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We present a linear response calculation for twisted bilayer graphene. The calculation is performed for both
the continuum and tight-binding models, with the aim of assessing the validity of the former. All qualitatively
important features previously reported by us [Stauber et al., Phys. Rev. Lett. 120, 046801 (2018)] for the Drude
matrix in the continuum model are also present in the tight-binding calculation, with increasing quantitative
agreement for decreasing twist angle. These features include the chiral longitudinal magnetic moment associated
with plasmonic modes, and the anomalous counterflow around the neutrality point, better interpreted as a
paramagnetic response. We have addressed the differences between Drude and equilibrium response, and we
showed that orbital paramagnetism is the equilibrium response to a parallel magnetic field over a substantial
doping region around the neutrality point. Chirality also causes the equilibrium response to exhibit a nontrivial
current structure associated with the nonvertical character of interlayer bonds in the tight-binding calculation.
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I. INTRODUCTION

Chiral molecules, ubiquitous in natural and synthetic or-
ganic chemistry, have long been the subject of much attention
and used in many applications [1]. More recently, plasmonic
metamaterials and other artificial nanostructures with chiral
capabilities have also been implemented [2–6]. The design of
atomically thin two-dimensional van der Waals materials [7]
has broadened the list of artificial optically active materials
significantly, i.e., any combination of misaligned van der
Waals materials should lead to circular dichroism, which can
further be enhanced by increasing the number of twisted
layers [8].

Twisted bilayer graphene is the most widely studied system
among misaligned van der Waals structures. It is made of
two graphene layers rotated by an arbitrary angle with respect
to each other [9–15]. Its noninteracting electronic structure
mimics its geometry, with two Dirac cones displaced in the
Brillouin zone by the twist angle [16,17]. But correlation
effects become important for filling factors close to the neu-
trality point [18], leading to the opening of a Mott gap [19]
and to a superconducting phase [20] that turns out to be
tuneable [21]. Also twisted structures consisting of other van
der Waals materials such as MoS2 have been investigated
showing a modulated redshift of the excitonic gap [22]. Also
in heterobilayers, interlayer excitons are long-lived [23,24]
and can be confined by the moiré lattice, potentially leading
to quantum information applications [25].

Twisted bilayer graphene (TBG) is a chiral material be-
cause its geometry is not parity-invariant, with left- and right-
handed copies corresponding to opposite twist angles. Indeed,
TBG experimentally exhibits significant optical activity at
finite frequencies corresponding to transitions with strong
interlayer hybridization around the K and the M point [8],
without the need of a magnetic field [26].

The theoretical explanation of TBG optical activity has
been considered in Refs. [8,27]. Motivated by the ever in-
creasing sophistication of experimental transport results, we
have recently extended the calculation of TBG response to
zero frequencies [28], obtaining the Drude matrix where the
excitation and response of each layer can be discriminated.
Such a calculation, performed within the framework of the
continuum model, has unveiled potentially relevant results.
These include, for instance, the emergence of a longitudinal
magnetic moment accompanying currents, such as those of
intrinsic plasmons, endowing them with a chiral character.
Also, we obtained counterintuitive behavior in a counterflow
configuration, where opposing currents in each layer seem to
flow opposite to their respective electric field even at zero dop-
ing. All this might be interesting in view of manipulating the
electronic properties of two-dimensional layered structures
through their twist angle—so-called “twisttronics.” [29].

This work is largely devoted to an assessment of the linear
response validity of the continuum model of TBG. For this,
the Drude weight, which is the key quantity in the dynamics
of plasmons [30,31] and which can also be obtained from
transport measurements [32], is calculated and shown that it
needs to be extended to a Drude matrix. We then compare
the predictions of a tight-binding model with those of its
continuum counterpart. This analysis is important because the
continuum model or some variant of it will be needed if we
ever want to address the smallest angles within Bloch theory.
For noncommensurate structures, novel techniques are needed
[33,34].

A further motivation for this study comes from the obser-
vation made in Ref. [27] that, in explaining the experimentally
observed circular dichroism, the continuum model is vul-
nerable to otherwise accepted approximations. The peculiar
effects obtained by us in the continuum model, particularly
those associated with chirality, are typically small. Given the
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possibility, however remote, that such behavior could be an
artifact of the continuum model, we consider its assessment
against a tight-binding calculation as imperative.

Although the numerical effort limits the tight-binding cal-
culation to rather large angles, as argued in Ref. [35], the
continuum model by its very construction should become
a better description of TBG for decreasing angles. There-
fore, agreement in the nominally worst case of large angles
becomes more relevant. The results to be presented later
confirm that all qualitative features of the continuum calcu-
lation are indeed present in the tight-binding results, with
quantitative agreement increasing with decreasing twist angle,
as expected. The comparison will not be limited to the Drude
matrix, but also the equilibrium response in the presence of a
parallel magnetic field will be presented, where similar degree
of agreement is found.

The paper is organized as follows. Section II presents
the tight-binding model, its linear response formalism, and a
physical discussion of the response terms, largely valid also
for the continuum case. Section III contains a brief account
of the continuum model and its response, already presented
in Ref. [28], to make the work self-contained. Section IV
presents the main results of this work together with their
physical discussion, both for the Drude and equilibrium cases.
Section V summarizes the main findings. Three Appendixes
are included with details of the tight-binding Hamiltonian and
the linear response calculation.

II. TIGHT-BINDING MODEL

A. Geometry and Hamiltonian

We consider two parallel graphene layers with a lattice
constant ag = 2.46 Å, separated along the z axis by a distance
a = 3.5 Å, with the second layer rotated with respect to
an A1B2 stacking point by an angle θi , with cos(θi ) = 1 −

1
2(3i2+3i+1) for integer i, so that a commensurate superstructure
results. The Hamiltonian can be written as

H0 = H1 + H2 + Hinter, (1)

where H1(2) corresponds to the intralayer Hamiltonian, de-
scribed by a single nearest-neighbor tight-binding hopping in-
tegral t , with t = 3 eV. Hinter describes the interlayer hopping,
and it is given by

Hinter =
∑

i∈1,j∈2

V (dij )c†i cj + H.c., (2)

where V (dij ) only depends on the distance between orbitals,
so that the analysis of Ref. [17] applies. The details of V (dij )
are provided in Appendix A. Suffice it to say here that the
largest interlayer hopping integral is taken to be around 16%
[9,36] of the intralayer t .

