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Abstract 

The DNA repair capacity in the mature spermatozoa is highly compromised due to the Base 

Excision Repair Route (BER) being truncated. In the mature spermatozoa only the first enzyme 

of the route (OGG1) is present. Consequently, reduced activity of the enzymes of the BER route 

both during spermatogenesis and in the mature spermatozoa may be detrimental for fertility. 

The objective of our study was to investigate the correlation between two representative SNPs 

of those enzymes, SNPs OGG1 Ser326Cys (rs1052133) and XRCC1 Arg399Gln (rs25487) and male 

infertility. 313 seminal samples from infertile patients and 80 from donors with proven fertility 

were included in the study. All samples were subjected to a regular sperm analysis and 

genotyped using the PCR-RFLP system. We found significant differences in the genotype 

frequencies between patients and donors for the XRCC1 Arg399Gln polymorphism (χ2(2)=8.7, 

P=0.013), with the Gln allele showing a protective role and for the OGG1 Ser326Cys 

polymorphism between normozoospermic and non-normozoospermic patients (χ2(2)=12.67, 

P=0.002) with the Cys allele showing a detrimental effect over concentration. In conclusion, our 

study shows that polymorphisms in the genes coding for the DNA damage repair enzymes may 

be associated with poor sperm parameters and male infertility. 

Introduction 

Reactive oxygen species (ROS) are free radicals that have at least one unpaired electron (Rahal, 

Kumar et al. 2014). ROS originate as by-products of the metabolism of oxygen and are normally 

neutralized by the antioxidant systems. However, occasionally an elevated production of ROS or 

a failure in the antioxidant systems leads to an increase in ROS concentration. Under this 

situation elevated levels of ROS can cause both DNA damage and lipid peroxidation (Agarwal, 

Virk et al. 2014). One of the main effects of oxidative stress affecting sperm DNA quality is the 

oxidation of guanine bases producing 8-hydroxy-2´-deoxyguanosine (8-OHdG) which is a highly 



mutagenic element leading to a G:C → T:A transversion after replication (Wood, Wood et al. 

1992). 

The Base Excision Repair System (BER) is the DNA repair pathway that detects and repairs the 

presence of 8OHdG residues in the DNA (Olsen, Lindeman et al. 2005). Two principal enzymes 

in this pathway are the 8-oxoguanine glycosylase 1 (OGG1) and the X-ray repair cross 

complementing group 1 (XRCC1). The OGG1 is the first enzyme in the route and the one that 

detects the presence of the 8OHdG residues and eliminates them, producing an abasic site while 

the XRCC1 is a scaffold enzyme that attracts the rest of the implicated enzymes to the newly 

abasic site and coordinates them, enhancing the effectiveness of the pathway. 

In contrast to somatic cells, in the mature spermatozoa the BER route is truncated, being only 

the OGG1 enzyme active (Smith, Dun et al. 2013). Due to this situation, a proper functioning of 

the BER pathway during spermatogenesis is essential in order to obtain mature spermatozoa 

with the lowest levels of 8-OHdG residues possible, as the remaining 8-OHdG residues cannot 

be completely repaired in the mature spermatozoa. Moreover, as the OGG1 enzyme is active in 

the mature spermatozoa and the rest of the pathway is truncated, its activity on the remaining 

8-OHdG residues leads to the presence of abasic sites in the DNA of the fertilizing spermatozoa 

which may be detrimental to the fertilization process (González-Marín, Gosálvez et al. 2012).  

However, little information is available regarding the relationship between polymorphisms in 

those critical enzymes and the consequences for male infertility. The objective of our study was 

to investigate the correlation between two representative SNPs located in two key enzymes of 

the BER pathway, SNPs OGG1 Ser326Cys (rs1052133) and XRCC1 Arg399Gln (rs25487) and male 

infertility.  

Materials and methods 

2.1.) Subjects and sample collection 



The study was approved by the Bioethics Committee of the University Autonoma of Madrid (CI 

60-1058). A total of 393 subjects were included in the study. The patient cohort consisted of 313 

individuals undergoing an assisted reproduction treatment that showed no evidence of any 

other fertility related diseases, such as prostate cancer, cryptorchidism, varicocele, diabetes, 

seminal infections or karyotype abnormalities. The control cohort included 80 individuals with 

proven fertility who had already fathered at least one child. Each subject donated 1mL of semen 

obtained by masturbation after at least 4 days of abstinence (the regular abstinence period 

applied in the collaborating clinic). 

