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Resumen

El descubrimiento del boson de Higgs en El Gran Colisionador de Hadrones (LHC) consti-
tuye la confirmación de la existencia de la ultima pieza del Modelo Estándar de la física
de partículas. Sin embargo, existen aun problemas importantes que dicho marco teórico
no pude responder, tales como el origen de la masa de los neutrinos, la naturaleza de
la materia oscura, el origen de la asimetría bariónica del universo o el problema CP de
las interacciones fuertes. Han aparecido diversas propuestas en las últimas décadas para
responder a estas preguntas, con la característica común de que todas estas extensiones
a energías más allá del Modelo Estándar deben mostrarse de algún modo a energías no
mucho mas elevadas que la Escala Electrodébil. Esto constituye una invitación a explorar
experimentalmente la física a energías del orden del Teraelectrónvoltio (TeV). El número
de posibilidades para extender el Modelo Estándar es enorme, con cada caso motivado por
diferentes ideas teóricas o diferentes indicios experimentales.

El plan de investigación experimental a energías por encima de la Escala Electrodébil
para las próximas décadas utiliza el aprovechamiento exhaustivo de las posibilidades del
LHC, incluyendo la fase de Alta Luminosidad (HL), y la incorporación de nuevos detectores
centrados en señales específicas, difíciles de medir con los experimentos actuales, tal como
las búsquedas de partículas con vida media larga. Así mismo, hay planes para construir el
Colisionador Lineal Internacional (ILC) en Japón, un colisionador de electrones-positrones
con energías de 500 GeV. Por lo tanto, en la actualidad y en el futuro próximo, las posibil-
idades de probar cualquier teoría más allá del Modelo Estándar en términos de su efecto
sobre la fenomenología de partículas están restringidas a experimentos alrededor del TeV
de energía. Afortunadamente esto es suficiente para analizar gran cantidad de modelos ca-
paces de resolver algunos de los problemas del Modelo Estándar y a la vez producir señales
en los aceleradores, tanto directas como indirectas. Por ello es crucial hacer un análisis
detallado de cada modelo, que permita diseñar los experimentos para tener una cobertura
óptima y a la vez tenga la capacidad de diferenciar entre distintos modelos.

La supersimetría a la escala del TeV ha sido quizás la teoría más aceptada en las últi-
mas décadas para extender el Modelo Estándar a la escala Electrodébil. Las extensiones
supersimétricas del Modelo Estándar resultan útiles resolviendo el denominado problema
de las jerarquías y proporcionando un buen candidato a materia oscura. Las teorías super-
simétricas tienen además propiedades interesantes como la unificación de las interacciones
gauge tras incluir su efecto en las ecuaciones del grupo de renormalización.

La supersimetría predice la existencia de una partícula nueva asociada a cada una de las
del Modelo Estándar con los mismos número cuánticos, exceptuando el espín. Por lo tanto
predice la existencia de un compañero escalar por cada fermión y un compañero fermiónico
por cada bosón. Además hay buenas razones para predecir la masa de estas partículas
alrededor de la escala del TeV. De este modo, la supersimetría predice la existencia de un
gran número de partículas que estarían dentro del rango de energías accesible para el LHC
o la siguiente generación de aceleradores.
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A lo largo de la presente tesis se discuten los aspectos fenomenológicos del modelo
supersimétrico denominado µνSSM relevantes para el LHC. Además de las propiedades
atractivas de los modelos supersimétricos, el µνSSM permite solucionar el denominado
problema µ del Minimal Superymmetric Standard Model (MSSM) y explicar al mismo
tiempo el origen de la masa de los neutrinos. Dentro de este modelo, el gravitino es un
buen candidato a materia oscura.

En extensiones supersimétricas del Modelo Estándar, el número bariónico ya no es una
simetría accidental y ha de ser obtenida imponiendo algún tipo de simetría discreta. De
otro modo los modelos predirían una vida media para el protón inaceptablemente baja.
Generalmente este rol lo juega la simetría discreta denominada R-paridad, que fuerza a
cada partícula supersimétrica a ser producida a pares. La consecuencia directa de esta
simetría es que la partícula supersimétrica más ligera (LSP) será estable. En ese caso
existen fuertes límites cosmológicos a las propiedades que ha de tener dicha partícula, que
por otro lado la convierten en un candidato a materia oscura ideal. En los aceleradores,
la familia de modelos supersimétricos que respetan la R-paridad predice la producción de
eventos con una gran cantidad de momento transversal desaparecido (MET).

En su lugar, el µνSSM incluye términos en el lagrangiano que no permiten asignar de
forma consistente cargas bajo R-paridad a todas las partículas y por lo tanto esta simetría
está explícitamente rota. Dado que las partículas supersimétricas pueden decaer a partícu-
las del Modelo Estándar, la fenomenología del modelo es más rica y debe ser estudiada
detalladamente. Aunque existen otros modelos que rompen R-paridad, la estructura del
µνSSM es compleja y da lugar a señales únicas.

El objetivo de ésta tesis es llevar a cabo un estudio de las posible señales a las que podría
dar lugar el µνSSM en el LHC . En concreto nos enfocamos en el sector electrodébil del
modelo, el cual en principio puede ser comprobado con una cierta facilidad en un acelerador
de hadrones, de forma que identificamos las señales que pueden aparecer en la producción
de los supercompañeros electrodébiles en el LHC. El texto está organizado como se explica
a continuación: El capitulo 1 es una breve introducción a la supersimetría, presentando
las características mas importantes del marco teórico y presentando los modelos más pop-
ulares, con sus limitaciones. En el capítulo 2 introducimos el modelo µνSSM, describiendo
sus características mas importantes y resumiendo los análisis fenomenológicos previos. El
capítulo 3 está dedicado al análisis pormenorizado de las características fenomenológicas
más importantes del left sneutrino, cuando ésta es la partícula supersimétrica más ligera.
Allí mostramos las posibles señales a las que podría dar lugar en el LHC, cuando la desinte-
gración es inmediata. En el capítulo 4 hacemos uso de una serie de puntos representativos
del espacio de parámetros del left-sneutrino, que pueden producir señales detectables en
el LHC. En capítulo 5 se usan las búsquedas de ATLAS de partículas con una vida me-
dia larga para poner límites al espacio de parámetros del modelo cuando el left-sneutrino
es la partícula supersimétrica más ligera y decae a una distancia significativa del punto
de interacción primaria, produciendo vértices desplazados. En el capítulo 6 se utilizan
las búsquedas de ATLAS de partículas supersimétricas Electrodebiles en espectros com-
primidos para poner límites a la masa del left-sneutrino, cuando la partícula más ligera es
un neutralino tipo bino y el sneutrino es la partícula siguiente. Adicionalmente, en este
capítulo explicamos que el proceso descrito es compatible con un exceso local presentado
recientemente por la colaboración ATLAS.

El capítulo 7 concluye la tesis resumiendo los principales resultados y perfilando los
proyectos futuros que se abren.



Summary

The discovery of the Higgs boson at the Large Hadron Collider (LHC) constitutes the
confirmation of the existence of the last building block of the Standard Model (SM) of
particle physics. However, there are still important questions unanswered by this theoretical
framework, such as for example the origin of neutrino masses, the nature of dark matter,
the origin of the baryon asymmetry of the Universe or the strong CP problem. Many
proposals have appeared in the last decades to address some of these questions, with the
general feature that the extensions Beyond the Standard Model (BSM) should somehow
manifest at energy scales no too far from the Electroweak Scale (EW). This constitutes an
invitation to explore experimentally the physics at the TeV scale. Nevertheless, the range
of possibilities to extend the standard model is huge, each of them motivated by different
theoretical paradigms or experimental hints.

The experimental road-map at energies above the EW scale for the next decades consists
of the exploitation of the full capabilities of the LHC, including the High Luminosity (HL)
phase, and the addition of new detectors focused on specific signals hard to measure by
the actual experiments, such as very long-lived particles. Also there are plans to build the
International Linear Collider (ILC) in Japan, an electron-positron collider with energies
of 500 GeV. Therefore, in the present and in the nearest future, the possibilities to test
any BSM theory in terms of its influence on particle phenomenology are constrained to
collider experiments around few TeV scale. Nevertheless, this is enough to reach a plethora
of models capable of solving problems of the SM and leave a signal in collider experiments,
both direct and indirect. Thus each model deserves a detailed analysis of the expected
phenomenology, in order to be able to design efficient searches covering the most of the
models and to differentiate between them in the case that a signal is finally detected.

TeV scale supersymmetry (SUSY) has been perhaps the most popular choice in the past
decades to extend the SM at the EW scale. Supersymmetric extensions of the SM have
proven themselves very useful solving the hierarchy problem and providing also a Dark
Matter (DM) candidate. SUSY theories are in addition quite appealing since they make
the gauge couplings become unified at some high energy scale after the inclusion of the
effects of SUSY on the renormalization group equations.

SUSY predicts the existence of a new particle for each one in the Standard Model, with
the same quantum numbers excepting the spin. Thus it predicts a scalar partner for each
fermion, and a fermionic partner for each boson, and the masses of these particles are highly
motivated to be around the TeV scale. Consequently, it predicts a large number of new
particles that could be within the experimental reach of the LHC or the next generation of
colliders.

In this thesis we discuss the phenomenological aspects of a SUSY model, the so-called
called µνSSM, at the LHC. Besides the good common properties of the SUSY models,
the µνSSM can provide a solution of the µ-problem of the Minimal Supersymmetric Stan-
dard Model (MSSM) and simultaneously explain the origin of the measured properties of
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neutrinos. In addition, the Gravitino in the µνSSM is a good DM candidate also.
In the SUSY extensions of the SM the baryon number is no longer an accidental sym-

metry and should be achieved imposing a discrete symmetry to prevent fast decay of the
proton. This role is usually played by R-parity conservation (RPC), which forces each
superpartner to be pair produced. The direct consequence of this is that the lightest su-
persymmetric particle (LSP) would be stable. There exist cosmological constraints which
bound this particle to be neutral, and play the role of the dark matter. At colliders,
this family of models would produce events with neutral stable particles which manifest
themselves as events with large missing transverse momentum (MET).

Instead, the µνSSM includes terms in the Lagrangian which do not allow for a proper
assignment of R-parity charges and thus this symmetry is explicitly violated (Rp/ ). Since
the superpartners can decay to SM particles, the expected phenomenology is richer and
should be carefully studied. Altough there exist other Rp/ models, the structure of the
µνSSM is complex and leads to unique signals.

The objective of this thesis is to make an exhaustive exploration of interesting signals
within the µνSSM framework. In particular, we focus on the electroweak sector of the
model, which in principle can be explored with a certain ease in a hadron collider, and
identify the signatures that can appear in the production of electroweak superpartners at
the LHC. The text is organized as follows. Chapter 1 is a brief introduction to SUSY, dis-
cussing the most important characteristics of the theoretical framework and presenting the
most popular models, with its limitations. In chapter 2, we introduce the µνSSM, describ-
ing its most important features and summarizing the previous phenomenological studies.
Chapter 3 is devoted to an analysis of the most important phenomenological aspects of the
left-handed neutrino superpartner, the left sneutrino, when it is the LSP. There we show
the possible signals that can be generated at colliders when producing this particle. In
chapter 4, we choose a selection of benchmark points representative of the left sneutrino
phenomenology, that can produce detectable prompt signals at the LHC. In chapter 5, we
use some of the current ATLAS searches for long lived particles to constrain the parameter
space of the model, when the left sneutrino is the LSP and decays at significant distance
of the interaction point, producing displaced vertices. In chapter 6, we utilize the ATLAS
searches for electroweak production of SUSY particles in compressed scenarios, to obtain
limits on the sneutrino mass, when the LSP is a bino-like neutralino and the sneutrino is
the NLSP. In addition, we explain that the process described is compatible with the local
excess of three leptons recently reported by the ATLAS collaboration. Chapter 7 concludes
the thesis summarizing the main results and outlining the future prospects of research.



Chapter 1

Introduction

The discovery of the Higgs boson at the Large Hadron Collider (LHC) [1, 2] constitutes
the confirmation of the existence of the last building block of the Standard Model (SM) of
particle physics. However, there are still important questions unanswered by this theoretical
framework, such as for example the origin of neutrino masses, the nature of dark matter,
the origin of the baryon asymmetry of the Universe or the strong CP problem. Many
proposals have appeared in the last decades to address some of these questions, with the
general feature that the extensions Beyond the Standard Model (BSM) should somehow
manifest at energy scales no too far from the Electroweak Scale (EW). This constitutes an
invitation to explore experimentally the physics at the TeV scale. Nevertheless, the range
of possibilities to extend the standard model is huge, each of them motivated by different
theoretical paradigms or experimental hints.

The experimental road-map at energies above the EW scale for the next decades consists
of the exploitation of the full capabilities of the LHC, including the High Luminosity (HL)
phase, and the addition of new detectors focused on specific signals hard to measure by
the actual experiments, such as very long-lived particles. Also there are plans to build the
International Linear Collider (ILC) in Japan, an electron-positron collider with energies
of 500 GeV. Therefore, in the present and in the nearest future, the possibilities to test
any BSM theory in terms of its influence on particle phenomenology are constrained to
collider experiments around few TeV scale. Nevertheless, this is enough to reach a plethora
of models capable of solving problems of the SM and leave a signal in collider experiments,
both direct and indirect. Thus each model deserves a detailed analysis of the expected
phenomenology, in order to be able to design efficient searches covering the most of the
models and to differentiate between them in the case that a signal is finally detected.

TeV scale supersymmetry (SUSY) has been perhaps the most popular choice in the past
decades to extend the SM at the EW scale. Supersymmetric extensions of the SM have
proven themselves very useful solving the hierarchy problem and providing also a Dark
Matter (DM) candidate. SUSY theories are in addition quite appealing since they make
the gauge couplings become unified at some high energy scale after the inclusion of the
effects of SUSY on the renormalization group equations.

SUSY predicts the existence of a new particle for each one in the Standard Model, with
the same quantum numbers excepting the spin. Thus it predicts a scalar partner for each
fermion, and a fermionic partner for each boson, and the masses of these particles are highly
motivated to be around the TeV scale. Consequently, it predicts a large number of new
particles that could be within the experimental reach of the LHC or the next generation of
colliders.

In this thesis we discuss the phenomenological aspects of a SUSY model, the so-called
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2 CHAPTER 1. INTRODUCTION

called µνSSM, at the LHC. Besides the good common properties of the SUSY models,
the µνSSM can provide a solution of the µ-problem of the Minimal Supersymmetric Stan-
dard Model (MSSM) and simultaneously explain the origin of the measured properties of
neutrinos. In addition, the Gravitino in the µνSSM is a good DM candidate also.

In the SUSY extensions of the SM the baryon number is no longer an accidental sym-
metry and should be achieved imposing a discrete symmetry to prevent fast decay of the
proton. This role is usually played by R-parity conservation (RPC), which forces each
superpartner to be pair produced. The direct consequence of this is that the lightest su-
persymmetric particle (LSP) would be stable. There exist cosmological constraints which
bound this particle to be neutral, and play the role of the dark matter. At colliders,
this family of models would produce events with neutral stable particles which manifest
themselves as events with large missing transverse momentum (MET).

Instead, the µνSSM includes terms in the Lagrangian which do not allow for a proper
assignment of R-parity charges and thus this symmetry is explicitly violated (Rp/ ). Since
the superpartners can decay to SM particles, the expected phenomenology is richer and
should be carefully studied. Altough there exist other Rp/ models, the structure of the
µνSSM is complex and leads to unique signals.

The objective of this thesis is to make an exhaustive exploration of interesting signals
within the µνSSM framework. In particular, we focus on the electroweak sector of the
model, which in principle can be explored with a certain ease in a hadron collider, and
identify the signatures that can appear in the production of electroweak superpartners at
the LHC. The text is organized as follows. Chapter 2 is a brief introduction to SUSY, dis-
cussing the most important characteristics of the theoretical framework and presenting the
most popular models, with its limitations. In chapter 3, we introduce the µνSSM, describ-
ing its most important features and summarizing the previous phenomenological studies.
Chapter 4 is devoted to an analysis of the most important phenomenological aspects of the
left-handed neutrino superpartner, the left sneutrino, when it is the LSP. There we show
the possible signals that can be generated at colliders when producing this particle. In
chapter 5, we choose a selection of benchmark points representative of the left sneutrino
phenomenology, that can produce detectable prompt signals at the LHC. In chapter 6, we
use some of the current ATLAS searches for long lived particles to constrain the parameter
space of the model, when the left sneutrino is the LSP and decays at significant distance
of the interaction point, producing displaced vertices. In chapter 7, we utilize the ATLAS
searches for electroweak production of SUSY particles in compressed scenarios, to obtain
limits on the sneutrino mass, when the LSP is a bino-like neutralino and the sneutrino is
the NLSP. In addition, we explain that the process described is compatible with the local
excess of three leptons recently reported by the ATLAS collaboration. Chapter 8 concludes
the thesis summarizing the main results and outlining the future prospects of research.
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Introducción

El descubrimiento del boson de Higgs en El Gran Colisionador de Hadrones (LHC) [1, 2]
constituye la confirmación de la existencia de la ultima pieza del Modelo Estándar de la
física de partículas. Sin embargo, existen aun problemas importantes que dicho marco
teórico no pude responder, tales como el origen de la masa de los neutrinos, la naturaleza
de la materia oscura, el origen de la asimetría bariónica del universo o el problema CP de
las interacciones fuertes. Han aparecido diversas propuestas en las últimas décadas para
responder a estas preguntas, con la característica común de que todas estas extensiones
a energías más allá del Modelo Estándar deben mostrarse de algún modo a energías no
mucho mas elevadas que la Escala Electrodébil. Esto constituye una invitación a explorar
experimentalmente la física a energías del orden del Teraelectrónvoltio (TeV). El número
de posibilidades para extender el Modelo Estándar es enorme, con cada caso motivado por
diferentes ideas teóricas o diferentes indicios experimentales.

El plan de investigación experimental a energías por encima de la Escala Electrodébil
para las próximas décadas utiliza el aprovechamiento exhaustivo de las posibilidades del
LHC, incluyendo la fase de Alta Luminosidad (HL), y la incorporación de nuevos detectores
centrados en señales específicas, difíciles de medir con los experimentos actuales, tal como
las búsquedas de partículas con vida media larga. Así mismo, hay planes para construir el
Colisionador Lineal Internacional (ILC) en Japón, un colisionador de electrones-positrones
con energías de 500 GeV. Por lo tanto, en la actualidad y en el futuro próximo, las posibil-
idades de probar cualquier teoría más allá del Modelo Estándar en términos de su efecto
sobre la fenomenología de partículas están restringidas a experimentos alrededor del TeV
de energía. Afortunadamente esto es suficiente para analizar gran cantidad de modelos ca-
paces de resolver algunos de los problemas del Modelo Estándar y a la vez producir señales
en los aceleradores, tanto directas como indirectas. Por ello es crucial hacer un análisis
detallado de cada modelo, que permita diseñar los experimentos para tener una cobertura
óptima y a la vez tenga la capacidad de diferenciar entre distintos modelos.

La supersimetría a la escala del TeV ha sido quizás la teoría más aceptada en las últi-
mas décadas para extender el Modelo Estándar a la escala Electrodébil. Las extensiones
supersimétricas del Modelo Estándar resultan útiles resolviendo el denominado problema
de las jerarquías y proporcionando un buen candidato a materia oscura. Las teorías super-
simétricas tienen además propiedades interesantes como la unificación de las interacciones
gauge tras incluir su efecto en las ecuaciones del grupo de renormalización.

La supersimetría predice la existencia de una partícula nueva asociada a cada una de las
del Modelo Estándar con los mismos número cuánticos, exceptuando el espín. Por lo tanto
predice la existencia de un compañero escalar por cada fermión y un compañero fermiónico
por cada bosón. Además hay buenas razones para predecir la masa de estas partículas
alrededor de la escala del TeV. De este modo, la supersimetría predice la existencia de un
gran número de partículas que estarían dentro del rango de energías accesible para el LHC
o la siguiente generación de aceleradores.
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A lo largo de la presente tesis se discuten los aspectos fenomenológicos del modelo
supersimétrico denominado µνSSM relevantes para el LHC. Además de las propiedades
atractivas de los modelos supersimétricos, el µνSSM permite solucionar el denominado
problema µ del Minimal Superymmetric Standard Model (MSSM) y explicar al mismo
tiempo el origen de la masa de los neutrinos. Dentro de este modelo, el gravitino es un
buen candidato a materia oscura.

En extensiones supersimétricas del Modelo Estándar, el número bariónico ya no es una
simetría accidental y ha de ser obtenida imponiendo algún tipo de simetría discreta. De
otro modo los modelos predirían una vida media para el protón inaceptablemente baja.
Generalmente este rol lo juega la simetría discreta denominada R-paridad, que fuerza a
cada partícula supersimétrica a ser producida a pares. La consecuencia directa de esta
simetría es que la partícula supersimétrica más ligera (LSP) será estable. En ese caso
existen fuertes límites cosmológicos a las propiedades que ha de tener dicha partícula, que
por otro lado la convierten en un candidato a materia oscura ideal. En los aceleradores,
la familia de modelos supersimétricos que respetan la R-paridad predice la producción de
eventos con una gran cantidad de momento transversal desaparecido (MET).

En su lugar, el µνSSM incluye términos en el lagrangiano que no permiten asignar de
forma consistente cargas bajo R-paridad a todas las partículas y por lo tanto esta simetría
está explícitamente rota. Dado que las partículas supersimétricas pueden decaer a partícu-
las del Modelo Estándar, la fenomenología del modelo es más rica y debe ser estudiada
detalladamente. Aunque existen otros modelos que rompen R-paridad, la estructura del
µνSSM es compleja y da lugar a señales únicas.

El objetivo de ésta tesis es llevar a cabo un estudio de las posible señales a las que podría
dar lugar el µνSSM en el LHC . En concreto nos enfocamos en el sector electrodébil del
modelo, el cual en principio puede ser comprobado con una cierta facilidad en un acelerador
de hadrones, de forma que identificamos las señales que pueden aparecer en la producción
de los supercompañeros electrodébiles en el LHC. El texto está organizado como se explica
a continuación: El capitulo 2 es una breve introducción a la supersimetría, presentando
las características mas importantes del marco teórico y presentando los modelos más pop-
ulares, con sus limitaciones. En el capítulo 3 introducimos el modelo µνSSM, describiendo
sus características mas importantes y resumiendo los análisis fenomenológicos previos. El
capítulo 4 está dedicado al análisis pormenorizado de las características fenomenológicas
más importantes del left sneutrino, cuando ésta es la partícula supersimétrica más ligera.
Allí mostramos las posibles señales a las que podría dar lugar en el LHC, cuando la desinte-
gración es inmediata. En el capítulo 5 hacemos uso de una serie de puntos representativos
del espacio de parámetros del left-sneutrino, que pueden producir señales detectables en
el LHC. En capítulo 6 se usan las búsquedas de ATLAS de partículas con una vida me-
dia larga para poner límites al espacio de parámetros del modelo cuando el left-sneutrino
es la partícula supersimétrica más ligera y decae a una distancia significativa del punto
de interacción primaria, produciendo vértices desplazados. En el capítulo 7 se utilizan
las búsquedas de ATLAS de partículas supersimétricas Electrodebiles en espectros com-
primidos para poner límites a la masa del left-sneutrino, cuando la partícula más ligera es
un neutralino tipo bino y el sneutrino es la partícula siguiente. Adicionalmente, en este
capítulo explicamos que el proceso descrito es compatible con un exceso local presentado
recientemente por la colaboración ATLAS.

El capítulo 8 concluye la tesis resumiendo los principales resultados y perfilando los
proyectos futuros que se abren.
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Chapter 2

Supersymmetry

In this chapter we introduce supersymmetry and the basics of low energy supersymmet-
ric models. We explain the general features of SUSY models and its phenomenological
implications. Finally we present some of the problem of the simplest SUSY extension of
the standard mode, the MSSM. The reader could find extensive bibliography reviewing
supersymmetry [3, 4, 5, 6].

2.1 Beyond the Standard Model
The Standard Model of particle interactions is a theoretical framework capable to explain
most of the experimental evidence related with sub-nuclear physics, with few exceptions like
the mass of neutrinos and the origin of Dark matter. During last decades, the predictions
form the Standard Model have been confirmed one after the other. Masses of the W±

and Z bosons predicted by the SM are very close to their experimental vale, and the same
happens with their decay patterns. The SM also predicted the existence of new particles, as
the charm quark, from the requirement of very suppressed flavor changing neutral currents
(FCNC). Finally last necessary piece of the SM was discovered recently at the LHC, with
properties which match perfectly the predictions of the SM. It’s fair to say that, despite
the Dark Matter and neutrino mass, the experimental searches has given no unambiguous
hint for new additional structure.1

From a theoretical point of view, however, the SM cannot be the end of the story. It
will have to be extended to describe physics at very high energy, near the reduced Planck
scaleMp = (8πGNewton)−1/2 = 2.4×1018, where quantum gravitational effects are expected
to be important. From a speculative point of view, is hard to believe that no new physics
is present in the vast gap between MEW and MP . Besides of the personal inclination to
expect new physics happening in between, there is one theoretical problem related with the
mass of scalar particles in the theory, which requires some form of new physics. Commonly
known as the Hierarchy problem [16, 17, 18, 19].

The Standard Model requires the existence a neutral complex scalar (H) with the
classical potential:

V = m2
H |H|2 + λ|H|4. (2.1)

1There exist significant discrepancies between the experimentally measured value and the predictions
of the standard model in the case of some of the decays of B -Mesons [7, 8, 9, 10, 11, 12, 13, 14] and
the magnetic anomalous momentum of the muon [15]. Its implications for new physics are however still
definitive.

9



10 CHAPTER 2. SUPERSYMMETRY

The parameters are such that the minimum of the potential is located at 〈H〉 6= 0, and
the interaction of the scalar with Fermions and Gauge Bosons, together with the H vacuum
expectation value (VEV) generates a mass term for each of them. This occurs when λ > 0
and m2

H < 0, producing a VEV 〈H〉 =
√
−m2

H/2λ.
The experimental measured values of the Gauge boson and Higgs masses fix the accept-

able values of the parameters on Eq. (2.1). That is < H >= 174 GeV, and the quadratic
term in the potential, the mass term, must be of order −(100 GeV)2, including the radiative
corrections. If the SM was the end of the story, all the radiative contributions to the Higgs
mass would be of the Electroweak order or smaller. However, the presence of any form of
new physics will translate to huge radiative corrections to the Higgs mass.

The simplest way to illustrate this is to include a new particle, fermion or boson, and
calculate the contribution of this diagrams, shown on Fig. 2.1, to the Higgs boson mass.
The simplest way of regularizing the UV divergence is to use a cut-off regulator, and then
one finds a quadratic dependence on the cut-off scale Λ.

It is possible to translate the divergent behavior when the momentum running in the
loop is arbitrary large, to a divergence when the number of dimensions approach 4, in the
regularization scheme called dimensional regularization, through this process, one get rid of
the quadratic dependence on the cut-off. One however will still get a radiative contribution
that depends quadratically on the mass of the particle running inside the loops, and this
contributions would be present even when there is not direct coupling between the Higgs
boson and the unknown heavy particles, provided they interact with a common intermediate
state.

If there exist, for instance, an additional structure unifying the gauge interactions at
some High energy scale 1015 GeV , with new particles with masses at this scales. An almost
exact cancellation between the ∼ 1030GeV2 radiative corrections and the bare value of the
Higgs Boson mass should occur leaving a small finite value around the EW scale.

There are different proposals to extend the SM and solve he hierarchy problem. Some
invoking the existence of discrete symmetries such as Little Higgs models [20], interpreting
the Higgs field as a Non-elementary [21, 22, 23], the existence of extra dimensions [24, 25,
26], and also the existence of supersymmetry.

f

H

H

S

Figure 2.1: One loop diagrams contributing to the Higgs mass parameter m2
H , by cause of

a Dirac fermion and a scalar.

As explained above, the radiative corrections to the mass of the Higgs boson are pro-
portional to the square of the scale of the new physics. Even if one avoids the physical
interpretation of a UV cut-off (ΛUV ) using dimensional regularization one still gets a correc-
tion proportional to the square of the mass of the extended particle content. This correction
is only avoided with the unphysical tuning of a counter-term specifically for that purpose.

If the Higgs boson is a fundamental particle, we must assume that there is no new
high-mass physics affecting the scalar Higgs or a precise cancellation between all these
effects somehow takes place. Supersymmetry, a symmetry that relates bosons and fermions,
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constitutes one example of this forbidding radiative corrections to any of the masses when
the symmetry is exact.

In the same spirit as for the diagrams in Fig.2.1. Now one ought to include, for each
diagram, a new radiative contribution with the exact same quantum numbers and masses,
but exchanging fermions for bosons and vice-versa. The result of the calculation has to
be exactly the same up to a negative sign, which makes the two contributions cancel each
other. This explicit pair cancellation of Feynman diagrams is translated to rules forbidding
radiative contributions after writing the Lagrangian in an explicitly supersymmetric lan-
guage, in the same spirit as Lorentz invariant qualities are visibly invariant when written
in a covariant language.

2.2 Introduction to SUSY

Supersymmetric operators acts on Lorentz representations transforming bosonic states into
fermionic states and vice-versa:

Q|Bosonic state〉 → |Fermionic state〉 Q|Fermionic state〉 → |Bosonic state〉

When SUSY is a symmetry of the theory the SUSY generator commute with the rest
of operators, therefore the transformation between bosons and fermions do not affect the
action of the rest of them.

The Coleman-Mandula theorem [27] establishes the form of the possible symmetries of
the S-matrix of a non trivial Quantum Field Theory (QFT). It restricts the symmetries,
under certain reasonable assumptions, to the direct product of the Poincare Group and
internal symmetry groups. The Haag-Lopuszanki-Sohnius extension of Coleman-Mandula
theorem [28] allows for extending the symmetry group of a interacting quantum field theory
to include this type of transformations, extending the Lie algebra to:

{
QA
α , Q̄

B
β̇

}
= 2σm

αβ̇
Pmδ

A
B,

{
QA
α , Q

B
β

}
= 0,[

Pm, Q
A
α

]
= 0,

[Pm, Pn] = 0. (2.2)

The single-particle states of a SUSY theory would be irreducible representations of
the lie algebra, called supermultiplets, which contains fermionic and bosonic states. The
particle states inside the same multiplet must share quantum numbers for any symmetry
group commuting with the supersymmetry generators, thus they share eigenvalues of −P 2,
and therefore have equal masses. Similarly for electric charge, weak isospin and color
charge. Within a supermultiplet, the number of fermionic degrees of freedom equals the
number of bosonic ones.

The basic representations of the supersymmetric algebra are the chiral and vector su-
perfields, shown in Eq. (2.4) and Eq. (2.6), with chiral derivatives defined on Eq. (2.9)
and (2.10). The former includes a two-component Weyl fermion (ψ), a complex scalar field
(φ) and a spin-2 auxiliary Field eliminated on-shell (F ); and the latter includes a massless
spin-1 boson (Aµ), a massless spin-1/2 Weyl fermion (λ), a massless spin-1/2 fermion (χ)
that can be set χ = 0 by a gauge rotation, and a spin-2 auxiliary field (D). The symbols
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θ and θ̄ represent Grassman variables.

D̄α̇Φ = 0 (2.3)

Φ = φ(x) + iθσµθ̄∂µφ+
1

4
θ2θ̄2∂2φ+

√
2θψ − 1√

2
θθ∂µψσ

µ
��θ + θ2F (2.4)

V = V † (2.5)

V = iχ− iχ† − θσµθ∗Aµ + iθ2θ̄λ̄− iθ̄2θλ+ 1
2
θ2θ̄2D. (2.6)

For the action to be invariant under supersymmetric transformations the Lagrangian
density should be invariant under action of QA

α , Q̄
B
β̇
, up to a total derivative. This is the

case when the Lagrangian density has the structure:

L =

∫
d2θd2θ̄

[
Φ∗i(e2gaTaV a)jiΦj

]
+

∫
d2θ

[(
1

4
− ig

2
aΘa

32π2

)
WaαWa

α +W (Φi)

]
+ h.c.

(2.7)

Where V a are vector supermultiplets of a gauge group with a coupling constant ga
and a CP violating angle Θ, and Φ∗i are chiral superfields in a representations R of the
corresponding gauge group with matrix generators T aji . Wa

α is the field strength of the
Vector superfield defined as:

Wa
α = −1

4
D̄D̄DαV

a, W̄a
α̇ = −1

4
DDD̄α̇V

a (2.8)

Where Dα and D̄α̇ are called chiral derivatives and are defined as:

Dα =
∂

∂θα
− i(σµθ†)α∂µ, (2.9)

D̄α̇ =
∂

∂θ†α̇
− i(σ̄µθ)α̇∂µ. (2.10)

And W (Φi) is the superpotential (Eq. (2.11)), which is an arbitrary holomorphic func-
tion of the chiral superfields invariant under the gauge symmetries of the theory.

W =
1

2
mijΦiΦj +

1

3
ΓijkΦiΦjΦk. (2.11)

Any radiative contribution to the mass of the components of a chiral supermultiplet,
such as the radiative contribution of the Higgs Boson mass, should have the same form as
the second term of the second integral on Eq. (2.7). Using the properties of the Grassman
integrals is possible to demonstrate that any diagram correcting the superpotential neces-
sarily vanishes under the integral sign (See for example tenth chapter of [3]). Therefore
the mass of the Higgs bosons is protected at all orders of perturbation theory in an exact
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SUSY theory.

2.3 Soft SUSY breaking

If Supersymmetry was meant to be an exact Symmetry of nature, any known particle would
have a superpartner with the same mass and quantum numbers, but different spin. This
implies for instance that there should exist a scalar superpartner of the electron (selectron)
with same mass and charge. Since the universe is not flooded in selectrons, it is obvious
that in a reasonable realization of Supersymmetry in nature it has to be broken somehow,
at least at low energy.

To build a realistic model of SUSY we need to include terms in the Lagrangian which
break supersymmetry in a way which do not spoil the good features of the theory, i.e.
the UV insensitivity of the Higgs potential. This is possible if SUSY is spontaneously
broken, that is, if the underlying model is supersymmetric but the vacuum is not. There
are several proposals for mechanisms breaking SUSY at very high scales and producing
an spectrum of particles with masses on the TeV scale. The general idea of them is that
some states break supersymmetry spontaneously at some high energy scale, and this is
communicated by some feeble interaction to the rest of the spectrum that conserves SUSY
by itself. The communication of the SUSY breaking could be mediated by gravitational
interactions [29, 30, 31, 32, 33, 34, 35], heavy gauge mediators [36, 37, 38, 39, 40, 41], extra
dimensions [42, 43, 26, 44, 45, 46, 47, 48, 49] anomalies [50, 51] and many more mechanism.
Each model predict some differences in how is the effective SUSY breaking at low energy,
but we can parametrize our ignorance simply introducing effective terms in the potential
that explicitly breaks SUSY.

If broken supersymmetry is still solving the hierarchy problem, the relationship between
dimensionless couplings that hold in unbroken symmetry must be maintained. Therefore
we could only include soft terms, or terms with couplings with mass dimension less than
four [52, 53]. This terms would be of the general form:

Lsoft = −
(

1

2
Maλ

aλa +
1

6
aijkφiφjφk +

1

2
φiφj + tiφi

)
+ h.c− (m2)ijφ

j ∗ φi, (2.12)

Where λa is the fermionic component of a Vector supermultiplet and φi is the complex
scalar component of a chiral supermultiplet. Soft masses for fermions of chiral supermulti-
plets could have been included as well, however this terms can always be reabsorbed into
a redefinition of the superpotential and the rest of the soft terms.

2.4 R-parity

With the structure described in previous sections we should be able to build a model
containing the SM. This is the spirit of the minimal supersymmetric extension of the SM,
the Minimal Supersymmetric Standard Model (MSSM). On it, each of the known particles
lies in a vector or chiral supermultiplet, and thus come with a yet undiscovered superpartner
with spin varying in 1/2. Moreover, any supersymmetric model including the SM needs
at least an extra Higgs chiral supermultiplet in order to give mass to all the particles with
only holomorphic interactions in the superpotential. The extra Higgs supermultiplet is also
needed to cancel gauge anomalies.
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To fit the SM, the form of the gauge sector in (2.7) is fixed, and the superpotential
should include, at least, the Yukawa interactions between the Higgs supermultiplet and the
rest of chiral superfields. Notice however that accidental symmetries of the SM Lagrangian,
such as Lepton and Baryon number, are no longer necessary symmetries of the Lagrangian.
Therefore, the most general superpotential includes terms of the form:

λijkL̂iL̂j ê
c
k + λ′ijkL̂iQ̂j d̂

c
k + λ′′ijkûid̂j d̂

c
k + µ′iL̂iĤu. (2.13)

This terms are clearly problematic. In fact, the simultaneous presence of this terms
would produce interactions which lead to a unacceptable fast decay of the proton. To
avoid this one should impose a discrete symmetry which forbids the presence of this terms.
Or at least enough of them to protect the decay of the proton.

p+

u

u

d

q̃∗Ri

ū

ē+
λ

′′
11i

∗
λ′
11i

π0

u

Figure 2.2: In the presence of R-parity violating interactions breaking both lepton and
baryon number, squarks would mediate a rapid proton decay. In this example p→ e+π0

One can in principle promote L and B numbers to be true discrete symmetries of the
Lagrangian, instead of just “accidental symmetries”. However, B or L cannot be treated
as fundamental Symmetries of Nature, since they are known to be necessarily violated by
non-perturbative electroweak effects [54]. We can instead impose a new discrete symmetry,
which has the effect of eliminating the L and B violating terms in the renormalizable
superpotential. This symmetry is called R-parity :

PM = (−1)3(B−L)+2s (2.14)

R-parity is a particular case of R-symmetry. A continuous R-symmetry is a transfor-
mation which acts over the anticomuting coordinates as:

θ → eiαθ, θ̄ → e−iαθ̄ (2.15)

Is straightforward to see that kinetic part of the Lagrangian is automatically R-symmetric
including the gauge interactions with chiral superfields. However, The superpotential must
carry R charge +2 if R-symmetry is to be conserved. R-symmetries do not commute
with supersymmetry, therefore each component of the supermultiplet receives a different
charge assignment. Continuous R-symmetries could be of course restricted to discrete sub-
groups,as is the case with R-parity. Following the definition of (2.14), each particle of the
SM receives a charge assignment of PR = +1 while its superpartner has charge PR = −1.

Imposing R-parity has important phenomenological consequences. First, lepton and
Barion number are again accidental symmetries of the Lagrangian. Also, any interaction
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should have and even number of particles with PR = +1. Therefore, any SUSY particle
have to be pair produced. Moreover, all SUSY particles should decay to another SUSY
particle plus SM particles, thus the lightest particle with PR = −1 is stable, normally called
the Lightest Supersymmetric Particle (LSP).

Although R-parity forbids all the renormalizable terms of the superpotential violating B
and L, is true that allows for non-renormalizable terms that could make the proton decay.
For example, R-parity doesn’t forbid operators such as:

1

ΛUV

ūūd̄ē,
1

ΛUV

QQQL (2.16)

R-parity can be replaced by other discrete symmetries which forbids the proton decay.
The Z2 and Z3 possibilities has been studied in [55, 56] and the most important cases are
Baryon Triality (B3) and Proton Exality (P6), both of them forbid proton decay operators
of dimension five or lower, are anomaly-free and free of domain wall problems. The former
allow for low energy lepton-number violating terms and the second one forbid both B
and L violating terms. Form the point of view of the renormalizable superpotential P6

is equivalent to R-parity, thus we could substitute R-parity by P6 in any further mention
without changing the phenomenological implications. In the case of B3, both the terms
λijk and λ′ijk are present. Nevertheless stringent experimental constraint exist from the non
observation of low energy processes such as µ→ eγ or neutral meson oscillations [57]. For
a review on R-parity violating models see [58].

2.5 The MSSM

We have already started to describe the characteristics of the MSSM. In this section we will
complete the description of the model and mention some of the limitations that it suffers.

The superpotential of the MSSM is:

WMSSM = εab(YuijĤ
b
uQ̂

a
i û

c
j + YdijĤ

b
dQ̂

a
i d̂

c
j + YeijĤ

b
dL̂

a
i ê
c
j + µĤa

d Ĥ
b
u). (2.17)

Where the hatted symbols represent chiral supermultiplets, we take ĤT
d = (Ĥ0

d , Ĥ
−
d ),

ĤT
u = (Ĥ+

u , Ĥ
0
u), Q̂T

i = (ûi, d̂i), L̂Ti = (ν̂i, êi), a, b are SU(2) indices, and ε12 = 1.
Besides the Yukawa matrices, which are in general 3x3 matrices, there is one dimension-

full parameter µ which plays the role of the supersymmetric version of the Higgs boson mass
in the Standard Model. Any other mass term involving the Higgs doublets is forbidden in
the superpotential because of the holomorphicity of it. Is obvious also why we need two
Higgs doublets, since a term of the form YdijĤ

b†
d Q̂

a
i d̂

c
j is forbidden.

Notice that after expanding the superpotential in term of the component fields, we will
not only generate the Yukawa interactions between Higgs bosons and SM fermions, but
also between Higgs fermionic partners (Higgsinos) and SM fermion partners (sfermions),
see Fig. 2.3. The µ term will also generate a mass term for Higgsinos. In addition, quartic
interactions between scalars will also be generated, see Fig. 2.3. .

The kinetic part of the Lagrangian is fixed to include the gauge interactions of the
SM. Mind however, that an interaction between the fermion SUSY partner of gauge bosons
(gauginos) and the two components of any chiral multiplet charged under the corresponding
gauge group will be also generated. For example an interaction bino-electron-selectron will



16 CHAPTER 2. SUPERSYMMETRY
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Figure 2.3: Feynman diagrams originated after expanding the terms ΓijkΦiΦjΦk of the
superpotential in component fields.

be present proportional to the weak hypercharge, see Fig. 2.4. Finally, the kinetic terms
in Eq. (2.7) generate a quartic scalar interaction proportional to the gauge couplings as
shown in Fig. 2.4.

f̃

f

λ̃
f̃i

f̃i

f̃j

f̃j

Figure 2.4: Feynman diagrams between gauginos, fermions and sfermions, originated from
the gauge interaction between Vector superfields and chiral superfields.

