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Agradecimientos

En primer lugar agradecer a Fernando y Wieland por todo lo que han hecho
por mi, por haber tenido la puerta de sus despachos siempre abierta y haberme
dedicado tantas horas de trabajo y por enseñarme tant́ısimas cosas. En definitiva,
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Abstract

Type IIA flux compactifications have proven to be a rich framework to construct
phenomenologically appealing string vacua. However, a better understanding of
such a flux landscape in the presence of D-branes is required if one wants to
find realistic vacuum solutions. In this thesis, we study perturbative Type IIA
flux vacua with an underlying Calabi-Yau geometry, by mean of the flux-axion
polynomial formalism.

In a first stage we consider type IIA Calabi-Yau orientifolds with back-
ground fluxes and rewrite the classical flux potential as a bilinear of flux-axion
polynomials invariant under the discrete shift symmetries of the compactification.
We perform a systematic search of purely closed string vacua, showing that one
can easily rewrite the conditions forN = 0 Minkowski andN = 1 AdS in terms of
simple algebraic equations on the axion polynomials. Then we turn to the search
of vacua in compactifications with fluxes and mobile D6-branes. The presence
of D6-brane moduli redefines the four-dimensional dilaton and complex struc-
ture moduli and simultaneously destroy the nice factorization between Kähler
and complex structure moduli in the Kähler potential, complicating the search of
vacua in terms of the effective Kähler potential and superpotential. Nevertheless,
one may still express the F-term scalar potential as a bilinear of such polynomials,
which allows us to find a new and more general class of N = 0 Minkowski vacua,
which present a quite simple structure of contravariant F-terms. We compute
the set of soft supersymmetry breaking terms for chiral models of intersecting
D6-branes in such vacua, finding a quite universal pattern.

In a second stage we further study type IIA Calabi-Yau flux compactifica-
tions with perturbative α′-corrections. It is a well-known fact that the inclusion
of such α′-corrections allows to construct the mirror duals of type IIB Calabi-Yau
flux compactifications, in which the effect of flux backreaction is under control.
We compute the α′-corrected scalar potential generated by RR and NS fluxes,
and reformulate it as a bilinear of the flux-axion polynomials. The use of such in-
variants allows to express in a compact and simple way the conditions for N = 0
Minkowski and N = 1 AdS flux vacua, and to extract the effect of α′-corrections
on them.



Resumen

Las compactificaciones de la teoŕıa de cuerda de tipo IIA con flujos de fondo han
demostrado ser un marco rico para construir vaćıos de cuerdas fenomenológicamente
atractivos. Sin embargo, si se quiere encontrar soluciones de vaćıo realistas, se re-
quiere una mejor comprensión de este paisaje de flujos en presencia de D-branas.
En esta tesis, se estudian vaćıos perturbativos de tipo IIA con flujos y una
geometŕıa Calabi-Yau subyacente, por medio del formalismo de los polinomios de
axiones.

En una primera etapa, se consideran Calabi-Yau orientifolds de tipo IIA
en presencia de flujos y reescribimos el potencial clásico generado por los flu-
jos como un bilineal de los polinomios de axiones, los cuales son invariantes
bajo las simetŕıas discretas de la compactificación. Utilizando este formalismo
se realiza una búsqueda sistemática de vaćıos de cuerdas cerradas, demostrando
que uno puede reescribir fácilmente las condiciones de vaćıos de Minkowski no-
supersimétricos y vaćıos AdS supersimétricos en términos de simples ecuaciones
algebraicas en los polinomios de axiones. Luego comenzamos la búsqueda de
vaćıos en compactificaciones que incluyen flujos y D6-branas móviles. La pre-
sencia de los moduli de D6-branas redefine los moduli de estructura compleja y
el dilaton en cuatro dimensiones, y simultáneamente destruye la agradable fac-
torización entre los moduli de Kähler y los moduli de estructura compleja en
el potencial de Kähler, lo que complica la búsqueda de vaćıos en términos del
potencial de Kähler y el superpotencial. Sin embargo, el potencial escalar to-
dav́ıa puede ser expresado como un bilineal de los polinomios de axiones, lo que
nos permite encontrar una clase nueva y más general de vaćıos de Minkowski
no-supersimétricos que presentan una estructura bastante simple de los F-terms
contravariantes. Además, se calculan los términos de ruptura suave de super-
simetŕıa para los campos quirales que viven en las intersecciones de las D6-branas
en tales vaćıos, encontrando un patrón bastante universal.

En una segunda etapa, se estudian compactificaciones de tipo IIA en Calabi-
Yau que incluyen flujos y correcciones perturbativas de α′. Es un hecho bien
conocido que la inclusión de tales correcciones en el lado IIA, permite construir
compactificaciones que son espejos duales de las compactificaciones de tipo IIB
con flujos en las que la backreaction de los flujos está bajo control. Se calcula
el potencial escalar generado por los flujos y que incluye las correciones de α′, y
lo reformulamos como un bilineal de los polinomios de axiones. El uso de tales
invariantes permite expresar de manera compacta y sencilla las condiciones de
vaćıos de Minkowski no-supersimétricos y vaćıos AdS supersimétricos y extraer
los efectos de las correcciones de α′ en estos vaćıos.
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Chapter 1

Motivation and overview

1.1 The prevailing paradigms of high energy physics

Our current understanding of the universe on large and small scales is based on
two different theories describing together the four fundamental interactions ob-
served in nature. On the one hand, we have Quantum Field Theory (QFT) which
is the outcome of merging Quantum Mechanics and Special Relativity and it is
the essential tool to understand microscopic physics. In particular, the Standard
Model (SM) which is a chiral non-Abelian Yang-Mills theory based on the gauge
group SU(3)×SU(2)×U(1) provides a successful quantum description of electro-
magnetic, weak and strong interactions. Although the SM provides a remarkably
successful description of almost all non-gravitational phenomena, there are some
theoretical issues which are not answered satisfactorily by the SM, such as the
existence of many free parameters which cannot be predicted by theory itself or
the bad quantum behavior of its scalar sector, which leads to a destabilization
of the hierarchy of mass scales, known as the hierarchy problem. Moreover, the
experimental evidence of massive neutrinos is another signature of the incom-
pleteness of the SM, since within the SM, neutrinos are strictly massless. Finally,
further difficulties are found when trying to construct cosmological models based
only on the SM particle content, since it does not contain a suitable candidate
for the Dark Matter (DM) content of the universe, neither a viable candidate for
inflaton.

On the other hand, General Relativity (GR) offers a classical field theory
description of gravity, a force not yet included in the SM, yet the paradigm of GR
forms the basis to our understanding of the large-scale structures in the universe.
In this theory, gravity is intrinsically associated with the dynamics of spacetime
itself in such a way that the geometry of spacetime is intrinsically determined
by the distribution of the matter densities. Despite GR has been well tested
by experiments, it faces some theoretical issues, such as the singularities that
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12 CHAPTER 1. MOTIVATION AND OVERVIEW

occasionally appear in the solutions of Einstein’s field equation, which cannot
be cured by the theory itself. Furthermore, this classical theory of gravity does
not capture any quantum effects and does not allow to formulate a consistent
quantum theory of gravity up to date. All these facts clearly indicate that both
GR and SM are incomplete and cannot be considered as fundamental theories.

Looking for a theory of quantum gravity

One naively could try finding a quantum theory of gravity by using the same
methods that effectively worked for the other three interactions. This can be
achieved partially in the framework of QFTs on curved spacetimes, where grav-
ity is mediated by a spin 2 particle called graviton, but unfortunately this ap-
proach fails irrevocably for Einstein’s theory of GR. The reason why conventional
methods of quantisation do not work for GR is the non-renormalisability of the
theory. This means that the abundant divergences induced by quantum gravi-
tational processes cannot be cured by the usual renormalization procedure, thus
rendering the theory ill-defined at the Planck scale, which is energy scale at which
quantum gravitational interactions become relevant, see [1]. This indicates that
GR should be viewed as an effective low energy description of some more funda-
mental theory which regulates the theory in the ultraviolet (UV) regime, yet we
do not know what this theory is.

Supersymmetry

A natural extension of the symmetry groups in QFTs is provided by supersym-
metry, which is a fundamental symmetry relating bosons and fermions, which is
mainly motivated by the hierarchy problem of the SM. In the simplest supersym-
metric theory, each known particle has a superpartner which only differs in spin
by 1/2 and are related by a supersymmetry transformation. Thus, supersymme-
try basically doubles the particle content of the theory.

Supersymmetry also implies that fermions and bosons filling out a chiral
supermultiplet are degenerated in mass. Since such a mass degeneracy between
the ordinary particle and its supersymmetric partner has not yet been observed.
This is clearly an indication that supersymmetry if exist, must be broken at
low energies. Such that superpartners’s masses are above the accessible energies
in accelerator experiments. The simplest way to do this is by adding further
terms to the Lagrangian that explicitly break supersymmetry and parametrize our
ignorance of any underlying supersymmetry breaking mechanism. If only certain
supersymmetry-breaking terms (gauge and Lorentz invariant) with dimensionful
couplings are added to the Lagrangian, then the quadratic divergences still cancel
but the mass degeneracy is removed, in that case supersymmetry is said to be
softly broken. However, this set of soft supersymmetry breaking terms is not
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very appealing from a theoretical viewpoint because they are not only added by
hand, they also violate the supersymmetry which with we started in the first
place. Alternatively, if supersymmetry is an exact symmetry of nature and it is
spontaneously broken, this means that the Lagrangian of the theory is invariant
under supersymmetry transformations but the vacuum is not. On the other
hand, the field that spontaneously breaks supersymmetry by acquiring a vacuum
expectation value (VEV) has to be a SM singlet, otherwise the gauge symmetry
would be simultaneously broken. Therefore it is necessary to introduce additional
fields to the theory. Since these further fields do not interact (or have very tiny
couplings) with the SM fields, they are said to be in the so-called hidden sector.
This will naturally give rise to the question of how supersymmetry breaking is
communicated from the hidden sector to the visible sector. Although there are
various mechanism to explain such a transmission, a natural candidate is provided
by gravitational interactions, which is known as gravity mediation and is reviewed
in more details in section 6.3.1.

Even though a simple supersymmetric extension of the SM may provide
an elegant resolution of the hierarchy problem and also potential candidates for
Dark Matter, gravity is still missing within this framework. On the other hand,
supersymmetric extensions of GR which is nothing but a local (gauge) general-
ization of supersymmetry also known as Supergravity, makes the UV divergences
softer but the non-renormalizability still persists.

The need for a unifying theory

Despite the independent successes of GR and the SM in predicting physical pro-
cesses in their respective domain of validity, they appear to be mutually incom-
patible, as can be intuitively checked from the field equations for the gravitational
field:

Gµν ∼ Tµν (1.1)

The Einstein tensor on the left hand side encodes the classical geometry of space-
time, while the energy momentum tensor on the right hand receives contributions
from the quantised SM matter fields. This situation becomes unacceptable, in
regimes where the interplay of quantum and gravitational effects become impor-
tant, like early time cosmology or black hole physics. In these circumstances, one
needs to combine both theories in order to describe the proper physics. However,
finding such a unifying theory appears to be very challenging, the reason is con-
cepts and observables that characterize both theories are strikingly different. The
reason is clearly that the gravitational field is treated differently than the force
and matter fields in the SM. A resolution of this clash of classical versus quantum
mechanical physics is a prerequisite for the success of any unifying theory, from
which the SM and GR must emerge as appropriate limits. Up to now, we do
not know what this unifying theory is. Yet we have at least one possible can-
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didate known as String Theory, which has been studied intensively from various
directions in the last forty years. As we will see below, it has the potential to
provide all the ingredients that shape our universe: gravity, gauge interactions,
chiral fermions and scalar fields. For a more comprehensive introduction to the
subject we recommend the textbook [2].

1.2 String Theory

String Theory postulates that the fundamental objects are one-dimensional ob-
jects (strings with a characteristic length ls = 2π

√
α′) rather than point-like

particles, where α′ is the Regge slope which is believed to be the only funda-
mental constant of the theory. As strings evolve in time, they sweep out a two-
dimensional surface in spacetime known as the worldsheet of the string, instead
of the worldline sweeped out by a point-like particle. Since strings can be either
open or closed, one has various topologies for the worldsheet and string inter-
actions are uniquely determined by the topology of the world-sheet. Moreover,
the different vibrational massless modes of the fundamental strings are identified
with different particles at low energies.

This simple idea leads to various interesting consequences. First, string in-
teractions do not take place at a single point of spacetime but are smeared out
into a region. Thus, the UV divergences encountered in the point-like descrip-
tion of QFT are removed. On the other hand, at large distances compared to the
string scale, the spatial extension of strings effectively becomes a point, such that
the resulting theory reproduces the particle behavior of QFT. Second, the consis-
tency of the worldsheet theory imposes certain constraints on the dimensionality
of space-time and this is something that no theory did before. Moreover, the
theory dynamically determines its own coupling strength, with the latter being
the expectation value of a scalar field known as dilaton.

The quantum mechanical consistency of the original theory also known as
bosonic string theory, fixed the critical dimension of space-time to be D = 26.
However, such a theory always contains a tachyon and lacks fermions in its spec-
trum, which renders the theory unrealistic. Tachyon-free string theories arise
when introducing supersymmetry on the worldsheet. These string theory have a
fixed spacetime dimension of D = 10 at weak coupling and exhibit also spacetime
supersymmetry, such that they are known as superstring theories. Besides fun-
damental strings, the theory also contains extended p-dimensional objects called
Dp-branes on which open strings can end, and carry basic charges of p-form gauge
fields. A remarkable feature of these extended objects is that at arbitrarily large
string coupling they become very light, even lighter than the fundamental strings
and hence their behavior dominates the low energy dynamics.

If the fundamental scale is assumed to be close to the Planck scale, the
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massive string excitations whose masses are of order k/
√
α′ are inaccessible at

low energies. This implies that only the massless string excitations are reachable
at low energies and therefore relevant for phenomenology. Therefore in order
to obtain an effective description in terms of only massless string excitations, we
must integrate out the massive string excitations. It was shown that the resulting
effective theory is a ten-dimensional supergravity theory.

One interesting observation about string theory is that it was originally
thought of a single, unifying theory but surprisingly there is not only one theory,
instead, there are five consistent superstring theories, which are known as type I,
type IIA, type IIB, heterotic E8 × E8 and heterotic SO(32). These superstring
theories differ in their field content and the amount of supersymmetry preserved
by the theory. The type II theories preserve N = 2 supersymmetry and contain
oriented closed strings, they differ by the kind of Dp-branes present in each theory.
While heterotic theories preserve N = 1 supersymmetry and only contain closed
string yielding matter fields transforming either under E8 × E8 and SO(32).
Whereas type I theory preserves N = 1 supersymmetry and not only contain
closed but also open strings.

The fact that there are five consistent superstring theories is somehow puz-
zling. However all these theories are not independent from each other, they are
related through a web of dualities as displayed in figure 1.11. In addition to those
dualities, there is a generalization of T-duality known as mirror symmetry, which
relates the physics of type IIA string theory compactified on a Calabi-Yau (CY)
manifold M6 to that arising from type IIB string theory compactified on a mir-
ror CY manifold M̃6. The existence of these dualities suggests that superstring
theories might be unified into a single fundamental theory. Actually, they seem
to be different limits of an eleven-dimensional theory known as M-theory, which
is not fully understood up to date. However, there exist a unique supergravity
theory in eleven dimensions, which can be interpreted as the low-energy limit of
M-theory.

1.2.1 String compactifications

As mentioned in the previous section, superstring theories are consistently defined
in ten-dimensions, but the observable world looks four-dimensional. Facing this
problem, one has two options: Either we discard superstring theory completely
and continue searching for a new fundamental theory; or requiring that six of the
ten dimensions are compactified into a sufficiently small space, such that extra
dimensions have avoided detection in high energy experiments so far. The latter

1A duality connects two apparently different theories which describe the same physics and hence

they should not really be regarded as distinct theories.
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Figure 1.1: The duality web of Superstring Theories.

approach implies that the theory lives in a spacetime of the form

M10 = M3,1 ×M6 (1.2)

where M3,1 represents a maximally symmetric four-dimensional space, i.e. de-
Sitter (dS), Anti-deSitter (AdS) or Minkowski space, whileM6 is some compact
six-dimensional manifold. This strategy is known as compactification of string
theory onM6 or string compactification for short. The size of compact spaceM6

could be of the same order of the string scale and highly curved. However, the
known techniques to study such situations are very limited up to date. Therefore,
the best-understood situation is provided by compactifications where the size of
the space M6 is large compared to the fundamental scale and supersymmetry is
broken at some scale below the compactification scale. In this regime, one can
use the low energy supergravity description of superstring theory.

To obtain a four-dimensional effective theory one has to integrate the ten-
dimensional theory over M6: this procedure known as dimensional reduction
comes from an old idea dating back to Kaluza and Klein in the early 1920s. Their
original idea was to unify gravity and electromagnetism through the addition
of a tiny rolled-up fifth dimension. This unified theory takes an explicit form
when considering five-dimensional GR on a space-time of the form M3,1 × S1,
where the extra dimension is compactified on a circle of radius R. Although
this theory had no phenomenological success, it showed us how the topology of
the extra-dimensional space determines decisively the resulting four-dimensional
physics, namely the matter content and forces. Although string compactifications
involve a six-dimensional space (typically CY manifolds) which are much more
complicated than a simple S1, the essence of this procedure is nevertheless the
same, differing only in technical details. In the next chapter we will discuss
some basic aspects of the geometry of CY manifolds and perform explicitly the
dimensional reduction of type IIA string theory on them.
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1.2.2 Moduli stabilisation

As will see in the next chapter, string compactifications typically introduce a
huge amount of massless neutral fields which parametrize a continuous family of
unequivalent vacua. These fields are often called moduli and their field space is
known as the moduli space. It is useful to distinguish the different kinds of moduli
present in generic string compactifications. The most obvious moduli are those
parametrizing either the size or shape of subspaces on the internal space and
are known as geometric moduli. Besides these fields, further moduli arise from
expanding the p-form gauge potentials Cp in the appropriate bases of harmonic
forms. Note that the transformation Cp → Cp + ciω

i
p where ωip are harmonic

p-forms, leaves the field strength Gp+1 = dCp unaltered and hence not affect the
energy. These moduli enjoy a continuous shift symmetry ci → ci + ai descending
from the corresponding p-form gauge invariance of the ten-dimensional theory
and therefore we refer to them as axions. The continuous shift symmetry holds
to all orders in perturbation theory, but is broken nonperturbatively, by D-brane
instantons. As a consequence, what remains is a discrete symmetry ci → ci + 2π.
Finally, there can be additional moduli associated with the positions of D-branes
in the compactification manifold, which are called D-brane position moduli.

These moduli cannot remain massless for various reasons. First of all, we
have not observed massless scalar fields in collider experiments, which implies
that, if they exist, they should have masses above the accessible energies in cur-
rent high energy experiments. Secondly, the presence of massless scalar fields in
the low-energy effective theory would lead to deviations of the gravitational force
law which has not been observed. For these reasons, moduli must get a mass suffi-
ciently large in order to obtain a realistic four-dimensional vacua and the process
by which moduli become massive is known as moduli stabilization. However, this
is a non-trivial task and requires further refinements of the standard string com-
pactifications. A lot of efforts have been made to find controllable mechanisms to
stabilize moduli in string compactifications. A promising approach to deal with
moduli stabilisation for all closed string moduli is provided by flux compactifi-
cations [3, 9, 10, 48], in which the inclusion of background fluxes generates scalar
potentials for the moduli, allowing the uplifting of the undesired massless fields.

1.2.3 The string landscape

String compactifications immediately lead to other major problem, which is re-
lated to the fact that superstring theories allow for a huge number of consistent
choices of the compact manifold M6. Since the resulting four-dimensional effec-
tive theory depends strongly on the chosen manifold, this naturally leads to an
incredibly large set of effective theories. In addition to this ambiguity, masses and
coupling constants appearing in the low energy effective theory are functions of
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the moduli. Although background fluxes generate potentials that stabilize mod-
uli, fluxes obey a Dirac quantization condition and therefore take discrete values,
which add to other discrete parameters of the compactification, such as D-brane
charges. Consequently, the four-dimensional effective theory also depends on the
choice of these discrete parameters and thus enlarging even more the ensemble
of effective theories.

In general, each of these effective theories has a large discrete set of sta-
ble solutions known as four-dimensional string vacua, which interpreted as a set
form the so-called String Landscape. A naive estimation of the number of type
IIB flux vacua leads to Nvacua ∼ 10500 [4,5] although in recent years this number
has grown to Nvacua ∼ 10272000 in F-theory, the strong coupling limit of Type IIB
string theory [6]. Depending on the chosen vacuum, physics may look one way or
another, this does not mean that the fundamental laws that govern all of them
are essentially different, they just may look different at low energies2. This large
number of possibilities gives rise to the question whether among these vacua there
is at least one that describes our universe, and if exist, is it picked out by some
special mathematical property or is it just the result of some anthropic principle?
Despite many efforts that have been devoted to understanding the string land-
scape, it is still poorly understood. Up to date, there is no known example of a
stringy vacuum that accurately describes our universe and no successful vacuum
selection principle has been proposed. In the absence of such a vacuum selection
principle, one might tackle those questions by studying the statistical properties
of the string landscape for extracting some insight, which can give us some in-
dications on which region one should concentrate on to hopefully find realistic
vacua [7].

Finally, even if our universe does not reside in this flux landscape, it would
not necessarily imply that the theory is incorrect, since moduli stabilization by
fluxes occurs within the effective supergravity approach, which is valid only at
large volume (such that α′-corrections can be neglected) and small string cou-
pling, implying that those vacua are found within some approximations and hence
they constitute only a limited corner of the full landscape of string vacua. It could
well be that our world lies outside this corner

1.3 Overview of the thesis

After this brief general introduction let us now turn to the concrete subjects
of this thesis. The first part of the thesis contains some introductory chapters
which provide the basic ideas as well as the mathematical tools that will be used

2This means that quantities as gauge group, the number of fermion generations, the value of

the Cosmological Constant, etc, all depend on the particular vacuum selected.
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throughout the thesis.

In chapter 2 we briefly review some basic aspects of type IIA flux compact-
ifications. We start by reviewing compactifications of type IIA on Calabi-Yau
three-folds in the absence of background fluxes and discuss the resulting N = 2
effective action in terms of geometrical data of the CY manifold. Afterwards, we
turn to type IIA compactifications on CY orientifolds, which are constructed as
the quotient manifold of a Calabi-Yau three-fold modded out by the orientifold
action. We discuss the orientifold projection which consists of perturbative sym-
metries of the type IIA string theory and whose presence projects out part of
N = 2 spectrum, allowing us to end up with a N = 1 effective action. Then,
we additionally allow for non-trivial background fluxes and discuss the superpo-
tential that encodes type IIA flux potentials. Afterward we also add D6-branes
hosting open string moduli to flux compactifications and discuss how the presence
of such moduli modify the 4d effective action. Finally, we end up the chapter
with a short review on the α′-corrections to the Kähler potential, which have to
be taken into account in regions of the moduli space away from the large volume
limit.

In chapter 3 we briefly present the axion-polynomial description of type IIA
Calabi-Yau orientifolds. We start describing purely closed string compactifica-
tions in the axion polynomial language in section 3.2. These axion polynomials
capture the axionic partners together with the flux quanta into shift-invariant
combinations whose precise shapes are intimately connected to Freed-Witten
anomaly cancelation. In section 3.4 we immediately turn to the axion poly-
nomial formulation of type IIA flux vacua with D6-branes hosting open string
moduli. In section 3.5 we present how perturbative α′-corrections also fit into
the axion polynomial formalism. Finally, in section 3.6 we rewrite the potential
generated by fluxes and D6-branes as bilinear of the flux-axion polynomials.

The aim of the second part of the thesis is to rephrase moduli stabilisa-
tion in the language of the axion polynomials invariant under the discrete shift
symmetries of the four-dimensional effective theory, showing that such invariants
provide an alternative and powerful method to search for vacua.

In chapter 4, we start rewriting two well-known examples of pure-closed
string vacua in this language. More precisely, in section 4.1.1 we show that by
solving the F- terms conditions for the dilaton and Kähler moduli in terms of the
axion polynomials we are able to recover the conditions for N = 0 Minkowski
vacua, while the conditions forN = 1 AdS vacua in terms of these polynomials are
obtained in section 4.1.2. In section 4.3 we add mobile D6-branes to backgrounds
with ISD fluxes and find a new and more general class of non-supersymmetric
Minkowski vacua, with the open string moduli stabilised at non-trivial vevs. Fi-
nally, in section 4.4 we present a more direct approach to analyse the appearance
of semi-definite positive scalar potentials and the corresponding Minkowski vacua.

In chapter 5, we turn to moduli stabilisation in the regime of moderately
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large volumes where α′-corrections must be taken into account. In section 5.1
we introduce the effect of perturbative α′-corrections in the Kähler sector and
compute the resulting F-term scalar potential, again rewriting it in terms of α′-
corrected axion polynomials. In sections 5.2 we use such invariants to express
in a compact and simple way the conditions for N = 0 Minkowski and extract
the effect of α′-corrections on them, reproducing the results of [8], while the
condition for N = 1 AdS flux vacua are obtained in section 5.3, thus finding the
α′-corrected version of the AdS vacua found in [9].

In the third part, we will present some phenomenological applications of
our work. For this purpose, the low-energy effective actions for the matter fields
living at the intersections of D6-branes are of special interest and in particular
the terms arising from supersymmetry breaking. In chapter 6 we turn to study
some physical observables arising from flux vacua in which supersymmetry is
spontaneously broken in moduli sector. In section 6.2 we start rewriting the
apparent and effective gravitino mass in term of the flux-axion polynomials and
compute the resulting gravitino masses in the vacua studied in previous chapters.
In section 6.3 we study the pattern of soft terms emerging from N = 0 Minkowski
vacua with D6-branes. Finally, in section 6.4 we discuss the various energy scales
present in the type IIA flux landscape to make sure the validity of our approach.

In chapter 7 we turn to the construction of a consistent supersymmetric
DFSZ axion model in type IIA orientifolds with background fluxes and intersect-
ing D6-branes. In section 7.1 we briefly review some basic aspects of the DFSZ
axion model, while a consistent supersymmetric extension of this model is dis-
cussed in section 7.2. Section 7.3 contains a discussion of the various types of
closed and open string axions present in type IIA compactifications and how one
of them might be identified with the QCD axion. In section 7.5 we review some
essential aspects of the T6/Z2×Z2 orientifolds with intersecting D6-branes, and
discuss their spectrum. Section 7.6 contains an explicit example of consistent
supersymmetric DFSZ model on this toroidal setup. The structure of the flux-
induced soft-terms in the Higgs-axion sector of the model, is discussed in section
7.6.1.

In the last part of the thesis, I present the conclusions and discuss the
prospects for future work. Finally, several technical details have been relegated
to the appendices. In appendix A we collect some properties and relations of the
Kähler metrics on type IIA Calabi-Yau compactifications with mobile D6-branes.
In Appendix B we discuss the type IIA superpotential in the presence of mobile
D6-branes, and how this allows to deduce the redefinition of complex structure
moduli by open string moduli. We relegate to Appendix C the technical details
regarding the computations of the α′-corrected scalar potential. In Appendix D
we discuss the Kähler metrics for open string fields at D6-branes intersections on
toroidal backgrounds.
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Chapter 2

Type IIA flux compactifications:

A Brief Review

The aim of this chapter is to briefly review type IIA flux compactifications with
an underlying Calabi-Yau geometry and discuss the low energy effective action
arising from this kind of setup, following mostly [10, 11]. For a nice review on
string compactifications the reader may be also referred to [12–14].

2.1 Supersymmetry

As already mentioned, supersymmetric string theories live on a spacetime of the
form 1.2. So far we have only required M6 to be compact and sufficiently small
such that is not detectable in current experiments, however further constraints
onM6 have to be imposed. Note that the structure of spacetime 1.2 implies that
the 10-dimensional Lorentz group decomposes as SO(9, 1)→ SO(3, 1)× SO(6),
therefore it forces M6 to have a SO(6) group structure. Moreover, there are
various reasons to consider string compactifications that preserve supersymme-
try: such compactifications are under much better control and do not contain
tachyons. On the other hand supersymmetric backgrounds allow to build phe-
nomenologically interesting models of particle physics. Therefore an additional
constraint on M6 comes from requiring to have some unbroken supersymmetry
at the compactification scale.

The condition that compactification onM6 preserves some supersymmetry
actually splits into two conditions, the first is related to the existence of globally
well-defined spinors on M6 and the second that they are covariantly constant.
Note that, globally well-defined spinors only exist on manifolds that have reduced
structure, while the existence of covariantly constant onM6 is determined by its

23
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holonomy group Hol(M6). This implies that the holonomy group of M6 must
be a subgroup of SO(6). In addition, Hol(M6) must be one under which the
decomposition of a spinor 4 of SO(6) contains a singlet. When combining all
these elements one finds that M6 has to be a manifolds of SU(3) holonomy1.
The spaces which admit a metric with this special holonomy are also known as
Calabi-Yau manifolds. All these reasons make Calabi-Yau manifolds a suitable
candidate for the compactification space.

2.2 Calabi-Yau manifolds

Before starting to review type IIA compactifications on Calabi-Yau manifolds,
let first us give some basic definitions on this kind of manifolds. Calabi-Yau
manifolds or CY N -folds for short are a particular class of Kähler manifolds.
Strictly speaking, a CY N -fold of complex dimension N is a compact Kähler
manifold with zero Ricci form, vanishing first Chern class and that has SU(N)
holonomy. It is not difficult to show that a compact Ricci-flat Kähler manifold
automatically has vanishing first Chern class. The first Chern class of a manifold
M2N is defined as the first Chern class of the holomorphic tangent bundle

c1(M2N) =
1

2π
TrR (2.1)

where R is the Ricci two-form on M2N . This means that the Ricci form defines
the first Chern class of the manifold and therefore it is easy to see that if a
Kähler manifold admits a Ricci-flat metric then it has vanishing first Chern class.
However, the converse, does a Kähler manifold with vanishing first Chern class
admit a Ricci-flat metric, is much harder to prove. This was conjectured by
Calabi and proved by Yau twenty years later. According to Yau’s proof, given a
complex manifold with a Kähler metric g, a Kähler form J and vanishing first
Chern class, then there exists a unique Ricci-flat metric g̃, whose Kähler form J̃
is in the same Kähler class as J . The usefulness of Yau’s theorem is that it is
quite hard to directly determine whether or notM2N admits a Ricci-flat metric.
In fact, no explicit Ricci-flat metrics are known on any CY manifolds. However,
it is quite simple to compute the first Chern class of M2N , and therefore to find
examples with vanishing first Chern class.

Any 2N -dimensional real manifold M2N is an almost complex manifold
whether it admits an almost complex structure Inm satisfying InmI

l
n = −δlm which is

1The spinor representation 4 of SO(6) can be decomposed in representations of SU(3) as

4 → 3 ⊕ 1. Since there is a SU(3) singlet in the decomposition, then there exists a spinor

that depends trivially on the tangent bundle of M6 and therefore it is well-defined and non-

vanishing.
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nothing but the map used to define local complex coordinates dzn = dxn+i Inm dy
m

that can be patched together globally in a consistent way2. In these complex
coordinates, the Kähler form reads

J = gij̄ dz
i ∧ dz̄ j̄ (2.2)

Moreover, any CY manifold admits a nowhere vanishing holomorphic (N, 0)-form

Ω = f(z1, ......, zN)dz1 ∧ .......dzN (2.3)

obeying the algebraic conditions

J ∧ Ω = 0,
1

N !
JN =

(
i

2

)N
Ω ∧ Ω̄ (2.4)

In complex manifolds, p-forms and their cohomology classes are classified accord-
ing to their number of holomorphic and antiholomorphic indices. More precisely,
harmonic forms with p holomorphic and q antiholomorphic indices are represen-
tative of the cohomology class H(p,q)(M6). The dimensions of the cohomology
groups are given by the Hodge numbers h(p,q) = dimH(p,q)(M6,Z) and these
numbers are usually arranged in the so-called Hodge diamond.

From now on we only focus on CY three-folds, which is the case we are
interested in, but most results can be extended straighforwardly to higher dimen-
sional CY manifolds. For a CY three-fold, the Hodge diamond has the following
structure

h(0,0)

h(1,0) h(0,1)

h(2,0) h(1,1) h(0,2)

h(3,0) h(2,1) h(1,2) h(0,3)

h(3,1) h(2,2) h(1,3)

h(3,2) h(2,3)

h(3,3)

=

1
0 0

0 h(1,1) 0
1 h(2,1) h(2,1) 1

0 h(1,1) 0
0 0

1

. (2.5)

All Hodge numbers on the left hand side of 2.5 are not independent each other,
they are related by: complex conjugation h(p,q) = h(q,p), Hodge duality h(p,q) =
h(n−p,n−q) and holomorpic duality h(p,0) = h(3−p,0), h(0,q) = h(0,3−q). Let us now
introduce a basis for the various cohomology groups. The basis of 2-forms l−2

s ωA
correspond to harmonic representatives of the classes in H(1,1) (M6,Z), which
is dual to the basis l−4

s ω̃A of H(2,2) (M6,Z) and are dimensionless due to the

2Strictly speaking Inm is a generalization of the usual multiplication by ±i in complex analysis,

it gives to each tangent space TpM2N to a point p inM2N the structure of a complex vector

space.
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insertion of the string length ls. While (αα, β
κ) forms a real symplectic basis of

H(3) (M6,Z). The basis elements are chosen to satisfy

l−6
s

∫
M6

ωK ∧ ω̃L = δLK , K, L = 1, ......h(1,1) (2.6)

l−6
s

∫
M6

αα ∧ βκ = δκα, α, β = 1, ......h(2,1)

with the remaining intersections being trivial. All non-trivial cohomology groups
of CY three-folds and their basis elements are summarized in table 2.1. As we

cohomology group dimension basis

H(1,1)(M6,Z) h(1,1) ωA

H(2,2)(M6,Z) h(1,1) ω̃A

H(3)(M6,Z) 2h(2,1) + 2 (αα, β
κ)

H(2,1)(M6,Z) h(2,1) χK

Table 2.1: Basis of harmonic forms in a CY three-fold and their basis elements.

will discuss below, the four-dimensional massless modes of each ten-dimensional
p-form gauge potential are in one-to-one correspondence with the harmonic forms
on the internal space M6 and therefore their multiplicity is counted by the di-
mension of the non-trivial cohomolgy groups.

2.2.1 Moduli Space of CY three-folds

In the previous section, we briefly reviewed some basic aspects of the geometry
and topology of CY manifolds. The aim of this section is to show that each of
those CY three-folds is actually part of a continuous family of CY manifolds.
As already mentioned, any CY manifold admits a metric g such that Rij̄(g) = 0.
Given such a Ricci-flat metric, one can continuously perturb to a new metric g+δg
that also preserves the Ricci-flatness. There are two basic types of perturbations
δg: those with pure and those with mixed type indices

δg = δgijdz
idzj + δgij̄dz

idz̄ j̄ + c.c. (2.7)

Since g is a Hermitian metric, perturbations with mixed type indices preserve the
original index structure of g while those of pure type do not. The Ricci-flatness
condition Rij̄(g + δg) = 0 implies that δg satisfies the Lichnerowicz equation

∇q∇qδgij +Rqr
ij δgqr = 0 (2.8)
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which imposes strong restrictions on δg. In particular, it turns out that δgij̄dz
i∧z̄ j̄

must be harmonic and hence it is uniquely associated to an element ofH(1,1) (M6,Z).
On the other hand, using the holomorphic three-form Ω3, it can also be shown
that Ωijkg

kk̄δk̄l̄dz
i ∧ dzj ∧ dzl is an element of H(2,1) (M6,Z). Hence, these two

cohomology groups are associated with the space of deformations of an initial
Ricci-flat metric on M6 to a nearby Ricci-flat metric. More precisely, defor-
mations of the metric with mixed type indices correspond to deformations of
the Kähler class J of M6, such deformations can be expanded in the basis of
H(1,1) (M6,Z) as

J = tAωA, A = 1, ........., h(1,1) (2.9)

which gives rise to h(1,1) real scalars tA that parametrize the sizes of 2-cycles of the
internal manifold. These real deformations fit together with the real scalars bA

arising in the expansion of the B-field presents in Type IIA string theory, whose
massless fluctuations are also expanded as B2 = bAωA, to form h(1,1) complex
scalar TA defined through

Jc = B2 + ie
1
2
φJ = TAωA (2.10)

which are known as Kähler moduli. The additional insertion of the ten-dimensional
dilaton φ indicates that the Kähler form J is expressed in the Einstein frame3.
The complex fields TA span the Kähler moduli space MK of the Calabi-Yau
three-fold, which is a spacial Kähler manifold with Kähler potential

KT = − log

(
4

3

∫
M6

e
3φ
2 J ∧ J ∧ J

)
= − log

(
i

6
KABC(TA − TA)(TB − TB)(TC − TC)

)
(2.11)

which is a cubic polynomial in tA = Im(TA), while B2-axions do not enter in the
Kähler potential. In the above Kähler potential we have used the dimensionless
triple intersection numbers of the Calabi-Yau manifold

KABC = `−6
s

∫
M6

ωA ∧ ωB ∧ ωC , (2.12)

The metric on MK can be straightforwardly computed from the Kähler potential
(2.11) through [15]

GAB̄ = ∂TA∂T̄BKT = −3

2

(
KAB
K
− 3

2

KAKB
K2

)
=

3e−φ

2K`6
s

∫
M6

ωA ∧ ?6ωB (2.13)

3Throughout this thesis, we use the Einstein frame Kähler form J , which is related to Kähler

form measured in the string frame Js used in [10] by the relation J = e−
φ
2 Js.
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To simplify the above expressions we have used the following notation for the
contractions of the intersection numbers with the Einstein-frame Kähler form

K = `−6
s

∫
M6

J ∧ J ∧ J = KABCtAtBtC , KA = `−6
s

∫
M6

ωA ∧ J ∧ J = KABCtBtC

KAB = `−6
s

∫
M6

ωA ∧ ωB ∧ J = KABCtC ,

Furthermore, the function GT = e−KT is a homogenous function of degree three
in the geometric Kähler moduli tA, which implies a no-scale condition for the
Kähler potential KT :

(KT )A(KT )AB(KT )B = 3. (2.14)

The homogeneity of the function GT also implies that GT can be derived from a
holomorphic pre-potential F by the relation:

GT = i
(
T
AFTA − TAFTA

)
T 0=1

, (2.15)

In order to work with homogeneous (projective) coordinates on the Kähler moduli
space we have included a complex coordinate T 0 which we set to unity after
differentiation of the prepotential4. One can then easily check that the Kähler
potential (2.11) results from the (tree-level) holomorphic pre-potential, valid at
large internal volumes:

Ftree(T ) = − 1

3!

