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ON UNIVALENT POLYNOMIALS WITH CRITICAL POINTS ON THE UNIT

CIRCLE

MARÍA J. MARTÍN AND DRAGAN VUKOTIĆ

ABSTRACT. Brannan showed that a normalized univalent polynomial of the
form P (z) = z + a2z2 + . . .+ an−1zn−1 + zn

n
is starlike if and only if a2 = . . . =

an−1 = 0. We give a new and simple proof of his result, showing further that it
is also equivalent to the membership of P in the Noshiro-Warschawski class
of univalent functions whose derivative has positive real part in the disk.
Both proofs are based on the Fejér lemma for trigonometric polynomials
with positive real part.

INTRODUCTION

Let D denote the unit disk in the complex plane and S the class of all nor-
malized univalent (that is, analytic and one-to-one) functions in D with the
Taylor series f (z) = z+

∑∞
n=2 an zn . This class and its several natural subclasses

have been extensively studied in the literature [3], [5].
A basic step in understanding the class S is the study of the polynomials

in the class. Dieudonné [2] characterized the univalence of a polynomial in
terms of the roots of an associated trigonometric equation, which is useful for
applications but not explicit. Various authors have afterwards sought a simple
explicit characterization of the coefficient regions of univalent polynomials,
without involving any additional parameters. In such a study, Dieudonné’s
result is often used as a starting point; see [3, § 8.6]. However, this has so far
only been done for the polynomials of very small degree; the case n = 4 is
already quite complicated.

If a normalized polynomial P (z) = z +a2z2 + . . .+an−1zn−1 +an zn is locally
univalent in the unit disk then it is easy to see that |an | ≤

1
n

since its derivative
cannot vanish in D; to this end, just write P ′(z) = nan

∏n−1
k=1(z−αk). In this note

we will be interested mainly in the polynomials with the maximum modulus
of the leading coefficient: |an | =

1
n

. It is not difficult to see that such a polyno-
mial has all of its critical points on the unit circle. Conversely, it is trivial to see
that every polynomial with critical points on the unit circle and normalized
so that P ′(0) = 1 must satisfy the condition |an | =

1
n

. Since the polynomial P
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shares many properties (including those we are interested in here) with any
of its rotations: Pλ(z) = λP (λz), where |λ| = 1, it suffices to consider only the
case when an = 1/n.

An analytic function in a convex domain whose derivative has positive real
part is univalent, as expressed by the Noshiro-Warschawski criterion for uni-
valence [3, Theorem 2.16]; in view of this, the normalized class of all functions
in S with Re f ′(z) > 0 in D is often called the Noshiro-Warschawski class. In this
note we show that a normalized univalent polynomial with |an | =

1
n

belongs to
the Noshiro-Warschawski class if and only if a2 = . . . = an−1 = 0. The key tool
in the proof will be the classical Fejér lemma for trigonometric polynomials
with positive real part on the circle.

Another important subclass of S is that of the starlike functions. A set E is
said to be starlike with respect to the origin if for every z ∈ E the segment [0, z]
is contained in E . A function f is said to be starlike if it is a univalent function
of the disk onto a domain starlike with respect to the origin. The usual nota-
tion for the subclass of S consisting of all starlike functions is S∗. It is well-
known [3, Theorem 2.10] that an analytic function f in D, normalized so that

f (0)= f ′(0)−1 = 0, belongs to S∗ if and only if Re z f ′(z)
f (z) > 0 for all z ∈D. For the

normalized polynomials with an =
1
n

, Brannan [1] showed that a polynomial
of this form is starlike if and only if a2 = . . . = an−1 = 0 by relying on the crite-
rion of Dieudonné for univalence. We will give a different proof of Brannan’s
result, again by using Fejér’s lemma instead of Dieudonné’s criterion.

1. PRELIMINARY FACTS ON POLYNOMIALS

Some basic facts about polynomials. Given a complex polynomial of de-
gree n: P (z) =

∑n
k=0 ck zk , if we look at its restriction to the unit circle and write

each z of modulus one as z = e i t , t ∈ [0,2π], it is easy to see that Re P is a
trigonometric polynomial of degree n:

(1) T (t ) =α0 +

n
∑

k=1
(αk coskt +βk sinkt ) .

It is not difficult to see that it can have at most 2n zeros in [0,2π]. Either from
this or from the solution to the Dirichlet problem for the disk with continuous
data on the unit circle, we deduce the following.

FACT. If the real part of a complex polynomial P vanishes on the unit circle then

P is identically equal to a purely imaginary constant.

The Fejér lemma. The following classical lemma due to Fejér [7, p. 154–155]
characterizes an important class of trigonometric polynomials.