To complete the description of the MSSM, we need to specify the form of the soft
supersymmetric breaking terms in the Lagrangian. Applying the general form in Eq. (2.12)
to the MSSM content, we get to:

LMSSM
soft = − m2

Q̃ij
Q̃a∗

i Q̃a
j −m2

ũcij
ũc
∗

i ũ
c
j −m2

d̃cij
d̃c
∗

i d̃
c
j −m2

L̃ij
L̃a
∗

i L̃aj −m2
ẽcij
ẽc
∗

i ẽ
c
j

− m2
Hd
Ha
d
∗Ha

d −m2
Hu H

a
u
∗Ha

u − εab(bHa
uH

b
d + c.c.)

− εab

[
auij H

b
u Q̃

a
i ũ

c
j − adij Ha

d Q̃
b
i d̃

c
j − aeij Ha

d L̃
b
i ẽ

c
j + c.c.

]

− 1

2

(
M3 λ̃3 λ̃3 +M2 λ̃2 λ̃2 +M1 λ̃1 λ̃1 + c.c.

)
. (2.18)

In Eq. (2.18), M1, M2 and M3 refer to the soft masses of bino, wino and gluino re-
spectively, m2

X̃
refers to the soft mass of the scalar partners of SM fermions, and the third

line we see the trilinear couplings between scalar partners in one to one correspondence
with the terms of the superpotential. There is also a coupling between the two Higgs
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doublets in correspondence with the µ term. Notice that a linear term as the fourth on
Eq. (2.12) is forbidden for all the superfields in the MSSM by gauge invariance. The scalar
soft masses m2

X̃
are 3 × 3 matrices that can in principle have complex entries, but they

must be hermitian to ensure the Lagrangian is real.
The parameters in the soft SUSY breaking part of the Lagrangian can have in principle

any structure. However, one should think of this terms as the effective remains of some
high energy mechanism breaking SUSY, which in each specific realization of high energy
SUSY could have a different substructure. They predict generically a common energy scale
for the soft parameters ranging from around the TeV scale to tenths of TeV, with some
possible hierarchies, for instance between scalar and fermionic SUSY particles, or between
colored and color neutral particles.

The reader should have in mind also that, even if there is no a priory theoretical restric-
tion to the structure of the soft parameters, there are important experimental restrictions
to the value of them. The inter-generational mixing induced by off diagonal values of
soft mass matrices m2

Q̃ij
,m2

ũcij/d̃
c
ij

,m2
L̃i

and m2
ẽci

would mediate rare decays as B → Xsγ or

B → µµ [59], or µ− → e−γ [60], for which exist stringent upper bounds.

2.5.1 Electroweak symmetry breaking in the MSSM.

As already discussed, the MSSM needs two Higgs doublets. This change somewhat how
the electroweak symmetry gets broken. Now the classical neutral scalar potential is:

Vsoft = (|µ|+m2
Hd

)H0
d
∗
H0
d + (|µ|+m2

Hu)H0
u
∗
H0
u

−
[
bH0

dH
0
u + c.c

]
+

1

8

(
g2 + g′2

) (
H0
dH

0
d
∗ −H0

uH
0
u
∗)2

. (2.19)

The b term in the scalar potential is the only one that depends on the phase of H0
u

and H0
d therefore we can make them absorb any phase on b, which thus can be taken real

and positive. Moreover, we can use a U(1)Y gauge rotation to make both fields real and
positive. Therefore CP cannot be spontaneously broken by the Higgs scalar potential and
can assign the Higgs states to CP-eigenstates:

H0
d =

1√
2

(
HRd + vd + i HId

)
, (2.20)

H0
u =

1√
2

(
HRu + vu + i HIu

)
, (2.21)

In the MSSM the quartic term of the scalar potential is fixed. Thus, for electroweak
symmetry breaking to happen is necessary that the condition on Eq. (2.22) to be fulfilled.
In order for the potential to be bounded from below, is also necessary the condition in
Eq. (2.23). The Higgses develop the VEVs determined by the minimization equations of
the scalar potential.

2b < 2|µ|2 +m2
Hu +m2

Hd
. (2.22)

b2 > (|µ|2 +m2
Hu)(|µ|2 +m2

Hd
) (2.23)
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After electroweak symmetry breaking, the VEVs generate the mass of the Z0 boson as:

v2
u + v2

d = v2 = 2
m2
Z

g2 + g′2
≈ (174)2. (2.24)

The relative size can in principle take any value, and is typically designated as:

tan β ≡ vu
vd
. (2.25)

Finally, we can write tan β and m2
Z in terms of the parameters of the Lagrangian:

sin(2β) =
2b

m2
Hu

+m2
Hd

+ 2|µ|2 (2.26)

m2
Z =

|m2
Hu
−m2

Hd
|√

1− sin2(2β)
−m2

Hu −m2
Hd
− 2|µ|2. (2.27)

Notice here that even if the values of the soft Higgs masses and µ are large, they should
cancel each other in order to give the correct mass to the Z0 boson.

After EWSB we can calculate the eigenstates of the scalar mass matrix and find the
expression for the mass of the lightest state, which should be identify with the Higgs Boson
discovered with 125 GeV of mass at the LHC:

m2
h0 =

1

2

(
m2
A0 +m2

Z −
√

(m2
A0 −m2

Z)2 + 4mZ2m2
A0 sin2(2β)

)
. (2.28)

Where mA0 is the mass of the pseudoscalar Higgs and has the form m2
A0 = 2b/ sin(2β).

One can see from Eq. (2.28) that the mass of the lightest Higgs is bounded, at tree level,
to be:

mh0 < mZ | cos(2β)| (2.29)

If the condition Eq. (2.29) where strong, the mass predicted for the Higgs boson would be
wrong and the fate of the MSSM would be doomed. However, one has to remind that below
the scale where SUSY is again restored, the h0 is subject to strong quantum corrections
form the Supersymmetric part of the spectrum. The largest of these contributions comes
from the top scalar partners and can easily lift the mass of h0 up to 125 GeV.

2.5.2 The little Hierarchy problem.

We have argue as one of the main justifications to extend the SM to a Supersymmetric
theory that the EWSB scale is quadratically sensitive to the existence if new physics.
However, the careful reader could have realize that an exact SUSY will predict to low
mass for the SM Higgs and needs precisely the strong influence of quantum corrections to
provide enough mass. One can argue then at which extent remains the Electroweak Scale
non-tuned, since it will be the result of the cancellations between soft masses, the µ term
and radiative corrections, all acting above the TeV scale.

A lot of debate has been originated around the so-called “Little Hierarchy Problem”,
and how to define a quantitative measure of the sensitivity of the EW scale to the specific
choice of parameters in the MSSM. This topic is anyhow beyond the scope of this work.
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We recall the reader that SUSY still solves the big Hierarchy Problem, meaning that SUSY
protects the scalar potential form large quantum corrections from a high energy theory.

2.5.3 Beyond the MSSM

In Eq. (2.17) we have seen that the superpotential includes a dimensionfull parameter µ.
To allow the correct v ≈ 174 GeV to be solution of the minimization equations, µ must be
roughly 102 or 103 GeV, of the same order as m2

Hu
and m2

Hu
. But should the reader recall

that while the soft parameters are all of them effectively generated from some mechanisms
acting at high energy, the µ parameter is fundamental and there is no reason for it to
be at any specific scale. Why should µ be small compared to, for instance, the Planck
scale? The scalar potential in the MSSM depends then on dimensionfull parameters that
are conceptually very different, yet they should be of the same order and also not far from
the electroweak scale to produce the correct EWSB. This riddle is called “the µ problem”.

There are multiple proposals to solve this problem, all of them assume that the µ term
is absent at tree level in the superpotential and is somehow generated effectively. When the
effective µ term is generated by a mechanism associated with the supersymmetry breaking
it is no longer fundamentally distinct that the soft terms. And if one can explain why
Msoft �MPlanck, the same explanation is valid for the scale of the µ term.

One of the most popular solutions is to add a gauge singlet chiral supermultiplet, that
develops a VEV after ESWB. The presence of some adimensional coupling between the
Higgs doublets and the gauge singlets generates an effective µ term proportional to its
VEV, which value is to a great extent fixed by the value of the soft terms. The minimal
extension of the MSSM including this idea is the so called Next to Minimal Supersymmetric
Standard Model (NMSSM).2

The MSSM was built to fit the standard model within. As a result of imposing R-parity,
required by he stability of the proton, it predicts the existence of a stable particle. Thus
provides a viable dark matter candidate in the neutralino. It also changes the running of
gauge couplings making them unify. However, it doesn’t provide an explanation for the
origin of neutrino masses. There are other extensions of the SM that provide a mechanism
explaining neutrino physics. In the next chapter we will introduce a model capable of
solving the µ problem and explaining neutrino physics at the same time.

2For an extensive review of the NMSSM an its phenomenology see [61].
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Chapter 3

The µνSSM

In the previous chapter we have introduced the concept of supersymmetry and its mini-
mal viable realization, the MSSM. At the end of the chapter we have listed some of the
weaknesses of the MSSM. Now we are going to introduce an extension that solves the enu-
merated problems while retaining the good features of the MSSM. We are going also to
sketch the phenomenology which, as we will see, turns out to be qualitatively different.

The “µ form ν supersymmetric standard model” (µνSSM), introduced and developed
in the works of Refs. [62, 63, 64], extends the MSSM including three generations of right-
handed neutrino superfields. They can, in principle, couple in the superpotential with the
rest of the spectrum in any possible form allowed by gauge invariance, and as we will see,
this provides also a solution to the µ problem and generates neutrino masses and mixings.

3.1 The superpotential and soft terms

Given the MSSM particle content with the addition of three generations of right-handed
neutrino superfields (ν̂ci ), the most general renormalizable superpotential respecting the
gauge symmetry group of the SM, SU(3)C ×SU(2)L×U(1)Y , with subscripts C, L and Y
referring to color, left chirality and weak hypercharge, respectively, can be written as [64]:

W = εab

(
Y e
IJk L̂

a
I L̂

b
J ê

c
k + Y d

Ijk δαβ L̂
a
I Q̂

b
jα d̂

c
kβ + Y u

ij δαβ L̂
cb

4 Q̂
a
iα û

c
jβ

)

+ εab Y
ν
Ij L̂

cb

4 L̂
a
I ν̂

c
j +

1

3
κijk ν̂

c
i ν̂

c
j ν̂

c
k , (3.1)

where the summation convention is implied on repeated indexes, with α, β = 1, 2, 3 SU(3)C
indexes, a, b = 1, 2 SU(2)L indexes with εab the totally antisymmetric tensor ε12 = 1, and
I = i, 4 (J = j, 4) with i, j, k = 1, 2, 3 the usual family indexes of the SM and with the
vector-like Higgs doublet superfields interpreted as a fourth family of vector-like lepton
superfields1 L̂4 = (ν̂4, ê4) = (Ĥ0

d , Ĥ
−
d ) = Ĥd and L̂c4 = (êc4, ν̂

c
4) = (Ĥ+

u , Ĥ
0
u) = Ĥu. Notice

that this interpretation is possible in the µνSSM because Rp is no longer imposed as
a symmetry of the Lagrangian. Consequently all fields in the spectrum with the same
color, electric charge and spin mix together. In particular, Higgses mix with sleptons and
Higgsinos with leptons. From the theoretical viewpoint, this seems to be more satisfactory
than the situation in usual SUSY models, where the Higgses are ‘disconnected’ from the

1An extension of the µνSSM by adding to the spectrum of this fourth family a vector-like quark doublet
representation has also been discussed, together with its new signals at the LHC, in Refs. [64, 65].
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rest of the matter and do not have a three-fold replication2. As pointed out in Ref. [64], in
this SUSY framework the first scalar particle discovered at the LHC is mainly a sneutrino
belonging to a fourth-family vector-like doublet representation.

We can write the superpotential in the usual notation of the µνSSM [62, 63], separating
the Higgs and lepton superfields. Thus we can decompose the terms given by the couplings
Y e
IJk, Y d

Ijk and Y ν
Ij in two type of terms: Yukawa couplings generating fermion masses,

and lepton-number violating couplings. This is possible because, as discussed above, the
superfields Li and Hd have the same gauge quantum numbers, and therefore L̂I = L̂i, Ĥd.
Thus, we can write superpotential (3.1) as follows [62, 63]:

W = εab

(
Y e
ij Ĥ

a
d L̂

b
i ê

c
j + Y d

ij δαβ Ĥ
a
d Q̂

b
iα d̂

c
jβ + Y u

ij δαβ Ĥ
b
u Q̂

a
iα û

c
jβ

)

+ εab

(
λijkL̂

a
i L̂

b
j ê
c
k + λ′ijkδαβ L̂

a
i Q̂

b
jαd̂

c
kβ

)

+ εab

(
Y ν
ij Ĥ

b
u L̂

a
i ν̂

c
j − λi ν̂ci Ĥb

uĤ
a
d

)
+

1

3
κijkν̂

c
i ν̂

c
j ν̂

c
k , (3.2)

where we have decomposed (in a self-explanatory notation) Y e
IJk → λijk, Y

e
ij; Y d

Ijk →
λ′ijk, Y

d
ij ; and Y ν

Ij → Y ν
ij ,−λi. The dimensionless complex trilinear couplings form a vector

λi, the Yukawa matrices Y ν
ij , Y e

ij, Y d
ij , Y u

ij , and the tensors λijk, λ′ijk, κijk with κ totally
symmetric and λijk antisymmetric with respect to their first two indexes.

In Eq. (3.2) (and (3.1)), we have defined ûi, d̂i, ν̂i, êi, and ûci , d̂ci , êci , ν̂ci , as the left-chiral
superfields whose fermionic components are the left-handed fields of the corresponding
quarks, leptons, and antiquarks, antileptons, respectively. For example, the superfield
d̂2 contains the 2-component complex spinor field sL (and the complex scalar field s̃L),
whereas d̂c2 contains the spinor scL = (sR)c = iσ2s∗R (and the scalar s̃∗R = (s̃R)c), where the
superscripts c and ∗ indicate charge conjugate and complex conjugate, respectively, with
σ2 the Pauli matrix. Needless to say, the subscripts L and R on the scalar fields refer to
the chirality of the corresponding fermion fields. The superfields ûi, d̂i, and ν̂i, êi form the
SU(2)L doublets Q̂i = (ûi, d̂i) and L̂i = (ν̂i, êi), respectively, and the others are SU(2)L
singlets.

The three terms in the first line of the superpotential in Eq. (3.2) are the usual Dirac
Yukawa couplings for quarks and leptons of the MSSM. The two terms in the second
line are the conventional trilinear Rp/ couplings. As is well known, if the lepton-number
violating term, λ′ijkδαβεabL̂ai Q̂b

jαd̂
c
kβ, appears together with the baryon-number violating

term, λ′′ijkεαβγ d̂ciαd̂cjβûckγ where εαβγ is the totally antisymmetric tensor ε123 = 1, they could
give rise to experimentally excluded fast proton decay. Nevertheless, as discussed in detail
in Ref. [64], λ′′ijk can be naturally forbidden, for example through Z3 Baryon-parity or
stringy selection rules. Finally, the three terms in the third line are characteristic of the
µνSSM. We will see how they solve the µ problem and generate neutrino masses in Sec. 3.2
and 3.5 respectively. We can also see, from the last line in Eq. (3.2) that is not possible to
assign R-parity charges to ν̂ci consistently. Nevertheless λi and κijk, are therefore harmless
with respect to proton decay.

Unlike λi and κijk, the couplings λijk and λ′ijk are not useful to solve neither the µ
problem nor to generate neutrino masses and mixing3 (which is the only confirmed source

2For alternative constructions with three supersymmetric families of Higgses, see works [66, 67, 68] and
references therein.

3Notice also that the couplings λijk and λ′ijk play no role in the minimization, even if they were present
at tree level in the superpotential.
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of new physics). In addition, they are constrained by existing bounds on quadratic coupling
constant products λijkλlmn, λijkλ′lmn and λ′ijkλ′lmn, coming from bounds on rare processes
such as meson oscillations, or flavor violating decays (see Refs. [69, 58, 70] for reviews).
Thus, in what follows we will neglect them for simplicity in the superpotential4, using:

W = εab

(
Y e
ij Ĥ

a
d L̂

b
i ê

c
j + Y d

ij δαβ Ĥ
a
d Q̂

b
iα d̂

c
jβ + Y u

ij δαβ Ĥ
b
u Q̂

a
iα û

c
jβ

)

+ εab

(
Y ν
ij Ĥ

b
u L̂

a
i ν̂

c
j − λi ν̂ci Ĥb

uĤ
a
d

)
+

1

3
κijkν̂

c
i ν̂

c
j ν̂

c
k . (3.3)

By the same token, the soft trilinear parameters in Eq. (3.7) below, will be taken as
vanishing in our computations. Nevertheless, the formulas given in the text and Appendix A
include for completeness the contributions from λijk, λ′ijk and their corresponding soft
trilinear parameters.

As mentioned before, the presence of the last terms on Eq. (3.2) break explicitly R-
parity. Nonetheless, in the limit Y ν

ij → 0, ν̂ci can be identified in superpotential of Eq. (3.3)
as pure singlet superfields without lepton number, similar to the case of the next-to-MSSM,
where one extra singlet is added to the spectrum of the MSSM and Rp is not broken. In
this limit R-parity will be restored. In this spirit Y ν

ij are the parameters which determine
the Rp/ in the superpotential of Eq. (3.3). As we will see, the smallness of neutrino masses
require small values for Y ν

ij , and this violation would be therefore small.

Soft terms
Working in the framework of a typical low-energy SUSY, the Lagrangian containing the
soft SUSY-breaking terms related to the superpotential in Eq. (3.2) is given by:

−Lsoft = εab

(
T eij H

a
d L̃

a
iL ẽ
∗
jR + T dij H

a
d Q̃
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∗
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)

+ εab
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b
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b
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1
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+ εab
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a
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∗
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a
iL Q̃

b
jL d̃

∗
kR + h.c.

)

+
(
m2
Q̃L

)
ij
Q̃a∗
iLQ̃

a
jL +

(
m2
ũR

)
ij
ũ∗iRũjR +

(
m2
d̃R

)
ij
d̃∗iRd̃jR +

(
m2
L̃L

)
ij
L̃a∗iLL̃

a
jL

+
(
m2
ν̃R

)
ij
ν̃∗iRν̃jR +

(
m2
ẽR

)
ij
ẽ∗iRẽjR +m2

Hd
Ha
d
∗Ha

d +m2
HuH

a
u
∗Ha

u

+
1

2

(
M3 g̃ g̃ +M2 W̃ W̃ +M1 B̃

0 B̃0 + h.c.
)
, (3.4)

where an implicit sum over the (undisplayed) color indexes is assumed in the terms involv-
ing squarks and gluinos. The complex trilinear parameters T λi , T

d,e,u,ν
ij and T κ,λ,λ

′

ijk are in
correspondence with the trilinear couplings of the superpotential. The squared sfermion
masses are required to be 3 × 3 hermitian matrices in family space, whereas mHu,d are

4Altough λijk and λ′ijk will appear through loop processes even if they are not present at tree level, as
shown in Ref. [63]. Nevertheless their contributions are smaller than order 10−9. Obviously, all existing
bounds on quadratic coupling constant products are satisfied, but these contributions are anyway negligible
for studying physical processes. Let us remark that λ′ijk are generated at one loop through the equation [63]
d
dtλ
′
ijk = 1

16π2 Ydjk γ
Hd
Li

, with γHdLi = −Yνilλl. However, for λijk higher order contributions are necessary.
The antisymmetric character under i ↔ j of λijk, makes the one-loop contribution identically zero, as
can be seen from the fact that the one-loop equation d

dtλijk = 1
16π2

(
Yejk γ

Hd
Li

+ Yeik γ
Hd
Lj

)
cannot generate

antisymmetric contributions.
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the real Higgs mass parameters. The parameters M3,2,1 are the (generally complex) Ma-
jorana masses of the 2-component gluino, Wino and Bino fields, and an implicit sum over
the (undisplayed) adjoint representation gauge indexes on the gluino and Wino fields is
assumed.

Soft masses of the typem2
HdL̃iL

Ha
d
∗L̃aiL+h.c., could have been included in Eq. (3.4). How-

ever, they would contribute to the minimization equations of the left sneutrinos with terms
m2
HdL̃iL

〈H0
d〉 (in the right-hand side of Eq. (3.20) below), generating VEVs ∼ TeV for them.

This would spoil the generalized electroweak-scale seesaw present in the µνSSM, where
correct neutrino masses require the VEVs of the left sneutrinos to be small, 〈ν̃L〉 <∼ 10−4,
driven dynamically by the Yukawa couplings. As we will discuss in Eq. (3.26), these small
VEVs are necessary because neutrino masses acquire a term of the order of 〈ν̃L〉2/M , with
M ∼ gaugino masses. Thus we will assume in what follows that the above soft masses are
not present in our Lagrangian or that they are negligible5. Notice that a similar destabi-
lization of the left sneutrino VEVs would arise with trilinear parameters T ν ∼ TeV. This
can be avoided for example if the T ν are proportional to the small Y ν , i.e. T ν = AνY ν

where Aν can be ∼ TeV.

Both assumptions above about the parameters T ν and m2
HdL̃

are reliable. Let us recall
in this sense that strong upper bounds upon the intergenerational scalar mixing exist
(see e.g. Ref. [72]), implying that one can assume that such mixings are negligible, and
therefore that the squared sfermion mass matrices in Eq. (3.4) are diagonal in the flavor
space. Actually, diagonal squared mass matrices occur in general in supergravity models
when the observable matter fields have a diagonal Kähler metric, such as in several string
compactifications, or when the dilaton field is the source of SUSY breaking (for a review see
Ref. [73]). Also in this case of a diagonal metric, the soft trilinear parameters turn out to
be directly proportional to the couplings present in the superpotential. Even with a general
Kähler metric, these parameters are already functions of the couplings and their derivatives
with respect to the hidden sector fields. Inspired by this structure of supergravity, and also
by our interpretation of the Higgs Hd as a fourth-family slepton L̃4, we will consider that
soft masses of the type m2

HdL̃i
are not present in the Lagrangian, and assume the following

values for soft trilinear parameters:

T eij = AeijY
e
ij , T dij = AdijY

d
ij , T uij = AuijY

u
ij , (3.5)

T νij = AνijY
ν
ij , T λi = Aλi λi , T κijk = Aκijkκijk , (3.6)

T λijk = Aλijkλijk , T λ
′

ijk = Aλ
′

ijkλ
′
ijk , (3.7)

where the summation convention on repeated indexes does not apply for this case.

So far we have discussed the superpotential and the soft terms of the µνSSM. As we
will see in section 3.2, the fifth and sixth terms of the superpotential generate an effective
µ term and Majorana masses for the righ-handed neutrinos respectively after EWSB. In
this way they provide a solution to the µ problem and generate the neutrino masses and
mixings anlges. In the next section we will see the structure of the scalar potential and the
characteristic features of the electroweak symmetry breaking in the model.

5Although they will appear through loop processes even if they are not present at tree level (see e.g.
Ref [71], their contributions are negligible.)



25

3.2 The scalar potential and the electroweak symmetry
breaking

The tree-level neutral scalar potential V (0) receives the F and D term contributions in
addition to terms from Lsoft in Eq. (3.4), and is therefore given by [62, 63]

V (0) = Vsoft + VF + VD , (3.8)

with

Vsoft =

(
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0
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jR − T λi ν̃∗iRH0

dH
0
u +

1

3
T κijk ν̃

∗
iRν̃
∗
jRν̃

∗
kR + h.c.

)

+
(
m2
L̃L

)
ij
ν̃∗iLν̃jL +

(
m2
ν̃R

)
ij
ν̃∗iRν̃jR +m2

Hd
H0
d
∗
H0
d +m2

HuH
0
u
∗
H0
u , (3.9)
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VD =
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(
g2 + g′2

) (
ν̃iLν̃

∗
iL +H0

dH
0
d
∗ −H0

uH
0
u
∗)2

. (3.11)

The electroweak gauge couplings are estimated at the mZ scale by e = g sin θW = g′ cos θW .
With the choice of CP conservation6, one can define the neutral scalars as

H0
d =

1√
2

(
HRd + vd + i HId

)
, (3.12)

H0
u =

1√
2

(
HRu + vu + i HIu

)
, (3.13)

ν̃iR =
1√
2

(
ν̃RiR + viR + i ν̃IiR

)
, (3.14)

ν̃iL =
1√
2

(
ν̃RiL + viL + i ν̃IiL

)
, (3.15)

in such a way that after the EWSB they develop the real VEVs

〈H0
d〉 =

vd√
2
, 〈H0

u〉 =
vu√

2
, 〈ν̃iR〉 =

viR√
2
, 〈ν̃iL〉 =

viL√
2
. (3.16)

The eight minimization conditions with respect to vd, vu, viR, viL can then be written as

m2
Hd

= −1

8

(
g2 + g′2

) (
viLviL + v2

d − v2
u

)
− 1

2
λiλjviRvjR −

1

2
λiλiv

2
u

+viR tanβ

(
1√
2
T λi +

1

2
λjκijkvkR

)
+ Y ν

ij

viL
2vd

(
λkvkRvjR + λjv

2
u

)
−
√

2

vd
V (n)
vd

,(3.17)

6The µνSSM with spontaneous CP violation was studied in Ref. [74].
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m2
Hu =

1

8

(
g2 + g′2

) (
viLviL + v2

d − v2
u

)
− 1

2
λiλjviRvjR −

1

2
λjλjv

2
d

+λjY
ν
ijviLvd −

1

2
Y ν
ijY

ν
ikvkRvjR −

1

2
Y ν
ijY

ν
kjviLvkL

+
viR

tanβ

(
1√
2
T λi +

1

2
λjκijkvkR

)
− viL
vu

(
1√
2
T νijvjR +

1

2
Y ν
ijκljkvlRvkR

)

−
√

2

vu
V (n)
vu , (3.18)

(m2
ν̃R

)ijvjR =
1√
2

(
−T νjivjLvu + T λi vuvd − T κijkvjRvkR

)
− 1

2
λiλj

(
v2
u + v2

d

)
vjR + λjκijkvdvuvkR

−κlimκljkvmRvjRvkR +
1

2
Y ν
jiλkvjLvkRvd +

1

2
Y ν
kjλivdvkLvjR − Y ν

jkκiklvuvjLvlR

−1

2
Y ν
jiY

ν
lkvjLvlLvkR −

1

2
Y ν
kiY

ν
kjv

2
uvjR − V (n)

viR
, (3.19)

(m2
L̃L

)ijvjL = −1

8

(
g2 + g′2

) (
vjLvjL + v2

d − v2
u

)
viL −

1√
2
T νijvuvjR +

1

2
Y ν
ijλkvdvjRvkR

+
1

2
Y ν
ijλjv

2
uvd −

1

2
Y ν
il κljkvuvjRvkR −

1

2
Y ν
ijY

ν
lkvlLvjRvkR −

1

2
Y ν
ikY

ν
jkv

2
uvjL

−V (n)
viL

, (3.20)

where tan β ≡ vu
vd
, V (n)

x ≡ ∂V (n)/∂x with x = vd, vu, viR, viL, and V (n) represents the
n–loop radiative correction to the potential, V = V (0) + V (n).

The scale at which the EWSB conditions are imposed is MEWSB =
√
mt̃l

mt̃h
, where

mt̃l
and mt̃h

correspond to the lightest and heaviest stop mass eigenvalues, respectively,
measured at MEWSB.

From Eq. (3.20) we can see that in the limit of Y ν
ij → 0 the VEVs of the left sneutrinos

vanish. However, in the case of Eq. (3.19) the limit of R-parity conservation does not imply
vanishing of the right sneutrinos VEVs. Then is natural to expect that the value of viR is
of the order of MEWSB while the value of viL is suppressed.

After the successful EWSB, several effective couplings are generated thanks to the VEVs
of the neutral scalars. The 5th term in the superpotential of Eq. (3.3), together with the
VEVs of the right sneutrinos generate an effective coupling between both Higgs superfields:

viR√
2
≈ 1 TeV, (3.21)

µeff = λi
viR√

2
. (3.22)

This solves µ problem of the MSSM [75]. In the µνSSM superpotential, the µ term
is absent, as well as Majorana masses for neutrinos. This can be obtained invoking a Z3

symmetry as in the case of the NMSSM, which implies that only trilinear terms are allowed.
Actually, this is what one would expect from a high-energy theory where the low-energy
modes should be massless and the massive modes of the order of the high-energy scale. As
pointed out in Ref. [64], this is precisely the situation in string constructions, where the
massive modes have huge masses of the order of the string scale and the massless ones have
only trilinear terms at the renormalizable level. Thus one ends up with an accidental Z3
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symmetry in the low-energy theory.
Besides the usual Dirac masses, the presence of Yukawa interaction between up-type

Higgs superfield and neutrinos, generates a Dirac mass for them:
(
meff
D
)
ij

= Y ν
ij

vu√
2

(3.23)

In addition, the 6th term in the superpotential generates effective Majorana masses for
the right-handed neutrinos (

meff
M
)
ij

= 2κijk
vkR√

2
. (3.24)

As a consequence, we can implement naturally a (generalized) electroweak-scale seesaw
in the µνSSM, asking for neutrino Yukawa couplings of the order of the electron Yukawa
coupling or smaller (see the first two terms of Eqs. (3.33) and (3.35) below) [62, 63, 76, 77,
74, 78]:

Y ν
ij
<∼ 10−6 . (3.25)

This generates Dirac masses for neutrinos of the order of
(
meff
D
)
ij
<∼ 10−4 GeV, and

therefore no ‘ad hoc’ high-energy scales (larger than a TeV) are necessary to reproduce
experimentally consistent neutrino masses.

It is worth reminding that the VEVs of the left sneutrinos are much smaller than the
other VEVs in Eq. (3.16), and we can estimate their values as viL <∼ meff

D [62], thus:

viL√
2
<∼ 10−4 GeV . (3.26)

This result allows that the generalized seesaw of the µνSSM, which include the neutralinos,
works properly, since the third term ∼ v2

L/M in Eqs. (3.33) and (3.35) below, will be of
the same order as the first two.

Finally, the 4th term in the superpotential of Eq. (3.3) generates effective bilinear Rp/
couplings

εeffi = Y ν
ij

vjR√
2
, (3.27)

as those constituting the bilinear R-parity violating model (BRpV, see Ref. [58] for a
review).

Recapitulating, the superpotential of Eq. (3.3) serves both the purposes of solving the
µ problem and generating non-zero neutrino masses and mixing solving the ν problem. As
a consequence of the new terms introduced in the superpotential to solve these challenges,
Rp is explicitly broken with its breaking controlled by the small Yukawa couplings for
neutrinos, i.e. Rp is restored for Y ν

ij → 0.
A detailed analysis of the parameter space of the µνSSM was carried out in Ref. [63],

finding the regions where a successful spontaneous breaking of the electroweak symme-
try happens avoiding the presence of false minima and tachyons, as well as fulfilling the
constraints on Landau Poles.

Let us remark that since only dimensionless trilinear couplings are present in the su-
perpotential of Eq. (3.2), the EWSB is determined by the soft SUSY-breaking terms of the
scalar potential. Thus all known particle physics phenomenology can be reproduced in the
µνSSM with one scale, the about 1 TeV scale of the soft terms, avoiding the introduction
of ‘ad-hoc’ high-energy scales. Upon EWSB, not only Higgses but also left and right sneu-



28 CHAPTER 3. THE µνSSM

trinos acquire VEVs as discussed above and, as we will review in Section 3.3, fields with
the same color, electric charge and spin mix giving rise to a rich phenomenology.

3.3 The spectrum of the model

Similar to the MSSM, where the couplings and Higgs VEVs determine the mixing of Bino,
Wino and Higgsinos, producing the four neutralino states, the new couplings and sneutrino
VEVs in the µνSSM induce new mixing of states [62, 63]. Summarizing, in the colorless sec-
tor, there are ten neutral fermions (neutralinos-neutrinos), five charged fermions (charginos-
leptons), eight neutral scalars and seven neutral pseudoscalars (Higgses-sneutrinos), and
seven charged scalars (charged Higgses-sleptons). The associated mass matrices were stud-
ied in detail in Ref. [63]. The reader can consult the full form in Appendix A, with the
convention of using for the eigenstates the names of the detected particles: neutrinos,
leptons, Higgses.

Concerning the neutral scalars, the right and left sneutrino VEVs lead to mixing of the
neutral Higgses with the sneutrinos in the scalar potential, giving rise to the 8×8 (‘Higgs’)
mass matrices for scalar and pseudoscalar states. They are written (before and) after
replacing the values of the soft masses with the corresponding VEVs obtained through
the minimization conditions of Eqs. (3.17)-(3.20), assuming that the sfermion soft mass
matrices are diagonal in flavor space, as discussed above Eq. (3.5). Note that after rotating
away the pseudoscalar would be Goldstone boson, we are left with seven pseudoscalar
states. It is also worth noticing here that the 5×5 Higgs-right sneutrino submatrix is almost
decoupled from the 3× 3 left sneutrino submatrix, since the mixing occurs through terms
proportional to Y ν

ij or viL (see Eqs. (A.9)-(A.11) and (A.25)-(A.27)), and these quantities are
very small in order to satisfy neutrino data, as shown in Eqs. (3.25) and (3.26). Besides, the
former 5×5 submatrix is of the NMSSM type, apart from the small corrections proportional
to Y ν

ij (and the fact that in the NMSSM there is only one singlet).
Charged Higgs states mix with right and left sleptons to form the 8 × 8 (‘charged

Higgs’) mass matrix. Similar to the neutral scalar mass matrices where some sectors are
decoupled, the 2×2 charged Higgs submatrix is decoupled from the 6×6 slepton submatrix
(see Eqs. (A.38)-(A.41)). In addition, the right sleptons are decoupled from the left ones
as can be seen in Eq. (A.42), since the mixing terms are suppressed by the electron-type
Yukawa couplings or viL.

The squark mass matrices, also written in Appendix A. When compared to the MSSM/
NMSSM case, they maintain their structure essentially unaffected, provided that one uses
the effective µ term of Eq. (3.22), and neglects the terms proportional to Y ν

ij , viL and λ′ijk.
The neutral fermion (‘neutrino’) mass matrix includes the neutral gauginos, the Higgsi-

nos, left-handed neutrinos and right-handed neutrinos. It presents a seesaw-like structure
with the left-handed neutrinos on the one side and the rest of neutralinos, with masses
around the EWSB scale on the other side, and Dirac masses of the order of the Eq. (3.23).
This sector will be discussed below in the context of neutrino physics, since it is crucial for
determining neutrinos masses and mixing.

Concerning the charged fermions, the MSSM charginos mix with the leptons in the
µνSSM giving rise to the 5× 5 (‘lepton’) mass matrix shown in Appendix A. Nevertheless,
the 2 × 2 chargino submatrix is basically decoupled from the 3 × 3 lepton submatrix (see
Eq. (A.71) where the off-diagonal entries are suppressed by Y ν

ij , Y e
ij, viL). The former is like

the one of the MSSM/NMSSM provided that one uses the effective µ term of Eq. (3.22).
Finally, down- and up-quark mass matrices are also given in Appendix A.



29

3.4 Higgs sector

In the previous section we have sketch the structure of the scalar sector of the µνSSM.
There we have mentioned that the left sneutrinos are in practice decoupled from the rest
of the mass matrix, leaving a structure for the Higgs sector similar to the NMSSM. Note
however that the right sneutrino-Higgs sector in the µνSSM is extended with two additional
scalar singlets with respect to the NMSSM. Thus some differences might appear. This has
been analyzed in detail in [79].

The mixing between the Higgs states and the right handed neutrinos, Eq. (A.3) and
Eq. (A.4), is in general large, but can be suppressed with the condition (see [79]):

Aλi =
2µ

sin 2β
− 2

λi

∑

j,k

κijkλjν
c
k, (3.28)

Aλi =
2

λi

∑

j,k

κijkλjν
c
k, (3.29)

for the CP-even and CP-odd sectors, respectively. This conditions can be applied to obtain
very light pure singlet scalars, or to make the lightest Higgs-like scalar as heavy as possible.
Scenario which produces an upper bound similar to the one of the NMSSM [79], which can
reach the 125 GeV even at tree level, for small values of tan β [80] :

(
mtree
h

)
≤ M2

Z

(
cos2 2β +

2λ cos2 θW
g2

2

sin2 2β

)
. (3.30)

The presence of multiple scalar singlets in the spectrum can also affect the Higgs decay
phenomenology. As studied in Ref. [79], the coupling Higgs-singlet-singlet could lead to
longer decay chains, when kinematically accessible, like

hSM → 2ν̃1R, hSM → 2ν̃2R → 4ν̃1R. (3.31)

This scalars will eventually decay to fermions, causing multilepton or multijets signals
in the decay of the Higgs boson. The presence of light right-handed neutrinos can affect as
well the decay chain

hSM → 2νRνR → 2ν2ν̃1R. (3.32)

This sequence will now produce a multijet or multilepton signal with the addition of
missing energy.

On top of that, some of these decays can be suppressed enough to make the proper
decay length of the particles involved comparable to the size of the detector, thus producing
displaced vertices in the decay of the Higgs bosons. This possibility, with the light singlets
decaying to τ leptons has been studied in Ref. [81].

3.5 Neutrino physics

Concerning the neutral fermions, we have already discussed in Subsection 3.2 that effective
Majorana masses for right-handed neutrinos of the order of the EWSB scale are dynamically
generated in the µνSSM (see Eq. (3.24)). In addition, the MSSM neutralinos mix with the
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left- and right-handed neutrinos giving rise to the 10 × 10 neutral fermion (‘neutrino’)
mass matrix shown in Eq. (A.65). Notice that the structure of this matrix is that of a
generalized electroweak-scale seesaw, since it involves not only the right-handed neutrinos
but also the neutralinos. Because of this structure, data on neutrino physics [82, 83, 84]
can easily be reproduced at tree level [62, 63, 76, 77, 74, 78], even with diagonal Yukawa
couplings [76, 74], i.e. Y ν

ii = Y ν
i and vanishing otherwise.

Qualitatively, we can understand this in the following way. First of all, the three
neutrino masses are going to be very small since the entries of the first three rows (and
columns) of the matrix of Eq. (A.65) are much smaller than the rest of the entries. Notice
in this sense that the latter are of the order of the electroweak scale, whereas the former
are of the order of the Dirac masses for neutrinos (see (Eq. (3.23))) [62, 63]. Second, from
this matrix one can obtain a simplified formula for the effective mixing mass matrix of the
light neutrinos [74]:

(meff
ν )ij '

Y ν
i Y

ν
j v

2
u

6
√

2κvR
(1− 3δij)−

viLvjL
4M eff −

1

4M eff

[
vd
(
Y ν
i vjL + Y ν

j viL
)

3λ
+
Y ν
i Y

ν
j v

2
d

9λ2

]
,

(3.33)

with

M eff ≡M − v2

2
√

2 (κv2
R + λvuvd) 3λvR

(
2κv2

R

vuvd
v2

+
λv2

2

)
, (3.34)

where M = M1M2

g′2M2+g2M1
. Here is assumed λi = λ, viR = vR, and κiii ≡ κi = κ and

vanishing otherwise. Also diagonal Yukawa couplings are considered Y ν
ii ≡ Y ν

i . Using
this approximate formula it is easy to understand how diagonal Yukawas can give rise to
off-diagonal entries in the mass matrix. The key point are clearly the extra contributions
given by the terms which are not proportional to δij (all of them except the second one in
Eq. (3.33)) with respect to the ordinary seesaw, where they are absent.

It is worth noticing that the first term (and the second) in Eq. (3.33) is generated
through the mixing of left-handed neutrinos νL with right-handed neutrinos νR-Higgsinos.
The rest of the terms also include the gaugino mixing. Let us also remark, that the last two
terms in brackets are proportional to vd, and therefore negligible in the limit of large or even
moderate tan β provided that λ is not too small. Concerning Eq. (3.34), the first term is
also negligible in this limit, and for typical values of the parameters involved in the seesaw
also the second one, i.e. M eff ∼M . Under this assumption, the third term in Eq. (3.33) is
generated only through the mixing of left-handed neutrinos with gauginos. Therefore, we
get a very simple formula that can be used to understand the seesaw mechanism in this
model in a qualitative way, that is

(meff
ν )ij '

Y ν
i Y

ν
j v

2
u

6
√

2κvR
(1− 3δij)−

viLvjL
4M

. (3.35)

As we can understand from the above discussion, neutrino physics in the µνSSM is
closely related to the parameters and VEVs of the model, since the values chosen for them
must reproduce current data on neutrino masses and mixing angles. For example, for the
typical values of the parameters and VEVs in Eqs. (3.21), (3.25) and (3.26), neutrino masses
<∼ 0.1 eV as expected, can easily be reproduced.

Let us finally point out that all these arguments explained here give a kind of answer
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to the question, why the mixing angles are so different in the quark and lepton sectors?
From the µνSSM viewpoint, because no generalized seesaw exists for the quarks.

3.6 Dark Matter in the µνSSM

As explained before, R-parity is not a symmetry of the µνSSM superpotential. Thus the
LSP is not stable. Neutralinos or sneutrinos, with very short lifetimes, can no longer be dark
matter candidates. Nonetheless, the gravitino can still be a viable DM candidate [85, 86]. If
the Gravitino is the LSP, its decay width would be suppressed by the inverse of the Planck
mass and by the Rp/ parameters. Leading to a Gravitino lifetime larger than the age of the
Universe. Searches for µνSSM gravitino dark matter in Fermi-LAT data through gamma-
ray lines have been carried out in Refs. [87, 88, 89, 90], obtaining stringent constraints on
the gravitino mass and the lifetime.