KABCTATBTC

T 0
. (2.17)

In section 2.7, we will discuss perturbative α′-corrections to this pre-potential,
which have to be taken into account in regions of the moduli space away from
the large volume limit.

On the other hand, deformations of the metric with pure type indices cor-
respond to deformations of the complex structure. To understand this, we first
note that such deformations yield a metric which is no longer Hermitian, but it
can be put back into Hermitian form by a suitable change of variables. However,
this change of variables is necessarily not holomorphic as holomorphic coordinate
changes cannot affect the index structure of a tensor. Hence the new metric is
Hermitian with respect to a different complex structure. Those deformations of

4In case one prefers to work in the affine coordinate patch (1, T a), the relation between the

homogenous function GT and the pre-potential has to be properly adjusted:

− iGT = 2F − 2F − (T a − T a)

(
∂F
∂T a

+
∂F
∂T a

)
. (2.16)



2.2. CALABI-YAU MANIFOLDS 29

the complex structure of M6 are parameterized by h2,1 complex scalar fields zκ,
which are in one-to-one correspondence with harmonic (2, 1)-forms through

δgīj̄ = − i

||Ω||2
zκ(χκ)klj̄ Ω̄kl

ī , κ = 1, . . . , h(2,1) , (2.18)

where ||Ω||2 = 1
3!

ΩijkΩ̄
īj̄k̄ and χκ form a basis of H(2,1) (M6,Z) which are related

to the variation of Ω by mean of Kodaira’s equation

χκ = ∂zκΩ(z) + Ω(z)∂zκ K
cs (2.19)

As we argue in the next section, complex structure deformations zκ fit together
with C3-axions to form the proper N = 2 chiral multiplets. The complex fields
zK span the complex structure moduli space Mcs of the Calabi-Yau three-fold,
which also is a spacial Kähler manifold with Kähler potential

Kcs = − log

(
i

`6
s

∫
M6

Ω3 ∧ Ω3

)
= − log i

(
ZκFκ − ZκFκ

)
. (2.20)

with (Zκ,Fκ) being the holomorphic periods depending only on the complex
structure moduli

Zκ(z) =

∫
M6

Ω(z) ∧ βκ , Fκ(z) =

∫
M6

Ω(z) ∧ ακ , (2.21)

The periods Fκ play the role of first order derivatives of a pre-potential F cs
with respect to the periods Zκ. More precisely, the periods FK can be seen as
homogeneous functions of degree one in the homogeneous projective coordinates
Zκ, such that the pre-potential F cs = 1

2
ZκFκ is a homogeneous function of degree

two. This implies that the holomorphic three-form Ω3 admits an expansion of
the form

Ω3(z) = Zκ(z)ακ −Fκ(z) βκ (2.22)

The metric on Mcs can be straightforwardly computed from the Kähler potential
(2.20) and is given by [15]

Gακ̄ = ∂zα∂z̄κ Kcs = −
∫
M6

χα ∧ χ̄κ∫
M6

Ω3 ∧ Ω̄3

(2.23)

As is well-known, the holomorphic three-form Ω3 is only determined up to a
complex rescaling e−h(z), which changes the Kähler potential (2.20) by a Kähler
transformation

Ω→ Ω e−h(z) =⇒ Kcs → Kcs + h+ h̄ (2.24)

By virtue of this rescaling symmetry, we can set one of the periods to one (
usually denoted by Z0) and work in an affine coordinate patch in which the
complex structure deformations can be identified with the remaining h(1,2) periods
as zκ = Zκ/Z0. Consequently, the full moduli space of the compactification
corresponds to the direct product of both special Kähler manifolds

MK ×Mcs (2.25)
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2.3 Type IIA compactifications on Calabi-Yau

three-folds

In this section we review compactifications of the ten-dimensional type IIA su-
pergravity on a Calabi-Yau three-fold in the absence of background fluxes. It is
a N = 2 supersymmetric theory in ten dimensions, which is naturally obtained
as the low energy limit of type IIA superstring theory5. In the following we will
consider only the bosonic massless spectrum, which consists of two sectors. On
the one hand, one has the dilaton φ̂, the ten-dimensional metric ĝMN and the
two-form B̂2 in the NS-NS sector, while the gauge fields Ĉ1 and Ĉ3 arise in the
R-R sector. Thus, our starting point is the ten-dimensional type IIA supergravity
action in the Einstein frame

S
(10)
IIA =

∫
−1

2
R̂ ? 1− 1

4
dφ̂ ∧ ?dφ̂− 1

4
e−φ̂Ĥ3 ∧ ?Ĥ3 −

1

2
e

3
2
φ̂F̂2 ∧ ?F̂2

−1

2
e

1
2
φ̂F̂4 ∧ ?F̂4 −

1

2
B̂2 ∧ F̂4 ∧ F̂4 , (2.26)

where the NS and RR field strengths are defined as

Ĥ3 = dB̂2 , F̂2 = dĈ1 , F̂4 = dĈ3 − Ĉ1 ∧ Ĥ3 . (2.27)

In order to obtain the four-dimensional effective theory, one has to perform
a Kaluza-Klein reduction of the ten-dimensional fields. Upon dimensional re-
duction, the four-dimensionsional fields come from the zero modes of the ten-
dimensional fields. It is well-known that there is one-to-one correspondence be-
tween zero modes of differential operators on a given space and the harmonic
forms of that space and therefore their multiplicity is counted by the dimension
of the cohomology groups of M6. Accordingly we expand the ten-dimensional
fields in terms of harmonic forms on M6 as follows

Ĉ1 = A0(x) , B̂2 = B2(x) + bA(x)ωA , a = 1, . . . , h(1,1) , (2.28)

Ĉ3 = AA(x) ∧ ωA + ξκ(x)ακ − ξ̃κ(x) βκ , κ = 0, . . . , h(2,1) .

where the four-dimensional fields bA, ξκ, ξ̃κ are scalars, A0, AA are four-dimensional
one-forms, while B2(x) is a four-dimensional two-form. These massless fields fit
together with the ones encoding deformations of the geometry to form N = 2
multiplets, which are summarized in table 2.2. Note that the two-form B2(x) can
be dualised to a scalar a which results in one further hypermultiplet.

Inserting the field expansions 2.28 into the ten-dimensional Type IIA ac-
tion 2.26 and integrating over the CY manifold, one obtains a standard four-

5For a nice review of N = 2 supergravity see [16]
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Multiplet Multiplicity Bosonic components

gravity 1 (gµν , A
0)

vector h(1,1) (AA, tA, bA)

hyper h(2,1) (zκ, ξκ, ξ̃κ)

tensor 1 (B2(x), φ, ξ0, ξ̃0)

Table 2.2: Bosonic components of the N = 2 multiplets for Type IIA supergravity

compactified on CY three-folds.

dimensional N = 2 ungauged supergravity action [17,18]

S
(4)
IIA =

∫
−1

2
R ∗ 1 +

1

2
ImNAB FA ∧ ∗FB +

1

2
ReNAB FA ∧ FB (2.29)

−GAB̄ dT
A ∧ ∗dT̄B − huv dq̃u ∧ ∗dq̃v ,

In the gauge kinetic part the field strengths FA = dAA, while GAB̄ is the metric
on the Kähler moduli space given in (2.13) and NAB is the gauge-kinetic coupling
matrix that encodes the couplings of the vector multiplets and can be directly
computed from the holomorphic prepotential (2.17) by using equation (C.14) and
its explicit form is given by

ReN =

(
−1

3
KABCbAbBbC 1

2
KABCbBbC

1
2
KABCbAbC −KABCbC

)
(2.30)

ImN = −K
6

(
1 + 4GAB̄b

AbB −4GAB̄b
B

−4GAB̄b
B 4GAB̄

)
(2.31)

Afterwards, we turn to the couplings of the hypermultiplets in the action (2.29),
which are encoded in the quaternionic metric huv and whose explicit form is

huv dq̃
u dq̃v = (dD)2 +Gακ̄ dz

αdz̄κ +
1

4
e4D

(
da− (ξ̃κdξ

κ − ξκdξ̃κ)
)2

(2.32)

−1

2
e2D(ImM−1)ακ

(
dξ̃α −Mαβdξ

β
)(

dξ̃κ − M̄κλdξ
λ
)

where D is the four-dimensional dilaton defined as eD = eφ/
√
V , Gακ̄ is the

metric on the space of complex structure deformations defined in (2.23), while the
complex coupling matrix Mακ depends on the complex structure deformations
zκ and can be directly computed from (2.21) by using equation (C.14).

Finally, the full moduli space for N = 2 compactifications has a local struc-
ture of the form

MN=2 = MK ×MQ (2.33)
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where MK is again the special Kähler manifold spanned by the Kähler moduli
(2.10), while MQ is a quaternionic manifold spanned by the scalars in the hy-
permultiplets and that has a special Kähler submanifold Mcs spanned by the
complex structure deformations zκ.

2.4 Type IIA compactifications on Calabi-Yau

orientifolds

In this section we briefly review the four-dimensional low energy effective ac-
tion arising from type IIA orientifold compactifications. Type IIA orientifolds
can be constructed by starting from Type IIA string theory and modding out
by the symmetry group O = Ωp (−1)FLR, which is assumed to be a symmetry
of the original theory. This symmetry known as orientifold projection consists
of worldsheet parity Ωp exchanging left and right movers, a projection opera-
tor (−1)FL counting the number of spacetime fermions in the left-moving sector
and an internal involution R which acts non-trivially on M6, but leaves the
four extended dimensions unchanged. Supersymmetry requires that the internal
involution must act on the Kähler as follows

R (J) = −J (2.34)

On the other hand, the compatibility of the above condition with the Calabi-Yau
condition J ∧J ∧J ∼ Ω∧ Ω̄ implies that R acts non-trivially on the holomorphic
3-form Ω as

R (Ω) = e2iθ Ω̄ (2.35)

where θ is some phase which can be eliminated through a redefinition of Ω. The
fix-point set of the anti-holomorphic involution R in M6 are three-cycles ΠO6

supporting the internal part of the orientifold planes. These three-cycles have to
be special Lagrangian submanifolds of M6, which is an immediate consequence
of the constraints (2.34) and (2.35), namely

J
∣∣
ΠO6

= 0, Im
(

e−iθΩ3

∣∣
ΠO6

)
= 0. (2.36)

This means that those three-cycles are calibrated with respect to Re
(
e−iθΩ3

∣∣
ΠO6

)
.

As we will discuss in the next section, the above constraints will also affect the
D6-branes present in the compactification, if they are demanded to preserve su-
persymmetry. After orientifold projection only the O-invariant states are kept,
thus by using the parity behavior of the massless bosonic states under Ωp and
(−1)FL displayed in table 2.3 one can straightforwardly derive the parity of the
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Field Ωp (−1)FL

φ even even

g even even

B2 odd even

C1 even odd

C3 odd even

Table 2.3: Parity behavior of the massless bosonic states under Ωp and (−1)FL.

O-invariant states under the involution R:

R (φ) = φ, R (g) = g, R (B2) = −B2, R (C1) = −C1, R (C3) = C3

(2.37)
As mentioned in the previous section the massless modes are in one-to-one corre-
spondence with the harmonic forms onM6, therefore we now have to determine
the splitting of the cohomology groups H(p,q) under the action of R

H(p,q)(M6,Z) = H
(p,q)
+ (M6,Z)⊕H(p,q)

− (M6,Z) . (2.38)

whereH
(p,q)
+ (M6,Z) contains harmonics (p, q)-form even underR whileH

(p,q)
− (M6,Z)

contains the odd ones. In table 2.4 we summarize all cohomology groups onM6

and their basis elements. Depending on the parity behavior given in (2.37) the

O-invariant states reside either in H
(p,q)
+ (M6,Z) or H

(p,q)
− (M6,Z), consequently

the four-dimensional spectrum will be reduced.

cohomology group H
(1,1)
+ H

(1,1)
− H

(2,2)
+ H

(2,2)
− H

(3)
+ H

(3)
−

dimension h
(1,1)
+ h

(1,1)
− h

(1,1)
− h

(1,1)
+ h(2,1) + 1 h(2,1) + 1

basis ωα ωa ω̃a ω̃α
(
αK , β

Λ
) (

βK , αΛ

)
Table 2.4: Splitting of the cohomology groups of M6 under the action of R and their

basis elements.

Due to the fact that the volume form dvolM6 ∼ J ∧ J ∧ J is odd, one

straightforwardly deduces that h
(3,3)
− = 1 and h

(3,3)
+ = 0, then by using Hodge

duality we further infer that h
(0,0)
− = 0 and h

(3,3)
+ = 1. On the other hand, Hodge
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duality also requires that h
(1,1)
+ = h

(2,2)
− and h

(1,1)
− = h

(2,2)
+ . It implies that the

non-trivial intersection numbers are given by

l−6
s

∫
M6

ωα ∧ ω̃β = δβα , α, β = 1, . . . , h
(1,1)
+ , (2.39)

l−6
s

∫
M6

ωa ∧ ω̃b = δba , a, b = 1, . . . , h
(1,1)
−

Finally, under the action of R the symplectic basis (ακ, β
λ) ∈ H3(M6,Z) de-

composes into the bases of R-even 3-forms (αK , β
Λ) ∈ H3

+(M6,Z) and R-odd
3-forms (βK , αΛ) ∈ H3

−(M6,Z).6 In this basis, the only non-trivial intersections
are given by

l−6
s

∫
M6

αK ∧ βL = δLK , l−6
s

∫
M6

αΛ ∧ βΣ = δΣ
Λ (2.40)

Let us now determine the spectrum surviving the orientifold projection. From
the equations (2.34) and (2.37) we immediately see that both J and B2 are odd
under R and therefore must be expanded in the basis of R-odd forms l2sωa ∈
H

(1,1)
− (M6,Z) as

J = taωa, B2 = baωa, a = 1, ......h
(1,1)
− (2.41)

In contrast with the unorientifolded theory, now the four-dimensional two-form
B2(x) gets projected out due to that fact that R acts trivially on the flat dimen-
sions. Just as in the N = 2 theory, both J and B2 can be combined to form
complex scalars

Jc = T aωa, a = 1, ......h
(1,1)
− (2.42)

This implies that orientifold projection reduces the number of Kähler moduli from
h(1,1) to h

(1,1)
− . These fields also span a spacial Kähler manifold M̃K , where Kähler

potential and the metric on this manifold are trivial truncations of the Kähler
potential (2.11) and the metric (2.13) respectively, namely replacing TA → T a.

Let us now discuss how the orientifold projection affects to the complex
structure deformations. We start expanding the holomorphic three-form Ω in the
basis of H3

+ ⊕H3
− as

Ω = ZKαK −FΛβ
Λ + ZΛαΛ −FKβK (2.43)

6Alternatively, one can chose a real symplectic basis such that all α-elements are chosen to be

even αK ∈ H3
+ while all β-elements are chosen to be odd βK ∈ H3

− with intersection.

l−6
s

∫
M6

αK ∧ βI = δIK

Despite this particular choice of H3
+ ⊕H3

− simplifies considerably the computations, here we

use a more general basis which result to be more suitable to construct the mirror duals of the

type IIB Calabi-Yau flux compactifications.
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Then by inserting the above expansion back into the constraint (2.35) one obtains

Im
(
e−iθZK

)
= Re

(
e−iθFK

)
= 0, Re

(
e−iθZΛ

)
= Im

(
e−iθFΛ

)
= 0 (2.44)

Note that the constraints Im
(
e−iθZK

)
= Re

(
e−iθZΛ

)
yields a set of h(2,1) + 1

real conditions for h(2,1) complex structure deformations. On the other hand,
the scale invariance of the holomorpic three-form Ω defined in 2.24 implies that
one of these conditions is redundant. This means we can use the phase e−h(z)

to trivially satisfy one of these constraints, while the remaining equations al-
low us to project out h(2,1) real scalars. Note that the remaining equations
Re
(
e−iθFK

)
= Im

(
e−iθFΛ

)
= 0 should not be seen as equations determining

the complex structure deformations, instead they yield a set of constraints on
the periods. To preserve the scale invariance of Ω in the orientifolded theory will
be useful to introduce a compesator field C = e−D−iθe

1
2
Kcs(z) with the transfor-

mation property C → CeReh, where D is the four-dimensional dilaton defined in
the previous section. Accordingly, one can define the scale invariant function CΩ
that depends on h(2,1) + 1 real parameters

CΩ = Re
(
CZK

)
αK + iIm

(
CZΛ

)
αΛ − Re (CFΛ) βΛ − iIm (CFK) βK (2.45)

The next step is to expand the ten-dimensional fields C1 and C3 into harmonic
forms of M6. Since C1 is odd under R, combined together with the fact that
M6 posses no harmonic one-forms and R acts trivially on the flat dimensions,
thus the entire C1 is projected out. On the other hand, C3 is even under R and
therefore can be expanded as

C3 = c3(x) + Aα(x) ∧ ωα + ξK? αK − ξ?ΛβΛ (2.46)

where Aα are h
(1,1)
+ one-forms, while ξK? , ξ?Λ are h2,1 + 1 scalar fields and c3(x) is

the four-dimensional part of the ten-dimensional field C3, in four dimensions it
can be dualised to a constant which will play the role of a further electric flux
e0. In order to find the proper complex fields will be useful to define the complex
combination

Ωc = C3 + iRe (CΩ) (2.47)

As shown in [10], the C3-axions fit together with the complex structure deforma-
tions of the CY metric to form complexified scalars of theN = 1 chiral multiplets:

NK
? = `−3

s

∫
M6

Ωc ∧ βK , U?Λ = `−3
s

∫
M6

Ωc ∧ αΛ. (2.48)

we refer to these fields as complex structure moduli. The fields (2.48) span a
manifold MQ which maintains a Kähler structure with Kähler potential given
by:

KQ = −2 log

(
1

4
Im (CZΛ)Re (CFΛ)− 1

4
Re (CZK)Im (CFK)

)
= − log(e−4D),

(2.49)
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The metric on this manifold is given by [10]

KKL̄ = e2Dl−6
s

∫
M6

αK ∧ ?αL, KΛΣ̄ = e2Dl−6
s

∫
M6

βΛ ∧ ?βΣ, (2.50)

KΛK̄ = e2Dl−6
s

∫
M6

βΛ ∧ ?αK

Thus, after orientifold projection all the original N = 2 multiplets break into
N = 1 multiplets, the resulting N = 1 spectrum is summarized in table 2.4 To

multiplets multiplicity bosonic components

gravity multiplet 1 gµν

vector multiplets h
(1,1)
+ Aα

chiral multiplets h
(1,1)
− T a

chiral multiplets h(2,1) + 1 NK
? , U?Λ

Table 2.5: Bosonic components of the N = 1 multiplets for Type IIA supergravity

compactified on CY orientifolds.

obtain the four-dimensional effective theory one has to insert the field expansions
(2.42) and (2.46) into the ten-dimensional Type IIA action (2.26). However, this
is equivalently to impose the orientifold projections on the N = 2 action (2.29),
such that one is left with

S
(4)
IIA =

∫
−1

2
R ∗ 1−KIJ̄ dM

I ∧ ∗dM̄J +
1

2
ImNαβ Fα ∧ ∗F β +

1

2
ReNαβ Fα ∧ F β

(2.51)
Where M I collectively denote the bosonic components of the chiral multiplets,
namely M I = (T a, NK

? , U?Λ), the gauge-kinetic coupling matrix Nαβ is also a
truncation of the N = 2 gauge-kinetic coupling matrix and is given by ReNαβ =
−Kαβaba and ImNαβ = Kαβ. Note that the above effective action does not include
a potential term, therefore the tree-level superpotential has to vanish. Finally,
the full moduli space for N = 1 compactifications has the product structure

M̃N=1 = M̃K × M̃Q (2.52)

where M̃K is a submanifold of the N = 2 special Kähler manifold MK and M̃Q

is a submanifold of the quaternionic manifold MQ
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2.5 Type IIA flux potential

As we have seen in the previous section, all scalar components of the N = 1
multiplets have a flat potential. This is because the superpotential at tree level
is trivial, but it is a well-known fact that non-trivial background generate scalar
potentials for the closed string moduli [3,10]. On the other hand, the presence of
RR and NS fluxes will modify the internal background geometry, and therefore the
Calabi-Yau geometry is no longer a solution to the equations of motion. However,
one may address this obstacle by considering Calabi-Yau flux compactifications
in the large volume limit, in which the fluxes are diluted. Moreover, if the typical
energy scale of the fluxes is much lower than the compactification scale, one can
argue that the spectrum discussed in the previous section is the same, except
that some of the massless modes acquire a mass due to the fluxes.

From a ten-dimensional perspective, the democratic formulation of type
IIA superstring theory offers the best starting point to capture the physics of
string backgrounds with fluxes and D-branes. In this description, all RR gauge
potentials C2p−1 with p = 1, 2, 3, 4, 5 are treated on equal footing and are grouped
together in a polyform C = C1 +C3 +C5 +C7 +C9. Similarly to the NS 2-form
B2 they appear in the bosonic part of the type IIA supergravity action (6.42)
through their associated field strengths G = G0 + G2 + G4 + G6 + G8 + G10

and H3. Apart from their equations of motion, these field strengths also have to
satisfy the Bianchi identities, which in the absence of D-branes or other external
sources read:

d(e−B2 ∧G) = 0, dH3 = 0 (2.53)

On a compact manifold, the Bianchi identities imply that the polyforms e−B2 ∧
G and NS 3-form H3 are closed forms, such that these field strengths can be
decomposed in terms of exact and harmonic forms:7

G = eB2 ∧ (dA + G), H3 = dB2 +H3. (2.54)

At the same time, the Bianchi identities written in this form allow to argue for
the quantisation of the associated Page charge [19],

1

`2p−1
s

∫
π2p

dA2p−1 +G2p ∈ Z,
1

`2
s

∫
π3

dB2 +H3 ∈ Z, (2.55)

arising through integration over the non-trivial homological cycles π2p with p =
1, 2, 3 and π3. The quantisation argument itself relies on the consistency of the
field theory on a probe (2p− 2)-brane wrapping a (2p− 1) cycle inside one of the

7The chosen form of the Bianchi identities allows to extract the solution for the RR field

strengths in terms of the A-basis instead of the C-basis, which are related to each by a simple

B2-transformation, i.e. A = C ∧ e−B2 .
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non-trivial homological cycles π2p or π3. In the absence of localised sources such as
D-branes, the gauge potentials A are well-defined everywhere and the non-trivial
harmonic parts G2p with p = 0, 1, 2, 3 and H3 with legs along the compactification
manifold capture the quantised flux. For orientifold compactifications the internal
p-cycles have to comply with the orientifold projection, such that the background
flux can be characterised by virtue of flux quanta (m,ma, ea, e0):8

`sG0 = m,
1

`s

∫
π̃a
G2 = ma,

1

`3
s

∫
πa

G4 = ea,
1

`5
s

∫
M6

G6 = e0, (2.56)

with π̃a ∈ H−2 (M6,Z) and πa ∈ H+
4 (M6,Z). The internal RR-fluxes G are

known to generate a perturbative superpotential for the Kähler moduli [20,21]:

`sWT =
1

`5
s

∫
M6

G ∧ eJc = e0 + eaT
a +

1

2
KabcmaT bT c +

m

6
KabcT aT bT c . (2.57)

The NS 3-form fluxH3 on the other hand threads theR-odd three-cycles (BK , AΛ) ∈
H−3 (M6,Z), which are the de Rahm duals to the R-odd three-forms (βK , αΛ) in-
troduced earlier. Similar as for the RR-fluxes, the quantised Page charge for the
NS-flux background can be expressed in terms of the integer flux quanta (hK , h

Λ):

1

`2
s

∫
BK

H3 = hK ,
1

`2
s

∫
AΛ

H3 = −hΛ. (2.58)

The NS-fluxes generate in turn a linear superpotential for the complex structure
moduli:

`sWQ =
1

`5
s

∫
M6

Ωc ∧H3 = hKN
K
? + hΛU?Λ . (2.59)

Unlike to the type IIB case, the richness of NS- and RR-fluxes in type IIA gen-
erates a superpotential for both Kähler moduli and complex structure moduli,
which offers a controlled, perturbative method to deal with moduli stabilisation
for all closed string moduli. Thus, the Type IIA flux potential is fully determined
in terms of the Kähler potential and superpotential through

VF =
eK

κ2
4

[
KABDAWDB̄ W̄ − 3

∣∣W ∣∣2] , (2.60)

where we used the Kähler covariant derivatives DAW = ∂AW +KAW and sum-
mation over all closed string moduli is assumed.

2.6 Type II orientifolds with mobile D6-branes

In this section we turn to type IIA Calabi-Yau orientifolds with fluxes and D6-
branes hosting open string moduli, dubbed mobile D6-branes in the following.

8We adhere to the conventions of [11] for the sign of the fluxes.
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Fluxes and D-branes are the key ingredients that have allowed to build an
abundance of phenomenologically interesting models from string compactifica-
tions [13, 22–24]. On the one hand, as discussed in the previous section fluxes
generate potential for the closed string moduli and simultaneously provide sources
for spontaneous supersymmetry breaking, which allows to build more general
compactifications with fewer and fewer moduli. On the other hand, D-branes
allow to construct realistic chiral gauge sectors, and to localise their degrees of
freedom in a particular region of the compactification. Needless to say, when com-
bining both ingredients in a given compactification one must do it consistently.
In first instance this gives rise to constraints of topological nature, like avoiding
Freed-Witten anomalies [25, 26]. At a finer level of detail, one must ensure to
capture the dynamical effects that D-branes and fluxes exert on each other, as
well as on the rest of the compactification. As we will see below, D-branes create
potentials for certain closed string moduli and contribute to the four-dimensional
light degrees of freedom with moduli of their own. Moreover, fluxes which are
sourced by branes also create potentials for the open string moduli. Therefore,
in order to properly describe the low energy effective dynamics all of these effects
must be taken into account on equal footing.

Moreover, as we will discuss later on in chapter 6 whenever the vacuum
breaks supersymmetry this generically results in a set of soft supersymmetry
breaking terms for the charged matter fields living on the worldvolume of D6-
branes. These terms can be computed from the effective low energy action as it
has been carried out in section 6.3 following the standard supergravity analysis
of [27–29].

2.6.1 D-brane action

Besides fundamental object, string theories also contain various extended p-
dimensional objects called Dp-branes on which open strings can end. All Dp-
branes become heavy in the limit gs → 0 and therefore they play an impor-
tant role to gain insight into non-perturbative aspects of string theories. On
the other hand Dp-branes have also provided for new ingredients in construct-
ing phenomenological appealing string models as they give rise to Abelian gauge
groups in type II superstring theories. The low-energy effective description of
these objects is captured by the Dirac-Born-Infeld action plus the Chern-Simons
action.

SDBI = −Tp
∫
Mp+1

dp+1ξ e−φ

√
−det

(
P [E]− l2s

2π
F

)
(2.61)

SCS = µp

∫
Mp+1

dp+1ξP [C] e
l2s
2π
F−P [B2] (2.62)
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The above actions describe the dynamics of the bosonic part of a single D-brane
in a type II string theory backgrounds. Where Tp and µp are the tension and

charge of the Dp-brane respectively, E = e
φ
2 g + B2, P [...] denotes the pullback

into the worldvolume of a given Dp-brane and F corresponds to the field strength
of the U(1) gauge field living on its worldvolume. The polyform C contains all
RR gauge potentials present in the theory, and only (p + 1)-forms contribute
to the integral in the Chern-Simons action. The fluctuations of a Dp-brane in
the directions transverse to its worldvolume are encoded in the pullback and are
parameterized by a set of uncharged scalar fields.

The Dp-brane may also carry gauge flux, in that case the field strength F
has to be modified as

F = dA+ f (2.63)

where f is a harmonic two-form on the worldvolume of the Dp-brane. To preserve
Lorentz invariance of the 4D theory these gauge fluxes must be forms on the
internal part of the worldvolume. Note that Dp-branes also carry RR charges,
because their couplings couple as extended objects to the RR gauge field Cp+1

9.
Besides this coupling: in the case of non-trivial F , Dp-branes also contain lower
dimensional D-brane charges and therefore they interact also with lower degree
RR p-form gauge fields, all these couplings to the bulk RR fields are also encoded
in the Chern-Simons action.

When N Dp-branes coincide, the worldvolume gauge theory becomes non-
Abelian10. As a consequence the effective actions in (2.61) have to be generalized,
as shown in [31]. This nice feature of coincident Dp-branes is essential to build
quantum field theories of the Yang-Mills type like the Standard Model, in type
II string theories.

2.6.2 Supersymmetry and calibration conditions

In general Dp-branes lead to non-supersymmetric low energy theories, which are
plagued by various instabilities due to runaway potentials for the moduli, unlike
with supersymmetric setups which are under much better control. Nevertheless,

9Strictly speaking, the p+ 1-dimensional worldvolume couples naturally to the RR form Cp+1,

which is nothing but a higher dimensional generalization of the electrodynamic coupling in

which a point like particle couples to one-form gauge field.
10Open strings can have either both endpoints on the same stack of Dp-branes or on two different

stacks. To distinguish the open strings that connect different Dp-branes one introduces the

Chan-Paton (CP) labels and assigns a formal label λA to every open string. These CP labels

can be represented by matrices that satisfy a Lie algebra as a symmetry group of open string

interactions. In this way, the symmetries of open string scattering amplitudes turn out to be

compatible with symmetry algebras U(N), SO(N) or USp(N) [30].
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the requirement of unbroken supersymmetry imposes strong conditions on the D-
branes present in the compactification. Dp-branes preserving half of the original
supersymmetries are known as BPS branes. The BPS condition requires that
the brane tensions Tp and their charges µp are equal, which ensures stability
since the net force between BPS branes vanishes [32, 33]. In addition, there are
further constraints on the (p− 3)-cycle Πα wrapped by the Dp-brane. From now
on we focus only on D6-branes which are the ones we are interested in. In [34]
was shown that for a D6-brane preserves some supersymmetry, it has to wrap a
special Lagrangian three-cycle Πα on the internal space.

e
φ
2 J
∣∣
Πα

= 0, Im
(

e−iθD6e
φ
4 CΩ3

∣∣
Πα

)
= 0 (2.64)

Since the three-form Ω3 is the natural calibration form for the (SLag) three-cycles
on Calabi-Yau 3-folds, the three-cycle volume form for the supersymmetric D6-
branes can be expressed as follows [34] for a given point in the Calabi-Yau moduli
space

e−iθD6 e
φ
4 CΩ

∣∣
Πα

= dVol
∣∣
Πα
. (2.65)

Where the additional insertion of the ten-dimensional dilaton indicates that the
above expressions are expressed in the Einstein frame. In presence of non-trivial
gauge fluxes, the above conditions have to be complemented with a further con-
dition

P [B2]− l2s
2π
F
∣∣
Πα

= 0 (2.66)

Finally, in order to ensure that D6-branes preserve the same supersymmetry as
the O6-planes, they should be calibrated with the same phase θ, namely θ =
θD6

11.

As mentioned above the D6-brane may carry gauge flux f which arises as
the vacuum expectation value of the field strength. Since we are considering
only massless modes of the gauge field one has that dA

∣∣
Πα

= 0 which leads to

F
∣∣
Πα

= fα. Finally, the cancellation of the Freed-Witten anomaly [25] requires

that the worldvolume gauge flux should be quantized l2s
2π
fα ∈ H2 (Πα,Z) and

therefore we can expand it in terms of harmonic two-forms as

fα = nαFiρ
i (2.67)

where we have introduced the basis of harmonic two-forms `−2
s ρi ∈ H2(Πα,Z)

and nαFi ∈ Z.

As already discussed in the previous section, the fixed loci ΠO6 under the
involution R define the locations of O6-planes with negative charge and tension
and wrapping one or more special Lagrangian (SLag) three-cycles. The O6-
plane RR-charges have to be cancelled along the internal directions, which can

11From now on we will set all phases θ = θD6 = 0.
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be achieved by introducing D6-branes wrapping SLag three-cycles Πα and filling
out the four-dimensional spacetime. Note that once we add a D6-brane wrapping
a three-cycle Πα on the internal manifold we also have to add the orientifold image
D6-brane wrapping the orientifold image three-cycle Π′3 = R (Π3). Thus, in the
absence of background fluxes, the RR tadpole cancellation conditions can be
recast into constraints in homology∑

α

Nα([Πα] + [RΠα])− 4[ΠO6] = 0, (2.68)

where Nα indicates the number of D6-brane in each stack α.

Whenever a SLag three-cycle Πα can be continuously deformed along a
normal vector without violating the special Lagrangian condition, a D6-brane
wrapped around it can change its embedding or position along its transverse
internal directions. As a result it has a non-trivial moduli space, parametrised by
one or more open string moduli. More precisely, if we pick a set {Xj} of normal
vectors to Πα which preserve the SLag condition,12 McLean’s theorem states
that the one-forms ιXiJ

∣∣
Πα

are proportional to harmonic one-forms in H1(Πa,Z).

In this sense, a generic, infinitesimal deformation X = `sXiϕ
i is expected to

yield b1(Πα) different position moduli ϕi. In order to properly define the chiral
superfields for the open string moduli, we use the basis of harmonic two-forms
`−2
s ρi ∈ H2(Πα,Z) and assign an open string modulus to each ρi as follows:

Φi
α = − 1

`4
s

∫
Πα

(
`2
s

π
A− ιXJc

)
∧ ρi = T b(ηα b)

i
jϕ

j − θiα = θ̂iα + i φiα. (2.69)

In this expression A again represents the D6-brane gauge potential, which reduces
along the internal directions to Wilson line degrees of freedom θiα. By introducing
the constant parameters (ηα b)

i
j,

(ηα b)
i
j =

1

`3
s

∫
Πα

ιXjωb ∧ ρi, (2.70)

the implicit dependence of the open string moduli on the Kähler moduli has
been extracted in the right hand side of (2.69). When extending the infinitesi-
mal deformation to a finite deformation of the SLag three-cycle, the functional
dependence of the open string moduli on the position moduli ϕi will no longer
be linear and higher order powers in the position moduli have to be computed
through a normal coordinate expansion. Roughly speaking, the term (ηα b)

i
jϕ

j

in (2.69) then has to be replaced by a generic function f iα b(ϕ), which can further
depend on the closed string geometric moduli ta, nK and uΛ [11]. The open string
modulus then reads

Φi
α = T af iα a − θiα = θ̂iα + i φiα. (2.71)

12The preservation of the SLag condition along direction Xi can be expressed through the

corresponding Lie-derivative, i.e. LXiJ
∣∣
Πα

= 0 = LXiΩ3

∣∣
Πα

.
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2.6.3 The N = 1 four-dimensional effective theory

When introducing mobile D6-branes into the type IIA orientifold compactifica-
tion, the full moduli space of the compactification does generically not correspond
to a direct product of the closed string moduli space M̃K × M̃Q with the open
string moduli space. For small field fluctuations around a chosen point in the
moduli space, one can adopt the approach in which the calibration conditions
for SLag three-cycles (2.64) and (2.65) are evaluated in a particular background
with frozen closed string moduli. As such, only those small deformations of the
D6-brane that respect the SLag conditions with respect to this background have
to be considered. Even in this approach, the reduction of the ten-dimensional
theory induces kinetic mixing between open string and bulk moduli, such that a
redefinition of the complex structure moduli is necessary to identify the proper
N = 1 chiral superfields. Following the reasoning of appendix B.2, one deduces
the following field redefinition for the complex structure moduli:

NK = NK
? +

1

2

∑
α

(gKαiθ
i
α − T aHK

αa), UΛ = U?Λ +
1

2

∑
α

(gαΛ iθ
i
α − T aHαΛ a),

(2.72)
where the real functions HK

αa and HK
αΛ a are defined through the expressions:

∂φiβ(taHK
αa) = δαβ g

K
αi, ∂ϕjg

K
αi = `−3

s

∫
Πα

ιXjβ
K ∧ ζi, (2.73)

and

∂φiβ(taHαΛ a) = δαβ gαΛ i, ∂ϕjgαΛ i = `−3
s

∫
Πα

ιXjαΛ ∧ ζi. (2.74)

with φiα = Im (Φi
α). The functions gKαi and gαΛ i are chain integrals that allow

to write the two-forms ιXβ
K and ιXαΛ on the three-cycle Πα in terms of the

more appropriate basis of quantised harmonic two-forms ρi, related to the quan-
tified one-forms ζi as `−3

s

∫
Πα
ζi ∧ ρj = δi

j. As argued in appendix A of [11], the

functions gKαi and gαΛ i are homogeneous functions of degree zero in the moduli
{ta, nK , uΛ, φ

i
α}, which implies that also the functions HK

αa and HK
αΛ a are homo-

geneous functions of degree zero in the respective moduli. The field redefinition
also has repercussions for the Kähler potential (2.49) depending on the complex
structure moduli. More precisely, the function GQ(nk, uΛ) hidden in the Kähler
potential (2.49), as inherited from the N = 2 Calabi-Yau compactifications, re-
mains a homogeneous function of degree two in the geometric moduli, but has
to be rewritten in terms of the redefined complex structure moduli and the open
string moduli:

KQ = −2 log

[
GQ

(
nK +

1

2
ta
∑
α

HK
αa, uΛ +

1

2
ta
∑
α

HαΛ a

)]
. (2.75)
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An immediate consequence of the moduli redefinition is the explicit dependence
of the function GQ on all geometric moduli {ta, nK , uΛ, φ

i
α}, such that the moduli

space obviously no longer factorises for type IIA orientifold compactification with
D6-branes. Ignoring α′-corrections for KT , the combined Kähler potentials KT +
KQ = − log(GTG2

Q) still satisfy a no-scale condition:

KAK
ABKB = 7, (2.76)

where the indices A and B sum over all closed and open string moduli, in line
with the conventions used in appendix A to express some revelant properties of
the full Kähler potential.

