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Resumen

La creciente demanda de mayor calidad de servicio ya es una realidad en los sistemas de
telecomunicaciones. Con la llegada del 5G, la red de redes, esta tendencia es aún mas
marcada. En general, los sistemas de telecomunicaciones han supuesto siempre un reto
para los ingenieros de microondas, siendo los sistemas por satélite especialmente exigentes.
Dichos sistemas no solo han de utilizar de forma e�ciente el espectro disponible, sino que,
además, deben lidiar con la limitada potencia disponible en el espacio o con fenómenos
físicos propios del vacío como el conocido fenómeno de multipactor.

En este contexto, los ingenieros de microondas necesitan herramientas de diseño
asistido por ordenador potentes y e�cientes, capaces de predecir en un tiempo de ejecución
razonable el comportamiento de los dispositivos que diseñan. Hay dispositivos que han
de analizarse por medio de métodos numéricos, siendo estos menos e�cientes pero más
genéricos que los analíticos. Los métodos de análisis modal pertenecen a este último grupo:
son más e�cientes que los numéricos y, por tanto, preferibles siempre que se apliquen a
geometrías cuyos modos pueden expresarse de forma analítica o cuasianalítica. El objetivo
de esta Tesis doctoral es contribuir al análisis electromagnético e�ciente de geometrías
poco convencionales. En particular, las guías estudiadas en este trabajo son la triangular
equilátera y la parabólico-cilíndrica, presentes en la literatura desde hace varias décadas.
Sin embargo, ambas fueron relegadas a un segundo plano en el diseño de dispositivos,
probablemente debido a la falta del conjunto completo de modos en la guía triangular
equilátera y a la ausencia de un método analítico y sistemático de resolución de modos en
la guía parabólico-cilíndrica.

En esta Tesis se aborda la aplicación del método de ajuste modal (Mode-Matching)
para problemas electromagnéticos formados por bloques de guías triangulares equiláteras,
para lo cual se ha hecho uso del conjunto completo de modos de esta guía publicado
recientemente. Ademas, gracias a la formulación basada en ondas planas, la integración
de la guía triangular equilátera en problemas de discontinuidades donde aparecen otras
guías clásicas (como la circular, la rectangular o la elíptica) se resuelve de forma sencilla
y homogénea. Asimismo, se han calculado las expresiones analíticas del factor de calidad
Q típico de los �ltros de microondas, lo que constituye una extensión a las expresiones ya
existentes en la literatura para las cavidades clásicas (rectangular y circular) para el caso
de la cavidad triangular equilátera.

En lo que respecta al análisis electromagnético de la guía parabólico-cilíndrica, las
herramientas existentes de caracterización analítica estaban menos desarrolladas que en
el caso de la guía triangular equilátera. Tanto es así que, para la resolución analítica de
su espectro modal, hasta ahora era necesario recurrir a métodos de intersección grá�ca de
curvas. Gracias al trabajo desarrollado en esta Tesis, se puede resolver por primera vez el
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conjunto completo de modos de esta geometría de forma plenamente robusta, con precisión
y de forma sistematizada en una herramienta de diseño asistido por ordenador.

Además de las dos geometrías estudiadas en esta Tesis, resulta evidente la posibil-
idad de que otras no convencionales lleguen a formar parte de los futuros dispositivos de
comunicaciones. En aras de la exhaustividad, se propone una formulación e�ciente para
hibridar los métodos de elementos �nitos en 2D y ajuste modal (2D Finite Element y
Mode-Matching), basada en el uso de espacios anidados de funciones base de elementos
�nitos que reduce el número necesario de operaciones. De esta manera, cualquier dispos-
itivo formado por secciones de guía (con solución modal analítica o numérica) puede ser
analizado con el software que se ha desarrollado en esta Tesis.

Las herramientas de análisis electromagnético diseñadas en esta Tesis permiten carac-
terizar una gran variedad de dispositivos de microondas y ondas milimétricas. En concreto,
la segunda parte del trabajo realizado se centra en el diseño de �ltros. Los �ltros de mi-
croondas son los dispositivos que seleccionan los canales de información en los sistemas
de telecomunicaciones, sistemas que, en el sector espacial concretamente, están sujetos a
complejas restricciones de diseño. En esta Tesis se han diseñado dos prototipos inline en
cavidades equiláteras triangulares y parabólico-cilíndricas, con resultados que demuestran
la viabilidad de la integración en futuros dispositivos de estas geometrías poco conven-
cionales. También se ha diseñado, fabricado, sintonizado y medido un prototipo dual-mode
basado en cavidades triangulares equiláteras. Presentado como prueba de concepto, consti-
tuye una alternativa a los prototipos dual-mode clásicos de cavidades circulares, los cuales
permiten alcanzar la misma selectividad que los dispositivos monomodo con la mitad de
resonadores.

Además del uso de resonadores multimodo, existen otras técnicas que permiten re-
ducir el tamaño de los �ltros de microondas sin renunciar a la respuesta objetivo requerida
por el sistema de comunicaciones. En la última parte de esta Tesis se presentan dos estrate-
gias: el uso de acoplos dispersivos y el uso de geometrías de sección transversal reducida.
Los acoplos dispersivos se caracterizan por presentar una variación signi�cativa en frecuen-
cia, lo que permite generar ceros de transmisión adicionales fuera de la banda de paso. De
esta manera, se consiguen niveles de rechazo de frecuencias indeseadas similares a los al-
canzables mediante el uso de un mayor número de resonadores. En concreto, esta Tesis se
centra en la aplicación de acoplos fuente-carga dispersivos en las topologías folded clásicas
debido a su fácil implementación. Se han fabricado y medido dos prototipos en plano E y
plano H en banda W con resultados muy prometedores.

Finalmente, se propone el uso de la forma triangular equilátera en otro contexto: el de
los resonadores dieléctricos. Debido a su limitada capacidad para manejar altas potencias,
este tipo de �ltros normalmente se emplea en los multiplexores de entrada de los sistemas
de comunicaciones por satélite. A cambio, los �ltros en resonadores dieléctricos ofrecen un
tamaño y un peso reducidos. En ese contexto, en las últimas décadas se ha realizado una
importante inversión en desarrollar resonadores dieléctricos multimodo que reducen más
si cabe el volumen de los �ltros. En esta Tesis, se proponen varias topologías que, aun
siendo monomodo, se bene�cian de la reducida sección transversal inherente al resonador
dieléctrico de forma triangular equilátera. Entre todas ellas, se ha elegido la toplogía
hexagonal para mostrar un diseño a modo de prueba de concepto en la banda Ku, que es,
además, el primer �ltro de microondas en esta geometría hasta donde el autor sabe.
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Abstract

Telecommunication systems have experienced an increasing demand in the quality of service
over the recent years. With the arrival of 5G, the network of networks, this trend is even
more signi�cant. Systems have always posed a challenge for microwave engineers, especially
in satellite communications. Even though these systems seek the e�cient utilization of the
electromagnetic spectrum as in any other communication systems, they must also manage
the limited availability of power or the e�ects related to the vacuum environment such as
the multipactor phenomenon. For all of the above, on-board devices are designed making
use of the latest advances. One of the popular trends nowadays is the use of 3D printing
techniques, which paves the way for the use of unconventional geometries di�erent to those
traditionally (and still currently) used.

In this context, microwave practitioners demand robust Computer-Aided-Design
tools capable of predicting the behavior of devices designed with an a�ordable compu-
tational burden. Numerical techniques are sometimes required, as they enable analyzing
complex arbitrary geometries. However, the use of analytical or quasi-analytical techniques
o�ers multiple advantages where this kind of analysis is feasible as they are highly e�cient.
In this scenario, this Thesis aims to contribute to the e�cient electromagnetic analysis of
waveguide devices made up of unconventional cross-sections. In particular, two geometries
are addressed: the equilateral triangular and the parabolic cylinder waveguides. Both ge-
ometries were reported in the literature a long time ago, but the lack of the complete set
of modes in the former and a systematic procedure to �nd the analytical modal spectra in
the latter had made them not be usually considered for microwave design.

A �exible formulation based on plane waves is proposed in this Thesis to address the
resolution of waveguide devices made up of equilateral triangular blocks by means of the
Mode-Matching method. The recently published complete modal set is here used. Further-
more, the integration of this speci�c waveguide with other canonical ones (i.e. rectangular,
circular, elliptical) has been successfully solved in a uni�ed manner. The derivation of the
analytical closed-form expressions of the Q-factor in the equilateral triangular resonator
has been developed as well. The obtained formulas extend the well-known classic expres-
sions found in the literature for rectangular and circular cavities to the case of equilateral
triangular cavities.

In the case of the parabolic cylinder waveguide, its analytical resolution had not
been subject of a thourough development, as in the case of the equilateral triangular
waveguide. In fact, the analytical methods available to solve its modal spectra resorted
to graphical intersections. The work developed in this Thesis makes it possible to carry
out its analytical modal analysis for the �rst time in a systematic way, so that it can be
embedded into modern Computer-Aided-Design tools.

xi
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In addition to equilateral triangular and the parabolic cylinder waveguides, other
unconventional cross-sections may also become part of prospective devices. For the sake
of completeness, an e�cient formulation for hybridizing the 2D-Finite Element and the
Mode-Matching methods is proposed. Based on the use of nested �nite-element function
spaces, devices made up of cascaded arbitrary cross-sectional waveguide steps are e�ciently
analyzed reducing the total computations.

The analysis tools developed in this Thesis can be applied to a wide variety of mi-
crowave and and millimeter-wave devices. In particular, the second part of this dissertation
focuses on microwave �lters. These devices select frequency channels and are usually de-
signed ful�lling very stringent speci�cations in the space sector. Two inline prototypes
made up of equilateral triangular and asymmetric parabolic cavities are presented, thus
proving the good performance of these unconventional geometries. A dual-mode proto-
type of equilateral triangular cavities has also been designed, manufactured, tuned and
measured. This prototype, which is presented as a proof of concept and as an alternative
to the classical TE113 dual-mode �lters typical of satellite systems, allows to implement
the desired electromagnetic response with half the number of resonators required by a
single-mode prototype.

Compactness can also be achieved following other strategies apart from the use of
multimode resonators. In particular, two of them are developed in the last section of
this Thesis: the implementation of dispersive couplings and the use of reduced footprint
topologies. Dispersive couplings are characterized by their strong variation over frequency,
and allow the generation of additional out of band transmission zeros. Hence, the stop-
band behavior of the �lter can be improved without increasing the number of resonators,
which is strongly desirable at high frequency bands. This Thesis has focused on dispersive
source to load couplings in the well-known waveguide folded topology due to the ease of
implementation. Two prototypes at the W-band have been manufactured and measured:
an E-plane �lter with phase equalization and and H-plane �lter of mixed TE101 and TE102

cavities, showing promising results.

Finally, the proposal of novel dielectric resonator �lters is addressed. Due to their
limited power handling capability, these �lters are usually placed at input multiplexers
of satellite communication systems. Although it is well-known that dielectric resonators
o�er a signi�cant size reduction compared to waveguide cavities, huge e�orts have been
made in recent decades to obtain more compact designs. In this context, several topologies
bene�ting from equilateral triangular dielectric resonators are proposed. Among all of
them, the hexagonal topology has been selected to show a proof-of-concept design in the
Ku-band. To the best of the author's knowledge, this �lter is the �rst one made up of
equilateral triangular dielectric resonators reported in the literature, showing very good
performance and overall reduced size.

Key words

Mode-Matching method, 2D-Finite Element method, equilateral triangular waveguide, in-
line equilateral triangular �lter, parabolic cylinder waveguide, inline asymmetric parabolic
�lter, dual-mode equilateral triangular �lter, analytical Q-factor, root-�nding, analytic
continuation, dispersive source to load coupling, fully canonical folded �lters, equivalent
circuits, dispersive source to load inverter, E-plane �lter, H-plane �lter, dielectric resonator
�lters, equilataral triangular dielectric resonator.
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1 | Introduction

1.1 Motivation

The world is connected nowadays. Behind this reality there are modern telecommunication
systems, completely transparent to the �nal user, which have evolved to provide a wide
variety of services with increasing quality. Among all the available systems, in the recent
years one has attracted the attention of the industry with the emerging concept of the
Internet of Things (IoT) [1]: the satellite communication systems.

The IoT concept refers to the connection of the everyday devices with each other,
sharing information through 5G. The �rst live demonstration of 5G by satellite has been
recently held in the Berlin 5G week 2018 [2]. In this scenario 5G becomes more than the
next generation of mobile services that provides greater bandwidth and reduced latency, as
it requires the creation of a network of networks where satellite links play a major role. In
fact, the European Space Agency (ESA) and 16 satellite industry leaders recently signed a
Join Statement in their collaboration in the area of Satellite for 5G on the 21st of June 2017
at the Paris and Space show [3]. Moreover, a week later the ESA and the European Space
Policy Institute (ESPI) co-hosted a conference in Brussels to discuss about policy and the
technology aspects related to 5G and the future space-base solutions [4]. In this context
satellites are presented as a cost-e�ective solution that must coexist with the terrestrial
mobile networks providing added value in terms of security, resilience, coverage, mobility
and delivery of broadband.

In order to comply with all the Key Performance Indicators (KPIs) that 5G requires,
the communication systems must meet increasingly stringent speci�cations. This poses a
challenge for engineers especially in the space sector, where the environment is particu-
larly hostile. The devices sought to make up the whole satellite system must deal with the
thermal stress associated to wide variations of temperature, the launching vibration and
the problems associated to the vacuum condition such as the multipactor phenomenon,
among others [5�7]. These demanding requirements have led over the last decades to the
signi�cant development of robust Computer Aided Design (CAD) tools capable of ana-
lyzing all these e�ects with a�ordable computational burden [8�16]. Furthermore, a huge
e�ort has been made to improve the manufacturing techniques and the search of materials
with desirable properties. Among all the available technologies for passive devices, in this
scenario waveguide technology has long been widely used due to its power-handling capa-
bility and low insertion losses [17]. Waveguide polarizers, orthomode transducers, cavity
�lters or transformers are typically designed with the canonical rectangular, circular or
elliptical cross-sections [18�25]. With the revolution of 3D printers [26�29], however, the
design possibilities have been undoubtedly widened.
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2 Introduction

The �rst 3D printer dates back to the 80's decade [30]. However the recent advances
in additive manufacturing in the last decade have made it possible to bring cumbersome
prototypes to reality [31]. Novel prototypes for satellite communications can be found
in [32�35]. The use of the 3D printing technology is beyond the scope of this work, however,
it is considered a valuable tool that may boost the future use of non-canonical cross-sections
such as the equilateral triangular and the asymmetric parabolic cross-sections treated in
this Thesis. This work aims to contribute to the use of these unconventional waveguides
for the design of microwave devices. The �rst step taken towards this end is to achieve
their e�cient analysis, and the second one is to integrate such geometries in prototypes of
real application using the tools developed in the �rst step.

1.2 E�cient modeling of the equilateral triangular and the

parabolic cylinder waveguides and their integration in

mixed discontinuities

The resolution of waveguide geometries through methods based on analytical modal de-
compositions [11] helps to understand the electromagnetic problem under study. In this
context, the work developed for the equilateral triangular and the parabolic cross-sections
is oriented to the use of modal decompositions, although it addresses di�erent stages of
their electromagnetic resolution. For an electromagnetic solver of this type the �rst step
is to solve the complete set of modes that makes up the electromagnetic �eld, and in the
case of the equilateral triangular waveguide this problem was successfully addressed before
the beginning of this Thesis. In the case of the parabolic cylinder waveguide, the lack of
a systematic procedure integrable in a modern CAD tool has made it imperative to focus
this contribution on the systematic resolution of its modes.

The origin of the resolution of the electromagnetic �eld inside an equilateral triangu-
lar waveguide dates back to the XIXth century, when Gabriel Lamé solved the eigenvalues
and eigenfunctions of the Laplace equation in the equilateral triangular geometry [36]. Al-
though this work was carried out in the context of heat transfer, the eigenvalue problem
that Lamé faced was the same as the one described by the scalar Helmholtz equation in
electromagnetism. Later on, expressions referred to the electromagnetic �eld were gathered
in [37] without any derivation. Renewed attention was given to this problem in [38], where
superposition of plane waves was used to �nd suitable modal solutions of several triangular
contours, of which the equilateral triangular contour was one of the case studies. How-
ever, [38] claimed that the derived analytical solution did not provide the complete set of
modes. The search of this set, essential for any solver based on modal decomposition, has
been a topic of interest in the scienti�c community [39], where the expressions obtained
in [40, 41] were the ones that brought the complete solution. An interesting derivation
based on the work of Lamé and on [40, 41] has been recently published in [42], where a
plane wave reconstruction technique is used to shed light on the mode symmetries and on
how triangular patch antennas are excited.

Since the complete set of modes of the equilateral triangular waveguide is known, the
contribution of the present work is focused on the applicability of such mathematical set.
Given the great e�ciency associated to solvers based on analytical closed-form expressions,
this work has found of great interest to develop the Mode-Matching method formulation [8]
over the proposed non-canonical geometry, with the idea of having a robust and e�cient



1.2 Efficient modeling of the equilateral triangular and the parabolic cylinder
waveguides and their integration in mixed discontinuities 3

tool available to carry out its electromagnetic analysis for microwave design [18, 20, 43�45].

On the other hand, the resolution of the parabolic cylinder waveguide, the second
unconventional geometry addressed in this Thesis, was at an earlier stage of development
in contrast to the equilateral triangular geometry The theory of its analytical resolution
from the scalar Helmholtz equation was already known, but in the �nal steps of the elec-
tromagnetic problem its modal spectra was obtained resorting to graphical intersections.
The derivation followed from the 2D-Helmholtz equation in parabolic cylinder coordinates
leads to the parabolic cylinder equation, where the Weber parabolic functions can be used
to �nd the modal solutions [46]. These functions were tabulated in [47], but their integra-
tion into modern CAD tools is currently far from being trivial [48, 49]. The strategy shown
in [50], however, allows to avoid these cumbersome functions by means of a 1D-analytic
continuation technique. This strategy is followed in this Thesis due to its simplicity and
great performance.

Once these functions are successfully computed, a bivariate system of equations must
be solved. The di�culty of �nding the modal spectra of the parabolic cylinder waveguide
precisely lies in this system of equations, where the two sought variables belong to the real
domain. Up until now the modes of the parabolic cylinder waveguide were analytically
solved by means of graphical intersections [46, 50, 51]. The contribution of this work in
regard to this non-canonical geometry is the search of a suitable mathematical method [52]
that enables to �nd its modal spectra and its integration into a modern CAD-tool.

Both the parabolic cylinder and the equilateral triangular waveguides are unconven-
tional geometries of interest for engineering as prospective candidates that may take part of
future satellite devices. However, other canonical geometries or even other non-analytical
ones can be present in such designs as well. Among all the possible topologies, a large
class of waveguide devices are made up of waveguide steps cascaded along the propagation
direction. If their cross-sections are analytical, then their computation can be e�ciently
addressed by the Mode-Matching method [8, 11]. In fact, thanks to the formulation based
on plane waves used in this Thesis, the corresponding full-wave analysis can be carried
out in a uni�ed manner when equilateral triangular, rectangular, circular and/or elliptical
sections take part of the electromagnetic problem under consideration.

In contrast to the Mode-Matching method, there are other methods extremely �exible
when coping with electromagnetic problems that involve arbitrary cross-sections. This is
the case of the Finite Element method, a popular numerical technique in electromagnetic
engineering whose capability for the computation of numerical modes in waveguides of
irregulary-shaped cross-section is long known and used [8, 53, 54]. Its hybridation with
the Mode-Matching method was developed in the mid-1990's [55�58], and constitutes a
powerful tool to e�ciently analyze devices made up of mixed analytical and numerical
cascaded cross-sections. In this context the goal of this work is to complement all these
previous works providing a formulation that minimizes the number of operations needed
and thus reducing the overall computational cost. With this contribution the part of
the Thesis devoted to the improvement of the electromagnetic analysis of unconventional
geometries and its integration with other available ones (canonical or numerical) comes to
its end.
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1.3 Towards prospective �lters integrable in future satellite

systems

Once the full-wave analysis has been addressed, the second step to contribute to the use of
the equilateral triangular and the parabolic cylinder waveguides is to face their suitability
for microwave devices. In particular, this Thesis has focused on �lters, which are key devices
for the selection of frequency channels in current telecommunication systems. Besides the
selection of channels, these elements contribute to reduce the noise and therefore to improve
the Signal to Noise Ratio (SNR) of the system.

The design of �lters for satellite communications encompasses very diverse analyses.
The electromagnetic study carried out for the realization of the desired S-parameter re-
sponse is the one that may be similar to other waveguide components in communication
systems. However, the analysis of the multipaction phenomenon, or the study of the ther-
mal stability are critical for the particular case of the space environment. Besides, �lters
devoted to satellite communications are subjected to restrictive speci�cations in terms of
light-weight, selectivity, group delay, low losses and power handling [5]. Compact designs
of reduced weight are desirable as the size of their footprint has a direct impact on the
launching cost [59]. The achievement of high selectivity is mandatory to isolate the chan-
nels preventing the wastage of the available bandwidth with the use of wide guard-bands.
Linear group delay behaviour is desired to reduce signal distortion. Low losses are a pri-
ority since the available power is ultimately limited by the solar cells, and also because of
the well-known problem of heat dissipation. Finally, good capabilities of power handling
are sought for the output multiplexers that follow the High Power Ampli�ers (HPA). The
technologies preferred to accomplish these requirements depend on the frequency band
and on the �lter location within the whole chain of communication. Waveguides have been
traditionally used in output multiplexers due to their low losses and power handling capa-
bility. In fact, the waveguide manifold made up of TE113 circular cavities became one of
the most popular schemes [60�62]. On the other hand, dielectric-loaded cavity �lters have
been widely used for input multiplexers due to the signi�cant size reduction achievable
with this technology [63].

The analysis and attainment of all the requirements for a real on-board �lter are
not goals of this work. Instead, this Thesis aims at presenting proof-of-concept designs
that open the door for the future integration of non-conventional geometries in satellite
communications. For that purpose the classical charts of analysis applied to the presented
unconventional geometries are given, and the formulation of the analytical quality factor
(Q-factor) in the equilateral triangular waveguide is developed. All the designs are inline
prototypes that can be analyzed by the electromagnetic software developed in the �rst
chapters of this dissertation. Among them, one corresponds to a dual-mode �lter, whose
design and manufacture were considered of great relevance as the size reduction achieved
by this technique is nowadays fully-exploited by modern satellite systems.

The race on compactness is not limited to the use of multimode resonators. One of
the current trends is the use of dispersive (i.e., frequency dependent) couplings in waveg-
uide structures [64�66], conceived to enhance the �lter performance in demanding scenar-
ios [63, 67]. With this strategy �nite transmission zeros can be generated, reducing the
required number of resonators for a given level of selectivity. Another current trend is
the development of dielectric resonators. The signi�cant mass and volume reduction that
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they o�er make them attractive for the growth of satellite communications. In this kind
of systems dielectric resonators have been traditionally used in input multiplexers due to
their limited power handling capability, while their application in output multiplexers is
relegated to low frequency bands [68�70]. Nowadays the increased investment in materi-
als of high quality factor, low loss and high power handling capabilities has changed this
reality [71].

In this context the last part of this work is devoted to the improvement of �lter
compactness in two of the current areas of concern in the satellite industry. In particu-
lar, this Thesis aims at the improvement of the out-of-band rejection in fully canonical
folded topologies throughout the dispersive behaviour of certain source to load couplings
in waveguide technology. This strategy is specially suited for this topology in comparison
to others due to the associated ease of implementation. Two prototypes are designed and
manufactured at the W frequency band, where increased interest has been recently shown
for future high capacity satellite communications [72, 73]. Finally, this work intends to
contribute to mitigate the absolute reliance on dielectric materials of high permittivity
that may limit the power handling capacity in favor of size reduction. Towards that end,
several novel compact dielectric topologies based on the equilateral triangular dielectric
resonator are proposed, one of which has given rise to a novel prototype that evidences the
compactness of the proposed approach.

1.4 Text organization

The content of this Thesis is divided into seven chapters, including this �rst one devoted
to the presentation of the addressed topics and the last one where the main conclusions
and contributions of this work are gathered.

Chapter 2 addresses the e�cient modeling of equilateral triangular waveguide. The
corresponding analytical modal expressions are reviewed and the well-knownMode-Matching
method is introduced. Then, a formulation based on the use of plane waves is developed
and validated with several case studies of equilateral triangular discontinuities. The pro-
posed formulation is tested as well with waveguide steps where the discontinuity involves
an equilateral triangular waveguide and other canonical cross-sections (i.e. rectangular,
circular or elliptical).

Chapter 3 deals with the challenging resolution of the parabolic cylinder waveguide,
whose modal spectra was up to date analytically solved resorting to graphic intersections.
A worthy strategy to obtain the suitable functions by means of analytic continuation is
reviewed and followed. Then, a recently published algorithm for the resolution of bivariate
systems of equations is proposed and integrated with the previous technique to give rise
to a modern CAD tool where this waveguide is for the �rst time systematically solved.

Chapter 4 presents a novel formulation for the hybridation between the Finite Ele-
ment and the Mode-Matching methods. The proposed formulation is based on the use of
nested function spaces, which enable the use of the already computed matrices from the
Finite Element method to build the inner-cross products of the Mode-Matching method,
thus reducing the overall computational cost. An e�cient orthonormalization procedure
is also given, and several case studies are analyzed using already published or measured
prototypes as a source of validation.
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Chapter 5 shows the application of the two unconventional geometries addressed in
this Thesis for their prospective integration in the design of on-board satellite �lters . Both
the asymmetric parabolic and the equilateral triangular resonators make up inline single
mode prototypes, conceived following the classical design charts. Among them, the Q-chart
is analytically derived for the equilateral triangular cavity. The design, manufacture and
measurement of a dual mode equilateral triangular prototype is also carried out exploiting
the degeneracy inherent to this particular geometry.

Chapter 6 focuses on the contribution to the design of �lters from the point of
view of compactness, since this feature is of great relevance in satellite communications.
The use of dispersive source to load couplings in the well-known fully canonical folded
waveguide �lters is proposed to reduce the required number of resonators. In this context
two designs are manufactured and measured in the W-band, and several equivalent circuits
are proposed as well. Finally, novel compact topologies based on the use of the equilateral
triangular dielectric resonator are presented. The design of a prototype using one of these
topologies of reduced footprint is carried out as a proof of concept.

Finally, Chapter 7 describes the main conclusions derived from the work developed in
this Thesis along the di�erent chapters. The contributions of this dissertation are outlined
as well, and the corresponding list of publications is detailed.

Appendix A is included at the end of this document to clarify the derivation of TE,
TM and TEM modes in homogeneous waveguides for arbitrary cross-section geometry since
this is used throughout the whole text.



2 | The equilateral triangular
waveguide

2.1 Introduction

The equilateral triangular waveguide is an unconventional geometry used in microwave
devices when compared with other geometries as the rectangular, circular or elliptical
cross-sections. However, its resolution by separation of variables is far from being new.

The resolution of the eigenvalues and eigenfunctions of the Laplacian in the equi-
lateral triangular geometry under Dirichlet and Neumann conditions dates back to the
XIXth century, when Gabriel Lamé carried out studies in the context of heat transfer [36].
The eigenvalue problem that Lamé faced was the same described by the 2D-Helmholtz
wave equation present in electromagnetism. Later work [37] based on Lamé provided the
corresponding expressions for this geometry in the context of miscellaneous waveguide
cross-sections. Nevertheless, those expressions were not deduced in the text.

Some derivations of the modal expressions in the equilateral triangular waveguide
have been carried out [38, 39], but it is in the recent work [40, 41] where Brian J. McCartin
has given a complete derivation of Lame's formulas and proved that they were a complete
set of orthonormal eigenfunctions, which is essential for the application of electromagnetic
methods based on modal decomposition. One of those is the Mode-Matching method [8],
developed some decades ago and extensively used to speed-up the electromagnetic analysis
of microwave devices made up of the connection of cross-sections with analytical or quasi-
analytical modal solution.

The contribution of this chapter is the application of this method to the equilateral
triangular waveguide, allowing to e�ciently design microwave devices in this technology.
First, the modal expressions are reviewed using a convenient coordinate system. A normal-
ized mode-chart is shown, where the main features of this waveguide for microwave design
are evidenced: its modal degeneracy and the wider bandwidth compared to other waveg-
uides, under a proper excitation. Then, a brief overview of the Mode-Matching method is
given and a formulation based on plane waves is proposed for this kind of waveguide to ease
the resolution of the integrals associated to this method. Several case studies for equilateral
triangular waveguide steps are validated. Finally the usefulness of the proposed �exible
formulation is shown when this waveguide is connected to other classical cross-sections
(i.e., rectangular, circular, elliptical). Some examples are given for validation purposes
showing very good agreement.

