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Abstract 
Introns	 cover	most	of	 the	DNA	 sequence	 in	human	protein-coding	genes	 and	 represent	

approximately	half	of	the	non-coding	genome.	Very	little	is	known	about	the	patterns	of	

structural	 variation	 in	 introns	 and	 little	 attention	 has	 been	 paid	 to	 their	 functional	

implications,	 even	 if	 several	 pathogenic	 intronic	 mutations	 have	 already	 been	

characterized.	 Through	 the	 combined	 analysis	 of	 the	 five	most	 extensive	maps	 of	 Copy	

Number	Variants	(CNVs)	in	human	populations	we	show	that	intronic	losses	are	the	most	

frequent	 type	 of	 CNV	 in	 protein-coding	 genes.	 The	 lower	 density	 of	 CNVs	 in	 introns	

compared	to	intergenic	regions	supports	the	presence	negative	selection	on	intronic	CNVs.		

We	 identified	 many	 intronic	 deletions	 associated	 with	 gene	 expression	 changes	 by	

integrating	 genotype	 with	 RNA-seq	 and	 promoter-capture	 Hi-C	 data,	 supporting	 the	

implication	of	many	CNVs	in	genetic	regulation.	Remarkably,	a	noteworthy	number	of	these	

associations	 are	 better	 interpreted	 by	 long-range	 genome	 interactions.	 Supporting	 the	

possible	 impact	 of	 intronic	 CNVs	 on	 splicing,	 we	 have	 found	 185	 genes	 differentially	

expressed	transcripts	associated	with	deletions.	Moreover,	we	have	found	changes	in	exon	

inclusion	 associated	with	 deletions	 that	 alter	 the	GC	 content	 of	 the	 intron.	 This	 finding	

suggests	that	 the	structure	of	 the	 fragments	deleted	 in	 introns	play	a	significant	role	on	

which	 exons	 are	 included	 in	 the	 mature	 messenger	 RNA.	 Altogether,	 our	 findings	

additionally	support	the	substantial	role	of	intronic	CNVs	on	gene	regulation.		

Interestingly,	 we	 have	 observed	 that	 CNVs	 are	 not	 equally	 distributed	 among	 genes	 of	

different	evolutionary	ages.	Ancient	genes	are,	in	general,	depleted	of	losses	covering	their	

exons,	 but	 they	 carry	 the	 majority	 of	 intronic	 deletions,	 including	 intronic	 deletions	

associated		with	expression	changes.	On	the	other	hand,	recent	primate-specific	genes	are	

enriched	in	CNVs	implicating	exons.	Taken	together,	our	findings	suggest	that	CNVs	have	a	

role	 in	 shaping	 gene	 evolution,	 possibly	 acting	 at	 different	 levels	 at	 large	 and	 short	

evolutionary	times	(old	and	young	genes).	While	in	young	genes	CNVs	contribute	to	directly	

alter	protein	sequences,	 in	ancient	genes	CNVs	seem	to	be	preferentially	contributing	to	

population	variability	at	the	level	of	regulation	with	possible	adaptive	implications.
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Resumen 
Los	 intrones	 cubren	 la	mayor	parte	de	 la	 secuencia	de	ADN	en	 genes	 codificantes	para	

proteínas	y	representan	aproximadamente	la	mitad	del	genoma	no	codificante	en	humanos.	

Se	sabe	muy	poco	acerca	de	los	patrones	de	variación	estructural	en	los	intrones	y	se	ha	

prestado	poca	atención	a	sus	implicaciones	funcionales,	incluso	si	ya	se	han	caracterizado	

varias	mutaciones	 intrónicas	 patógenicas.	 A	 través	 del	 análisis	 combinado	 de	 los	 cinco	

mapas	más	extensos	de	las	Variantes	en	Número	de	Copia	(CNVs)	en	poblaciones	humanas,	

mostramos	 que	 las	 pérdidas	 intrónicas	 son	 el	 tipo	más	 frecuente	 de	 CNV	 en	 los	 genes	

codificantes	para	proteínas.	La	menor	densidad	de	CNVs	en	intrones	en	comparación	con	

regiones	intergénicas	sugiere	la	presencia	de	selección	negativa	sobre	las	CNVs	intrónicas.	

Integrando	datos	de	CNVs	con	datos	de	RNA-seq	y	PCHi-C	hemos	identificado	deleciones	

intrónicas	 asociadas	 a	 cambios	 en	 la	 expresión	 génica.	 Parte	 de	 estas	 asociaciones	 se	

interpretan	mejor	por	interacciones	genómicas	entre	fragmentos	distantes.	Apoyando	el	

posible	papel	de	las	CNVs	intrónicas	en	el	proceso	de	splicing,	hemos	encontrado	185	genes	

con	 tránscritos	 diferentialmente	 expresados	 en	 los	 individuos	 con	 deleciones.	 Además,	

hemos	 encontrado	 cambios	 en	 la	 inclusión	 de	 exones	 asociados	 a	 CNVs	 que	 alteran	 el	

contenido	GC	del	intrón.	Esto	sugiere	que	la	estructura	de	los	fragmentos	perdidos	en	los	

intrones	 desempeña	 un	 papel	 importante	 en	 la	 selección	 de	 exones	 en	 el	 splicing.	 En	

conjunto,	nuestros	hallazgos	muestran	el	 importante	papel	de	 las	CNVs	 intrónicas	en	 la	

regulación	génica.	

Curiosamente,	hemos	observado	que	las	CNV	no	están	distribuidas	equitativamente	entre	

los	 genes	 de	 diferentes	 edades	 evolutivas.	 Los	 genes	 antiguos	 están	 empobrecidos	 de	

pérdidas	en	sus	exones	pero	tienen	la	mayoría	de	deleciones	intrónicas,	incluidas	muchas	

de	 las	 asociadas	 a	 cambios	 de	 expresión.	 Por	 otro	 lado,	 los	 genes	 recientes	 están	

enriquecidos	en	CNVs	exónicas.	Nuestros	hallazgos	sugieren	que	las	CNVs	contribuyen	a	la	

evolución	de	 los	genes,	posiblemente	actuando	a	diferentes	niveles	en	genes	antiguos	y	

jóvenes.	Mientras	que	en	los	genes	jóvenes	las	CNVs	contribuyen	a	alterar	directamente	las	

secuencias	de	proteínas,	en	los	antiguos,	las	CNVs	parecen	estar	contribuyendo	de	manera	

preferencial	a	la	variabilidad	en	la	regulación,	con	posibles	implicaciones	adaptativas.	
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Introduction 

The evolution of the reference genome 

The	Human	Genome	Project	(HGP)	was	initiated	in	1990	with	the	aim	of	sequencing	and	

mapping	of	the	human	genome	and	that	of	some	model	organisms.	By	that	moment,	it	had	

been	widely	anticipated	that	knowing	the	complete	human	DNA	sequence	would	help	to	

better	understand	the	genetic	bases	of	disease,	human	evolution	and	the	interplay	between	

genes	and	environment.	

The	HGP	was	carried	with	the	DNA	of	a	small	number	of	donors,	obtaining	a	final	sequence	

that	was	a	mosaic	of	the	volunteers'	genomes.	Since	the	completion	of	the	HGP	in	2003,	the	

reference	 genome	 has	 been	 constantly	 improved	 and	 updated.	 The	 current	 human	

reference	genome	(GRCh38),	released	by	the	Genome	Reference	Consortium	(GRC),	is	the	

twentieth	version	of	it.	This	last	version,	although	it	has	reduced	or	eliminated	more	than	

100	 gaps	 relative	 to	 the	 previous	 version	 (GRCh37,	 the	 one	 used	 in	 this	 thesis)	 and	 is	

considered	the	best-assembled	mammalian	genome,	still	contains	875	gaps	(Paten	et	al.,	

2017).	 Long-read	 sequencing	 technologies	 are	 allowing	 the	 resolution	 of	 large	 gaps	

(>50kb)	 (Jain	 et	 al.,	 2018),	 but	 the	 reference	 genome	 now	 faces	 another	 problem:	 the	

variability	 that	 is	 being	 detected	 by	 current	 techniques,	 including	 most	 previously	

unidentified	 Structural	 Variants	 (SVs),	 is	 too	 large	 to	 be	 properly	 referenced	 by	 single	

reference	sequences	(Paten	et	al.,	2017).		

By	the	moment	the	HGP	started,	it	was	estimated	that	the	99.9%	of	the	DNA	sequence	was	

shared	between	any	two	individuals	(National	Human	Genome	Research	Institute,	1996),	

and	 the	 idea	 that	 Single	 Nucleotide	 Variants	 (SNVs)	 were	 the	 main	 source	 of	 genetic	

variation	in	humans	remained	for	years	after	the	completion	of	the	first	reference	genome.	

Nonetheless,	the	development	of	techniques	such	as	Comparative	Genomic	Hybridization	

(CGH)	arrays	led	to	a	burst	of	population	studies	that	revealed	that	SVs	spanning	more	than	

50	nucleotides	contributed	to	human	variation	at	least	as	much	as	SNVs	(Escaramís	et	al.,	

2015).	Current	estimates	using	Next	Generation	Sequencing	(NGS)	techniques	indicate	that	

a	typical	genome	differs	from	the	reference	genome	in	3.5-4.3	million	SNVs	(~0.1%)	and	
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harbors	a	median	of	18.4	Mbp	of	SVs	(0.6%)	(The	1000	Genomes	Project	Consortium,	2015;	

Sudmant	et	al.,	2015a).		

This	previously	unsuspected	variability	 is	raising	concern	about	the	possible	biases	that	

are	derived	from	using	a	single	reference	genome	to	study	all	other	human	genomes,	to	the	

extent	 that	 the	 GRC	 has	 announced	 that	 they	 postpone	 the	 next	 release	 (GRCh39)	

indefinitely,	 while	 they	 evaluate	 new	 models	 to	 provide	 the	 best	 reference(s)	 (GRC	

website).	 Ideally,	 this	 improved	 reference	 genome	 should	 be	 able	 to	 reflect	 all	 this	

structural	variability	and	even	the	variability	within	the	SVs.		

Genome organization and regulation 

Besides	 providing	 a	 complete	 and	 accurate	 sequence	 of	 the	 human	 DNA,	 the	 HGP	 also	

intended	to	provide	a	complete	catalogue	of	all	the	genes	in	the	human	genome.	They	were	

surprised	to	see	that	the	number	of	protein-coding	genes	was	much	 lower	than	 initially	

expected	(20,000-25,000,	compared	to	previous	estimates	as	high	as	120,000	(Liang	et	al.,	

2000))	 (International	 Human	 Genome	 Sequencing	 Consortium,	 2004).	 This	 finding	

suggested	that	the	complexity	of	the	human	genome	is	not	limited	to	the	number	of	protein-

coding	genes,	but	on	how	the	genome	is	regulated.	

The	HGP	marked	a	turning	point	in	the	study	of	the	genome	by	enabling	the	development	

of	different	high-throughput	"Omics"	technologies	on	the	genomics,	transcriptomics,	and	

epigenomics.	The	HGP	also	opened	the	way	to	other	significant	biological	scientific	efforts,	

such	as	the	ENCyclopedia	Of	DNA	Elements	(ENCODE)	project	(Consortium,	2004),	which	

had	the	goal	to	create	a	complete	catalog	of	different	classes	of	functional	elements	codified	

in	the	human	genome.	The	ENCODE	and	the	later	Roadmap	Epigenomics	Project	(Roadmap	

Epigenomics	 Consortium	 et	 al.,	 2015)	 have	 focused	 on	 the	 annotation	 of	 putative	

regulatory	 elements	 by	mapping	 tissue-specific	 enhancers,	 based	mainly	 on	 chromatin	

modifications	 and	 accessibility	 of	 the	 DNA.	 More	 recent	 molecular	 approaches	

(Chromosome	Conformation	Capture	techniques)	have	permitted	the	analysis	of	the	spatial	

organization	of	the	chromatin	in	a	cell,	showing	that	the	3-dimensional	organization	of	the	

genome	 plays	 a	 critical	 role	 in	 gene	 regulation	 and	 that	 enhancers	 can	 regulate	 gene	

expression	of	distal	genes,	even	Mb	away	through	physical	 interactions	(Li	et	al.,	2018).	
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These	enhancers,	which	are	normally	found	in	non-coding	regions,	have	the	potential	to	

physically	interact	with	several	regions,	increasing	the	regulatory	potential	of	the	genome	

and,	together	with	cis-regulatory	elements,	drive	the	identity	of	any	cell	type	(González-

Barrios	et	al.,	2015).	It	has	been	suggested	that	trans	factors	make	larger	contributions	to	

gene	 expression	 variability	 among	 individuals	 of	 the	 same	 species	 than	 cis-regulators	

(Signor	and	Nuzhdin,	2018).		

Although	non-coding	regions	have	been	proved	to	have	a	relevant	regulatory	role	in	many	

cases,	how	much	of	the	genome	is	functional	(and	even	the	definition	of	"functional"	itself)	

remains	controversial.	A	possible	classification	of	the	genome	based	on	its	functionality	and	

non-functionality,	based	on	the	proposal	by	Graur	et	al.	(Graur	et	al.,	2015)	is:	

• Functional	DNA.	A	sequence	that	is	selected	naturally	because	of	its	function.	It	can	

be	classified	into	two	subgroups:	

o Literal	DNA,	if	the	order	of	the	nucleotides	is	under	selection,	as	in	protein-

coding	regions.	 	

o Indifferent	DNA,	when	 the	presence	or	absence	of	 the	 fragment	 is	under	

selection,	but	not	the	order	of	the	nucleotides.	Such	sequences	act	as	spacers,	

fillers	or	protectors	against	frameshift.		

• Non-functional	DNA.	Sequences	without	a	positively	selected	effect	function	

o Neutral	 non-functional	DNA.	 DNA	 that	 does	 not	 contribute	 not	 detracts	

from	the	fitness	of	the	organism	and	thus	selection	does	not	operate	on	it.	

This	 term	appeared	 for	 the	 first	 time	 in	 the	1960s	and	was	 formalized	by	

Ohno	in	1972	(Ohno,	1972).	

o Detrimental	non-functional	DNA.	Negatively	selected	DNA	that	decreases	

the	fitness	of	its	carriers.	It	exists	because	natural	selection	is	not	immediate	

nor	omnipotent.		

"Indifferent	DNA"	 can	 have	 an	 essential	 role	 in	 the	 spatial	 organization	 of	 the	 genome.	

These	 regions	 should	 not	 show	 selection	 against	 base	 pair	 substitutions,	 but	 SVs	 are	

expected	to	be	under	selection	in	these	sequences.	This	means	that	SVs	need	to	be	analysed	

in	a	structural	context.		
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Protein coding genes 

Since	the	term	"gene"	was	coined	at	the	beginning	of	the	20th	century,	its	definition	has	

been	evolving	with	the	discoveries	in	the	field	of	genetics	(Portin	and	Wilkins,	2017).	The	

Ensembl	group	defines	a	gene	as	a	“genomic	locus	where	transcription	occurs”	that	may	or	

may	not	encode	or	proteins	and	can	have	one	or	more	transcripts.	Other	definitions	add	to	

this	description	that	the	final	product	has	to	be	functional	(Gerstein	et	al.,	2007).		

Currently,	 according	 to	 the	 annotation	 of	 functional	 elements	 made	 by	 the	 GENCODE	

Project,	in	the	human	genome,	there	is	a	total	of	58,381	genes,	out	of	which	19,901	encode	

for	 proteins	 (GENCODE	 Version	 28,	 November	 2017	 freeze,	 GRCh38	 -	 Ensembl	 92).	 In	

Ensembl	 version	 75,	 build	 GRCh37	 (the	 version	 used	 in	 this	 thesis),	 there	 are	 22,836	

protein-coding	genes	out	of	64,162	genes.	The	differences	between	versions	exist	because	

the	list	of	genes	that	encode	for	proteins	is	continuously	being	updated	and	some	genes	and	

transcripts	change	status	between	databases	and	releases.	A	recent	study	from	our	group	

combining	different	lines	of	evidence,	including	transcript	expression,	protein	expression,	

and	genetic	variation,	suggests	that	many	protein-coding	annotated	genes	are	in	fact	non-

coding	 and	 that	 the	 number	 of	 protein-coding	 genes	 is	 probably	 close	 to	 19,446	 (the	

number	 of	 genes	 annotated	 in	 all	 Ensembl/GENCODE,	RefSeq	 and	UniProtKB	 reference	

databases)	(Abascal	et	al.,	2018).			

In	human,	protein-coding	genes	have	very	variable	sizes,	ranging	from	less	than	200	bp	to	

more	than	2	Mbp	(Yates	et	al.,	2016)	(Figure	1).	In	most	genes,	however,	the	sequence	that	

encodes	 a	 protein	 is	 discontinuous,	 distributed	 in	 sequences	 called	 exons	 that	 are	

interrupted	by	 introns.	An	 “average”	 gene1	contains	11	exons	 separated	by	10	 intronic	

sequences.	While	the	size	of	exons	is	quite	stable	(mean	length	309	bp,	standard	deviation	

(SD)	=	725bp)	the	size	of	introns	is	very	variable	mean	6355	bp,	SD	=		20,649 bp).	The	ratio	

between	intron	and	exon	size	in	an	average	gene	is	about	21:1	(Piovesan	et	al.,	2016).	

																																																								

1	Unless	otherwise	specified,	when	talking	about	genes	we	will	be	referring	to	protein-coding	genes,	which	

are	the	focus	of	this	thesis. 
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Figure	1	|	Gene	length	distribution	

Introns 

In	large	genomes,	introns	account	for	most	of	the	genic	sequences.	In	the	human	genome,	

they	constitute	93%	of	the	protein-coding	fraction	and	about	half	of	the	non-coding	genome	

(Francis	and	Wörheide,	2017).	The	amount	of	intronic	sequence	is,	in	fact,	similar	to	that	of	

non-coding	 intergenic	 DNA,	 and	 this	 happens	 in	 most	 animal	 species	 (Francis	 and	

Wörheide,	2017).		

Every	time	a	gene	is	transcribed,	the	intronic	content	has	to	be	excised	at	the	exact	correct	

positions	with	complex	spliceosomal	machinery.	Whether	(or	how)	introns	compensate	for	

the	amount	of	energy	that	they	cost	to	the	cell	is	still	not	fully	understood.	What	is	clear,	

though,	is	that	introns	have	been	key	in	eukaryotic	evolution	(Rogozin	et	al.,	2012).		

The	origin	of	introns	

Extensive	research	strongly	suggests	that	introns	in	eukaryotic	cells	originated	after	the	

establishment	of	the	endosymbiosis	between	an	alpha-proteobacterium	and	an	archaeal	

host.	Group	II	introns	from	the	endosymbiont	(typical	mobile	elements	that	actively	spread	

around	 the	 host	 genome),	 would	 have	 invaded	 the	 genome	 of	 the	 emerging	 eukaryote	

(Rogozin	 et	 al.,	 2012).	 	 To	 survive	 to	 such	 an	 invasion,	 eukaryotes	 had	 to	 develop	
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mechanisms	that	allowed	the	coordination	of	the	(slow)	process	of	splicing	and	the	(faster)	

process	of	transcription.	According	to	Martin	and	Koonin	(Martin	and	Koonin,	2006),	the	

emergence	of	the	nuclear	envelope	was	mandatory	to	prevent	ribosomes	from	translating	

unspliced	premessengers.	Other	mechanisms	such	as	nonsense-mediated	decay	(NMD)	—	

a	post-transcriptional	surveillance	process	 that	ensures	 the	degradation	of	mRNAs	with	

premature	 stop	 codons	—	 also	 became	 necessary	 to	 ensure	 that	 only	 correctly	 spliced	

mRNAs	are	translated	(Lambowitz	and	Belfort,	2015;	Celik	et	al.,	2017).		

The	roles	of	introns	

Even	though	introns	do	not	code	for	protein	and	need	to	be	removed	from	the	messenger	

RNA	(mRNA)	before	it	is	translated	into	an	amino	acid	sequence,	introns	can	benefit	the	

cell	 and	 the	 organism	 and	 participate	 actively	 in	 gene	 evolution.	 Some	 of	 the	 principal	

direct	and	indirect	roles	of	introns	are:	

• Alternative	splicing	(AS):	Introns	break	the	protein-coding	information	of	a	gene.	

The	step	of	cutting	out	introns	from	the	pre-mRNA	gives	the	possibility	to	generate	

alternative	coding	messages	through	the	alternative	splicing	of	the	introns.	In	other	

words,	multiple	mature	mRNAs	 can	 be	 obtained	 from	one	 single	 gene	 thanks	 to	

alternative	splicing,	supposedly	resulting	in	an	extended	protein	repertoire	without	

increasing	 the	 number	 of	 genes.	 Approximately	 95%	 of	 the	multi-exon	 genes	 in	

human	undergo	AS	(Pan	et	al.,	2008),	although	the	extent	to	which	AS	contributes	

to	proteomic	complexity	is	still	largely	unknown	(Liu	et	al.,	2017;	Tress	et	al.,	2017).		

• Trans-splicing:	Although	it	is	a	rare	process	in	humans,	splicing	can	also	happen	in	

trans	 by	 combining	 two	 pre-mRNA	 molecules	 from	 different	 genes.	 The	 trans-

spliced	chimeric	RNAs	potentially	can	encode	for	a	novel	protein	or	act	as	regulatory	

RNAs	(Lei	et	al.,	2016).			

• Source	 of	 regulatory	 elements:	 Introns	 (especially	 first	 introns)	 host	 many	

regulatory	sequences	such	as	enhancers	and	silencers	that	regulate	the	upstream	

promoter	and	can	modulate	transcription	(Chorev	and	Carmel,	2012).		

• Source	 of	 non-coding	 RNAs	 (ncRNAs):	 Several	 ncRNAs	 including	 micro	 RNAs	

(miRNAs),	 short-interfering	 RNAs	 (siRNA),	 piwi-interacting	 RNAs	 (piRNAs),	 long	
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non-coding	RNAs	(lncRNAs)	and	small	nucleolar	RNAs	(snoRNAs)	are	preferentially	

located	 within	 introns.	 These	 ncRNAs	 have	 a	 broad	 spectrum	 of	 regulatory	

functions,	and	the	processing	of	the	ncRNAs	itself	can	modify	the	expression	of	the	

host	gene	(Rearick	et	al.,	2011;	Heyn	et	al.,	2015).	

• mRNA	recognition,	transport,	and	stability:	Introns	have	been	suggested	to	act	

as	identity	markers,	helping	the	cell	machinery	to	detect	mRNAs	among	the	pool	of	

transcripts	 (Palazzo	 and	 Gregory,	 2014).	 Introns	 may	 also	 be	 affecting	 mRNA	

stability	(Bonnet	et	al.,	2017),	transport	(Valencia	et	al.,	2008)	and	NMD	(Wong	et	

al.,	2013).		

• Formation	of	new	genes	by	exon	shuffling.	The	intron-mediated	recombination	

of	exons	from	different	genes	has	been	an	important	mechanism	to	create	new	genes	

through	evolution	(França	et	al.,	2012).		

Evidence	of	the	importance	of	intron	size		

Gene	length	influences	the	time	needed	to	transcribe	a	gene.	Since	gene	size	is	primarily	

determined	by	intron	size,	intron	length	largely	determines	the	expression	timing	and	can	

provide	a	mechanism	for	temporal	regulation	of	gene	expression.	A	number	of	studies	have	

shown	different	situations	in	which	the	size	of	the	gene	is	relevant	for	the	function	of	sets	

of	proteins.	

In	2002,	Castillo-Davis	et	al.	saw	in	Homo	sapiens	that	introns	of	highly	expressed	genes	

are,	 on	 average,	 14	 times	 shorter	 than	 those	 of	 low-expressed	 genes,	 suggesting	 that	

selection	could	be	acting	to	reduce	the	costs	of	transcription	by	shortening	or	keeping	short	

the	more	highly	expressed	genes	(Castillo-Davis	et	al.,	2002).	Similar	results	were	observed	

for	 housekeeping	 genes	 (genes	with	 a	 constitutive	 expression	 in	 all	 tissues),	which	 are	

enriched	in	essential	functions	(Eisenberg	and	Levanon,	2003).		

Genes	expressed	in	rapidly	cycling	tend	to	be	short	and	have	few	or	no	introns	so	that	they	

can	be	efficiently	expressed	during	a	 short	 cell	 cycle.	The	 shortest	 cycles	occur	 in	early	

embryo	 development,	 during	which	 the	 expressed	 genes	 are	 short	 and,	 in	many	 cases,	

intronless	(Heyn	et	al.,	2015).	On	the	opposite	extreme,	in	terminally	differentiated	cells	
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such	as	neurons,	we	 find	 the	 longest	human	genes	(Heyn	et	al.,	2015)	(Supplementary	

table	1).	Moreover,	long	genes	are	enriched	for	neuronal	functions	(Gabel	et	al.,	2015).		

Intron	 length	 has	 been	 shown	 to	 affect	 the	 dynamics	 of	 transcriptionally	 controlled	

feedback	 loops	 and	 increase	 oscillatory	 periods	 of	 gene	 expression,	 processes	 that	 are	

essential	 in	 numerous	 contexts	 such	 as	 vertebrate	 somitogenesis,	 cell	 cycle,	 hormonal	

signaling	and	circadian	rhythms	(Swinburne	et	al.,	2008).		

