

UNIVERSIDAD AUTÓNOMA DE MADRID

Grado en Ingeniería de Tecnologías y Servicios de
Telecomunicación (EUR-ACE®)

ESCUELA POLITÉCNICA SUPERIOR

TRABAJO FINAL DE GRADO

Transport API development and validation for the Netphony
environment

Rodrigo José Jiménez Ríos

Junio 2018

Transport API development and validation for the Netphony
environment

Autor: Rodrigo José Jiménez Ríos

Tutor: Víctor López Álvarez

Ponente: Jorge López de Vergara Méndez

RESUMEN

Este proyecto final de grado, contribuye al desarrollo e implementación del servicio de conectividad y el
servicio de topología de la Transport API (T-API) en el conjunto de módulos Netphony, desarrollado por
Telefónica I + D, y su posterior validación. Netphony sigue una arquitectura Application-Based Network
Operations (ABNO) que se puede definir como una arquitectura basada en la colaboración entre diferentes
elementos, entre los cuales los principales son el controlador ABNO y el PCE, para procesos de
automatización en la gestión de una red, como configuración de rutas LSP, lo que hace que la red sea más
escalable y dinámica. Este es el concepto que se persigue con las redes definidas por software (SDN), para
lograr una red totalmente programable y la capacidad de modificar cualquier aspecto de la red
automáticamente.

Las pruebas de validación y los test de rendimiento con el controlador de Netphony, se han realizado en un
entorno emulado de nodos GMPLS, con OSPF y RSVP para llevar a cabo la configuración de los LSP entre
los nodos, conformando así el entorno emulado que actúa como una simulación de red de transporte óptico
de Telefónica España.

El estándar T-API cumple los requisitos para convertirse en el NBI (North Bound Interface) del Netphony
como orquestador SDN. Las características principales de este estándar es su simplicidad y usabilidad para
extender su adopción en diferentes tipos de redes de transporte óptico.

Una primera parte de este trabajo consiste en realizar una documentación de las tecnologías usadas y del
estado actual de las mismas, para posteriormente presentar como se ha integrado la T-API en el controlador
Netphony, casos de uso y definición de los test de validación. Finalmente se ha procedido a desarrollar y
compilar el código implementado, configurar la creación de LSPs y realizar una evaluación de rendimiento.

PALBRAS CLAVE

Multi-layer networks, ABNO, PCE, SDN, control plane, programmability, Transport-API, Netphony.

ABSTRACT

This final degree project contributes to the development and implementation of the connectivity service and
the topology service of the Transport API (T-API) in the set of Netphony modules, developed by Telefónica
I + D, and then the validation of that. Netphony follows an Application-Based Network Operations
(ABNO) architecture which can be defined as an architecture based on collaboration between different
elements, for automation processes in the management of a network , as configuration of LSP routes, which
makes the network more scalable and dynamic, where the main elements are the ABNO controller and the
PCE. This is the purpose with software defined networks (SDN), to achieve a fully programmable network
and the ability to modify any demand of the network automatically.

Validation and performance tests with the Netphony controller have been performed in a GMPLS nodes
emulated environment, with OSPF and RSVP to carry out the configuration of the LSPs between the nodes,
thus conforming the emulated environment of Netphony GMPLS.

The T-API standard meets the requirements to become the NBI (North Bound interface) of the Netphony.
The main characteristics of this standard is its simplicity and usability to extend it in different types of
transport networks. This work focuses on the implementation for optical networks.

Documentation of the technologies used and the current state of the same is the first part of this work, to
then present how the T-API has been integrated into the Netphony controller, use cases and definition of
the validation tests. Finally, the implemented code has been compiled, the creation of LSPs has been
configured and a performance evaluation has been carried out.

KEY WORDS

Multi-layer networks, ABNO, PCE, SDN, control plane, programmability, Transport-API, Netphony.

ACKNOWLEDGEMENTS

First of all, I want to thank my family. To my parents to give me the opportunity to study the university
career I wanted, thank for the effort to give me the best education and for being patient with me, and to my
sister for always support me in everything I have done.

Second, I want to thank my friends at the university, Jaime Aragón, Daniel Martin, Manuel Iglesias y Juan
de Santiago, for making my university life easier and more fun. For helping me and being great practice
partners.

I wanted to thank my supervisor, Víctor López, for trusting me and giving me the opportunity to carry out
this project and be a reference for me professionally. I will not forget it.

Thanks to my internship colleagues in Telefonica I+D, Nico and Arturo. It has been a pleasure to be able
to work with all of you.

TABLE OF CONTENTS

1. Introduction ... 17

1.1. Motivation.. 17

1.2. Objectives .. 18

1.3. Structure ... 18

2. Software-Defined Networking for Optical Networks.. 19

2.1. SDN architecture based control ... 19

2.2. Distributed GMPLS Control ... 22

2.3. ABNO... 23

2.4. Conclusion ... 26

3. Transport API ... 27

3.1. API Concept ... 27

3.2. RESTCONF introduction .. 28

3.3. YANG MODELS ... 29

3.4. Transport API .. 30

3.5. Multi-domain abstraction model .. 33

3.6. Conclusion ... 34

4. Netphony Environment... 35

4.1. Netphony: an ABNO implementation ... 35

4.2. Netphony components and virtualization environment ... 38

4.3. Conclusion ... 41

5. Tests definition ... 43

5.1. Experimental Scenario ... 43

5.2. Auto-generated Swagger code ... 44

5.3. Integration on Netphony .. 45

5.4. Use definition and workflow ... 45

5.5. Test validation definition .. 50

5.6. Conclusion ... 50

6. Experimental validation ... 51

6.1. Project compilation ... 51

6.2. Creation of requests and launching the ABNO... 51

6.3. Tests validation... 53

6.4. Summary of the results .. 56

6.5. Conclusion ... 58

7. Conclusions and future work ... 59

8. References .. 61

9. Annexes ... 63

9.1. Implementation of methods and explanation .. 63

9.2. PCE and nodes logs.. 64

9.3. Python Scripts... 70

LIST OF FIGURES

Figure 1 SDN and NFV comparasion .. 20

Figure 2 SDN Architecture... 21

Figure 3 Netphony in SDN architecture .. 22

Figure 4 ABNO architecture modules .. 24

Figure 5 T-API overview elements.. 31

Figure 6 T-API services... 31

Figure 7 Abstracted Hierarchical Network Topology .. 33

Figure 8 Netphony libraries .. 34

Figure 9 ABNO and Netphony components comparison .. 34

Figure 10 VMWare emulated environment .. 34

Figure 11 Netphony ABNO packages .. 34

Figure 12 NEtphony Topology packages ... 34

Figure 13 Netphony GMPLS emulator packages ... 34

Figure 14 TdESSON emulated environment .. 34

Figure 15 Netphony ABNO workflow... 34

Figure 16 LSP reservation workflow... 34

Figure 17 WorkflowCOP classes ... 34

Figure 18 Topology discover workflow .. 34

Figure 19 Request management connectivity service ... 34

Figure 20 Wireshark capture protocol messages ... 34

Figure 21 Cumulative histogram with 3000 LSPs created in Telefónica of Spain topology.. 34

Figure 22 Cumulative histogram with 3000 LSPs deleted in Telefónica of Spain topology.. 34

 xiv

LIST OF ACRONYMS

API Application Programming
Interface

ATM Asynchronous Transfer Mode

DXC Digital Cross Connect

E2E End-to-End

EP End Point

ERO Explicit Route Object

GMPLS Generalized Multiprotocol Label
Switching

IGP Internal Gateway Protocol

IP Internet Protocol

LER Label Edge Router

LSP Label Switch Path

LSR Label Switch Router

ML Multi-Layer

MPLS Multiprotocol Label Switching

NBI North Bound Interface

NE Network Element

NFV Networks Function Virtualization

NMS Network Management System

NNI Network to Network Interface

ONF Open Network Foundation

OTN Optical Transport Network

OSPF Open Shortest Path First

OXC Optical Cross Connect

PCE Path Computation Element

PCEP Path Computation Element
Communication Protocol

PXC Photonic Cross Connect

QoS Quality of Service

RSVP ReSerVation Protocol

RSVP-TE ReSerVation Protocol Traffic
Engineering

SDH Synchronous Digital Hierchary

T-API/TAPI Transport API

TE Traffic Engineering

TED Traffic Engineering Database

TID Telefónica I+D

UNI User Network Interface

WDM Wavelength-Division
Multiplexing

DWDM Dense Wavelength-Division
Multiplexing

 xvi

Transport API development and validation for the Netphony environment 17

1. Introduction

1.1. Motivation

At first, I would like to start showing the relevance to work in a technological environment as is the
Telefonica I+D premises, involving in European projects and working with highly skilled people. This has
helped me to improve as professional and in my personal growth. Thanks to this experience I have learned
to develop further in some programming language as Python, Java, REST API and command console of
Linux, hand-in-hand with truly experts. In other hand, I also have learned to draft technical related
documents with several themes (e.g. SDN, IP/Optical networks, techno-economics studies...etc.) inside in
a European framework and that is the main reason why I feel comfortable drafting this in English. For all
the reasons mentioned above, the opportunity to make a scholarship in TID has helped me to focus in a
more precise and concrete way my professional orientation, approaching technologies related to transport
networks, SDN, NFV and virtualization, in a company which was awarded, among other prizes, for the best
NFV/SDN solution at LTE & 5G World Awards in 2016 thanks to the work carried out on SDN
technologies.

Nowadays, conventional networks have rules already integrated in the proprietary switch firmware, which
tells it where to transfer the packets, treating all packets in the same way. In the business world there are
intelligent switches designed to treat different types of packets differently, however, these switches can
become very costly. These networks are a key element when planning IT architecture in companies. Its
optimization is fundamental to ensure that the different IT resources work in a synchronized way. However,
the difficult in the operation and management is increasing in the new scenario of exponential growth of
data, business mobility and consumption of online apps. Network virtualization is the next step in network
evolution.

Software Defined Networks (SDN), is a new paradigm with the solution to address the issue in the creation
of networks which the control and management are given to a software application, called orchestrator or
controller, thus detaching itself from the hardware. This not only configures, but also centrally programs the
entire structure without needing to go node by node. Some of the main advantages of a virtualized network
are:

• ability to dynamically manage bandwidth;

• greater agility in the deployment and control of networks;

• monitoring of networks and users;

• analytics.

The SDN is just one step more towards the network softwarization, where all the components software-
defined are virtualized and separated from physical hardware (e.g. computing, storage, networking and
security).

Netphony is a suite of modules developed by Telefonica I + D and forming an SDN tool following the
ABNO (Application-based network operations) model. Netphony suit is composed by several modules, all
of them, open source and distributed in repositories of Github. The modules are Topology Module, Path
Computation Element, Provisioning Manager, ABNO Controller, BGP-LS Peer, Netphony GMPLS
emulator. Here, therefore, lies the new hope for multi-vendor interoperability in multi-tenant network
architectures where Telefonica pretends to be a referent with the Netphony. The Netphony has been
involved in European projects as ACINO (Application-Centric IP/Optical Network Orchestration) which
main goal is to develop and demonstrate a modular open-source orchestrator for IP/Optical networks,
filling the gap between large applications and the control solutions of current transport networks in terms
of bandwidth and also according to the others parameters that would benefit the treatment at the IP and at
the optical layer.

 18

As already mentioned, the best solution is to use Software Defined Networks with the main purpose of
facilitating the implementation of network services in a more dynamic way. In this type of networks,
everything revolves around the separation of the data forwarding plane and the control plane. To perform
this process, it is not new in transport networks, based on application programmer’s interfaces (APIs) for
the network control. The Transport API (T-API) is an interfaces that pursues the following network control
services: Topology Service, Connectivity Service, Path Computation Service, Virtual Network Service and
Notification Service. The T-API meets the requirements to become the North Bound Interface (NBI) of
the ABNO controller of the Netphony. The main features of this standard are its simplicity and usability to
extend its adoption.

1.2. Objectives

The purpose of the project is divided in the next objectives:

1. Study and analyse the Netphony framework, its modules and tools to development and extend its
functionality.

2. Study and analyse the state of the art of the PCE and SDN control for optical transport networks.

3. Extend the functionality of the Netphony framework to support the Transport API.

4. Demonstrate and experiment the Transport API implementation with real equipment and an
emulated environment.

1.3. Structure

The following milestones are defined for the elaboration of the previously mentioned objectives. The
duration of each milestone can be affected by the different problems that may arise during the development
of the project, so the working times are indicative:

1. Study and analyse the state of the art of the SDN, the ABNO architecture and the
Transport application programmer’s interface. (1 week)

2. Understand and familiarize with the previous tools for the project and the development
environment: Eclipse, Maven, Git, Travis and Swagger (1 week).

3. Understand and familiarize with the environment and the repositories of the Netphony
suite, as well as the operation based on the ABNO model and the different plugin
developed so far. (2 weeks).

4. Download, compile and run the self-generated code for the Transport API and integrate
it into Netphony Project (4 weeks).

5. Test the integration and carry out the implementation of the necessary methods and
classes as well as the realization of the query (4 weeks).

6. Performance evaluation with functional tests with different network requirements and
different network environment. (2 weeks).

7. Efficiency tests (2 weeks).

8. Writing the project for delivery to the school (4 weeks). Using the work done during the
project will write the document for the defence.

Transport API development and validation for the Netphony environment 19

2. Software-Defined Networking for Optical Networks

In this section we will first make a brief introduction to the SDN and the motivation to deploy them, the
architecture of this type of networks that explains the main key of this model, which consists of separation
of the data forwarding plane and the control plane. Next, GMPLS [1] protocol as an extension of MPLS is
going to be discussed, its advantages and the great benefits it brings to the network, for then discuss about
the Netphony emulated environment acting as a transport network emulator. After is going to be presented
the PCE-GMPLS based control as a communication between the PCE and the GMPLS emulated network
to calculate the route between nodes or to create remotely the LSP (Label Switch Path) [2], depending the
PCE mode is being used. Finally, the ABNO [3] (Application-Based Network Operations) is going to be
presented as a functional architecture, is not a software design, offering interoperability between
implementations of key components, and easy interaction with the applications and with the network
devices.