B. Linear response

We will only consider fields and currents parallel to the
planes. Furthermore, we will temporarily restrict our attention
to horizontally homogeneous fields while allowing spatial
variation along the stacking direction, so that only the q =
0 Fourier component survives. Under these conditions, the

linearly perturbed Hamiltonian is

H = H0 + V, (3)

with

V = −S
[

j (1)
p · A(1) + j (2)

p · A(2) + j (inter)
p · A(inter)], (4)

with layer surface S. A(1,2) are the vector potentials at the
graphene layers 1 and 2, and Ainter is that at the midpoint be-
tween graphene layers. j (1,2,inter)

p are the corresponding para-
magnetic current operators, given explicitly in Appendix B.
Notice that j (inter) accounts for the fact that, in the tight-
binding model, a nonvertical interlayer bond can carry a
parallel current. We will use the ordering

A =

⎡
⎢⎣

A(1)

A(2)

A(inter)

⎤
⎥⎦ (5)

and

j =

⎡
⎢⎣

j (1)

j (2)

j (inter)

⎤
⎥⎦, (6)

where j stands for the physical current, which includes a
diamagnetic contribution, jd , so that

j = jp + jd . (7)

The induced paramagnetic currents can then be written as

jp = −χp A, (8)

where a ground-state average is implicit for the left-hand side
of Eq. (8). The 6 × 6 (3 currents ×2 components) tensor χp

is forced by the symmetries of the problem to have the form

χp =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

χ0 0 χ1 χxy χ2 χ ′
xy

0 χ0 −χxy χ1 −χ ′
xy χ2

χ1 −χxy χ0 0 χ2 −χ ′
xy

χxy χ1 0 χ0 χ ′
xy χ2

χ2 −χ ′
xy χ2 χ ′

xy χi 0

χ ′
xy χ2 −χ ′

xy χ2 0 χi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(9)

where the linear response calculation of nonzero entries is
described in Appendix B.

Likewise, the diamagnetic contribution can be written as

jd = −χd A, (10)

where, again, symmetries reduce the tensor χd to the diagonal
form

χd =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

χd0 0 0 0 0 0

0 χd0 0 0 0 0

0 0 χd0 0 0 0

0 0 0 χd0 0 0

0 0 0 0 χdi 0

0 0 0 0 0 χdi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (11)

with the calculation of nonzero entries detailed in
Appendix B.
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C. Drude matrix

The physical current can be written as

j = −χ A, (12)

where χ = χp + χd . The expressions given in Eqs. (9) and
(11) correspond to the q = 0 but arbitrary frequency, so that
all entries are frequency functions. Indeed, the chiral entries
χxy (ω) and χ ′

xy (ω) are responsible for the experimentally
observed circular dichroism at optical frequencies. As in
Ref. [28], we will be concerned with the ω → 0 limit, which
physically corresponds to the Drude weight, here promoted to
a Drude matrix. Therefore, we define the Drude matrix as

D = lim
ω→0

χ , (13)

given explicitly by

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

D0 0 D1 Dxy D2 D′
xy

0 D0 −Dxy D1 −D′
xy D2

D1 −Dxy D0 0 D2 −D′
xy

Dxy D1 0 D0 D′
xy D2

D2 −D′
xy D2 D′

xy Di 0

D′
xy D2 −D′

xy D2 0 Di

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(14)

where, for instance, D0 = limω→0[χ0(ω) + χd0] and similarly
the remaining entries.

The Drude matrix is essentially a dynamical concept: it
measures the system density of inertia (inverse mass) resisting
the (slow) acceleration of a currents by electric fields. This
is best seen by writing the electric field as E = iωA and
rewriting the response as

−iω j = χ E, (15)

which, upon restoring the time, is equivalent to

∂t j = DE (16)

for slow variations. Introducing a phenomenological scalar
dissipation τ , Eqs. (15) and (16) are equivalent to a matrix
generalization of the more familiar expression for the conduc-
tivity, σ = 1

−iω+τ−1 D.

D. Physical interpretation

The Drude matrix of Eq. (14) provides the most complete
information of the response for q = 0 and ω → 0, and we
will present results for all entries later. But prior to that, it is
convenient to adopt a slightly different view in order to gain
more physical insight. What follows is a generalization of out
treatment of Ref. [28] to the full tight-binding case.

First, we can assume that the field changes linearly be-
tween layers, correct to lowest order. Then the three perturb-
ing fields can be written as

E (inter) = E‖,

E (1) = E‖ + (E (1) − E (2) )/2,

E (2) = E‖ − (E (1) − E (2) )/2,

(17)

so that the perturbation can be spelled out in terms of the
average parallel field, E‖, and its change across the bilayer,
(E (1) − E (2) ), later related to the magnetic field.

Correspondingly, we will focus on the total current re-
sponse, jT , and its variation, jm,

jT = j (1) + j (2) + j (inter),

jm = ( j (1) − j (2) )/2. (18)

Note that jm will be nonzero if the layers are driven in
opposite directions, the counterflow configuration considered
in Ref. [17]. We will later relate it to the magnetic moment
from which we get the notation.

Using the Drude matrix in Eq. (14), one can show that the
physical response can be cast in the form of the following
constitutive relations:

∂t jT = DT E‖ + Dchir ẑ × (E(2) − E (1) ),

∂t jm = Dchir ẑ × E‖ − Dmag

2
(E (1) − E (2) ), (19)

where we have introduced the total (DT ), chiral (Dchir ),
and counterflow or magnetic (Dmag) Drude parameters,
given by

DT = 2(D0 + D1) + 4D2 + Di, (20)

Dchir = Dxy + D′
xy, (21)

Dmag = D1 − D0. (22)

The magnetic language is introduced using Maxwell
equations to write

ẑ × (E(2) − E (1) ) = −a ∂t B‖, (23)

where B‖ is the parallel magnetic field. Therefore, we can
rewrite the constitutive relations as

∂t jT = DT E‖ − aDchir ∂t B‖,

∂t m‖ = aDchir E‖ + a2

2
Dmag ∂t B‖, (24)

where the parallel magnetic moment density, m‖ = a jm × ẑ,
has been introduced.

Notice that, if only a magnetic field is present, one can drop
the time derivatives, leading to

jT = −aDchir B‖, (25)

m‖ = a2

2
Dmag B‖. (26)

It is important not to forget the dynamical meaning of the
previous expression. It is the adiabatic application of a mag-
netic field that results in a total parallel current and, perhaps
less surprisingly, a magnetic moment. The associated currents
are produced by the transient electric fields, and the ideal
dissipationless nature of the calculation makes those currents
permanent. This has two consequences. First, the practical
observation would require a dynamical measurement with
ωτ >> 1, as stressed in our previous work [28]. Second, even
in the ideal dissipationless case, the current and magnetic
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moment of Eqs. (25) and (26) need not coincide with the
equilibrium response in the presence of a magnetic field. This
issue is treated in detail in Sec. II E. Let us mention that
dissipationless counterflow at the neutrality point was also
seen in the context of superfluid exciton flow, but only in the
quantum Hall regime under the influence of a strong magnetic
field in the perpendicular sheetdirection [37].

On symmetry grounds, Eq. (25) is allowed as both current
and field have the same signature upon time reversal. On
the other hand, current and field have opposite signatures
under parity reversal, and Eq. (25) would be forbidding for a
parity-invariant system. Of course, a lack of parity invariance
is precisely what chirality means, and therefore Eq. (25) is
allowed.

Finally, we consider the effect of the chiral terms on plas-
mons. Doped TBG, as graphene [30,31,38] or any 2D metal,
exhibits self-sustained charge oscillations [39,40]. These can
be obtained from the constitutive equations as shown in
Ref. [28]. Adapting that treatment to the present case, the plas-

mon dispersion is given by ωp(q ) =
√

DT

2ε0
q, where the chiral

terms do not appear. Nevertheless, the chiral contributions
add a transverse component to the plasmon current, given by
the following relation between electric and magnetic dipole
oscillations:

q̂ · m = a
Dchir

DT

q̂ · jT , (27)

as is easily shown from the constitutive relations ignoring
magnetic self-fields (instantaneous approximation). There-
fore, the plasmon carries total charge q · jT �= 0 and, by the
constraint of Eq. (27), also carries a longitudinal magnetic
moment, the hallmark of chiral excitations [1,41]. Thus, the
finite value of the chiral Drude terms, Dxy and D′

xy , bestows
plasmons with chiral character.

