Op~(Fn),Op~(Vn,~ − En,n,~)]Un,~(t)∗dt, (6.10)

and
Ên+1,j,~ := Un,~ Op~(En,j,~)U

∗
n,~,

or, equivalently at symbol level, Ên+1,j,~ = Op~(En+1,j,~) with

En+1,j,~ = Ψε~Fn
~,1 ◦ · · · ◦Ψε~F1

~,1 Rj,~, j ≥ n+ 1.

This iteration procedure will converge provided that V ∈ As(T ∗Td) is sufficiently small. Pre-
cisely, we will obtain a unitary operator U~ as the limit, in the strong operator norm,

U~ := lim
n→∞

Un,~ · · ·U1,~,

so that U~ Q̂~ U∗~ = L̂ω,~.

6.1.2. Tools of analytic symbolic calculus on the torus

In order to complete the technical parts of the proof of Theorem 1.14, some analytic symbolic
calculus like that introduced in Section 4.3 is required.
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Lemma 6.1 (Calderón-Vaillancourt theorem revisited). Let s > 0. For any a ∈ As(T ∗Td), the
following holds:

‖Op~(a)‖L(L2(Td)) ≤ Cd,s‖a‖s, (6.11)

for all ~ ∈ (0, 1].

Proof. The proof is completely analogous to that of Lemma 4.4, but using Lemma 2.14 instead of
Lemma 2.5.

Lemma 6.2. Assume a, F ∈ As(T ∗Td). Let 0 < σ < s. If

β =
2|t|‖F‖s

σ2
≤ 1/2,

then

‖ΨF
~,t(a)− a‖s−σ ≤ β‖a‖s, |t| ≤ 1.

Proof. The proof can be faithfully transferred from that of Lemma 4.9.

Note that, in order to bound ΨF
~,t(a), some loss of analyticity has been required. On the other

hand, if one wants to avoid this loss of analyticity, one can use the following weaker lemma:

Lemma 6.3. Assume a, F ∈ As(T ∗Td). Let ε~ ≤ ~. If

β = 2|t|‖F‖s ≤ 1/2,

then

‖Ψε~F
~,t (a)− a‖s ≤ β‖a‖s, |t| ≤ 1.

Proof. Since

[F, a]~(z) = 2

∫
R4d

F̂ (w′) â(w − w′) sin

(
~
2
{Lw′ , Lw−w′}

)
eiLw(z) κ(dw′)κ(dw),

we have the trivial bound

‖[F, a]~‖s ≤ 2‖F‖s‖a‖s. (6.12)

Then

‖Ψε~F
~,t (a)− a‖s ≤

∞∑
j=1

1

j!

(
t

~

)j
‖Ad]~,jε~F

(a)‖s ≤
∞∑
j=1

2j‖F‖js‖a‖s
j!

≤ β‖a‖s.
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Lemma 6.4. Let A ∈ As(T ∗Td). Then, the cohomological equation

i

~
[L̂ω,~,Op~(F )] = Op~(V − 〈V 〉). (6.13)

has a unique solution F ∈ As−σ(T ∗Td) for every 0 < σ ≤ s such that

‖F‖s−σ ≤ ς−1

(
γ − 1

eσ

)γ−1

‖V ‖s.

Proof. Write

A(x, ξ) =
∑
k∈Zd

Â(k, ξ)ek(x).

Using the properties of the symbolic calculus for the Weyl quantization, equation (6.13) at symbol
level is just

{Lω, F} = V − 〈V 〉, (6.14)

Recall also that the average of V is given by

〈V 〉(ξ) =
1

(2π)d

∫
Td
V (x, ξ)dx =

1

(2π)d/2
V̂ (0, ξ).

On the other hand,

{Lω, F}(x, ξ) =
∑
k∈Zd

iω · k F̂ (k, ξ)ek(x),

and then we obtain the following expression for the solution of (6.14):

F (x, ξ) =
∑
k∈Zd

V̂ (k, ξ)

iω · k
ek(x). (6.15)

Finally, by Diophantine condition (1.60) and the following estimate,

sup
t≥0

tγ−1e−tσ =

(
γ − 1

eσ

)γ−1

,

we conclude that

‖F‖s−σ ≤ ς−1

(
γ − 1

eσ

)γ−1

‖V ‖s.
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Lemma 6.5. Assume ε~ ≤ ~. Let 〈V 〉 ∈ As(Rd) and F1, . . . , Fn ∈ As(T ∗Td) such that

2‖Fj‖s ≤ β αj−1, j ∈ {1, . . . n},

where α, β > 0 satisfy

λ := e
β

1−α − 1 < 1.

