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Resumen

El objetivo de este trabajo de investigación es construir las bases para una apli-
cación de smartphone que proporcione las funcionalidades necesarias para grabar
datos de movimiento humano, entrenar algoritmos de machine learning y reconocer
gestos profesionales.

El trabajo se ha realizado, en primer lugar, aprovechando las cámaras de los nuevos
teléfonos móviles, ya sean infrarrojas o estereoscópicas, para grabar datos RGB-D.
Luego, un algoritmo de estimación de posición basado en el aprendizaje profundo
extrae el esqueleto humano en 2D y exporta la tercera dimensión utilizando la pro-
fundidad obtenida de las cámaras. Por último, utilizamos un motor de reconocimiento
de gestos, que se basa en los modelos K-means, para discretizar los datos, y Hidden
Markov Models(HMM), para reconocer y clasificar los gestos. El rendimiento del al-
goritmo de aprendizaje ha sido probado con gestos profesionales utilizando tres bases
de datos manualmente grabadas.

Palabras Clave

Estimación de pose, mapas de profundidad, reconocimiento de gestos, Hidden Markov
Models, K-means, smartphone
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Abstract

The goal of this work is to build the basis for a smartphone application that
provides functionalities for recording human motion data, train machine learning
algorithms and recognize professional gestures.

First, we take advantage of the new mobile phone cameras, either infrared or
stereoscopic, to record RGB-D data. Then, a bottom-up pose estimation algorithm
based on Deep Learning extracts the 2D human skeleton and exports the 3rd dimen-
sion using the depth. Finally, we use a gesture recognition engine, which is based
on K-means and Hidden Markov Models (HMMs). The performance of the machine
learning algorithm has been tested with professional gestures using a silk-weaving, a
TV-assembly and hand-made glass datasets.

Keywords

Pose estimation, depth map, gesture recognition, Hidden Markov Models, K-means,
smartphone
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Chapter 1

Introduction

1.1 Motivation

The role of professional actions, activities and gestures is of high importance in most
industries. Motion sensing and machine learning have actively contributed to the cap-
turing of gestures and the recognition of meaningful movement patterns by machines.
Therefore, very interesting applications have emerged according to the industry. For
example, in the factories of the future, the capabilities of workers will be augmented
by machines that can continuously recognize their gestures and collaborate accord-
ingly, whereas in the creative and cultural industries it is still a challenge to recognize
and identify the motor skills of a given expert. Therefore, capturing the motion of
workers or craftsmen using off-the-shelf devices, such as smartphones, has a great
value. New smartphones are equipped with depth sensors and high power processors,
which allow us to record data even without very sophisticated devices.

The motivation of this work is to give the possibility to the users to easily record,
annotate, train and recognize human, actions, activities and gestures in professional
environments.

1.2 Objectives

The general scope of this work is to build the basis of an application for a mobile
device, which allows for data recording using its embedded sensors, estimate the
human pose, extract the skeleton and recognize (offline) professional gestures. The
pose estimation depends on the camera: RGB for 2D, and RGB-D, either infrared or
stereoscopic, for 3D skeletons. The whole process can be controlled by the application.
More precisely, the annotation of gestures, the selection of body joints, the skeleton
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2 CHAPTER 1. INTRODUCTION

visualization and the projection of the recognition results run locally on the phone
while the pose estimation and machine learning algorithms are delegated to a GPU
server.

1.3 Document Structure

The structure of the document is as follows:

• Chapter 1: This chapter summarizes the motivation and the objectives pursued
in this master thesis, as well as an introduction of the topic developed in each
chapter.

• Chapter 2: This chapter explains the concepts of pose estimation and gesture
recognition, making an analysis and comparison of the most popular frame-
works. Moreover, it analyzes different devices of RGB-D data capture and an
overview of the Machine and Deep Learning frameworks for mobile devices. In
addition, there is a brief explanation of the client-server communication and the
metrics used in this work.

• Chapter 3: This chapter presents the overall pipeline followed to create the
smartphone application. From the capture of RGB-D frames with the iPhone or
the RealSense camera, to the recognition of gestures and estimation of skeleton
carried out by the GPU server, explaining the communication client - server
(smartphone - GPU) through WebSockets.

• Chapter 4: This chapter evaluates the accuracy and performance of different
modules of the application, comparing the results in 2D against 3D, and includ-
ing the pose estimation and the gesture recognition.

• Chapter 5: This final chapter exposes the conclusions obtained from this master
thesis as well as the possible improvements and future work.

• References.



Chapter 2

State of the Art

2.1 Introduction

Nowadays, the majority of people have in their pocket a smartphone device that over
the years, allows to carry out more sophisticated tasks. Improvements in acquisition
methods, with the addition of stereoscopic and infrared cameras, as well as improve-
ments in processing and analysis methods, embedding processors and graphics cards
of the latest generation, have allowed the computer vision science to understand and
develop applications based on deep learning for mobile phones.

Both pose estimation and gesture recognition are two booming computer vision
techniques. Being able to estimate the human body and its skeleton provides a poten-
tial source of applications such as prevention of non-ergonomic postures, improvement
of sports performance and, moreover, a potential source of human body data that can
be exploited by other computer vision techniques such as gesture recognition.

In this chapter, we first explain different ways of capturing RGB and depth, and
their respectivew cameras. Secondly, we do an analysis of some popular pose estima-
tion frameworks as well as related works implemented in smartphones. After that,
we define how we can transfer these data into a communication client-server. Finally,
we explain the most common methods for gesture recognition as well as the metrics
used to evaluate the performance of the application.