It is worth noticing that when the gravitino is assumed to be the LSP, the lightest
particle of the remaining SUSY spectrum would in fact be the next-to-LSP (NLSP). Nev-
ertheless, the analysis of their phenomenology at the LHC is not altered, since they also
decay into ordinary particles using the same channels as if they were the LSP. For in-
stance, as shown in [79], the decay of a neutralino through the channel χ̃0 → Ψ3/2γ, can
be estimated as:

cτ
3/2

χ̃0 ≈ 80 km
( m3/2

10 KeV

)2
(

mχ̃0

50 GeV

)−5

. (3.36)

And one can easily see that the partial width to gravitinos is small provided that the
gravitino mass is not much smaller than 10 KeV. One can see for example that for a 100
GeV neutralino, the decay width would be comparable to the ones to SM particles, with
decay lengths from mm-m, only if the Gravitino mass is below the KeV scale.

Concerning other cosmological issues in the µνSSM, in Ref. [91] the generation of the
baryon asymmetry of the universe was analyzed in the model, with the interesting result
that electroweak baryogenesis can be realized.

3.7 The µνSSM with one generation of right-handed
neutrinos

The µνSSM as is presented in [62, 63] includes three generations of right-handed neutrino
superfields ν̂c. These superfields, as explained in previous sections, couple with the Higgs
doublets to generate an effective µ term after EWSB, and couple in a Yukawa term with
left handed neutrino superfields to generate neutrino masses.

For both mechanisms to work is sufficient to include only one generation of ν̂c. In
this case, the generation of the effective µ-term comes from a single right sneutrino. The
generated neutrino seesaw is only capable to produce mass for one of the neutrinos, while
the two remaining neutrinos receive the mass radiatively. This is obvious if one realizes
that the three rows in the neutral fermion mass matrix corresponding to the neutrinos are
equal at tree level, thus the mass matrix has two zero eigenvalues. This possibility has
been studied in the work [77].

This possibility is equivalent to take the limit in the three generation case where λi ≡
λδi1, Y ν

ij ≡ Y ν
i δj1, κijk ≡ κδ1iδ1jδ1k, T λi ≡ T λδi1, T νij ≡ T νi δj1 and T κijk ≡ T κδ1iδ1jδ1k.

Obviously there would be only one relevant right sneutrino VEV, labeled as vR. The
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phenomenology is similar to the three generation case regarding the Higgs physics and the
collider signatures, provided one considers a value of vR large enough to maintain the same
µeff . However, the reduction of the model has bigger consequences regarding neutrino
physics. As mentioned, only one family of neutrinos get masses at tree level, which can be
calculated [92] as:

mν =
1

4Meff

∑

i

[
v2
i + vd

(
2viYνi
λ

+
vdY

2
νi

λ2

)]
, (3.37)

with

Meff ≡M

[
1− v2

√
2M(κ v2

R + λvdvu)λvR

(
κ v2

R

vdvu
v2

+
1

4
λv2

)]
, (3.38)

where v2 ≡ v2
d + v2

u, and
1

M
≡ g′2

M1

+
g2

M2

. (3.39)

Notice that we can simplify Eq. (3.37) taking into account that the second term is
proportional to vd, and therefore considering it negligible in the limit of large or even
moderate tan β ≡ vu/vd provided that λ is not too small. In Eq. (3.38), the second term is
also negligible in this limit, and for typical values of the parameters involved in the seesaw
also the third one, i.e. Meff ≈ M . Under these assumptions, the first term in Eq. (3.37) is
generated only through the mixing of left-handed neutrinos with gauginos, and we arrive
to the approximate formula:

mν ≈
∑

i

v2
i

4M
. (3.40)

3.8 Previous collider studies

The presence of R-parity breaking interactions in the µνSSM produces a rich phenomenol-
ogy in contrast to the R-parity conserving models, generically characterized by signals
including a large amount of missing transverse energy. Moreover, the smallness of the Rp/
interactions, directly related to the smallness of neutrino mass scale, could produce the
unusual scenario of displaced vertices. In addition, the presence of light singlets could
complicate the decay chains of the particles, making the collider phenomenology even more
diverse.

The collider phenomenology has already started to be studied. The novel Higgs decays
in the µνSSM, as mentioned in Sec. 3.4, were studied in [79], as well as the decays of the
heavy Higgs. When the lightest neutralinos are lighter than the heavy CP-even Higgs in
the µνSSM, the decays H → χ̃0χ̃0 are kinetically accessible and can produce distinctive
signals such as H → 2b2b̄2ν or even H → 4b4b̄2ν. In some cases also produced at displaced
vertices. If all neutralinos are heavier, the decays to lighter scalar singlets could produce
signals with high multiplicity of b-quarks such as H → 2b2b̄ and H → 4b4b̄. Finally, if
the light scalar singlets are light enough, the decay ν̃R → bb̄ is kinematically forbidden and
decays as H → 2τ2τ̄ and H → 4τ4τ̄ are possible. This gives an idea of the characteristic
cascades expected in the production of Higgs bosons.
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Z decay

4 displaced leptons/τ -jets/jets/photons+��ET

4 leptons/τ -jets/jets/photons

W± decay

prompt lepton/τ -jet+
2 displaced leptons/τ -jets/jets/photons+��ET

Table 3.1: Non-standard decays studied in Ref. [93].

Already mentioned before is the work of Ref. [81], where the authors analyze the de-
tection possibilities of the Higgs Boson decaying to a pair of neutralinos that eventually
decay to ντ τ̄ , with a significant proper decay length. They found that ATLAS and CMS
can detect this kind of signature either by looking to multilepton events produced in the
SUSY cascade decay chain, when relaxing the requirement for the leptons to come from the
primary vertex, or searching for tracks not-pointing back to the primary vertex. In both
cases having a moderately high missing transverse energy due to multiple neutrinos.

Finally, the effect of very light scalar singlets or right-handed neutrinos on the decay
pattern of electroweak gauge bosons has been studied in [93]. The non-standard decays
W± → `νR, Z0 → νRνR and Z0 → ν̃Rν̃R, lead to the signatures shown in Table 3.1.

These decay channels are constrained by the measured value of the total gauge boson
widths, also by the invisible decay width when the right-handed neutrinos decay outside
the detector, and constrained by the measured partial width to 4 prompt leptons.

In that work, the authors find regions in the parameter space where the new decays are
below the experimental limit. Moreover, they find that the small partial width into these
unusual channel makes this signal to be beyond the sensitivity of the LHC, even at High
Luminosity phase. They find however, that the future linear colliders could have enough
sensitivity to see them.

The work of Ref. [77] makes a thorough study of the phenomenological implications at
colliders of the µνSSM focusing on the scenario of a neutralino LSP, studying the possible
decay channels and the proper decay length in correlation with neutrino properties. They
also study the implication of the presence of multiple singlet superfields in the model. In
that work the authors also discuss the possible differences in collider phenomenology of the
model with respect to other R-parity breaking schemes.

In this chapter we have presented the structure of the µνSSM and summarize the results
of the previous phenomenological analysis of the model. In the next chapters we will analyze
new interesting scenarios of the model that had not been studied yet, such as the signals
predicted at hadron colliders when the left sneutrino (bino) is the LSP.
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Chapter 4

The left sneutrino as LSP

The present chapter, based in the work developed in Ref. [94] analyses the main phe-
nomenological aspects if the left sneutrino as the LSP in the context of the µνSSM.

The left-handed lepton fermion SU(2) doublet (Lai ), has a supersymmetric counterpart
formed by the left slepton and the left sneutrino, constituting the left lepton superfield L̂ai .
Before electroweak symmetry breaking, as both scalars belong to the same doublet, they
receive the same contributions to the mass, coming from the soft SUSY breaking lepton
mass m2

L̃
. After EWSB the left sleptons receive an extra contribution to the mass as we

will see later. Therefore, is a common feature in all supersymmetric models that the left
slepton mass is always larger than the left sneutrino mass. Thus, whenever the mechanism
generating the soft SUSY breaking masses at low energy causes m2

L̃
to be small, the left

sneutrino will always be the LSP.
In models with R-parity conservation there are three neutral stable particles that could

be thereupon DM candidates: the lightest sneutrino, the lightest neutralino and the grav-
itino. The scenario of a left sneutrino reproducing the dark matter density of the universe
has been largely ruled out by direct searches [95, 96, 97, 98]. Accordingly, typical collider
studies of the left sneutrino assume that it decays involving somehow the neutral fermionic
LSP. On the contrary, the collider studies assuming RPV through the trilinear couplings
described in Eq. (2.13) typically assume a rather simple phenomenology, mediated by a
particular coupling. In comparison, the decays of the sneutrino in the µνSSM can be much
richer.

Unlike R-parity conserving SUSY models, the scalar sector of the µνSSM mixes every
spin-0 neutral particle. Neutral Higgs states, the left sneutrinos and right sneutrinos mix in
a single mass matrix. With the assumption of CP-conservation, that means eight scalars on
each sector. The large number of scalar states and the amount of parameters controlling the
mass matrices could lead us to the misconception that we could choose the parameters to
get any desired structure form the mass matrix. On the contrary, as we will see during the
present chapter, the influence of the input parameters over a number of phenomenological
observables sets tight constraints to the possible structures of the scalar mass matrix.

4.1 Left sneutrino mass

The full form of the scalar mass matrices can be consulted in Appendix A. Here one could
notice that all the off-diagonal elements involving the left sneutrino (m2

ν̃iLX
) are proportional

to either viL or to Y ν . Given the viL dependence shown in Sec. 3.2, is straightforward to
see that in the limit of Y ν � 1 the left sneutrino decouples from the rest of the scalar
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states. On the other hand the right-sneutrino sector mixing with the Higgs sector is not
necessarily small. This could be the case when the large value of λ is utilized to contribute
to the tree-level mass of the light Higgs Boson.

As explained in Sec. 3.1, the lepton doublet soft SUSY breaking mass should be di-
agonal, therefore also the off-diagonal elements of the left sneutrino matrix vanish in the
limit of R-parity conservation. Since the mass sub-matrix for left sneutrinos is effectively
decoupled and diagonal, the mass corresponding to the physical left sneutrino state can
be well approximated by the value of the diagonal mass entry corresponding to the left
sneutrino flavor state (m2

ν̃iLν̃iL
):
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)
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After electroweak symmetry breaking the value of viL is fixed by the minimization
equations of the scalar potential, therefore this VEVs are not independent parameters
and its value should be read form the solutions of Eqs. (3.17)-(3.20). However, from a
phenomenological perspective results useful to consider the left sneutrino VEV as a input
parameter and fix

(
m2
L̃L

)
ij
to the value required to make the corresponding viL a minimum

of the scalar potential, roughly:
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, (4.2)

With this strategy one can trade the soft mass by its value form the minimization
equations on the expression 4.1:
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(4.3)

As can be seen in the appendix, the difference between the scalar and pseudoscalar
left sneutrino mass entries are just a term proportional to viL. This term comes form the
D-term contributions to the scalar potential originated by the U(1)Y and SU(2)L vector
superfields:

m2
ν̃IiLν̃

I
jL

= m2
ν̃RiLν̃

R
jL
− 1

4

(
g2 + g′2

)
viLvjL (4.4)

Following the discussion in Sec. 3.2 is straightforward to see that this term is negligible.
Therefore we can consider that, when they are sufficiently light, both behave as the LSP.
For this reason we are going to refer to them as co-LSP.

From Eq. (4.3) we can retain only the dominant terms, which go with the smaller powers
of Y ν and vL, to arrive to a simpler expression for the left sneutrino mass:
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m2
ν̃IiLν̃

I
jL
≈ Y νvu

2viL
vR

(
−
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2Aν − κvR +
λvR

tan β

)
(4.5)

At first glance one can see that unless tan β ∼ 1 and κ is not larger than λ, the value
of the trilinear soft neutrino coupling Aν is restricted to negative values, otherwise the left
sneutrino will have a negative mass. Even if in some cases Aν could be positive, its value
can not be large.

As has been discussed in section ref, the value of viL has to be roughly Y νvu to predict
the correct neutrino physics in most of the parameter space, this makes obvious that the
fraction in front of (4.5) is of order one. Also, vR is naturally on the order of the TeV,
as explained in Sec. 3.2. Evidently, if Aν is just around a common SUSY scale in the
ballpark of the TeV, the mass of the left sneutrino would be dominated by this term and
would typically be slightly below the TeV. If Aν is however of the order of −100 GeV, the
cancellation of this term with the second could easily make the left sneutrino relatively
light, for a moderated to large value for tan β.

From a theoretical point of view this means that the mechanism breaking SUSY at high
energy needs to produce a low-energy set of soft parameters on the TeV scale, with the
exception of mL̃iL

and Aν , which should be of the order of 100 GeV. Once this is true, the
minimization equations fix the correct values for the VEV’s.

Equation (4.5) is to be understood as a tree-level approximation. Even in the case of
universal values for the input parameters of each generation, the mass states would not
be exactly degenerate, it will be broken by the effect of the different Yukawa couplings
with the Hd doublet through radiative contributions to the mass matrix. In any case this
difference is going to be negligible.

When a left sneutrino is the LSP, is natural to have a left slepton as the NLSP. As can
be seen in Appendix A the mixing between charged Higgs and sleptons is feeble and vanish
in the limit of R-parity conservation, analogously to the left sneutrinos. Also the mixing
between left and right sleptons, proportional to the lepton Yukawa coupling, is not large.
Altogether the left slepton physical mass is going to be very close to the diagonal mass
entry:
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Therefore, the difference in mass between left sleptons and neutrinos is mainly coming
form the D-term contribution g2

4
(v2
u − v2

d) ≈ −m2
W cos 2β. The previous result is natural

from a theoretical point of view, since both belong to the same SU(2) doublet. May the
reader notice also that this contribution can only be negative for very small values of tan β.

Summarizing, we have shown that is viable to obtain in the spectrum of the µνSSM
left sneutrinos as LSPs. They can in principle belong to any of the three families of the
SM, and if the value of mL̃iL

and Aν is universal, the three of them could be co-LSPs. The
phenomenological implications of the dominant flavor of the LSP are nevertheless of great
importance, since the decay modes of the third family of left-sneutrinos are different with
respect of the first two. In addition, the left slepton is slightly heavier and naturally the
NLSP.



38 CHAPTER 4. THE LEFT SNEUTRINO AS LSP

4.2 Production at colliders

It is usual in phenomenological studies of R-parity violating models to consider the single
production of the considered SUSY particle through some of the usual R-parity violating
trilinear couplings described in Sec. 3.1. When the appropriate λijk are allowed is possible
the direct production of a single sneutrino at lepton colliders. And when the proper λ′ijk
couplings are allowed, is possible to produce them also Hadron colliders. In the µνSSM
however, this terms ere effectively generated as described in Sec. 3.2 and small, therefore
they are ineffective to generate processed at colliders.

The left sneutrino can be generated however in pairs, through the Drell-Yann process
mediated by a Z boson. This is possible both in Hadron and electron-positron colliders, and
has been studied for R-parity conserving models (see for example [99, 100, 101, 102, 103,
104]). Moreover, since the mass gap between the left sneutrinos and sleptons is tight, the
production of left sleptons pairs is also a source of sneutrino pairs through the production of
Drell-Yann processes mediated by Z and γ with the subsequent decay to sneutrinos and an
off-shellW±. Also the production of sneutrino-slepton, mediated by aW± in the s-channel,
would be an important source of sneutrino pairs. The first generation of left sneutrinos
could in principle also be generated at electron-positron colliders through a diagram with a
chargino in the t-channel. However this diagram is irrelevant if the chargino is sufficiently
decoupled.

We will elaborate more on the production of the left sneutrino at colliders during the
chapters 5 and 6, where we discuss the possible detection of the sneutrino at the LHC.

4.3 Decay of the Left sneutrino

In R-parity conserving supersymmetric models the LSP is bounded to be stable. In the
µνSSM however, R-parity is broken and the LSP decays. In addition, as has been already
pointed out, in the µνSSM the rupture of the discreet symmetry is small, thus any decay
that would violate an exact R-parity is strongly suppressed in comparison with the other
available decays. The result is that all the particle spectrum decays through R-parity
conserving decays whenever kinematically accessible. The decay chain will eventually end
up producing the LSP, which would decay through some of the available R-parity violating
decays. This makes crucial the decay pattern of the LSP, since would dictate the signals
expected from the production and decay of any of the heavier SUSY particles.

The relevant interactions of the left sneutrino are given in App. B. Although the number
of terms in the expressions is large, only some of them are typically of relevance, and we will
discuss some approximations that make possible to express the most relevant contributions
in terms of the parameters of the Lagrangian.

In the notation of App. B, ZH
il represents the l-th composition in the flavor basis de-

fined on App. A, for the i-th scalar mass eigenstate. For instance, if the lightest scalar,
after the SM higgs, were a pure left electron sneutrino, ZH

2l will be one if l = 6 and zero
otherwise. Since the left sneutrinos are almost pure, if we want to identify the dominant
terms on Eq. (B), we retain only the terms with l equal 4+n (6+n) when using one (three)
generation of right handed neutrinos, and i equal 1 (2) if the sneutrino is lighter (heavier)
than the Higgs boson, being n ∈ 1, 3 corresponding to the lepton families. However, is
straightforward to see that there is no term proportional to this mixing matrix entry, and
the dominant values of the mixing matrices corresponding to SM fermions, like for example
U e
L,11 and U e

R,11 for the coupling with electrons.
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This is coherent with the fact that there is no term in the Lagrangian coupling the
left sneutrino and SM fermions, breaking R-parity. There exist however in the scalar
potential, after EWSB, terms of the form left sneutrino-Higgs bosons-Higgs boson. Which
are proportional either to Y ν or vL.

The next dominant contributions to the interaction between the left sneutrino and SM
particles would involve terms where at most one of the matrix entries does not correspond
to the dominant flavor composition. One can understand diagrammatically this interaction
as Feynman diagrams with one mass insertion in one of the external legs, as can be seen
in Figs. 4.1 and 4.2. Notice that none of the mixings between SM particles and SUSY
particles is large, but since all of the decays have to proceed through these small mixings,
every channel is a priory relevant.

4.3.1 Decay into quarks

There is no fermions charged under SU(3) in the supersymmetric part of the spectrum,
with whom the quarks could mix. Therefore the decay to quarks can only proceed through
left sneutrino-Higgs mixing (ZH

2,2/1).
In the previous section we have justified the smallness of the left sneutrino flavor com-

position of the Higgs boson, yet the singlet composition of it is not necessarily small.
Notice nevertheless the constraints to a large singlet composition coming from Higgs signal
strengths measured at the LHC. Therefore, we will assume in the following a small value
of the singlet composition of the Higgs bosons. This is in most regions of parameter space
achievable, as explained in Sec. 3.4.

Using the mass insertion approximation on Fig. 4.1 the value of this mixing would be:
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2 ; ZH
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I
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MA
2 (4.7)

However, the mass of the LSP could easily be to close to the mass of the Higgs Boson,
making this simplification not valid. Instead we can get to a better approximation through
a simple process. Since the submatrices corresponding to the Higgs sector and the left
sneutrino are effectively decoupled, we can perform a rotation on the Higgs subsector to
diagonalize it, and the terms mixing both sectors are still going to be small. After that,
we can approximate the diagonal values by the physical masses, and then apply the mass
insertion approximation. Finally, the mixing between the approximate mass eigenstates can
be translated to an approximation of the flavor composition writing the mass eigenstates
in terms of the flavor basis. The result is:
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Where the angle α diagonalizes the Hu, Hd submatrix:
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And the mass of the Heavy scalar/pseudoscalar can be roughly estimated as:

viR tan β

(
1√
2
T λi +

1

2
λjκijkvkR

)
(4.13)

This approximation rely on several rough assumptions and depends on masses and
angles that can’t be calculated with exactitude a priory, just estimated. It’s quantitative
results has to be used with caution, but they allow us to have a qualitative idea on how
would this mixings behave in terms of the different parameters, and the physical masses.

First, in the decoupling limit and if the mass of the left sneutrino is small, we recover
the mass insertion approximation. But we can also see that when Mh

2 ∼ Mν̃Ri
the mixing

can be large, both for up and down Higgs flavors. Finally, the sign of the mixing depends
also on whether the left sneutrino is heavier or lighter than the Higgs boson. This is
irrelevant for the coupling with quarks, since there is only one dominant term, but it will
be important in other cases.

In the case of the pseudoscalar left sneutrino, one can still use the mass insertion
approximation to calculate the mixing with Hd. Since the dominant value of the coupling
is given by 1

2
Y ν
il λmvlRvmR, and this is suppressed by the mass of the pseudoscalar Higgs

approximated by its diagonal mass entry. One can straightforwardly obtain the following
expression for the largest effective interaction of the pseudoscalar sneutrino decay into
down-type quarks:

Y bY ν

λ

λ

(2Aλ +
√

2κvR) tan β
(4.14)

One can obtain the same result, for a moderate to large value of tan β, retaining the
first term of Eq. (4.10), keeping the leading terms on Eq. (A.9) and approximating M2

A as
in Eq. (4.13).

In the general case, the partial width to up and down quarks, corresponding to the
diagrams of Fig. 4.1 a) and b) are:

Γν̃i→djdj ≈
Mν̃

16π
|YdjZH/A

i,1 |2 (4.15)

Γν̃i→ujuj ≈
Mν̃

16π
|YujZH/A

i,2 |2 (4.16)

Summarizing, the decay of the left sneutrino to a couple of quarks is mediated by the
off-diagonal mass terms mixing left sneutrino and Higgs states, and therefore suppressed.
However, if the mass of the left sneutrino is close to the mass of the physical Higgs states
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(light, heavy or pseudoscalar), the mixing can be enhanced and consequently the decays.

4.3.2 Decay into charged leptons

The mixing between left sneutrino and down-type Higgs can be used also to describe the
decay of the sneutrino to leptons through the diagram 4.1 c). In this case the contribution
to the partial width would have the same form as in Eq. (4.14), but replacing the down-type
quark Yukawa coupling by the leptonic corresponding one:

Y eY ν

λ

λ

(2Aλ +
√

2κvR) tan β
, (4.17)

keeping in mind that if the mass separation between any of the Higgs states and the
sneutrino is small, this expression wouldn’t capture the strong mixing between both states.

Since in the SM leptons mix with with supersymmetric charged fermions, there are
other possible diagrams mediating the decay of the sneutrino to leptons. On Fig. 4.1 d)
we can see the Feynman diagram mediated by the mixing lepton-higgsino. This diagram
is proportional to the lepton Yukawa coupling in the vertex, and to the mixing U e,∗

R,j5 in
the external leg, where j ∈ 1, 3. This mixing can be estimated using the mass insertion
approximation to be Y νjjvRj∑

λivRi
. Thus the contribution of this diagram would be:

Y e
jjY

ν
jjvRj∑
λivRi

, (4.18)

Notice that this diagram can give rise to lepton flavor violating decays of the sneutrino.
Finally, combining the two possible diagrams we have the approximate decay widths:

Γν̃i→ejej ≈
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In Eq. (4.19) the contribution of both diagrams can cancel each other depending on
the sign of the mixing sneutrino-Higgs. Notice also that the contribution form the diagram
4.1 d) would only be relevant for tau left-sneutrinos, since the corresponding diagrams for
the first two families will be strongly suppressed by the small value of the corresponding
Yukawa coupling.

When the mixing sneutrino-Higgs is enhanced by a small mass separation, the first term
of Eq. (4.19) dominates the leptonic decays.

4.3.3 Decay into neutrinos

The Feynman diagrams shown in Fig. 4.1 e) and f) describe the decay of the scalar and
pseudoscalar sneutrino into neutrinos, here the vertex is mediated by the gauge interaction
sneutrino-neutrino-gaugino, and the mixing gaugino-neutrino. This mixing, labeled as
U v
j,4/5 where j ∈ 1, 3, and 4 (5) stands for bino (wino). This mixings can be approximated

using again the mass insertion approximation to be:

U v
j,4 ≈ g′2

vL
4M1

, U v
j,5 ≈ g2 vL

4M2

. (4.21)
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There can be in principle a diagram mediating this decay also through the mixing Higgs-
sneutrino as in previous sections. This decay will be nevertheless strongly suppressed both
by the small neutrino Yukawa coupling, and the small mixing between left and right handed
neutrinos. The complete interactions and given in Appendix B. The above terms are rough
approximations of the first and second terms , respectively, multiplying the projectors PL,R
in Eqs. B.7. Summing over the three generations of neutrinos, the partial width is:
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16π
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+
g2

2
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|2 (4.22)

Note that the decay now looks independent of the mixing sneutrino-Higgs. Actually
there is one diagram similar to Fig. 4.1 c) for neutrinos, but the smallness of Y ν and the
mixing ν−νc make the diagram irrelevant. From Eq. (4.22) is evident also that the partial
width is independent of the generation of the left sneutrino.

4.3.4 Decay into gauge bosons

Whenever kinematically accessible, the Feynman diagrams shown in Fig. 4.2 a) - g) will
make the left sneutrino decay to a couple of gauge bosons. In this case, besides the diagrams
mediated by the mixing sneutrino-Higgs, the left sneutrino couples directly to gauge bosons.
Like on Fig. 4.2 a) and d), where we can see the direct coupling of the left sneutrinos to
W± and Z, suppressed by the value of the corresponding VEV. The coupling mediated by
the mixing of the left sneutrino with up and down type Higgses, as depicted in Fig.4.2 b),
c), e) and f) would be proportional to the mixings described in section 4.3.1. Notice that
the contribution from the different diagrams won’t always add up and can indeed cancel
each other, depending on the signs of the mixings.

As a consequence of the mixing of the scalar sneutrino with HRu,d discussed above, a
sizable decay channel into photons could also be generated. This decay, schematically
described in Fig. 4.3.1 g) is generated radiatively with the most important contributions
generated with W± and top-quarks running in the loop.

ν̃RiL → γγ (4.23)

4.3.5 Decay into Higgs Bosons

The left sneutrino couples directly to the Higgs bosons, after electroweak symmetry break-
ing, through F-Terms generated by the neutrino Yukawa coupling and D-terms. Assuming
the light Higgs to be Hu dominated, the relevant couplings are the terms on Sec. C pro-
portional to ZH

i,3+1Z
H
j,2Z

H
k,2.

Assuming that the decay of the left sneutrino to a couple of higgses is kinematically
accessible, the left sneutrino could decay to a couple of light Higgs bosons. The corre-
sponding Feynman diagram is shown on Fig. 4.3. Is manifest that the third term could be
neglected in front of the other two, because of the presence of extra factor of Y ν and/or
vL. The corresponding partial width is calculated on Eq. (4.24).
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(4.24)
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Figure 4.1: Dominant diagrams in the decay of the sneutrino to fermions.
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Figure 4.2: Dominant diagrams in the decay of the sneutrino to gauge bosons.
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Figure 4.3: Dominant diagrams in the decay of the sneutrino to Higgs bosons.
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4.4 Branching fractions and proper life-time

The interactions of the left sneutrino with SM particles open many possible channels for
the decay of the left sneutrino to non supersymmetric particles. All of this channels are
suppressed by the limit of very small R-parity violation. However, with no reason to
consider none of them to be a priory dominant, besides kinematics.

We should expect for the behavior of the left sneutrino a wide variation depending of
the different values of the parameters, but we can expect some general features common in
most cases. We can see in Fig. 4.4 to 4.9 the branching fractions of scalar and pseudoscalar
left sneutrinos for different choices of parameters, generations and masses, calculated using
the approximated analytical expressions described in the previous sections.

We are focusing first on the real left sneutrino and in the case where the left sneutrino
belong to the first two generations. It differs with the third generation since for them the
Yukawa interaction Y e

ij is negligible. The branching fractions for different decay channels
is shown in Fig. 4.4.

For low masses, below 100 GeV, the decay is completely dominated by the νν channel
(red line on Fig. 4.4). The decays mediated by Fig.4.1 d) are irrelevant, and the decays
mediated by the mixing with the Higgs are sub dominant, but present. While decays to
gauge bosons and Higgs pairs are kinematically forbidden. Note that the decays described
in Eq. (4.22) depend on the soft gaugino masses and the sneutrino VEV, thus in principle
the decays to bb̄ and τ τ̄ could be of more relevance in points of the parameter space where
the gauginos are very heavy or the left sneutrino VEVs specially small. One should remind
however the influence of this parameters on Eq (3.33), thus such a point could be in conflict
with neutrino physics.

When the mass of the left sneutrino is close to the mass of the Higgs bosons the con-
tribution from the channels mediated by the mixing with the Higgs are enhanced, to the
point that the decay to bb̄ (green doted line) and τ τ̄ (pink dotted line) are dominant. Of
special interest is the decay to a couple of photons (yellow line), because of its detection
possibilities at colliders.

When the kinematic threshold of the decay W±W∓∗ is reached by the mass of the left
sneutrino, the decays depicted on Fig. 4.2 take over the decays of the left sneutrino. This
is a generic behavior, but again the decays to neutrinos can be more important in the
high mass region if gaugino soft masses are smaller or the VEV bigger, within the values
admissible by Eq (3.33).

If the real left sneutrino belong to the third generation, its behavior is slightly different,
due to the influence of Y τ . The branching fractions are illustrated, for values of λ = 1 and
M1 = M2 = 1500 in Fig. 4.5 and for λ = 0.2 and M1 = M2 = 500 on Fig. 4.6.

At low masses, the decay to νν is still dominant, but now the decays to τ τ̄ and τ l̄ are
important. For the parameters chosen, the neutrino channel is always dominant, but if for
λ small and big gaugino masses, the leptonic channels could overcome the νν channel.

In the vicinity to the Higgs boson mass, we see an enhancement of the channels mediated
by the mixing Higgs-sneutrino similar to the one shown on Fig. 4.4. Mind however that
there exist a cancellation of the leptonic channel happening in the vicinity of the maximum
mixing point. This cancellation correspond to the destructive interplay between the two
terms in Eq. (4.19).

For larger masses the decays to gauge bosons dominate the decay of the left sneutrino.
We can see however on Fig. 4.5, that the decay to W±W∓ could be suppressed at a specific
mass. This cancellation is the result of the interplay between the diagrams 4.2 a)-c), and
is not specific of the left sneutrinos of the third generation, but depends on the point of
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the parameter space.
The behavior of the imaginary left sneutrino is quite different, tough considerably sim-

pler. The pseudoscalar left sneutrino do not couple with gauge bosons, if CP is not violated,
also there is no light pseudoscalar to whom have an enhanced mixing similar to the real
left sneutrino. The relevant diagram for its decay are Fig. 4.1 d), e) and f). Therefore the
only relevant decays are ν̃ILi → νν and ν̃ILi → τ l̄.

When the pseudoscalar belongs to the first or second generation, the branching fractions
are determined by the first term of Eq. (4.19) and Eq. (4.22), the ratio between the decays
value does not depend much of the mass of the sneutrino. The dominant decay will be
ν̃ILi → νν. Similarly as for the real sneutrino, the decay to leptons could be more important
if soft gaugino masses are large and/or vL is small, with the restrictions aforementioned.

For a tauonic pseudoscalar left sneutrino, the diagram 4.1 d) is again important. De-
pending on the value of λ, soft gauginos masses and vL, the decay ν̃ILi → τ l̄ can even be
dominant over ν̃ILi → νν.

May the reader notice that the branching fractions shown in Fig.4.4-4.9 are not com-
prehensive of all the phenomenology of the left sneutrino. They pretend to be illustrative
examples of the general behavior in the mass range most interesting for collider searches.
There are regions of the parameter space where some specific channel could be enhanced
or suppressed in comparison with the behavior shown of this plots.

We have discussed so far about which of the decay widths is bigger, but we have not
address the question of how big could be the total width. This could be of the greatest
importance if, as we will see, the proper life time is long enough to have consequences for
collider experiments.

Following the formulas (4.19) and (4.22), which could serve as good examples of the
order of magnitude of the total width, we can make a rough estimation of the numbers
involved. It is reasonable to estimate the fraction in front to be Mν̃

16π
∼ O(GeV), also to say

that Y τ

λ
∼ g1 ∼ g2 ∼ O(0.1). Finally, is reasonable that vL

M1,2
∼ Y ν ∼ O(10−6), to have a

viable neutrino sector. Altogether we can estimate:

Γ ∼ O(GeV)× (O(0.1))2 × (O(10−6))2 ∼ 10−14 GeV (4.25)

Which can be converted into a proper decay length of: }·c
Γ
∼ O(cm). Of the same order

of magnitude as, for instance, the inner detector of ATLAS. Notice that the hierarchy
between the typical widths of the heavier SUSY particles and the LSP width is similar to
the hierarchy that exist between the electroweak scale and the neutrino mass scale, since
both have a common origin.

We show in Figs. 4.10 to 4.12 the proper decay length for the same scenarios as for
the branching fractions. We can see that the proper decay length is larger when the
left sneutrinos belong to the two first generations. A behavior expected since there are
additional decay diagrams with a significant contribution to the tauonic left sneutrino.

We can also observe that around the mass of the Higgs boson, the proper decay length
drops dramatically as a result of the enhanced mixing sneutrino-Higgs. For large masses
we can also observe how the decays channels to W±W∓ and ZZ have a strong impact
reducing the value of cτ .

The value of the proper decay length of the imaginary left sneutrinos is similar to the
real counterpart for low masses, but is always larger for masses above 110 GeV, due to
the contributions of the diagrams mediated by the mixing sneutrino-Higgs and the diboson
decays for the real sneutrino.



46 CHAPTER 4. THE LEFT SNEUTRINO AS LSP

 [GeV]ν
∼M_

50 100 150 200 250
3−10

2−10

1−10

1

BR scalar muonic sneutrino vs Mass

BR Sneutrino_L

νν

ττ

bb

cc

WW

ZZ

γγ

BR scalar muonic sneutrino vs Mass

Figure 4.4: Partial widths as a function of mass for a muonic real left sneutrino LSP.
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Figure 4.5: Partial widths as a function of mass for a tauonic real left sneutrino LSP.
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Figure 4.6: Partial widths as a function of mass for a tauonic real left sneutrino LSP.
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Figure 4.7: Partial widths as a function of mass for a imaginary left sneutrino LSP.
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Figure 4.8: Partial widths as a function of mass for a imaginary left sneutrino LSP.
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Figure 4.9: Partial widths as a function of mass for a imaginary left sneutrino LSP.
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Figure 4.10: Decay length as a function of mass for a left sneutrino LSP.
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Figure 4.11: Decay length as a function of mass for a left sneutrino LSP.
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Figure 4.12: Decay length as a function of mass for a left sneutrino LSP.

4.5 Experimental searches for sneutrinos

There exist multiple analysis looking for the production and decay of the left sneutrino
at colliders, both at LEP and at the LHC. This searches can be generically classified in
searches for RPC decays of the sneutrino and RPV decays. In the former case, the pair
production of sneutrinos and sleptons can be detected through the RPC conserving decays
ν̃ → νχ0/ → `χ± and ˜̀→ `χ0/ → νχ±. These searches can constrain the mass of the
slepton to be above 580 GeV for ATLAS [105] and 450 GeV for CMS [106]. Notice however
that this searches use the energetic leptons and large MET resulting form the decays
described above. In this sense these searches are ineffective for the sneutrino discussed in
this chapter, since the slepton can only decay with a similar topology through the chain
˜̀→ W ∗ν̃ → `3ν where the lepton coming from the off-shell W is going to be too soft.

Searches for RPV decays of sleptons, as for example [107], can however cover many of
the decays described in Sec. 4.3. For instance the decay to quarks, mimicking the decays
mediated by λ′ikk coupling, or the decays to leptons corresponding to the decays mediated
by λijk. Nevertheless the limits obtained in these searches cannot be directly quoted, since
the simplified models used to obtain lower limits on the mass allow only one single decay
channel, something generically not true for the µνSSM sneutrino.

Whenever the mass of the sneutrino is within the kinematic reach for pair production
at LEP, its searches are also relevant. Moreover a lepton collider can be sensitive to the
soft mesons produced in the decay of the slepton. One more time, lower limits on the
mass of the sneutrino or slepton cannot be directly applied because of the varied number
of channels accessible for the µνSSM sneutrino.

Other searches searches not directly designed to look for sneutrinos can be pertinent
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when they look for a signal similar to the ones possible combining the decay channels
described in Sec. 4.3. That is the case of the mono-jet and mono-photon searches when
the sneutrino decays to neutrino pairs. Also the searches for lepton pairs in association
with missing transverse momentum, or jets plus MET are topologies possible for the left
sneutrino LSP. In general this searches suffer from the reduced branching fraction since
the decays of the left sneutrino are distributed among the multiple possibilities. Moreover,
light sneutrinos tend to produce softer leptons/jets and smaller amount of MET than
the particles for which the analysis were originally designed. And when the mass of the
sneutrino is high enough to produce clearly discernible events, the production crossection
is typically too low.

Summarizing, is not possible to establish robust exclusion limit on the mass of the left
sneutrino LSP given the number of possible decay channels of it. This does not tell however
that limits doesn’t exist, but rather that each scenario is constrained from different signals
and should be checked individually. One can put a generic lower bound nonetheless on
MZ/2, since the contribution of the left sneutrino to the total width of the Z boson would
be well above the experimental uncertainties on its measured value.
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Chapter 5

Searching for left sneutrino LSP at the
LHC

In this chapter, based on the work [94], we analyze the relevant signals expected at the
LHC for a left sneutrino LSP. Here we will study separately BPs with left sneutrinos
co-LSP of the first two families, and left sneutrinos LSP of the third family, since their
phenomenology is very different. Based on this BPs we propose search strategies that
could lead to a discovery of the left sneutrino at the end of RUN 2.

In the previous chapter, we have seen the general features of the left sneutrino as the
LSP. Based on approximated analytical formulas,we select the most interesting scenarios
and we picked a selection of representative BPS for which we calculated the mass spectrum
and decay modes using a suitable modified version of SARAH code [108, 109, 110] as well
as the SPheno v3.3.6 code [111, 112]. These results were linked to MadGraph5_aMC@NLO
v2.3.2.2 [113] and PYTHIA 6.428 [114] tools, in order to make the full analysis of detection
of signals at the LHC.

In section 3.5 is explained how the data on neutrino physics can be reproduced at tree
level in the µνSSM, even with diagonal Yukawa couplings Y ν

ii . Nevertheless, for this first
analysis focused on the detection at the LHC, it will be operationally simpler to work
with only one family of right-handed neutrinos and its sneutrino partner. Thus we leave
the three-family case for a future work [115], since our LHC analysis is not going to be
essentially modified by this simplification. As a consequence, we will work with the following
non-vanishing parameters: tan β, v1R ≡, λ ≡ λ,Aλ1 ≡ Aλ, κ111 ≡ κ,Aκ111 ≡ Aκ, andY ν

i1, A
ν
i1.

For the last two parameters we will assume universality, Y ν
i1 ≡ Y ν and Aνi1 ≡ Aν , since

in this way we will have three large enough diagonal left sneutrino masses, mimicking the
case of three families of right sneutrinos. We will also have viL, not necessarily universal.
Summarizing, the free parameters in the neutral scalar sector at the low scale MEWSB, are
in our analysis:

λ, κ, Y ν , tan β, viL, vR, A
λ, Aκ, Aν . (5.1)

Concerning the soft parameters of Eq. (3.4), for simplicity in the computation we will
consider that the trilinear ones, as well as the scalar masses, are universal, i.e, Au,d,eij = Au,d,e

and mQ̃iL,ũiR,d̃iR,ẽiR
= mQ̃L,ũR,d̃R,ẽR

, respectively. Altogether, we have the following free
parameters:

M1,M2,M3,mQ̃L
,mũR ,md̃L

,mẽR , A
u, Ad, Ae. (5.2)

We have discussed in Sec. 4.1 the neutral scalar and pseudoscalar matrices, and we

53



54 CHAPTER 5. SEARCHING FOR LEFT SNEUTRINO LSP AT THE LHC

have seen how a left sneutrino can become the LSP. We have seen also the relation between
the masses of left scalar and pseudoscalar sneutrinos, and sleptons. The final necessary
condition we found is that Aν ∼-100 GeV to obtain the pseudoscalar left sneutrino as the
LSP with mass ∼ 100 GeV. The LSP can in principle belong to any of the three families of
the SM, but as we have seen in Sec. 4.4 this can have crucial implications for the signals
produced at the LHC.

We can assign different values for the input parameters associated to each family. This
is the case for example of the left sneutrino VEVs, viL. Thus if we choose v1L = v2L > v3L,
we obtain from the approximate expression Eq. (4.5) that the electron sneutrino ν̃IeL and
the muon sneutrino ν̃IµL have masses degenerate and behave as co-LSP. Although this
degeneracy is broken by the mixing of the mass matrices and by loop corrections, the mass
difference is going to be negligible. For example, for the BP in Table 5.1 to be analyzed
afterwards, ν̃IeL is 0.0002 GeV heavier than ν̃IµL . We have discussed in Sec. 4.1 that scalar
and pseudoscalar sneutrinos are co-LSPs, we conclude then that in this case there are four
co-LSP: ν̃IeL , ν̃IµL , ν̃ReL and ν̃RµL . Alternatively, if we choose v1L = v2L < v3L, then we
obtain that tau sneutrinos ν̃IτL and ν̃RτL are co-LSP. Obviously, in the case of universal
VEVs one obtains that the left sneutrinos of the three families , scalar and pseudoscalar,
become co-LSP.

Let me finally remark that another equivalent strategy to find non-degenerated families
of sneutrinos, is to allow for non-universality of the parameters Aνij or Y ν

ij , while keeping
viL universal.

5.1 Electron and muon left sneutrinos co-LSPs

Following the discussion in the previous subsection,we show in Table 5.1 a benchmark point
(BP) with the right properties to produce ν̃IµL, ν̃RµL , ν̃IeL and ν̃ReL co-LSPs, with masses of
about 125.4 GeV. The input parameters at the low scale MEWSB can be found in the first
box of the table. Concerning the input soft parameters, as discussed below Eq. (4.5), the
most relevant one for our computation is Aν and we have used the value −Aν = 386 GeV
∼ κvR/

√
2. Other relevant soft parameters are the gaugino masses M1 and M2, since

Bino and Wino mediate the decay channels of the left sneutrino (see Fig. 4.1). We take
them as 600 and 900 GeV, respectively, and for M3 we choose 1600 GeV. For the rest of
trilinear parameters, for simplicity in the computation we assume Auij ,dij ,eij = Au,d,e, and
Ad = Ae = Aλ = −Aκ = 1 TeV with the exception of Au ∼ −3.1 TeV in order to reproduce
the mass of the Higgs. As we will discuss below, the negative value of Aκ is necessary
to avoid tachyonic pseudoscalar right sneutrinos. The one of Au it to avoid tachyonic left
sneutrinos due to the loop corrections. In the same spirit of simplicity, we use mQ̃L,ũR,d̃R

=
1.3 TeV1 and mẽR = 1 TeV. Finally, we have tan β = 10, corresponding to the following
Higgs VEVs: vu/

√
2 = 170.84 GeV, vd/

√
2 = 17.08 GeV.