2.1) Seminal analysis 

To get a general overview of the seminal quality in our population a regular sperm analysis was 

performed for each sample according to World Health Organization (WHO) guidelines (World 

Health Organization 2010). The included parameters were volume, concentration, motility, 

morphology and vitality. The individuals included in the patient cohort were classified into 

normozoospermic and non-normozoospermic according to cut-off reference values for seminal 

characteristics as published in the WHO 2010 laboratory manual for the examination and 

processing of human semen (for non-normozoospermic volume ≤ 1.5mL, concentration ≤ 15 mill 

mL-1, motility ≤ 40%, morphology ≤ 4% and vitality  ≤ 58%). 

2.2) Sperm DNA fragmentation 

Sperm DNA fragmentation was assessed for all samples in the patient cohort using the Sperm 

Chromatin Dispersion Assay (SCD) in the form of the Halosperm Kit (Halosperm Kit, Halotech 

DNA, Madrid, Spain) and in accordance with the manufacturer’s guidelines. Briefly, seminal 

samples were included in an agarose microgel on a microscope slide and they were next 

subjected to a lysis solution and a deproteinization solution. After being washed and dehydrated 

with alcohols all samples were stained with SYBR-Green (SYBR-Green 10000x, Cat No S7563, 

Thermo Fisher Scientific, Braunschweig, Germany), mounted with Vectashield (Vectashield 



Mounting Medium, Cat No H-1000, Vector Laboratories, Burlingame, USA) and observed with 

fluorescence microscopy (Leica DMRB, Leica-Mycrosystems, Wetzlar, Germany). 

2.3) DNA extraction 

DNA extraction was performed using the phenol-chloroform method with proteinase-K 

treatment as described elsewhere with minor modifications (Yuan, Kuete et al. 2015). Briefly, 

500 µL of liquefied semen was centrifuged at 1800 rpm and the pellet re-suspended in 100 µL 

of seminal plasma. This sample was then incubated overnight in a solution consisting of 8 µL 10 

mg mL-1 proteinase K (Proteinase K Recombinant PCR Grade, Cat No 03 115 887 001, Roche, 

Mannheim, Germany), 8 µL of 1M DTT and 100 µL extraction buffer (20mM Tris-Cl, 20mM EDTA, 

200mM NaCl, 4% SDS). Thereafter, 216 µL of phenol (Phenol/Chloroform/Isoamyl alcohol 

25:24:1, Cat No 327115000, Acros Organics, New Jersey, USA) was added to the semen sample 

and the mixture agitated by a mechanical shaker for 2 min after which it was centrifuged at 8000 

rpm for 10 min. The upper aqueous phase was then recovered and the same operation 

performed with 200 µL of chloroform:isoamil 24:1 (Chloroform reagent grade - Cat No 

CL02031000, Scharlab, Spain; Isoamylalcohol >98% - Cat No 818969, Merck, Munich, Germany). 

The upper aqueous phase was then recovered once more to which 250 µL of cold (-20 ºC) 100% 

ethanol was also added. This solution was shaken gently until the DNA precipitated and the 

sample was left to stand overnight at -20 ºC. The DNA was then washed with cold (-20 ºC) 70% 

ethanol and air-dried. To eliminate contaminating RNA, the pellet was re-suspended in 50 µL of 

TRIS-EDTA buffer with 0.5 µL of 1 mg mL-1 RNAse (RNase DNase free, Cat No 11 119 915 001, 

Roche, Mannheim, Germany) and incubated for 2 h at 37 ºC. Finally, the concentration of the 

extracted DNA was determined using a NanoDrop ND-1000 (Thermo Scientific, Braunschweig, 

Germany) before diluting to a concentration of 50 ng µL-1 and stored at 4 ºC. 

2.4) Genotype analysis 



The OGG1 Ser326Cys and XRCC1 Arg399Gln genotypes were determined using the polymerase 

chain reaction-restriction fragment length polymorphism (PCR-RFLP) method according to the 

protocols by Sobczuk et al (Sobczuk, Poplawski et al. 2012) and Lunn et al (Lunn, Langlois et al. 