7
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2.2 Modal expressions and mode chart

The electric and magnetic �elds of a homogeneous waveguide with translation symmetry
along the propagation axis can be described as orthogonal series of modes:

~E =
∞∑
p=1

(
ape
−γpz + bpe

γpz)~ep +
(
ape
−γpz − bpeγpz)ezpẑ (2.1)

~H =

∞∑
p=1

(
ape
−γpz − bpeγpz)~hp +

(
ape
−γpz + bpe

γpz)hzpẑ. (2.2)

In the preceding expressions, the terms ape−γpz and bpe
γpz are complex variables

that represent the modal amplitudes at an arbitrary z-plane, where ap and bp depend
on the source and load of the waveguide imposed by the radiofrequency system. On the
other hand, the geometrical cross-section and the particular mode identi�ed by subindex
p determine the propagation constant (γp) and the transversal (~ep, ~hp) and longitudinal
(ezp, hzp) components of the �eld.

In order to determine all these components dependent on the geometry under con-
sideration the Helmholtz equation must be solved. In the case of waveguides made up of
an enclosing metallic conductor �lled with homogeneous dielectric material, the problem
of characterizing the Transversal Electric (TE) and Transversal Magnetic (TM) waveguide
modes becomes scalar:

∆tΦp + k2
cpΦp = 0, (2.3)

which must be satis�ed in all the points of the inner cross-section surface. This function
Φ represents the longitudinal electric or magnetic �eld component for TM and TE modes,
respectively, conveniently normalized. Two types of boundary conditions must be imposed
to solve the previous equation, the Dirichlet and Neumann conditions, from which the two
possible mode families arise:

� TE modes, where Φp must satisfy
∂Φp
∂n |ζ = 0 (Neumann-type boundary conditions) ,

� TM modes, where Φp must satisfy Φp|ζ = 0 (Dirichlet-type boundary conditions),

with ζ being the metallic contour of the waveguide. After solving the di�erential equa-
tion with the corresponding boundary conditions, the eigenfunctions Φp and eigenvalues
kcp of (2.3) are obtained, where each one corresponds to the p-th mode of (2.1)-(2.2).
The expressions of these functions are speci�c to each cross-section geometry, whereas the
derivation of γp, ~ep, ~hp, ezp and hzp from Φp can be addressed in general for any homoge-
neous waveguide of arbitrary cross-section as it is indicated in Appendix A. The two main
unconventional waveguides studied in this Thesis have equilateral triangular and parabolic
cross-sections, with a single conductor. For waveguides with more than one conductor,
Transversal Electro-Magnetic (TEM) modes would be also needed in (2.1)-(2.2).

In the equilateral triangular waveguide each of the previous two mode families (TE
and TM) is split into two more, one symmetric (S) and another one asymmetric (A), giving
rise to four mode families (TEA, TES , TMA and TMS respectively). This classi�cation is
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Figure 2.1: Equilateral triangular cross-cross section, with con-
tour ζ, side e and height b, with the reference system set in the
proposed formulation.

due to the symmetry of the cross-section with respect to the y-axis, as it can be seen in
Figure 2.1, which gives rise to solutions with even/odd symmetry with respect to this axis.
Their complete resolution is given in [40, 41]. According to the position of the center of
coordinates shown in Figure 2.1, chosen for the development of an in-house software, the
expressions of the eigenfunctions (mode families) in [40, 41] are changed into:

Φ
S

TE
= cos(k̃y1(y − b)) cos(k̃x1x) + cos(k̃y2(y − b)) cos(k̃x2x) +

cos(k̃y3(y − b)) cos(k̃x3x) (2.4)

Φ
A

TE
= cos(k̃y1(y − b)) sin(k̃x1x) + cos(k̃y2(y − b)) sin(k̃x2x) +

cos(k̃y3(y − b)) sin(k̃x3x) (2.5)

Φ
S

TM
= sin(k̃y1(y − b)) cos(k̃x1x) + sin(k̃y2(y − b)) cos(k̃x2x) +

sin(k̃y3(y − b)) cos(k̃x3x) (2.6)

Φ
A

TM
= sin(k̃y1(y − b)) sin(k̃x1x) + sin(k̃y2(y − b)) sin(k̃x2x) +

sin(k̃y3(y − b)) sin(k̃x3x) (2.7)

where k̃y1 = (−m−n)π
b , k̃y2 = mπ

b , k̃y3 = nπ
b , k̃x1 = (m−n)π√

3b
, k̃x2 = (2n+m)π√

3b
, k̃x3 = (−2m−n)π√

3b
.

Variable b is the height of the equilateral triangular cross-section depicted in Figure 2.1,
related to its side e through b = e

√
3/2. Variables m and n in the previous expressions

adopt values whose range depend on the mode family under consideration m ≥ n ≥ 0 for
symmetric TE modes (TES), m > n ≥ 0 for asymmetric TE modes (TEA), m ≥ n > 0 for
symmetric TM modes (TMS) and m > n > 0 for asymmetric TM modes (TMA).
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Figure 2.2: Dispersion diagram of an equilateral triangular waveguide with side e = 1 cm.

In fact, the values of m and n determine the eigenvalue kcp associated to each eigen-
function Φp in (2.3). It is important to emphasize here that each single index p is ref-
ered to a mode uniquely identi�ed by its type, symmetry and pair of subindexes (i.e.,
TEAmn,TE

S
mn,TM

A
mn,TM

S
mn). The eigenvalues kcp are commonly known in electromag-

netism as cut-o� wavenumbers of the waveguide, and are directly related to the propagation
constant γp through the formula γ2

p = k2
cp − ω2µε (µ and ε are the magnetic permeabil-

ity and the electric permittivity of the medium enclosed by the perfect conductor of the
waveguide, respectively). According to [40, 41], kcp is obtained in the equilateral triangular
waveguide as:

kcp =
4π

3e

√
m2 + n2 +mn. (2.8)

It can be also computed from the previous variables of (2.4)-(2.7) as:

k2
cp = k̃2

xi + k̃2
yi , for i = 1, 2, 3. (2.9)

The cut-o� wavenumbers kcp of any waveguide homogeneously �lled are related to the

cut-o� frequencies by fcp =
kcp

2π
√
µε , from which the corresponding modes start to propagate.

Such frequencies are represented in the abscissa axis of the dispersion diagram plotted in
Figure 2.2 at the points where β and α become zero and thus the propagation constant
as well (given γ = α + jβ). This diagram has been generated for a hollow equilateral
triangular waveguide of side e = 1 cm. The corresponding cut-o� frequencies are shown
in detail in the rectangular box below, where the m and n subindexes are speci�ed. The
table given next to the diagram shows in detail the kc and fc values. What is more, in the
table it is evidenced the degeneracy present in this particular waveguide since each pair
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Square Circular Equilateral Triangular

fc2/fc1
√

2 ≈ 1.41 ≈ 1.31
√

2 ≈ 1.41

fc3/fc1 2 ≈ 1.66 2

fc4/fc1
√

5 ≈ 2.24 ≈ 2.08
√

7 ≈ 2.65

fc5/fc1
√

8 ≈ 2.83 ≈ 2.28 3

Table 2.1: Mode chart comparison: cut-o� frequencies of higher order
modes with respect to the degenerated fundamental modes for waveguides
having di�erent canonical cross-sections.

(m, n) gives rise to several degenerated modes. In particular, when n = 0 or m = n, a
pair of degenerated modes arise. When m 6= n 6= 0, four degenerated modes are present.

Finally it is worth to point out that the division by symmetry of the four mode
families facilitates the identi�cation of modes in the design of a microwave device. In par-
ticular, Perfect Electric Wall (PEW) symmetry is shown by symmetric TE modes (TESmn)
and asymmetric TM modes (TMA

mn), whereas Perfect Magnetic Wall (PMW) symmetry is
shown in asymmetric TE modes (TEAmn) and symmetric TM modes (TMS

mn).

The �eld patterns and corresponding symmetries for the �rst modes are shown in the
examples of Figure 2.3. The classi�cation done in this �gure with the PEW/PMW sym-
metry is very important for microwave devices, in order to understand its modal behavior.
For instance, if an equilateral triangular waveguide is excited with a mode of certain sym-
metry aligning the axis of symmetry between waveguide steps, not all the mode families
of the mode chart will be present (only the ones of the same symmetry).

One of the attractive features of the equilateral triangular waveguide is its inherent
modal degeneracy, which can be exploited by resonant devices to generate more compact
designs, as it will be shown later in this Thesis in Section 5.4.2. However, there is another
feature even more interesting: the separation between the fundamental degenerated modes
and the immediately higher ones is wider compared to conventional waveguides as Table
2.1 evidences.
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Figure 2.3: Mode pattern of the �rst 24 modes in the equilateral triangular waveguide.
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2.3 Overview of the Mode-Matching method

Now that the modes of the electromagnetic �eld in (2.1) and (2.2) have been fully charac-
terized for the equilateral triangular waveguide through (2.4)-(2.8), and the equations in
Appendix A, the Mode-Matching method can be applied. This method, introduced long
ago in [8], is nowadays almost standard for the analysis of devices made up of cascaded
blocks of analytical modal spectrum [11, 74]. A great variety of devices designed using
canonical waveguides such as the rectangular, circular or elliptical ones bene�t from the
e�ciency of this method [75�82]. However, prior to this Thesis it had not been applied to
the equilateral triangular waveguide yet.

This Section outlines the formulation of the Mode-Matching method, which is given
in detail in the aforementioned literature [8, 11, 74]. Thus, the purpose is to introduce the
method to facilitate the comprehension of the formulation proposed in the next Section,
where the speci�c case of the equilateral triangular geometry is addressed.

Figure 2.4a) represents two cascaded waveguides of arbitrary cross-section, where
the waveguide (w) is connected with the smaller waveguide (s). In the waveguide step, the
larger waveguide has been ended with a perfect conductor wall except in the intersected
area with the smaller waveguide (s). Both waveguides are depicted without conductor
thickness. According to the Mode-Matching method the total transversal �elds must be
continuous across the intersected area in the waveguide step under consideration. If such
intersection is placed at plane z = 0, the expressions (2.1) and (2.2) lead to:

~E
(w)
t

∣∣∣∣
Aw,z=0−

=

Nw∑
j=1

(
a

(w)
j + b

(w)
j )~e

(w)
j (2.10)

~E
(s)
t

∣∣∣∣
As,z=0+

=

Ns∑
i=1

(
b
(s)
i + a

(s)
i )~e

(s)
i (2.11)

~H
(w)
t

∣∣∣∣
Aw,z=0−

=

Nw∑
j=1

(
a

(w)
j − b(w)

j )~h
(w)
j (2.12)

~H
(s)
t

∣∣∣∣
As,z=0+

=

Ns∑
i=1

(
b
(s)
i − a

(s)
i )~h

(s)
i , (2.13)

where superscripts (w) and (s) refer to each waveguide of the generic intersection shown
in Figure 2.4a) , and the series of (2.1) and (2.2) have been truncated to Nw and Ns terms
(modes) in order to formulate an a�ordable computational problem.

Now both modal series at each waveguide ( ~E(w)
t and ~H

(w)
t on one side, and ~E

(s)
t and

~H
(s)
t on the other side) are linked through the following boundary conditions:

EFBC inAw : ẑ × ~E
(w)
t =

{
0, in Ac, z = 0

ẑ × ~E
(s)
t in As, z = 0

MFBC inAs : ẑ × ~H
(w)
t = ẑ × ~H

(s)
t in As, z = 0

(2.14)

where EFBC stands for Electric Field Boundary Condition , MFBC stands for Magnetic
Field Boundary Condition, and Aw, As and Ac are the areas shown in Figure 2.4. These
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Figure 2.4: Step between a) generic and b) equilateral triangular waveguides.

boundary conditions are imposed using a Galerkin method [74] where the modal magnetic

�elds of waveguide (w) test the EFBC (i.e. h(w)
j ), whereas the electric �elds of waveguide

(s) test the MFBC (i.e. e(s)
i ). The following system of equations arise:{

EFBC : (aw + bw) = Xt(as + bs) (Nw eqs.)

MFBC : X(aw − bw) = (bs − as) (Ns eqs.)
(2.15)

where the modal amplitudes have been arranged in column vectors (ag = [...a
(g)
p ...]T ,

bg = [...a
(g)
p ...]T , with g = w, s) and the term X is known as the inner product matrix,

de�ned as:

[Xij ] = Y
(w)
j

∫∫
As

~e
(s)
i · ~e

(w)
j dS = Z

(s)
i

∫∫
As

~h
(s)
i · ~h

(w)
j dS, (2.16)

where Y (w)
j and Z(s)

i are the mode admittance and impedance in each waveguide respec-
tively, obtained according to the mode family from expressions (A.9) or (A.17) of Appendix
A, and Yj(~ei · ~ej) = Zi(~hi · ~hj) holds. The elements Xij of the inner cross-product matrix
X, expressed in (2.16) in terms of the modal �elds, can be written in terms of the function
Φ solution of (2.3) as:

Xij =

√
Y

(w)
j√
Y

(S)
i

∫∫
As

~Φ
(s)
Ei
× ~Φ(w)

Hj
· ẑdS =

√
Y

(w)
j√
Y

(S)
i

· X̄ij , (2.17)

where X̄ij is the corresponding element of the so-called normalized inner cross-product
matrix X̄, independent of frequency and of the material �lling the waveguide, and:

~Φ
(s)
Ei

= ∇tΦi × ẑ
~Φ

(w)
Hj

= ∇tΦj

 for TE modes, (2.18)

~Φ
(s)
Ei

= ∇tΦi

~Φ
(w)
Hj

= ẑ ×∇tΦj

 for TM modes. (2.19)
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Equation (2.17) can be written in matrix form as X = Z1/2
s · X̄ · Y1/2

w . Besides, the
matrix elements X̄ij can be further developed in terms of the sort of modes that make up
the cross-products [83]:

X̄ij = 0 for TEM(s)-TE(w), TM(s) -TEM(w), TM(s)-TE(w) (2.20)

X̄ij =

∫∫
As

∇tΦ(s)
i ×∇tΦ

(w)
j · ẑ dS for TE(s) -TEM(w), TE(s)-TM(w) (2.21)

X̄ij =

∫∫
As

∇tΦ(s)
i · ∇tΦ

(w)
j dS for the remaining cases. (2.22)

The objective of the Mode-Matching method is to obtain the modal amplitudes
in both waveguides at each side of the discontinuity by the resolution of the system of
equations shown in (2.15). In fact, in order to design microwave devices we are interested
not in their speci�c values but in their relationship, giving rise to the dispersion parameters
(also known as S-parameters). In particular, the matrix that relates the modal amplitudes
is called the Generalised Scattering Matrix (GSM) of the discontinuity:

S =


XTFX− Iw XTF

FX F− Is

 ,

bw

bs

 = S


aw

as

 (2.23)

where F = 2(Is+XX
T )−1 (where superscript T stands for the transpose operation), and Iw,

Is is the identity matrix of the corresponding size (Nw or Ns). The analysis of two or more
discontinuities or steps is carried out cascading GSM matrices as in [9, 11, 74, 76, 84, 85].
In order to obtain the GSM in (2.23) it can be seen at a quick glance that it is essential to
compute the inner cross-product matrix de�ned in (2.16) or equivalently in (2.17).

2.4 Mode-Matching method applied to equilateral triangular

discontinuities

The purpose of this Section is to provide a suitable formulation that greatly simpli�es the
surface integrals associated to the inner cross products matrix whose de�nition is given
in (2.17). In the proposed formulation equations (2.4)-(2.7) are each rewritten as a sum
of plane waves using elementary conversions of the trigonometric functions to complex
exponentials:

Φ
S,A/S,A

TE/TM
=

12∑
u=1

Aue
j(kxux+kyuy), (2.24)

where the values of Au, kxu and kyu depend on each mode family and are all gathered
in Table 2.2. Equation (2.24) can be written as well as follows, resembling a plane-wave
expansion:

Φ
S,A/S,A

TE/TM
=

12∑
u=1

Aue
j(~r·~ku), (2.25)
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where ~r is the position vector de�ned as ~r = xx̂ + yŷ and ~ku is the so-called wave vector
de�ned as ~ku = kxux̂+ kyuŷ.

In order to compute the surface integral de�ned in (2.16), the normalized �elds ~e (s)
i ,

~e
(w)
j computed as in (A.7) and (A.15) of Appendix A must be solved in each waveguide.
To that end the �rst step is to calculate the normalization constants de�ned in expression
(A.10), whose values are already given in [40, 41]:

Np =


16

3
√

3e2k2
cp

ifm 6= n and n 6= 0

8
3
√

3e2k2
cp

ifm = n or n = 0.
(2.26)

The second step according to (A.7) and (A.15) in the Appendix is to obtain the
transversal gradients of the eigenfunctions Φ. With such eigenfunctions written as proposed
in (2.24) each term Xij of the inner cross product matrix X in (2.17) is computed as:

Xij =

(
X̄ij,x + X̄ij,y

)√Y (w)
j√
Y

(s)
i

, (2.27)

where the terms X̄ij,x and X̄ij,y are independent of the frequency and the material �lling
the waveguide, and refer to the surface integrals associated with the transversal �elds in x̂
and ŷ :

X̄ij,x =
12∑
r=1

12∑
q=1

A(s)
sr A

(w)
sq

∫∫
As

ej(k
(s)
xr +k

(w)
xq )xej(k

(s)
yr +k

(w)
yq )ydS, (2.28)

X̄ij,y =
12∑
r=1

12∑
q=1

A
(s)
tr A

(w)
tq

∫∫
As

ej(k
(s)
xr +k

(w)
xq )xej(k

(s)
yr +k

(w)
yq )ydS. (2.29)

In the above expressions As is the intersected area between both equilateral waveg-
uides as it can be seen in Figure 2.4b). The variables kxr, kxq, kyr, and kyq are the
wavenumbers shown in (2.24) for each respective waveguide, and therefore their values
are the ones gathered in Table 2.2. In particular, subindex u has been replaced by r to
refer to the smaller waveguide (s) and by q to refer to the greater one (w). Only the new
amplitudes Asr,Asq, Atr and Atq must be computed according to the involved gradients
shown in Appendix A. The results of these amplitudes, dependent on each mode family,
are given in Table 2.3.

The two previous equations (2.28) and (2.29) evidence that one advantage of this
formulation is that all the surface integrals involved in the calculation of the inner cross
product matrix X can be reduced to the following simple analytical exponential integral
over a triangle surface:

I =

∫∫
As

ejB1xejB2ydS, (2.30)

where B1 and B2 represent the additions of the corresponding wavenumbers.
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u kxu kyu Au

1 k̃x1 k̃y1
1
4e
j(−k̃y1b−Ψ−Ω)

2 −k̃x1 k̃y1
1
4e
j(−k̃y1b−Ψ+Ω)

3 k̃x1 −k̃y1
1
4e
j(k̃y1b+Ψ−Ω)

4 −k̃x1 −k̃y1
1
4e
j(k̃y1b+Ψ+Ω)

5 k̃x2 k̃y2
1
4e
j(−k̃y2b−Ψ−Ω)

6 −k̃x2 k̃y2
1
4e
j(−k̃y2b−Ψ+Ω)

7 k̃x2 −k̃y2
1
4e
j(k̃y2b+Ψ−Ω)

8 −k̃x2 −k̃y2
1
4e
j(k̃y2b+Ψ+Ω)

9 k̃x3 k̃y3
1
4e
j(−k̃y3b−Ψ−Ω)

10 −k̃x3 k̃y3
1
4e
j(−k̃y3b−Ψ+Ω)

11 k̃x3 −k̃y3
1
4e
j(k̃y3b+Ψ−Ω)

12 −k̃x3 −k̃y3
1
4e
j(k̃y3b+Ψ+Ω)

Mode designation Ψ Ω

TES 0 0

TEA 0 π
2

TMS π
2 0

TMA π
2

π
2

Table 2.2: Values of parameters kxu, kyu and Au, where k̃y1,2,3 and k̃x1,2,3 are described imme-
diately after (2.4)-(2.7), and Ψ and Ω, are de�ned on the right side for each mode family.

r, q Asr,sq[TE] Asr,sq[TM] Atr,tq[TE] Atr,tq[TM]

1 jk̃y1Au jk̃x1Au −jk̃x1Au jk̃y1Au

2 jk̃y1Au −jk̃x1Au jk̃x1Au jk̃y1Au

3 −jk̃y1Au jk̃x1Au −jk̃x1Au −jk̃y1Au

4 −jk̃y1Au −jk̃x1Au jk̃x1Au −jk̃y1Au

5 jk̃y2Au jk̃x2Au −jk̃x2Au jk̃y2Au

6 jk̃y2Au −jk̃x2Au jk̃x2Au jk̃y2Au

7 −jk̃y2Au jk̃x2Au −jk̃x2Au −jk̃y2Au

8 −jk̃y2Au −jk̃x2Au jk̃x2Au −jk̃y2Au

9 jk̃y3Au jk̃x3Au −jk̃x3Au jk̃y3Au

10 jk̃y3Au −jk̃x3Au jk̃x3Au jk̃y3Au

11 −jk̃y3Au jk̃x3Au −jk̃x3Au −jk̃y3Au

12 −jk̃y3Au −jk̃x3Au jk̃x3Au −jk̃y3Au

Table 2.3: Values of parameters Asr, Asq, Atr and Atq.
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Another signi�cant advantage is that once the problem has been formulated for
aligned equilateral triangular waveguides such as in Figure 2.4b), an o�set for one of the
waveguides can be easily introduced. As the following equation shows, any o�set introduced
in the reference coordinate system results again in plane waves with the same wave vector
as in (2.25) and just a change in their associated amplitudes:

Φ′
S,A/S,A

TE/TM
=

12∑
u=1

Aue
j(kxu(x′+∆x)+kyu(y′+∆y)) =

12∑
u=1

A
′
ue
j(kxux′+kyuy′), (2.31)

where A
′
u = Aue

j(kxu∆x+kyu∆y). This means that the same simple integrals as shown in
(2.30) hold.

The way of sorting the modes to compute each surface integral in (2.28) and (2.29)
can be arbitrary. However, it is usual to sort the inner cross-products by mode family,
organising matrix X̄ as a set of sub-matrices:

X̄ =



X̄
(s)−(w)

TES −TES X̄
(s)−(w)

TES −TEA X̄
(s)−(w)

TES −TMS X̄
(s)−(w)

TES −TMA

X̄
(s)−(w)

TEA −TES X̄
(s)−(w)

TEA −TEA X̄
(s)−(w)

TEA −TMS X̄
(s)−(w)

TEA −TMA

X̄
(s)−(w)

TMS −TES X̄
(s)−(w)

TMS −TEA X̄
(s)−(w)

TMS −TMS X̄
(s)−(w)

TMS −TMA

X̄
(s)−(w)

TMA −TES X̄
(s)−(w)

TMA −TEA X̄
(s)−(w)

TMA −TMS X̄
(s)−(w)

TMA −TMA



. (2.32)

Having the submatrices of X̄ arranged by mode-families avoids the computation of
some of them since their associated surface integrals are zero, as indicated by (2.20) [83].
Thereby (2.32) becomes:

X̄ =



X̄
(s)−(w)

TES −TES X̄
(s)−(w)

TES −TEA X̄
(s)−(w)

TES −TMS X̄
(s)−(w)

TES −TMA

X̄
(s)−(w)

TEA −TES X̄
(s)−(w)

TEA −TEA X̄
(s)−(w)

TEA −TMS X̄
(s)−(w)

TEA −TMA

0 0 X̄
(s)−(w)

TMS −TMS X̄
(s)−(w)

TMS −TMA

0 0 X̄
(s)−(w)

TMA −TMS X̄
(s)−(w)

TMA −TMA



. (2.33)

Furthermore, having these submatrices arranged by mode-families as well allows to
discard the cross-products between modes of di�erent perfect wall symmetry when the
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waveguide step is made up of triangular equilateral waveguides of aligned symmetry axis
(as in Figure 2.4b)):

X̄ =



X̄
(s)−(w)

TES −TES 0 0 X̄
(s)−(w)

TES −TMA

0 X̄
(s)−(w)

TEA −TEA X̄
(s)−(w)

TEA −TMS 0

0 0 X̄
(s)−(w)

TMS −TMS 0

0 0 0 X̄
(s)−(w)

TMA −TMA



(2.34)

It is important to bear in mind that these simpli�cations not only speed up the computation
process but also prevent from having numerical errors associated to very low values in the
order of machine precision.

2.5 Validation cases for Section 2.4

Three case studies are proposed to validate the formulation based on plane waves presented
in Section 2.4. All of them are represented in Figure 2.5, where the �rst case is made up
of two aligned waveguides, the second case of two misaligned waveguides and the third
case represents a double step where two GSM are cascaded. In all these cases the smallest
waveguides have a side of e =

√
3 mm, and the largest ones a side of e = 2

√
3 mm.

Once the case studies have been selected, the �rst decision is to choose the number
of modes of each waveguide (Nw in the larger waveguide and Ns in the smaller waveguide
at each step), since the series in (2.1) and (2.2) must be truncated to be computationally
a�ordable. If the number of modes is very high, the computational cost is increased and
the e�ciency of the Mode-Matching method is compromised. Moreover, when two modal
series are matched the problem of relative convergence arises [9]. In order to overcome this
problem a well-known strategy has been followed:

(i) a reference frequency f refc is set and the modes whose cut-o� frequency is below it
in each waveguide are chosen,

(ii) this reference is increased until the obtained results are nearly the same as the ones
obtained with the previous f refc .

Three thresholds have been set to analyze each of the three case studies. For a low
number of modes, f refc = 6 f

(w)
c10 , where f

(w)
c10 is the cut-o� frequency of the two degenerated

fundamental modes in the largest waveguide (denoted as (w) in Figure 2.5). Afterwards,

a second threshold of f refc = 11 f
(w)
c10 has been considered. Finally the last threshold is

increased to f refc = 16 f
(w)
c10 for the highest number of modes.

According to the selected criterion based on a cut-o� frequency threshold to truncate
the theoretically in�nite series, three pairs of mode relationships are used for the case
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Figure 2.5: Case studies: single step a) without o�set, b) with o�set, and c) double step with o�set.

study a), then for the case study b), and �nally for the case study c). The selected
relationships are 34-10, 106-34 and 214-58, where the �rst number indicates the number of
modes considered in the largest waveguide, and the second number the modes considered
in the smallest one (denoted as (w) and (s) respectively in Figure 2.5). In the �rst case
study, however, the inner cross-product matrixX is simpli�ed due to symmetry as in (2.34)
and therefore half of the modes are required for the three pairs of relationships used.

Each case study analyzed with the Mode-Matching method gives rise to a GSM
de�ned as in (2.23), where the relationship between the re�ected and transmitted power
waves of all the modes considered at the waveguide step is stored. In particular, this matrix
has a size of (Ns + Nw) × (Ns + Nw), but in this Section we are only interested in the

two fundamental degenerated modes, that is, in the TE(A)
10 and the TE(s)

10 modes. Thus,
a problem of two physical ports is solved in each of the three cases of Figure 2.5, and 16
entries of the Generalized Scattering Matrix are analyzed. These entries are plotted as
signal paths in Figure 2.6.

Figure 2.7 compares the results obtained with the proposed formulation using the
Mode-Matching method and those obtained with a numerical approach from CST Mi-
crowave Studio (CST MWS) for the case study depicted in Figure 2.5a). The frequency
range has been selected from 117 to 122 GHz for the two �rst case studies to ensure the
propagation of the fundamental pair of degenerate modes at the waveguide ports so that
a better comparison with the commercial software is guaranteed.

In particular, Figures 2.7a) and 2.7b) show the magnitude and phase of the re�ec-
tion parameters of the mode TEA10, which correspond to the signal paths (or power wave
relationships) depicted in Figure 2.6b). The magnitude and phase of the transmission pa-
rameters that correspond to the signal paths of Figure 2.6a) are shown in Figures 2.7c)
and 2.7d) respectively. The same information is given for the TES10 mode in Figures 2.7e)
to 2.7h), associated to the signal paths shown in 2.6c) and 2.6d).

If the results achieved for the TEA10 mode are compared to the ones obtained for
the TES10 mode, it can be seen that in this �rst case study the TEs10 mode requires more
modes in the series to achieve the results given by the numerical method in CST MWS in
general. In the TEA10 mode only the magnitude of the S11 parameter and the phase of the
transmission parameters require a larger number of modes to converge.
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Figure 2.8 analyzes the second case study given in 2.5b), where a vertical o�set of 0.08
mm and a horizontal o�set of 0.02 mm is introduced. The signal paths shown in Figures
2.6a) to 2.6d) are shown in Figures 2.8a) to 2.8h) in terms of their associated power waves.
Compared to the �rst case study, the single step with misaligned waveguides requires a
higher number of modes to obtain similar results as those obtained by the commercial
software. This is caused by the presence of higher order modes that were not present in
the previous case due to the simpli�cation of the X matrix for symmetry reasons.

In the third and last case study the double step between misaligned waveguides shown
in Figure 2.5c) is considered. This case is interesting to evaluate the interaction between
high order modes and thus to test the formulation in a more robust way. In order to test
the evanescent modes (i.e. those whose cut-o� frequency is below the analyzed range of
frequencies), a range of frequencies is selected where none of the modes in the smallest
waveguide placed in between propagates (i.e. 90 − 95 GHz). Moreover, in order to allow
signi�cant higher-order mode interaction between the two discontinuities the thickness of
waveguide (s) is set to 0.3 mm, limiting the attenuation of its �rst three pairs of modes to
3.9 dB, 10 dB and 11.5 dB respectively.

