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Abstract 

Core-shell gallium nanoparticles (Ga NPs) have recently been proposed as an ultraviolet 

plasmonic material for different applications but only at room temperature. Here, the 

thermal stability as a function of the size of the NPs is reported over a wide range of 

temperatures. We analyse the chemical and structural properties of the oxide shell by x-

ray photoelectron spectroscopy and atomic force microscopy. We demonstrate the inverse 

dependence of the shell breaking temperature with the size of the NPs. Spectroscopic 

ellipsometry is used for tracking the rupture and its mechanism is systematically 

investigated by scanning electron microscopy, grazing incidence x-ray diffraction and 

cathodoluminescence. Taking advantage of the thermal stability of the NPs, we perform 

complete oxidations that lead to homogenous gallium oxide NPs. Thus, this study set the 

physical limits of Ga NPs to last at high temperatures, and opens up the possibility to 

achieve totally oxidized NPs while keeping their sphericity. 
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1. Introduction 

Metallic nanoparticles (NPs) have been, for a long time, the focus of the research 

community due to their unique electrical, optical, catalytic and sensing properties1. One 

of their most studied properties is their capability to confine the light thanks to the 

excitation of their free electrons (plasmons)2. This confinement arises from a localized 

surface plasmon resonance (LSPR) that occurs at a characteristic frequency of each 

material and strongly depends on the surrounding media3.  

As a metallic material, gallium (Ga) has its bulk plasma frequency in the ultraviolet (UV) 

range (14 eV)4. In the form of NPs, the plasmon resonance can, however, be varied in a 

wide spectral range from the UV to the infrared depending on their size and shape5. Ga 

NPs typically exhibit hemispherical shape by self-assembly when grown on different 

substrates such as polymers, glass, fused silica, sapphire, graphite or silicon (Si). The two 

different axes cause two different resonances: the out-of-plane resonance (shortest axis) 

at higher energies and the in-plane resonance (largest axis) at lower energies6.  

One of the advantages of using Ga NPs is that they can be produced in a simple, fast and 

cost effective manner using thermal evaporation at low temperatures. During the 

deposition, Ga NPs merge due to coalescence or coarsening processes, sometimes 

ascribed to the Ostwald ripening mechanism7.   

After the deposition, when NPs are exposed to air, a native gallium oxide (Ga2O3) is 

formed around the liquid Ga that preserves it in a supercooled state and is amorphous8. 

This passivating layer has a self-limiting thickness between 0.5-3 nm due to the 

attenuation of oxygen diffusion9,10. 

Despite the formation of the native oxide layer, this core-shell structure has exhibited 

good properties in different applications such as surface-enhanced Raman scattering11,12, 

solid-liquid phase change memories13, waveguiding14 and ellipsometric biosensing15,16. 

Although the native oxide plays a key role in the liquid core-oxide shell stability, little 

attention has been paid to it so far. In a previous work, we studied the role of this oxide 

in the chemical functionalization of the Ga NPs17. In particular, we found out that the 

formation of thiol-based self-assembly monolayer can be better identified when the oxide 

thickness is enlarged by thermal treatments providing better NPs stability. Moreover, the 
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oxidation at low temperatures was demonstrated to be an accurate approach to tune the 

plasmon resonance wavelength of the NPs18.  

In this work we study the mechanical and compositional properties of the oxide shell in 

a large temperature range, from room temperature (RT) up to 900 ºC, at atmospheric 

pressure. The rupture mechanism of the oxide shell is analysed by different 

morphological, optical and structural techniques. We determine the breaking temperature 

of the NPs as a function of their size, and we analyse the changes in their plasmonic 

properties. 

2. Experimental 

Ga NPs are deposited by Joule-effect thermal evaporation using a vertical Edwards E306 

system operating in high vacuum conditions (base pressure of 2×10-7 mbar). The size of 

the NPs depends on the total amount of Ga in the evaporation crucible. Different masses 

have been evaporated in order to obtain different NP mean radius. In particular, we 

deposited 30, 75, 120, 260, 340 and 410 mg of Ga mass. A 99.9999% purity Ga was used 

for the evaporation processes. These have been carried out under 50 W power, applied to 

a tungsten filament (99.90% purity). The working pressure during deposition was 1.5×10-

5 mbar. Si (100) substrates were placed 200 mm away from the Ga source. The substrate 

holder is ice-cooled to avoid surface migration and coalescence of the NPs by 

unintentional heating.   