2.2 Capturing RGB-D frames

The current market offers a wide variety of devices capable of capturing RGB and
depth frames (RGB-D frames), however, in this work, we have focused on three dif-
ferent devices: iPhone XS True Depth camera and Dual Rear camera, Intel RealSense
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4 CHAPTER 2. STATE OF THE ART

Depth Camera D435 and Microsoft’s Xbox Kinect camera.

2.2.1 iPhone XS camera

Since the launch of iPhone X in 2017, the new Apple phones have a depth mapping
system in their rear and front camera.

On one hand, iPhone XS uses a dual rear camera, composed by a wide-angle lens
and a telephoto lens capturing data with the same frame rate, to obtain the disparity,
defined as the displacement in the position for corresponding points between the
images. The main feature of the camera is that it is stereo rectified, which means
that both cameras are pointing in the same direction and have the same focal length,
distance from the focal point to the image plane and, in addition, the distance between
the two optical lenses refers to the baseline.

In the Figure 2.1a is shown how the rear camera captures the normalized disparity
which mathematically equals to calculate the inverse of the depth (1/meters). First,
the rays of lights from the observed object pass through the optical centers and are
reflected on the image plane of each camera. Then, the mathematical relation tying
the depth (Z), baseline distance (B), disparity (D) and focal length (F), showed in
equation 2.1, results in the normalized disparity. Finally, the iPhone needs to filter
and post-process the disparity to smooth the edges and fill the holes, which requires
a heavy computation. [1]

B

Z
=

D

F
→ 1

Z
=

D

BF
(2.1)

(a) IPhone XS back camera (Dual Rear Cam-
era) capturing disparity

(b) Capturing disparity when the observed
object is aligned in the optical center C2

Figure 2.1: IPhone XS back camera (Dual Rear Camera)

On the other hand, the front camera, named True Depth Camera by Apple, is
used to measure the depth in meters directly. It has a dot projector that launches
over 30,000 dots onto the scene, generally the user face, which are then captured by
an infrared camera. To ensure that the system works properly in the dark, there
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Figure 2.2: IPhone XS front camera (True Depth Camera) capturing depth

is an ambient light sensor and a flood illuminator which adds more infrared light
when needed. The final result is more stable depth images with a higher resolution,
640x480 instead of 320x240 obtained by the dual rear camera. Figure 2.1b shows the
architecture of the True Depth Camera.

Finally, both cameras capture RGB-D frames with a frame rate of 30 fps and by
using a portrait mode, which means subtracting the foreground, object that is usually
a person who is focused, from the background.

2.2.2 Intel RealSense Depth Camera D435

The Intel RealSense Depth Camera D435 [2] is an USB-powered camera that includes
depth sensors and a RGB sensor. It uses stereo vision to calculate depth and its
implementation is based on a left imager, right imager, that capture depth in a
similar way to the dual rear camera of the iPhone, and an optional infrared projector
to improve depth accuracy by projecting a static infrared pattern on the scene to
increase texture on low texture scenes. Moreover, it has a RGBmodule (Color camera)
to color frames providing texture data, with whom we can make an overlaying on the
depth to create a color point cloud and a 3D reconstruction. The resolution is up to
1280 x 720 and the depth stream output frame rate is up to 90 fps.

Figure 2.3: Architecture of Intel RealSense Depth Camera D435
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2.2.3 Microsoft’s Xbox Kinect

Kinect [3] is a Microsoft motion sensor add-on for the Xbox 360 gaming console. It is
composed of three main hardware pieces: a Color VGA video camera, a depth sensor,
and a multi-array microphone.

The VGA camera capture the RGB color space as well as body-type and facial
features. Its resolution is 640x480 pixels and has a frame rate of 30 fps. The depth
sensor contains a monochrome CMOS sensor and infrared projector that measures
the distance of each point of the body of the player by transmitting invisible near-
infrared light and measuring its "time of flight" after it reflects off the objects. Finally,
it has a multi-array microphone that can isolate the voices of the player from other
background noises.

2.3 Pose Estimation

Due to the growing need to understand and predict human behavior and motor skills,
challenges such as human pose estimation become crucial in the field of Machine
Learning. Human pose estimation can be defined as the problem of locating and
representing in a coordinate system, point cloud, the set of keypoints or joints that
shape a person into an image or video.

Pose estimation in multi-person scenarios is generally carried out by using a top-
down approach or a bottom-up approach. In the first approach, a human detector
is initiated and both, the joints and the skeleton of each person, are calculated sep-
arately. This approach make uses of existing techniques for single-person pose es-
timation. However top-down approach suffers from an early commitment when the
detector fails, and the computational power increases exponentially with the number
of people in the scene.

In contrast, bottom-up approach firstly detect and label all the joints candidates
in the frame and secondly associate them to each individual person without using
any person detector. It is, generally, a more complex approach, but is more robust to
occlusion and complex poses.

2.3.1 Pose Estimation Frameworks

Different benchmarks of 2D human pose estimation are evaluated through annual
challenges that aim to improve various key-parameters, such as the accuracy, how the
algorithm performs with partial occlusions or using different keypoints, how to detect
the pose of big number of individuals in the scene, etc. Some popular examples are
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the COCO Keypoint, MPII HumanPose and Posetrack challenges. Below, we will
review and compare some of the popular top-down and bottom-up approaches for
pose estimation.