FEJÉR’S LEMMA. If T is a trigonometric polynomial as in (1) and T (t ) ≥ 0 for all

t ∈ [0,2π] then there exist complex coefficients γ j , 0 ≤ j ≤ n, such that

T (t ) = |γ0 +γ1e i t
+ . . .+γne i nt

|
2 , t ∈ [0,2π] .
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Another useful property. Here is a useful fact. The argument is adapted
from the proof of the main theorem in our recent work on a different topic [4].

PROPOSITION 1. If n ≥ 2 and the polynomial

Q(z) = 1+c1z +c2z2
+ . . .+cn−1zn−1

+ zn

has positive real part in D then c1 = c2 = . . . = cn−1 = 0.

Proof. Consider the n-th roots of −1:

ωk = e (2k+1)πi /n , k = 0,1, . . . ,n −1 .

Clearly, Re{1+ωn
k

} = 0, k = 0,1, . . . ,n −1. Hence from our assumption that Q

has positive real part in D we conclude that for each of these values

(2) Re{c1ωk +c2ω
2
k + . . .+cn−1ω

n−1
k } ≥ 0 , k = 0,1, . . . ,n −1 .

By basic algebra, for any fixed j with 1≤ j ≤ n −1 we have

n−1
∑

k=0

ω
j

k
= eπi j /n

n−1
∑

k=0

e2k jπi /n
= eπi j /n 1−e2 jπi

1−e2 jπi /n
= 0 .

Thus, summing up the terms on the left in (2) over k ∈ {0,1, . . . ,n −1}, we get

n−1
∑

k=0

Re{c1ωk +c2ω
2
k + . . .+cn−1ω

n−1
k } = Re

n−1
∑

j=1

{

c j

n−1
∑

k=0

ω
j

k

}

= 0 .

Since every summand on the left-hand side in the above formula is non-negative
in view of (2), all of them must be zero:

Re {c1ωk +c2ω
2
k + . . .+cn−1ω

n−1
k } = 0 , k = 0,1, . . . ,n −1 ,

hence also

(3) Re{1+c1ωk +c2ω
2
k + . . .+cn−1ω

n−1
k +ωn

k } = 0 , k = 0,1, . . . ,n −1 .

Writing λ= e i t , t ∈ [0,2π], the function

T (t ) = Re {1+c1λ+ . . .+cn−1λ
n−1

+λn}

can be viewed as a trigonometric polynomial of degree n of the variable t .
Since T (t ) ≥ 0 on [0,2π], Fejér’s Lemma tells us that for some coefficients
γ0,γ1,. . . ,γn and λ= e i t we have

T (t ) = |(γ0 +γ1λ+ . . .+γnλ
n)2

| .

The complex polynomial Q(z)= (γ0+γ1z+. . .γn zn)2 cannot be identically zero
for then the trigonometric polynomial T would be identically zero in [0,2π]
and then the restriction of Re{1+ c1z + . . .+ cn−1zn−1 + zn} to the unit circle
would be zero while its value at the origin is one, which would contradict the
maximum principle or the mean value property. Therefore the polynomial Q

has 2n zeros counting the multiplicities, each zero being obviously of order at
least two. But we know from (3) that this polynomial has at least n distinct ze-
ros ωk , k = 0,1, . . . ,n−1, which are roots of −1, so each one of these zeros must
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be double and hence Q cannot have any other zeros. Thus, the polynomial
factorizes as

Q(z) = (γ0 +γ1z + . . .+γn zn)2
=C

n−1
∏

k=0

(z −ωk )2
=C (zn

+1)2 .

Hence

Re{1+c1z + . . .+cn−1zn−1
+ zn} = |C (zn

+1)2
| = 2|C |Re{zn

+1}

for all z on the unit circle. From the fact quoted earlier, two polynomials whose
real parts are equal on the unit circle must coincide everywhere, except for an
imaginary constant:

1+c1z + . . .+cn−1zn−1
+ zn

= 2|C |(zn
+1)+ ic , z ∈C , c ∈R .

It follows that

c1 = c2 = . . . = cn−1 = 0 ,

which proves the claim. �

A remark on simple critical points. It will also be important to stress that
if all critical points of a polynomial univalent in D are on the unit circle, then
all of them are simple zeros of the derivative. This fact is known to the experts
[1, p. 105], [6, p. 241] but it seems useful to explain it in a few lines. In fact,
if P ′(α) = 0 for some α with |α| = 1 and if P ′′(α) = 0, then α is a zero of order
k ≥ 3 of the polynomial P (z)−P (α), hence

Pα(z) = P (z)−P (α) = [(z −α)h(z)]k

for some entire function h. Note that the function g (z) = (z −α)h(z) has the
property that g ′(α) = h(α) 6= 0, hence g is conformal at the point α. Now the
basic local mapping properties can be used to contradict the univalence of Pα.