Then, there exists R ∈ As(Rd) so that

〈Ψε~Fn
~,1 ◦ · · · ◦Ψε~F1

~,1 R〉 = 〈V 〉,

and

‖R‖s ≤
1

1− λ
‖〈V 〉‖s, ‖Ψε~Fn

~,1 ◦ · · · ◦Ψε~F1

~,1 R‖s ≤
1 + λ

1− λ
‖〈V 〉‖s.

Proof. Define the map T : As(Rd)→ As(Rd):

T (R) := 〈Ψε~Fn
~,1 ◦ · · · ◦Ψε~F1

~,1 R〉.

By Lemma 6.3, we have

‖T (R)−R‖s ≤

[
n∏
j=1

(1 + βαj−1)− 1

]
‖R‖s ≤

(
e

β
1−α − 1

)
‖R‖s = λ‖R‖s.

Then, there exists an inverse map T−1 : As → As defined by Neumann series, and

‖T−1‖As→As ≤
1

1− λ
.

Finally, applying Lemma 6.3 one more time, we obtain:

‖Ψε~Fn
~,1 ◦ · · · ◦Ψε~F1

~,1 R‖s ≤
1 + λ

1− λ
‖〈V 〉‖s.

This concludes the proof of the Lemma.

6.1.3. Convergence

We next show that the algorithm sketched in Section 6.1.1 converges provided that V ∈ As(T ∗Td)
is sufficiently small. This will allow us to prove Theorem 6.1:

Proof of Theorem 6.1. We start by fixing the following universal constants:

α :=
1

4
, β :=

1

16
, λ := e

β
1−α − 1. (6.16)
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Now set
s1 := s, σ1 :=

s

2e(γ − 1)
α

1
2(γ−1) .

By Lemma 6.4 and hypothesis (6.1),

‖F1‖s1−σ1 ≤ ς−1

(
γ − 1

eσ1

)γ−1

‖V1‖s1 ≤
β

2
.

Then, using (6.7), which at symbol level reads

V2,~ =
iε~
~

∫ 1

0

tΨε~F1

~,t
(
[F1, V1 −R1]~

)
dt,

the trivial bound (6.12), and Lemma 6.3,

‖V2‖s1−σ1 ≤ β(1 + β)‖V1‖s1 ≤ α‖V1‖s1 .

Moreover,
‖R1‖s1 = ‖〈V1〉‖s1 ≤ ‖V1‖s1 .

This shows the first step of the induction. Now define sequences

σn+1 := σnα
1

2(γ−1) , sn+1 := sn − σn, n ≥ 1,

and assume the following induction hypothesis: for every n ≥ 2 and 1 ≤ j ≤ n− 1,

‖Fj‖sj ≤
βα

j−1
2

2
, ‖Rj,~‖sj ≤

αj−1

1− λ
‖V1‖s1 , (6.17)

and
‖Vn,~‖sn ≤ αn−1‖V1‖s1 . (6.18)

We next prove the induction step. First, by Lemma 6.4 and hypothesis (6.1):

‖Fn,~‖sn−σn ≤ ς−1

(
γ − 1

eσn

)γ−1

‖Vn‖sn ≤ ς−1

(
γ − 1

eσ1

)γ−1

α
n−1
2 ‖V1‖s1 ≤

βα
n−1
2

2
.

Using Lemma 6.5, we also have

‖Rn,~‖sn ≤
1

1− λ
‖Vn,~‖sn ≤

αn−1

1− λ
‖V1‖s1 .

Note that, with the choice of the constants (6.16):

β(1 + β)

(
1 +

1 + λ

1− λ

)
≤ α.
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Then, recalling (6.10), which at symbol level reads

Vn+1,~ =
iε~
~

∫ 1

0

tΨε~Fn
~,t

(
[Fn, Vn,~ − En,n,~]~

)
dt,

we can apply the trivial bound (6.12) and Lemmas 6.3 and 6.5 to obtain:

‖Vn+1,~‖sn−σn ≤ β(1 + β)

(
1 +

1 + λ

1− λ

)
‖Vn,~‖sn

≤ α‖Vn,~‖sn ≤ αn‖V1‖s1 .

This finishes the induction step. Note that, with our choices of the constants, we have

∞∑
n=1

σn = σ1

∞∑
j=0

(
1

2

) j
γ−1

≤ s

2e(γ − 1)

1

log 2
1

γ−1

≤ s

2e log 2
≤ s

2
.