2.3.1.1 AlphaPose

AlphaPose [4] is a a top-down method based on regional multi-person pose estimation
(RMPE). It follows a pipeline in which it is first applied the object detector Faster-
RCNN[5] to obtain the human bounding boxes. This bounding box will fed into a Spa-
tial Transformer Network (STN), which select the region of interest, then, a parallel
single-person pose estimator (SPPE) module, to improve robustness against imperfect
human bounding boxes, and finally, a Spatial Detransformer Network (SDTN), which
generates pose proposals. At the end, a Parametric Pose Non-Maximum-Suppression
(NMS) is carried out to eliminate redundant pose estimations

2.3.1.2 DensePose

DensePose [6], developed by Facebook AI research, takes as input an RGB image and
estimates the surface-based description of the human body. This framework starts by
applying an adapt version of Mask-RCNN with a Feature Pyramid Network (FPN)
[7] features, FPN brings robustness to CNN in detection at different scales, to predict
the discrete part labels and continuous surface coordinates. The reconstruction of
the surfaces is carried out by an inpainting process based on another convolutional
neural network, this process allows to recover deteriorated part of the image or body
parts that are hidden and is relies on the estimation performed at different scales by
the FPN.

2.3.1.3 Human Mesh Recovery

Human Mesh Recovery (HMR) [8] framework aims to map each person and extract
a 3D joint surface from the shape and the angles of the human body by only us-
ing RGB images. The framework takes an input image centered on a human in a
feed-forward manner. Then, a convolutional encoder, bases on Skinned Multi-Person
Linear (SMPL) [9] model, generates the features that will feed an iterative 3D re-
gression module whose objective is to infer the 3D reconstruction of the human body.
After that, HMR uses a discriminator network which select the meshes that belong
to the real human.
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2.3.1.4 DeepCut

DeepCut[10] is an example of bottom-up approach, it uses an adapt Fast R-CNN
version called AFR-CNN to extract a set of joint candidates. Then, it uses VGG for
extracting part probability score maps and, finally, associates the joints with Non-
Maximum Suppression.

2.3.1.5 OpenPose

OpenPose [11] is a real-time bottom-up approach for detecting 2D pose of multiple
people on an image. First, it takes an RGB image (Figure 2.4a) and apply a fine-
tuned version of the convolutional neural network VGG-19 [12] to generate the input
features of the algorithm. Second, these features enter a multi-stage CNN, created
on the basis of the convolutional pose machines developed in [13], to predict the set
of confidence maps (Figure 2.4b), where each map represents a joint, and the set of
part affinities (Figure 2.4c), which represent the degree of association between joints.
Lastly, after a non-maximum suppression in order to discretize the data, bipartite
matching is used to associate body part candidates (Figure 2.4d) and obtain the full
2D skeletons (Figure 2.4e), i.e. the joint that share the higher weight are selected
between all the possible pairs of associations.

Figure 2.4: OpenPose pipeline Reprinted from [11]

2.3.1.6 Comparison between the frameworks

In our work, we have chosen to use OpenPose. The main reason is that OpenPose
is a bottom-up approach, we avoid a possible early commitment, that includes a
hand skeleton estimation, which has been considered an important perspective in our
system. Table 2.1 shows a list of popular open source methods for 2D pose estimation,
their Githubs, the machine learning framework used for the implementation and the
classification obtained in their respective challenges.



2.4. MACHINE AND DEEP LEARNING FRAMEWORKS FOR MOBILE DEVICES9

Table 2.1: List of popular open-source frameworks for 2D pose estimation. mAP is
Mean Average Precision

Method Git. ML framework Benchmark / Dataset Rank mAP (%)
AlphaPose [14] PyTorch COCO Keypoint challenge 2018 11 70.2
DensePose [15] Caffe2 Posetrack multi-person pose estimation 2017 7 61.2
HMR [16] TensorFlow Common objects in context (COCO) – –
DeepCut [17] Caffe MPII Multi-Person dataset – 51.4
OpenPose [18] Caffe COCO Keypoint challenge 2016 1 60.5

2.4 Machine and deep learning frameworks for mobile de-
vices

A pose estimation embedded to a smartphone still represents a huge challenge for the
scientific community. Neither Apple Store nor Google Play propose any application
that provides pose estimation. The main reason is the computational power needed
for running deep learning algorithms, as well as the lack of powerful graphical devices
in smartphones. [19] shows different tests when running deep neural networks on
Android smartphones. The use of TensorFlow-Lite, Caffe-Android or Torch-Android
frameworks is currently possible for implementing CNNs on smartphones.

Nevertheless, at the end of 2017, Apple made a transition in the world of machine
learning by launching the CoreML framework for iOS 11 that enable the running of
machine learning models on mobile devices. The performance improved in the next
version, CoreML2, at the end of 2018.

Today, there are available applications that do eye tracking based on gaze es-
timation by using CNNs [20]. Nevertheless, pose estimation requires much more
computation power than eye tracking or face recognition. For this reason, the use of
an external framework has been considered as a better solution within the context of
this work.

2.5 Communication between smartphone and server (Web-
Socket)

In any web application, client-server communication is one of the most important
aspects. The data communication must be as fast and smooth as possible, avoiding
losses and interruptions and enabling an excellent user experience

The WebSocket Protocol (RFC 6455) [21], launched in 2011, enables a bidirec-
tional communication and full-duplex over a single TCP socket, and between a client
running untrusted code in a controlled environment to a remote host that has opted-in
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to communications from that code.
The connection is established on HTTP and begins with a handshaking process,

when one device, the client, sends a WebSocket negotiation request, and the other
device, the server, sends a WebSocket negotiation response. The handshake is shown
in Table 2.2

Table 2.2: WebSocket handshake example [21]

Handshake from the client Handshake from the server
GET /chat HTTP/1.1 HTTP/1.1 101 Switching Protocols
Host: server.example.com Upgrade: websocket
Upgrade: websocket Connection: Upgrade
Connection: Upgrade Sec-WebSocket-Accept: XXZ==
Sec-WebSocket-Key: XXY= Sec-WebSocket-Protocol: chat
Origin: http://example.com
Sec-WebSocket-Protocol: chat, superchat
Sec-WebSocket-Version: 13

Once established, WebSocket data frames can begin to be sent in both directions
between the client and the server in full-duplex mode. In this way, a server can send
any message to a client at any time and the client would receive it instantly, and the
same in the opposite direction: a message we generate in the browser can be sent
without having to establish a new connection because there is already one open.