When	 the	 transcription	of	 a	gene	 is	 activated	or	 silenced,	 the	 time	 required	 to	obtain	a	

protein	 product	will	 depend	 on	 the	 size	 of	 the	 gene.	 Thus,	 activation,	 but	 also	 shutting	

down,	will	be	faster	in	shorter	genes	(Heyn	et	al.,	2015).	For	this	reason,	long	introns	can	

cause	delays	in	dynamic	gene	expression.	In	this	line,	Takashima	et	al.	(2011)	found	that	

introns	 are	 required	 for	 Hes7	 gene	 oscillations	 in	 somite	 segmentation	 in	 mouse	

(Takashima	et	al.,	2011).	Further	work	by	the	same	group	showed	that	if	the	number	of	

introns	of	Hes7	was	reduced,	the	time	delay	was	shortened,	oscillation	time	increased,	and	

embryos	developed	more	somites	and	vertebrae	than	wild-type	mice	(Harima	et	al.,	2013).		

An	 evolutionary	 study	 evidenced	 high	 levels	 of	 conservation	 in	 intron	 length	 in	 genes	

associated	 with	 embryonic	 development	 in	 mammals,	 suggesting	 that	 genes	 whose	

transcription	 requires	 precise	 time	 coordination	 are	 sensitive	 to	 changes	 in	 transcript	

length	(Seoighe	and	Korir,	2011).	Moreover,	the	comparison	of	mammalian	genomes	found	

that	 intron	 lengths	 of	 co-expressed	 genes	 or	 genes	 participating	 in	 the	 same	 protein	

complexes	 tend	 to	 coevolve,	 possibly	 because	 a	 precise	 temporal	 regulation	 of	 the	 co-

expression	of	these	genes	is	required	(Keane	and	Seoighe,	2016).		

Altogether,	these	studies	suggest	that	the	size	of	introns	in	different	types	of	protein-coding	

genes	can	impact	the	proper	functioning	of	a	cell	or	an	organism,	and	that	intron	length	has	

been	regulated,	molded	and	shaped	through	evolution.		
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Intron	splicing:	introns	vs.	exons	recognition	theories	

Gene	structure	is	largely	determined	by	its	location	in	a	region	of	low	GC	or	high	GC	content.	

During	the	evolution	of	homeotherms	(mammals	and	birds),	a	major	GC	increase	happened	

that	was	accompanied	by	changes	in	gene	structure	(Bernardi,	2000).		

Gil	Ast	and	co-workers	found	a	general	negative	correlation	between	exonic	GC	content	and	

length	 of	 the	 flanking	 introns	 in	 mammalian	 and	 avian	 genomes 2 		 (homeotherm	

vertebrates)	 (Amit	 et	 al.,	 2012)	 similar	 to	what	 had	 also	 been	 observed	 in	 human	 and	

chimpanzee	(Gazave	et	al.,	2007).	On	top	of	this	observation,	this	work	defined	two	exon-

intron	 architectures	 that	 resulted	 from	 the	 evolution	 from	an	 ancestral	 state	 of	 low	GC	

exons	flanked	by	short	introns	with	even	lower	GC	content	(Figure	2),	which	here	will	be	

named	"exon	high	–	intron	high"	and	"exon	low	–	intron	lower":	

1) Exon	high	–	intron	high:	Exons	found	in	regions	of	high	GC	content	flanked	by	short	

introns	 of	 a	 similar	GC	content.	This	group	would	have	undergone	a	GC	content	

elevation	that	abolished	the	differential	GC	content	between	exons	and	introns.	

2) Exon	low	–	intron	lower:	Exons	in	low	GC	content	regions,	flanked	by	long	introns	

with	a	significantly	lower	GC	than	the	exons.	This	group	would	have	retained	the	

low	GC	content	and	the	GC	drop	in	introns.	

For	 proper	 removal	 of	 the	 intron	 from	 the	 pre-mRNA,	 the	 splicing	machinery	 needs	 to	

recognize	 the	 splicing	 units	 (exons	 and	 introns)	 within	 the	 genic	 sequence.	 These	 two	

architectures	 require	 different	 mechanisms	 of	 splicing	 that	 differ	 in	 the	 splicing	 unit	

recognition,	which	can	be	an	intron	(intron	definition	model)	or	an	exon	(exon	definition	

model).		

																																																								

2	This	study	included	genomes	from	mammals	(human,	cow,	mouse,	opossum,	and	platypus),		birds	(chicken)	
other	vertebrates	(frog,	fugu,	and	zebrafish),	invertebrates	(Caenorhabditis	elegans),	and	plants	(Arabidopsis	
thaliana).	
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Figure	2	|	Relationship	between	intron	size	and	GC	content.	Average	GC	for	
exons	 (black	 box)	 flanked	 by	 long	 (blue)	 and	 short	 (red)	 introns	 (black	
horizontal	line).	Adapted	from	an	article	by	Amit	and	others	(Amit	et	al.,	2012).		

In	 the	 intron	definition	model,	 the	machinery	 recognizes	 introns	 and	places	 the	 basal	

splicing	machinery	across	them.	Genes	with	an	"exon	high	–	intron	high"	structure	require	

this	system.	Intron	definition,	which	is	thought	to	be	the	ancestral	splicing	mechanism	and	

widespread	in	modern	lower	eukaryotes,	is	limited	to	introns	of	a	certain	length.	Introns	

recognized	through	this	mechanism	are	under	evolutionary	selection	to	remain	short	(Amit	

et	al.,	2012;	Hollander	et	al.,	2016).		

On	the	other	hand,	in	the	exon	definition	model,	the	splicing	machinery	recognizes	exons	

among	long	introns	and	places	the	basal	splicing	machinery	across	exons	instead	of	introns.	

This	 mechanisms	 is	 presumably	 an	 adaptation	 to	 overcome	 a	 general	 lengthening	 of	

introns	(Hollander	et	al.,	2016),	and	 is	used	 in	genes	with	an	"exon	 low	–	 intron	 lower"	

structure.	Increasing	the	GC	content	differential	between	exons	and	introns	contributes	to	

better	recognition	of	the	exon	(Amit	et	al.,	2012).		

In	higher	eukaryotes,	where	 the	majority	of	 introns	are	 long,	 the	predominant	mode	of	

splicing	is	probably	exon	selection	(Hollander	et	al.,	2016)	

Structural variants 

As	mentioned	 above,	 the	 emergence	of	 novel	 technologies	uncovered	 the	presence	of	 a	

previously	inconceivable	amount	of	SVs	in	healthy	individuals.	The	classification	of	these	
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SVs	has	been	changing	as	the	resolution	of	the	techniques	has	increased.	As	a	result,	even	

today	there	is	a	lack	of	consensus	on	the	classification	of	SVs.		

Insertions	or	deletions	under	50bp	long	are	not	considered	SVs.	Instead,	they	are	typically	

called	short	indels	(Lin	et	al.,	2017)	or	microindels	(Gonzalez	et	al.,	2007).	Notwithstanding,	

there	is	no	real	consensus	on	the	maximum	number	of	base	pairs	that	fall	in	this	category.		

SVs	 are	 all	 variants	 larger	 than	 50bp,	 and	 they	 encompass	 translocations	 (change	 of	

position	 of	 a	 segment	 of	 DNA,	 without	 a	 gain	 or	 loss	 of	 genetic	 material),	 inversions	

(inverted	nucleotide	sequence	in	the	same	position),	insertions,	and	copy	number	variants	

(CNVs)	(Escaramís	et	al.,	2015).	CNVs,	 the	 focus	of	 this	 thesis,	are	 fragments	of	DNA	

longer	than	50bp	(Alkan	et	al.,	2011;	Zarrei	et	al.,	2015)	 	whose	number	of	copies	

varies	compared	to	the	reference	genome.	There	is	no	maximum	size	for	CNVs,	although	

in	some	cases,	such	as	in	the	Database	of	Genomic	Variants	(DGV)	(MacDonald	et	al.,	2014),	

they	keep	a	record	of	CNVs	up	to	3Mb.		

More	 extensive	 losses	 or	 duplications	 of	 portions	 of	 chromosomes	 are	 usually	 called	

chromosomal	abnormalities	or	aberrations,	or	aneuploidies	if	they	involve	the	loss	or	gain	

of	a	whole	chromosome.	

Mechanisms of CNV formation 

Four	major	mechanisms	generate	genomic	rearrangements	and	probably	account	for	the	

majority	of	CNVs	in	humans.	These	mechanisms	are:			

• Non-Allelic	Homologous	Recombination	(NAHR).	NAHR	is	a	recombination	error	

that	 occurs	 during	 mitosis	 or	 meiosis	 (Zhang	 et	 al.,	 2009)	 when	 there	 is	 a	

misalignment	 of	 regions	 of	 extensive	 sequence	 similarity.	 Depending	 on	 the	

orientation	and	location,	NAHR	can	cause	deletions	or	duplications	(Conrad	et	al.,	

2010).			

• Non-Homologous	End	Joining	(NHEJ).	NHEJ	is	a	process	of	double-strand	break	

(DSB)	repair	that	fuses	the	ends	of	the	break	with	little	or	no	sequence	homology	

(<4bp),	 generating	 short	 insertions	 or	 deletions	 at	 the	 breakpoint	 junction.	
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Breakpoints	 of	 NHEJ-mediated	 rearrangements	 often	 fall	 within	 DNA	 repetitive	

elements	such	as	LTR,	LINE,	Alu,	MIR,	and	MER2	(Zhang	et	al.,	2009).	

• Fork	 Stalling	 and	Template	 Switching	and	Microhomology-Mediated	Break-

Induced	Replication	 (FoSTeS	/MMBIR).	 	 These	mechanisms	 involve	erroneous	

DNA	 replication	 and	 the	 shift,	 by	 microhomology,	 of	 the	 polymerase	 from	 the	

original	 template	 to	 another	 replication	 fork.	 The	 resulting	 rearrangements	 can	

have	sizes	ranging	from	kilobases	to	several	megabases	(Lee	et	al.,	2007;	Ottaviani	

et	al.,	2014).		

• Mobile	Element	Insertions	(MEIs).		Most	mobile	elements	annotated	in	the	human	

genome	 are	 remnants	 of	 ancient	 retrotransposons	 that	 are	 no	 longer	 capable	 of	

active	retrotransposition.	However,	some	are	still	active,	usually	belonging	to	the	

Alu,	L1	and	SVA	families	of	retrotransposons	(Stewart	et	al.,	2011).	MEIs	also	have	

a	role	in	the	generation	of	SVs	through	the	previously	explained	mechanisms,	since	

copies	of	mobile	elements	maintain	high	levels	of	homology	(Escaramís	et	al.,	2015).		

Each	of	these	mechanisms	leaves	a	detectable	particular	molecular	signature	in	and	around	

the	breakpoints	of	the	SV	(Escaramís	et	al.,	2015).	

Distribution of CNVs in the genome 

CNVs	 are	 distributed	 unevenly	 across	 the	 genome.	 To	 date,	 a	 number	 of	 studies	 have	

identified	links	between	different	genomic	features	and	the	formation	of	CNV.		

Genomic	repeats,	both	low	and	high-copy	repeats,	play	an	essential	role	in	CNV	formation	

and	instability	(Chen	et	al.,	2014).	A	recent	study	showed	that	low-mappability	regions	are	

five	times	more	likely	to	harbor	CNVs	than	the	remaining	90%	of	the	genome	(Monlong	et	

al.,	2018).	However,	because	of	the	scarce	coverage	in	these	regions	in	most	of	the	studies,	

the	structural	variation	occurring	within	them	is	usually	missed	(Monlong	et	al.,	2018).	The	

temporal	 order	 in	 which	 DNA	 replicates	 (replication	 time	 or	 RT)	 is	 associated	 with	

different	 types	 of	 CNV	mechanisms.	 While	 CNVs	 associated	 with	 NAHR	 are	 commonly	

found	 in	 early-replicating	 regions,	 CNVs	 caused	 by	 non-homologous	 repair	 (NH)	 are	

enriched	in	late-replicating	DNA	(Koren	et	al.,	2012).	Replication	dynamics	also	appear	to	

be	linked	to	CNV	distribution,	and	CNV	breakpoints	are	enriched	in	genomic	regions	with	
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a	slowed	replication	(which	can	be	a	result	of	fork	barriers,	less	fork	initiation	or	reduced	

replication	speed)	(Chen	et	al.,	2015).	

SVs in healthy populations 

Genetic	 diversity	 is	 essential	 for	 adaptation	 to	 environmental	 changes.	 While	 SNV	

variability	 has	 been	 largely	 studied,	 the	 contribution	 of	 SVs	 to	 traits,	 disease	 and	 gene	

regulation	is	still	unclear.	From	the	thousands	of	CNVs	that	have	been	detected	in	healthy	

populations	(a	median	of	3,145	CNVs	per	person),	some	might	contribute	to	susceptibility	

to	diseases	(Martin	et	al.,	2015).		

In	2015,	the	most	extensive	maps3	of	CNVs	were	published	for	healthy	populations:		

• Abyzov:	Abyzov	 et	 al.	 did	 a	 systematic	 genome-wide	 study	 of	 deletion	 breakpoints	

detected	 from	1,092	 individuals	 sequenced	 in	phase	1	of	 the	1000	Genomes	Project	

(1KGP)	and	studied	their	formation	mechanisms	(Abyzov	et	al.,	2015).			

• Handsaker:	Handsaker	et	al.	created	a	CNV	map	by	analysing	849	genomes	from	phase	

1	of	the	1KGP.	Their	study	aimed	to	detect	and	characterize	multiallelic	CNVs	(mCNVs),	

defined	as	variants	that	appear	at	high	frequency	in	the	population	and	that	vary	over	

widely	different	numbers	of	copies	(Handsaker	et	al.,	2015).	

• Zarrei:	 Zarrei	 et	 al.	 developed	 a	 map	 of	 CNVs	 and	 CNV	 regions	 (CNVRs,	 regions	

containing	at	least	two	CNVs	that	overlap	and	that	may	have	different	breakpoints)	by	

selecting	variants	found	in	2647	controls	from	the	entire	Database	of	Genomic	Variants	

(DGV)	collection.	The	selected	CNVs	had	been	dected	using	different	methods	including	

SNP	or	CGH	array,	NGS	and	Sanger	sequencing	(Zarrei	et	al.,	2015).		

• Sudmant-Science:	Sudmant	et	al.	sequenced	the	genome	of	236	individuals	from	125	

distinct	human	populations	from	across	the	globe.	They	identified	new	CNVs	that	could	

be	population-specific	(Sudmant	et	al.,	2015b).		

																																																								

3	For	the	sake	of	simplicity,	from	now	on,	each	study	will	be	referred	to	using	the	name	is	its	first	
author,	followed	by	the	journal	in	the	case	of	the	two	maps	with	the	same	first	author.		
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• Sudmant-Nature:	 This	 map	 published	 by	 the	 1KGP	 consortium	 consists	 of	 an	

integrated	map	of	SVs	analysing	the	phase	3	whole-genome	sequencing	data	(Sudmant	

et	al.,	2015a)	obtained	from	2504	individuals	and	analysed	using	multiple	algorithms	

for	the	calling	of	the	SVs.		

In	addition	to	the	abovementioned	studies,	which	are	the	ones	that	will	be	analysed	in	this	

thesis,	during	the	last	decade	several	countries	have	started	national	projects	to	sequence	

the	genome	of	inhabitants	within	the	country,	in	order	to	describe	the	genetic	background	

of	 their	 population	 groups,	 and,	 ultimately,	 to	 improve	 their	 health	 care	 (Dubow	 and	

Marjanovic,	2016;	An,	2017)	(Table	1).	These	projects,	however,	will	only	reflect	part	of	

the	variability	in	the	human	genome	and	underrepresent	or	miss	variants	that	are	specific	

from	other	populations.	

National	Genome	Projects		
deCODE	genetics	(Iceland)	
The	Estonian	Biobank	/	Estonian	Genome	Centre,	University	of	Tartu	(EGCUT)		
The	Singapore	Genome	Variation	Project		
Genome	of	the	Netherlands	(GoNL)		
GenomeDenmark		
The	Faroe	Genome	Project	(FarGen)		
Cymru	DNA	Wales		
The	National	Centre	for	Indigenous	Genomics	(NCIG)	(Australia)		
Kuwait	legislation	introducing	mandatory	DNA	testing	(no	project	name)		
The	Precision	Medicine	Initiative	Cohort	Program	(US)	
SardiNIA	
China	Kadoorie	Biobank	(CKB)	
UK	Biobank		
The	Slim	Initiative	in	Genomic	Medicine	for	the	Americas	(SIGMA)	(Mexico)		
UK10K	
The	Deciphering	Developmental	Disorders	(DDD)	Study	(UK)	
Genomics	England	(The	100,000	Genomes	Project)		
The	Saudi	National	Genome	Program	
The	Belgium	Medical	Genomics	Initiative	(BeMGI)	
The	Initiative	on	Rare	and	Undiagnosed	Diseases	(Japan)		
The	National	Centre	for	Excellence	in	Research	in	Parkinson’s	Disease	(Luxembourg)		

Table	1	 |	National	genome	sequencing	 initiatives.	List	of	national	 initiatives	 to	sequence	 the	
genome	of	a	representative	part	of	their	population.	
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To	date,	the	1KGP	(Sudmant-Nature)	is	the	most	comprehensive	available	study,	combining	

SNV	and	SV	calls	and	 including	26	populations	 from	5	major	population	groups	 (Africa,	

America,	Europe,	and	South	and	East	Asia)	(Sudmant	et	al.,	2015a).	

The impact of CNVs on protein-coding genes 

CNVs	can	affect	protein-coding	genes	in	different	ways:		

• Protein	disruption:	CNVs	can	modify	the	amino	acid	sequence	if	they	overlap	with	

exons	or	splicing	signals.	

• Alteration	of	gene	dosage:	CNVs	that	cover	whole	genes	represent	complete	loss	

(homozygous	 or	 heterozygous)	 or	 gain	 (of	 one	 or	 more	 copies)	 of	 a	 gene.	 The	

number	 of	 copies	 of	 a	 gene	 correlates	 in	 many	 cases	 with	 its	 expression	 levels	

(Handsaker	et	al.,	2015;	Rice	and	McLysaght,	2017).		

• Impact	on	gene	regulation:	CNVs	can	affect	gene	expression	by	either	 inserting	

new	 regulatory	 elements,	 by	disrupting	 existing	 regulatory	 regions	 or	modifying	

their	distance	from	the	regulated	gene.	At	times,	gained	copies	of	a	gene	can	occur	

in	other	chromatin	environments	than	the	original	copy,	or	be	surrounded	by	new	

regulatory	elements	that	can	produce	expression	changes	(Harewood	et	al.,	2012;	

Weischenfeldt	et	al.,	2013;	Gamazon	and	Stranger,	2015).	

In	general,	CNVs	are	more	likely	to	contribute	to	variation	in	the	expression	levels	of	a	gene	

than	SNPs	(Bryois	et	al.,	2014;	Chiang	et	al.,	2017),	and	during	the	 last	 few	years,	many	

studies	have	linked	CNVs	to	changes	in	gene	expression	in	humans	(Gamazon	et	al.,	2011;	

Chiang	et	al.,	2017;	Sudmant	et	al.,	2015a;	Glassberg	et	al.,	2019).		

How mutations shape evolution 

CNVs	can	produce	changes	that	alter	the	 fitness	of	an	allele	and,	consequently,	selective	

forces	 might	 act	 upon	 them.	 The	 mechanisms	 that	 can	 alter	 the	 fitness	 include	 the	

previously	explained	gene	expression	modifications,	the	changes	in	the	coding	sequence,	

and	also	the	creation	of	paralogues	(Iskow	et	al.,	2012).		
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Gene	duplications	arise	as	CNVs	and	provide	a	substrate	for	evolution.	If	the	original	and/or	

the	copied	genes	mutate,	divergence	can	result	 in	neofunctionalization	 (where	the	old	

function	 of	 the	 gene	 is	maintained	 and	 a	 new	 function	 evolves	 in	 one	 of	 the	 copies)	 or	

subfunctionalization	(where	the	original	function	is	distributed	between	the	two	copies	

due	to	mutations	partially	but	complementarily	inactivating	each	copy).	This	mechanism	

has	been	crucial	in	evolution,	as	most	innovations	in	gene	functions	seem	to	be	associated	

with	gene	duplication	in	one	way	or	another	(Conant	and	Wolfe,	2008).		

The	selective	forces	acting	on	CNVs	can	be	purifying	(negative)	or	positive,	and	they	will	

act	on	harmful	or	beneficial	CNVs,	respectively.	Both	scenarios	will	usually	lead	to	fixation	

(by	removing	detrimental	CNVs	or	by	increasing	the	frequency	of	the	beneficial	ones).	An	

obvious	depletion	of	CNVs	overlapping	with	functional	regions	has	been	reported	in	several	

studies	(Khurana	et	al.,	2013;	Sudmant	et	al.,	2015a;	Zarrei	et	al.,	2015),	suggesting	a	strong	

purifying	selection	on	CNVs	that	disrupt	coding	sequences.	Moreover,	big	CNVs	(of	over	

500kb)	seem	to	be	under	stronger	purifying	selection	than	smaller	CNVs,	probably	due	to	

the	higher	probability	of	overlapping	with	a	functional	region	(Iskow	et	al.,	2012).		

In	healthy	individuals,	however,	we	find	thousands	of	CNVs.	However,	most	of	them	are	

expected	to	be	benign	CNVs,	with	no	visible	impact	on	the	phenotype	or	associated	with	

benign	polymorphic	 traits	 (Zhang	et	al.,	2009).	A	 few	CNVs	are	 thought	 to	be	positively	

selected,	based	on	their	population	distribution	(Iskow	et	al.,	2012).	This	seems	to	be	the	

case	 of	 an	 mCNVs	 encompassing	 the	 HPR	 gene,	 which	 is	 involved	 in	 response	 to	

trypanosomes	and	is	present	at	high	copy	numbers	in	the	African	population	(Handsaker	

et	al.,	2015;	Sudmant	et	al.,	2015b),	or	the	salivary	amylase	gene	(AMY1),	present	at	high	

copies	in	populations	with	high-starch	diets	(Perry	et	al.,	2007).		

The association between CNVs and genes and genomic features 

Different	studies	have	shown	that	not	all	genes	or	genomic	structures	are	equally	affected	

by	CNVs.	Zarrei	and	others	observed	that	genes	associated	with	different	types	of	diseases	

are	less	variable	in	copy	number	than	expected	in	healthy	individuals	(Zarrei	et	al.,	2015).	

Another	study	showed	that	most	ancient	genes,	which	are	enriched	in	housekeeping	and	

essential	functions,	have	a	fixed	number	of	copies	(they	are	not	variable	in	copy	number),	
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while	young	genes,	which	tend	to	be	more	tissue-specific,	are	more	often	variable	in	copy	

number	 (Juan	 et	 al.,	 2013).	 An	 analysis	 of	 regulatory	 features	 revealed	 that	 regulatory	

regions	are	not	equally	affected	by	CNVs	either:	while,	in	general,	promoters	are	enriched	

with	CNVs,	enhancers	are	depleted	(Zarrei	et	al.,	2015).		

However,	more	analyses	are	needed	giving	more	consideration	to	the	size,	boundaries,	and	

activity	of	 these	and	other	 functional	elements	as	well	as	 to	 the	 location	and	amount	of	

overlap	with	the	CNVs.	Also,	compared	to	variation	in	exons,	much	less	attention	has	been	

paid	to	the	impact	of	mutations	in	introns,	even	if	several	pathogenic	variants	have	been	

found	deep	within	introns	(Vaz-Drago	et	al.,	2017)	and	even	if	many	SNVs	associated	with	

disease	detected	through	GWAS	are	located	in	introns	(Hsiao	et	al.,	2016;	Xiong	et	al.,	2015).		

An	interesting	feature	of	the	variation	in	introns	is	that	it	can	affect	regulatory	elements	

such	as	enhancers,	which	often	act	 in	a	 tissue-specific	manner	(Vermunt	et	al.,	2019).	A	

disruption	of	their	function	caused	by	a	mutation	can	show	up	in	a	cell-type	specific	way.	A	

study	combining	the	detection	of	regulatory	regions	active	in	different	tissues	with	GWAS	

found	that	disease-associated	SNPs	are	frequently	located	in	enhancers	active	in	a	tissue	or	

cell	type	relevant	to	the	disease	(Ernst	et	al.,	2011).	In	this	thesis,	we	want	to	study	how	

intronic	variants	can	affect	gene	regulation	and	if	any	groups	of	genes	are	more	susceptible	

to	carry	such	variants.			

Given	that	copy	number	variation	started	being	in	the	spotlight	only	recently,	the	“normal”	

(healthy)	distribution	of	CNVs	in	introns	is	less	studied	than	that	of	SNVs	and	small	indels.	

Currently,	there	is	no	consensus	on	whether	introns	are	enriched	or	depleted	of	CNVs,	or	

none	(Khurana	et	al.,	2013;	Mu	et	al.,	2011;	Sudmant	et	al.,	2015a).	One	of	the	goals	of	this	

thesis	is	to	study	the	distribution	of	CNVs	in	the	genome,	analysing	different	maps	of	CNVs	

in	parallel	in	order	to	understand	the	causes	of	the	dissenting	results.	