E. Equilibrium response

The Drude response, in spite of the limit ω → 0, is a
dynamical magnitude, as already explained. Here we consider
the true equilibrium response. At the formal level, equilib-
rium, χ eq, and Drude responses to a vector potential only
differ in the order of limits,

χ eq = lim
q→0

lim
ω→0

χ (q, ω), (28)

D = lim
ω→0

lim
q→0

χ (q, ω), (29)

and writing the equilibrium response in the tight-binding
case as

χ eq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

χ̃0 0 χ̃1 χ̃xy χ̃2 χ̃ ′
xy

0 χ̃0 −χ̃xy χ̃1 −χ̃ ′
xy χ̃2

χ̃1 −χ̃xy χ̃0 0 χ̃2 −χ̃ ′
xy

χ̃xy χ̃1 0 χ̃0 χ̃ ′
xy χ̃2

χ̃2 −χ̃ ′
xy χ̃2 χ̃ ′

xy χ̃i 0

χ̃ ′
xy χ̃2 −χ̃ ′

xy χ̃2 0 χ̃i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(30)

it is shown in Appendix B 2 that each equilibrium entry only
differs from the corresponding Drude one in a Fermi surface
term whose calculation is detailed therein. In addition to the
symmetries already considered in writing Eq. (30), gauge in-
variance imposes further constraints. The fact that a globally
uniform vector potential, A(1) = A(2) = A(inter), should have
no physical consequences (currents) enforces the following
relations among the equilibrium matrix entries:

χ̃0 + χ̃1 + χ̃2 = 0, (31)

χ̃i + 2χ̃2 = 0, (32)

χ̃xy + χ̃ ′
xy = 0. (33)

These consistency requirements have been verified in our
calculation to numerical accuracy.

III. CONTINUUM MODEL

Here we just outline the basic points of the continuum
description, referring the reader to Refs. [16,17,35] for details.
The Hamiltonian is written as

H = h̄vF

∑
k,α,β

[
c
†
1,k,α τ

−θ/2
αβ ·

(
k + �K

2

)
c1,k,β

+ c
†
2,k,α τ

+θ/2
αβ ·

(
k − �K

2

)
c2,k,β

]

+ t⊥
∑

k,G,α,β

[c†1,k+G,α Tαβ (G) c2,k,β + H.c.], (34)

where (τ γ
x , τ

γ
y ) = eiγ τ z/2(τ x, τ y )e−iγ τ z/2, τ x,y,z being Pauli

matrices. The separation between twisted cones is �K =
2|K | sin(θ/2)[0, 1] with K = 4π

3ag
[1, 0]. Interlayer hopping is

restricted to wave vectors G = {0,−G1,−G1 − G2} with
G1 = |�K |[

√
3

2 , 3
2 ], G2 = |�K |[−√

3, 0], and

T (0) =
[

1 1
1 1

]
,

T (−G1) = T ∗(−G1 − G2) =
[
ei2π/3 1
e−i2π/3 ei2π/3

]
. (35)

The Hamiltonian is described by two parameters, vF and
t⊥. The Fermi velocity is connected with the tight-binding
Hamiltonian by the relations h̄vF =

√
3

2 |t |ag , whereas t⊥ can
be obtained from the Fourier transform of the tight-binding
interlayer Hamiltonian as described in Appendix A. Calcula-
tions correspond to the choice t⊥ = 0.12 eV.

Parallel currents are restricted to graphene layers, where
they become the pseudospin operators. They are denoted
j (1,2), as in the tight-binding model. For instance, the q =
0, x component of the current density for layer (1) is given
by

x̂ · j (1) = e vF

S

∑
k,α,β

c
†
1,k,α τ x

αβ c1,k,β , (36)

with Pauli matrix τ x = (0 1
1 0), and straightforward general-

ization to the remaining cases.
Linear response to the perturbing fields, A(1,2), proceeds as

usual. Diamagnetic currents are nominally absent, though the
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treatment of the ultraviolet cutoff requires some care if one is
to extract the Drude weight from the usual optical conductiv-
ity [36,39]. The fact that only two currents and two perturbing
fields are present implies 4 × 4 response matrices, for which
we keep the same tight-binding notation. For instance, the
Drude matrix in the continuum model has the block structure,

D =

⎡
⎢⎢⎢⎣

D0 0 D1 Dxy

0 D0 −Dxy D1

D1 −Dxy D0 0

Dxy D1 0 D0

⎤
⎥⎥⎥⎦. (37)

Except for the obvious reduction of Drude terms, the
entire discussion of Sec. II D applies to the continuum
case. Therefore, Eq. (24) still applies, but with Drude terms
given by

DT = 2(D0 + D1), (38)

Dchir = Dxy, (39)

Dmag = D1 − D0, (40)

in the continuum model. As for the Drude case, the equilib-
rium response in the continuum model becomes the 4 × 4
matrix

χ eq =

⎡
⎢⎢⎢⎣

χ̃0 0 χ̃1 χ̃xy

0 χ̃0 −χ̃xy χ̃1

χ̃1 −χ̃xy χ̃0 0

χ̃xy χ̃1 0 χ̃0

⎤
⎥⎥⎥⎦, (41)

and the corresponding gauge invariance requirements are

χ̃0 + χ̃1 = 0, (42)

χ̃xy = 0. (43)

IV. RESULTS

A. Drude matrix

The comparison between the tight-binding and the contin-
uum model results is presented in this section as a function of
chemical potential. We will restrict our attention to the region
around zero doping. Needless to say, the validity (and its
limits) of the continuum description of single-layer graphene
is taken for granted. What is at stake here is, therefore,
mainly an assessment of the approximate description of the
interlayer Hamiltonian in the continuum model, mostly for
linear response.

The simplest comparison corresponds to the common
Drude entries of both models, namely D0, D1, and Dxy . They
are shown in Fig. 1 as a function of chemical potential for
two twist angles. Though quantitative differences are visible,
mainly a systematic greater electron-hole asymmetry in the
tight-binding model, the overall behavior is very similar in
both models. All the qualitatively relevant features reported
by us before for the continuum model are present in the
tight-binding calculation. For instance, the very existence of
a chiral term Dxy , and its Hall-like dependence on carrier sign
is preserved in the tight-binding results. The same applies to
the term D1: its dependence upon doping and its offset above

-0.5 0 0.5
μ/t

0

0.05

0.1

D0

D1

Dxy

D0

D1

Dxy

θ  = 9.4

-0.4 -0.2 0 0.2 0.4
μ/t

0

0.05

θ  = 5.1

FIG. 1. D0 (black), D1 (red), and Dxy (blue) entries of the Drude
matrix for the tight-binding (solid lines) and continuum (dashed
lines) models as functions of the chemical potential. Left panel: twist
angle θi=3 = 9.4◦. Right panel: twist angle θi=6 = 5.1◦.

D0 at zero doping, related later to paramagnetism, are also
systematic features of the tight-binding results.