Finally, another handshaking communication is needed to close the channel. Fig-
ure 2.5 shows an example of WebSocket architecture.

2.6 Gesture recognition methods

The implementation of deep learning for gesture recognition has become the common
practice and can lead to very good results. The ChaLearn LAP Large-scale Isolated
Gesture Recognition Challenge from the ICCV 2017, crowned [22] [23] [24] as the best
deep learning algorithms for gesture recognition. However, the need for large training
databases is not compatible with the constraints professional gestures where datasets
are quite small. Therefore, in this research we will study others gesture recognition
methods.

2.6.1 Dynamic Time Warping (DTW)

Dynamic Time Warping (DTW) [25] as well as Hidden Markov Models [26] are two
machine learning methods widely used in pattern recognition. DTW is a template-
based approach that is based on a temporal re-scaling of a reference motion signal and
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Figure 2.5: Example of WebSocket communication

its comparison with the input motion signal, i.e, it measures the similarity between
two temporal sequences, such as in [27] where they use DTW for off-line recognition
of a gestures. DTW is good for doing one-shot learning, because can detect similarity
between two temporal sequences even that one is faster than the other, while HMMs
is a robust duration-independent model-based approach.

2.6.2 Hidden Markov Models (HMMs)

Hidden Markov Models is a statistical model for modelling time series data based on
the Markov chain or Markov property, i.e. each event depends only on the previous
event (P (Xt = j|X1 = i1, ..., Xt−1 = it−1) = P (Xt = j|Xt−1 = it−1)). In HMM, we
make two assumptions: first, the observation at time t comes from a hidden process
state (S) and second, it satisfies the Markov property. Therefore, joining these two
assumptions, with St the current state and Yt the observed variable, we obtain:

P (S1:T , Y 1 : T ) = P (S1, Y1)

t=2∏
T

P (St|St−1)P (Yt|St) (2.2)

We chose to use the work described in [28], which makes use of K-means to model
the time series of motion data and HMMs for classifying and recognizing the gesture
classes by using the Gesture Recognition Toolkit (GRT)[29].
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2.7 Evaluation framework and metrics

In this section, we will explain the metrics used in Chapter 5 for evaluating the
application.

• Confusion matrix: allows the visualization of the performance of a supervised
learning algorithm relating the actual gesture to the predicted gesture. Table
2.3 shows an example of a confusion matrix.

Actual Gesture
Gesture X Gesture Y

Predicted
Gesture
(HMM)

HMM X True Positive X False Negatives Y
False Positive X

HMM Y False Negatives X
False Positive Y True Positive Y

Table 2.3: Example of confusion matrix

• Recall: in this research we define recall as the percentage of total gestures
performed and correctly classified by the algorithm. Equation 2.3 shows the
general and the applied equation of the recall measure.

Recall(Rc) =
True Positive

True Positive+ False Negatives
=

#(gestures correctly recognized)

#(gestures performed)
(2.3)

• Precision: in this research we define precision as the percentage of total gestures
performed and correctly recognized by the algorithm. Equation 2.4 shows the
general and the applied equation of the precision measure.

Precision(Pr) =
True Positive

True Positive+ False Positive
=

#(gestures correctly recognized)

#(gestures classified)
(2.4)

• Accuracy: we define accuracy as the percentage of total gestures performed,
correctly recognized and correctly classified by the algorithm. Equation 2.5
shows the general and the applied equation of the accuracy measure.

Accuracy(Ac) =
True Positive+ True Negative

Total
=

#(gestures correctly recognized)

#(gestures)
(2.5)

• F-score: defines the harmonic mean between the precision and the recall. Equa-
tion 2.6 shows the general equation of the f-score measure.

F score = 2
Pr ×Rc

Pr +Rc
(2.6)
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2.8 Conclusions

In the state of the art has been explained the possible pose estimation frameworks,
devices or protocols that allows to create the target application. To conclude this
section and to have an idea of the approach followed in this research, our application
uses the iPhone XS for capturing frames RGB-D given their stereoscopic and infrared
camera, the pose estimation is carried out by OpenPose thanks to its hands estimation
module and its bottom-up architecture, k-means and HMM recognize gestures in the
absence of a well annotated dataset and, finally, the communication client-server is
performed by using WebSockets.



14 CHAPTER 2. STATE OF THE ART



Chapter 3

Design and development of the
application

3.1 Introduction

The smartphone handles the input and output steps of the pipeline. It records the
RGB-D frames and shows the results (body skeleton and gesture recognition accu-
racy). An external motion detection server receives the frames by using websockets
and, then, it estimates the skeleton and uses the information provided by the body
joints to train and test a gesture recognition engine. The overall architecture is shown
in Figure 3.1.

Figure 3.1: Architecture of the overall pipeline

3.2 Video recording using the RealSense depth camera

Although the goal of this research work is to make a smartphone application. Some of
the application modules, such as pose estimation or gesture recognition modules, can
be tested with a dataset similar to what a smartphone camera can provide. Therefore,
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the Intel RealSense Depth Camera D435 has been used for some of the tests, as well
as for the creation of the first datasets.

Firstly, for working with the RealSense camera, it is necessary to have installed
their software development kit (SDK) and the Intel RealSense viewer, interface that
allows to select the camera presets and record the RGB-D frames.