Besides the mixing between open, Kähler and complex structure moduli
at the level of the Kähler potential, mobile D6-branes also contribute to the
superpotential through a bilinear coupling between some open string moduli and
Kähler moduli:

WD6 = W 0
D6 + `−1

s

∑
α

Φi
α(nαF i − nαa iT a). (2.77)

with Φi
α defined in (2.71) in terms of a reference three-cycle Π0

α. At this reference
point in open string field space Φi

α = 0 and therefore the open string contribution
to the superpotential is given by W 0

D6. The microscopic justification of this
superpotential was derived in [35] and is reviewed in Appendix B, where we refer
the reader for a more detailed analysis. Applications of the bilinear superpotential
(2.77) to large field inflation were presented in [36, 37]. Thus, in the presence of
mobile D6-brane the full superpotential is given by

W = WT +WQ +WD6 (2.78)

whereWT is given by (2.57) andWQ by (2.59) with the replacement {NK
? , U?Λ} →

{NK , UΛ}.

2.7 Perturbative α′-corrections

The previous sections provided a brief review of some important aspects about
Type IIA string compactifications on Calabi-Yau orientifold with background
fluxes, which were constructed in the large volume limit. If we go away from
regions in the moduli space where the six-dimensional internal volume is huge,
quantum corrections such as higher-derivative curvature corrections and world-
sheet instanton corrections have to be taken into account. The aim of this section
is to investigate how the perturbative α′-corrections modify the classical theory
by considering how they affect the Kähler potential and superpotential in the
four-dimensional N = 1 supergravity description.
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The N = 1 supergravity description of Type IIA orientifold compactifica-
tions with Kähler potential (2.11) is only reliable for sufficiently large internal
volumes. Away from this limit, the Kähler potential is modified by the so-called
α′-corrections, which break the no-scale structure of KT for generic Calabi-Yau
manifolds. In the regime of moderately large volumes in which the world-sheet
instanton corrections can be neglected, the most relevant α′-corrections are those
that descend from (α′)3R4 curvature corrections in the ten-dimensional super-
gravity action. Following [8], such corrections can be incorporated into the pre-
potential by virtue of the homogeneous coordinates TA = (T 0, T a) on the Kähler
moduli space. In homogeneous coordinates the most generic (perturbative) pre-
potential is given by:

Fper(T ) = −1

6

KabcT aT bT c

T 0
+

1

2
K

(1)
ab T

aT b +K(2)
a T aT 0 − i

2
K(3)(T 0)2. (2.79)

The first term is the usual tree-level Calabi-Yau volume from (2.11) and the re-
maining three terms encode different orders of curvature corrections in α′. The
term proportional to K(3) corresponds to the (α′)3-correction and is the only effec-

tive contribution to the Kähler potential. The parameter K(3) = − ζ(3)
(2π)3 χM6 ∈ R

is proportional to the Euler characteristic χM6 of the compactification manifold

M6. The corrections K
(1)
ab and K

(2)
a correspond respectively to one-loop and two-

loop corrections in α′, yet do not have a ten-dimensional counterpart due to the
lack of a ten-dimensional curvature polynomial with the appropriate features.
Their presence can nevertheless be argued from mirror symmetry, which in fact
allows to express them in terms of topological quantities of M6 like its triple
intersection numbers and second Chern class, see e.g. [38, 39]. Their presence is
however physically irrelevant at the level of the Kähler metrics, as confirmed by
their absence in the Kähler potential that results from (2.79):

KT = − log

(
4

3
Kabctatbtc + 2K(3)

)
= − log

(
2

3
K(2 + 3ε)

)
, (2.80)

where we have defined ε ≡ K(3)

K which captures the (α′)3 curvature corrections
to the compactification volume. As anticipated earlier, in the presence of these
perturbative α′-corrections the classical no-scale condition for the Kähler poten-
tial (2.14) no longer holds and needs to be modified as well:

(KT )a(KT )ab(KT )b =
3

1− 3ε
. (2.81)

For generic Calabi-Yau compactifications with background fluxes, the (pertur-
bative) α′-corrections to the Kähler moduli pre-potential (2.79) also induce cur-
vature corrections to the (Kähler moduli) superpotential [8]. By rewriting the
superpotential in terms of the homogeneous coordinates TA = (T 0, T a), the α′-
corrected superpotential can be obtained from the pre-potential (2.79):

ls (WT +WQ) =
(
T 0, T a,−∂TaFper, ∂T 0Fper, N

K , UΛ

)
T 0=1

· −→q , (2.82)
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with −→q being a vector of flux quanta −→q =
(
e0, ea,m

a,m, hK , h
Λ
)T

. The su-
perpotential WQ for the complex structure moduli remains unchanged by the
curvature corrections, while the part WT with the Kähler moduli takes a similar
form as (2.57),

W = ē0+ ēaT
a+

1

2
KabcmaT bT c+

m

3!
KabcT aT bT c−imK(3)+hKN

K+hΛUΛ (2.83)

upon taking into account the curvature correction K(3) and after introducing the
curvature corrected flux quanta ē0 = e0−maK

(2)
a and ēa ≡ ea−K(1)

ab m
b +mK

(2)
a .

This clearly shows that the corrections K
(1)
ab and K

(2)
a become relevant in the

presence of a superpotential for the Kähler moduli and cannot be ignored.



Chapter 3

Axion polynomials and

Freed-Witten anomalies

In this chapter we briefly review the axion-polynomial description of type IIA
Calabi-Yau orientifolds with fluxes and D6-branes presented in [40, 41]. I would
like to point out that although most of this chapter is a review of the results
obtained in those articles, here we also present some new results, in particular
those regarding the axion-polynomials with α′-corrections discussed in section 3.5
which have been found in [42].

3.1 Type IIA flux potentials and axion polyno-

mials

We have seen in section 2.5 that both Kähler and complex structure moduli de-
velop an F-term scalar potential once NS and RR background fluxes are turned
on. This scalar potential can be reproduced both by applying the usual 4d su-
pergravity expression or by direct dimensional reduction. The latter approach
involves integrating out the degrees of freedom associated to three-form fields
in the four-dimensional Minkowski spacetime which give a non-vanishing contri-
bution to the potential [3]. More precisely, we may reproduce the full F-term
scalar potential (2.60) purely in terms of contributions coming from Minkowski
three-forms by performing the dimensional reduction of type IIA supergravity in
its democratic formulation discussed in section 2.5. In this chapter we will adopt
this approach. As we will see below it allows to incorporate the open string mod-
uli into the computation and derive a scalar potential for open and closed string
modes simultaneously. To this end, we first define a set of Minkowski four-form

47
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field strengths coming from the dimensional reduction of the 10d-dimensional RR
field strengths

G4 = F 0
4 +..., G6 = F a

4 ∧ωa+...., G8 = F̃4,a∧ω̃a+...., G10 = F̃4∧dvolM6 +....
(3.1)

where the four-forms (F 0
4 , F

a
4 , , F̃4,a, F̃4) have their legs along R1,3 and ωa, ω̃

a are
the harmonic forms of M6 defined in section 2.4. Besides these Minkowski 4-
forms, there are h

(2,1)
+ + 1 further Minkowski 4-forms HI

4 arising from the NS
sector through:

H7 = HI
4 ∧ αI (3.2)

where H7 is the Hodge dual of H3 and αI areR-odd three-forms αI ∈ H3
−(M6,Z).

As shown in [41], the kinetic terms for the ten-dimensional gauge fields can
be dimensionally reduced to four dimensions and these Minkowski four-forms
enter into the four-dimensional effective action as

Seff = − 1

16κ2
4

∫
R1,3

ZABF
A
4 ∧ ∗4F

B
4 −

1

16κ2
4

∫
R1,3

ZABρAρB ∗4 1 +
1

8κ2
4

∫
R1,3

FA
4 ρA

(3.3)
where ρA are polynomials of the closed string axions of the four-dimensional
effective theory and we refer to them as axion-polynomials. They are related to
the Minkowski four-forms by four-dimensional Hodge duality as

∗4 F
A
4 = ZABρB (3.4)

As we will see in the next section, the polynomial coefficients in the different ρA
are topological quantities of the compactification, like triple intersection numbers
or flux quanta, such that the ρA are invariant under the discrete shift symmetries
of the four-dimensional effective theory. On the other hand, the precise shape
of each axion-polynomial is fully determined by the Freed-Witten anomalies of
D-branes that appear as four-dimensional string defects.

By plugging the duality relation (3.4) back into the effective action (3.3) we
can easily check that the first two terms in (3.3) cancel out, while the last term
of (3.3) becomes a potential of the form

V =
1

8κ2
4

ZABρAρB (3.5)

Note that the above potential is nothing but the usual type IIA flux potential
expressed in terms of the axion-polynomials. Coming up next we review and
extend the reasoning of [40, 41] that led to the scalar potential (3.5). We extend
this result in the sense that we consider both kinds of complex structure moduli
(NK , UΛ) considered in the type IIA orientifold literature. Finally, in section
3.5 we show that perturbative α′-corrections also fit into the axion polynomial
language.
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3.2 Axion polynomials without open string mod-

uli

Let us first consider the case without open string moduli. Following the philos-
ophy of [41], but now taking into account the presence of both type of complex
structure moduli defined in (2.48), the superpotential generated by RR and NS
fluxes discussed in section 2.5 can be alternatively expressed as the product

WT +WQ =
−→
Π
t
· −→ρ , `s

−→ρ = (R−1)t · −→q , (3.6)

of a saxion vector
−→
Π
t
(ta, nK? , u?Λ) = (1, ita,−1

2
Kabctbtc, − i

3!
Kabctatbtc, inK? , iu?Λ)

and an axion vector −→ρ of components ρA. The latter is given in terms of an
(2h11

− + h21 + 3)× (2h11
− + h21 + 3) dimensional axion rotation matrix,

R(ba, ξK , ξΛ) =


1 0 0 0 0 0
−ba δab 0 0 0 0

1
2
Kabcbbbc −Kabcbc δab 0 0 0

− 1
3!
Kabcbabbbc 1

2
Kabcbbbc −ba 1 0 0

−ξK? 0 0 0 δKL 0
−ξ?Λ 0 0 0 0 δΣ

Λ

 , (3.7)

and a charge vector−→q consisting of the quantised fluxes, i.e.−→q = (e0, ea,m
a,m, hK , h

Λ)t.
The factorised form of the superpotential enables to expose the multi-branched
structure of the vacua for the closed string axions: the periodic shift symmetry of
the axions leaves the action, potential and superpotential invariant provided that
the flux quanta −→q are shifted simultaneously. Formally, the shift symmetries of
the closed string axions are generated by the nilpotent matrices Pa, PK and PΛ,

Pa =



0 −
−→
δ
t

a 0 0 0 0
0 0 −Kabc 0 0 0

0 0 0 −
−→
δ a 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


,

PK =


0 0 0 0 −

−→
δ
t

K 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,

PΛ =


0 0 0 0 0 −(

−→
δ
L
)t

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,

(3.8)
which mutually commute among each other. As such, the axion rotation matrix
can be expressed in terms of these matrices through exponentiation:

Rt(ba, ξK? , ξ?Λ) = eb
aPa+ξK? PK+ξ?ΛP

Λ

. (3.9)
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The matrix notation also allows to express elegantly the invariance of the theory
under the axionic shift symmetries, which acts on the axion rotation matrix as:

(R−1)t(ba + ra, ξK? +$K , ξ?Λ +$Λ) = (R−1)t(ba, ξK? , ξ?Λ) · e−raPa−$KPK−$ΛP
Λ

,
(3.10)

with ra, $K , $Λ ∈ Z. The invariance of the superpotential is manifest provided
the charge vector transforms as,

−→q → er
aPa+$KPK+$ΛP

Λ−→q . (3.11)

The shift symmetry implies the existence of a set of gauge-invariant axion poly-
nomials `s

−→ρ ≡ (R−1)t · −→q , whose explicit component forms are given by,

`sρ0 = e0 + eab
a + 1

2
Kabcmabbbc + m

6
Kabcbabbbc + hKξ

K
? + hΛξ?Λ,

`sρa = ea +Kabcmbbc + m
2
Kabcbbbc,

`sρ̃
a = ma +mba,

`sρ̃ = m,
`sρ̂K = hK ,
`sρ̂

Λ = hΛ.

(3.12)

3.3 Four-dimensional strings and Freed-Witten

anomalies

The invariance under the axion shift symmetries is not coincidental, but relies mi-
croscopically on the cancellation of Freed-Witten anomalies for four-dimensional
strings in the presence of background flux [41]. More concretely, each of the ax-
ions (ba, ξK? , ξ?Λ) can be Hodge-dualised in four dimensions to its corresponding
two-form coupling to four-dimensional strings. In type IIA backgrounds these
axionic strings arise from NS5-branes wrapping the Poincaré-dual four-cycles
PD(ωa) (b-type axionic strings) and D4-branes wrapping the Poincaré-dual three-
cycles PD(αK) and PD(βΛ) respectively (ξ-type axionic strings). In the presence
of background RR-flux G2p the b-type axionic strings develop a Freed-Witten
anomaly in case G2p

∣∣
PD(ωa)

is non-trivial in cohomology, which can be mediated

by emitting a D(6− 2p)-brane wrapping the (4− 2p)-cycle in the Poincaré dual
class of G2p

∣∣
PD(ωa)

. Similarly, the ξ-type axionic strings resolve the Freed-Witten

anomaly in the presence of H3-flux by emitting D2-branes, as summarised in
table 3.1. The emitted D-branes form four-dimensional domain walls bounded
by axionic strings that separate vacua in the axion moduli space with different
RR- and/or NS-fluxes [43]. In this respect the domain walls are unstable under
nucleation of holes bounded by axionic strings, which allows the axions to cross
the domain wall by virtue of a monodromy generated by the matrices Pa, PK
and PΛ. Under the axion monodromies the flux quanta will shift as prescribed
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in (3.25), such that both effects cancel each other out and all vacua for the axions
are equivalent. It is also straightforward to verify that the field strengths in (2.54)
remain invariant under such shift symmetries, which can be seen as a particular
subset of gauge transformations.

String Flux Domain Wall

Axion Brane Set-up type Brane Set-up Rank

B2 = baωa NS5 on [πa] ∈ H+
4 (M6,Z) G0 = m D6 on [πa] m

B2 = baωa NS5 on [πa] ∈ H+
4 (M6,Z) G2 = maωa D4 on [PD(G2 ∧ ωa)]

∫
π̃a
ωc = Kabcmb

B2 = baωa NS5 on [πa] ∈ H+
4 (M6,Z) G4 = eaω̃

a D2 at point in M6

∫
πa
G4 = ea

C3 = ξK? αK D4 on [BK ] ∈ H−3 (M6,Z) H3 = hKβ
K D2 at point in M6

∫
BK

H3 = −hK
C3 = −ξ?ΛβΛ D4 on [AΛ] ∈ H−3 (M6,Z) H3 = hΛαΛ D2 at point in M6

∫
AΛ
H3 = hΛ

Table 3.1: Summary of 4d axionic strings with their respective attached domain

walls arising from Dp- and NS5-branes wrapping internal cycles on a Calabi-Yau

manifold with internal flux.

3.4 Axion polynomials with open string states

As reviewed in section 2.6, backgrounds with localised sources such as D6-branes
and O6-planes provide a much more intricate picture for type IIA compactifica-
tions with fluxes. On the one hand, their presence redefines the 4d fields that
appear in the Kähler potential, modifying the Kähler metrics non-trivially. On
the other hand, some open string moduli for mobile D6-branes will contribute to
the superpotential through a bilinear coupling with the Kähler moduli. Fortu-
nately, the particular (bi)linear structure of the last term in (2.78) allows for the
factorisation of the superpotential (3.6) into geometric moduli, axions and flux
quanta to go through in the presence of open string moduli as well:

`s
(
W −W 0

D6

)
=
−→
Π
t
· (R−1)t · −→q , (3.13)

where the saxion vector
−→
Π
t
(ta, nK , uΛ, φ

i
α) = (1, ita,−1

2
Kabctbtc,− i

3!
Kabctatbtc, inK , iuΛ,

iφiα, t
aφiα) is now extended with the open string moduli φiα, the charge vector

−→q = (e0, ea,m
a, m, hK , h

Λ, nαFi, n
α
ai)

t is extended with the open string quanta
(nαFi, n

α
ai) and the axion rotation matrix has to be enlarged with open string
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axions θ̂iα:

R(ba, ξK , ξΛ, θ̂
i
α) =



1 0 0 0 0 0 0 0
−ba δab 0 0 0 0 0 0

1
2
Kabcbbbc −Kabcbc δab 0 0 0 0 0

− 1
3!
Kabcbabbbc 1

2
Kabcbbbc −ba 1 0 0 0 0

−ξK 0 0 0 δKL 0 0 0
−ξΛ 0 0 0 0 δΣ

Λ 0 0

θ̂iα 0 0 0 0 0 δij 0

θ̂iαb
a θ̂iαδ

a
b 0 0 0 0 baδij δijδ

a
b


.

(3.14)
Also in the presence of open string axions, the rotation matrix can be generated
by a set of nilpotent matrices through exponentiation:

Rt(ba, ξK , ξΛ, θ̂
i
α) = eb

aPa+ξKPK+ξΛPΛ+θ̂iαPαi , (3.15)

with the shift-generating matrices (Pa,PK ,PΛ) forming the natural extension of
their closed string counterparts (3.8):

Pa → Pa =

 Pa
−→
0
t −→

0
t

−→
0 0

−→
δ
t

j−→
0 0 0

 , PK → PK =

 PK
−→
0
t −→

0
t

−→
0 0 0
−→
0 0 0

 , (3.16)

PΛ → PΛ =

 PΛ −→
0
t −→

0
t

−→
0 0 0
−→
0 0 0

 ,

and the only new generator Pαi being associated to the shift symmetries of the
open string axions:

Pαi =



0 0 0 0 0 0
−→
δ
t

j 0

0 0 0 0 0 0 0
−→
δ
t

a

−→
δ
t

j

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


. (3.17)

Under the shift symmetries of the closed string axions, the rotation matrix keeps
its original transformation properties (3.10), and the addition of open string
axions enforces the axion rotation matrix to transform under an additional set of
shift symmetries associated to the open string axions, with λiα ∈ Z:

(R−1)t(ba, ξK , ξΛ, θ̂
i
α + λiα) = (R−1)t(ba, ξK , ξΛ, θ̂

i
α) · e−λiαPαi . (3.18)
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Invariance of the superpotential under the combined axion shift symmmetries
requires the charge vector to transform as well:

−→q → er
aPa+$KPK$ΛPΛ+λiαPαi · −→q . (3.19)

These considerations thus naturally extend the observations reviewed in the pre-
vious section and allow to identify a set of shift-invariant axion polynomials
`s
−→% ≡ (R−1)t · −→q including both closed and open string axions:

`s%0 = e0 + eab
a + 1

2
Kabcmabbbc + m

6
Kabcbabbbc + hKξ

K + hΛξΛ + nαFiθ̂
i
α − nαaiθ̂iαba,

`s%a = ea +Kabcmbbc + m
2
Kabcbbbc − nαaiθ̂iα,

`s%̃
a = ma +mba,

`s%̃ = m,
`s%̂K = hK ,
`s%̂

Λ = hΛ,
`s%

α
i = nαFi − banαai,

`s%
α
ai = nαai.

(3.20)
The microscopic justification for the invariance under the axion shifts now runs [41]
through the Hanany-Witten effect, which is in one-to-one correspondence with
the Freed-Witten anomaly condition and allows to identify which combinations
of flux quanta form invariant directions. Apart from assuring the consistency of
four-dimensional axionic strings in flux backgrounds, the Freed-Witten anomaly
conditions also serve to verify the microscopic compatibility between background
fluxes and the D6-branes wrapping internal SLag three-cycles. In first instance,
the NS-fluxes can induce Freed-Witten anomalies on the D6-brane worldvolume,
unless the pullback of the NS 3-form field strength with respect to the wrapped
three-cycle is an exact 3-form, see e.g [26]:

∫
Πα

H3 = 0. (3.21)

On a formal footing, the requirement of vanishing Freed-Witten anomalies in a
background B2-field ensures the absence of global worldsheet anomalies in the
fermionic sector of the open superstring attached to the D6-brane [25]. At the
level of the 4d N = 1 supergravity theory, a vanishing Freed-Witten anomaly
implies that only the linear combination hKξ

K + hΛξΛ effectively enters in the
superpotential, while all orthogonal combinations can be gauged under the open
string U(1) symmetries living on D6-branes [44, 45] without violating gauge in-
variance.
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3.5 Axion polynomials and α′-corrections

In this section we study how the inclusion of the curvature corrections is compat-
ible with the axionic shift symmetries of the superpotential. First, notice that
its inclusion does not destroy the factorability of the superpotential in terms of
geometric moduli and axions. Indeed, we can write the α′-corrected flux super-
potential as

`s (WT +WQ) =
−→
Π
t

·Qt · (R−1
)t · −→q , (3.22)

provided that we modify the previous quantities. The saxion vector is now given

by
−→
Π
t

(ta, nK , uΛ) = (1, ita,−1
2
Kabctbtc, − i

3!
Kabctatbtc − iK(3), inK , iuΛ), we have

introduced a square matrix Q defined below, and the axion rotation matrix is
given by

R(ba, ξK , ξΛ) =



1 0 0 0 0 0
−ba δab 0 0 0 0

1
2
Kabcbbbc −K(1)

ab b
b −Kabcbc δab 0 0 0

− 1
3!
Kabcbabbbc − 2K

(2)
a ba 1

2
Kabcbbbc +K

(1)
ab b

b −ba 1 0 0
−ξK 0 0 0 δKL 0
−ξΛ 0 0 0 0 δΣ

Λ

 .

(3.23)
Second, the axion rotation matrix is still generated through exponentiation as
in (3.9), but now by a modified set of nilpotent, commuting matrices (P a, PK , P

Λ).
The shift-generator P a for the Kähler axions is related to the previous version
in (3.8) by conjugation with the charge matrix Q,

P a = Q−1PaQ, Q =


1 0 −K(2)

a 0 0 0

0 δab −K
(1)
ab K

(2)
a 0 0

0 0 δba 0 0 0
0 0 0 1 0 0
0 0 0 0 δKL 0
0 0 0 0 0 δΣ

Λ

 . (3.24)

Given these simple extensions, the superpotential remains invariant under the
shift symmetries of the closed string axions, provided that the flux quanta trans-
form simultaneously as follows:

−→q → er
aPa+$KPK+$ΛP

Λ−→q . (3.25)

The transformed flux vector has integer entries provided that K
(1)
ab , K

(2)
a ∈ Z,

which we will assume in the following. Finally, one may express the superpotential
in terms of the previous rotation matrix as

`s (WT +WQ) =
−→
Π
t

· (R−1)t · −→q , −→
q ≡ Q · −→q (3.26)
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Hence, also in the presence of α′-corrections one is encouraged to introduce gauge-
invariant axion polynomials `s

−→
ρ ≡ (R−1)t · −→q , which can be given explicitly in

terms of the flux quanta,

ρ0 = e0 + eab
a + 1

2
Kabcmabbbc + m

6
Kabcbabbbc + hKξ

K
? + hΛξ?Λ,

ρa = ea +Kabcmbbc + m
2
Kabcbbbc,

ρ̃a = ma +mba,
ρ̃ = m,
ρ̂K = hK ,
ρ̂Λ = hΛ.

(3.27)

where e0 and ea are the curvature-corrected flux quanta as introduced before.

This flux redefinition can be interpreted microscopically by noticing that
the curvature corrections K

(1)
ab and K

(2)
a induce lower-dimensional D-brane charge

on D-branes wrapping internal cycles, see e.g. [46]. They will, in particular, in-
duce lower-dimensional charge on D-brane domain walls with non-trivial inter-
nal worldvolumes. For instance, the K

(2)
a curvature corrections induce D4-brane

charges on D8-brane domain walls wrapping the full compactification space, and
also create bound states of D6-D2 brane domain walls. The K

(1)
ab curvature cor-

rections on the other hand turn D6-brane domain walls into bound states of
D6-D4 brane domain walls. The induced lower-dimensional D-brane charges due
to the curvature corrections also imply that the Freed-Witten anomalies associ-
ated to the b-type axionic strings have to be cured by bound states of domain
walls. To end up in a different vacuum separated by the bound states of domain
walls, the b-axions have to undergo a monodromy transformation generated by
the modified matrix P a defined in (3.24). Alternatively, one may redefine the
basis of domain walls (or, equivalently the flux basis) by the matrix Q such that
the monodromy matrix is generated by Pa. The Freed-Witten anomaly cancela-
tion for the ξ-type axionic strings on the other hand remains unaffected by the
curvature corrections. These considerations offer a microscopic rationale behind
the superpotential (3.26), which allows for a factorisation in which curvature cor-
rections of order O(α′) and O(α′2) are incorporated into the set of shift-invariant
axion polynomials (3.27). The O(α′3) curvature contributions represented by
K(3) correct the overall volume of the internal space and therefore have to be

included in the modified saxion vector
−→
Π
t

.

3.6 The bilinear form of the Type IIA flux po-

tential

At the beginning of this chapter, we comment in advance that flux potentials can
be expressed alternatively as a bilinear of the flux-axion polynomials, namely of
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the form V = ZABρAρB. The indices A,B run over all fluxes of the compactifica-
tion, ρA are polynomials of the closed and open string axions of the 4d effective
theory defined in previous sections and ZAB is the inverse metric in the space of
the axion polynomials [40, 41]. This description of flux potentials makes more
transparent the discrete symmetries of the effective theory, where the polynomi-
als ρA can be seen as the basic building blocks. Thus, any flux dependence of
the scalar potential or any axion dependence which is not periodic must appear
through a function of the polynomials ρA, or otherwise it will not respect the
underlying discrete shift symmetry of the theory. Moreover, such a description
of flux potentials may have interesting applications, for instance as we show in
the next chapters it can facilitate the search of minima in flux potentials. In
particular, we can easily rewrite the conditions for Minkowski and AdS vacua
from the closed-string type IIA flux potential in this language, obtaining alge-
braic equations on the ρA that reproduce known results in the literature [8, 9],.
A further advantage of rewriting the scalar potential as a bilinear is that one
can easily incorparate the presence of D6-brane moduli. Indeed, in terms of the
expression V = ZABρAρB this only means that the indices A and B runs over
more fluxes and that Z and the ρ’s depend on more fields, but the structure of
the potential remains the same. As we will argue in the next chapter, in this
way one may easily add mobile D6-branes to, e.g., the class of flux compactifica-
tions analysed in [8], thus obtaining a more general class of non-supersymmetric
Minkowski vacua in which the open string moduli are stabilised at non-trivial
vevs. In the previous sections, we provided the explicit shape of the flux-axiom
polynomials in purely closed-string setups, in the presence of open string moduli
and finally in the presence of perturbative α′-corrections. Hence, the next step is
to determine the explicit form of the metric in the flux-axion polynomial space.

In the absence of open string moduli

Let us first consider the case without open string moduli, in which the geometric
moduli of the compactification reduce to

(
ta, nK? , u?Λ

)
and their axionic partners

are
(
ba, ξK? , ξ?Λ

)
. Then, the flux potential can be written as [47]

VF =
1

8κ2
4

ρA(b, ξ?)Z
AB(t, n?, u?) ρB (b, ξ?), (3.28)

Here ρA are the shift invariant axion polynomials defined in (3.12) and encode
the dependence in the flux quanta and the axions, while the inverse metric on
the axion polynomial space ZAB is given by

ZAB = 8eK



4

Kab

4
9
K2Kab

1
9
K2 2

3
KnI? 2

3
Ku?Λ

2
3
KnJ? KIJ KIΣ

2
3
Ku?Σ KΛJ KΛΣ

 . (3.29)
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Note that, the potential (3.29) is nothing but the flux potential (3.5), but now we
allow for both type of complex structure moduli, while the above inverse metric
is the natural generalization of the inverse metric eq. (3.2) of [41].

In the presence of open string moduli

Let us now consider the presence of open string moduli in the compactification.
As argued in section 3.4, the presence of open string states implies the shift
of certain closed string axion polynomials (3.12) and the appearance of a term
contributing to the scalar potential [41]

VDBI =
∑
α

eK

κ2
4l

2
s

Gij
α (nαFi − nαai T a)

(
nαFj − nαaj T̄ a

)
(3.30)

arising from the dimensional reduction of the DBI action for D6-branes. Where
the index α runs over pairs of D6-branes related by the orientifold action and Gij

α

is the inverse of the metric on the D6-brane position moduli space

Gα
ij =

e−
φ
4

8Vl3s

∫
Π0
α

ζi ∧ ∗ζj (3.31)

we defined nαFi = nαFi− 1
2
gKi hK− 1

2
gΛih

Λ. Since the terms (3.30) are also quadratic
on closed- and open-string fluxes, one may easily see that the structure of the full
scalar potential remains the same as in (3.28) if one keeps the axion polynomials
as in (3.20) and takes the inverse metric on the axion polynomial space as

ZAB = 8eK



4

Kab

4
9
K2Kab

1
9
K2 2

3
KnI? 2

3
Ku?Λ

2
3
KnJ? KIJ KIΣ

2
3
Ku?Σ KΛJ KΛΣ

Gij
αβ

Gij
αβt

atb


.

(3.32)
with Gij

αβ = Gij
α δαβ. Finally, in section 3.5 we showed that perturbative α′-

corrections also fit into the axion-polynomial formalism. This fact is clearly an
indication that the bilinear structure of the potential even persists in the presence
of those corrections, which will be shown in more detail in chapter 5 and appendix
C. For now, we just state that such a structure of the potential is kept.
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Part II

Moduli stabilisation
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Chapter 4

The Type IIA Flux Landscape

If type IIA orientifold compactifications ought to provide for vacuum solutions
exhibiting the well-known features of our universe, the various open and closed
geometric moduli have to be stabilised with sufficiently high masses. Fortunately,
the richness of background NS- and RR-fluxes in type IIA offers a controlled,
perturbative method to deal with moduli stabilisation for all closed string moduli
[3, 9, 10, 44,48].

In previous chapter we have argued that the classical flux potential can be
rewritten as a bilinear V = ZABρAρB in which the geometric moduli-dependent
part is fully captured by the matrix ZAB, while the polynomials ρA contain
the dependence on the axions. Since such a factorisation is also observed in
the perturbative superpotential induced by NS- and RR-fluxes, this gives rise
to the question how moduli stabilisation respects this factorisation and can be
formulated in terms of the axion polynomial language. This is precisely the aim
of this chapter, to illustrate the general idea we choose two well-known examples
from literature, i.e. non-supersymmetric Minkowski vacua and supersymmetric
AdS vacua without D6-branes as toy examples. Finally, in section 4.3 we argue
that the stabilisation of the open string moduli can be dealt with in a much more
elegant way by using this formalism, and in particular it allows us to find new
and more general classes of non-supersymmetric Minkowski vacua. This chapter
is mainly based on the paper [47].

4.1 Flux vacua without D6-branes

The aim of this section is to reformulate the known flux stabilisation of closed
string modul at N = 0 Minkowski and N = 1 AdS vacua but now using the axion
polynomial formalism, obtaining algebraic equations on the ρA that reproduce

61
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known results in the literature.

4.1.1 N = 0 Minkowski vacua

The imaginary self dual (ISD) flux vacua of type IIB can be T-dualised to type
IIA flux vacua [8,44] for which all RR-fluxes are switched on and the NS 3-form
flux is turned on along only one ΩR-odd three-cycle. Following the symplectic
basis choice of [8] in which the complex structure moduli {NK

? }K 6=0 are projected
out, we can assume that the four-dimensional dilaton N0

? = S? = ξ0
? + i Im (S?)

factorises from the other complex structure moduli U?Λ in the Kähler potential:

KISD
Q = − log

[
−i(S? − S?)

]
− 2 log

[
G̃Q(u?Λ)

]
, (4.1)

where G̃Q(u?Λ) is a homogeneous function of degree 3/2 with an implicit depen-
dence on the geometric moduli u?Λ. More precisely, the functional dependence
of G̃Q can be expressed in terms of the rescaled periods Im (ZΛ) ≡ 2Re (CZ0)−1/2Im (CZΛ)
and upon inverting the relation u?Λ = ∂Im (ZΛ)G̃Q the function G̃Q can in principle
be written in terms of the geometric moduli u?Λ. Finally, if we further assume
that the only non-vanishing NS-flux is supported along the ΩR-odd three-form
β0, we obtain the generic superpotential for ISD fluxes,

`sWISD = h0S? + e0 + eaT
a +

1

2
KabcmaT bT c +

m

6
KabcT aT bT c, (4.2)

which in terms of the axion polynomials reads

WISD = is?ρ̂0 + ρ0 + itaρa −
1

2
Kaρ̃a −

i

6
Kρ̃. (4.3)

Given the specific form of the Kähler potential (4.1), the F-term scalar
potential takes the form

VF =
eK

κ2
4

[
KAB̄FAFB̄ − 3

∣∣W ∣∣2] (4.4)

=
eK

κ2
4

[
KTaT̄ bFTaFT̄ b +KS?S̄?FS?FS̄? +KU?ΛŪ?ΛFU?ΛFŪ?Λ − 3

∣∣W ∣∣2]
=

eK

κ2
4

[
KTaT̄ bFTaFT̄ b +KS?S̄?FS?FS̄?

]
where in the last line we have used that by assumption FU?Λ = KU?ΛW and
the no-scale relation KU?ΛŪ?ΛKU?ΛKŪ?Λ = 3 that arises from (4.1). Therefore,
for these kind of vacua we recover a positive semidefinite flux potential whose
absolute minima are reached whenever FS? = FTa = 0. In general, the factorisable
form (3.6) of the ISD flux superpotential enables us to simplify the F-terms for
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the dilaton S? and Kähler moduli and express them entirely in terms of geometric
moduli and the gauge-invariant axion polynomials (3.12). Focusing first on the
F-term for the dilaton we obtain1

FS? = −i ∂s?WISD+
i

2s?
WISD =

1

2s?

(
iρ0 − taρa −

i

2
Kaρ̃a +

1

6
Kρ̃+ s?ρ̂0

)
, (4.5)

where we have used the holomorphicity of the superpotential, i.e. ∂S?WISD = 0,
to obtain a first order derivative purely with respect to the four-dimensional
dilaton s? = Im (S?). Similar considerations can be made for the F-terms of the
Kähler moduli,

FTa = −i ∂taWISD + 3iKa
2K WISD

= ρa + iKabρ̃b + 3iKa
2K

(
ρ0 + itbρb − 1

2
Kbρ̃b + i

6
Kρ̃+ is?ρ̂0

)
.