2.1. SDN architecture based control

Software-Defined Networks (SDN) has been created with the main objective to have an absolute
programmability of the network and the ability to modify any aspect of its operation automatically. The
SDN concept is based on the idea of decoupling the control and data plane. This is not a new concept cause
this concept is inherent to the optical networks using out-of-band channels to carry the control protocols
since the beginning. Network Management Systems (NMS) can act in a similar way as controller of the
network too, configuring and maintaining the optical equipment, but not in a real-time way and this
communication between the network and the NMS was proprietary. Thus, the expansion of SDN must go
hand in hand with the use of open and standard interfaces to allow interoperability.

The objective with SDN is to simplify the operation and costs of network management. The current
network, which is a very static network, will evolve into an intelligent network, being scalable and
reprogrammable. The need for SDN implementation, increasingly to the great operators who have adopted
this network architecture design, is to be prepared for the explosion of data traffic led by video, cloud
services, etc. In fact, in the last two Mobile World Congress the main topics were SDN and NFV (Networks
Function Virtualization) [4], and how to make them a reality. Before continuing with the advantages of
SDNs, a brief explanation is presented to contextualize what NFV is and the differences between NFV and
SDN. As Figure 1 shows, SDN's general objective is to enable IT managers to respond quickly to business
needs, through centralized software-based control, while NFV (Network Functions Virtualization) was
developed by operators and aims to accelerate the deployment of new services (NAT, firewall, IPS, DNS,
increased cache, etc.)

 20

Figure 1 SDN and NFV comparison

The great advantages of SDN is that it maximizes network flexibility, performance, scalability and quality
and all this can be done without human intervention, since the network allows applications to request
services through API and it is the network that in turn informs new applications.

The SDN architecture, specified by the ONF [5] (Open Networking Foundation), which is a non-profit
industrial consortium which currently leads the evolution of SDN services in addition to performing a
standardization work, considers the following layers at a high level. Figure 2 shows the SDN architecture
and the division on the different layers based on the restriction of the ONF.

• Infrastructure layer or data plane. It is formed by the nodes of the network and in this layer only
the hardware that composes the nodes is considered, not the protocols they contain. These physical
devices must have installed the necessary support to establish communication with the controller,
such as the OpenFlow protocol.

• Control layer or control plane. In the control layer is the controller or controllers, responsible for
maintaining and managing network intelligence. They communicate with the infrastructure layer
through some protocol such as OpenFlow and with the application layer through API.

• Application layer. In the application layer, the behaviour of the network is controlled and it is the
highest-level layer. To carry out this management, the controller's API, used by the user or by a
Software Orchestrator, is used.

Transport API development and validation for the Netphony environment 21

Figure 2 SDN Architecture

However, it should be noted that most of the SDN solutions that are available today in the market are based
on a single domain and are aimed at a single provider. This can not be a case of real use, since the networks
are composed in combinations of multiple technologies, with multiple domains and the solutions should be
oriented to different providers being open-source solutions. On the other hand, in this type of SDN
architectures, it is possible to deal with multiple South Bound Interfaces (SBI) such as, for example, the
OpenFlow [6] or GMPLS protocols, of which we have already mentioned.

As a solution to this, the ONF proposes hierarchical architectures that fit a multi-vendor / multi-domain
scenario, with several SDN controllers coexisting with an SDN orchestrator over them.

In an architecture of this type an SDN Orchestrator would be connected to SDN controllers of different
domains, communicating with them through North Bound Interfaces (NBI) and in turn these, with their
corresponding network through SBI. The implementations of this type of orchestrators depend on the
provider, but there are already open source approaches such as ODL, ONOS [7] or the one that this work
deals with, Netphony whose implementation is being carried out in Telefonica I + D.

Following these premises and knowing that an SDN controller should be focused on interoperability with
several domains and several providers, the Netphony suite of modules, which will be discussed later, is open
source and has implemented several NBI, such as COP, IETF, UNIFY or T-API. In this work, the NBI T-
API has been implemented and then the following Figure 3 tries to show the correlation of the different
elements of the SDN architecture model proposed by the ONF, with the elements that will be discussed in
this paper: scripts generated in python acting as an application plane generating the requests through HTTP
and sending them to the plane control through the T-API, where the Netphony will be, which will process
them thanks to, among other services, the connectivity service and the topology service and to the PCE for
the calculation of the routes. Finally, for the establishment of the connections between the nodes of the
GMPLS emulated plane, PCEP messages will be used. The emulated GMPLS environment can not be
considered within the pure control plane, since there is communication between the nodes emulated by
RSVP messages, which is why it is considered to have some intelligence.

 22

Figure 3 Netphony in SDN architecture

2.2. Distributed GMPLS Control

Generalized Multi-Protocol Label Switching (GMPLS) is an extension of the MPLS protocol (MultiProtocol
Label Switching), before presenting GMPLS the operation and objectives pursued by MPLS will be briefly
described [9]. The initial objective of MPLS was to provide some of the characteristics of networks oriented
to connection to non-connection-oriented networks, thus allowing a single IP network to offer all kinds of
services. MPLS combines the advantages of intelligent level 3 routing with fast level 2 switching (IPv4 and
IPv6), using packet switching by a small fixed length label, achieving greater performance in the transport
of IP packets. This label is assigned to the package following criteria such as the destination address, service
type parameters or other criteria. GMPLS is an evolution of MPLS that supports not only packet switching,
but also switching over time, wavelength and optical fibers. GMPLS covers, in addition to IP routers and
ATM switches, switching devices such as: DXC (Digital Cross Connect), OXC (Optical Cross Connect) and
PXC (Photonic Cross Connect). For this, GMPLS extends basic functions of the traditional MPLS and, in
some cases, adds new functionality. These adaptations have led to the creation of G-LSP (Generalized LSP),
also affecting the routing and signalling protocols for activities such as: label distribution, traffic engineering,
and protection and restoration of links.

Thanks to GMPLS, which adds additional information to the IGP protocols, such as OSPF [8] (Open
Shortest Path First), are able to provide information about the topology and availability of optical resources
of the network. Routing algorithms based on restrictions are considered by GMPLS to use the topological
information and available resources to calculate paths through the network and make optical connections.
Once a path is selected, GMPLS extends the protocols for signalling and traffic engineering, such as RSVP
(ReSerVation Protocol), for the creation of the LSPs along the optical network. These protocols are used to
establish, modify, eliminate or recover the information of the LSP.

Finally, it should be noted that the great utility of GMPLS is based on the ability to offer a rapid provision
of services, at any time, with any QoS and with any destination. In addition, modern networks are gradually

Transport API development and validation for the Netphony environment 23

evolving to a transport network model with only two layers (IP and WDM), thus eliminating the complex
transport network model of end of the nineties (ATM, SDH).

To perform the tests within a GMPLS environment and to carry out the creation of LSP with the Netphony
Controller, an emulated environment of GMPLS nodes has been generated. This emulated environment
supports multilayer scenarios and consists of the ABNO controller and a set of Java-based libraries that
allows the implementation of a GMPLS control plane, so we refer to this architecture as the Netphony
GMPLS emulated environment acting as a transport network emulator. It has an OSPF-TE daemon to send
and receive the packets and an RSVP daemon to be able to carry out the configuration of the LSPs between
the emulated nodes. This emulated network, in order to communicate with the PCE (Path Computation
Element), maintains a connection through PCEP (Path Computation Element Protocol) and that if used in
stateless mode, it will only be used for route queries, while if it is used in stateful mode it can be used for
remote configuration of LSPs. Each node of the optical emulation is based on a Java implementation to
emulate a transport node with GMPLS capabilities, with RSVP-TE processes and based on OSPF-TE, in
addition to the PCEP interface.

2.3. ABNO

Nowadays, the networks integrate multiple technologies that allow offering a variety of services adapted to
the characteristics and demands of different applications. There is an increase in traffic due to the new
services offered by the Internet, which demand connectivity, reliability and resources in a range of network
technologies from the IP / MPLS layer to the optical layer. That is why during the last years a great effort
has been made in the definition of the control plane for transport networks. However, when there are several
manufacturers and technologies, the interoperability between the different domains or layers becomes
complicated. An important point to focus on is how to manage the control plane. As there is so much
heterogeneity in technologies, defining an automation of the control plane is essential to avoid possible
problems and reduce the operating costs of the network (CAPEX and OPEX). From the IETF, the
Application-Based Network Operations (ABNO) architecture is proposed, it is not a software design, which
allows operations to be carried out automatically, which in today's non-automated networks require manual
intervention. ABNO can provide the following types of service to applications: Optimization of traffic flows
between applications, remote control of the components of the network, CDN (Content Delivery Network)
interconnection, coordination of network resources and VPN (Private Virtual Networks).

Then, the ABNO is a network architecture composed of several modules and technologies that gather
information about the topology and the resources available on the network, with the aim of providing routes
for traffic and reserving the necessary resources for them. ABNO can be seen as a collaboration between a
series of existing elements and new architectural elements that are coordinated to manage connections within
a network in an optimal and automatic way. The key component in the ABNO architecture is the Path
Computation Element (PCE), which is responsible for computing the routes and is also extended to provide
policies and restrictions in the calculation of them. This section describes the ABNO architecture, its
components and the connection between them with particular emphasis to the PCE based on the GMPLS
control.

Figure 4 shows the ABNO architecture modules. The main component of the architecture is the ABNO
controller and is responsible for managing, controlling and organizing the workflows and calling the
necessary components in the correct order, depending on the action to be taken at each moment.

 24

Figure 4 ABNO architecture modules

2.3.1. NMS/OSS/Application Services

NMS (Network Management System) or OSS (Operations Support System) can be used to control, operate
and manage a network within the ABNO architecture, to issue high-level service requests to the ABNO
controller. In the case of this work, as will be explained later, this component has been emulated by Python
scripts that generate such requests. Finally, the NMS and the OSS can use an interface to interact with
network elements within the network, to communicate with the SDN controller. In other hand, services in
the ABNO architecture may be requested by applications (e.g. a program that runs on a host or server
providing services to a user) and are grouped in the Application Service Orchestrator concept.

2.3.2. ABNO Controller

The main gateway to the network for the NMS, OSS and the application services coordinator is the ABNO
controller. This communication is for the provision of functions and network coordination. Based on the
requirements and restrictions of the application, the ABNO controller governs the behavior of the network
by calling the different components in the correct order.

2.3.3. PCE-GMPLS based control

The PCE (Path Computation Element) is a fundamental component defined by the IETF inside of the
ABNO architecture. The PCE is a component responsible for the calculation of routes based on the state
of the network and can apply certain restrictions in its calculations. It was developed for the calculation of
paths in MPLS and GMPLS networks. The ABNO architecture includes a series of databases that contain
the necessary information for the system. The two main ones are the Traffic Engineering Database (TED)

Transport API development and validation for the Netphony environment 25

and the Label Switched Path Database (LSP-DB). The TED stores the information of the resources of the
network indicating which are available and which are not and can contain information about metrics,
bandwidth capacity of the links, etc.

The TED can be built or updated by means of direct requests through the Network Management System
(NMS) or through routing messages read directly from the network. The LSP-DB stores information about
the LSPs that are active in the network or that may be established. This database is used only when there is
an active/stateful PCE, that is, PCE capable of managing the creation of LSP autonomously.

The PCE follows a modular architecture and allows to add customized algorithms. The PCE has also stateful
and remote initiation capabilities. The protocol that allows communication between PCE and Path
Computation Client (PCC) is the Path Computation Element Protocol (PCEP). The PCE computes the
routes based on its TED that is updated with the information sent by the routing protocols. This update is
not instantaneous, which causes that the TED may be out of date with respect to the information of the
control plane.

2.3.4. Policy Agent

Policy Agent is a component that is configured by the NMS / OSS with the policies and restrictions. The
Policy Agent is responsible for propagating those policies into the other components of the system.

2.3.5. Interface to the Routing System (I2RS) Client

The routing system interface (I2RS) provides a way to access both for read and for write, routing status, and
policy information on routers in the network. The objective of the client is to manage requests for
information through several routers (each of them running an I2RS Agent) and to coordinate the
configuration of the status to / from those routers.

2.3.6. OAM Handler

The OAM Handler (Operations, Administration and Maintenance Handler) basically performs a monitoring
function, that is, Monitoring Service, reporting problems in the network and also, detecting faults or
incidents and reacting to them. The OAM Handler receives the alerts and acts activating the necessary
components to recover the services that had been established by the ABNO Controller.

2.3.7. Databases

Several databases are included in the ABNO architecture that contains information used by the system. The
TED (Traffic Engineering Database) and LSP-DB (LSP Database) are the two main databases. The TED
contains information about the network, relative the possibility to improve the network with capability data
such as bandwidth or status information. The main objective is to provide information to the PCE to
compute the route based on it. In the other hand, the LSP-DB refers to the information about the LSPs that
have been set up in the network, that is, the routes created, the resources used by the LSPs. The main
objective of the LSP-DB within the ABNO architecture is to improve the planning and optimization of
LSPs. As is mentioned above, the stateful PCE is the primary consumer of this database.

2.3.8. ALTO Server

The main purpose of the ALTO server is to provide network information to the application layer based on
abstract maps of a network giving a view of the locations of the nodes and the costs of the routes between
them. An abstract view of a single node of a network consists of two maps: a network map and a cost map.
The selection criteria of the Application Services Coordinator to choose between two locations may depend
for instance on information such as the width of maximum band, the minimum traffic between domains,
the lowest cost, etc. Without going into greater detail about this element of the ABNO architecture, the
purpose of the ALTO Server is explained.

 26

2.3.9. VNTM

The VNTM could be defined simply as a set of LSPs in a lower layer network than the ABNO Controller
is installed, in such a way as to simplify the management of routes in the upper layer, configuring or deleting
LSPs in this lower layer and announcing the changes in the upper layer.

2.3.10. Provisioning Manager

The Provisioning Manager deals with the requests for establishment of the LSPs giving instructions to the
different elements of the control plane for the correct configuration of the requests

2.4. Conclusion

As a conclusion, in this section an introduction to the concept of SDN has been shown, detailing the
reasons why it is necessary to create this type of networks and the objectives and advantages pursued by
this model, as well as a clear structure in which the separation of the control plane and the data plane is
clear. The ways of interacting between the different layers have been also presented. Next, due to the need
of SDN structures oriented to several domains and several providers, the Netphony modules suite has
been presented and also an overview has been given correlating the elements of a general SDN structure
with the elements used in this work: The requests generated by Python scripts, the Netphony services, the
T-API as NBI and the GMPLS emulated environment as a mixed model of data plane and control plane.
Due to the importance of understanding this emulated environment, a section has been dedicated to
explain the MPLS and GMPLS protocol and then an explanation of how the communication between the
emulated GMPLS nodes is established.