Secondly, the RealSense camera saves the sequences in an unique ROS bag file
extension, format created by the Robot Operating System (ROS). Therefore, it is
necessary to perform a conversion to a format readable by the pose estimator (png
or jpg). This conversion is implemented on the basis of the file conversion platform
Intel rs-convert Tool.

Finally, after the conversion, we got RGB-D sequences with a resolution of 640x480
pixels and a frame rate of 30fps, the same ones used by the iPhone XS, with which
we can train and test the gestures recognition module of the application.

3.3 Video recording using the smartphone

A specific module for depth recording has been developed in order to use any iOS
device equipped with an RGB and/or RGB-D sensor to record data. More precisely,
the new iPhone XS has been used in this work.

In order to capture the frames with both cameras, it is necessary to use the AV-
Foundation framework for working with temporal audiovisual media. This framework
is shown on Figure 3.2 and works through the creation of a session with at least one
capture input (camera or microphone) and one capture output (photo, movie or au-
dio). In this work, we have created a session with two inputs: the frontal camera
(True Depth Camera) and the rear camera (Dual Rear Camera) of the iPhone, and
two outputs: RGB data (Video Data Output) and depth data (Depth Data Output).
In addition, we have defined the capture setting presets to 640x480 pixel and 30fps,
similar to the one used by the RealSense. A very important task in the capturing
pipeline has been creating a capture queue in order to coordinates time-matched
delivery of data from multiple capture outputs (RGB and depth).

Depth data is captured in the form of depth (meters), which is the distance from
the camera to the operator, or disparity (1/meters). The possible pixel format is
Float16 (16-bit) or Float32 (32-bit), but since we want to use the data for training
a Hidden Markov Model we select Float16 format, Float32 will increase considerably
the training time. Finally, it is necessary to carry out a conversion from distances into
pixel values in order to visualize depth maps. In Figure 3.3 some examples of depth
maps are represented along with their RGB frames. In the Cerfav dataset frame we



3.4. COMMUNICATION WITH POSE ESTIMATION SERVER 17

Figure 3.2: AVFoundation pipeline followed by the application

can see the effect of the portrait mode, where all the background has been subtracted
and appears in black.

3.4 Communication with pose estimation server

Once the data has been recorded, it is sent to the GPU server by using WebSock-
ets (RFC 6455). For compression purposes, before sending the RGB-D data, it is
converted to jpeg format.

We sent the frames by using the WebSocket client library Starscream. The first
step is to create the connection between the client (the iPhone) and the server (the
GPU). The smartphone makes a connection request by defining the ip address of the
server, the port and the protocol, in our case the echo-protocol. If the request is
satisfactory the bidirectional channel of communication is opened. Then, we start
sending frame by frame all the RGB-D data captured.

However, the depth information is large and difficult to compress, even if we are
using jpeg format this still using a lot of bandwidth, jpeg gives the advantage of
decreasing the latency and recovering each frame with high quality while using H.264
gives better compression but at the cost of latency. Therefore, this application module
is still in an initial phase.
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Figure 3.3: Example of RGB-D frames from TV Assembly and Cerfav dataset

3.5 Pose estimation

The goal of pose estimation is to obtain a series of keypoints that can be used by a
gesture recognition engine as input, enabling to train a model that adapts to different
situations or environments. OpenPose, in our case, estimates 25 body keypoints, 2x21
hand keypoints and 70 face keypoints. However, some of the estimated keypoints
are useless for the recognition, either they are occluded or they do not carry any
information about the gesture. Therefore, a joint selection module has been added
to the application to give the possibility to the user to select the most appropriate
keypoints depending on the use-case.

Once the joints of interest have been selected, a 3D model of the skeleton is created.
In order to do this, a weighting is made between the values of the pixels obtained by
OpenPose and the depth map, it means, if OpenPose returns the coordinate value
xJn and yJn for the joint Jn with the depth map Z, we will take as depth value, zJn ,
the result of equation 3.5

z1Jn = Z[floor(xJn)][floor(yJn)]× (ceil(xJn)− xJn)× (ceil(yJn)− yJn) (3.1)

z2Jn = Z[floor(xJn)][ceil(yJn)]× (ceil(xJn)− xJn)× (yJn − floor(yJn)) (3.2)
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z3Jn = Z[floor(xJn)][floor(yJn)]× (xJn − floor(xJn))× (ceil(yJn)− yJn) (3.3)

z4Jn = Z[floor(xJn)][floor(yJn)]× (ceil(xJn)− xJn)× (yJn − floor(yJn)) (3.4)

zJn = z1Jn + z2Jn + z3Jn + z4Jn (3.5)

3.6 Gesture recognition

The joints obtained with the pose estimation and the data obtained from the depth
camera are the input to the gesture classification algorithm. To make the recognition
invariant to the position of each person in the frame, the neck joint has been taken
as a reference point, and any frame without neck has been discarded.

The gesture recognition engine is based on supervised learning. Therefore, before
making the gesture recognition, a labelled database has been manually created by
manually selecting starting and ending time stamps of each gesture.

Once the database has been labelled, it is necessary to process it in order to
organize it into logical groups. A .grt document has been created by concatenating
in rows all the coordinates, 2D or 3D, of the different joints and the different frames
of the each gesture. Moreover, we normalize the pixel values between 0 and 1.

Finally, the gesture recognition engine uses k-Means to obtain discrete-valued
observations. Then, Hidden Markov Models is used to train the discrete data and to
determine a gesture recognition accuracy. The platform GRT has been used for the
entire process. Figure 3.4 shows the gesture recognition pipeline.

Figure 3.4: Gesture recognition pipeline followed by the application

3.7 Smartphone application

The graphical user interface of the application consists on four main modules:
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• Recording module: allows to record the sequences and visualize depth maps
live. This application module is fully implemented and functional. An example
of this module is shown on Figure 3.5a.