Thermal treatments of the NPs were performed at atmospheric pressure in a horizontal 

quartz tube connected to a gas supply line with a QuadraTherm mass flow meter. The 

temperature inside the furnace is monitored by a proportional-integral-derivative 

controller. For the oxidation, a constant flow of 80 standard cubic centimetres (sccm) of 

99.999% pure O2 was used. Two factors were varied during the oxidation processes, 

either the temperature up to 900 ºC or the oxidation time up to 1200 min. After the 

oxidation process, the samples were extracted from the tube, cooling down in ambient 

conditions. 

The optical properties of the samples were analysed by spectroscopic ellipsometry (SE), 

using a Jobin Yvon UVISEL system equipped with a Xe lamp (1.5-4.5 eV energy range), 

a 0º modulator and a 45º analyser. The measurements are taken in external reflection 

configuration at 70º incidence angle referred to the normal of the sample surface. The 
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pseudo-dielectric constants of the material were obtained from the ellipsometric 

parameters psi (ψ) and delta (∆)19. 

Scanning electron microscopy (SEM) was used to study the morphology of the Ga NPs.  

The microscope is a FEI XL30-SFEG system, operating with 10 keV electron beam and 

nominal lateral resolution of 4 nm, being the secondary electrons collected and analysed 

with an Everhart-Thornley detector. 

The crystal structure of the samples has been analysed by grazing incidence X-ray 

diffraction (GIXRD) using a X’Pert Pro Panalytical system. The incident beam is 

produced in a Cu X-ray tube, focused by a Göbel mirror and collimated in a Soller slit 

(0.04 rad). The diffracted beam passes through a 0.18º parallel plate collimator, a graphite 

(002) monochromator, and a Soller slit (0.04 rad) before being detected with a Xe gas 

scintillator. The incident angle was fixed at 0.5º and the 2θ angle was varied from 10º up 

to 90º, with a step of 0.04º and an acquisition time of 4 s per point. 

X-ray photoelectron spectroscopy (XPS) has been used to characterize the chemical 

composition of Ga NPs deposited on Si wafer substrates. XPS spectra were acquired in 

an UHV chamber with a base pressure of 10-10 mbar equipped with a hemispherical 

electron energy analyser (SPECS Phoibos 150 spectrometer) and a 2-D delay-line 

detector, using a monochromatic Al-Kα (1486.74 eV) X-ray source. High-resolution 

spectra were recorded at normal emission using an energy step of 0.025 eV and a pass-

energy of 10 eV, which provide an overall instrumental peak broadening of 0.45 eV. The 

absolute binding energies of the photoelectron spectra were determined by referencing to 

the Si 2p3/2 transition at 99.0 eV. The spectra were analysed with the program 

XPSPEAK41 using a Shirley method for background subtraction. 

Atomic Force Microscopy (AFM) served us as a technique for the morphological 

characterization of the NPs. Si cantilevers whose tips have a nominal radius of 8 nm and 

force constant of 40 N/m (Brucker) were employed for the topographical measurements 

in an Agilent PicoPlus 5500 system, operating in dinamic mode. Images were analysed 

and post-processed with Gwyddion program20. Kelvin probe force microscopy (KPFM) 

was also analysed in the same setup in order to measure the surface potential across the 

samples. For these measurements, platinum-coated cantilevers with a nominal force 

constant of 3.5 N/m and radius of 20 nm (©masch) were employed. KPFM measures 

the contact Potential Difference (CPD), which is the difference in the work function 

values of the imaged sample location and that of the tip21. 
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Chatodoluminescence (CL) measurements were performed in order to characterize the 

optical properties of the samples after an oxidation process. The CL detector collects the 

signal generated within a Leica Stereoscan 440 SEM microscope. All the measurements 

were taken with a voltage and beam current of 20 kV and 2 nA respectively. Energy 

Dispersive X-ray Spectroscopy was also performed with a Bruker detector whitin the 

same system. The voltage was set to 20 keV and the insensity was increased to 15 nA. 