1As analyzed in Refs. [116, 117, 118, 119, 120, 121, 122]using a numerical minimization of the potential,
large values of At may give rise to an unstable electroweak ground state decaying rapidly to a charge
and color breaking (CCB) minima (see e.g. Ref. [123]). Using the results of Refs. [117, 118], we have
been able to check that our point around the maximal mixing corresponds to a metastable vacuum. The
dangerous additional possibility of rapid thermal tunneling [118] is dependent on the thermal evolution of
the Universe, and to analyze it is beyond the scope of this work. Nevertheless, it is worth noticing that CCB
minima are not a crucial subject in our study of the sneutrino LSP. We can easily modify At and/or stop
soft masses obtaining the same kind of signals discussed here. For example, keeping At ∼ −3.1 TeV but
increasing mt̃ in a few hundred GeV we can enter in a safe stable region [116, 117, 118, 119, 120, 121, 122].
Also the same situation can be obtained reducing |At| and properly changing mt̃.
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Table 5.1: Benchmark point producing ν̃IµL,ν̃RµL, ν̃IeL and ν̃ReL co-LSPs, with masses of 125.4
GeV. Input parameters, and soft masses obtained from the minimization conditions, are
given in the first and second boxes at the low scale MEWSB. Sparticle physical masses are
shown in the third box (with their dominant compositions written in brackets). Sneutrino
branching ratios (larger than 10−4) and decay widths are shown in the fourth and fifth
boxes, respectively. VEVs, soft parameters, sparticle masses and decay widths are given in
GeV.

λ 0.2 κ 0.3 Y ν 5× 10−7

v1,2L/
√

2 3× 10−4 v3L/
√

2 5× 10−6 vR/
√

2 1350

tan β 10 Au −3177 Ad,e 1000

Aλ 1000 Aκ −1000 Aν −386

M1 600 M2 900 M3 1600

m2
Q̃L,ũR,d̃R

1.69× 106 m2
ẽR

106 – –

m2
Hd 3.62× 106 m2

Hu −1.09× 105 m2
ν̃R

0.750× 105

m2
L̃eL

0.968× 104 m2
L̃µL

0.968× 104 m2
L̃τL

0.935× 106

mh1(HRu ) 124.2 mh2(ν̃
R
µL

) 125.4 mh3(ν̃
R
eL

) 125.4

mh4(ν̃
R
R

) 501.2 mh5(ν̃
R
τL

) 972.4 mh6(H
R
d

) 1934.4

– – mA0
2(ν̃
I
µL

) 125.4 mA0
3(ν̃
I
eL

) 125.4

mA0
4(ν̃
I
τL

) 972.4 mA0
5(ν̃
I
R
) 1100 mA0

6(H
I
d
) 1933.9

– – m
H−2 (µ̃L)

145.4 m
H−3 (ẽL)

145.4

m
H−4 (τ̃L)

946.9 m
H−5 (ẽR)

1000.9 m
H−6 (µ̃R)

1000.9

m
H−7 (τ̃R)

1000.9 m
H−8 (H−

d
)

1936.2 – –

mλ0
4(H̃

0
u/H̃

0
d
) 264.8 mλ0

5(H̃
0
u/H̃

0
d
) 279.6 mλ0

6(B̃
0) 600.3

mλ0
7(νR) 809.6 mλ0

8(W̃
0) 919.8 – –

m
λ−4 (H̃−

d
/(H̃+

u )c)
272.1 m

λ−5 (W̃−)
920 – –

mũ1(t̃L/t̃R) 1112 mũ2(c̃R) 1340 mũ3(ũR) 1340

mũ4(ũL) 1343 mũ5(c̃L) 1343 mũ6(t̃L/t̃R) 1465

m
d̃1(b̃L)

1310.6 m
d̃2(b̃R)

1338.8 m
d̃3(s̃R)

1338.8

m
d̃4(d̃R)

1338.8 m
d̃5(s̃L)

1344.9 m
d̃6(d̃L)

1344.9

mg̃ 1619.5 – – – –

BR(A0
2 → νν) 0.9744 BR(A0

3 → νν) 0.9908

BR(A0
2 → µ±e∓) 0.0058 BR(A0

2 → µ+µ−) 0.0055

BR(A0
2 → µ±τ∓) 0.0054 BR(A0

2,3 → τ+τ−) 0.0003

BR(A0
2,3 → b̄b) 0.0017 BR(A0

2,3 → c̄c) 0.0007

BR(A0
2,3 → gg) 0.0061 – –

BR(h2,3 → νν) 0.0015 – –

BR(h2 → τ+τ−) 0.0863 BR(h3 → τ+τ−) 0.0828

BR(h2,3 → b̄b) 0.468 BR(h2,3 → c̄c) 0.033

BR(h2,3 → gg) 0.122 BR(h2,3 → γγ) 0.003

BR(h2,3 →W±W∓
∗
) 0.256 BR(h2,3 → ZZ∗) 0.028

Γ(h2,3) 6.7× 10−11 Γ(A0
2,3) 1.0× 10−13

The soft masses obtained from the minimization conditions of Eqs. (3.17)-(3.20) are
shown in the second box of the table. In particular, from Eq. (4.2) it is easy to check
that one can obtain m2

L̃τL
∼ (1 TeV)2 corresponding to the VEV v3L/

√
2 = 5 × 10−6

GeV, and two smaller soft masses m2
L̃e,µL

∼ (100 GeV)2 corresponding to larger VEVs,

v1,2L/
√

2 = 3× 10−4 GeV.
The sparticle physical masses are shown in the third box of the table, with their dom-

inant compositions written in brackets. The masses of the neutral ‘Higgses’ can be found
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in 1st − 4th rows of that box. There we have followed the notation of Appendices A and A
for the dominant compositions. The scalar mass eigenstates are denoted by h1,...,6, since
we are considering only one family of right-handed neutrinos and the scalar partner. The
pseudoscalars are denoted by A0

2,...,6, because we associate A0
1 to the Goldstone boson eaten

by the Z. The composition of the latter is dominated by the HIu (98.9%), with the sec-
ond most important composition HId (∼ 1%). By convention, the masses are labelled in
ascending order, so that for example mA0

1
< mA0

2
< ...

As evident from Eq. (4.2) (or Eq. (4.5)), because of the small low-energy soft masses of
the first two families of lepton doublets ∼ 100 GeV (since we assume v1L = v2L > v3L), we
are able to get as LSP with a mass of 125.4 GeV a pseudoscalar state dominated by the
muon left sneutrino A0

2(ν̃IµL), with co-LSPs essentially degenerate in mass A0
3(ν̃IeL) and the

scalar partners h2(ν̃RµL), h3(ν̃ReL). On the other hand, because of the large soft mass of the
third family of lepton doublets ∼ 1 TeV, we obtain A0

4(ν̃IτL) and h5(ν̃RτL) with masses of 972.4
GeV. All these states are very pure left sneutrinos (>99.99%), confirming our statement
above that the left sneutrino submatrix is almost decoupled from the Higgs-right sneutrino
submatrix. Actually, for this BP, because of the not very large value of λ, the Higgses
and right sneutrinos are also almost decoupled. They are quite pure right sneutrino states
(>99.96%) or Higgs states (>98.86%). In particular, we obtain h1(HRu ) as the SM-like Higgs
with a mass of 124.2 GeV, and h6(HRd ) and A0

6(HId ) as the heavy scalar and pseudoscalar
Higgses with masses of about 1934 GeV (see Eq. (A.4) vs. Eqs. (A.3) and (A.19), where the
factor 1

tanβ
vs. tan β is crucial). The second most important composition for these states

is (∼ 1%) HRd , HRu and HIu , respectively. For the right sneutrino states we obtain h4(ν̃RR )
and A0

5(ν̃IR) with masses of 501.2 GeV and 1100 GeV, respectively. These values can be
reproduced using the following approximate formulas from Eqs. (A.8) and (A.24):

m2
ν̃RR
≈ 2κ2v2

R +
1√
2
κAkvR , m2

ν̃IR
≈ − 3√

2
κAkvR . (5.3)

The masses for ‘charged Higgses’ are written in 5th − 7th rows of the third box of
Table 5.1. Following the notation of Appendix A, they are labeled as H−2,...,8, since we
associate the first state to the Goldstone bosons eaten by the W±. The composition of this
first state is dominated by the H+

u (98.9%), with the second most important composition
H−d

∗ (∼ 1%). As a consequence of the result in Eq. (4.6), there are two light (one heavy) left
sleptons associated to the light (heavy) left sneutrinos, H−2 (µ̃L), H−3 (ẽL) (H−4 (τ̃L)), with
masses of 145.4 (946.9) GeV. Thus H−2 (µ̃L) and H−3 (ẽL) are the co-NLSPs with masses
almost degenerate. Concerning the right sleptons, they are decoupled from the left ones
as already discussed in Subsection 3.3. We can also see in Eq. (A.43) that their masses
are basically determined by the soft masses. As a consequence, they have negligible off-
diagonal entries, and there are three states H−5 (µ̃R), H−6 (ẽR) and H−7 (τ̃R) with masses of
about 1 TeV. Since the slepton and Higgs submatrices are decoupled, all these states are
very pure sleptons (>99.97%). Finally, there is a charged Higgs (>98.9%), H−8 (H−d ), whose
second most important composition is (∼ 1%) H+

u
∗. As expected, this state is heavy with

a mass of about 1.9 TeV, as those of the heavy neutral scalar h6(HRd ) and pseudoscalar
A0

6(HId ) (compare Eq. (A.35) with Eqs. (A.3) and (A.19)).
The masses for ‘neutrinos’ are shown in 8th − 9th rows of the third box of Table 5.1.

The mass eigenstates are denoted as λ0
4,...,8, since we associate the first three states to the

SM left-handed neutrinos. The other five eigenstates arise from the mixing of MSSM-
like neutralinos and the right-handed neutrino. As can be deduced from the matrix in
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Eq. (A.65), we obtain almost pure Wino, Bino, Higgsinos and right-handed neutrino states.
The λ0

8(W̃ 0) and λ0
6(B̃0) states with 99.1% and 99.3% of Wino and Bino composition,

respectively, have masses of 919.8 and 600.3 TeV, respectively, and these are determined
approximately by the soft masses M2 and M1:

mW̃ 0 ≈M2 , mB̃0 ≈M1 . (5.4)

The Higgsinos have a mixing of order 50%, and the two states, λ0
4(H̃0

u/H̃
0
d) and λ0

5(H̃0
u/H̃

0
d),

have similar masses of 264.8 and 279.6 GeV, respectively, which are determined approxi-
mately by the effective µ term in Eq. (3.22):

mH̃0
u,d
≈ λ

vR√
2
. (5.5)

Finally, the λ0
7(νR) state has a 99.8% of right-handed neutrino composition. Its mass is

809.6 GeV and can be approximated by the effective Majorana mass of Eq. (3.24)

mνR ≈ 2κ
vR√

2
. (5.6)

Notice that from Eqs. (5.3) and (5.6) we obtain

m2
ν̃IR
≈ −3

2
AkmνR , (5.7)

and therefore Ak and mνR (i.e. the product κvR) must have opposite signs in order
to avoid tachyonic pseudoscalar right sneutrinos. In particular, in our BP we choose a
negative value for Ak.

The masses for ‘leptons’ are shown in 10th row of the third box. The mass eigenstates
are denoted as λ±4,5, since we associate the first three states to the SM leptons. As discussed
in Subsection 3.3,the 2× 2 MSSM-like chargino submatrix is basically decoupled from the
3×3 lepton submatrix. Thus we obtain almost pure charged Wino, Higgsino. The λ−5 (W̃−)
mass of 920 GeV can be approximated by the soft mass M2:

mW̃± ≈M2 . (5.8)

The charged Higgsinos have a mixing of order 50%, and the state λ−4 (H̃−d /(H̃
+
u )c) have a

mass of 272.1 GeV, which can be approximated by the value of the effective µ term, as for
the neutral Higgsinos in Eq. (5.5):

mH̃± ≈ λ
vR√

2
. (5.9)

The squarks masses are shown in 11th−14th rows of the same box. They were discussed
in Subsection 3.3. As a consequence of their structure, all squark masses are of the order of
the corresponding soft masses ∼ 1.3 TeV, except the lightest and the heaviest ones which
because of the large top Yukawa coupling driven mixing between the left and right stops,
obtain masses of the order of 1.1 and 1.4 TeV, respectively.

The gluinos masses are shown in 15th row. They are of the order of 1.6 TeV, determined
by the value of M3:
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mg̃ ≈M3 . (5.10)

Let us finally remark that it is easy to obtain other masses for the electron and muon
sneutrinos co-LSPs, as can be deduced from the discussion below Eq. (4.5). A simple way
to decrease (increase) the mass of the LSP is to increase (decrease) the left sneutrino VEVs.
However, in this work we focus in the narrow range of masses 118 − 132 GeV where the
decays of the LSP can be treated as prompt, as seen in section 4.4. On the other hand,
for a tau sneutrino LSP the range is broader and a richer collider phenomenology could be
obtained.

5.2 Tau left sneutrino LSP
In Table 5.2, we have adopted the strategy discussed below Eq. (4.5) in order to produce
a tau left sneutrino LSP, ν̃IτL, namely to use similar input parameters as in Table 5.1 but
with v1L = v2L < v3L. In this case, the masses obtained from Eq. (4.5) are different from
the ones in Table 5.1, with the mass of the pseudoscalar state essentially degenerate with
the mass of its scalar partner ν̃RτL, but not with the other families of sneutrinos. In the third
box of Table 5.2, we see that the A0

2(ν̃IτL) is the LSP with a mass of 126.4 GeV basically
degenerate with the one of the state h2(ν̃RτL), which is the co-LSP. The next heavier state
is now the h3(ν̃RR ) with a mass of 501.2 GeV, since the other two families of left sneutrinos
have masses of 776.4 GeV. The spectrum for the charged scalars is modified accordingly
with respect to Table 5.1, e.g. H−2 (τ̃L) is the NLSP with a mass of 146.9 GeV, and no other
state has mass degeneracy with this one.

Notice that we have modified in this table the values of the soft masses M1 and M2,
with respect to Table 5.1, lowering them to 300 and 500 GeV, respectively. This is because
the gaugino masses affect the seesaw mechanism generating neutrinos masses, as discussed
in Subsection 3.3. Therefore, we have to choose the values of M1 and M2 in such a way
that the mass of the heavier neutrino is maintained below the upper bound on the sum of
neutrino masses ∼ 0.23 eV [124], and above the square root of the mass-squared difference
∆m2

atm ∼ 2.42× 10−3eV2 [125].
From the discussion below Eq. (4.5), one deduces that a simple way to decrease the

mass of the LSP is to increase the left sneutrino VEVs. In particular, we show in Table 5.3
a point similar to the one of Table 5.2 but with v3L/

√
2 = 5 × 10−4 GeV. In this way, we

obtain ν̃IτL and ν̃RτL co-LSPs with masses of about 97.8 GeV. The mass of the τ̃L NLSP also
decreases and becomes 122 GeV. For this point, the SM-like Higgs is heavier than the LSP
and therefore, following our convention, is labeled as h2(HRu ) in the table.

Following the same strategy, in order to increase the mass of the LSP we can simply
decrease the value of the concerned VEV. We show in Table 5.4 the case with v3L/

√
2 =

3× 10−4 GeV giving rise to ν̃IτL and ν̃RτL co-LSPs with masses of about 146 GeV, and a τ̃L
NLSP with a mass of 163.6 GeV. In Table 5.5 we show another case with a larger sneutrino
mass. For that we take v3L/

√
2 = 9.48 × 10−5 GeV obtaining now a ν̃IτL and ν̃RτL co-LSPs

with masses of about 311 GeV. We have also changed the value of M1 and λ to keep the
Bino more massive than the LSP and to avoid too light mass scale for neutrinos, while
having enough multileptonic decays. The value of Aλ is chosen in order to minimize the
singlet composition of h1 avoiding a decrease in its mass.

As we will discuss in Section 5.4, this range of sneutrino masses of about 95–310 GeV
is the appropriate one for our analysis of signal detection.
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Table 5.2: Benchmark point producing ν̃IτL and ν̃RτL co-LSPs, with masses of 126.4 GeV.
Input parameters, and soft masses obtained from the minimization conditions, are given in
the first and second boxes at the low scaleMEWSB. Sparticle masses are shown in the third
box (with their dominant compositions written in brackets). Squark and gluino masses are
the same as in Table 5.1 and not shown. Sneutrino branching ratios (larger than 10−4) and
decay widths are shown in the fourth and fifth boxes, respectively. VEVs, soft parameters,
sparticle masses and decay widths are given in GeV.

λ 0.2 κ 0.3 Y ν 5× 10−7

v1,2L/
√

2 1× 10−5 v3L/
√

2 4× 10−4 vR/
√

2 1350

tan β 10 Au −3177 Ad,e 1000

Aλ 1000 Aκ −1000 Aν −400

M1 300 M2 500 M3 1600

m2
Q̃L,ũR,d̃R

1.69× 106 m2
ẽR

106 – –

m2
Hd 3.62× 106 m2

Hu −1.06× 105 m2
ν̃R

0.750× 105

m2
L̃eL

0.598× 106 m2
L̃µL

0.598× 106 m2
L̃τL

1.35× 104

mh1(HRu ) 124.2 mh2(ν̃
R
τL

) 126.4 mh3(ν̃
R
R

) 501.2

mh4(ν̃
R
eL

) 776.4 mh5(ν̃
R
µL

) 776.4 mh6(H
R
d

) 1934.4

– – mA0
2(ν̃
I
τL

) 126.4 mA0
3(ν̃
I
eL

) 776.4

mA0
4(ν̃
I
µL

) 776.4 mA0
5(ν̃
I
R
) 1099.9 mA0

6(H
I
d
) 1933.9

– – m
H−2 (τ̃L)

146.9 m
H−3 (µ̃L)

786.8

m
H−4 (ẽL)

786.8 m
H−5 (ẽR)

1000.4 m
H−6 (µ̃R)

1000.5

m
H−7 (τ̃R)

1000.5 m
H−8 (H−

d
)

1936.2 – –

mλ0
4(H̃

0
u/H̃

0
d
) 241.2 mλ0

5(H̃
0
u/H̃

0
d
) 280.8 mλ0

6(B̃
0) 317.2

mλ0
7(W̃

0) 531.4 mλ0
8(νR) 809.6 – –

m
λ−4 (H̃−

d
/(H̃+

u )c)
264 m

λ−5 (W̃−)
531.5 – –

BR(A0
2 → νν) 0.4430

∑
l=e,µ,τ

BR(A0
2 → τ±l∓) 0.5548

BR(A0
2 → b̄b) 0.0008 BR(A0

2 → gg) 0.0015

BR(h2 → νν) 0.0059
∑

l′=e,µ
BR(h2 → τ±l′∓) 0.0048

BR(h2 → τ+τ−) 0.1168 BR(h2 → µ+µ−) 0.0003

BR(h2 → b̄b) 0.4315 BR(h2 → c̄c) 0.0306

BR(h2 → gg) 0.1143 BR(h2 → γγ) 0.003

BR(h2 →W±W∓
∗
) 0.2624 BR(h2 → ZZ∗) 0.0301

Γ(h2) 6.75× 10−11 Γ(A0
2) 9.14× 10−13

Similarly, we could have worked with a fix value for v3L but varying the value of Aν .
For example, for v3L/

√
2 = 5×10−4 GeV as in Table 5.3, with Aν in the range between -385

and -435 GeV one can obtain the ν̃IτL LSP with a mass in the range of about 95 and 145
GeV. Needless to say, we could also play around with the other relevant input parameters
for our computation, i.e. λ, κ, Y ν , tan β, vR, still obtaining this range of masses for the
LSP.

5.3 Decay Modes.

In section 4.3 we have described the decay pattern of the left sneutrino LSP through some
approximate formulas, based on the mass insertion approximation. We can illustrate now
this formulas with the values the BPs presented in previous sections.

In the discussion of Sec. 4.3 is shown that the Hu/d of the left scalar sneutrino is
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Table 5.3: The same as in Table 5.2 but for ν̃IτL and ν̃RτL co-LSPs with masses of 97.8 GeV
considering v3L/

√
2 = 5× 10−4 GeV and Aν = −385 GeV. In the first and second boxes we

show only the parameters whose values have changed.

m2
L̃eL

0.454× 106 m2
L̃µL

0.454× 106 m2
L̃τL

0.692× 104

mh1(ν̃
R
τL

) 97.8 mh2(HRu ) 124.7 mh3(ν̃
R
R

) 501.2

mh4(ν̃
R
µL

) 676.8 mh5(ν̃
R
eL

) 676.8 – –

– – mA0
2(ν̃
I
τL

) 97.8 mA0
3(ν̃
I
µL

) 676.8

mA0
4(ν̃
I
eL

) 676.8 mA0
5(ν̃
I
R
) 1099.9 – –

– – m
H−2 (τ̃L)

122 m
H−3 (µ̃L)

666.8

m
H−4 (ẽL)

666.8 m
H−5 (ẽR)

1000.2 m
H−6 (µ̃R)

1000.2

m
H−7 (τ̃R)

1000.2 – – – –

BR(A0
2 → νν) 0.5515

∑
l=e,µ,τ

BR(A0
2 → τ±l∓) 0.4483

BR(h1 → νν) 0.507
∑

l=e,µ,τ
BR(h1 → τ±l∓) 0.3889

BR(h1 → b̄b) 0.0854 BR(h1 → c̄c) 0.0053

BR(h1 → gg) 0.00112 BR(h1 → γγ) 0.0005

BR(h1 →W±W±
∗
) 0.0013 – –

Γ(h1) 9.3× 10−13 Γ(A0
2) 8.5× 10−13

Table 5.4: The same as in Table 5.2 but for ν̃IτL and ν̃RτL co-LSPs with masses of 146 GeV,
choosing v3L/

√
2 = 3×10−4 GeV. In the first and second boxes we show only the parameters

whose values have been changed.

m2
L̃eL

0.590× 106 m2
L̃µL

0.590× 106 m2
L̃τL

1.87× 104

mh1(HRu ) 124.8 mh2(ν̃
R
τL

) 146 mh3(ν̃
R
R

) 501.2

mh4(ν̃
R
eL

) 771.3 mh5(ν̃
R
µL

) 771.13 – –

mA0
2(ν̃
I
τL

) 146 mA0
3(ν̃
I
eL

) 771.3 mA0
4(ν̃
I
µL

) 771.3

mA0
5(ν̃
I
R
) 1100 – – – –

m
H−2 (τ̃L)

163.6 m
H−3 (µ̃L)

786.8 m
H−4 (ẽL)

786.8

m
H−5 (ẽR)

1000.5 m
H−6 (µ̃R)

1000.5 m
H−7 (τ̃R)

1000.5

BR(A0
2 → νν) 0.3250

∑
l=e,µ,τ

BR(A0
2 → τ±l∓) 0.6719

BR(A0
2 → b̄b) 0.0007 BR(A0

2 → gg) 0.0021

BR(h2 → νν) 0.1668 – –

BR(h2 → τ+τ−) 0.2492
∑

l′=e,µ
BR(h2 → τ±l′∓) 0.2284

BR(h2 → b̄b) 0.0716 BR(h2 → c̄c) 0.0056

BR(h2 → gg) 0.0293 BR(h2 → γγ) 0.0007

BR(h2 →W±W∓
∗
) 0.2198 BR(h2 → ZZ∗) 0.028

Γ(h2) 1.69× 10−12 Γ(A0
2) 8.7× 10−13

enhanced when its mass is in the vicinity of the Higgs boson. And that such a behavior
is not observed for the pseudoscalar state. We can see an example of this taking a look
for example in (the fourth box of) Table 5.1 that, for the BP analyzed there, the result of
the numerical computation for the decays of the light left sneutrinos into charm quarks,
using the interaction in Appendix B, is BR(A0

2,3 → c̄c) = 0.0007. Of course, decays into
top quarks are kinematically forbidden, given the sneutrino mass considered there of 125.4
GeV. Nevertheless,for the scalar sneutrino the numerical computation using the interaction
in Appendix B gives BR(h2,3 → c̄c) = 0.033 for the BP of Table 5.1. A much bigger
result than for the pseudoscalar sneutrino. The enhanced mixing is the reason also why
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Table 5.5: The same as in Table 5.2 but for ν̃IτL and ν̃RτL co-LSPs with masses of 310.9 GeV.
In the first, second and third boxes we show only the parameters whose values have been
changed.

λ 0.35 Aλ 3714 v3L/
√

2 9.48× 10−5

M1 500 – – – –

m2
Hd 1.90× 107 m2

Hu −1.42× 105 m2
ν̃R

−4.345× 104

m2
L̃eL

0.590× 106 m2
L̃µL

0.590× 106 m2
L̃τL

7.55× 104

mh1(HRu ) 125.3 mh2(ν̃
R
τL

) 310.9 mh3(ν̃
R
R

) 523.3

mh4(ν̃
R
eL

) 778.1 mh5(ν̃
R
µL

) 778.1 mh6(H
R
d

) 4423

mA0
2(ν̃
I
τL

) 310.9 mA0
3(ν̃
I
eL

) 778.1 mA0
4(ν̃
I
µL

) 778.1

mA0
5(ν̃
I
R
) 1079.4 mA0

6(H
I
d
) 4420.7 – –

m
H−2 (τ̃L)

311 m
H−3 (µ̃L)

780.4 m
H−4 (ẽL)

780.4

m
H−5 (ẽR)

985.2 m
H−6 (µ̃R)

985.2 m
H−7 (τ̃R)

988.3

m
H−8 (H−

d
)

4421.4 – – – –

mλ0
4(H̃

0
u/H̃

0
d
) 421.6 mλ0

5(H̃
0
u/H̃

0
d
) 484.8 mλ0

6(B̃
0) 501.4

mλ0
7(W̃

0) 567.1 mλ0
8(νR) 814.5 – –

m
λ−4 (H̃−

d
/(H̃+

u )c)
436.7 m

λ−5 (W̃−)
563.4 – –

BR(A0
2 → νν) 0.0569

∑
l=e,µ,τ BR(A0

2 → τ±l∓) 0.7565

BR(A0
2 → b̄b) 0.0002 BR(A0

2 → gg) 0.0070

BR(h2 → νν) 0.0374 BR(h2 → h1h1) 0.2877

BR(h2 → τ+τ−) 0.1846
∑
l′=e,µ BR(h2 → τ±l′∓) 0.3308

BR(h2 → b̄b) 0.0005 BR(h2 → gg) 0.005

BR(h2 →W±W∓
∗
) 0.1017 BR(h2 → ZZ∗) 0.0475

Γ(h2) 8.13× 10−13 Γ(A0
2) 5.3× 10−13

the numerical result of Table 5.1 using the interaction in Appendix B, shows that the BR
into bottom quarks is the largest one with a value BR(h2,3 → b̄b) = 0.468, while for the
pseudoscalar is only BR(A2,3 → b̄b) = 0.0017.

As a consequence of the mixing of the scalar sneutrino with HRu,d discussed above, a
sizable decay channel into photons is generated:

ν̃RiL → γγ , (5.11)

, with BR(h2,3 → γγ) = 0.003 as shown in Tables 5.1 and 5.2. For an early work analyzing
ν̃L → γγ in the context of trilinear Rp/ , see Ref. [126], where a negligible BR∼ 10−6 was
obtained. This decay of the scalar sneutrino into two photons in a way not very different
from the Higgs, can be very interesting for our purposes. Let us recall in this sense that the
Higgs was discovered thanks to this kind of decay. Although the associated BR is far from
being the dominant one, the diphoton signal is very clear and easy to disentangle from the
SM backgrounds.

Notice however, that for other masses of the sneutrino as in Tables 5.3–5.5, the BR to
photons is decreased. For example, in Table 5.3 one obtains BR(h2,3 → γγ) = 0.0005. This
is because the mixing of the scalar left sneutrino with the SM Higgs is reduced when the
separation between their masses is increased. In addition, the BR of the HRu to diphoton
is maximal in the vicinity of the mass of the SM Higgs.

For the leptonic decays, the approximation obtained through the mass insertion is better
and the equations give a good approximation of the full numerical value. We can see for
example that for an electron sneutrino LSP the contribution in Eq. (4.18) is proportional
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to Y e, and therefore suppressed with respect to the one in Eq. (4.17), where typically
λvR

(2Aλ+
√

2κvR) tanβ
≈ 10−2. For a muon sneutrino LSP, however, Y µ is larger than Y e and

we obtain for the BP in Table 5.1 that the contribution in Eq. (4.18) is a factor of order
3 larger than that of Eq. (4.17). See e.g. in Table 5.1 that BR(A0

2 → µ±µ∓) = 0.0055
whereas BR(A0

2 → τ±τ∓) = 0.0003. Notice also that BR(A0
2 → b̄b) = 0.0017 is larger than

the later mainly because of the factor 3 of color that has to be included in the computation.
On the other hand, for a tau sneutrino LSP, the contribution in Eq. (4.18) is larger than

Eqs. (4.17) and Eqs. (4.14). As a consequence, in this case one dominant decay channel
for the pseudoscalar (and scalar) left sneutrino is into leptons:

ν̃I,RτL → τ+
L l
−
L , τ−R l

+
R , (5.12)

where l = e, µ, τ . In Table 5.2, we see for example that
∑

l=e,µ,τ BR(A0
2 → τ±l∓) = 0.55.

Similar results, 0.44, 0.67, and 0.75, are obtained in Tables 5.3–5.5, respectively, where
other tau sneutrino masses are analyzed.

Finally, the sneutrino can decay to neutrinos. For an electron or muon pseudoscalar
sneutrino LSP, the contributions in Eq. (4.22) are of the order of 10 larger than the largest
one in Eq. (4.17) which is proportional to Y µ. This is the reason why in Table 5.1 we
obtain BR(A0

2 → νν) = 0.97 and BR(A0
3 → νν) = 0.99. As a consequence, the dominant

decay channel is the one shown in Fig. 4.1 e) and f) into neutrinos

ν̃IiL → νiLνjL , ν
c
iR
νcjR . (5.13)

For a tau sneutrino LSP, the contributions in Eq. (4.22) are of the same order as
that in Eq. (4.19)-(4.19), and therefore there are two dominant decay channels, those in
Eqs. (5.13) and (5.12). The relative size between them depends on the values of the
gaugino massesM1 andM2 necessary to reproduce the correct neutrino physics as discussed
in Section 3.5, and the left sneutrino VEVs viL. In Table 5.2, we see for example that∑

l=e,µ,τ BR(A0
2 → τ±l∓) = 0.55 vs BR(A0

2 → νν) = 0.44.
As we will discuss in detail in the next section,scalar and pseudoscalar sneutrinos can be

produced in pairs at the LHC, and as a consequence, some of the above decay modes can give
rise to detectable signals. In particular, this is the case of diphoton plus missing transverse
energy (MET) from sneutrinos of any family combining the channel in Eq. (5.11) with that
of Eq. (5.13), and diphoton plus leptons from tau sneutrinos combining the channels in
Eqs. (5.11) and (5.12). An interesting multilepton signal can also be produced combining
the decay channels for scalar and pseudoscalar tau sneutrinos in Eq. (5.12).

5.4 Detection at the LHC.

The dominant pair production channels of sleptons at Hadron colliders were studied in
Refs. [99, 100, 101, 102, 103, 104]. In Figs. 7.1–5.3, we show the detectable signals discussed
above from a pair production at the LHC of sneutrinos LSP.The sparticles are denoted in
the figures by their dominant composition.

Concerning the sneutrino production,the direct one of e.g. Fig. 7.1a occurs via a Z
channel giving rise to a pair of scalar and pseudoscalar left sneutrinos. As discussed in
Section 4.1, these states have essentially degenerate masses and therefore are co-LSPs. On
the other hand, since the left slepton in the same SU(2) doublet as the left sneutrino,
it becomes the NLSP, and its direct production and decay is another important source
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Figure 5.1: Dominant decay channels into diphoton plus neutrinos from a pair production
at the LHC of scalar and pseudoscalar sneutrinos LSP of any of the three families, ν̃IiL,
with i = e, µ, τ . Filled circles indicate effective interactions.

of the sneutrino LSP. In particular, pair production can be obtained through a γ or a Z
decaying into ẽ+

iLẽ
−
iL (Fig. 7.1b), with the sleptons dominantly decaying into a (scalar or

pseudoscalar) sneutrino plus an off-shell W± producing a soft meson or a pair of a lepton
and a neutrino (ẽ±iL → e±j νk ν̃

R,I
lL ), which are usually undetectable. Besides, sneutrinos

can be pair produced through a W± decaying into ẽ±iLν̃jL (Figs. 7.1c-d), with the slepton
decaying as before.

Concerning the signals, we will study first diphoton plus MET arising from the produc-
tion and decay of a pair of sneutrinos ν̃IiL ν̃

R
iL

of any family, i = e, µ, τ , as shown in Fig. 7.1.
Second, we will focus on other channels that can be produced via the ν̃τL LSP, given the
large value of the tau Yukawa coupling. This is the case of diphoton plus leptons, and
multileptons, as shown in Figs. 5.2 and 5.3, respectively.

These signatures for a sneutrino LSP are similar to the final states presented in several
analysis of ATLAS and CMS. In particular, those including photons plus MET/leptons
(see for example Refs. [127, 128, 129, 130, 131, 132]). However, these searches are designed
typically towards the production of colored sparticles in the context of Rp conservation.
Therefore, the analysis normally requires a large amount of MET, several energetic jets or
a large effective mass. Thus, these searches are inefficient looking for events of direct pair
production of the sneutrino in our scenario.

We have also confronted all our BPs with LHC searches [128, 133, 134, 135, 136, 137,
138, 139, 140, 141, 142, 132] using CheckMATE 2 [143, 144, 145, 146, 147, 148], and LEP
searches using HiggsBounds-4.3.1 [149, 150, 151, 152, 153]. In the case of the multilepton
signal, there exist generic searches for production of three or more leptons, which include
also signal regions with a low missing transverse momentum and total transverse energy
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Figure 5.2: Dominant decay channels into diphoton plus leptons (l = e, µ, τ) from a pair
production at the LHC of scalar and pseudoscalar sneutrinos LSP of the third family ν̃τL.
Filled circles indicate effective interactions.

Table 5.6: Madgraph cuts. PT is given in GeV.

PT for jets |η| for jets PT for e, µ |η| for e, µ PT for γ |η| for γ
> 20 < 5 > 10 < 2.5 > 10 < 2.5

(see Refs. [154, 155]). In these works, by lepton is meant e, µ or hadronically decaying
τ (τh) candidate. These searches are close to be sensitive to our signal, and an updated
analysis with current data could put constraints on the sneutrino LSP scenario. Let us
finally remark that past collider searches in the context of trilinear Rp/ couplings [156, 157,
158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168] are ineffectual for our scenario.

The strategy that we will follow for the analyses of the sneutrino signals in the µνSSM is
the following. Ten thousand events are generated for each case with MadGraph5_aMC@NLO [113]
at leading order (LO) of perturbative QCD simulating the production of the described pro-
cess. We include the next-to-leading order (NLO) [103] and next-to-leading logarithmic
accuracy (NLL) [169] results using a K-factor of about 1.2. The hard process simulation is
then passed for decay and hadronization to PYTHIA [114]. The output is passed through a
naive and fast detector simulation (PGS) [170]. The standard card for MadGraph5_aMC@NLO
is used, which includes the cuts presented in Table 5.6. PYTHIA is executed with initial
state radiation (ISR), final state radiation (FSR) and multiple interactions switched on.
Besides, PYTHIA will consider the τ lepton as stable to make it decay with the TAUOLA
[171, 172] routine within PGS. The package PGS is finally executed using a card designed for
ATLAS, as shown in Table 5.7. The output of PGS is passed through some selection criteria
to avoid overlapping and to discard the events outside the detector coverage according to
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Figure 5.3: Decay channels into multileptons (l = e, µ, τ) from a pair production at the
LHC of scalar and pseudoscalar sneutrinos LSP of the third family ν̃τL. Filled circles
indicate effective interactions.

Table 5.7: PGS configuration. ECAL and HCAL stand for Electromagnetic Calorimeter
and Hadronic Calorimeter, respectively.

η cells in calorimeter 81 φ cells in calorimeter 63

η width of calorimeter cells 0.1 φ width of calorimeter cells 0.09973

ECAL resolution 0.01 ECAL resolution ×
√
E (GeV1/2) 0.1

HCAL resolution ×
√
E (GeV1/2) 0.8 MET resolution 0.2

Calorimeter cell edge crack fraction 0.00 Jet finding algorithm anti-kt [147]

Calorimeter trigger cluster 3.0 Calorimeter trigger cluster 0.5
finding seed threshold finding shoulder threshold

Calorimeter kt cluster finder 0.7 Outer radius of tracker (m) 1.0
one size (∆R)

Magnetic field (T) 2.0 Sagitta resolution (m) 5× 10−6

Track finding efficiency 0.98 Minimum track PT (GeV/c) 0.30

Tracking η coverage 2.5 e/gamma η coverage 3.0

Muon η coverage 2.4 Tau η coverage 2.0

Ref. [173]. That is, first candidate events should pass the requirements of Table 5.8. After
the previous process, overlapping objects are removed applying the following requirements
in this precise order: First, if two electrons as candidates are identified within ∆R = 0.05 of
each other, the one with lower transverse momentum (PT ) is discarded. Here ∆R is defined
as
√

(∆Φ)2 + (∆η)2, where ∆Φ is the difference in involved azimuthal angles while ∆η is
the difference of concerned pseudo-rapidities. Then if an electron and a jet candidates are
within ∆R = 0.2 of each other, the jet is discarded. All remaining leptons are required to
be separated by more than ∆R = 0.4 from the closest remaining jet. Whenever an electron
and a muon candidates overlap within ∆R = 0.01, both are discarded. Also, if two muons
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Table 5.8: Event filtering. PT is given in GeV.

PT |η| PT |η| PT |η| PT |η| PT |η|
for jets for jets for e for e for µ for µ for τh for τh for γ for γ

> 30 < 4.5 > 15 < 2.47 > 10 < 2.5 > 10 < 2.5 > 25 2.37

& outside & outside
1.37− 1.52 1.37− 1.52

Table 5.9: Analysis of the signal with diphoton plus MET from production and decay of
a pair of sneutrino co-LSPs of the type ν̃eL or ν̃µL, corresponding to the BP in Table 5.1.
Production cross sections are shown in fb in the first box for a ν̃eL/ν̃µL mass of 125.4 GeV.
The number of events of the signal and background is shown in the second box, together
with the effect of a set of cuts, assuming 13 TeV centre-of-mass energy with L = 300 fb−1.
Energies, momenta and invariant mass are given in GeV.

σ(pp→ Z∗ → h2A0
2) 107.08

σ(pp→ γ∗, Z∗ → H+
2 H
−
2 → h2A0

2 +W+
softW

−
soft) 21.89

σ(pp→W±
∗ → H±2 h2/A0

2 → h2A0
2 +W±soft) 142.8

σ(pp→ Z∗ → h3A0
3) 106.536

σ(pp→ γ∗, Z∗ → H+
3 H
−
3 → h3A0

3 +W+
softW

−
soft) 20.12

σ(pp→W±
∗ → H±3 h3/A0

3 → h3A0
3 +W±soft) 142.4

Dataset Nev Emiss
T P γ1T1 P γ2T2 Nγ=2 Nl = 0 ∆R Mγγ ∈

> 200 > 100 > 50 < 1.5 [115, 135]

Signal 449.45±0.02 103.6±0.8 80.3±0.7 41.0±0.5 41.0±0.5 36.4±0.5 35.9±0.5 34.1±0.5

2jets 107 0 0 0 0 0 0 0
+I/FSR

jet 107 0 0 0 0 0 0 0
+I/FSR

H (ggF) 5424 0 0 0 0 0 0 0

Z+H 120.8±0.4 6.9±0.3 5.9±0.3 3.3±0.2 3.3±0.2 3.2±0.2 3.1±0.2 2.9±0.2
Z+ISR 11310±40 104±11 97±10 33±6 33±6 33±6 8±3 1±1
W+FSR 2.14× 105 60±9 57±9 13±4 13±4 6±3 1.4±1.4 0

±76
S√
B

— 7.9±0.5 6.3±0.4 5.9±0.7 5.9±0.7 5.6±0.7 10±2 17±3

are separated by less than ∆R = 0.05, both are removed. τ ’s as candidates are required to
be separated by more than ∆R = 0.2 from the closest e or µ; otherwise they are discarded.
Finally, photons are required to be separated by ∆R = 0.4 from any reconstructed jet and
∆R = 0.01 from any e [174]. A similar process, with a higher number of events when
required by precision, is implemented to generate background samples at NLO.

Diphoton plus MET
The pair production of left sneutrinos can generate one scalar and one pseudoscalar, as
shown in Fig. 7.1. This opens the possibility of the pseudoscalar sneutrino decaying into
neutrinos, i.e., producing MET, and the scalar sneutrino decaying into two photons in a
way not very different from the Higgs.

In what follows, we will discuss first the case of sneutrinos co-LSPs of the first two
families (ν̃eL, ν̃µL) with masses of about 125 GeV as representative in order to search for a
signal. This is because the sensible range of masses turns out to be

118 . mν̃iL . 132 GeV , (5.14)

in order to treat the sneutrinos as promptly decaying particles with a decay length <∼
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Table 5.10: The same as in Table 5.9 but showing the production cross sections and the
event sample generated with 14 TeV centre-of-mass energy.