Figures 2.9a) to 2.9h) show the power re�ected and the power transfer related to
the signal paths of Figure 2.6a) to 2.6d). The notation used in the legend in this case
refers to the number of modes of each of the three waveguides present. It can be seen that
the results obtained using a very low number of modes (i.e. 34-10-34, corresponding to
the lowest threshold) and those with a higher number show greater di�erences than in the
previous two case studies. Yet the achieved results �nally converge once the number of
modes is increased, as it is expected.

The power wave transfer between the TEA10 and the TES10 modes is shown in Figures
2.6e) to h). Since both modes belong to mode families of dual symmetry, this transference
is zero when the symmetry axis of the cross-sections is aligned, as in the �rst case study
of Figure 2.5a). In the case studies of Figures 2.5b) and 2.5c) those axis are no longer
aligned. Therefore there is a non zero transference, as it is evidenced in Figures 2.10 and
2.11 respectively.

The achieved results for the three analyzed cases have shown good agreement with
the commercial software CST Microwave Studio, and therefore the proposed formulation
is validated for discontinuities made up of equilateral triangular waveguides.
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Figure 2.6: Signal paths in the equilateral triangular waveguides with TEA10 and TES10 as fundamental
propagating modes in the physical ports 1 and 2. .
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Figure 2.7: Case study a) in Figure 2.5. Mode TEA10 in waveguide 1 to mode TEA10 in
waveguide 2: a) re�ection magnitude, b) re�ection phase, c) transmission magnitude
and d) transmission phase. Mode TES10 in waveguide 1 to mode TES10 in waveguide
2: e) re�ection magnitude, f) re�ection phase, g) transmission magnitude and h)
transmission phase.
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Figure 2.8: Case study b) in Figure 2.5. Mode TEA10 in waveguide 1 to mode TEA10 in
waveguide 2: a) re�ection magnitude, b) re�ection phase, c) transmission magnitude
and d) transmission phase. Mode TES10 in waveguide 1 to mode TES10 in waveguide
2: e) re�ection magnitude, f) re�ection phase, g) transmission magnitude and h)
transmission phase.
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Figure 2.9: Case study c) in Figure 2.5. Mode TEA10 in waveguide 1 to mode TEA10 in
waveguide 2: a) re�ection magnitude, b) re�ection phase, c) transmission magnitude
and d) transmission phase. Mode TES10 in waveguide 1 to mode TES10 in waveguide
2: e) re�ection magnitude, f) re�ection phase, g) transmission magnitude and h)
transmission phase.
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Figure 2.10: Case study b) in Figure 2.5. Mode TEA10 in waveguide 1 to mode TES10 in
waveguide 2: a) re�ection magnitude, b) re�ection phase, c) transmission magnitude
and d) transmission phase.

Figure 2.11: Case study c) in Figure 2.5. Mode TEA10 in waveguide 1 to mode TES10 in
waveguide 2: a) re�ection magnitude, b) re�ection phase, c) transmission magnitude
and d) transmission phase.
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2.6 Mode-Matching method applied to mixed discontinuities

As previously described in this Chapter, the Mode-Matching method has been extensively
used so far for the e�cient analysis of waveguide devices such as �lters, directional cou-
plers, transformers or polarizers [75, 79, 86�88]. Those devices are typically made up of
rectangular, circular, or elliptical cross-sections, which are studied in this Section. This
Chapter aims at providing a uni�ed formulation for electromagnetic problems that include
not only these classical canonical geometries but the equilateral triangular cross-section as
well. Thereby the range of problems where the Mode-Matching method can be applied is
broadened, contributing to the e�cient design of novel devices that can bene�t from this
unconventional geometry.

To that end, the goal is to express the modes of canonical cross-sections as a �nite
sum of plane waves:

Φ
TE/TM

=
∑
u

Aue
j(~r·~ku), (2.35)

where the complex amplitudes Au and real wave vectors ~ku are the ones speci�c to each
geometry. In all the cases Φ will belong to a TE or TM mode family since the canonical
waveguides under consideration (i.e., rectangular, circular and elliptic) are made up of one
single conductor.

In the rectangular waveguide the eigenfunctions of (2.3) are products of trigonometric
functions:

Φ
TE
TM

=
cos

sin
(kxx)

cos

sin
(kyy), (2.36)

where a and b are the width and height of the cross-section respectively and kx = mπ
a , and

ky = nπ
b . Hence, its associated plane wave expression is:

Φ
TE/TM

= ej(−Ψ−Ω)

4 ej(kxx+kyy)+ ej(−Ψ+Ω)

4 ej(kxx−kyy)+ ej(Ψ−Ω)

4 ej(−kxx+kyy)+ ej(Ψ+Ω)

4 ej(−kxx−kyy),
(2.37)

where the complex amplitudes Au according to (2.35) are Au = ej(±Ψ±Ω)

4 with Ψ = Ω = 0
for TE modes and Ψ = Ω = π

2 for TM modes.

In the circular waveguide these functions expressed in terms of circular coordinates
(ρ, ϕ) are:

Φ
TE/TM

= Jm(kcρ)

{
cos(mϕ)

sin(mϕ)
, (2.38)

where kc = p
′
mn
a for TE modes and kc = pmn

a for TM modes, with a the radius of the waveg-
uide, pmn the n-th zero of the bessel function Jm and p

′
mn the n-th zero of its derivative

J
′
m. This function has an integral representation [78, 89, 90] that can be approximated in

cartesian coordinates (x,y) by:

Φ
TE/TM

= 1
2π j
−m ∫ 2π

0 ejkc(x cosu+y sinu)

{
cos(mu)

sin(mu)
du ≈

j−m

P

∑P−1
p=0 e

jkc(x cosup+y sinup)

{
cos(mup)

sin(mup)
, (2.39)
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where up = p2π
P and P is a large integer [78] that ensures enough accuracy in the truncation

of the in�nite series and kc would be the same ones as de�ned in (2.38) for TE and TM
modes. Therefore the complex amplitudes Au and the real wave vector ~ku of (2.35) are

respectively: Au = j−m

P

{cos(mu)
sin(mu) and

~ku = kc cos(u)x̂+ kc sin(u)ŷ.

Finally the eigenfunctions Φ for the elliptical waveguide in elliptical coordinates (η,
ϕ) are [51]:

Φ
TE/TM

=

{
Mcm(η, qmn)cem(ϕ, qmn)

Msm(η, qmn)sem(ϕ, qmn)
, (2.40)

where sem and cem are the elliptic sine and cosine respectively, Mcm and Msm are the
modi�ed Mathieu functions [91, 92] and qmn is the n-th zero of these functions for TM
modes and the n-th zero of the derivative of modi�ed Mathieu functions Mc

′
m and Ms

′
m for

TE modes. The cut-o� wavenumber is given by kc =
2
√
qmn
f , where f is the focal distance

of the ellipse. The same type of approximation as in (2.39) can be carried out:

Φ
TE/TM

= 1
2π j
−m ∫ 2π

0 ejkc(x cosu+y sinu)

{
cem(u, qmn)

sem(u, qmn)
du ≈

j−m

P

∑P−1
p=0 e

jkc(x cosup+y sinup)

{
cem(up, qmn)

sem(up, qmn)
. (2.41)

Therefore the complex modal amplitudes Au in (2.35) are Au = j−m

P

{cem(u,qmn)
sem(u,qmn) and the

real wave vectors are ~ku = kc cos(u)x̂+ kc sin(u)ŷ.

The inner cross-product matrix X of a discontinuity holds the same de�nition as in
(2.16), where the �elds and the admittance are the ones associated to the corresponding
type of waveguide. Therefore, having the expressions (2.37), (2.39) and (2.41), all the
surface integrals related to the discontinuities of Figure 2.12 have the form of (2.30). This
way, they can be solved analytically in a uni�ed manner, even if the reference systems are
shifted and/or rotated.

Figure 2.12: Transversal view of the discontinuities that can be analyzed by the presented uni�ed
formulation based on plane waves, with shifted and rotated reference systems: a) equilateral
triangular-rectangular; b) equilateral triangular-circular; c) equilateral triangular-elliptical.
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2.7 Validation cases for Section 2.6

Three case studies have been selected to validate the proposed formulation, from which
the Mode-Matching method bene�ts. The relative reference systems of the corresponding
waveguides have been shifted and rotated in order to analyze generic discontinuities. The
�rst case is a waveguide junction where an equilateral triangular waveguide is place between
two circular ones. In the second case study the circular waveguides have been replaced by
elliptical waveguides. Finally, the third case study analyzes a waveguide junction where an
equilateral triangular waveguide has been placed between an elliptical and a rectangular
waveguide. Figure 2.13 shows the perspective views and the cross-sections of the analyzed
structures.

The results attained by the Mode-Matching method using the plane wave formu-
lation are presented in Figures 2.14, 2.15 and 2.16, together with the ones obtained by
the Finite Element Method of the commercial software HFSS. The frequency threshold
is set to 115 GHz, enough for convergence as the results attest. The excellent agreement
between the approach of plane waves and the numerical commercial software validates the
uni�ed formulation where the equilateral triangular waveguide takes part of generic junc-
tions where other conventional geometries such as the rectangular, circular and elliptical
waveguides are present.

Figure 2.13: Case studies: junction with an equilateral triangular waveguide places between
a) two circular waveguides, b) two elliptical waveguides and c) a rectangular and an elliptical
waveguides.
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Figure 2.14: Results for case study a): waveguide junction made up of an equilateral
triangular waveguide placed between circular waveguides.

Figure 2.15: Results for case study b): waveguide junction made up of an equilateral
triangular waveguide placed between elliptical waveguides.

Figure 2.16: Results for case study c): waveguide junction made up of an equilateral
triangular waveguide placed between a rectangular and an elliptical waveguide.
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3.1 Introduction

The parabolic cylinder waveguide is the other unconventional geometry studied in this The-
sis. As it happened with the equilateral triangular waveguide, its resolution by the method
of variable separation was addressed some decades ago. In particular, in this electromag-
netic problem another curvilinear coordinate system with translational symmetry di�erent
from the rectangular, circular or elliptical is needed to keep the solution quasi-analytical:
the parabolic cylinder coordinates [93].

In the context of its modal resolution, pioneering work was developed in [94], where
closed form expressions were given for the speci�c cases where the modal solutions can
be reduced to the Bessel functions. However, the di�culty lies in the search of modal
solutions in the remaining cases, where the problem cannot be reduced to a univariate
root-�nding problem as it happens in the circular or elliptical waveguides. In contrast, its
resolution constitutes a cumbersome problem where a non-linear system of equations with
two variables in the real domain must be solved.

The challenge of solving the complete set of modes of the parabolic cylinder waveg-
uide was faced decades ago in [46] and [50], where graphical intersections were used as it
was �rst suggested by [51]. Such strategy, however, is far from being practical since it
cannot exploit the computational resources that are nowadays available.

The contribution of this Chapter is the systematic computation of the modes in the
parabolic cylinder waveguide avoiding graphical means, so that the proposed procedure can
be integrated into modern CAD tools. Towards that end the parabolic cylinder di�erential
equation is presented in �rst place. Then, the combination of analytic continuation [50]
with a recently published algorithm for bivariate systems of equations [52] is proposed.
Some validation cases are given at the end of the Chapter, where results with proven high
accuracy are achieved.

In contrast to the equilateral triangular waveguide, the practical utility of this waveg-
uide has been addressed a number of times in the literature. In fact, the parabolic cylinder
waveguide has already been used in a circular to rectangular mode converter [95]. Besides,
its inherent stability of polarization has been reported in [96], where it has been suggested
as an alternative to the circular waveguide. Furthermore, contour plots for loss estimation
have been recently reported in [97]. Despite these references, it is evident that this geome-
try is not among the most popular ones for the design of microwave devices. In this sense,
the purpose of this work is to boost its relevance in microwave engineering providing an
e�cient tool to carry out the corresponding designs with improved e�ciency.

31
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3.2 The parabolic cylinder di�erential equation

The procedure to solve the electromagnetic �eld of any waveguide with translation sym-
metry, homogeneously �lled and surrounded by perfect conductor walls was described in
the previous Chapter and detailed in the Appendix A. It starts with the resolution of
the scalar Helmholtz equation given in (2.3), where the choice of a suitable coordinate
system greatly simpli�es the problem. In the case of the parabolic cylinder waveguide, its
modal spectra can be quasi-analytically described if the parabolic cylinder coordinates are
exploited to face the problem of variable separation.

The parabolic cylinder coordinates belong to a curvilinear orthogonal coordinate
system whose curves along the xy plane are confocal parabolas which share a common
focus placed at the cartesian origin (0, 0). The coordinates u, v and z are related to the
cartesian coordinates by:

x =
1

2
(u2 − v2), (3.1)

y = uv, (3.2)

z = z, (3.3)

where 0 ≤ u <∞ and −∞ < v <∞ [51]. An arbitrary parabolic cross-section is uniquely
de�ned by the intersection of two confocal parabolas of coordinates (u = u0, v = v0).
Figure 3.1a) shows an example with u0 6= v0 that de�nes an asymmetric contour. On the
other hand, a symmetric contour is de�ned choosing u0 = v0.

The position vector in parabolic cylinder coordinates is de�ned as:

~r =
1

2
(u− v)x̂+ uvŷ + zẑ, (3.4)

and the associated scale factors are [51]:

hu =
∣∣∂~r
∂u

∣∣ =
√
u2 + v2, hv =

∣∣∂~r
∂v

∣∣ =
√
u2 + v2, hz = 1. (3.5)

Therefore, the relationship between the unitary cartesian vectors and the parabolic cylin-
drical ones is:

û =
∂~r/∂u

hu
=

ux̂+ vŷ√
u2 + v2

, v̂ =
∂~r/∂v

hv
=
−vx̂+ uŷ√
u2 + v2

, ẑ = ẑ. (3.6)

The Helmholtz equation, required to compute the modes as described in Appendix A,
∆Φ + k2

cΦ = 0 is written for any orthogonal curvilinear coordinate system as:

1

huhvhz

[
∂

∂u

(
hvhz
hu

∂Φ

∂u

)
+

∂

∂v

(
huhz
hv

Φ

∂v

)]
+ k2

cΦ = 0, (3.7)

Using the scale factors de�ned in (3.5), the Helmholtz equation in parabolic cylinder co-
ordinates is simpli�ed to:

1

u2 + v2

[
∂2Φ

∂u2
+
∂2Φ

∂v2

]
+ k2

cΦ = 0. (3.8)



3.2 The parabolic cylinder differential equation 33

Figure 3.1: a) Parabolic cylinder coordinates with a remarked arbitrary contour (u = u0,
v = v0) and b) 3D example of a parabolic cylinder waveguide.

In order to �nd the modal spectrum of the parabolic cylinder waveguide it is assumed that
Φ can be written as a product of separated variables Φ(u, v) = F (u)G(v) and hence (3.8)
becomes: [

F ”(u)

F (u)
+
G”(v)

G(v)

]
+ k2

c (u
2 + v2) = 0. (3.9)

The previous expression leads to two ordinary di�erential equations with c an arbitrary
separation constant:

F ”(u)
F (u) + k2

cu
2 = c ↔ F ”(u) + (k2

cu
2 − c)F (u) = 0 (3.10)

G”(v)
G(v) + k2

cv
2 = c ↔ G”(v) + (k2

cv
2 − c)G(v) = 0. (3.11)

At this point the next particular standard form of the parabolic cylinder equation is sought:

d2y(x)

dx2
+

(
x2

4
− α

)
y(x) = 0. (3.12)

To that end, the variables h =
√

2kcu and t =
√

2kcv are de�ned. Thus, F (u) = f(h(u))
and G(v) = g(t(v)) hold, and equations (3.10) and (3.11) change into the following expres-
sions:

f”(h)2kc +

(
k2
c
h

2kc
− c
)
f(h) = 0 (3.13)

g”(t)2kc +

(
k2
c
t

2kc
+ c

)
g(t) = 0. (3.14)

In order to achieve the expression given in (3.12), equations (3.13) and (3.14) must be
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rewritten in terms of the separation constants a = c
2kc

and a′ = −a, leading to:

f”(h) +

(
h2

4 − a
)
f(h) = 0, (3.15)

g”(t) +

(
t2

4 − a
′
)
g(t) = 0, (3.16)

which can be directly compared with (3.12). Once the expressions are identi�ed with a
well-known ordinary di�erential equation, the same procedure as in Chapter 2 must be
followed, that is, the corresponding boundary conditions must be imposed.

Thus, Neumann and Dirichlet boundary conditions must be ful�lled by TE and TM
modes respectively (please refer to Appendix A):

∂Φ

∂n

∣∣∣∣
ζ

= 0, for TE modes (Neumann-type), (3.17)

Φ
∣∣
ζ

= 0 for TM modes (Dirichlet-type), (3.18)

where ζ is the external contour of the cross-section of the parabolic cylinder waveguide
shown in Figure 3.1b).

The usage of a particular coordinate system provides the so-called implicit boundary
conditions as well. This happens in classical waveguides such as the circular or the elliptical
one, and so does in the parabolic cylinder waveguide.

In the parabolic cylinder coordinate system these conditions are referred to the con-
tinuity of the scalar function Φ. This function is de�ned in terms of the transformed
functions f(h) and g(t) as the product:

Φ(u, v) = f(h)g(t). (3.19)

On the other hand, any function can be decomposed into its even and odd parts (fe(h),
fo(h), ge(t), and go(t) respectively). Applying this decomposition to (3.19) it becomes ev-
ident that only the products between even functions (fe(h)ge(t)) or between odd functions
(fo(h)go(t)) correspond to real physical solutions [51]. The mixed products fe(h)go(t) and
fo(h)ge(t) do not ensure the continuity of a maximum or a minimum along the axis of
symmetry associated with the parabolic cylinder waveguide and must be discarded.

Therefore the Φ function from which the complete set of modes arise is simpli�ed to:

Φ(u, v) = fe(h)ge(t) + fo(h)go(t), (3.20)

where the application of (3.17) leads to the modal expressions for TE modes and the
application of (3.18) provides the corresponding expressions for TM modes. Furthermore,
thanks to this subdivision the boundary conditions can be applied separately to:

Φe(u, v) = fe(h)ge(t), (3.21)

Φo(u, v) = fo(h)go(t), (3.22)

giving rise to four mode families: even TE (TEe), even TM (TMe), odd TE (TEo), and
odd TM (TMo). As it happened with the symmetric and asymmetric mode families in the
equilateral triangular waveguide of Chapter 2 with respect to the y-axis, these even and
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odd families in the parabolic cylinder waveguide also present di�erent symmetries along
the cartesian x-axis (uc1 = 0 and vc1 = 0 in parabolic cylinder coordinates). In fact, the
TEe and TMo modes present a PEW symmetry, whereas the TEo and TMe modes present
a PMW symmetry. This behaviour will be evidenced in Section 3.4 once the �elds have
been solved and some mode patterns are given.

3.3 Systematic resolution of the modes

In the previous Section the scalar Helmholtz equation is transformed into one of the well-
known standard forms of the parabolic cylinder di�erential equation. After applying all
the boundary conditions, the Φ eigenfunctions are simpli�ed to the product of even and
odd functions of the transformed functions f(h) and g(t).

In this Section there are two main objectives:

(i) Find the suitable even and odd functions whose product satisfy the Helmholtz equa-
tion, the implicit boundary conditions and the Neumann or Dirichlet conditions (for
TE or TM modes respectively).

(ii) Find a systematic way to solve the corresponding eigenvalue kc, also known as the
cut-o� wavenumber, for each eigenfunction Φe or Φo, so that the modal spectra can
be uniquely de�ned.

Regarding the �rst goal of this Section, several expressions are found in the literature
as the linear independent solutions to (3.12), such as the summatories of even and odd
powers of x obtained following the Frobenius method or the parabolic cylinder functions
[92]. The parabolic cylinder functions shown in [92] are better suited for the asymptotic
expansions to have a desired behaviour, but they are neither even nor odd as it is required
by (3.20)-(3.22). The Weber parabolic functions (or parabolic cylinder functions) can be
combined to provide an even and odd solution to (3.12) following the derivation shown
in [46]. These functions were tabulated in [47]. However, it has become evident that the
generation of a reliable algorithm to obtain their values in current CAD tools is cumbersome
[48, 49]. In fact, the routine included in [92] is only valid for a very limited range where
α, x ∈ [0, 5] in (3.12) [49], and its extension to other ranges is far from being trivial.
Several techniques must be combined to guarantee accuracy as it is shown in [48, 49], where
Maclaurin and Chebychev series, asymptotic expansions or integrating the di�erential with
local Taylor series are used depending on the range of |α| and |x|.

In this Thesis another strategy is followed due to its simplicity and great performance,
with a relative error of the computed results only limited by the machine round-o�. The
method is based on the use of a 1D-analytic continuation technique, also known as a
constant-step variable-order Taylor method [50]. It will be proven in the next Section that
this strategy allows to obtain accurate results for a wide range of variables x and α in
(3.12), in fact more than enough to obtain a large number of modes to be used in any
solver based on modal decomposition.

The constant-step variable-order Taylor method computes the function y(x) that
satis�es equation (3.12) by a Taylor expansion carried out about an arbitrary point x0

rather than about x0 = 0. This function y(x) represents f(h) and g(h) of equations (3.13)
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and (3.14) as it was shown earlier in Section 3.2. Each term of the series is obtained
recursively as [50]:

y(n)(x) = −
(
x2 + 4α

4

)
y(n−2)(x)− n− 2

2
xy(n−3)(x)− (n− 2)(n− 3)

4
y(n−4)(x) (3.23)

where the argument is x =
√

2kcu with α = a for f(h) and x =
√

2kcv with α = −a for
g(t). In fact, (3.23) provides the complete Taylor series and we are not interested in f(h)
or in g(h), but in their associated even and odd functions fe(h), fo(h), ge(t) and go(t).
These functions, denoted as ye(x) for fe(h), ge(t) and yo(x) for fe(h), ge(t), are obtained
using di�erent starting points in (3.23):

ye(x) =

{
y(0)(xi = 0) = 1

y(1)(xi = 0) = 0
, yo(x) =

{
y(0)(xi = 0) = 0

y(1)(xi = 0) = 1
, (3.24)

where xi denotes the initial point of the series, y(0)(x) = y(x) and y(1)(x) = y′(x).

For a given contour (u0, v0) variable x varies in small intervals of width |s| ≤ 0.15
from x = 0 to x =

√
2kcu0 for (3.13), and between x = 0 and x =

√
2kcv0 for (3.14). The

�rst interval uses the initial points given in (3.24). The rest of the intervals use the last
calculated value of the function and its derivative in the preceding interval as the starting
values for the recursion formula (i.e., y(0) and y(1)).

Once fe,o and ge,o have been approximated by (3.23), the even and odd functions
Φe and Φo of (3.21) and (3.22) can be obtained. The next step is to apply the boundary
conditions de�ned in (3.17),(3.18). Since each condition is applied to both functions four
mode families arise:

ΦTEe
e (u, v) :

∂Φe(u, v)

∂n

∣∣∣∣
ζ

= 0, (3.25)

ΦTEo
o (u, v) :

∂Φo(u, v)

∂n

∣∣∣∣
ζ

= 0, (3.26)

ΦTMe
e (u, v) : Φe

∣∣
ζ

= 0, (3.27)

ΦTMo
o (u, v) : Φo

∣∣
ζ

= 0. (3.28)

For an arbitrary parabolic contour (u0,v0), where h0 =
√

2kcu0, t0 =
√

2kcv0, expressions
(3.25)-(3.28) lead to four non-linear bivariate systems of equations:

TE modes



TEeven

{
f
′
e(h0)g

′
e(t) = 0 ∀t

f
′
e(h)g

′
e(t0) = 0 ∀h

{
f
′
e(h0) = 0

g
′
e(t0) = 0

TEodd

{
f
′
o(h0)g

′
o(t) = 0 ∀t

f
′
o(h)g

′
o(t0) = 0 ∀h

{
f
′
o(h0) = 0

g
′
o(t0) = 0

, (3.29)

TM modes



TMeven

{
fe(h0)ge(t) = 0 ∀t
fe(h)ge(t0) = 0 ∀h

{
fe(h0) = 0

ge(t0) = 0

TModd

{
fo(h0)go(t) = 0 ∀t
fo(h)go(t0) = 0 ∀h

{
fo(h0) = 0

go(t0) = 0.

, (3.30)
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where each modal solution is uniquely identi�ed by a �xed pair (a, kc) and a, kc ∈ R. The
previous systems of equations, written in terms of the Taylor series derived in (3.23) are:

TE even

{
y′e(x0 =

√
2kcu0; α = a) = 0,

y′e(x0 =
√

2kcv0; α = −a) = 0,
(3.31)

TE odd

{
y′o(x0 =

√
2kcu0; α = a) = 0,

y′o(x0 =
√

2kcv0; α = −a) = 0,
(3.32)

TM even

{
ye(x0 =

√
2kcu0; α = a) = 0,

ye(x0 =
√

2kcv0; α = −a) = 0,
(3.33)

TM odd

{
yo(x0 =

√
2kcu0; α = a) = 0,

yo(x0 =
√

2kcv0; α = −a) = 0,
(3.34)

where ye(x, α) and yo(x, α) are the Taylor approximations for the even and odd part of
the solution y(x) to (3.12) for a given α.

Figure 3.2 shows several examples of the above systems of equations where the values
of the separation constant a are obtained from [50], and only the argument x is varied in
the real domain. These functions have been drawn using the constant-step variable-order
Taylor approach followed in this Thesis. The curves have been drawn dependent on variable
x to show their even or odd behavior with respect to x = 0.

The �rst row contains roots that belong to the TE odd mode family, whereas the
second one shows �xed pairs (a, kc) for the TE even solutions. The appearance of the
curves drawn associated to the TE even family is odd since the derivative of the function
is represented to �nd the roots, as it is given in (3.31). On the other hand, the curves of
the odd family are even for the same reason (see (3.32)). The third and fourth rows show
examples of odd and even TM modes respectively. In this case even TM modes are solved
with the intersection of even functions according to (3.33), and odd TM modes with the
intersection of odd functions according to (3.34).

It is important to notice that, although in Figure 3.2 the argument x has been
depicted from real negative numbers to positive ones to see the symmetries of the functions
that make up the systems, only one root per case is valid, in particular the one with x > 0
since kc, u0, v0 > 0. When variable a is plotted in the abscissa axis, a suitable numeration
where two subindexes uniquely identify a mode arises from the curve intersections [46, 50].

The previous systems of equations are di�cult to be faced in general [50] taking into
account that both a and x are unknown and belong to the real domain. Only the cases
where a = 0, present in both symmetric (u0 = v0) and asymmetric contours (u0 6= v0), are
reduced to the roots of the well-known Bessel functions [47, 51].

In other classical waveguides �nding the modal spectra can be reduced to a 1D-
problem, since the modes can be found by seeking sequentially the zeros of a function
where the order, in the integer space, is varied. This is the case of the circular waveguide,
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where the Bessel functions (or their derivatives) are involved, or the elliptical one, where
the modi�ed Mathieu functions (or their derivatives) are used. In the parabolic cylinder
waveguide, however, the intersection of two functions dependent upon two parameters in
the real domain, a and kc, are sought. This can be seen in (3.31) to (3.34). Thus, the
modal spectra of the parabolic cylinder waveguide constitutes a cumbersome 2D-problem.

Figure 3.2: Examples of the systems of equations de�ned in (3.31), (3.32), (3.33) and (3.34) for the search
of modal solutions in a parabolic waveguide of u0 = v0 = 1, where the functions have been obtained by
the method proposed in [50].



3.3 Systematic resolution of the modes 39

The di�culty was highlighted in [51], where a graphical method to solve intersections
as the solutions to the systems of equations was suggested. This strategy was followed
by [46] for the �rst modes in a symmetrical waveguide contour. A signi�cant improvement
in the accuracy of the solutions was achieved in [50], where the obtained values were
compared to others from di�erent sources [46, 51, 94, 98]. This enhancement was due
to the use of a root-�nding algorithm based on the Newton-Poisson shooting method.
However, the method presented in [50] has some disadvantages that makes it unfeasible
to its application in current CAD tools. The main disadvantage is that it resorts to
graphical intersections to provide starting points close enough to the solutions to the root-
�nding algorithm, at least in the symmetric contour. Once the roots of the proposed
symmetric contour have been found, [50] suggests to combine the Newton-Poisson root-
�nding method with homotopy to provide new starting points for any other desired contour.
Thus, another evident disadvantage is the iterative behavior of the proposed procedure for
asymmetrical contours, which can compromise e�ciency in a modal solver where signi�cant
speed is expected. Besides, its performance depends on the good selection of the homotopy
functions.

The main progress of the method proposed in [50] over the graphical intersections
of [46] is that the modal solutions are found with high precision. What makes them accurate
is the use of a numerical root-�nding algorithm that re�nes the graphical results together
with a good mechanism to approach the functions that are solution to the parabolic cylinder
di�erential equation, that is, the constant-step variable-order Taylor method.