(4.6)

Finally, a more elegant polynomial expression in terms of the geometric moduli
and axion polynomials is found in the form of the linear combination taFTa ,

taFTa =
3i

2
ρ0 −

1

2
taρa +

i

4
Kaρ̃a −

3

2

(
1

6
Kρ̃+ s?ρ̂0

)
. (4.7)

When considering the expressions (4.5), (4.6) and (4.7) as polynomials in ta

simultaneously, the vanishing of the F-terms implies that their coefficients ought
to vanish:

ρ̃a = 0, ρa = 0,
1

6
Kρ̃+ s?ρ̂0 = 0, ρ0 = 0. (4.8)

As we discuss in section 4.3, one can easily rederive these conditions from the
bilinear form of the potential (3.28). The first set of equations ρ̃a = 0 stabilise
the Kähler axions in terms of the RR flux quanta:

ba = −m
a

m
, (4.9)

while the second set of equations ρa = 0 represent a set of constraints on the flux
quanta:

2mea −Kabcmbmc = 0. (4.10)

Upon imposing these set of relations, the third and last equation stabilise the
four-dimensional dilaton Im (S?) and its axion ξ0

? respectively in terms of flux
quanta and the Kähler moduli:

h0s? = −m
6
Kabctatbtc, h0ξ

0
? = − 1

m2

(
e0m

2 − 1

6
Kabcmambmc

)
. (4.11)

Thus, the analysis of the F-terms for the dilaton and Kähler moduli in terms
of the axion polynomials allows to easily extract the generic ISD vacua (4.8),

1To simplify the expressions, we use K = Kabctatbtc, Ka = Kabctbtc, Kab = Kabctc.
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which reproduce the results of section 3.1 in [8] represented by the last four re-
lations (4.9)-(4.11). In these vacua, the saxionic parts of the Kähler moduli and
complex structure moduli remain unstabilised partly due to the no-scale symme-
try for the complex structure moduli U?Λ. This no-scale symmetry combined with
the vanishing F-terms for the dilaton and Kähler moduli imply a vanishing F-term
scalar potential at the ISD vacuum, which corresponds to a non-supersymmetric
Minkowski spacetime in four dimensions. Supersymmetry is then spontaneously
broken by the non-vanishing F-terms of the complex structure moduli U?Λ, given
that the on-shell superpotential for ISD flux vacua is non-vanishing for arbitrary
Romans mass,

〈WISD〉 = − i
3
Kρ̃. (4.12)

The structures of the F-terms in the complex structure moduli sector will be
further analysed in chapter 7, in conjunction with the structures of flux-induced
soft terms. As we will see in the next chapter, a more compelling moduli stabil-
isation scenario is achieved upon inclusion of the α′-corrections that deform the
Kähler potential from (2.11) to (2.80). In that case one is also able to fix the
geometric part of the Kähler moduli.

4.1.2 N = 1 AdS vacua

As soon as the no-scale structure for the complex structure moduli U?Λ is broken
by the presence of additional NS-fluxes, both the complex structure moduli and
Kähler moduli can be stabilised to non-trivial values simultaneously. Considering
all RR- and NS-fluxes turned on in a type IIA flux compactification, the geometric
moduli, Kähler axions and one linear combination of complex structure axions
can be stabilised supersymmetrically or non-supersymmetrically, yielding a four-
dimensional Anti-de Sitter vacuum [9, 44]. Once more, the axion polynomials
provide a very elegant way to find supersymmetric vacua by analysing the F-
terms:

FNK
?

= ρ̂K − i Im (CFK)
2GQ

(WT +WQ) ,

FU?Λ = ρ̂Λ + i Im (CZΛ)
2GQ

(WT +WQ) ,

FTa = ρa + iKabρ̃b − 1
2
Kaρ̃+ 3i

2
Ka
K (WT +WQ) .

(4.13)

In order to solve for the full set of vanishing F-terms, let us first sum up strate-
gically the complex structure F-terms

h∑
K=0

nK? FNK
?

+
h∑

Λ=0

u?ΛFU?Λ =
h∑

K=0

ρ̂Kn
K
? +

h∑
Λ=0

ρ̂Λu?Λ + 2i (WT +WQ) = 0, (4.14)

such that the real part and complex part lead to two separate conditions:

ρ0 −
1

2
Kaρ̃a = 0, nK? ρ̂K + u?Λρ̂

Λ =
1

3
Kρ̃− 2taρa. (4.15)
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Also the F-terms of the Kähler moduli can be summed up as

taFTa =
5

2
taρa −

3

4
Kρ̃+

3i

2
ρ0 +

i

4
Kaρ̃a, (4.16)

leading to two more conditions for vanishing F-terms:

3

2
ρ0 +

1

4
Kaρ̃a = 0,

5

2
taρa −

3

4
Kρ̃ = 0. (4.17)

Combining all four relations allows us to express the stabilisation conditions for
the moduli in terms of the axion polynomials:

ρ0 = 0, ρ̃a = 0, ρa =
3

10
ρ̃Ka. (4.18)

The first condition expresses the fact that a linear combination of complex struc-
ture axions is stabilised, while the second condition stabilises the Kähler axions:

hKξ
K
? + hΛξ?Λ = −

e0m
2 −meama + 1

3
Kabcmambmc

m2
, ba = −m

a

m
. (4.19)

The third condition stabilises the geometric part of the Kähler moduli in terms
of the fluxes. Inserting the identified solutions back into the F-terms for the
complex structure moduli enables to write down the stabilisation conditions for
the complex structure moduli in terms of their “dual” periods and the overall
volume K:

GQ
ρ̂K

Im (CFK)
= −GQ

ρ̂Λ

Im (CZΛ)
=

1

15
ρ̃K. (4.20)

To arrive at these relations, we imposed the vacuum expectation value for the
superpotential in supersymmetric AdS vacua, which can be obtained by imposing
the vacuum constraints on the axion polynomials:

〈WAdS〉 = − 2i

15
Kρ̃. (4.21)

One can check that the conditions (4.18) and (5.33) are equivalent to the van-
ishing F-term conditions (5.26). Hence, the vacuum relations found in [9] for
supersymmetric AdS vacua can be derived very elegantly by virtue of the axion
polynomial language.

Similarly to the ISD flux vacua, the supersymmetric AdS vacua are only
realised in the presence of a non-vanishing Romans’ mass m 6= 0, and are modified
when taking into account the effect of α′-corrections. As we will argue in the
next chapter, in this case the modification is less dramatic, because the classical
scenario already stabilises all moduli, but their value will be nevertheless shifted
from their previous value.
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4.2 The Cosmological Constant in flux vacua

Both classes of vacuum solutions above have been obtained by solving for van-
ishing F-terms in the four-dimensional N = 1 supergravity description. For
non-vanishing F-terms, the vacuum solutions have to be determined by minimis-
ing the F-term scalar potential (2.60). However, Instead of solving for vanishing
F-terms, vacuum configurations can be determined more generically by requiring
that the first order derivatives of the scalar potential with respect to the moduli
vanish. Due to the properties of the rotation matrix (3.9) the constraint equations
for the axionic directions can be rephrased as orthogonality conditions between
the vector −→ρ and its descendants Pa

−→ρ , PK
−→ρ or PΛ−→ρ :

−→ρ T
Z−1Pa

−→ρ = 4ρ0ρa +KcdKdabρcρ̃b − 4
9
KbaK2ρ̃bρ̃ = 0,

−→ρ T
Z−1PK

−→ρ = 4ρ0ρ̂K = 0,
−→ρ T

Z−1PΛ−→ρ = 4ρ0ρ̂
Λ = 0.

(4.22)

These three constraint equations are solved simultaneously for ρ0 = 0 and ρ̃a = 0:
two constraints on the axion polynomials that are common among the ISD flux
vacua and supersymmetric AdS flux vacua, and are responsible for stabilising a
linear combination of complex structure axions and all Kähler axions in terms of
the flux quanta. The three constraint equations have to be supplemented by the
vacuum conditions arising along the geometric moduli directions. In the case of
ISD flux vacua, the vacuum conditions for the geometric moduli correspond to
setting the following equations to zero,

−→ρ T
∂ta(Z

−1)−→ρ = −→ρ T
(Z−1)−→ρ ∂taK + 8eK

[
ρc∂taK

cdρd +Kaρ̃
(

2
3
Kρ̃+ 4s?ρ̂0

)]
,

−→ρ T
∂s?(Z

−1)−→ρ = −→ρ T
(Z−1)−→ρ ∂s?K + 8eK ρ̂0

[
4
3
Kρ̃+ 8s?ρ̂0

]
,

−→ρ T
∂u?Λ(Z−1)−→ρ = −→ρ T

(Z−1)−→ρ ∂u?ΛK,
(4.23)

where the solutions ρ0 = 0 and ρ̃a = 0 to the axion constraint equations have
already been taken into account on the right-hand side. One can see that the
derivative ∂u?Λ

K is proportional to the quotient Im (CZΛ)/GQ, and therefore
a homogeneous function of u?Λ of degree −1. As a result, the third relation
in (4.23) vanishes in regions of the moduli space where the supergravity approx-
imation is no longer valid, i.e. vanishing three-cycle volumes (Im (CZΛ) = 0,∀Λ)
or three-cycles with infinite volumes, unless the four-dimensional vacuum energy
proportional to −→ρ T

(Z−1)−→ρ vanishes for the compactification. The vacuum con-
ditions for the Kähler moduli sector and 4d dilaton in Minkowski vacua further
lead to the constraints ρa = 0 and 1

6
Kρ̃ + s?ρ̂0 = 0, which complete the set of

constraint equations (4.8) for the ISD flux vacua. Clearly, the axion polynomials
jargon allows for a more systematic search of perturbative flux vacua, but it also
reveals that many such flux vacua are related to each other through the shift
symmetries (3.25) and should therefore not be counted as independent vacua.
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Identifying the constraints on the axion polynomials for a particular vacuum
configuration also allows to determine the perturbative value of the cosmological
constant. To extract information about the cosmological constant from the axion
polynomials, it is insightful to rewrite the inverse metric ZAB in (3.29) into a
block-diagonal form,

ZAB = 8eKdiag

(
4, Kab,

4

9
K2Kab,−

K2

3
,

(
KIJ KIΣ

KΛJ KΛΣ

))
, (4.24)

by rotating the axion polynomials to a new basis of axion polynomials:

−→ρ new =
(
ρ0, ρa, ρ̃

a, ρ̃, ρ̂K −
iK
3
KNK

?
ρ̃, ρ̂Λ − iK

3
KU?Λ ρ̃

)
, (4.25)

where we have used the homogeneity of the complex structure Kähler poten-

tial (2.49). Taking into account the expression for the F-terms of the complex

structure moduli (5.26), the vector (4.25) can be reinterpreted in a slightly more

suggestive way:

−→ρ new =

(
ρ0, ρa, ρ̃

a, ρ̃, FNK
?
−KNK

?

(
WT +WQ +

i

3
Kρ̃
)
, FU?Λ −KU?Λ

(
WT +WQ +

i

3
Kρ̃
))

.

(4.26)

The virtue of this new basis of axion polynomials lies in the possibility to un-
derstand each vacuum as a positive, null-like or negative norm with respect to
the diagonalised inverse metric. The ISD flux vacua (with vanishing dilaton and
Kähler moduli F-terms) for instance are characterised by the constraint equa-
tions (4.8) on the axion polynomials and are represented by the vector −→ρ new =
ρ̃
(
0, 0, 0, 1, 0,− iK

3
KU?Λ ρ̃

)
= (0, 0, 0, ρ̃, 0, FU?Λ). This vector corresponds to a null-

like vector with respect to the metric ZAB, in line with the vanishing vacuum en-
ergy for non-supersymmetric Minkowski vacua.2 SUSY AdS vacua, on the other
hand, have vanishing F-terms in all sectors. From the relations (4.18) we obtain
the vector−→ρ new =

(
0, ρa, 0, ρ̃,−KNK

?

(
WT +WQ + i

3
Kρ̃
)
,−KU?Λ

(
WT +WQ + i

3
Kρ̃
))

= ρ̃
(
0, 3

10
Ka, 0, 1,− i

5
KKNK

?
,− i

5
KKU?Λ

)
, which forms a negative norm vector

whose length corresponds to the negative cosmological constant for the AdS min-
imum:

〈VF 〉AdS = −3
eK

κ2
4

(
2

15
ρ̃K
)2

. (4.27)

4.3 Flux vacua with mobile D6-branes

As already discussed in section 2.6, backgrounds with localised sources such as
D6-branes and O6-planes provide a much more intricate picture for type IIA

2In fact, as we will see in the next section, the choice of Kähler potential (4.1) together with

ρ̂Λ = 0 implies a positive semi-definite scalar potential minimised by this −→ρ new.
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compactifications with fluxes. When searching for four-dimensional flux vacua in
the presence of D-brane moduli, these must be considered simultaneously with
the closed string moduli when minimising the potential, as opposed to adding
them at a later stage of the analysis. This is manifest when using the standard
N = 1 prescription for computing the F-term scalar potential in terms of a Kähler
potential and superpotential. For instance, in the case of Calabi-Yau compactifi-
cations the presence of open string moduli redefines the complex structure moduli
and dilaton that appear in the Kähler potential, modifying the Kähler metrics
non-trivially [11, 49–51]. In particular, the factorised metric structure between
Kähler and complex structure moduli, inherited from the unorientifolded N = 2
parent theory, is lost whenever open string moduli are considered [11]. This in
turn implies that the no-scale properties of closed-string moduli potentials, a key
ingredient to find certain classes of flux vacua as the one discussed in section
4.1.1, may be modified or even lost when open string moduli are taken into ac-
count. This gives rise to the question which kind of stable type IIA vacua exist
in the presence of mobile D6-branes, and in particular whether one can construct
Minkowski and AdS vacua analogous to the ones considered in sections 4.1.1 and
4.1.2. On the one hand, in the case of N = 1 AdS vacua the strategy to find such
vacua is rather straightforward, as one must look for points in field space where
all the F-terms vanish. On the other hand, the search for N = 0 Minkowski vacua
is less obvious. Indeed, just as in [52] the pattern of F-terms that corresponds to
stable N = 0 Minkowski vacua relies on having a semi-definite scalar potential.
In turn, the latter relies on the absence of certain fluxes in the superpotential
and in the factorisation of the dilaton, Kähler and complex structure moduli in
the Kähler potential. However, such a factorisation is lost as soon as mobile D6-
branes appear in the construction, due to the four-dimensional field redefinition
(2.72). Therefore, it is not clear that the no-scale properties of certain type IIA
flux vacua can still be maintained in the presence of mobile D6-branes3.

4.3.1 N = 0 Minkowski vacua

The aim of this section is to investigate whether one can achieve stable N = 0
four-dimensional Minkowski vacua in the presence of mobile D6-branes, where
the stability is guaranteed by the semi-definiteness of the (classical) scalar po-
tential. Rather than taking the ten-dimensional approach of [53], we will address
this question in terms of the four-dimensional effective theory discussed above.
We will first show how to obtain a semi-definite F-term scalar potential by means
of its standard four-dimensional supergravity expression and a simple set of as-
sumptions. In the next section we will show that one can recover the same result

3Notice that the same observation could be made for type IIB compactifications with D3 and

D7-branes.
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by using the formalism that rewrites the scalar potential as a bilinear of axion
polynomials. In chapter 7 we will analyse the structure of the soft terms that
arises for this kind of vacua.

The standard 4d supergravity perspective

As already mentioned, the presence of mobile D6-branes creates a non-trivial
mixing in the metric between Kähler, complex structure and open string moduli.
Nevertheless, as pointed out in [11] and [41], under certain assumptions the in-
verse metric KAB̄ displays a simplified structure.4 First, even if ∂a∂b̄K changes
in the presence of mobile D6-branes, we have that K b̄a remains the inverse of the
previous Kähler moduli metric ∂a∂b̄KK (without open string moduli). Second,
the rest of the components read:

K āi = f ibK
bā, (4.28a)

K j̄i = Gij
D6 +Kab̄f iaf

j
b , (4.28b)

K Īa = −1

2
K b̄aHI

b , (4.28c)

K Īi = −1

2

[
Gij

D6 g
I
j +K b̄af ia HI

b

]
, (4.28d)

K J̄I = NIJ +
1

4

[
K b̄a HJ

bH
I
a +Gij

D6 g
I
i g

J
j

]
, (4.28e)

where as before the indices a, b label Kähler moduli, I, J label dilaton and complex
structure moduli and i, j label open string moduli, absorbing the index α for
simplicity. Here the functions HI

a, f
i
a and gIi are defined as in section 2.6. Finally,

Gij
D6 is the inverse of the open string metric defined in (3.31) and NIJ is the inverse

of the complex structure metric without mobile D6-branes

NKΛ =
1

4
∂nK? ∂u?Λ

KQ, (4.29)

with KQ taken as a function of nK? , u?Λ as in (2.49).

Using the relations (4.28) one can write the part of the F-term scalar po-
tential that contains only derivatives of the superpotential with respect to the
moduli as

KAB̄DAWDB̄W = Kab̄

[
Da + f iaDi −

1

2
HK
a DK

]
W

[
Db̄ + f ibDī −

1

2
HK
a DK̄

]
W

+ Gij
D6

[
DiW −

1

2
gKi DKW

] [
D̄W −

1

2
gLj DL̄W

]
+ NIJDIWDJ̄W (4.30)

4One can derive eqs.(4.28) by assuming that the zero degree functions H in (2.72) only de-

pend on the D6-brane position variables ϕi, as it happens for instance in the case of toroidal

orbifolds.
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which is a sum of positive definite terms. This rewriting is crucial in order to
match the scalar potential derived from dimensional reduction with the one ob-
tained from the standard supergravity formula [11,41]. If in addition we consider
a Kähler potential of the form (4.1), namely

KQ = −log (2s?)−KQ̃(u?Λ), (4.31)

then the entries of NKΛ mixing the dilaton and the complex structure moduli u?Λ

will vanish, and the same will hold for its inverse. As a result, the contribution
coming from the last line of (4.30) will split as

NIJDIWDJ̄W = NSSDSWDS̄W + NΛΣDΛWDΣ̄W (4.32)

Finally, if we assume that the fields UΛ do not enter into the superpotential and
use the corresponding no-scale relation we obtain

NΛΣDΛWDΣ̄W = 3|W |2, (4.33)

that cancels the gravitational term in the F-term scalar potential. Therefore,
with similar assumptions as for the ISD closed string vacua and the Kähler met-
ric relations (4.28), we obtain a semi-definite positive scalar potential and the
corresponding 4d Minkowski vacua.

The conditions for such vacua amount to imposing the following relations,

DSW = 0, (4.34)

DiW =
1

2
gΛ
i DΛW, (4.35)

DaW =
1

2

(
HΛ
a − f iagΛ

i

)
DΛW, (4.36)

which is slightly weaker than imposing the cancellation of the F-terms for S,
T a and Φi. To rewrite these conditions in a simple form, let us note that by
eq.(2.73) ∂φiu?Λ = 1

2
gΛ
i and that the same assumptions that led to (4.28) imply

∂tau?Λ = 1
2
(HΛ

a − f iagΛ
i ). We then have that they amount to

DSW = 0, (4.37)

DiW = (∂iKQ̃)W, (4.38)

DaW = (∂aKQ̃)W. (4.39)

Alternatively, one may consider the contra-variant expressions of the F-terms

FA ≡ KABDBW, (4.40)

which allow to designate in which moduli sector supersymmetry is broken spon-
taneously. Indeed, by imposing the vacuum conditions (4.34)-(4.36) and using
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the expressions (4.28) for the inverse metric on the moduli space, the only non-
vanishing on-shell component is the F-term for the complex structure moduli
UΛ:

FΛ = NΛΣKΣW 0 = −2iu?ΛW 0. (4.41)

Note that this relation forms the natural extension of the on-shell F-terms in
type IIA closed string ISD flux vacua. Also in the presence of open string moduli
(associated to mobile D6-branes) supersymmetry is spontaneously broken by the
non-vanishing F-terms in the complex structure moduli sector, prompting us to
label the class of such non-supersymmetric Minkowski vacua as complex structure
dominated (CSD) vacua. In chapter 6 we will analyse different phenomenological
aspects of these N = 0 flux vacua with non-vanishing on-shell F-terms in the
complex structure moduli sector, dubbed CSD vacua for short. In particular we
will study the pattern of soft term resulting from this spontaneous breaking of
supersymmetry in the complex structure sector

Finally, to determine the vacuum expectation value of the superpoten-
tial W 0, the axion polynomial formalism turns out to be extremely useful once
the vacuum conditions (4.34)-(4.36) are rewritten in terms of vacuum constraints
on the axion polynomials, as we discuss in the next section.

4.4 The axion polynomial perspective

While the reasoning used above to obtain N = 0 Minkowski vacua fits better
with the existing literature on string compactifications, there is a more direct ap-
proach to analyse the appearance of semi-definite positive scalar potentials and
the corresponding Minkowski vacua. Indeed, instead of describing the scalar po-
tential in terms of a Kähler and superpotential one may consider its expression as
a bilinear of axion polynomials, as directly obtained from dimensional reduction.
As we will see, one can reproduce similar conditions as above for the semi-positive
definiteness of the scalar potential, except that now no assumption on the Kähler
metrics must be made.

As a warm up, let first us consider the well-know ISD case without mobile
D6-branes, for which the potential can be expressed as in (3.28). In this language,
the assumption (4.31) translates into the vanishing of the off-diagonal components
KIΛ in (3.29). When switching to the new basis of axion polynomials −→ρ new in
(4.25), this metric becomes

ZAB = 8eKdiag

(
4, Kab̄,

4

9
K2Kab̄,−

K2

3
, KSS̄, KΛΣ̄

)
, (4.42)

while
−→ρ new =

(
ρ0, ρa, ρ̃

a, ρ̃, ρ̂0 − ρ̃K
i

3
KS, ρ̂

Λ − ρ̃K i
3
KΛ

)
. (4.43)
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Imposing that the complex structure moduli U?Λ do not enter the superpo-
tential is equivalent to require that ρ̂Λ = 0. Then, using the no-scale relation
KΛΣ̄KΛKΣ̄ = −KΛΣ̄KΛKΣ = 3 one find an exact cancellation between the con-
tribution of the Romans mass component ρ̃ of (4.43) and the last one. As a result
the scalar potential (3.28) can be explicitly written as

VF =
eK

κ2
4

(
4ρ2

0 +Kab̄ρaρb +
4

9
K2Kab̄ρ̃

aρ̃b +KSS̄

(
ρ̂0 − ρ̃K

i

3
KS

)2
)
, (4.44)

which is clearly semi-definite positive and vanishes if and only if the conditions 4.8
are met. In this way, we directly recover the relations for the axions polynomials
obtained in section 4.1 without having to consider any particular pattern for the
F-terms.

Similarly, we may apply this strategy to the case of CSD vacua (with mobile
D6-branes), where now the vector of axion polynomials has the components 3.20.
From the results of section 3 of [41] adapted to our conventions for quantised
fluxes, one obtains that inverse metric takes the diagonalised form

ZAB = 8eKdiag

(
4, Kab̄

K ,
4

9
K2(KK)ab̄,−

K2

3
,NSS̄,NΛΣ̄, Gij

D6, G
ij
D6

)
, (4.45)

in the following basis of axion polynomials

−→% new =
(
%0, %

′
a, %̃

a′, %̃, %̂0 − %̃K
i

3
KS,−%̃K

i

3
KUΛ

, %′i, t
a%ai

)
. (4.46)

Here we have defined

%′a = %a + f ia%i −
1

2
H0
a%̂0, (4.47)

%̃a′ = %̃a − (Kabtcf ic +Kactbf ic)%bi, (4.48)

%′i = %i −
1

2
g0
i %̂0 (4.49)

and we have already imposed that NSΛ = 0 and that %̂Λ = 0. Again, we find a
cancellation between the quadratic terms in the 4th and 6th entry of 4.46. This
results into a semi-definite positive, bilinear scalar potential of the form

VF =
eK

κ2
4

{
4%2

0 +Kab̄
K %
′
a%
′
b +

4

9
K2(KK)ab̄%̃

a′%̃b′ + NSS̄

(
%̂0 − %̃K

i

3
KS

)2

(4.50)

+Gij
D6

[
%′i%
′
j + tatb%ai%bj

]}
,

We then find that the conditions for a Minkowski vacuum are

%0 = 0, (4.51a)
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%a =
1

2

(
H0
a − f iag0

i

)
%̂0, (4.51b)

%̃a = Kabφi%bi, (4.51c)

%̂0 = − K
6s?

%̃, (4.51d)

%i =
1

2
g0
i %̂0, (4.51e)

ta%ai = 0, (4.51f)

and that whenever they are satisfied the superpotential takes the value

W0 = 2is?%̂0 = −iK
3
%̃ . (4.52)

Equivalently, at these vacua we have −→% new =
(

0, 0, 0, %̃, 0, FUΛ
, 0, 0

)
. One can

easily check that these relations are equivalent to eqs.(4.37)-(4.39) if one uses
eq. 2.73 and assumes that ∂ta(t

aH0
a) = H0

a − f iag0
i .
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Chapter 5

Type IIA flux vacua with

α′-corrections

In chapter 3 we discussed how the axion polynomial language allows to incorpo-
rate perturbative α′-corrections in type IIA Calabi-Yau orientifold compactifica-
tions with background fluxes. This insight will allow us to extract the bilinear
structure of the scalar potential in terms of the modified axion polynomials,
but the intricacies of the curvature corrections make the search for vacua of the
full perturbative scalar potential quite demanding. This chapter is therefore de-
voted to exploiting well-known methods for vacua searches in this context. More
precisely, we will extend the analysis carried out in the previous chapter for non-
supersymmetry Minkowski vacua and supersymmetric Anti-de Sitter vacua in
terms of the axion polynomials, to include the effect of curvature corrections.
For simplicity, here we will not consider vacua with mobile D6-branes. This
chapter is mainly based on the paper [42].

5.1 The α′-corrected scalar potential

Since the factorability of the superpotential into saxions and shift-invariant axion
polynomials persists in the presence of perturbative α′-corrections, one is natu-
rally driven to the question how the modified form of the scalar potential looks
like. The most straightforward path to obtain the four-dimensional scalar poten-
tial in the presence of background fluxes and perturbative α′-corrections consists
in computing it directly from the F-term scalar potential (2.60) by inserting the
Kähler potential (2.80) and superpotential (2.83) discussed in chapter 2.

In practice, the explicit computation of this scalar potential is drastically
simplified by deconstructing the expression into three components and applying

75
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the elegant formulation of the axion polynomials to the fullest for each compo-
nent. The first term consists purely of the derivatives of the superpotential with
respect to the closed string moduli and requires us to use the modified expressions
for the Kähler metric as discussed in appendix C.1:

∂αWKαβ∂βW = Kabρaρb + 4
9
K2(1 + 3

2
ε)2Kabρ̃

aρ̃b + 1+6ε
1−3ε

(Kaρ̃a)2 + 1
3
K2ρ̃2 (1+ 3

2
ε)2

1−3ε

−4
3
ρ̃K ρata

(1+ 3
2
ε)2

1−3ε
+KNLρ̂K ρ̂L +KNΛρ̂K ρ̂Λ +KΣLρ̂Σρ̂L +KΣΛρ̂Σρ̂Λ.

(5.1)
The second component consists of terms without derivatives of the superpotential:

KαK
αβKβ|W |2 − 3|W |2 =

(
3

1−3ε
+ 4
)
|W |2 − 3|W |2

= 4−3ε
1−3ε

[
(ReW )2 + (ImW )2] (5.2)

where the real and imaginary part of the superpotential can be read off as a func-

tion of the axion polynomials directly from the modified superpotential (2.83).

The third and last component consists of the remaining terms containing deriva-

tives of the superpotential, which can be simplified by virtue of relation (C.4)

and the holomorphicity of the superpotential:

KαWKαβ∂βW + ∂αWKαβKβW = −4
1+ 3

2
ε

1−3ε

(
Re(W )ta∂taRe(W ) + Im(W )ta∂taIm(W )

)
−4Im(W )

(
nK ρ̂K + uΛρ̂

Λ
)
.

(5.3)

In order to arrive at the simplest expression for the F-term scalar potential fur-
ther simplifications and manipulations have to be made, which will be discussed
at length in appendix C.2. For now, we state the end result of the computation,
expressed in terms of the (modified) axion polynomials (ρ0, ρa, ρ̃

a, ρ̃, ρ̂K , ρ̂
Λ):

VF = e
KT+KQ

κ2
4

{
4ρ2

0 +Kabρaρb + 4
9
K2
(
1 + 3

2
ε
)2
Kcdρ̃

cρ̃d + 1
9
ρ̃2K2

(
1 + 3

2
ε
)2

+4
3
ρ̃K
(
1 + 3

2
ε
)

(ρ̂Kn
K + ρ̂ΛuΛ) +KKLρ̂K ρ̂L

+KKΣρ̂K ρ̂Σ +KΛLρ̂Λρ̂L +KΛΣρ̂Λρ̂Σ

+ ε
1−3ε

[
9
(
ρ0 + 1

2
Kbρ̃b

)2
+ 9(nK ρ̂K + ρ̂ΛuΛ)2

−9
(
taρa + 1

6
ρ̃K(1− 3ε)

)2
]}

,

(5.4)
where now

eKT+KQ =
e4D

4
3
K(1 + 3

2
ε)
≡ e4φ

8V3(1 + 3
2
ε)3

. (5.5)

One notices immediately that the bilinear structure of the F-term scalar
potential prevails in the presence of curvature corrections, such that the scalar
potential can still be written as,

VF =
1

8κ2
4

−→
ρ t · Z−1 · −→ρ , (5.6)
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where the inverse metric Z−1 is now modified by the K(3) curvature corrections
expressed in terms of the parameter ε and reads

Z−1 = 8eKT+KQ





4 0 0 0 0 0

0 Kab 0 0 0 0
0 0 4

9
K2Kab(1 + 3

2
ε)2 0 0 0

0 0 0 K2

9
(1 + 3

2
ε)2 2

3
KnL(1 + 3

2
ε) 2

3
KuΣ(1 + 3

2
ε)

0 0 0 2
3
KnK(1 + 3

2
ε) KKL KKΣ

0 0 0 2
3
KuΛ(1 + 3

2
ε) KΛL KΛΣ


(5.7)

+
ε

1− 3ε



9 0 9
2
Ka 0 0 0

0 −9tatb 0 −3
2
Kta(1− 3ε) 0 0

9
2
Kb 0 9

4
KaKb 0 0 0

0 −3
2
Ktb(1− 3ε) 0 −K2

4
(1− 3ε)2 0 0

0 0 0 0 9nKnL 9nKuΣ

0 0 0 0 9nKuΛ 9uΛuΣ



 .

Due to the curvature corrections, i.e. ε 6= 0, off-diagonal terms enter in the
symmetric matrix. As we will see in the next section, this complicates the search
for extrema of the scalar potential at a technical level, but conceptually one may
apply the same principles as in [47] to explore the set of vacua in the presence of
α′-corrections.

5.2 Non-supersymmetric Minkowski vacua

In this section, we investigate how the ISD flux vacua discussed in section 4.1.1
are modified in the regions of moduli space where the perturbative α′-corrections
cannot be neglected. As argued in section 2.7, the Kähler potential for the
Kähler moduli is modified by the (α′)3-correction to expression (2.80), while the
ISD superpotential also requires modifications due to lower order α′-corrections.
In particular we have that for this case the expression (3.26) reduces to

WISD = ρ0 + iρat
a − 1

2
Kaρ̃a −

i

3!
Kρ̃− iK(3)ρ̃+ isρ̂0. (5.8)

Since the α′-corrections do not violate the no-scale symmetry in the UΛ-complex
structure moduli sector, the last equality of (4.4) still holds, and the same rea-
soning as above applies to arrive at the vacuum configuration for the ISD flux
background. That is, we may derive the Minkowski vacuum conditions by im-
posing the vanishing of the F-terms for the dilaton and Kähler moduli. The
dilaton modulus comes with the following F-term in the presence of perturbative
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α′-corrections

FS =
1

2s

(
iρ0 − taρa −

i

2
Kaρ̃a +

1

6
Kρ̃+K(3)ρ̃+ sρ̂0

)
, (5.9)

while the corrected F-term for the Kähler moduli reads

FTa = ρa + iKabρ̃a −
1

2
Kaρ̃+

2iKa
4
3
K + 2K(3)

WISD. (5.10)

We may now set both quantities to zero and solve the resulting algebraic equations
explicitly. As in [47], we may simplify such computations by first considering the
following linear combination

taFTa
(

4
3
K + 2K(3)

)
= 2iKρ0 + taρa(−2

3
K + 2K(3)) + iKaρ̃a

(
1
3
K + 2K(3)

)
−Kρ̃

(
1
3
K −K(3)

)
− 2ρ̂0sK.

(5.11)
The combined set of the algebraic equations that describe the vacuum constraints
for ISD flux vacua can be simply expressed in terms of the redefined axion poly-
nomials (3.27). At a first stage one can see that the vanishing of (5.9) and (5.11)
is equivalent to

ρ0 = 0, −taρa + 1
6
Kρ̃+K(3)ρ̃+ sρ̂0 = 0,

ρ̃a = 0, taρa(−2
3
K + 2K(3)) +Kρ̃

(
−1

3
K +K(3)

)
− 2ρ̂0sK = 0.

(5.12)

Notice that the conditions ρ0 = 0 and ρ̃a = 0 are essentially similar to the
uncorrected case (4.8), while now we no longer have that ρa = 0. The set of
equations ρ̃a = 0 stabilises the Kähler axions through the same flux quanta as in
absence of α′-corrections, and the axionic partner of the dilaton ξ0 is stabilised
by virtue of the condition ρ0 = 0, such that its vacuum expectation value can be
expressed purely in terms of the curvature corrected flux quanta e0 and ea:

h0ξ
0 = − 1

3m2

(
Kabcmambmc − 3eam

am
)
− e0. (5.13)

Notice as well that the condition ρ̃a = 0 and the vanishing eq (5.10) imply that
ρA ∝ Ka, and so solving (5.12) is equivalent to the vanishing of (5.9) and (5.10).
The remaining two set of equations are solved simultaneously by the relations

1

6
Kρ̃+ sρ̂0 = ρ̃K(3)

1
6
K +K(3)

4
3
K −K(3)

, ρa = ea −Kabc
mbmc

2m
= ρ̃K(3)

3
2
Ka

4
3
K −K(3)

,

(5.14)
which clearly reduce to the previous conditions in the limit K(3) → 0. They also
provide explicit vacuum relations for the dilaton in terms of the flux quanta and
curvature corrections:

h0s = −1

6
mK+mK(3)

1
6
K +K(3)

4
3
K −K(3)

= −1

6
m
(
K + 6K(3)

)
+
ta

2m

(
2mea −Kabcmbmc

)
,

(5.15)
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as well as for the Kähler moduli:

Ka =
(8K − 6K(3))

9mK(3)
`sρa =

(4K − 3K(3))

9m2K(3)

(
2eam−Kabcmbmc

)
. (5.16)

in agreement with the results of section 4.2 in [8].1 Finally, one may insert the
value of the stabilised moduli into the expression (5.8) to obtain the on-shell value
of the superpotential for this set of vacua:

〈WISD〉 = − i
3
ρ̃

(
K +

3

2
K(3)

)
K − 3K(3)

K − 3
4
K(3)

. (5.17)

As discussed in section 5 of [47] this quantity controls the effective gravitino mass
for this set of vacua and, to some extent, the whole spectrum of flux-induced
soft-terms in models of intersecting D6-branes. It would be interesting to extract
the phenomenological consequences of the α′-corrected spectrum of soft-terms in
semi-realistic intersecting D6-brane models, a task that we leave for the future.

From the first equality in (4.4), that only relies on the choice of Kähler
metrics (4.1) and of NS-fluxes hΛ = 0, it is clear that the scalar potential is
positive semi-definite, as one would expect from the mirror construction in [52].
As discussed in the previous chapter, one should be able to see this same feature
directly from the bilinear formulation (5.6) of V . Because of the more complicated
expression for Z−1 when α′-corrections have been taken into account, showing
the positive semi-definiteness of V in this case is more involved. Nevertheless, as
we discuss in Appendix C.3 under the above assumptions one can rewrite (5.6)
as

VF =
1

8κ2
4

−→
ρ

t

ISD · G−1 · −→ρ ISD, (5.18)

where
−→
ρ ISD is a shorter vector than

−→
ρ , containing as many entries as RR fluxes,

but whose entries are no longer only axion dependent but instead

−→
ρ ISD =


ρ0

ρa + 27ε
4(1−3ε)(1+ 3

2
ε)
Ka
K sρ̂0

ρ̃a

ρ̃+
6(1− 3

4
ε)

(1−3ε)(1+ 3
2
ε)
s
K ρ̂0

 (5.19)

1To compare with the results in [8], one needs to take into account the difference in conventions

for the definition of the fluxes, like a flip in the sign in the Romans’ parameter m
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and the symmetric matrix G−1 is given by

G−1 = 8eKT+KQ




4 0 0 0

0 Kab 0 0

0 0 4
9
K2
(
1 + 3

2
ε
)2
Kab 0

0 0 0 K2

9

(
1 + 3

2
ε
)2

 +

+ ε
1−3ε


9 0 9

2
Ka 0

0 −9tatb 0 −3
2
Kta(1− 3ε)

9
2
Kb 0 9

4
KaKb 0

0 −3
2
Ktb(1− 3ε) 0 −K2

4
(1− 3ε)2


 .

(5.20)
One can easily check that this matrix is positive definite and, in fact, corresponds
to the Kähler moduli metric derived from the Kähler potential (2.80), as a quick
comparison with (5.7) shows. As such, the minima of the potential will only be
attained when each of the entries of the vector (5.19) vanish, or in other words
upon imposing:

ρ0 = 0, ρ̃a = 0, ρa = − 27ε

4(1− 3ε)
(
1 + 3

2
ε
)Ka
K
sρ̂0, ρ̃ = −

6
(
1− 3

4
ε
)

(1− 3ε)
(
1 + 3

2
ε
) s
K
ρ̂0.