3. Results 

3.1 Low temperature regime 

After the deposition, the initial structure of Ga NPs is a liquid metallic core surrounded 

by a native gallium oxide shell. The latter is formed after exposing NPs to ambient air. 

Fig. 1 (a) shows a sketch of this typical core-shell structure on a Si substrate. This sketch 

corresponds well with the morphological characterization performed on the NPs. Fig. 1(c) 

shows a bimodal distribution of NPs obtained after evaporating 340 mg of Ga.  In addition 

to the topographical image (AFM image), the KPFM inset was used to characterize the 

surface potential, since this technique is sensitive to changes in the chemical composition 

and thickness variation, among others21. It can be seen that the CPD signal is quite 

uniform and does not appreciably change for the different NPs displayed, which indicates 

that the native oxide is uniform. 

During the thermal oxidation process, part of the liquid metallic Ga is oxidized and forms 

the gallium oxide shell. After the quenching, the remaining liquid Ga experiences a 

volume reduction that results in a deformation of the shell and the formation of dips, as 

we discussed extensively in our previous work18. This is shown in the sketch of Fig. 1 

(b), which reflects the morphology found for the samples oxidized under 300ºC during 

15 minutes, displayed in Fig. 1 (d) where the dips are marked with dashed squares. The 

existence of dips suggests that the shell has elastic properties to accommodate to the liquid 

Ga core after quenching. As a matter of fact, the KPFM inset in Fig. 1 (d) reveals the 

existence of a clear spatial contrast in the CPD signal on top of each NP. This contrast is 

ascribed to local changes in the oxide thickness of the shell or in its stoichiometry. 

The histogram from the as-deposited sample is shown in Fig. 1 (e) where the second mode 

has a average NP radius of 138 nm. This mode will have more importance than the smaller 

one as explained later on. 
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Figure 1. Skecth of an isolated NP on a SiO2-Si substrate of the a) as-deposited sample and b) 300 

ºC oxidized sample. AFM images of the a) as-deposited sample and b) 300 ºC oxidized sample.  

The location of the different dips are marked by dashed squares in d). The insets correspond to 

the simultaneous KPFM images taken on the same area. The vertical scales correspond to the 

contact potential difference signal. d) Histogram of the size distribution of the as-deposited 

sample with the corresponding gaussian fits. 

We have carried out X-ray photoelectron spectroscopy (XPS) measurements in order to 

chemically study the core-shell structure before and after thermal oxidation. The Ga 3d 

level has a escape depth of photoelectrons around 8 nm22 that is sufficient to detect the 

core signal since the native oxide is 1-3 nm length. The XPS analysis of the as-deposited 
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sample (black solid line) is shown in Fig. 2 (a). The two peaks at low binding energies 

correspond to the doublet of metallic Ga while the other main peak around 21 eV is 

ascribed to the gallium oxide signal as reported in literature23. This doublet comes from 

the Ga oxidation state of +3 and its position is in agreement with the measurement of the 

reference sample of Ga2O3
18. O 2s broad peak is found at higher binding energies (~24 

eV). The spectra cannot be fitted with only four gaussian-lorentzian (60%) functions, 

since a high χ2~6 is obtained. Thus, we propose two additional doublets for the fit, which 

would suggest the presence of suboxides within the oxide shell. The fit of the as-deposited 

sample is plotted below its experimental curve in Fig. 2 (a). For the fit, the area ratio has 

been constrained to be 2/3 for peaks from doublets and the FWHM of each doublet has 

been maintained constant, which increases with the oxidation state. The value of the spin-

orbit splitting was also limited to 0.45 eV for all doublets. An asymmetry factor of 0.077 

has been added to the gaussian-lorentzian function of the metallic Ga as described in 

literature24 according to the Doniach-Sunjic theory. Doublets 5/2 and 3/2 are indicated in 

the figure with solid and dashed line, respectively. The first suboxide (blue color) that 

would correspond to the oxidation state of +1 is placed around 19.1 eV with a FWHM of 