In this Thesis the limitations of [50] are overcome. Towards that end, the focus is on
the root-�nding algorithm. A recent method based on the hidden variable resultant method
and Bezout matrices for two bivariate functions is proposed [52], where the graphical means
are completely avoided and thus the method can be fully integrated in any solver based
on modal decomposition.

This algorithm separates the dependence of both variables a and kc by using Cheby-
chev polynomials as interpolants of the functions that make up the bivariate system in
(3.31)�(3.34), which is convenient for the hidden variable resultant method that is used.
Thus, the four bivariate systems are de�ned accordingly in our problem as:

p(
√

2kcu0, a) =

mp∑
i=0

np∑
j=0

PijTi(
√

2kcu0)Tj(a), (3.35)

q(
√

2kcv0,−a) =

mq∑
i=0

nq∑
j=0

QijTi(
√

2kcv0)Tj(−a) (3.36)

where Pij and Qij are suitable coe�cients for the approximation and the Chebychev poly-
nomials Tj(x) take the following usual form:

Tj(x) = cos(j cos−1(x)). (3.37)

The degrees of the polynomials (mp, np, mq and nq ) in (3.35) and (3.36) are in close
relation with the search domain subdivision of the algorithm, and the use of the Chebychev
basis allows to employ fast transforms based on the fast Fourier transform and prevents
numerical instability [52]. A Bezout resultant matrix is built from (3.35) and (3.36), and
the �xed pairs (a, kc) are found by solving a generalized eigenvalue problem combined with
a univariate root-�nding algorithm based on the colleague matrix.
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Since its strategy is based on solving eigenvalues, the proposed algorithm has an-
other signi�cant advantage apart from its feasibility to be integrated in CAD tools. For
a given contour (u0, v0) it �nds all the roots at once within a limited range [ainit, aend] ×
[kc init, kc end], eliminating the dependence on good starting points from which to iterate as
it happens in the Newton-Poisson shooting method.

Once the �xed pairs are found the four mode families in the parabolic cylinder
waveguide ΦTEe

e (u, v) , ΦTEe
o , (u, v), ΦTMe

e (u, v) and ΦTMo
o , (u, v) are calculated as:

ΦTEe
e (u, v) = ye(

√
2kTEec u, a)ye(

√
2vkTEec v,−a), (3.38)

ΦTMe
e (u, v) = ye(

√
2kTMe

c u, a)ye(

√
2kTMe

c v,−a), (3.39)

ΦTEo
o (u, v) = yo(

√
2kTEoc u, a)yo(

√
2kTEoc v,−a), (3.40)

ΦTMo
o (u, v) = yo(

√
2kTMo

c u, a)yo(

√
2kTMo

c v,−a). (3.41)

The two objectives presented at the beginning of this Section have been accomplished.
On the one hand, the even and odd functions fe,o(h) and ge,o(t) have been solved by
using the accurate derivation presented in [50] based on the constant-step variable-order
Taylor method. On the other hand, a systematic procedure based on a recently published
algorithm [52] has been proposed to �nd the �xed pairs (a, kc) that uniquely identify the
eigenfunctions Φe and Φo. Therefore at the end of this Section the modal spectra of the
parabolic cylinder waveguide has been fully characterized in a systematic way allowing for
the �rst time to be integrated into modern CAD tools based on modal decomposition.

3.4 Validation cases

In this Section the proposed method to systematically solve the modal spectra of the
parabolic cylinder waveguide is tested and validated. The �rst step to be taken is to
compare the quasi-analytical results with the available ones given in [50] for a symmet-
rical contour. This reference claims to have an impressive relative error in the order of
the machine round-o�, and compares its results with previous references justifying the
improvement achieved. Thus, [50] can be considered a reliable source.

In particular, the symmetrical contour in [50] has u0 = v0 = 1. The �xed pairs
(a, kc) are found for the four mode families of equations (3.38)-(3.41), and then are sorted
according to the cut-o� wavenumber (from lower to higher values up to 80 modes). Figure
3.3 shows the achieved results together with the ones given in [50] used here as a reference.
From now on in this Section the values of u and v are given without dimensions (their
actual dimensions would be square root of length), and therefore the values of kc (whose
actual dimension would be inverse of length) are shown normalized without dimensions in
the �gures and tables.

Apart from the graphical validation of Figure 3.3, where it can be qualitatively seen
that there is a good agreement between results, we de�ne the relative di�erence ∆ to
compare the obtained values quantitatively as:

∆ =

∣∣kc − krefc ∣∣
krefc

, (3.42)
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Figure 3.3: Comparison of the computed pairs (a, kc) for each
mode for u0 = 1, v0 = 1 with [50]: normalized cut-o� wavenum-
ber and associated separation constant.

where kc is each solution obtained by the proposed algorithm in this paper, whereas krefc is
each solution given in [50]. The maximum obtained relative di�erence regarding the cut-o�
wavenumbers is 1.7 · 10−5 for mode number 32.

It is important to highlight that [50] used one graphical intersection for each one of the
80 modes calculated, which in turn is a starting point to be re�ned with a Newton�Poisson
shooting method. The strategy addressed in this Thesis does not solve each root individ-
ually, and it uses neither starting points nor graphical means: it solves systematically the
80 roots at once in the suitable 2-D domain ([ainit, aend]× [kc init, kc end] = [−5, 5]× [2, 26]).

Finally, this �rst validation is ended with Table 3.1, which is included for complete-
ness. It shows the cut-o� wavenumbers of the �rst and last modes of Figure 3.3 obtained
not only from [50] from an in-house implementation (based on [99] of the Finite Element
method (FEM) for homogeneous waveguides [54] using second-order Lagrange triangular
elements).

At this point the proposed method is tested for asymmetrical contours, since it is
reasonable to think that u0 may be chosen with a di�erent value from v0 to have an
additional degree of freedom in the design of microwave devices. However, to the best of
the author's knowledge, there are not references in the literature with enough number of
modes for a test validation in the asymmetric cases. In fact, a wide range of asymmetric
contours can be found in [50], but the values are only solved for ten or twenty modes
depending on the case.

For that reason three test case studies are proposed: one symmetric contour with
u0 = v0 = 0.5, another one asymmetric with u0 = 0.8 and v0 = 1, and �nally one also
asymmetric with u0 = 0.15 and v0 = 0.5. Figure 3.4 shows the selected cases. With this
choice of contours this Thesis addresses two objectives: on the one hand it tests the stability
of the proposed algorithm in terms of the achieved relative di�erence between values and
on the other hand a guideline for the choice of the domains of search is revealed.
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Mode number Mode family kc krefc [50] krefc FEM
1 TEo 2.117016 2.117017 2.116986

2∗ TEe 3.647922 3.647921
3.647989
3.648105

3 TMe 4.012599 4.012598 4.011785

4∗ TEo 5.163531 5.163532
5.163424
5.163458

5 TMo 5.561775 5.561776 5.561780

. . . . . . . . . . . . . . .

77 TMe 22.792935 22.792935 22.786287

78 TMo 24.362683 24.362684 24.362836

79 TEe 25.894069 25.89072 25.895568

80∗ TMe 25.928333 25.928338
25.913881
25.926654

* Degenerate modes.

Table 3.1: Normalized Cut-O� Wavenumber for u0 = 1, v0 = 1.

In the �rst place the relative di�erence de�ned in (3.42) should be measured over a
large number of modes since any modal solver that can bene�t from the proposed procedure
may use hundreds of modes until convergence is ensured. To that end more than 1600
modes have been successfully computed for each contour. Each of the bivariate non-linear
systems of (3.31)-(3.34) are solved giving rise to four groups of solutions: the ones that
correspond to the even and odd TE modes of (3.38) and (3.40), and the ones that belong
to the even and odd TM modes of (3.39) and (3.41). Once the modal solutions have been
separately found for each family the results are sorted according to their kc values (from
the lowest kc associated to the �rst mode to the highest kc of the last one computed). The
corresponding �xed pairs (a, kc) are shown in Figure 3.5. Some of the �rst and last values
of the two analyzed asymmetrical contours are also given in Tables 3.2 and 3.3.

Once the modal solutions have been found, the relative di�erence de�ned in (3.42) is
computed as a source of validation. The aforementioned in-house implementation based on
the purely numerical Finite Element method is used to obtain the krefc values since there are
not reference values available in the literature. In order to guarantee the accuracy of such a
high number of eigenvalues in the Finite Element method, the number of degrees of freedom
has been set as 129388 (using 64053 triangular elements). A signi�cant time reduction has
been found with the methodology proposed in this Thesis. In fact, our developed proof-of-
concept code is approximately �ve times faster than the specialized Finite Element method
software using the Arnoldi solver from [100] and placing the corresponding symmetry walls.

The maximum relative di�erence obtained for each mode family is gathered in Table
3.4, where it can be seen that its magnitude is in the order of 10−4 − 10−5 and occurs at
very high order modes. In particular the total mean relative di�erence is 1.4 · 10−5 for the
case u0 = v0 = 0.5, 1.6 · 10−5 for the case u0 = 0.8 and v0 = 1, and 1.9 · 10−5 for the case
u0 = 0.15 and v0 = 0.5. Thus, the good performance of the proposed algorithm in this
electromagnetic problem has been proven. The evolution of the relative di�erence in detail
is given in the �rst column of Figure 3.6.

The second goal of the three proposed test case studies is to provide a guideline
for the choice of the domain of search. Giving the suitable limits of search [ainit, aend] ×
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Figure 3.4: Parabolic cross sections of values: a) u0 = 0.5, v0 = 0.5; b) u0 = 0.8, v0 = 1 and c)
u0 = 0.15, v0 = 0.5.

[kc init, kc end] to the algorithm is crucial to ensure e�ciency. Domains where the lowest kc
value is not present or where the associated a values are missing lead to a signi�cant time
increase.

The representation of the a separation constants in Figure 3.5b), d) and f) shows
that the range of this variable widens as the mode number increases. However, from this
representation it is di�cult to observe the asymmetrical distribution of this parameter
in the asymmetric contour (u0 = 0.8, v0 = 1). To that end the histograms of Figure
3.6b), d) and f) show the number of expected roots found over the di�erent ranges of
a. In the case of the symmetric contour depicted in Figure 3.6b) it can be seen that the
histogram is symmetric with respect to zero. From this information it is deduced that in
a symmetrical case only half of the range of variable a is required (i.e., either the positive
or negative range), speeding up the overall search process. Figures 3.6d) and f) evidence
that the more asymmetric the waveguide contour is, the more asymmetry will be found
in the distribution of the values for the separation constant a. Therefore, the domain of
search must be selected considering this e�ect for an e�cient root-�nding process.

The good selection of the input domain of search is indeed a core feature, but also
the choice of the parameters that control the accuracy and convergence in the algorithm.
The authors in [52] have set all the parameters giving priority to the accuracy. However, in
this Thesis the very diverse tolerances for each of the many steps involved in the algorithm
have been adjusted for an enhancement of the e�ciency without compromising the accuracy
needed for the speci�c problem here solved.

The case study u0 = 0.15, v0 = 0.5 is selected to compare the e�ciency between the
standard settings proposed in [52] and the new selected ones. Table 3.5 gathers the time
spent in both cases using MATLAB in a 64-bit virtual machine based on CentOS 7 with
4 GB of RAM and an i7-4790 @3.60GHz processor.

It is evident that the achieved time reduction must not be at expense of poor accu-
racy. For that reason the relative di�erence between the roots obtained with the default
implementation of the algorithm and the experimental tuned one is computed, getting a
maximum value in the order of 10−10, which is negligible for the electromagnetic problem
under study.



44 The parabolic cylinder waveguide

The computation time can be compared as well with other numerical techniques.
Table 3.6 compares the time spent by the Boundary Contour Mode-Matching method
(BCMM) [101] and the commercial software CST MWS for the �rst 40 modes in the same
waveguide. The former method is run using a contour of 75 points (45 for the curve
u0 = 0.15 and 30 for the curve v0 = 0.5) and the following number of base functions: 28
for even TE modes, 22 for odd TM modes, 10 for odd TE modes and 22 for even TM
modes. On the other hand in CST Microwave Studio the time-domain solver is run for the
2D problem (i.e. the modes are solved solely in the port) with 20 cells per wavelength.

The proposed algorithm was executed again in MATLAB in the aforementioned
virtual machine based on CentOS and the same selected settings, whereas both BCMM
and CST MWS were executed in Windows with 32 GB of available RAM, in the same
physical machine i7-4790 @3.60 GHz. Table 3.6 shows a signi�cant time reduction, which
is obtained although the other methods were not meant for high accuracy as Table 3.7
evidences.

Finally the �rst mode patterns divided by symmetries are shown in Figure 3.7 for a
parabolic cylinder waveguide of u0 = 4.04 and v0 = 1.68. For the sake of simplicity, in this
Thesis, the mode ordering has been set according to kc (from lower to higher values), which,
together with the mode family, uniquely identi�es a mode. Alternatively, two subscripts
(m and n) related to the nodal lines along the u and v curves can be used [97], or a generic
mode-classifying system can be adopted based on the pattern of the corresponding mode
in a rectangular waveguide [102]. The numeration used in [46, 50, 51] is here impractical
since graphical intersections would be needed to properly de�ne the m and n subindexes.

The previous examples have validated the proposed procedure to obtain the modal
spectra of the parabolic cylinder waveguide, which is the basis to understand the principle
of operation of microwave devices made up of this geometry. A practical example will be
presented in Chapter 5, where an inline prototype in parabolic cylinder cavities will be
designed taking into account a mode chart derived from the procedure here proposed.
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Figure 3.5: Root pairs (a, kc) for the three proposed test case studies for a), b) u0 = 0.5, v0 = 0.5; c), d)
u0 = 0.8, v0 = 1; e), f) u0 = 0.15, v0 = 0.5.
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Mode number Mode family a kc krefc FEM

1 TEo −0.2695 2.6399 2.6399

2 TEe 0.5541 4.3323 4.3325

3 TEe −1.1656 4.6735 4.6736

4 TMe −0.1637 4.9336 4.9337

5 TEo 0.8409 6.1832 6.1831

. . . . . . . . . . . . . . .

1678 TMo −39.9810 109.8174 109.8195

1679 TEo 24.9592 109.8306 109.8351

1680 TEe 31.8748 109.8558 109.8550

1681 TEo 0.9959 109.8602 109.8630

1682 TEe −7.6107 109.8892 109.8916

Table 3.2: Normalized Cut-O� Wavenumber and Separation Constant for
u0 = 0.8, v0 = 1.

Mode number Mode family a kc krefc FEM

1 TEe 0.0967 25.5757 25.5770

2 TEo −1.9196 26.3742 26.3741

3 TMe −1.3694 38.4429 38.4425

4 TEo −0.9017 46.3487 46.3484

5 TEe 0.1867 48.3180 48.3217

. . . . . . . . . . . . . . .

1753 TEo −41.1201 899.3626 899.3862

1754 TMo −59.0797 899.5714 899.5946

1755 TMe 0.6117 899.6471 899.6851

1756 TMe −71.3019 899.8382 899.8496

1757 TMe 5.4317 899.9614 899.9661

Table 3.3: Normalized Cut-O� Wavenumber and Separation Constant for
u0 = 0.15, v0 = 0.5.

u0 = 0.5 , v0 = 0.5

TE even TE odd TM even TM odd
Max di�. 1.5 · 10−4 5.7 · 10−5 7.6 · 10−5 2.7 · 10−5

Mode num. 1561 1025 862 1710

u0 = 0.8 , v0 = 1

TE even TE odd TM even TM odd
Max di�. 9.0 · 10−5 7.6 · 10−5 5.4 · 10−5 3.1 · 10−5

Mode num. 1630 1020 1626 1672

u0 = 0.15 , v0 = 0.5

TE even TE odd TM even TM odd
Max di�. 1.7 · 10−4 2.0 · 10−4 5.2 · 10−5 1.0 · 10−4

Mode num. 266 1696 1505 1718

Table 3.4: Relative Di�erences of Normalized Cut-O� Wavenumbers with
respect to the Finite Element method (FEM) used as a reference.
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Figure 3.6: Evolution of the relative di�erence for the three case studies: a) u0 = 0.5, v0 = 0.5; c) u0 = 0.8, v0 = 1;
e) u0 = 0.15, v0 = 0.5, and histograms of the separation constant a for: b) u0 = 0.5, v0 = 0.5; d) u0 = 0.8, v0 = 1; f)
u0 = 0.15, v0 = 0.5.



48 The parabolic cylinder waveguide

Time spent with [52] [seg.]

TE even TE odd TM even TM odd
13.42 12.05 11.19 9.81

Time spent with our settings [seg.]

TE even TE odd TM even TM odd
4.68 4.78 4.42 3.71

Table 3.5: Comparison of the time spent by the proposed algo-
rithm with the settings proposed in [52] and with the proposed
settings in this Thesis for e�ciency enhancement.

Time consumption [seg.]

Prop. method BCMM CST MWS

PEW PMW PEW PMW PEW PMW

3.75 3.87 22.43 26.84 16.66 17.32

Table 3.6: Comparison of the time consumption of the proposed
algorithm with the enhanced settings and other numerical meth-
ods.

Mode
number

Mode
family

kc
prop. method

kc
BCMM

kc
CST MWS

1 TE even 25.5757 25.5781 25.59

2 TE odd 26.3742 36.3755 26.36

3 TM even 38.4429 38.4456 38.47

4 TE odd 46.3487 46.3519 46.31

5 TE even 48.3180 48.3224 48.39

· · · · · · · · · · · · · · ·
36 TE odd 128.0938 128.1920 127.97

37 TE even 130.4312 130.4418 130.48

38 TE odd 132.6409 132.6170 132.60

39 TE even 134.0221 134.0290 133.98

40 TE even 135.7780 135.7867 135.78

Table 3.7: Comparison of the results obtained with the proposed
algorithm and other numerical methods.
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Figure 3.7: Mode pattern of the �rst 24 modes in a parabolic cylinder waveguide of u0 = 4.04
and v0 = 1.68.



4 | E�cient analysis of waveguide
devices by a hybrid 2D-Finite
Element and Mode-Matching
method

4.1 Introduction

In the previous chapters the equilateral triangular and the parabolic cylinder waveguides
were introduced. In particular, their e�cient electromagnetic analysis was addressed so
that the design of microwaves devices based on such unconventional geometries is fast and
accurate. However, these are not the only prospective geometries to be used in future satel-
lite communications. The arrival of sophisticated 3D-printing techniques has undoubtedly
widened the spectrum of possible geometries. In this context, it is evident that the analyt-
ical cross-sections represent particular cases of the possible set of hypothetical geometries.

One of the most popular topologies used in waveguide devices is the so-called inline
[103, 104], where hollow waveguides are cascaded making up sequential building blocks.
When the cascaded cross-sections are analytical, such topology can be e�ciently analyzed
by the Mode-Matching method. However, when arbitrary geometries take part of the
electromagnetic problem, or even in the case of some quasi-analytical cross-sections such as
the parabolic one of Chapter 3, the Mode-Matching method needs to be hybridated with
a robust and accurate 2D numerical method. One of the possible numerical techniques
is the Finite Element method, whose hybridation with the Mode-Matching method was
researched in the mid-1990's [55�58].

The contribution of this Chapter is to improve the overall e�ciency of the hybridation
between the two well-known methods. To that end, a novel formulation is proposed, where
the modal �elds are expressed in terms of 2D nested functions spaces made up of Finite
Element basis functions. This leads to Finite Element matrices that can be directly used to
build the inner cross-product matrices inherent to the Mode-Matching method, speeding
up the analysis as the number of required computations is reduced. Besides, an e�cient
orthonormalization procedure is shown, which is needed for a correct hybridation between
the two methods when multiconductor problems are addressed. Several examples are
analyzed with the proposed formulation, achieving results that are in good agreement with
measured ones and from commercial software.

51
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4.2 Proposed formulation

The scalar Helmholtz equation ∇2
tΦ + k2

cΦ = 0, whose solution provides the TE and TM
modes in hollow waveguides �lled with a homogeneous dielectric, or the Laplace equa-
tion ∇2

tΦ = 0 for TEM modes in multiconductor waveguides (see Appendix A), can be
discretized for those geometries that do not lead to analytic or quasi-analytic solutions.
To that end, the Finite Element method approximates the scalar function Φ over a mesh
through a proper set of basis functions φn and the corresponding N weighting coe�cients
vn (also known as degrees of freedom):

Φ =
N∑
n=1

vnφn. (4.1)

In this Thesis the chosen mesh is made up of triangular elements and the scalar La-
grange functions are selected as the basis functions. The discretized matrix version of the
Helmholtz or Laplace equations using (4.1) are respectively [53, 54]:

Kv − k2
cMv = 0, (4.2)

Kv = 0, (4.3)

where v is a column vector that contains the N weighting coe�cients and the i, j elements
of matrices K and M are computed over the area As of the cross-section in the following
way:

Kij =

∫∫
As

∇tφi · ∇tφjdS, (4.4)

Mij =

∫∫
As

φiφjdS. (4.5)

At this point it is convenient to introduce another matrix useful for a later stage, where
each element (i, j) is computed as:

Rij =

∫∫
As

∇tφi ×∇tφj · ẑdS. (4.6)

The goal of this Chapter is to provide a formulation where the 2D-Finite Element and
Mode-Matching methods are e�ciently hybridated to solve problems made up of cascaded
waveguide sections having arbitrary transversal shapes as in Figure 4.1. To that end, it will
be shown how the previous expressions are not only valid for the 2D-problem of computing
the modes but also for the analysis of 3D waveguide devices if they are properly combined
with other methods that take advantage of translational symmetry, as it is the case of the
Mode-Matching method presented in Chapter 2.

In �rst place, the computation of the normalized inner cross-product matrix X̄ was
presented in Section 2.3 according to the type of modes. Expressions (2.20)-(2.22) are
repeated here for convenience:

X̄ij = 0 for TEM(s)-TE(w), TM(s) -TEM(w), TM(s)-TE(w) (4.7)

X̄ij =

∫∫
As

∇tΦ(s)
i ×∇tΦ

(w)
j · ẑdS for TE(s) -TEM(w), TE(s)-TM(w) (4.8)
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Figure 4.1: Schematic structure of a problem made up of arbitrary cross-section waveg-
uides cascaded along the longitudinal direction a) longitudinal cut and b) transversal cut,
showing an example with four di�erent arbitrary cross-sections.

X̄ij =

∫∫
As

∇tΦ(s)
i · ∇tΦ

(w)
j dS for the remaining cases. (4.9)

If the previous expressions are hybridated with the 2D Finite Element method, then
(4.1) must be inserted in (4.8) and (4.9). At this point, let us assume that the device
under analysis has Q di�erent waveguide cross-sections, which are all projected onto the
transverse plane (i.e. the xy-plane), as the example of Figure 4.2 made up of Q = 4 cross-
sections. In this example at each discontinuity one cross-section lies inside the other one,
which simpli�es the explanation without loss of generality. This way, the cross-sections are
numbered according to their sizes from #1 (smallest) to #Q (biggest).

Now the N1 basis functions of the smallest cross section (#1 in this example) are
used as part of the function space in the next cross-section (#2) made up of N2 functions,
and so on. This leads to a set of nested function spaces as it is shown in Table 4.1. In order
to follow this procedure the mesh of the cross-section q must be a sub-mesh of cross-section
q + 1. This can be achieved with the aforementioned projection of all cross-sections onto
the transverse plane and the subsequent generation of an inter-cross-section conforming
mesh, as shown in Figure 4.2.

Then, with the previous considerations, when (4.1) is inserted in (4.8) and (4.9), the
use of the linearity property of the sum, the integral and the transverse gradient operators
leads to:

X̄ij =

∫∫
As

∇tΦ(s)
i ×∇tΦ

(w)
j · ẑdS =

=

∫∫
As

∇t
Ns∑
a=1

v
(s)
i,aφa ×∇t

( Ns∑
b=1

v
(w)
j,b φb +

Nw∑
b=Ns+1

v
(w)
j,b φb

)
· ẑdS, (4.10)

X̄ij =

∫∫
As

∇tΦ(s)
i · ∇tΦ

(w)
j dS =

=

∫∫
As

∇t
Ns∑
a=1

v
(s)
i,aφa · ∇t

( Ns∑
b=1

v
(w)
j,b φb +

Nw∑
b=Ns+1

v
(w)
j,b φb

)
dS, (4.11)
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Figure 4.2: a) Set of consecutive waveguides along the ẑ axis of di�erent cross-
section : quadrangular (1), ridge (2), elliptical (3) and polygonal (4). b) Example
of inter-cross-section conforming mesh of the projection onto the xy-plane.

where Nw and Ns are the basis functions of the method used for the waveguide with
larger (w) and smaller (s) cross-sections at each discontinuity respectively. Thus, in the
previous example of Figure 4.2, the �rst waveguide step would involve Ns = N1 basis
functions for the smaller waveguide numbered as 1 and Nw = N2 basis functions for
the larger waveguide numbered as 2. Then, in the second waveguide step the waveguide
numbered as 2 is the smaller one, and hence in the proposed formulation Ns = N2 basis
functions when (4.10) and (4.11) are computed, whereas the third waveguide would have
Nw = N3 basis functions, and so on. Furthermore, because of the nested nature of the
function spaces, the overall computational cost is greatly simpli�ed since any integral over
As that contains a basis function φb, with ∀b = Ns+1, ..., Nw has a null value. That is,∫∫
As
∇tφa × ∇tφb · ẑdS = 0,

∫∫
As
∇tφa · ∇tφbdS = 0, ∀b = Ns+1, ...Nw . Therefore

equations (4.10) and (4.11) are respectively simpli�ed to:

X̄ij =

Ns∑
a=1

Ns∑
b=1

v
(s)
i,a

(∫∫
As

∇tφa ×∇tφb · ẑdS
)
v

(w)
j,b , (4.12)

X̄ij =

Ns∑
a=1

Ns∑
b=1

v
(s)
i,a

(∫∫
As

∇tφa · ∇tφbdS
)
v

(w)
j,b . (4.13)

At this point the two previous expressions must be compared with those of equations
(4.4) and (4.6) for the smaller waveguide (s), so that the X̄ matrix can be written in the
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Cross-section: 1-st 2-nd . . . q-th . . . (Q−1)-th Q-th

Function

φ(1) φ(1) . . . φ(1) . . . φ(1) φ(1)

Space:

φ(2) φ(2) . . . φ(2) . . . φ(2) φ(2)

φ(N1) φ(N1) . . . φ(N1) . . . φ(N1) φ(N1)

... . . .
... . . .

...
...

φ(N1+1) . . . φ(N1+1) . . . φ(N1+1) φ(N1+1)

... . . .
... . . .

...
...

φ(N2) . . . φ(N2) . . . φ(N2) φ(N2)

. . . φ(N2+1) . . . φ(N2+1) φ(N2+1)

... . . .
...

...
... . . .

...
...

φ(Nq−1+1) . . . φ(Nq−1+1) φ(Nq−1+1)

... . . .
...

...
φ(Nq) . . . φ(Nq) φ(Nq)

. . . φ(Nq+1) φ(Nq+1)

...
...

...
...

φ
(NQ−2+1)

φ
(NQ−2+1)

...
...

φ
(NQ−1)

φ
(NQ−1)

φ
(NQ−1+1)

...
φ

(NQ)

Table 4.1: Overall set of nested function spaces from the smallest (1-st) to the biggest
(Q-th) waveguide cross-section.

following compact closed-form:

X̄ =



X̄TEM,s−TEMw X̄TEM,s−TE,w X̄TEM,s−TM,w

X̄TE,s−TEM,w X̄TE,s−TE,w X̄TE,s−TM,w

X̄TM,s−TEM,w X̄TM,s−TE,w X̄TM,s−TM,w


=

(4.14)

=



VT
TEM,sKsVTEM,wcs 0 VT

TEM,sKsVTM,wcs

VT
TE,sRsVTEM,wcs VT

TE,sKsVTE,wcs VT
TE,sRsVTM,wcs

0 0 VT
TM,sKsVTM,wcs


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where superscript T stands for the transpose operation, while each matrix symbol denoted
in the form V·,wcs stands for a matrix consisting of the �rst Ns rows of V·,w.

Once the inner cross-product matrices are obtained, the generalized scattering matrix
S of each discontinuity can be easily obtained as in (2.23). The cascading of the generalized
scattering matrices of the di�erent steps to characterize the full structure is done in the
usual way [9, 11].

It is not the objective of this work to report how V,K orR are computed and assem-
bled, as this is a standard procedure in the Finite Element framework and can be found in
many textbooks [53, 54]. In fact, what it is relevant in this Thesis is that matrices K and
V have already been computed whenever a non-analytical cross-section has been solved by
the 2D-Finite Element Method. Therefore, at the same time the modes are numerically
solved, the matrices required to build the inner cross-product matrix for this formulation
are computed. Besides, the computation of these matrices can be highly e�cient due to
their proposed structure of blocks where the mathematical operations carried out for a
nested cross-section q are extracted from the next one q+ 1 as in Figure 4.3. Furthermore,
the multiplication of matrices shown in (4.14) bene�ts from the sparsity properties of R
and K [54].