Finally, the ABNO architecture has been introduced, describing a functional architecture through which a
controller can be implemented based on the network operations and the benefits that this brings,
explaining each of its parts and taking advantage to relate them to the different modules of the Netphony.

Transport API development and validation for the Netphony environment 27

3. Transport API

In this section, the API concept is introduced, its main functionality and the reason for its increasing use
today. In addition to explaining this concept, is expanded into the types of APIs that exist and then present
the REST protocol, in which T-API is based on this work implementing it to Netphony.

3.1. API Concept

The main advantage offered by the design of the SDN architecture, as previously mentioned, goes around
the separation of the control plane with the data plane. To understand well this concept, it can be said that
the user traffic is the data plane while the traffic destined to managing, maintain and modify the network's
state is the control plane. The use of these two traffics is different since the first is important for the stability
of the network, and the second to provide the service of the network. In order to manage these network
traffic, a communication interface between the physical devices of the network and the controller must be
implemented, acting as a southbound interface, and a communication between the controller and the
applications or what we could define as a possible user, acting as northbound interface. It is in this aspect
where it would be necessary to deepen the concept of Application Programming Interfaces (API) and
because its use is so important within the framework of transport networks. The SDN control plane
exercises direct control over the state in the network data-plane elements (i.e., routers, switches, and other
middle-boxes such as firewalls) via a well-defined API.

An API could be defined as the most useful mechanism to connect two software to each other for the
exchange of messages or data in standard format such as XML or JSON. The APIs are designed to make
life easier for the programmer, since they do not have to start programming code from scratch, but rather
that there are predefined functions that must be implemented according to the context in the one that is
working. Each API is designed in a specific programming language and has several specifications that define
it. In this project it is an API developed in Java but can be found in many others (e.g. Python, JavaScript,
etc.). APIs can be used to communicate with the operating system, with databases or with communication
protocols. An end user never sees the API in its work process, however, we profit from the work of the
APIs on many occasions in our day, from the moment you use social media icons on a web or now to buy
movie tickets for which an API must send credit card information to another program. The APIs are can
be subdivided in four main classes as is going to be presented below:

3.1.1. Web services APIs

These are APIs that are used to exchange information between a web service, software that provides access
to a concrete service through a URL, and an application. This usually occurs via HTTP or HTTPS requests.
The request by the application and the response, as well as the HTTP of the web service, contain information
of both the header and the message, normally in the two most common formats: XML and JSON.

Currently there are four types of web services APIs: SOAP (Simple object access protocol) is a standard
protocol used to exchange information and data in XML between two objects, currently increasingly disused;
XML-RPC, a protocol that calls a remote procedure and uses XML as a data format and HTTP calls as a
communication system; JSON-RPC, which is the same protocol but in JSON format (JavaScript Object
Notation) which is a light text format for the exchange of data as an alternative to XML; and REST
(Representational State Transfer), a software architecture for hypermedia systems on the World Wide Web;
a REST API uses the HTTP protocol and this technology is discussed more in depth below.

3.1.2. Library-based APIs

Thanks to the library-based APIs, it is possible that an application can import a library from other software,
these libraries are usually designed in JavaScript and a good example of this type of API could be the Google
Maps API.

 28

3.1.3. Class-based APIs

This type of APIs enables the connection with data related to classes in object-oriented programming with
Java. The Java API uses abstract classes for the creation of applications, providing the necessary to perform
functions within those applications, not having to develop code again and being able to use functions already
implemented in other Java classes. It is organized in packages and each of these packages contains a set of
related classes.

3.1.4. Function APIs in operating systems

The operating systems are continuously interacting with software programs and in many cases in reality, the
way in which this interaction takes place is through APIs. The OS (operating systems), such as Linux or
Windows, have APIs that enable communication between the programs and the OS. The different Windows
APIs can be the user interface, for messaging, for access and data management, for error diagnosis ... etc.

3.2. RESTCONF introduction

Following the description provided by the Internet Engineering Task Force (IETF) [10], RESTCONF is an
HTTP (Hypertext Transfer Protocol)-based transfer and configuration management protocol used to access
data defined in a YANG file, which is a data modelling language [11]. This means that the aim of the
RESTCONF protocol is to map a YANG specification to a RESTful interface. This protocol is not intended
to replace NETCONF [12], in fact, it is based on the concepts of processing NETCONF data stores, also
using the operations defined by the verbs, which are be presented below.

The web service concept has been mentioned above and they can be defined as the set of applications or
technologies with the ability to interoperate on the web. These technologies exchange data between them in
order to offer services. REST (Representational State Transfer) is a RESTCONF based style of software
architecture linked to the HTTP and URI protocol (Uniform Resource Identifier) identifying a resource by
name in a particular namespace, consisting of a set of guidelines to create scalable web services. REST it is
not a protocol in itself is an architecture style.

It is necessary to review the HTTP protocol as it is the basis of the REST interfaces. HTTP allows the
sending and receiving of documents through a set of rules that determine which messages can be exchanged
and how they should be. It must be clear that HTTP understands two different roles, the client and the
server, with the client initiating the conversation and the server responding to a request with a response.
HTTP messages are composed of headers and a body. HTTP is based on text, messages are bits of text,
although the body of the message may contain other formats or just empty, thus being easy to monitoring,
meanwhile headers contain metadata with information on how to encode messages or with methods HTTP.

As it is mentioned above, REST uses URI to accessing resources; URLs (Uniform Resource Locator) is a
URI to specify access mechanisms or the location of that resource. It is necessary to understand that each
URL identifies a resource identifying its location and nothing else, that is, it does not describe any action
within the URL since it would not be a RESTful system (based on REST). Optionally, the request may
contain additional indications such as saving data in the specified resource. This data can be saved using the
"-d" option with CURL , which is an HTTP client functions library that can be used as a command line tool
and be used by different languages to connect servers and work with them.

HTTP methods are used to specify the desired action with respect to a resource. Each request specifies a
verb or HTTP method in the header. This is the first capitalized word that appears in any header and tells
the server what to do with the resource identified in the URL. To build a RESTful API the verbs usually
used are GET, POST, PUT and DELETE. GET tells the server to send the data identified by the URL to
the client. This data will not be modified by this method by the server since it is only a reading method. With
PUT you can edit or create the resource identified by the URL. POST is used many times instead of PUT

Transport API development and validation for the Netphony environment 29

and vice versa, when the process that is sought to happen can be repeated. Finally, DELETE is used to
remove the resource identified by the URL of the request.

All these methods can be classified by secure or insecure methods, depending on whether or not they modify
the resources, that is, the only safe method of those listed above would be GET since it does not modify
the resource described in the URL. They are also classified as idempotent if the same result is obtained
regardless of the repetition of the request. GET, PUT and DELETE are idempotent that is the recurring
execution of a request with the same parameters on the same resource will have the same effect on the state
of the resource in the system if it is executed 1 or N times, while the only non-idempotent method is POST.

Finally, we have to talk about the representation of the resource both in the request and in the response,
understanding by representation as the information about the state of the resource in a specific format. In
the header will be included metadata only in text format and the body can contain data of any format (texts,
images, XML, HTML, etc.) in the case of this work JSON will be used so the HTTP response should specify
the content type of the body in the header with the Content-Type field as will be seen later in the tests. In
addition, in the response header the client must be informed about the result of his request. For this the
response codes is a standardized way of doing it. Among the different response codes most commonly used
are:

• 200 OK. Satisfactory
• 201 Created. A resource has been created.
• 404 Not Found. The URL does not correspond to a resource.
• 405 Method Not Allowed.
• 500 Internal Server Error.

Here ends the introduction to the RESTCONF protocol whose purpose is communication between two
systems that must share the understanding of the HTTP protocol. Following this protocol REST presents
several advantages such as the separation between the client and the server, independence of the platform
type or programming languages where the REST API is located, security and great scalability.

3.3. YANG MODELS

YANG (Yet Another Next Generation) is a data modelling language used in the definition of configurations
and interfaces. A configuration can be considered as a set of ordered data, dependent or not on other values.
The YANG model interprets the configuration data as a hierarchical tree following a typical XML structure,
in which each node has a value or is a point of connection with other nodes, thus being defined together
with the interaction with other nodes. In a generic YANG model, configuration data, status data, Remote
Procedure Call (RPC) and notifications are included.

The YANG models are directly mapped in XML or JSON format and transmitted by the NETCONF or
RESTCONF protocol, allowing configuration management. The YANG language was developed by the
IETF NETCONF Data Modelling Language Working Group (NETMOD). The modelling of
configurations is a concept that manufacturers of network equipment, both physical and virtual, must take
into consideration, both in the long term and in the present. It is one of the elements that network service
providers need to have operational today.

From a YANG model it is possible to auto-generate code in several different languages using a set of tools
called Swagger. Swagger, reading the API’s structure can automatically build API documentation, also
automatically generate client libraries for the API in different languages. Swagger does this by asking to the
API to return a JSON that contains a detailed description of the entire API. This file is a resource listing of
the API which adheres to OpenAPI Specification. The OpenAPI is a specification for machine-readable
interface files for describing, producing and visualizing RESTful Web services. Then it is possible to design-
first users by using Swagger Codegen [13], which can be download in the official page, to generate a server
stub and after implement the server logic. Another useful tool is with Swagger Codegen is to generate client
libraries for the API in many languages. In this work will be shown the use of this tool. One f the annotation

 30

due by the OpenAPI specification is the JAX-RS [14] (Java API for RESTful Web Service) annotation. JAX-
RS is a Java API which support the creation of web services according the REST architecture style. JAX-RS
allows some annotations to help the mapping of a specific web resource, some of them are @Path, to
indicate the relative path for a resource or method class. @GET, @PUT, @POST and @DELETE to
specific the HTTP request type.

3.4. Transport API

 Once SDN and the API concept are reviewed, the T-API (Transport API) is introduced in an overall vision
as an application programming interface for SDN architectures that are based on data models, providing a
vendor agnostic network topology, connectivity services, path computation and virtualization models. That
means is independent of the protocols and technologies used and can be mapped to one of the protocols
pursued by automated code generation. The T-API was defined by the ONF (Open Network Foundation)
[15], allowing for a T-API client retrieve information from a domain of transport network equipment
controlled by a T-API server as a transport SDN Controller. It can be said T-API is a NBI (Northbound
Interface) for that T-API server and which main objective is to control of the transport network to support
growing application demands as bandwidth and latency.

Some of the great benefits of the T-API are a cost reduction of the CAPEX and OPEX, due to an
operational simplification of introduction to the new equipment to the network and also a complexity
reduction of the management and control of that equipment. The capability to offer new products such as
network slicing and virtualization for 5G applications. On the other hand, T-API allows the control of
multiple domains with a different technology using a common universal technology framework based on
abstracted information models. Thanks to this, the deployment of an SDN across multiple vendors is
possible.

The T-API presents several opportunities to bring more control and monitoring of the optical transport
network. Some of this applications could be the end-to-end dynamic bandwidth service in a multi-domain
scenario supporting the re-optimization of the network architecture. The possibility to offer virtual resources
to connect remote sites and supporting the VNFs (Virtual Networks Functions). By last, could be said the
T-API allows the support of network slicing, isolating some virtual layers of the networks and giving the
capacity to implement 5G services with high bandwidth or ultra-low latency.

To exposes all these information, T-API terms have to be considered and assimilated as a several abstracts
representations. T-API is based on a shared Context relationship between a server (SDN Controller) and
client (SDN Application), where the server exposes its desired the level of abstraction of the network
information and the scope of control. The T-API Context is defined by a set of ServiceEndPoints which enable
request of T-API Services by accessing the forwarding capabilities provided by the Node (e.g.
ConnectivityService) which is an abstract representation of the forwarding-capabilities of a particular set of
Network Resources, can be connected by Links or TE Links or by Connection paths. Referring to
ConnectivityServices, a ServiceEndPoint conceptually represents a pool of potential ConnectionEndPoints to access
the forwarding function provided by the Connection which represents the enabled capacity to forwarding
traffic between two or more NodeEdgePoints. By last it is necessary to presents the Route and the Path as
abstract representations of the Connection through the Nodes in the first case and the ordered list of Links or
TE Links for the second one. The Figure 5, tries to account this structure explained before.

Transport API development and validation for the Netphony environment 31

Figure 5 T-API overview elements

Because there is a shared Context which determines the level of the network resource abstraction instances
over which the API operates an API client could, for example, request retrieval of the Service End Points
in the shared Context or request creation of a Connectivity Service between the Service End Points, also
could request creation or the modification of Virtual Network Topology or to subscribe to notification of
events. As it shown in the Figure 6, the T-API abstracts five main functional requirements for all these
actions are the Topology Service, Connectivity Service, Path Computation Service, Virtual Network Service
and Notification Service, this is presented in. Each of this service are composed for a several APIs to provide
several functions referring to different actions and will be named hereinafter as sub APIs..

Figure 6 T-API services

 32

3.4.1. Network Topology Service

This service exports the network topology information for an API client that is within its shared Context.
Some of the topology retrieval sub APIs are: Get Topology List, which returns a list of the top-level
Topology instances including references to the lower-level instances as Nodes and Links. Get Topology
Details, which returns attributes of the Topology depending of the inputs providing for example an IDs list
or a list of encompassed Nodes indexed by the Name of the Layer-Protocol including Node details. Get
Node Details which returns attributes of the Node identified by the inputs including the state and the
capabilities of such Node. Get Link Details in the same way, returns attributes of the Link scope providing
by the inputs parameters.

3.4.2. Connectivity Service

Enable the set-up, tear down and modification of connections. The Connectivity Service allow an API client
to retrieve connectivity information and request connectivity service within its shared Context. The
connectivity sub APIs are divided by connectivity retrieval sub APIs and connectivity request sub APIs.

The connectivity retrieval sub APIs are the next ones: Get Service End Point List which returns a list of
ServiceEndPoints including the attributes details for each ServiceEndPoint also with Get Service End Point
Details. Get Connectivity Service List, returns a list of ConnectivityService entities including attribute details for
each as for example, the reference of the terminate ServiceEndPoints with Get Connectivity Service Details.
Get Connection Details which returns the attributes of the Connection entity identified by the inputs
parameters including also the references to the server and client NodeEdgePoints for the ConnectionEndPoint
with Get Connection End Point Details.