	



	 27	

 

 

Objectives  
	 	



	 29	

Objectives 
	

1. Analyse	 the	overlap	between	copy	number	variable	regions	 (CNVs)	and	genomic	

features	 in	 human	 genomes,	 focusing	 on	 the	 differential	 distribution	 of	 CNVs	 in	

protein-coding	genes.	

2. Investigate	the	effect	of	intronic	deletions	on	gene	structure	and	splicing.	

3. Explore	 the	 potential	 effect	 of	 intronic	 deletions	 on	 gene	 regulation	 and	 gene	

expression	changes.		

4. Study	the	different	impact	of	intronic	CNVs	on	genes	depending	on	their	function,	

essentiality	and	evolutionary	history.	
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Materials and methods 

Obtention and filtering of CNV maps 

Whole	genome	CNV	maps	from	healthy	populations	were	downloaded	from	5	different	

publications	 from	2015	(Abyzov	et	al.,	2015;	Handsaker	et	al.,	2015;	Sudmant	et	al.,	

2015a,	 2015b;	 Zarrei	 et	 al.,	 2015).	We	 selected	 autosomal	 and	not	 private	 CNVs.	 In	

Handsaker’s	map	we	 removed	 low	 quality	 CNVs	 and	 all	 the	 variants	 from	 samples	

NA07346	and	NA11918	because	 they	were	missing	 in	 the	phased	map.	Abyzov	 and	

Handsaker	are	maps	based	on	all	 (in	Abyzov)	or	most	 (in	Handsaker)	 low-coverage	

alignents	from	phase	1	of	the	1KGP	(1000	Genomes	Project	Consortium	et	al.,	2012).	In	

both	cases	the	samples	originate	from	14	different	populations	from	Africa,	America,	

East	Asia	and	Europe.	Sudmant-Nature	is	the	analysis	of	the	third	phase	of	the	1KGP,	

which	analyses	more	samples	from	a	total	of	26	populations	(including	samples	from	

South	Asia),	uses	different	input	sequence	data,	aligns	against	an	improved	version	of	

reference	genome	GRCh37,	and	uses	different	variants	callers.		

In	 the	case	of	 the	Zarrei’s	map,	which	 is	a	curated	selection	of	CNVs	 from	the	entire	

Database	of	Genomic	Variants	(DGV)	collection,	we	selected	the	more	stringent	map	

that	includes	CNVs	present	in	at	least	two	individuals	and	in	two	studies.	It	is	important	

to	note	that	this	meta	analysis	includes	variants	from	the	pilot	and	phase	1	of	the	1KGP	

(The	1000	Genomes	Project	Consortium,	2010,	2015).		

Sudmant-Science	includes	236	from	125	populations	from	across	the	globe	(including	

Siberia	 and	 Oceania),	 with	 1	 to	 3	 samples	 per	 populations	 (except	 for	 14	 Papuan	

samples).	

Ancestral state 

To	unravel	the	ancestral	state	of	the	CNVs	marked	as	deletions,	we	have	compared	the	

Final	 1000	 Genomes	 Project	 dataset	 (Sudmant-Nature)	 with	 recent	 high-quality	

genomic	 data	 of	 great	 apes	 (Kronenberg	 et	 al.,	 2018).	 In	 detail,	 when	 comparing	

Sudmant-Nature	to	Kronenberg’s	data,	an	SV	was	considered	identical	 if	there	was	a	
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reciprocal	overlap	higher	than	80%.	Deletions	were	confirmed	when	they	appeared	in	

a	genomic	region	that	can	be	found	in	non-human	primates	(NHP),	without	any	SV	in	

the	NHP	or	with	insertions	only.	Conversely,	insertions	were	confirmed	if	the	fragment	

is	annotated	as	a	deletion	in	all	NHP	at	an	allelic	frequency	=	1.		

Gene structures 

Coordinates	 and	 sequences	 of	 protein-coding	 gene	 structures	 were	 retrieved	 from	

Ensembl	 (Yates	 et	 al.,	 2016)	 version	 75.	 Principal	 and	 alternative	 isoforms	 were	

retrieved	 from	 the	 APPRIS	 database	 (Rodriguez	 et	 al.,	 2013),	 Ensembl	 version	 74.	

Intronic	regions	were	defined	as	the	constitutively	intronic	parts	of	genes,	i.e.	parts	of	

introns	 that	 don’t	 overlap	 with	 any	 exon	 from	 any	 other	 gene	 or	 isoform.	 When	

analysing	real	introns,	for	example	when	we	look	at	the	position	of	the	intron,	we	used	

only	the	principal	isoform.	To	avoid	duplicate	identification	of	introns,	in	the	cases	of	

more	than	one	principal	isoform,	we	selected	the	isoform	with	a	higher	exonic	content.		

Genome	 coordinates	 and	 low-mappability	 regions	 were	 obtained	 from	 R	 package	

“BSgenome.Hsapiens.UCSC.hg19.masked”	(The	Bioconductor	Dev	Team,	2014).	

Essential genes 

The	 essential	 genes	 list	 is	 a	 combination	 of	 sets	 of	 genes	 reported	 as	 essential	 in	

different	 studies	based	on	CRISPR	genomic	 targeting	 (Hart	 et	 al.,	 2015;	Wang	et	 al.,	

2015),	gene-trap	insertional	mutagenesis	(Blomen	et	al.,	2015)	and	shRNA	(Cheung	et	

al.,	2011;	Marcotte	et	al.,	2012;	Silva	et	al.,	2008).	

Statistical assessment of genome-wide distribution of CNVs 

To	estimate	enrichment	or	 impoverishment	of	CNVs	 in	different	 genomic	 functional	

elements	 or	 regions	 we	 performed	 permutation	 tests	 in	 which	 we	 compared	 the	

number	of	overlaps	of	CNVs	with	the	regions	to	the	number	of	overlaps	in	a	background	

model.	We	 did	 these	 analysis	 using	 three	 types	 of	 background	models	 in	which	we	

relocated	10,000	times	the	CNVs	in	the	genome	following	different	criteria.	The	“global”	
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background	 model	 was	 obtained	 by	 relocating	 all	 CNVs	 anywhere	 in	 the	 genome,	

avoiding	 low-mappability	 regions.	 The	 “local”	 background	 model	 was	 obtained	 by	

segmenting	 the	genome	 in	278	of	at	 least	10Mb	and	afterwards	relocating	 the	CNVs	

within	their	respective	10Mb	window	of	origin,	also	avoiding	low-mappability	regions.	

Finally,	the	“RT”	or	“Replication	time”	background	model	consisted	of	the	segmentation	

of	the	genome	in	regions	of	similar	replication	time	and	relocating	all	CNVs	within	a	

region	of	similar	RT.	Replication	time	was	obtained	from	publicly	available	data	from	

15	cell	 lines,	downloaded	from	ENCODE	(Hansen	et	al.,	2010;	Thurman	et	al.,	2007).	

Each	1kb	window	of	 the	genome	was	assigned	 the	median	RT	value	of	all	 cell	 lines.	

Then,	the	genome	was	divided	in	5	RT	intervals	with	the	same	number	of	windows	and	

all	CNVs	were	relocated	within	windows	belonging	to	the	same	interval	of	RT.		

Enrichment/Impoverishment	 ratios	 and	 P-values	 were	 computed	 using	 a	 function	

derived	from	the	permTest	function	from	package	RegioneR	version	1.6.2	(Gel	et	al.,	

2016).	Code	available	in	https://github.com/orgs/IntronicCNVs.	

Comparison of intronic and intergenic regions 

The	comparison	of	number	and	size	of	deletions	in	intronic	and	intergenic	regions	was	

done	by	randomly	selecting	a	 subset	of	500	 intronic	 regions	and	 finding	 for	each	of	

them	the	intergenic	region	with	the	most	similar	size	possible.	Then,	we	calculated	the	

overall	number	of	deletions	and	their	characteristics	in	the	500	intronic	regions	and	the	

500	intergenic	regions.	This	process	of	sampling	was	repeated	10,000	times	and	the	

distribution	of	deletions	in	the	intronic	and	the	intergenic	regions	was	compared	using	

paired	Student’s	T-test.	

Regulatory features 

The	 genome	 coordinates	 of	 regions	 likely	 to	 be	 involved	 in	 gene	 regulation	 were	

downloaded	from	the	Ensembl	Regulatory	Build	(Zerbino	et	al.,	2015),	assembled	from	

IHEC	epigenomic	data	(Stunnenberg	et	al.,	2016).		
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To	calculate	if	such	regions	are	enriched	in	introns	we	generated	background	models	

similar	in	the	same	way	as	the	“global”	background	model	for	CNVs.		

In	order	to	study	if	deletions	and	a	regulatory	regions	that	cooccur	in	the	same	intron	

tend	to	overlap	or	not,	we	took	each	intronic	deletion	and	randomly	relocated	it	10,000	

times	within	its	intron	of	origin	and	compared	the	number	of	cases	in	which	an	intronic	

deletion	overlaps	with	a	RF	in	the	original	set	and	in	the	randomized	sets.	P-values	are	

the	fraction	of	random	values	superior	or	inferior	to	the	observed	values.	

In	the	analysis	of	the	overlap	with	RFs	by	the	number	of	cell	types	in	which	the	RF	is	

active,	all	 intronic	deletions	 from	all	 five	datasets	(except	 for	exact	duplicates)	were	

taken	into	account.		

Gene expression analysis 

RNA-seq	data	for	445	individuals	from	the	1KGP	(Sudmant-Nature)	was	available	from	

the	Geuvadis	Consortium	(Lappalainen	et	al.,	2013).	We	analysed	the	expression	of	the	

763	genes	with	only	one	intronic	deletion	in	the	population	and	with	at	least	two	of	the	

445	 samples	 carrying	 the	 deletion.	 For	 each	 of	 these	 deletions	we	 compared	 using	

Student’s	 t-test	 the	 PEER-normalized	 (Stegle	 et	 al.,	 2010)	 gene	 expression	 levels	

(GD462.GeneQuantRPKM.50FN.samplename.resk10.norm.txt.gz)	 in	 the	 individuals	

homozygous	for	the	reference	genotype	and	in	the	individuals	with	a	deletion	in	one	of	

the	alleles.	We	corrected	for	multiple	testing	using	the	p.adjust	R	function,	using	the	

Benjamini-Hochberg	method.	In	addition	to	the	multiple	testing	correction,	to	verify	if	

the	number	of	significant	differentially	expressed	genes	is	different	from	expected	by	

chance,	we	shuffled	10,000	times	the	genotypes	of	the	individuals	and	compared	in	the	

same	 way	 the	 gene	 expression	 levels	 of	 the	 artificial	 groups	 of	 homozygous	 and	

heterozygous	individuals.	Each	of	the	10,000	times	we	calculated	the	number	of	eGenes	

and	finally	we	compared	the	random	percentages	of	eGenes	to	the	percentage	observed	

in	the	real	dataset.	P-values	were	calculated	as	the	fraction	of	random	values	superior	

or	inferior	to	the	observed	values.	
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Differential	expression	at	the	level	of	individual	transcripts	was	calculated	in	a	similar	

way,	using	data	froma	file	GD462.TrQuantRPKM.50FN.samplename.resk10.txt.gz	of	the	

Geuvadis	consortium	(Lappalainen	et	al.,	2013).	

Exon inclusion/exclusion  

To	 study	 changes	 in	 exon	 inclusion	 or	 exclusion	 we	 used	 alternative	 exon	

overexpression	as	a	proxy	for	higher	inclusion	and	underexpression	for	exon	exclusion.	

The	 expression	 levels	 of	 alternative	 exons	 upstream	 or	 downstream	 of	 an	 intronic	

deletion	was	compared	between	the	individuals	carrying	an	allele	with	the	deletion	and	

wild-type	 individuals.	 Exon	 expression	 data	 was	 obtained	 from	 the	 Geuvadis	

Consortium	 (GD462.ExonQuantCount.45N.50FN.samplename.resk10.txt.gz)	

(Lappalainen	et	al.,	2013).		

CNV mechanisms 

We	 had	 CNV	 mechanism	 information	 for	 Abyzov	 and	 Sudmant-Nature	 maps.	 In	

Sudmant-Nature,	 though,	 the	dataset	with	mechanisms	assigned	did	not	 correspond	

exactly	to	the	main	CNVs	dataset.	For	this	reason,	we	used	the	coordinates	 from	the	

main	CNV	set	and	assigned	the	mechanism	of	the	CNV	with	the	same	identifier	in	the	

mechanisms	dataset.		

Population stratification 

Population	stratification	of	deletions	was	estimated	using	the	Vst	statistics	extracted	

from	Sudmant-Nature	(Sudmant	et	al.,	2015a).	This	Vst	statistic	(Redon	et	al.,	2006)	is	

a	mesure	of	the	variance	of	a	CNV	between	populations.	It	is	caculated	by	considering	

(VT−VS)/	VT	where	VT	is	the	variance	in	copy	number	genotypes	among	all	unrelated	

individuals	 and	 VS	 is	 the	 average	 variance	 within	 each	 population,	 weighted	 for	

population	size	(Sudmant	et	al.,	2015a).	As	in	the	study	from	which	we	Vst	statistics	

(Sudmant-Nature,	Sudmant	et	al.	2015a),	we	selected	a	cutoff	of	0.2	 to	 indicate	high	

population	stratification	of	a	locus.		
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Observed vs expected intronic deletion content score 

To	rank	the	genes	according	to	their	enrichment	of	intronic	deletions	we	created	a	score	

comparing	the	observed	and	expected	deletions	per	gene.	For	this	analysis,	a	map	with	

all	deletions	from	Sudmant-Nature,	Abyzov	and	Zarrei	maps	was	created	(Abyzov	et	al.,	

2015;	 Handsaker	 et	 al.,	 2015;	 Sudmant	 et	 al.,	 2015a).	 The	 expected	 values	 were	

calculated	in	two	different	ways:	1)	relocating	10,000	times	all	deletions	in	the	whole	

genome	and	2)	relocating	1,000	times	all	intronic	deletions	within	the	intronic	regions.	

In	 both	 cases,	 low-mappability	 regions	 were	 avoided.	 The	 enrichment	 score	 was	

calculated	after	ranking	the	genes	by	1)	number	of	intronic	deletions	per	gene	divided	

by	 their	median	 expected	 value,	 2)	 position	 of	 the	 observed	 divided	 by	 the	median	

expected	size	of	the	deletions,	3)	position	of	the	percentage	of	intronic	content	that	is	

lost,	 4)	 the	 inverse	 of	 the	 expected	 intronic	 loss	 and	 5)	 ranked	 added	minor	 allele	

frequencies	 of	 deletions	 per	 each	 gene	 in	 Sudmant-Nature.	 Once	 all	 rankings	 were	

calculated	and	normalized	from	0	to	1,	a	score	was	assigned	to	each	gene	by	averaging	

their	five	ranks.		

Because	this	5	step	procedure	was	done	fore	the	two	types	ofrandomizations,	as	a	result	

we	obtained	two	lists	of	genes	from	more	to	less	enriched.	We	then	took	the	top	and	

bottom	500	genes	from	each	list	and	selected	the	genes	that	were	in	the	intersection	of	

the	two	lists.	The	intersections	resulted	in	469	genes	with	a	lowest	score	and	483	with	

a	highest	score	(less	and	more	deletions	than	expected,	respectively).	

Functional enrichment analysis  

Functional	enrichment	analysis	of	the	genes	with	a	lower	scores	and	higher	scores	was	

performed	with	GSEA	(Subramanian	et	al.,	2005)	and	STRING	v11	(Szklarczyk	et	al.,	

2015)	using	default	parameters.	Enrichment	of	selected	sets	of	genes	within	our	sets	of	

genes	with	more	and	less	deletions	were	done	performing	Fisher	tests.	The	background	

in	these	tests	was	the	list	of	genes	for	which	we	were	able	to	assign	an	enrichment	score.		
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Dating gene and intron ages 

Duplicated	and	singleton	genes	were	assigned	an	evolutionary	age	as	described	in	Juan	

et	 al.	 2014.	Briefly,	 using	 the	gene	 family	phylogenetic	 reconstructions	of	ENSEMBL	

Compara	(Herrero	et	al.,	2016),	which	uses	gene	sequences	from	52	different	species	

and	assigns	 speciation	or	duplication	events.	Using	 this	 information,	we	assigned	 to	

each	 duplicated	 gene	 the	 age	 of	 the	 phylostratum	 assigned	 to	 the	 last	 duplication	

leading	to	the	birth	of	the	extant	protein-coding	genes.	Singleton	genes	were	defined	as	

the	ones	without	a	detectable	duplication	origin	and	their	ages	were	assigned	from	the	

last	common	ancestor	to	all	the	genes	in	their	family.	

The	resulting	gene	ages	groups	and	the	number	of	genes	per	age,	from	ancient	to	recent,	

are	the	following:	FungiMetazoa:	1119,	Bilateria:	2892,	Chordata:	1152,	Euteleostomi:	

8230,	Sarcopterygii:	182,	Tetrapoda:	154,	Amniota:	408,	Mammalia:	375,	Theria:	515,	

Eutheria:	 848,	 Simiiformes:	 233,	 Catarrhini:	 170,	 Hominoidea:	 106,	 Hominidae:	 64,	

HomoPanGorilla:	204,	HomoSapiens:	500.		

For	some	analysis,	ages	were	grouped	as	follows:	Ancient	genes	are	all	the	genes	from	

age	 groups	 FungiMetazoa	 to	 Sarcopterygii,	 Middle-aged	 genes	 are	 all	 genes	 from	

Tetrapoda	 to	 Eutheria,	 and	 Young	 or	 Primate	 genes,	 all	 genes	 from	 Simiiformes	 to	

HomoSapiens.	

The	ages	of	intronic	regions	were	given	according	to	the	gene	they	belonged	to.	When	

an	intronic	region	was	part	of	more	than	one	gene,	the	most	recent	age	was	assigned.	

SCNA data 

SCNAs	 were	 obtained	 from	 2583	 samples	 from	 the	 ICGC/TCGA	 Pan-Cancer	 project	

(Campbell	et	al.,	2017).	A	filtering	of	the	samples	was	done	to	select	euploid	samples,	

since	the	category	of	gain	and	loss	 is	difficult	to	define	in	very	fragmented	genomes.	

Ploidy	levels	and	percentage	of	diploid	genome	were	calculated	for	each	patient	and	

euploid	genomes	were	defined	as	all	samples	with	a	ploidy	(average	copy	number	in	

the	whole	genome)	between	1.1	and	2.9	(2+-	0.9)	and	at	least	the	50%	of	the	genome	at	

copy	number	=	2.	The	remaining	set	consisted	of	1068	euploid	samples,	from	which	the	
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coordinates	of	deleted	fragments	were	extracted,	considering	deletions	all	fragments	

with	a	copy	number	lower	than	that	of	the	flanking	fragments.	The	overlap	between	

SCNAs	and	RFs	was	calculated	as	in	section	“Regulatory	features”.	

Analysis of differential GC content 

Genomic	sequences	were	obtained	from	the	primary	GRCh37/hg19	assembly,	and	were	

used	 for	 calculating	 the	 GC	 content	 of	 introns	 and	 intronic	 CNVs.	 Differences	 in	 GC	

content	between	a	CNV	and	the	intron	where	it	is	located	were	calculated	with	paired	

Student’s	t-tests	taking	as	statistical	unit	the	CNV.	The	same	was	done	for	changes	in	

intronic	GC	content	before	and	after	a	deletion.		
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Results 

Overview and comparison of CNV maps 

With	 the	aim	of	 characterizing	 the	 impact	of	CNVs	on	protein	 coding	genes	 in	healthy	

humans	we	used	five	high	resolution	CNV	maps	published	in	2015:	

• Handsaker	(Handsaker	et	al.,	2015)		

• Abyzov	(Abyzov	et	al.,	2015)	

• Zarrei	(Zarrei	et	al.,	2015)		

• Sudmant-Nature	(Sudmant	et	al.,	2015a)		

• Sudmant-Science	(Sudmant	et	al.,	2015b)		

Each	 one	 of	 the	maps	 has	 been	 derived	 from	 a	 different	 number	 of	 individuals	 from	

various	 populations	 and	 using	 different	 techniques	 and	 algorithms	 for	 CNV	 detection	

(Supplementary	table	2),	representing	five	differing	views	of	population	CNVs.		

The	datasets	contrast	notably	in	number,	type	and	size	of	CNVs	detected,	even	in	cases	

where	the	majority	of	the	genomes	analysed	are	the	same	(Hansaker’s	and	Abyzov’s	maps,	

see	Materials	and	methods	and	Supplementary	table	2).	We	decided	to	analyse	each	CNV	

map	 separately	 instead	 of	 combining	 them	 into	 a	 single	 map,	 avoiding	 a	 merging	 of	

independent	CNVs	or	the	opposite:	considering	as	independent	two	CNVs	that	are	in	fact	

the	 same	 but	 which	 have	 been	 called	 differently	 in	 two	 studies.	 In	 this	 thesis,	 only	

autosomic	 CNVs	 present	 in	 at	 least	 2	 individuals	 in	 the	 same	 map	 are	 taken	 into	

consideration.		

We	observed	that	the	third	phase	of	the	1KGP	(Sudmant-Nature)	is,	by	far,	the	map	

that	provides	more	CNVs	(Figure	3A).	More	than	the	half	of	the	genomic	regions	that	

are	 seen	 to	 be	 affected	 by	 CNVs	 (CNV	 regions	 or	 CNVR)	 in	 Sudmant-Nature	 are	 not	

reported	to	be	variable	in	copy	number	in	any	of	the	other	maps	(Figure	3B).		
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Figure	3	 |	Comparison	of	datasets.	Comparison	of	 the	5	maps	of	 copy	number	variability	 in	
healthy	population	used	in	this	study.	A)	Number	of	CNVs	reported	by	each	map,	separated	by	
type	of	CNV.	B)	Amount	of	the	genome	subject	to	copy	number	variation	in	each	map.	In	gray,	
regions	reported	in	more	than	one	map;	coloured,	the	amount	of	CNV	genome	detected	only	in	
one	map.	C)	Size	of	the	CNVs	in	each	map,	separated	in	gains	and	losses.		

Despite	 the	 variability	 among	 studies,	 deletions	 are,	 on	 average,	 consistently	

smaller	than	gains	(Figure	3C).	This	observation	can	be	due	to	technical	biases	in	the	

detection	of	gains	and	losses	or	it	can	reflect	the	reality	of	SV	in	the	genome.		

Overlap of CNVs with protein coding genes 

The	number	of	autosomal	protein	coding	genes	affected	by	CNVs	is	very	variable,	ranging	

from	1,694	in	Handsaker’s	map	to	5,610	in	the	Sudmant-Nature	map.	This	difference	in	

number	is	not	surprising	if	we	consider	that	the	number	and	sizes	of	CNVs	are	so	diverse	

among	maps	(Figure	3).	However,	it	is	striking	to	see	very	little	overlap	among	the	lists	

of	affected	genes:	only	402	(5.5%)	of	all	genes	affected	by	CNVs	coincide	in	the	five	maps.		

The	impact	of	a	CNV	on	a	gene	is	likely	to	be	different	depending	what	part	of	it	is	affected.	

A	CNV	can	cover	the	totality	of	a	gene,	affecting	gene	dosage,	or	it	can	delete	or	duplicate	

a	fraction	of	it.	The	high	resolution	of	the	CNV	maps	based	on	whole	genome	sequencing	

(WGS)	data	allowed	us	to	classify	the	variants	that	overlap	with	protein	coding	genes	in	

three	groups	(Figure	4):		

• Whole	gene	CNVs:	CNVs	that	encompass	entire	genes		

• Exonic	CNVs:	CNVs	overlapping	with	part	of	the	coding	sequence		
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• Intronic	CNVs:	CNVs	falling	in	intronic	regions,	not	overlapping	with	any	exon		

                Whole gene                             Exonic                                  Intronic  

	
Figure	4	|	Protein-coding	overlapping	CNVs.	Schematic	representation	of	the	different	types	
of	protein-coding	overlapping	CNVs		

For	the	definition	of	intronic	CNVs,	we	selected	CNVs	that	did	not	overlap	with	exons	of	

any	annotated	transcript	isoform	or	exons	from	other	genes	that	reside	in	introns.	It	is	

important	to	bear	in	mind	that	some	exonic	CNVs	do	overlap	with	introns,	but	they	are	

excluded	from	the	intronic	CNVs	group	because	they	also	affect	coding	regions.		

The	number	of	 CNVs	 and	 their	 type	 (gain,	 loss	 or	 gain/loss)	 changes	with	 the	 type	of	

overlap	with	the	gene.	 Intronic	CNVs	are	the	most	common	of	gene-overlapping	CNVs,	

while	whole-gene	CNVs	are	rarer	(Figure	5).		

A) Whole-gene CNVs                B) Exonic CNVs                         C) Intronic  CNVs

	

Figure	5	|	Number	of	CNVs	per	map	depending	on	type	and	overlap	with	a	gene.	Number	
of	CNVs	covering	A)	whole	genes,	B)	exons	but	not	the	whole	gene	or	C)	falling	within	introns.	
Each	bar	represents	a	dataset	and	the	types	of	CNVs	(gain,	gain/loss	or	loss)	are	depicted	with	
different	colours.	
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Whole gene CNVs 

All	maps	include	genes	that	are	completely	duplicated	or	deleted.	These	genes	that	have	

different	 dosage	 in	 the	 population	 are	 called	 CNV-genes.	 Whole-gene	 CNVs	 are	 more	

frequently	gains	(55%	of	the	cases)	or	gain-losses	(25%)	than	losses	(Figure	5).		