Finally, it should be noted that the use of matrices which were initially built to
characterize modes to compute waveguide steps has been also used in the Boundary Integral
Resonant-Mode Expansion (BI-RME) context [11]. However, in this work the computation
of the normalized inner-product matrix X̄ in (4.14) for all the steps is straightforward
within the presented Finite Element framework since it is directly built from pre-computed
Finite Element solution matrices, without the need for further interpolation or quadrature,
as well as already assembled Finite Element matrices.

K1,1 · · · K1,N1 · · · K1,Nq · · · K1,NQ

...
. . .

...
. . .

...
. . .

...

KN1,1 · · · KN1,N1

. . . KN1,Nq
. . . KN1,NQ

...
...

...
. . .

...
. . .

...

KNq ,1 · · · KNq ,N1 · · · KNq ,Nq
. . . KNq ,NQ

...
...

...
...

...
. . .

...
KNQ,1 · · · KNQ,N1 · · · KNQ,Nq · · · KNQ,NQ




Figure 4.3: Partitioning of the overall K matrix obtained from
the FE method with nested function spaces in Table 4.1 for the
inter-cross-section conformal single mesh of the whole waveg-
uide device. The blocks provide the respective K matrix of the
di�erent cross-sections. Other FE matrices in the problem are
also partitioned in the same exact manner.
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4.3 Orthonormalization

The derivations carried out in the previous Section have been made under the assumption
that the set of modes computed by the Finite Element Method in each q-th cross-section
where orthonormal, which means that [53]:∫∫

Aq

∇tΦ
(q)
i · ∇tΦ

(q)
j dS =

{
1, for i = j

0, for i 6= j
. (4.15)

This condition in terms of the Finite Element matrices of (4.14) implies that:

VT
TEMKVTEM = ITEM, (4.16)

VT
TEKVTE = ITE, (4.17)

VT
TMKVTM = ITM, (4.18)

where the size of the identity matrices on the right hand side ITEM, ITE and ITM is equal
to the number of modes present of each kind, and all the expressions found in this Section
are referred to every single cross-section q.

The orthonormal property of the computed modes must be ensured for the hybrida-
tion with the Mode-Matching method. However, the modal solutions found in the previous
Section may not comply with (4.16)-(4.18) since degenerate modes may arise among other
reasons.

Most matrix eigensolvers provide orthogonal solutions for positive de�nite general-
ized eigenvalue problems as the one presented in (4.2). In particular, such solutions ful�l

Ṽ
T
MṼ = I, where Ṽ are the corresponding (a priori non-orthonormal) matrices found

for TE and TM modes respectively (ṼTE, ṼTM). Thus, in order to turn them into or-
thonormal a simple scaling process must be carried out, where each column of the solution
matrix (which corresponds to a mode) is multiplied by the inverse of its associated cut-o�
wavenumber. Therefore, if kc,TE and kc,TM are the vectors that store the associated real
positive cut-o� wavenumbers, then the orthonormal solutions are obtained as:

V =

{
Ṽ(diag{kc,TE})−1 for TE modes,

Ṽ(diag{kc,TM})−1 for TM modes.
(4.19)

In the case of the resolution of TEM modes, orthogonality is not ensured by the
usual Finite Element process [53, 54]. For that reason an orthonormalization procedure
that takes advantage of the proposed formulation is here shown. In a multiconductor
waveguide where there are L indepent perfect electric contours, it su�ces to ensure the
linear independence of all L − 1 computed modes [105, p. 251]. Thus, the new base of
orthonormal solutions (Φi) is obtained from a linear combination of the already computed
L− 1 non-orthonormal solutions (Φ̃j):

Φi =
L−1∑
j=1

TijΦ̃j =
L−1∑
j=1

Tij

N∑
n=1

ṽj,nφn, (4.20)

where Tij is the coordinate of Φi with respect to Φ̃j . Then, if (4.20) is inserted into (4.15)
and (4.4) is used, it can be seen that a mode transformation matrix T must be sought,
which ful�ls:

TṼ
T
TEMKṼTEMTT = I. (4.21)
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Figure 4.4: Each of the three TEM mode �elds for an arbitrary waveguide cross-section
with four conductors; blue: electric �eld, green: magnetic �eld; background: power density.
ai) Computed with a unitary voltage value at each PEC. bi) Orthonormalized TEM modes.
Subscript indicates mode number.

To that end an eigendecomposition is carried out, where the following standard eigenvalue
problem of size equal to the number of TEM modes (L− 1) is solved :(

Ṽ
T
TEMKṼTEM − λITEM

)
e = 0, (4.22)

where the eigenvalues λn are real and the eigenvectors en form an orthonormal basis since

Ṽ
T
TEMKṼTEM is symmetric [106]. These solutions can be written in matrix form as:

Λ = diag{(λ1 λ2 · · · λL−1)}, (4.23)

E = (e1 e2 · · · eL−1). (4.24)

Given the fact that ETE = I and EΛET = VT
TEMKVTEM, it can be shown from (4.21)

that the required transformation matrix T takes the form T = Λ−1/2ET , and thus the
orthonormalized matrix solution can be computed as:

VTEM = ṼTEMEΛ-1/2. (4.25)
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Finally, it must be highlighted that the orthonormalization procedure is required for
a correct hybridation between the 2D Finite Element and Mode-Matching methods for
TEM modes, and that with the formulation proposed in this Thesis the computations can
be e�ciently carried out. On the one hand, the standard eigenvalue problem that needs to
be solved in (4.22) is directly constructed from a double product of the already available
matrices K, Ṽ. Furthermore, the high sparsity inherent to K allows very e�cient matrix
multiplications [53, 54]. And last but not least, this eigenvalue problem is usually small
since its size solely depends on the number of TEM modes present in the cross-section
under analysis, which tends to remain low in practical microwave devices.

Figure 4.4 shows an example of the application of the proposed approach, where
an arbitrary waveguide cross-section with four conductors having three TEM modes is
analyzed. The TEM mode �elds with a unitary voltage at each conductor and thus without
orthonormal properties are plotted in Figure 4.4 denoted by a), whereas in Figure 4.4
denoted by b) presents the results of applying the orthonormalization procedure presented
in this Section.

4.4 Validation cases

The proposed formulation has been implemented on a proof-of-concept basis with the aid of
the high-level Python interface of the Finite Element platform FEniCS [99]. This platform
is combined with the SLEPc package [100], which is used to solve the aforementioned
eigenvalue problems through the same high-level Python interface.

In the �rst place the formulation is validated with three sets of cascaded analytical
cross-sections of di�erent type. Thereby this would be the typical scenario where analyt-
ical closed-form expressions are useful to test a numerical solver. In particular, the �rst
case analyzed consists of two equilateral triangular cross-sections, whose analytical modal
expressions were presented in Chapter 2. These waveguides are placed keeping aligned
their symmetry axis, and therefore half of the structure can be analyzed as in Figure 4.5a),
where the inter-cross-section conforming mesh is also shown.

The symmetry axis (on the right side as drawn in Figure 4.5a) is set to Perfect Electric
Conductor (PEC) and then to Perfect Magnetic Conductor (PMC), and only the modes
whose cut-o� frequency is below 15 GHz are taken into account, which corresponds toM =
6 and N = 3 modes in each cross-section respectively. The Finite Element analysis resulted
in 4152 basis functions for the biggest cross-section, 1888 of which made up the function
space for the smallest one. The analytical results obtained with the formulation presented
in Chapter 2 are compared to those obtained by the numerical procedure proposed in
this Chapter by means of the normalized inner cross-product matrix. Table 4.2 shows the
analytical matrix X̄AN, which constitutes the reference for the validation, as well as the
one numerically obtained X̄ for this case study.

Besides, in order to provide a formal way of comparison, three �gures of merit are
used to estimate the di�erence with respect to X̄AN: the L2 matrix norm, the maximum
absolute error and the maximum relative error. In the latter case the terms that are
almost zero for a typical accuracy of 10−6 are discarded. The good results obtained for
the equilateral triangular case are gathered in the two �rst rows of Table 4.3.
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Figure 4.5: Cross-sections of the waveguide steps involved in Table 2 , showing
the single mesh used for the computation for a) triangular, b) rectangular and
c) elliptical-rectangular geometries. Dimensions in mm.

X̄AN =

 7.9498E-1 3.4196E-1 6.3791E-3 -3.2489E-1 -5.6025E-2 2.2797E-1

0 5.1290E-1 0 0 -4.1614E-1 0

1.1005E-1 -5.6447E-17 5.3241E-1 -1.0355E-1 3.2419E-1 -1.6523E-1



X̄ =

 7.9503E-1 3.4117E-1 6.3708E-3 -3.2482E-1 -5.4847E-2 2.2791E-1

0 5.1305E-1 0 0 -4.1668E-1 0

1.1009E-1 -1.9688E-4 5.3253E-1 -1.0357E-1 3.2404E-1 -1.6523E-1


Table 4.2: Normalized inner product matrix for the triangular discontinuity with
PMC at the right side wall.

The second example is made up of three rectangular cross-sections placed with di�er-
ent o�sets, and it is shown in 4.5b) together with the single inter-cross-section conforming
mesh that is used. The number of basis functions obtained for the largest cross-section is
9504, 3228 of which made up the function space for the medium-sized rectangular cross-
section. Regarding the smallest cross-section, 1452 basis functions are obtained, which
belong to the two larger cross-sections as well due to the nested nature of the set of func-
tion spaces. The modes taken into consideration are the ones whose cut-o� frequency is
below or equal to 10 GHz. This corresponds to M = 24 modes in the largest cross-section,
N = 3 in the smallest one, and to 8 modes in the medium sized (denoted with letter M or
N depending on its relative size with respect to the other two), as it is shown in the third
and fourth rows of Table 4.3.

Finally, the third example of this initial stage of validation involves two elliptical
cross-sections (one of them rotated) together with a rectangular one. This case study is
shown in 4.5c) where the conforming mesh can be seen as well. The biggest elliptical cross-
section leads to 6837 basis functions in the Finite Element analysis, 771 of which are used
for the smallest elliptical cross-section and 836 for the rectangular cross-section. All the
modes whose cut-o� frequency is below 12 GHz are considered for the computation of the
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max max

Case N M ‖X̄−X̄AN‖
∣∣∣X̄(n,m)−X̄(n,m)

AN

∣∣∣ ∣∣∣∣∣ X̄(n,m)−X̄(n,m)
AN

X̄
(n,m)
AN

∣∣∣∣∣
∗

Tri. Small - Tri. Big, PEC 3 6 2.00E-4 1.45E-4 0.15 %
Tri. Small - Tri. Big, PMC 3 6 1.52E-3 5.34E-4 2.10 %
Rect. Medium- Rect. Big 8 24 4.22E-4 1.90E-4 0.91 %

Rect. Small - Rect. Medium 3 8 3.54E-4 3.02E-4 0.11 %
Ellip. Small - Ellip. Big 3 29 4.42E-3 1.47E-3 2.93 %
Rectangular - Ellip. Big 2 29 3.29E-3 1.49E-3 3.63 %

∗
: excluding all entries

∣∣∣X̄(n,m)
AN

∣∣∣ ≤ 1E-6

Table 4.3: Accuracy in the computation of the N ×M normalized inner-product matrix X̄ with
the approach based on nested function spaces with analytical results X̄AN.

normalized inner cross-product matrix, which is translated into 29 modes for the biggest
elliptical cross-section, 3 for the smallest one and 2 modes for the rectangular cross-section,
as it is shown in the last two rows of Table 4.3. The computed �gures of merit are also in
this table and evidence a good agreement between computed matrices.

After this �rst level of validation where the normalized inner cross-product matri-
ces are compared, the e�ectiveness of the proposed formulation is now tested with some
complete advanced devices whose full-wave simulation by other methods as well as their
measurements are available in the technical literature. The steps that are going to be
followed according to the proposed formulation for the complete full-wave analysis are
summarized in Table 4.4. In particular, �ve devices are going to be used as a source of
validation.

The �rst device used as a reference is a wide-band �lter designed in ridge technology
�lled with dielectric of a relative permittivity of 5.9 [107]. The structure of this device
is shown in Figure 4.6a). The corresponding projection of the cross-sections onto the
xy-plane for the generation of the inter-cross-section conforming mesh is given in Figure
4.6b), together with its dimensions, where it can be seen that only the half of the structure
su�ces for the electromagnetic analysis. In particular 4390 and 2872 basis functions have
been used for the Finite Element mesh and sub-mesh respectively. Its full-wave response
obtained by CST Microwave Studio (CST MWS) is given in Figure 4.6c), which is in good
agreement with the response achieved by the proposed procedure in the Thesis using 159
and 105 modes in the ridge waveguides.

The next device is a double grooved circular polarizer described in [108], where the
grooved sections placed along a circular waveguide provide the desired phase shift for the
two polarizations. The whole structure is given in Figure 4.6d). The corresponding inter-
cross-section conforming mesh, shown in Figure 4.6e) has an overall number of 4513 basis
functions. The structure shown in Figure 4.6e) is only a quarter of the cross-section of
the double grooved circular polarizer since the whole simulation can be carried out by
placing PEW-PMW at the symmetry planes (left and bottom sides respectively in Figure
4.6e)) and then PMW-PEW in these symmetry planes. Figure 4.6f) shows the obtained
return-loss level on top of the phase shift between polarizations compared to the results
achieved by the commercial software CST MWS. The largest number of modes involved in
the calculation with the proposed formulation has been 146 for this device.
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1. Project all cross-sections of the device onto the x−y plane and generate an inter-cross-section
conforming mesh

2. Assemble matrices KQ and MQ by using (4.4) and (4.5)

3. For each di�erent cross-section q:

(a) Extract submatrices Kq and Mq from KQ and MQ

(b) Solve (4.2) with corresponding boundary conditions for TE and TM modes and store
VTE,q and VTM,q

(c) If there are TEM modes, solve (4.3) and store VTEM,q (if necessary, orthonormalize
using (4.25))

4. For each discontinuity in the device:

(a) Compute X̄ straightforwardly from (4.14)

(b) Compute S at the discontinuity from (2.23)

5. Compute the response for the device by cascading the generalized scattering matrices in the
usual way [9, 11].

Table 4.4: Self-contained algorithm which summarizes the application of the proposed
formulation to analyze a waveguide device.

Now a transformer with octagonal sections is used as a source of validation [109]. This
structure, given in Figure 4.6g), has a rectangular and a circular waveguide in each of the
two device ports and four intermediate octagonal cross-sections. The used mesh is shown
in Figure 4.6h) , which is a quarter of the whole structure, together with its dimensions.
This mesh is very partitioned and has an overall number of 4557 basis functions. In order
to have an accurate full-wave response the selected modes must have a cut-o� frequency
lower than 100 GHz, since the return loss levels are in the order of 40 dB. Figure 4.6i)
shows the corresponding simulation results compared to those of CST MWS.

The fourth example is an interdigital �lter from [110], whose structure is shown
in Figure 4.6j). The corresponding mesh and dimensions are given in Figure 4.6k). In
this kind of �lters it is well-known that an initial analysis based exclusively on TEM
modes provides a full-wave response close to the �nal one achieved when higher order
modes are taken into consideration. Thus, the initial dimensions of the device can be
obtained with a lower computational cost at the early stages of the design, and then
they can be re�ned later in a full-wave optimization where higher order modes are taken
into account. In fact, [110] presents the analysis involving only TEM modes using the
Generalized Transverse Resonance method. In this Thesis this analysis is carried out with
the proposed formulation. In our �rst simulation only TEM modes are considered, which
are orthonormalized following the process explained in Section 4.3. Then, the rigorous
full-wave computation where higher order modes are present is done. Both responses are
presented in Figure 4.6l) together with the response obtained by the commercial software
CST MWS. The rigorous full-wave simulation is almost superimposed to this latter one
used as a reference. On the other hand, it can be seen that the response with TEM modes
approximates very well the �nal response. Only 8 modes are considered in this simulation,
which is much lower compared to the 328 modes used in the largest waveguide for the �nal
simulation using a cut-o� limit of 150 GHz. In both cases 9118 basis functions were used
for the overall single mesh presented in Figure 4.6k).
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The last example used to validate the proposed formulation is a bow-tie waveg-
uide polarizator rotator from [111]. This structure is placed between two standard WR75
waveguides, where one is rotated 90 degrees with respect to the other. This structure of
unconventional shape is shown in Figure 4.6m), whose single mesh used in the application
of the proposed formulation is given in Figure 4.6n), with 3678 basis functions. From these
basis functions 3108 are used in the bow-tie cross-section, while the remaining ones are
used to account for the non-overlapping regions that belong to both rectangular waveg-
uides. The result of this analysis is given in Figure 4.6o), where all the modes up to 160
GHz have been taken into account in order to get an accurate response even below -40 dB.
This result is compared to the measurements given in [111] with great agreement as it is
evidenced in the same Figure.



64 Efficient analysis by a hybrid 2D-Finite Element and Mode-Matching method

Figure 4.6: Analyzed devices by the hybridation procedure between the 2D Finite Element and the Mode-
Matching methods: a) wideband �lter in ridge technology , d) double grooved circular polarizer, g) oc-
tagonal transformer, j) interdigital �lter and m) bow-tie waveguide polarizator rotator. The meshes used
for their analysis are shown in sub�gures b), e), h), k), and n) respectively. The corresponding full-wave
responses are given in sub�gures c), f), i), l), and o).



5 | Contribution to the design
of �lters (Part I)

5.1 Introduction

Chapters 2 and 3 have addressed the electromagnetic analysis of two unconventional ge-
ometries that can widen the possibilities for the design of passive devices at microwave fre-
quencies: the equilateral triangular and the parabolic cylinder waveguides. Furthermore,
Chapter 4 addressed the e�cient analysis of inline topologies where arbitrary cross-sections
may also take part. This Chapter is focused on the use of the unconventional geometries
presented in this Thesis for the design of microwave �lters, using all the modal decom-
positions already studied in previous chapters. To that end, some guidelines are given to
choose the suitable dimensions for the resonators that make up the �lters.

The resonant frequency, the spurious-free window and the quality factor (Q-factor)
are three fundamental parameters for the design of a cavity resonator [5�7]. Cavities
with larger volume usually provide greater Q-factor, however, the spurious-free window is
usually reduced. Filter designers must pursue a trade-o� between these two parameters,
so that a good out-of band rejection and low insertion losses in the passband are achieved.
To that end, resonant mode charts and Q-charts are usually used to design the physical
dimensions of the resonators.

The resonant frequency and the spurious-free window are usually studied together, as
the spurious-free window directly depends on the bandwidth available between the di�erent
resonant frequencies present in the cavity. The quality factor is studied separately but
taking into account the impact of the selected dimensions on the spurious-free window.
The corresponding normalized resonant chart for the equilateral triangular resonator is
given in this Chapter, together with the complete derivation of the analytical expressions
of a universal Q-chart. Such expressions, still undeveloped to the best of the author's
knowledge, extend the well-known classic formulas for rectangular and circular cavities
[18, 43]. The derivation of a mode chart normalized to the aspect ratio is also given for
the parabolic cylinder geometry, where di�erent regions of interest are described.

Three designs based on these guidelines are presented in this Chapter to prove
that these unconventional geometries are suitable for �lter design as promising results
are achieved. In particular, the equilateral triangular dual-mode prototype has been man-
ufactured and measured. The electromagnetic simulation of this structure has been carried
out with the software presented in Chapter 2 and by commercial software as well, showing
very good agreement also with the measurements.

65
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5.2 Guidelines for the equilateral triangular resonator

The resonant mode chart of the equilateral triangular cavity is shown in this Section. Sev-
eral points are analyzed to provide practical examples of the achievable bandwidth by this
type of resonator. Besides, since mode degeneracy is one of the particular features of this
geometry, some of the design possibilities for multimode resonators are here outlined. In
addition, this Section addresses the solution of the unloaded Q-factor (Qu) of the resonant
modes in this cavity. Closed-form expressions are for the �rst time derived and validated
with commercial software.

5.2.1 Normalized resonant mode chart

An example of an equilateral triangular resontor of side e and length d is shown in Figure
5.1. The resonant frequency f0 obtained from a waveguide mode with cut-o� wavenumber
kc, de�ned as in (2.8) for the equilateral triangular geometry for both TE and TM modes,
and with q variations along z is [43]:

f0 ≡ f0,mnq =
c

2π

√
k2
c +

(
qπ

d

)2

=
c

2e

√
16

9
(m2 + n2 +mn) + q2

(
e

d

)2

, (5.1)

where m and n are the mode subindexes, e and d are the side of the equilateral triangle
and the cavity length respectively, and c = 1/

√
µε, with µ the magnetic permeability and ε

the electric permittivity. From the previous expression, it is easy to see that a normalized
frequency f̄0 = f0,mnq · e can be de�ned. This parameter only depends on the aspect ratio
of the cavity e/d, and thus, a normalized resonant chart can be computed. This type of
chart is shown in Figure 5.2, where f̄2

0 is plotted with respect to the square of the aspect
ratio to have in the graph straight lines whose slope is determined by the resonant mode
variation index. Given the resonant frequency f0 imposed by the system speci�cations, the
�lter designer will usually choose the resonant mode and obtain according to the ordinate
axis of the previous chart the side of the resonator since f̄2

0 = f2
0,mnq · e2. Once the side is

chosen, the cavity length is set by the abscissa axis.

Figure 5.1: a) Example of an equilateral triangular cavity homogeneously �lled
with electric permittivity ε and magnetic permeability µ closed by a perfect
conductor (σ =∞). b) Transversal cut of the cavity at z = z0, 0 < z0 < d, with
contour ζ, with cross-section As, side e and height b = e

√
3/2.
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Figure 5.2: Normalized resonant chart for the �rst resonant modes of the equilateral triangular
cavity of side e and length d.

Before the quality factor is taken into account, the choice of the most convenient point
in the normalized resonant mode chart depends on the desired spurious free window. An
example of analysis is given in this Section for the �rst three resonances of the fundamental
modes, that is, the modes TE(A)

10q and TE
(S)
10q, which are degenerate, with q = 1, 2, 3. Several

points of analysis are marked in Figure 5.3, denoted by a cross. For each cross, the
immediately lower and higher resonances are denoted by two circles named with the same
letter of the alphabet, one with a tilde and one without it (i.e., A -A′, or B -B′, or C -C ′

and so on).

The degenerate modes TE(A)
101 and TE(S)

101 correspond to the lower red dashed line of
Figure 5.3. In the �rst example, the spurious free window is analyzed at ( ed)2 = 0.9039.
The lower spurious resonance is denoted as pA and is placed at zero, whereas the �rst
higher spurious resonance is marked at point pA′ = 1198 GHz2 · cm2, where three resonant
modes are present: the couple of degenerated modes TE(A)

102 and TE(S)
102 and the mode

TM(S)
110. Then, for a given side e, chosen from the center frequency of the �lter f0 at

( ed)2 = 0.9039, the total bandwidth ∆free-spur free of spurious resonances is computed as
∆free-spur [GHz] =

√
1198/e.

The choice of the resonant mode the �lter designer must bear in mind that two
degenerated modes of the same resonant frequency can present di�erent spurious-free win-
dows if the well-known symmetries (PEW, PMW) are exploited. If we have a look at the

same degenerated mode families TE(A,S)
101 at a higher aspect ratio ( ed)2 = 1.783, we can

see that both are free from lower spurious resonances and thus the point pB is placed at
zero. However, the �rst higher spurious resonance is located at di�erent points for the two
mode families. In fact, if symmetry is kept, the horizontal blue dashed line that belongs to
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Figure 5.3: Some suggested points for improved spurious-free window for di�erent aspect ratios
for the TE

(A,S)
10q modes with q = 1, 2, 3.

mode TE(A,S)
101 TE(A)

101 TE(S)
101 TE(A,S)

102 TE(A)
102 TE(S)

102 TE(A)
102 TE(S)

102

p1-p2 pA-pA′ pB-pB′ pB-pB′′ pC-pC′ pD-pD′′ pD′-pD′′ pE-pE′ pF -pF ′

p1 0 0 0 487.9 1198 685 607.6 2941

p2 1198 1198 1998 1198 1883 1883 1198 3931

e/d 0.90 1.78 1.78 0.39 1.27 1.27 0.23 1.49

∆fs · e 34.61 34.61 44.69 26.64 26.17 34.61 24.29 31.46

Table 5.1: Normalized free of spurious bandwidth for points pA-pA′ to pF -pF ′ in Figure 5.3. Points p1 and
p2 are measured in [GHz2 · cm2], the ratio e/d is adimensional and ∆fs · e is measured in [GHz · cm].

the TM(S)
110 mode, with PMW symmetry, only represents a spurious resonance at point pB′

for the TE(A)
101 mode, which has the same symmetry. In contrast, the �rst higher spurious

resonances for the TE(S)
101 mode, of PEW symmetry, are the TE(S)

102 and the TE(S)
201 modes,

of the same symmetry, at point pB′′ .

In the next Section it will be evidenced that the previous consideration is of great
importance, since modes TE(A)

mnq and TE(S)
mnq mode of the same m, n and q present the

same Q-factor. This means that, sometimes, the simple choice of one of the two degenerate
resonant modes can lead to a cavity of better performance in absolute sense, that is, with
the same dimensions, same Q-factor but improved spurious-free window.

The spurious improvement due to the use of symmetries can also be exploited in
the TE(S)

102 mode. In particular, Figure 5.3 shows that the lower limit of the spurious

free window can be improved with respect to the TE(A)
102 mode at the aspect ratios 1.271,

where the limit for this mode is set at pD′ instead of pD. Table 5.1 provide the detailed
information associated to these presented points, plus some additional examples. The last



5.2 Guidelines for the equilateral triangular resonator 69

Figure 5.4: Points where mode families with di�erent cut-o� frequencies hold the same resonant
frequency.

row of the table allows to compute the available free spurious window ∆fs for a cavity of
side e by dividing the given quantities by the side e in cm.

One signi�cant aspect of the equilateral triangular resonator is the mode degeneracy
for each pair (m,n) and thus for each associated resonance q. This feature can be used
to design very compact �lters. Each line in Figures 5.2 and 5.3 represents at least two
modes with the same resonant frequency, or even up to four modes with the same resonant
frequency. The only exception are the lines that belong to TM modes with m = n and
q = 0, such as the horizontal blue line at (f0 · e)2 = 1198, where a single resonant mode is
present.

The points where these lines intersect represent points where there is degeneracy
for the same resonant frequency, apart from the one inherent to each pair (m,n). The
combination of di�erent mode families can give rise up to six degenerated resonant modes.
Figure 5.4 identi�es some of these intersections, where the legend indicates that half of the
degenerated modes can be used if a certain symmetry is kept. The points that represent six
or three degenerated modes can only be obtained combining mode families with di�erent
cut-o� frequencies (i.e., di�erent (m,n)).

5.2.2 Analytical computation of the unloaded quality factor

This subsection aims at providing the closed-form expressions for the unloaded Q-factor
in metallic cavities with equilateral triangular cross-section. To the best of the author's
knowledge, these analytical expressions are for the �rst time developed and therefore extend
the well-known classic formulas for rectangular and circular cavities present in the literature
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[18, 43]. The computation of this parameter, which is directly related with the insertion
losses in the passband, can also be carried out with numerical techniques [9, 54]. However,
if the cavity is very large compared to the wavelength the e�ciency of this computation
can be compromised, while analytical Q-factors are only limited by machine precision and
provide a physical insight into the electromagnetic problem.