The connectivity request sub APIs are: Create Connectivity Service to create a forwarding entity representing
the Connectivity Service request to connect the ServiceEndPoints between APIClient and Provider returning
a Service ID and a point to point bidirectional service. This entity can be modified by the sub API Update
Connectivity Service which returns confirmation or rejection of the modification or Delete Connectivity
Service to delete of an existing ConnectivityService entity.

3.4.3. Path Computation

End-to-end view for the orchestrator. The sub APIs here have been made taking into account the division
of responsibilities between different interfaces of the T-API service. Compute P2P Path which compute a
list of paths depending of the inputs parameters, with a several information as path identifier or routing
constraints. It is necessary the sub API Optimize P2P Path, because a connection can be reconfigured to
include new constraints and achieve this in the path computation via this sub API.

3.4.4. Network Virtualization to a set of Service interfaces

Enable to expose a subset of the network resources to different tenants by different sub APIs as Get Virtual
Network Service List to returns a list of Virtual Network Service entities and get the details with the sub
API Get Virtual Network Service Details including references to ServiceEndPoints of the Virtual Network
Service.
In the other hand, the Virtual Network Request sub APIs are: Create Virtual Network Service for the API
client to request creation of a virtual network and reserve a set of resources to build up the virtual network.
To delete this virtual network the sub API Delete Virtual Network Service can be used.

3.4.5. Notification

Messages that provide information about events. The Notification specifications are used go around the
model of an agent and a manager. The agent is the entity which is able to recognizes events and inform
about this to the different subscribers. On the other hand, the manager is the entity that governs notification

Transport API development and validation for the Netphony environment 33

subscriptions and receives notification messages. According to the ONF, Notifications follow publish and
subscribe model. A precondition for the subscription is the possibility to know the available notification and
their sources. To do this there is a sub API called Discover Supported Notification Types, to allows an API
Client to discover the notifications capabilities supported by an API Provider.

3.5. Multi-domain abstraction model

In order to demonstrate the capability of the T-API to orchestrate operations across multiple vendor
domains, a multi-vendor multi-domain optical transport network testbed was established at TID (Telefonica
I+D) premises and a view of the physical topology, and the abstracted virtual topology in each orchestration
domain is presented in Figure below. As shown in Figure 7, two MDO (Multi-Domain Orchestrator) expose
the topology of their domains and an orchestration domain was established that manages three different
vendor domains, and exposes a simplified topology to the multi-domain network orchestrator. Each domain
employs edge-based abstraction, where each domain edge is exposed as an abstracted node and virtual links
are offered between the edges of the network. As seen in the case of the child MDO, the multi-domain
topology is abstracted to three abstract nodes, indicating the nodes that are connected to other nodes outside
the control domain boundaries

Figure 7 Abstracted Hierarchical Network Topology

In order to discover the topology, the MDOs must not only gather abstract topology information from the
domain controllers and the child MDOs, but must also incorporate information about the interconnections
between different domains. In order to discover the multi-domain network topology

1. MDOs discover the topology of individual domains including service endpoints and node

perimeter points over the T-API
2. MDO topology is populated with connectivity information between domains.
3. MDOs generate an abstract topology using the available information which is then exposed over

the T-API

Traffgen Traffgen

MD Orchestrator

MD Orchestrator

MD Orchestrator

advertized link cost: min/max

 34

3.6. Conclusion

As conclusion, the API concept has been defined and then an introduction of RESTCONF protocol based
on HTTP. Then the definition of YANG models as modelling language and how are directly mapped in
XML format and transmitted by the RESTCONF protocol to build a network topology and also how from
a YANG model it is possible to auto-generate code in several different programming languages using a set
of tools called Swagger. After, the presentation of the Transport API as the main concept of this work and
the different T-API functionalities and services. By last, a recovery topology demonstration in a test scenario
has shown and the viability for the T-API use in a multi-domain or multi-vendor scenarios.

Transport API development and validation for the Netphony environment 35

4. Netphony Environment

In this section, the Netphony suite of modules are presented in detail as a research and development work
carried out in Telefonica. It is defined as a set of libraries implemented in Java that allow to create a control
plane based on a PCE, with a transport network emulated with GMPLS and an ABNO controller. It is an
open source project and is publicly available in Github repositories as previously mentioned. It will present
the purpose and the need of the Netphony in the current context about the increase in network traffic that
operators are suffering today. Its architecture will be presented and it will be related to the ABNO
architecture, component by component. Finally, it will deepen in the own implementation of the Netphony
components at a more practical level.

4.1. Netphony: an ABNO implementation

Nowadays, network operators must deal with multilayer architectures in their production networks. Current
implementations are based on an IP / MPLS layer, either by themselves using dark fiber marketing the raw
connectivity and being the same client who applies appropriate transmission technology to their needs or
compatible implementations with an optical switching network. IP / MPLS are the layers that take advantage
of statistical multiplexing and maximize the use of optical links created in the underlying layer by switching
and routing, and this multilayer architecture requires a layer of network programmability that allows control
and administration of IP and optical resources.

The implementation of the Internet through distributed protocols, such as GMPLS, allows the creation of
LSP tunnels to create circuits between different network elements. In addition, this provides a resilience
capacity in a given network, where thanks to the control layer can make decisions for each node individually
and a central intelligence to obtain a network vision and to make a better use of resources.

The proposal of multilayer network programmability by Telefonica I+D, is based on the use of REST-based
APIs, since this approach allows rapid development of the network and greater interoperability. A GMPLS
control plane to emulate the network elements control, a Path Computation Element with active and stateful
capabilities, a Topology Module capable of importing and exporting TE information in different protocols
as well as an Application - based Network Operations (ABNO) controller, composes the Open Source
Netphony suite. This framework enables multi - layer programmability for IP and optical networks.

There are currently several open source projects that offer a solution for the control of multi-layers, SDN
tools which are consistent with different APIs types and implemented in many different programming
languages such as C, Python, Java, etc. Particularly some of the most important are OpenDaylight [16],
which is an open platform supported by the Linux Foundation is an SDN solution implemented in Java that
also supports REST APIs and provides a fast and scalable programming of a multi-layer network and it was
worth remarking the great open source platform that this tool has. The other one is Open Networking
Operating System (ONOS), also an open source and implemented in Java, with multi-layer SDN control,
packet network and optical networks management, with multiple interfaces, types of equipment and
protocols.

4.1.1. Netphony architecture

Netphony is a suite of modules developed by Telefónica I+D and forming an SDN tool following the
ABNO architecture. Netphony is an open source project, divided into libraries to make it easier and faster
the integration and possible expansion to other frameworks, since the purpose of this suite is to be as
effective and functional as possible. The reason for following an ABNO architecture is due to being able to
allow interoperability between the key components so that separate actions and processes can be performed
in the same or different modules. The Figure 8 shows such libraries implemented in the Netphony suite of
modules to facilitate the integration and the expansion of it.

 36

Figure 8 Netphony libraries
1-

In order to carry out all the functions of the network control plane, certain network protocols are necessary.
These protocols are contained in Networking Protocol Library, they are PCEP, RSVP, OSPF and BGP-LS.
This is a general library that can be integrated by any software that requires the use of these protocols. It is
necessary to briefly explain each of these protocols and mention their characteristics and their use.

Open Shortest Path First (OSPF) is a network protocol for hierarchical routing using the Dijkstra algorithm,
which has been seen in the degree in programming, second year, to calculate the ideal route between two
nodes in a network, taking into account distances of the links and certain restrictions of network. BGP-LS
is an extension to Border Gateway Protocol (BGP) for distributing the network’s link-state (LS) topology
model to external entities, such as the SDN controller. As the OSPF protocol discovers the topology of the
network, the changes are also reflected in the BGP-LS model and are also distributed by BGP-LS messages
to any interested party, such as SDN controller. The devices are not interested in learning the network
topology through BGP-LS, since they already participate in OSPF. PCEP is a request / response protocol
that allows communication between multilayer and multi-domain networks. Finally, RSVP (resource
reservation protocol), is a protocol of the transport layer designed to reserve resources of a network. RSVP
reserves routes in networks for transmission with scalability and robustness resulting in a reserve of
resources at each node along a path and was designed to interoperate with current and future routing
protocols. Once these protocols are seen, the rest of the libraries are presented.

The library in which the emulated environment of nodes with GMPLS functionality is found is the
Networking Emulator Library. This repository is implemented in Java and emulates a transport network
that includes emulated nodes with GMPLS control capabilities, RSVP processes and an OSPF daemon that
is, running in the background. For the creation of LSPs in each of these nodes, a PCEP interface is also
installed. The Traffic Engineering Database (TEDB) which the graphics are stored with all the relative
information regarding the nodes, the links and the attributes of network traffic, that is, the bandwidth
capacity of the links ... etc. is in the Topology Module. This Netphony topology module, also include a BGP-
LS speaker acting as a BGP4 peer to initiate the BGP connections between the peers and as has been
explained above, this topology can be implemented using protocols like OSPF.

Transport API development and validation for the Netphony environment 37

The next two modules to be presented are the PCE and the Netphony ABNO. Path Computation Element
(PCE) carry out for the management of routes in the network graph, calculating routes and optimizing them
in terms of optical spectrum consumption. There are many architectures, combining PCEs operating in
different domains and / or layers and calculating TE LSPs taking into account restrictions such as available
bandwidth, latency, etc. In the ABNO Netphony ,an ABNO controller and a Provisioning Manager are
implemented, the first being the main component of the entire ABNO architecture and is the one in charge
of orchestrating all the necessary components for a certain operation in the right order. The requests would
come from the NMS / OSS (Network Management System / Operation Support System) but in this work
this function is given by Python scripts that have been implemented to simulate these requests, as will be
presented later. On the other hand the Provisioning Manager configures the network elements to enable the
creation of LSP. The protocol used for this, as already explained, is PCEP, but there are other protocols
currently such as OpenFlow or Netconf [17].

4.1.2. Relationship with ABNO architecture

Once the different components of the ABNO architecture have been presented in section 2.3, a correlation
work can be carried out between the components implemented in the set of Netphony modules and those
of the ABNO architecture. In the ABNO architecture defined by the IETF, is referenced to the NMS /
OSS / Application Service Orchestrator to control, operate and manage a network by requests to the ABNO
Controller. This is done in this work by Python implemented scripts which generate the request to create
LSPs between random networks nodes to make the performance evaluation of the code implemented to the
connectivity service. A deep explanation about these scripts will be presented later.

As shown in ¡Error! No se encuentra el origen de la referencia., the ABNO controller corresponds to
the Netphony ABNO controller, in charge of the same functions of an ABNO controller specified by the
IETF, exactly as explained above. The Traffic Engineering database (TED) together with the LSP-DB is
located in the Netphony Topology Module. The Provisioning Manager is within the ABNO Netphony
module but it is not necessary in the presence of a PCE with full status because this has the ability to create
the LSP between the nodes and the reservation of resources. Although there is a Policy Agent in the ABNO
architecture, there is not any implementation of this in the Netphony. This is due the Policy Agent is a
component that is configured by the NMS/OSS with the policies that it applies, and the NMS/OSS in the
Netphony as is already mentioned to this work is the Python scripts with no policy to apply.

Figure 9 ABNO and Netphony components comparison

ABNO ARCHITECTURE NETPHONY ELEMENTS

OSS/NMS/APPLICATION SERVICE ORCHESTRATOR PYTHON SCRIPTS

ABNO CONTROLLER NETPHONY-ABNO

POLICY AGENT -

DATABASES TED AND LSP-DB TOPOLOGY MODULE

PROVISIONING MANAGER

NETPHONY-PROVISIONING MANAGER

(INSIDE ABNO) (when PCE is stateful the

Provisioning Manager is not neccesary)

PCE NETPHONY-PCE

I2RS CLIENT -

ALTO SERVER -

OAM HANDLER -

VNTM VNTM BASIC IMPLEMENTED

CLIENT NETWORK LAYER

SERVER NETWORK LAYER
NETPHONY-GMPLS-EMULATOR

 38

Although there is a policy agent in the ABNO architecture, there is no implementation of this in Netphony.
This is because the Policy Agent is a component that is configured by the NMS / OSS with the policies that
apply, and the NMS / OSS in Netphony, as already mentioned in this final project, are the Python scripts
without any policy what to apply The same goes for three other components of the ABNO architecture.
The Interface for the routing system (I2RS) Client whose objective is to manage requests for information
through a series of routers and Netphony consists of an environment emulated without any router. The
HIGH server could be classified as a commercial component with the objective of allowing service providers
to share information about network locations and the costs of the routes between them. Netphony is an
innovation project without commercial application at this time. Finally, the OAM driver, operations,
administration and maintenance plays an important role in an ABNO architecture and the main component
to implement the monitoring service that is not implemented in Netphony, which is the reason why OAM
Handler is not yet implemented in Netphony.

The client network layer and the server network layer could come with the Netphony GMPLS emulated
environment nodes and all the interactions between them.

4.2. Netphony components and virtualization environment

Once the architecture of the Netphony has been described and its relation with the ABNO architecture
defined in the IETF standard is done, it is possible to detail the Netphony architecture components and to
explain certain intrinsic characteristics of each of these.

4.2.1. Virtualization environment

Firstly, it should be explained how the implementation of a virtualized environment is carried out in order
to carry out the tests and the operation of the Netphony. At least two virtual machines, VM from now on,
are necessary to run a scenario, a pceserver and a TN node, but still to test in different scenarios, up to 30
nodes have been emulated with VMs. These are VM running with the Ubuntu operating system and the
pceserver not only acts as a PCE, it also initializes or stops the GMPLS scenarios. These VMs must be
installed in the virtualization environment and in addition to being installed on the same host, the pceserver
and the “tnX” nodes, they must share the same LAN to have connectivity between them. It is also necessary
to implement a VM for the installation of the Netphony ABNO, this VM is abnocontroller, also on the
same host. As is shown in Figure 10, the virtualization environment is deployed by VMWare

Figure 10 VMWare emulated environment
2-

Transport API development and validation for the Netphony environment 39

The IP address of these virtual machines will be in the range from 192.168.1.1 for tn1 to 192.168.1.X for
“tnX”. This configuration must be done in /etc/networking/interfaces in each virtual machine. To modify
or add files in any of these virtual machines some programs can be used seen in the degree in different
subjects, such as FileZilla or WinSCP to connect through the SFTP protocol.