Considering	all	maps,	we	find	a	total	of	1,212	genes	entirely	overlapping	CNVs.	However,	

we	only	observed	6	genes	with	this	status	in	all	the	maps.	Interestingly,	two	of	them	are	

associated	with	disease	(Table	2).		

Gene	name	 Description	 CNV	type	 AF	

LCE3C	 and	
LCE3B	

Precursors	of	the	cornified	envelope	of	
the	stratum	corneum.	Involved	in	
antimicrobial	activity.	Diseases	
associated	with	LCE3C	include	Psoriatic	
Arthritis.	

Loss	(4	maps)		
Gain-Loss	(1	map)	 0.5629	(del)	

AADAC		

Involved	in	drug	metabolism.		Diseases	
associated	with	AADAC	include	
Chanarin-Dorfman	Syndrome	and	Gilles	
De	La	Tourette	Syndrome.		

Loss	(5	maps)	 0.0042	(del)	

MRGPRG	
May	regulate	nociceptor	function	
and/or	development,	including	the	
sensation	or	modulation	of	pain.	

Loss	(4	maps)		
Gain-Loss	(1	map)	
	

0.03275	(del)	
0.0357	(dup)	
0.00599	(trip)	

OR52N5		 Olfactory	receptor	 Loss	(4	maps)		
Gain-Loss	(1	map)	 0.2356	(del)	

OR5P2		 Olfactory	receptor.	May	be	involved	in	
taste	perception.	

Loss	(4	maps)		
Gain-Loss	(1	map)	

0.1210	(del)	
0.0006	(dup)	

Table	2.	CNV-genes	common	in	all	maps.	Description	of	the	six	CNV-genes	detected	in	all	
the	maps	and	allelic	frequencies	(AF)	for	each	allele	in	Sudmant-Nature.		

We	reasoned	 that	 frequent	CNV-genes	will	more	probably	be	detected	by	more	maps,	

while	 rarer	 events	 will	 be	 detected	 in	 fewer	 studies.	 Indeed,	 if	 we	 look	 at	 the	 allelic	

frequencies	(AF)	of	the	CNVs	affecting	genes	in	Sudmant-Nature,	we	see	that	the	genes	

detectes	as	variable	in	copy	number	in	more	maps	tend	to	overlap	with	CNVs	with	a	higher	

AF	(Figure	6).	This	result	shows	that	each	map	is	able	to	collect	a	partial	subset	of	the	

CNV-genes.		
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Figure	 6	 |	 Frequency	 of	 whole	 gene	 CNVs.	Allelic	 frequencies	 of	 the	 CNVs	 enterily	 with	
overlapping	with	genes,	group	by	number	of	maps	where	 they	are	detected.	The	AFs	 for	all	
alleles	(different	copy	numbers	of	a	CNV)	are	extracted	from	the	Sudmant-Nature	map	and	all	
the	AF	of	alleles	different	than	the	reference	were	summed,	representing	the	frequency	of	the	
gene	having	a	copy	number	different	 than	 the	reference.	Because	 the	AF	are	extracted	 from	
Sudmant-Nature,	CNV-genes	not	observed	in	this	map	are	not	included.	

Exonic CNVs 

Exonic	CNVs	are	CNVs	that	overlap	with	exons	of	a	protein-coding	gene	but	do	not	cover	

the	whole	gene.	These	CNVs	represent	the	31%	of	the	CNVs	that	overlap	with	genes.	A	

substantial	proportion	of	exonic	CNVs	are	losses	(66%),	while	the	23%	are	gains	and	the	

remaining	11%	are	gain-losses	(Figure	5).		

Losses	of	exonic	sequence	will	necessarily	result	in	changes	or	even	in	the	disruption	of	

the	protein	sequence.	On	the	other	hand,	it	is	not	possible	to	predict	the	impact	of	gains	

of	exonic	sequence	with	 the	data	provided	by	 the	maps	 in	our	study.	The	maps	 in	our	

study	do	not	give	information	on	where	gained	regions	are	inserted.	Depending	on	where	

the	insertion	happens,	the	gain	can	modify	or	disrupt	the	protein	sequence,	or	it	can	have	

no	 impact	at	all	on	 the	protein	 (for	example,	 if	 it	 is	 inserted	 in	an	a	distant	 intergenic	

region).	However,	even	without	knowing	where	the	 insertion	happens,	we	can	assume	

that	 exonic	deletions	will	more	 often	 be	 deleterious	 than	 exonic	 gains,	 due	 to	 a	

higher	probability	to	disrupt	the	coding	sequence.		
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Exons	can	belong	to	principal	or	to	alternative	isoforms,	or	both.	High-impact	variation	

has	been	shown	to	be	substantially	lower	in	alternative	exons	than	in	exons	belonging	to	

the	principal	isoform(s)	(Tress	et	al.,	2017).	This	past	study	on	the	variation	in	principal	

and	alternative	exons	has	not	included	the	analysis	of	CNVs.		

Given	that	losses	will	more	probably	have	a	high	impact	on	the	protein	and	will	probably	

be	under	stronger	negative	selective	pressure	than	gains,	we	assumed	that	the	ratio	of	

gains	to	losses	will	differ	in	principal	and	alternative	exons.	To	check	if	our	hypothesis	

was	true,	we	classified	all	exons	into	principal,	alternative	and	intersection	(exons	or	parts	

of	exons	that	belong	to	both	principal	or	alternative	isoforms,	as	in	the	abovementioned	

article	(Tress	et	al.,	2017)).	For	each	type	of	exons,	we	calculated	the	ratio	of	genes	with	

losses	versus	genes	with	gains.	We	observed	in	all	datasets	that	this	ratio	is	the	lowest	for	

the	principal	exons	and	the	highest	for	alternative,	showing	that	principal	exons	have	a	

lower	tendency	to	be	lost	than	alternative	exons	and	in	agreement	with	our	assumption	

that	coding	losses	are	probably	more	deleterious	than	gains	(Figure	7).		

	

	

Figure	7	|	Impact	of	CNVs	on	
principal	 and	 alternative	
exons.	 Ratio	 of	 genes	 with	
losses	versus	genes	with	gains	
in	their	exons,	by	type	of	exon.	
PPAL	=	exons	or	part	of	exons	
that	 only	 belong	 to	 principal	
isoforms,	INT	=	exons	or	part	
of	 exons	 that	 belong	 to	
principal	 and	 alternative	
isoforms.	ALT	=	exons	or	parts	
of	 alternative	 exons.	 The	
ratios	were	not	calculated	for	
Abyzov’s	map	because	it	only	
contains	losses.	
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Intronic CNVs 

Most	CNVs	that	overlap	with	genes	fall	within	intronic	regions	(from	31	to	88.9%	of	all	

CNVs,	63%	from	all	CNVs	in	all	5	maps),	without	overlapping	with	any	exon.		

Almost	all	(91%)	of	the	intronic	CNVs	are	deletions	 (Figure	5	and	Table	3).	Thus,	

because	intronic	CNVs	are	the	most	common	type	of	gene-overlapping	CNVs	and	most	of	

them	are	losses,	intronic	deletions	are	the	most	prevalent	form	of	CNVs	overlapping	

protein-coding	genes	(57.3%)	(Table	3).		

	 Gain	 Gain-Loss	 Loss	

Whole	gene	 783	(3.5%)	 356	(1.6%)	 275	(1.2%)	

Exonic	 1,587	(7.2%)	 726	(3.3%)	 4,500	(20.3%)	

Intronic	 575	(2.6%)	 654	(3.0%)	 12,680	(57.3%)	

Table	3	|	Proportion	of	each	type	of	CNVs.	Absolute	and	relative	number	
of	CNVs	by	type,	taking	all	CNVs	from	all	datasets	together.		

Two	of	the	CNV	maps,	Handsaker	and	Sudmant-Science	have	a	very	 limited	number	of	

intronic	CNVs	and	they	contribute	altogether	with	only	 the	14%	of	 the	purely	 intronic	

deletions	in	our	study.	This	is	probably	because	the	tools	used	in	both	studies	have	biases	

towards	the	detection	of	larger	CNV	regions	(mostly	gains)	so	the	probability	of	covering	

exons	is	higher.		

As	mentioned	before,	the	maps	that	we	have	analysed	do	not	inform	of	the	position	where	

gains	are	 inserted.	While	we	know	that	 intronic	deletions	 lead	 to	 the	shortening	of	an	

intron,	we	cannot	know	if	a	gain	has	a	consequence	or	not	on	the	intron.	For	this	reason,	

and	because	deletions	represent	most	of	the	intronic	CNVs,	we	focused	our	subsequent	

analyses	of	the	impact	of	CNVs	on	introns	on	deletions.		

Ancestral state of the variants 

Most deletions reflect losses relative to an ancestral genome 

The	deletions	detected	in	the	five	datasets	provide	us	with	the	fragments	of	introns	that	

can	be	absent	in	part	of	the	population	without	an	obvious	deleterious	impact,	since	they	
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are	observed	in	the	healthy	individuals.	In	total,	intronic	deletions	cover	the	2,95%	of	the	

reference	“introme”.			

It	is	important	to	note	that	the	status	of	deletion	or	gain	of	a	CNV	is	determined	in	relation	

to	 the	 reference	 human	 genome	 in	 all	 the	maps	 in	 our	 study.	However,	 the	 reference	

genome,	 which	 is	 a	 composite	 derived	 from	 the	 DNA	 of	 many	 individuals,	 does	 not	

necessarily	reflect	 the	ancestral	genome.	 If,	 for	example,	a	gain	of	50bp	relative	to	the	

ancestral	genome	is	by	chance	present	in	the	reference	genome	(because	it	was	present	

in	sequenced	individuals),	in	the	CNV	maps	based	on	this	reference	genome,	this	fragment	

will	be	annotated	as	a	deletion	in	the	individuals	who	lack	this	fragment	but	who,	in	fact,	

carry	the	ancestral	genotype.	For	this	reason,	we	cannot	assume	that	the	CNVs	marked	as	

deletions	 in	 these	 5	maps	 correspond	 to	 ancestral	 regions	 that	 can	 be	 lost	without	 a	

deleterious	effect,	as	some	of	them	might	be	recent	insertions	not	fixed	in	the	population.		

With	the	aim	of	understanding	the	extent	to	which	the	CNVs	annotated	as	deletions	really	

represent	deletions	relative	to	the	ancestral	genome,	we	took	recent	high-quality	data	of	

great	apes	(Kronenberg	et	al.,	2018)	and	checked	if	the	variants	from	the	1KGP	(Sudmant-

Nature)	were	specific	of	humans.	Deletions	could	be	confirmed	if	they	appeared	in	regions	

of	the	human	genome	that	do	not	present	deletions	in	non-human	primates	(NHP).			

We	were	able	to	confirm	that	at	least	72.8%	(16,319/22,412)	of	the	deletions	are	actual	

deletions	compared	to	the	ancestral	state,	implying	that	in	most	of	the	cases	the	genotype	

of	 the	 reference	 genome	 reflects	 the	 ancestral	 genome.	Regarding	 the	 subgroup	 of	

intronic	deletions,	the	79.2%	were	confirmed	to	be	ancestral	deletions.	On	the	other	

hand,	 0.3%	 of	 the	 deletions	 in	 Sudmant-Nature	 are	 in	 fact	 insertions	 (0.42%	 of	 the	

intronic	deletions).	For	the	remaining	27%	it	was	difficult	to	unravel	the	ancestral	state,	

sometimes	 because	 more	 species	 would	 be	 needed	 and	 other	 times	 because	 of	 the	

presence	of	other	SVs	in	the	same	region	in	some	NHP	make	it	difficult	to	assignment	a	

state	(Supplementary	figure	1).		

In	summary,	most	of	the	detected	deletions	reflect	deletions	relative	to	an	ancestral	

genome.		
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Population variability in intron and gene size 

Intronic deletions result in drastic changes of gene length in the population 

The	part	of	an	intron	that	is	subject	to	loss	is	very	variable,	from	0.03%	to	98.01%	(51	bp	

to	293	kb).	Taking	whole	genes	as	units,	the	part	of	the	“introme”	that	is	subject	to	losses	

represents	0.01%	to	77.5%	of	the	total	genic	size	(Figure	8).		

A)  Proportion of deleted intron          B)  Deleted intronic content per gene 

 
C)   Change in gene size 

 

Figure	8	|	(A)	Proportion	of	the	intron	that	has	deletions	in	at	least	one	study.	(B)	Percentage	
of	all	the	intronic	content	of	a	gene	that	has	deletions	in	at	least	one	study.	(C)	Observed	changes	
in	the	size	of	the	gene	caused	by	intronic	deletions.		
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Even	single	deletions	can	cause	very	big	changes	in	intron	and	gene	size.	Two	examples	

of	genes	with	a	 single	deletion	causing	one	of	 the	 largest	 changes	 in	gene	size	are	 the	

neuronal	glutamate	transporter	SLC1A1	(Solute	Carrier	Family	1	Member	1),	with	a	loss	of	

the	37%	of	its	genic	size	and	the	LINGO2	(Leucine	Rich	Repeat	And	Ig	Domain	Containing	

2)	gene	with	a	loss	of	the	34%	of	its	size.	Both	genes	are	highly	conserved	at	the	protein	

level	and	have	variants	associated	with	diseases.	In	the	case	of	LINGO2,	a	SNP	within	an	

intron	 has	 been	 associated	with	 body	mass	 (Rask-Andersen	 et	 al.,	 2015).	 In	 total,	we	

found	 1,638	 genes	 associated	 with	 disease	 (present	 in	 the	 Online	 Mendelian	

Inheritance	 in	 Man	 -	 OMIM	 -	 database)	 carrying	 intronic	 deletions	 in	 the	 healthy	

population.		

The	 combination	 of	 different	 intronic	 deletions	 affecting	 the	 same	 gene	 in	 a	 same	

individual	can	give	rise	to	several	alleles	of	different	size	in	a	population.	The	gene	with	

more	alleles	in	the	1KGP	population	(Sudmant-Nature)	is	CSMD1	(CUB	And	Sushi	Multiple	

Domains	1),	with	a	total	of	66	intronic	annotated	deletions	that,	combined,	produce	150	

alleles	of	 different	 sizes.	Notably,	 this	 gene	 is	 among	 the	most	 conserved	genes	 in	 the	

human	 genome,	 with	 only	 0.168%	 genes	 more	 intolerant	 to	 variation	 in	 the	 coding	

sequence,	 according	 to	 the	 the	Residual	Variation	 Intolerance	Score	 (RVIS),	which	 is	a	

scoring	system	that	assesses	whether	genes	have	more	or	less	functional	(missense,	stop	

and	splicing)	variants	than	expected	by	chance	given	the	amout	of	neutral	variants	that	

they	carry	(Petrovski	et	al.,	2013).		

These	results	show	that	many	human	genes	are	subject	to	losses	in	the	population,	

generating	genes	with	variable	sizes.	Even	in	genes	with	very	high	conservation	in	

the	coding	sequence	we	observe	extreme	variation	in	intron	sizes.		

Association of deletions genomic elements  

Intronic regions are enriched with deletions 

Interested	 in	 the	 possible	 relevance	 of	 high	 number	 of	 CNVs	 in	 introns,	 we	 asked	

ourselves	 if	 the	 deletions	 in	 our	 datasets	 are	 more	 or	 less	 prevalent	 in	 introns	 than	

expected	by	chance.	To	estimate	the	amount	of	deletions	expected	to	fall	by	chance	within	
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introns,	we	generated	three	independent	background	models.	The	three	models	differ	in	

the	regions	of	the	genome	where	each	deletion	can	be	relocated:	

• The	global	model:	All	the	deletions	from	a	map	are	relocated	in	random	places	

anywhere	in	the	genome,	avoiding	low-mappability	regions.			

• The	local	model.	All	deletions	are	relocated	within	10Mb	windows	(each	within	

their	window	of	origin)	under	the	assumption	that	there	is	a	similar	underlying	

genomic	 structure	 within	 each	 window.	 To	 do	 this,	 we	 segmented	 all	

chromosomes	 in	 fragments	 of	 up	 to	 10Mb	 as	 previously	 done	 in	 other	 studies	

(Bickel	 et	 al.,	 2010;	Mu	 et	 al.,	 2011)	 and	 relocated	 the	 deletions	 avoiding	 low-

mappability	regions.			

• The	replication-timing	 (RT)	model.	 Since	DNA	RT	 influences	 the	 rates	 of	 CNV	

formation	(Koren	et	al.,	2012),	we	created	this	model	consisting	in	the	relocation	

of	each	deletion	within	a	region	of	similar	RT,	avoiding	low-mappability	regions.		

After	generating	10,000	randomizations	for	each	model	and	each	one	of	the	five	datasets,	

we	 compared	 the	 observed	 distributions	 the	 of	 the	 deletions	 overlapping	with	 exons,	

introns	 or	 intergenic	 regions	 with	 the	 expected	 distributions	 obtained	 with	 the	

background	models.	Using	the	global	background	model,	we	found	that	there	is	a	general	

depletion	of	deletions	overlapping	with	exons	and	with	introns	(Figure	9).	However,	if	

we	focus	our	attention	on	the	deletions	that	are	purely	intronic	(i.e.,	that	do	not	overlap	

with	an	exon)	we	see	that	introns	are	significantly	enriched	with	deletions	in	3	out	

of	5	maps	 (4.14-9.3%	more	deletions	than	expected)	and	depleted	 in	one	of	 the	maps	

(Sudmant-Science)	(Figure	9).	Intergenic	regions	are	more	enriched	with	deletions	

than	introns	in	most	of	the	maps,	except	in	Zarrei’s	map	(Figure	9).		

Similar	 results	 were	 obtained	 using	 the	 local	 and	 the	 RT	 background	 model	

(Supplementary	figure	2).		
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Figure	9	|	Enrichment	of	deletions.	Ratios	of	observed	versus	expected	number	of	deletions	
overlapping	 with	 exons	 (“coding”),	 overlapping	 with	 introns	 (“intron-intersecting”),	 falling	
within	intronic	regions	(“purely	intronic”)	or	within	intergenic	regions	(“intergenic”).	Height	of	
the	bar	is	the	median	of	the	ratio	between	the	observed	number	of	overlaps	and	each	of	the	
10,000	 randomized	 sets.	 Whiskers	 show	 median	 absolute	 deviation	 and	 asterisks	 mark	
significance:	*	for	P<0.05,	**	for	P<0.005	and	***	for	P<0.0005.		

The	enrichment	of	deletions	within	introns	apparently	contradicts	previous	studies	that	

have	described	that	introns	have	less	CNVs	than	expected	by	chance	(Khurana	et	al.,	2013;	

Mu	et	al.,	2011;	Sudmant	et	al.,	2015a).	We	have	analysed	different	explanations	that	can	

justify	the	apparently	contrary	results:	

1. Distinct	 definition	 of	 genic	 elements:	our	 definition	 of	 intronic	 regions	 includes	

only	constitutive	(purely)	intronic	regions,	while	in	other	studies,	 introns	are	taken	

from	the	principal	isoform	and	thus,	can	contain	alternative	exons.	 

2. Different	classification	of	what	CNVs	are	“intronic”.	In	our	study,	intronic	deletions	

never	 overlap	 with	 an	 exon.	 Other	 studies	 reporting	 impoverishment	 of	 CNVs	 in	

introns	 included	 those	 CNVs	 intersecting	 exons.	 If	 we	 look	 at	 intron-intersecting	

deletions	without	removing	those	also	 intersecting	exons,	 then	we	also	 find	a	clear	

depletion	of	deletions	(Figure	9).	
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3. Differences	in	the	background	model:	Differences	in	the	background	model	can	give	

different	results.	We	tried	two	models	used	in	other	articles	(Mu	et	al.,	Khurana	et	al.)	

and	a	novel	RT-based	model.	The	results	differ	slightly,	especially	in	Sudmant-Science	

(in	 which	 we	 see	 a	 depletion	 with	 two	 background	 models).	 However,	 with	 all	

background	models	we	see	an	enrichment	of	intronic	deletions	in	3	maps.	

4. Differences	 in	 the	dataset:	Different	datasets	 show	different	 levels	of	enrichment	

within	introns,	also	among	the	5	maps	in	our	study.	The	differences	among	datasets	

can	be	due	to	real	differences	among	the	populations,	but	most	probably	will	be	due	

to	biases	in	the	methods	and	algorithms	used	for	CNV	calling.	For	example,	we	did	not	

see	 an	 enrichment	 of	 intronic	 deletions	 with	 Abyzov’s	 map,	 but	 if	 we	 classify	 the	

deletions	by	 their	 formation	mechanism,	 then	we	 find	 that	 the	subset	of	deletions	

generated	 through	 NAHR	 are	 enriched	 in	 introns,	 a	 result	 consistent	 with	 a	

previous	 study	 (Mu	 et	 al.,	 2011)	 and	 also	with	 the	 enrichment	 observed	when	we	

separate	by	mechansims	the	deletions	from	Sudmant-Nature	in	which	the	mechanism	

is	 annotated	 (Figure	 10).	 The	 proportion	 of	 deletions	 caused	 by	 each	 of	 the	

mechanisms	is	different	in	Abyzov	and	Sudmant-Nature(See	legend	in	Figure	10).	The	

percentage	of	TEI-caused	CNVs	 is	over	8	 times	higher	 in	Abyzov	 than	 in	Sudmant-

Nature.	 TEI	 deletions	 are	 significantly	 smaller	 than	 NAHR	 (P=	 5.30e-31)	 and	 NH	

deletions	(P	=	4.02e-21)	(Supplementary	figure	3)	and	they	are	not	enriched	within	

introns.	The	overrepresentation	of	TEI	deletions,	possibly	because	Abyzov’s	map	 is	

biased	 towards	 smaller	 deletions,	 could	 be	 an	 underlying	 cause	 of	 the	 observed	

differences	in	enrichment	in	the	two	maps.		
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Figure	 10	 |	 Enrichment	 of	 deletions	 with	 created	 through	 different	 mechanisms.	
Differential	 enrichment	 within	 introns	 of	 the	 deletions	 generated	 through	 different	
mechanisms.	Bar	height	is	the	log2	ratio	of	observed	versus	expected	values,	obtained	using	
the	global	background	random	model.	Asterisks	mark	the	significantly	enriched	or	depleted	
groups	 of	 deletions.	 Significance:	 *	 for	 P<0.05,	 **	 for	 P<0.005	 and	 ***	 for	 P<0.0005.	
Proportion	of	deletions	for	each	mechanism:		
Sudmant-Nature:	NAHR	=	13.7%,	NH	=	78.4%,	TEI	=	2.9%,	Other/unsure	=	5%.		
Abyzov:	NAHR	=	13.2%,	NH	=	60.4%,	TEI	=	25.5%,	Other/unsure	=	0.9%.	

Intergenic regions carry more and larger deletions than intronic regions 

Intergenic	and	intronic	regions	have	a	different	size	distribution	(Supplementary	figure	

4),	with	intergenic	regions	being,	on	average,	larger	(median	intergenic	size	=	17.33	kb,	

1.47	kb).	As	mentioned	before,	we	observed	that	 intergenic	regions	are	more	enriched	

with	deletions	than	introns.	To	better	understand	if	these	distinct	 levels	of	enrichment	

are	caused	by	the	differences	in	size	or	not,	we	compared	the	load	of	deletions	of	intronic	

regions	with	that	of	intergenic	regions	of	similar	size.	We	found	that	intergenic	regions	

with	sizes	comparable	to	intronic	regions	have	a	significantly	higher	number	of	deletions	

than	 intronic	 regions	 (FC	 =	 1.23,	 P	 =	 2.23e-308).	 Also,	 we	 observed	 that	 intergenic	

deletions	 are	 on	 average	 bigger	 than	 intronic	 deletions	 (Figure	 11).	 A	 possible	

explanation	for	this	difference	could	be	the	presence	of	a	stronger	purifying	selection	on	

the	deletions	happening	in	introns	than	in	intergenic	regions.		
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A) Number of deletions         B)   % of region deleted       C)  Total content (Mb) 

 
       D)  Deletion size (median)        E)  Deletion size (mean)                                   	

	

Figure	11	|	Comparison	of	 intronic	and	intergenic	regions.	For	a	random	sample	of	500	
introns,	we	 selected	 500	 intergenic	 regions	 of	 similar	 sizes	 and	we	 calculated	 the	 deletion	
content	and	size	for	both	groups	independently,	using	Sudmant-Nature’s	dataset.	We	repeated	
this	procedure	10,000	times.	Each	permutation	is	represented	as	one	point	in	the	boxplot.	A)	
Number	of	deletions	in	the	subset	of	introns	or	intergenic	regions.	B)	Proportion	of	the	sampled	
regions	that	is	lost	in	the	population.	C)	Total	genome	selected	in	each	randomization	(control	
to	verify	that	the	intronic	and	the	intergenic	regions	are	comparable	in	size).	D)	Median	and	E)	
mean	size	of	the	deletions	comprised	in	each	subset	of	intronic	or	intergenic	regions.	P-values	
were	calculated	with	paired	Student’s	T-tests.	