0.72 eV and the second suboxide (orange color) around 20.2 eV with a FWHM of 0.99 

eV attributed to an oxidation state +2. The metallic doublet is placed  around 18.5 eV 

with a FWHM of  0.47 eV and the oxide 3+ at 21.1 eV with a FWHM of 1.2 eV. Although 

lower oxidation states of Ga are less stable than the Ga+3, some groups have found 

evidences of GaO and Ga2O in thin films of GaAs22,25-27. The spectrum with these four 

additional functions (2 doublets) is well fitted giving a χ2 of 0.34. The area ratio of each 

doublet over the whole fitted area is shown in Table 1. Although the metallic and oxide 

3+ doublets play the main role, the oxide 1+ and 2+ are required for an adequate fit. 

We have analysed the same sample under a higher electron emission angle in order to 

have a lower sampling depth, i.e., maximizing the signal from the oxide shell and, 

correspondingly, minimizing the metallic signal from the core. Fig. 2 (a) shows the 

comparison between 0º (normal emission) and 60º take-off measurements (red dashed 

line). Despite the higher angle, the low binding energy region increases, which cannot be 

assigned to a higher metallic signal since the sampling depth is reduced. Thus, it should 

be explained by a higher emission from de oxide 1+ (Ga2O), which evidences again the 

presence of this suboxide. The need of the oxide 2+ component is clearly seen to account 
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for the intensity increase of the valley on the region around 20 eV where this oxide 2+ is 

located. 

Regarding the physical origin of these suboxides, the interfaces are commonly recognized 

as places for formation of low oxidation states due to the presence of broken or 

unsaturated bonds. In our case, in the lowest interface, core Ga-shell GaxOy, the solid 

oxide shell must accommodate itself onto the liquid metal likely provoking the formation 

of suboxides in addition to the growth of the stoichiometric and more stable oxide 

(Ga2O3). In addition, there exist dangling bonds, defects and hydroxides in the outmost 

oxide shell interface that cause the formation/presence of lower oxidations states. 

 

Figure 2. (a) XPS spectra of the 3d level of Ga for the as-deposited sample with a fit of a Ga 

metallic doublet, 3 Ga-O different doublets and a oxygen singlet. Suboxide 1,2 and oxide refers 

to Ga2O, GaO and Ga2O3, respectively. The experimental spectra of the 60º take-off is also 

presented. (b) Same scenario than (a) but for the sample oxidized at 300 ºC. 

Once the as-deposited sample has been studied, we have analysed the sample oxidized at 

300 ºC for 15 min (solid black line of Fig. 2 (b)). Clearly, the signal from the low binding 

energy region decreases compared to the as-deposited sample (Fig. 2 (a)) as a 

consequence of the oxide growth, whose thickness increases around 4-5 nm as estimated 

in our previous work18. The fit is presented below the experimental curve. The area ratio 

of each doublet in this case is also presented in Table 1. It can be seen how the area ratio 

of the Ga 3+ contributes more to the total area in the 300º C oxidized sample than in the 

as-deposited one. Furthermore, the area ratio of the other low states (1+, 2+) doublets 

decreases upon thermal oxidation, which suggests the formation of an better quality oxide 

in terms of stoichiometry since the main contribution comes from its highest oxidation 

state, +3. In adittion, the Fig. 2 (b) shows the 60º take-off measurement of the 300 ºC 
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oxidized sample. In this case, the doublet metallic region does not increase compared to 

its 0º take off counterpart. At 300 ºC, the atoms from the thermally grown oxide would 

have enough energy to accommodate in their more stable oxidation state. Consequently, 

the oxide shell is likely more stoichiometric. 

Table 1. Data from the fit of the XPS measurement of the as-deposited sample corresponding with 

a 3d metallic doublet and three 3d oxides doublets. 