4.2.2. Netphony ABNO

Application-Based Network Operations (ABNO) architecture proposed by IETF to allow the automation
and programmability of networks is followed in the Netphony project and is in progress to implement T-
API as part of the purpose of this work, defined using YANG models and following REST architecture
software as is shown in Figure 11. It is a set of control plane functions that allow interoperability between
control plane paradigms such as OpenFlow, GMPLS and PCEP, etc.

Figure 11 Netphony ABNO packages
3-

The ABNO Controller implementation needs a PCE session and an .xml file with ABNO parameters is
required. Some of these parameters are some PCE parameters, the workflow name, the PCE IP address, the
layer PCE capabilities true if send Initiate message to PCE or false if send Initiate message to Provisioning
Manager. An example of .xml is shown below.

<?xml version="1.0" encoding="UTF-8"?>

<config>

 <TMAddress>localhost</TMAddress>

 <TMPort>1239</TMPort>

 <ABNOPort>4445</ABNOPort>

 <PCEPPortPM>4446</PCEPPortPM>

 <PMAddress>localhost</PMAddress>

 <ABNOMode>4</ABNOMode>

 <VNTMPort>4190</VNTMPort>

 <VNTMParameters>localhost</VNTMParameters>

 <VNTMAddress>localhost</VNTMAddress>

 <PCEParameterslist>

 <PCEParameters>

 <PCEMode>2</PCEMode>

 <PCEPort>4189</PCEPort>

 <PCEAddress>192.168.1.200</PCEAddress>

 <Policy>

 40

 <WFName>L0ProvisioningWF</WFName>

 <L0PCECapabilities>

<Instantiation>false</Instantiation>

 </L0PCECapabilities>

 </Policy>

 </PCEParameters>

 </PCEParameterslist>

</config>

4.2.3. Netphony Topology

As previously mentioned, the Netphony Topology is composed of a BGP-LS speaker, a Traffic Engineering
Database (TED), which is a collection of nodes and links, each with traffic engineering attributes and a
topology module with plugins enabled to export and import into the database. These plugins are BGP-LS
or RESCONF based APIs to import or export the topologies to external elements. The Topology Module
exports via RESTCONF with COP model, IETF model, and with UNIFY model. In other hand, the
Topology Module import via XML which can learn a topology described in an XML file or via BGP-LS
which can run in three modes to only export, only import or in an import/export mode. In the following
figure is shown the packages implemented in the project Netphony TED and BGP-LS peer that would
constitute the topology module and where it can be seen in Figure 12 the named plugins, in addition to the
most recently implemented which is the topology model for the T -API.

Figure 12 Netphony Topology packages

4.2.4. Netphony GMPLS emulator

The netphony GMPLS Emulator is a Java based emulator of a Transport Network, that runs a GMPLS
based control plane with a OSPF-TE daemon that sends/receives OSPF-TE packets and a RSVP-TE
daemon to set-up LSPs. There is PCEP connection with a PCE which can be used in two modes, stateless
mode or stateful mode, to path queries or to remote initiation of LSPs.

To run a GMPLS node emulator, NodeLauncher is the main class inside es.tid.emulator.node package as
Figure 13 presents. This class creates a NetworkNode object and establishes it with the correct args and then
starts the node using the startNode method, which is found in the NetworkNode class. It represents a
transport node with GMPLS capabilities, an optical transport network (OTN) node or a reconfigurable
optical add / extract multiplexer (ROADM) [18]. Launches the necessary connections OSPF-TE, RSVP-
TE and PCEP. The parameters of the node can be configured in an .xml file..

Transport API development and validation for the Netphony environment 41

Figure 13 Netphony GMPLS emulator packages
4-

4.3. Conclusion

To sum up, an introduction to the suite of Netphony modules has been made in section 4.1 and the purpose
of its creation. Secondly, a general vision of the architecture of the Netphony presenting each one of the
libraries that compose it and the main function of each of them, briefly explaining also the network protocols
used and their characteristics in section 4.1.1. Next, a correlation work has been carried out between the
elements of an ABNO architecture and the elements implemented in the Netphony following this
architecture in section 4.1.2. Finally, in section 4.2 the Netphony's own components and in the virtualization
environment, explained in section 4.2.1, the Netphony ABNO in section 4.2.2, Netphony Topology in
section 4.2.3, have been explored. and finally Netphony GMPLS Emulator in section 4.2.4.

 42

Transport API development and validation for the Netphony environment 43

5. Tests definition

Once the concept of SDN has been presented and its role in the current context of the evolution of transport
networks and the increase in traffic they will suffer, the ABNO architecture has been presented in order to
implement SDN. The T-API has been presented as an API for a transport network to manage traffic flow
through services and sub API. Finally, Netphony was presented as a set of modules developed by TID
(Telefónica I+D) based on an ABNO architecture and in which it is intended to implement and integrate
T-API as an add-on to Netphony, which makes it more scalable and dynamic as traffic manager in transport
networks converting it into SDN. In this section, the definition of the tests will be presented, that is,
everything necessary to understand in which environment the tests that will be subsequently presented in
the subsequent sections have been carried out. The experimental scenario will be exposed with 30 emulated
nodes, presenting Telefónica Spain optical network in the emulated control plane. In other hand, the
workflow of the ABNO architecture for the connectivity service and for the topology service will be shown.
The implementation of the connectivity service and topology service of the T-API will also be presented as
well the auto-generation of the code with swagger codegen and the integration on Netphony. Finally, the
functional validation using a sniffer as Wireshark, to capture the traffic and interpret the results of these
traces of the protocols messages, that is, it will show how this traffic capture is done so that in the later
section it can be interpreted.

5.1. Experimental Scenario

In this project it has been implemented the ABNO architecture to support the connectivity and topology
services workflow presented in the Netphony module suite. The intention is to demonstrate the capabilities
of the architecture to support the Transport API in a GMPLS network. To do this, requires to run the
Netphony Modules on a server named "abnoserver" and the GMPLS in the Telefonica I+D control plane
with virtual machines that are accessible from the abnoserver. The control plane testbed is composed of
GMPLS nodes with software developed internally. The experimental setup is built with emulated nodes,
which run in an Ubuntu server Linux distribution. Each emulated node implements a GMPLS stack
(including RSVP, OSPFv2, and PCEP) and a flexible mode emulator. Each GMPLS controller is a virtual
machine, all are running as a server with two Intel Xeon E5-2630 2.30 GHz processors, six cores each, and
192 GB RAM. This use VMWare 5.0 to deploy the VMs. The installation of the VMs is public at the
Netphony project wiki. The GMPLS control plane is implemented in Java 1.6. Figure 14 presents the optical
mesh of Telefonica of Spain in the emulated control plane.

 44

Figure 14 Telefonica de España emulated environment

5.2. Auto-generated Swagger code

Previously in section 3.3, an introduction was made to the YANG models used in the configuration and
definition of the APIs. It was also explained that from a YANG model file it is possible to generate code in
different programming languages and it is precisely what we want the T-API to be implemented in Java.
Therefore, to integrate both services, connectivity and topology, in Netphony, the first step is to generate
the code with Swagger based on the YANG models that are in the public Snowmass repository.

This Java code will consist of methods and classes without implementing its operation, which must be
implemented according to the actions required by each method. In this way, we have a structure according
to the Yang model in Java. In the generation process of the T-API a plugin called Pyang comes into play.
Pyang is an extensible YANG validator written in python. It can be used to transform the YANG modules
into other formats and generate code from the modules and thus obtain the RESTCONF API of a yang
model. The RESTCONF API of the YANG model is interpreted with Swagger, for the description of the
API. Finally, the Swagger Codegen generator, which is an open source project, simplifies the compilation
process, and then focuses on the implementation and adoption of the T-API in the Netphony.

5.2.1. Connectivity Service

To auto generate code with swagger is necessary to get the tapi-connectivity folder where will be the YANG
model. This is in the Snowmass repository [19] and must be cloned in our virtual machine where must be
also swagger installed and launch the next command:

java -jar swagger-codegen-cli-2.2.1.jar generate -i /home/rodrigo/swagger/tapi-

connectivity.swagger -l jaxrs -o tapi-connectivity/ --api-package

es.tid.abno.swagger.TAPIConSer.api --model-package

es.tid.abno.swagger.TAPIConSer.model

To get the swagger generator we can run in the Linux Shell the next command before the last one:

wget https://oss.sonatype.org/content/repositories/releases/io/swagger/swagger-

codegen-cli/2.2.1/swagger-codegen-cli-2.2.1.jar

https://oss.sonatype.org/content/repositories/releases/io/swagger/swagger-codegen-cli/2.2.1/swagger-codegen-cli-2.2.1.jar
https://oss.sonatype.org/content/repositories/releases/io/swagger/swagger-codegen-cli/2.2.1/swagger-codegen-cli-2.2.1.jar

Transport API development and validation for the Netphony environment 45

5.2.2. Topology Service

To auto generate code with swagger is necessary to get the tapi-topology folder where will be the YANG
model. This is in the Snowmass repository and must be cloned in our virtual machine where must be also
swagger installed and launch the next command:

java -jar swagger-codegen-cli-2.2.1.jar generate -i

/home/javier/swagger/TapiTopology.swagger -l jaxrs -o tapi-network/ --api-

package es.tid.topologyModuleBase.TAPITopoModel.api --model-package

es.tid.topologyModuleBase.TAPITopoModel.model

5.3. Integration on Netphony

5.3.1. Connectivity Service

Once the generated code is already done, to integrate this code into the Netphony project, the appropriate
packages have been created in the project: tid.abno.swagger.TAPIConSer.api (also .impl and .factories and
.model would appear). On the other hand, the dependencies and properties of pom.xml must be verified.
POM (Project Object Model) is an XML file, which is the main file of a Maven project. It contains
information about the project, such as sources, dependencies, complements, the version ... etc. In the pom
file, the main changes have been variable, such as <java.version> <swagger-core-version> <wharf -
version> <jersey2-version> ... etc. Also, what is really important is to add the profile that will be compiled
by maven when executing the mvn -package -P command, this profile must be for the T-API since it was
previously added to the COP: <profile> <id> generate- jar-complete-ABNO-TAPI </ id> [..] </profile>
and put in the tag <mainClass> ABNOTAPIController </mainClass> in tid.abno.modules. The
ABNOTAPIController.java class has been created within the.tid.abno.modules, changing it in the following
way with respect to the class that was already created for the COP::

 jerseyServlet.setInitParameter(

 "com.sun.jersey.config.property.packages",

"io.swagger.jaxrs.json;io.swagger.jaxrs.listing;es.tid.abno.swagger.TAPIConSer.api");

Finally, by console, whenever the project had been modified, must be compiled with the following line,
where generate-full-jar-ABNO-TAPI is the profile previously implemented. Then a .jar file in the project
folder called abno-1.3.3-shaded has been generated which is the one that will have to be uploaded to
PCEServer, for example by winscp and rename it with the name ABNO.jar and put in the directory
tid@abnoserver:/usr/local/abno/lib$ and so it is ready to launch the abno with the script ./restart_abno.sh

mvn package –P generate-full-jar-ABNO-TAPI

5.3.2. Topology Service

The exporter plugin is needed in order to export the topology with the TAPI. Inside of
“es.tid.topologyModuleBase.plugins.writer” package, a new class called “TopologyServerTAPI.java” is
created with one minor change respect the template file “TopologyServerCOP.java”: Instead of getting the
COP export port in the parameters, is changed to the TAPI export port.

Finally is necessary to compile the code with Maven with the mvn package -P instruction. If the build is
successful, a message is shown indicating: “Build success”.

5.4. Use definition and workflow

Through a workflow diagram, the visualization of the communication chain between the different
components of an architecture in the correct order is shown. In this case, the aim is to explain the order of

 46

communication between the different parts of the ABNO architecture within the Netphony for each of the
implemented services of the T-API. These are the connectivity service and the topology service.

5.4.1. Connectivity Service

The connectivity services do the operations for the set-up, tear down and modification of connections.
These connections could be as basic as a point-to-point connection between two locations. Nonetheless,
there are scenarios where specific constraints are required on the connection. Some examples include the
node/link inclusion/exclusion from a connection path doing that by the ERO constraint, constraints on
Traffic-Engineering (TE) parameters, like delay or bandwidth. The Figure 15 shows the following steps
which are required to provision bandwidth in the ABNO architecture for Connectivity Service Provisioning
use case with the Transport API:

Figure 15 Netphony ABNO workflow

0. The initial trigger for this use case is a request from an end user via an NMS or an application.
1. The NMS sends the information to the ABNO controller with the traffic parameters (e.g. bandwidth).

In this experiment, we use the Transport API to request the connection with the Connectivity Service.
2. The ABNO controller asks the policy agent to check whether it has sufficient rights to make the

request.
3. The ABNO Controller sends a PCEP Request message to the L0 PCE for a path.
4. The L0 PCE response to the ABNO with PCEP Reply with the computed path. The PCE uses the

OSPF information to build the TEDB.
5. The ABNO sends again a PCEP Initiate to start the configuration.

OSS/NMS / Application ServiceOrchestrator

ABNO ControllerPolicy
Agent

ALTO
Server

Topology

Module

Client Network Layer

ServerNetwork Layer

I2RS
Client

L2

PCE

1

3

VNTM

2

9

0

7

Provisioning

Manager

8

OAM
Handler

L0 PCE

6

4

5

10

L2 PCE

Transport API development and validation for the Netphony environment 47

6. The PCE sends the PCEP Initiate to the node (with the information of the ends points).
7. The LSP is configured between the nodes with RSVP message.
8. The node notifies the L0 PCE with a PECP Path Computation LSP State Report.
9. Once the path has been established, the L0 PCE notifies to the ABNO controller with a PCEP Report.
10. Similarly, the ABNO controller advertises the OSS/NMS/Application, with the Transport API

Connectivity Service.

Figure 16 shows how a bandwidth reservation is made for an LSP but not from the communication between
the components of the architecture based on ABNO, but through the implemented classes and following
the workflow model of the T-API protocol, which calls the T-API classes, such as ABNOTAPIController.
As the diagram in the figure shows, the route request is managed by the ConfigApi class to redirect the
action depending on the verb (POST / GET) and depending on the route and from there it is sent to
ConfigApiServiceImpl with the "uuid" and "context" "of the topology. The getPath_Computationlist
method must be invoked in the ABNOTAPIController class and, as we have seen previously in the
workflow of the ABNO-based architecture, it is necessary to ask the PCE to calculate the route, so the
getPCEOpticalLayer method is invoked in ABNOParameters and from there it is sent to PCEParameters
with the address where the PCE is located and the port in the variables "pceAddress" and "pcePort". Once
the LSP is calculated, the information is returned..