The remaining entries of the tight-binding Drude ma-
trix, Di,D2,D

′
xy , are connected with the interlayer parallel

current, neglected in the continuum. They are presented in
Fig. 2, where they are compared with D0,D1,Dxy . They are
generally smaller and featureless in that range, though Di can
become sizable near zero-doping.

Perhaps a more sensible comparison from a physical stand-
point is afforded by the parameters DT , Dchi, and Dmag. They
describe the physical response in exactly the same way for
both models, Eqs. (24). The total Drude weight, DT , first
considered in Ref. [39], is presented in Fig. 3 for both models.
Notice that DT describes the total current accelerated by an
electric field, and it could have been obtained from the mass
tensor of the band structure, as shown in Appendix B. The
agreement between both models is remarkable.

The chiral contributions, Eqs. (21) and (39), are compared
in Fig. 4. As already mentioned, the qualitative behavior
is very similar. Therefore, the main physical significance
of this chiral term, namely the parallel magnetic moment

-0.4 -0.2 0 0.2 0.4
μ/t

-0.02

0

0.02

D0

D1

Dxy

Di

D2

D’xy

θi=3 = 9.4
o

-0.2 0 0.2
μ/t

-0.01

0

0.01

0.02
θi=6 = 5.1

o

FIG. 2. All entries of the tight-binding Drude matrix as functions
of the chemical potential: D0 (solid black), D1 (solid red), Dxy

(solid blue), Di (dashed black), D2 (dashed red), and D′
xy (dashed

blue). Left panel: twist angle θi=3 = 9.4◦. Right panel: twist angle
θi=6 = 5.1◦.
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-0.5 0 0.5
μ/t

0

0.1

0.2

D
T

  [i
n 

 t 
(e

 / 
h_
)2 ]

 t.-binding
 continuum

θi=3 = 9.4
o

-0.4 0 0.4
μ/t

0

0.1

0.2
θi=6 = 5.1

o

FIG. 3. Total Drude weight as a function of the chemical poten-
tial for the tight-binding (solid line) and continuum models (dashed
line). Left panel: twist angle θi=3 = 9.4◦. Right panel: twist angle
θi=6 = 5.1◦.

accompanying the longitudinal currents of intrinsic plasmonic
excitations, Eq. (27), seems to be a robust feature of the
system.

Finally, the comparison for the parameter Dmag is shown
in Fig. 5. Due to its definition, Dmag ∝ (D1 − D0), it can
be interpreted as the Drude weight for accelerating opposite
currents in each layer, or counterflow. Accounting for the
(magnetic) sign convention of Eq. (19), the mostly negative
Dmag of Fig. 5 implies that the current in each layer is accel-
erated by their respective electric field in the expected correct
way. But, as noted in our previous work for the continuum
model, Dmag starts off positive and remains so in a finite
range around the neutrality point, a feature also confirmed
here in the tight-binding calculation. This implies that, within
that range, the electric field is accelerating currents in the
apparently wrong way and that, even at the neutrality point,
there are counterflow currents. This puzzling picture is made
more conventional in the magnetic language of Eqs. (24),
where it could also be seen as the emergence of a magnetic
moment upon the slow application of a magnetic field, for
which the sign of the response need not be prejudiced, and free
carriers need not be present, as neutral graphene shows. Both
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FIG. 4. Chiral Drude component as a function of the chemical
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models give a positive sign at the neutrality point for the twist
angles considered here, implying paramagnetism. Indeed, we
will later see that in-plane orbital paramagnetism is also the
equilibrium susceptibility for a rather wide doping window.

From the above analysis, it is clear that tight-binding and
continuum models agree on the basic aspects. It is true,
however, that the tight-binding numerical effort limits the
accessible angles. As argued in Ref. [35], though, the very
nature of the continuum model suggests it is becoming in-
creasingly better for smaller angles. From this perspective, the
comparison should degrade for larger commensurate angles.
This is shown in Fig. 6, where the lowest commensurate
structures are shown, θi=1 = 21.8◦ in the left and θi=2 = 13.2◦
in the right. For such large angles the interlayer coupling
is very small, and only the interlayer dominated entries D1

and Dxy are shown. For θi=1 = 21.8◦, significant goodwill
is required to discover similarities between tight-binding
and continuum. But for θi=2 = 13.2◦, the comparison dra-
matically improves, with all the salient qualitative features
considered above clearly present. Looking at Fig. 1, one
could say that θi=3 = 9.4◦ marks the beginning of quantitative
agreement.
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B. Equilibrium response: Parallel magnetic field

Here we consider the true equilibrium response and explore
the fate of expressions like those of Eqs. (25) and (26). A
parallel magnetic field can be introduced by the following
choice of perturbing vector potential:

A(1) = a

2
ẑ × B‖, A(2) = −A(1), A(inter) = 0. (44)

It is worth mentioning that, although we will use the linear re-
sponse formalism outlined in Sec. II E, one could alternatively
calculate currents directly from the ground-state averages of
the perturbed Hamiltonian. The reason for this is that no
computational penalty arises in the Hamiltonian perturbed
by the vector potential of Eq. (44), as it retains the original
translational symmetry. In fact, we have often used this second
route as an additional consistency check.

We first consider the equilibrium version of Eq. (26),

m‖ = a2

2
χ̃mag B‖, (45)

where

χ̃mag = χ̃1 − χ̃0. (46)

In Fig. 7, we plot the equilibrium susceptibility as a func-
tion of chemical potential. Albeit with some quantitative
differences, both tight-binding and continuum cases exhibit
similar behavior. There is a positive response in an ex-
tended plateau around the neutrality point, roughly cover-
ing the entire region between the energies corresponding
to the intersecting Dirac cones. Therefore, the equilibrium
magnetic response in that area corresponds to (orbital) para-
magnetism. The gate dependence of the magnetic response
of Fig. 5 is strikingly similar to the gate dependence of
the lattice contribution of the out-of-plane magnetic suscep-
tibility of single-layer graphene [42] and related systems
[43,44]. This points to some sort of universality in the or-
bital response of layered materials, which seems to be in-
dependent of the field direction and would deserve further
investigation.
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FIG. 8. Chiral components of the equilibrium response, χ̃xy and
χ̃ ′

xy , for the tight-binding calculation [see Eqs. (47) and (48)]. Left
panel: twist angle θi=3 = 9.4◦. Right panel: twist angle θi=6 = 5.1◦.

Orbital paramagnetism is present, though small, even
for the largest possible angle in our commensurable lat-
tice (θi=1 ∼ 22◦), and it increases with decreasing angle in
the central plateau region up to the magic angle [28]. For
comparison, the Drude response of Fig. 7 is also plotted,
showing that Drude and equilibrium responses coincide at the
neutrality point, where the Fermi surface correction vanishes,
as expected. As previously reported [28], this orbital param-
agnetism can be quite substantial if compared to other sources
of orbital magnetic response, in the vicinity of the magic
twist angle [45]. Furthermore, the vanishing of the density
of states and Pauli spin paramagnetism makes this orbital
paramagnetism the dominant response around the neutrality
point.