• Skeleton Visualization module: allows to visualize the skeleton estimated. This
application module is in the process of implementation. Figure 3.5b shows how
this module will look like.

• Training module: allows to select the appropriate joints for the gesture recog-
nition. This module is fully operational.

• Labelling module: interface similar to a photo gallery where you must select the
gestures that you want to recognize. This module is pending implementation.

(a) Skeleton visualization mod-
ule using the rear camera

(b) Recording module, enabling
depth, using the front camera

Figure 3.5: Example of the smartphone application
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Dataset

4.1 TV Assembly dataset

The first dataset used has been named as TV Assembly dataset (TVA). It is made up
of RGB-D sequences recorded from a top mounted view at a conveyor surface factory.
Each sequence contains around 10.000 RGB frames together with the depth, all the
frames have a resolution of 640x480 and a frame rate of 30fps.

Two different users have been recorded using the Intel RealSense Depth Camera
D435. Table 4.1 shows the four gestures identified and labeled during the sequences
along with the skeleton estimated of each of them.

Table 4.1: Example of frames from the conveyor surface dataset

Gesture 1 (G1) Gesture 2 (G2) Gesture 3 (G3) Gesture 4 (G4)

Take the card from
the left side box

Take the wire from
the right side box

Connect the wire
with the card

Place the card on
the TV chassis

4.2 Cerfav dataset

The second dataset, Cerfav dataset, has been recorded in a center for researches and
training in the glass-work. It has been recorded using the iPhone XS frontal camera,
recording from different points of view and with motion. It consists of RGB-D frames
with a resolution of 480x640.
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Table 4.2: Example of frames from the Cerfav dataset

Gesture 1 (G1) Gesture 2 (G2) Gesture 3 (G3) )

Insert the glass into
the furnace

Move the bar from
one side to the
other

Shaping glass with
the hand

Gesture 4 (G4) Gesture 5 (G5) Gesture 6 (G6)

Blow through the
stick

Tighten the base of
the glass with the
pliers

Burn the base of
the glass with a
torch

The overall task performed by the worker of this factory is longer than the previous
dataset tasks and is composed of six different gestures. Table 4.2 shows the six
gestures identified and labeled during the sequences along with the skeleton of each
of them.

4.3 Silk Weaving dataset

Finally, the third dataset, Silk Weaving dataset (SW), contains sequences recorded
from a lateral view and three different positions in a silk weaver museum. Each
sequence contains around 6.000 RGB frames with a resolution of 640x480 and a frame
rate of 30fps.

In SW dataset only one user has been recorded. Table 4.3 shows the three gestures
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identified and labeled during the sequences along with the skeleton of each of them.

Table 4.3: Example of frames from the silk weaver museum dataset

Gesture 1 (G5) Gesture 2 (G6) Gesture 3 (G7)

Press the treadle
and push the bat-
ten

Move the shuttle
sideways

Leave the treadle
and pull the batten
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Chapter 5

Evaluation

5.1 Potential challenges and limitations

In this application, the gesture recognition engine receives as input the joints esti-
mated by OpenPose, therefore, the recognition of gestures highly depends on the
quality of the pose estimation. In this section, we will analyze some of the most
common problems we encountered during the pose estimation:

• Skeleton not estimated: the pose estimation algorithm does not detect any
person in the frame and therefore does not return any joint. This situation
usually occurs when the person continues performing their tasks outside the
reach of the camera, or when the person is to blurred for being recognize.

• Skeleton incorrectly estimated: in this case, the algorithm detects and estimates
the person in the image, however, the estimation is not correct. This a high
influential error since the generated input is erroneous and, therefore, the Hidden
Markov Model will use erroneous estimation for training.

• Partial skeleton estimation: this is the case where, either because the image
is too blurry, or because the person is not detected correctly, the estimated
skeleton is incomplete, i.e. not all joints are estimated.

• Skeleton occluded: in line with the previous case, if part of the human body
is occluded, either by an object, or because one part of the body occludes the
other, the skeleton will not be completely estimated.

• Wrong person estimated: as OpenPose is a multiple people estimation frame-
work, it may happen that the person interested in being estimated in the frame-
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work is not the person with the highest score, being this, the discrete method to
track the target person. This error together with skeleton incorrectly estimated

In figure 5.1 we can see some examples of skeleton estimation in the three different
datasets. From left to right and from top to bottom we are going to explain the
type of estimation in that frame: (1) Frame with skeleton not estimated. (2) Frame
with skeleton incorrectly estimated. (3) Frame with skeleton occluded. (4) Frame
with partial skeleton estimation. (5) Frame perfectly estimated. (6) Frame perfectly
estimated. (7) Frame perfectly estimated. (8) Frame with skeleton occluded. (9)
Frame with the wrong person estimated. (10) Frame with skeleton occluded.

Figure 5.1: Example of skeleton estimation in Silk Weaving; TV Assembly and Cerfav
dataset
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5.2 Comparative Evaluation

In order to evaluate the performance of our pipeline and the algorithms we use the
80%-20% evaluation criteria. We randomly divide our dataset in 80% training set
and 20% as testing set, repeating this procedure 10 times and computing the average
values to generate the confusion matrix. We also use the Recall (Rc), Precision (Pc)
and f-score metric.

The TVA dataset contains 48 repetitions of each gesture, the SW dataset contains
88 repetitions and the Cerfav dataset contains 13 samples from G1, 12 from G2, 23
from G3, 9 from G4, 16 from G5 and 5 from G6. Moreover, for the gesture recognition
engine, we selected 30 clusters for the K-Means algorithm and 15 states for the HMMs,
which follow an ergodic topology. Finally, five different tests have been done in order
to compare the gesture recognition accuracy using the following criteria: 2D against
3D in TVA and Cerfav dataset, 2 joints against 7 joints in TVA dataset, different
camera positions in SW and Cerfav dataset and mixing gestures from the SW and
TVA datasets.