Peak Area ratio for as-

deposited 0º off (%) 

Area ratio for 300 ºC 

oxidized 0º off (%) 

Metal 27.89 15.96 

Suboxide 1 (Ga2O) 9.59 5.28 

Suboxide 2 (GaO) 13.84 8.76 

Oxide (Ga2O3) 45.77 66.3 

 

3.2 High temperature regime 

Our annealing processes at high temperatures lead to the rupture of the gallium oxide 

shell18. This rupture, however, depends on the size of the NPs. In order to characterize 

and determine the breaking temperature we carried out experiments with four samples 

with different NP sizes, obtained after the deposition of 30, 75, 120 and 340 mg of Ga, 

respectively. Oxidation time was maintained constant and equal to 15 min for the whole 

set of samples. After oxidations, a detailed SEM characterization was done in each sample 

in order to evaluate the shell integrity around the NP. The shell breakdown can be easily 

identified by SEM, since the inner liquid is ejected from the core, as shown later. 

Fig. 3 shows the SEM images of the sample of 75 mg of Ga mass (average radius of 30 

nm) oxidized for 15 min at 600 ºC (a) and 700 ºC (b) , respectively. While the NPs remain 

undamaged at 600 ºC, the NPs after 700 ºC annealing have lost their sphericity and show 

grains on top. These facts are compatible with the formation of a polycristalline oxide 

layer, later on confirmed by the GIXRD, and, therefore, evidencing the breaking of the 

shell and the ejection of liquid Ga outwards. Accordingly, we identify the rupture 

temperature in this sample to be 650±50 ºC. Fig. 3 (c) shows the results of the breaking 

temperature as a function of Ga NP radius (and Ga mass) for the whole set of samples. 

The radius in the x axis is obtained from the average NP radius of the second mode of the 
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histogram, which is tipically bimodal as shown in Fig. 1 (e). The reason to take in account 

the second mode and not the average of the histogram is because the biggest NPs break 

earlier in terms of temperature than the smallest ones. The results confirm that small NPs 

are more stable upon annealing than bigger ones.  

 

Figure 3. SEM image of the sample with NP radius of 30 nm oxidized during 15 min at a) 600 ºC 

and b) 700 ºC. c) Core-shell breaking temperature as a function of the NP radius and Ga mass.   

In adittion to the SEM characterization, the SE spectra of all the samples can also be used 

to track the transformation of the NPs. Figure 4 (a) shows the LSPR in-plane mode of the 

sample with the lowest average radius (11 nm). The resonance is located around 400 nm 

for the as-deposited sample. As the temperature is increased, the LSPR intensity only 

undergoes a slight atenuation until 800 ºC. At 900 ºC, the associated absorption band 

dissapears due to the breakdown of the shell, also verified by SEM (not shown). 

Interestingly, the transformation of the NPs can be also achieved for a fixed temperature 

if the oxidation time is increased orders of magnitude. Figure 4 (b) represents the 

evolution of the in-plane resonance for different oxidation times at 700 ºC. This 

temperature is sufficiently high to boost the diffusion but it is far from the breaking 
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temperature (850 ºC) in order to avoid the shell rupture. In this case, the LSPR shows, 

again, a slight attenuattion with oxidation time up to 600 min when the resonance is 

vanished. Despite the lack of LSPR, the SEM characterization shows no rupture of the 

core-shell NPs (image not shown). These arguments suggest that the NPs are totally 

oxidized at 700 ºC for 600 min. It is worth noticing that the total transformation to gallium 

oxide can only be achieved with the smallest NPs since they remain unbroken for long 

times at higher temperatures. 

 

Figure 4. a) SE measurements of the sample with NP average radius of 11 nm oxidized at a) 

different temperatures for15 min b) different times at 700 ºC.  

Fig. 5 shows the SEM images of the NPs with biggest size for temperatures: 450ºC (a), 

600ºC (b) and 900ºC (c). The corresponding as-deposited NPs were already shown in Fig. 