1999) respectively. The PCR protocol was performed as follows: initial denaturation (94 °C, 10 

min) followed by 35 cycles of denaturation (94 °C, 30 s), annealing (melting temperature, 30 s) 

and elongation (72 °C, 30 s).  The PCR products were then digested with the restriction enzymes 

SatI and MspI respectively (both FastDigest Restriction Enzymes, Cat Nos SatI-FD1644 and MspI-

FD0544, Thermo Scientific, Braunschweig, Germany) by incubation at 37 ºC for 45 min. The 

primer sequences and the restriction enzymes are shown in table 1. 

2.5) Statistical analysis 

Statistical analysis was performed using the SPSS 22 software for Windows (SPSS Inc., Chicago. 

USA). Adjustment of continuous variables to normal distribution was checked using the 

Kolmogorov-Smirnov test. A goodness-of-fit Chi square test was used to determine the Hardy-

Weinberg equilibrium of the observed genotype frequencies. Associations between categorical 

variables (genotype frequencies and odds ratios) were assessed using the Chi-square test. 

Continuous variables (seminal parameters) were compared between genotypic groups using the 

non-parametric test Kruskal-Wallis. A P value <0.05 was considered to be statistically significant. 

Results 

We obtained data from 393 subjects: 313 infertile patients and 80 controls with proven fertility. 

Table 2 describes the demographic and clinical profile of the participants. The genotype 

frequencies of the studied polymorphisms are shown in table 3. Both cohorts were in Hardy-

Weinberg equilibrium for both polymorphisms. We only found significant differences between 

patients and donors for the XRCC1 Arg399Gln polymorphism (χ2(2)=8.7, P=0.013). Similarly, as 

showed in figure 1, we only got statistically significant odds ratios of infertility for the SNP XRCC1 



Arg399Gln and the genotypes Arg/Arg (OR=2.223, 95% CI=1.296-3.813, χ2(1)=8.67, P=0.003) and 

Arg/Gln (OR=0.555, 95%CI=0.337-0.912, χ2(1)=5.47, P=0.019). 

When we compared the values of the traditional sperm analysis between genotypes we 

obtained significant differences for the parameter concentration and the SNP XRCC1 Arg399Gln 

(H=8.43, P=0.015) (see table 4). Pairwise comparisons revealed significant differences between 

genotypes Arg/Arg and Gln/Gln (H=-43.23, P=0.047, r=-0.131) and differences approaching 

significance between genotypes Arg/Arg and Arg/Gln (H=-28.98, P=0.056, r=-0.159). We also 

obtained differences approaching significance for the SNP OGG1 Ser3226Cys and the parameter 

morphology. Moreover, for the SNP OGG1 Ser3226Cys we obtained the highest values in all 

parameters for the genotype Ser/Ser while for the SNP XRCC1 Arg399Gln we obtained the 

highest values in all parameters for the genotype Gln/Gln. In concordance, we obtained the 

lowest levels of sperm DNA fragmentation for genotypes Ser/Ser for the SNP OGG1 Ser3226Cys 

and Gln/Gln for the SNP XRCC1 Arg399Gln. 

When we classified the patients cohort according to its diagnosis (normozoospermic and non-

normozoospermic) we obtained statistically significant differences in the genotype frequencies 

between those two subgroups for SNP OGG1 Ser326Cys (χ2(2)=12.67, P=0.002) (see table 5). 

Nine possible combinations were derived from the observed genotypes, of which two of them 

(Ser/Ser-Arg/Arg and Ser/Ser-Arg/Gln) represented more than 50% of the occurrences both in 

controls and in cases (see table 6). The general distribution was not significantly different 

between infertile patients and fertile controls (χ2(8)=11.61, P=0.169). Only two combinations 

showed a statistically significant association with male fertility status: Ser/Ser-Arg/Arg 

(OR=1.915, 95% CI=1.005-3.648, χ2(1)=4.003, P=0.045) and Ser/Ser-Arg/Gln (OR=0.531, 95% 

CI=0.315-0.894, χ2(1)=5.765, P=0.016). 