σ(pp→ Z∗ → h2A0
2) 119.95

σ(pp→ γ∗, Z∗ → H+
2 H
−
2 → h2A0

2 +W+
softW

−
soft) 25.43

σ(pp→W±
∗ → H±2 h2/A0

2 → h2A0
2 +W±soft) 160.7

σ(pp→ Z∗ → h3A0
3) 119.83

σ(pp→ γ∗, Z∗ → H+
3 H
−
3 → h3A0

3 +W+
softW

−
soft) 23.35

σ(pp→W±
∗ → H±3 h3/A0

3 → h3A0
3 +W±soft) 158.9

Dataset Nev Emiss
T P γ1T1 P γ2T2 Nγ=2 Nl = 0 ∆R Mγγ ∈

> 200 > 100 > 50 < 1.5 [115, 135]

Signal 503.40±0.02 116.3±0.9 95.0±0.8 50.8±0.6 50.5±0.6 43.8±0.6 43.3±0.6 38.8±0.6
2jets 107 0 0 0 0 0 0 0

+I/FSR

jet 107 0 0 0 0 0 0 0
+I/FSR

H (ggF) 6104 0 0 0 0 0 0 0

Z+H 133.76 7.9±0.3 6.7±0.3 3.5±0.2 3.5±0.2 3.4±0.2 3.3±0.2 3.0±0.2
±0.01

Z+ISR 9284.91 90±3 82±3 26±2 26±2 25±2 8±1 1.2±0.3
±0.09

W+FSR 23708±2 57±9 54±9 5±3 5±3 1.6±1.61 0 0
S√
B

— 9.3±0.5 8.0±0.4 8.7±0.7 8.7±0.7 8.1±0.6 13.0±0.8 19±1

0.1 mm. For the case of the tau sneutrino, ν̃τL , where decay lengths of this order can be
obtained for masses >∼ 95 GeV, the above mass range is still valid because outside it the
number of events turns out to be too small, as we will discuss below.

The case of ν̃eL and ν̃µL co-LSPs is shown in Table 5.9. The cross sections for the
pair production of sneutrinos calculated by MadGraph5_aMC@NLO 2.3.2.2 at LO for 13 TeV
centre-of-mass energy, including aK-factor of 1.2 for the NLO results, are shown in the first
box of that Table. The first, second and third rows of that box correspond to the diagrams
in Figs. 7.1a, 7.1b and 7.1c-d, respectively. Taking into account these values for the cross
sections, the BRs of the corresponding Table 5.1, and using an integrated luminosity of
L = 300 fb−1, we obtain a signal with about 449 events. Although this BP suffers from
a significant SM background mainly due to the Z+H channel which decays in a similar
way, we found that the number of expected events for the signal is still sufficient to give
a significant evidence. The effect of a set of cuts on missing transverse energy Emiss

T , PT
for the leading and sub-leading photons, a lepton veto, a maximum angular separation of
photons, and a selection cut on the invariant mass of the diphoton system, is summarized
in the second box of Table 5.9. As a final result of the analysis, we obtain 34.1 ±0.5 events
with a significant evidence of S√

B
= 17±3. For L = 100 fb−1 to be reached in Run 2 we just

have to rescale the number of events by a factor 1/3 and correspondingly the significance
by 1/

√
3. For completeness, we show in Table 5.10 the results for this BP with 14 TeV

centre-of-mass energy.
Concerning the case of the ν̃τL LSP of a similar mass, we can see in the fourth box of

Table 5.2 that it has a significant BR to neutrinos. After a straightforward computation,
we obtain a number of events of 7.5±0.2. The background is the same as in Table 5.9, and
therefore we obtain S√

B
∼ 3.8 ± 0.6. This BP can also give rise to a signal with diphoton

plus leptons, to be analyzed subsequently, implying that a tau left sneutrino LSP could be
distinguished from electron and muon left sneutrinos co-LSPs. For the other ν̃τL masses
studied in Tables 5.3 and 5.4, although the BRs to neutrinos are still significant, the number
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Table 5.11: Analysis of the signal with two photons plus leptons from production and decay
of a pair of ν̃τL LSPs, corresponding to the BP in Table 5.2. Production cross sections are
shown in fb in the first box for a ν̃τL mass of 126.4 GeV. The number of events of the
signal and background is shown in the second box, together with the effect of a set of cuts,
assuming 13 TeV of energy with L = 300 fb−1. Momenta and invariant mass are given in
GeV.

σ(pp→ Z∗ → h2A0
2) 103.58

σ(pp→ γ∗, Z∗ → H+
2 H
−
2 → h2A0

2 +W+
softW

−
soft) 21.91

σ(pp→W±
∗ → H±2 h2/A

0
2 → h2A0

2 +W±soft) 138.36

σ(pp→W±
∗ → H±2 h2 → h2h2 +W±soft) 69.18

Dataset Nev P γ1T1 P γ2T2 Nγ=2 Nτhad = 1 & ∆R < 1.5 Mγγ ∈
> 100 > 50 Ne,µ,τhad > 1 [115, 135]

Signal 128.136±0.007 67.8±0.4 25.4±0.3 25.4±0.3 5.9±0.2 4.9±0.1 4.7±0.1
Z+H 73.26±0.06 35.4±0.3 10.0±0.3 10.0±0.3 0.54±0.06 0.21±0.04 0.21±0.04
W+H 151.2±0.5 71.3±0.3 19.9±0.1 19.9±0.1 0.28±0.03 0.14±0.01 0.13±0.01
Z+ISR 53949±40 1394±42 210±17 210±17 7±3 0 0

W+FSR 71414±204 8776±116 1922±58 1922±58 17±5 0±0 0±0
S√
B

— 0.67±0.01 0.55± 0.02 0.55±0.02 1.2±0.2 8.4±0.9 8.1±0.9

of events of the signal diphoton plus MET turns out to be too small to be detected.
The case with all sneutrinos degenerate in mass would give rise to a superposition of

the signals discussed so far. For instance, if the three families of sneutrinos have a mass
of 126 GeV, the number of events expected for the signal diphoton plus MET will be the
sum of both contributions discussed above, that is 41.6± 0.5 events with a significance of
S√
B

= 21± 1. In addition, the signal with diphoton plus leptons, specific for the ν̃τL, would
also be present.

Diphoton plus leptons
For the case of the left sneutrino LSP dominated by the tau composition, ν̃τL, another
expected signal is diphoton plus leptons, as shown in Fig 5.2. For this signal the adequate
range of masses turns out be

95 . mν̃τL
. 145 GeV . (5.15)

For the lower bound, notice that the selection cuts used to discriminate the decay of the
sneutrino from the background require energetic photons and a large amount of missing
energy. Therefore, a sneutrino with a small mass would lead to a small boost of the
final photons and neutrinos. Thus reducing the mass of the sneutrino reduces the number
of events in the signal region, although the cross section increases. Moreover, when the
separation between the masses of the scalar left sneutrino and the SM Higgs is increased,
the BR to diphoton is decreased. Altogether, the number of events drops fast when the
mass of the left sneutrino is below 95 GeV. Actually, we already mentioned that about this
mass is also the limit where the LSP cannot be treated as a promptly decaying particle. On
the other hand, the decrease of the cross section for large sneutrino masses, and therefore
of the number of events, gives rise to the upper bound of 145 GeV.

The results for a sneutrino mass of about 126 GeV, similar to the one studied above,
are shown in Table 5.11. The discussion is similar to that above, although in this case we
do not have two families of sneutrinos with degenerate masses, and therefore the different
production mechanisms will only give rise to ν̃τ ν̃τ , thus reducing the number of events.
These are further suppressed by the BR(A0

2 → τ±l∓) compared to BR(A0
2 → νν) in the
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Table 5.12: The same as in Table 11 but for the BP in Table 5.3 corresponding to a ν̃τL
LSP with a mass of 97.8 GeV.

σ(pp→ Z∗ → h1A0
2) 265.92

σ(pp→ γ∗, Z∗ → H+
2 H
−
2 → h1A0

2 +W+
softW

−
soft) 42.67

σ(pp→W±
∗ → h±1 h1/A

0
2 → h1A0

2 +W±soft) 325.2

σ(pp→W±
∗ → h±1 h1 → h1h1 +W±soft) 162.6

Dataset Nev P γ1T1 P γ2T2 Nγ=2 Nτhad = 1 & ∆R Mγγ ∈
> 100 > 50 Ne,µ,τhad > 1 < 1.5 [85, 105]

Signal 44.438±0.002 14.4±0.1 3.96±0.06 3.96±0.06 0.82±0.03 0.81±0.03 0.78±0.03
Z+H 73.26±0.06 35.4±0.3 10.0±0.3 10.0±0.3 0.54±0.06 0.21±0.04 0.03±0.01
W+H 151.2±0.5 71.28±0.3 19.9±0.1 19.9±0.1 0.28±0.03 0.14±0.01 0±0
Z+ISR 53949±40 1394±42 210±17 210±17 7±3 0 0

W+FSR 71415±204 8776±116 1922±58 1922±58 17±5 0±0 0±0
S/
√
B — 0.14 0.085 0.0085 0.17±0.03 1.4±0.2 5±1

±0.002 ±0.003 ±0.003

Table 5.13: The same as in Table 5.11 but for the BP in Table 5.4 corresponding to a ν̃τL
LSP with a mass of 146 GeV.

σ(pp→ Z∗ → h2A0
2) 60.48

σ(pp→ γ∗, Z∗ → H+
2 H
−
2 → h2A0

2 +W+
softW

−
soft) 14.69

σ(pp→W±
∗ → H±2 h2/A

0
2 → h2A0

2 +W±soft) 87.24

σ(pp→W±
∗ → H±2 h2 → h2h2 +W±soft) 43.62

Dataset Nev P γ1T1 P γ2T2 Nγ=2 Nτhad = 1 & ∆R Mγγ ∈
> 100 > 50 Ne,µ,τhad > 1 < 1.5 [135, 155]

Signal 24.47±0.01 15.51±0.06 6.72±0.06 6.72±0.06 1.68±0.03 1.09±0.03 1.01±0.03
Z+H 73.26±0.06 35.4±0.3 10.0±0.3 10.0±0.3 0.54±0.06 0.21±0.04 0.03±0.01
W+H 151.2±0.5 71.3±0.3 19.9±0.1 19.9±0.1 0.28±0.03 0.14±0.01 0±0
Z+ISR 53949±40 1394±42 210±17 210±17 7±3 0 0

W+FSR 71414±204 8776±116 1922±58 1922±58 17±5 0±0 0±0
S/
√
B — 0.153 0.145 0.145 0.34±0.06 1.8±0.2 6±2

±0.002 ±0.004 ±0.004

case of ν̃e,µ LSP. Nevertheless, this signal with photons plus leptons is very attractive and
worth to be searched at the LHC.

Now, a different set of cuts is taken into account for convenience, as shown in the second
box of Table 5.11. To distinguish the signal from the background in this case, instead of
using the missing energy coming from neutrinos, we require two leptons in the final state
of which one of them must be an hadronically decaying tau. Since every leptonic decay
of the tau sneutrino includes at least one tau, we expect to reduce significantly more the
background than the signal itself. Using an integrated luminosity of L = 300 fb−1, we
obtain 4.7± 0.1 events with a significant evidence of S√

B
= 8.1± 0.9.

In order to confirm the range of sneutrino masses of about 95–145 GeV adequate to
observe this kind of signal, we have also analyzed in Tables 5.12 and 5.13 the two extreme
cases of about 98 and 146 GeV, respectively. Note that for both cases the BR of the scalar
sneutrino decaying into photons is suppressed with respect to the previous case of 126
GeV. Although for the case of 98 GeV, the cross sections are increased with respect to
the case of 126 GeV in Table 5.11, the final products would have less PT , and ET , thus
the efficiency of the selection cuts would be smaller. We apply the same set of selection
cuts to the signal calculated with this new point as in the previous case, but selecting now
a new invariant mass window for the diphoton system of ±10 around 98 GeV. The rest
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Table 5.14: Analysis of the signal with multileptons from production and decay of a pair
of ν̃τL LSPs. The number of events of the signal and background is shown, together with
the effect of a set of cuts, assuming 13 TeV centre-of-mass energy with L = 20 fb−1. The
subindex l in the dataset denotes leptonically decaying tops and gauge bosons. Three
possible masses of ν̃τL, 132, 146 and 311 GeV are analyzed, with the last two obtained
using the BPs of Tables 5.4 and 5.5.

Dataset Nl ≥ 4 & Nτh ≥ 2 Nb = 0 THT≤ 20 GeV W-veto Z-veto S√
B

t̄tl 306± 66 174± 50 14±14 0± 0 0± 0 –

t̄th 3± 2 0±0 0± 0 0± 0 0± 0 –

t̄tt̄t 0.8± 0.5 0± 0 0± 0 0± 0 0± 0 –

t̄tV l 1.2± 0.3 0.6± 0.2 0.12± 0.09 0.12± 0.09 0.12± 0.09 –

V V l 6± 4 6± 4 3± 3 3± 3 3± 3 –

V V V 2± 1 0.8± 0.8 0± 0 0± 0 0± 0 –

tV l 15± 5 14± 5 8± 4 8± 4 8± 4 –

tV V l 1.0± 0.3 0.6± 0.2 0.10± 0.08 0.10± 0.08 0.10± 0.08 –

Total 334± 66 196± 64 25± 15 11± 5 11± 5 –

Signal 132 GeV 36± 2 36± 2 20± 2 17± 1 16± 1 4.8± 2.2

Signal 146 GeV 68± 3 66± 3 37± 2 31± 2 29± 2 8.8± 4.0

Signal 311 GeV 18.2± 0.5 17.9± 0.5 8.9± 0.4 7.6± 0.4 7.5± 0.2 2.2± 1.0

of the analysis is completely analogous, and the results are presented in the second box
of Table 5.12. For this extreme case we still obtain 0.78 ± 0.03 events with a significant
evidence of S√

B
= 5± 1.

Finally, to explore the largest possible value of the sneutrino mass, we have considered
the case of 146 GeV. We show the final results in Table 5.13. As can be seen, the production
cross sections are reduced with the increase of the mass. We are not considering points
with sneutrino masses larger than 146GeV because the possible signal gets likely lost behind
the SM backgrounds. The results of the different selection cuts for this extreme case are
presented in the second box of Table 5.13. As a final result, 1.01 ± 0.03 events with a
significant evidence of S√

B
= 6± 2 are obtained.

Multileptons
For the tau left sneutrino, we can see in Tables 5.4 and 5.5 that the BRs for the decay
of the scalar state ν̃RτL into leptons are significant. This gives rise to a non negligible
number of events with both sneutrinos decaying into leptons, as shown in Fig 5.3. With
the appropriate analysis, these events could constitute a possible signal to be detected at
the LHC. Moreover, these decay channels of the LSP include always at least one τ , a feature
that can be exploited to unravel the signal.

The main backgrounds for this type of signature would be the production of top quarks
through the channels t̄t and t̄tt̄t; the production of gauge bosons ZZ, WW and ZW; the
associated production of both t̄tV , tV and tV V ; and the top associated Higgs production
t̄th. Since the proposed hard process would not produce quarks, we expect a hadronic
activity in the events significantly smaller than the one associated with background events
including a leptonically decaying top tl. We will show that it is possible to separate the
multilepton signal from the SM backgrounds. This is particularly true for sneutrinos with
large masses, since the produced leptons are then expected to be more energetic than the
ones produced in the decay of gauge bosons.

The Monte Carlo events generated and processed as in the previous signals, but in
this case with an integrated luminosity of L = 20 fb−1, are analyzed and summarized in
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Table 5.14 for three different sneutrino masses of 132, 146 and 311 GeV. Production cross
sections for the case of 146 GeV are already shown in Table 5.13. For 310 GeV these are
much lower. At first we select events with at least 4 leptons with PT ≥ 100, 80, 40 and
40 GeV, respectively, requiring also at least two of them to be τh’s. The second selection
rejects events with b-tagged jets in order to reduce backgrounds coming from top decays.
In the next step we reject events with a total transverse hadronic energy (THT) greater
than 20 GeV. Finally we apply a veto to the transverse mass and invariant mass of the light
leptons, compatible with the mass of the W and Z respectively. Summarizing the results
shown in Table 5.14, it is possible to detect ν̃τL in the mass range

130 . mν̃τL . 310 GeV , (5.16)

decaying leptonically with a significance S√
B

greater than 3.

Equations (5.14), (5.15) and (5.16) establish the adequate range of left sneutrino masses
for our analysis of the BPs introduced in Section 5.2, and Tables 5.1–5.5. As we can see,
the masses overlap in some ranges, and in these cases the corresponding BP can give rise
to different detectable signals.

5.5 Conclusions and outlook

We have carried out an analysis of the LHC phenomenology associated to the left sneutrino
LSP in the µνSSM. We have studied the dominant pair production channels, prompt
decays, and the detection of the new signals.

As a result of the different behaviors of scalar and pseudoscalar sneutrino states, a
diphoton signal in combination with neutrinos (producing missing transverse energy), or a
diphoton with leptons, can appear at the LHC.

The former can be detected with a centre-of-mass energy of 13 TeV and the integrated
luminosity of 100 fb−1, for a sneutrino LSP of any family in the mass range 118–132 GeV.
The diphoton plus leptons signal can be probed for the case of a tau sneutrino LSP with a
mass in the range 95–145 GeV.

We have discussed several benchmark points producing these signals, which undoubtedly
deserve proper experimental attention. We have also shown that the number of expected
events are capable of giving a significant evidence.

A multilepton signal from a tau sneutrino LSP can also appear detectable at the LHC
with a centre-of-mass energy of 13 TeV, even with the integrated luminosity of 20 fb−1. It
is possible to detect it in the mass range of 130–310 GeV. We have discussed that existing
generic searches at the LHC are close to be sensitive to this lepton signal, suggesting
that they deserve experimental attention. An updated analysis with current data could
constrain the sneutrino LSP scenario.

Displaced vertices of the order of the millimeter can appear for sneutrino masses <∼ 100
GeV. Imposing in addition that the sneutrino mass is larger than 45 GeV, not to disturb
the experimentally well measured decay width of the Z, we have found that the number of
events can be large.

For example, more than 1000 multilepton events at the parton level from the production
and decay of a tau sneutrino pair can emerge for an integrated luminosity of 20 fb−1

and 13 TeV centre-of-mass energy. These events have the clear advantage that the SM
backgrounds are negligible and hence the signal significance is high. However, the analysis
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of displaced vertices turns out to be quite complicated, and dedicated studies are necessary.
The efficiency identifying events characterized by the presence of a displaced vertex has
a non-trivial dependence on the position of the vertex, as well as the number of tracks
and the mass associated to them, among others. Therefore, a reliable analysis requires a
precise simulation of the decay length, the boost of the long-lived particle, and the particles
produced in the secondary vertex. This analysis, in our model, is expected to depend on
the parameters correlated with neutrino physics and is clearly beyond the scope of the
present work, although this is cover in the next chapter.
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Chapter 6

Looking for the left sneutrino LSP with
displaced-vertex searches

In the present chapter, based on the work [92], we analyze a displaced dilepton signal
expected at the LHC for a tau left sneutrino as the lightest supersymmetric particle with a
mass in the range 45–100 GeV. The sneutrinos are pair produced via a virtualW , Z or γ in
the s channel and, given the large value of the tau Yukawa coupling, their decays into two
dileptons or a dilepton plus missing transverse energy from neutrinos can be significant. To
probe the tau left sneutrinos we compare the predictions of the µνSSM with the ATLAS
search for long-lived particles using displaced lepton pairs in pp collisions at

√
s = 8 TeV,

allowing us to constrain the parameter space of the model. We also consider an optimization
of the trigger requirements used in existing displaced-vertex searches by means of a High
Level Trigger that exploits tracker information. This optimization is generically useful
for a light metastable particle decaying into soft charged leptons. The constraints on the
sneutrino turn out to be more stringent. We finally discuss the prospects for the 13 TeV
LHC searches as well as further potential optimizations.

6.1 Introduction

As analyzed in section 4.4, a tau left sneutrino LSP with masses below 100 GeV decays
mainly to νν and1 τ`. Moreover, the decay length is in general above 0.1 mm. Making the
signal potentially detectable in searches for long lived particles.

A promptly decaying sneutrino as the LSP was analyzed in the previous chapter, based
on Ref. [94], with a decay length <∼ 0.1 mm. In this chapter we will analyze the interesting
case of displaced vertices of the order of the millimeter, generated by a sneutrino in the
range of masses 45− 100 GeV. The lower bound is imposed not to disturb the decay width
of the Z. We will focus on the simplest case of the µνSSM with one right-handed neutrino
superfield discussed in Sec. 3.7, and leave the case of three families where all the neutrinos
get contributions to their masses at tree level for a forthcoming publication [175].

To probe the ν̃τ LSP, the dilepton displaced-vertex searches are found to be most
promising. We compare the µνSSM predictions with the ATLAS search [176] for long-lived
particles using displaced lepton pairs `` in pp collisions at

√
s = 8 TeV, which allows us to

constrain the parameter space of the model. Nevertheless, the existing searches [176, 177]
are designed for a generic purpose and thus not optimized for light metastable particles such

1In what follows, the symbol ` will be used for an electron or a muon, ` = e, µ, and charge conjugation
of fermions is to be understood where appropriate.
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as the ν̃τ .We therefore consider also a possibility of improving these searches by lowering
trigger thresholds, relying on a High Level Trigger that utilizes tracker information. As
it turns out, this optimization is quite feasible and considerably improves the sensitivity
of the displaced-vertex searches. We also consider an optimization of the 13 TeV LHC
searches and show the prospects for investigating the µνSSM parameter space by searching
for the ν̃τ at the 13 TeV LHC run. Possibilities of further improvements for these searches
will also be discussed.

The chaper is organized as follows. In Section 6.2, we will introduce the phenomenology
of the ν̃τ LSP, studying its pair production channels at the LHC, as well as the signals.
These consist of two dileptons or a dilepton plus missing transverse energy (MET) from the
sneutrino decays. On the way, we will analyze the decay widths, BRs and decay lengths.
In Section 6.3, we consider first the existing dilepton displaced-vertex searches, and discuss
its feasibility and significance on ν̃τ searches. Then, we study an optimization by using a
High Level Trigger with tracker information. We also show our prescription for recasting
the ATLAS 8-TeV result [176] to the case of the ν̃τ . We then show the current reach of this
search on the µνSSM parameter space based on the ATLAS 8-TeV result [176], and the
prospects for the 13-TeV searches in Section 6.4. Our conclusions and prospects for future
work are presented in Section 6.5.

6.2 Tau left sneutrino LSP phenomenology

The dominant pair production channels of sleptons at large hadron colliders were studied
in Refs. [99, 100, 101, 102, 103, 104]. In Fig. 6.1, we can see the production channels at
the LHC for the case of the ν̃τ LSP which is the one interesting for our analysis. The
direct production of Fig. 6.1a occurs via a Z channel giving rise to a pair of scalar and
pseudoscalar left sneutrinos. As discussed in previous chapters, these states have essentially
degenerate masses and are therefore co-LSPs. On the other hand, since the left stau is in
the same SU(2) doublet as the tau left sneutrino, it becomes the next-to-LSP (NLSP). The
mass splitting is mainly due to the usual D-term contribution. As explained in section 4.1
taking into account the particular values of tan β and the sneutrino mass (as well as the
loop corrections to sneutrino and stau masses), the typical mass difference is about 20-30
GeV.Thus the direct production and decay is another important source of the ν̃τ LSP. In
particular, pair production can be obtained through a γ or Z decaying into two staus, as
shown in Fig. 6.1b, with the latter dominantly decaying into a (scalar or pseudoscalar)
sneutrino plus an off-shell W producing a soft meson or a pair of a charged lepton and
a neutrino. Besides, sneutrinos can be pair produced through a W decaying into a stau
and a (scalar or pseudoscalar) sneutrino as shown in Fig. 6.1c, with the stau decaying as
before. The number of sneutrino pairs produced through these channels at 8 and 13 TeV
for integrated luminosities of 20.3 and 300 fb−1, respectively, are shown in Table 6.1.

In Fig. 6.1, we also show the detectable decay of the pair-produced ν̃τ into τ `/τ . As
a result of the mixing between left sneutrinos and Higgses, the sizable decay of ν̃τ into ττ
is possible because of the large value of the tau Yukawa coupling. Other sizable decays
into τ `/τ can occur through the Yukawa interaction of ν̃τ with τ and charged Higgsinos,
via the mixing between the latter and ` or τ . To analyze these processes we can recall
the approximate formulas for the partial decay widths of the scalar/pseudoscalar tau left
sneutrino of Sec. 4.3.2, and adapt them for the one generation case. The one into ττ is
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Figure 6.1: Decay channels into two τ `/τ , from a pair production at the LHC of scalar
and pseudoscalar tau left sneutrinos co-LSPs. Decay channels into one τ `/τ plus neutrinos
are the same but substituting in (a), (b) and (c) one of the two vertices by a two-neutrino
vertex.

given by:

Γ (ν̃τ → ττ) ≈ mν̃τ

16π

(
YτZ

H/A
ν̃τHd
− Yντ

Yτ
λ

)2

, (6.1)

where Yτ ≡ Ye33 , and ZH/A is the matrix which diagonalizes the mass matrix for the
scalar/pseudoscalar Higgses (Hd, Hu, ν̃R, ν̃i) [63]. The latter is determined by the neutrino
Yukawas, which are the order parameters of the Rp/ . The contribution of λ in the second
term of Eq. (6.1) is due to the charged Higgsino mass that can be approximated by the
value of µ. The partial decay width into τ` can then be approximated for both sneutrino
states by the second term of Eq. (6.1) with the substitution Yντ → Yν` :

Γ (ν̃τ → τ`) ≈ mν̃τ

16π

(
Yν`

Yτ
λ

)2

. (6.2)

On the other hand, the gauge interactions of ν̃τ with neutrinos and Binos (Winos)
can produce also a large decay width into neutrinos, via the gauge mixing between these
gauginos and neutrinos. This partial decay width can be approximated for scalar and
pseudoscalar sneutrinos as

∑

i

Γ (ν̃τ → ντνi) ≈
mν̃τ

16π

1

2M2

∑

i

v2
i , (6.3)
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Table 6.1: Number of sneutrino pairs produced through each of the channels shown on
Fig. 6.1a-6.1b, at 8 TeV and 13 TeV with integrated luminosity of 20.3fb−1 and 300 fb−1

respectively.

8-TeV 13-TeV

mν̃τ (GeV) 50 60 80 100 50 60 80 100

Through Z boson 66,357 22,370 6,095 2,448 1,794,242 622,800 179,750 75,567
Through W boson 66,600 34,869 12,838 5,915 1,860,483 997,200 385,558 184,750

Through γ, Z bosons 6,585 3,954 1,703 851 226,283 139,367 62,550 32,683

with M a kind of average of Bino and Wino masses defined in Eq. (3.34). The relevant
diagrams for ν̃τ searches that include this decay mode are the same as in Fig. 6.1, but
substituting one of the τ `/τ vertices by a two-neutrino vertex.

Let us remark that other decay channels of the ν̃τ can be present and have been taken
into account in our numerical computation, but they turn out to be negligible for the
sneutrino masses that we are interested in this work. For example, decay to bottoms can
occur through a term similar to the first one of Eq. (6.1)with the substitution of Yτ by Yb.
As we will comment below and was discussed in Chapter 4, this term is very small. In
particular, it is negligible with respect to the second one in Eq. (6.1) which is present for
decays into leptons.

It is also worth noticing here that because the ν̃τ in the µνSSM has several relevant
decay modes, the LEP lower bound on the sneutrino mass of about 90 GeV [178, 179,
180, 181, 161, 162] obtained under the assumption of BR one to leptons, via trilinear ��Rp

couplings, is not directly applicable in this case. We have checked that no constraint on
the ν̃τ mass is obtained from these searches in the cases studied in this work. We have
obtained similar conclusions from LEP mono-photon search (gamma + MET) [182], and
LHC mono-photon and mono-jet (jet+MET) searches [133, 134]. Concerning LEP searches
for staus [178, 179, 180, 181, 161, 162], in the µνSSM the left stau does not decay directly
but through an off-shell W and a ν̃τ . Thus, searches for its direct decay are not relevant in
this model. On the other hand, the sneutrino mass can in principle be constrained using
searches for final states as those produced in the µνSSM. However, we have checked that
this is not the case. For example, for the final state τµµντµµν (see table 6.2), taking into
account the value of the production cross section at LEP for a pair of left staus, and the
BRs of W into µν and ν̃τ into τν, no effective constraint is obtained in our scenario. For
the other possible topologies, with W into quarks or ν̃τ into νν, the results of the analyses
turn out to be the same, as shown in table 6.2. It is straightforward to see there that our
scenario is unconstrained, even considering the most disfavored (and unrealistic) values for
the branching ratios, BR(ν̃ → `τ) = 1 or BR(ν̃ → νν) = 1. In addition, we are not taking
into account the possible effect of the different geometry of the decays when comparing with
the final states considered in the searches, which are not originated in the same manner.

To analyze now the BRs into leptons, we have to focus on the decay channels where
the τ ’s in the final state decay leptonically. Let us study e.g. the BR to µµ, since the
ee channel can be discussed in a similar way, and the BR to eµ fulfills BR(ν̃τ → eµ) ≈
BR(ν̃τ → µµ) + BR(ν̃τ → ee) given that the BRs of the τ decays into electrons or muons
(plus neutrinos) are similar ≈ 0.17. To quantify roughly the value BR(ν̃τ → µµ), we can
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Table 6.2: Possible topologies emerging from the production of a pair of tau left sneutrinos
from staus.In the last two columns the production cross section of the most constrained
signal, considering the worst-case scenario, is compared with the experimental upper limit.
The values BR(W → µν) = 0.1063, BR(W → qq′) = 0.6741, and BR(τ → µν) = 0.1739 are
used for the computation, as well as 1/4 as the maximum value of BR(ν̃ → `τ)×BR(ν̃ →
2ν). In order to simplify the notation, BR(ν̃ → `τ) means the sum of the three BRs to eτ ,
µτ and ττ , and the factor 1/3 are coming from considering the different channels.

Process Topology Signal upper crossection Exclusion

τ̃±τ̃∓ → 2(W± → `±ν) 4`+ 2τ +�ET (0.13 pb)× (0.1063)2 [hep-ex/0310054] Fig.14
+2(ν̃ → `τ) ×BR(ν̃ → `τ)2 ×

(
1
3

)2
1.5× 10−2 pb

≤ 1.6× 10−4 pb

τ̃±τ̃∓ → 2(W± → `±ν) 3`+ τ +�ET (0.13 pb)× (0.1063)2 × 2 [hep-ex/0310054] Fig.18
+(ν̃ → `τ) + (ν̃ → 2ν) ×BR(ν̃ → `τ)× 1

3
× (0.1739) 2× 10−2 pb

×BR(ν̃ → 2ν) ≤ 4.3× 10−5 pb

τ̃±τ̃∓ → 2(W± → `±ν) 2`+�ET (0.13 pb)× (0.1063)2 [hep-ex/0310054] Fig.6
+2(ν̃ → 2ν) ×BR(ν̃ → 2ν)2 ≤ 1.5× 10−3 pb 6× 10−2 pb

τ̃±τ̃∓ → (W± → `±ν) 3`+ 2τ + jets+�ET (0.13 pb)× 2× (0.1063) [hep-ex/0310054] Fig.18
+(W± → qq′) + 2(ν̃ → `τ) ×(0.6741)× BR(ν̃ → `τ)2 pb 2× 10−2 pb

×
(
1
3

)2 ≤ 2.1× 10−3

τ̃±τ̃∓ → (W± → `±ν) 2`+ 1τ + jets+�ET (0.13 pb)× 2× (0.1063) [hep-ex/0310054] Fig.12
+(W± → qq′) + (ν̃ → `τ) ×(0.6741)× 2× BR(ν̃ → `τ) 5× 10−2 pb

+(ν̃ → 2ν) ×BR(ν̃ → 2ν)×
(
1
3

)
≤ 3.1× 10−3 pb

τ̃±τ̃∓ → (W± → `±ν) `+ jets+�ET (0.13 pb)× 2× (0.1063) [hep-ex/0401026] Fig.6
+(W± → qq′) + 2(ν̃ → 2ν) ×(0.6741)× BR(ν̃ → 2ν)2 5× 10−2 pb

≤ 1.9× 10−2 pb

τ̃±τ̃∓ → 2(W± → qq′) 2`+ 2τ + jets (0.13 pb)× (0.6741)2 [hep-ex/0310054] Fig.12
+2(ν̃ → `τ) ×BR(ν̃ → `τ)2 ×

(
1
3

)2
5× 10−2 pb

≤ 6.6× 10−3 pb

τ̃±τ̃∓ → 2(W± → qq′) `+ τ + jets+�ET (0.13 pb)× (0.6741)2 [hep-ex/0310054] Fig.12
+(ν̃ → `τ) + (ν̃ → 2ν) ×2× BR(ν̃ → `τ)×

(
1
3

)
5× 10−2 pb

×(0.1739)× BR(ν̃ → 2ν) pb
≤ 1.7× 10−3

τ̃±τ̃∓ → 2(W± → qq′) jets+�ET (0.13 pb)× (0.6741)2 [hep-ex/0310054] Fig.20
+2(ν̃ → 2ν) ×BR(ν̃ → 2ν) ≤ 6× 10−2 pb 5× 10−1 pb

use the following formula:

BR (ν̃τ → µµ) ≈ 0.068×
(

1 +
r

3

)−1

, (6.4)

with

r ≈
(
λ

Yτ

)2
2mν

Y 2
νM

, (6.5)

where we have neglected the first term in Eq. (6.1), which is a sensible approximation for
small sneutrino masses around 50 GeV provided that λ is not large, and we have used the
neutrino mass formula discussed below Eq. (3.39), mν ≈

∑
i v

2
i /4M , implying that the

decay width in Eq. (6.3) can be written as (mν̃τ/16π)2mν/M . In addition, we have set all
neutrino Yukawas with a common value Yν in order to simplify the analysis. In what follows
we will continue with this strategy, which does not essentially modify the results. Now, in
the above equations and for typical values of the parameters such as e.g. Yν = 5 × 10−7,
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Figure 6.2: (a) BR versus M for the decay of a ν̃τ with mν̃τ = 60 GeV into µµ; (b) Proper
decay distance cτ of the ν̃τ versus M . In both plots (a) and (b), the neutrino Yukawas are
set to Yν = 5 × 10−7, and several values of the coupling λ are used such as λ = 0.1, 0.2,
0.4, 0.6, 0.8, 1.

mν = 0.05 eV and M = 1 TeV, one obtains r = 0.4 and therefore a BR(ν̃τ → µµ) <∼ 0.06
for λ >∼ Yτ .

In this approximation, we can also write the proper decay distance as

cτ ≈ 0.22×
(

Yν
5× 10−7

)−2(
λ

Yτ

)2(
1 +

r

3

)−1(
mν̃τ

60 GeV

)−1

mm, (6.6)

obtaining cτ >∼ 0.2 mm for λ >∼ Yτ . Thus the latter is a necessary condition on λ in order
to obtain suitable displaced vertices. In fact, as we will see in the next sections, we will
need decay lengths larger than about a millimeter in order to be constrained by the current
experimental results.

To compute numerically the mass spectrum and decay modes, we used a suitable mod-
ified version of the SARAH code [108] as well as the SPheno 3.3.6 code [111, 112]. As an
example, we show in Fig. 6.2a the BR for the decay of a scalar sneutrino ν̃Rτ with a mass
of 60 GeV into µµ, for Yν = 5× 10−7 (a similar figure is obtained in the case of the pseu-
doscalar ν̃Iτ ). This is plotted as a function ofM for several values of the coupling λ. Values
of M smaller than 111.3 GeV are not considered since the ν̃τ would no longer be the LSP
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in favor of the gauginos. Other parameters, whose effect on the sneutrino decay properties
is less significant, as can be understood from previous formulas, are set to be κ = 0.3,
tan β = 10, and vR√

2
= 1350 GeV, throughout this work. Concerning the quantity

∑
i v

2
i in

Eq. (6.3), this is determined using Eq. (3.37) with the heavier neutrino mass fixed by the
experimental constraints in the range mν ∼ [0.05, 0.23] eV, i.e. below the upper bound on
the sum of neutrino masses ∼ 0.23 eV [124], and above the square root of the mass-squared
difference ∆m2

atm ∼ 2.42× 10−3eV2 [125]. In Fig. 6.2a we chose as an example mν = 0.05
eV. Finally, given the sneutrino mass formula in Eq. (4.5), there is enough freedom to tune
Aνi in order to get the ν̃τ as the LSP with a mass of 60 GeV as in the case of Fig. 6.2a.
We can see in the figure that small values of λ and large values of M favor larger BRs to
dileptons. These results can be easily deduced from Eqs. (6.4) and (6.5).

In Fig. 6.2b, we show the proper decay distance cτ of the ν̃Rτ for the same values of the
parameters as in Fig. 6.2a. Large values of λ and M favor larger decay lengths, as can be
understood from Eqs. (6.6) and (6.5). As mentioned before, we need decay lengths larger
than about a millimeter, and therefore for these values of the parameters the coupling is
constrained to be λ >∼ 0.2. For example, for λ = 1 we can see that the upper bound on the
decay length is cτ = 7 mm. However, large values of λ also favor smaller BRs into leptons,
and therefore less stringent constraints on the parameter space. The interplay between
these effects will be analyzed in the next sections. In addition, the values of Yν and mν̃τ

also play an important role in the analysis. We can see in Eq. (6.6) that smaller values
favor larger decay lengths. For example, for mν̃τ = 60 GeV as in Fig. 6.2 but Yν = 10−7,
we have checked that the upper bound on the decay length is cτ = 20 mm for the case of
λ = 1. For Yν = 5 × 10−7 as in Fig. 6.2 but mν̃τ = 80 GeV, the upper bound for λ = 1
turns out to be smaller as expected, cτ = 4 mm. Let us finally remark that Y ν cannot be
made arbitrarily small. because of the relation νi ∼ Y νvu discussed in chapter 3, this would
imply that vi has to be also small coming into conflict with Eq. (3.37) and the constraint
discussed above, mν ∼ [0.05, 0.23] eV. Thus a reasonable range for Yν is between 10−6 and
10−7.

6.3 Long-lived particle searches at the LHC

As discussed in the previous section, a tau left sneutrino ν̃τ can decay into a pair of leptons
with a proper lifetime of & 100 µm (see Fig. 6.2b), long enough to have a visible separation
from the production point. This signal can be compared with the searches for long-lived
particles at the LHC.

There are various long-lived particle searches at the LHC, and each of them aims at
a signature specific to a particular kind of particles. We thus first need to discuss which
search strategy is most sensitive to ν̃τ . Since they are electrically neutral, we are unable to
use disappearing track searches or metastable charged particle searches to probe them. On
the other hand, as we have seen above, the decay products of the sneutrinos include charged
particles, and therefore we may detect the longevity of the sneutrinos by reconstructing
their decay vertices, using the charged tracks associated with the daughter particles. This
type of search strategies is dubbed as the displaced-vertex searches.

Both the ATLAS and CMS experiments have been searching for displaced vertices. The
ATLAS 8-TeV analysis [176] searches for events containing at least one long-lived particle
decaying at a significant distance from the production point (& 1 mm), looking for decays
into two leptons or into five or more charged particles. The latter search channel focuses
on processes that produce a higher amount of charged particles and/or missing energy,
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compared with the decay of the ν̃τ . We will however see below that the dilepton search
channel in the ATLAS 8-TeV analysis is general enough as to be sensitive to the decay of
the ν̃τ . On the other hand, the current 13-TeV displaced-vertex search performed by the
ATLAS collaboration [183] is optimized for long-lived gluinos, so it is not possible to use it
for our purpose. As for the CMS, the 8-TeV analysis presented in Ref. [177] gives a limit
comparable to the ATLAS 8 TeV bound if the decay distance of sneutrinos is & 3 cm—
although this CMS search is in principle sensitive to shorter decay distances as the selection
cut requires |d0| < 12σd ∼ 180 µm (d0 is the transverse impact parameter of tracks and
σd is its uncertainty), their limits are terminated at a much larger value of cτ especially
for soft displaced vertices (see, e.g., Fig. 6 in Ref. [177]). Given that the ATLAS 8-TeV
analysis provides bounds for smaller cτ compared with those from the CMS study, to make
the discussions concrete, we focus on displaced-vertex searches with the ATLAS detector
in what follows.

The ATLAS displaced-vertex search in Ref. [176] is based on the 8-TeV data with an
integrated luminosity of 20.3 fb−1. Among the various search channels studied in the
analysis, the dilepton displaced-vertex selection channel, where each displaced vertex is
formed from at least two oppositely-charged leptons, may be used for the long-lived ν̃τ
search. As we mentioned above, we focus on the decay processes of ν̃τ in which τ leptons
in the final state decay into leptons, in order to utilize this selection channel.

In the dilepton displaced-vertex search, each event must satisfy the muon or electron
trigger requirement.2 For the muon trigger, a muon candidate is identified only in the muon
spectrometer, without utilizing the tracking information, and required to have a transverse
momentum of pT > 50 GeV and the pseudorapidity of |η| < 1.07. For the electron trigger,
only a high-energy deposit in the electromagnetic calorimeter is required, again without
tracker requirements. This has a less effective background rejection performance compared
with the muon trigger, and thus a relatively strong criterion is imposed on the transverse
momentum of electrons: either a single electron with pT > 120 GeV or two electrons
with pT > 40 GeV. The events which have passed these triggers are then required to be
subject to the object reconstruction and filtering criteria. Finally, with the help of the
retracking procedure, a dilepton displaced vertex is reconstructed from two oppositely-
charged lepton tracks: µ+µ−, e+e−, or e±µ∓. Here, the lepton tracks are required to
satisfy pT > 10 GeV, 0.02 ≤ |η| < 2.5, and d0 > 2 mm (2.5 mm) for muons (electrons). In
addition, the invariant mass of the tracks, mDV, should be larger than 10 GeV. The position
of the reconstructed displaced vertices must satisfy rDV < 300 mm, |zDV| < 300 mm, and√

(xDV − xPV)2 + (yDV − yPV)2 ≥ 4 mm, where the subscripts DV and PV indicate that
the corresponding coordinates are those of the displaced vertex and the primary vertex,
respectively. The effect of the first two conditions is almost negligible in our analysis since
the decay distance of sneutrinos is . 10 mm as shown in Fig. 6.2b, while the third condition
does affect our analysis, as we shall see below.