We now inquire about the possible existence of an equilib-
rium counterpart to Eq. (25),

jT = −aχ̃chir B‖, (47)

where now

χ̃chir =
{
χ̃xy + χ̃ ′

xy tight-binding,

χ̃xy continuum.
(48)

Let us recall that both in the Drude and equilibrium cases, the
emergence of a parallel current in response to a parallel mag-
netic field is allowed on time and (lack of) parity symmetry.
In spite of this, the gauge invariance relations Eqs. (33) and
(43) make

χ̃chir = 0, (49)

and, therefore, the total equilibrium current vanishes.
However, it is interesting to realize that the cancellation

of χ̃chir takes place with nonzero values of χ̃xy and χ̃ ′
xy in

the tight-binding case, as shown in Fig. 8. This means that,
though globally zero, there is a current structure summarized
as follows:

j (1) = j (2) = − 1
2 j (inter). (50)

That is, the parallel current associated with the nonvertical
nature of the interlayer bonds is nonzero, and opposite to that
carried by the layers themselves. The current structure illus-
trated in Fig. 8 is a consistent feature of all our tight-binding
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calculations. Notice that, were the system parity-invariant,
each such current contribution would be forbidden. Therefore,
this layered current response to a magnetic field is a remainder
of the chiral nature of TBL.

C. Drude weight and superfluid density

In view of the recent developments concerning supercon-
ductivity in TBG [20], it is worthwhile to close this section
by recalling that the BCS gap makes the difference between
Drude and equilibrium responses disappear in the supercon-
ducting ground state. Thus, for instance, DT would become
the physically correct equilibrium response to an in-plane
transverse vector potential, that is, the superfluid density [46]
DS . For the usual case of a superconducting gap much smaller
than the bandwidth, also applicable to superconducting TBG,
the quantitative evaluation of the superfluid density at zero
temperature could be carried out in the normal state. There-
fore, a normal state calculation of DT like that of Fig. 3 close
to the magic angle could be immediately translated as the
superfluid density of the superconducting ground state.

V. SUMMARY

We have presented a comprehensive study of the elec-
tromagnetic linear response of TBL, described by both a
tight-binding model and its continuum limit. The study has
been restricted to homogeneous horizontal fields, q → 0,
but otherwise unrestricted along the stacking direction. This
nonlocality along ẑ, which is a requirement to describe optical
activity at finite frequencies, has been studied here in the
limit ω → 0, on the grounds that novel phenomena might be
unearthed by the experimental possibility of addressing layers
individually. Our study has considered both the dynamical,
Drude aspect (q = 0 limit first), and equilibrium response
(ω = 0 limit first).

As for the declared objective of assessing the validity
of the continuum model, the conclusion is affirmative: all
previously reported [28] qualitative features on the continuum
model are present in the tight-binding calculation. In particu-
lar, the tight-binding calculation fully supports the existence
of a peculiar magnetic or counterflow Drude component,
Dmag = D1 − D0, finite even at the neutrality point and with
nominally the wrong sign. The agreement also extends to
the chiral Drude component, Dchir, implying that accelerated
currents such as those of intrinsic plasmons are accompa-
nied by a parallel magnetic moment, the basic signature of
chirality. The calculation has been extended to cover the
equilibrium response, where the agreement between tight-
binding and continuum models also holds. The equilibrium
response to a parallel magnetic field implies orbital para-
magnetism over a substantial doping range and the exis-
tence of a layered current structure as the last remnant of
chirality.
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APPENDIX A: INTERLAYER HAMILTONIAN

The tight-binding hopping parameter between two pz or-
bitals in different layers is taken to be

V (d ) = c

[(
a

d

)2

Vppσ (d ) +
(

ρ

d

)2

Vppπ (d )

]
, (A1)

where d =
√

ρ2 + a2 is their distance, with in-plane compo-
nent ρ and interlayer separation a. Adapting the treatment of
Ref. [47], Vppσ (d ) and Vppπ (d ) are assumed to depend on
distance as

Vppσ (d ) = α1

dα2
exp(−α3 dα4 ),

Vppπ (d ) = β1

dβ2
exp(−β3 dβ4 ), (A2)

with α1=11.7955, α2=0.7620, α3=0.1624, α4=2.3509
and β1= − 5.4860, β2=1.2785, β3 = 0.1383, β4 = 3.4490
in eV and Å units. The interlayer distance has been taken as
a = 3.5 Å, and the graphene lattice constant as ag = 2.46 Å.
The overall constant c is adjusted so that the 2D Fourier
transform

Ṽ (q ) = 1

s0

∫
d2ρ e−iq·ρ V (

√
ρ2 + a2), (A3)

evaluated at the Dirac K-point with K = 4π
3ag

(1, 0), gives

Ṽ (K ) = 0.12 eV. s0 is the graphene unit cell area. This
interlayer scheme produces for the hopping integral between
two vertically aligned orbitals the value tA1B2 = 0.49 eV, very
close to that used in previous tight-binding calculations [36].

Notice that Ṽ (K ) is the magnitude that appears in the
continuum model for the interlayer Hamiltonian, as shown
in Ref. [17]. Therefore, the quantitative connection between
the tight-binding model and the continuum model for the
interlayer term is

t⊥ = Ṽ (K ) = 0.12 eV. (A4)

With the choice of Eq. (A4), one has the ratio t⊥
|t | ∼ 0.4,

as in previous continuum model calculations [16,28,39]. This
choice also produces for the first magic angle [17] the value
θ ∼ θi=31 = 1.05◦.

APPENDIX B: TIGHT-BINDING LINEAR RESPONSE

Any tight-binding Hamiltonian can accommodate the pres-
ence of an electromagnetic field, given by the vector potential
A, by the following replacement for each elementary hopping
term:

tij c
†
i cj → tij e

−i
e
h̄

A·r ij c
†
i cj , (B1)

with r ij = rj − r i , where rj (i) are the orbital positions, and A
is the average field along the bond. Current operators are then
obtained for each bond from the functional derivative j =
− ∂H

∂ A . This leads to the following expression for the current
operator associated with an elementary hopping term:

j ij = jp,ij + jd,ij , (B2)
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where the first term defines the paramagnetic current operator,
given by

jp,ij = i
e

h̄
r ij tij c

†
i cj , (B3)

and the second is the diamagnetic one, given to linear
order by

jd,ij = e2

h̄2 tij c
†
i cj r ij r ij · A. (B4)

1. q = 0 response: Drude limit

Summing Eq. (B3) for all hopping terms, the q = 0 Fourier
component of the parallel, paramagnetic current operator can
be decomposed as

j (1)
p = e

S

∑
k

n ∈ 1, m ∈ 1

vnm(k)c†k,nck,m,

j (2)
p = e

S

∑
k

n ∈ 2, m ∈ 2

vnm(k)c†k,nck,m,

j (inter)
p = e

S

⎡
⎢⎢⎢⎣

∑
k

n ∈ 1, m ∈ 2

vnm(k)c†k,nck,m

+
∑

k
n ∈ 2, m ∈ 1

vnm(k)c†k,nck,m

⎤
⎥⎥⎥⎦. (B5)

j (1,2)
p correspond to the intralayer currents, whereas j (inter)

p de-
scribes the parallel current carried by the (oblique) interlayer
tight-binding bonds. c

†
k,n(ck,n) are fermion operators for the

Bloch state with orbital index n. The velocity matrix is given
by

vnm(k) = h̄−1∇khnm(k), (B6)

where hnm(k) = 〈k, n|H0|k,m〉 is the Bloch matrix in orbital
indices, and |k, n〉 is the Bloch state for supercell orbital
index n.