5.2.1 Pose estimation comparison using the TVA, SW and Cerfav
datasets

A comparison of the pose estimation using the three datasets has been made. We
compared the number of frames per gestures with (1) the percentage of frames without
any estimated skeleton, thus without estimation at all; (2) the percentage of frames
without any reference point, thus without the neck and, (3) the percentage of frames
having the minimum useful estimation, thus at least the neck.

The results are shown on Table 5.1 and we can affirm that the lateral views
provided by the SW dataset and all the views provides by Cerfav dataset have a
better potential, than the TVA dataset, since a full skeleton has been estimated for
all the frames. In the top mounted view of the TVA dataset, the algorithm struggled
to estimate any information in 43% of frames for G2 and in 36% of frames for G4,
because the user is not captured in many frames. With regard to the TVA dataset,
we would expect that these results might have an impact in the gesture recognition
accuracy. We would also expect that the small duration of the G1 of SW dataset
might also affect its recognition accuracy. Moreover, from the duration of Cerfav we
can notice how the duration of the frames varies depending on the gesture, G6 usually
lasts 526 frames while G2 last 56 frames, we assume that the shortest gestures (G2
and G4) will tend to fail more than the long ones.
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Table 5.1: OpenPose results on the TVA and SW datasets

Dataset TV Assembly Silk Weaving
Gesture G1 G2 G3 G1 G2 G3 G7
# Frames per sample 80.62 67.89 88.69 164.27 30.85 41.81 66.16
% Frames without any
skeleton estimated 0.88 12.27 1.31 14.39 0 0 0

% Frames without reference
point (without neck) 2.71 31.05 1.41 22.83 0 0 0

% Frames minimum useful
estimation (at least the neck) 96.41 56.67 97.28 62.78 100 100 100

Dataset Cerfav
Gesture G1 G2 G3 G4 G5 G6
# Frames per sample 448.92 56.00 466.69 92.44 235.25 526.60
% Frames minimum useful
estimation (at least the neck) 100 100 100 100 100 100

5.2.2 Gesture recognition comparisons using the TVA dataset: 2D
vs 3D and 2 vs 7 joints

The joints selected for training the gesture recognition engine with the TVA dataset
are the upper-body joints. Table 5.2 compares the recognition accuracy by using 2
(wrists) or 7 (wrists, elbow, shoulders and head) joints in the 2D or 3D space. The
highest results are obtained by using 7 joints in 3D, while the worst with 2 joints in
2D.

Moreover, as we expected, the low number of frames with the minimal useful
pose estimation for G2 and G4 impacted the recognition accuracy for these gestures,
while G1 and G3, which have data that give good pose estimation, achieved very high
accuracy.

Additionally, on one hand, we notice that, while what we gain with the 3D is not
so important compared with the 2D, the potential error in the accuracy (standard
deviation) decreases for approximately 40% with the 3D. On the other hand, if we
use 7 joints instead of 2, we increase the accuracy for more than 10%, meaning that
not mostly the hands are involved into the effective gestures. In any case, the way
the 3rd dimension is extracted is biased by the fact that OpenPose is already pre-
trained using only the RGB, meaning that a complete re-training of the OpenPose
with the depth might give better results. Finally, the number of joints that give better
accuracy really depends on the nature of gestures.
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Table 5.2: Comparison in the gesture recognition using different joints and dimension
and TV Assembly dataset

2J-2D G1 G2 G3 G4 Pr(%)
HMM1 81 1 3 6 89.0
HMM2 0 70 1 29 70.0
HMM3 17 12 53 5 60.9
HMM4 2 14 0 96 85.7
Rc(%) 81.0 72.2 92.3 70.6 76.9± 7.9

2J-3D G1 G2 G3 G4 Pr(%)
HMM1 80 1 8 3 87.0
HMM2 0 73 1 15 82.0
HMM3 1 28 0 85 66.3
HMM4 1 28 0 85 74.6
Rc(%) 84.2 65.0 87.5 77.3 77.2± 4.7

7J-2D G1 G2 G3 G4 Pr(%)
HMM1 85 1 4 0 94.4
HMM2 0 84 0 11 88.4
HMM3 4 16 71 8 71.7
HMM4 0 6 0 100 94.3
Rc(%) 95.5 78.5 94.7 84.0 87.2± 6.0

7J-3D G1 G2 G3 G4 Pr(%)
HMM1 98 1 1 0 98.0
HMM2 0 82 1 5 93.2
HMM3 4 7 68 7 79.1
HMM4 6 114 0 94 82.5
Rc(%) 90.7 78.8 97.1 88.7 88.1± 3.4

5.2.3 Gesture recognition comparison using three different camera
positions from the SW dataset

The accuracy in the Table 5.3 is 100%, meaning that the recognizer works perfectly
for the gestures of the SW dataset. We think that the difference between the accuracy
of the two datasets is mostly due two main reasons: 1. the top mounted view used in
the TVA dataset and 2. the fact that in a number of frames the user is not captured
in the TVA dataset, thus there is no any pose estimation. In addition, the three
gestures made in the SW dataset have a greater variance in space than in the TVA
dataset.