Discussion 



As mentioned earlier, BER is a DNA repair pathway that detects the presence of 8-OHdG 

modified nucleotides in the DNA and repairs them. Two principal enzymes in this pathway are 

OGG1 and XRCC1. The aim of this study was to find a relationship between two representative 

SNPs of those enzymes, SNPs OGG1 Ser326Cys and XRRC1 Arg399Gln, and male infertility. 

OGG1, coded in chromosome 3p26, is the first enzyme which works in the BER DNA repair 

system. It recognizes oxo-G:C base pairs and catalyses the expulsion of the oxoG leaving an 

abasic site in the DNA (Norman, Verdine et al. 2000). The OGG1 is the only enzyme of the BER 

route present in the mature spermatozoa and its activity is essential for the repair of the oxo-

G:C base pairs. The oocyte, although being able to repair part of the DNA damage from the 

spermatozoa post fecundation, has very low concentration of this particular enzyme. It has been 

shown that semen of infertile men has an increased level of oxo-G:C base pairs (Dantzer, Bjørås 

et al. 2003). The Ser326Cys polymorphism is a C to G transversion in exon 7 in an α-helix domain 

(Kohno, Shinmura et al. 1998). Several studies have associated the Cys allele with a reduced 

repair capacity (Hill, Evans 2006), (Smart, Chipman et al. 2006). Specifically, the group of Kohno 

et al found a strong association with the Ser allele having 7 times higher enzyme activity levels 

compared to the enzyme activity produced by the Cys allele (Kohno, Shinmura et al. 1998).  

To our knowledge there is only other published study for this polymorphism related to infertility; 

they also observed a higher frequency of genotypes Ser/Cys and Cys/Cys in patients than in 

donors although their frequencies are not similar to ours (Ji, Yan et al. 2013). These differences 

can be a consequence of the differences in the number of subjects studied (they had 620 

patients and 480 donors) or of the different ethnicity of the subjects (Asiatic versus Caucasian). 

In our study, we could not find statistically significant differences in the genotype frequencies 

between patients and donors; in contrast, we have observed statistically significant differences 

in the genotype frequencies between normozoospermic and non-normozoospermic patients, 

with the latter showing a reduction in the frequency of the Ser/Ser genotype. In addition, 

although not being statistically significant, the only genotype showing an odds ratio of infertility 



under 1 (protective role) was the genotype Ser/Ser. Moreover, we obtained the highest sperm 

parameters and the lowest sperm DNA fragmentation levels for the Ser/Ser genotype with 

differences approaching a significant value for parameter morphology. Consequently, our 

observations are concordant with the hypothesis that the Cys allele correlates with a reduced 

repair capacity and point to the idea that it has a major impact on sperm morphology. A reduced 

activity of the enzyme OGG1 may correlate with a higher presence of oxo-G:C base pairs and 

thus with a defective spermiogenic procedure generating morphologically abnormal 

spermatozoa. 

XRCC1, coded in chromosome 19q13.2, is a key enzyme in the BER DNA repair system whose 

function is to attract other enzymes to the sites where the DNA is damaged (Thompson, West 

2000), (Radicella, Boiteux et al. 2001). It has been shown that its expression in the testes is higher 

than in other tissues suggesting that it may play an important role during spermiogenesis to 

repair damage from the meiosis in the DNA (Ahmed, de Boer et al. 2010), (Walter, Lu et al. 1994). 

In contrast, the XRCC1 enzyme is not present in the mature spermatozoa. Consequently, XRCC1 

enzyme deficiency during spermiogenesis would lead to the presence of damage in the DNA of 

the mature spermatozoa and this damage will pass to the embryo, as the mature spermatozoa 

has a truncated BER route and thus cannot repair it. In the Arg399Gln polymorphism there is an 

Arg to Gln substitution in codon 399 which is located in the poly ADP ribose polymerase (PARP) 

binding domain (Saadat, Ansari-Lari 2009).  

In our study we observed significant differences in the genotype frequencies between patients 

and donors with an increased presence of the heterozygous Arg/Gln genotype in fertile donors. 