(5.21)
It is easy to convince oneself that these conditions are equivalent to the rela-
tions satisfied in non-supersymmetric Minkowski vacua. Indeed, inserting the
last relation in the third one we find that the latter is equivalent to

ρa =
9εKa

8
(
1− 3

4
ε
) ρ̃, (5.22)

which is nothing but the second equation in (5.14). Similarly, the last relation in
(5.21) can be rewritten as

K
6
ρ̃+ sρ̂0 = ρ̃ε

K
8

1 + 6ε

1− 3
4
ε
. (5.23)

which is equivalent to the first equation in (5.14).

These relations reproduce precisely the proposal of [8] to stabilise the Kähler
moduli by virtue of α′-corrections. Whether or not this stabilisation mechanism
for the Kähler moduli is consistent relies on the possibility of finding a solution
to the polynomial equation (5.16) for large values of the Kähler moduli. In
order for the α′-correction on the left-hand side to counter-balance the tree-level
overall volume, the RR-flux quanta and in particular Roman’s mass m have
to be chosen appropriately without over-shooting the RR tadpole cancellation
conditions. Notice that at the end of this procedure, the complex structure
moduli still remain unstabilised in these non-supersymmetric Minkowski vacua.
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5.3 Supersymmetric AdS vacua

Just as for N = 0 Minkowski vacua, α′-corrections will also affect the conditions
that describe supersymmetric AdS vacua in type IIA compactifications. In this
case we expect that the effect of α′-corrections is a priori less dramatic, in the
sense that Kähler moduli and complex structure moduli are already stabilised in
their absence. Nevertheless, taking into account such corrections may be crucial
in setups where moduli are stabilised at moderately large volumes. As we will
see in the following, the axion polynomial formalism allows to treat such vacua
in a somewhat equal footing as the previous case, and to easily extend the re-
sults discussed in the previous chapter, where perturbative α′-corrections were
neglected.

To analyse α′-corrected N = 1 AdS vacua we consider a general Kähler
potential

K = − log

(
4

3
K + 2K(3)

)
− 2 log

[
1

4
Im (CZΛ)uΛ −

1

4
nKIm (CFK)

]
(5.24)

and a superpotential given by:

W = ρ0 + iρat
a − 1

2
Kaρ̃a −

i

6
Kρ̃− iK(3)ρ̃+ inK ρ̂K + iuΛρ̂

Λ. (5.25)

Following the strategy of [47], we write the different F-terms in terms of axion
polynomials and set them to zero:

FNK = ρ̂K − i Im (CFK)
2GQ

(WT +WQ) = 0,

FUΛ
= ρ̂Λ + i Im (CZΛ)

2GQ
(WT +WQ) = 0,

FTa = ρa + iKabρ̃b − 1
2
Kaρ̃+ 2iKa

4
3
K+2K(3) (WT +WQ) = 0.

(5.26)

Analogously to our previous discussion, simpler equations are obtained when we
consider certain linear combinations of complex structure F-terms

h∑
K=0

nK? FNK
?

+
h∑

Λ=0

u?ΛFU?Λ =
h∑

K=0

ρ̂Kn
K
? +

h∑
Λ=0

ρ̂Λu?Λ + 2i (WT +WQ) = 0, (5.27)

from where we find the following relations:

ρ0 −
1

2
Kaρ̃a = 0, nK? ρ̂K + u?Λρ̂

Λ =
1

3
Kρ̃− 2taρa + 2K(3)ρ̃. (5.28)

The same can be done with the Kähler moduli F-terms, obtaining:(
4

3
K +K(3)

)
taFTa = taρa

(
10

3
K + 2K(3)

)
+iKaρ̃a

(
4

3
K + 2K(3)

)
−Kρ̃

(
K + 3K(3)

)
,

(5.29)
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were we have used (5.28) to simplify the rhs. It is easy to see that this last one can
vanish if ρ̃a = 0, which in turn implies that ρa ∝ Ka and the vanishing of (5.29)
is the only non-trivial F-term condition in the Kähler sector. Combining such
a condition with the first equation in (5.28) one obtains the following vacuum
relations

ρ0 = 0, ρ̃a = 0, ρa =
3

10
ρ̃Ka

[
K + 3K(3)

K + 3
5
K(3)

]
, (5.30)

which generalise the conditions obtained in [47]. Comparing to eq. (3.36) therein,
only the third condition is essentially different from the uncorrected case. On
the one hand, since the first two conditions are the ones that implement the
stabilisation of Kähler axions and one linear combination of complex structure
moduli, their vacuum expectation values in terms of the fluxes will have a similar
form as in [47]

hKξ
K
? + hΛξ?Λ = −

e0m
2 −meama + 1

3
Kabcmambmc

m2
, ba = −m

a

m
. (5.31)

On the other hand, the geometric part of the Kähler moduli, which are stabilised
in terms of the background fluxes by the third condition in (5.30), will be affected
nontrivially by the (α′)3-correction term K(3).

To proceed, we may insert these conditions and the second equation in
(5.28) to obtain the vacuum expectation value for the superpotential in these
AdS vacua, finding that

〈WAdS〉 = − 2i

15
ρ̃

(K − 3K(3))
(
K + 3

2
K(3)

)
K + 3

5
K(3)

. (5.32)

Combined with the vanishing conditions for the F-terms in the complex structure
sector, this allows to write down the stabilisation conditions for the complex
structure moduli in terms of their “dual” periods:

GQ
ρ̂K

Im (CFK)
= −GQ

ρ̂Λ

Im (CZΛ)
=

1

15
ρ̃

(K − 3K(3))
(
K + 3

2
K(3)

)
K + 3

5
K(3)

. (5.33)

Again, these geometric moduli are directly affected by the cubic correction term
K(3), in sharp contrast with the axionic moduli.
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Chapter 6

Fluxed supersymmetry-breaking

and soft terms

In the previous chapters we discussed various classes of non-supersymmetric
string vacua, and in particular, in section 4.3 we obtained a new class of non-
supersymmetric Minkowski vacua with open string moduli stabilised at non-
trivial vevs. It provides a nice examples of string vacua in which supersymmetry
is spontaneously broken due to background fluxes. A first manifestation of bro-
ken supersymmetry in this class of vacua are the non-vanishing F-terms in the
complex structure moduli sector, however the genuinely physical observables re-
sulting from spontaneous supersymmetry breaking correspond to the gravitino
mass and soft terms for the visible sector (chiral matter charged under gauge
symmetries). The aim of this chapter is to establish a connection between those
physical observables and flux-axion polynomials. This chapter is based on part
of the paper [47].

6.1 Fluxed supersymmetry-breaking

The perturbative toolbox in N = 1 supergravity to obtain a supersymmetry-
breaking vacuum consists in coupling gravity to chiral multiplets subject to a non-
trivial superpotential. The vacuum configuration of the resulting F-term scalar
potential then determines the sign and value of the vacuum-energy, indicating
whether the vacuum of the four-dimensional theory corresponds to an Anti-de
Sitter, Minkowski or de Sitter spacetime. To discriminate supersymmetric from
non-supersymmetric vacua it suffices to analyse the F-terms and identify at least
one chiral superfield with a non-vanishing F-term in case of non-supersymmetric
vacua. In that case, the fermionic partner inside the chiral superfield serves as

85



86CHAPTER 6. FLUXED SUPERSYMMETRY-BREAKING AND SOFT TERMS

the massless Goldstino, which is absorbed by the gravitino through the super-
Brout-Englert-Higgs mechanism [54, 55]. The would-be mass of the gravitino in
the Lagrangian, also dubbed apparent gravitino mass in [56], is proportional to
the vacuum expectation value of the superpotential,

m2
3/2 =

1

κ4
4

eK |W |2. (6.1)

Note, however, that a non-vanishing apparent gravitino mass does not imply
supersymmetry is spontaneously broken, as is the case for the supersymmetric
AdS vacua introduced in section 4.1.2. To evaluate whether supersymmetry is
spontaneously broken, it is more appropriate to consider an effective gravitino
mass [56],

m2
3/2 = m2

3/2 +
1

3
VF =

1

3
eKFAK

ABFB, (6.2)

whose scale is set by the (non-vanishing) F-terms of the chiral multiplets. This
relation between the effective gravitino mass and the F-terms of the chiral multi-
plets has been obtained by virtue of the expression for the F-term scalar potential
(2.60). When evaluating the value of the effective gravitino mass in the vacuum of
the theory, its value corresponds to the on-shell apparent gravitino mass corrected
by the vacuum energy for curved spacetimes. The evaluation of these formulae
for ISD flux vacua and supersymmetric AdS vacua will follow shortly. For now,
we summarise the various background vacua that can potentially emerge from an
N = 1 supergravity theory coupled to chiral supermultiplets in table 6.1. The

background m2
3/2 〈V 〉 m2

3/2

SUSY Minkowski 0 0 0

non-SUSY Minkowski > 0 0 > 0

SUSY AdS > 0 < 0 0

non-SUSY AdS > 0 < 0 > 0

non-SUSY dS > 0 > 0 > 0

Table 6.1: Overview of four-dimensional vacuum configurations in N = 1 su-

pergravity coupled to chiral supermultiplets with the corresponding apparent

gravitino mass, vacuum energy and effective gravitino mass.

4d low-energy effective field theory for type IIA orientifold compactifications is
(partly) captured by an N = 1 supergravity theory coupled to chiral supermul-
tiplets, with scalar components played by closed and open string moduli. Hence,
by studying the vacuum structure of the F-term scalar potential we can both
determine the consistency of the compactification as well as the physics of the
four-dimensional spacetime.
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6.2 Gravitino masses in the ρ-picture

In the previous chapters we argued that perturbative flux vacua are easily iden-
tified in terms of constraints on the shift-invariant axion polynomials (3.12) or
(3.20). The next step is to rewrite the physical observables resulting from sponta-
neous supersymmetry breaking such as gravitino masses in terms of the flux-axion
polynomials

6.2.1 Vacua without open string moduli

Let us first restrict ourselves to the case without D6-brane. By exploiting the
factorability of the perturbative flux superpotential the apparent gravitino mass
(6.1) can be expressed in terms of the axion polynomials (3.12) as follows,

m2
3/2 =

1

κ4
4

eKρA(Π† n Π)ABρB, (6.3)

where the purely saxion-dependent matrix Π† n Π reads more explicitly,

Π† n Π =



1 0 −1
2
Ka 0 0 0

0 tatb 0 −taK
6

tanK? tau?Λ
−1

2
Kb 0 1

4
KaKb 0 0 0

0 −tbK
6

0
(K

6

)2 −K
6
nK? −K

6
u?Λ

0 tbnI? 0 −nI?K6 nI?n
K
? nI?u?Λ

0 tbu?Σ 0 −u?ΣK6 u?Σn
K
? u?Σu?Λ

 , (6.4)

when expressed in the basis of axion polynomials −→ρ =
(
ρ0, ρa, ρ̃

a, ρ̃, ρ̂K , ρ̂
Λ
)
.

Also the effective gravitino mass (6.5) can be expressed in terms of the axion
polynomials by working out the F-terms for the Kähler and complex structure
moduli explicitly. When neglecting open string moduli or considering compact-
ifications without D6-branes, the factorability of the closed string moduli space
translates into a factorisation of the F-terms per sector:

m2
3/2 =

1

3
eK−→ρ T

(FT + FUN?)−→ρ , (6.5)

where the matrix FUN? for the complex structure moduli is given by,

FUN? =



4 0 −2Ka 0 0 0
0 4tatb 0 −2taK

3
2tanI? 2tau?Λ

−2Kb 0 KaKb 0 0 0

0 −2tbK
3

0 4
(K

6

)2 −K
3
nK? −K

3
u?Λ

0 2tbnI? 0 −K
3
nI? KNIN

K

KNIUΛ

0 2tbu?Σ 0 −K
3
u?Σ KUΣN

K

KUΣUΛ


, (6.6)
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and the matrix FT for the Kähler moduli sector reads,

FT =



3 0 1
2
Ka 0 0 0

0 tatb − 2
3
KKab 0 taK

6
tanI? tau?Λ

1
2
Kb 0 3

4
KaKb − 2

3
KKab 0 0 0

0 tbK
6

0 3
(K

6

)2 1
2
KnK? 1

2
Ku?Λ

0 tbnI? 0 1
2
nI?K 3nI?n

K
? 3nI?u?Λ

0 tbu?Σ 0 1
2
u?ΣK 3u?Σn

K
? 3u?Σu?Λ

 ,

(6.7)
both expressed in the basis of axion polynomials −→ρ =

(
ρ0, ρa, ρ̃

a, ρ̃, ρ̂K , ρ̂
Λ
)
. The

expressions for the apparent and effective gravitino mass have only taken into
account the chiral multiplets from the closed string sector. As long as the su-
perpotential remains factorisable in the sense of section 3.4 when including open
string chiral multiplets, the expressions for the gravitino masses can be straight-
forwardly generalised, which will be the focus of the next section.

Supersymmetric AdS flux vacua

Let us now apply the above considerations to the supersymmetric AdS vacua
discussed in section 4.1.2. As already known this class of vacua is represented
by the vector −→ρ AdS = ρ̃

(
0, 3

10
Ka, 0, 1,− i

5
KKNI

?
,− i

5
KKU?Λ

)
. In this vacuum con-

figuration, the apparent gravitino mass happens to have a non-vanishing value
proportional to Romans mass ρ̃:

m2
3/2 =

1

κ4
4

eK
(

2K
15
ρ̃

)2

. (6.8)

The effective gravitino mass in the supersymmetric AdS vacua vanishes, as can
be checked explicitly by evaluating expression (6.5) for the axion vector −→ρ AdS.
The vanishing effective gravitino mass should not surprise us at all, as it is fully
in line with the vanishing F-terms and the (negative) vacuum energy for the
supersymmetric AdS vacua, which equates in absolute value to three times the
value of the apparent gravitino mass.

Non-supersymmetric Minkowski flux vacua

A well-known example of non-supersymmetric vacua is provided by backgrounds
with ISD fluxes, as discussed in section 4.1.1. Considering the factorisation of the
dilaton as in (4.1) for the ISD flux set-up, the purely saxion-dependent matrix
Π† n Π in the apparent gravitino mass takes the form,

Π† n Π =



1 0 −1
2
Ka 0 0 0

0 tatb 0 −taK
6

tas? tau?Λ
−1

2
Kb 0 1

4
KaKb 0 0 0

0 −tbK
6

0
(K

6

)2 −K
6
s? −K6 u?Λ

0 tbs? 0 −s?K6 s2
? s?u?Λ

0 tbu?Σ 0 −u?ΣK6 s?uΣ u?Σu?Λ

 . (6.9)
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The apparent gravitino mass for the ISD flux vacua, represented by the axion
vector −→ρ ISD = ρ̃

(
0, 0, 0, 1, 0,− i

3
KKUΛ

)
also scales with Romans’ mass ρ̃:

m2
3/2 =

1

κ4
4

eK
(
K
3
ρ̃

)2

. (6.10)

In this class of vacua, the effective gravitino mass does not vanish, which can be
verified explicitly when writing out the F-terms by virtue of the axion polynomi-
als:

m2
3/2 =

1

3
eK−→ρ T

(FT + FS? + FU?)−→ρ =
1

3
eK
(
K
3
ρ̃

)2

, (6.11)

where the matrix FS? for the dilaton sector is given by,

FS? =



1 0 −1
2
Ka 0 0 0

0 tatb 0 −taK
6

−tas? tau?Λ
−1

2
Kb 0 1

4
KaKb 0 0 0

0 −tbK
6

0
(K

6

)2 K
6
s? −K

6
u?Λ

0 −tbs? 0 s?
K
6

s2
? −s? u?Λ

0 tbu?Σ 0 −u?ΣK6 −s? u?Σ u?Σu?Λ

 , (6.12)

the matrix FU? for the complex structure moduli sector reads,

FU? =



3 0 −3
2
Ka 0 0 0

0 3tatb 0 −taK
2

3tas? tau?Λ
−3

2
Kb 0 3

4
KaKb 0 0 0

0 −tbK
2

0 3
(K

6

)2 −K
2
s? −K

6
u?Λ

0 3tbs? 0 −s?K2 3s2
? s? u?Λ

0 tbu?Σ 0 −u?ΣK6 s? u?Σ KΛΣ − u?Σu?Λ

 (6.13)

and the matrix FT for the Kähler moduli takes the form,

FT =



3 0 1
2
Ka 0 0 0

0 tatb − 2
3
KKab 0 1

6
Kta tas? tau?Λ

1
2
Kb 0 3

4
KaKb − 2

3
KKab 0 0 0

0 1
6
Ktb 0 3

(K
6

)2 1
2
Ks? 1

2
Ku?Λ

0 tbs? 0 1
2
Ks? 3s2

? 3s?u?Λ
0 tbu?Σ 0 1

2
Ku?Σ 3s?u?Σ 3u?Σu?Λ

 .

(6.14)
The non-vanishing value for the effective gravitino mass is due to the non-
vanishing F-terms for the complex structure moduli in the ISD flux vacua, which
can be verified explicitly in the axion polynomial language. The factorability of
the moduli sectors allows in this case to clearly extract the U -dominated character
of the supersymmetry-breaking in type IIA ISD flux vacua.
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6.2.2 Vacua with open string moduli

As discussed in section 4.3, mobile D6-branes alter the vacuum structure of the
four-dimensional effective theory. Subsequently, the pattern of supersymmetry-
breaking in the presence of mobile D6-branes needs further exploration to assess
how it defers from the pure closed string case. To this end, we first consider the
apparent gravitino mass, which can still be factorised in a bilinear form in terms
of the purely saxion-dependent matrix Π† n Π,

Π†nΠ =



1 0 −1
2
Ka 0 0 0 0 taφi

0 tatb 0 −taK
6

tanK tauΛ taφi 0
−1

2
Kb 0 1

4
KaKb 0 0 0 0 −1

2
Kbtaφi

0 −tbK
6

0
(K

6

)2 −K
6
nK −K

6
uΛ −K

6
φi 0

0 tbnI 0 −nI K
6

nInK nIuΛ nIφi 0
0 tbuΣ 0 −uΣ

K
6

uΣn
K uΣuΛ uΣφ

i 0
0 tbφj 0 −K

6
φj nKφj uΛφ

j φiφj 0
tbφj 0 −1

2
Kbtaφj 0 0 0 0 tatbφiφj


,

(6.15)
expressed in terms of the axion polynomial basis−→% T =

(
%0, %a, %̃

a, %̃, %̂K , %̂
Λ, %i, %ai

)
.

Nevertheless, the relevant quantity to consider for vacua with (sponta-
neously) broken supersymmetry is the effective gravitino mass (6.5), whose ex-
plicit bilinear expression in terms of the axion polynomials becomes extremely
involved upon inclusion of D6-brane moduli. More precisely, it is the mixing be-
tween closed and open string moduli sectors that prevents us from writing down
the F-terms as axion polynomial bilinears by virtue of the simple matrices FS,
FU and FT , as in the closed string ISD flux case. Instead we look at the effective
gravitino mass as the scalar product between the co-variant and contra-variant
F-term vectors,

m2
3/2 =

1

3
eK
(
FaF

a + FSF
S + FΛF

Λ + FiF
i
)

(6.16)

and express both vectors explicitly in terms of the axion polynomials. The co-
variant F-term vectors contain two contributions both linear in the axion poly-
nomials,


Fa
FS
FΛ

Fi

 =


0 δba iKab −1

2
Ka 0 0 0 −iφj

0 0 0 0 1 0 0 0
0 0 0 0 0 δΣ

Λ 0 0

0 0 0 0 0 0 δji −ita

 · −→% +


KTa

KS

KΛ

KΦi

−→Π t
· −→% ,

(6.17a)
and similarly the contra-variant F-term vector can be written as the sum of two
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linear terms in the axion polynomials,
F a

F S

FΛ

F i

 =


0 Kab −iKacKcb −1

2
KacKc KaS KaΣ Kaj iKajtb

0 KSb −iKScKcb −1
2
KScKc KSS KaΣ KSj iKSjtb

0 KΛb −iKΛcKcb −1
2
KΛcKc KΛS KΛΣ KΛj iKΛjtb

0 Kib −iKicKcb −1
2
KicKc KiS KiΣ Kij iKijtb

 · −→%

+


−2ita

−2is
−2iuΛ

−2iφi

−→Π † · −→% ,

(6.17b)
where we used the expressions (4.28) for the inverse metrics on the moduli space
and the first order derivatives (A.11) of the Kähler potential to simplify the
second term. An alternative (and more explicit) representation of the contra-
variant F-terms can be found in [41].

CSD vacua

Let us now apply the above results to the N = 0 Minkowski vacua discussed in
section 4.3, which rely on weaker vacuum constraints than the ISD flux vacua.
Upon evaluating the apparent gravitino mass for the CSD vacuum conditions in
(4.51), one easily retrieves the same functional dependence as for the ISD flux
vacua:

m2
3/2 =

1

κ4
4

eK
(
K
3
%̃

)2

. (6.18)

Upon evaluating the F-term vectors in the CSD vacua (4.51),

(
−→
FA)t =

(
1

2
(HaΛ − f iagiΛ)FΛ, 0, FΛ,

1

2
gΛ
i FΛ

)
, (

−→
F
A

)t =
(
0, 0,−2iu?ΛW 0, 0

)
,

(6.19)
one can immediately deduce that only the complex structure moduli sector pro-
vides a non-vanishing contribution to the effective gravitino mass:

m2
3/2 =

1

3
eKFΛF

Λ =
1

3
eK
(
K
3
%̃

)2

. (6.20)

Note that the functional dependence of the effective gravitino mass for these CSD
or N = 0 Minkowski vacua is precisely the same as for the pure ISD flux vacua.

6.3 Flux-induced soft terms on D6-branes

For phenomenological purposes, we are interested in the Lagrangian for the
charged matter fields living on the D6-brane worldvolume and in particular the
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terms arising from supersymmetry breaking. Upon including D6-branes into a
type IIA flux vacuum in which supersymmetry is spontaneously broken in the
moduli sector, this spontaneous supersymmetry-breaking is transmitted to the
matter sector through gravitational interactions (gravity mediation mechanism)
which results in a set of soft terms for the open string excitations living on the
D6-branes.

6.3.1 Gravity-mediated supersymmetry breaking

In this section we review some basics aspects of the gravity mediation mecha-
nism by recalling the results of [27–29]. In order to extract the structure of the
soft supersymmetry breaking terms one usually distinguishes between the visible
sector composed of the massless open string excitations (with vanishing vacuum
expectation values) on the one hand and the hidden sector of closed string mod-
uli on the other hand. Given that the D6-brane displacement moduli provide
for more generic vacua in the presence of background fluxes, we choose a more
suitable factorisation of the N = 1 chiral multiplets: on the one hand open string
excitations transforming in bifundamental representations of the D6-brane gauge

theories denoted collectively by Oα (and its hermitian conjugate Oα), and on
the other hand the “hidden” sector of closed string moduli and D6-brane dis-
placement moduli denoted by H ∈ {T a, NK , UΛ,Φ

i}. Subsequently, the Kähler
potential and superpotential can then be expanded around the background values
of the hidden sector moduli:

K(H,H,O,O) = K0(H,H) +Kαβ(H,H)OαOβ +

[
1

2
Zαβ(H,H)OαOβ + h.c.

]
+ . . . ,

W (H,O) = W0(H) +
1

2
µαβ(H)OαOβ +

1

6
Yαβγ(H)OαOβOγ + . . . . (6.21)

In this expansion, the Kähler potential K0 = KT + KQ contains the Kähler po-
tentials for the dilaton, Kähler moduli, complex structure moduli and open string
displacement moduli, while the functions Kαβ(H,H) represent the Kähler met-
rics for the open string excitations with vanishing vacuum expectation value (at
the level of the supergravity analysis). The superpotential W0(H) encompasses
the perturbative RR- and NS-flux superpotential as well as the bilinear superpo-
tential as in (2.78), while the quadratic and Yukawa couplings between the open
string modes arise from non-perturbative effects such as worldsheet instantons
and potentially D-brane instantons. The soft terms for the open string modes
follow by inserting the expansion for the Kähler potential and superpotential into
the F-term scalar potential (2.60), and taking the limit κ4 → ∞ while keeping
the apparent gravitino mass m3/2 fixed:

Vsoft = m2
αβ
OαOβ +

[
1

6
AαβγOαOβOγ +

1

2
BαβOαOβ + h.c

]
, (6.22)
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where the various soft term parameters depend on the closed string and D6-brane
displacement moduli (evaluated at their vacuum expectation value):1

m2
αβ

= (m2
3/2 +

V0

M2
Pl

)Kαβ − eK
0/M2

PlF
m (

∂m∂nKαβ − ∂mKαγK
γδ∂nKδβ

)
F n,

Aαβγ =
W0

|W0|
eK

0/M2
PlFm

[
∂mK

0 Yαβγ +DmYαβγ
]
, (6.24)

Bαβ =
W0

|W0|
eK

0/2M2
Pl

{
eK

0/2M2
PlFm

[
∂mK

0 µαβ +Dmµαβ
]
−m3/2µαβ

+(2m2
3/2 +

V0

M2
Pl

)Zαβ −m3/2e
K0/2M2

PlF
m
∂mZαβ +m3/2e

K0/2M2
PlFmDmZαβ

−eK0/M2
PlF

m
F nDn∂mZαβ

}
.

The soft terms depend both on universal data, such as the F-terms2 and the
Kähler-potential K0, and on model-dependent input data captured through the
moduli-dependent Kähler metrics Kαβ and coupling parameters Zαβ, µαβ, and
Yαβγ. Nonetheless, these soft terms do not correspond to the physical parameters
as long as the kinetic terms for the open string states are not written in their
canonical form. To eliminate the closed string moduli dependence from the open
string kinetic terms, an appropriate field redefinition of the open string excitations
is required. In case the kinetic terms are all diagonal, i.e. Kαβ = Kαδαβ, such a
field redefinition is rather straighforward,

Oα → Ôα = K1/2
α Oα. (6.25)

By virtue of this field redefinition, the physical soft terms for the physical open
string excitations Ôα reduce to a much simpler form:

m2
α = (m2

3/2 + V0)− eK0

FmF n∂m∂n logKα, (6.26)

Âαβγ = ŶαβγF
m
(
∂mK

0 + ∂m log Yαβγ − ∂m log(KαKβKγ)
)
,

B̂αβ = µ̂αβ

[
eK

0/2Fm
(
∂mK

0 + ∂m log µαβ − ∂m log(KαKβ)
)
−m3/2

]
,

Mi =
1

2
(Im f−1)eK

0/2Fm∂m f,

1To simplify the formulae for the soft terms, we introduced the notations:

DmYαβγ = ∂mYαβγ −
(
Kδρ∂mKραYδβγ + (α↔ β) + (α↔ γ)

)
,

Dnµαβ = ∂mµαβ −
(
Kδρ∂mKραµδβ + (α↔ β)

)
,

DnZαβ = ∂mZαβ −
(
Kδρ∂mKραZδβ + (α↔ β)

)
.

(6.23)

2Note that the expression for the F-terms in this thesis differs by a factor e−K
0/2M2

Pl from the

expressions usually encountered in the literature. This deliberate choice allows to extract an

overall exponential factor eK
0/M2

Pl from the non-universal contribution to soft terms, in line

with the factorisation of the scalar potential (2.60) and the gravitino mass (6.1).
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where we now also included the soft gaugino masses and introduced the physical
Yukawa couplings and µ-terms:

Ŷαβγ =
Ŵ ∗

|Ŵ |
eK

0

(KαKβKγ)
−1/2 Yαβγ, µ̂αβ =

Ŵ ∗

|Ŵ |
eK

0

(KαKβ)−1/2 µαβ,(6.27)

apart from setting Zαβ = 0.

6.3.2 The axion polynomial picture

In section 6.1 it was shown that the factorability of the closed string and D6-brane
displacement moduli in terms of shift-invariant axion polynomials and geometric
moduli can be extended to the expressions for the gravitino masses, which serve as
order parameters for flux-induced supersymmetry-breaking. Given the structure
of the soft terms it is very tempting to expose their factorable character by
rewriting them in terms of the shift-invariant axion polynomials and geometric
moduli as well. To this end, we consider the orientifold projection suited for the
ISD flux vacua with closed string moduli (T a, S, UΛ) and turn to their respective
(contra-variant) F-terms depending linearly on the axion polynomials as denoted
in (6.17b). At this point it suffices to insert the F-term expressions back into the
soft terms (6.26) in order to relate the soft terms to the axion polynomials. Let
us now be more explicit and provide the detailed dependence of the soft terms
on the axion polynomials.

Soft Masses

Focusing first on the soft masses m2
α, we employ the results of the previous section

to rewrite them in a matrix notation:

m2
α =

1

κ2
4

eK
0

%A

((
Π† n Π

)AB
+

1

8
ZAB −

(
M† Mק

)AB)
%B (6.28)

where the Kähler metric matrix ,ק

ק =


∂Ta∂T b logKα ∂Ta∂S logKα ∂Ta∂UΣ

logKα ∂Ta∂Φjα
logKα

∂S∂T b logKα ∂S∂S logKα ∂S∂UΣ
logKα ∂S∂Φjα

logKα

∂UΛ
∂T b logKα ∂UΛ

∂S logKα ∂UΛ
∂UΣ

logKα ∂UΛ
∂Φjα

logKα

∂
Φ
i
α
∂T b logKα ∂

Φ
i
α
∂S logKα ∂

Φ
i
α
∂UΣ

logKα ∂
Φ
i
α
∂Φjα

logKα

 , (6.29)

is introduced to capture the model-dependent3 contributions to the soft masses
and the matrix M collects all saxion-dependent terms appearing in the contra-
variant F-term vector (6.17b). For generic Calabi-Yau manifolds the explicit

3The epithet “model-dependent” refers to the freedom of choice regarding the D6-brane con-

figuration once a Calabi-Yau orientifold background is chosen.
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expressions for the Kähler metrics is beyond the scope of present-day computa-
tional technology, such that the model-dependent contributions seem to remain
unknown at first sight. Nevertheless, closer inspection of the F-term expressions
and the Kähler metric matrix ק suggest that it is sufficient to know the scal-
ing behaviour of the Kähler metrics Kα to fully determine the model-dependent
part of the soft masses. Let us clarify this bold statement by evaluating the soft
masses in the CSD vacua represented by the constraints (4.51). In these CSD
vacua, supersymmetry is broken by the F-terms of the complex structure moduli,

i.e. (
−→
F
A

)t =
(
0, 0, FUΛ , 0

)
, such that the model-dependent part of the soft terms

reduces to:

−→% t ·MT ק M · −→% = eK0|W0|2u?Λu?Σ∂u?Λ∂u?Σ logKα. (6.30)

Under the assumption that the Kähler metrics on generic Calabi-Yau manifolds
can be locally approximated by their counterparts on toroidal orbifolds discussed
in appendix D, we consider the Kähler metrics Kα to be homogeneous functions
of degree nα in the complex structure moduli u?Λ. Hence, it follows straightfor-
wardly that u?Λu?Σ∂u?Λ∂u?Σ logKα = −nα, which leads to a simple expression for
the soft masses (6.28) in terms of the gravitino mass:

m2
α = m2

3/2(1 + nα). (6.31)

To find the scaling dimension (or modular weight) nα for an open string state Oα
we further exploit the knowledge of Kähler metrics for intersecting D6-branes on
toroidal orbifold compactifications. Similarly to the toroidal orbifold set-up, we
distinguish two different sectors based on the origin of the charged open string
state:

(i) Vector-like/Non-chiral matter:
Whenever two supersymmetric D6-branes intersect on a continuous sub-
space along the internal Calabi-Yau orientifold, their intersection number
follows by computing the Euler characteristic of the intersection space.4

Thus, in case of a codimension 5 intersection with topology S1 ' RP1,
their intersection number is zero due to the vanishing Euler characteris-
tic. Yet the intersection of two such D6-branes can provide for vector-like
pairs of N = 1 chiral multiplets. To our knowledge a systematic study of

4When calculating the intersection number for two overlapping surfaces, one of the surfaces has

to be deformed along normal directions [57,58]. Due to the special Lagrangian property of the

cycles considered in this paper, the normal deformations can be mapped to vector fields in the

tangent bundle of the intersection space by McLean’s theorem. The intersection number is

then computed as the number of simple zeros for non-vanishing sections of the tangent bundle,

which is equal to the Euler characteristic of the intersection space by the Poincaré-Hopf index

theorem.
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vector-like matter at intersecting D6-branes has not yet been undertaken for
generic Calabi-manifolds and the Kähler metrics for such states are there-
fore unknown. Though, we expect that the Kähler metrics for vector-like
matter can be modelled locally around the intersection locus by homoge-
neous functions of the closed string moduli and that they exhibit the same
scaling behaviour as their counter-parts on toroidal orbifolds. Under this
assumption, we can exploit the structure of the Kähler metric (D.12) for
vector-like matter on toroidal orbifolds and distinguish between two cases:
the Kähler metrics are homogeneous functions of degree −1 in the complex
structure moduli (thus with modular weight nα = −1), in which case the
vector-like matter states do not acquire soft masses. The other option oc-
curs for Kähler metrics that are homogeneous of degree−1/2 in the complex
structure moduli and −1/2 in the dilaton (with modular weight nα = −1

2
),

for which the vector-like matter does acquire a soft mass m2
α =

m2
3/2

2
.

(ii) Chiral Matter:
Two supersymmetric D6-branes can intersect in a single point of the internal
space, in which case a chiral N = 1 supermultiplet in the bifundamental
representation is supported at the codimension 6 intersection. Also for these
chiral matter states the Kähler metrics on generic Calabi-Yau manifolds are
unknown, but a modelisation in terms of homogeneous functions depending
on the closed string moduli is undoubtedly possible around the intersection
locus. As such, we expect the Kähler metrics for chiral matter states to
exhibit to same scaling behaviour as their counterparts (D.13) computed
for toroidal orbifolds with modular weight nα = −3

4
. This implies that the

chiral matter states always acquire soft masses in CSD flux vacua of the

order m2
α =

m2
3/2

4
.

Soft Terms in Type IIA non-SUSY Minkowski vacua with D6-branes

Soft masses m2
α = m2

3/2(1 + nα)

A-terms Âαβγ = Ŷαβγm3/2 (3 + nα + nβ + nγ)

B-terms B̂αβ = µ̂αβm3/2 (2 + nα + nβ)

Gaugino masses Mi = m3/2

Table 6.2: Summary of the soft terms in CSD vacua represented by the con-

straints (4.51). A coefficient nα represents the modular weight (degree of the

complex structure moduli in the Kähler metrics) for the open string excitation

Oα.
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A-terms, B-terms and Gaugino Masses

In type IIA compactifications, Yukawa or cubic interactions involving chiral
matter states arise from worldsheet instantons α′-corrections, which correspond
to two-dimensional surfaces with boundaries along the intersecting three-cycles
[59, 60]. The holomorphic character of the two-dimensional surfaces, with the
topology of a disc, ensures that the cubic couplings contribute to the superpo-
tential. The amplitude Yαβγ of the three-point coupling in (6.21) is an exponen-
tial function depending on the surface area, which can be expressed in terms of
Kähler moduli. The amplitude Yαβγ can also include holomorphic couplings to
the open string moduli encoding the D6-brane position and Wilson line, such that
H ∈ {T a,Φi

α} for cubic interactions. The fact that the complex structure moduli
do not enter in the holomorphic piece of the Yukawa interactions has immedi-
ate consequences for the flux-induced A-terms in (6.26), which can be similarly
written in matrix notation by virtue of the matrix M:

Âαβγ = −iŶαβγ
(
∂−→HK

0 t +
−→Z t
)
·M · −→ρ , (6.32)

allowing to expose the dependence on the axion polynomials. In this expression
we distinguish between a model-independent contribution presented by the vector
∂−→HK

0 t ≡
(
∂TaK

0, ∂SK
0, ∂UΛ

K0, ∂Φiα
K0
)

and a model-dependent contribution in

terms of the vector
−→Z :

−→Z =


∂Ta log Yαβγ − ∂Ta log(KαKβKγ)
∂S log Yαβγ − ∂S log(KαKβKγ)
∂UΛ

log Yαβγ − ∂UΛ
log(KαKβKγ)

∂Φiα
log Yαβγ − ∂Φiα

log(KαKβKγ)

 . (6.33)

The structure of the vector
−→Z implies that it is sufficient to know the functional

dependence of the Yukawa-coupling Yαβγ on the hidden sector moduli H and
the modular weights of the Kähler metrics to determine the model-dependent
contribution to the A-terms. Once again such a strong statement can be best
clarified with the CSD vacua (4.51) as an example. In these N = 0 vacua with F-

term vector (
−→
F
A

)t =
(
0, 0, FUΛ , 0

)
, there are only contributions from the complex

structure moduli sector to the A-terms:

Âαβγ = Ŷαβγ

(
∂u?Λ G̃Q
G̃Q

− 1
2
∂u?Λ log Yαβγ + 1

2
∂u?Λ log(KαKβKγ)

)
eK0/2 2

3
K%̃u?Λ

= Ŷαβγm3/2 (3 + nα + nβ + nγ) .
(6.34)

To arrive at the last step, we used that G̃Q is a homogeneous function of de-
gree 3/2 in the complex structure moduli, that the Kähler metrics Kα are also
homogeneous functions of degree nα in the complex structure moduli, and that
holomorphic Yukawa couplings generated by worldsheet instantons do not depend
on the complex structure moduli.
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In a similar fashion quadratic couplings in the superpotential (6.21) might
result from worldsheet instantons [23], and these will again be independent from
the complex structure moduli. In non-supersymmetric vacua the quadratic cou-
plings give rise to physical B-terms, which can be decomposed in model-independent
and model-dependent pieces:

B̂αβ = µ̂αβ

[
−i
(
∂−→HK

0 t +
−→
i t
)
·M · −→ρ −m3/2

]
, (6.35)

where the only model-dependent contribution is encoded in the vector
−→
i :

−→
i =


∂Ta log µαβ − ∂Ta log(KαKβ)
∂S log µαβ − ∂S log(KαKβ)
∂UΛ

log µαβ − ∂UΛ
log(KαKβ)

∂Φiα
log µαβ − ∂Φiα

log(KαKβ)

 . (6.36)

Also in this case, the knowledge about the modular weights of the Kähler metrics
and the functional dependence of the coupling µαβ on the closed string moduli,
i.e. log µαβ is a homogeneous function of degree 0, are sufficient to determine the
physical B-terms. Using the CSD vacua (4.51) as an explicit example, we obtain
the following expressions:

B̂αβ = µ̂αβ

(
∂u?Λ G̃Q
G̃Q

− 1
2
∂u?Λ log µαβ + 1

2
∂u?Λ log(KαKβ)

)
eK0/2 2

3
K%̃u?Λ − µ̂αβm3/2

= µ̂αβm3/2 (2 + nα + nβ) .
(6.37)

In order for worldsheet instantons to contribute to the superpotential, the
associated quadratic and cubic couplings of open string states in the superpo-
tential (6.21) have to form singlets under the full gauge group supported by the
D6-branes. In case this field theory selection rule is violated for massive Abelian
gauge groups by a coupling, it will not result from a worldsheet instanton, but
there exist a completely different set of non-perturbative corrections that can
generate such couplings, namely D-brane instantons [61–64]. These Euclidean
D2-branes wrap completely along internal special Lagrangian three-cycles and
are non-perturbative in the string coupling. Furthermore, the amplitude of a D-
brane instanton correction depends holomorphically on complex structure moduli.
In that case, the functional dependence of the D-brane instanton will provide for
an additional model-dependent contribution to the A-terms and B-terms.5

Last but not least, also gaugino masses are expected to arise from sponta-
neous supersym-metry-breaking in the moduli sector with non-vanishing F-terms.