In order to begin the derivation, the expressions of a resonant �eld inside a cavity
are here given [105]:

~E(res) = A(sin(βpz)~ep + j cos(βpz)ezpẑ), (5.2)

~H(res) = A(j cos(βpz)~hp + sin(βpz)hzpẑ), (5.3)

where β is the phase constant of a TE or TM mode of the corresponding equilateral triangle
waveguide ful�lling βd = 2πd/λg = qπ at the resonant frequency f0, and A is an arbitrary
complex amplitude constant. The transverse electric and magnetic �elds (~ep , ~hp) of each
waveguide mode are normalized without loss of generality to:∫∫

As

~ep × ~hp · ẑ dS = 1, (5.4)

where As is the waveguide cavity cross-section as in Figure 5.1 for the equilateral triangular
resonator. Secondly, the de�nition of the quality factor is [5, 7, 43]:

Q = 2πf0
(WE +WH)

Pdis
, (5.5)

whereWE andWH are the mean electric and magnetic energies stored in the cavity, respec-
tively, at the resonant frequency. Using the expressions (5.2), (5.3) and the normalization
of (5.4), the mean stored electric and magnetic energies in the volume cavity are both
equal at resonance and computed as:

WE = WH =
µ

4

∫∫∫
V
| ~H(res)|2dV = |A|2µεd

2

4

f0

p
. (5.6)

The total amount of dissipated power in the cavity resonator is equal to the sum
of the power dissipated at the lateral walls of the cavity (the contour of the equilateral
triangular geometry in our case) plus the one dissipated at the short-circuited ends (Pdis =
Pdis,walls + Pdis,sc). The �rst addend, i.e., the power at the lateral walls, is computed as:

Pdis,walls =
Rs
2

∫ d

z=0

∮
C
| ~H(res)|2dl dz = |A|2 Rs

2Zp
, (5.7)

where Zp is the modal wave impedance de�ned in (A.9) and (A.17), | ~H(res)|2 = |A|2 cos2(βpz)·
|~hp|2 + |A|2 sin2(βpz)|hzp|2 according to (5.3), and Rs is the surface resistivity related to
the conductivity σ and the skin depth of the conductor δ = 1√

πfµσ
as Rs = 1

σδ . Therefore:

Pdis,walls =
Rs
2

∫ d

z=0
|A|2 cos2(βpz)dz

∮
C
|~hp|2dl +

Rs
2

∫ d

z=0
|A|2 sin2(βpz)dz

∮
C
|hzp|2dl =

Rs
2
|A|2 εq0d

2

(∮
C

{
|~hp|2 + |hzp|2

}
dl

)
, (5.8)
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where εq0 = 2 when q = 0 (which is only allowed for resonant TM modes) and εq0 = 1
otherwise. The previous expression contains the dissipated power per unit length pdis :

pdis =
Rs
2

∮
C

{
|~hp|2 + |hzp|2

}
dl, (5.9)

which must be computed separately for TE and TM modes. On the one hand, TE modes
have both transversal and longitudinal magnetic �eld. According to the longitudinal ex-
pression of (A.6):∮

C
|hzp,TE |

2dl =

∮
C
hzp,TE · h

∗
zp,TE

dl =

∮
C

√
Yp · Y ∗p

√
Np ·N∗p

k2
cp · k∗cp2

γp · γ∗p
Φp · Φ∗pdl. (5.10)

In the preceding equation the cut-o� wavenumber kcp, de�ned as in (2.8), is a real number.
Moreover, under propagation conditions, the mode admittance Yp is real and the propa-
gation constant is purely imaginary and equal to γp = jβp. In addition, since Φ is a real
quantity, Np, the normalization constant computed as in (A.10) and (A.18), is also real
positive. Thus: ∮

C
|hzp,TE |

2dl = NpYp
k4
cp

β2
p

∮
C
|Φp|2dl. (5.11)

Now, according to the transversal equation (A.8), and taking into account the previous
considerations about propagation:∮

C
|~hp|2dl = Np · Yp

∮
C
|∇tΦp|2dl. (5.12)

Therefore, the dissipated power per unit length in TE modes is:

pdis,TE = Np ·
Rs
2
Yp

(
k4
cp

β2
p

∮
C
|Φp|2dl +

∮
C
|∇tΦp|2dl

)
. (5.13)

On the other hand, TM modes only have transversal magnetic �eld and thus only
one of the addends of (5.9) must be computed. According to (A.16) and under propagation
conditions: ∮

C
|~hp|2 dl = Np · Yp

∮
C
|∇tΦp|2dl. (5.14)

Thus, the dissipated power per unit length in TM modes is:

pdis,TM = Np ·
Rs
2
Yp

∮
C
|∇tΦp|2dl. (5.15)

Up to this point there has been no mention to any particular coordinate system. In
order to preserve this advantageous notation, two orthonormal vectors that go along the
contour are de�ned: ν̂ perpendicular and τ̂ tangential to the contour, as in Figure 5.5. The
curve integral of pdis is de�ned in the contour of the waveguide, where the next relationship
holds:

|∇tΦp|2 = |∂Φp

∂τ
τ̂ +

∂Φp

∂ν
ν̂|2 =

{
|∂Φp
∂τ |

2 for TE modes,

|∂Φp
∂ν |

2 for TM modes.
(5.16)
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Ic

Icτ
∮
C |

∂Φp
∂τ |

2dl

Icz
∮
C |Φp|2dl

Icν
∮
C |

∂Φp
∂ν |

2dl

Table 5.2: De�nition of contour integrals.

Figure 5.5: Normal and tangential vectors (ν̂,τ̂
respectively) to a segment of length L that be-
longs to the contour of a waveguide.

Therefore the power dissipated at the lateral walls can be written in a uni�ed manner as:

Pdis,walls = |A|2 eq0d
2
· pdis = |A|2 eq0d

2
· RsYp

2
·Np · Ic, (5.17)

where the Ic factor is de�ned as:

Ic = Icτ +
k4
cp

β2
p

Icz for TE modes, (5.18)

Ic = Icν for TM modes, (5.19)

and Icτ , Icz and Icν are three contour integrals whose de�nition is gathered in Table 5.2.
These integrals can be solved for the equilateral triangular cavity. Although the integration
involves simple trigonometric functions, the function to be integrated is the square of a sum
of three trigonometric functions, integrated over the contour of the equilateral triangle. At
the end, however, very simple expressions have been obtained:

ITE
cτ = ITM

cν = Npk
2
ces3×


1, n = 0

3/2, m = n

3/4, otherwise

, (5.20)

ITE
cz = Npes

9

2
×


5/3, n = 0

2, m = n

1, otherwise

, (5.21)

where Np is the normalization constant used along this Section computed as in equations
(A.10) and (A.18) of Appendix A, whose particular value for the equilateral triangular
waveguide was seen in Chapter 2 in equation (2.26). Finally the power dissipated at the
short-circuited ends is easily computed as:

Pdis,sc =

∫∫
S,z=0,d

| ~H(res)|2dS =
|A|2RsYp

2
. (5.22)

Expressions (5.20) and (5.21) are then replaced in (5.18) and (5.19), and hence,
with the computed Pdis,walls and Pdis,sc de�ned in (5.17) and (5.22) the total amount of
dissipated power is obtained. Then, using (5.5),(5.6), (5.17) and (5.22), the sought simple
and analytical closed-form expression for the unloaded Q-factor of an equilateral triangular
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cavity of side e and length d is obtained:

Q =
λ0

δs
×


2
q2
d3

λ3
0

(un0+vn0
k2
cd

2

q2π2 )
√

3
d
e+1

, TE(SA),mnq

1
2
d
λ0√

3
d
e+

1
εq0

, TM(SA),mnq

, (5.23)

where (un0, vn0) = (1, 2) for TE modes with n 6= 0, whereas (u00, v00) = (2
3 ,

5
3) for TE

modes with n = 0.

In order to compute a universal Q-chart valid for any equilateral triangular resonator,
(5.23) is rewritten in terms of the aspect ratio r = e/d and kcp = kcp · e (recall equation
(2.8)):

FTE

(SA),mnq
(r) = QTE · δs

λ0
=

1
4π3q2 ·

(√(
kc/r

)2
+
(
qπ
)2 )3

(
un0 + vn0

(kc/r)2

q2π2

)√
3
r + 1

, (5.24)

FTM

(SA),mnq
(r) = QTM · δs

λ0
=

1
4π ·

√(
kc/r

)2
+
(
qπ
)2

√
3
r + 1

εq0

. (5.25)

The analytical closed-form expressions presented in (5.23), or its normalized version
in (5.24) and (5.25), are the counterpart of the expressions found in [18], [43] for the
rectangular and circular cavities. To conclude this Section they are now validated with
commercial software. Table 5.3 gathers the results obtained for an equilateral triangular
cavity of side e = 28 mm and length d = 4e (�long� cavity), 2e (�normal� cavity) , e/2
(�short� cavity).

Figure 5.6: Universal chart for the normalized unloaded Q-factor for the �rst resonant modes in an
equilateral triangular cavity, only dependent on the mode type and the aspect ratio of the cavity.
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Cavity length d = 56 mm

Analytical Closed-forms CST HFSS

f0 [GHz] Q-factor f0 [GHz] Q-factor f0 [GHz] Q-factor

TEA,101

TES,101
7.6233 6763

7.6232 6759 7.6228 6762
7.6232 6759 7.6229 6762

TEA,102

TES,102
8.9224 8190

8.9223 8185 8.9222 8188
8.9223 8185 8.9223 8188

TEA,103

TES,103
10.7440 9988

10.7439 9980 10.7445 9980
10.7439 9980 10.7449 9980

TMS,110 12.3632 11884 12.3632 11858 12.3641 11868
TMS,111 12.6497 10675 12.6496 10653 12.6511 10659
TES,111 12.6497 6989 12.6496 6978 12.6509 6985
TEA,104

TES,104
12.8681 11816

12.8680 11804 12.8702 11795
12.8680 11803 12.8709 11800

TMS,112 13.4725 11016 13.4725 10993 13.4747 11000
TES,112 13.4725 7521 13.4725 7508 13.4756 7512
TEA,201

TES,201
14.5246 8974

14.5246 8950 14.5266 8966
14.5246 8953 14.5279 8968

TMS,113 14.7422 11524 14.7422 11496 14.7460 11506
TES,113 14.7422 8301 14.7422 8287 14.7469 8286
TEA,105

TES,105
15.1681 13536

15.1680 13536 15.1730 13488
15.1680 13515 15.1768 13505

Cavity length d = 14 mm

TMS,110 12.3632 8622 12.3632 8607 12.3626 8620
TEA,101

TES,101
12.8681 7822

12.8680 7811 12.8674 7821
12.8680 7811 12.8673 7821

TMS,111 16.3550 7259 16.3550 7240 16.3545 7258
TES,111 16.3550 7570 16.3550 7558 16.3541 7569
TEA,201

TES,201
17.8447 9486

17.8448 9462 17.8445 9481
17.8448 9465 17.8441 9484

Cavity length d = 112 mm

TEA,101

TES,101
7.2623 6365

7.2623 6360 7.2618 6364
7.2623 6361 7.2619 6364

TEA,102

TES,102
7.6233 6840

7.6232 6836 7.6228 6839
7.6232 6836 7.6230 6839

TEA,103

TES,103
8.1897 7576

8.1896 7571 8.1893 7575
8.1896 7571 8.1895 7574

TEA,104

TES,104
8.9223 8504

8.9224 8498 8.9221 8501
8.9223 8498 8.9224 8500

Table 5.3: Unloaded Q-factor for the �rst resonant modes in an equilateral triangular cavity with side
e = 28 mm, conductivity σ = 58 MS/m (copper) and di�erent cavity lengths.
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A good agreement between the numerical results of CST Microwave Studio and
Ansys HFSS with those obtained by the analytical expressions is achieved. Once the
derived expressions have been checked, the universal Q-chart is shown in Figure 5.6 for the
�rst resonant modes of the equilateral triangular resonator.

5.3 Guidelines for the parabolic resonator

This Section is devoted to the analysis of the modal spectra of the parabolic resonator,
which is the other unconventional geometry addressed in this Thesis. Compared to the
equilateral triangular resonator, the computation of the core parameters for �lter design is
more intricate. As it has been shown in Chapter 3, the cut-o� wavenumbers are not found
by closed-form expressions but from the resolution of four non-linear bivariate systems
of equations. Besides, the symmetric contour is the one that has mainly attracted the
attention in the literature. For these reasons the generation of a mode chart where the
�rst cut-o� wavenumbers are shown as a function of the aspect ratio deserves special
attention. Once this mode chart is given, the parabolic resonator can be conveniently
studied, as it will be remarked at the end of this Section.

In �rst place a suitable de�nition of the aspect ratio must be chosen. This ratio must
provide the relationship between the degrees of freedom that the parabolic cross-section
presents, that is, the relationship between u0 and v0 from a given contour. However, the
use of the direct relation between parameters u0 and v0 as a ratio, such as u0/v0 or v0/u0,
does not give a clear idea of how the parabolic cross-section is. Since we are more used to
other types of coordinates, such as the cartesian ones, in this Thesis it has been considered
convenient to de�ne the aspect ratio r of the parabolic cylinder waveguide in terms of the
equivalent rectangular enclosing waveguide.

Figure 5.7 shows an arbitrary parabolic cross-section made up of the intersection
between the curves u = u0 and v = v0. A rectangular contour of height b and width w
surrounding the theoretical parabolic waveguide is also plotted. For a ratio de�nition of
r = b/w, its relationship with the pair of values (u0, v0) is obtained from the coordinates
x1, x2, y1 and y2. On the one hand, point x1 is placed on the negative x-semiaxis, as it
is shown in Figure 5.7, where u = 0 according to Figure 5.7 . Thus, the v = v0 curve

crosses the negative x-semiaxis in x1 = 1
2(u2−v2

0)
∣∣
u=0

= −v2
0
2 according to (3.1). Likewise,

the point x2 is placed on the positive x-semiaxis, where v = 0 and thus for the u = u0

curve the point x2 is x2 = 1
2(u2

0 − v2)
∣∣
v=0

=
u2

0
2 . Therefore, the width of the equivalent

rectangular waveguide is:

w = x2 − x1 =
1

2
(u2

0 + v2
0). (5.26)

Regarding the height b of the rectangular enclosing cross-section, due to symmetry only
one of the points y1 or y2 of Figure 5.7 is needed (y1 = −y2). Point y2 satis�es y2 = b

2 ,
and at the same it is the intersection between curves (u = u0, v = v0). Thus, according to
(3.2) y2 = u0v0 = b

2 and therefore the height b is de�ned in terms of u0 and v0 as:

b = 2u0v0. (5.27)
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Figure 5.7: Equivalent enclosing rectangular waveguide for
the de�nition of the aspect ratio r = b/w in the parabolic
cylinder waveguide.

The parabolic cylinder coordinates (u0, v0) written in terms of the ratio r can be
obtained replacing u0 = b

2v0
from (5.27) into (5.26) leading to the biquadratic equation

v4
0 − 2wv2

0 + b2/4 = 0, whose solution for this problem is:

v0 =

√
w +

√
w2 − b2

4
. (5.28)

Now (5.28) is reorganized in terms of the r factor as:

v0 =
√
w

√√√√
1 +

√
1−

(
b/w

)2
4

=
√
w

√
1 +

√
1− r2

4
, (5.29)

and u0 accordingly as:

u0 =
b

2v0
=
√
w

√
b/w

√
b/w

2

√
1 +

√
1−

(
b/w
)2

4

=
√
w

r

2

√
1 +

√
1− r2

4

. (5.30)

With the de�ned parameter r = b/w as the aspect ratio of any parabolic cross-
section the sought mode chart for the TE and TM modes of the parabolic waveguide
can be conveniently plotted. Figure 5.8 shows the normalized cut-o� wavenumbers of the
�rst modes multiplied by the aforementioned width w for di�erent aspect ratios r. The
variation of r is carried out for the range 0 < r ≤ 2, since this parametric study leads to
the same (�ipped) parabolic contours once larger values are used. As it can be seen, with
this representation the symmetric contour is a particular case within a continuous spectra
of ratios where r = 2. In this Figure each mode labelled as �1� is the �rst of its family, �2�
is the second, and so on regardless of its pattern (since the mode pattern will change at
certain points as it can be seen in Fig. 5.7).
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Figure 5.8: Variation of the cut-o� wavenumber with the aspect ratio
of the parabolic cylinder waveguide, for the �rst two modes per mode
family. The symmetry of each mode with respect to the x-axis of the
parabolic waveguide is shown in the legend.

According to the two �rst modes, which are in principle more likely to be the ones
chosen for �lter design, Figure 5.8 can be divided into three regions RG:

RG1: The �rst region, where the aspect ratio is r < 0.5, presents a constant fractional
monomode bandwidth of Bfrac = 2(w · kc2 − w · kc1)/(w · kc2 + w · kc1) = 2(kc2 −
kc1)/(kc2 + kc1) ≈ 0.622, where w · kc1 = 3.49 and w · kc2 = 6.65 belong to the �rst
and second propagating even TE modes according to the legend (TEe1 and TEe2
with PEW symmetry respectively).

RG2: In the second region, where 0.5 < r < 1.1, the �rst even TE mode (the TEe1) is still
the fundamental mode, but the �rst higher order mode has changed to an odd TE
mode (the TEo1), which has a PMW symmetry instead. In this region the fractional
monomode bandwidth decreases from Bfrac ≈ 0.622 at r = 0.5 to Bfrac = 0 at r = 1.1.
This latter point is marked as P1 in Figure 5.8, and in fact it is a point of interest
since the two modes are degenerate with w · kc1 = w · kc2 = 3.48 and could be used
to implement a dual-mode �ler.
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RG3: Finally the ratio r adopts values 1.1 < r < 2 in the third and last region. Within
these ratios the fundamental mode (TEo1) and the �rst higher order mode (TEe1) are
exchanged with respect to the second region. Bfrac can be rede�ned considering the
TEo1 mode as the fundamental mode in this region and, taking this observation into
account, it can be seen that it increases gradually with a maximum of Bfrac = 0.531
reached for r = 2. At this ratio it can be seen point P2, where w · kc = 3.64 and
again two pairs of modes are degenerate (the �rst and second TE even modes, TEe1
and TEe2 respectively, none of them are the fundamental ones in this case).

In order to use Figure 5.8 to obtain the cut-o� wavenumbers of a particular parabolic
cross-section one must proceed in the following way. For a given aspect ratio ri the point
that belongs to one of the modal curves in Figure 5.8 has a value in the ordinate axis
yi = kc · w, where yi is the corresponding coordinate in the ordinate axis and kc stands
for the normalized cut-o� wavenumber (normalized in terms of units as it was mentioned
in Chapter 3). Therefore, the cut-o� wavenumber related to the cut-o� frequencies of the
waveguide as fc = kc/(2π) is obtained as kc = yi/w, where w is the particular width of the
theoretical enclosing rectangular waveguide. Two examples relating the validation cases of
Chapter 3 with the practical mode chart presented in this Section are given:

(i) For the parabolic contour u0 = 0.8 and v0 = 1, the surrounding rectangular contour
has w = 0.5 · (0.82 +12) = 0.82 and b = 2 ·0.8 ·1 = 1.6 according to (5.26) and (5.27).
Therefore r = b/w = 1.6/0.82 = 1.95. The corresponding value of the fundamental
mode in the ordinate axis is kc · w = 2.1647, and thus the cut-o� wavenumber is
�nally kc = 2.1647/0.82 = 2.6399, which is the same value as the one that can be
found in Table 3.2 on page 46.

(ii) For the parabolic contour u0 = 0.15 and v0 = 5, the surrounding rectangular contour
has a width of w = 0.5 ·(0.152 +0.52) = 0.1362 and a height of b = 2 ·0.15 ·0.5 = 0.15.
Therefore the aspect ratio is r = b/w = 0.15/0.1362 = 1.1. For such aspect ratio the
fundamental mode has a value of kc · w = 3.4834, and thus the cut-o� wavenumber
is �nally kc = 3.4834/0.1362 = 25.5757, which is the same value as the one that can
be found in Table 3.3 on page 46.

The derivation of a resonant chart for the parabolic cylinder resonator is not as direct
as in the equilateral triangular one. However, Figure 5.8 can also be used to analyze the
free-spurious window as it was done in the previous Section since, for a given cavity length

d, the resonant frequency fres is de�ned as fres = c
2π

√
k2
c + ( qπd )2, where q is the number

of resonance (q ≥ 0 for TM modes and q > 0 for TE modes). Section 5.4.3 will provide a
practical example of design.

Finally, the quality factor in the parabolic cylinder waveguide can be obtained from
any numerical commercial software such as CST MWS or HFSS. A Q-chart is not derived
in this Section since the associated integrals (5.18) and (5.19) are not analytical in this
kind of waveguide.
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5.4 Designs

In this Section some designs based on the presented unconventional geometries addressed
in this Thesis are presented. The purpose of this Section is to validate the CAD tools
developed in Chapters 2 and 3 and at the same time to present this geometries as innovative
candidates in the design of passive devices. In particular the guidelines given in this
Chapter for their application to �lter design are followed, and three di�erent prototypes
have been successfully designed. The most ambitious of them made up of dual-mode
cavities has been also manufactured.

5.4.1 Inline equilateral triangular �lter

An inline equilateral triangular �lter of 7-th order of 25 dB of return loss and 2% of relative
bandwidth at f0 = 25 GHz (i.e., 500 MHz) is designed. The TEA101 mode is selected as
the resonant mode, and therefore for a waveguide side of e = 1 cm the corresponding cav-

ity length would be, without the loading e�ect of the irises, d =
λg
2 = 1

2λ0/
√

1− ( fcf0
)2 =

0.9981 cm. The normalized coupling matrix for this design based on the well-known Cheby-
chev response is [5]: MS1 = M7L = 1.0938, M12 = M67 = 0.9220, M23 = M56 = 0.6311,
M34 = M45 = 0.5852.

Figure 5.9: Design point (black circle with cross inside) for an all-pole equilateral triangular
�lter based on the TEA101 mode.
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Thus, the selected design point in terms of the spurious-free window and the un-
loaded Q-factor is shown in Figure 5.9 and its inset, where ( ed)2 = 1.003 and e

d = 1.0019
respectively. The same �gure above shows the topology with the corresponding coupling
scheme. The 3D �lter structure is given in Figure 5.10a). Figure 5.10b) evidences that the
resonant mode is the TEA101 mode. The �nal dimensions can be found in Figure 5.10c) and
its associated caption. The narrowband response is presented in Figure 5.10d), where the
electromagnetic (EM) and circuital (circ.) responses have been drawn together showing
very good agreement. Finally the wideband response is presented in Figure 5.10e). Ac-
cording to the chart of mode resonances the next spurious would be the TEA102 resonance
at fres = 34.6 GHz. This quantity can slightly vary due to the loading e�ect of the irises.
It is important to notice that neither the TES101 mode nor the TES102 are present since it
is assumed that the �lter will operate under PMW symmetry. If the unloaded Q-factor is
denormalized for the selected fundamental mode and a conductivity of σ = 5.8 · 107 S/m
(corresponding to copper) a value of Qu = 4561.9 is achieved.

Figure 5.10: Equilateral triangular inline �lter. a) Perspective view. b) Absolute value of the electric
�eld pattern of the TEA101 mode. c) Top view with dimensions (in cm): e = 1, ei1 = ei8 = 0.6886,
ei2 = ei7 = 0.5453, ei3 = ei6 = 0.5085, ei4 = ei5 = 0.5011, t = 0.2, d1 = d7 = 0.7672, d2 = d6 =
0.8817, d3 = d5 = 0.8999, and d4 = 0.9027. d) Narrowband response. e) Wideband response.



5.4 Designs 81

5.4.2 Dual mode equilateral triangular �lter

Dual-mode �lters are used when the speci�cations demand high selectivity and at the
same time a reduced volume is required. In particular, this is a typical scenario in satellite
communications. The operating principle of this kind of �lters is based on the use of two
degenerated resonant modes per cavity. Thus, each cavity provides two resonators in the
equivalent �lter circuit. In such scheme half of the resonators is needed to guarantee the
same selectivity, and besides, cross-couplings can be easily implemented by breaking the
orthogonality between the resonant modes.

Section 5.2 showed that mode degeneracy is the inherent property of the equilateral
triangular resonator. In this section this property is exploited and a dual-mode prototype
is designed, manufactured and measured. The prototype proposed as a proof of concept
is centered at 11.8 GHz with a fractional bandwidth of 0.85% (i.e., 100 MHz) with 20 dB
of return loss. Following the design in [112], the normalized coupling matrix is: MS1 =

M4L = 1.0349, M12 = M34 = 0.8038, M14 = −0.4270. In this case the TE(A)
103 mode will

implement the �rst and fourth resonators, whereas the TE(S)
103 will implement the second

and third resonators (R1 and R2 in the �rst cavity and R3 and R4 in the second cavity).
This scheme is shown in Figure 5.11 above.

Figure 5.11: Design point (black cross) for a dual mode equilateral triangular �lter based on the
TEA103 mode.
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The selected side for the proposed dual-mode prototype is e = 28 mm, and since the
third resonance is used the cavity lengths are around d =

3λg
2 = 47.858 mm. The chart of

resonant frequencies of Figure 5.11 shows the corresponding design point ( ed)2 = 0.3423 at

the the TEA/S103 modes. According to this value the �rst higher resonance is theoretically
present at 12.36 GHz and belongs the TMS

110 resonance, while the lower one is placed at

9.49 GHz and belongs to the TEA/S102 resonances. The Qu chart present in the inset of the
same Figure also shows the associated design point e

d = 0.5851. If the associated value is

denormalized for a cavity working at the TEA/S103 modes and made up of σ = 5.8 · 107S/m,
the unloaded quality factor is of Qu = 10660 per mode.

Figure 5.12a) shows several views of the prototype with the associated dimensions
given in the caption. The stanard WR-75 waveguides are coupled to the equilateral trian-
gular cavities with normalized MS1 and M4L values respectively throughout rectangular
irises of width a1 and height b1. The input waveguide only excites the TEA103 mode be-
cause it has the same symmetry as the TE10 mode that is propagating along the rectangular
waveguide (PMW).

The TES103 mode is generated with a discontinuity that breaks the symmetry in the
middle of both cavities and implements couplings M12 and M34. This discontinuity is
made up of an equilateral triangle of side eg, which means that the whole �lter structure
is completely analytic and can be e�ciently simulated by the Mode-Matching method
of Chapter 2. Finally the inter-cavity couplings M14 and M23 are implemented by a
rectangular iris of width a2 and height b2 placed in between. It is important to notice that
the equilateral triangular section of the discontinuity in the �rst cavity is shifted in the
opposite direction to the one in the second cavity in order to implement the negative sign
of the coupling M14.

The simulated narrowband results are given in Figure 5.12b) compared to the ideal
circuital ones associated to the selected coupling matrix. The electromagnetic simulation
has been carried out using two di�erent techniques: one purely numerical using the HFSS
commercial software (FEM), and the other one analytical using the Mode-Matching (MM)
formulation presented in Chapter 2. The good agreement between results constitutes again
a validation of the software developed in this Thesis. The wideband response is provided
in Figure 5.12c) and has been obtained with the Mode-Matching technique for e�ciency
reasons (the inner-cross products which constitute the core computation do not depend on
frequency).

The theoretical �rst higher spurious resonance due to the TM110 mode is just slightly
excited and the spurious-free window is enlargened up to 14 GHz. Figure 5.12d) shows
photographs of the manufactured prototype and the measurement set-up.

In the manufactured prototype the two equilateral triangular discontinuities of side
eg have been replaced by three screws in the middle of each face to enable tuning to correct
the tolerances to which a waveguide �lter at the Ku band is usually subjected. The �lter is
manufactured in aluminium (σ = 3.8·107S/m), but the insertion losses of the measurement
are poorer for this material as it can be seen in Figure 5.12e), where |S21| = −1.085 dB.
The response has been also slightly shifted from the desired 11.8 GHz to 11.768 GHz (a
total shift of 32 MHz). The measured wideband response is given in Figure 5.12f).
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Figure 5.12: Equilateral triangular dual mode �lter. a) Views with dimensions (in mm): afeed = 19.05,
bfeed = 9.525, a1 = 10, a2 = 6.12, b1 = 7.90, b2 = 7.65, dcav = 46.53, dg1 = 22.86, dg2 = 0.80, ecav =
28, eg = 26.23. b) Simulated narrowband responses (MM, FEM) together with the ideal response
(circ.). c) Simulated wideband response (MM). d) Photographs of the manufactured prototype and
the measurement set-up. e) Measured response together with the ideal response shifted to 11.768
GHz. f) Measured wideband response.
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5.4.3 Asymmetrical parabolic inline �lter

Charts of resonant frequencies are useful in �lter design since one mode with lower cut-o�
frequency can resonate before or after another one with higher cut-o� frequency once the
one with higher cut-o� frequency starts to propagate. This depends on the number of
variations q along the longitudinal dimensions of the cavity for a given physical length d.
However, if the resonant mode with lowest kc and the lowest number of variations q is
chosen to implement the desired response of the �lter, then the chart of Figure 5.8 su�ces
to analyze the spurious free-window.

A parabolic �lter of order N = 9 has been designed with f0 = 20 GHz, 20 dB of
return loss and a fractional bandwidth of 4% (800 MHz). The classical all-pole response
is pursued, and therefore the inline topology has been selected. This �lter will have a
symmetry plane at y = 0 and will be excited by the TE10 mode of a waveguide. Thus only
the modes of Figure 5.8 with PEW symmetry will be present. Such modes are depicted in
Figure 5.13, where the coupling scheme together with the corresponding normalized values
are shown as well. In particular, the �rst resonance of the TEe1 mode of Figure 5.13 is
chosen to implement the desired response, that is, the TEe1,q=1 mode.

Figure 5.13: Variation of the cut-o� wavenumber with the aspect ratio of the parabolic
cylinder waveguide, for the �rst modes of PEW symmetry with respect to the x-axis of
the parabolic waveguide. Above: coupling topology with normalized coupling values.

The choice of the aspect ratio r for this design depends on two factors: the realiz-
ability and the spurious-free window. In �rst place, for a given cut-o� frequency fc < f0

(fc < 20 GHz) and a chosen ratio ri, the dimensions w and b are �xed since w = yi/kc and
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b = ri ·w, where yi is the ordinate value of the modal curve chosen as fundamental (in this
design the �rst resonance of the structure).

The question now is what mode is the fundamental one in Figure 5.13 along all the
possible aspect ratios r. In principle the mode that provides the �rst resonance would be
the one with lowest kc and lowest q. Thus the lowest line of Figure 5.13 is a good candidate
to provide the �rst resonant frequency fr1 =

√
A2

1 +B2
1 , where A1 = fc1 and B1 = q1c

2d1

with q1 = 1. With this selection, d1 = λg,1/2.