Moreover,

‖R~‖s/2 ≤
∞∑
j=1

‖Rj,~‖sj ≤

(
1

1− λ

∞∑
j=0

αj

)
‖V1‖s1 ≤ 2‖V1‖s1 .

It remains to show that there exists a unitary operator U~ so that

U~ := lim
n→∞

Un,~ · · ·U1,~.

For every 1 ≤ n, we set the unitary operator Un,~ by

Un,~ := Un,~ · · ·U1,~.

We have, for p ≥ 1:
Un+p,~ − Un,~ = Un,~ R~(n, p),

where
Rh(n, p) := e

iε~
~ F̂n+1,~ · · · e

iε~
~ F̂n+p,~ − I, F̂j,~ := Op~(Fj).

By Taylor’s theorem, we can write

e
iε~
~ F̂j,~ = I + β̂j,~, β̂j,~ :=

iε~
~
F̂j,~

∫ 1

0

e
itε~
~ F̂j,~ dt.

Moreover, Lemma 6.1 allows us to bound the L(L2) norm of β̂j,~ by:

‖β̂j,~‖L(L2) ≤
Cd,sβα

j−1
2

2
.
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Then

‖R~(n, p)‖L(L2) ≤ −1 +

p∏
j=1

(
1 + ‖β̂n+j,~‖L(L2)

)
≤ −1 + exp

[
Cd,sβα

n−1
2

2(1− α1/2)

]
.

Finally, taking the limit n → ∞, we obtain that the sequence {Un,~}n≥1 is a Cauchy sequence in
the operator norm, and then the result holds.

6.2. Description of Semiclassical measures

Finally, we shall prove Theorem 1.14. We will require the following two lemmas:

Lemma 6.6. For every a ∈ As(T ∗Td),

‖U∗~ Op~(a)U~ −Op~(a)‖L(L2) = O(ε~).

Proof. For n ≥ 1, define:

ρn =

(
1

2

)n−1
3

ρ1, ρ1 :=
s

10
.

Note that
∞∑
n=1

ρn ≤
s

2

By (6.17), we have
‖Fn‖sn ≤ Csρ

3
n,

where the constant Cs depends only on s. Hence, for ~ sufficiently small, the following holds for
every n ≥ 1:

2‖ε~Fn‖sn
ρ2
n

≤ Csρn ε~ ≤
1

2
.

Using Lemma 6.2; for every a ∈ As(T ∗Td), we have

‖Ψε~Fn
1,~ a− a‖sn−ρn ≤ Csρn ε~. (6.19)

Finally, since U~ = limn→∞ Un,~ · · ·U1,~, that every operator Un,~ is unitary on L2(Td), Lemma 6.1
and (6.19):

‖U∗~ Op~(a)U~ −Op~(a)‖L(L2) ≤ Cs

∞∑
n=1

‖Ψε~Fn
1,~ a− a‖sn−ρn ≤ Csε~

∞∑
n=1

ρn ≤ Csε~.
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Lemma 6.7. For every a ∈ C∞c (T ∗Td),

‖U∗~ Op~(a)U~ −Op~(a)‖L(L2) = o(1).

Proof. Let ε > 0 and a ∈ C∞c (T ∗Td). Assume that there exists a† ∈ As(T ∗Td) such that

‖a− a†‖L∞(T ∗Td) ≤ ε.

Then, by the triangular inequality and Lemma 2.14 (recall that ε~ ≤ ~):

‖U∗~ Oph(a)U~ −Oph(a)‖L(L2)

≤ ‖U∗~ Oph(a− a†)U~‖L(L2) + ‖U∗~ Oph(a
†)U~ −Oph(a

†)‖L(L2) + ‖Oph(a− a†)‖L(L2)

≤ Cd‖a− a†‖L∞(T ∗Td) +O(~),

and hence
lim sup

~→0
‖U∗~ Op~(a)U~ −Oph(a)‖L(L2) ≤ Cdε.

Since the choice ε > 0 was arbitrarily, we conclude that

lim
~→0
‖U∗~ Oph(a)U~ −Oph(a)‖L(L2) = 0.

It remains to show that, for all a ∈ C∞c (T ∗Td), there exists a† ∈ As(T ∗Td) such that

‖a− a†‖L∞(T ∗Td) ≤ ε.