With these requirements, the ATLAS collaboration searched for dilepton displaced ver-
tices and found no event, while the numbers of background events are expected to be
1.0± 0.2+0.3

−0.6 × 10−3, 2.4± 0.9+0.8
−1.5 × 10−3, and 2.0± 0.5+0.3

−1.4 × 10−3 for the e+e−, e±µ∓, and
µ+µ− channels, respectively. The dominant source of the background is accidental crossings
of independent lepton tracks. As we see, this search is basically background free. With
this result, strong limits were imposed on long-lived particles which decay into leptons.

We however cannot directly apply the limits provided by the ATLAS collaboration

2In the ATLAS search, the missing-energy and jets triggers are also used. These triggers are ineffective
in our setup.
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(Fig. 13 of Ref. [176]) to the left sneutrino case, since the ATLAS analysis simulates the
decay of a heavy gluino into a light and a heavy neutralino. The former case represents a
highly boosted light particle decaying into a pair of muons, while the latter represents a
heavy non-boosted particle decaying in the same way. Yet, the sneutrino features a light
non-boosted particle. This analysis can be extended, nevertheless, combining information
from both situations by considering the fact that the difference in the strength of the
upper limits basically comes from the efficiency in passing the event selection requirements
(the decay products from a sufficiently heavy neutralino are so energetic that almost all
the events pass the selection criteria),3 while the position of the minimum of the limits
is determined by the boost factors of the neutralinos. Thus, what we can do is shifting
upwards the limit corresponding to the non-boosted neutralino to make its minimum to
coincide with the one of the line corresponding to the light boosted neutralino.4 The
resultant limit for the dimuon channel is displayed as a function of the decay distance cτ
in the purple-shaded solid line in Fig. 6.3. We also show the limits corresponding to the
light boosted and heavy non-boosted cases in the green-hatched dotted and yellow-hatched
dash-dotted lines, respectively, which are taken from Fig. 13 (c) of Ref. [176]. We analyzed
the limits for the ee and eµ channels in a similar manner using Figs. 13 (a) and (b) in
Ref. [176], respectively, obtaining very similar plots. As seen from Fig. 6.3, the ATLAS
displaced-vertex search is sensitive to a decay distance larger than about a few mm. This
stems from the requirements that the impact parameter d0 of the muon tracks be larger
than 2 mm and the transverse distance between the displaced vertices and the primary
vertices be larger than 4 mm, as we mentioned above. We will discuss a possibility of
relaxing these requirements later.

Another obstacle for the left sneutrino case is the trigger requirement. Since left sneu-
trinos we consider in this paper have a mass of . 100 GeV and are less boosted, their decay
products have relatively small momenta. On the other hand, the ATLAS 8-TeV analysis
requires rather high thresholds for lepton momenta, especially for electrons, since it aims at
generic long-lived particles such as metastable neutrinos produced by the decays of colored
particles. In particular, the events must satisfy the following requirements [176]:

• One muon with pT > 50 GeV and |η| < 1.07, one electron with pT > 120 GeV or two
electrons with pT > 40 GeV.

• One pair e+e−, µ+µ− or e±µ∓ with pT > 10 GeV and 0.02 < |η| < 2.5 for each one.

To estimate the sensitivity of this search strategy, samples of simulated Monte Carlo (MC)
events are used to study the efficiency of the triggering and off-line selection processes for
signal events. In each event two sneutrinos are created in the pp collision as described
in Section 6.2. All simulated samples are generated using MadGraph5_aMC@NLO 2.6.0 [113]
and PYTHIA 8.230 [184]. In particular, ten thousand events are generated for each case
with MadGraph5_aMC@NLO 2.6.0 at leading order (LO) of perturbative QCD simulating the

3In the ATLAS search [176], the light neutralino events can pass the trigger requirement since
the missing-energy and jets triggers are also used, but the vertex-level efficiency deteriorates for such
events. With keeping this in mind, we here assume that all of the neutralino events satisfy the trigger
requirements—the dilepton trigger for the heavy case and the missing-energy/jets trigger for the light
case—and the difference in the sensitivities originates from that in the vertex-level efficiencies. This as-
sumption is fairly reasonable since the leptons (jets) in the final state are very active in the heavy (light)
neutralino case.

4We however note that there is also an efficiency loss for a boosted system as the final state muons tend
to be collinear with each other, whose effect is not taken into account in this prescription. The neglect of
this effect thus results in a rather conservative limit.
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Figure 6.3: Upper limit at 95% confident level on the number of tau left sneutrinos decaying
into dimuons at

√
s = 8 TeV for an integrated luminosity of 20.3 fb−1, shown in the purple-

shaded solid line. We also show the limits given in Fig. 13 (c) of Ref. [176], which we use
to obtain our limit: green-hatched dotted (yellow-hatched dash-dotted) line corresponding
to a light boosted neutralino of 50 GeV (heavy non-boosted neutralino of 1000 GeV) from
the decay of a heavy gluino of 1300 GeV.

Table 6.3: Cutflow of the selection requirements for ν̃τ → µµ, for the 8-TeV analysis with
integrated luminosity of 20.3 fb−1, where εsel is the selection efficiency.

Through Z boson Through W boson Through γ, Z bosons

mν̃τ (GeV) 50 60 80 100 50 60 80 100 50 60 80 100

pTtrigger 2,280 4,241 6,828 8,063 2,335 3,703 3,840 7,515 1,616 2,233 3,396 4,374

dilepton sel. 1,069 2,096 3,517 4,333 1,135 1,881 3,740 3,968 1,550 2,150 3,273 4,208

εsel 0.1069 0.2096 0.3517 0.4333 0.1135 0.1881 0.374 0.3968 0.1550 0.2150 0.3273 0.4208

production of the described process. We include the next-to-leading order (NLO) [103] and
next-to-leading logarithmic accuracy (NLL) [169] results using a K-factor of about 1.2. We
also use DELPHES v3 [144] for the detector simulation. The effect of these selections for
different masses and for the three production processes at

√
s = 8 TeV with an integrated

luminosity of 20.3 fb−1, is shown in Tables 6.3 and 6.4 for the µµ and µe channels, re-
spectively. The trigger requirement for electrons is too restrictive and makes the selection
efficiency for the dielectron channel to be a few percent level, and thus ineffective for light
sneutrino searches. In these tables, εsel is the selection efficiency for each case. Using these
results and the BRs discussed in Sec. 6.2, we can compute the prediction for the number of
decays ν̃τ → µµ/µe passing the trigger and event selection requirements. Notice however
that εsel is not large.

The ATLAS 8-TeV search strategy discussed above is, of course, not optimized for the
present setup. Nevertheless, in principle it is possible to optimize the trigger requirements
for left sneutrino searches by relaxing the thresholds, as there are a variety of different lepton
triggers with lower momentum thresholds used in the ATLAS experiment. For instance, for
the muon trigger, the ATLAS 8-TeV analysis uses only the muon spectrometer and requires
pT > 50 GeV, as discussed above. On the other hand, the mu24i trigger [185], which is
an isolated single muon trigger at the event-filter, also uses the information from the inner
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Table 6.4: The same as in Table 6.3 but for ν̃τ → µe.

Through Z boson Through W boson Through γ, Z bosons

mν̃τ (GeV) 50 60 80 100 50 60 80 100 50 60 80 100

pTtrigger 659 1,347 2,526 3,612 678 1,138 2,134 3,067 878 1,249 2,329 3,287

dilepton sel. 618 1,253 2,315 3,278 628 1,061 1,972 2,803 827 1,160 2,109 2,978

εsel 0.0618 0.1253 0.2315 0.3278 0.0628 0.1061 0.1972 0.2803 0.0827 0.116 0.2109 0.2978

Table 6.5: Cutflow of the selection requirements for ν̃τ → µµ, for the optimized 8-TeV
analysis with integrated luminosity of 20.3 fb−1, where εsel is the selection efficiency.

Through Z boson Through W boson Through γ, Z bosons

mν̃τ (GeV) 50 60 80 100 50 60 80 100 50 60 80 100

pTtrigger 6,687 7,775 8,682 9,144 6,520 7,343 7,359 8,846 6,961 7,471 8,387 8,916

dilepton sel. 6,637 7,707 8,589 9,027 6,409 7,198 7,229 8,594 6,701 7,288 8,151 8,647

εsel 0.6637 0.7707 0.8589 0.9027 0.6409 0.7198 0.7229 0.8594 0.6701 0.7288 0.8151 0.8647

detector and requires the transverse momentum threshold of pT > 24 GeV.5 With the help
of the inner detector information, this mu24i trigger has a good performance in a wider
range of the pseudorapidity of tracks, and thus we can also relax the requirement on η;
from |η| < 1.07 to |η| < 2.5 [185]. To exploit this trigger instead of that used in Ref. [176]
can significantly enhance the sensitivity to light sneutrinos, since the typical momentum
of muons from the sneutrino decays is a few tens of GeV. A side effect of the reduction of
the momentum threshold is, of course, an increase of the number of background events.
According to Ref. [185], the enhancement in the number of events due to the relaxation of
the trigger requirement is expected to be ∼ 10. Since the main background in the displaced-
vertex search is accidental crossings of uncorrelated lepton tracks [176], we can estimate
the increase in the number of background events by scaling this according to the number
of events passing the trigger. Given that the number of background muon vertices in the
ATLAS 8-TeV search is as low as ∼ 2× 10−3 [176], we can safely conclude that the number
of background events can still be regarded as zero even if we relax the trigger requirement
for muons. Another restriction we need to take into account is the requirement on the
impact parameter d0 of muon tracks adopted by mu24i; |d0| < 1 cm is required [186, 187]
for the mu24i trigger, which indicates that the efficiency should be reduced for sneutrinos
with cτ & 1 cm. Nevertheless, this again causes a negligible effect on left sneutrino searches
in the present setup since the sneutrinos have a proper decay distance smaller than 1 cm,6
as shown in Fig. 6.2b. We therefore conclude that the use of the mu24i trigger instead of
the present one in Ref. [176] is very powerful and promising for the left sneutrino searches.

We may also use a lower pT threshold for the electron trigger. However, we are unable to
estimate the increase in the number of background events in this case from, say, Ref. [188],
since the plot does not show the corresponding trigger rate for pT > 120 GeV. Considering
this, in the following 8-TeV analysis, we only use the muon trigger with pT > 24 GeV
and consider the µ+µ− and µ±e∓ channels to be conservative. We however note that we
can certainly optimize the electron trigger as well, which indeed improves the sensitivity

5This trigger should also satisfy a loose isolation selection, the sum of the pT of tracks in a cone of
∆R < 0.2 centered around the muon candidate after eliminating the muon transverse momentum (pT)µ
should be smaller than 0.12× (pT)µ; this requirement is so loose that almost all isolated muons from the
Z-boson decays pass the criterion. Since the muons coming from the sneutrino decays are also expected
to be isolated, we can expect that this requirement scarcely affects the sneutrino event selection. For this
reason, we do not take account this effect in the following analysis.

6This is the reason why we show only a small cτ region in Fig. 6.3.
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Table 6.6: The same as in Table 6.5 but for ν̃τ → µe.

Through Z boson Through W boson Through γ, Z bosons

mν̃τ (GeV) 50 60 80 100 50 60 80 100 50 60 80 100

pTtrigger 4,014 5,255 6,508 7,420 3,853 4,754 6,054 6,974 6,118 6,748 7,116 8,293

dilepton sel. 3,943 5,094 6,267 7,067 3,763 4,624 5,830 6,637 4,917 5,515 6,360 6,961

εsel 0.3943 0.5094 0.6267 0.7067 0.3763 0.4624 0.5830 0.6637 0.4917 0.5515 0.6360 0.6916

considerably and thus is worth a further dedicated study.
After all, we use the following criteria for the optimized 8-TeV analysis:

• At least one muon with pT > 24 GeV.

• One pair µ+µ− or e±µ∓ with pT > 10 GeV and 0.02 < |η| < 2.5 for each one.

The effect of these selections for different masses and for the three production processes, is
shown in Tables 6.5 and 6.6 for the µµ and µe channels, respectively. We see that a sizable
number of signal events is expected to pass the selection criteria. We can compare these
results with those of Table 6.3. For instance, there εsel ' 0.11 is obtained for a 50-GeV
sneutrino produced via a Z-boson, whereas εsel ' 0.66 is obtained in Table 6.5, with a
significant improvement in the event selection.

Table 6.7: Cutflow of the selection requirements for ν̃τ → µµ, for the optimized 13-TeV
analysis with integrated luminosity of 300 fb−1, where εsel is the selection efficiency.

Through Z boson Through W boson Through γ, Z bosons

mν̃τ (GeV) 50 60 80 100 50 60 80 100 50 60 80 100

pTtrigger 5,797 7,011 8,077 8,581 5,643 6,539 7,587 8,281 5,885 6,634 7,716 8,316

dilepton sel. 5,739 6,941 7,995 8,469 5,587 6,411 7,384 8,020 5,705 6,459 7,485 8,000

εsel 0.5739 0.6941 0.7995 0.8469 0.5587 0.6411 0.7384 0.8020 0.5705 0.6459 0.7485 0.8

Table 6.8: The same as in Table 6.7 but for ν̃τ → µe.

Through Z boson Through W boson Through γ, Z bosons

mν̃τ (GeV) 50 60 80 100 50 60 80 100 50 60 80 100

pTtrigger 5,344 6,386 7,458 8,149 4,929 5,751 6,961 7,698 6,836 5,971 6,912 7,698

dilepton sel. 4,312 5,203 6,138 6,718 3,901 4,652 5,647 6,226 3,089 4,883 5,629 6,257

εsel 0.4312 0.5203 0.6138 0.6718 0.3901 0.4652 0.5647 0.6226 0.3089 0.4883 0.5629 0.6257

We also study the prospects for the 13-TeV LHC run. Since we do not have any
dedicated searches for dilepton displaced vertices with the 13-TeV data so far, we just
assume background-free in our estimation. Again, we consider an optimization of the
trigger requirements in the 13-TeV analysis using the existing result for the performance of
the ATLAS trigger system [189], taking account of the trigger rate for the 8-TeV analysis.
Since the trigger rate for mu24i is . 100 Hz [185], we expect a sufficiently low background
as long as the trigger rate in the 13-TeV searches does not exceed about 100 Hz. According
to Ref. [189], a pT threshold of 26 GeV [190, 191] for both muon and electron ensures the
trigger rate to be . 100 Hz.7 These triggers again rely on the use of the inner tracker,8 and

7Given a higher instantaneous luminosity (∼ 2 × 1034 cm−2s−1) compared with those considered in
Ref. [189], the momentum threshold is raised from the ones in Ref. [189] so that the trigger rates are kept
at a similar level.

8For the tracking performance in the 13 TeV run, see Ref. [192].
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Table 6.9: The same as in Table 6.7 but for ν̃τ → ee.

Through Z boson Through W boson Through γ, Z bosons

mν̃τ (GeV) 50 60 80 100 50 60 80 100 50 60 80 100

pTtrigger 4,724 5,766 6,892 7,633 4,177 4,943 6,046 6,750 4,414 5,132 6,078 6,836

dilepton sel. 1,886 2,413 3,011 3,428 1,627 1,996 2,476 2,797 1,868 2,200 2,739 3,089

εsel 0.1886 0.2413 0.3011 0.3428 0.1627 0.1996 0.2476 0.2797 0.1868 0.2200 0.2739 0.3089

thus are effective in the region of |η| < 2.5. With this observation, we use the following
criteria for the 13-TeV analysis:

• At least one electron or muon with pT > 26 GeV.

• One pair µ+µ−, e+e−, or e±µ∓ with pT > 10 GeV and 0.02 < |η| < 2.5 for each one.

The effect of these selections for different masses and for the three production processes at√
s = 13 TeV with integrated luminosity of 300 fb−1, is shown in Tables 6.7, 6.8, and 6.9

for the µµ, µe, and ee channels, respectively.9 We however note that a more elaborate
optimization may be considered; for example, we may also use the dilepton triggers, which
may be more effective since we can lower the momentum threshold for these triggers [189].
In any case, to use a High Level Trigger with inner-detector information is technically quite
feasible and expected to result in a considerable improvement in displaced-vertex searches.
We also note in passing that this possible improvement is not only for the ATLAS analysis
but also for the CMS one [177], where again tracker information is not used in the trigger
requirement.

Now we discuss how to obtain the limits for light sneutrinos. The limits from the
ATLAS search [176] can be translated into a vertex-level efficiency, taking into account the
lack of observation of events for any value of the decay length. Therefore, εvert(cτ) can be
obtained as the ratio of the number of signal events compatible with zero observed events
(which in this case is 3) and that corresponding to the upper limits given in Ref. [176] (with
an appropriate modification described above); for example, we can use the purple-shaded
solid line of Fig. 6.3 to obtain the vertex-level efficiency εµµvert(cτ) for the dimuon channel.
By multiplying the number of the events passing the trigger and event selection criteria,
which is computed above, with this vertex-level efficiency, we can estimate the total number
of signal events; for the 8-TeV case, this is given for the µµ channel by

#Dimuons =
[
σ(pp→ Z → ν̃τ ν̃τ )ε

Z
sel + σ(pp→ W → ν̃τ τ̃)εWsel + σ(pp→ γ, Z → τ̃ τ̃)εγ,Zsel

]

× L×
[
BR(ν̃Rτ → µµ) εµµvert(cτ

R) + BR(ν̃Iτ → µµ) εµµvert(cτ
I)
]
, (6.7)

where the selection efficiencies εZsel, εWsel and εγ,Zsel are given in Tables 6.3 and 6.5. The
same formula can be applied for the eµ channel shown in Tables 6.4 and 6.6, using the
corresponding BRs, selection efficiencies, and vertex-level efficiencies (which turn out to be
similar). For the 13-TeV prospects the selection efficiencies for the three channels can be
found in Tables 6.7–6.9, and we use the same vertex-level efficiency as in the 8-TeV case and
assume zero background.10 As a result, if this predicted number of signal events is above

9The efficiency of the ee channel is worse than the other channels due to the isolation requirement for
electrons implemented in the detector simulation with DELPHES v3 [144].

10Notice that in the 13-TeV long-lived gluino search [183] the estimated number of background events is
still much smaller than zero, ∼ 10−2, which is similar in size to that in the 8-TeV search [176]. We therefore
expect that the background in the 13-TeV dilepton displaced-vertex search is also as low as the 8-TeV one.
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3 the corresponding parameter point of the model is excluded so that this is compatible
with zero number of events.

We note in passing that the optimization strategy we have discussed in this section
is generically useful for the searches of other metastable particles which have a relatively
short lifetime and a small mass and whose decay products contain soft leptons. We thus
hope this kind of search strategies to be considered seriously in the LHC experiments.

Another possibility to improve the sensitivity is to search for shorter displaced vertices.
As can be seen from Fig. 6.2b, in some regions of parameter space, the decay distance
of a sneutrino is predicted to be . 1 mm, to which the current ATLAS search is less
sensitive. However, we may even probe such sub-millimeter region by relaxing the impact-
parameter requirements for lepton tracks as well as the condition on the reconstructed
position of displaced vertices, given the extremely low background in this search [176]. In
fact, it is shown in Refs. [193, 194] for metastable gluinos that sub-millimeter displaced
vertices can be probed using the existing vertex-reconstruction technique, though this is
not directly applicable to the present case. Moreover, there are several existing searches
which are sensitive to sub-millimeter region [177, 195, 196, 197]. In any case, to assess
the possibility of searching for shorter dilepton displaced vertices, a dedicated study with
a full consideration of the detector performance is required; we thus do not discuss this
possibility in this paper and hand this over to experimentalists.

6.4 Results

By using the method described in the previous section, we now evaluate the current and
potential limits on the µνSSM parameter space from the displaced-vertex searches with the
8-TeV ATLAS result [176], and discuss the prospects for the 13-TeV searches.

The 8-TeV current limits are given in Figs. 6.4 and 6.5, with the neutrino mass scale
fixed to be 0.05 and 0.23 eV, respectively, and all of the neutrino Yukawa couplings set to be
a common value Yν : 10−7, 5× 10−7, and 10−6 GeV in the top, middle, and bottom panels,
respectively. The yellow, red, blue, and green lines correspond to the sneutrino mass of 50,
60, 80, and 100 GeV, respectively, with the bands representing the uncertainties that come
from those in Ref. [176]. Notice that for these sneutrino masses, values of M smaller than
92.7, 111.3, 148.4, and 185.5 GeV, respectively, are not interesting for our analysis since
the tau left sneutrino would no longer be the LSP in favor of the gauginos. To obtain the
reaches, we have combined the results from the µµ and eµ channels. The region of the
parameter space inside each line is excluded from the displaced-vertex searches.

We can see in the top panel of Fig. 6.4, where Yν = 10−7, that for mν̃τ = 50 GeV the
upper bound on the average gaugino mass M (see Eq. (3.39)) is of about 500 (900) GeV
for λ = 0.1 (1). As discussed in Section 6.2, small values of λ favor larger BRs, and as a
consequence the gaugino mass is more constrained. If λ is too small, however, the limit on
M disappears since the lifetime of the left sneutrino goes into the sub-millimeter regime,
as can be seen from Eq. (6.6). On the other hand, small sneutrino masses produce larger
decay lengths, and gaugino masses turn out to be also more constrained. For example, for
mν̃τ = 50 and 60 GeV the upper bound on M for λ = 1 is of about 700 and 1100 GeV,
respectively. In the middle panel, the larger value of the neutrino Yukawa Yν = 5 × 10−7

gives rise to smaller decay lengths, and therefore the figures are shifted to the right with a
lower limit for λ of about 0.3. The case of Yν = 10−6 in the bottom panel is more extreme,
and the lower limit on λ is now of about 0.7. Finally, in Fig. 6.5 we show the same cases as
in Fig. 6.4 but for the neutrino mass scale 0.23 eV. To increase the neutrino mass produces
an increase in the left sneutrino VEVs, and therefore the ν̃τ decay width into neutrinos



89

is larger. As a consequence, its BR into leptons as well as its decay length are smaller
giving rise to less stringent constraints on the parameter space, as shown in the figure. In
particular, there is almost no constraint on the parameter space shown in the bottom panel
in Fig. 6.5.

The potential limits using the optimization of the trigger requirements explained in
the previous section, are shown in Figs. 6.6 and 6.7. They turn out to be more stringent
than the previous ones without optimization. For example, we can see in the top panel
of Fig. 6.6 that for mν̃τ = 50 GeV the upper bound on M is of about 200 (500) GeV for
λ = 0.1 (1), to be compared with the ones of Fig. 6.4. Moreover, in the case of Yν = 10−6

and mν ∼ 0.23 eV shown in the bottom panel in Fig. 6.7, now some limits are imposed
on light sneutrino masses, which can be compared to the bottom panel in Fig. 6.5. This
result indicates that the trigger optimization discussed above can significantly improve the
sensitivity of left sneutrino searches.

The 13 TeV prospects are illustrated in Figs. 6.8 and 6.9. Here, we combine the µµ,
eµ and ee channels. As we can see, the constraints on the parameter space of the µνSSM
turn out to be very strong. For example, in the top panel of Fig. 6.8 and for λ = 0.1, the
upper bound on M is as small as about 100, 200, and 350 GeV for mν̃τ ≈ 50, 80, and 100
GeV. Such small M region would be probed in other strategies like ordinary electroweak
gaugino searches, which makes it possible to cover a considerable range of the parameter
space for the left sneutrino LSP with a mass in the range 45–100 GeV. Furthermore, now
it is possible to probe a wide range of the parameter space even for the heavier neutrino
mass case, mν ∼ 0.23 eV, as shown in Fig 6.9. All in all, we conclude that the dilepton
displaced-vertex searches can be a powerful probe of the µνSSM parameter space, especially
if we optimize them by making the most of the performance of the inner detectors of the
ATLAS and CMS experiments.
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Figure 6.4: Limits on the µνSSM parameter space from the ATLAS 8-TeV displaced-vertex
search with an integrated luminosity of 20.3 fb−1 [176], combining the µµ and eµ channels.
The region inside each colored line is excluded. The neutrino mass scale is fixed to be
mν ∼ 0.05 eV, and the neutrino Yukawa couplings are set to Yν = 10−7, 5× 10−7, and 10−6

in the top, middle, and bottom panels, respectively. The yellow, red, blue, and green lines
correspond to the sneutrino mass of 50, 60, 80 and 100 GeV, respectively.
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Figure 6.5: The same as in Fig. 6.4 but with the neutrino mass scale fixed to mν ∼ 0.23 eV.
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Figure 6.6: The same as in Fig. 6.4 where mν ∼ 0.05 eV, but considering the optimization
of the trigger requirements discussed in the text.
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Figure 6.7: The same as in Fig. 6.6 but with the neutrino mass scale fixed to mν ∼ 0.23 eV.
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Figure 6.8: The same as in Fig. 6.4 where mν ∼ 0.05 eV, but analyzing the prospects for
the 13-TeV search with an integrated luminosity of 300 fb−1, combining the µµ, eµ and
ee channels, and considering also the optimization of the trigger requirements discussed in
the text.
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Figure 6.9: The same as in Fig. 6.8 but with the neutrino mass scale fixed to mν ∼ 0.23 eV.
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6.5 Conclusions and outlook

We have analyzed the sensitivity of the displaced dilepton searches at the LHC to a tau
left sneutrino LSP with a mass in the range 45–100 GeV in the framework of the µνSSM.
The sneutrino LSP is produced via the Z-boson mediated Drell-Yan process or through the
W - and γ/Z-mediated process accompanied with the production and decay of the left stau
NLSP. Due to the Rp violating term present in the µνSSM, the left sneutrino LSP becomes
metastable and eventually decays into the standard model leptons. Because of the large
value of the tau Yukawa coupling, a large fraction of the sneutrino LSP decays into a pair
of tau leptons or a tau lepton and a light charged lepton, while the rest decays into a pair
of neutrinos. It is found that the decay distance of the left sneutrino tends to be as large
as & 1 mm, which thus can be a good target of displaced vertex searches. We have found
that the displaced dilepton search channel is most sensitive to the sneutrino LSP, where
at least one of the pair-produced left sneutrinos is required to decay into ττ or τ` with
the final-state tau leptons decaying leptonically. To evaluate the prospects of this search
strategy, we recast the result of the ATLAS 8-TeV dilepton search to obtain the potential
limit on the µνSSM parameter space from the 8-TeV LHC data. It is found that even the
present data set potentially gives a constraint on the left sneutrino LSP, especially when
the Yukawa couplings and mass scale of neutrinos are rather small. We have also discussed
an optimization of the trigger requirements exploited in the ATLAS search based on a High
Level Trigger that utilizes the tracker information. It turns out that this optimization can
considerably improve the sensitivity of the displaced dilepton search. Moreover, we have
estimated the potential limits obtained at the 13-TeV LHC run and found that wide range
of the µνSSM parameter space can be probed at the LHC Run 3.

As mentioned above, we may consider further optimization for the sneutrino LSP search.
Given the low background in the dilepton displaced-vertex search, we may relax the con-
dition on the impact parameter of lepton tracks used for the reconstruction of displaced
vertices, as well as that on the reconstructed position of displaced vertices. With such a
relaxation, it may be possible to detect sub-millimeter dilepton displaced vertices, which
allows us to probe sneutrinos with a shorter lifetime. A further optimization for the trig-
ger requirements is another interesting option to improve the potential of this search. For
instance, we may also use the dilepton triggers, which accommodate a lower momentum
threshold. Such optimizations highly rely on the detector performance and thus a more
dedicated study is required to assess their prospects.

Displaced sneutrino decay signature is useful not only for its discovery but also for
the determination of parameters relevant to the sneutrino decay properties. For example,
measurement of the lifetime of the sneutrino LSP through the reconstruction of displaced
vertices allows us to constrain the parameters in Eq. (6.6), such as Yν , M , and λ. In
addition, it is in principle possible to measure the mass of the sneutrino LSP since it can
decay into visible particles such as ττ and τ`; by using hadronically decaying tau leptons,
we may fully reconstruct the momenta of the final-state leptons. Although this may be
rather challenging, it is worth investigating this possibility in the future.

In this work, we focus on the simplest case of the µνSSM with one right-handed neutrino
superfield. Of course, the metastable left sneutrino can also appear if we introduce three
right-handed neutrinos so that they give masses to light neutrinos at tree level. In this case,
the sneutrino couplings should be chosen so that the neutrino oscillation data is reproduced,
which may have some implications for the sneutrino decay properties. Another interesting
possibility is to consider a different LSP, which can be again long-lived due to the small
Rp violation. In particular, a colored LSP such as the stop LSP may be interesting as its
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production cross section is quite large at the LHC. Even in this case, we may still probe
it by searching for, e.g., multi-track displaced vertices. These subjects will be discussed in
another occasion [175].



Chapter 7

Electroweak superpartners scrutinized
at the LHC in events with multi-leptons

The present chapter is based on the work [198] were we analyze a multi-lepton signal plus
missing transverse energy from neutrinos expected at the LHC for a bino-like neutralino as
the lightest supersymmetric particle (LSP), when the left sneutrino is the next-to-LSP and
hence a suitable source of binos. Left sneutrinos/sleptons are pair produced at pp collisions
decaying to binos, with the latter decaying via RPV to W` or Zν.

This signal can be compared with LHC searches for electroweak superpartners through
chargino-neutralino production. The reduced cross section of the sneutrino/slepton produc-
tion in comparison with the one of the latter process, limits the sensitivity of the searches
to small sneutrino/slepton masses. Although the resulting compressed spectrum typically
evades the aforementioned searches, we show that analyses using recursive jigsaw recon-
struction are sensitive to these scenarios. As a by-product, we find that the region of bino
masses 110 − 120 GeV and sneutrino masses 120 − 140 GeV can give rise to a tri-lepton
signal compatible with the local excess recently reported by ATLAS.

7.1 Introduction

The phenomenology of the left sneutrino as the LSP in the µνSSM has been analyzed
in Ref. [94]. In particular, the pair production and prompt decays of sneutrinos/sleptons
producing signals with diphoton plus missing transverse energy (MET) from neutrinos,
di-lepton plus MET, and multi-leptons, in the range of 100 GeV to 300 GeV, was studied.
Displaced-vertex decays of the sneutrino LSP have also been recently studied in Ref. [92]
through signals with di-lepton pairs, covering senutrino masses between 45 and 100 GeV.
The phenomenology of a neutralino LSP was analyzed in the past in Refs. [76, 77, 81, 80].

In this chapter, we analyze the interesting case when the bino-like neutralino is the
LSP, with the sneutrino the next-to-LSP (NLSP). Thus the decays ν̃ → νχ̃0 and ˜̀→ `χ̃0

dominate over the RPV ones, which are suppressed by the smallness of Yν . Thereby pair
production of sneutrinos/sleptons at the LHC will be a source of bino pairs. Subsequently,
binos will decay via RPV couplings to W` or Zν, giving rise to signals with multi-leptons
plus MET from neutrinos. We will compare these µνSSM signals with recent searches for
electroweak superpartners at the LCH using an integrated luminosity of 36.1 fb−1, through
chargino-neutralino pair production in R-parity conserving (RPC) models [105, 107]. We
will obtain that the reduced cross section of sneutrino/slepton pair production in com-
parison with the latter, makes these searches insensitive if the mass of the sneutrinos is

99
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large. However, for a small sneutrino mass, the small difference with the masses of the
gauge bosons and binos makes these searches also ineffective. We will show neverthe-
less, that there exist optimized ATLAS analyses [199] to detect chargino-neutralino pair
production in the MSSM when the mass spectrum is compressed, that have a promising
sensitivity to our scenario. In fact, we will also obtain regions of bino and sneutrino masses
in the µνSSM producing a tri-lepton signal compatible with the local excess reported by
ATLAS [199], where it was studied in the context of simplified RPC models, assuming
wino-like chargino-neutralino production with a bino-like LSP. This scenario was further
elaborated in Ref. [200] including dark matter constraints and the measured anomalous
magnetic moment of the muon.

The chapter is organized as follows. In Section 7.2 we will introduce the phenomenology
of the bino-like LSP with the sneutrino as the NLSP, studying their relevant pair production
at the LHC, as well as the signals. On the way, we will analyze the decay widths, BRs and
decay lengths of the bino. In Section 7.3, we will consider the recent ATLAS searches for
multi-leptons plus MET, and discuss their feasibility and significance on bino searches in
the µνSSM. We will also show our prescription for recasting the ATLAS result [199] to the
case of the sneutrino-bino scenario. We then will show the prospects for the 100 and 300
fb−1 searches in Section 7.4. Our conclusions are presented in Section 7.5.

7.2 Bino-like LSP phenomenology

The pair production cross section of bino-like neutralinos at large hadron colliders is very
small, since there is no direct coupling between the bino flavor state and the gauge bosons,
and we are assuming that the rest of the spectrum remains decoupled. Binos are produced
mainly through virtual Z bosons in the s channel exploiting their small Higgsino flavor com-
position, or through the t channel interchange of virtual first generation squarks, strongly
suppressed by their large masses. Nevertheless, the bino-like LSP can be produced in the
decay of other SUSY particles, which although heavier, have a higher production cross sec-
tion at the LHC. That is the case when the left sneutrino is the NLSP. After production,
the left sneutrinos decay to the bino LSP.

The dominant pair production channels of sleptons at hadron colliders were studied in
Refs. [99, 100, 101, 102, 103, 104]. The main production channels at the LHC are through
a virtual Z boson on the s channel for the pair production of scalar and pseudoscalar
left sneutrinos ν̃ν̃, a virtual W boson for the production of a left slepton and a (scalar or
pseudoscalar) sneutrino ˜̀̃ν, and both virtual Z and γ for the pair production of left sleptons
˜̀̀̃ . Note that although the left sneutrino is lighter than its corresponding left slepton as
discussed in the Introduction, since the mass separation is always smaller than mW , the
phase space suppression makes the decay ˜̀→ χ̃0 + ` dominant.

In Fig. 7.1, we show the production channels as well as the decay of the sneutrino and
slepton to produce the bino LSP. The right sleptons can be also a source of bino LSP at the
LHC. If their masses are similar to the ones of the left sleptons, an additional diagram as the
third one of Fig. 7.1 will be present. However, the production cross section corresponding
to this extra diagram is significantly smaller than for those shown in Fig. 7.1. Altogether,
the number of binos produced after the decay of right sleptons is around a tenth of the
number produced through left sneutrinos/sleptons.

If the mass of the bino-like neutralino lies between the Higgs and Z masses, the possible
two body decays are to W` and Zν, as shown also in Fig. 7.1. There we only depicted
the decay of each neutralino pair to W and Z, and the leptonic decays of the latter. Note
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Figure 7.1: Relevant diagrams of the benchmark µνSSM scenario of RPC left sneu-
trino/slepton pair production, followed by the RPV decay of the bino-like LSP, χ̃0.
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that both neutralinos can also decay to Z or W indistinctly, and that the hadronic decay
of the W boson, as well as the invisible decay of one of the Z’s, contribute to the signal
of leptonic searches, in addition to the diagrams displayed. The bino decays are mediated
through the RPV mixing between the bino and neutrinos. Although three body decays
involving virtual Higgs boson or other virtual heavier scalars are possible, all of them suffer
from kinematic suppression. Thus the relevant diagrams will be the two body decays, and
approximate formulas for the partial decay widths are as follows:

Γχ̃0→W` ≈
g2

2mχ̃0

16π

(
1− m2

W

m2
χ̃0

)2(
1 +

m2
χ̃0

2m2
W

)∣∣∣UV
B̃νi

∣∣∣
2

, (7.1)

Γχ̃0→Zν ≈
g2

2mχ̃0

16π cos2 θW

(
1− m2

Z

m2
χ̃0

)2(
1 +

m2
χ̃0

2m2
Z

)∣∣∣UV
B̃νi

∣∣∣
2

, (7.2)

where UV is the matrix that diagonalizes the mass matrix for the neutral fermions [63, 94].
If we neglect the kinematic factors, and sum over the two light families of leptons,

Γχ̃0→W`/Γχ̃0→Zν ≈ 2 cos2 θW . Thus the decay to W` will always be at least about a factor
of 1.5 larger than the decay to Zν. On the other hand, when the mass of the LSP is close to
the masses of the gauge bosons, the difference in mass can have a significant impact on the
relative size of the partial widths through those kinematic factors. All in all, for values of
the left sneutrino VEVs that produce an acceptable mass scale for neutrinos, and given the
small value of M1, Eqs. (7.1) and (7.2) predict widths & 5 × 10−13 GeV corresponding to
cτ <∼ 0.3 mm. This is short enough to expect most of the decays to happen inside the fiducial
region defined by the values of the transverse impact parameter (dPV0 ) and the longitudinal
impact parameter (zPV0 ) relative to the primary vertex, considered in prompt ATLAS and
CMS searches. Subsequently, the W and Z bosons will decay promptly producing leptons,
neutrinos or jets. Thus the neutralino could be detectable in events including leptons, jets
and/or MET.

Note that if the mass of the LSP drops below the mass of the W boson, its decay is still
possible and will proceed through three-body decays mediated by off-shell gauge bosons
and scalars. The total width will be in this case smaller, due to the reduced phase space,
and will lead to leptons and/or quarks originated at displaced vertices. This signal cannot
be tested with the usual sparticles searches, but rather with dedicated analysis. The study
of this possibility, although interesting, is beyond the scope of this work.

If the mass of the bino-like neutralino is larger than the one of the Higgs boson, the
decay χ̃0 → hν is also possible, with the dominant diagram mediated by the sneutrino-
Higgs mixing. The approximate formula for the corresponding partial decay width is given
by:

Γχ̃0→hν ≈
g2

1mχ̃0

64π

√
1−

(
mh

mχ̃0

)2 ∣∣ZH
ν̃h

∣∣2 , (7.3)

where ZH is the matrix that diagonalizes the mass matrix for the neutral scalars [63, 94].
On the one hand, the relative size of the decay of neutralino to Higgs compared to the decay
to gauge bosons, is suppressed by the kinematic factors when mχ̃0 & mh. On the other
hand, the contribution of the sneutrino-Higgs mixing is not necessarily small compared
with the bino-neutrino mixing. As discussed in detail in Ref. [94], this mixing can be
enhanced when the mass separation between mν̃ and mh0 is small, and as a result, in this
case the decays of neutralinos to gauge bosons is smaller. Although we take into account
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the channel χ̃0 → hν in our numerical computation, from the perspective of the searches
for the neutralino at the LHC using events with leptons, it is not useful since the BR of
the Higgs boson to light leptons is small.

7.3 Electroweak searches at the LHC

As shown in the previous section, the production and decay of the sneutrino (and slepton)
NLSP when the neutralino is the LSP can produce signals including up to six leptons plus
MET. These µνSSM signals can be compared with searches for electroweak SUSY partners
at the LHC.

The ATLAS analyses [105] and [107] use an integrated luminosity of 36.1 fb−1 of proton-
proton (pp) collision data delivered by the LHC at a center-of-mass energy of

√
s = 13 TeV,

to search for events with two or three leptons and four or more leptons, respectively. The
former analysis targets direct chargino/neutralino and slepton production in R-parity con-
serving (RPC) models, whereas the latter includes the study of simplified R-parity violating
(RPV) scenarios with a lepton-number violating term [58], targeting direct production of
chargino/neutralino, slepton/sneutrino, and gluinos.

In the case of sleptons/sneutrinos analyzed in Ref. [107], the result puts a lower bound
of 1.06 TeV on their masses assuming a single RPV channel available for the decay of the
neutralino LSP. Although this assumption is allowed in simplified trilinear RPV scenarios,
it is not in fact possible in the µνSSM where the small BRs of the leptonic decays of the
gauge bosons contribute to the computation. We have checked that no constraint on the
sneutrino/slepton mass is obtained from these searches in the cases studied in this work.

The ATLAS analyses also use a moderate to large amount of MET to discriminate
against backgrounds, thus they are not sensitive to a compressed spectrum where this
amount is not large. Production cross sections for chargino/neutralino pairs at the LHC [201,
202] are much larger than the production cross sections for slepton pairs [169]. Thus the
kinematic requirement for a mass separation between sleptons and neutralinos to have
enough MET, forces the sleptons in the µνSSM to have masses where the expected number
of pairs produced at the LCH is not enough to obtain bounds.

A novel approach for the identification of events coming from the production of sparticles
in compressed spectra, where the decay products carry low momenta, is the recursive jigsaw
reconstruction (RJR) technique [203, 204]. This has made possible to design competitive
searches for chargino-neutralino pairs even in scenarios where the mass splitting is close to
the mass of the gauge bosons [199]. As we will analyze below, the same analysis can be used
to put constraints on the slepton/sneutrino NLSP pair production when the neutralino is
the LSP in the µνSSM.

The ATLAS chargino-neutralino search using RJR in Ref. [199] is based on the 13-
TeV data with 36.1 fb−1. All the search channels analyzed require two or three leptons
originated from the decay of the gauge bosons plus MET. The different signal regions are
optimized to target specific mass splittings between the produced chargino-neutralino and
the neutralino LSP, for which the initial state radiation (ISR) signal regions are designed
to maximize the sensitive to the case where ∆m = mχ̃±1 /χ̃

0
2
−mχ̃0

1
is in the range between

100 and 160 GeV. Since the production cross section of the left sneutrino/slepton is much
smaller than the chargino-neutralino one, the ISR signal regions have the largest sensitivity
to the mass range where the production cross section is not negligible, and mχ̃0 & mZ .

In the ISR signal regions, the events have to fit in the “compressed decay tree” described
in Ref. [199]. A signal sparticle system S decays to a set of visible momenta V and invisi-
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Region m`` [GeV] mW
T [GeV] ∆φCMISR,I RISR pCMT ISR [GeV] pCMT I [GeV] pCMT [GeV]

SR3`_ISR ∈ (75, 105) >100 >2.0 ∈ (0.55, 1.0) >100 >80 <25

Region mZ [GeV] mJ [GeV] ∆φCMISR,I RISR pCMT ISR [GeV] pCMT I [GeV] pCMT [GeV]

SR2`_ISR ∈ (80, 100) ∈ (50, 110) >2.8 ∈ (0.4, 0.75) >180 >100 <20

Table 7.1: Selection criteria for the 3`_ISR and 2`_ISR signal regions. The variables are
defined in Refs. [199] and [203].

ble momentum I recoils from a jet-radiation system ISR. The preselection criteria require
exactly three light leptons (electron or muon), and between one and three non b-tagged
jets. The transverse momentum of the leptons must fulfill p`1/2T > 25 and p`3T > 20 GeV.
The selection criteria applied to the events after preselection are given in Table 7.1.