1 (b). In all the cases (above 450ºC), the shell is broken. The rupture of the shell can be 

explained by different factors. On the one hand, the elevated temperature increase from 

RT to 450 ºC produces an increment of the vapour pressure of liquid Ga from 10-8 to 10-

4 torr28. On the other hand, it should be taken into account the two orders of magnitude 

difference in the thermal expansion coefficient between liquid gallium and gallium 

oxide29. Theoretically, a temperature change about 400 ºC would lead to a volume 

increase of a 5% of the liquid gallium according to the formula ΔV/V0=α·ΔT. In contrast, 

the change in the Ga2O3 shell can be neglected (0.2%). Gallium oxide constrains the 

expansion of the core and this stress is released causing a fissure and provoking the shell 

breakdown. The liquid gallium is thermally expanded and ejected from the shell 

following a volcano-like behaviour (Fig. 5 (a)). When the liquid gallium makes contact 

with the O2 flow in the furnace, it is oxidized and forms an irregular shape onto the NP 

surface (Fig. 5 (b)). As the temperature increases, less liquid Ga would remain in the core. 
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In addition, above 800-900 ºC nanowires may grow from the surface of the NPs30 as 

marked in the Fig. 5 (c) with dashed squares. The sketch of Fig. 5 (d) illustrates the 

breakdown of the NPs and the ejection from the core. 

 

Figure 5. SEM image of the sample with 340 mg of Ga oxidized at a) 450 ºC, b) 600 ºC and c) 

900 ºC. d) Sketch of the rupture mechanism with a volcano-like behavior.  

Grazing Incidence X-Ray Diffraction (GIXRD) measurements were performed in order 

to figure out the crystallinity after the thermal processes. Fig. 6 (a) shows how the double 

band ascribed to liquid Ga8 decreased from RT to 300 ºC due to transformation of liquid 

Ga into Ga2O3. When temperature keeps increasing, narrow peaks appear related to 

polycrystalline growth. These peaks fit the crystal lattice of the -Ga2O3 indicated in the 

figure. The formation of the oxide is promoted by the fact that in the phase diagram Ga-

O, very low concentration of O2 is needed for the formation of -Ga2O3. In addition, O2 

has high solubility in liquid Ga31. The peak intensity of the direction (002) is higher for 

900 ºC probably evidencing the nanowires crystal growth along the “z” axis. 

Additional cathodoluminiscence (CL) and energy dispersive X-ray spectroscopy (EDX) 

measurements of the NPs are shown in Fig. 6 (b), revealing the typical violet-blue 
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emission band of defects caused by bound excitons and donor−acceptor pairs (DAP) 

transitions32. The intensity of the band is highly increased with the oxidation temperature 

and so it is the gallium oxide concentration. It is important to note that before the rupture 

(<450 ºC for this NP radius), no CL band was found. The ratio between the EDX Ga-L 

peak intensity and O-K one decreases with the annealing temperature (inset in Fig. 6 (b)), 

indicating an incorporation of oxygen atoms to the samples. There is a strong kink of the 

ratio when the shell breaks down at about 450 ºC, in agreement with the breakdown of 

the NPs and the ejection of the liquid Ga and the exposure to the O gas. The absence of 

any other peaks in the EDX spectrum apart from Ga and O evidences that no other element 

interfere in this process.  

 

Figure 6. a) GIXRD measurements of the 340 mg of Ga samples oxidized at different 

temperatures. Dot points indicate the crystal lattice of -Ga2O3. b) CL measurements of the same 

samples. The inset represents de EDX measurements with the Ga-L peak intensity over O-K peak 

intensity as a function of the annealing temperature. 

All these results reveal how the core-shell structure of the NPs behaves with temperature. 

The mechanisms discussed in detail for the mass of 340 mg (Fig. 5), suggesting that Ga 

is ejected due to the increase of the inner pressure at high temperatures, can be also 

assumed for other Ga masses. Thus, the main difference arises from the particle size since 

the smallest NPs remain unbroken. The thermal stability of the small Ga NPs (with 

diameters below 30 nm) has been demonstrated to be up to 850 ºC, which opens up the 

possibility to work at high temperatures without significance reduction of the plasmon 

resonance intensity. 