Table 5.3: Gesture recognition using all joints and 2 dimensions on Silk Weaving
dataset

2J-2D G4 G5 G7 Pr(%)
HMM1 183 0 0 100
HMM2 0 166 0 100
HMM3 0 0 181 100
Rc(%) 100 100 100 100± 0

5.2.4 Comparison mixing gestures and data from the TVA and the
SW datasets

The last experiment we tried is mixing gestures and data from the two datasets. In
Table 5.4, we calculate the precision, recall and f-score for each gesture when we train
the gesture recognition engine with samples from both datasets. As a general conclu-
sion, we notice that there is a decrease of accuracy for every gesture. Nevertheless,
this decrease is not important given the fact that we have many users, thus a high



30 CHAPTER 5. EVALUATION

variance in the way the gestures are executed, and different camera positions.

Table 5.4: Gesture recognition mixing gestures from SW and TVA datasets and using
7 joints and 2D

G1 G2 G3 G4 G5 G6 G7
Pr(%) 81.9 56.7 80.9 62.8 98.3 98.8 99.5
Rc(%) 84.6 77.5 68.5 69.9 96.6 97.6 95.4
f-score(%) 83.2 65.5 74.2 66.2 97.4 98.2 97.4

5.2.5 Gesture recognition comparisons using the Cerfav dataset: 2D
vs 3D

The final test is on the Cerfav dataset recorded with the iPhone XS camera. If we look
at table 5.5 we can affirm that the results are numerically worse than those obtained
with SW and TVA datasets. We attribute these results to:

• The lack of samples in some of the gestures, i.e. the gesture with more samples
is the G3 with 23 samples and the gesture with less is G6 with 5 samples, TVA
dataset and SW dataset have 48 and 88 samples per gesture respectively. In
addition, this results in an unbalanced database.

• The problem of multiperson pose estimation, i.e. unlike the other datasets, in
Cerfav dataset there are more than one person in the frame, this causes a mul-
tiple pose estimation and therefore, we need to select the person of interested.
This selection is based on the person with the highest confidence value, that
does not always coincide with the person of interest. A possible improvement
would be to add a tracker although it would increase the computational cost.

• Cerfav dataset has been recorded from different points of views ans in movement,
factors that may influence the recognition of gestures.

• The number of gestures is greater, six gestures while TVA has four and SW has
three, and therefore increases the possibility of failure.

Despite all the challenges that took place in Cerfav dataset, the results obtained
are good, especially for 3D case. The final accuracy obtained in the 2D case is 58.7%
far surpassing a random recognizer (16.66%), while if we use the 3D data we improve
the recognizer up to 62.5% accuracy rate, in addition to reduce the standard deviation
again as in the same comparison but with TVA dataset. This last statement supposes
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that the experiment carried out to add the depth maps is beneficial in the gestures
recognition.

Analyzing in more detail the results of the Table 5.5, we can notice that G6
is always the worst-recognized gesture, we assume this is because there are only 5
samples of this gesture, on several occasions G6 is not even selected for testing, in
contrast, the gestures with more samples, G1, G3 and G5, are the ones with the
highest precision

Table 5.5: Comparison in the gesture recognition using different joints and dimension
and TV Assembly dataset

2D G1 G2 G3 G4 G5 G6 Pr(%)
HMM1 14 11 0 0 0 0 56.0
HMM2 0 25 0 0 0 0 100.0
HMM3 0 11 25 4 1 2 58.1
HMM4 0 0 1 17 0 0 94.4
HMM5 2 8 2 9 11 2 32.4
HMM6 2 2 4 3 2 2 13.3
Rc(%) 77.8 43.9 78.1 51.5 78.6 33.3 58.7± 8.9

3D G1 G2 G3 G4 G5 G6 Pr(%)
HMM1 9 19 0 0 0 0 32.1
HMM2 1 26 0 0 0 0 96.3
HMM3 0 11 34 0 0 0 75.6
HMM4 0 0 0 22 0 0 100.0
HMM5 2 7 1 4 13 0 48.1
HMM6 0 3 5 3 0 0 0.0
Rc(%) 75.0 39.4 85 75.9 100.0 0.0 65.0± 6.3

5.3 Conclusion

In this section we have experimented with 3 different datasets, Silk Weaving, TV
Assebly and Cerfav dataset, in 2D or 3D. The best results in gesture recognition have
been obtained with the SW dataset, while Cerfav dataset in 2D achieved the lower
ones. However, the main hypothesis of these experiments has been confirmed: depth
information improves gesture recognition in both accuracy and stability
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Chapter 6

Conclusion and future work

6.1 Conclusion

In this work, we developed the first version of a smartphone application that allows
users to record human motion using the RGB or the RGB-D sensors, annotate ges-
tures, estimate the pose and recognize the gestures. The use of a smartphone in
industrial or professional context is much easier than the use of highly intrusive body
tracking systems. The long term goal of this application is to permit to industrial
actors to record their own professional gestures, to annotate them and to use a user-
friendly system for their recognition. We developed a module that extracts the 3rd
dimension from a depth frame. We concluded that the 3rd dimension improves the
gestures recognition, around 7% using Cerfav dataset, and the gestures recognition
stability, decreasing by 40% the standard deviation in the accuracy of TV Assembly
dataset. In addition to this, we observed that while hand are involved in most of
cases, using 7 instead of 2 joints can give better recognition results, especially when
the camera is top-mounted.

6.2 Future work

Our future work will be focused not only on improving the application, thus improving
the interface, but also on the further development of professional gestures dataset.
Therefore, the future work of this research project is:

• As the size of the datasets increases we will be able to consider also the use of
Deep Learning instead of Hidden Markov Models.

• We plan to extend our pose estimation and gesture recognition system towards
the direction of using finger motion as well.
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• Retrain the pose estimator to be able to accept RGB-D images, for this we will
need to create a well defined dictionary of gestures/activities and a balanced
dataset.

• Increase the size and balance of databases, which will lead to an improvement
and greater reliability in the precision of the results.

• Optimize client-server communication using cloud tools, such us iCloud.
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