Our results are consistent with those of Gu et al (Gu, Liang et al. 2007), (Gu, Ji et al. 2007) but 

there are other studies which offer an opposite conclusion (Zheng, Wang et al. 2012) or even no 

correlation between this polymorphism and idiopathic male infertility (Gashemi, Khodadadi et 

al. 2017). These differences may be as a consequence of the ethnic background of the 



population. Both the Gu et al and Zheng et al studies were conducted with Asiatic populations 

(China) while ours was conducted with a Caucasian population (Spain). Moreover, our genotype 

frequencies are consistent with those observed by Silva et al in Caucasian women (Portugal) 

(Silva, Moita et al. 2007). However, when we compared the sperm parameters between 

genotypes we obtained the highest values in all parameters for genotype Gln/Gln with 

significant differences in the case of the parameter concentration. This may indicate that the 

Arg allele might have an impact on fertility with the Arg/Arg genotype correlating with an 

important reduction in sperm concentration. A possible explanation for this observation could 

be that this variant of the enzyme would be less active, leaving more abasic sites in the sperm 

DNA and thus increasing the activation of apoptotic processes which lead to a reduction in 

sperm concentration.  In concordance with this idea, Manente et al have recently correlated the 

presence of elevated levels of sperm DNA fragmentation with an increase in apoptosis and with 

the diagnosis of oligo and necrozoospermia (Manente, Pecoraro et al. 2015).  

When combining the studied polymorphism we obtained nine possible options but only two of 

them showed a significant association with the male fertility status (Ser/Ser-Arg/Arg and 

Ser/Ser-Arg/Gln). In both cases the observed odds ratios were similar to those observed for the 

XRCC1 Arg399Gln polymorphism alone. Thus we hypothesise that the effect of the presence of 

a polymorphism is more important for the XRCC1 enzyme than for the OGG1 one. That 

observation may be explained due to the lack of activity of the XRCC1 enzyme in the mature 

spermatozoa which makes the XRCC1´s activity levels during spermatogenesis critical. 

We are aware that our study has both strengths and weaknesses. The main strengths are the 

relatively high number of individuals included in the study and that all subjects included in the 

donors’ cohort had proven fertility as they had already fathered at least one child. With respect 

to the study’s weaknesses, due to sample availability the number of individuals included in each 

cohort was not balanced, with a total of 313 patients but only 80 donors. In addition, although 



sperm parameters are influenced by patient exposure factors such as BMI, smoking and diet, 

these aspects are difficult or virtually impossible to fully define in the individual patients and 

thus we have not considered them in our study. 

In conclusion, our study shows that polymorphisms in the genes coding for the DNA damage 

repair enzymes are associated with lower enzyme activity, poor sperm parameters and male 

infertility. More research should be done including a broader spectrum of polymorphisms 

located in genes coding for the enzymes of the BER route in order to better understand their 

relation to male infertility. 
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Figure legends 

Figure 1: Forest plot of infertility risk for each genotype. Horizontal lines represent 95% CI. Each 

square represents the OR point. The vertical line is at the null value (OR=1). Statistical analysis: 

chi-square test. 

Tables 

Table 1: RFLP settings. 

Polymorphism OOG1 Ser326Cys XRCC1 Arg399Gln 

PCR primers F 5`-GGAAGGTGCTTGGGGAAT-3` 

R 5`-ACTGTCACTAGTCTCACCAG-3` 

F 5`-TTGTGCTTTCTCTGTGTCCA-3` 

R 5`-TCCTCCAGCCTTTTCTGATA-3` 

Annealing 

temperature 

56 ºC 56 ºC 

PCR product 200 bp 615 bp 

Restriction enzyme SatI MspI 

Restriction fragments Ser/Ser 200 Arg/Arg 374,221 



Ser/Cys 200,100 

Cys/Cys 100 

Arg/Gln 615,374,221 

Gln/Gln 615 

 

Table 2: Demographic and clinical profiles of the cohorts included in the study (Mean ± Standard 

deviation). Statistical analysis: Mann-Whitney U-test. 

 
Patients Donors P-value 

Volume (mL) 3.33 ± 1.36 3.19 ± 1.19 0.431 

Sperm Concentration (X 106 mL-1) 26.93 ± 18.41 53.82 ± 18.92 <0.001 

Motility (%) 38.93 ± 12.22 54.55 ± 6.36 <0.001 

Morphology (%) 3.41 ± 1.87 6.41 ± 1.71 <0.001 

DNA fragmentation (%) 19.69 ± 13.15 No data No data 

 

Table 3: Genotype frequencies of the OGG1 Ser326Cys and XRCC1 Arg399Gln polymorphisms 

among the cases and controls. Statistical analysis: Chi-square test. 