Figure 16 LSP reservation workflow

Afterwards, the pceinit message must be created, which contains the information of the two nodes between
the reservation is created, that is, the “EndPoints”, “ERO” (Explicit Route Object), “SRP” (Stateful PCE

 48

Request Parameters), “LSP” the “Bandwidth” and the “id”, so the next step in the
ConfigApiServiceImpl.java is to call up the WorkflowTAPI.java and create the object workflow passing by
parameters for the constructor the “cArg” and “args”.

WorkflowTAPI workflow =

(WorkflowTAPI)act.getDeclaredConstructor(cArg).newInstance(args);

Then the response as workflow.getResponse can be saved, but to understand how works the WorkflowTAPI
and how the pceInit is created, the diagram bellow explain the several methods in the WorkflowTAPIclass
and the function of all of them. As is presented in Figure 17, this follow a scalar implementation because
some methods do something that was done just in another one before but adding some new functionality,
depending the objective when WorkflowTAPIis called up. The main actions presented here is the call to the
provisioning Manager, the creation of the pceInit with their parameters: ERO, SRP, LSP, Bandwidth,
Endpoints and Id, send the message by the socket, open a new PCEP session on the port.

Figure 17 WorkflowTAPI classes

5.4.2. Topology Service

The topology service exports the topological information with unique identifiers. Such network identifiers
which are IPv4 addresses or data-path-IDs, are required for identifying components in while using other
TAPI functionalities. Network topology service exports nodes and the links in a given domain in a share
context, which can be physical or virtual. In order to get the information from the TEDB, an implementation
of the code must be done in cne-BGPLSpeer es.tid.topologyModuleBase.TAPITopoModel.api.impl
ConfigApiServiceImpl.java and the retrieveContextTopologyTopology is called up from the ConfigApi.java
class following the next path.

 public Response

retrieveContextTopologyTopology(SecurityContext

securityContext) throws NotFoundException {

 TopologiesDataBase ted =

TopologyServerTAPI.getActualTed();

 TopologyContext tc= new TopologyContext();

Transport API development and validation for the Netphony environment 49

 for(Map.Entry<String, TEDB>entry :

ted.getTeds().entrySet()){

 System.out.println("Topology with id:

"+entry.getKey());

 //check if an object is an instance of a

specific class

 if (entry.getValue() instanceof DomainTEDB) {

 tc.addTopologyItem(TranslateModel.translateTopology(entry.g

etKey(), (DomainTEDB)entry.getValue()));

 }

 }

 return Response.ok().entity(tc.getTopology()).build();

 }

@POST

@Path("/operations/tapi-topology%3Aget-topology-list/")

In the same way that has been done with the provisioning of bandwidth with the connectivity service, the
Figure 18 shows the iteration between classes for the Netphony topology service. The request is managed by
the ConfigApiServiceImpl class within the TAPITopoModel package, which creates an TopologiesDataBase
object type called "ted" by calling the getActualTed method in the TopologyServerTAPI class. Next, a
TopologyContext object called "tc" is created by calling the TopolgyContext class. Finally, the items in the
topology are added to "tc" using the TranslateModel class. This class is in charge of initializing the elements
of the topology, links and nodes, taking them from a .xml configuration file.

Figure 18 Topology discovery workflow

 50

5.5. Test validation definition

In order to verify the functionality of the T-API within the Netphony environment, several tests validation
will be presented and will be validated in the following sections. These tests are defined with the aim of
validating the connectivity and topology services, this means that the other services of the T-API, such as
monitoring or path computation, will not be validated. The next list presents the tests for the provisioning
functions:

• Set up an unconstrained optical service between two endpoints.

• Set up an optical service between two endpoints with constraints on the path.
o Constraints on the path can include:

▪ Explicit optical path defined by the orchestrator

▪ Constraints on bandwidth

• In case a service setup is not successful, the controller must provide appropriate reason codes.

• Configure a service to employ a restoration/protection path for the current working path.

Next list presents the tests for the topology discovery functions:

• Topology must be able to present Information about the optical nodes, identifiers, location and
interconnections between them

• Topology should provide information about the links including optical characteristics, hop by nodes,
bandwidth, latency... etc.

5.6. Conclusion

Summarize, the experimentation scenario has been presented in which the tests that will be explained in the
later section will be carried out. It has been explained how the tools mentioned in section 3.3 have been
used, such as swagger, YANG models and thus generate the documentation for the REST API for both the
connectivity service and the topology service. It has also been presented, for both services, how they have
been integrated into Netphony. Subsequently, the use cases are presented, which are the creation of an LSP
and the discovery of the topology and how is the workflow in both cases, in a schematic way to represent
the communication between the components of the ABNO architecture and also through diagrams of
sequence to represent the communication between Java code classes. Finally, define the validation tests for
the next section.

Transport API development and validation for the Netphony environment 51

6. Experimental validation

Once the experimental scenario composed of 30 emulated nodes in virtual machines has been presented in
section 5, simulating the optical network of Telefonica Spain, it has been explained how the documentation
of the REST T-API has been auto-generated as both for the connectivity service and for the topology service
and has been integrated into the Netphony project. Therefore, in this section we will explain how to perform
a request for provisioning or topology recognition as well as the process to launch the Netphony ABNO.
The scripts implemented in Python simulating an NMS / OSS will be presented. A demonstration of the
creation of LSPs by executing the telnet command in the nodes in question will be carried out. Finally, a
traffic capture with Wireshark will be exposed to detect the LSPs creation messages and the explanation of
these messages.

6.1. Project compilation

Maven is an open source tool and the main objective is to facilitate the compilation and creation of shaded
executables. This tool is extremely useful to facilitate the work of the developers, which as in my case, was
new for a company and a research project has already started and had to catch up with all the dependencies
of the project in Java, having to learn the peculiarities of the new project, if you want to generate a .shaded
executable as in my case and then load it into a virtual machine and run it there, or simply compile all the
code while passing the validation tests.

Now, with the Maven tool, the process of building any project, regardless of its modules, its dependencies,
libraries, etc., is as simple as executing “mvn install” command as mentioned above. Not only the
construction, in addition, Maven can perform a complete management of the software project, perform the
test run, generate performance reports based on the level of registration we have established and also
generate documentation. Finally, thanks to the pom.xml file as mentioned above, maven is able to manage
the dependencies between the project modules and their different versions, in the case of libraries, it is not
even necessary to download them since it has a remote central repository where the Most libraries are
generally used and if there is not always the option to contribute to this repository with new libraries. In
Netphony, each module contains a pom.xml file that defines the compilation and manages the dependencies.

Once the classes and methods of the auto generated code have been modified, the objective is to be able to
execute it in the development environment that will be the virtual machine mentioned in section 4.2.1,
abnoserver, whose address eth0 is 10.95.86.33 and eth1 192.168 .1.200. For this purpose, the "mvn package
-P generate-full-jar-ABNO-TAPI" command will be executed locally in the project directory, with "profile-
jar-ABNO-TAPI" being the profile that has been configured in the pom.xml and which must be compiled.
In the case of compiling the topology module it will be necessary to be placed in the "Netphony TED and
BGP-LS peer" project directory, as seen in section 4.2.3 above. In the case of compiling the connectivity
service it will be necessary to execute the command having been located in the "Netphony ABNO" directory
as seen in section 4.2.2. The result of this compilation, as already mentioned, will generate a .jar executable
file, which will later be transferred to the virtual machine through winscp and once there will be executed.
This executable should be placed in a particular abnoserver directory. This directory is / usr / local / abno
/ lib /. The command to execute this executable is inside a script called start_abno.sh which will be deepened
in the following section but here is an example to execute the shaded generated for the topology service.

sudo java -Dlog4j.configurationFile=target/log4j2.xml -jar

target/topology-1.3.3-shaded.jar target/example3tapi/TM1.xml

6.2. Creation of requests and launching the ABNO

First of all, it is necessary to start ABNO Netphony to initialize a series of processes, to speed up the
procedure, the script "start_abno.sh", implemented in bash, is executed, w hich will carry out the necessary
processes. Two arguments are passed in the execution of this script in abnoserver with the command below

 52

to run scenario. It is necessary to be located in the next directory, /home/tid/ABNO and launch the
restart_abno.sh script.

./start_abno.sh “Orchestrator_scenario” “Domain_scenario”

• “Orchestrator_scenario” should be stay locate in /home/tid/ABNO/scenarios/
“Orchestrator_scenario”. This folder contains the configuration .xml file of ABNO.
PCEActivoTopo is the orchestrator scenario for this tests. The files inside of this directory are:

▪ ABNOConfiguration.xml
▪ BGP4Parameters.xml

▪ BGP4Parameters_PCE.xml
▪ defaultConfiguration.properties

▪ log4j2.xml
▪ TMConfiguration.xml

▪ Topology.xml

• “Domain_scenario” should be stay locate in /home/tid/scenarios/“Domain_scenario”. This
scenario should have three subfolders, “gui”, “nodeConfig” and “pce”. In “gui” folder contains
configurations to web graphical user interface. In “nodeConfig” folder contains configuration about
the topology. The .xml files should be contains nodes and links information. The list of nodes
obtained from this file is used to run the virtual machines using the file
Network_TdE_30nodes_SSON.xml to configure the 30 nodes network of Telefonica Spain. By last,
“pce” folder contains the log4j2.xml file which is the needed file to use the log4j2 library which is
the updated version of the popular and influential log4j library, used extensively throughout the Java
ecosystem to obtain logging for any application, both for audit and debugging purposes. Also here
are located the configuration file “PCEServerConfiguration_SSON.xml to configure the pce server.

It is necessary to clarify that the script restart_abno.sh is actually executed, passing as arguments the
Orchestrator_scenario and the Domain_scenario since this script also kills processes that may be previously
running to avoid failures by executing the script ./kill_abno.sh, then executes the abno with the command
./start_abno.sh $ 1 $ 2 passing the arguments. Then kill logs of previous executions with ./kill_logs.sh and
restart the logs with ./start_logs.sh. When all the nodes have been initialized, a confirmation message should
appear. To verify the Java processes are running the command "ps -ef | grep java" is can be used.

./restart_abno.sh PCEActivoTopo TdESSON

With the nodes already initialized, requests for reservation of bandwidth can be made between nodes
creating LSPs, to make these requests the "curl" tool must be used as already mentioned in section 3.2 with
the -X option to use the indicated proxy that is indicated in the same way as the environment variables
including the protocol prefix "http: //". The action must also be indicated, which in this case will be the
POST verb as previously mentioned in section 3.2. The path must be indicated with the pce address and the
abno port “192.168.1.200:445” and the end points will be the nodes between which the LSP is created.

curl -X POST -i -H "Content-Type: application/json" -H "Accept:

application/json" http://192.168.1.200:4445/config/context/connectivity-

service/1/ -d '{"service-port":[{"service-end-point":

"192.168.1.1/1"},{"service-end-point": "192.168.1.2/1"}]}'

If the LSP has been created correctly, the confirmation message that will be displayed will be as follows.

HTTP/1.1 200 OK

Date: Wed, 08 Dec 2017 13:27:28 GMT

Content-Type: application/json

Transfer-Encoding: chunked

Server: Jetty(9.2.z-SNAPSHOT)

Transport API development and validation for the Netphony environment 53

{"code":4,"type":"ok","message":"Created OK"}

To discover the topology of a network, the following request must be made, in which, similarly to the
connectivity service case, the "curl" tool with the -X option and the POST verb is used, the path is indicated
in this case to obtain the topology and the data are dumped in a file "TopologyAnswer.json"

tid@abnoserver:~/ABNO$ curl -X POST

http://localhost:8089/config/operations/tapi-topology%3Aget-

topology-list -H "Content-Type: application/json" -H "Accept:

application/json" | python -m json.tool > TopologyAnswer.json

 % Total % Received % Xferd Average Speed Time Time

Time Current

 Dload Upload Total Spent

Left Speed

100 212k 0 212k 0 0 294k 0 --:--:-- --:--:--

--:--:-- 294k

6.3. Tests validation

The objective of this work is the development and validation of the T-API in Netphony. Up to this point,
the development has already been explained and it has been possible to verify the validation of the T-API
of both the connectivity service and the topology service, since it has been possible to create an LSP between
two nodes randomly in a network and has You could discover the network topology correctly and dump it
into a file. However, the objective of the next section is to obtain an analysis of the performance of the T-
API in the creation and deletion of a large number of LSPs in the 30-node TdESSON topology that
simulates the Telefónica Spain optical network.

To make this evaluation, it would be extremely slow to make the LSP creation and deletion requests one by
one manually, and it would not provide a reliable system analysis. For this reason, several Python scripts
have been implemented to automatically perform the number of requests that are desired for the creation
of LSP.

Before beginning to explain the scripts that have been implemented, it is necessary to have an overview of
the process of creating LSP between two nodes and what time is going to be measured and how to generate
a graph later to draw firm conclusions. As shown in Figure 19, the request comes from the OSS, which will
be simulated by the implemented scripts, through the connectivity service of the T-API, arriving at the
ABNO controller, which will exchange PCEP messages as seen previously in section 2.3 to ask the PCE to
calculate the route, a first PCEP request is necessary, being answered by the PCE with a PCEP response
and finally the controller responds with a PCEP initiated. The PCE sends another PCEP initiated to the
first node defined in the request as one of the EndPoints, which in turn sends RSVP route messages, as
mentioned above in section 4.1.1, to the destination node, having to pass if it is necessary for intermediate
nodes. When the messages arrive at the destination node, are sent back, through the nodes with RSVP Resv,
when arriving at the beginning node with PCEP Report towards the PCE and from there to the ABNO
Controller with another PCEP Report, the ABNO Controller sends message to confirmation via
connectivity service from the T-API to the OSS. The time that is measured and determined as the creation
of an LSP is since the OSS sends the request until the confirmation is returned.