Enrichment of deletions is independent of intron size 

We	wondered	if	the	enrichment	of	deletions	within	introns	was	explained	by	a	specific	

size	range	of	introns.	For	this,	we	classified	all	introns	in	10	groups	by	size	(deciles,	with	

a	similar	number	of	introns)	and	observed	that	most	of	intronic	deletions	(90%)	are	

found	within	introns	larger	than	1500	bp	(median	size	of	intronic	regions	is	1,470	bp)	

and	the	61%	of	the	intronic	deletions	are	located	in	the	10%	largest	introns	(Figure	12A).		
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If	we	compare	the	number	of	deletions	in	each	size	group	to	those	expected	by	chance	

according	 to	our	global	background	model,	we	 find	 that	 the	enrichment	pattern	 is	not	

particularly	accentuated	in	any	size	bin,	neither	in	the	largest	introns	(Figure	12B).			

Because	Sudmant-Science	and	Handsaker	maps	have	very	few	intronic	deletions,	we	only	

calculated	 the	 enrichment	 by	 intron	 size	 using	 Sudmant-Nature,	 Zarrei	 and	 Abyzov’s	

maps,	which	represent	the	86%	of	all	intronic	deletions	from	our	datasets.		

A)  

	
    B)		 	

	
Figure	 12	 |	 Distribution	 and	 enrichment	 of	 deletions	 by	 intron	 size.	 (A)	 Number	 of	
deletions	within	introns	of	different	sizes.	(B)	Enrichment	of	deletions	in	introns	of	different	
sizes,	compared	to	the	global	background	model.	Red	asterisks	mark	the	significantly	enriched	
groups	of	genes.	Significance:	*	for	P<0.05,	**	for	P<0.005	and	***	for	P<0.0005.	All	size	bins	
(deciles)	contain	a	similar	number	of	intronic	regions,	between	18807	and	18913.	
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These	results	show	that	the	enrichment	of	intronic	deletions	is	not	a	centered	in	a	specific	

size	of	introns,	and	that	the	number	of	intronic	deletions	is	close	to	the	expected	values	in	

most	size	bins.	

Evolutionary age of genes affected by CNVs  

Genes of different evolutionary ages show different patterns of overlap with CNVs 

A	previous	study	from	our	group	showed	that	the	percentage	of	CNV-genes	increased	as	

gene	age	decreased	(Juan	et	al.,	2013).	Motivated	by	this	finding,	which	was	derived	from	

the	analysis	of	whole-gene	CNVs	specifically,	we	asked	ourselves	if	partial	CNVs,	either	

exonic	or	intronic,	also	followed	the	same	trend	and	how	the	structure	of	the	genes	(their	

size	and	exon-intron	content)	could	be	influencing	these	patterns.		

Whole	gene	CNVs	

In	the	article	by	Juan	and	others	they	used	data	derived	from	array	technologies,	which	

does	not	achieve	the	same	resolution	as	the	NGS	technologies	from	the	CNV	maps	in	our	

study.	Desite	the	 limitation	in	resolution	in	the	previous	study,	our	results	reproduced	

their	 findings	 (Juan	et	 al.,	 2013)	with	 all	 of	 the	5	maps	 (Figure	13A,	 Supplementary	

figures	4	and	5).	The	results	were	similar	when	we	only	considered	losses,	which	are	the	

focus	of	our	study4	(Figure	13B)	.		

	 	

																																																								

4	As	 previously	mentioned,	 losses	 are	 the	 the	 focus	 of	 this	 study	 given	 that	 in	 introns,	most	 CNVs	 are	
deletions.	Thus,	to	be	able	to	compare	the	impact	of	intronic	CNVs	to	that	of	coding	CNVs,	we	removed	gains	
from	most	subsetquent	analysis.			
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A) CNVs                                                    B) Deletions 

 

 
Figure	13	|	Proportion	of	CNV-genes	in	different	evolutionary	ages.	Percentage	of	genes	
from	each	evolutionary	age	group	that	are	completely	covered	by	a	CNV	(A)	or	a	deletion	(B).	
See	 figures	 Supplementary	 figure	 5	 and	 Supplementary	 figure	 6	 for	 the	 results	 in	 the	
remaining	4	CNV	maps.		

Partially	overlapping	deletions	

Regarding	partially	overlapping	deletions	(exonic	and	purely	intronic),	we	observed	that	

exonic	deletions	show	a	very	similar	pattern	of	overlap	to	whole-gene	CNVs	(Figure	14),	

with	younger	genes	being	more	 likely	 to	have	 their	 coding	sequence	affected	by	

CNVs.		

Strikingly,	we	find	the	opposite	pattern	for	intronic	deletions,	where	ancient	genes	harbor	

intronic	deletions	more	frequently.		
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A) Coding-overlapping deletions        B) Purely intronic deletions 
	

	
Figure	 14	 |	 Impact	 of	 deletions	 on	 genes	 of	 different	 evolutionary	 ages.Percentage	 of	
genes	from	each	gene	evolutionary	age	that	contain	exon-overlapping	deletions	(A)	or	contain	
intronic	deletions	(B).	See	Supplementary	figure	7	for	the	results	obtained	with	other	maps.		

Influence of gene structure on the observed patterns of CNVs 

Genes	of	different	 evolutionary	ages	have	differences	 in	gene	 structure.	Ancient	genes	

have	more	exons	 (and	 therefore	 introns)	and	are,	 in	general,	 longer	 than	young	genes	

(Figure	15).	These	differences	in	gene	structure	could	be	underlying	the	different	pattern	

of	 deletions	 throughout	 evolutionary	 ages.	 For	 example,	 the	 probability	 of	 an	 ancient	

(usually	long)	gene	to	be	fully	duplicated	or	deleted	is	lower	than	that	of	a	younger	smaller	

gene,	because	a	much	larger	CNV	is	needed	to	duplicate	or	delete	a	bigger	gene.	Contrarily,	

the	probability	for	an	ancient	gene	to	have	an	intronic	deletion	is	higher	because	ancient	

genes	have	a	higher	intronic	content	(Figure	15D).	This	higher	intronic	content	is	as	a	

combination	of	having	more	and	longer	introns	(Figure	15	B	and	C).	Also,	ancient	genes	

are	more	rarely	intronless	(Supplementary	figure	8).	In	order	to	discriminate	between	

the	 differences	 caused	 by	 the	 structure	 of	 the	 gene	 and	 possible	 functionally	 or	

evolutionary	relevant	causes,	we	compared	the	observed	distribution	to	what	would	be	

expected	by	chance,	according	to	our	background	models,	which	will	also	be	affected	and	

thus	correct	by	the	gene	structure.		
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      A)                 Gene size                             B)                   Intron size 
	

	

	
C)           Introns per gene                         D)              Intronic content    

					

 
Figure	 15	 |	 Gene	 and	 intron	 sizes	 by	 evolutionary	 age.	 (A)	 Sizes	 of	 genes	 of	 different	
evolutionary	 ages,	 (B)	 size	 of	 their	 introns,	 (C)	 number	 of	 introns	 per	 gene,	 and	 (D)	 total	
intronic	content	per	gene.	

We	observed	that	ancient	genes	do	not	just	have	fewer	coding	deletions	(both	whole-gene	

and	 exonic)	 but	 also,	 they	 have	 fewer	 coding	 deletions	 than	 expected	 by	 chance.	 This	
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impoverishment	 is	 present	 in	 all	 age	 groups	 before	 the	 appearance	 of	 Mammals	 and	

increases	with	age.	Contrarily,	young	genes	present	only	in	Primates	are	enriched	with	

coding	 deletions	 (Figure	 16	 A	 and	 B).	 This	 pattern	 is	 similar	 if	 we	 add	 gains	 to	 the	

analysis	(Supplementary	figure	9).	Regarding	intronic	deletions	we	observe	a	quite	flat	

pattern	 of	 enrichment,	 meaning	 that	 genes	 of	 different	 evolutionary	 ages	 have	

similar	densities	of	deletions	within	their	introns	(Figure	16C).	

	

A) Whole gene deletions                   B)  Exonic deletions 

	

    C)  Purely intronic deletions 

 

 
Figure	 16	 |	 Enrichment	 of	 gene-
overlapping	 deletions.	 Ratios	 of	
observed	versus	 expected	number	of	
genes	 from	 each	 gene	 evolutionary	
age	that	are	fully	deleted	(A)	or	carry	
exon-overlapping	 deletions	 (B)	 or	
purely-intronic	 deletions	 (C).	
Expected	values	were	calculated	with	
10,000	random	permutations	using	a	
global	 background	 model.	 Asterisks	
mark	 the	 significance	 for	 each	 age	
group:	*	for	P<0.05,	**	for	P<0.005	and	
***	 for	P<0.0005.	 See	Supplementary	
figure	 10	 for	 results	 on	 Zarrei	 and	
Abyzov’s	maps. 
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Interestingly,	we	can	see	that	whole-gene	CNVs	cover	genes	that	are	shorter	than	the	

rest	of	the	genes	of	their	same	age	(Figure	17).		

	

	
Figure	17	|	Size	of	whole	CNV-genes	and	non-variable	genes	by	age.	Sizes	of	all	genes	are	
represented,	depending	on	if	they	are	affected	by	whole-gene	CNVs	or	have	a	fix	copy	number	
in	 the	 population.	 Differences	 in	 gene	 size	 are	 represented	 by	 age	 group	 and	 tested	 with	
Wilcoxon	rank	sum	tests.	Asterisks	mark	significance	at	P	<0.05.	

Intronic deletions in young genes are more frequent in the population  

Depletion	of	CNVs	on	specific	genes	or	regions	suggests	the	presence	of	negative	selection	

acting	on	variants	occuring	un	such	regions.	We	have	seen	that	deletions	occurring	on	an	

exon	of	an	ancient	gene,	 for	example,	 seem	to	be	under	a	stronger	purifying	selection.	

Thus,	 it	 is	 expectable	 to	 find	 such	 impoverished	 variants	 at	 lower	 frequencies	 in	 the	

population.		

Indeed,	if	we	look	at	the	AFs	of	the	all	deletions	overlapping	coding	sequences	and	classify	

them	by	the	age	of	the	gene,	we	see	that	deletions	affecting	ancient	genes	are	less	frequent	

in	 the	 population	 than	 the	 ones	 that	 overlap	 with	 young	 protein-coding	 sequences	

(Figure	18).				
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The	 AFs	 of	 intronic	 deletions	 are	 always	 significantly	 higher	 than	 those	 of	 deletions	

overlapping	 with	 exons	 of	 genes	 with	 a	 similar	 age	 (Figure	 18),	 probably	 due	 to	 a	

stronger	purifying	selection	acting	on	exonic	deletions.		

Surprisingly,	intronic	deletions,	which	showed	similar	patterns	of	enrichment	regardless	

of	 gene	 age	 (Figure	 16C),	 also	 have	 lower	 frequencies	 in	 ancient	 genes	 compared	 to	

young	 genes	 (Figure	 18),	 suggesting	 that	 selection	 is	 not	 acting	 equally	 on	 intronic	

deletions	on	genes	of	different	ages.	

	

	
Figure	18	|	Allelic	frequencies	of	intronic	and	coding	CNVs.	AF	of	intronic	or	coding	CNVs	
in	genes	of	different	evolutionary	age	groups.	Gene	ages	are	grouped	as	follows:	“Old”	genes	
(FungiMetazoa	to	Sarcopterygii),	“Middle”	(Tetrapoda	to	Eutheria)	and	“Young”	(Simiiformes	
to	HomoSapiens).	Significant	differnces	are	marked	for	P	<	0.05.		

Essential genes also show variable intron size 

Variability	of	 intron	size	 in	ancient	genes	was	suprising	because	older	genes	are	more	

frequently	essential	at	the	cellular	or	organismal	level	(Figure	19A).	We	wondered	if	the	

intronic	variabilitiy	of	ancient	genes	was	restricted	to	non-essential	genes.		

Essential	tend	to	be	more	compact	(to	have	shorter	introns)	than	non-essential	genes	of	

a	similar	evolutionary	age	(Figure	19B).		
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                         A) 

 
 

                         B) 

 
Figure	19	|	Essential	genes.	(A)	Percentage	of	essential	genes	in	each	age	group.	(B)	Size	of	
introns	in	non-essential	and	essential	genes.	Significant	differences	between	the	two	types	of	
genes	in	each	age	group	were	calculate	using	Wilcoxon	tests	and	significance	is	marked	with	
asterisks	at	P	<	0.05.		

As	expected,	essential	genes	are	more	depleted	of	whole-gene	losses	than	the	rest	of	the	

genes,	and	perhaps	more	surprisingly,	essential	genes	are	also	more	depleted	of	whole-

gene	gains	than	other	genes	(Figure	20).		
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Figure	20	|	Enrichment	of	whole-gene	CNVs	affecting	essential	or	non-essential	genes.	
Ratio	of	observed/expected	total	genes	affected	by	whole-gene	CNVs.	Each	box	represents	the	
number	of	observed	CNV-genes	divided	by	each	of	the	expected	number	of	CNV-genes(x10,000	
randomizations).	Asterisks	mark	significant	depletions:	*	for	P<0.05,	**	for	P<0.005	and	***	for	
P<0.0005.	Observed	values	per	group:	48,	239,	43,	and	296.	Source	of	CNVs:	Sudmant-Nature.		

However,	 if	we	 look	at	 their	 introns	we	found	that	the	number	of	essential	genes	with	

intronic	deletions	(907	genes	in	Sudmant-Nature)	is	also	higher	than	expected	by	chance	

(P	=	0.034)	(See	Supplementary	table	3	for	results	by	map).	Moreover,	the	AF	of	intronic	

deletions	are	slightly	higher	in	essential	genes,	as	opposed	to	coding	deletions,	which	have	

lower	AF	when	they	affect	essential	genes	(Figure	21).	

 
Figure	21	|	Frequencies	of	deletions	affecting	essential	genes.	Allelic	frequency	(AF)	of	
the	deletions	from	Sudmant-Nature	that	overlap	with	non-essential	and	essential	genes.		
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These	results	altogether	show	that,	contrarily	to	what	we	expected,	introns	of	essential	

genes	do	not	seem	to	be	under	stronger	purifying	selection	than	introns	of	non-essential	

genes.		

Characteristics of genes that do not show CNV variability in introns  

Even	if	the	introns	of	essential	genes	do	not	seem	to	be	have	less	intronic	deletions	than	

other	genes,	we	expect	that	there	might	be	sets	of	genes	intolerant	to	CNVs	within	the	

introns,	 for	example	 if	 the	size	of	the	 intron	or	of	the	gene	is	 important	 for	the	proper	

functioning	of	the	cell.		

Intron	length	has	been	shown	to	be	evolutionarily	conserved	or	coevolving	in	some	sets	

of	genes.	For	example,	genes	related	to	embryonic	development	intron	size	seems	to	be	

especially	conserved	(Seoighe	and	Korir,	2011).	To	see	if	these	sets	of	intron-conserved	

or	intron-coevolving	genes	are	also	depleted	of	CNVs	in	the	actual	human	populations,	we	

ranked	all	genes	according	to	their	enrichment	of	intronic	deletions,	from	more	enriched	

to	the	most	impoverished	genes	(see	Methods	for	details	and	Supplementary	tables	4	

and	 5	 for	 the	 lists	 of	 genes).	We	 observed	 that	 genes	with	 a	 stronger	 depletion	 of	

intronic	 deletions	 show	 significantly	 more	 protein-protein	 interactions	 (PPI)	

among	them	than	expected	by	chance	(P-value	<	1.0e-16,	calculated	with	STRING,	v11	

(Szklarczyk	et	al.,	2015)),	while	the	genes	with	more	intronic	deletions	do	not	show	this	

enrichment	(P-value	=	0.207)	(Table	4).	

	 Genes	with	less	deletions	
than	expected	

Genes	with	more	deletions	
than	expected	

Number	of	nodes	 469	 480	

Number	of	edges	 889	 542	

Expected	number	of	edges		 626	 523	

Average	node	degree	 3.83	 2.26	

PPI	enrichment	P-value	 <	1.0e-16	 0.207	

Table	4	|	Protein-protein	interaction	networks	of	genes	with	less	or	more	deletions	
than	expected.	Statistics	calculated	using	STRING.	Low	P-values	(<	0.05)	indicate	that	the	
network	has	more	connections	than	expected	for	a	random	set	of	proteins	of	similar	size.		
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Genes	 with	 more	 or	 less	 intronic	 deletions	 than	 expected	 show	 different	 levels	 of	

intolerance	to	functional	mutations	in	their	coding	sequence.	Genes	with	less	deletions	

have	significantly	lower	RVIS	scores	(P	<	2-16),	meaning	that	they	are	significantly	

more	intolerant	to	functional	mutations	affecting	their	coding	sequence.	According	

to	these	results,	it	seems	that	genes	with	a	more	conserved	intronic	sequence	tend	to	also	

have	less	coding	variability	in	the	population,	while	genes	with	more	variability	within	

their	introns	also	are	more	tolerant	to	coding	variants	(Figure	22).		

	

	
Figure	 22	 |	 Relationship	 between	 exon	 and	 intron	 conservation	 in	 the	
population.	Comparison	of	the	conservation	level	of	the	exons	in	genes	with	less	
conserved	 (more	 deletions	 than	 expected)	 or	 more	 conserved	 introns	 (less	
deletions	 than	expected).	Conservation	 is	estimated	using	RVIS	scores,	which	
are	 inversely	 proportional	 to	 coding	 sequence	 conservation.	 Statistically	
significance	was	assessed	using	Wilcoxon	tests	(P-value	=	1.28e-20).	

However,	it	is	surprising	to	see	that	among	the	genes	with	more	deletions	than	expected	

there	are	genes	with	a	very	conserved	coding	sequence,	some	of	which	are	associated	with	

diseases	(Table	5).	
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Gene	name	 Description	 Diseases	
associated	 RVIS	percentile	

CNOT1	 Deadenylation-dependent	 mRNA	
decay	and	Gene	expression	

Iritis	 0.46%	
	

SETD1A	 Histone	 methyltransferase	 involved	
in	chromatin	organization	

Schizophrenia	
and	cerebritis	

0.74%	

SCN3A	 Generation	and	propagation	of	action	
potentials	in	neurons	and	muscle	

Epilepsy	 0.83%	

NUP205	 Active	 transport	 of	 proteins,	 RNAs	
and	 ribonucleoproteins	 between	
nucleus	and	cytoplasm.		

Steroid-resistant	
nephrotic	
syndrome	

1.02%	

SCAP	 Binds	and	mediates	the	transport	of	
sterol	 regulatory	 element	 binding	
proteins.		

Familial	 hyper-
cholesterolemia	

1.56%	

Table	5	|	Genes	with	highly	variable	introns	and	very	conserved	coding	sequence.	Genes	
with	the	lowest	RVIS	scores	(high	coding-sequence	conservation)	found	among	the	list	of	genes	
with	more	intronic	deletions	than	expected.		

A	possible	explanation	for	having	very	conserved	introns	is	to	have	a	higher	concentration	

of	regulatory	elements	in	them.	Indeed,	we	find	that	genes	with	less	intronic	deletions	

than	expected	have	a	significantly	higher	proportion	of	their	introns	occupied	by	

regulatory	features	(RFs)	(Figure	23).	

	

	
	

Figure	23	|	Introme	of	a	gene	occupied	by	regulatory	features.	Percentage	
of	the	intronic	regions	of	a	gene	that	are	covered	by	a	RF.	Statistical	significance	
was	calculated	with	Wilcoxon	test	(P-value	=	1.04e-5)	
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We	checked	how	these	two	gene	groups	are	related	to	gene	sets	whose	intron	size	has	

been	shown	to	be	important.	Taking	the	sets	of	genes	showing	intron	coevolution	from	

the	study	by	Keane	and	Seoighe	(Keane	and	Seoighe,	2016),	we	found	that	5	of	9	sets	are	

significantly	 enriched	 with	 genes	 with	 less	 deletions	 than	 expected	 and	 significantly	

depleted	of	genes	with	more	deletions	than	expected	(Figure	24).		

In	genes	that	are	activated	in	response	to	serum,	the	size	of	the	gene	has	been	suggested	

to	regulate	the	order	in	which	genes	that	are	simultaneously	induced	finish	transcription	

(Kirkconnell	et	al.,	2017).	We	observe	that	genes	with	less	deletions	than	expected	were	

enriched	in	the	set	of	serum-induced	genes,	and	genes	with	more	deletions	impoverished,	

although	none	of	the	tendencies	was	significant	(Figure	24).		

	

	

Figure	 24	 |	 Relationship	 between	 genes	 with	 introns	 depleted	 or	 enriched	 with	
deletions	and	sets	of	 gene-length	 sensitive	genes.	Enrichment	of	 the	 sets	of	 genes	with	
more	or	less	intronic	deletions	than	expected	in	sets	of	genes	whose	size	has	been	claimed	in	
previous	 studies	 to	 be	 under	 evolutionary	 pressure.	 Statistical	 significance	was	 calculated	
using	chi-squared	tests.	Color	scale	represents	odds	ratio	and	significance	is	marked	for	each	
set	of	genes	with	asterisks:	*	for	P<0.05,	**	for	P<0.005	and	***	for	P<0.0005.	
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Genes with conserved introns are enriched in brain and developmental processes 

Further	 gene	 set	 analysis	 using	 GO	 biological	 processes	 on	 the	 ranked	 list	 of	 genes	

according	to	their	score	of	enrichment/depletion	of	intronic	deletions,	we	found	that	the	

genes	with	less	intronic	deletions	than	expected	are	enriched	in	neuron	recognition	and	

somitogenesis,	 with	 FDR<5%	 (results	 consistent	 in	 the	 two	 randomizations).	 The	

enrichment	 in	 somitogenesis	 is	 in	 agreement	 with	 previous	 research	 showing	 the	

importance	 of	 gene	 length	 in	 processes	 involving	 oscillations	 in	 gene	 expression	

(Swinburne	et	al.,	2008).	Other	biological	functions	significant	at	an	FDR<25%	included	

in	Table	6	are	related	to	the	detection	of	mechanical	stimulus	and	to	segmentation.		

Genes	with	less	intronic	deletions	than	expected	(lowest	scores)	
	 FDR	q-val	
	 Whole	genome	

randomization	
Within	intron	
randomization	

Neuron	recognition	 0.0151	 0.0239	
Somitogenesis	 0.0499	 0.0094	
Nerve	development		 0.0611	 0.0000	
Forebrain	cell	migration		 0.0591	 0.1016	
Positive	regulation	of	axon	extension	 0.0541	 0.0950	
Adherens	junction	organization		 0.0781	 0.0561	
Cerebral	cortex	cell	migration		 0.0834	 0.2164	
Detection	of	mechanical	stimulus		 0.0782	 0.2103	
Semaphorin	plexin	signaling	pathway		 0.0882	 0.0871	
Axon	extension	 0.1060	 0.0463	
Segmentation	 0.1142	 0.0861	
Clathrin	mediated	endocytosis	 0.1231	 0.2074	
Regulation	of	syaptic	transmission	–	glutamatergic		 0.2092	 0.0540	
	
Genes	with	more	intronic	deletions	than	expected	(highest	scores)	
	 FDR	q-val	
	 Whole	genome	

randomization	
Within	intron	
randomization	

Ribonucleoprotein	complex	subunit	organization	 0.1964	 0.1508	
DNA	templated	transcription	termination		 0.2029	 0.1292	
Ribonucleoprotein	complex	biogenesis	 0.1575	 0.1297	

Table	6	 |	 Enriched	processes	 in	 genes	with	more	and	 less	deletions	 than	expected.	
Biological	 processes	 significant	 at	 FDR	 <	 25%	 in	 both	 randomizations.	 Enrichment	 was	
calculated	using	GSEA	on	a	preranked	list	of	genes	with	the	highest	scores	corresponding	to	
the	genes	with	more	intronic	deletions	than	expected	and	the	lowest	scores	to	genes	with	
less	intronic	deletions	than	expected.		
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Genes	 expressed	 in	 the	 brain	 are	 among	 the	 longest	 genes	 in	 our	 genome.	 Some	

pathogenic	intronic	CNVs	have	been	found	associated	with	neurological	or	psychiatric	

disorders,	annotated	in	the	Copy	Number	Variation	in	Disease	database	(CNVD)	(Qiu	et	

al.,	2012).	We	checked	if	 these	genes	have	their	 introns	in	general	depleted	of	 intronic	

deletions.	The	overlap	with	the	genes	with	a	more	conserved	intronic	sequence	was	not	

significant	 (OR	 =	 1.72,	 P	 =	 0.26),	 but	 we	 observed	 that	 none	 of	 the	 49	 genes	 with	

pathogenic	intronic	CNVs	carries	deletions	in	the	healthy	population,	even	if	most	of	them	

(68.4%)	are	found	among	the	top	10%	largest	genes	in	the	human	genome.		

In	 summary,	 by	 ranking	 all	 genes	 by	 their	 observed	 compared	 to	 expected	 content	 of	

intronic	 deletions,	 we	 conclude	 that	most	 gene	 sets	whose	 intron	 sizes	 have	 been	

previously	 reported	 to	 be	 more	 conserved	 or	 to	 coevolve	 seem	 to	 have	 less	

deletions	 than	 expected	 in	 the	 actual	 human	 population.	 We	 have	 found	 that,	 in	

addition	to	these	previously	described	gene	sets,	brain-specific	genes	also	seem	to	have	

more	conserved	introns.		