Write

a(z) =

∫
Zd
â(w)eiz·wκ(dw), z = (x, ξ) ∈ T ∗Td.

For R ≥ 1, we define aR ∈ As(T ∗Td) by

âR(w) = â(w)e−
|w|2
R .

It satisfies

‖aR − a‖L∞(T ∗Td) ≤
∫
Zd

∣∣â(w)
∣∣∣∣e− |w|2R − 1

∣∣κ(dw)→ 0, as R→∞.

Then it is sufficient to take a† = aR for R sufficiently large.

Proof of Theorem 1.14. We know, by Proposition 1.3:

M
(
L̂ω,~

)
=Mω. (6.20)
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On the other hand, Theorem 6.1 implies that the set of normalized eigenfunctions of Q̂~ is given
precisely by the orthonormal basis of L2(Td) given by

{Ψk,~ = U~ek : k ∈ Zd},

Using Lemma 6.7, we obtain, for every a ∈ C∞c (T ∗Td),

W ~
Ψk,~

(a) = W ~
ek

(a) + o(1), k ∈ Zd.

Hence the proof of the Theorem follows by (6.20).
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A continuación se resumen las aportaciones más importantes de esta tesis:

Teoremas 1.2, 1.3 y 1.4. Estos resultados muestran la inestablidad de las medidas semiclá-
sicas dependientes del tiempoM(Ĥ~, τ~) asociadas al operador sin perturbar Ĥ~, con presencia de

resonancias en el vector ω, bajo perturbaciones semiclásicas de la forma ε~ V̂~. En particular, se
muestra que, en el régimen ε~τ~ → +∞, existen toros invariantes por el flujo clásico φHt sobre el

que los elementos deM(P̂~, τ~) no pueden estar soportados. Dicha inestabilidad se produce sobre

aquellos toros invariantes no invariantes por el flujo φ
〈V 〉
t . Las mejoras sucesivas de los Teoremas

1.3 y 1.4 hacen balance de la generalidad con la que se da esta inestabilidad y el régimen cŕıtico
ε~τ~ a la que se produce la ruptura de los toros invariantes bajo hipótesis dinámicas sobre el
śımbolo V de la perturbación.

Teorema 1.5. Este resultado aborda el caso en el que el vector de frecuencias es diofántico.
Se muestra que los toros lagrangianos maximales invariantes por φHt pueden ser conjuntos de
acumulación de las sucesiones de Wigner de soluciones dependientes del tiempo para rangos τ~
polinomialmente largos sobre el tamaño ε~ de la perturbación.

Teorema 1.6. En el caso dos dimensional con ω = (1, 1) se obtienen mejoras significativas

sobre la caracterización de los elementos deM(P̂~, τ~) para rangos de tiempo τ~ de orden polinomial

con respecto al tamaño de la perturbación ε~V̂~. En particular, se muestra que los conjuntos
minimales sobre los que las sucesiones de Wigner pueden concentrarse son 2-toros invariantes por
los flujos φHt y φ

〈V 〉
t .

Teorema 1.7. Se obtiene una caracterización completa del conjunto M(Ĥ~) para cualquier
vector de frecuencias ω ∈ Rd

+.

Teorema 1.8. Como aplicación de los Teoremas 1.2, 1.3 y 1.4 se obtiene que, genéricamente,
los toros minimales invariantes por el flujo φHt , cuando existen resonancias entre las componentes
del vector ω, no pueden ser conjuntos de acumulación para sucesiones de Wigner asociadas a
autofunciones del operador perturbado P̂~.

Teorema 1.9. En el caso diferenciable, se da una estimación para la distribución de los
autovalores del operador no autoadjunto P̂~ cerca de la recta real. Este resultado también se
verifica para cuasi-autovalores, lo permite obtener una cota sobre la resolvente del operador.
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Teorema 1.10. En el caso anaĺıtico, se mejora el resultado anterior probando que los auto-
valores del operador perturbado no pueden concentrarse cerca de la recta real, es decir, existe un
gap espectral. Sin embargo, no se optiene una nueva cota sobre la resolvente del operador.

Teoremas 1.11 y 1.13. Estos resultados constituyen un análogo semiclásico del teorema
de Moser sobre perturbaciones de campos vectoriales constantes sobre el toro. En particular,
se muestra la estabilidad de autovalores bajo perturbaciones para un conjunto cantoriano de
frecuencias diofánticas y se caracterizan los conjuntos de medidas semiclásicas y ĺımites cuánticos
asociados a sucesiones de autofunciones del operador perturbado.