 54

Figure 19 Request management connectivity service

The scripts implemented in python for the creation of LSP and its deletion will be presented below. Three
scripts have been implemented, which are: "create_request_v1.py", "RestInterface.py" and "main.py". Each
of these scripts has a function and must be executed in abnoserver in a specific order. To be able to carry
out its execution it is necessary to install Python in abnoserver and to have granted permissions with the
"chmod" command to each script.

The function of the "create_request_v1.py" script is the generation of requests, both for the creation and
deletion of LSP. To do this, this script must be executed by passing two data as arguments. The first
argument will be the number of nodes of the network that is being executed, being in this case TdESSON
with 30 nodes, so the first argument would be 30. The second argument will be the number of iterations
that you want to carry out, the number of iterations chosen has been 3000. The call for the execution of this
script would then be as follows.

tid@abnoserver:~/ABNO$ python create_request_v1.py 30 3000

A “request_TdESSON.json” file is generated in response to "create_request_v1.py", with 3000 requests,
interspersed between POST and DELETE, and the EndPoints of the source node and the destination node
will be random. The reason why an LSP is deleted after creating it is because it avoids congesting the network
by creating the same LSP several times. The operation of this script is based on taking the arguments and
save them in variables, use them to create a "for" cycle that generates 3000 iterations and within this cycle,
it is assigned to the variable "node1" which will be the source node the address " 192.168.1. " being the last
digit of the address a random number between 1 and 30, both included, the same procedure for the
destination node in the variable "node2", making a check so that the same address is not the origin and
destination. Next, six "queryX" variables are generated where the fields necessary for the construction of
the request will be saved separately and then concatenated into a variable that will save the final request for
the creation of LSP "querypost" and another one for the deletion of the LSP "querydelete". Finally, these
interleaved requests will be written to the file "request_TdESSON.json" and the file will be closed once they
have been written.

Transport API development and validation for the Netphony environment 55

The "RestInterface.py" scritp defines the http protocol header to create REST requests as explained in
section 3.2. This script imports the libraries "httplib2", "httplib" and "json" and defines the "httpreq"
function that will be imported by the other two scripts with the instruction "From RestInterface import
httpReq".

The script "main.py" executes the requests and generates a file "results.json" in which all the information of
each request is saved, that is, the origin node and destination node, the POST or DELETE method and the
time of start before launching the petition and the time when the request has been made. This is achieved
by reading line by line the file "request_TdESSON.json" containing the requests and saving in the variable
"request" the number of lines in this file, to then build a loop of as many iterations as it is variable and for
each iteration execute the request taking before and after the current time of the system with the instruction
"datetime.datetime.now ()" saving the result in one variable before "init" and another after the execution
"end". Both the response and the start and end times are saved in the variable "results" whose content is
subsequently downloaded into the file "results.json". This file will be treated later as will be explained in the
following section to generate the performance evaluation graphs. The instruction to execute this script and
the messages that should appear by console are the following.

tid@abnoserver:~/ABNO$ python main.py

RESPONSE: {"code":4,"type":"ok","message":"Created OK"}

RESPONSE: {"code":4,"type":"ok","message":"DELETED OK"}

.

.

.

Finally, the process to obtain traffic captures with Wireshark and a description of what can be observed in
them is explained below. A visually check of the exchange of messages in different protocols made between
the ABNO controller, the PCE and the nodes van be seen by this way. To capture the traces and see the
established connection between two nodes, the following procedure have to be followed. Inside the
abnoserver or in pceserver indistinctly the session must be duplicated and to be located in /traces directory
to execute the next “tcpdump” command which is a tool whose main utility is to analyse the traffic that
circulates through the network. The option –I is used to print the interface on each dump line and the option
“any” indicate to capture by all the interfaces. The option –s means snaplen and 65535 refers the size of the
packages. By last, “tracescapture.pcap” is the file name.

sudo tcpdump –i any –s 65535 –w tracescapture.pcap

Once this command is executed, the new session where it was executed will be listening and in the original
session the process to initialize the ABNO with the "restart_abno.sh" can be carried out later to start the
process of making the requests. All the messages can be verified, which can be HTTP to establish the
connection or all the PCEP messages that are shared between the different entities, thanks to Wireshark.
The Figure 20 below is a screenshot in which this exchange can be visualized and verified.

Figure 20 Wireshark capture protocol messages

 56

First, the ABNO driver receives a request to establish a new connection using the API Transport
connectivity service. The ABNO controller makes a request with a PCEP request to the PCE and responds
with a PCEPReply. This is because the ABNO driver has the information of the Policy Agent, so it has the
decision to create or not the LSP although, for our workflow, the active PCE has complete status, so once
it arrives to the PCEP respond from the PCE to the ABNO controller. The ABNO driver sends the PCE
started with the endpoints to the L0 PCE. Later, PCE Active sends a PCEP Initiate to the determined node
as the source address, in turn sends messages by RSVP protocol (PATH and RESV) to the nodes indicated
in the ERO (explicit route object) until it reaches the node determined as destination. RSVP messages can
only be viewed if traffic is captured in any of the nodes. Once the LSP has been established, it will notify on
the way back, sending an RSVP RESV to the originating node, which in turn will respond with a PCEP
report to the active PCE that will notify the PCEP to the ABNO controller. Finally, the ABNO driver will
allow the NMS / OSS / Application service to know that the LSP has been right created.

6.4. Summary of the results

The objective of this section is to perform a performance evaluation when creating or eliminating LSP
between the different nodes of the network used, TdESSON, using the connectivity service of the T-API.
As mentioned in the previous section, the procedure to be able to perform an analysis of the times is to
capture the time before making a request and capture it again after making the request, so that the difference
between both times can be obtained. This work is carried out in the script explained above "main.py" and
the results have been dumped in the file "results.json". This format has been useful to be able to process the
data with Excel since it has been easily divisible the information by columns and thus be able to see the data
that are object of interest, the times. The format in which the information related to the time to generate
the graphics must have been discussed. To be able to visualize the estimated time of creation or deletion of
LSP and to be able to deduce in what time value was invested when creating or eliminating the majority of
the created LSPs, cumulative distribution function were generated. To perform them, the following
instruction has been programmed in Excel.

= 1 / COUNT ($ H $ 2: $ H $ 6000)

H is the column in which the times were located. H6000 is the last cell, since it is necessary to take into
account that 3000 LSP creation requests have been made with the POST method and this implies 3000
removal requests with the DELETE method. While advancing to calculate the values of the cumulative
function, the value of the previous cell must be taken, this is column I, therefore, the instruction will be the
following for the second row.

= I2 + 1 / COUNT ($ H $ 2: $ H $ 6000)

Transport API development and validation for the Netphony environment 57

Figure 21 Cumulative histogram with 3000 LSPs created in Telefónica of Spain topology

Figure 22 Cumulative histogram with 3000 LSPs deleted in Telefónica of Spain topology
5-

To show the results, we have obtained the cumulative distribution function with 3000 iterations of creating
LSP, and then another 3000 iterations for the case of deletion. The previous Figure 21 and Figure 22 show
the creation requests and the delay in the elimination requests of the LSP, respectively. The average time to
eliminate connections is 18.33 ms, while the 80th percentile is 30.45 ms. Higher delay values can be seen,
but these correspond to cases, which are caused due to an additional delay in the communication change
between the nodes. This is because in the simulated environment one of the virtual machines of the 30 that
are running is likely to overlap with another, when this happens, the virtual machine collapses and when a
request for the creation of LSP that requires a reserve of resources tries to enter this node, stays waiting
until it can be managed, or until sometime passes and the next request is passed. This for the case of deletion
of LSP does not usually happen so often.

In addition, it can also be said that for the elimination of LSP, the average time to eliminate connections is
6.2 ms, while the 80th percentile is 13 ms, as shown in Figure 22. As a conclusion of this section of the
performance evaluation, it can be said that for the system of creation of LSP, as for the elimination, with
the architecture ABNO and the connectivity service of the T-API, it is a system with delays below the

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5

P(
t<
T
)

Request	Delay	(s)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 20 40 60 80 100 120

P
(t
<
T)

Request	delay	(ms)

 58

average of the limitations of the data plane, which are of the order of a minute to configure the commercial
data components.

6.5. Conclusion

In this section, the compilation using maven of the project has been presented with the integrated services
and the creation of the requests to be able to validate the tests presented in the previous section. The
validation is the bulk of this section and it has been possible to demonstrate the functionality of the T-API
thanks to the logs and traffic capture using Wireshark. A sequence diagram to understand the
communication between the ABNO Controller, the PCE Server and the different nodes, has also been
presented. Having finalised these tests, it is necessary to obtain data and process them in order to later
analyse them and obtain conclusions in the last section. To carry out this undertaking, the data in the JSON
file has been exported to an Excel spreadsheet and has been processed with the objective to obtain graphs
of the cumulative distribution functions of the created and eliminated LSPs to obtain important parameters
for the study as is the average and the 80th percentile.

Transport API development and validation for the Netphony environment 59

7. Conclusions and future work

Network operators have implemented optical transmission systems in their production networks for several
years. The migration to optical networks technologies is crucial to increase optical fiber utilization for
network operators. The control architecture is a key element to take advantage of the capabilities of flexgrid
networks. The use of SDN paradigms such as the Transport API combined with PCE / GMPLS
technologies, which are implemented in production environments, is an evolutionary solution that facilitates
the introduction of SDN in real networks.

The Open Source Netphony suite is composed by a GMPLS control plane to emulate the network elements
control, a Path Computation Element with active and stateful capabilities, a Topology Module capable of
importing and exporting TE information in different protocols as well as an Application-based Network
Operations (ABNO) controller. This framework allows the provision of connectivity services in the network
using the SDN and PCE / GMPLS paradigms as demonstrated in this work.

As future work, the capabilities of the monitoring services of the T-API in the Netphony should be
expanded and include new plugins that make it fully adaptable and scalable to any topology.

This work has contributed to the following invited journal and conference papers:

• V. López, J. M. Gran, R. Jimenez, J. P. Fernandez–Palacios, D. Siracusa, F. Pederzolli, O. Gerstel,

Y. Shikhmanter, J. Mårtensson, P. Sko ̈ldstro ̈m, T. Szyrkowiec, M. Chamania, A. Autenrieth, I.
Tomkos and D. Klonidis, “The Role of SDN in Application Centric IP and Optical Networks”,
Journal of Green Engineering, Vol 6 (3), July 2016.

• V. López, R. Jimenez, O. Gonzalez, L.M. Contreras, J.P. Fernandez-Palacios: Open Source
Netphony Suite: Enabling Multi-layer Network Programmability, in Optical Networking Design and
Modeling (ONDM), May 2017.

• V. López, R. Jimenez, O. Gonzalez De Dios, and J.P. Fernandez Palacios: Control plane
architectures for Elastic Optical Networks, in Journal of Optical Communications and Networking,
February 2018, Vol. 10, Issue 2, pp. A241-A249.

 60

Transport API development and validation for the Netphony environment 61

8. References

[1] E. Mannie, Ed. Network Working Group “Generalized Multi-Protocol Label Switching (GMPLS)
Architecture”, RFC 3945, October 2004. https://tools.ietf.org/html/rfc3945

[2] K. Kompella, Y. Rekhter, Network Working Group, “Label Switched Paths (LSP) Hierarchy with
Generalized Multi-Protocol Label Switching (GMPLS) Traffic Engineering (TE)”, RFC
4206, October 2005. https://tools.ietf.org/html/rfc4206

[3] D. King, A. Farrel, IETF, “A PCE-Based Architecture for Application-Based Network Operations”,
RFC 7491, March 2015. https://tools.ietf.org/html/rfc7491#section-2.3.1

[4] Diego Lopez. Ramki Krishnan. Sarah Banks. Internet Engineering Task Force (IETF). “Network
Function Virtualization”. https://datatracker.ietf.org/rg/nfvrg/about/

[5] Software-Defined Networking (SDN) Definition https://www.opennetworking.org/sdn-definition/

[6] “OpenFlow Switch Specification Version 1.0.0 (Wire Protocol 0x01)”, December 31, 2009
https://www.opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.0.0.pdf

[7] ONOS https://onosproject.org/

[8] J. Moy, “OSPF Version 2.”, RFC 2328, April 1998. https://www.ietf.org/rfc/rfc2328.txt

[9] E. Rosen, A. Viswanathan, R. Callon, Network Working Group , “Multiprotocol Label Switching
Architecture”, RFC 3031, January 2001. https://tools.ietf.org/html/rfc3031

[10] A. Bierman, M. Bjorklund, K. Watsen, IETF, “RESTCONF Protocol”, RFC 8040, January 2017
https://tools.ietf.org/html/rfc8040

[11] M. Bjorklund, Ed., IETF, “YANG - A Data Modeling Language for the Network Configuration
Protocol (NETCONF)”, RFC 6020, October 2010. https://tools.ietf.org/html/rfc6020

[12] R. Enns, Ed., M. Bjorklund, Ed., J. Schoenwaelder, Ed., A. Bierman, Ed. IETF. “Network
Configuration Protocol (NETCONF)”, RFC 6241, June 2011. https://tools.ietf.org/html/rfc6241

[13] Swagger CODEGEN https://swagger.io/swagger-codegen/

[14] Oracle Corporation “JAX-RS: Java™ API for RESTful. Web Services” Version 2.0 Final Release. May
22, 2013. Editors: Santiago Pericas-Geertsen. Marek Potociar. http://download.oracle.com/otn-
pub/jcp/jaxrs-2_0-fr-spec/jsr339-jaxrs-2.0-final-
spec.pdf?AuthParam=1525270877_051c13171e1e8ad0e030929ff0aa584f

[15] Transport API (TAPI) 2.0 Overview Version 0.0. August 13, 2017. Open Networking Foundation
https://www.opennetworking.org/wp-content/uploads/2017/08/TAPI-2-WP_DRAFT.pdf

[16] Technical Charter (the “Charter”) OpenDaylight Project a Series of LF Projects, LLC.
https://www.opendaylight.org/wp-content/uploads/sites/14/2018/01/ODL-Technical-Charter-LF-
Projects-LLC-FINAL.pdf

[17] E. Haleplidis, Ed, K. Pentikousis, Ed., S. Denazis, J. Hadi Salim, D. Meyer, O. Koufopavlou. IRTF.
“Software-Defined Networking (SDN): Layers and Architecture Terminology”. RFC 7426.
https://tools.ietf.org/html/rfc7426