From a practical point of view, a higher thermal stability outspreads oxidation processes 

at higher temperatures, what means a higher diffusion and higher tunability of the 
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plasmon resonance by gallium oxide growth. Regarding the applications for sensing, the 

relevant plasmonic mode is the out-of-plane one16. Thus, in the following, we focus our 

study on the oxidation of the NPs with a detectable out-of-plane mode in the optical range 

of the SE. Indeed, the plasmon resonance wavelength redshifts only for the out-of-plane 

mode and not for the in-plane mode as it is shown in Fig. 4. This fact has also been 

demonstrated with Finite-Difference Time-Domain simulations by other authors33. In 

order to study how the plasmon tunability changes with temperature, samples with NPs 

around 138 nm of radius (340 mg of Ga) have been oxidized for different times at 

temperatures of 200, 300 and 400 ºC. Fig. 7 (a) shows the redshift as a function of time. 

The graph shows that a maximum redshift (tunability), denoted with ∆λ, of 11 ± 2 nm can 

be achieved at 200 ºC while for 300 ºC, the maximum plasmon resonance wavelength can 

be redshift up to 62 ± 2 nm. This value is higher at 300 ºC because the process is thermally 

activated as it was demonstrated with an Arrenhius-like behaviour in our previous work18. 

In the 400 ºC case, only oxidations up to 30 min can be done. After that time, oxide shell 

breaks and the plasmon resonance signal is vanished. The arrow in the graph indicates 

the oxidation time limit before the rupture. In this scenario, the temperature (400ºC) is 

too close to the rupture temperature (450 ºC) shown in Fig. 3 (a). 

Taking advantage of the higher thermal stability (Fig. 3 (a)) and with the aim to improve 

the tunability range, we have carried out thermal oxidations at 400 ºC for different times 

for samples with a lower NP radius (47 ± 2 and  92 ± 3 nm approximately) and a sample 

with a higher NP radius (180 ± 6 nm). The SE measurements are presented in Fig. 7 (b). 

A ∆λ value of 113 nm is obtained after an oxidation for 100 min of a sample with a mean 

NP radius of 47 nm (black spheres). In the case of bigger NPs, the gallium oxide shell 

breaks earlier and the maximum redshifted is reduced. In particular, samples with NP 

radius of 92 (red stars) and 180 nm (blue squares) shows a maximum ∆λ of 47 and 50 

nm, respectively. Those values are much lower than 113 nm, which demonstrates that a 

reduction of the NP size implies not only an improvement of the thermal stability but also 

a broader range of plasmon tunability. 
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 Figure 7. a) Maximum plasmon resonance wavelength by SE as a function of oxidation time for 

the sample of 340 mg oxidized at different temperatures. b) Same plot with samples of different 

NP radius oxidized at a fixed temperature of 400 ºC. 

Since for NPs with radius below 47 nm the out-of-plane mode is located at higher energies 

in the UV, out of our SE spectral range, the tracking cannot be done for those cases. 

Thus, the transition between liquid Ga core to gallium oxide can be achieved by changing 

the oxidation time. This helps to tune the effective permittivity of the NP layer, which 

can have potential application as a coating layer for the optimization of optoelectronic 

devices. 

4. Conclusions 

In summary, we have studied the thermal stability of the core-shell structure of Ga NPs 

over a wide range of temperatures and NP radius. With the XPS results, we have been 

able to demonstrate the presence of different oxidation states in the native oxide of the 

Ga NPs core-shell interface, which was never reported for the system of metallic Ga NPs. 

Moreover, we have observed a strong dependence of the shell breaking temperature with 

NP size. We have estimated that the smallest NPs keep unbroken up to 850 ºC. 

Furthermore, the shell rupture threshold was analysed by a rigorous characterization with 

SEM, XRD and CL. Finally, we have considered different advantages of the improved 

thermal stability in the smallest NPs such as a higher LSPR tunability and a total oxidation 

of the liquid Ga into Ga2O3 while preserving the morphology integrity of the NPs. Our 

results provide an easy and effective method to control the liquid Ga-Ga2O3 ratio by 

thermal treatments and give an insight for the use of plasmonic Ga NPs at high 

temperatures. 
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