At first at least one same-flavor opposite sign (SFOS) pair is required, and from the
formed SFOS pairs the one with invariant mass closest to MZ should be in the range
(75, 105). The remaining lepton is used to construct the W -boson transverse mass, mW

T ,
as follows:

mW
T =

√
2p`TE

miss
T (1− cos ∆φ) , (7.4)

where ∆φ is the azimuthal opening angle between the lepton associated with the W boson
and the missing transverse momentum. After that, the following variables are used as
discriminant:

• pCMT ISR: The magnitude of the vector-summed transverse momenta of the jets assigned
to the ISR system.

• pCMT I : The magnitude of the vector-summed transverse momenta of the invisible sys-
tem.

• pCMT : The magnitude of the vector-summed transverse momenta of the CM system.

• RISR ≡ ~pCMI · p̂CMT S/p
CM
T S: Serves as an estimate of mχ̃0

1
/mχ̃0

2/χ̃
±
1
. This corresponds to

the fraction of the momentum of the system that is carried by its invisible system
I, with momentum ~pCMI in the CM frame. As pCMT S grows, it becomes increasingly
hard for backgrounds to possess a large value in this ratio, unlike compressed signals
where this feature is exhibited [203].

• ∆φCMISR,I : The azimuthal opening angle between the ISR system and the invisible
system in the CM frame.

Our analysis is implemented using the Madanalysis v5.17 [205, 206, 207] package,
and validated with simulated Monte Carlo (MC) events corresponding to the production
of neutralino-chargino pairs in the context of the MSSM decaying to a neutralino LSP and
leptonically decaying gauge bosons, with selected masses of mχ̃±1 /χ̃

0
2

= 200 and mχ̃0
1

= 100

GeV. Ten thousand events are generated using MadGraph5_aMC@NLO v2.6.3.2 [113] at
leading order (LO) of perturbative QCD simulating the production of the described process
with the standard model files for the MSSM. Events are then passed for showering and
hadronization to PYTHIA v8.201 [114] using the A14 tune [208], and then to DELPHES
v3.3.3 [144] for detector simulation. The results of the events selection are compared
with the cutflow table provided by the ATLAS collaboration, as shown in Table 7.2. The
first column reproduces the unweighted yields from the ATLAS analysis, the second one
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Cut applied ATLAS yield Implemented yield Normalized yield

Trigger matching & Preselection 1829 1398 1829
m`` ∈ (75, 105) GeV & mW

T > 100 GeV 533 406 531
∆φCMISR,I > 2.0 408 308 403

RISR ∈ (0.55, 1.0) 157 179 234
pCMT ISR > 100 GeV 115 132 173
pCMT I > 80 GeV 114 115 150
pCMT < 25 GeV 73 68 89

Table 7.2: Comparison between the ATLAS cutflow shown in the auxiliary figures of
Ref. [199] and our implementation.

presents the unweighted yields from our implementation, and the last one the same yields
but normalized to the number of events in the first column. As can be seen from the
table, the numbers agree within a 20% error, thus we use this implementation to obtain
the efficiency map of the ATLAS search for different masses of sneutrinos/sleptons and
neutralinos.

The sneutrino/slepton pair production is simulated in a similar way, but with model
files generated using a suitable modified version of SARAH code [108, 109, 110], and the
spectrum is generated using SPheno v3.3.6 code [111, 112]. Cross sections are calculated at
NLO+NLL using Resummino v2.01 [209, 210, 211, 212, 202]. For each selected point, ten
thousand MC events are generated as explained and passed through the described selection
criteria. The results are then compared with the expected (S95

exp) and observed (S95
obs) upper

limits obtained in the ATLAS search.
The processes described in Fig. 7.1 show the highest yield of the possible combinations

of neutralino decays, when the mass separation between slepton/sneutrino and neutralino
is not large enough to make the first produced leptons to contribute, which would be
excluded from the ATLAS searches. Other possibilities, like W decaying hadronically
or both neutralinos decaying to Z bosons, with only one of them decaying leptonically,
contribute also to the signal, but with smaller yields. The possibility of both neutralinos
decaying to Z bosons, with the latter decaying to leptons, produce a negligible contribution
caused both by the small corresponding BR and the excess of predicted signal leptons.

The points analyzed in the µνSSM parameter space show all a worse efficiency passing
the selection requirements of SR2`_ISR in comparison with SR3`_ISR. Thus the results
discussed in the next section are derived from the limits corresponding to SR3`_ISR.

7.4 Results

By using the method described in the previous section, we now calculate the current and
potential limits on the two-dimensional parameter space mν̃ −mχ̃0 of the µνSSM from the
searches with the 36.1 fb−1 ATLAS result [199], and discuss the prospects for the 100 and
300 fb−1 searches.

We have assumed that the three families of left sneutrinos and sleptons are degenerated
and therefore all of them contribute to the signal. Our result in the mass regions considered
is that no points can be excluded from current data. It is also worth noting that the observed
limit in the 3`_ISR signal region (S95

obs= 15.3) is significantly larger than the expected limit
(S95

exp= 6.9+3.1
−2.2), due to a 3.02 sigma excess [199]. Points of our parameter space in the region
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mχ̃0 120 GeV mν̃ 125 GeV m˜̀ 145 GeV

BR(˜̀
i → `iχ̃

0) 1 BR(ν̃i → νχ̃0) 1 BR(χ̃0 →We/µ) 3.5× 10−1

BR(χ̃0 →Wτ) 2.9× 10−2 BR(χ̃0 → Zν) 2.4× 10−1 Γχ̃0 1.28× 10−12 GeV

εW`Z` 0.0092 εWhZ` 0.0021 εZ`Zν 0.0215

σ(pp→ ν̃ν̃) 143.75 fb σ(pp→ ν̃ ˜̀) 276.32 fb σ(pp→ ˜̀̀̃ ) 80.94 fb

Events above background in S`3_ISR: 5.1

Table 7.3: Benchmark point of the µνSSM in S`3_ISR. In the third row the efficiency ε
passing the selection requirements is shown.

mχ̃0 ∈ (110, 120) and mν̃ ∈ (120, 140) predict a number of events similar to the observed
excess. As an example, Table 7.3 shows a benchmark point which predicts 5.1 events above
background in S`3_ISR.

If the observed local excess were due to a statistical fluctuation, and the observed
upper limit converged to the expected limit, we can easily infer the potential bounds on
the parameter space of the sneutrino-neutralino mass in the µνSSM. For 100 and 300 fb−1

to be reached at the end of Run 2, we just have to rescale the limits by
√

100/36.1 and√
300/36.1, respectively. The result is shown in Fig. 7.2.
In this figure, the solid black line shows the points where the sneutrino and neutralino

are degenerated in mass. The green area enclose the excluded region for 100 fb−1 if no
excess is observed, and the yellow area shows the same for 300 fb−1. The prospects show
a potential exclusion of sneutrino masses up to 160 and 185 GeV for 100 and 300 fb−1,
respectively. We can see that this region extends up to the solid line, reflecting the fact
that the search will be fully sensitive to the degenerated scenario. For a given sneutrino
mass, smaller value of the neutralino mass does not give rise to a worse sensitivity until
the kinematic functions in Eq. (7.2) make the product BR(χ̃0 → Zν) × BR(χ̃0 → W`)
too small and the search becomes ineffective. On the other hand, for a given neutralino
mass the larger the value of the sneutrino mass the smaller the production cross section
becomes, limiting the exclusion scope. Notice also that in the lower-right corner the limits
are weaker due to the mass separation between sneutrino and neutralino, as a consequence
of the increased energy of the produced leptons in the decay of sleptons.

7.5 Conclusions and outlook

We have analyze a multi-lepton signal plus missing transverse energy from neutrinos ex-
pected at the LHC for a bino-like neutralino LSP, in the framework of the µνSSM. Assum-
ing that the left sneutrino is the NLSP, together with left sleptons which are close in mass
they decay to binos after pair production at pp collisions. Subsequently, the binos decay
promptly toW` or Zν via RPV couplings. All in all, these signals include up to six leptons
plus MET. To evaluate the prospects of this search strategy, we have recast the result of
the ATLAS chargino-neutralino search using RJR, based on the 13-TeV data with 36.1
fb−1 [199]. This analysis is sensitive to three charged leptons of the two light families pro-
duced by a compressed spectrum of electroweak superpartners. This is also our situation,
because the reduced cross section of the sneutrino/slepton production in comparison with
the chargino-neutralino one, limits the sensitivity of the searches to small sneutrino/slepton
masses. Although in these mass regions, no points of the parameter space of the µνSSM
can be excluded, the prospects show a potential exclusion of sneutrino masses up to 160
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Figure 7.2: Regions of the µνSSM that will be probed by the signal with three leptons
plus MET from neutrinos discussed in the text in the two-dimensional parameter space
mν̃ −mχ̃0 , for the 13-TeV search with an integrated luminosity of 100 fb−1 (green) and 300
fb−1 (yellow).

and 185 GeV for 100 and 300 fb−1, respectively.
These limits can be complemented in the future by searches for displaced decays of the

neutralino when its mass is below the threshold of the W mass. In this case, three-body
decays mediated by off-shell gauge bosons and scalars will produced a small total width
due to the reduced phase space, leading to signals with lepton and/or quarks originated at
displaced vertices. Dedicated studies will also be necessary to search for events with high
multiplicities of leptons, when the mass separation between sneutrino and neutralino is not
small. On the other hand, in this work, we have focused on the bino-like LSP. Another
interesting possibility would be to study the case of a wino-like LSP. The different couplings
involved as well as new RPV decays could modify the sensitivity of the searches to the new
compressed spectrum. We plan to cover this possibility in a forthcoming publication [213].

Let us finally mention a by-product of our analysis in the region of bino (sneutrino)
mass 110− 120 (120− 140) GeV, where we find that a tri-lepton signal is compatible with
the local excess reported by ATLAS.
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Chapter 8

Conclusiones

El último capítulo está dedicado a resumir los principales resultados de la tesis. En la
que hemos analizado la fenomenología del sector electrodébil del µνSSM relevante para las
búsquedas en aceleradores.

En primer lugar hemos estudiado la fenomenología del left sneutrino cuando este es la
partícula supersimétrica más ligera. Hemos analizado las regiones del espacio de parámetros
donde puede ser la LSP, con la conclusión de que un valor absoluto pequeño para el acoplo
soft trilineal del neutrino es suficiente para que la masa física del sneurtrino left sea del orden
d 100 GeV, y que además ha de ser negativa para evitar que el sneutrino sea taquiónico.
Hemos visto también que que la diferencia de masas entre los sneutrinos reales e imaginarios
es despreciable, por lo tanto podemos considerarlos co-LSP. Hemos observado también que
la masa de los sleptones es ligeramente mayor que la de los sneutrinos correspondientes,
siendo esta diferencia originada por la contribución de un término D. Hemos estudiado los
canales de producción en el LHC, encontrando que el más importante para la producción
en pares es mediado por un bosón Z en en canal-s. Mientras que la producción de pares
slepton-sneutrino y slepton-slepton es también una buena fuente de La producción de pares
slepton-sneutrino y de sleptones está mediada por un W o un Z/gamma en el canal-
s respectivamente. Hemos estudiado a su vez los posibles canales de desintegración del
left sneutrino y la diferencia entre las partículas escalares y pseudoescalares, así como la
diferencia entre partículas de la primera y segundo familia con respecto de la tercera. Hemos
encontrado que la mezcla realzada debido a la cercanía en masas del sneutrino y el bosón de
Higgs provoca que el left sneutrino escalar decaiga imitando el patrón de desintegración del
bosón de Higgs. Hemos observado que cuando la masa del left sneutrino es más pequeña,
la desintegración está dominada por los canales a neutrinos en el caso de las dos primeras
familias con el añadido del canal a dos leptones en el caso de la tercera familia. En el caso
de los sneutrinos pseudoescalares hemos encontrado que la desintegración está, a todas las
masas, dominada por el canal a neutrinos para las dos primeras familias con el añadido del
canal a leptones para la tercera. Hemos obtenido el resultado de que la longitud propia de
desintegración es del orden del milímetro cuando la masa del sneutrino no es muy próxima
a la masa del bosón de Higgs, pero que está por debajo de la escala de los milímetros para
la tercera familia si la masa está por encima de los 95 GeV.

Estos resultados nos permiten identificar los escenarios más prometedores desde el punto
de vista de las búsquedas de señales puntuales en el LHC. Dados los distintos compor-
tamientos de las partículas escalares y pseudoescalares, es posible producir un señal que
incluya dos fotones más momento transverso perdido, o una señal con dos fotones y dos
leptones. La primera puede ser detectada con una energía en el centro de masas de 13 TeV
y una luminosidad integrada de 100fb−1, para un sneutrino de cualquier familia en el rango
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118-132 GeV. Y la señal de dos fotones y dos leptones puede ser estudiada para el caso del
tau sneutrino en un rango de masas de 95-145 GeV. Adicionalmente, es posible producir
una señal con cuatro leptones originada del tau sneutrino, detectable en el LHC con una
energía en el centro de masas de 13 TeV, incluso con una luminosidad de 20 fb−1. Dicha
señal podría ser detectada en el rango de masas de 130-310 GeV. Existen búsquedas en el
LHC que buscan genéricamente por multi-leptones que están cerca de ser sensibles a este
escenario, y que con más luminosidad podrían poner límites a la masa del sneurtrino.

La predicción de vértices desplazados del orden de milímetros hace posible aplicar
las búsquedas del LHC de leptones producidos en vértices secundarios al sneutrino en
el µνSSM. Hemos analizado la sensibilidad de estas búsquedas a un left sneutrino de
la tercera familia en el rango de masas de 45-100 GeV en el contexto del µνSSM.Hemos
observado que el canal de búsqueda usando pares de leptones es el más sensible al sneu-
trino LSP, que puede ser observado cuando éste es producido en pares y decae en ττ o τ`.
hemos adaptado las búsquedas de ATLAS a nuestro escenario y hemos obtenido limites al
espacio de parámetros. También hemos discutido una optimización de los triggers de la
búsqueda que podría mejorar en gran medida los límites, aumentando el área del espacio
de parámetros que podría ser explorada.

Finalmente hemos analizado una señal de multi-leptones con momento transverso per-
dido proveniente de neutrinos esperada en el LHC para un neutralino tipo bino cuando es
el LSP, en el contexto del µνSSM. Asumiendo que el sneutrino left es el NLSP, además de
los sleptones con una pequeña separación en masa, donde ambos decaen a un par de binos
tras ser producidos en colisiones de protones. Hemos adaptado las búsquedas de ATLAS
de pares chargino-neutralino en espectros comprimidos usando Recursive jigsaw reconstruc-
tion, para encontrar límites a este escenario. Con el resultado de que no es posible excluir
ningún punto del espacio de parámetros con los datos actuales. Sin embargo, calculamos
el potencial de exclusión re-escalando los límites, obteniendo una cota de 160 GeV y de
185 GeV para 100fb−1 y 300fb−1 de luminosidad integrada respectivamente. Como resul-
tado adicional del análisis, encontramos en la región de masas del neutralino (sneutrino)
1120-120 (120-140) GeV una señal incluyendo 3 leptones compatible con el exceso local
reportado por ATLAS.

Los análisis llevados a cabo en al presente tesis abren al puerta a otros trabajos en el
futuro. Una extensión del estudio presentado en la tesis sobre el left sneutrino como LSP,
incluyendo tres generaciones de neutrinos right-handed, y correlacionando las señales con
los valores de los ángulos de mezcla de los neutrinos merece la pena ser realizado.

La adaptación de los análisis de ATLAS y CMS de partículas con vidas medias largas
ha demostrado ser muy útil para explorar el espacio de parámetros del µνSSM. Por lo
tanto búsquedas similares de otras partículas supersimétricas como LSP, que esperamos
que tengan vidas medias largas, constituyen un siguiente paso interesante en el análisis
de la fenomenología. Ejemplos de ello son los stops, los gluinos o los sleptones right. Es
importante resaltar que el tamaño de la longitud media de desintegración del LSP en el
µνSSM está directamente relacionado con el tamaño de la masa de los neutrinos. Por lo
tanto la predicción de vértices desplazados de la escala del milímetro es una predicción
natural del modelo, si necesidad de incluir escalas ad-hoc o parámetros anormalemente
pequeños.

Los planes para construir un colisionadores de electrones-positrones con energías de
500 GeV motiva también le diseño de estrategias de búsqueda para partículas cuya masa
no haya sido ya limitada por el LHC a estar por encima del alcance energético de dichos
aceleradores. Este es el caso de las partículas electrodebiles e el µνSSM. En este sentido
merece la pena llevar a cabo estudios específicos de la fenomenología del µνSSM con más
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Conclusions

This last chapter is devoted to summarize the main results of the thesis, where we have
analyzed the phenomenology of the electroweak sector of the µνSSM, relevant for collider
searches.

As explained in the text, the µνSSM is a well-motivated model of supersymmetry
(SUSY) which addresses the solution to the µ problem of SUSY models simultaneously
with one of the most intriguing questions yet to solve in particle physics, the origin of
neutrino masses. In particular, the origin of the smallness of neutrino masses in the µνSSM
is directly related with the decay amplitude of the lightest particle of the SUSY spectrum.
Thus, where most of beyond standard models propose ad-hoc scales for the energy and
lifetime of the particles, in the µνSSM these values are directly related with neutrino
physics. The predictions of the model are in this sense robust and point to a coherent
search strategy.

At first we have focused on the study of the left sneutrino phenomenology when it is
the lightest supersymmetric particle (LSP). We have analyzed if there are natural regions
of the parameter space where it can become the LSP, finding in our framework that it is
sufficient to tune the neutrino trilinear soft coupling Aν . We have also obtained that scalar
and pseudoscalar left sneutrinos are basically degenerated in mass, and therefore both can
be considered co-LSPs. In addition, the mass of the left slepton, which is in the same SU(2)
doublet as the left sneutrino, is only slightly larger than the one of the latter due to the
small D-term contribution. As a consequence, the sleptons are also relevant for our analysis
of production and decay of electroweak superpartners. In this sense, we have analyzed in
detail the production channels at the LHC. The most important diagram for sneutrino pair
production is mediated by an off-shell Z boson in the s-channel, while the production of
sneutrino-slepton and sleptons pairs is as well a good source of sneutrino pairs, given the
small mass gap between them. These two last possibilities are mediated by off-shell W and
Z,γ bosons in the s-channel, respectively.

Then, we have studied the possible decay channels of the left sneutrinos and the dif-
ferences for scalar and pseudoscalar states, as well as the differences between the first two
families and the third one. We have found that the enhanced mixing between the scalar
sneutrino and the SM Higgs boson makes the sneutrino decay mimicking the decays of
the latter. We have also found that for smaller masses the sneutrino decays dominantly
to neutrinos in the case of the first two families, and also to lepton pairs in the case of
the third one. For the pseudoscalar sneutrinos we have found that for all masses it decays
dominantly to neutrinos for the first two families and also to lepton pairs for the third one.
We have found also that the proper decay length of the left sneutrino is in the mm scale
for for masses not close to the Higgs boson mass for the two first families, but is below the
mm scale for the third family if the mass is above 95 GeV.

This results allow us to identify the most promising prompt signals expected from the
production of sneutrino pairs at the LHC. Given the different behaviors of scalar and
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pseudoscalar sneutrino states, a diphoton signal in combination with neutrinos (producing
missing transverse energy), or a diphoton with leptons, can appear at the LHC. The former
can be detected with a centre-of-mass energy of 13 TeV and the integrated luminosity of 100
fb−1, for a sneutrino LSP of any family in the mass range 118–132 GeV. The diphoton plus
leptons signal can be probed for the case of a tau sneutrino LSP with a mass in the range
95–145 GeV. In addition a multilepton signal from a tau sneutrino LSP can also appear
detectable at the LHC with a centre-of-mass energy of 13 TeV, even with the integrated
luminosity of 20 fb−1. It is possible to detect it in the mass range of 130–310 GeV. We
have discussed that existing generic searches at the LHC are close to be sensitive to this
lepton signal, suggesting that they deserve experimental attention. An updated analysis
with current data could constrain the sneutrino LSP scenario.

The prediction of displaced vertices of the order of the millimeter makes possible to
apply LHC searches for lepton pairs produced at secondary vertices. We have analyzed the
sensitivity of these searches to a tau left sneutrino LSP with a mass in the range 45–100 GeV
in the framework of the µνSSM. We have found that the displaced dilepton search channel is
most sensitive to the sneutrino LSP, where at least one of the pair-produced left sneutrinos
is required to decay into ττ or τ` with the final-state tau leptons decaying leptonically. We
recast the ATLAS 8-TeV dilepton search to obtain potential limit on the parameter space
finding constraints to on the left sneutrino LSP. We have also discussed an optimization
of the trigger requirements exploited in the ATLAS search that can considerably improve
the sensitivity of the displaced dilepton search, finding that with this optimizations a wide
range of of the µνSSM parameter space can be probed at the LHC Run 3.

Finally, we have analyzed a multi-lepton signal plus missing transverse energy from
neutrinos expected at the LHC for a bino-like neutralino LSP, in the framework of the
µνSSM. Assuming that the left sneutrino is the NLSP, together with left sleptons which
are close in mass they decay to binos after pair production at pp collisions. We have recasted
the ATLAS search for chargino-neutralino pairs in compressed scenarios using Recursive
jigsaw reconstruction, to evaluate the limits on this scenario. We have found that in the
mass region relevant for the search no points of the parameters space of the µνSSM can
be excluded, however we show a potential exclusion of sneutrino masses up to 160 and 185
GeV for 100 and 300 fb−1, respectively.As a by-product of our analysis in the region of bino
(sneutrino) mass 110− 120 (120− 140) GeV, we find that a tri-lepton signal is compatible
with the local excess reported by ATLAS.

The analysis made in the present thesis open the door for many other interesting works
in the future. An extension of the study presented in the thesis on left sneutrino LSP,
including three generations of right handed neutrino superfields and correlating the signals
with the values of neutrino mixing angles deserves to be studied.

The recasting of ATLAS and CMS searches for long-lived particles has proven to be a
very useful tool to probe the µνSSM. Thus similar searches for other SUSY particles as
LSPs, that are potentially long lived, constitute a interesting next step on the analysis of
the µνSSM phenomenology. Such as the stops, gluinos or right sleptons. Notice that the
size of the decay length of the LSP i the µνSSM is directly related to the size of neutrino
masses. Thus the prediction of displaced vertices on the mm scale is a natural prediction
of the model without the inclusion of ad-hoc scales or abnormally small parameters.

The plans to build a electron-positron collider with energies of 500 GeV motivate also
the design of search strategies for particles which mass bounds are not pushed by the LHC
above the energy limit. That will be the case of the electroweak particles of the µνSSM.
In this sense worth making specific studies of the sensitivity prospects of electron-positron
colliders for the µνSSM.
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Appendix A

Mass Matrices

We write below the tree-level mass matrices generated in the µνSSM. Upon EWSB, fields
with the same color, electric charge and spin mix. To name them we follow the convention
of using for the eigenstates the names of detected particles: Higgs, neutrinos, leptons. In
what follows we use i, j, k, l,m, n as family indexes, and a, b as the indices for the physical
states (mass eigenstates), not to be confused with a, b = 1, 2 used in Appendix ?? as SU(2)L
index. We include in the formulas for completeness the contribution due to lepton-number
violating couplings λijk and λ′ijk in the superpotential of Eq. (3.2) and soft Lagrangian of
Eq. (3.4).

A.1 Scalar Mass Matrices
The scalar mass matrices generated in the µνSSM were computed in Appendix A.1 of

Ref. [63] with the assumption of CP conservation for simplicity. In this Appendix, we write
those equations and replace the values of the soft masses obtained through the minimization
conditions in Eqs. (3.17)-(3.20), assuming that slepton soft mass matrices are diagonal in
flavor space.

Mass Matrix for Higgses
Higgses mix with left and right sneutrinos. In the basis ST = (HRd , H

R
u , ν̃

R
iR, ν̃

R
jL), one

obtains the following mass terms for scalar Higgses in the Lagrangian:
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2
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hS , (A.1)
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h is the 8× 8 (symmetric) matrix obtained computing the second derivative of the

scalar potential of Eq. (3.8) with respect to the fields
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1

2
λiλjviRvjR +

1

2
λiλiv

2
d

−Y νijλjvdviL +
1

2
Y νikY

ν
ijvjRvkR +

1

2
Y νikY

ν
jkviLvjL

=
1

4
(g2 + g′2)v2u + viR

1

tanβ

(
1√
2
Tλi +

1

2
λjκijkvkR

)

−viL
vu

(
1√
2
T νijvjR +

1

2
Y νijκljkvlRvkR

)
, (A.4)

m2
HRu H

R
d

= −1

4
(g2 + g′2)vdvu −

1√
2
Tλi viR −

1

2
λkκijkviRvjR + vdvuλiλi − Y νijλjvuviL , (A.5)

m2
ν̃RiRH

R
d

= − 1√
2
Tλi vu − λkκijkvuvjR + λiλjvdvjR −

1

2
Y νjiλkvjLvkR −

1

2
Y νjkλivjLvkR , (A.6)

m2
ν̃RiRH

R
u

= − 1√
2
Tλi vd +

1√
2
T νjivjL − λkκilkvdvlR + λiλjvuvjR + Y νjkκilkvjLvlR + Y νjkY

ν
jivuvkR , (A.7)

m2
ν̃RiRν̃

R
jR

=
(
m2
ν̃R

)
ij

+
√

2TκijkvkR − λkκijkvdvu + κijkκlmkvlRvmR + 2κilkκjmkvlRvmR

+
1

2
λiλj(v

2
d + v2u) + Y νlkκijkvuvlL −

1

2
(Y νkjλi + Y νkiλj)vdvkL +

1

2
Y νkiY

ν
kjv

2
u +

1

2
Y νkiY

ν
ljvkLvlL

=
√

2TκijkvkR − λkκijkvdvu + κijkκlmkvlRvmR + 2κilkκjmkvlRvmR +
1

2
λiλj(v

2
d + v2u)

−Y νlkκijkvuvlL −
1

2

(
Y νkjλi + Y νkiλj

)
vdvkL +

1

2
Y νkiY

ν
kjv

2
u +

1

2
Y νli Y

ν
kjvkLvlL

+
δij
vjR

[
− 1√

2
T νkivkLvu +

1√
2
Tλi vuvd −

1√
2
TκilkvlRvkR + λlκilkvdvuvkR

−κlimκlnkvmRvnRvkR −
1

2
λiλl(v

2
d + v2u)vlR − Y νlkκikmvuvlLvmR

+
1

2
(Y νklλi + Y νkiλl) vdvkLvlR −

1

2
Y νkiY

ν
klv

2
uvlR −

1

2
Y νkiY

ν
lmvkLvlLvmR

]
, (A.8)

m2
ν̃RiLH

R
d

=
1

4
(g2 + g′2)vdviL −

1

2
Y νijλjv

2
u −

1

2
Y νijλkvkRvjR , (A.9)

m2
ν̃RiLH

R
u

= −1

4
(g2 + g′2)vuviL +

1√
2
T νijvjR +

1

2
Y νikκljkvlRvjR − Y νijλjvdvu + Y νijY

ν
kjvuvkL , (A.10)

m2
ν̃RiLν̃

R
jR

=
1√
2
T νijvu −

1

2
Y νijλkvdvkR −

1

2
Y νikλjvdvkR + Y νikκjlkvuvlR +

1

2
Y νijYνklvkLvlR

+
1

2
Y νil Y

ν
kjvkLvlR , (A.11)

m2
ν̃RiLν̃

R
jL

=
(
m2
L̃L

)
ij

+
1

4
(g2 + g′2)viLvjL +

1

8
(g2 + g′2)(vkLvkL + v2d − v2u)δij

+
1

2
Y νikY

ν
jkv

2
u +

1

2
Y νikY

ν
jlvkRvlR

=
1

4
(g2 + g′2)viLvjL +

1

2
Y νikY

ν
jkv

2
u +

1

2
Y νikY

ν
jlvkRvlR +

δij
vjL

[
− 1√

2
T νikvuvkR

+
1

2
Y νik
(
λlvdvkRvlR + λkvdv

2
u − κklmvuvlRvmR − Y νmkvmLv2u − Y νmlvmLvlRvkR

)]
. (A.12)

This matrix is diagonalized by an orthogonal matrix ZH :

ZHm2
h Z

H
T

=
(
m2
h

)dia
, (A.13)

with
S = ZH

T

h , (A.14)
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where the 8 entries of the matrix h are the ‘Higgs’ mass eigenstate fields. In particular,

HRd = ZH
b1hb , HRu = ZH

b2hb , ν̃RiR = ZH
bi hb , ν̃RjL = ZH

bjhb . (A.15)

In the case of considering only one family of right-handed neutrinos as we do in Appendix B,
the last two equalities can be written as

ν̃RR = ZH
b3hb , ν̃R3+iL = ZH

b3+ihb . (A.16)

Mass Matrix for Pseudoscalar Higgses
Following similar arguments as above, in the basis P T = (HId , H

I
u , ν̃

I
iR, ν̃

I
jL), one obtains

the following mass terms for pseudoscalar Higgses in the Lagrangian:

− 1

2
P Tm2

A0P , (A.17)

where m2
A0 is the 8× 8 (symmetric) matrix

m2
A0 =




m2
HIdH

I
d

m2
HIdH

I
u

m2
HId ν̃

I
jR

m2
HId ν̃

I
jL

m2
HIuH

I
d

m2
HIuH

I
u

m2
HIu ν̃

I
jR

m2
HIu ν̃

I
jL

mν̃IiRH
I
d

mν̃IiRH
I
u

m2
ν̃IiRν̃

I
jR

m2
ν̃IiRν̃

I
jL

m2
ν̃IiLH

I
d

m2
ν̃IiLH

I
u

m2
ν̃IiLν̃

I
jR

m2
ν̃IiLν̃

I
jL




, (A.18)

m2
HIdH

I
d

= m2
HRd H

R
d
− 1

4
(g2 + g′2)v2d (A.19)

m2
HIuH

I
u

= m2
HRu H

R
u
− 1

4
(g2 + g′2)v2u , (A.20)

m2
HIuH

I
d

=
1√
2
Tλi viR +

1

2
λkκijkviRvjR , (A.21)

m2
ν̃IiRH

I
d

=
1√
2
Tλi vu − λkκijkvuvjR −

1

2
Y νjiλkvjLvkR +

1

2
Y νjkλivjLvkR , (A.22)

m2
ν̃IiRH

I
u

=
1√
2
Tλi vd −

1√
2
T νjivjR − λkκilkvdvlR + Y νjkκilkvjLvlR , (A.23)

m2
ν̃IiRν̃

I
jR

= m2
ν̃RiRν̃

R
jR
− 2

(√
2TκijkvkR − λkκijkvdvu + κijkκlmkvlRvmR

)
, (A.24)

m2
ν̃IiLH

I
d

= −1

2
Y νijλjv

2
u −

1

2
Y νijλkvkRvjR , (A.25)

m2
ν̃IiLH

I
u

= − 1√
2
T νijvjR −

1

2
Y νikκljkvlRvjR , (A.26)

m2
ν̃IiLν̃

I
jR

= − 1√
2
T νijvu +

1

2
Y νijλkvdvkR −

1

2
Y νikλjvdvkR + Y νil κjlkvuvkR

−1

2
Y νijY

ν
lkvlLvkR +

1

2
Y νikY

ν
ljvlLvkR , (A.27)

m2
ν̃IiLν̃

I
jL

= m2
ν̃RiLν̃

R
jL
− 1

4
(g2 + g′2)viLvjL , (A.28)

and, in order to simplify some of these formulas, the entries of the mass matrix for Higgses
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are used when appropriate. The matrix of Eq. (A.18) is diagonalized by an orthogonal
matrix ZA:

ZAm2
A0 ZA

T

=
(
m2
A0

)dia
, (A.29)

with
P = ZA

T

A0 , (A.30)

where the 8 entries of the matrix A0 are the ‘pseudoscalar Higgs’ mass eigenstate fields. In
particular,

HId = ZA
b1hb , HIu = ZA

b2hb , ν̃IiR = ZA
bihb , ν̃IjL = ZA

bjhb . (A.31)

In the case of considering only one family of right-handed neutrinos as we do in Appendix B,
the last two equalities can be written as

ν̃IR = ZA
b3hb , ν̃I3+iL = ZA

b3+ihb . (A.32)

Mass Matrix for Charged Higgses
Charged Higgses mix with left and right sleptons. In the basis CT = (H−d

∗
, H+

u , ẽ
∗
iL, ẽ

∗
jR),

one obtains the following mass terms in the Lagrangian:

− C∗Tm2
H+C , (A.33)

where m2
H+ is the 8× 8 (symmetric) matrix

m2
H+ =




m2
H−d H

−
d

∗ m2
H−d H

+
u

m2
H−d ẽ

∗
jL

m2
H−d ẽ

∗
jR

m2
H+
u
∗
H−d
∗ m2

H+
u
∗
H+
u

m2
H+
u
∗
ẽ∗jL

m2
H+
u
∗
ẽ∗jR

m2
ẽiLH

−
d

∗ m2
ẽiLH

+
u

m2
ẽiLẽ

∗
jL

m2
ẽiLẽ

∗
jR

m2
ẽiRH

−
d

∗ m2
ẽiRH

+
u

m2
ẽiRẽ

∗
jL

m2
ẽiRẽ

∗
jR




, (A.34)

m2
H−d H

−
d

∗ = m2
HRd H

R
d
− 1

4
(g2 + g′2)v2d +

g2

4
(v2u − viLviL)− 1

2
λiλjv

2
u +

1

2
Y eikY

e
jkviLvjL , (A.35)

m2
H+
u
∗
H+
u

= m2
HRu H

R
u
− 1

4
(g2 + g′2)v2u +

g2

4
(v2d + viLviL)− 1

2
λiλiv

2
d + Y νijλjvdviL

−1

2
Y νikY

ν
jkviLvjL , (A.36)

m2
H+
u
∗
H−d
∗ =

g2

4
vdvu +

1√
2
Tλi viR +

1

2
λkκijkviRvjR −

1

2
λiλivdvu +

1

2
Y νijλjvuviL , (A.37)

m2
ẽiLH

−
d

∗ =
g2

4
vdviL −

1

2
Y νijλkvkRvjR −

1

2
Y eijY

e
kjvdvkL , (A.38)

m2
ẽiLH

+
u

=
g2

4
vuviL −

1√
2
T νijvjR −

1

2
Y νijκljkvlRvkR +

1

2
Y νijλjvdvu −

1

2
Y νikY

ν
kjvuvjL , (A.39)

m2
ẽiRH

−
d

∗ = − 1√
2
T ejivjL −

1

2
Y ekiY

ν
kjvuvjR , (A.40)

m2
ẽiRH

+
u

= −1

2
Y eki(λjvkLvjR + Y νkjvdvjR) + λlniY

ν
lkvnLvkR , (A.41)
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m2
ẽiLẽ∗jR

=
1√
2
T eijvd −

1

2
Y eijλkvuvkR +

2√
2
TλkijvkL , (A.42)

m2
ẽiRẽ∗jR

=
(
m2
ẽR

)
ij

+
g′2

4
(v2u − v2d − vkLvkL)δij +

1

2
Y ekiY

e
kjv

2
d +

1

2
Y eliY

e
kjvkLvlL

+2λmljλnlivmLvnL , (A.43)

m2
ẽiLẽ∗jL

= m2
ν̃RiLν̃

R
jL
− 1

4
(g2 + g′2)viLvjL +

g2

4
(v2u − v2d − vkLvkL)δij +

g2

4
viLvjL

−1

2
Y νikY

ν
jkv

2
u +

1

2
Y eilY

e
jlv

2
d + 2λimlλjnlvmLvnL , (A.44)

and, in order to simplify some of these formulas, the entries of the mass matrix for Higgses
are used when appropriate. Matrix of Eq. (A.34) is diagonalized by an orthogonal matrix
Z+:

Z+m2
H+ Z+

T

=
(
m2
H+

)dia
, (A.45)

with
C = Z+

T

H+ , (A.46)

where the 8 entries of the matrix H+ are the ‘charged Higgs’ mass eigenstate fields. In
particular,

H−d = Z+
b1H

−
b , H+

u = Z+
b2H

+
b , ẽiL = Z+

biH
−
b , ẽjR = Z+

bjH
−
b . (A.47)

Mass Matrix for Down-Squarks

Left and right down-squarks are mixed. In the basis d̃T =
(
d̃iL, d̃jR

)
, one obtains the

following mass terms in the Lagrangian:

− d̃Tm2
d̃
d̃∗ , (A.48)

where m2
d̃
is the 6× 6 (symmetric) matrix

m2
d̃

=




m2
d̃iLd̃

∗
jL

m2
d̃iLd̃

∗
jR

m2
d̃iRd̃

∗
jL

m2
d̃iRd̃

∗
jR


 , (A.49)

m2
d̃iLd̃

∗
jL

=
(
m2
Q̃L

)
ij
− 1

24

(
3g2 + g′2

) (
v2
d − v2

u + vkLvkL
)

+
1

2
Y d
ikY

d
jkv

2
d

+
1

2
λ′nilλ

′
mjlvnLvmL +

1

2

(
λ′nilY

d
jl + λ′njlY

d
il

)
vnLvd , (A.50)

m2
d̃iRd̃

∗
jR

=
(
m2
d̃R

)
ij
− g′2

12

(
v2
d − v2

u + vkLvkL
)

+
1

2
Y d
kiY

d
kjv

2
d

+
1

2
λ′mliλ

′
nljvmLvnL +

1

2

(
λ′nliY

d
lj + λ′nljY

d
li

)
vnLvd , (A.51)

m2
d̃iLd̃

∗
jR

= m2
d̃jRd̃

∗
iL

=
1√
2
T dijvd −

1

2
Y d
ijλkvuvkR +

1√
2
T λ
′

kijvkL . (A.52)
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Matrix of Eq. (A.49) is diagonalized by an orthogonal matrix ZD:

ZDm2
d̃
ZD

T

=
(
m2
d̃

)dia
, (A.53)

with
d̃ = ZD

T

D̃ , (A.54)

where the 6 entries of the matrix D̃ are the down-squark mass eigenstate fields. In partic-
ular,

d̃iL = ZD
bi D̃b , d̃jR = ZD

bj D̃b . (A.55)

Mass Matrix for Up-Squarks

Left and right up-squarks are mixed. In the basis ũT = (ũiL, ũjR), one obtains the following
mass terms in the Lagrangian:

− ũTm2
ũ ũ
∗ , (A.56)

where m2
ũ is the 6× 6 (symmetric) matrix

m2
ũ =


 m2

ũiLũ
∗
jL

m2
ũiLũ

∗
jR

m2
ũiRũ

∗
jL

m2
ũiRũ

∗
jR


 , (A.57)

m2
ũiLũ

∗
jL

=
(
m2
Q̃L

)
ij

+
1

24

(
3g2 − g′2

) (
v2
d − v2

u + vkLvkL
)

+
1

2
Y u
ikY

u
jkv

2
u , (A.58)

m2
ũiRũ

∗
jR

=
(
m2
ũR

)
ij

+
g′2

6

(
v2
d − v2

u + vkLvkL
)

+
1

2
Y u
kiY

u
kjv

2
u , (A.59)

m2
ũiLũ

∗
jR

= m2
ũjRũ

∗
iL

=
1√
2
T uijvu −

1

2
Y u
ijλkvdvkR +

1

2
Y u
ijY

ν
lkvlLvkR . (A.60)

Matrix of Eq. (A.57) is diagonalized by an orthogonal matrix ZU :

ZUm2
ũ Z

U
T

=
(
m2
ũ

)dia
, (A.61)

with
ũ = ZU

T

Ũ , (A.62)

where the 6 entries of the matrix Ũ are the up-squark mass eigenstate fields. In particular,

ũiL = ZU
bi Ũb , ũjR = ZU

bjŨb . (A.63)

A.2 Fermion Mass Matrices

The neutrino and lepton mass matrices were computed in Appendix A.2 of Ref. [63] with
the assumption of CP conservation. In this Appendix we write the general fermion mass
matrices, including the quarks matrices, without assuming CP conservation. To obtain the
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results, we apply the standard rotation in the gauge sector:



W̃1

W̃2

W̃3


 = ZW̃




W̃−

W̃+

W̃ 0


 ,

where the mixing matrix ZW̃ is parametrized by

ZW̃ =




1√
2

1√
2

0
−i√

2
i√
2

0

0 0 1


 ,

and W̃1,2,3 are the 2–component wino fields in the soft Lagrangian of Eq. (3.4).

Mass Matrix for Neutrinos
The usual left-handed neutrinos of the SM mix with the right-handed neutrinos and the
neutral gauginos and higgsinos. Working in the basis of 2–component spinors1, (χ0)T =(
ϕνi , B̃

0, W̃ 0, H̃0
d , H̃

0
u, ηνj

)
, one obtains the following neutral fermion mass terms in the

Lagrangian:

− 1

2
(χ0)Tmνχ

0 + h.c. , (A.64)

where mν is the 10× 10 (symmetric) matrix

mν =




03×3 − 1√
2
g′〈ν̃iL〉∗ 1√

2
g〈ν̃iL〉∗ 03×1 Y νik〈ν̃kR〉∗ 〈H0

u〉Y νij
− 1√

2
g′〈ν̃jL〉∗ M1 0 − 1√

2
g′〈H0

d〉∗ 1√
2
g′〈H0

u〉∗ 01×3
1√
2
g〈ν̃jL〉∗ 0 M2

1√
2
g〈H0

d〉∗ − 1√
2
g〈H0

u〉∗ 01×3

01×3 − 1√
2
g′〈H0

d〉∗ 1√
2
g〈H0

d〉∗ 0 −λk〈ν̃kR〉∗ −λj〈H0
u〉

Y νjk〈ν̃kR〉∗ 1√
2
g′〈H0

u〉∗ − 1√
2
g〈H0

u〉∗ −λk〈ν̃kR〉∗ 0 −λj〈H0
d〉+ Y νkj〈ν̃kL〉

〈H0
u〉(Y νij)T 03×1 03×1 −λi〈H0

u〉 −λi〈H0
d〉+ Y νki〈ν̃kL〉 2κijk〈ν̃kR〉∗




.