5In principle both quadratic and cubic couplings in the superpotential can arise from D-brane

instantons and subsequently give rise to B-terms and A-terms that differ from (6.37) and (6.34)

respectively. More precisely, due to the exponential structure of such instanton amplitudes

one can immediately deduce that logµαβ and log Yαβγ are homogeneous functions of degree

1 in the complex structure moduli (when poly-instanton corrections are neglected), such that
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In order to compute these gaugino mass, the functional dependence of the holo-
morphic gauge kinetic function is indispensable. The gauge kinetic functions fα
for gauge theories on D6-branes follow directly from the dimensional reduction of
the D-brane Chern-Simons and Dirac-Born-Infeld action [50,51]. For a D6-brane
wrapping a three-cycle Πα, the (tree-level) gauge kinetic function fα is a linear,
holomorphic function of the dilaton and/or the complex structure moduli,6

fα = cαS? +
∑

Λ

dΛ
αU?Λ, (6.39)

where the integers cα and dΛ
α encode information about the three-cycle geometry.

To arrive at the gaugino masses, we first rewrite their expression in matrix form
by virtue of the F-term factorisation (6.17b):

Mα =
1

2
eK

0/2Im (fα
−1)(∂−→H fα)t ·M · −→% , (6.40)

where we introduced the vector (∂−→Hfα)t =
(
∂Tafα, ∂Sfα, ∂UΛ

fα, ∂Φiα
fα
)

as a short-
hand notation. The linear dependence on the complex structure moduli in (6.39)
is sufficient knowledge to determine the gaugino masses in a supersymmetry-
breaking vacua. Evaluating the gaugino masses for D6-branes with cα = 0 in the
CSD vacua (4.51), for instance, leads to the familiar expression:

Mα =
1

2 Im (fα)

∑
Λ

dΛ
αu?Λ

2

3
K%̃eK0/2 = m3/2, (6.41)

that equates the gaugino mass and the gravitino mass.

A summary of the soft terms in CSD vacua is offered by table 6.2. Our
results generalise previous results in the literature, in the sense that they also
apply to vacua with open string moduli. Indeed, typical soft-term scenarios in
type IIB ISD flux vacua correspond to spontaneously broken supersymmetry with
non-vanishing F-terms in the Kähler moduli sector [66–68], which corresponds via

the respective B-terms and A-terms take the form:

B̂αβ = µ̂αβm3/2 (2 + nα + nβ − logµαβ) ,

Âαβγ = Ŷαβγm3/2 (3 + nα + nβ + nγ − log Yαβγ) ,
(6.38)

and acquire a moduli-dependent contribution.
6The tree-level expression for the gauge coupling follows directly from the dimensional reduction

of the DBI-action. However, such a KK reduction does not offer a fully holomorphic expression

for the gauge kinetic function in the presence of open string D-brane moduli. Only one-loop

corrections to the gauge kinetic functions [65] allow for a proper holomorphic gauge kinetic

function, depending on the redefined complex structure moduli. Such a computation goes

beyond the scope of this paper.
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mirror symmetry to non-vanishing F-terms in the complex structure moduli sec-
tor for Type IIA ISD flux vacua. We find that CSD vacua have the same structure
of contravariant F-terms as ISD flux vacua. Therefore, upon assuming that the
chiral fields Kähler metrics are homogeneous polynomials, we obtain a similar soft
term structure. Modelling the Kähler metrics for the chiral open string states
as homogeneous polynomials in the geometric moduli is mostly inspired by the
known results for toroidal models as summarised in appendix D, yet it has been
adopted as a standard practice in the literature [69–71] to parameterise the Kähler
metrics for generic Calabi-Yau manifolds. Here, we fully exploit the scaling be-
haviour of the Kähler metrics to simplify the model-dependent contributions to
the soft terms as much as possible.

6.4 The validity of the Type IIA flux landscape

Our previous efforts have been devoted to deriving the vacuum structure, spon-
taneous supersymmetry-breaking and soft terms for perturbative flux vacua in
terms of the shift-invariant axion polynomials. A hidden premise behind this
approach is the consideration that the low-energy effective description for flux
compactifications (with D6-branes) is captured by a four-dimensional N = 1 su-
pergravity theory. To asses the validity of the premise and guarantee the overall
consistency of a flux compactification (with D6-branes), one has to determine the
geometric scales at which distinct particle states acquire their mass and argue for
an adequate separation of scales.

The first geometric scale to determine in terms of the compactification data
is the string mass scale, which follows upon comparison between the Einstein-
Hilbert action and the four-dimensional effective field theory arising from the
dimensional reduction of the ten-dimensional type IIA supergravity action. More
precisely, we start from the kinetic terms for the massless bosonic type IIA string
states in the string frame:

S = − 1

2κ2
10

∫
e−2φ

[
R ?10 1− 4dφ ∧ ?10dφ+

1

2
H3 ∧ ?H3

]
− 1

8κ2
10

∫ 5∑
p=0

G2p∧?10G2p,

(6.42)
where R corresponds to the ten-dimensional Ricci scalar, H3 to the NS 3-form
field strength and G2p to the RR-form field strengths as introduced in section 2.5.
The conversion to the Einstein frame requires a rescaling of the ten-dimensional
metric, i.e. G(10) → G

(10)
E = e(φ−φ0)/2G(10), while an overall rescaling of the four-

dimensional metric in the form g
(4)
E → V0

E

VE
g

(4)
E sneaks into the six-dimensional

volume-dependence of the string mass scale:

M2
s =

g2
s

4π

M2
Pl

V0
E

. (6.43)
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In this expression the string coupling constant gs = eφ0 is related to the vev of
the ten-dimensional dilaton and V0

E corresponds to the (dimensionless) volume of
the Calabi-Yau orientifold evaluated at the vacuum for the geometric moduli in
the Einstein frame.

In the presence of background fluxes along the internal dimension a per-
turbative potential (3.28) for the geometric moduli and axions arises upon the
dimensional reduction of the ten-dimensional supergravity action (6.42) to four
dimensions. This scalar potential matches precisely the F-term scalar potential
from the N = 1 supergravity analysis with the Kähler potentials given by (2.11)
and (2.49) and the superpotential by (3.6) for the pure closed string sector. As
we reviewed in previous sections, the inclusion of (mobile) D6-branes into the
compactification can be easily mediated through a redefinition of the complex
structure moduli whose Kähler potential is subsequently given by (2.75), while
the superpotential is extended by the bilinear term (2.78). This supergravity
analysis is valid for small string coupling and large internal volume, for which
the string mass scale obviously lies below the Planck mass scale. As a second
criterion for the validity of the supergravity analysis one has to ensure that the
tower of massive Kaluza-Klein states decouples from the massless KK-modes,
such that the effective field theory below the KK-scale consists purely of the
(massless) N = 1 chiral multiplets containing the Kähler moduli, complex struc-
ture moduli and open string moduli (as well as other massless open string exci-
tations). Strictly speaking, it is unknown how to determine the KK mass scale
for compactifications on generic Calabi-Yau manifolds, yet an adequate approxi-
mation follows [72] from toroidal compactifications with characteristic radius size
R = Rs`s. If we use the dimensionless radius Rs as a proxy for the internal vol-
ume V0

s , i.e. V0
s = (2πRs)

6 expressed in the string frame, we find a Kaluza-Klein
mass scale of the order

MKK ∼ 2π
Ms

(V0
s )1/6

∼ gs
√
πMPl

(V0
E)2/3

. (6.44)

Thus, the N = 1 supergravity analysis represents the effective field theory de-
scription of four-dimensional type IIA compactifications for energy scales below
the KK-mass scale, and other mass generating effects should yield masses below
this scale. For instance, the moduli masses induced by perturbative NS-fluxes
take the following form,

Mmod ∼
Nflux

4π

Ms√
V0
E

∼ Nflux

4π

gsMPl

V0
E

, (6.45)

and lie below the KK-scale for large internal volumes V0
s > 1. This scaling of

the moduli masses in perturbative type IIA flux vacua can be obtained follow-
ing the same reasoning as in [72]: the rescaling of the ten-dimensional metric
considered above allows to express all relevant quantities, such as the Kähler po-
tential and superpotential, in the Einstein frame, after which the scaling with the
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internal volume can be deduced for the physical moduli masses in the vacuum
configuration.

For closed string ISD flux vacua and the CSD vacua in (4.51), supersym-
metry is spontaneously broken in the complex structure moduli sector and a
non-vanishing gravitino mass is induced:

m3/2 = m3/2 ∼ gs|W0|
Ms

V0
E

∼ g2
s |W0|

MPl

(V0
E)3/2

, (6.46)

where W0 = `sW0 is dimensionless. This gravitino mass clearly lies below the
KK mass scale for large internal volumes. Moreover, as we have shown in the
previous section and summarised in table 6.2, all soft terms in such vacua are
proportional to the gravitino mass, such that also the soft masses for the chiral
open string excitations lie below the KK-scale. Hence, N = 0 Minkowski vacua
with (partly) stabilised moduli through perturbative background fluxes easily
satisfy the näıve mass hierarchy that is required to justify a Wilsonian effective
field theory approach. Furthermore, in the supergravity limit one can also argue
from the ten-dimensional equations of motion that the ten-dimensional dilaton is
bounded from above, such that the perturbative type IIA flux vacua with non-
vanishing Romans mass are inherently weakly coupled in the string coupling [73].

A more profound worry about the validity of type IIA flux vacua with
Romans mass m 6= 0 concerns [74] their proper existence as solutions of ten-
dimensional supergravity. In first instance, it is not a priori clear whether a
Calabi-Yau manifold can be considered a proper compactification background in
the presence of internal fluxes. In the case of type IIA ISD flux vacua this worry
seems unfounded, as we expect the fluxes to be diluted at large volume such that
warping or other back-reaction effects on the Calabi-Yau metric can be neglected
to first order, similarly to the mirror dual ISD flux vacua in type IIB. The su-
persymmetric AdS vacua on the other hand require a more careful treatment to
ensure that they are genuine N = 1 supersymmetric backgrounds with an SU(3)
structure. To solve the ten-dimensional equations of motion for Minkowski or
Anti-de Sitter compactifications it suffices [75] to solve for the supersymmetry
variations of the dilatini and gravitini, alongside the Bianchi identities for the
RR- and NS-field strengths. By virtue of the pure spinor formulation of general-
ized complex geometry one can then show that supersymmetric AdS vacua solve
the supersymmetry variations with a constant dilaton and form a special subclass
of the Lüst-Tsimpis AdS vacua [75,76].

Secondly, to obtain a full-fledged 10d supergravity solution also the Bianchi
identities have to be satisfied in the presence of sources. In the case of the RR
two-form flux G2 solving the Bianchi identity might be more involved due to the
presence of sources: the NS-three-form acts as a magnetic source for G2 in the
presence of a non-vanishing Romans mass. Apart from background fluxes the
Bianchi identity for G2 one also has to take into account the RR-charges of the
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D6-branes and O6-planes, as presented in equation (B.1). As the smooth H-flux
distribution cannot be cancelled against the localized charges of the O6-planes, it
is impossible to solve this Bianchi identity for a two-form flux G2 consisting only
of a harmonic and exact component.7 Adding D6-branes to the mix can help to
alleviate the RR tadpoles along the internal directions, but do not help to mediate
the non-closedness of the G2-flux. In order to see how the addition of mobile D6-
branes alters the type IIA compactifications with ISD fluxes, we included them in
section 4.3 and observed that they give rise to N = 0 CSD vacua, with physically
observable features such as a gravitino mass and soft masses. The similarities
between the pure ISD flux vacua and the CSD vacua invite to add mobile D6-
branes to the known supersymmetric AdS vacua and search for full-fledged 10d
supergravity solutions on Calabi-Yau orientifold or more generic SU(3)× SU(3)
structure backgrounds, such that the supersymmetry variations for the dilatini
and gravitini still vanish in the modified vacuum structure with D6-branes.

7In the literature smeared O6-planes were proposed [77] as a solution to solve the Bianchi

identities for the RR two-form flux. However, it is not a priori clear [78] that smearing O-planes

offers consistent approximate solutions to the string theory equations with localised O-planes.

Fortunately, solutions with localised O6-planes do exist in massive type IIA supergravity [79],

such that the search for consistent, global type IIA vacua with fluxes, O-planes and D-branes

is a well-defined scientific problem.
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Chapter 7

Building a supersymmetric DFSZ

Axion Model

The aim of this chapter is to build a consistent supersymmetric DFSZ axion
model in type IIA orientifolds with background fluxes and intersecting D6-branes
supporting charged chiral fermions and non-abelian gauge symmetries. Along the
line of previous chapters, background fluxes used for the stabilization of the closed
string moduli simultaneously provide the source for spontaneous supersymmetry
breaking which induces soft terms for the matter fields living at the D6-brane
intersections. Using the gravity mediation mechanism reviewed in chapter 6, we
compute the flux-induced soft terms for a simple DFSZ axion model on toroidal
backgrounds.

The model proposed here does not pretend to be a realistic DFSZ model,
but rather to illustrate how such a model could be realized in the context of type
IIA flux compactifications. Of course, a lot of work still have to be done in order
to obtain a fully realistic model. In particular, will be needed a lot of efforts to
obtain stringy vacua with exactly the DFSZ spectrum and a positive cosmological
constant.

7.1 The strong CP problem and the DFSZ Ax-

ion Model

Strong interaction phenomena has revealed that discrete symmetries as charge
conjugation C, parity P and time reversal T are independently good symmetries
of nature. Therefore, the quantum chromodynamics (QCD) based on the gauge
group SU(3) must respect any combinations of these discrete symmetries to be

105
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accepted as the theory of strong interactions. However, among these discrete
symmetries, the CP symmetry is not necessarily respected in QCD due to the
nonzero QCD vacuum angle θ, this outstanding problem is known as the strong
CP problem. Seem to be that the most attractive solution to the strong CP
problem is provided by axion [80,81].

Peccei and Quinn (PQ) proposed long ago, the existence of a further global
symmetry U(1)PQ which is spontaneously broken and the axion corresponds to
the Goldstone boson of the spontaneously broken symmetry [82,83]. In the model
proposed by Peccei-Quinn-Weinberg-Wilczek (PQWW), the breaking scales of
the electroweak and global U(1)PQ symmetry coincide, and consequently non-
negligible contributions of axions to hadronic decay products involving heavy
quarks in the initial state are expected. Since such effects have not been observed
in hadronic processes, the most simple PQWW axion model was ruled out quickly.

The breaking scale of the global PQ symmetry can be decoupled from the
electroweak scale by introducing a further scalar field σ which is neutral under
the SM gauge group, but it is charged under U(1)PQ. This mechanism can be
implemented in two different ways. The first, was proposed by Kim, Schifman,
Vainshtein and Zakharov (KSVZ), in which the axion couples to a vector-like
heavy quark pair charged under the gauge group SU(3) and the global symmetry
U(1)PQ [84]. Models of this kind are referred to as KSVZ axion models. The
second implementation was proposed by Dine, Fischler, Sredenicki and Zhitnitsky
(DFSZ), in which the axion couples to two Higgs doublets which are charged
under the U(1)PQ, consequently the SM fermions also carry PQ charge [85, 86].
From now on we will focus on this kind of models, referred to as DFSZ axion
models.

Let us start reviewing the main features of the DFSZ axion model, such
as spectrum, the scalar potential and axion mass. The spectrum of this model
consists of three generations of quarks and leptons charged under SU(3)QCD ×
SU(2)L × U(1)Y plus two Higgs doublets charged under SU(2)L × U(1)Y in-
troduced to break the electroweak gauge group, besides a complex scalar field
σ introduced to break the global U(1)PQ symmetry spontaneously. Given this
spectrum, the two Higgs doublets (Hu, Hd) couple to quarks and leptons through
the usual Yukawa couplings. While the most general scalar potential invariant
under these symmetries is given by the DFSZ potential

VDFSZ = λu

(
H†uHu −

v2
u

2

)2

+ λd

(
H†dHd −

v2
d

2

)2

+ λσ

(
|σ|2 − v2

σ

2

)2

(7.1)

+
(
c1H

†
uHu + c2H

†
dHd

)
σ†σ + c3

(
Hu ·Hdσ

2 + h.c.
)

+ c4|Hu ·Hd|2 + c5|H†u ·Hd|2

To simplify the above expression we used Hu · Hd = H i
uεijH

j
d as well as the

standard decomposition of the Higgs doublets into charged and uncharged com-
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ponents, and their VEVs

Hu =

(
h+
u

h0
u

)
, Hd =

(
h0
d

h−d

)
, 〈h0

u〉 =
vu√

2
, 〈h0

d〉 =
vd√

2
(7.2)

The local minimum of the scalar potential (7.1) corresponds to electroweak sym-
metry breaking vacua

Hu =

(
0
vu

)
, Hd =

(
vd
0

)
(7.3)

in which the W and Z bosons as well as quarks and leptons acquire masses
through the Higgs mechanism.

Note that, the presence of the term c3 (Hu ·Hdσ
2 + h.c.) in the scalar po-

tential (7.1) implies that the Higgs doublets have to be charged under the global
U(1)PQ symmetry because of the complex scalar σ transforms non-trivially.

σ → eiqσθσ, =⇒ Hu → eiquθHu, Hd → eiqdθHd (7.4)

such that qu + qd = −2qσ. As a consequence, the quarks carry a charge under
the global U(1)PQ symmetry as well. The transformations of the quarks and
leptons and Higgs bosons under U(1)PQ can be easily deduced from the Yukawa
couplings (7.9) and read

QL → eiqQθQL, uR → eiq̃uθuR, , dR → eiq̃dθud (7.5)

L→ eiqLθL, eR → eiqeθeR, , νR → eiνRθνR

with qQ + q̃u = qL + qν = −qu and qQ + d̃u = qL + qe = −qd. This leads to
two inequivalent consistent choices of charge assignments with either left-handed
quarks QL uncharged and right-handed quarks (uR, dR) charged or vice versa. In
any case, there is unique choice for the U(1)PQ charge of the Higgses, given by
qu = qd = 1. The discussion for leptons is completely analogous.

In order for the axion to remain invisible at low energies, the U(1)PQ sym-
metry must be broken at energies much higher than the scale of electro-weak
symmetry breaking, which implies a hierarchy of VEVs

vσ �
√
v2
u + v2

d (7.6)

Thus, the U(1)PQ is an anomalous global symmetry and the corresponding Goldstone-
boson (axion) for this broken symmetry acquires a mass due to instanton ef-
fects.The physical axion corresponds to the mixing of the neutral CP-odd Higgs-
bosons and the argument of the complex scalar field σ. However, by imposing
the hierarchy of vevs (7.6) one has that the physical axion comes from mainly the
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argument of σ and whose mass is determined using Bardeen-Tye methods and
read [87]

m2
θ =

f 2
π

f 2
θ

m2
πN

2 mumd

(mu +md)2
∼
(

74 keV
250 GeV

fθ

)2

(7.7)

where N is the number of quark doublets, mu,md,mπ are the masses of up- and
down-type quarks and pions respectively, while fπ, fθ are the decay constants of
pions and axions respectively. On the other hand, the coupling of the axion to
matter is determined by the constant fθ, which also sets the strength of the axion
coupling to gluons through

Lθ ⊃ −
1

32π2

θ(x)

fθ
Tr
(
GµνG̃

µν
)

(7.8)

Note that, compared to the original PQ axion model, the axion-gluon cou-
pling as well as the couplings to ordinary matter are suppressed by a factor
r =

√
v2
u + v2

d/fθ, which implies that the production of axions is reduced by a
factor r2.

7.2 A consistent supersymmetric DFSZ axion

model

The existence of two Higgses in the DFSZ model suggests that such a model
can be easily generalized to a supersymmetric one. It is a well-known fact that
a supersymmetric extension of the Standard Model requires at least two Higgs-
doublets to satisfy anomaly cancellation conditions as well as mass-generation for
quarks and leptons through the Yukawa-couplings in (7.9). Moreover, implement-
ing the axion solution in a supersymmetric framework also requires promoting
the axion to a superfield Σ, which introduces two further fields: the saxion and
the axino. At first sight seems that the minimal extension of the supersymmetric
DFSZ axion model consists of three generations of quarks and leptons charged
under SU(3)QCD×SU(2)L×U(1)Y , one up-type Higgs Hu, one down-type Higgs
Hd, besides the SM singlet Σ charged under the additional U(1)PQ symmetry. In
this minimal supersymmetric version of the DFSZ model, the two Higgs doublets
(Hu, Hd) couple to quarks and leptons through the usual Yukawa couplings

W = YuQL ·HuUR + YdQL ·HuDR + Ye L ·HdER (7.9)

where Yi are 3× 3 Yukawa matrices and we have suppressed generation indices.
In addition to the renormalizable superpotential of eqn. (7.9), further gauge-
invariant terms

W = λL · LĒR + λ̃L ·QLD̄R + λ̂L ·Hu + εŪRD̄RD̄R (7.10)



7.2. A CONSISTENT SUPERSYMMETRIC DFSZ AXION MODEL 109

Consistent supersymmetric DFSZ Axion Model

Field SU(3)× SU(2)(U(1)Y ×U(1)PQ) Components

QL 3(3,2)(1/6,1) (q̃L, QL)

UR 3(3̄,1)(−2/3,0) (ũR, uR)

DR 3(3̄,1)(1/3,0) (d̃R, dR)

L 3(1,1)(−1/2,−1) (l̃, L)

ER 3(1,1)(1,0) (ẽR, eR)

Hu (1,2)(1/2,1) (h̃u, Hu)

Hd (1,2)(−1/2,−1) (h̃d, Hd)

Σ (1,1)(0,2) (σ, χ)

Σ̃ (1,1)(0,−2) (σ̃, χ̃)

Φ (1,1)(0,0) (φ̃, Φ̃)

Table 7.1: Summary of the superfields for a consistent supersymmetric DFSZ

axion model and their quantum numbers.

are allowed in the MSSM superpotential, which violate both lepton and baryon
numbers. However, looking at table 7.1 we notice that only the λ̂ term is not
necessarily perturbatively forbidden by the global U(1)PQ symmetry.

On the other hand, embedding the Higgs-axion potential (7.1) into a su-
persymmetric model is more involved. As in any supersymmetric theory, this
potential should be expressed in terms of F-terms, D-terms and soft terms con-
tributions:

VDFSZ = VF + VD + Vsoft (7.11)

The F-term contribution can be computed form a superpotential of the form [88]

W = κΣHu ·Hd (7.12)

and read explicitly as

VF =
∑
i

∣∣∣∣∂WDFSZ

∂φi

∣∣∣∣2 = |κ|2|Hu ·Hd|2 + |κ|2
(
|Hu|2 + |Hd|2

)
|Σ|2 (7.13)

Whereas the gauge structure of the model yields the following D-term contribu-
tion

VD =
1

8
(g2
Y +g2

2)
(
|Hu|2 − |Hd|2

)2
+g2

2|H†uHd|2+
g2

2

8

(
|Hu|2 − |Hd|2 + 2|Σ|2

)
(7.14)
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where gi are the corresponding gauge couplings. Finally, the set of soft terms
respecting the gauge symmetries of the model is given by

Vsoft = m2
u|Hu|2 +m2

d|Hd|2 +mσ|Σ|2 + cΣHd ·Hu (7.15)

The above soft masses m ∼ O(m3/2), these terms are all determined by the
breaking of the underlying supergravity model, as argued in chapter 6. Note
that, once the scalar component of the superfield Σ gets a non-vanishing VEV
〈σ〉 = fσ, the superpotential term (7.15) behaves effectively as a µ-term given by
µeff = κfσ. This implies that the coupling κ has to be tuned to 10−9 − 10−10, in
order to get the proper breaking of the electroweak symmetry.

As shown in [89], such a supersymmetric extension of the DFSZ axion model
is inconsistent, because of when minimizing the Higgs-axion potential, the saxion
acquires a negative squared mass. As also pointed out in [89], this model can be
done consistent by adding further fields and a superpotential of the form

W = λΦ

(
Σ̃Σ− 1

4
f 2

)
(7.16)

The additional field Σ̃ carries PQ charge opposite to Σ, while Φ is PQ neutral.
The spectrum for this minimal consistent DFSZ model is summarized in table
7.1. Thus, besides the soft terms in (7.15) one also must take into account terms
of the form

Vsoft = m2
φ|Φ|2 +m2

σ̃|Σ̃|2 + cΦΦΣ̃Σ (7.17)

7.3 Stringy axions and the QCD axion

As already mentioned, type IIA superstring theory contains a plethora of ax-
ions as well as Abelian gauge bosons arising from different sectors of the theory.
Possibly, the best known example of stringy axions is provided by axions arising
from the Kaluza-Klein reduction of massless p-forms gauge fields appearing in
the closed string spectrum. The shift symmetry of these CP-odd real scalars
descends from the gauge invariance of the ten-dimensional p-forms gauge field,
while the axion decay constant is set by the non-canonical prefactor in the kinetic
term of the axion appearing in the low energy effective action upon dimensional
reduction. In D-brane constructions, the axial coupling to the QCD field strength
(7.8) comes from the dimensional reduction of the D6-brane Chern-Simons action
in (2.61), more precisely from the term

SCS ⊃
M3

s

4π

∫
R1,3×Πα

C3 ∧ Tr (Fα ∧ Fα) (7.18)
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where Πα is the three-cycle wrapped by the D6-brane and Fα is the field strength
of the U(1) gauge field living on its worldvolume. In order to obtain the low-
energy effective action for the closed string axions we first expand C = ξK? αK +
ξ?Λβ

Λ as in section 2.4, and then perform the dimensional reduction of the kinetic
term F4 ∧ ?F4 together with the Chern-Simons term (7.18), which yields

Sξ =

∫
R1,3

π

8
M8

sV∂µξi∂µξi −
M3

sVΠα

4π
ξiTr (Fα ∧ Fα) (7.19)

where ξi collectively denotes the C3-axions ξK and ξΛ and VΠα is the volume of
the three-cycle Πα. The above effective action can be brought into its canonical
form by simple rescaling of the closed string axions ξi. After bringing the effective
actio into its standard form we can read off the axion decay constant

fξ =
V1/2

8
√

2πVΠα

Ms (7.20)

From the above expression we immediately see that the axion decay constant for
closed string axions is proportional to the string scale Ms, which makes problem-
atic to identify closed string axions with the QCD axion.

An additional obstacle for closed string axions to solve the strong CP-
problem appears when addressing moduli stabilisation of their saxionic part-
ners [90]. For a saxion stabilised supersymmetrically by non-perturbative cor-
rections, its associated axion is also stabilised with the same mass. The no-go
theorem in [90] further indicates that the presence of massless axions implies
tachyonic directions in the scalar potential. However, if some of the saxions are
stabilised by perturbative effects, like for instance α′-corrections, the no-go the-
orem can be circumvented, as was explicitly shown in the context of the Large
Volume Scenario in [91]. Whereas for unfixed closed string axions, their axion
decay constant are still proportional to the string scale, such that their appro-
priateness to serve as the QCD axion is strongly correlated with an intermediate
string scale (Ms ∼ 1012GeV).

In D-brane setups, U(1) symmetries appear as the centers of unitary gauge
groups supported by the corresponding D-brane and gauge anomalies are can-
celed by the generalized Green-Schwarz mechanism [92] reviewed in the next
section. Moreover, an anomalous U(1) symmetry acquires a Stückelberg mass
proportional to string scale by eating a closed string axion. In that case, the
U(1) survives perturbatively as a global anomalous symmetry that is only bro-
ken by non-perturbative effects. In addition to the closed-string axions discussed
above, further axions may arise from the open string sector in Type IIA string
theory More explicitly, these open string axion correspond to the phases of com-
plex scalar fields charged under the anomalous U(1) symmetry. At the string
scale, the bosonic part of the effective Lagangian for an open string axion takes
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the following form

Laxion−U(1) = |(∂µ + iqBµ)Σ|2 +
1

2
(∂µξ +MsBµ)2 (7.21)

where Σ denotes the complex scalar field with charged under the anomalous U(1)
symmetry with charge q, Bµ is the U(1) gauge potential, while ξ represents the
closed string axion eaten by Bµ in the Stückelberg mechanism. Thus, the open
string axion σ arises as the phase of the complex field Σ

Σ =
v + φ̃(x)√

2
ei
σ
v (7.22)

where ε̃(x) denotes the fluctuations of the open string saxion around its vacuum
expectation value v. After inserting the expression for back into the Lagrangian,
one obtains the following action by keeping only track of the CP-odd scalars

Leff =
1

2
(∂µσ)2 +

1

2
(∂µξ)

2 + (qv∂µσ +Ms∂
µξ)Bµ +

1

2
(q2v2 +M2

s )BµB
µ (7.23)

The above effective lagrangian can be brought into its standard form by a SO(2)
transformation of the fields ξ and σ

χ =
Msξ + qvσ√
M2

s + q2v2
, ψ =

Msσ − qvξ√
M2

s + q2v2
, (7.24)

Notice that the linear combination χ is the one eaten by the U(1) gauge boson
to get massive

m2
B = M2

s + q2v2 (7.25)

while the orthogonal combination ψ remains massless. Similarly to the closed
string case, open string axions also provide for an axion coupling to the topological
QCD charge density (7.8), where the open string axion decay constant fσ = qv.
Performing the SO(2) rotation also in this part of the Lagrangian yields the
axion-gluon couplings in the (χ, φ)-basis one obtains

fχ =
1

2

√
M2

s + q2v2, fψ =
Msqv

√
M2

s + q2v2

M2
s + q2v2

(7.26)

For models where the Stückelberg mass is much heavier than the scale at which
Σ acquires a VEV, i.e. Ms � v, the axion χ eaten by the gauge boson consists
primarily of the closed string axion χ. The orthogonal massless state ψ on the
other hand will then be mostly composed of the open string axion σ. Notice
that this will also be reflected in the decay constants of the respective axions:
fχ ∼ fξ = Ms and fψ ∼ fσ = qv. Hence, in this configuration the string scale
Ms can be much higher than 1012GeV, as the presence of an open string axion
provides another candidate for the QCD axion.
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7.4 Generalized Green-Schwarz Mechanism

Before constructing a explicit model, we would like to discuss about the con-
sistency of the four-dimensional effective theories emerging from D-brane con-
structions. An unquestionably consistency requirement is the cancellation of
anomalies. On the one hand, the absence of non-Abelian gauge anomalies is
guaranteed upon cancellation of the RR tadpoles in the underlying string theory.
On the other hand, Abelian, mixed Abelian-non-Abelian and mixed Abelian-
gravitational anomalies are not necesarly canceled upon cancellation of the RR
tadpoles. However, string theory provides an additional mechanism to cancel
such anomalies. This is the so-called Green-Schwarz (GS) mechanism [93] which
can be generalized to intersecting D-brane models [92]. Let us start discussing the
mixed Abelian-non-Abelian anomalies in more detail. The mechanism is based
on the fact that the RR-charges of the D6-branes allow couplings between the
RR-forms and the gauge fields living on the worlvolume of the D6-branes, cap-
tured by the Chern-Simons action. More precisely, for any stack of D6α-branes
there exist Chern-Simons couplings of the form∫

R1,3×Πα

C3 ∧ Tr (Fα ∧ Fα) ,

∫
R1,3×Πα

C5 ∧ Tr (Fα) , (7.27)

Following the philosophy of [92] we introduce a basis of even
(
[αK ], [βΛ]

)
and odd(

[βK ], [αΛ]
)

homological three-cycles on the internal space such that

[αI ] · [βK ] = δKI , [αΛ] · [βΣ] = δΣ
Λ (7.28)

Now we expand every three-cycle Πα in this basis as follows

Πα = pKα [αK ] + rα,Λ[βΛ], Πα = pΛ
α[αΛ] + rα,K [βK ] (7.29)

This basis allows us to define the four-dimensional fields Φ and their Hodge duals
two-forms B

Φ̃K =

∫
[αK ]

C3, BK
2 =

∫
[βK ]

C5 (7.30)

Φ̃Λ =

∫
[βΛ]

C3, B2,Λ =

∫
[αΛ]

C5

Thus, the generic couplings (7.27) can be dimensionally reduced to four dimen-
sions and yield couplings of the form∫

R1,3

(
pKα Φ̃K + rαΛΦ̃Λ

)
Tr (Fα ∧ Fα) , Nα

∫
R1,3

(
pΛ
αB2,Λ + rαKB

K
2

)
∧ Tr (Fα)

(7.31)
where the prefactor Nα comes from the normalization of the U(1) generator and
summation over the indices K and Λ is understood. Then, we can combine
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both couplings into a Green-Schwarz diagram yielding the proper contribution
to cancel the mixed anomaly coming from triangular diagrams. In this way, one
can show that the coefficient of this amplitude is given by

Aαββ =
Nα

2
(Iαβ + Iαβ′) (7.32)

which has the precisely form that cancels the field theoretic anomaly. As men-
tioned in the previous section, the couplings of the form B2 ∧ Fα also induce a
mass proportional to the string scale for the anomalous U(1)α gauge field. In
that case, the U(1) disappears as gauge symmetry of the effective theory, but
survive perturbatively as a global anomalous symmetry which is only broken by
non-perturbative effects, like for instance D-brane instantons couplings to the RR
axions. Therefore, such perturbative global symmetries are very suitable to serve
as Peccei-Quinn symmetries, as we will show through an explicit example in the
next section. A relevant observation at this point is that not only anomalous
U(1)s but also some non-anomalous may have B2 ∧ Fα couplings and therefore
get massive through the Stückelberg mechanism. While any massless combina-
tion U(1)X =

∑
α cαU(1) must be orthogonal to those that acquire a GS mass,

indicating that they are non-anomalous and is determined by the condition∑
α

Nα(QαK −Qα′K +QΛ
α −QΛ

α′)cα = 0, for all K and Λ (7.33)

where QαK = [Πα] · [αK ] and QΛ
α = [Πα] ·

[
βΛ
]
. Such U(1) factors remain as gauge

symmetries of the low energy theory.

7.5 The T6/Z2 × Z2 ×O orientifold

As already mentioned at the beginning of the chapter, our aim is to implement a
consistent supersymmetric DFSZ model in type IIA orientifolds with background
fluxes and intersecting D6-branes supporting chiral and gauge sectors. The easiest
way to build it, is considering toroidal orientifolds, of which the T 6/(Z2×Z2×O)
is the simplest.