[18] G. Bernstein, Ed., S. Xu, Y. Lee, Ed., G. Martinelli, H. Harai, IETF, “Signaling Extensions for
Wavelength Switched Optical Networks”, RFC 7689, November 2015. https://tools.ietf.org/html/rfc7689

[19] “ONF Open Transport (SNOWMASS)” OpenNetworkingFoundation/TAPI
https://github.com/OpenNetworkingFoundation/TAPI

https://tools.ietf.org/html/rfc3945
https://tools.ietf.org/html/rfc4206
https://tools.ietf.org/html/rfc7491#section-2.3.1
https://datatracker.ietf.org/rg/nfvrg/about/
https://www.opennetworking.org/sdn-definition/
https://www.opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.0.0.pdf
https://onosproject.org/
https://www.ietf.org/rfc/rfc2328.txt
https://tools.ietf.org/html/rfc3031
https://tools.ietf.org/html/rfc8040
https://tools.ietf.org/html/rfc6020
https://tools.ietf.org/html/rfc6241
https://swagger.io/swagger-codegen/
http://download.oracle.com/otn-pub/jcp/jaxrs-2_0-fr-spec/jsr339-jaxrs-2.0-final-spec.pdf?AuthParam=1525270877_051c13171e1e8ad0e030929ff0aa584f
http://download.oracle.com/otn-pub/jcp/jaxrs-2_0-fr-spec/jsr339-jaxrs-2.0-final-spec.pdf?AuthParam=1525270877_051c13171e1e8ad0e030929ff0aa584f
http://download.oracle.com/otn-pub/jcp/jaxrs-2_0-fr-spec/jsr339-jaxrs-2.0-final-spec.pdf?AuthParam=1525270877_051c13171e1e8ad0e030929ff0aa584f
https://www.opennetworking.org/wp-content/uploads/2017/08/TAPI-2-WP_DRAFT.pdf
https://www.opendaylight.org/wp-content/uploads/sites/14/2018/01/ODL-Technical-Charter-LF-Projects-LLC-FINAL.pdf
https://www.opendaylight.org/wp-content/uploads/sites/14/2018/01/ODL-Technical-Charter-LF-Projects-LLC-FINAL.pdf
https://tools.ietf.org/html/rfc7426
https://tools.ietf.org/html/rfc7689
https://github.com/OpenNetworkingFoundation/TAPI

 62

Transport API development and validation for the Netphony environment 63

9. Annexes

9.1. Implementation of methods and explanation

9.1.1. Connectivity Service

Here the implementation of the methods in the ConfigApiServiceImpl.java classes in the package
es.tid.abno.swagger.TAPIConSer.api.impl will be explained.

For this, because through the request with curl POST, we access the path: "/ context / connectivity-service
/ {uuid} /" in the ConfigApi.java class, we must implement the method
"createContextConnectivityServiceConnectivityServiceById" inside the ConfigApiServiceImpl.java class.

public Response

createContextConnectivityServiceConnectivityServiceById(String uuid,

ConnectivityService connectivityService, SecurityContext securityContext)

throws NotFoundException {

 log.info("recieved retrieveCallsCallCallById request.");

 log.info(" BW: "+connectivityService.getConnConstraint());

 log .info("conncetivity:" +connectivityService.getServicePort());

 for (ConnectivityServicePort endpoint:

connectivityService.getServicePort()){

 log.info("EP:"+endpoint.getServiceEndPoint());

 }

 Iterator<ConnectivityServicePort> epIter =

connectivityService.getServicePort().iterator();

 String workflowParam = "L0ProvisioningCOPWF";

 Hashtable<String, String> request = new Hashtable<String,

String>();

 request.put("ID_Operation", "1234");

 request.put("Operation", "add");

 request.put("remoteAddr", "TAPI Protocol");

 request.put("Bandwidth", "107.1");

 String[] source =

epIter.next().getServiceEndPoint().split("/");

 request.put("Source_Node", source[0]);

 String[] destination =

epIter.next().getServiceEndPoint().split("/");

 request.put("Destination_Node", destination[0]);

 request.put("source_interface", source[1]);

 request.put("destination_interface", destination[1]);

 /*if (call.getAEnd().getInterfaceId()!= null){

 request.put("source_interface",

call.getAEnd().getInterfaceId());

 }

 if (call.getZEnd().getInterfaceId()!= null){

 request.put("destination_interface",

call.getZEnd().getInterfaceId());

 }*/

 String response = null;

 Class<?> act;

 try {

 act = Class.forName("es.tid.abno.modules.workflows."+workflowParam);

 @SuppressWarnings("rawtypes")

 64

 Class[] cArg = new Class[5];

 cArg[0] = Hashtable.class;

 cArg[1] = String.class;

 cArg[2] = LinkedList.class;

 cArg[3] = ABNOParameters.class;

 cArg[4] = HashMap.class;

 Object[] args = new Object[5];

 args[0] = request;

 args[1] = response;

 args[2] = ABNOTAPIController.getPath_Computationlist();

 args[3] = ABNOTAPIController.getParams();

 args[4] = ABNOTAPIController.getOPtable();

 WorkflowTAPIworkflow =

(WorkflowCOP)act.getDeclaredConstructor(cArg).newInstance(args);

 workflow.handleRequest();

 response = workflow.getResponse();

 }

 catch (Exception e1)

 {

 log.info(UtilsFunctions.exceptionToString(e1));

 }

 log.info("response: "+response);

 return Response.ok().entity(new

ApiResponseMessage(ApiResponseMessage.OK, "Created OK")).build();

 }

In addition, from this method, the class L0ProvisioningCOPWF.java is called for both the creation of paths,
and for deletion. In the delete case, has been implemented from scratch, since there was not the delete
option implemented for the COP.

Other steps that have been necessary to implement is in the class ConnectivityServicePort.java in the package
es.tid.abno.swagger.TAPIConSer.model, @JsonProperty ("service-end-point") to be able to call from the
query then to service-end-point without and the same was done in the ConnectivityService.java class, @
JsonProperty ("service-port").

 @JsonProperty("service-end-point")

 public ConnectivityServicePort serviceEndPoint(String serviceEndPoint) {

 this.serviceEndPoint = serviceEndPoint;

 return this;

 }

9.2. PCE and nodes logs

By using the telnet tool you can see the information about routes created in pceserver.

Transport API development and validation for the Netphony environment 65

telnet 192.168.1.200 6666

PCE:>help

Available commands:

show topology

queue size

show reachability

set traces on

set traces off

show interDomain links

show sessions

send update

show lsps

quit

PCE:>show topology

Nodes:

 /192.168.1.1

 /192.168.1.2

 /192.168.1.3

Intradomain Link list:

 /192.168.1.1:2-->/192.168.1.3:1 NumFibers = 1 Bitmap:

{00

000

00000000000000000000000000000000000} Reserved:

{00

000

00000000000000000000000000000000000}

 /192.168.1.3:1-->/192.168.1.1:2 NumFibers = 1 Bitmap:

{00

000

00000000000000000000000000000000000} Reserved:

{00

000

00000000000000000000000000000000000}

 /192.168.1.2:2-->/192.168.1.3:2 NumFibers = 1 Bitmap:

{00

000

00000000000000000000000000000000000} Reserved:

{00

000

00000000000000000000000000000000000}

 /192.168.1.3:2-->/192.168.1.2:2 NumFibers = 1 Bitmap:

{00000000

000

000

00000000000000000000000000} Reserved:

{00

000

00000000000000000000000000000000000}

 66

 /192.168.1.1:1-->/192.168.1.2:1 NumFibers = 1 Bitmap:

{00

000

00000000000000000000000000000000000} Reserved:

{00

000

00000000000000000000000000000000000}

 /192.168.1.2:1-->/192.168.1.1:1 NumFibers = 1 Bitmap:

{00

000

00000000000000000000000000000000000} Reserved:

{00

000

00000000000000000000000000000000000}

PCE:>quit

bye!

Connection closed by foreign host.

Transport API development and validation for the Netphony environment 67

Similarly, we can check the view in the nodes.

tid@pceserver:~$ telnet tn1 6666

Trying 192.168.1.1...

Connected to tn1.

Escape character is '^]'.

*** ROADM

CONSOLE

USER INTERFACE

**

ROADM Main Menu:

 1) Configure ROADM (WSON)

 2) Configure ROADM (Flexigrid)

 3) Turn off the ROADM

 4) LSPs Management NODE

 5) Show Topology NODE

Please, choose an option

ROADM:>5

Nodes:

 /192.168.1.1

 /192.168.1.2

 /192.168.1.3

Intradomain Link list:

 /192.168.1.1:2-->/192.168.1.3:1 NumFibers = 1 Bitmap:

{00

000

00000000000000000000000000000000000} Reserved:

{00

000

00000000000000000000000000000000000}

 /192.168.1.1:1-->/192.168.1.2:1 NumFibers = 1 Bitmap:

{00

000

00000000000000000000000000000000000} Reserved:

{00

000

00000000000000000000000000000000000}

Interdomain Link list:

ROADM Main Menu:

 1) Configure ROADM (WSON)

 2) Configure ROADM (Flexigrid)

 3) Turn off the ROADM

 4) LSPs Management NODE

 5) Show Topology NODE

Please, choose an option

ROADM:>

 68

The procedure to launch the ABNO in PCEServer as is have been explained:

cd ABNO

./restart PCEActivo TdESSON

For this, a request was implemented that accesses the most basic path of the connectivity service to obtain
simply the confirmation 200 OK

curl -X POST -i -H "Content-Type: application/json" -H "Accept:

application/json" http://192.168.1.200:4445/config/context/connectivity-

service/1/ -d '{"service-port":[{"service-end-point":

"192.168.1.3/1"},{"service-end-point": "192.168.1.2/1"}]}'

And now the following is the query implementation, with the source node and the port as input parameters,
as well as the destination node and the destination port:

To see the LSP creation, we can connect in the tn1.

tid@pceserver:~$ telnet tn1 6666

Trying 192.168.1.1...

Connected to tn1.

ROADM Main Menu:

 1) Configure ROADM (WSON)

 2) Configure ROADM (Flexigrid)

 3) Turn off the ROADM

 4) LSPs Management NODE

 5) Show Topology NODE

Please, choose an option

ROADM:>4

Node Management Main Menu:

Available commands:

show LSPs

set LSP

teardown LSP

help

set traces on

set traces off

back

print eros

quit

NODE:>show LSPs

LSP id: 1 ----> Source: /192.168.1.3 - Destination: /192.168.1.2

Node Management Main Menu:

quit

NODE:>quit

bye!

Connection closed by foreign host.

Transport API development and validation for the Netphony environment 69

It had been implemented also the method “deleteContextConnectivityServiceConnectivityServiceById”
inside of ConfigApiService.java class.

curl -X DELETE -i -H "Content-Type: application/json" -H "Accept:

application/json"

http://192.168.1.200:4445/config/context/connectivity-service/1/ -d

'{"service-port":[{"service-end-point": "192.168.1.3/1"},{"service-

end-point": "192.168.1.2/1"}]}'

 70

9.3. Python Scripts

create_request_v1.py:

#!/usr/bin/python

__author__ = 'Rodrigo Jimenez Rios TID'

import json

import sys

import datetime

import random

from RestInterface import httpReq

#listresp=[]

f=open("ejemplo_de_request_auto.json",'w')

x=int(sys.argv[1])

y=int(sys.argv[2])

print(x)

print(y)

method='POST'

method2='DELETE'

bw='107.1'

f.write('[\n')

for r in range(y):

 #Random access to each of these positions

 i=random.randint(1,x)

 node1="192.168.1."+str(i)+"/1"

 j=random.randint(1,x)

 node2="192.168.1."+str(j)+"/1"

 while(node2==node1):

 j=random.randint(1,x)

 node2="192.168.1."+str(j)+"/1"

#example:

{"src":"192.168.1.1/1","dst":"192.168.1.2/1","bw":107.1,"method":"POST"},

 #put randomly the end points

 query1='{"src":"'

 query2='","dst":"'

 query3='","bw":'

 query4=',"method":"'

 query5='"}'

 query6='"} '

 querypost= query1 + node1 + query2 + node2 + query3 + bw + query4 + method

+ query5

 querydelete= query1 + node1 + query2 + node2 + query3 + bw + query4 +

method2 + query5

 #query='{"src": "'+node1+'","dst":

"'+node2+'","bw":'+str(bw)+',"method":"'+method'"} '

 #listresp.append(resp)

 f.write(querypost)

 f.write(",\n")

 f.write(querydelete)

 f.write(",\n")

fquery= query1 + node1 + query2 + node2 + query3 + bw + query4 + method +

query6

f.write(fquery)

f.write("\n]")

#print "query: " +query

print "argv: " +str(x)

f.close()

Transport API development and validation for the Netphony environment 71

RestInterface.py:

#! /usr/bin/python

EXIT__author__ = 'Rodrigo Jimenez Rios TID'

import sys

import threading

import httplib2, httplib

import json

def httpReq(baseUrl, method, jstr=""):

 h = httplib2.Http(".cache")

 #h.add_credentials('admin','admin')

 content=""

 try:

 respaux, content = h.request(baseUrl, method, headers={'Content-

Type': 'application/json; charset=UTF-8'},body=jstr)

 #print "URL: "+baseUrl

 #print "METHOD: "+method

 #print "DATA: "+jstr

 except IOError, e:

 print "NETWORK UNREACHABLE: "+str(e.errno)

 print "RESPONSE: "+content

 return content

 72

main.py:

#! /usr/bin/python

__author__ = 'Rodrigo Jimenez Rios TID'

import json

import datetime

from RestInterface import httpReq

with open("/home/tid/ABNO/ejemplo_de_request_auto.json","r") as file:

 requests=json.loads(file.read())

i=0

results=[]

for r in requests:

 #Montar JSON

 js={"service-port":[{"service-end-point": r['src']},{"service-

end-point": r['dst']}]}

 #Montar URL

 url="http://192.168.1.200:4445/config/context/connectivity-

service/1/"

 #Tiempo antes de ejecutar

 init=datetime.datetime.now()

 #Ejecucion

 resp=httpReq(url,r['method'],json.dumps(js))

 #Tiempo despues de ejecutar

 end=datetime.datetime.now()

 #Lo guardamos en la variable results. TODO Comprobar el formato

de la respuesta

 results.append({"request":r,"time":str(end-

init),"response":json.loads(resp)})

f=open("results.json",'w')

f.write(json.dumps(results))

f.close()