(A.65)

This is diagonalized by an unitary matrix UV :

UV
∗
mν U

V
†

= mdia
ν , (A.66)

with
χ0 = UV

†
λ0 , (A.67)

where the 10 entries of the matrix λ0 are the 2-component ‘neutrino’ mass eigenstate fields.
In particular,

νiL = UV
bi

∗
λ0
b , B̃0 = UV

b4

∗
λ0
b , W̃ 0 = UV

b5

∗
λ0
b ,

H̃0
d = UV

b6

∗
λ0
b , H̃0

u = UV
b7

∗
λ0
b , (νjR)c

∗
= UV

bjλ
0
b

∗
. (A.68)

In the case of considering only one family of right-handed neutrinos as we do in Appendix B,
1Since both helicities are present for neutrinos, it is convenient to introduce here the notation where

ϕα is a left-handed spinor and η̄α̇ a right-handed spinor. Thus we are using in (χ0)T , ϕανi ≡ (νiL)c
∗
and

ηανj ≡ ν∗jR, and in χ0, ϕνiα ≡ νiL and ηνjα ≡ (νjR)c.
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the last equality can be written as

(νR)c
∗

= UV
b8λ

0
b

∗
. (A.69)

Mass Matrix for Leptons
The usual leptons of the SM mix with charged gauginos and higgsinos. In the basis of
2–component spinors2, (χ−)T =

(
ϕei , W̃

−, H̃−d

)
and (χ+)T =

(
ηej , W̃

+, H̃+
u

)
, one obtains

the following charged fermion mass terms in the Lagrangian:

− (χ−)Tmeχ
+ + h.c. , (A.70)

where me is the 5× 5 matrix

me =



〈H0

d〉Y e
ij + 2〈ν̃lL〉λlij g〈ν̃iL〉∗ −Y ν

ik〈ν̃kR〉∗
01×3 M2 g〈H0

u〉∗
−Y e

kj〈ν̃kL〉 g〈H0
d〉∗ λk〈ν̃kR〉∗


 . (A.71)

This is diagonalized by two unitary matrices U e
L and U e

R:

U e
R

∗
meU

e
L

†
= mdia

e , (A.72)

with

χ+ = U e
L

†
λ+ , (A.73)

χ− = U e
R

†
λ− , (A.74)

where the 5 entries of the matrices λ+, λ−, are the 2-component ‘lepton’ mass eigenstate
fields. In particular,

(ejR)c
∗

= U e
Lb4λ

+
b
∗
, W̃+ = U e

L
∗
b4λ

+
b , H̃+

u = U e
L
∗
b5λ

+
b ,

eiL = U e
R
∗
biλ
−
b , W̃− = U e

R
∗
b4λ
−
b , H̃−d = U e

R
∗
b5λ
−
b . (A.75)

Mass Matrix for Down-Quarks
In the basis of 2–components spinors (d∗L)T = (d∗iL), (dR)T = (djR), one obtains the following
down-quark mass terms in the Lagrangian:

− (d∗L)TmddR + h.c. , (A.76)

where md is the 3× 3 matrix

md =
(
〈H0

d〉
∗
Y d∗

ij + 〈ν̃lL〉∗λ′∗lij
)
. (A.77)

This is diagonalized by two unitary matrices Ud
L and Ud

R:

Ud
L

†
mdU

d
R = mdia

d , (A.78)

2Following the convention of the previous footnote, we have in this case ϕαei ≡ (eiL)c
∗
and ηejα ≡ (ejR)c.
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with

dR = Ud
RDR , (A.79)

dL = Ud
LDL . (A.80)

where the 3 entries of the matricesDL,DR are the 2-component down-quark mass eigenstate
fields. In particular,

djR = Ud
RjbDbR ,

diL = Ud
RibDbL . (A.81)

Mass Matrix for Up-Quarks
In the basis of 2–components spinors (u∗L)T = (u∗iL), (uR)T = (ujR), one obtains the
following up-quark mass terms in the Lagrangian:

− (u∗L)TmuuR + h.c. , (A.82)

where mu is the 3× 3 matrix
mu =

(
〈H0

u〉
∗
Y u∗

ij

)
. (A.83)

This is diagonalized by two unitary matrices Uu
L and Uu

R:

Uu
L

†
muU

u
R = mdia

u , (A.84)

with

uR = Uu
RUR , (A.85)

uL = Uu
LUL . (A.86)

where the 3 entries of the matrices UL, UR are the 2-component up-quark mass eigenstate
fields. In particular,

ujR = Uu
RjbUbR ,

uiL = Uu
RibUbL . (A.87)
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Appendix B

Scalar-Two Fermion Interactions

One Scalar/Pseudoscalar Higgs-Two Fermion–Interactions
In this Appendix we write the relevant interactions for our computation of the decays of

the left sneutrino. For consistency with the computation of Section 4 where the SARAH code
was used, we follow its notation [108, 109, 110]. In particular, opposite to our convention in
Appendix A, now a, b = 1, 2, 3 are family indexes, and i, j, k are the indexes for the physical
states. Only one family of right-handed neutrinos νR, and the corresponding scalar and
pseudoscalar sneutrino states ν̃RR , ν̃IR, are considered for the computation of the interactions
below. Notice that the definitions of SARAH used in this Appendix for Yukawa, lepton and
quark matrices are not the same as those in Appendix A. Taking all this into account, in
the basis of 4–component spinors with the projectors PL,R = (1 ∓ γ5)/2, the interactions
for the mass eigenstates are as follows.

One Higgs-Two Up Quark–Interaction

− i 1√
2
δαβ

3∑

a,b=1

Y ∗u,abU
u
R,jaU

u
L,ibZ

H
k2PR − i

1√
2
δαβ

3∑

b=1

Uu,∗L,jb

3∑

a=1

Uu,∗R,iaYu,abZ
H
k2PL . (B.1)

One Pseudoscalar Higgs-Two Up Quark–Interaction

− 1√
2
δαβ

3∑

a,b=1

Y ∗u,abU
u
R,jaU

u
L,ibZ

A
k2PR +

1√
2
δαβ

3∑

b=1

Uu,∗L,jb

3∑

a=1

Uu,∗R,iaYu,abZ
A
k2PL . (B.2)

One Higgs-Two Down Quark–Interaction

− i 1√
2
δαβ

3∑

a,b=1

Y ∗d,abU
d
R,jaU

d
L,ibZ

H
k1PR − i

1√
2
δαβ

3∑

b=1

Ud,∗L,jb

3∑

a=1

Ud,∗R,iaYd,abZ
H
k1PL . (B.3)

One Pseudoscalar Higgs-Two Down Quark–Interaction

− 1√
2
δαβ

3∑

a,b=1

Y ∗d,abU
d
R,jaU

d
L,ibZ

A
k1PR +

1√
2
δαβ

3∑

b=1

Ud,∗L,jb

3∑

a=1

Ud,∗R,iaYd,abZ
A
k1PL . (B.4)

One Higgs-Two Lepton–Interaction

−i 1√
2

{
− Ue,∗R,j5

3∑

a,b=1

Ue,∗L,iaYe,abZ
H
k3+b + g2U

e,∗
L,i4

3∑

a=1

Ue,∗R,jaZ
H
k3+a
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+

3∑

a,b=1

Ue,∗R,jbU
e,∗
L,iaYe,abZ

H
k1 + g2U

e,∗
L,i4U

e,∗
R,j5Z

H
k1 + g2U

e,∗
R,j4U

e,∗
L,i5Z

H
k2

+λUe,∗R,j5U
e,∗
L,i5Z

H
k3 − Ue,∗L,i5

3∑

a=1

Ue,∗R,jaYν,aZ
H
k3

}
PL

− i 1√
2

{
−

3∑

a,b=1

Y ∗e,abU
e
L,jaZ

H
k3+bU

e
R,i5 + g2

3∑

a=1

UeR,iaZ
H
k3+aU

e
L,j4

+

3∑

a,b=1

Y ∗e,abU
e
L,jaU

e
R,ibZ

H
k1 + g2U

e
R,i5U

e
L,j4Z

H
k1 + g2U

e
R,i4U

e
L,j5Z

H
k2

+λ∗UeR,i5U
e
L,j5Z

H
k3 −

3∑

a=1

Y ∗ν,aU
e
R,iaU

e
L,j5Z

H
k3

}
PR . (B.5)

One Pseudoscalar Higgs-Two Lepton–Interaction

1√
2

{
− Ue,∗R,j5

3∑

a,b=1

Ue,∗L,iaYe,abZ
A
k3+b − g2Ue,∗L,i4

3∑

a=1

Ue,∗R,jaZ
A
k3+a

+

3∑

a,b=1

Ue,∗R,jbU
e,∗
L,iaYe,abZ

A
k1 − g2Ue,∗L,i4Ue,∗R,j5ZAk1 − g2Ue,∗R,j4Ue,∗L,i5ZAk2

−λUe,∗R,j5Ue,∗L,i5ZAk3 + Ue,∗L,i5

3∑

a=1

Ue,∗R,jaYν,aZ
A
k3

}
PL

− 1√
2

{
−

3∑

a,b=1

Y ∗e,abU
e
L,jaZ

A
k3+bU

e
R,i5 − g2

3∑

a=1

UeR,iaZ
A
k3+aU

e
L,j4

+

3∑

a,b=1

Y ∗e,abU
e
L,jaU

e
R,ibZ

A
k1 − g2UeR,i5UeL,j4ZAk1 − g2UeR,i4UeL,j5ZAk2

−λ∗UeR,i5UeL,j5ZAk3 +

3∑

a=1

Y ∗ν,aU
e
R,iaU

e
L,j5Z

A
k3

}
PR . (B.6)

One Higgs-Two Neutrino-Interaction

i

2

{
g1(UV,∗i4

3∑

a=1

UV,∗ja + UV,∗j4

3∑

a=1

UV,∗ia )ZHk3+a − g2(UV,∗i5

3∑

a=1

UV,∗ja + UV,∗j5

3∑

a=1

UV,∗ia )ZHk3+a

−
√

2(UV,∗i8 UV,∗j7 + UV,∗i7 UV,∗j8 )

3∑

a=1

Yν,aZ
H
k3+a +

√
2λ(UV,∗i8 UV,∗j7 + UV,∗i7 UV,∗j8 )ZHk1

+g1(UV,∗j4 UV,∗i6 + UV,∗i4 UV,∗j6 )ZHk1 − g2(UV,∗i5 UV,∗j6 + UV,∗j5 UV,∗i6 )ZHk1

−g1(UV,∗j4 UV,∗i7 + UV,∗i4 UV,∗j7 )ZHk2 + g2(UV,∗i5 UV,∗j7 + UV,∗j5 UV,∗i7 )ZHk2

−
√

2(UV,∗j8

3∑

a=1

UV,∗ia + UV,∗i8

3∑

a=1

UV,∗ja )Yν,aZ
H
k2 +

√
2λ(UV,∗i8 UV,∗j6 + UV,∗i6 UV,∗j8 )ZHk2

−2
√

2κUV,∗i8 UV,∗j8 ZHk3 +
√

2λ(UV,∗i7 UV,∗j6 ZHk3 + UV,∗i6 UV,∗j7 )ZHk3

−
√

2(UV,∗j7

3∑

a=1

UV,∗ia Yν,a + UV,∗i7

3∑

a=1

UV,∗ja Yν,a)ZHk3

}
PL
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+
i

2

{
g1

3∑

a=1

ZHk3+a(UVjaU
V
i4 + UViaU

V
j4)− g2

3∑

a=1

ZHk3+a(UVjaU
V
i5 + UViaU

V
j5)

−
√

2

3∑

a=1

Y ∗ν,aZ
H
k3+a(UVi8U

V
j7 + UVi7U

V
j8) +

√
2λ∗ZHk1(UVi8U

V
j7 + UVi7U

V
j8)

+g1Z
H
k1(UVi6U

V
j4 + UVi4U

V
j6)− g2ZHk1(UVi5U

V
j6 + UVi6U

V
j5)

−g1ZHk2(UVi7U
V
j4 + UVi4U

V
j7) + g2Z

H
k2(UVi5U

V
j7 + UVi7U

V
j5)

−
√

2

3∑

a=1

Y ∗ν,a(UVjaZ
H
k2U

V
i8 + UViaZ

H
k2U

V
j8) +

√
2λ∗ZHk2(UVi8U

V
j6 + ZHk2U

V
i6U

V
j8)

−2
√

2κ∗ZHk3U
V
i8U

V
j8 +

√
2λ∗ZHk3(UVi7U

V
j6 + ZHk3U

V
i6U

V
j7)

−
√

2

3∑

a=1

Y ∗ν,a(UVjaZ
H
k3U

V
i7 + UViaZ

H
k3U

V
j7)
}
PR . (B.7)

One Pseudoscalar Higgs-Two Neutrino–Interaction

1

2

{
g1(UV,∗i4

3∑

a=1

UV,∗ja + UV,∗j4

3∑

a=1

UV,∗ia )ZAk3+a − g2(UV,∗i5

3∑

a=1

UV,∗ja + UV,∗j5

3∑

a=1

UV,∗ia )ZAk3+a

+
√

2(UV,∗i8 UV,∗j7 + UV,∗i7 UV,∗j8 )

3∑

a=1

Yν,aZ
A
k3+a −

√
2λ(UV,∗i8 UV,∗j7 + UV,∗i7 UV,∗j8 )ZAk1

+g1(UV,∗i4 UV,∗j6 + UV,∗j4 UV,∗i6 )ZAk1 − g2(UV,∗i5 UV,∗j6 + UV,∗j5 UV,∗i6 )ZAk1

−g1(UV,∗i4 UV,∗j7 + UV,∗j4 UV,∗i7 )ZAk2 + g2(UV,∗i5 UV,∗j7 + UV,∗j5 UV,∗i7 )ZAk2

+
√

2(UV,∗j8

3∑

a=1

UV,∗ia + UV,∗i8

3∑

a=1

UV,∗ja )Yν,aZ
A
k2 −

√
2λ(UV,∗i8 UV,∗j6 + UV,∗i6 UV,∗j8 )ZAk2

−2
√

2κUV,∗i8 UV,∗j8 ZAk3 +
√

2λ(UV,∗i7 UV,∗j6 + UV,∗i6 UV,∗j7 )ZAk3

−
√

2(UV,∗j7

3∑

a=1

UV,∗ia Yν,a + UV,∗i7

3∑

a=1

UV,∗ja Yν,a)ZAk3

}
PL

− 1

2

{
g1

3∑

a=1

ZAk3+a(UVjaU
V
i4 + UViaU

V
j4)− g2

3∑

a=1

ZAk3+a(UVjaU
V
i5 + UViaU

V
j5)

+
√

2

3∑

a=1

Y ∗ν,aZ
A
k3+a(UVi8U

V
j7 + UVi7U

V
j8)−

√
2λ∗ZAk1(UVi8U

V
j7 + UVi7U

V
j8)

+g1Z
A
k1(+UVi4U

V
j6 + UVi6U

V
j4)− g2ZAk1(UVi5U

V
j6 + UVi6U

V
j5)

−g1ZAk2(UVi4U
V
j7 + UVi7U

V
j4) + g2Z

A
k2(UVi5U

V
j7 + UVi7U

V
j5)

+
√

2

3∑

a=1

Y ∗ν,a(UViaZ
A
k2U

V
j8 + UVjaZ

A
k2U

V
i8 )−

√
2λ∗ZAk2(UVi8U

V
j6 + UVi6U

V
j8)

−2
√

2κ∗ZAk3U
V
i8U

V
j8 +

√
2λ∗ZAk3(UVi7U

V
j6 + UVi6U

V
j7)

−
√

2

3∑

a=1

Y ∗ν,a(UViaZ
A
k3U

V
j7 + UVjaZ

A
k3U

V
i7 )
}
PR . (B.8)
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Appendix C

Three Scalar Higgs Interactions

In this Appendix we write the relevant interactions for our computation of the decays of
the left sneutrino to two scalars.

− i

8

(
g21

3∑

a=1

vL,aZ
H
k5+a

3∑

b=1

ZHi5+bZ
H
j5+b + g22

3∑

a=1

vL,aZ
H
k5+a

3∑

b=1

ZHi5+bZ
H
j5+b

+ g21

3∑

a=1

ZHi5+aZ
H
j5+a

3∑

b=1

vL,bZ
H
k5+b + g22

3∑

a=1

ZHi5+aZ
H
j5+a

3∑

b=1

vL,bZ
H
k5+b

+ g21

3∑

a=1

vL,aZ
H
j5+a

3∑

b=1

ZHi5+bZ
H
k5+b + g22

3∑

a=1

vL,aZ
H
j5+a

3∑

b=1

ZHi5+bZ
H
k5+b

+ g21

3∑

a=1

vL,aZ
H
i5+a

3∑

b=1

ZHj5+bZ
H
k5+b + g22

3∑

a=1

vL,aZ
H
i5+a

3∑

b=1

ZHj5+bZ
H
k5+b

+ 4vu

3∑

l=1

3∑

a=1

Yν,alZ
H
k5+a

3∑

b=1

Y ∗ν,blZ
H
j5+bZ

H
i2 + 4vu

3∑

l=1

3∑

a=1

Yν,a1Z
H
j5+a

3∑

b=1

Y ∗ν,b1Z
H
k5+bZ

H
i2

+
(
g21 + g22

) 3∑

a=1

ZHj5+aZ
H
k5+a

(
2vdZ

H
i1 − 2vuZ

H
i2 +

3∑

b=1

vL,bZ
H
i5+b

)

+ 4vR

3∑

a=1

Yν,a1Z
H
k5+a

3∑

b=1

Y ∗ν,b1Z
H
j5+bZ

H
i3 + 4vR

3∑

a=1

Yν,a1Z
H
j5+a

3∑

b=1

Y ∗ν,b1Z
H
k5+bZ

H
i3

+ 2g21

3∑

a=1

vL,aZ
H
k5+aZ

H
i1Z

H
j1 + 2g22

3∑

a=1

vL,aZ
H
k5+aZ

H
i1Z

H
j1

− 4vu

3∑

l=1

λ∗l

3∑

a=l

Yν,a1Z
H
k5+aZ

H
i2Z

H
j1 − 4

3∑

l=1

vRlλ
∗
l

3∑

m=1

3∑

a=1

Yν,amZ
H
k5+aZ

H
i2+mZ

H
j1

+ 4vu

3∑

l=1

3∑

a=1

Yν,alZ
H
k5+a

3∑

b=1

Y ∗ν,blZ
H
i5+bZ

H
j2 + 4vu

3∑

l=1

3∑

a=1

Yν,alZ
H
i5+a

3∑

b=1

Y ∗ν,blZ
H
k5+bZ

H
j2

− 4

3∑

l=1

vuλ
∗
l

3∑

a=1

Yν,alZ
H
k5+aZ

H
i1Z

H
j2 − 2g21

3∑

a=1

vL,aZ
H
k5+aZ

H
i2Z

H
j2

− 2g22

3∑

a=1

vL,aZ
H
k5+aZ

H
i2Z

H
j2 − 4vd

3∑

l=1

λ∗l

3∑

a=1

Yν,alZ
H
k5+aZ

H
i2Z

H
j2

+ 4

3∑

l=1

3∑

a=1

vL,aYν,al

3∑

b=1

Y ∗ν,blZ
H
k5+bZ

H
i2Z

H
j2 + 4

3∑

l=1

3∑

a=1

Y ∗ν,alvL,a

3∑

b=1

Yν,blZ
H
k5+bZ

H
i2Z

H
j2

+ 2
√

2

3∑

l=1

3∑

a=1

T ∗ν,alZ
H
k5+aZ

H
i2+lZ

H
j2 + 4

3∑

l=1

3∑

m=1

3∑

n=1

vRlκ
∗
lmn

3∑

a=1

Yν,amZ
H
k5+aZ

H
i2+nZ

H
j2
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+ 2
√

2

3∑

l=1

3∑

a=1

ZHk5+aTν,alZ
H
i2+lZ

H
j2 +

(
g21 + g22

) 3∑

a=1

ZHi5+aZ
H
k5+a

(
2vdZ

H
j1 − 2vuZ

H
j2 +

3∑

b=1

vL,bZ
H
j5+b

)

+ 4

3∑

l=1

vRl

3∑

a=1

Yν,alZ
H
k5+a

3∑

m=1

3∑

b=1

Y ∗ν,bmZ
H
i5+bZ

H
j2+m + 4

3∑

l=1

vRl

3∑

a=1

Yν,alZ
H
i5+a

3∑

m=1

3∑

b=1

Y ∗ν,bmZ
H
k5+bZ

H
j2+m

− 4

3∑

l=1

vRlλ
∗
l

3∑

m=1

3∑

a=1

Yν,amZ
H
k5+aZ

H
i1Z

H
j2+m + 2

√
2

3∑

l=1

3∑

a=1

T ∗ν,alZ
H
k5+aZ

H
i2Z

H
j2+l

+ 4

3∑

l=1

3∑

m=1

3∑

n=1

vRlκ
∗
lmn

3∑

a=1

Yν,amZ
H
k5+aZ

H
i2Z

H
j2+n + 2

√
2

3∑

l=1

3∑

a=1

ZHk5+aTν,alZ
H
i2Z

H
j2+l

+ 4vu

3∑

l=1

3∑

m=1

3∑

n=1

κ∗lmn

3∑

a=1

Yν,alZ
H
k5+aZ

H
i2+nZ

H
j2+n − 4vd

3∑

l=1

3∑

m=1

λ∗l

3∑

a=1

Yν,amZ
H
k5+aZ

H
i2+lZ

H
j2+n

+ 4

3∑

l=1

3∑

m=1

3∑

a=1

vL,aYν,al

3∑

b=1

Y ∗ν,bmZ
H
k5+bZ

H
i2+lZ

H
j2+m + 4

3∑

l=1

3∑

m=1

3∑

a=1

Y ∗ν,alvL,a

3∑

b=1

Yν,bmZ
H
k5+bZ

H
i2+lZ

H
j2+m

+ 2g21vd

3∑

a=1

ZHi5+aZ
H
j5+aZ

H
k1 + 2g22vd

3∑

a=1

ZHi5+aZ
H
j5+aZ

H
k1

+ 2g21

3∑

a=1

vL,aZ
H
j5+aZ

H
i1Z

H
k1 + 2g22

3∑

a=1

vL,aZ
H
j5+aZ

H
i1Z

H
k1

− 4vu

3∑

l=1

λ∗l

3∑

a=1

Yν,alZ
H
j5+aZ

H
i2Z

H
k1 − 4

3∑

l=1

3∑

m=1

vRlλ
∗
l

3∑

a=1

Yν,amZ
H
j5+aZ

H
i2+mZ

H
k1

+ 2g21

3∑

a=1

vL,aZ
H
i5+aZ

H
j1Z

H
k1 + 2g22

3∑

a=1

vL,aZ
H
i5+aZ

H
j1Z

H
k1 + 6g21vdZ

H
i1Z

H
j1Z

H
k1

+ 6g22vdZ
H
i1Z

H
j1Z

H
k1 − 2g21vuZ

H
i2Z

H
j1Z

H
k1 − 2g22vuZ

H
i2Z

H
j1Z

H
k1

+ 8vu|
3∑

l=1

λl|2ZHi2ZHj1ZHk1 + 8

3∑

l=1

3∑

m=1

vlRλlλ
∗
mZ

H
i2+mZ

H
j1Z

H
k1 − 4

3∑

l=1

vuλ
∗
l

3∑

a=1

Yν,alZ
H
i5+aZ

H
j2Z

H
k1

− 2g21vuZ
H
i1Z

H
j2Z

H
k1 − 2g22vuZ

H
i1Z

H
j2Z

H
k1 + 8vu|

3∑

l=1

λl|2ZHi1ZHj2ZHk1

− 2g21vdZ
H
i2Z

H
j2Z

H
k1 − 2g22vdZ

H
i2Z

H
j2Z

H
k1 + 8vd|

3∑

l=1

λl|2ZHi2ZHj2ZHk1

− 4

3∑

l=1

λ∗l

3∑

a=1

vL,aYν,alZ
H
i2Z

H
j2Z

H
k1 − 2

√
2

3∑

l=1

T ∗λ,lZ
H
i2+lZ

H
j2Z

H
k1

− 4

3∑

l=1

3∑

m=1

vRlλ
∗
l

3∑

a=1

Yν,amZ
H
i5+aZ

H
j2+mZ

H
k1 + 8

3∑

l=1

3∑

m=1

vRlλlλmZ
H
i1Z

H
j2+mZ

H
k1 − 2

3∑

l=1

√
2T ∗λ,lZ

H
i2Z

H
j2+lZ

H
k1

+ 8vd

3∑

l=1

3∑

m=1

λlλ
∗
mZ

H
i2+lZ

H
j2+mZ

H
k1 − 4

3∑

l=1

3∑

m=1

λ∗l

3∑

a=1

vL,aYν,alZ
H
i2+lZ

H
j2+mZ

H
k1

− 2g21vu

3∑

a=1

ZHi5+aZ
H
j5+aZ

H
k2 − 2g22vu

3∑

a=1

ZHi5+aZ
H
j5+aZ

H
k2

+ 4vu

3∑

l=1

3∑

a=1

Yν,alZ
H
j5+a

3∑

b=1

Y ∗ν,blZ
H
i5+bZ

H
k2 + 4vu

3∑

l=1

3∑

a=1

Yν,alZ
H
i5+a

3∑

b=1

Y ∗ν,blZ
H
j5+bZ

H
k2

− 4vu

3∑

l=1

λ∗l

3∑

a=1

Yν,alZ
H
j5+aZ

H
i1Z

H
k2 − 2g21

3∑

a=1

vL,aZ
H
j5+aZ

H
i2Z

H
k2

− 2g22

3∑

a=1

vL,aZ
H
j5+aZ

H
i2Z

H
k2 − 4vd

3∑

l=1

λ∗l

3∑

a=1

Yν,alZ
H
j5+aZ

H
i2Z

H
k2
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+ 4

3∑

l=1

3∑

a=1

vL,aYν,al

3∑

b=1

Y ∗ν,blZ
H
j5+bZ

H
i2Z

H
k2 + 4

3∑

l=1

3∑

a=1

Y ∗ν,alvL,a

3∑

b=1

Yν,blZ
H
j5+bZ

H
i2Z

H
k2

+ 2
√

2

3∑

l=1

3∑

a=1

T ∗ν,alZ
H
j5+aZ

H
i2+lZ

H
k2 + 4

3∑

l=1

3∑

m=1

3∑

n=1

vlRκ
∗
lmn

3∑

a=1

Yν,amZ
H
j5+aZ

H
i2+nZ

H
k2

+ 2
√

2

3∑

l=1

3∑

a=1

ZHj5+aTν,alZ
H
i2+lZ

H
k2 − 4vu

3∑

l=1

λ∗l

3∑

a=1

Yν,alZ
H
i5+aZ

H
j1Z

H
k2 − 2g21vuZ

H
i1Z

H
j1Z

H
k2

− 2g22vuZ
H
i1Z

H
j1Z

H
k2 + 8vu|

3∑

l=1

λl|2ZHi1ZHj1ZHk2 − 2g21vdZ
H
i2Z

H
j1Z

H
k2

− 2g22vdZ
H
i2Z

H
j1Z

H
k2 + 8vd|

3∑

l=1

λl|2ZHi2ZHj1ZHk2 − 4

3∑

l=1

λ∗l

3∑

a=1

vL,aYν,alZ
H
i2Z

H
j1Z

H
k2

− 2
√

2

3∑

l=1

T ∗λ,lZ
H
i2+lZ

H
j1Z

H
k2 − 2g21

3∑

a=1

vL,aZ
H
i5+aZ

H
j2Z

H
k2 − 2g22

3∑

a=1

vL,aZ
H
i5+aZ

H
j2Z

H
k2

− 4vd

3∑

l=1

λ∗l

3∑

a=1

Yν,alZ
H
i5+aZ

H
j2Z

H
k2 + 4

3∑

l=1

3∑

a=1

vL,aYν,al

3∑

b=1

Y ∗ν,blZ
H
i5+bZ

H
j2Z

H
k2

+ 4

3∑

l=1

3∑

a=1

Y ∗ν,alvL,a

3∑

b=1

Yν,blZ
H
i5+bZ

H
j2Z

H
k2 − 2g21vdZ

H
i1Z

H
j2Z

H
k2

− 2g22vdZ
H
i1Z

H
j2Z

H
k2 + 8vd|

3∑

l=1

λl|2ZHi1ZHj2ZHk2 − 4

3∑

l=1

λ∗l

3∑

a=1

vL,aYν,alZ
H
i1Z

H
j2Z

H
k2

+ 6g21vuZ
H
i2Z

H
j2Z

H
k2 + 6g22vuZ

H
i2Z

H
j2Z

H
k2 + 8

3∑

l=1

3∑

m=1

vlRλlλ
∗
mZ

H
i2+mZ

H
j2Z

H
k2

+ 8

3∑

l=1

3∑

m=1

vRl

3∑

a=1

Yν,alY
∗
ν,amZ

H
i2+mZ

H
j2Z

H
k2 + 2

√
2

3∑

l=1

3∑

a=1

T ∗ν,alZ
H
i5+aZ

H
j2+lZ

H
k2

+ 4

3∑

l=1

3∑

m=1

3∑

n=1

vlRκ
∗
lmn

3∑

a=1

Yν,amZ
H
i5+aZ

H
j2+nZ

H
k2 + 2

√
2

3∑

l=1

3∑

a=1

ZHi5+aTν,alZ
H
j2+lZ

H
k2

− 2
√

2

3∑

l=1

T ∗λ,lZ
H
i1Z

H
j2+lZ

H
k2 + 8

3∑

l=1

3∑

m=1

vRlλlλ
∗
mZ

H
i2Z

H
j2+mZ

H
k2 + 8

3∑

l=1

3∑

m=1

vRl

3∑

a=1

Yν,alYν,amZ
H
i2Z

H
j2+mZ

H
k2

+ 8vu

3∑

l=1

3∑

m=1

λlλ
∗
mZ

H
i2+lZ

H
j2+mZ

H
k2 + 8vu

3∑

l=1

3∑

m=1

3∑

a=1

Yν,alYν,a,mZ
H
i2+lZ

H
j2+lZ

H
k2

+ 4

3∑

l=1

3∑

m=1

3∑

n=1

κ∗lmn

3∑

a=1

vL,aYν,alZ
H
i2+mZ

H
j2+nZ

H
k2 + 4

3∑

l=1

3∑

m=1

vRl

3∑

a=1

Yν,alZ
H
j5+a

3∑

b=1

Y ∗ν,bmZ
H
i5+bZ

H
k2+m

+ 4

3∑

l=1

3∑

m=1

vRl

3∑

a=1

Yν,alZ
H
i5+a

3∑

b=1

Y ∗ν,bmZ
H
j5+bZ

H
k2+m − 4

3∑

l=1

3∑

m=1

vRlλ
∗
l

3∑

a=1

Yν,amZ
H
j5+aZ

H
i1Z

H
k2+m

+ 2
√

2

3∑

l=1

3∑

a=1

T ∗ν,alZ
H
j5+aZ

H
i2Z

H
k2+l + 4

3∑

l=1

3∑

m=1

3∑

n=1

vRlκ
∗
lmn

3∑

a=1

Yν,amZ
H
j5+aZ

H
i2Z

H
k2+n

+ 2
√

2

3∑

l=1

3∑

a=1

ZHj5+aTν,alZ
H
i2Z

H
k2+l + 4vu

3∑

l=1

3∑

m=1

3∑

n=1

κ∗lmn

3∑

a=1

Yν,alZ
H
j5+aZ

H
i2+mZ

H
k2+n

− 4vd

3∑

l=1

3∑

m=1

λ∗l

3∑

a=1

Yν,amZ
H
j5+aZ

H
i2+lZ

H
k2+n + 4

3∑

l=1

3∑

m=1

3∑

a=1

vL,aYν,al

3∑

b=1

Y ∗ν,bmZ
H
j5+bZ

H
i2+lZ

H
k2+m

+ 4

3∑

l=1

3∑

m=1

3∑

a=1

Y ∗ν,alvL,a

3∑

b=1

Yν,bmZ
H
j5+bZ

H
i2+lZ

H
k2+m − 4

3∑

l=1

3∑

m=1

vRlλ
∗
l

3∑

a=1

Yν,amZ
H
i5+aZ

H
j1Z

H
k2+m
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+ 8

3∑

l=1

3∑

m=1

vRlλlλ
∗
mZ

H
i1Z

H
j1Z

H
k2+m − 2

√
2

3∑

l=1

T ∗λ,lZ
H
i2Z

H
j1Z

H
k2+l

+ 8vd

3∑

l=1

3∑

m=1

λlλ
∗
mZ

H
i2+lZ

H
j1Z

H
k2+m − 4

3∑

l=1

3∑

m=1

λ∗l

3∑

a=1

vL,aYν,amZ
H
i2+lZ

H
j1Z

H
k2+m

+ 2
√

2

3∑

l=1

3∑

a=1

T ∗ν,alZ
H
i5+aZ

H
j2Z

H
k2+l + 4

3∑

l=1

3∑

m=1

3∑

n=1

vRlκ
∗
lmn

3∑

a=1

Yν,amZ
H
i5+aZ

H
j2Z

H
k2+n

+ 2
√

2

3∑

l=1

3∑

a=1

ZHi5+aTν,alZ
H
j2Z

H
k2+l − 2

√
2

3∑

l=1

T ∗λ,lZ
H
i1Z

H
j2Z

H
k2+l + 8

3∑

l=1

3∑

m=1

vRlλlλ
∗
mZ

H
i2Z

H
j2Z

H
k2+m

+ 8

3∑

l=1

vRl

3∑

a=1

Yν,alY
∗
ν,amZ

H
i2Z

H
j2Z

H
k2+m + 8vu

3∑

l=1

3∑

m=1

λlλ
∗
mZ

H
i2+lZ

H
j2Z

H
k2+m

+ 8

3∑

l=1

3∑

m=1

vu

3∑

a=1

Yν,a1Y
∗
ν,amZ

H
i2+lZ

H
j2Z

H
k2+m + 4

3∑

l=1

3∑

m=1

3∑

n=1

κ∗lmn

3∑

a=1

vL,aYν,alZ
H
i2+mZ

H
j2Z

H
k2+n

+ 4vu

3∑

l=1

3∑

m=1

3∑

n=1

κ∗lmn

3∑

a=1

Yν,alZ
H
i5+aZ

H
j2+mZ

H
k2+n − 4vd

3∑

l=1

3∑

m=1

λ∗l

3∑

a=1

Yν,amZ
H
i5+aZ

H
j2+lZ

H
k2+m

+ 4

3∑

l=1

3∑

m=1

3∑

a=1

vL,aYν,al

3∑

b=1

Y ∗ν,bmZ
H
i5+bZ

H
j2+lZ

H
k2+m + 4

3∑

l=1

3∑

m=1

3∑

a=1

Y ∗ν,alvL,a

3∑

b=1

Yν,bmZ
H
i5+bZ

H
j2+lZ

H
k2+m

+ 8vd

3∑

l=1

3∑

m=1

λlλ
∗
mZ

H
i1Z

H
j2+lZ

H
k2+m − 4

3∑

l=1

3∑

m=1

λ∗l

3∑

a=1

vL,aYν,amZ
H
i1Z

H
j2+lZ

H
k2+m

+ 8vu

3∑

l=1

3∑

m=1

λ1λ
∗
mZ

H
i2Z

H
j2+lZ

H
k2+m

+ 8vu

3∑

l=1

3∑

m=1

3∑

a=1

Yν,alY
∗
ν,amZ

H
i2Z

H
j2+lZ

H
k2+m + 4

3∑

l=1

3∑

m=1

3∑

n=1

κ∗lmn

3∑

a=1

vL,aYν,alZ
H
i2Z

H
j2+mZ

H
k2+n

+ 48

3∑

l=1

3∑

m=1

3∑

n=1

3∑

q=1

vRl

3∑

o=1

κlmqκ
∗
qnoZ

H
i2+mZ

H
j2+nZ

H
k2+o + 4

3∑

l=1

3∑

m=1

3∑

n=1

√
2T ∗κ,lmnZ

H
i2+lZ

H
j2+mZ

H
k2+n

+ 4

3∑

l=1

3∑

m=1

3∑

n=1

vRl

3∑

a=1

Y ∗ν,amZ
H
k5+aZ

H
i2+nZ

H
j2κlmn

+ 4

3∑

l=1

3∑

m=1

3∑

n=1

vRl

3∑

a=1

Y ∗ν,amZ
H
k5+aZ

H
i2Z

H
j2+nκlmn + 4vu

3∑

l=1

3∑

m=1

3∑

n=1

3∑

a=1

Y ∗ν,alZ
H
k5+aZ

H
i2+mZ

H
j2+nκlmn

− 4

3∑

l=1

3∑

m=1

3∑

n=1

vRlλ
∗
mZ

H
i2+nZ

H
j2Z

H
k1κlmn − 4

3∑

l=1

3∑

m=1

3∑

n=1

vRlλ
∗
mZ

H
i2Z

H
j2+nZ

H
k1κlmn

− 4vu

3∑

l=1

3∑

m=1

3∑

n=1

λ∗l Z
H
i2+mZ

H
j2+nZ

H
k1κlmn

+ 4

3∑

l=1

3∑

m=1

3∑

n=1

vRl

3∑

a=1

Y ∗ν,amZ
H
j5+aZ

H
i2+nZ

H
k2κlmn − 4

3∑

l=1

3∑

m=1

3∑

n=1

vRlλ
∗
mZ

H
i2+nZ

H
j1Z

H
k2κlmn

+ 4

3∑

l=1

3∑

m=1

3∑

n=1

vRl

3∑

a=1

Y ∗ν,amZ
H
i5+aZ

H
j2+nZ

H
k2κlmn − 4

3∑

l=1

3∑

m=1

3∑

n=1

vRlλ
∗
mZ

H
i1Z

H
j2+nZ

H
k2κlmn

− 4vd

3∑

l=1

3∑

m=1

3∑

n=1

λ∗l Z
H
i2+mZ

H
j2+nZ

H
k2κlmn

+ 4

3∑

l=1

3∑

m=1

3∑

n=1

3∑

a=1

Y ∗ν,alvL,aZ
H
i2+mZ

H
j2+nZ

H
k2κlmn + 4

3∑

l=1

3∑

m=1

3∑

n=1

vRl

3∑

a=1

Y ∗ν,amZ
H
j5+aZ

H
i2Z

H
k2+nκlmn
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+ 4vu

3∑

l=1

3∑

m=1

3∑

n=1

3∑

a=1

Y ∗ν,alZ
H
j5+aZ

H
i2+mZ

H
k2+nκlmn − 4

3∑

l=1

3∑

m=1

3∑

n=1

vRlλ
∗
mZ

H
i2Z

H
j1Z

H
k2+nκlmn

− 4vu

3∑

l=1

3∑

m=1

3∑

n=1

λ∗l Z
H
i2+mZ

H
j1Z

H
k2+nκlmn

+ 4

3∑

l=1

3∑

m=1

3∑

n=1

vRl

3∑

a=1

Y ∗ν,amZ
H
i5+aZ

H
j2Z

H
k2+nκlmn − 4

3∑

l=1

3∑

m=1

3∑

n=1

vRlλ
∗
mZ

H
i1Z

H
j2Z

H
k2+nκlmn

− 4vd

3∑

l=1

3∑

m=1

3∑

n=1

λ∗l Z
H
i2+mZ

H
j2Z

H
k2+nκlmn

+ 4

3∑

l=1

3∑

m=1

3∑

n=1

3∑

a=1

Y ∗ν,alvL,aZ
H
i2+mZ

H
j2Z

H
k2+nκlmn + 4vu

3∑

l=1

3∑

m=1

3∑

n=1

3∑

a=1

Y ∗ν,alZ
H
i5+aZ

H
j2+mZ

H
k2+nκlmn

− 4vu

3∑

l=1

3∑

m=1

3∑

n=1

λ∗l Z
H
i1Z

H
j2+mZ

H
k2+nκlmn − 4vd

3∑

l=1

3∑

m=1

3∑

n=1

λ∗l Z
H
i2Z

H
j2+mZ

H
k2+nκlmn

+ 4

3∑

l=1

3∑

m=1

3∑

n=1

3∑

a=1

Y ∗ν,alvL,aZ
H
i2Z

H
j2+mZ

H
k2+nκlmn

− 4vu

3∑

l=1

3∑

a=1

Y ∗ν,alZ
H
k5+aZ

H
i2Z

H
j1λl − 4

3∑

l=1

3∑

m=1

vRl

3∑

a=1

Y ∗ν,alZ
H
k5+aZ

H
i2+mZ

H
j1λm

− 4vu

3∑

l=1

3∑

a=1

Y ∗ν,alZ
H
k5+aZ

H
i1Z

H
j2λl − 4vd

3∑

l=1

3∑

a=1

Y ∗ν,alZ
H
k5+aZ

H
i2Z

H
j2λl

− 4

3∑

l=1

3∑

m=1

vRl

3∑

a=1

Y ∗ν,alZ
H
k5+aZ

H
i1Z

H
j2+mλm − 4vd

3∑

l=1

3∑

m=1

3∑

a=1

Y ∗ν,alZ
H
k5+aZ

H
i2+lZ

H
j2+mλm

− 4vu

3∑

l=1

3∑

a=1

Y ∗ν,alZ
H
j5+aZ

H
i2Z

H
k1λl − 4

3∑

l=1

3∑

m=1

vRl

3∑

a=1

Y ∗ν,amZ
H
j5+aZ

H
i2+lZ

H
k1λm

− 4

3∑

l=1

vu

3∑

a=1

Y ∗ν,alZ
H
i5+aZ

H
j2Z

H
k1λl − 4

3∑

l=1

3∑

a=1

Y ∗ν,alvL,aZ
H
i2Z

H
j2Z

H
k1λl

− 4

3∑

l=1

3∑

m=1

3∑

n=1

vRlκ
∗
lmnZ

H
i2+mZ

H
j2Z

H
k1λn − 4

3∑

l=1

3∑

m=1

vRl

3∑

a=1
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