2. THE MAIN RESULT AND ITS PROOF

We are now ready to prove our main result. It can be viewed as an extension
of Brannan’s result by a completely different and possibly simpler method. In
order to prove the equivalence between (b) and (c) below in [1], Brannan used
Dieudonné’s criterion and another lemma on univalent polynomials proved
by himself in an earlier paper. As far as we know, the equivalence between (a)
and the remaining two conditions is new.

THEOREM 2. Let P (z) = z +a2z2 + . . .+an−1zn−1 +an zn be a polynomial in the

class S with all critical points on the unit circle (that is, |an | =
1
n

). Then the

following statements are equivalent:

(a) P ′ has positive real part in D.

(b) a2 = . . . = an−1 = 0.

(c) P is starlike.
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Note that P has any of the properties (a)–(c) if and only if any of its rotations
Pλ(z) = λP (λz), |λ| = 1, has the corresponding property. Thus, without loss of
generality we may assume that P (z) = z+a2z2+. . .+an−1zn−1+ zn

n
. We proceed

under this assumption.

We first show that (a)⇔(b) and then also that (b)⇔(c).

Proof. (a)⇒(b) Follows directly from Proposition 1 since

P ′(z) = 1+2a2z + . . .+ (n −1)an−1zn−2
+ zn−1 .

(b)⇒(a) In this case, P ′(z) = 1+ zn−1, and the conclusion is clear.

(b)⇒(c) It is straightforward to check that

Q(z) =
zP ′(z)

P (z)
=

1+ zn−1

1+ zn−1

n

has positive real part in D since the linear fractional mapping 1+w
1+w

n
maps the

unit disk onto a disk whose diameter is (0, 2n
n+1 ).

(c)⇒(b) By the well-known criterion for starlikeness, P must have the
property that

Re

{

zP ′(z)

P (z)

}

> 0 for all z ∈D .

After multiplying both sides by |P (z)|2, it follows that

Re
{

zP ′(z)P (z)
}

≥ 0

for all z ∈D and hence also for z ∈D. Thus, if we denote by R the polynomial
defined by

R(z) =
P (z)

z
= 1+a2z + . . .+an−1zn−2

+
zn−1

n
,

we conclude that

Re
{

P ′(z)R(z)
}

≥ 0 ,

for all z on the unit circle T = ∂D. Since the restriction of Re{P ′R} to the unit
circle is a trigonometric polynomial, the Fejér lemma yields

Re
{

P ′(z)R(z)
}

= |Q(z)|2 for all z ∈T ,

where Q(z) = γ0 +γ1z + . . . + γn−1zn−1. Now, the zeros of P ′ all lie on T by
assumption and are pairwise different (as observed earlier), so there are n −1
of them. On the other hand, Q viewed as a polynomial in the complex plane
must vanish at each zero of P ′ and has n −1 zeros. Hence the zeros of Q must
all coincide with the zeros of P ′ on T, and it follows that actually in the whole
plane we have Q(z) =C P ′(z) for some constant C . Hence

Re
{

P ′(z)R(z)
}

= |C |
2
|P ′(z)|2 for all z ∈T .
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In other words,

Re
{

P ′(z)(R(z)−|C |2P ′(z))
}

= 0 for all z ∈T .

After writing down the expressions for both factors on the left-hand side, P ′

and (R −|C |2P ′), and multiplying out, we obtain a trigonometric polynomial
of the form

α0 +

n−1
∑

k=1
(αk coskt +βk sinkt )

whose all coefficients are zero. There is no need to compute all of them: it
suffices to focus just on α0 and αn−1. One easily notices that

(4) αn−1 = 1+
1

n
−2|C |

2
= 0 .

and

α0 = (1−|C |
2)+

n−1
∑

k=2

k(1−k|C |
2)|ak |

2
+

(

1

n
−|C |

2
)

= 0 .

In view of (4), the first and the last term in the above sum cancel out, so we are
left with

(5)
n−1
∑

k=2
k

(

1−k|C |
2)
|ak |

2
= 0 .

Equation (4) yields |C |2 = (n +1)/(2n), which easily implies that

1−k|C |
2
< 0, for all k ∈ {2,3, . . . ,n −1} .

This, together with (5), readily implies (b). �

REFERENCES

[1] D.A. Brannan, On univalent polynomials, Glasgow Math. J. 11 (1970), 102–107.
[2] J. Dieudonné, Sur le rayon d’univalence des polynômes, C. R. Sci. Acad. Paris 192

(1931), 79–81.
[3] P.L. Duren, Univalent Functions, Springer-Verlag, New York 1983.
[4] M.J. Martín, E.T. Sawyer, I. Uriarte-Tuero, D. Vukotić, The Krzyż conjecture revisited,
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