The response tensor χp for q = 0 enjoys all the symme-
tries of the problem, namely time reversal for H0, rotational
invariance around the ẑ axis, and π -rotation invariance around
any in-plane axis in the midpoint between layers. As a conse-
quence, nonzero entries are those of Eq. (9). Linear response
dictates their generic form to be as follows:

χp(ω) = S
∑
k,n,m

〈m, k|A|n, k〉〈n, k|B|m, k〉

× nF (εm,k ) − nF (εn,k )

h̄ω+ − εn,k + εm,k
, (B7)

where ω+ = ω + i0+, and the states |m, k〉 are Bloch eigen-
states [48] of H0 with band index m and eigenenergies εn,k,
and nF is the Fermi function. The operator correspondences

for each entry are

χ0 : A = x̂ · j (1)
p and B = x̂ · j (1)

p ,

χi : A = x̂ · j (inter)
p and B = x̂ · j (inter)

p ,

χ1 : A = x̂ · j (1)
p and B = x̂ · j (2)

p ,

χ2 : A = x̂ · j (1)
p and B = x̂ · j (inter)

p ,

χxy : A = x̂ · j (1)
p and B = ŷ · j (2)

p ,

χ ′
xy : A = x̂ · j (1)

p and B = ŷ · j (inter)
p , (B8)

where x̂ and ŷ are in-plane orthogonal unit vectors. Further-
more, the chiral entries χxy and χ ′

xy are odd functions of the
twist angle θi , whereas the rest are even functions.

The nonzero entries of the q = 0 diamagnetic response,
Eq. (11), are given by

χd0 = 1

S

e2

h̄2

∑
k

n ∈ 1, m ∈ 1

[
∂2
kx

hnm(k)
] 〈c†k,nck,m〉,

χdi = 1

S

e2

h̄2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
k

n ∈ 1, m ∈ 2

[
∂2
kx

hnm(k)
] 〈c†k,nck,m〉

+
∑

k
n ∈ 2, m ∈ 1

[
∂2
kx

hnm(k)
] 〈c†k,nck,m〉

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (B9)

where 〈 〉 imply equilibrium average for H0. Both χd0 and
χdi are even functions of the twist angle. Notice that the
diamagnetic response does not depend on ω. Therefore, The
Drude limit of Eq. (13) is given explicitly by

D = lim
ω→0

χp(ω) + χd . (B10)

The total Drude weight of Eqs. (20) and (38) can also be
obtained from the bands by the familiar expression

DT = 1

S

e2

h̄2

∑
k,n

[
∂2
kx

εn,k
]

nF (εn,k ). (B11)

2. Equilibrium response

The ω → 0 limit of the Drude matrix corresponds to an
adiabatic application of fields, and it need not coincide with
the equilibrium response. In general, one has

j (q, ω) = −χ (q, ω)A(q, ω), (B12)

and the equilibrium response corresponds to

χ eq = lim
q→0

lim
ω→0

χ (q, ω), (B13)

whereas the Drude matrix is

D = lim
ω→0

lim
q→0

χ (q, ω), (B14)

and the order of limits matters in the paramagnetic current
response for gapless systems. Fortunately, the difference is
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a Fermi surface term that comes from the n = m, intraband
contribution in Eq. (B7). It can be obtained from the relation

lim
q→0

lim
ω→0

nF (εn,k−q/2) − nF (εn,k+q/2)

h̄ω − εn,k−q/2 + εn,k+q/2

= lim
ω→0

lim
q→0

nF (εn,k−q/2) − nF (εn,k+q/2)

h̄ω − εn,k−q/2 + εn,k+q/2
− δ(εn,k − μ)

= −δ(εn,k − μ), (B15)

where zero temperature has being assumed for simplicity.
Therefore, the equilibrium entries of Eq. (30) can be ob-

tained from the Drude ones as

χ̃0 = D0 + χF
0 ,

χ̃i = Di + χF
i ,

χ̃1 = D1 + χF
1 ,

χ̃2 = D2 + χF
2 ,

χ̃xy = Dxy + χF
xy,

χ̃ ′
xy = D′

xy + χ ′F
xy , (B16)

with Fermi surface contributions given generically by

χF
α = −S

∑
k,n

〈n, k|A|n, k〉〈n, k|B|n, k〉 δ(εn,k − μ),

(B17)
where the operator correspondences for each entry α are as in
Eq. (B8).

The equilibrium response in the continuum model, not
considered in our previous Ref. [28], is as in Eqs. (B16)
and (B17), with the obvious changes in current operators and
number of terms.

[1] L. D. Barron, Molecular Light Scattering and Optical Activity
(Cambridge University Press, Cambridge, 2004).

[2] Y. Tang and A. E. Cohen, Science 332, 333 (2011).
[3] Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù,

Nat. Commun. 8, 14180 (2017).
[4] A. Guerrero-Martínez, B. Auguié, J. L. Alonso-Gómez, Z.

Džolić, S. Gómez-Graña, M. Žinić, M. M. Cid, and L. M.
Liz-Marzán, Angew. Chem. Int. Ed. 50, 5499 (2011).

[5] X. Shen, A. Asenjo-Garcia, Q. Liu, Q. Jiang, F. J. García de
Abajo, N. Liu, and B. Ding, Nano Lett. 13, 2128 (2013).

[6] M. Hentschel, M. Schäferling, X. Duan, H. Giessen, and N. Liu,
Sci. Adv. 3, e1602735 (2017).

[7] A. K. Geim and I. V. Grigorieva, Nature (London) 499, 419
(2013).

[8] C.-J. Kim, A. Sánchez-Castillo, Z. Ziegler, Y. Ogawa, C.
Noguez, and J. Park, Nat. Nanotechnol. 11, 520 (2016).

[9] G. Li, A. Luican, J. M. B. Lopes dos Santos, A. H. Castro Neto,
A. Reina, J. Kong, and E. Y. Andrei, Nat. Phys. 6, 109 (2010).

[10] H. Schmidt, T. Lüdtke, P. Barthold, and R. J. Haug, Phys. Rev.
B 81, 121403 (2010).

[11] I. Brihuega, P. Mallet, H. González-Herrero, G. Trambly
de Laissardière, M. M. Ugeda, L. Magaud, J. M. Gómez-
Rodríguez, F. Ynduráin, and J.-Y. Veuillen, Phys. Rev. Lett.
109, 196802 (2012).

[12] C. R. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari, Y. Gao,
J. Katoch, M. Ishigami, P. Moon, M. Koshino, T. Taniguchi, K.
Watanabe, K. L. Shepard, J. Hone, and P. Kim, Nature (London)
497, 598 (2013).

[13] R. W. Havener, Y. Liang, L. Brown, L. Yang, and J. Park,
Nano Lett. 14, 3353 (2014).

[14] H. Schmidt, J. C. Rode, D. Smirnov, and R. J. Haug,
Nat. Commun. 5, 5742 (2014).

[15] H. Patel, R. W. Havener, L. Brown, Y. Liang, L. Yang, J. Park,
and M. W. Graham, Nano Lett. 15, 5932 (2015).