Indeed, for a given cut-o� frequency fc and a chosen aspect ratio r any curve placed
above the lowest one in Figure 5.13 leads to a higher resonant frequency fr2 =

√
A2

2 +B2
2

if it belongs to a TE mode since, for a chosen physical length d = d1. This can be easily
deduced since B2 > B1 for the minimum variation q2 = 1; and A2 > A1 as kc2 = y2/w,
where y2 > y1 as the curve is placed above and w has been �xed as it was mentioned two
paragraphs ago.

However, if the curve above belongs to a TM mode it can resonate �rst since for this
mode family the value q = 0 is allowed. In fact, if we refer to fr3 as the resonant frequency
associated to the curve of the mode TMo1, fr3 =

√
A2

3 +B2
3 , where A3 > A1 as y3 > y1

but B3 < B1 since for the same given cavity length d = d1 it happens that q3 < q1 (q3 = 0
and q1 = 1). Hence, there can be some values where the TMo1 mode resonates �rst than
the TEe1 mode. Regarding the next TM mode, the TMo2, it will present a higher resonant
frequency than the TMo1 and therefore there is no need to consider it as a candidate for
the fundamental mode (A4 > A3 and B4 = B3 = 0, with fr4 =

√
A2

4 +B2
4) .

Bearing in mind the previous observations, the TEe1 with q1 = 1 is selected as the
fundamental mode for the �lter structure, and therefore it will be checked that for the
selected aspect ratio r and cut-o� frequency fc the TMo1 mode has a higher resonant
frequency.

The choice of a suitable aspect ratio r follows the next reasoning:

(i) For a wider spurious-free window a wider space between curves is sought, since the
next cut-o� wavenumber kc,1st sup will have a higher value. This is easy to prove since
kc,1st sup = y1st sup/w, where w has been �xed once r has been selected (w = y/kc,
with y and kc being the ordinate value and the cut-o� wavenumber that belong to
the fundamental mode).

(ii) According to (i), the ratios of regions RG1 and RG2 of Figure 5.13 should be pre-
ferred.

(iii) However, a trade-o� between realizability and a wide spurious-free window is pursued.
If two points of di�erent ratios ri, rj are compared for the TEe1 mode, for the selected
kc the dimension w will be nearly the same for both cases since the ordinate value y
remain more or less constant and hence wi = wj = w = y/kc. However, the height
b will be lower for the case of the lowest ratio ri since bi = w · ri, bj = w · rj , with
ri < rj , and the realizability turns out to be more complicated. This was already
shown in Figure 5.8.

(iv) In order to take both factors (realizability and wide spurious-free window) into ac-
count a ratio on the left side of region RG3 is selected. In particular, the choice for
this design is r = 1.14.
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Figure 5.14: Asymmetric parabolic inline �lter. a) Perspective view. b) Absolute value of the electric
�eld pattern of the TEe1 mode with q = 1. c) Top view of the structure and front view of the
separated contours of the cavity and the irises, with dimensions (in mm): bcav = 11.83, wcav = 10.37,
bi1 = bi10 = 6.45, wi1 = wi10 = 7.68, bi2 = bi9 = 4.69, wi2 = wi9 = 6.8, bi3 = bi8 = 4.1,
wi3 = wi8 = 6.5, bi4 = bi7 = 3.95, wi4 = wi7 = 6.43, bi5 = bi6 = 3.91, wi5 = wi6 = 6.41, t = 3,
d1 = d9 = 8.95, d2 = d8 = 10.57, d3 = d7 = 10.97, d4 = d6 = 11.06 and d7 = 11.07 . d) Narrowband
response. e) Wideband response.

Regarding the choice of the cut-o� frequency fc, it must be ful�lled that fc < 20
GHz. For a desired aspect ratio r, a lower value of fc leads to a larger value of w and b since
w = y/kc and b = r·w. Apart from having a larger cross-section, another implication is that
the spurious-free window is reduced. This can be easily seen since kc,1st sup = y1st sup/w.
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For this particular design a cut-o� frequency fc = 16 GHz has been chosen, which
corresponds to kc = 335.33 m−1 , w = y/kc = 10.36 mm and b = r · w = 11.82 mm.With
the selected dimensions the TMo1,q=1 mode resonates at a higher frequency of around 36.8
GHz. On the other hand, the spurious-free window will be limited by the TEe2,q=1 mode
with a resonant frequency of approximately 29.5 GHz.

The proposed prototype is shown in Figure 5.14a), where the fundamental resonating
mode is the TEe1,q=1 and whose absolute value of the electric �eld is shown in Figure
5.14b). The dimensions of the structure are given in Figure 5.14c), with the speci�c values
gathered in the caption. Figure 5.14d) shows the narrowband response obtained by the
electromagnetic simulator (EM) compared to the ideal circuital response (circ.) obtained
from the coupling values of Figure 5.13, while the wideband response of the �lter is given
in Figure 5.14e).

Finally the input and output waveguides of this prototype are changed to standard
ones, in particular to WR-51 models, where the TE10 mode guarantees that only the modes
with PEW symmetry are excited (to that end the whole symmetry of the �lter is kept).
The corresponding structure and response are given in Figure 5.15.

Figure 5.15: Structure and response of the asymmetric parabolic inline �lter of Figure 5.14
fed with with standard WR51 working at the TE10 mode.
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6.1 Introduction

In the previous Chapter the two unconventional geometries addressed in this Thesis were
used for the design of novel inline �lters. Two prototypes that implement the classi-
cal all-pole Chebychev response introduced the equilateral triangular and the asymmetric
parabolic resonators as good candidates for �lter design. Another prototype working in
dual-mode operation was designed, manufactured and measured, providing an alternative
to the classic TE113 dual-mode �lters in circular cavities used in satellite communications.
Filters working on dual-mode operation require half of the resonators to implement the
same single-mode full-wave response, at the expense of an increased complexity in the
design process. Other alternatives for size reduction will be discussed in this Chapter.

Compactness is a desired feature, specially in the space sector where larger �lters
raise the cost. In this context, the use of multiple resonant modes in a single cavity
is only one of the possible strategies used for size reduction. Another possibility is to
use dispersive couplings, irises of strong frequency-dependent behaviour that allow the
generation of additional out-of-band transmission zeros [113�115]. Thus, the limit of the
maximum number of achievable transmission zeros is overcome [116] and the stopband
behaviour is enhanced without increasing the number of resonators. This is relevant at
high frequency bands, as in W-band applications [72, 73], where obtaining resonators with
high quality factors becomes a challenging task.

In this Thesis the dispersive behaviour of source to load couplings is studied in the
well-known folded fully canonical �lters made up of rectangular waveguides. Two designs
exploiting this feature are presented, and several equivalent circuits are proposed for the
generation of up to two additional transmission zeros. This part of the Chapter arises from
the collaboration with the group Lehrstuhl für Hochfrequenztechnik from the Christian
Albrechts University of Kiel in the context of a three-month research stays during the three-
year PhD period. Finally, the last part of the Chapter is devoted to the improvement of
compactness using dielectric resonator �lters, which are well-known for the signi�cant size
reduction that they can o�er compared to the empty waveguide technology. Very diverse
shapes working in multi-mode schemes have been proposed in the literature to improve
the achievable compactness [117�125]. However, to the best of the author's knowledge,
the equilateral triangular dielectric resonator has not been reported yet in the context
of microwave �lters. In this Chapter several topologies are researched and a designed
prototype is presented as a proof of concept showing very good results.

89
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6.2 Dispersive couplings in well-known topologies

The coupling matrix is a useful design tool used for the synthesis of the desired responses
in microwave �lters [126]. In fact, one of the strengths of this tool is that it can be used
regardless of the technology used (microstrip, waveguide, stripline, and so on). However,
the coupling matrix model was initially conceived assuming frequency-invariant couplings,
and thus it was only valid for the design of narrowband �lters.

In the recent years couplings dependent on frequency have drawn the attention of
�lter designers to produce responses that a priori were not predictable by the narrowband
classical model. This is the case of responses where additional transmission zeros allow to
improve the selectivity without increasing the number of resonators. The integration of
the so-called dispersive couplings into the coupling matrix theory was recently presented
in [114]. The main advantage of the formulation proposed in [114] is that the synthesis
method is generic for any user de�ned topology. However, only one extra transmission zero
can be synthesized with the given procedure.

In [113] a simpler process was followed for the synthesis of the coupling matrix
of trisections with a single dispersive coupling. The proposed synthesis procedure only
a�ected one circuit element (i.e., a single coupling), and the admittance matrix was directly
used to determine the coupling coe�cients. Again, the reported �lter examples of order N
provided up to N + 1 transmission zeros. Besides, the mathematical condition associated
to the generation of the transmission zeros was quite simple.

In this Section several equivalent circuit models for the generation of additional trans-
mission zeros are researched. In particular, two of the three advantages presented in [113]
are sought. In �rst place, the mathematical analysis must remain simple. Secondly, the
dispersive behaviour must be associated to a single coupling structure to make the design
process simpler than in any of the prototypes shown in [114], where several dependent
couplings were needed. In particular, the dispersive structure considered in this Chapter
will be the source to load coupling (referred as SL coupling later in the text), which is
easy to be implemented in folded structures. The third advantage of [113], which is the
possibility to synthesize the coupling matrix directly from the admittance matrix, is not
exploited here.

Taking all these considerations into account, several equivalent circuits are proposed
to replace the ideal (i.e., frequency independent) source to load coupling of the traditional

Figure 6.1: Discrete equivalent circuit for a band-pass folded network made up of ideal inverters.
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Figure 6.2: a), c), e) and g): Classic equivalent T- and Π-networks for inverters. b), d) f) and h):
Proposed equivalent circuit models for the generation of up to two transmission zeros.

folded structure shown in Figure 6.1, which is directly related to the narrowband coupling
matrix model. In particular, four equivalent circuits shown in Figure 6.2 are proposed,
with which up to N + 2 transmission zeros can be achieved, one extra apart from the one
achievable in [114] and [113].

The choice of the equivalent circuit depends on the sign of the coupling value mod-
elled by the ideal inverter JSL of Figure 6.1. Furthermore, the out-of-band behaviour of
the four proposed circuit models di�ers as it will be shown in the design examples of the
next section.

I- Dispersive T-network developed from inductors

A typical T-network made up of inductors is shown in Figure 6.2a). The value of the
inductor can be calculated as Lk = 1

JSLω0
, where ω0 is the angular central frequency of

the �lter. The proposed equivalent circuit for the generation of up to two additional
transmission zeros is shown in Figure 6.2b), where each inductor placed on the series
branches is replaced by a shunt resonator, giving rise to ZT,1 and ZT,2 respectively. Now,
these series branches made up of shunt resonators must satisfy the following two conditions:

(i) At the central frequency ω0 the circuit must behave as the ideal T-inverter, that is
ZT,1 = ZT,2 = −jω0Lk. Thus, each shunt resonator must ful�ll:

YT,i =
1

ZT,i
= j(ω0CKi −

1

ω0LKi
) = j

1

ω0LK
with i = 1, 2. (6.1)

(ii) Each branch must behave as an open circuit at the frequency of one of the two possible
transmission zeros (tz1,tz2), so that the signal transmission between the source and
load is prevented:

YT,i =
1

ZT,i
= j(ωtziCKi −

1

ωtziLKi
) = 0 with i = 1, 2. (6.2)

This is equivalent to say that each branch resonates at the frequency of one of the
two possible transmission zeros.
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Now, from (6.1) and (6.2) it is derived that, on the one hand:

CKi =
1

ω2
0LKi

+
1

ω2
0LK

, (6.3)

and on the other hand:

CKi =
1

ω2
tzi
LKi

, (6.4)

for i = 1, 2 and ω2
tzi being the angular frequency where each transmission zero is located.

If equation (6.4) is replaced in (6.3), the value of the inductors LK1 and LK2 can be found
as:

LKi = LK
( ω2

0

ω2
tzi

− 1
)
, for i = 1, 2. (6.5)

Then, from (6.4) and (6.5):

CKi =
1

LK(ω2
0 − ω2

tzi
)
, for i = 1, 2. (6.6)

II- Dispersive T-network developed from capacitors

The next proposed circuit is based on the ideal T inverter shown in Figure 6.2c) and it is
shown in Figure 6.2d), where the value of the capacitors can be computed as CK = JSL

ω0
.

Thus:

(i) At the central frequency ω0 it holds:

YT,i =
1

ZT,i
= j(ω0CKi −

1

ω0LKi
) = −jω0CK with i = 1, 2. (6.7)

so that the circuit behaves as an ideal inverter.

(ii) At each transmission zero the condition is the same as in the previous circuit, each
branch must behave as an open circuit and thus:

YT,i =
1

ZT,i
= j(ωtziCKi −

1

ωtziLKi
) = 0 with i = 1, 2. (6.8)

From the �rst of the two above conditions it is deduced that:

CKi = −CK +
1

ω2
0LKi

, with i = 1, 2. (6.9)

and, on the other hand from the second condition the value of the inductors LKi is:

LKi =
1

ω2
tzi
CKi

, (6.10)

for i = 1, 2. Then, if (6.10) is replaced in (6.9), then the value of the capacitors CKi is
found as:

CKi = CK
ω2

0

ω2
tzi
− ω2

0

for i = 1, 2. (6.11)
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Finally, from (6.10) and (6.11):

LKi =
ω2
tzi − ω

2
0

ω2
tzi
ω2

0CK
for i = 1, 2. (6.12)

III- Dispersive π-network developed from capacitors

If the shunt branches of the π-network shown in Figure 6.2e) are replaced by series res-
onators as in Figure 6.2f), the following conditions must be satis�ed taking into account
that CK = JSL

ω0
:

(i) Again, at the central frequency ω0 the circuit must act as an the corresponding ideal
inverter of Figure 6.2e):

Zπ,i = j

(
ω0LKi −

1

ω0CKi

)
=

j

ω0CK
with i = 1, 2. (6.13)

(ii) On the other hand, in order to prevent the signal transmission between the source
and load each branch must behave as a short circuit at the frequency of one of the
two possible transmission zeros (tz1,tz2):

Zπ,i = j

(
ωtziLKi −

1

ωtziCKi

)
= 0 with i = 1, 2. (6.14)

Hence, from (6.13) and (6.14) it can be deduced that:

LKi =
1

ω2
0CKi

,+
1

ω2
0CK

, (6.15)

LKi =
1

ω2
tzi
CKi

, (6.16)

for i = 1, 2. Then, if (6.16) is replaced in (6.15) the value of the capacitor CKi is obtained
as:

CKi = CK

(
ω2

0

ω2
tzi

− 1

)
for i = 1, 2. (6.17)

In order to obtain the values of the inductors LKi the equation (6.17) is replaced in (6.15)
leading to:

LKi =
1

CK(ω2
0 − ω2

tzi
)

for i = 1, 2. (6.18)
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IV- Dispersive π-network developed from inductors

Finally the π network of Figure 6.2g) made up of inductors is analyzed, where LK = 1
JSLω0

.
The proposed equivalent circuit is shown in Figure 6.2h), where the shunt branches are
replaced by series resonators. A similar reasoning as in the previous cases is followed, being
in this case LK = 1

JSLω0
:

(i) Again, at the central frequency ω0 the circuit must act as an the corresponding ideal
inverter of Figure 6.2g):

Zπ,i = j

(
ω0LKi −

1

ω0CKi

)
= −jω0LK with i = 1, 2. (6.19)

(ii) On the other hand at each transmission zero the condition is the same as in the
previous circuit, that is, each branch must behave as an open circuit:

Zπ,i = j(ωtziLKi −
1

ωtziCKi
) = 0 with i = 1, 2. (6.20)

From the two previous conditions it is deduced that:

LKi = −LK +
1

ω2
0CKi

, (6.21)

CKi =
1

ω2
tzi
LKi

, (6.22)

for i = 1, 2. Finally, if equation (6.22) is replaced in (6.21), the value of the inductors in
Figure 6.2h) is obtained as:

LKi = LK
ω2

0

ω2
tzi
− ω2

0

for i = 1, 2. (6.23)

Regarding the capacitors CKi , their values are obtained replacing (6.23) in (6.21):

CKi =
ω2
tzi − ω

2
0

ω2
tzi
ω2

0LK
for i = 1, 2. (6.24)

6.3 Designs with source to load dispersive couplings

Nowadays a good out of band rejection is an important issue in the design of microwave
�lters for demanding satellite communications. In order to improve this feature with-
out increasing the number of resonators one of the well-known techniques is to resort to
topologies that allow to place transmission zeros near the passband, as in folded con�gu-
rations [126]. This technique is particularly useful in higher bands, such as the W-band,
where the complexity to obtain high quality factors is increased and a high number of
resonators would indeed penalize the in-band insertion loss.

According to the classical coupling matrix theory, in a �lter of order N a maximum
number of N−2 transmission zeros are achievable in a folded con�guration without source
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to load coupling. This amount can be increased to N if the convenient source to load
coupling is implemented [126]. In the recent years the dispersive behaviour of some coupling
structures has been used to overcome this limit. In this Thesis this behaviour is exploited
for the source to load coupling, easy to be implemented in folded waveguide structures.

Two designs with folded topology are presented in this Section as a proof of concept
for E-plane and H-plane con�gurations. Both of them are �lters of fourth order, centered
at f0 = 87.7 GHz with a bandwidth of 1 GHz (1.14% of fractional bandwidth) and 20 dB
of return-loss level. The coupling scheme together with the normalized coupling matrix is
presented in Figure 6.3.

Figure 6.3: a) Topology used for the two designed �lters, b) normalized coupling
matrix values for 20 dB of return-loss and transmission zeros at ω = ±j,±4 (E-plane)
and ω = ±1.722,±2.387 (H-plane).

Notice that the previous coupling matrix does not account for the dispersive couplings
as it will be used to design the initial dimensions for all the couplings except for the source
to load coupling. This latter coupling is designed by means of a parametric study in the
commercial full-wave solver CST MWS.

6.3.1 E-plane phase equalized �lter

This �lter is designed to pursue a trade-o� between good levels of selectivity and group
delay distortion at the band-pass edges. The transmission zeros in charge of the equaliza-
tion are symmetrically placed in the imaginary axis at the normalized angular frequencies
wtz = ±j, while the two ones devoted to the improvement of selectivity are placed at
the normalized angular frequencies wtz = ±4. According to the classical coupling matrix
theory [126], this �lter already presents the maximum number of �nite transmission zeros
(four, which is equal to the order of the �lter).

The sliced structure simulated in CST Microwave Studio is shown in Figure 6.4a),
where it can be seen that all the mainline couplings are implemented by inductive windows,
except for the m23 coupling, which is implemented by a hole located at the side wall of the
structure due to its positive sign, which is the same as the remaining mainline couplings
and is here considered as magnetic. The coupling hole designed for m14 is also located at
the side walls of the corresponding cavities for the same reason.

The location of the source to load coupling deserves special attention. According to
the value ofmSL in Figure 6.3b), the corresponding hole should be positioned in the middle
of the feedlines to couple electric energy (as in Figure 6.4a)). However, in the feedlines an
additional degree of freedom can be exploited to design apart from the diameter of the hole
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Figure 6.4: a) Sliced folded �lter structure for the E-plane phase equalized �lter, b) �lter dimensions and
c) photographs of the manufactured parts (courtesy of the group Lehrstuhl für Hochfrequenztechnik from
the Christian Albrechts University of Kiel).

and its distance to the side walls: its distance to the input and output irises (parameter l0
of Figure 6.4a)). A parametric study is carried out and the selected �nal dimensions are
gathered in Figure 6.4b).

Figure 6.4c) shows a photograph of the manufactured prototype made up of three
parts milled in brass. The lower and upper parts are identical due to the symmetry of
the structure. It can be seen that two 90-degree curves are included to get a better access
to the waveguide ports to measure the �lter. A foil of 0.1 mm thickness is placed in
between to implement the couplings mSL, m14 and m23 (drawn in red, green and blue
colors respectively on the right side of Figure 6.4c)). Notice that two holes implement the
m14 coupling since a perfect magnetic wall was placed at the yz-plane in Figure 6.4a) to
speed-up the simulations.

Figure 6.5 shows the measured results together with the achievable ones by the
coupling matrix shown on the left column of Figure 6.3b). It can be seen that the designed
�lter achieves two additional transmission zeros at around 80 and 95 GHz that overcome
the limit of the order of the �lter. With them it is evident that the out-of band rejection
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far away from the passband is improved for almost the whole W-band. Figure 6.6 shows
the expected measurement results for the equalization: the group delay is worse than a
�lter without any transmission zeros, but it is improved with respect to a �lter with all
the theoretically predicted transmission zeros devoted to selectivity (four in this design).

Finally an equivalent circuit from the previous Section is used to model the obtained
full-wave response. In �rst place, the ideal source to load inverter of the folded network
of Figure 6.1 is replaced by the standard T-network of Figure 6.2c), as it is indicated in
Figure 6.7a). Then, this source to load inverter is replaced by the proposed network of
Figure 6.2d), as it is shown in Figure 6.7b). According to Section 6.2 the circuit values
of the source to load circuits in Figure 6.7 are: JSL = −0.0275S for the ideal inverter,
CK = −4.9982 · 10−14F for the standard network, and �nally C1 = 3.2 · 10−13F, C2 =
−2.85 · 10−13F, L1 = 1.22 · 10−11H and L1 = −9.81 · 10−12H.

A comparison of the ideal inverter, the standard one and the proposed network is
carried out with the circuital solver ADS. The results are shown in Figure 6.8, where it
can be seen that the three inverters have approximately the same behaviour in the band-
pass region, but in the out of band the only circuit that it is capable of modeling the two
additional transmission zeros is the proposed one. Then, the full-wave results of the �lter
are compared to the circuital ones achieved with the proposed equivalent circuit model.
The comparison is carried out with the full-wave response since the loss in the passband
or the manufacturing tolerances are not taken into account. The good agreement between
responses is shown in Figure 6.9.

Figure 6.5: Comparison of the S-parameters from the coupling matrix on the left
column of Figure 6.3b) and the measured ones (courtesy of the group Lehrstuhl für
Hochfrequenztechnik from the Christian Albrechts University of Kiel).
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Figure 6.6: Comparison of the measured group delay of the manufactured prototype
with other possible 4-th order �lter responses (courtesy of the group Lehrstuhl für
Hochfrequenztechnik from the Christian Albrechts University of Kiel).

Figure 6.7: a) Replacement of the SL ideal inverter by a standard T-network, b) re-
placement by the proposed T-network shown in Figure 6.2d).
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Figure 6.8: Comparison of the S21 parameter for the di�erent inverters (ideal, stan-
dard and proposed one respectively).

Figure 6.9: Comparison between the full-wave results obtained from CST MWS and the
circuital ones obtained in ADS with the proposed equivalent circuit.



100 Contribution to the design of filters (Part II)

6.3.2 H-plane �lter with mixed TE101 and TE102 resonators

This subsection aims at studying the dispersive behaviour in the H-plane counterpart.
In order to implement the coupling matrix given on the right column of Figure 6.3b),
which describes a �lter with four real transmission zeros at angular normalized frequencies
ω1,2 = ±1.722 and ω3,4 = ±2.387, a negative coupling must be realized between cavities
one and four.

This negative sign in a �lter based on the TE101 mode can be implemented by a
capacitive slot [127], however, this strategy may lead to a thin iris di�cult to manufacture.
Another well known technique is to use one TE102 cavity [128]. A quasi-elliptical prototype
designed following this strategy in the W-band has been recently presented [129]. However,
only the four expected transmission zeros associated to the fully-canonical structure are
obtained. The outer transmission zeros are present in the out of band region, but the
possibility of achieving extra ones is not studied.

A prototype based on mixed TE101 and TE102 cavities is designed in this paper. In
the presented prototype half of the cavities are based on the TE102 mode and the other half
on the TE101 mode. The proposed structure is shown in Figure 6.10, where it can be seen
that all the coupling windows correspond to vertical full-height H-plane inductive irises.
Figures 6.11, 6.12 and 6.13 show the associated full-wave responses of three di�erent set-
ups simulated by the commercial software CST MWS. The two parameters that have been
varied in these set-ups are only wSL and l0, and thus the simulated responses evidence that
it is possible to obtain extra transmission zeros by varying the position and width of the
source to load coupling aperture without signi�cantly deteriorating the passband response.
A further optimization step should be carried out to improve the in-band return-loss in a
real application.

Figure 6.11 shows a set-up similar to the ones presented in [129], where no extra (more
than N = 4) transmission zeros are achieved, although the outer ones are present far away
from the passband at around 80 and 96 GHz. This result is achieved with wSL = 0.72
mm, l0 = 1.25 mm. The second set-up shown in Figure 6.12, where wSL = 0.76 mm
and l0 = 1.95 mm, provides one extra transmission zero below the passband at around
83 GHz. Finally the simulated results of the third set-up are given in Figure 6.13, where
two extra transmission zeros above the passband are achieved at around 93 and 96.6 GHz
respectively, using wSL = 0.58 mm and l0 = 3.05 mm for the source to load coupling
window.

Finally a prototype is manufactured in brass as a proof of concept. In this case only
two halves are needed, as it is shown in Figure 6.14. The associated dimensions are given
in the caption, and correspond to an additional proposed set-up to improve the out-of-
band rejection in the lower band. The measured results are given in Figure 6.15, where
the capability of this well-known structure to generate additional transmission zeros by
designing the longitudinal position and aperture of the source to load coupling is validated
and the sensitivity to the manufacture tolerances is evidenced.
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Figure 6.10: a) Structure of proposed H plane �lter sliced at the height y = b and simulated
responses of di�erent set-ups with dimensions (all in mm): a = 2.54, b = 1.27, l1 = 1.925,
l2 = 4.465 , l3 = 2.145, l4 = 4.200, win = 1.225, wout = 1.332, w12 = 0.840, w23 = 0.970,
w34 = 0.835 and w14 = 0.95. The dimensions of wSL and l0 for the di�erent set-ups shown in
Figures 6.11, 6.12 and 6.13.

Figure 6.11: a) Simulated response of the �rst set-up proposed for the H plane �lter shown
in Figure 6.10 with dimensions associated to the source to load coupling wSL = 0.72 mm and
l0 = 1.25 mm.
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Figure 6.12: a) Simulated response of the �rst set-up proposed for the H plane �lter
shown in Figure 6.10 with dimensions associated to the source to load coupling
wSL = 0.76 mm and l0 = 1.95 mm.

Figure 6.13: a) Simulated response of the �rst set-up proposed for the H plane �lter
shown in Figure 6.10 with dimensions associated to the source to load coupling
wSL = 0.58 mm and l0 = 3.05 mm.
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Figure 6.14: Parts of the manufactured H-plane prototype (courtesy of
the group Lehrstuhl für Hochfrequenztechnik from the Christian Albrechts
University of Kiel) with wSL = 0.68, l0 = 4.75, a = 2.54, b = 1.27,
l1 = 1.925, l2 = 4.465, l3 = 2.145, l4 = 4.200, win = 1.225, wout = 1.332,
w12 = 0.840, w23 = 0.970, w34 = 0.835 and w14 = 0.95 (all dimensions in
mm).

Figure 6.15: Measurement results for the manufactured H-plane prototype of
Figure 6.14 (courtesy of the group Lehrstuhl für Hochfrequenztechnik from the
Christian Albrechts University of Kiel).
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6.4 New compact dielectric topologies

Dielectric resonator �lters were �rst reported in [130�132] and traditionally have taken part
of input multiplexers in satellite communication systems [133] or of mobile base stations
[134, 135]. This kind of �lters have a limited power handling capability and spurious-free
window, but in contrast o�er a compact size compared to other well-known technologies
and high quality-factor [5].

The �rst dielectric resonators used a cylindrical rod and made use of the TE10δ or
the TM010 modes [131, 136�138]. Since then, dual-mode schemes of very diverse shapes
have arisen to reduce the size and mass of the prototypes [117�121, 124, 125]. The use of
quarter cut resonators with metallic plates or the use of half-cut resonators has also been
proposed [122, 123].

The dielectric resonator of equilateral triangular shape has already been reported in
the �eld of antennas, as one of the possible geometries of interest [139, 140]. This shape
has also been reported at hundreds of THz in the �eld of optical nanoantennas [141, 142].
However, to the best of the author's knowledge, it has not been exploited in the �lter
domain yet, where perhaps the ∆-resonator shape of [70] is the most similar proposal to
the one presented here.

In this Thesis the use of the equilateral triangular dielectric resonator is proposed
as a possible shape to reduce the footprint of �lter designs. Several topologies that can
bene�t from this particular shape are proposed in Figure 6.16. In particular, the proposal
developed in the next Section is made up of equilateral triangular resonators working on
single-mode. However, it would be possible to study the multimode capabilities of this
kind of resonator or even to use half-cuts of it as in other designs [122, 123].

Figure 6.16: a) Scheme of dielectric resonator, enclosing cavity and signal path, b) inline topology,
b) folded topology and c) hexagonal inline topology for equilateral triangular dielectric resonators.
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6.5 Filter design

Among all the proposed topologies presented in the previous Section, the one shown in
Figure 6.16d) has been selected in this Thesis to develop a prototype at the Ku band,
exploiting its compactness. In particular, the proposed sixth order �lter is designed at
12.5 GHz with 100 MHz of bandwidth (0.8% of fractional bandwidth) and 20 dB of return
loss. The dielectric material chosen for the supports has a relative permittivity of εr = 9.8
and for the equilateral triangular resonators of εr = 24.