In this section we briefly review the basics of type IIA compactified on the
orientifold T6/Z2×Z2×O with intersecting D6-branes preserving N = 1 super-
symmetry in four dimensions. We will skip details related to the closed string
moduli sector resulting from this class of backgrounds, which can be computed
using standard techniques, for more details see appendix D. Focusing us mostly
on the (charged) open string sector. To fully appreciate the phenomenological
aspects of intersecting D6-brane models on this toroidal orientifold, a proper un-
derstanding of the background geometry is required. Therefore, our starting point
is a brief summary of the essential geometric aspects of the orbifold T6/Z2×Z2,
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which is the singular limit of a CY three-fold. Considering a factorisable six-torus
T6 = T2

(1)×T2
(2)×T2

(3), the action of the orbifold group Z2×Z2 is described by a

rotation of the complex coordinate zi = xi + iũiyi parameterizing each two-torus

T2
(i) with ũi =

Riy
Rix
eiϑ being the corresponding complex structure parameter1

Θ1 : zk → e2πivkzk, −→v = (
1

2
,−1

2
, 0) (7.34)

Θ2 : zk → e2πiwkzk, −→w = (0,
1

2
,−1

2
)

where Θ1 generates the Z2 part of the orbifold group acting on T2
(1)×T2

(2), while

Θ2 generates the Z2 part acting on T2
(2) ×T2

(3). The action of the orbifold group
constraints the shape of the Z2 invariant two-tori to be either rectangular or
tilted, as shown in figure 7.1, which are defined by the periodicities zi ∼ zi +Ri

x,
zi ∼ zi + iRi

y and zi ∼ zi + Ri
x + i

2
Ri
y, z

i ∼ zi + iRi
y respectively [94, 95]. For

simplicity, here we will consider only rectangular two-tori, but most results can
be generalized straightforwardly to tilted two-tori. Besides the orbifold action
(7.34) one must specify the choice of discrete torsion which relates both Z2 group
generators. As argued in [96], there are two inequivalent choices, whose twisted

cohomologies are either (h
(1,1)
tw , h

(2,1)
tw ) = (48, 0) or (h

(1,1)
tw , h

(2,1)
tw ) = (0, 48) 2. For

concreteness, we will consider the second case, dubbed Z2 × Z2 orbifold without
discrete torsion. Such backgrounds have Hodge numbers (h(1,1), h(2,1)) = (3, 51),
which means that the resulting orbifold is the singular limit of a CY three-fold
with Euler characteristic χ = 2(h(1,1) − h(2,1)) = −96.

On the other hand, the orbifold group Z2 × Z2 has to be extended by the
orientifold projection O defined in section 2.4, for this particular background the
anti-holomorphic involution R acts on the complex coordinates as

R(zk) = z̄k (7.35)

The gauging of O creates fixed O6-planes and the location of those planes is
given by sets of points fixed under the elements of Z2 × Z2 ×O. More precisely,
there are four kind of O6-planes associated to the actions of O, OΘ1,OΘ2 and
OΘ1Θ2. Since all these O6-planes have compact transverse directions and carry
RR-charges, for consistency one needs to include a certain amount of D6-branes
canceling exactly those charges. Specifically, we introduce stacks of Nα D6-branes
wrapping a factorisable three-cycle [Πα] parametrized by the wrapping numbers

1In the rectangular case (ϑ = 0), the complex coordinates reduce to zi = xi+iτiy
i with τi =

Riy
Rix

.
2Cohomology groups can be split into untwisted and twisted contributions H(p,q) = H

(p,q)
untw +

H
(p,q)
tw . The untwisted Hodge number hp,quntw is given by the number of (p, q)-forms invariant

under the orbifold group, while the twisted Hodge number h
(p,q)
tw recives contributions from all

isolated singularities in the orbifold, see [96] for more details.
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1
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2

3

1
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3

4

Figure 7.1: The Z2 × Z2 × R invariant two-tori: (left) rectangular two torus,

(right) tilted two-torus, which are parameterised by b = 0, 1
2
, respectively.

(niα,m
i
α), which encodes the one-cycle geometry on each two-torus T2

(i).

[Πα] =
3⊗
i=1

(
niα[πi] +mi

α[πi+1]
)

(7.36)

Where [πi], [πi+1] are the homology classes of the fundamental one-cycles of T2
(i),

defined in appendix D. Since the orientifold projection acts non-trivially on the
wrapping numbers as (niα,m

i
α)→ (niα,−mi

α). Then the RR tadpole cancellation
condition (2.68) explicitly reads as in (D.9).

Moreover, we are interested in supersymmetric models, the three-cycle
wrapped by the D6-brane must be a SLag three-cycle (2.65). In this background,
Ω and J are given by (D.2) and (D.4) respectively, then one can easily check
that any factorisable D6-brane satisfies the constraint J |Πα = 0, while the second
condition in (2.65) is satisfied if

3∑
i=1

ϑiα = 0 mod 2π (7.37)

where ϑiα = Arctan
(
miα
niα
τi

)
is the angle between the D6-brane and the x-axis on

T2
(i).

The open string spectrum

Let us now proceed to analyse the open string spectrum resulting from
this kind of constructions. To do so, it will be useful to distinguish different
matter sectors based on the origin of the charged open string fields. On the
one hand, fields arising from strings with endpoints in the same stack of D6-
branes Nα, are said to be in the αα-sector. This sector is invariant under Θ1 and
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Θ2, and is exchanged with the α′α′-sector by the action of ΩpR. On the other
hand, the Θ1 projection the gauge group breaks U(Nα) to U (Nα/2)×U (Nα/2),
while Θ2 identifies both factors, leaving U (Nα/2). This sector contains U (Nα/2)
gauge bosons, plus three N = 1 chiral supermultiplets Φi

α transforming in the
adjoint representation of the gauge group. In the case of D6-branes parallel to
some O6-plane, the resulting gauge group is USp(Nα) with three N = 1 chiral
supermultiplets transforming in the two-index antisymmetric representation [97].

On the other hand, matter fields arising from strings streched between two
distinct stacks of D6-branes Nα and Nβ, are said to be in the αβ-sector, which
is invariant under the orbifold action, and is mapped to the α′β′-sector by the
action of ΩpR. The matter content in this sector is given by Iαβ chiral fermions in
the bifundamental representation

(
Nα/2, N̄β/2

)
, where the intersection number

of the wrapped three-cycles Iαβ is defined as

Iαβ = [Πα] · [Πβ] =
3∏
i=1

(
niαm

i
β −mi

αn
i
β

)
(7.38)

The sign of Iαβ determines the chirality of the corresponding fermion3. For super-
symmetric intersections, further massless scalar fields fill out the corresponding
supermultiplet. Moreover, we obtain a similar results in the αβ′ sector, which
contains Iαβ′ fermions in the representation (Nα/2, Nβ/2), plus additional mass-
less scalar fields filling out the corresponding supermultiplet.

Finally, matter fields arising from strings streched between the stacks of
D6-branes related by the orientifold action, are said to be in the αα′ sector. This
sector contains nsym,a chiral fermions in the two-index symmetric representation
and nasym,a chiral fermions in the two-index antisymmetric representation, with

nsym,a =
1

2
(Iαα′ − Iα,O6) , nasym,a =

1

2
(Iαα′ + Iα,O6) (7.39)

where Iα,O6 = [Πα]·[ΠO6] and [ΠO6] denotes the complete set of O6-planes [ΠO6] =
[ΠO] + [ΠOΘ1 ] + [ΠOΘ2 ] + [ΠOΘ1Θ2 ].

As expected, the cancellation of the RR tadpoles (D.9) guarantees the ab-
sence of the non-Abelian anomalies for the chiral spectrum discussed above. How-
ever, mixed Abelian-non-Abelian anomalies do not cancel automatically when RR
tadpoles conditions are satisfied. These anomalies are canceled by the GS mech-
anism discussed in section 7.4. Using the basis of homology three-cycles in (D.7),
we can write the axionic couplings (7.31) explicitly as

p0
α

∫
R1,3

Φ̃0 Tr (Fα ∧ Fα) , rα,i

∫
R1,3

Φ̃i Tr (Fα ∧ Fα) (7.40)

3In our conventions, D6-branes with positive intersection number will give rise to left-handed

fermions, while negative intersection numbers give rise to right-handed fermions.
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where p0
α = n1

αn
2
αn

3
α and rα,i = niαm

j
αm

k
α with i 6= j 6= k. While the couplings

of the untwisted RR two-forms to the U(1) field strength Fα of each stack α are
given by

Nαrα,0

∫
R1,3

B0
2 ∧ TrFα, Nαp

i
α

∫
R1,3

B2,i ∧ TrFα (7.41)

where rα,0 = −m1
αm

2
αm

3
α and piα = mi

αn
j
αn

k
α with i 6= j 6= k. Using the couplings

(7.40) we can determine the closed string axions that couple anomalously to the
gauge-invariant field strength, while the couplings (7.41) allow to determine the
linear combinations of U(1) gauge bosons that acquire string scale masses via
the GS mechanism. Finally, the condition for a combination of U(1)’s to remain
massless can be written explicitly as∑
α

cαNαm
1
αm

2
αm

3
α =

∑
α

cαNαm
1
αn

2
αn

3
α =

∑
α

cαNαn
1
αm

2
αn

3
α =

∑
α

cαNαn
1
αn

2
αm

3
α = 0

(7.42)

7.6 An explicit D6-brane model

In this section, we turn to the construction of a consistent supersymmetric
DFSZ axion model, by using the machinery of intersecting D6-branes on the
T6/Z2×Z2×O orientifold, discussed in the previous section. Before proceeding
to the explicit construction of the model, it is important to emphasize some key
ingredients. We have seen that the SU(2)L × U(1)Y singlet fields Σ, Σ̃ have PQ
charges that are twice the charges of the Higgs-doublets Hu and Hd respectively.
In intersecting D6-brane models, such states can be realized as antisymmetric
representations of U(2) or symmetric representations of U(1) [98]. Therefore, we
need to introduce a stack of D6-branes giving rise to such states. In particu-
lar, we will consider a model, in which those fields are realized as antisymmetric
states under U(2)b. On the other hand, to obtain a consistent supersymmetric
model, a superpotential of the form (7.16) has to be included. As we argue be-
low, the cubic coupling in this superpotential can be implemented as the Yukawa
coupling among two N = 1 chiral multiplets (Higgs doublets) and one N = 2
multiplet (SM singlet Σ), whereas the realization of the last term in (7.16) is
more involved, as we argue below, it might be generated by D6-branes wrapped
on a non-factorisable three-cycle.

With all these details in mind, let us start the search for a set of D6-branes
realizing the spectrum shown in table 7.1 as well as the superpotentials (7.12)
and (7.16) . As shown in [99], one needs to choose some two-tori to be tilted in
order to get MSSM-like models with an odd number of generations of quarks and
leptons. However, if we relax the condition of three generations of quarks and
leptons, one can easily find a configuration of intersecting D6-branes yielding a
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massless open string spectrum close to the one displayed in table 7.2. Concretaly,
we will consider a set of D6-branes consisting on six stacks, the relevant geometric
data of such a configuration is summarized in table 7.2. For simplicity, we have
used stacks of D6-branes passing through some Z2×Z2 fixed point, such that they
coincide with their orbifold images, but not with their orientifold images. The first
four stacks of D6α-branes are characterized by being factorisable and reproduce
the chiral part of the spectrum. This part of the spectrum is determined by
computing the intersection numbers between distinct stacks of D6-branes and
applying the results of the previous section. In addition to this set of factorisable
D6-branes, we also add a stack of Ne D6-branes wrapping a non-factorisable
three-cycle

Πe = π1 ⊗
(
n2
eπ3 +m3

eπ6

)
⊗
(
n3
eπ5 +m2

eπ4

)
(7.43)

which provides the source for a bilinear superpotential of the form (2.77).

This set of D6-branes by itself does not satisfy the RR tadpole cancellation
conditions (D.9). Hence, additional hidden D6-branes and fluxes are required to
satisfy the cancellation of the RR tadpoles. Since here we are only interested in
the construction of a DFSZ model, to study the pattern of the soft supersymmetry
breaking terms in this model, we will not deal here with these global issues of the
compactification, leaving it for future work.

The set of factorisable D6-branes preserves supersymmetry if and only if
τ1 = τ2 = τ3 = 1, this condition implies on the other hand that the complex
structure moduli u?1 = u?2 = u?3 = u?. Notice that the additional D6-brane
required for tadpole cancellation should be compatible with this condition, oth-
erwise supersymmetry would be broken in this sector. Moreover, one can eas-
ily check that the non-factorisable three-cycle Πe is Lagrangian if and only if
n2
em

2
eT

2 − n3
em

3
eT

3 = 0, while the condition Im Ω|Πe = 0 is automatically sat-
isfied. Hence, for the non-factorisable D6-branes we expect a F-term potential
encoded in the superpotential (2.77), whenever the lagrangian condition is not
satisfied. In order to compute this superpotential, one has to determine the
geometric quantities (B.12), to do so we first identify the harmonic one-form
l−1
s ζ1 = dx1 compatible with the D-brane normal deformation X = 1

2
ls∂y1 par-

allel to π2. Then we use the basis of ΩR-odd harmonic two-forms defined in
appendix D into the equation (B.12), to obtain

ne21 =
1

l3s

∫
Πe

ω2∧ζ1 = n2
em

2
e = 1, ne31 =

1

l3s

∫
Πe

ω3∧ζ1 = −n3
em

3
e = −1 (7.44)

Plugging this result back into (2.77) and assuming vanishing worldvolume fluxes,
one has

WD6 −W 0
D6 = −Φ1

e

(
ne21T

2 + ne31T
3
)

= −l−1
s Φ1

e

(
T 2 − T 3

)
(7.45)

Thus, the relevant part of the spectrum consists of two generations of quarks
and leptons as well as one generation of right-handed neutrinos. In addition, it
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D6-brane configuration on T 6/(Z2 × Z2 ×O)

Stack (n1
α,m

1
α)× (n2

α,m
2
α)× (n3

α,m
3
α) Angles

Na = 6 (1, 1)× (1, 1)× (0,−1)
(
π
4
, π

4
,−π

2

)
Nb = 4 (1, 0)× (1, 1)× (1,−1)

(
0, π

4
,−π

4

)
Nc = 2 (0, 1)× (0,−1)× (1, 0)

(
π
2
,−π

2
, 0
)

Nd = 2 (1,−1)× (1,−1)× (0, 1)
(
−π

4
,−π

4
, π

2

)
Ne = 2 (1, 0)× (1, 1)36 × (1, 1)54

Table 7.2: Set of D6-branes realizing a consistent supersymmetric DFSZ model

on the T 6/(Z2 × Z2 ×O) orientifold.

also contains two Higgs multiplets, a non-chiral pair Σ + Σ̃ in the antisymmetric
representation of U(2)b and the open string modulus Φ1

e which can be identified
with the PQ neutral field in (7.16). This spectrum is summarized in table (7.3),
additional adjoint fields are also present but they are not listed, since they do
not play an important role in the discussion.

This set of D6-branes gives rise to the gauge group U(3)a×U(2)b×USp(2)c×
U(1)d, where the factor USp(2) arises from the stack Nc sitting on top of the
OΘ1Θ2-invariant plane. In this particular model, there are four U(1) symmetries,
with charges Qa, Qb, Qc and Qd and some of them can be interpreted in terms
of common SM global symmetries. More concretely, Qa = 3B and Qd = −L
where B and L are the baryon and lepton numbers, while Qc is twice the third
component of the right handed weak isospin familiar from left-right symmetric
models. Finally, Qb has the features of a Peccei-Quinn symmetry, as we argue
below. Let us now analyse the structure of the U(1) anomally cancellation in
this model. It is easy to check that there are two anomaly free U(1)s given by
1
3
U(1)a +U(1)d and U(1)c and two anomalous ones, which are given by 3U(1)a−
U(1)d and U(1)b. Using the equation (7.41) one can see that the untwisted RR
two-forms couple to the U(1)s in the model as follows:

B0
2 ∧ (3TrFa − TrFd) (7.46)

B2,2 ∧ Tr 2Fb

B2,3 ∧ (−3TrFa − 2TrFb + TrFd)

while B2,1 has no coupling to any U(1) field strength. The dual RR axions have
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couplings

Φ̃0Tr (Fb ∧ Fb) (7.47)

Φ̃1 (−Tr (Fa ∧ Fa)− Tr (Fb ∧ Fb)− Tr (Fd ∧ Fd))
Φ̃2 (−Tr (Fa ∧ Fa)− Tr (Fd ∧ Fd))
Φ̃3 (−Tr (Fa ∧ Fa)− Tr (Fd ∧ Fd))

Following the discussion in section 7.4, one immediately sees that the combination
of the couplings for the untwisted RR two-forms B0

2 , B2,2 and their duals leads to
the cancellation of the mixed anomalies for 3U(1)a−U(1)d and U(1)b respectively.
Whereas the RR two-form B2,3 couples to a non-anomalous linear combination
of U(1)s, rendering the corresponding gauge boson massive. Thus, the original
gauge group breaks down to SU(3)a × SU(2)b × USp(2)c × UB−L × U(1)3

massive.
Giving a VEV to some of the complex scalars encoding the D6-brane position
and Wilson line yields a breaking USp(2)c → U(1)c. In this way one is left with
SU(3)a×SU(2)b×U(1)Y ×UB−L×U(1)3

massive, where the hypercharge is defined
as the massless combination of U(1)s:

QY =
1

6
Qa +

1

2
Qc +

1

2
Qd (7.48)

Finally, since the U(1)b ⊂ U(2)b has a mixed SU(3)a-anomaly, hence it is iden-
tified with a Peccei-Quinn symmetry U(1)PQ. Thus, the SM singlets Σ and Σ̃
realized as antisymmetric states under U(2) carry PQ charges 2 and −2 respec-
tively.

The Yukawa couplings Yαβγ among Higgs fields and two fermions are ex-
ponentially suppressed Yαβγ ∼ eAαβγ , with Aαβγ being the area of the string
worldsheet spanning the triangle with vertices at the intersections and sides on
the D6-branes, measured in string units4. Therefore, these couplings depend both
on the Kähler and open string moduli, as argued in the previous chapter. These
cubic coupling can be computed explicitly in this toroidal setup, by using the
techniques developed in [59, 60]. For the massless spectrum displayed in table
7.3, the couplings allowed in the superpotential are

W =WYuk +WDFSZ (7.49)

with

WYuk = YuQL ·HuUR + YdQL ·HdDR + Ye L ·HdER + Yν L ·HuNR

WDFSZ = λΦ1
eΣΣ̃− l−1

s Φ1
e

(
T 2 − T 3

)
+ κΣHu ·Hd (7.50)

4Since different families are located at different intersections, the corresponding triangles have

different areas that increase linearly with the family index, yielding thus an exponential hier-

archy of the Yukawa couplings.
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Massless open string spectrum.

Sector Field SU(3)a × SU(2)b U(1)Y × U(1)B−L U(1)PQ

ab′ QL 2× (3,2)(1,1,0,0) (1
6
, 1

3
) 1

ac′ UR (3,1)(−1,0,−1,0) (−2
3
,−1

3
) 0

ac DR (3,1)(−1,0,1,0) (1
3
,−1

3
) 0

bd L 2× (1,2)(0,1,0,−1) (−1
2
,−1) 1

cd′ ER (1,1)(0,0,1,1) (1, 1) 0

cd NR (1,1)(0,0,−1,1) (0, 1) 0

bc Hu (1,2)(0,−1,1,0) (1
2
, 0) −1

bc′ Hd (1,2)(0,−1−1,0) (−1
2
, 0) −1

bb′ Σ + Σ̃ (1,1Anti)(0,±2,0,0) (0, 0) ±2

ee Φ1
e (1,1)(0,0,0,0) (0,0) 0

Table 7.3: Summary of the massless open string states for the D6-brane con-

figuration in table 7.2 and their charges under the extra symmetries U(1)a,b,c,d.

Finally, lepton-number violating interactions like QL · LDR and L · LER are for-
bidden perturbatively by U(1)PQ charge conservation, while the baryon number-
violating interaction URDRDR and the lepton-violating interaction Hu · L are
perturbatively allowed. As a final remark, we would like to point out that
once the linear combination T 2 − T 3 gets a non-vanishing VEV, the bilinear
coupling l−1

s Φ1
e (T 2 − T 3) in (7.50) behaves effectively as a term 1

4
λf 2Φ1

e with
1
4
λf 2 = l−1

s 〈T 2 − T 3〉, yielding thus the last term of 7.16.

7.6.1 Soft-terms in the Higgs-axion sector

As a last topic, we study the structure of the soft supersymmetry breaking terms
for the D6-brane model presented above. Here, we are mostly interested in the soft
terms arising in the Higgs-axion sector of the model. Following the philosophy of
chapter 6, a spontaneous breaking of supersymmetry due to NS and RR fluxes in-
duce soft-terms for the matter fields living on D6-branes. For concreteness, we are
going to embed the above set of D6-branes into the class of non-supersymmetric
CSD vacua discussed in section 4.3, since it provides a suitable string vacuum
to perform the explicit computation of the flux-induced soft terms. In this class
of vacua the contra-variant F-terms of the dilaton an Kähler moduli vanish and
supersymmetry is spontaneously broken in the complex structure sector.
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As argued before, any prediction of the soft supersymmetry breaking terms
requires a knowledge of the Kähler metric for the matter fields as well as the
couplings appearing in the superpotential. With this purpose, let us first work
out the Kähler metrics for matter fields relevant in our discussion. The Kähler
metrics for matter fields on the T6/Z2 × Z2 × O orientifold were obtained by
computing string scattering amplitudes among open string matter fields on the
D6-branes and bulk moduli fields [100–103] and collected in appendix D. The
Higgs multiplets in table 7.3 are chiral N = 1 supermultiplets supported at the
codimension 6 intersection of the stacks Nb and Nc. In that case the matter field
metric takes the generic form (D.13) and explicitly read

KHu = KHd =
Cbc

4
√

2t1t2t3 4
√
s?u3

?

(7.51)

where the constant Cbc = Γ(1/4)2/Γ(3/4)2. Whereas the Standard Model singlets
Σ and Σ̃ arise from stacks of D6-branes that coincides in the first two-torus
(Codimension 5 intersection) and intersect at a point along the remaining two-
tori. Therefore, they form a non-chiral pair of N = 1 chiral supermultiplets
whose Kähler metric takes the generic form (D.12) and read

KΣ = KΣ̃ =
1

4u?
√
t2t3

(7.52)

Since the open string modulus Φ resides in the non-factorisable stack Ne, its
Kähler metric should be derived from the Kähler potential mixing open and closed
string moduli (2.75), instead of using the usual expression of the Kähler metric
for the N = 1 supermultiplets supported at the codimension 3 intersections given
in (D.10). In the toroidal case, the field redefinition (2.72) becomes

nK = nK? −
1

4

∑
α

(
QK
α

)
ij

[
(taηαa)

−1
]j
k
φiαφ

k
α

uΛ = n?Λ −
1

4

∑
α

(QαΛ)ij
[
(taηαa)

−1
]j
k
φiαφ

k
α

where we have defined the quantities

(
QK
α

)
ij

=
∂gKαi
∂ϕj

= l−3
s

∫
Πα

ιXjβK ∧ ζ i, (QαΛ)ij =
∂gαΛi

∂ϕj
= l−3

s

∫
Πα

ιXjαΛ ∧ ζ i

(7.53)

(ηαa)
i
j = l−3

s

∫
Πα

ιXjωa ∧ ρi (7.54)

where ρi are defined as Poincare duals to the harmonic one-forms ζ i on Πα. To
compute these quantities we use the D-brane normal deformation X = 1

2
ls∂y1
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together with the basis of ΩR-odd harmonic three-forms given in (D.1) and we
obtain (

Q0
e

)
11

= −m2
em

3
e = −1, (Qe1)11 = n2

en
3
e = 1 (7.55)

while (QeΛ=2,3)11 = 0 vanish as the interior products of αΛ=2,3 with respect to
such a deformation vanish. This implies that only the dilaton S and the complex
structure modulus U1 will be redefined by the open string moduli Φ1

e. The next
step is to compute the quantities (ηαa)

i
j. A straightforward computation leads to

(ηe1)1
1 = l−3

s

∫
Πα

(−dx1) ∧ ρ1 = −1 (7.56)

Using all these results, one can easily see that the open string modulus Φ1
e enters

in the Kähler potential as follows

KQ = −Log

(
S − S̄ +

1

4

(
Φ1
e − Φ̄1

e

)
T 1 − T̄ 1

+ .....

)
−Log

(
U1 − Ū1 −

1

4

(
Φ1
e − Φ̄1

e

)
T 1 − T̄ 1

+ .....

)
+......

(7.57)

where dots denote the dependence on the remaining open and closed string
moduli. A power series expansion of the above Kähler potential in terms of the
open string modulus Φ1

e leads to the following Kähler metric

KΦ1
eΦ̄

1
e

=
u? − s?
4s?u?t1

(7.58)

Taking a look at the expressions (7.51) and (7.52) we notice that they are ho-
mogeneous function of degree −3/4 and −1 in the complex structure moduli
respectively. Plugging those values into the equation (6.31) we find that the
Higgs multiplets have soft masses

m2
Hu = m2

Hd
=

1

4
m2

3/2 (7.59)

with gravitino mass given by (6.20), while the SM singlets Σ and Σ̃ on the other
hand do not acquire soft masses.

Since the Kähler metric for the QP neutral Φ is not a homogenous function
of the complex structure moduli, its soft mass has to be computed obligatorily
from the equation (6.28). In this way, after plugging the Kähler metric (7.58) into
the equation (6.28) and evaluate properly the vacuum constrainsts, we obtain

m2
Φ1
e

= m2
3/2

(
u?

(s? − u?)2

)
(7.60)

which is non-tachyonic but contains a non-universal contribution. In addition to
the above soft masses, the cubic couplings ΣHuHd in (7.50) will induce A-term
of the form

AΣHuHd =
1

2
κ̂m2

3/2 (7.61)
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To arrive at this expression, we have used the modular weights nHu = nHd =

−3/4 and nΣ = −1 into the equation (6.34), while the physical coupling λ̂ =
iκ/
√
KΣKHuKHd . Finally, the cubic coupling Φ̃ΣΣ̃ yields a A-term of the form

AΦΣΣ̃ = λ̂m2
3/2

(
7 +

s?
s? − u?1

)
(7.62)
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Chapter 8

Conclusions

Let us conclude by summarising the main results of this thesis and by outlin-
ing the prospects for future work. This thesis has been devoted to offer a novel
perspective on perturbative type IIA flux vacua with an underlying Calabi-Yau
geometry. These four-dimensional vacua correspond to local minima of the four-
dimensional scalar potential arising from the dimensional reduction of the ten-
dimensional IIA supergravity action on Calabi-Yau orientifolds with background
fluxes and D6-branes. Earlier studies of this scalar potential revealed its very
simple structure consisting of a symmetric matrix depending solely on the geo-
metric moduli and acting as a metric on the space of axion polynomials. These
axion polynomials capture the axionic partners together with the flux quanta
into shift-invariant combinations whose precise shapes are intimately connected
to Freed-Witten anomaly cancelation. This bilinear structure of the scalar po-
tential in terms of the axion polynomials even persists in the presence of D6-
branes accompanied with displacements moduli, referred to as mobile D6-branes
in this thesis, albeit with the proper addition of open string moduli and axions.
Similarly, the shape of the open string axion polynomials can be related to the
Hanany-Witten effect.

Moreover, in chapter 3 we shown that both the bilinear structure and the
separate dependence into axions and saxions is maintained even in the presence
of perturbative α′-corrections. More precisely, we have seen that certain α′-
corrections modify the definition of the flux-axion polynomials ρA, in the sense
that they redefine the basis of quantised fluxes. Others, namely the cubic correc-
tion K(3) that enters in the Kähler potential as in (2.80), only affect the expression
for ZAB. This constitutes a proof of concept that the bilinear form of the scalar
potential is valid for a large set of flux vacua. It also supports the idea that the
factorised dependence into axions and saxions should occur as long as it is a good
approximation to assume that fluxes do not affect the 4d Kähler metrics of the
light fields, or in other words that ZAB is independent of the ρA.
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In the second part of this thesis we apply this novel approch on pertur-
bative type IIA flux vacua with (partly) stabilised moduli and their physical
properties at the level of four-dimensional N = 1 supergravity. At large volume
the four-dimensional scalar potential can equally be obtained from the F-term
scalar potential of an N = 1 supergravity coupled to chiral multiplets consist-
ing of Kähler moduli, complex structure moduli and open string moduli. The
background fluxes yield a perturbative superpotential for the closed and open
string moduli, such that its form can be expressed as a linear function of the
axion polynomials with saxion-dependent coefficients. It is precisely the com-
plete factorisation of the superpotential in terms of geometric moduli and axion
polynomials that lies at the heart of our search for vacuum configurations of
the four-dimensional N = 1 supergravity. By solving the F-terms in terms of
the axion polynomials we are able to recover the N = 1 supersymmetric AdS
vacua and the N = 0 Minkowski vacua with ISD fluxes for purely closed string
compactifications.

After adding mobile D6-branes to the compactification, the search for local
minima of the scalar potential appears at first sight to be much more energy-
consuming, as the mixing between closed and open string moduli provides for
an extra level of complexity. However, the language of axion polynomials allows
to treat these cases in the same way as the pure closed string vacua. More
precisely, when generalising the ISD flux set-up by adding D6-branes one can still
take advantage of the no-scale symmetry in the complex structure moduli sector
to rewrite the scalar potential as a positive semidefinite function, under mild
assumptions about the functional dependence of the Kähler potential on closed
and open string moduli. This positive semidefinite scalar potential has a local
N = 0 Minkowski minimum, in which the F-terms for the dilaton, Kähler moduli
and open string moduli satisfy relations that are weaker than the ISD case. Yet,
to expose which sectors break supersymmetry spontaneously, it suffices to look
at the contra-variant F-terms in the complex structure moduli sector, which are
the only non-vanishing ones for these vacuum configurations and thereby earned
them the name complex structure dominated (CSD) vacua. Alternatively, these
CSD vacua can also be derived by exploiting the bilinear structure of the open-
closed string scalar potential, in which case the vacuum conditions are formulated
in terms of the axion polynomials. Once again, the elegant language of the axion
polynomials allows to expose the equivalence between the F-term conditions and
the axion polynomial vacuum conditions.

In chapter 5, we started the search for vacua in regions of the moduli space
where the internal volume is only moderately large. Armed with the explicit
expressions for the α′-corrected flux-axion polynomials and ZAB, we have written
down the full scalar potential and analysed several of its vacua. We have first
considered the class of Minkowski vacua studied in [8], and shown that in this case
the potential can be written as a bilinear positive definite form (5.18), as expected
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from mirror symmetry. The vanishing of each of the entries of the vector (5.19)
gives the vacuum conditions for this class of compactifications, and reproduces the
results in [8]. Second, we have considered how α′-corrections modify the vacuum
conditions of supersymmetric AdS flux vacua, following the same strategy as in
[47] and rewriting the vanishing F-term conditions in terms of axion polynomials
and solving for them. As in the case of Minkowski vacua, we have found that
the cubic correction K(3) only affects the stabilisation of geometric of saxionic
moduli, while the other two corrections also affect (implicitly) the stabilisation
of axions.

Determining the on-shell F-terms is a necessary step to understand whether
a four-dimensional vacuum preserves supersymmetry or not. To assess physically
whether supersymmetry is spontaneously broken in the vacuum, it suffices to
evaluate the (effective) gravitino mass on-shell. A simple method to do precisely
that takes advantage of the off-shell expression for the gravitino mass, which ex-
hibits a bilinear form in the axion polynomials, similarly to the scalar potential.
In chapter 6 we show that this factorisation in terms of geometric moduli and
axion polynomials can also be extended to the soft terms for massless open string
excitations located at the intersections of two distinguishable D6-branes. These
soft-terms, resulting from the background fluxes through gravity mediation, also
take on a (bi)linear expression in terms of the axion polynomials. Hence, this
implies that gravitino masses and soft terms are universal for flux vacua that
are related through each other by the axion shift symmetries, which is displayed
explicitly in terms of the axion polynomials. Here, we have extended the analysis
for the soft terms to the CSD vacua, yet their on-shell values exhibit similar scal-
ings with the gravitino mass as the well-studied ISD flux vacua. This similarity
suggests a universal pattern for the soft terms in vacua with complex structure
dominated supersymmetry breaking.

A proper look at the ISD flux vacua and the CSD vacua shows that only part
of the moduli is stabilised. Upon inclusion of α′-corrections in the ISD flux vacua,
flat directions associated with the geometric parts of the Kähler moduli are lifted.
However, the complex structure moduli still remain flat directions in this class
of vacua, due to the no-scale property in the complex structure moduli sector.
Hence, additional stabilising effects have to be added to the compactification to
obtain a stable vacuum configuration. One could take into account various non-
perturbative contributions to the superpotential (and Kähler potential), such as
worldsheet instantons and D-brane instantons, which would however manifestly
break the bilinear description in terms of the axion polynomials. It would be
illuminating to develop a formalism that combines the perturbative and non-
perturbative contributions to the superpotential and allows for elegant methods to
determine the vacua of the compactification, in a similar fashion as we explained
here for the axion polynomial language.

Moreover, it would also be interesting to extend the results obtained in
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chapter 4 to include more general classes of type IIA flux vacua. On the one
hand, one could consider flux compactifications on non-Calabi-Yau geometries
[44,53,104–113]. On the other hand, one may consider compactification with more
general open string sectors, like models containing coisotropic D8-branes [114–
117]. In particular, it would be interesting to see if one can generalise the CSD
vacua of section 4.3 to any of these cases, and then compute the corresponding
spectrum of soft terms. Since we have addressed the latter from a 4d effective
theory approach, it would be important to develop a microscopic picture of the
generation of such soft terms, equivalent to the microscopic computations made
in the context of type IIB/F-theory flux backgrounds [53,67,118–126]. One may
then compare such soft terms with the results of table 6.2, and use this to either
confirm or correct our Ansatz for the Kähler metrics of the chiral open string
modes. It would also be interesting to explore the implications of these results
for the phenomenological applications of type IIA flux vacua like, e.g., revisit the
cosmological scenarios in [36,37].

Finally, it would be interesting to generalise the CSD vacua to include per-
turbative α′-corrections and see how such corrections modify the scalar potential
in [41] and the corresponding vacua analysed in 4.3. On the one hand, it would
also be interesting to see how the effect of α′-corrections modifies the spectrum
of soft masses in non-supersymmetric flux vacua, extending the analysis carried
out in section 6.3. On the other hand, it would also be interesting to compute
the effect of perturbative α′-corrections for non-Calabi-Yau geometries. In gen-
eral, we expect that our results help to achieve a wider understanding of type
IIA compactifications with fluxes, D-branes and perturbative α′-corrections and,
eventually, a better overview of the landscape of flux vacua.



Appendix A

Kähler metrics in Type IIA CY

orientifolds with mobile

D6-branes

Aim of this appendix is to collect together the expressions of the Kähler met-
rics in Type IIA CY orientifolds with mobile D6-branes, whose derivation would
interrupt the flow of the main text.

A.1 Kähler Potentials in Type IIA CY orien-

tifolds

Type IIA compactifications on Calabi-Yau orientifolds naturally come with mod-
uli spaces parameterised by Kähler moduli and complex structure moduli. The
moduli spaces inherit a Kähler geometry from the N = 2 compactifications on
the Calabi-Yau manifolds before orientifolding, with the Kähler metric given by
the second order derivative of the Kähler potential:

K = KT +KQ = − log(GTG2
Q). (A.1)

The product G = GTG2
Q is a homogeneous function of degree seven in the geo-

metric moduli ψA ∈ {ta, nK? , u?Λ} of the closed string sector:

ψA∂AG =
(
ta∂ta + nK? ∂nK? + u?Λ∂u?Λ

)
G = 7G, (A.2)

indicating that the moduli form homogeneous coordinates on the moduli space
subject to the scaling transformations,

ta → λ ta, nK? → λ̃ nK? , u?Λ → λ̃u?Λ. (A.3)
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From these homogeneous functions the Kähler metric can be determined straight-
forwardly,

KA = − 1

2i

∂AG
G

, (A.4)

KAB = −1

4

(
∂A∂BG
G

− ∂AG∂BG
G2

)
. (A.5)

The homogeneous property of the function G (A.2) implies some additional rela-
tions, such as

KABKB = −2iψA, (A.6)

and the no-scale relation,

KABKAKB = 7, (A.7)

and also allows to extract a simple relation for the inverse metric,

KAB =
2

3
ψAψB − 4GGAB, (A.8)

with GAB the inverse of ∂A∂BG.

A.2 Kähler metrics with mobile D6-branes

As discussed in section 2.4, in the absence of D6-branes the moduli space corre-
sponds to the direct product of the Kähler and complex structure moduli space,
which allows for an independent scaling transformation on both sectors with
λ 6= λ̃ ∈ C. In the presence of D6-branes wrapping SLag three-cycles Πα with
b1(Πα) 6= 0, a redefinition of the complex structure moduli induces a mixing be-
tween all closed and open string moduli, as discussed in section 2.6, such that
the scaling symmetries acting on the Kähler and complex structure moduli are
identified λ = λ̃. Nonetheless, G is still a homogeneous function of degree seven
in terms of the geometric moduli ψA ∈ {ta, nK , uΛ, φ

i
α}.

Let us now specify these relations in the presence of n D6-branes wrapping
SLag three-cycles Πα∈{1,...,n} and the symplectic basis choice with {NK}K 6=0 = 0,
as considered in section 4.3, such that the Kähler potential for the type IIA
orientifold compactification reads:

KT = − log

(
4

3
Kabctatbtc

)
, (A.9)

KQ = − log

[
s+

1

2
taH0

αa

]
− 2 log

[
G̃Q
(
uΛ +

1

2
taHαΛ a

)]
. (A.10)
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To obtain analytic relations for the metric, we will further assume that the func-
tions HK

αa and HK
αΛ a depend only on the geometric moduli {ta, φib}. Such a func-

tional dependence is characteristic for toroidal backgrounds, but is also expected
to be a good approximation in the large volume and large complex structure
regions of the moduli space for more generic Calabi-Yau manifolds. Under this
assumption the first order derivatives of the Kähler potential are given by

KS = i
2s+taH0

αa
, KUΛ

= i 1
G̃Q
∂uΛ
G̃Q,

KTa = 3iKabctbtc
2K + i

4s+2tbH0
α b
∂ta(t

cH0
α c) + i

2G̃Q
∂uΛ

(G̃Q)∂ta(t
cHαΛ c),

KΦiα
= i

4s+2tbH0
α b
∂φiα(taH0

αa) + i
2G̃Q

∂uΛ
(G̃Q)∂φiα(taHαΛ a).