[16] J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Castro
Neto, Phys. Rev. Lett. 99, 256802 (2007).

[17] R. Bistritzer and A. H. MacDonald, Proc. Natl. Acad. Sci.
(U.S.A.) 108, 12233 (2011).

[18] K. Kim, A. DaSilva, S. Huang, B. Fallahazad, S. Larentis, T.
Taniguchi, K. Watanabe, B. J. LeRoy, A. H. MacDonald, and
E. Tutuc, Proc. Natl. Acad. Sci. (U.S.A.) 114, 3364 (2017).

[19] Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y.
Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E.
Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero, Nature (London)
556, 80 (2018).

[20] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E.
Kaxiras, and P. Jarillo-Herrero, Nature (London) 556, 43
(2018).

[21] M. Yankowitz, S. Chen, H. Polshyn, K. Watanabe, T. Taniguchi,
D. Graf, A. F. Young, and C. R. Dean, arXiv:1808.07865.

[22] K. Liu, L. Zhang, T. Cao, C. Jin, D. Qiu, Q. Zhou, A. Zettl, P.
Yang, S. G. Louie, and F. Wang, Nat. Commun. 5, 4966 (2014).

[23] P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G.
Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan,
D. G. Mandrus, W. Yao, and X. Xu, Nat. Commun. 6, 6242
(2015).

[24] J. Kunstmann, F. Mooshammer, P. Nagler, A. Chaves, F. Stein,
N. Paradiso, G. Plechinger, C. Strunk, C. Schüller, G. Seifert,
D. R. Reichman, and T. Korn, Nat. Phys. 14, 801 (2018).

[25] K. Tran, G. Moody, F. Wu, X. Lu, J. Choi, A. Singh, J. Embley,
A. Zepeda, M. Campbell, K. Kim, A. Rai, T. Autry, D. A.
Sanchez, T. Taniguchi, K. Watanabe, N. Lu, S. K. Banerjee, E.
Tutuc, L. Yang, A. H. MacDonald, K. L. Silverman, and X. Li,
arXiv:1807.03771.

[26] J. M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L.
Martin-Moreno, J. Faist, and A. B. Kuzmenko, Nat. Commun.
8, 14626 (2017).

[27] E. S. Morell, L. Chico, and L. Brey, 2D Mater. 4, 035015
(2017).

[28] T. Stauber, T. Low, and G. Gómez-Santos, Phys. Rev. Lett. 120,
046801 (2018).

[29] S. Carr, D. Massatt, S. Fang, P. Cazeaux, M. Luskin, and E.
Kaxiras, Phys. Rev. B 95, 075420 (2017).

[30] J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri,
F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera,
P. Godignon, A. Zurutuza Elorza, N. Camara, F. J. G. de Abajo,
R. Hillenbrand, and F. H. L. Koppens, Nature (London) 487, 77
(2012).

[31] Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M.
Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez,
M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D.
N. Basov, Nature (London) 487, 82 (2012).

195414-10

https://doi.org/10.1126/science.1202817
https://doi.org/10.1126/science.1202817
https://doi.org/10.1126/science.1202817
https://doi.org/10.1126/science.1202817
https://doi.org/10.1038/ncomms14180
https://doi.org/10.1038/ncomms14180
https://doi.org/10.1038/ncomms14180
https://doi.org/10.1038/ncomms14180
https://doi.org/10.1002/anie.201007536
https://doi.org/10.1002/anie.201007536
https://doi.org/10.1002/anie.201007536
https://doi.org/10.1002/anie.201007536
https://doi.org/10.1021/nl400538y
https://doi.org/10.1021/nl400538y
https://doi.org/10.1021/nl400538y
https://doi.org/10.1021/nl400538y
https://doi.org/10.1126/sciadv.1602735
https://doi.org/10.1126/sciadv.1602735
https://doi.org/10.1126/sciadv.1602735
https://doi.org/10.1126/sciadv.1602735
https://doi.org/10.1038/nature12385
https://doi.org/10.1038/nature12385
https://doi.org/10.1038/nature12385
https://doi.org/10.1038/nature12385
https://doi.org/10.1038/nnano.2016.3
https://doi.org/10.1038/nnano.2016.3
https://doi.org/10.1038/nnano.2016.3
https://doi.org/10.1038/nnano.2016.3
https://doi.org/10.1038/nphys1463
https://doi.org/10.1038/nphys1463
https://doi.org/10.1038/nphys1463
https://doi.org/10.1038/nphys1463
https://doi.org/10.1103/PhysRevB.81.121403
https://doi.org/10.1103/PhysRevB.81.121403
https://doi.org/10.1103/PhysRevB.81.121403
https://doi.org/10.1103/PhysRevB.81.121403
https://doi.org/10.1103/PhysRevLett.109.196802
https://doi.org/10.1103/PhysRevLett.109.196802
https://doi.org/10.1103/PhysRevLett.109.196802
https://doi.org/10.1103/PhysRevLett.109.196802
https://doi.org/10.1038/nature12186
https://doi.org/10.1038/nature12186
https://doi.org/10.1038/nature12186
https://doi.org/10.1038/nature12186
https://doi.org/10.1021/nl500823k
https://doi.org/10.1021/nl500823k
https://doi.org/10.1021/nl500823k
https://doi.org/10.1021/nl500823k
https://doi.org/10.1038/ncomms6742
https://doi.org/10.1038/ncomms6742
https://doi.org/10.1038/ncomms6742
https://doi.org/10.1038/ncomms6742
https://doi.org/10.1021/acs.nanolett.5b02035
https://doi.org/10.1021/acs.nanolett.5b02035
https://doi.org/10.1021/acs.nanolett.5b02035
https://doi.org/10.1021/acs.nanolett.5b02035
https://doi.org/10.1103/PhysRevLett.99.256802
https://doi.org/10.1103/PhysRevLett.99.256802
https://doi.org/10.1103/PhysRevLett.99.256802
https://doi.org/10.1103/PhysRevLett.99.256802
https://doi.org/10.1073/pnas.1108174108
https://doi.org/10.1073/pnas.1108174108
https://doi.org/10.1073/pnas.1108174108
https://doi.org/10.1073/pnas.1108174108
https://doi.org/10.1073/pnas.1620140114
https://doi.org/10.1073/pnas.1620140114
https://doi.org/10.1073/pnas.1620140114
https://doi.org/10.1073/pnas.1620140114
https://doi.org/10.1038/nature26154
https://doi.org/10.1038/nature26154
https://doi.org/10.1038/nature26154
https://doi.org/10.1038/nature26154
https://doi.org/10.1038/nature26160
https://doi.org/10.1038/nature26160
https://doi.org/10.1038/nature26160
https://doi.org/10.1038/nature26160
http://arxiv.org/abs/arXiv:1808.07865
https://doi.org/10.1038/ncomms5966
https://doi.org/10.1038/ncomms5966
https://doi.org/10.1038/ncomms5966
https://doi.org/10.1038/ncomms5966
https://doi.org/10.1038/ncomms7242
https://doi.org/10.1038/ncomms7242
https://doi.org/10.1038/ncomms7242
https://doi.org/10.1038/ncomms7242
https://doi.org/10.1038/s41567-018-0123-y
https://doi.org/10.1038/s41567-018-0123-y
https://doi.org/10.1038/s41567-018-0123-y
https://doi.org/10.1038/s41567-018-0123-y
http://arxiv.org/abs/arXiv:1807.03771
https://doi.org/10.1038/ncomms14626
https://doi.org/10.1038/ncomms14626
https://doi.org/10.1038/ncomms14626
https://doi.org/10.1038/ncomms14626
https://doi.org/10.1088/2053-1583/aa7eb6
https://doi.org/10.1088/2053-1583/aa7eb6
https://doi.org/10.1088/2053-1583/aa7eb6
https://doi.org/10.1088/2053-1583/aa7eb6
https://doi.org/10.1103/PhysRevLett.120.046801
https://doi.org/10.1103/PhysRevLett.120.046801
https://doi.org/10.1103/PhysRevLett.120.046801
https://doi.org/10.1103/PhysRevLett.120.046801
https://doi.org/10.1103/PhysRevB.95.075420
https://doi.org/10.1103/PhysRevB.95.075420
https://doi.org/10.1103/PhysRevB.95.075420
https://doi.org/10.1103/PhysRevB.95.075420
https://doi.org/10.1038/nature11254
https://doi.org/10.1038/nature11254
https://doi.org/10.1038/nature11254
https://doi.org/10.1038/nature11254
https://doi.org/10.1038/nature11253
https://doi.org/10.1038/nature11253
https://doi.org/10.1038/nature11253
https://doi.org/10.1038/nature11253