Teorema 1.14. Este resultado es una versión semiclásica del teorema clásico de renorma-
lización. Dada una perturbación acotada de tamaño ε~ ≤ ~ del operador L̂ω,~ sobre el toro

con hipótesis diofánticas sobre ω, se obtiene la existencia de un operador integrable R̂~, cuyo
śımbolo solo depende de las coordenadas acción, tal que sumado al operador perturbado lo hace
unitariamente equivalente al operador sin perturbar. Como consecuencia se caracteriza el conjunto
de medidas semiclásicas y ĺımites cuánticos del operador renormalizado.



Conclusions

We next state the main contributions of this report:

Theorems 1.2, 1.3 and 1.4. These results show the instability of the setM(Ĥ~, τ~) of time-

dependent semiclassical measures associated to the unperturbed operator Ĥ~, with resonancies
between the components of the vector ω, under semiclassical perturbations of the form ε~V̂~. In
particular, this shows that, in the regime ε~τ~ →∞, there exist invariant tori for the classical flow
φHt on which the elements of M(P̂~, τ~) can not be supported. This instability appears in those

tori which are not invariant by the flow φ
〈V 〉
t . The successive improvements of Theorems 1.3 and

1.4 deal with the generality of this instability under geometrical hypothesis on the symbol V of
the perturbation.

Theorem 1.5. This result adresses the case when the vector ω is Diophantine. It is shown that
the maximal Lagrangian tori which are invariant by φHt can become accumulation sets for sequences
of Wigner distributions associated to time-dependent solutions for ranges τ~ polynomially large
with respect to the size ε~ of the perturbation.

Theorem 1.6. In the 2D case and ω = (1, 1) we obtain improvements on the characterization

ofM(P̂~, τ~) for ranges of time τ~ of polynomial order with respect to the size ε~ of the perturbation.
In particular, it is shown that the minimal sets on which sequences of Wigner sequences can
concentrate are 2-tori which are invariant by both the flows φHt and φ

〈V 〉
t .

Theorem 1.7. A complete characterization of the set M(Ĥ~) is obtained for any vector of
frequencies ω ∈ Rd

+.

Theorem 1.8. As a consequence of Theorems 1.2, 1.3 and 1.4, it is shown that, generecally,
a minimal invariant torus by the flow φHt , when resonences between the components of the vector
ω exist, can not be the accumulation set for a Wigner sequence assocaited to the eigenfunctions
of the perturbed operator P̂~.

Theorem 1.9. In the smooth case, we show an estimate for the distribution of eigenvalues for
the non-selfadjoint operator P̂~ near the real axis. This results also holds for quasi-eigenvalues,
which allows us to obtain a bound on the resolvent of P̂~.
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Theorem 1.10. In the analytic case, we improve the pervious result showing that the eigen-
values of P̂~ can not concentrate near the real axis, that is, there exists a spectral gap. However,
we do not obtain a new bound on the resolvent of the operator.

Theorems 1.11 and 1.13. These two results give a semiclassical analog to the theorem of
Moser about perturbations of vector fields on the torus. In particular, a stability result on the
point-spectrum under perturbations for a Cantor set of Diophantine frequencies is shown, and the
sets of semiclassical measures and quantum limits are characterized.

Theorem 1.14. This result is a semiclassical version of the classical problem of renorma-
lization. Given a bounded perturbation of size ε~ ≤ ~ of the linear operator L̂ω,~ on the torus, with

Diophantine assumptions on ω, we obtain the existence of an integrable operator R̂~, whose symbol
only depends on the action variables, such that, added to the perturbed operator, renormalizes
it making it unitarily equivalent to the unperturbed operator. As a consequence, the sets of
semiclassical measures and quantum limits are characterized for the renormalized operator.
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[13] V. Arnaiz and F. Macià. Concentration of quasimodes for perturbed harmonic oscillators.
Preprint, 2018.

[14] V. Arnaiz and G. Rivière. Spectral asymptotics for non-selfadjoint harmonic oscillators.
Preprint, 2018.

[15] V. Arnold. Mathematical methods of classical mechanics. Graduate texts in mathematics.
Springer-Verlag, New York, 1989.

[16] M. Asch and G. Lebeau. The spectrum of the damped wave operator for a bounded domain
in R2. Experiment. Math., 12(2):227–241, 2003.
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Journées “Équations aux Dérivées Partielles” (Saint-Jean-de-Monts, 1996), pages Exp. No.
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