 
Patients Donors  

Genotype n (obs) Genotype  

frequency 

n (obs) Genotype  

frequency 

P-value 

OGG1 Ser326Cys 
    

 

Ser/Ser 182 0.59 53 0.66 0.455 

Ser/Cys 118 0.37 25 0.32 

Cys/Cys 13 0.04 2 0.02 

XRCC1 Arg399Gln 
    

 

Arg/Arg 144 0.46 22 0.28 0.013 

Arg/Gln 129 0.41 45 0.56 

Gln/Gln 40 0.13 13 0.16 

 



Table 4: Extended analysis of traditional seminal parameters for each genotype. The data shown 

are the mean for volume (mL), concentration (mill mL-1), motility (%), morphology (%), vitality 

(%) and DNA fragmentation (%). Statistical analysis: Kruskal-Wallis test.  

 

 

 
Genotypes p-value 

OGG1 

Ser326Cys 

 
Ser/Ser Ser/Cys Cys/Cys 

 

Volume (mL) 3.38 3.21 2.90 0.266 

Concentration 

 (mill mL-1) 

33.09 31.29 30.33 0.538 

Motility (%) 42.88 41.15 38.66 0.269 

Morphology (%) 4.20 3.73 3.66 0.056 

Vitality (%) 75.55 72.29 71.60 0.280 

Fragmentation (%) 19.19 20.44 19.87 0.688 

XRCC1 

Arg399Gln 

 
Arg/Arg Arg/Gln Gln/Gln 

 

Volume (mL) 3.29 3.29 3.34 0.957 

Concentration 

(mill mL-1) 

28.81 33.99 38.09 0.015 

Motility (%) 40.92 42.20 45.28 0.159 

Morphology (%) 3.89 4.04 4.30 0.408 

Vitality (%) 73.22 74.33 75.76 0.666 

Fragmentation (%) 19.46 20.50 17.86 0.641 

 

 

Table 5: Extended comparison of genotype frequencies of the OGG1 Ser326Cys and XRCC1 

Arg399Gln polymorphisms between controls, normozosspermic patients and non-

normozoospermic patients. Statistical analysis: Chi Square test. 



  Genotypes p-value 

OGG1 

Ser326Cys 

 Ser/Ser Ser/Cys Cys/Cys  

Donors 0.66 0.32 0.02  

Patients Normo 0.74 0.24 0.02 

Non-normo 0.52 0.43 0.05 

XRCC1 

Arg399Gln 

 Arg/Arg Arg/Gln Gln/Gln  

Donors 0.28 0.56 0.16  

Patients Normo 0.50 0.33 0.17 

Non-normo 0.44 0.45 0.11 

 

 

Table 6: Distribution of the genotype frequencies for the 9 possible combinations of the OGG1 

Ser326Cys and XRCC1 Arg399Gln polymorphisms. OR= Odds ratio.  

 
Patients Donors   

Genotypes n (obs) % n (obs) % P-value OR (95% CI) 

OGG1 

Ser326Cys 

XRCC1 

Arg399Gln 

Ser/Ser Arg/Arg 85 27.4 13 16.5 0.045 1.915 (1.005-3.648) 

Ser/Ser Arg/Gln 77 24.7 31 38 0.016 0.531 (0.315-0.894) 

Ser/Ser Gln/Gln 20 6.4 9 11.4 0.127 0.529 (0.231-1.212) 

Ser/Cys Arg/Arg 55 17.5 10 12.7 0.299 1.465 (0.710-3.023) 

Ser/Cys Arg/Gln 44 14 11 13.9 0.984 1.007 (0.494-2.054) 

Ser/Cys Gln/Gln 19 6.1 4 5.1 0.738 1.208 (0.399-3.656) 

Cys/Cys Arg/Arg 4 1.3 0 0 - - 

Cys/Cys Arg/Gln 8 2.5 2 2.5 0.994 1.007 (0.210-4.836) 

Cys/Cys Gln/Gln 1 0.3 0 0 - - 

 

0.002 

 0.006 
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