(A.11)

Upon introducing the row vectors

H0
T =

1

2
∂ta(t

cH0
α c), HΛT =

1

2
∂ta(t

cHαΛ c), (A.12)

H0
Φ =

1

2
∂φiα(tcH0

α c), HΛ Φ =
1

2
∂φiα(tcHαΛ c), (A.13)

and the matrices

K
ŜŜ

=
1

(2ŝ+ taH0
αa)

2 , (A.14)

K
ÛΛÛM

=
1

2

(
∂ûΛ
G̃Q∂ûM G̃Q
G̃2
Q

− ∂ûΛ
∂ûM G̃Q
G̃Q

)
, (A.15)

Ξ
TaT

b = −3

2

(
Kab
K
− 3

2

KaKb
K2

)
+
i

4
KŜ ∂ta∂tb(t

cH0
α c)

+
i

4
KÛΛ

∂ta∂tb(t
cHαΛ c), (A.16)

Ξ
TaΦ

j
β

=
i

4
KŜ ∂ta∂φjβ

(tcH0
α c) +

i

4
KÛΛ

∂ta∂φjβ
(tcHαΛ c), (A.17)

Ξ
ΦjαΦ

j
β

=
i

4
KŜ ∂φiα∂φjβ

(tcH0
α c) +

i

4
KÛΛ

∂φiα∂φjβ
(tcHαΛ c), (A.18)

the Kähler metric KAB on the full moduli space can be written in an elegant
way:

KAB =


1 0 0 0
0 1 0 0

(H0
T )t (HΛT )t 1 0

(H0
Φ)t (HΛ Φ)t 0 1




K
ŜŜ

0 0 0

0 K
ÛΛÛM

0 0

0 0 Ξ
TaT

b Ξ
TaΦ

j
β

0 0 Ξ
ΦiαT

b Ξ
ΦjαΦ

j
β




1 0 H0
T H0

Φ

0 1 HΛT HΛ Φ

0 0 1 0
0 0 1

 .

(A.19)
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From this expression we can straightforwardly determine the inverse Kähler met-
ric KAB:

KAB =


1 0 −H0

T −H0
Φ

0 1 −HΛT −HΛ Φ

0 0 1 0
0 0 0 1




K−1

ŜŜ
0 0 0

0 K−1

ÛΛÛM
0 0

0 0
Ξ−1

0 0




1 0 0 0
0 1 0 0

−(H0
T )t −(HΛT )t 1 0

−(H0
Φ)t −(HΛ Φ)t 0 1

 ,

(A.20)
where Ξ−1 denotes the inverse of the matrix with entries Ξ

TaT
b , Ξ

TaΦ
j
β
, Ξ

ΦiαT
b and

Ξ
ΦiαΦ

j
β
.



Appendix B

Superpotentials with mobile

D6-branes

In this appendix we briefly review the microscopic origin of the D6-brane super-
potential and how the redefined complex structure moduli enter in the superpo-
tential. When considering orientifold compactifications with D6-branes and their
orientifold images, one has to be aware that their RR-charges act as magnetic
sources for the field strength G2, such that the Bianchi identities (2.53) have to
be modified accordingly:

`2
s (dG2 −mH3) = −

∑
α

Nα

[
δ3(Π0

α) + δ3(RΠ0
α)
]

+ 4δ3(ΠO6), (B.1)

where the right-hand side considers the bump-like delta-function currents sourced
by the D6-branes wrapping reference three-cycles Π0

α their respective orientifold
images RΠ0

α, and the O6-planes. The field strength G2 is globally well-defined
upon imposing the modified RR tadpole cancellation conditions in the presence
of NS 3-form flux and Romans mass m:∑

α

Nα([Π0
α] + [RΠ0

α])− 4[ΠO6]−m[ΠH3 ] = 0, (B.2)

where [ΠH3 ] corresponds to the Poincaré-dual three-cycle of the NS-flux H3. Note
that in the absence of H3-flux, the RR tadpole condition implies the existence
of a four-chain C0

4 connecting the D6-branes and their orientifold images to the
O6-planes, i.e. ∂C0

4 =
∑

αNα (Π0
α +RΠ0

α)− 4ΠO6.

The Lagrangian condition (2.64) also has to be modified in the presence of
worldvolume fluxes including the U(1) field strength F = dA:

Jc
∣∣
Πα
− `2

s

2π
F = 0. (B.3)
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In regions of the closed string moduli space where this condition is violated, a
non-vanishing contribution to the superpotential arises that is capable of breaking
the N = 1 supersymmetry in four dimensions,

∆W =
1

`5
s

∫
Cα4

(
Jc −

`2
s

2π
F̃α

)
∧
(
Jc −

`2
s

2π
F̃α

)
, (B.4)

where the four-chain Cα4 connects a three-cycle Πα that is a homotopic deforma-
tion of the reference three-cycle Π0

α, in line with the philosophy of section 2.6.
The field strength F̃α is the extension of the D6-brane worldvolume field strength
to the four-chain. Microscopically, there exist two separate effects that yield a
non-vanishing superpotential ∆W as a function of the open string moduli asso-
ciated to the three-cycle deformations. The first effects comes from turning on a
worldvolume flux:

`2
s

2π
Fα =

`2
s

2π
dAα + nαFi ρ

i, nαFi ∈ Z, (B.5)

such that the evaluation of (B.4) leads to a superpotential containing a linear
term in the open string moduli:

`s∆W
(1) = nαFiΦ

i
α. (B.6)

A second contribution is due to the backreaction on the closed string fluxes
following the homotopic deformation of a SLag three-cycle Π0

α → Πα. More
precisely, after the deformation the backreacted RR-fluxes G = G0 + qα∆αG can
be decomposed into a component G0 that satisfies the Bianchi identities in the
reference configuration (with vanishing worldvolume flux)

`2
sdHG0 = −

(∑
α

Nα

(
δ3(Π0

α) + δ3(RΠ0
α)
)
− 4δ3(ΠO6)

)
∧ eB, (B.7)

and a component ∆αG capturing the change in fluxes under the deformation:

`2
sdH∆αG

0 = Nαδ
3(Π0

α) ∧ eB −Nαδ
3(Πα) ∧ eB−

`2s
2π
F . (B.8)

B.1 Open-Closed Superpotentials

In the absence of H3-flux, both of these equations can be solved [41] in terms of
bump delta-functions associated with the appropriate four-chains:

G0 = − 1

`s
δ2(C0

4) ∧ eB, ∆αG = − 1

`s
δ2(Cα4 ) ∧ eB−

`2s
2π
F . (B.9)
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The four-chain C0
4 has been introduced above for the reference configuration, while

the second four-chain Cα4 connects the deformed three-cycle and reference three-
cycle such that the delta-function satisfies `sd δ

2(Cα4 ) = Nαδ
3(Πα)−Nαδ

3(Π0
α). In

the reference configuration the polyforms e−B ∧G0 still allow to define quantised
Page charges, but the harmonic pieces of G0 are tied to their co-exact compo-
nents resulting from the presence of localised sources. Similarly, the back-reacted
polyforms e−B ∧G ought to allow for the definition of conserved Page charges
upon deformation, which implies that the harmonic parts of ∆αG are completely
determined by their co-exact piece. The presence of a harmonic component for
∆αG2 can give rise to a superpotential contribution ∆W involving open string
moduli. To see how this precisely happens, we follow the same logic as in [35,127]
and consider the integral of ∆αG2 wedged with the closed four-form J ∧ ω2:∫

M6

∆αG2 ∧ J ∧ ω2 =

∫
Cα4
J ∧ ω2, (B.10)

which is non-vanishing for a harmonic two-form ω2. For an infinitesimal defor-
mation X of the SLag three-cycle as in section 2.6, the chain integral reduces to
an integral over the three-cycle,∫

C4
J ∧ ω2 =

∫
Πα

ιXJ ∧ ω2, (B.11)

which implies the existence of a non-trivial two-cycle in H2(Πα,Z), Poincaré dual
to the one-form ιXJ , for non-vanishing values. By using the more appropriate
basis of one-forms ζ i from section 2.6, the condition can be written out more
explicitly through the D6-brane displacement parameters nαai,

nαai =
1

`3
s

∫
Πα

ωa ∧ ζi ∈ Z. (B.12)

If at least one of the parameters nαai 6= 0, the evaluation of (B.4) gives rise to a
superpotential consisting of a bilinear term mixing open string moduli and Kähler
moduli:

`s∆W
(2) = −nαaiΦi

αT
a. (B.13)

Consequently, the most generic four-dimensional effective superpotential for type
IIA flux compactifications with (non-rigid) D6-branes includes an additional
supersymmetry-breaking term mixing open string moduli and Kähler moduli as
in equation (2.78). In this expression, W 0

D6 denotes the constant contribution to
the D6-brane superpotential evaluated for the reference three-cycles Π0

α:

W 0
D6 =

1

2`5
s

∫
C0

4

(
Jc −

`2
s

2π
F̃α

)
∧
(
Jc −

`2
s

2π
F̃α

)
, (B.14)

in the absence of H-flux.



140 APPENDIX B. APPENDIX

B.2 Superpotentials and Redefined Complex Struc-

ture Moduli

For flux compactifications with non-vanishing H3-flux, the Bianchi identities
(B.7) and RR tadpole conditions (B.2) no longer imply the existence of a four-
chain C0

4 connecting the full set of D6-branes and O6-planes for the reference
configuration. Instead the solutions (B.9) of the Bianchi identities have to be ad-
justed appropriately, as derived for the first time in Appendix B.1 of [41]. Here,
we review and extend the reasoning that led to eq.(B.11) there, which allowed to
deduce the expression for the redefined complex structure moduli NK in term of
the open string moduli. More precisely, we extend this result in the sense that
we consider both kinds of complex structure moduli (NK , UΛ) considered in the
type IIA orientifold literature.

Following [41] we first consider the type IIA flux superpotential

− iW =
1

`6
s

∫
M6

e−φRe Ω3 ∧ H− iG ∧ eiJ (B.15)

which is manifestly gauge invariant and globally well-defined. Then one can split
the RR flux background G into two pieces

G = G0 +
∑
α

∆αG (B.16)

with G0 satisfying the Bianchi identities and quantisations conditions for the
reference configuration, and ∆αG representing the change in G as we replace the
D6-brane at Π0

α with the one at Πα. We find that

G0 = −j0 −H ∧ C3 + eB ∧ Ḡ + . . . (B.17)

and

∆αG ' 1

`2
s

δ(Πα) ∧
(
σA− 1

2
σ2A ∧ F

)
∧ eB − 1

`s
δ(Cα4 ) ∧

(
eB −$4

)
(B.18)

where Cα4 is a four-chain such that ∂Cα4 = Πα − Π0
α, and $4 is the co-exact form

such that d$4 = H ∧B. Replacing this into (B.15) one obtains

W =
1

`6
s

∫
M6

Ωc ∧H + Ḡ ∧ eJc +
2

`4
s

∫
Πα

σA ∧ (Jc − σF )− 1

`5
s

∫
Cα4
J2
c −$4 +W0 .

(B.19)
From this last expression one can extract the closed and open-string moduli
dependence of the superpotential. We are mainly interested in the terms propor-
tional to the H-flux quanta, which are defined by

H = hKβ
K + hΛαΛ . (B.20)
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Then we have that the first piece of (B.19) contributes as

1

`6
s

∫
M6

Ωc ∧H = hKN
K
? + hΛU?Λ . (B.21)

To evaluate the remaining dependence on the H-flux quanta we split the B-field
on the four-chain Cα4 as

B|Cα4 = baωa + B̃ (B.22)

with B̃ the co-exact piece of the B-field satisfying dB̃ = H|Cα4 . Given this split

one can see that $4|Cα4 = 1
2
B̃ ∧ B̃|Cα4 . We then find that the third and fourth

terms in (B.19) contain the terms

− 1

`4
s

∫
Cα4
Jc ∧ B̃ +

2

`4
s

∫
Πα

σA ∧ B̃ = −1

2
ℵaαT a +

1

2

(
hKg

K
iα i + hΛgαΛ i

)
θiα

where

gKα i =
2

`4
s

∫
Cα4
βK ∧ ζ̃i and gαΛ i =

2

`4
s

∫
Cα4
αΛ ∧ ζ̃i. (B.23)

with ζ̃i the extension of the one-form ζi of Πα to Cα4 , and

ℵaα =
2

`4
s

∫
Cα4
B̃ ∧ ωa . (B.24)

Finally, generalising the computation below eq.(A.31) of [41] to a background
flux of the form (B.20) one easily deduces that

ℵaα =
1

2

(
hKHK

αa + hΛHαΛ a

)
(B.25)

with the definitions of HK
αa and HαΛ a given in the main text.

Therefore, putting all these results together one finds that the superpoten-
tial depends on the H-flux quanta as

W = hK

[
NK
? +

1

2

∑
α

(gKαiθ
i
α − T aHK

αa)

]
(B.26)

+ hΛ

[
U?Λ +

1

2

∑
α

(gαΛ iθ
i
α − T aHαΛ a)

]
+ . . .

obtaining the following redefinition for the complex structure moduli of the com-
pactification

NK = NK
? +

1

2

∑
α

(gKαiθ
i
α − T aHK

αa), UΛ = U?Λ +
1

2

∑
α

(gαΛ iθ
i
α − T aHαΛ a) .

(B.27)
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Appendix C

Full Computation of the

α′-Corrected Potentials

In this appendix we present the details regarding the computations of the α′-
corrected potentials.

C.1 α′-Corrected Kähler Potentials

As pointed out in section 2.7, the no-scale symmetries (A.6) and (A.7) rely on the
hidden assumption that we consider large volume regions in the Kähler moduli
space. Away from this large volume limit, perturbative curvature corrections in
α′ have to be taken into account, which alter the Kähler potential for the Kähler
moduli space but maintain the factorability of the closed string moduli space.
As such, the modified Kähler potential derived in (2.80) allows to compute the
Kähler metric in the same manner as equation (A.4) using the modified function
GT :

Ka =
3i

2

Ka
K
(
1 + 3

2
ε
) (C.1)

Kab = −3

2

1

K2
(
1 + 3

2
ε
)2

(
K(1 +

3

2
ε)Kab −

3

2
KaKb

)
, (C.2)

while the inverse metric in the presence of perturbative α′-corrections is given by:

Kab = −2

3
K
(

1 +
3

2
ε

)(
Kab − 3

tatb

K(1− 3ε)

)
. (C.3)
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Subsequently, relation (A.6) is modified as well in the Kähler moduli sector due
to the curvature corrections:

KabKb = −2ita
1 + 3

2
ε

1− 3ε
, (C.4)

which immediately implies the violation of the no-scale symmetry:

KabKaKb =
3

1− 3ε
. (C.5)

This set of relations for the Kähler moduli sector turned out to be crucial for the
computation of the F-term scalar potential computed in the next section.

C.2 α′-Corrected Scalar Potential

Next, we discuss the computation of the F-term scalar potential in full detail and
highlight some manipulations that help us to arrive at the more elegant bilinear
form of the scalar potential in equation (5.6). The philosophy used in section 5.1
consists in decomposing the F-term scalar potential in three separate terms and
write each term as a function of the (α′-corrected) axion polynomials in the
simplest form possible. Given that the Kähler potentials still factorise between
the Kähler moduli and complex structure moduli sector, the term containing the
derivatives of the superpotential can be written as,

∂αWKαβ∂βW = ∂TaWKTaT
b

∂
T
bW + ∂NKWKKL∂NLW + ∂NKWKKΛ∂UΛ

W

+∂UΣ
WKΣL∂NLW + ∂UΣ

WKΣΛ∂UΛ
W

= Kab(ρa − 1
2
ρ̃Ka)(ρb − 1

2
ρ̃Kb) +KabKacρ̃cKbdρ̃d

+KNLρ̂K ρ̂L +KNΛρ̂K ρ̂Λ +KΣLρ̂Σρ̂L +KΣΛρ̂Σρ̂Λ.
(C.6)

Inserting the expression for the inverse Kähler metric (C.3) on the Kähler moduli
space allows to simplify this relation to the expression in (5.1). Moreover, this
expression can be further rewritten as,

∂αWKαβ∂βW = Kabρaρb + 4
9
K2(1 + 3

2
ε)2Kabρ̃

aρ̃b + 1+6ε
1−3ε

(Kaρ̃a)2 + 1
3
K2ρ̃2 (1+ 3

2
ε)2

1−3ε

−4
3
ρ̃K

(
ImW + 1

6
ρ̃K + ρ̃Kε− ρ̂KnK − ρ̂ΛuΛ

) (1+ 3
2
ε)2

1−3ε

+KNLρ̂K ρ̂L +KNΛρ̂K ρ̂Λ +KΣLρ̂Σρ̂L +KΣΛρ̂Σρ̂Λ,
(C.7)

by eliminating ρat
a through the expression for ImW ,

ImW = ρat
a − 1

6
ρ̃K − ρ̃Kε+ ρ̂Kn

K + ρ̂ΛuΛ. (C.8)
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The second component (5.2) is a consequence of imposing the no-scale symme-
try in the complex structure moduli sector and the modified relation (C.5) in
the presence of perturbative α′-corrections. The third component (5.3) of the F-
term scalar potential results from the factorisation of the Kähler potentials (A.1)
for Kähler moduli and complex structure moduli, after which one uses the rela-
tion (A.6) for the complex structure moduli sector and the modified relation (C.4)
for the Kähler moduli sector. Then, we combine the second component (5.2) and
third component (5.3), upon multiplication by (1 − 3ε), to obtain a simplified
expression written entirely in terms of the axion polynomials,

(4− 3ε)|W |2 − 4
(
1 + 3

2
ε
)

[ReWta∂taReW + ImWta∂taImW ]− 4(1− 3ε)ImW (nLρ̂L + uΛρ̂
Λ)

= (4− 3ε)ρ2
0 + 9Kaρ̃aρ0ε− (Kaρ̃a)2(1 + 15

4
ε)− 9ε ImW

(
taρa − ρ̂KnK − ρ̂ΛuΛ

)
+ρ̃KImW

(
4
3
− 1

2
ε(1− 6ε)

)
.

(C.9)
Adding up the three components correctly, one can then deduce the final expres-
sion for the scalar potential including the perturbative α′-corrections, namely
equation (5.4), by manipulating the end result further and separating zeroth or-
der terms O(ε0), similar to the ones that appear in the inverse metric (3.29),
from higher order ε-corrections.

C.3 Alternative Computation of the ISD Scalar

Potential

In section 5.2 a positive semi-definite form of the scalar potential in the pres-
ence of ISD flux was used to extract the non-supersymmetric Minkowski vacuum
configuration in term of the axion polynomials. The precise form of this scalar
potential can be derived by a series of computations that start from the T-dual
Type IIB picture. In Type IIB the scalar potential associated to ISD flux vacua
is explicitly positive definite when expressed in terms of the background ISD G3

fluxes, see e.g. appendix A of [52],

VGKP = 1
24VM6

∫
M6

|G3+i?6G3|2
Im (τ)

= 1
2VM6

Im (τ)

∫
M6

(Re G3 − ?6Im G3) ∧ ?6(Re G3 − ?6Im G3),
(C.10)

with the three-form flux G3 = F3−τH3 and τ = C0 +i e−φ the (four-dimensional)
axio-dilaton. According the appendix A of [8] the Type IIB three-form flux can
be T-dualised to the closed string fluxes of Type IIA compactifications, when
one considers the following decomposition of the G3-flux in terms of harmonic
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three-forms,

G3 = − (e0 + Sh0, ea,−m,ma) ·


β0

βa

−α0

−αa

 . (C.11)

In order to evaluate the scalar potential for the ISD-flux background, one needs
to determine the Hodge duals of the harmonic three-forms [8, 10],

?6

(
βI

−αI

)
=M−1

(
αI
βI

)
. (C.12)

The transformation matrix M−1 can be further decomposed in terms of the
matrices R = Re (NIJ) and I = Im (NIJ),

M−1 =

(
I−1 −I−1R
−RI−1 I +RI−1R

)
=

(
I
−R I

)(
I−1

I

)(
I −R

I

)
,

(C.13)
which follow form the moduli-dependent matrix NIJ computed directly [10] from
a pre-potential F ,

NIJ = F IJ + 2i
(ImF)IKXK(ImF)JLXL

XK(ImF)KLXL
, (C.14)

where XK represent the homogeneous coordinates used to parameterise the cor-
responding moduli space. In the absence of perturbative α′-corrections one can
insert the tree-level pre-potential (2.17) for the Kähler moduli sector to obtain
the respective matrices, while the inclusion of the perturbative curvature correc-
tions requires us to use the modified pre-potential (2.79). In the latter case, the
resulting transformation matrix M−1 can be decomposed as

M−1 = −3

2
Qt · R−1 ·G−1 · R−1t ·Q, (C.15)

with R the axion rotation matrix,

R =


1
−bi δij

1
6
Kijkbibjbk −1

2
Kijkbjbk 1 bi

1
2
Kijkbjbk −Kijkbk δij

 (C.16)

and the lower order curvature corrections K
(1)
ab and K

(2)
a encoded in the matrix

Q,

Q =


1 0 0 −K(2)

a

0 δab −K
(2)
b −K(1)

ab

0 0 δab 0
0 0 0 1

 . (C.17)



C.3. ALTERNATIVE COMPUTATION OF THE ISD SCALAR POTENTIAL147

Furthermore, the symmetric matrix G−1 incorporates the curvature corrections
proportional to K(3) in the form of the parameter ε,

G−1 = 1
K(1+ 3

2
ε)




4 0 0 0

0 Kab 0 0

0 0 K2

9

(
1 + 3

2
ε
)2

0

0 0 0 4
9
K2
(
1 + 3

2
ε
)2
Kab


+ ε

1−3ε


9 0 0 9

2
Ka

0 −9tatb 3
2
Kta(1− 3ε) 0

0 3
2
Ktb(1− 3ε) −K2

4
(1− 3ε)2 0

9
2
Kb 0 0 9

4
KaKb




(C.18)
By using the Hodge duality relations (C.12) we can rewrite the ISD three-form
flux in terms of the matrices R and Q and the (modified) axion polynomials (3.27)
as follows,

−Re (G3) + ?6Im (G3) =


ρ0

ρa + 27ε
4(1−3ε)(1+ 3

2
ε)
Ka
K sρ̂0

−ρ̃− 6(1− 3
4
ε)

(1−3ε)(1+ 3
2
ε)
s
K ρ̂0

ρ̃a


t

· (R ·Q−1t) ·


β0

βa

−α0

−αa

 .

(C.19)
Next, we evaluate the expression of the scalar potential (C.10) for this flux back-
ground and use the Hodge duality relations for the harmonic three-forms (C.12),
such that a bilinear structure in terms of the axion polynomials emerges explicitly.
After the appropriate Weyl rescaling to 4d Einstein frame we obtain

VGKP = eKT+KQ


ρ0

ρa + 27ε
4(1−3ε)(1+ 3

2
ε)
Ka
K sρ̂0

−ρ̃− 6(1− 3
4
ε)

(1−3ε)(1+ 3
2
ε)
s
K ρ̂0

ρ̃a


t

·G−1·


ρ0

ρa + 27ε
4(1−3ε)(1+ 3

2
ε)
Ka
K sρ̂0

−ρ̃− 6(1− 3
4
ε)

(1−3ε)(1+ 3
2
ε)
s
K ρ̂0

ρ̃a

 .

(C.20)
with G−1 = K(1 + 3

2
ε)G−1. Note that this expression is equivalent to equa-

tion (5.18) upon rotation of the axion basis by the transformation matrix T,

T =


1 0 0 0
0 δba 0 0
0 0 0 −1
0 0 δab 0

 , (C.21)

which equally allows to switch between the flux quanta basis (e0, ea,−m,ma) and
(e0, ea,m

a,m).
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Appendix D

Toroidal Orbifolds and matter

Kähler Metrics

A typical set of backgrounds suited to test the ideas presented in chapter 6
consist of the orientifold version of T2 ×K3 (considered at an orbifold point in
moduli space) and toroidal orientifolds (or their Z2×Z2 orbifolded version) with a
factorisable ambient six-torus T6. Each of the three two-tori T2

(i) is parameterised

by periodic coordinates (xi, yi) ∼ (xi + 1, yi + 1) and characterised by a modular
parameter τi. The ambient space can be equipped with a set of basis three-forms
which splits up into a symplectic basis of ΩR-even (α0, β

j) ∈ H3
+(T 6/ΩR,Z) and

ΩR-odd (β0, αi) ∈ H3
−(T 6/ΩR,Z) three-forms:

α0 = dx1 ∧ dx2 ∧ dx3, β0 = −dy1 ∧ dy2 ∧ dy3,
β1 = dx1 ∧ dy2 ∧ dy3, α1 = dy1 ∧ dx2 ∧ dx3,
β2 = dy1 ∧ dx2 ∧ dy3, α2 = dx1 ∧ dy2 ∧ dx3,
β3 = dy1 ∧ dy2 ∧ dx3, α3 = dx1 ∧ dx2 ∧ dy3,

(D.1)

under the orientifold projection R : (xi, yi) → (xi,−yi). In this basis the holo-
morphic Calabi-Yau three-form Ω3 reads

Ω3 = (dx1 + iτ1dy
1) ∧ (dx2 + iτ2dy

2) ∧ (dx3 + iτ3dy
3)

= α0 − τ2τ3β
1 − τ1τ3β

2 − τ1τ2β
3 + iτ1τ2τ3β

0 + iτ1α1 + iτ2α2 + iτ3α3,
(D.2)

yielding the N = 2 Kähler potential Kcs = − log
(
i
∫

Ω3 ∧ Ω3

)
= − log(8τ1τ2τ3)

in terms of the modular parameters. The basis of ΩR-odd two-forms ωa ∈
H1,1
− (T 6/ΩR,Z) and their Poincaré dual ΩR-even four-forms ω̃a are given by

ωa = δaidx
i ∧ dyi, ωa ∧ ωb = Kabcω̃c, (D.3)
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with Kabc = K123 = 1 (and permutations thereof) the only non-vanishing triple
intersection numbers. In this basis the Kähler form J reads

J = i
3∑
j=1

dzj ∧ dz̄j (D.4)

Each volume of the three two-tori is measured by the geometric part of the
corresponding Kähler moduli and the overall volume of the internal space is the
product of the two-tori volumes, i.e. V = t1t2t3. The geometric part of the
complex structure moduli are given by the periods of CΩ3:

S? =

∫
Ωc ∧ β0 = ξ0 + i

e−D√
8τ1τ2τ3

, U?i =

∫
Ωc ∧ αi = ξ1 + i

e−D√
8τ1τ2τ3

τjτk.

(D.5)

with the compensator field C = e−D√
8τ1τ2τ3

following from the definition in the main
text. For the factorable toroidal orientifolds, the Kähler potential on the Kähler
moduli space and the complex structure moduli space are given respectively by
the well-known expressions:

KT = −
3∑

a=1

log
[
−i(T a − T a)

]
, KQ = − log

[
−i(S? − S?)

]
−

3∑
i=1

log
[
−i(U?i − U?i)

]
.

(D.6)

With each ΩR-even basis three-form (α0, β
j) in H3

+(T 6/ΩR,Z), we can
introduce its de Rahm dual ΩR-even three-cycle (ρ0, ρi):

ΩR− even three-cycle P.D. ΩR− odd three-cycle P.D.
ρ0 = π1 ⊗ π3 ⊗ π5 β0 σ0 = π2 ⊗ π4 ⊗ π6, α0

ρ1 = π1 ⊗ π4 ⊗ π6 −α1 σ1 = π2 ⊗ π3 ⊗ π5 β1

ρ2 = π2 ⊗ π3 ⊗ π6 −α2 σ2 = π1 ⊗ π4 ⊗ π5 β2

ρ3 = π2 ⊗ π4 ⊗ π5 −α3 σ3 = π1 ⊗ π3 ⊗ π6 β3

(D.7)

and repeat the exercise for their ΩR-odd counterparts, which provide four ΩR-
odd three-cycles (σ0, σi). The choice of the symplectic basis of three-cycles from
above also determines the Poincaré dual (P.D.) three-forms for each of the three-
cycles. A generic, factorisable three-cycle with topology S1 × S1 × S1 on T 6 can
now be decomposed in terms of this three-cycle basis:

Πfact
α = (n1

απ1 +m1
απ2)⊗ (n2

απ3 +m2
απ4)⊗ (n3

απ5 +m3
απ6)

= n1
αn

2
αn

3
α ρ0 + n1

αm
2
αm

3
α ρ1 +m1

αn
2
αm

3
α ρ2 +m1

αm
2
αn

3
α ρ3

+m1
αm

2
αm

3
α σ0 +m1

αn
2
αn

3
α σ1 + n1

αm
2
αn

3
α σ2 + n1

αn
2
αm

3
α σ3,

(D.8)

by virtue of the torus wrapping numbers (niα,m
i
α)i=1,2,3, which encode the one-

cycle geometry on the two-torus T 2
(i). As reviewed in section 2.6, four-dimensional
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type IIA orientifold compactifications have to be equipped with spacetime fill-
ing D6-branes wrapping such three-cycles fulfilling the special Lagrangian con-
ditions (2.64), such that their combined RR charges cancel the RR charges of
the O6-planes. More explicitly, the RR tadpole cancellation conditions 2.68, for
D6-branes on factorisable three-cycles read [44]∑

α

Nαn
1
αn

2
αn

3
α = 16 (D.9)∑

α

Nαn
1
am

2
αm

3
α = −16∑

α

Nαm
1
αn

2
αm

3
α = −16∑

α

Nαm
1
am

2
αn

3
α = −16

D.1 Matter Kähler Metrics on the T6/Z2 × Z2

orbifold

On the other hand, massless open string excitations arise at the intersection
points of two distinct D6-branes wrapping supersymmetric three-cycles and fill
out supermultiplets of the supersymmetry algebra generated by the mutually un-
broken supercharges. Furthermore, on toroidal orbifold backgrounds the Kähler
metrics for these open string states can be computed as a function of the closed
string moduli [100–103]. The type of matter (and subsequently the functional de-
pendence of the Kähler metrics) depends on the codimension of the intersection
Πα ∩ Πβ 6= 0 in the ambient space T 6:

(i) Codimension 3 intersection:
D6-branes wrapping the three-cycles that coincide along each one-cycle on
T 2

(i) give rise to one N = 1 chiral supermultiplet Φi per two-torus. The
complex scalar within such a multiplet consists of the three-cycle deforma-
tion modulus complexified by the Wilson line along the S1 cycle on T 2

(i), as

described in equation (2.69). The three chiral N = 1 supermultiplets trans-
form in the adjoint representation of the gauge group and combine with the
N = 1 vector multiplet into an N = 4 vector multiplet, compatible with
the maximal number of supercharges preserved by this D6-brane configu-
ration. Two examples of such highly (super)symmetric configurations are
depicted in figure D.1.

The Kähler metric for an open string modulus Φi along two-torus T 2
(i) can

be written (at leading order) as a rational function of the closed string
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π3

π4
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(3)
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π6
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π1

π2

T 2
(2)

π3

π4

T 2
(3)

π5

π6

Figure D.1: D6-brane configurations with codimension 3 intersection preserve a

local N = 4 supersymmetry: an example of three-cycles with torus wrapping

numbers (1, 0; 1, 0; 1, 0) (above) and an three-cycle example with torus wrapping

(1, 0; 0, 1; 0 − 1) (below). The O6-planes are represented by the dashed, green

lines.

moduli:

K
ΦiΦ

i = − δaiδΛi

(T a − T a)(U?Λ − U?Λ)

∣∣∣∣(nj + i τjm
j)(nk + i τkm

k)

ni + i τimi

∣∣∣∣ , (D.10)

where the last term captures the model-dependent contribution determined
by the three-cycle position. In this respect, the model-dependent part of
the Kähler metric will be constrained by the special Lagrangian condi-
tions (2.64) imposed on the wrapped three-cycle. More precisely, for the
two examples in figure D.1, the Kähler metrics for the two distinguishable
D6-brane configurations take the form:

ex. 1: K
ΦiΦ

i = −1
(T i−T i)(U?i−U?i)

, ex. 2: K
ΦiΦ

i =


−1

(T 1−T 1)(S?−S?)
(i = 1),

−1
(T 2−T 2)(U?3−U?3)

(i = 2),
−1

(T 3−T 3)(U?2−U?2)
(i = 3).

(D.11)
The main conclusion that one can draw from these examples is that the
Kähler metric for a deformation modulus Φi is a homogeneous function of
degree −1 in the Kähler moduli and of degree −1 in the complex structure
moduli (including the dilaton). This statement is true in general for the
Kähler metric (D.10), since the model-dependent part is independent of the



D.1. MATTER KÄHLER METRICS ON THE T6/Z2 × Z2 ORBIFOLD 153

Kähler moduli and a homogeneous function of degree zero in the complex
structure moduli (upon inclusion of the dilaton).1

(ii) Codimension 5 intersection:
D6-brane stacks wrapping two distinct three-cycles Πα and Πβ that coincide
on a one-cycle S1 along one of the three two-tori and intersect at a point
along the remaining four-torus, give rise to a non-chiral pair of N = 1
chiral supermultiplets. The chiral multiplets transform in bifundamental
representation and are each others conjugate, such that they combine into
a N = 2 hypermultiplet. This feature is a remnant of the local N =
2 supersymmetry preserved by the D6-brane configuration, for which an
explicit example is presented in figure D.2.

T 2
(1)

π1

π2

T 2
(2)

π3

π4

T 2
(3)

π5

π6

Figure D.2: D6-brane configurations with codimension 5 intersection preserve a

local N = 2 supersymmetry. The O6-planes are represented by the dashed, green

lines.

The Kähler metric for such an N = 2 hypermultiplet is given (at leading
order) by a (non-rational) function of the geometric part of the closed string
moduli:

Kαβ =
|ni + i τim

i|√
(U?Λ − U?Λ)(U?Σ − U?Σ)(T j − T j)(T k − T k)

, (D.12)

where (ni,mi) denote the wrapping numbers along the two-torus T 2
(i) where

the two three-cycles coincide on an S1. The Kähler metric allows for a fac-
torisation in terms of the complex structure moduli and the Kähler moduli,
such that it is a homogeneous function of degree −1 in the complex struc-
ture moduli (upon inclusion of the dilaton) and a homogeneous function
of degree −1 in the Kähler moduli. This case also applies to the Kähler
metrics for chiral matter in the symmetric or antisymmetric representation

1The same scaling properties can be found in the Kähler metrics for the deformation moduli of

non-factorisable three-cycles.
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located at the intersection of a D6-brane with its orientifold image, when-
ever the three-cycle is parallel (or orthogonal) to the O6-plane along one
single two-torus.

(iii) Codimension 6 intersection:
D6-brane stacks wrapping two distinct three-cycles Πα and Πβ that intersect
point-wise in the ambient space provide for a chiral N = 1 supermultiplet
at each independent intersection point of the six-dimensional compactifi-
cation space. A simple example of a D6-brane configuration for which the
intersection set has codimension 6 is presented in figure D.3. The chiral
multiplet transforms in the bifundamental representation and its Kähler
metric takes the following form:2

Kαβ =
1

4

√
(S? − S?)(U?1 − U?1)(U?2 − U?2)(U?3 − U?3)

∏
i

C
(i)
αβ

(T i − T i) 1
2

(D.13)

with the model-dependent coefficients C
(i)
αβ per two-torus defined as,

C
(i)
αβ =

(
Γ(|ϑi|)

Γ(1− |ϑi|)

)λi
. (D.14)

The parameter ϑiαβ, chosen in the range 0 < |ϑiαβ| < 1, measures the angle
between the two intersecting one-cycles on two-torus T 2

(i) (in units of π),

while the constant λi = ±1 takes into account the sign of ϑiαβ.

In this case, the Kähler metric factorises into a homogeneous function of
degree −1 in the complex structure moduli (upon inclusion of the dilaton)
and a homogeneous function of degree −3

2
in the Kähler moduli. The

model-dependent coefficients C
(i)
αβ are homogeneous functions of degree 0

in the complex structure moduli and the Kähler moduli. When a three-
cycle intersects with its orientifold image at three non-trivial angles, the
corresponding Kähler metrics for the chiral matter states in the symmetric
or antisymmetric representation take the same form as (D.13).

2In the literature on Kähler metrics one might also stumble on expressions in which the ex-

ponents of the Kähler moduli obtain an additional contribution from the angles ϑi between

the two three-cycles. The (potentially) modified exponents are related to a (potential) four-

dimensional field redefinition of the Kähler moduli to arrive at their proper supergravity

equivalents. Given the confusion within the literature itself about these ϑi-dependent correc-

tions and the fact they do not alter the overall scaling properties of the Kähler metrics, we

have decided not to take them into account explicitly.
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T 2
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Figure D.3: D6-brane configurations with codimension 6 intersection preserve a

local N = 1 supersymmetry. The O6-planes are represented by the dashed, green

lines.
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