Relationship between intronic deletions and regulatory features 

Introns are enriched with regulatory features  

Several	studies	have	identified	regulatory	elements	hosted	in	introns	(Chorev	and	Carmel,	

2012)	 in	 different	 genes.	 We	 retrieved	 the	 data	 from	 the	 Ensembl	 Regulatory	 Build	

(Zerbino	et	al.,	2015),	which	provides	a	genome-wide	set	of	regions	that	are	likely	to	be	

involved	in	gene	regulation,	to	better	understand	the	association	of	the	different	types	of	

RFs	 with	 introns.	 We	 found	 that	 introns	 are	 enriched	 with	 RFs	 such	 as	 promoters,	

enhancers,	promoter	flanking	regions	or	transcription	factor	binding	sites,	compared	to	

our	(global)	random	background	model	(Figure	25).		
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A) Intron-intersecting                            B) Purely intronic	

	
Figure	 25	 |	 Enrichment	 of	 regulatory	 regions	 in	 introns.	 Ratio	 of	 observed	 versus	 the	
median	of	expected	number	of	regulatory	regions	overlapping	(A)	or	completely	falling	within	
an	intron	(B).	Error	bars	denote	median	absolute	deviation	and	asterisks	mark	significance:	*	
for	P<0.05,	**	for	P<0.005	and	***	for	P<0.0005.		

Deletions and RFs tend to be found in the same intron but overlap less than expected 

Since	deletions	and	of	most	 types	of	RF	are	all	enriched	 in	 introns,	we	wondered	how	

frequently	these	two	elements	coocurred	within	a	same	intron.	We	observed	that	intronic	

deletions	tend	to	be	found	in	introns	that	also	contain	RFs	(Table	7).	This	greater	than	

expected	coocurrence	can	probably	be	explained	by	fact	that	most	deletions	occur	within	

longer	introns,	which	are	the	ones	harboring	most	RFs	(Supplementary	figure	11).		

	 Sudmant	
(Nature)	 Zarrei	 Abyzov	 Handsaker	 Sudmant	

(Science)	
Enhancer	 7.44	(<1e-100)	 6.1	(<1e-100)	 5.93	(<1e-100)	 8.44	(2.57e-83)	 9.16	(<1e-100)	

Promoter	 1.95	(1.41e-51)	 1.7	(5.23e-19)	 1.75	(5.06e-18)	 2.11	(4.33e-10)	 2.38	(4.66e-15)	
Promoter	
Flank.	Reg.	 4.64	(<1e-100)	 4.54	(<1e-100)	 4.07	(<1e-100)	 5.23	(1.05e-69)	 5.67	(3.07e-86)	

TFBS		 5.02	(<1e-100)	 5.37	(<1e-100)	 4.69	(<1e-100)	 6.81	(2.05e-63)	 6.65	(1.31e-67)	
Open	
chromatin	 7.59	(<1e-100)	 7.1	(<1e-100)	 6.96	(<1e-100)	 12.03	(<1e-100)	 13.5	(<1e-100)	

CBS	 4.58	(<1e-100)	 4.73	(<1e-100)	 4.34	(<1e-100)	 6.72	(1.88e-91)	 6.31	(3.78e-93)	

All	RFs		 5.58	(<1e-100)	 5.55	(<1e-100)	 4.85	(<1e-100)	 9.41	(<1e-100)	 11.45	(<1e-100)	

Table	7	|	Coocurrence	of	deletions	and	regulatory	features	in	introns.	Each	cell	shows	the	
Odds	ratio	and,	in	brackets,	the	P-value,	calculated	using	Fisher’s	test.		
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But,	do	the	deletions	and	RFs	coocurring	within	a	same	intron	overlap?	To	calculate	this,	

we	randomly	relocated	10,000	times	all	intronic	deletions	within	their	host	introns.	Then,	

we	 compared	 the	 number	 of	 observed	 overlaps	 between	 deletions	 and	 RFs	 with	 the	

number	of	overlaps	obtained	after	randomization.	The	results	showed	that	the	overlap	

between	 deletions	 and	 enhancers	 is	 significantly	 lower	 than	 expected	 overlap	 with	

deletions	in	4	out	of	5	maps	(Table	9).	For	promoters,	promoter-flanking	regions	and	

CTCF	Binding	Sites	(CBS),	this	tendency	to	not	overlap	was	also	detected	but	in	less	maps	

(2	out	of	5).	The	overlaps	between	deletions	and	Transcription	Factor	Binding	Sites	

(TFBS)	and	open	chromatin	were	similar	to	those	expected	by	chance	in	all	maps..		

These	results	show	that,	despite	the	high	prevalence	of	deletions	within	introns	and	their	

tendency	to	occur	in	introns	that	also	contain	RFs,	deletions	tend	to	be	found	elsewhere	

in	the	intron,	without	overlapping	with	RF,	especially	with	enhancers.		

	 Sudmant	
(Nature)	 Zarrei	 Abyzov	 Handsaker	 Sudmant	

(Science)	
Enhancer	 -0.14	(0.03)	 -0.45	(0.001)	 -0.48	(0.004)	 -0.05	(0.406)	 -0.34	(0.021)	

Promoter	 -0.74	(0.001)	 -0.68	(0.011)	 -0.50	(0.113)	 -1.32	(0.066)	 -0.19	(0.378)	
Promoter-
Flanking	Region	 -0.12	(0.019)	 -0.11	(0.105)	 -0.34	(0.002)	 0.04	(0.375)	 0.06	(0.363)	

TF	Binding	Site	 -0.09	(0.191)	 -0.05	(0.391)	 -0.05	(0.42)	 -0.21	(0.192)	 -0.26	(0.132)	

Open	chromatin	 -0.02	(0.33)	 -0.12	(0.052)	 -0.12	(0.103)	 -0.08	(0.186)	 0.06	(0.25)	

CTCF	binding	site	 -0.18	(0.007)	 -0.14	(0.11)	 -0.81	(<10-4)	 -0.16	(0.189)	 -0.18	(0.146)	

Table	 9	 |	 Overlap	with	 regulatory	 regions.	Relative	 enrichment	 or	 depletion	 of	 overlaps	
between	deletions	and	each	type	of	regulatory	features,	calculated	by	comparing	the	number	of	
observed	 overlaps	 to	 a	 background	model.	 Values	 show	 log2(Observed/Expected	 deletions	
overlapping	with	 a	 RF)	 and	 the	 p-value	 in	 brackets.	 The	 background	 randomizations	were	
performed	by	relocating	each	intronic	deletion	within	its	intron	10,000	times.		

The	 significant	 depletion	 of	 overlaps	 between	 deletions	 and	 RFs	 suggests	 a	 negative	

selection	on	the	 losses	of	 intronic	RFs.	This	 finding	 implies	that	 intronic	 losses	occur	

more	often	in	the	regions	of	the	intron	that	do	no	have	regulatory	function.		
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In cancer, regulatory elements are not depleted of intronic deletions 

We	 wondered	 if	 somatic	 copy	 number	 alterations	 (SCNAs)	 in	 cancer	 show	 the	 same	

patterns	of	overlap	with	RFs.	We	took	all	deletions	 from	2583	patients	 from	the	Pan-

Cancer	project	(Campbell	et	al.,	2017)	and,	 in	 this	case,	we	 found	that	 the	overlap	

between	deletions	and	regulatory	regions	is	similar	to	what	is	expected	by	chance	

(Table	9),	 in	 contrast	with	 the	 results	 obtained	with	 germline	deletions	 from	healthy	

individuals.		
	

Pan-Cancer	SCNAs	

Enhancer	 0.01	(0.	368)	

Promoter	 -0.044	(0.38)	

Promoter	Flanking	Region	 -0.023	(0.123)	

TF	Binding	Site	 -0.016	(0.309)	

Open	chromatin	 -0.014	(0.132)	

CTCF	binding	site	 -0.004	(0.439)	

Table	 9	 |	 Overlap	 of	 SCNAs	 with	 regulatory	 regions.	 Relative	
enrichment	or	depletion	of	overlaps	between	somatic	deletions	and	each	
type	of	RF,	calculated	by	comparing	the	number	of	observed	overlaps	to	
a	 background	 model.	 Values	 show	 log2(Observed/Expected	 deletions	
overlapping	 with	 a	 RF)	 and	 the	 p-value	 in	 brackets.	 The	 background	
randomizations	 were	 performed	 by	 relocating	 each	 intronic	 deletion	
within	its	intron	10,000	times.		

Intronic TFBSs active in more tissues are more depleted of deletions 

We	 hypothesized	 that	 RFs	 active	 in	more	 cell	 types	would	 show	 lower	 overlaps	with	

deletions	 than	 tissue-specific	RFs,	as	we	expected	 that	 the	disruption	of	a	widely	used	

regulatory	element	would	have	an	impact	on	more	tissues.	We	classified	each	type	of	RF	

by	the	number	of	tissues	in	which	they	are	active.		

Surprisingly,	 only	 the	 overlaps	 between	 TFBS	 or	 CTCF	 and	 deletions	 are	 more	

strongly	depleted	when	the	number	of	tissues	in	which	the	RF	is	active	(Figure	26).	

However,	given	the	number	of	deletions	overlapping	with	TFBS	is	very	limited	and	thus,	

the	results	should	be	interpreted	carefully. 
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Figure	26	|	Overlap	between	deletions	and	RFs	active	in	different	number	of	tissues.	Each	
box	shows	the	log2	ratio	between	the	observed	and	the	expected	number	of	RFs	overlapping	with	
an	intronic	deletion.	Expected	values	were	calculated	by	relocating	each	deletion	within	the	host	
intron	 10,000	 times.	 Asterisks	 mark	 significanct	 differences	 between	 observed	 and	 random	
values,	at	P	<	0.05.	The	median	number	of	regions	per	box	in	each	RF	type	and,	in	brackets,	the	
number	 of	median	 number	 of	 RFs	 with	 an	 overlapping	 deletion	 are:	 Enhancer	 =	 2672	 (70),	
Transcription	factor	binding	site	=	1034	(16.5),	Promoter	=	2226	(9),	Promoter	flanking	region	
=	4568	(116),	Open	chromatin	=	8397	(213),	CTCF	binding	site	=	3237	(64).		
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Association between CNVs and gene expression changes 

Intronic deletions are associated with changes in gene expression 

CNVs	 have	 been	 shown	 to	 be	 associated	 with	 gene	 expression	 levels:	 the	 higher	 the	

number	of	copies	of	the	gene,	the	more	it	is	expressed	(Handsaker	et	al.,	2015;	Sudmant	

et	 al.,	 2015a).	We	 explored	 if	 intronic	 CNVs	 could	 also	 affect	 the	 expression	 of	 genes	

without	altering	the	dosage	of	their	coding	sequence.	To	do	this,	we	took	RNA-seq	data	

from	the	Geuvadis	project	(Lappalainen	et	al.,	2013)	including	445	lymphoblastoid	cell	

lines	from	individuals	from	the	1KGP	with	CNV	data	(Sudmant-Nature’s	map).		

We	compared	the	gene	expression	levels	of	wild-type	individuals	(copy	number	=	2)	with	

that	 of	 individuals	with	 a	 deletion	 in	 one	 of	 the	 alleles	 (copy	 number	 =	 1)	 to	 identify	

deletions	 associated	 with	 gene	 expression	 changes.	 We	 selected	 the	 deletions	 from	

Sudmant-Nature’s	dataset	that	were	present	in	at	least	two	wild-type	(diploid)	and	two	

heterozygous	individuals	and	classified	them	in	different	groups	according	to	the	impact	

on	the	gene:	whole	gene,	exonic	and	intronic.	From	now	on,	we	will	refer	to	the	deletions	

associated	 with	 gene	 expression	 changes	 as	 “eDeletions”	 and	 to	 the	 differentially	

expressed	genes	as	“eGenes”.		

To	compare	the	impact	of	intronic	deletions	with	that	of	coding	deletions,	we	first	tested	

45	whole	gene	deletions	overlapping	with	50	genes	and	472	exonic	deletions	that	affected	

a	total	of	437	genes.	Seven	out	of	the	fifty	whole-gene	deletions	(14%)	were	associated	

with	a	significantly	 lower	gene	expression	in	the	individuals	carrying	the	deletion.	The	

7.6%	of	exonic	deletions	(36	out	of	472)	were	associated	with	gene	expression	changes,	

most	of	them	also	downregulations	(91.4%)	(Table	10).		

In	relation	to	the	2046	intronic	deletions	found	in	1505	genes,	we	detected	that	the	2.7%	

were	 associated	 with	 a	 differential	 gene	 expression	 in	 the	 heterozygous	 individual.	

Interestingly,	in	intronic	eDeletions,	the	proportion	of	downregulated	genes	was	lower:	

68%	of	the	eGenes	had	lower	expression	in	the	group	that	carried	the	eDeletion	while	the	

remaining	32%	had	a	higher	expression.	These	results	suggest	that,	while	coding	losses	

mostly	associate	to	gene	down-regulation,	intronic	deletions	might	result	in	both	gene	

expression	repression	and	enhancement.		
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		 Whole	gene	 Exonic	 Intronic		

Number	of	eGenes	 7***	 35***	 53***	
Number	of	eDeletions	 8	 36	 56	
Expected	number	of	eGenes	
(median	±	MAD)	 1	±	1.48	 8	±	2.97	 27	±	5.93	

%	of	downregulated	genes	 100%	 92.5%	 68%	
Total	genes	tested	 50	 437	 1505	
Total	deletions	tested	 45	 472	 2046	

Table	10	|	Differentially	expressed	genes.	Number	of	DEGs	in	association	with	
whole	 gene,	 exonic	 or	 intronic	 deletions.	 The	 expected	 number	 of	 DEGs	 was	
calculated	after	randomly	shuffling	the	genotype	of	the	subjects	for	whom	we	had	
gene	expression	data.	MAD	=	Median	Absolute	Deviation.	A	list	of	all	eGenes	can	be	
found	in	supplementary	material	(Supplementary	table	6).	

No	significant	differences	exist	among	the	effect	size	of	the	different	types	of	eDeletions.	

The	median	effect	size	is	higher	in	whole-gene	eDeletions,	but	intronic	eDels	present	more	

variable	effect	sizes,	with	some	cases	showing	very	strong	effect	sizes	(Figure	27).		

	
           Whole gene       Exonic          Intronic 

Figure	27	|	Effect	size	of	different	types	of	eDeletions.	Absolute	 log2	ratio	
between	 the	 median	 gene	 expression	 of	 wild-type	 versus	 heterozygous	
individuals.	No	significant	differences	were	detected	using	Wilcoxon	tests.		

Taken	 together,	 these	 results	 show	 that	 most	 deletions	 associated	 with	 gene	

expression	changes	are	intronic.	While	coding	deletions	are	almost	always	associated	

with	 downregulation,	 intronic	 eDeletions	 are	 associated	 with	 both	 up	 and	

downregulation.	
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eDeletions frequently overlap with regulatory features 

We	previously	showed	that	intronic	deletions	are	preferentially	located	in	non-regulatory	

regions	of	the	intron.	We	wondered	if	the	eDeletions	overlap	more	or	less	with	enhancers	

than	 the	 deletions	 not	 associated	with	 changes	 in	 gene	 expression.	We	 found	 that	 15	

intronic	eDeletions	overlap	with	enhancers	active	in	B-lymphocytes	(the	cell-type	used	to	

obtain	lymphoblastoid	cell	lines,	for	which	we	have	gene	expression	data).	This	number	

of	eDeletions	overlapping	with	active	enhancers	is	higher	than	expected	(P	=	0.023,	odds	

ratio	 =	 2.04,	 Fisher’s	 test)	 and	 corresponds	 to	 the	 24%	of	 deletions	 overlapping	with	

active	 enhancers	 in	 B-lymphocites.	 However,	 there	 are	 422	 other	 intronic	 deletions	

overlapping	with	enhancers	active	in	other	tissues	that	may	be	eDeletions	in	these	other	

tissues	but	not	in	the	cell-type	of	our	study.		

Among	the	deletions	that	do	not	overlap	with	enhancers,	we	found	that	eDeletions	tended	

to	be	 closer	 (in	 linear	distance)	 to	 an	enhancer	 than	other	deletions	not	 associated	 to	

changes	 in	 expression	 (P	 =	 9.2e-04,	 Student’s	 t-test).	This	 suggests	 that	 disrupting	

sequences	 proximal	 to	 enhancers	 could	 be	 affecting	 regulatory	 interactions	

without	removing	the	enhancer	region	itself.		

It	is	known	that	regulatory	regions	are	preferentially	located	in	first	introns	(Chorev	and	

Carmel,	2012).	We	checked	if	the	intronic	eDeletions	are	also	preferentially	found	in	the	

first	introns.	We	found	that	17	(30.4%)	of	the	eDeletions	are	found	in	first	introns,	but	this	

percentage	is	not	significantly	higher	than	that	of	the	remaining	(non-significant)	intronic	

deletions	(26%,	P	=	0.54,	Fisher’s	test).		

Intronic deletions are associated with changes in the expression of distant genes  

Gene	expression	regulation	can	happen	through	the	interaction	of	distant	fragments	of	

DNA,	which	are	brought	close	to	each	other	by	chromatin	looping	(Vermunt	et	al.,	2019).	

The	interacting	fragments	can	be	separated	by	up	to	over	a	megabase,	and	a	fragment	of	

DNA	can	have	contacts	with	different	distant	fragments.	Thus,	genes	can	be	regulated	by	

multiple	enhancers,	and	different	genes	can	be	under	the	control	of	the	same	enhancer	

looping	(Vermunt	et	al.,	2019).	
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We	wondered	if	deletions	of	one	of	the	two	fragments	in	contact	could	have	an	impact	on	

the	expression	of	the	target	gene.	To	assess	whether	deletions	could	have	this	trans	effect,	

we	used	promoter-capture	Hi-C	 (PCHi-C)	 published	data	 (Javierre	 et	 al.,	 2016)	 to	 link	

deleted	regions	with	promoters	of	other	genes.	The	Hi-C	data	has	been	derived	from	B-

lymphocytes,	 the	 cell-type	 used	 to	 obtain	 lymphoblastoid	 cell	 lines	 (the	 cell-type	 for	

which	 we	 had	 expression	 data),	 which	 we	 assumed	 have	 a	 similar	 chromatin	

conformation.		

We	identified	867	deletions	in	regions	that	interact	with	gene	promoters	of	other	genes.	

We	analysed	separately	intronic	and	intergenic	deleted	regions	(Figure	28).		

	

              Intronic deletions                                     Intergenic deletions

 

Figure	28	|	Deletions	with	a	potential	impact	in	trans.	Schematic	representation	
of	intronic	(A)	or	intergenic	(B)	deletions	of	fragments	interacting	with	promoters	
from	another	gene.		

The	 analysis	 of	 all	 possible	 combinations	between	322	 intronic	deletions	 and	 the	672		

genes	they	were	in	contact	with	(a	total	of	758	deletion-promoter	interactions)	revealed	

12	genes	that	were	significantly	differentially	expressed	in	the	individuals	presenting	an	

intronic	 deletion	 in	 another	 gene	 in	 contact.	 16	 additional	 eGenes	 were	 found	 in	

association	to	18	intergenic	eDeletions,	out	of	the	545	intergenic	deletions	of	fragments	

in	contact	with	a	promoter.	The	proportion	of	deletion-gene	pairs	that	are	associated	with	

significant	 changes	 in	 expression	 is	 similar	 to	 that	 of	 intronic	 cis	 deletions	 (3.7	%	 of	

intronic	in	trans,	2.9	of	intergenic	and	2.7%	of	intronic	in	cis)	(Table	11).		

C) Intronic deletionsB) Exonic deletionsA) Whole gene deletions

B) Intergenic deletions

E) Intergenic deletions

A) Intronic deletions: effect in trans
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In	both	types	of	eDeletions	(trans-intronic	and	trans-intergenic)	we	found	cases	of	higher	

and	lower	expression	(Table	11),	in	agreement	with	previous	research	that	shows	that	

chromatin	architectural	changes	are	coupled	to	both	activation	and	repression	(Vermunt	

et	al.,	2019).			
	

trans-intronic		 trans-intergenic	

Number	of	eGenes		 12	 16	

Number	of	eDeletions	 12	 18	
Expected	number	of	eGenes	
(median	±	MAD)	 9	±	2.97	 14	±	4.45	

%	of	downregulated	genes	 58%	 83%	
Total	genes	tested	
(total	deletions	tested)	 672	 1011	

Total	deletions	tested	 322	 545	

Table	 11	 |	 Differentially	 expressed	 genes	 in	 trans.	 Number	 of	 eGenes	 in	
association	with	deletions	 in	 trans,	 located	 in	an	 intron	of	another	gene	or	 in	an	
intergenic	region.	The	expected	number	of	eGenes	was	calculated	after	randomly	
shuffling	the	genotype	of	the	subjects	for	whom	we	had	gene	expression	data.	A	list	
of	all	DEGs	can	be	found	in	supplementary	material	(Supplementary	table	6).		

For	example,	we	found	PRSS36	(Protease,	Serine	36)	to	be	downregulated	in	individuals	

with	an	intronic	eDeletion	in	SETD1A	(SET	Domain	Containing	1A)	gene	(P	=	1.98e-02),	

while	LIAS	(Lipoic	 Acid	 Synthetase)	 gene	 is	 upregulated	 in	 individuals	with	 a	 intronic	

eDeletion	in	PDS5A	(PDS5	Cohesin	Associated	Factor	A)	(P	=	1.53e-06).	

Two	interesting	cases	of	intergenic	eDeletions	are	the	CDO1	gene	(associated	with	higher	

expression)	and	two	components	of	the	major	histocompatibility	complex	(MHC),	HLA-

DPA1	and	HLA-DQA1	(associated	with	lower	expression).		

The	CDO1	 (Cysteine	Dioxygenase	Type	 1)	 gene	 has	 an	 important	 role	 in	 regulation	 of	

cellular	 cysteine	 concentrations	 and	 it	 initiates	 many	 metabolic	 pathways.	

Hypermethilation	in	the	promoter	of	this	gene	(typically	a	repression	mark)	is	a	molecular	

diagnostic	and	a	prognostic	indicator	in	various	human	cancers	(Nakamoto	et	al.,	2018).	

We	found	that	a	deleted	fragment	located	at	179.1kb	from	the	CDO1	gene	is	associated	

with	higher	expression,	suggesting	a	repressor	role	of	the	deleted	fragment	in	3D	contact.		
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HLA-DQA1	and	HLA-DPA1	are	two	of	the	6	main	MHC	class	II	genes.	These	genes	play	a	

central	role	in	the	immune	system	and	variation	in	these	genes	have	been	associated	with	

several	disorders	including	type	1	diabetes,	oral	cancer	and	celiac	disease.	We	found	that	

both	 genes	 have	 an	 intergenic	 deletion	 of	 a	 fragment	 in	 contact	 with	 their	 promoter	

associated	with	 a	 lower	 expression	 of	 the	 gene.	 In	 both	 cases	 the	 deleted	 fragment	 is	

upstream	 of	 the	 gene	 (10.1kb	 and	 3.7kb,	 respectively).	 In	 this	 case,	 the	 contacting	

fragment	 seems	 to	 be	 an	 enhancer	 and	 by	 removing	 this	 contact	 the	 gene	 will	 be	

downregulated	(Figure	29).		

	
Figure	29	|	Gene	expression	of	genes	associated	with	intergenic	deletions.	Example	of	a	
gene	with	 increasing	 expression	 in	 the	 individuals	with	 an	 intronic	 deletion	 in	 one	or	 both	
alleles	(CDO1	gene)	and	of	two	genes	with	lower	expression	in	the	individuals	with	an	intronic	
loss	(HLA-DQA1	and	HLA-DPA1).	

In	general,	deletions	of	fragments	in	contact	with	promoters	seem	to	have	a	low	impact	

on	 the	 expression	 of	 the	 gene	 in	 contact,	 lower	 than	 that	 of	 intronic	 deletions	 in	 cis	

(Supplementary	figure	12).	Nevertheless,	we	have	shown	that	the	expression	of	some	

genes	is	strongly	associated	with	very	distant	eDeletions.			

Most non-coding eDeletions are found in ancient genes 

We	looked	at	 the	ages	of	 the	of	 the	eGenes	and	we	 found	that	ancient	genes	are	more	

frequently	 associated	 with	 non-coding	 eDeletions	 than	 to	 coding	 eDeletions,	 and	 the	

opposite	happens	in	young	genes	(Figure	30).			
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Figure	 30	 |	 Differentially	 expressed	 genes	 by	 gene	 age	 and	 deletion	 type.	 Each	 bar	
represents	the	percentage	of	genes	in	old,	middle-aged	or	recent	genes	whose	expression	is	
associated	with	whole-gene,	exonic,	intronic	(in	cis	or	in	trans)	or	intergenic	deletions.		