Figure 6.17a) shows an equilateral triangular dielectric resonator, whose height hr is
varied in Figure 6.17b) to obtain the desired resonant frequency. The next resonant mode
is also plotted in Figure 6.17b), having a resonant frequency between 400 and 600 MHz
higher than the fundamental mode within the range of the study. This study of the cavity
suggests that the initial height of the resonators must be of 4.48 mm.

Figure 6.17: a) Proposed equilateral triangular dielectric resonator made up of ceramic material of
εr = 24, placed over an alumina support of εr = 9.8. Resonator dimensions (in mm) : hc = 8,
ec = 8.42, hs = 1 and er = 6. b) Variation of the two �rst resonant frequencies with the height of
the resonator hr.

With the previous dimensions, the resonant mode of the cavity chosen for this de-
sign is shown in Figure 6.18, where di�erent views of the corresponding �eld patterns
numerically obtained are shown. Each sub�gure includes a schematic representation of the
�eld. It can be seen that the selected resonant modes resembles the TM01δ mode of the
cylindrical dielectric resonator [143]. The selected mode has PMW symmetry with respect
to the plane xy, indicated with a black dotted line between points A-C in Figures 6.18a)
and c). The distance between points A-B, de�ned as vd in these Figures, is introduced as
an additional degree of freedom to design, keeping the mentioned symmetry. In the �nal
design, this distance has been set to vd = 1.30 mm. The obtained Q-factor for the resonant
cavity used as a proof of concept is 4450 (using copper, with 5.8 · 107 S/M for the outer
box, and a ceramic of very high Qd with a loss tangent of tan(δ) = 4 · 10−5). This value
can be improved in a �nal design for practical applications.
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Figure 6.18: Resonant mode used to implement the 6-th order Chebychev response: a) top
view and b) side view of the ~E �eld; c) top view and d) side view of the ~H �eld. The
fundamental mode has PMW symmetry in the xy plane, indicated with a dotted black line
between points A-C in a) and c). The distance between points A-B, vd, is set to 1.30 mm.

The proposed sixth order Chebychev �lter is designed with the resonator presented in
Figures 6.17 and 6.18. The classical techniques to evaluate the inter-resonator coupling and
the input/output couplings are here used [6, 7, 126]. For the input and output couplings
the �lter is fed by 50Ω SMA connectors. Regarding the interresonator couplings, the irises
are placed at the bottom of the cavity due to the position of the SMA connectors. In
particular, with the proposed location the coupling between source and load is avoided,
which would be undesired for the objective response.

Figure 6.19a) shows the inner resonators, the outer box and the coupling windows
of the �lter. Figure 6.19b) shows the simulated response obtained with the commercial
software CST MWS, where f.w. stands for full-wave, together with the ideal response
given by the normalized coupling values shown in the coupling scheme on the right. A
good agreement between responses has been achieved.

With this design, it has been evidenced that the equilateral triangular resonator may
be a promising geometry yet to be exploited in the design of compact microwave �lters, and
in general for microwave devices as it has been shown throughout this whole Thesis from
the initial Chapter. Finally, Figure 6.19c) shows the wideband response, where it can be
seen that the next higher resonant mode of Figure 6.17 is just slightly excited, and the �rst
signi�cant spurious frequency is located at around 14.2 GHz. If this spurious frequency
could be suppressed, a wide free-spurious window up to 18 GHz would be obtained. This
could be studied in the near future, as well as the possibility to open an additional iris
between resonators 1 and 6. The dimensions of the designed �lter are given at the end of
this Section in Figures 6.20-6.24.



6.5 Filter design 107

Figure 6.19: a) Proposed structure (inner resonators as in Figure 6.17 and SMA
connectors, outer box, and whole structure sliced at the bottom), b) Simulated
response compared to the circuital response given by the coupling topology on
the right.
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Figure 6.20: Perspective view of the designed dielectric resonator �lter of 6-th
order at 12.5 GHz with 0.8% of fractional bandwidth and 20 dB of return-loss.
The box is made of perfect electric conductor, the relative permittivity of the
ceramic is εr = 24 and relative permittivity of the support is εr = 9.8.

Figure 6.21: Top view and side view of the designed prototype shown in Figure 6.20.
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Figure 6.22: Box of the designed prototype shown in Figure 6.20. Final dimen-
sions of the irises (all in mm): ar12 = 1.70, br12 = 1.87, ar23 = 1.52, br23 = 1.89,
ar34 = 1.54, br34 = 1.72, ar45 = 1.52, br45 = 1.89, ar56 = 1.70 and br56 = 1.87.

Figure 6.23: Box of the designed prototype shown in Figure 6.20. Final dimensions
of the side and height of the cavities respectively (all in mm): ec = 8.42 and hc = 8.
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Figure 6.24: Ceramic resonators and alumina supports of the designed prototype shown in Figure 6.20.
Final dimensions for the ceramic resonators (all in mm): eri = 6 (the same for all the resonators, with
i = 1, . . . , 6), hr1 = hr6 = 4.28, hr2 = hr5 = 4.31, hr3 = hr4 = 4.34. Final dimensions for the alumina
supports (all in mm): esi = 6 and hsi = 1 (the same for all the supports, with i = 1, . . . , 6)).
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This Chapter is divided into three sections and gathers all the original ideas, contribu-
tions and publications arisen from this Thesis. Section 7.1 summarizes the original ideas
proposed in this dissertation, whose development has been detailed in Chapters 2 to 6.
The general conclusions derived from the work carried out are also outlined. Section 7.2
enumerates the contributions of this Thesis to the e�cient modelling of unconventional
geometries, as well as the contributions to the design of microwave �lters. Finally, the
list of publications attained within the period of this 3-year Thesis is given in Section 7.3,
separated to those previously obtained.

7.1 Original ideas and general conclusions

Modern telecommunication systems, and specially those for satellite communications, are
subjected to restrictive speci�cations to provide the high quality of service demanded by
�nal users. Complex devices are designed by microwave practitioners, who demand e�cient
and accurate Computer-Aided-Design (CAD) tools. Such tools have been developed over
the last decades for those canonical geometries popular for on-board devices, such as the
rectangular, circular or elliptical waveguides. However, with the development of the 3D
printing techniques the design possibilities have been undoubtedly widened. Thus, robust
CAD tools capable of analyzing the prospective geometries are key to their integration
into modern devices, and it is in this scenario where the work developed in this Thesis has
found the perfect spot.

In this context, the �rst part of this Thesis aims to contribute to the e�cient anal-
ysis and modelling of two unconventional geometries: the equilateral triangular and the
parabolic cylinder waveguides. In particular, Chapter 2 is devoted to the equilateral trian-
gular waveguide, whose complete set of modes has been recently derived in [40, 41]. Due
to the recent availability of this set, the application of the Mode-Matching method over
this geometry has been proposed in this Thesis. To the best of the author's knowledge, it
had not been applied yet. A �exible mathematical formulation based on well-known plane
waves is given, which simpli�es the surface integrals and allows a very easy generalization
to other problems that involve canonical geometries (i.e., rectangular, circular and ellipti-
cal cross-sections). Several test cases have been proposed to validate the formulation, and
the attained results are in good agreement with those obtained with commercial software.
Furthermore, this tool is later on used for e�ciently designing challenging �lters.

The parabolic cylinder waveguide, whose modal spectra was addressed long time
ago, is studied in Chapter 3. The analytical resolution of the electromagnetic �eld in this
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kind of geometry is far from being trivial, as it involves a cumbersome problem where two
variables in the real domain are sought. Before the publication of the work developed in
this Thesis, this kind of waveguide had to be solved by numerical CAD tools, since the
analytical techniques available resorted to graphical means of resolution. This dissertation
has proposed to combine the analytic continuation techniques available in the literature to
approximate the corresponding basis functions [50], with a recently published algorithm
for the resolution of bivariate systems of equations [52]. The proposed procedure has been
tested with numerical software, and large number of modes have been successfully obtained
with proved accuracy for both symmetric and asymmetric contours.

It is obvious that the present Thesis can not address all the candidate geometries that
may arise with the modern 3D printing techniques. For this reason Chapter 4 is included
for completeness. This Chapter proposes an e�cient formulation based on nested 2D
�nite-element function-spaces to hybridate the 2D Finite Element and the Mode-Matching
methods, which are an excellent alternative to solve problems based on cascaded blocks
made up of waveguides with translation symmetry. Several measured devices from already
published articles [107�111] have been used as a reference to test the software tool developed
in this Thesis, proving that a large class of microwave devices can be e�ciently analyzed
by the proposed formulation.

The second part of this Thesis is devoted to the design of microwave �lters. In �rst
place two inline devices have been designed in equilateral triangular and in asymmetric
parabolic cylinder waveguides, since the integration of any unconventional geometry into
future telecommunication systems begins with the study of the performance of proof-of-
concept designs. In second place, this Thesis focuses on compactness, which is a desirable
feature in satellite communication systems as it has a direct impact on the launching
cost [63]. In this context, it has been straightforward to propose a dual mode prototype
based on equilateral triangular resonators, which exploits the mode degeneracy inherent to
this unconventional geometry and allows to reduce the size and weight achieving the same
desired full-wave response.

Following this line of research focused on the enhancement of compactness of mi-
crowave �lters, additional strategies have been proposed in this Thesis. In the context of
waveguide �lters, the use of dispersive source to load coupling holes is addressed in this
work. These frequency-dependent holes allow to obtain out-of-band transmission zeros,
which improve the rejection achieved without increasing the number of resonators. This
strategy is specially suited for high bands where the attainment of resonators with high Q-
factor is di�cult. Among all the possible waveguide �lters, the well-known fully-canonical
waveguide �lters [5] are the selected ones to bene�t from dispersive source to load cou-
plings, due to the ease of implementation compared to other topologies. This part of the
Thesis arose in the context of a three-month stay in the group Lehrstuhl für Hochfrequen-
ztechnik of Kiel, which led to a deeper collaboration in the subsequent months. In this
context, the equivalent circuits that model the resonant behaviour of the source to load
coupling holes were proposed by this doctoral candidate, with which up to to N + 2 trans-
mission zeros can be achieved, one extra apart from the one achievable in the literature
so far [113, 114]. Two prototypes exploiting these dispersive holes have been proposed,
the E-plane and its H-plane counterpart at the W-band. The two proposed prototypes
have been manufactured and measured in the Lehrstuhl für Hochfrequenztechnik group,
the E-plane prototype being proposed by the same group, whereas the H-plane prototype
being fully-designed by this doctoral candidate.



7.2 Original contributions of this work 113

Finally, another type of �lters have been studied in this dissertation: the dielectric
resonators. These �lters are also usual in satellite communications, in particular taking
part of the input multiplexers as they have enough power handling capabilities at this
point of the chain of communications [5, 63]. One of the main bene�ts of the dielectric
resonator technology is the size reduction that they can o�er. In this context, in this
Thesis the use of the equilateral triangular dielectric resonator has been proposed, whose
advantageous geometrical shape to reduce the overall footprint has not been exploited yet
in microwave �lters to the best of the author's knowledge. Several topologies have been
proposed, and among them one has been selected to show a proof-of-concept design in the
Ku band showing very good performance and signi�cant small footprint.

7.2 Original contributions of this work

The main contributions of this Thesis are summarized in this Section, organised according
to two main objectives identi�ed along this dissertation:

1. Contributions to the e�cient electromagnetic analysis of unconventional geometries
in waveguide technology:

1.1. Development of a complete software tool based on the Mode-Matching method
for the analysis of waveguide devices made up of cascaded blocks of equilateral
triangular cross-sections. The tool includes a package to allow rotated cases and
a routine that tests the ful�lment of the boundary conditions.

1.2. Development of a CAD tool based on the use of plane waves in the Mode-
Matching method for the e�cient analysis of waveguide devices where the cas-
caded blocks integrate other canonical geometries (rectangular, circular, ellipti-
cal) together with the equilateral triangular geometry.

1.3. Development of a quasi-analytical CAD tool for the systematic resolution of the
modal spectra in the parabolic cylinder waveguide, with symmetric or asym-
metric contour.

1.4. Development of a software tool where the 2D-Finite Element and the Mode-
Matching methods are e�ciently hybridated for waveguide devices made up of
cascaded waveguide blocks where arbitrary geometries may take part as well.
An additional package for the e�cient orthonormalization of multiconductor
waveguides has been developed as well.

2. Contributions to the integration of novel geometries and coupling structures in mi-
crowave �lters:

2.1. Design of three �lters made up of unconventional geometries as proofs of con-
cept to boost their integration into future communication systems. Two inline
prototypes of 7-th and 9-th order respectively have been designed in the K band,
one based on equilateral triangular resonators and the other one in asymmetric
parabolic resonators.

2.2. Design of a Ku-band prototype based on dual mode cavities of equilateral trian-
gular cross-section to evidence the advantage that the mode degeneracy inher-
ent to this geometry represents in the area of microwave �lters. The designed
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prototype has been manufactured, tuned and measured, proving to be a good
alternative to other conventional dual-mode �lters.

2.3. Study of dispersive source to load couplings and their integration into fully
canonical waveguide �lters. Several equivalent circuits have been proposed to
model the full-wave response observed, easing the integration of this behaviour
into the classical canonical folded network by means of a single resonant source
to load inverter.

2.4. Design, manufacture and measurement of two prototypes in the W-band with
dispersive source to load coupling holes. One prototype is a 4-th order �lter
designed in rectangular waveguide with E-plane con�guration, capable of gen-
erating two additional symmetrical out-of-band transmission zeros and phase
equalization. The other prototype is a 4-th order �lter designed in H-plane con-
�guration with mixed TE101 and TE102 cavities, capable of generating asym-
metrical responses with additional out-of band transmission zeros.

2.5. Design of a 6-th order �lter based on dielectric resonators in the Ku band.
This design exploits the size reduction achievable by the equilateral triangular
geometry and is presented among several alternative topologies with reduced
footprint.
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Este capítulo se divide en tres secciones y recoge las ideas originales, las contribuciones y las
publicaciones surgidas de la presente Tesis. La Sección 8.1 resume las ideas originales que
se han propuesto en este trabajo y cuyo desarrollo se ha detallado en los Capítulos 2 a 6, así
como las principales conclusiones extraídas del trabajo de investigación llevado a cabo. La
Sección 8.2 enumera las contribuciones de esta Tesis al modelado electromagnético e�ciente
de geometrías no convencionales, así como al diseño de �ltros de microondas. Finalmente,
las publicaciones obtenidas como resultado del desarrollo de tres años de Tesis se listan en
la Sección 8.3.

8.1 Ideas originales y conclusiones generales

Los modernos sistemas de telecomunicaciones, y en particular los sistemas de comunicación
por satélite, están sujetos a especi�caciones muy restrictivas para garantizar la calidad de
servicio demandada por los usuarios. Los ingenieros de microondas llevan a cabo el diseño
de dispositivos complejos, para los cuales requieren herramientas de diseño asistido por
ordenador que sean e�cientes y precisas. En las últimas décadas dichas herramientas se
han desarrollado para el análisis de aquellas geometrías canónicas típicas en los sistemas
satelitales, como las guías de onda rectangular, circular o elíptica. Sin embargo, el desar-
rollo de las técnicas de impresión 3D ha abierto las puertas a nuevas posibilidades de diseño,
y con ello se han hecho necesarias herramientas de diseño asistido por ordenador capaces
de analizar las futuras geometrías. Es precisamente este escenario el que ha posibilitado el
desarrollo del presente trabajo de investigación.

En particular, la primera parte de esta Tesis se desarrolla para contribuir al mod-
elado electromagnético e�ciente de dos geometrías no convencionales: la guía triangular
equilátera y la guía cilíndrico-parabólica. El modelado de la guía triangular equilátera
se presenta en el Capítulo 2, cuyo análisis por medio de herramientas de análisis modal
se ha posibilitado recientemente gracias a la resolución del conjunto completo de modos
de esta guía en [40, 41]. En el capítulo 2 de la presente Tesis se propone por primera
vez la aplicación del método de análisis modal conocido como método de ajuste modal
(Mode-Matching method) en la geometría triangular equilátera. La formulación propuesta
en el capítulo se basa en el uso de ondas planas, y permite abordar la integración de dis-
continuidades formadas por esta guía y otra canónica (rectangular, circular, elíptica) de
manera uni�cada. Se desarrolla una herramienta software de análisis de campos electro-
magnéticos, y se aplica sobre distintos casos de estudio que tienen por objeto su validación
obteniéndose resultados excelentes. Además, la herramienta desarrollada se usa en capítu-
los posteriores para el diseño de �ltros. El análisis electromagnético de la guía parabólico-
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cilíndrica se lleva a cabo en el Capítulo 3. La resolución analítica del espectro modal
de esta guía no es trivial, requiriéndose la resolución de un sistema de ecuaciones de dos
variables en el dominio de los números reales. Antes de la publicación del trabajo desar-
rollado en esta Tesis, los modos de esta guía debían resolverse por medio de herramientas
de análisis numérico, debido a que los métodos analíticos disponibles requerían en última
instancia del uso de intersecciones grá�cas para la resolución del sistema de ecuaciones. En
esta Tesis se ha propuesto la resolución cuasi-analítica de esta guía combinando el uso de
técnicas de continuación analítica para aproximar las funciones base [50] con el uso de un
algoritmo de publicación reciente para resolver sistemas de ecuaciones [52]. La herramienta
de análisis electromagnético desarrollada se valida a través de distintos casos de estudio
que incluye casos simétricos y asimétricos, resolviéndose un elevado número de modos con
gran precisión.

Resulta obvio que el trabajo de investigación desarrollado en esta Tesis no puede
abordar todas las posibles geometrías que puedan surgir de la mano de las novedosas
técnicas de impresión 3D. Por esta razón se desarrolla el Capítulo 4, por completitud.
Este Capítulo propone una formulación de hibridización e�ciente entre los métodos de
elementos �nitos en 2D (2D-Finite Element method) y de ajuste modal (Mode-Matching
method), para lo cual se emplean funciones base anidadas del métodos de elementos �nitos
en 2D, dando lugar a matrices que pueden emplearse de modo directo en el cálculo de
las integrales requeridas por el método de ajuste modal. La formulación propuesta se
puede emplear para el análisis e�ciente de aquellos dispositivos de microondas formados
por la sucesión de guías de onda con espectro modal analítico y numérico. Para validar la
herramienta de análisis desarrollada, se proponen varios dispositivos ya publicados en la
literatura, obteniéndose muy buenos resultados.

En la segunda parte de esta Tesis, correspondiente a los Capítulos 5 y 6, se aborda
el diseño de �ltros de microondas. Dado que la integración de nuevas geometrías en los fu-
turos dispositivos de comunicaciones depende no sólo de la disponibilidad de herramientas
de análisis electromagnético e�ciente, sino también de la existencia de prototipos fun-
cionales, se desarrollan dos �ltros inline diseñados en cavidades triangulares equiláteras y
cilíndrico-parabólicas, respectivamente. En aras de la consecución de diseños cada vez más
compactos, se propone también un �ltro dual-mode en cavidades triangulares equiláteras,
el cual se fabrica, sintoniza y mide, obteniéndose resultados satisfactorios.

Siguiendo esta última línea de investigación en la que se busca proponer ideas nove-
dosas para la consecución de dispositivos compactos, en esta Tesis se han propuesto al-
ternativas tanto para �ltros en guía de onda como para �ltros basados en resonadores
dieléctricos. Para los primeros se ha propuesto hacer uso de acoplos dispersivos fuente-
carga, los cuales permiten generar ceros de transmisión adicionales fuera de la banda de
paso. De esta forma, se mejora el rechazo de las frecuencias indeseadas sin incrementar
el número de resonadores del �ltro. Esta estrategia es especialmente adecuada en bandas
altas de frecuencia, donde resulta complejo obtener resonadores de alto factor Q. La apli-
cación de acoplos dispersivos fuente carga se propone en los conocidos �ltros folded en guía
de onda rectangular dada su facilidad de implementación. En este contexto, se proponen
varios circuitos equivalentes que modelan el comportamiento resonante de dichos acoplos,
y se diseñan, fabrican y miden dos prototipos en banda W, uno en plano E y otro en plano
H. El trabajo desarrollado a este respecto se realiza en el contexto de una estancia de
investigación de 3 meses en el grupo Lehrstuhl für Hochfrequenztechnik de Kiel, donde se
realiza la fabricación de los prototipos en banda W. Por otro lado, los circuitos equivalentes



8.2 Contribuciones originales de esta Tesis 119

propuestos, así como el prototipo en plano H se diseñan por la estudiante de doctorado de
la presente Tesis.

Finalmente, en relación con los �ltros de resonadores dieléctricos, en esta Tesis se
propone hacer uso del resonador dieléctrico con forma triangular equilátera, ya publicado en
el contexto de antenas basadas en resonadores dieléctricos pero no en el diseño de �ltros de
microondas. En concreto, se proponen varias topologías posibles, de las cuales se selecciona
una, de planta hexagonal, para realizar el diseño de un prototipo a modo de prueba de
concepto en la banda Ku. Los resultados obtenidos son prometedores, obteniéndose la
respuesta deseada con un diseño de reducidas dimensiones.

8.2 Contribuciones originales de esta Tesis

Las principales contribuciones del trabajo desarrollado en esta Tesis se resumen en esta
sección, organizadas de acuerdo a dos objetivos principales:

1. Contribuciones al análisis electromagnético e�ciente de geometrías no convencionales
en guía de onda:

1.1. Desarrollo de una herramienta completa de análisis asistido por ordenador basada
en el método de ajuste modal (Mode-Matching method) para dispositivos en
guía de onda formados por bloques de guías triangulares equiláteras. Esta her-
ramienta incluye un paquete software que permite analizar casos de geometrías
rotadas e incluye una rutina de validación de cumplimiento de condiciones de
contorno.

1.2. Desarrollo de una herramienta de análisis asistido por ordenador basada en el
uso de ondas planas para analizar mediante la técnica de ajuste modal (Mode-
Matching) dispositivos en guía de onda formados por bloques de guías trian-
gulares equiláteras y otras geometrías canónicas en guía rectangular, circular y
elíptica.

1.3. Desarrollo de una herramienta de análisis asistido por ordenador para la res-
olución cuasi-analítica del espectro modal de la guía parabólico-cilíndrica de
contorno simétrico y asimétrico.

1.4. Desarrollo de una herramienta de análisis asistido por ordenador de hibridación
e�ciente entre los métodos de elementos �nitos en 2D (2D-Finite Element method)
y de ajuste modal (Mode-Matching method) basada en el uso de funciones base
anidadas de elementos �nitos, para dispositivos de microondas formados por la
sucesión de guías de onda con espectro modal analítico y numérico.

2. Contribuciones a la integración de nuevas geometrías y estructuras de acoplo en �ltros
de microondas:

2.1. Diseño de tres �ltros en guías de onda no convencionales, diseñados como prueba
de concepto para su futura integración en sistemas de telecomunicación futuros.
Se han diseñado dos prototipos de orden 7 y 9, el primero en cavidades trian-
gulares equiláteras y el segundo en cavidades asimétricas cilíndrico-parabólicas
respectivamente en la banda K.
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2.2. Diseño de un �ltro dual-mode en banda Ku en cavidades triangulares equi-
láteras. Este prototipo, diseñado, fabricado y medido, hace uso de la degen-
eración modal presente en este tipo de geometría para la obtención de un pro-
totipo compacto, y ha demostrado ser una buena alternativa a otros prototipos
dual-mode convencionales.

2.3. Estudio de acoplos fuente-carga dispersivos y de su integración en los conocidos
como fully canonical folded �lters. Se han propuesto varios circuitos equiva-
lentes para modelar la respuesta electromagnética observada, facilitando así la
integración de este comportamiento por medio de un único inversor fuente-carga
resonante.

2.4. Diseño, fabricación y medida de dos prototipos en guía de onda rectangular,
en banda W y con acoplos fuente-carga dispersivos. Uno de los prototipos de
orden 4 se diseña en plano E con dos ceros de transmisión fuera de la banda de
paso y ecualización de fase. El otro prototipo, también de orden 4, se diseña
en plano H haciendo uso de cavidades mixtas, unas basadas en el modo TE101

y otras en el modo TE102, siendo capaz de generar respuestas asimétricas con
ceros de transmisión adicionales.

2.5. Diseño de un �ltro de resonadores dieléctricos de forma triangular equilátera en
banda Ku. El prototipo diseñado tiene orden 6 y planta hexagonal, presentando
un tamaño signi�cativamente reducido gracias a la geometría empleada. Se
proponen otras topologías alternativas muy compactas que hacen uso de este
resonador para futuros diseños.
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A | Electromagnetic �eld in a
homogeneous waveguide

The electric and magnetic �eld of a waveguide with translation symmetry along the propa-
gation axis with arbitrary cross-section surrounded by perfect electric conductor and �lled
with isotropic and homogeneous dielectric, can be described by a modal series [105]:

~E =
∞∑
p=1

(
ape
−γpz + bpe

γpz)~ep +
(
ape
−γpz − bpeγpz)ezpẑ (A.1)

~H =
∞∑
p=1

(
ape
−γpz − bpeγpz)~hp +

(
ape
−γpz + bpe

γpz)hzpẑ. (A.2)

Each modal solution identi�ed by subindex p in (A.1)-(A.2) is obtained from the
resolution of the scalar Helmholtz equation:

∆tΦp + k2
cpΦp = 0. (A.3)

In order to solve the previous equation, Neumann and Dirichlet conditions must
be imposed, from which TE modes (Transversal Electric) and TM modes (Transversal
Magnetic) arise. For TEM modes, Laplace equation is involved.

A.1 TE modes

TE modes are the solution to (A.3), when Neumann-type boundary conditions are applied,
that is when:

∂Φp

∂n

∣∣∣∣
ζ

= 0, (A.4)

where ζ is the contour of the waveguide.

Once the pairs of eigenfunctions Φp and corresponding eigenvalues kcp of (A.3) have
been solved after imposing (A.4), the electromagnetic �eld of a TE mode that takes part
of the modal series in (A.1)-(A.2) can be computed as:

ezp = 0, (A.5)

hzp = −
√
Ypk

2
cp

γp

√
NpΦp, (A.6)
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~ep =
√
Zp
√
Np∇tΦp × ẑ, (A.7)

~hp =
√
Yp
√
Np∇tΦp. (A.8)

In these expressions the wave impedance (admittance) Zp (Yp) is de�ned as

Zp = Y −1
p =

jωµ

γp
, (A.9)

and the normalization constant Np is obtained from

Np = [

∫∫
As

|∇tΦp|2 dS]−1 = [ k2
cp

∫∫
As

Φ2
pdS ]−1. (A.10)

This normalizing constant guarantees that the modes ful�ll:∫∫
As

~ep × ~hp · ẑ dS = 1. (A.11)

A.2 TM modes

TM modes are the solution to (A.3), when Dirichlet-type boundary conditions are applied,
that is when:

Φp

∣∣
ζ

= 0, (A.12)

where ζ is the contour of the waveguide.

After imposing (A.12), the electromagnetic �eld of a TM mode that takes part of
the modal series in (A.1)-(A.2) can be computed as:

ezp = −
√
Zpk

2
cp

γp

√
NpΦp (A.13)

hzp = 0, (A.14)

~ep =
√
Zp
√
Np∇tΦp, (A.15)

~hp =
√
Yp
√
Npẑ ×∇tΦp. (A.16)

In these expressions the wave impedance (admittance) Zp (Yp) is de�ned as

Zp = Y −1
p =

γp
jωε

, (A.17)

and the normalization constant Np is analogous to the TE mode family:

Np = [

∫∫
As

|∇tΦp|2 dS]−1 = [ k2
cp

∫∫
As

Φ2
pdS ]−1. (A.18)
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A.3 TEM modes

TEM modes arise in multiconductor waveguides, and are the solution to the Laplace equa-
tion:

∆tΦp = 0, (A.19)

which is the same as (A.3) with kcp = 0. In a structure with N+1 unconnected conductors,
each one with contour ζn, N linearly independent TEM modes ful�l equation (A.19) with
non-homogeneous Dirichlet boundary conditions:

Φp

∣∣
ζn

= vpn, (A.20)

where vpn are the potentials from n = 1, . . . , N + 1 for each TEM mode p. The chosen
values of vpn for a TEM mode must be a linearly independent set from the chosen values of
the rest of TEM modes to be computed. Then, the electromagnetic �eld of a TEM mode
that takes part of the modal series in (A.1)-(A.2) can be computed as:

~ep =
√
Zp
√
Np∇tΦp, (A.21)

~hp =
√
Yp
√
Np ẑ ×∇tΦp, (A.22)

with ezp = 0 and hzp = 0. In these expressions the wave impedance (admittance) Zp (Yp)
is de�ned as:

Zp = Y −1
p =

√
µ

ε
. (A.23)

Finally, the normalization constant Np is computed as:

Np = [

∫∫
As

|∇tΦp|2 dS]−1. (A.24)
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