LINEAR RESPONSE OF TWISTED BILAYER GRAPHENE: … PHYSICAL REVIEW B 98, 195414 (2018)

[32] H. Yoon, C. Forsythe, L. Wang, N. Tombros, K. Watanabe, T.
Taniguchi, J. Hone, P. Kim, and D. Ham, Nat. Nanotechnol. 9,
594 (2014).

[33] D. Massatt, M. Luskin, and C. Ortner, Multiscale Model. Simul.
15, 476 (2017).

[34] E. Cancès, P. Cazeaux, and M. Luskin, J. Math. Phys. 58,
063502 (2017).

[35] J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Castro
Neto, Phys. Rev. B 86, 155449 (2012).

[36] P. Moon and M. Koshino, Phys. Rev. B 87, 205404 (2013).
[37] X. Liu, K. Watanabe, T. Taniguchi, B. I. Halperin, and P. Kim,

Nat. Phys. 13, 746 (2017).
[38] H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P.

Avouris, and F. Xia, Nat. Photon. 7, 394 (2013).
[39] T. Stauber, P. San-Jose, and L. Brey, New J. Phys. 15, 113050

(2013).
[40] T. Stauber and H. Kohler, Nano Lett. 16, 6844 (2016).
[41] L. Rosenfeld, Z. Phys. 52, 161 (1926).
[42] G. Gómez-Santos and T. Stauber, Phys. Rev. Lett. 106, 045504

(2011).

[43] A. Raoux, F. Piéchon, J.-N. Fuchs, and G. Montambaux,
Phys. Rev. B 91, 085120 (2015).

[44] A. Gutiérrez-Rubio, T. Stauber, G. Gómez-Santos,
R. Asgari, and F. Guinea, Phys. Rev. B 93, 085133
(2016).

[45] We note that the scale of the left graph of Fig. 1 of the
supplemental information of our Ref. [23] is missing a factor
1/8. The orbital paramagnetism in the vicinity of the magic
angle is thus about 25 times larger than the diamagnetism
of the core electrons. But we also note that the calculation
represents an average value, and the details of the band structure
of the lowest band could still lead to a substantially larger
paramagnetic response.

[46] D. J. Scalapino, S. R. White, and S. Zhang, Phys. Rev. B 47,
7995 (1993).

[47] M. S. Tang, C. Z. Wang, C. T. Chan, and K. M. Ho, Phys. Rev.
B 53, 979 (1996).

[48] The notational switch is intentional: |n, k〉 is the Bloch eigen-
state for band index n, not to be confused with the Bloch state
for orbital index n, |k, n〉.

195414-11

https://doi.org/10.1038/nnano.2014.112
https://doi.org/10.1038/nnano.2014.112
https://doi.org/10.1038/nnano.2014.112
https://doi.org/10.1038/nnano.2014.112
https://doi.org/10.1137/16M1088363
https://doi.org/10.1137/16M1088363
https://doi.org/10.1137/16M1088363
https://doi.org/10.1137/16M1088363
https://doi.org/10.1063/1.4984041
https://doi.org/10.1063/1.4984041
https://doi.org/10.1063/1.4984041
https://doi.org/10.1063/1.4984041
https://doi.org/10.1103/PhysRevB.86.155449
https://doi.org/10.1103/PhysRevB.86.155449
https://doi.org/10.1103/PhysRevB.86.155449
https://doi.org/10.1103/PhysRevB.86.155449
https://doi.org/10.1103/PhysRevB.87.205404
https://doi.org/10.1103/PhysRevB.87.205404
https://doi.org/10.1103/PhysRevB.87.205404
https://doi.org/10.1103/PhysRevB.87.205404
https://doi.org/10.1038/nphys4116
https://doi.org/10.1038/nphys4116
https://doi.org/10.1038/nphys4116
https://doi.org/10.1038/nphys4116
https://doi.org/10.1038/nphoton.2013.57
https://doi.org/10.1038/nphoton.2013.57
https://doi.org/10.1038/nphoton.2013.57
https://doi.org/10.1038/nphoton.2013.57
https://doi.org/10.1088/1367-2630/15/11/113050
https://doi.org/10.1088/1367-2630/15/11/113050
https://doi.org/10.1088/1367-2630/15/11/113050
https://doi.org/10.1088/1367-2630/15/11/113050
https://doi.org/10.1021/acs.nanolett.6b02587
https://doi.org/10.1021/acs.nanolett.6b02587
https://doi.org/10.1021/acs.nanolett.6b02587
https://doi.org/10.1021/acs.nanolett.6b02587
https://doi.org/10.1007/BF01342393
https://doi.org/10.1007/BF01342393
https://doi.org/10.1007/BF01342393
https://doi.org/10.1007/BF01342393
https://doi.org/10.1103/PhysRevLett.106.045504
https://doi.org/10.1103/PhysRevLett.106.045504
https://doi.org/10.1103/PhysRevLett.106.045504
https://doi.org/10.1103/PhysRevLett.106.045504
https://doi.org/10.1103/PhysRevB.91.085120
https://doi.org/10.1103/PhysRevB.91.085120
https://doi.org/10.1103/PhysRevB.91.085120
https://doi.org/10.1103/PhysRevB.91.085120
https://doi.org/10.1103/PhysRevB.93.085133
https://doi.org/10.1103/PhysRevB.93.085133
https://doi.org/10.1103/PhysRevB.93.085133
https://doi.org/10.1103/PhysRevB.93.085133
https://doi.org/10.1103/PhysRevB.47.7995
https://doi.org/10.1103/PhysRevB.47.7995
https://doi.org/10.1103/PhysRevB.47.7995
https://doi.org/10.1103/PhysRevB.47.7995
https://doi.org/10.1103/PhysRevB.53.979
https://doi.org/10.1103/PhysRevB.53.979
https://doi.org/10.1103/PhysRevB.53.979
https://doi.org/10.1103/PhysRevB.53.979