If	we	look	at	the	tolerance	to	coding	mutations	of	the	eGenes	associated	with	whole-gene	

eDeletions,	these	eGenes	have	very	high	tolerance	to	mutations	(based	on	their	high	RVIS	

scores),	while	cis	and	trans	intronic	and	intergenic	eDeletions	are	associated	with	eGenes	

that	have	very	variable	tolerance	score	(Figure	31),	including	some	genes	with	very	low	

RVIS	scores	(low	tolerance).	Strikingly,	eGenes	in	association	with	trans-eDeletions	are	

the	ones	with	a	lowest	RVIS	score,	maybe	pointing	at	genes	whose	coding	and	non-coding	

sequence	 is	 very	 conserved	 but	 whose	 gene	 expression	 can	 be	 altered,	 for	 example,	

through	changes	in	the	chromatin	structure.		
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Figure	 31	 |	 Coding-sequence	 conservation	 of	 DEGs.	 RVIS	 score	 for	 coding	 sequence	
conservation	 in	 eGenes	 associated	with	whole-gene,	 exonic,	 intronic	 (in	 cis	 or	 in	 trans)	 or	
intergenic	 eDeletions.	Numbers	 in	 the	 y-axis	 correspond	 to	 the	 percentile	where	 a	 gene	 is	
located	 after	 a	 ranking	 based	 on	 their	 protein-coding	 sequence	 conservation,	 with	 lower	
values	showing	more	conservation	than	high	values.		

Population stratification of deletions associated with DE 

Population	 stratification	 of	 CNVs	 can	 indicate	 that	 a	 locus	 is	 under	 adaptive	 selection	

(Sudmant	et	al.,	2015a,	2015b).	To	explore	population	differentiation	we	used	the	statistic	

Vst,	a	measure	that	estimates	the	proportion	of	variance	that	is	attributable	to	variation	

between	populations	and	not	within	populations	(Redon	et	al.,	2006)	(See	Materials	and	

methods	for	details).	352	gene-overlapping	deletions	from	Sudmant-Nature	appear	to	be	

highly	 stratified	 (Vst	 >	 0.2).	 282	 of	 them	 are	 intronic,	 53	 exonic	 and	 17	 whole	 gene.	

Surprisingly,	 the	percentage	of	 highly	 stratified	deletions	 in	 each	of	 the	 three	 types	 is	

similar,	 but	 not	 uniformly	 distributed	 across	 gene	 ages.	 Young	 genes	 have	 a	 higher	

proportion	of	highly	stratified	deletions	than	ancient	genes,	even	for	intronic	deletions	

(Figure	32).		
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Figure	32	 |	Population	stratification	of	deletions	associated	with	
differential	gene	expression.	Percentage	of	highly	stratified	variants	
(maximum	Vst	>	0.2)	in	each	age	group	and	by	type	of	overlap	with	the	
gene.	The	absolute	number	of	deletions	is	indicated	above	each	bar.		

We	found	that	four	of	the	intronic	deletions	associated	with	gene	expression	changes	in	

cis	 are	 highly	 stratified	 and	 located	 in	 four	 ancient	 genes	 (Sarcopterygii	 or	

older):	EXOC2,	SKAP2,	PTGR1	and	PHYHD1.	 EXOC2	 appears	 among	 the	 5%	 more	

conserved	genes	(RVIS	=	3.34).	It	is	possible	that	we	have	detected	intronic	deletions	that	

cause	a	variability	in	the	gene’s	expression	that	contributes	to	human	adaptation	and	that,	

in	some	cases,	the	variant	ends	up	being	positively	selected	in	some	populations.		

Impact of deletion size and GC content on exon inclusion and transcript 

differential expression 

Intronic deletions are associated with transcript differential expression 

The	size	of	the	intron	can	have	an	impact	on	the	inclusion	or	exclusion	of	exons	during	the	

process	of	 splicing	 (Roy	et	 al.,	 2008).	This	differential	 inclusion	of	 exons	will	 result	 in	

differences	in	isoform	expression.		

We	 hypothesized	 that	 differences	 in	 intron	 size	 in	 the	 population	would	 result	 in	 the	

presence	 of	 differentially	 expressed	 transcripts	 (eTranscripts)	 in	 the	 individuals	with	

different	intron	sizes.	By	comparing	the	expression	levels	of	each	transcript	individually	
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in	 wild-type	 and	 homozygous	 individuals,	 we	 identified	 185	 genes	 with	 at	 least	 one	

eTranscript	 (Table	 12),	 in	 addition	 to	 the	 previously	 identified	 eGenes.	 Most	 of	 the	

eTranscripts	that	we	detected	corresponded	to	alternative	isoforms	(174	out	of	217).		

		 Whole	gene	 Exonic	 Intronic	
(cis)	

Intronic	
(trans)	 Intergenic	

Number	of	eTranscripts			 22***	 135***	 217*	 81	 123	
Number	of	eDeletions		 11	 92	 199	 54	 96	
Expected	number	of	
eTranscripts	(median	±	
MAD)	

4	±	1.48	 67	±	10.38	 173	±	19.27	 75	±	10.38	 109	±	13.34	

Number	of	genes	≥	1	
eTranscript	 11	**	 87	***	 185	**	 65	 104	

Expected	genes	with	≥1	
eTranscript	(median	±	
MAD)	

4	±	1.48	 53	+	7.41	 143	±	14.83	 64	±	8.90	 94	±	10.38	

Downregulated	
eTranscripts	 100%	 91%	 79%	 81%	 89%	

Total	genes	tested		 47	 403	 1,401	 653	 972	
Total	deletions		 43	 440	 1,886	 319	 529	
Table	12	|	Genes	with	differentially	expressed	transcripts.	Observed	and	expected	numbers	
of	DETs	and	of	genes	with	at	least	one	DET	in	association	with	deletions	whole-gene,	exonic	or	
intronic	deletions	in	cis	or	with	deletions	in	trans(	located	in	an	intron	of	another	gene	or	in	an	
intergenic	 region).	The	expected	number	of	DETs	was	 calculated	after	 randomly	 shuffling	 the	
genotype	of	the	subjects	for	whom	gene	expression	data	was	available.		

These	results	suggest	that	intronic	deletions	can	alter	the	the	expression	of	whole	genes	

or	unbalance	the	expression	of	one	or	more	isoforms	of	a	gene.		

Intronic deleted regions are GC rich and happen in introns with a high exon-intron 

differential GC content 

Different	studies	have	shown	that	that	exons	flanked	by	larger	introns	are	more	likely	to	

be	alternative	spliced	than	exons	flanked	by	short	introns	(Fox-Walsh	et	al.,	2005;	Kim	et	

al.,	2007;	Roy	et	al.,	2008).	Further	bioinformatics	and	experimental	analyses	have	proved	

that	 manipulating	 the	 size	 of	 the	 intron	 can	 affect	 the	 patterns	 of	 exon	 inclusion	 or	

exclusion	(Amit	et	al.,	2012).		

Based	 on	 these	 previous	 findings,	we	 hypothesized	 that	 altering	 the	 length	 of	 introns	

could	change	the	level	of	exon	inclusion.	Specifically,	we	expected	that	shortening	of	an	
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introns	 would	 increase	 the	 inclusion	 of	 alternative	 exons	 located	 upstream	 or	

downstream.	However,	the	impact	of	changes	in	intron	size	on	exon	inclusion/exclusion	

is	different	depending	on	the	GC	content	structure	of	the	gene.	Amit	and	others	showed	

that	introns	with	a	higher	GC	differential	between	exon	and	intron	tolerate	better	changes	

in	intron	length	and	the	levels	of	inclusion	or	exclusion	are	less	affected	(Amit	et	al.,	2012).		

A	first	analysis	on	the	GC	content	of	the	intronic	deletions	showed	that,	in	general,	deleted	

intronic	fragments	(intronic	deletions)	show	higher	GC	content	than	the	rest	of	the	

intron	(P	=	2.54e-18,	paired	Student’s	t-test).	Moreover,	the	removal	of	these	sequences	

causes	a	significant	drop	in	the	relative	GC	content	of	the	introns	(P	=	2.23e-16,	paired	

Student’s	test).		

In	agreement	with	the	findings	by	Amit	and	others,	we	see	that	the	GC	content	differential	

between	exons	and	introns	is	higher	in	the	introns	carrying	deletions	(Figure	33).	This	

consistency	with	the	previous	study	is	only	observed	in	the	largest	introns.	However,	as	

mentioned	before,	the	top	10%	largest	introns	harbor	the	61%	of	all	intronic	deletions	.		

	

Figure	33	|	Exon-intron	differential	GC	content.	Difference	between	the	 flanking	exons	of	
introns	with	or	without	deletions.	Bean	lines	show	the	mean	values	of	each	side	of	the	bean	and	
overall	line	represents	the	average	of	all	values.	Significance	calculated	with	Wilcoxon	tests	and	
marked	with	asterisk	at	P	<	0.05.	Note:	The	relative	GC	content	of	the	introns	with	deletions	
does	not	take	into	account	the	deleted	bases.		
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These	 results	 show	 that	most	 intronic	deletions	happen	 in	 introns	genes	a	higher	

exon-intron	 GC	 content	 differential	 than	 that	 of	 other	 introns	 of	 similar	 size,	

possibly	 because	 	 This	 results	 can	be	 interpreted	 in	 agreement	with	Amit	 and	others’	

findings	 that	 suggest	 that	 changes	 in	 intron	 size	 affect	 less	 the	 patterns	 of	 exon	

inclusion/exclusion	 when	 the	 GC	 differential	 is	 higher.	 Also	 we	 hypothesize	 that	 the	

presence	or	absence	of	regions	with	a	high	GC	content	within	introns	is	less	troublesome	

for	the	splicing	machinery	if	the	exons	are	more	well	defined	by	a	high	GC	content.		

Losses of large or GC-rich intronic fragments are associated with changes in exon 

inclusion and exclusion 

We	presumed	that	the	effect	of	changes	in	intron	length	or	GC	content	on	exon	inclusion	

or	exclusion	can	be	tested	by	checking	if	there	are	any	changes	in	the	expression	of	the	

exons	flanking	the	intron	that	contains	a	deletion.		

We	 looked	 at	 the	 differential	 expression	 of	 the	 alternative	 exons	 flanking	 intronic	

deletions	 and	 found	 49	 eDeletions	 (2.12	 %	 of	 all	 tested)	 associated	 with	 changes	 in	

expression	of	the	downstream	exon	(downstream-eExon)	and	28	eDeletions	(1.56%	of	

all	 tested)	 associated	 with	 differential	 expression	 of	 the	 upstream	 exon	 (upstream-

eExon)	(Table	13).		

Most	 (63.3%)	 of	 the	 downstream-eExons	 had	 lower	 expression	 (were	 more	 often	

excluded	in	the	in	the	individuals	with	the	deletion),	while	most	(75%)	upstream-eExon	

were	more	expressed	(were	more	often	 included	 in	 the	 individuals	with	 the	deletion).	

From	all	eDeletions,	9	were	linked	to	both	upstream	and	downstream	eExons.	In	7	of	these	

9	cases,	the	eDeletion	was	associated	with	higher	inclusion	of	both	exons;	in	one	case,	with	

exclusion	and	in	the	remaining	one	with	an	one	excluded	and	one	included	exon.	

We	tested	how	all	these	eDeletions	related	with	intron	size	and	GC	content.	Because	it	is	

not	fully	understood	if	the	changes	in	size	of	the	upstream	or	of	the	downstream	introns	

is	more	important	in	exon	inclusion/exclusion	(Roy	et	al.,	2008),	we	analysed	separately	

the	eDeletions	associated	with	upstream	and	downstream-eExons	(Table	13).		
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The	results	showed	that	eDeletions	are	bigger	(P	=	1.21e-4	and	P	=	1e-3	for	down	and	

upstream-eExons,	 respectively)	 and	 they	 represent,	 on	 average,	 a	 2	 to	 3	 bigger	

proportion	 of	 the	 intron	 than	 deletions	 not	 linked	 to	 exon	 inclusion/exclusion	 (P	 =	

8.88e-5	and	P	=	9.43e-3	for	down	and	upstream,	respectively).	Also,	the	distance	from	a	

eDeletion	 to	 the	 downstream	 eExon	 is	 20%	 smaller,	 although	 this	 difference	 is	 not	

significant	(P	=	0.054).	On	the	other	hand,	the	size	of	the	introns	with	eDeletion	was	not	

significantly	different	(Table	13).		

	

A) Number	of	eDeletions	and	genes	with	eExons	
	 UPSTREAM	 DOWNSTREAM	
Total	 deletions	 associated	 with	 exon	
DE	

28	(1.56%	of	tested	
deletions)	

49	(2.12%	of	tested	
deletions)	

Total	genes	affected	 18	genes	(1.79%)	 29	genes	(2.72%)	

B)	Significantly	vs.	not	significantly	DE	exons	

	 UPSTREAM	 DOWNSTREAM	
Deletion	size	 2.56	(P	=	1.00e-3)		 1.92	(P	=	1.21e-4)		
Intron	size	 1.59	(P	=	0.36)		 0.81	(P	=	0.23)		
Position	of	intron	with	deletion	 1	(P	=	0.75)	 1	(P	=	0.45)	
%	of	intron	that	is	deleted	 1.91	(P	=	9.43e-3)	 2.99	(P	=	8.88e-5)	
Distance	from	deletion	to	the	DE	exon	 1.05	(P	=	0.85)	 0.8	(P	=	0.054)	
Relative	GC	content	of	deletion	 1.02	(P	=	0.76)	 1.02	(P	=	0.37)	
Relative	GC	content	of	intron	 1	(P	=	0.83)	 1	(P	=	0.11)	
Relative	 GC	 content	 of	 intron	 (after	
deletion)	 0.75	(P	=	4.30e-3)	 0.9	(P	=	0.43)	

Deletion	–	intron	differential	GC	content	 2.58	(P	=	4.58e-3)	 1.44	(P	=	0.26)	
GC	change	in	intron		
(when	deletion	occurs)	 4.66	(P	=	0.06)	 1.82	(P	=	0.23)	

%	of	downregulation	 25%		 63.3%		

Table	13.	Continues	in	the	next	page.		 	
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C)	Differences	between	included	and	excluded	exons		

	 UPSTREAM	 DOWNSTREAM	
Deletion	size	 1.97	(P	=	0.87)	 1.17	(P	=	0.99)	
Intron	size	 0.67	(P	=	4.37e-3)	 1.04	(P	=	0.73)	
Position	of	intron	with	deletion	 1	(P	=	0.26)	 1.67	(P	=	0.37)	
%	of	intron	that	is	deleted	 2.54	(P	=	2.71e-3)	 0.99	(P	=	1)	
Distance	from	deletion	to	the	DE	exon	 0.24	(P	=	1.26e-3)	 1.47	(P	=	0.25)	
Relative	GC	content	of	deletion	 0.96	(P	=	0.60)	 1.04	(P	=	0.91)	
Relative	GC	content	of	intron	 0.99	(P	=	0.87)	 1	(P	=	0.84)	
Relative	 GC	 content	 of	 intron	 (after	
deletion)	 0.99	(P	=	0.87)	 1.09	(P	=	0.26)	

GC	change	 1.24	(P	=	0.96)	 0.68	(P	=	0.26)	

Table	13	|	Intronic	deletions	associated	with	differential	exon	expression.	(A)	Number	of	
deletions	associated	exons	exclusion	or	inclusion	and	number	of	genes	affected.	(B)	Comparison	
of	 significant	 and	 non-significant	 associated	 cases	 of	 intronic	 deletions	 and	 exon	
inclusion/exclusion.	 (C)	 Comparison	 of	 exon	 inclusion	 versus	 exon	 exclusion.	 All	 differences	
were	tested	with	Wilcoxon	tests	except	for	the	GC	change,	which	is	the	difference	in	relative	GC	
content	of	an	intron	after	the	deletion	and	was	calculated	with	a	paired	Student’s	T-test.		

Given	the	differential	GC	content	between	introns	and	exons	is	important	for	the	splicing	

machinery	 to	 recognize	 exons	 among	 long	 introns,	 we	 checked	 if	 the	 eDeletions	 had	

particularities	 in	 terms	 of	 GC	 content.	 While	 eDeletions	 did	 not	 show	 a	 particularly	

different	GC	content	than	other	intronic	deletions,	the	differential	GC	content	between	

the	 eDeletion	 and	 the	 rest	 of	 the	 intron	was	 larger	 (P	 =	 4.58e-3,	with	 the	 deleted	

fragment	having,	 on	 average,	 higher	GC).	Also,	 the	 introns	 that	 hosted	 these	deletions	

showed	a	lower	GC	content	than	the	rest	(P	=	4.30e-3).	These	significant	differences	were	

detected	for	upstream-eExons.	For	downstream-eExons	no	significant	differences	were	

detected	 between	 the	 GC	 content	 of	 the	 eDeletion	 and	 the	 GC	 content	 of	 the	 intron.	

However,	we	can	observe	that	a	subset	of	deletions	are	peaks	of	GC	content	and	that	have	

(Figure	 34),	 suggesting	 an	 impact	 of	 these	 peaks	 on	 the	 inclusion/exclusion	 of	 both	

upstream	and	downstream	exons.		
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Figure	34	 |	Difference	 in	 relative	GC	content	of	an	 intronic	
deletion	and	the	rest	of	the	host	intron.		

Through	the	comparison	of	 the	 included	versus	the	excluded	eExons	we	found	that,	 in	

upstream-eExons,	higher	inclusion	was	linked	to	smaller	introns	(P	=	4.37e-3),	deletions	

removing	a	larger	fraction	of	the	intron	(P	=	2.71e-3)	and	to	deletions	located	closer	to	

the	exon	(P	=	1,26e-3).		
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Discussion  
CNVs	 are	 an	 important	 source	 of	 genetic	 variation	 that	 might	 have	 a	 previously	

unsuspected	role	in	evolution	and	disease.	We	have	stablished	that	most	CNVs	overlapping	

with	 protein-coding	 genes	 fall	 within	 introns	 and	 we	 have	 studied	 their	 distribution,	

functional	impact	and	contribution	to	the	evolution	of	gene	regulation.		

A	necessary	consequence	of	an	intronic	loss	is	a	reduction	of	the	size	of	the	gene,	which	

seems	to	be	intolerable	for	a	set	of	genes	that	are	apparently	highly	sensitive	to	changes	in	

gene	size.	Intron	size	is	also	important	for	the	recognition	of	exon/intron	boundaries	by	

the	splicing	machinery,	that	is	determined	by	a	combination	of	intron	size	and	differential	

GC	content	(Amit	et	al.,	2012).	Here,	we	have	observed	that	CNVs	tend	to	have	a	GC	content	

higher	than	the	rest	of	the	intron,	which	means	that	those	losses	represent	a	change	in	both	

the	size	and	the	overall	GC	content,	with	a	potential	high	impact	on	splicing.	 Indeed,	we	

have	observed	cases	of	differential	expression	of	the	alternative	exons	flanking	the	CNVs	

that	could	contribute	to	the	selection	of	exons	to	be	included	in	the	processed	mRNA.					

The	 different	 size	 and	 position	 of	 the	 intronic	 CNVs	 will	 have	 different	 effects	 on	 the	

regulatory	 sequences	 contained	 in	 the	 introns,	 with	 downstream	 consequences	 for	 the	

regulation	of	gene	expression.	We	have	observed	that	CNVs	found	in	populations	tend	to	

be	located	in	the	regions	of	 introns	with	less	charge	of	regulatory	signals.	Moreover,	we	

have	confirmed	the	relation	between	changes	in	gene	expression	and	the	accumulation	of	

deletions	 in	 the	 regulatory	 regions	 of	 introns.	 These	 observations	 put	 in	 value	 the	

importance	of	analysing	the	specific	position	of	 intronic	CNVs	for	the	prediction	of	their	

potential	pathogenicity	in	disease	studies.		

Comparison of datasets 

In	 order	 to	 understand	 the	 distribution	 of	 intronic	 deletions	 in	 the	 genome	 of	 healthy	

individuals,	 we	 have	 analysed	 five	 maps	 of	 CNVs	 in	 large	 cohorts	 of	 individuals	 from	

different	populations,	 all	 of	 them	published	 in	2015.	These	maps	 are,	 to	date,	 the	most	

extensive	in	terms	of	populations	represented	and	the	number	of	individuals	sequenced.	

All	of	 them	were	obtained	using	short-read	sequencing	 technologies,	except	 for	Zarrei’s	
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map,	which	combines	data	from	different	studies	present	in	the	DGV,	some	of	which	use	

short-read	sequencing	but	others	use	SNP	arrays	or	aCGH.	We	found	that	these	datasets	

considerably	 differed	 in	 the	 number,	 sizes,	 and	 types	 of	 CNVs,	 presumably	 due	 to	 a	

combination	of	factors	such	as	the	methods	used	for	detection	of	the	CNVs,	the	number	of	

samples	and	the	populations	from	which	they	originate.			

Regarding	the	influence	of	the	methods	on	the	size	of	the	CNVs,	some	characteristics	of	the	

maps	fit	with	the	limitations	or	biases	of	the	algorithms	that	were	used	for	CNV	detection.	

For	example,	Abyzov	et	al.	used	different	algorithms	to	detect	deletions	at	high-resolution	

(Abyzov	et	al.,	2015).	Half	of	the	algorithms	that	they	used	are	based	on	split-reads	(SR),	

which	can	detect	exact	breakpoints	but	perform	worse	with	 larger	SVs	(Pirooznia	et	al.,	

2015).	This	is	probably	the	reason	why,	in	this	map,	deletions	are	on	average	smaller	than	

in	 the	 rest	 of	 the	 studies.	 On	 the	 other	 side,	 Handsaker	 and	 Sudmant-Science,	 the	 two	

studies	in	which	the	algorithms	are	based	on	read-depth	(RD),	have	the	higher	proportion	

of	 gains,	probably	because	 these	approaches	are	biased	 towards	 the	detection	of	 larger	

CNVs.		

The	 geographic	 distribution	 of	 the	 samples	 seems	 to	 have	 a	 significant	 impact	 on	 the	

number	of	observed	CNVs.	Sudmant-Science	has	almost	as	many	CNVs	as	Abyzov,	even	if	

the	number	of	sequenced	individuals	 in	Abyzov	is	 four	times	 larger.	Although	Sudmant-

Science	has	many	fewer	samples,	these	were	selected	from	very	diverse	populations	from	

all	 over	 the	 planet.	 This	 difference	 suggests	 that	 the	 sequencing	 of	 multiple	 and	

geographically	 distant	 populations	 provides	 a	map	with	many	 new,	 population-specific	

CNVs.	However,	this	hypothesis	should	be	tested	by	analysing	the	two	groups	of	samples	

with	the	same	algorithms.	Nevertheless,	the	fact	that	the	42.4%	of	Sudmant-Science	CNVRs	

are	 specific	 to	 the	map,	 against	 the	 11.4%	 of	 CNVRs	 in	 Handsaker,	 which	 uses	 similar	

methods	to	those	in	Sudmant-Science	(based	on	read-depth),	goes	in	the	direction	of	this	

hypothesis.		

The	map	from	the	1KGP	(Sudmant-Nature)	is	the	one	with	more	CNVs,	with	more	than	the	

double	CNVs	than	each	of	the	other	four	maps,	possibly	due	to	the	combination	of	having	a	

large	cohort,	selecting	samples	from	different	populations	and	using	different	algorithms	

for	CNV	calling.	
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In	general,	considering	all	CNVs	in	the	five	maps,	we	find	more	deletions	than	duplications.	

This	balance	is	different	depending	on	the	size	of	the	CNVs,	and	part	of	it	can	probably	be	

explained	biologically,	but	probably	a	significant	part	is	a	consequence	of	the	biases	in	the	

detection	using	short-read	sequencing	methods,	since	these	methods	work	very	well	for	

detecting	SNPs	throughout	most	of	the	genome	but	they	have	substantial	 limitations	for	

CNV	 calling.	 In	 general,	we	 find	 that	 large	 CNVs	 are	more	 frequently	 gains	 than	 losses.	

Probably,	 large	deletions	are	more	 likely	 to	be	deleterious	 than	 large	gains,	a	biological	

explanation	supported	by	the	significant	deficit	of	gains	in	the	OMIM	database,	compared	

to	deletions.	On	the	other	hand,	we	find	that	small	CNVs	are	more	often	losses	than	gains.	

Small	 gains	 are	 more	 difficult	 to	 detect	 than	 gains	 of	 similar	 sizes	 using	 short-read	

sequencing	technologies	(Xi	et	al.,	2011).	This	higher	proportion	of	losses	in	small	CNVs	is	

not	observed	in	a	recent	study	using	long-read	sequencing	(Huddleston	et	al.,	2017).	In	this	

study,	they	suggest	that	the	real	 landscape	of	types	and	sizes	of	CNVs	is	 far	 from	all	 the	

represented	in	these	maps	(Huddleston	et	al.,	2017).	For	CNVs	smaller	than	1kb,	the	ratio	

of	gains	and	losses	 is	relatively	close	to	1,	while	almost	no	gains	 in	this	size	range	were	

detected	 in	 the	 1KGP.	 Regarding	 larger	 CNVs,	 long-read	 methods	 reveal	 more	 novel	

deletions	than	gains,	but	large	gains	still	seem	more	frequent	than	large	losses	(Figure	35).	

	

	
Figure	35	|	Structural	variant	discovery	with	long-read	sequencing.	Figure	extracted	
from	Huddleston	et	al.,	2017.	Deletions	(red)	and	gains	(black)	identified	by	long-read	
sequencing	 a	 theoretical	 diploid	 human	 (CHM1	 and	 CHM13)	 and	 classified	 as	 novel	
(83%)	or	previously	reported	(17%),	based	on	their	presence	in	previously	published	
CNV	maps,	including	Sudmant-Nature	and	Sudmant-Science.		
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It	is	important	to	note,	though,	that	this	study	using	long-reads	shows	the	CNVs	occurring	

in	only	two	samples	(Huddleston	et	al.,	2017),	which	will	not	be	representative	of	all	the	

population.	Still,	the	results	from	long-read	sequencing	seem	to	uncover	a	more	balanced	

proportion	of	gains	and	losses	than	what	is	observed	with	short-read	based	methods.	

Assigning CNVs to gains and losses of ancestral genetic material  

As	explained	in	the	Results	section,	the	classification	of	CNVs	into	"gains"	or	"losses"	is	done	

in	relation	to	the	reference	genome,	which	does	not	necessarily	reflect	the	gain	or	loss	of	

regions	 from	 the	 ancestral	 genome.	 For	 example,	 if	 the	 reference	 genome	 assembly	

includes	an	inserted	region,	a	loss	will	be	called	in	this	region	in	those	individuals	without	

this	insertion	(who	actually	carry	the	ancestral	allele).	

Through	the	comparison	of	the	human	genome	with	the	genomes	from	other	non-human	

primates,	we	discovered	 that	 at	 least	 72.8%	of	 the	 deletions	 in	 Sudmant-Nature	 reflect	

deletions	relative	to	an	ancestral	genome.	Still,	we	were	able	to	detect	that	at	least	0.42%	

of	the	deletions	are	insertions,	but	we	were	not	able	to	determine	the	ancestral	state	for	

the	remaining	27%).	

The	 reference	 genome	 is	 possibly	 enriched	 with	 insertions	 given	 that,	 when	 it	 was	

assembled,	 clone	 selection	 was	 biased	 towards	 the	 largest	 insert	 clones	 in	 order	 to	

construct	a	minimal	tiling	set	(Lander	et	al.,	2001;	Nguyen	et	al.,	2006).		

To	complicate	 things	 further,	the	allele	that	 is	represented	in	the	reference	genome	

also	affects	the	probability	of	a	CNV	to	be	detected,	due	to	the	biases	in	the	methods	

towards	 losses	 or	 gains.	 For	 example,	 because	 small	 gains	 are	more	 easily	missed	 than	

small	losses	using	short-read	sequencing	methods	(Xi	et	al.,	2011),	if	a	small	CNV	sequence	

is	present	in	the	reference	genome	it	will	be	easier	to	detect	the	variant	than	if	the	CNV	

fragment	is	absent	in	the	reference.		

Taken	together,	our	results	show	that,	for	a	number	of	technical	reasons,	current	maps	

are	 still	 far	 from	capturing	 all	 the	 existing	 structural	 variability,	 implying	 that	 the	

results	presented	in	our	work	might	represent	an	underestimation	of	importance	of	CNVs.	

Moreover,	with	 the	 biases	 in	 the	 current	maps	 and	 the	 current	 reference	 genome,	 it	 is	

difficult	(or	perhaps	impossible)	to	understand	if	gains	occur	more	often	than	losses	or	the	
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other	 way	 around.	 With	 an	 improved	 reference	 genome	 that	 includes	 different	 alleles	

against	which	reads	can	be	aligned,	together	with	better	methods	that	allow	the	detection	

of	all	losses	and	gains,	it	will	be	less	difficult	to	study	how	selection	acts	on	both	types	of	

mutations	and,	also,	if	there	are	differences	in	their	occurrence	due	to	repair	mechanisms	

more	prone	to	cause	one	of	the	two	types	of	CNV.		

Relationship between CNVs and protein-coding genes: differential types and 

frequency of overlaps with exons and introns 

The different ratio of gains and losses in coding and intronic CNVs is partly explained 

by their different sizes 

The	different	ratios	of	gains	and	losses	in	CNV	regions	of	different	sizes	are	reflected	when	

we	look	at	the	different	types	of	overlaps	with	genes.	Intronic	CNVs	are	smaller	due	to	their	

size	limitations	(they	have	to	fit	within	an	intron)	and	thus	tend	to	be	losses,	while	whole-

gene	CNVs	are	larger	and	more	frequently	gains.		

The	 number	 of	 CNVs	 of	 each	 type	 (intronic,	 exonic	 or	 whole	 gene)	 is	 very	 variable	

depending	on	the	map,	presumably	also	due	to	the	biases	in	the	sizes	of	CNV	detected.	For	

example,	Handsaker	and	Sudmant-Science	have	very	few	intronic	CNVs,	probably	due	to	

their	use	of	algorithms	based	on	read-depth,	which	are	biased	towards	larger	CNVs.	This	

bias	caused	 the	 two	maps	 to	report	very	 few	small	variants	and	 thus,	very	 few	 intronic	

variants.	For	this	reason,	these	maps	could	not	be	considered	in	all	the	analyses	of	intronic	

deletions.	

The	distribution	of	exonic	CNV	types	is	more	similar	to	the	one	in	introns	than	that	whole-

gene	CNVs.	One	could	expect	an	exon-disrupting	CNV	to	have	an	equally	deleterious	impact	

than	a	whole-gene	CNV,	and	consequently,	to	be	biased	towards	gains	to	the	same	extent	

as	whole-gene	CNVs.	However,	many	exonic	CNVs	are	very	small	and	thus,	are	affected	by	

the	biases	of	the	algorithms	that	miss	most	small	gains.	Also,	in	the	case	of	exonic	CNVs,	

many	will	probably	have	a	milder	 impact	because	 they	can	be	affecting	only	alternative	

isoforms,	many	of	which	seem	to	not	be	translated	into	proteins	(Tress	et	al.,	2017).	
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Are deletions enriched in introns? 

To	characterize	the	levels	of	enrichment	or	depletion	of	the	CNVs	overlapping	with	whole	

genes,	 exons	 or	 introns,	 we	 compared	 the	 observed	 distributions	 to	 those	 seen	 in	

randomized	sets	of	CNVs.	 In	 three	out	of	 five	maps,	we	observed	a	small	but	significant	

general	enrichment	of	deletions	in	introns	and,	consistent	in	all	maps,	a	stronger	depletion	

of	deletions	in	exons.		

In	 the	 background	 models	 used	 in	 this	 analysis,	 a	 CNV	 can	 be	 relocated	 with	 equal	

probability	anywhere	in	the	genome	(global	model),	within	a	10Mb	window	(local	model)	

or	in	a	region	of	similar	RT	(RT	model),	avoiding	in	all	three	cases	low-mappability	regions.	

The	 results	 obtained	with	 the	 different	 backgrounds	were	 similar.	 The	 global	 and	 local	

background	models	were	generated	 in	a	similar	way	 than	other	studies	(Khurana	et	al.,	

2013;	 Mu	 et	 al.,	 2011;	 Sudmant	 et	 al.,	 2015a).	 However,	 the	 results	 regarding	 the	

enrichment	of	CNVs	within	introns	differ	from	previous	studies	where	they	saw	a	depletion	

(Khurana	 et	 al.,	 2013;	 Sudmant	 et	 al.,	 2015a)	 or	 no	 significant	 differences	 with	 the	

background	 (Mu	 et	 al.,	 2011).	 There	 are	 different	 possible	 explanations	 for	 such	

differences,	such	as	the	definition	of	introns	or	intronic	CNVs	(see	Results	for	details).	In	

addition,	 the	 biases	 in	 size	 of	 CNVs	 in	 the	 different	 studies,	 caused	 by	 the	 different	

algorithms	 that	 are	 used,	 can	 influence	 the	 variable	 results	 among	 maps.	 Deletions	

generated	by	different	mechanisms	differ	in	size	and	seem	to	be	differentially	enriched.	For	

example,	we	and	others	have	observed	that	NAHR	deletions	are	enriched	in	introns	(Mu	et	

al.,	2011)	and	that	TEI	deletions	(much	more	represented	in	Abyzov)	do	not	seem	enriched.			

However,	 even	 if	 all	 these	 factors	 could	 explain	 the	 apparent	 contradiction	with	 other	

studies,	 	 these	 enrichment	 results	 need	 to	 be	 interpreted	 carefully.	 Strong	 selective	

pressures	on	specific	genomic	structures	can	affect	the	enrichment	or	depletion	observed	

on	 another	 genomic	 structure.	 This	 effect	 can	 be	 explained	 with	 an	 example	 of	 a	

hypothetical	genome	where	CNVs	are	deleterious	in	exons	(and	never	found	in	the	healthy	

population)	 and	 neutral	 anywhere	 else.	 After	 randomizing	 all	 CNVs,	 these	 will	 be	

homogeneously	 distributed	 in	 the	 hypothetical	 genome,	where	 some	CNVs	will	 overlap	

with	exons	and	thus,	the	number	of	CNVs	elsewhere	in	the	genome	will	be	reduced.	This	
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will	lead	to	a	false	enrichment	of	CNVs	in	the	other	places	of	the	genome	as	a	result	of	the	

real	depletion	of	CNVs	in	exons	(Figure	36).	

	
Figure	36	|	Effect	of	negative	selection	on	a	genomic	feature	on	the	enrichment	observed	
in	 other	 regions.	 Example	 of	 a	 hypothetical	 genome	 with	 exons	 depleted	 of	 deletions	 and	
introns	with	randomly	distributed	deletions	that	have	no	impact	on	cell	fitness.	After	randomly	
relocating	the	deletions	over	the	genome,	some	of	them	will	overlap	with	exons	by	chance.	This	
higher	number	of	exonic	deletions	in	the	background	models	than	in	the	original	genome	will	
show	 that	 exons	are	depleted	of	deletions.	However,	 at	 the	 same	 time,	 introns	will	 have	 less	
deletions	in	the	background	models	and	consequently	an	enrichment	of	intronic	deletions	in	the	
original	genome	will	be	detected.	This	 false	enrichment	(because	 in	this	hypothetical	genome	
intronic	 deletions	 occur	 randomly)	 can	 lead	 to	 wrong	 assumptions	 such	 as	 the	 presence	 of	
positive	selection	of	intronic	deletions.		

In	this	thesis	and	in	previous	studies	(Khurana	et	al.,	2013;	Mu	et	al.,	2011;	Sudmant	et	al.,	

2015a),	the	observed	values	are	not	very	different	from	the	random	values,	even	if	in	the	

cases	where	the	difference	is	significant.	Given	the	limitations	in	our	background	models	

and	the	CNV	maps,	we	cannot	determine	if	the	enrichment	we	observe	in	introns	is	real	or	

not.	 Instead,	 larger	 and	 more	 consistent	 differences	 with	 the	 background	 models	 can	

probably	 be	 (and	 have	 been	 in	 several	 cases)	 trusted,	 such	 as	 the	 depletion	 of	 CNVs	

overlapping	with	exons	(Khurana	et	al.,	2013;	Mu	et	al.,	2011;	Sudmant	et	al.,	2015a;	Zarrei	

et	al.,	2015).		

However,	 even	 if	 our	 background	 models	 are	 not	 sufficient	 to	 determine	 if	 deletions	

represent	significant	enrichments	within	introns,	the	results	can	be	interpreted	relatively,	

and	 that	 these	 background	 models	 are	 useful	 for	 comparing	 enrichment	 levels	 among	

Hypothetical genome

Randomized genomes

7 Intronic / 0 exonic

4 Intronic / 3 exonic

5 Intronic / 2 exonic

5 Intronic / 2 exonic

Exon Intron Deletion
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groups	of	elements	of	the	same	type,	such	as	introns	of	different	sizes	or	introns	belonging	

to	specific	groups	of	genes.	This	way,	we	can	conclude	that	introns	carry	more	deletions	

than	exons	but	less	than	intergenic	regions.	The	free-of-background	comparison	between	

introns	and	intergenic	regions	also	shows	that	introns	carry	fewer	deletions	(and	smaller)	

than	intergenic	regions,	possibly	due	to	purifying	selection	acting	on	this	type	of	SVs	in	(at	

least	 some)	 introns.	 This,	 at	 the	 same	 time,	 hints	 that	 intronic	 deletions	 have	 a	 higher	

probability	to	produce	an	impact	on	the	organism	than	intergenic	deletions.	It	would	be	

interesting	 to	 study	 more	 in	 depth	 if	 the	 lower	 load	 of	 deletions	 in	 introns	 is	 due	 to	

purifying	selection	acting	against	deletions	that	disrupt	 functional	sequences	or	to	what	

extent	it	is	preserving	the	separation	between	exons	or	gene	size.	Information	on	sequence	

conservation	 can	 give	 a	 hint	 and	 help	 distinguish	 between	 "literal"	 (the	 order	 of	 the	

nucleotides	 in	 under	 selection)	 or	 "indifferent"	 DNA	 (presence	 or	 absence	 is	 under	

selection).		

CNVs overlapping with the protein-coding sequence 

In	 this	 study,	 we	 classified	 the	 CNVs	 that	 overlap	with	 the	 protein-coding	 sequence	 in	

“whole-gene	CNVs”	and	partial,	“exonic	CNVs”.	

Whole-gene CNVs and gene dosage 

Despite	 the	consistent	depletion	of	coding	deletions,	 taking	all	CNVs	 from	the	 five	maps	

together,	we	find	more	than	1,200	CNV-genes	occurring	in	healthy	individuals.	Whole-gene	

CNVs	very	often	 lead	to	changes	 in	gene	expression	that	cause	disease	(Wellcome	Trust	

Case	Control	Consortium	et	al.,	2010;	Zhang	et	al.,	2009).		

Although	there	are	common	multiallelic	CNVs	where	gene	expression	scales	linearly	with	

the	number	of	copies	(Handsaker	et	al.,	2015),	in	many	cases,	the	expression	of	common	

extra	copies	of	a	gene	 is	 lower	 to	 the	expression	of	 the	original	copies	(Glassberg	et	al.,	

2019).	It	seems	that	there	is	a	strong	constraint	on	variants	that	substantially	affect	gene	

expression	and,	often,	the	expression	of	the	extra	copies	of	genes	is	buffered	to	avoid	an	

increase	in	gene	expression	proportional	to	the	number	of	copies	(Glassberg	et	al.,	2019;	

Qian	et	al.,	2010).	Moreover,	CNVs	causing	large	changes	in	expression	are	generally	seen	
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at	very	 low	frequencies	 in	the	population	(Glassberg	et	al.,	2019).	 In	cancer,	 it	has	been	

noticed	that	post-transcriptional	mechanisms	exist	to	attenuate	amplifications,	 likely	via	

protein	degradation	(Gonçalves	et	al.,	2017).		

All	 these	 mechanisms	 can	 exist	 to	 buffer	 the	 expression	 of	 dosage-sensitive	 genes.	

However,	some	studies	also	claim	that	expressing	a	protein	is	a	costly	process	for	the	cell,	

and	duplication	of	highly	expressed	genes	will	lead	to	a	depletion	of	cellular	resources	and	

impact	the	expression	of	other	genes,	exerting,	indirectly,	a	deleterious	effect	(reviewed	in	

Rice	 and	McLysaght,	 2017).	 In	 agreement	with	 this	 theory,	we	have	 seen	 that	 essential	

genes,	which	tend	to	be	highly	expressed	(Wang	et	al.,	2015),	are	more	depleted	of	gains	

than	other	genes.		

Essential	 genes	 are	more	 depleted	 of	 whole	 gene	 deletions	 than	 the	 rest,	 which	 is	 not	

surprising	given	that,	by	definition	(according	to	the	studies	where	we	have	obtained	the	

lists),	essential	genes	are	 those	 that,	when	downregulated	or	when	carrying	deleterious	

mutations,	fitness	is	reduced	(Blomen	et	al.,	2015;	Hart	et	al.,	2015;	Silva	et	al.,	2008).	Still,	

we	 find	 43	 "essential"	 genes	 lost	 in	 the	 1KGP	 population,	 6	 of	 them	 homozygously,	

suggesting	that	the	lists	of	essentiality	should	be	revised.			

Indeed,	in	the	maps	from	this	study,	we	see	that	CNV-genes	tend	to	be	smaller	than	genes	

that	are	not	variable	in	the	population.	Maybe,	as	it	has	been	observed	for	highly	expressed	

genes	(Rice	and	McLysaght,	2017),	expression	of	very	long	genes	also	ends	up	exhausting	

the	resources	of	the	cell,	causing	downregulation	of	other	genes	and	being	this	is	the	reason	

why	we	see	a	difference	in	gene	size	of	duplicated	and	not	duplicated	genes.		

Exonic CNVs 

The	maps	that	we	have	analysed	in	this	thesis	do	not	provide	with	information	on	where	

duplications	are	inserted.	However,	this	information	is	very	relevant	to	predict	the	impact	

of	CNVs.	For	example,	a	duplication	in	tandem	can	disrupt	the	coding	sequence	and	be	as	

deleterious	as	a	deletion.	On	the	other	hand,	an	interspersed	insertion	of	an	exonic	gain	(an	

insertion	of	the	extra	copy	elsewhere	in	the	genome)	is	less	likely	to	affect	the	fitness	of	the	

cell	negatively.				
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To	roughly	estimate	how	deleterious	gains	can	be,	we	compared	their	impact	on	principal	

and	 alternative	 exons,	 as	 principal	 exons	 accumulate	 less	 high	 impact	 variants	 than	

alternative	exons	 (Tress	et	al.,	2017).	We	see	 that	principal	exons	have	a	 lower	ratio	of	

deletions	to	gains	than	alternative	exons,	suggesting	that	gains	of	exons	or	part	of	 them	

have	a	less	deleterious	effect	than	losses	of	part	of	an	exon.	It	is	possible	that	most	gains	

are	either	inserted	elsewhere	in	the	genome,	in	tandem	but	without	modifying	the	coding	

sequence,	or	modifying	the	coding	sequence	but	not	disrupting	the	function	of	the	protein.		

Intronic variants in exon-conserved genes  

Despite	the	mild	enrichment	of	deletions	within	introns	observed	in	most	of	the	maps,	we	

found	 that	not	 all	 genes	have	 the	 same	of	 intronic	deletions.	By	 ranking	 genes	by	 their	

observed	 and	 expected	 content	 of	 intronic	 deletions,	 we	 found	 that	 genes	 with	 fewer	

deletions	 than	 expected	 have,	 on	 average,	 a	more	 conserved	 coding	 sequence	 than	 the	

genes	with	more	deletions	than	expected.	However,	there	are	exceptions	to	this	tendency,	

and	we	found	genes	among	the	ones	more	enriched	intronic	deletions	that	belong	to	the	

top	2%	of	 genes	more	 conserved	 genes	 at	 a	 protein	 level.	 These	 results	 show	 that	 it	 is	

possible	to	have	a	very	conserved	coding	sequence	and	very	variable	introns.	If	some	of	

these	intronic	deletions	affect	gene	expression,	this	means	that	there	are	genes	with	a	very	

conserved	protein-coding	sequence	that	can	have	variable	gene	expression	levels.		

It	would	be	interesting	to	study	if	variability	in	the	introns	can	affect	the	performance	of	

DNA	damage	repair	mechanisms	that	are	based	on	homology	and	how	this	could	make	the	

gene	more	prone	 to	have	new	mutations	 in	 the	exons.	Maybe	 the	variability	within	 the	

introns	 is	 located	 far	 enough	 from	 the	 exons	 to	 allow	 repair	 based	 on	 homology	 if	

replication	errors	occur	in	the	coding	sequence.		

The importance of gene size 

We	observed	that	some	genes	have	surprisingly	variable	gene	 lengths	 in	 the	population	

caused	 by	 losses	 of	 intronic	 sequences.	 In	 some	 cases,	 what	 is	 remarkable	 is	 the	 size	

difference	between	pairs	of	individuals,	such	as	the	reduction	of	the	37%	of	the	size	in	the	

neuronal	glutamate	transporter	SLC1A1;	in	other	cases,	what	is	notable	is	the	number	of	

possible	sizes	a	gene	can	have	in	the	population.	Some	of	the	very	variable	genes	have	a	
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very	conserved	coding	sequence.	This	is	the	case	of	the	CSMD1	gene,	in	which	we	observe	

150	different	alleles	of	different	sizes.		

Our	ranking	of	more	to	 less	 intron-conserved	genes	fits	 in	with	the	results	presented	in	

several	 studies	 that	 advocate	 the	 importance	of	 gene	 size	 in	 specific	 gene	 sets.	We	also	

detected	that	genes	with	fewer	deletions	than	expected	are	enriched	in	other	pathways	(at	

an	FDR	<	25%)	 related	 to	brain	development,	 endocytosis	 and	detection	of	mechanical	

stimuli.	 It	 is	possible	 that	similarly	 to	what	was	hypothesized	 for	 the	genes	activated	 in	

response	to	serum	(Kirkconnell	et	al.,	2017),	gene	length	is	acting	as	a	biological	timer	in	

the	genes	activated	in	response	to	mechanical	stimulus.	This	would	mean	genes	would	be	

induced	simultaneously	by	a	mechanical	stimulus	but,	because	the	time	taken	to	obtain	

the	protein	correlates	the	size	of	the	gene,	the	protein	products	obtained	would	be	obtained	

in	a	sequential	order,	starting	with	proteins	encoded	by	the	shortest	and	ending	with	the	

largest	genes.		

Regarding	 brain	 development,	we	 uncovered	 additional	 evidence	 for	 the	 importance	 of	

intron	 conservation	 in	 these	 genes:	 no	 intronic	 deletions	 were	 detected	 in	 healthy	

populations	 in	 brain	 genes	 in	 which	 pathogenic	 intronic	 deletions	 causing	

neurodevelopmental,	neurological	or	psychiatric	disorders	have	been	identified.	It	seems,	

then,	 that	 there	 are	 some	 genes	 in	 the	 brain,	 that	 despite	 being	 very	 long,	 have	 little	

structural	variation	in	their	introns.		

We	found	that	genes	with	fewer	deletions	than	expected	have	a	higher	proportion	of	their	

"introme"	occupied	by	regulatory	sequences.	Thus,	our	set	of	 intron-conserved	genes	 is	

probably	a	combination	of	genes	that	do	not	tolerate	changes	in	their	gene	size	and	genes	

with	a	high	density	of	essential	regulatory	regions.			

The relationship between intronic deletions and regulatory regions 

The	enrichment	analysis	of	 the	genes	by	their	enrichment	of	 intronic	deletions	suggests	

certain	selection	to	preserve	the	intron	size.	However,	we	also	observed	that	in	introns	with	

regulatory	regions	and	deletions,	there	is	a	general	tendency	for	these	two	elements	not	to	

overlap,	suggesting	a	conservation	of	the	regulatory	regions,	especially	of	enhancers.	When	

we	look	at	the	number	of	tissues	an	RF	is	active	in,	we	find	a	general	depletion,	in	some	
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cases	 stronger	 when	 the	 number	 of	 tissues	 increases	 in	 CBS	 and	 TFBS	 (although	 the	

number	of	tested	TFBS	is	insufficient	to	extract	conclusions).	CTCF	is	a	versatile	nuclear	

factor	that	can	act	as	a	transcriptional	activator	or	repressor,	as	well	as	an	insulator	and	a	

regulator	 of	 genomic	 imprinting.	 Given	 the	 intragenic	 location	 of	 the	 CBS	 that	 we	 are	

testing,	it	is	more	likely	that	these	are	transcriptional	regulators	rather	than	insulators.	CBS	

active	 in	many	 tissues	 have	 high	 affinity	 and	 have	 been	 previously	 shown	 to	 be	 highly	

conservative	(Liu	et	al.,	2018).		

Interestingly,	 in	 cancer	 samples,	 we	 found	 that	 SCNAs	 overlap	 with	 RFs	 as	 much	 as	

expected	 by	 chance.	 This	 is	 probably	 the	 result	 of	 a	 much	 lower	 selective	 pressure	 in	

tumoral	cells	that	allows	mutations	to	accumulate.	It	could	also	happen	that	in	some	case	

these	deletions	that	disrupt	RFs	affect	gene	expression	and	contribute	to	the	tumorigenicity	

of	the	cell.	However,	a	higher	number	of	samples	would	be	needed	to	test	this	hypothesis.	

Impact of intronic deletions on gene expression	

By	combining	genotype	and	gene	expression	data	from	a	group	of	426	individuals,	we	found	

some	 intronic	 deletions	 associated	with	 gene	 expression	 changes	 (eDeletions).	 Intronic	

eDeletions	 are	 associated	 with	 higher	 and	 lower	 expression,	 unlike	 coding	 eDeletions,	

which	are	all	associated	with	lower	expression	levels.	Although	we	cannot	assume	that	the	

eDeletions	are	the	cause	of	the	gene	expression	changes,	we	did	see	that	eDeletions	overlap	

significantly	more	with	active	enhancers	than	the	rest	of	intronic	deletions,	suggesting	that	

the	 removal	of	part	of	 the	enhancer	has	an	 impact	on	 regulation.	Also	 interestingly,	we	

found	that	eDeletions	that	do	not	overlap	with	enhancers	are	significantly	closer	to	active	

enhancers.	 Since	 the	 interaction	 between	 an	 enhancer	 and	 a	 promoter	 occurs	 by	 3D	

interaction	of	the	two	sequences	(Vermunt	et	al.,	2019)	it	could	be	that	deletions	close	to	

these	 regions	 affect	 the	 formation	 of	 loops	 necessary	 for	 these	 interactions,	 affecting	

expression	through	what	is	called	a	"position	effect"	(Kleinjan	and	van	Heyningen,	2005;	

Spielmann	et	al.,	2018).			
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Trans-eDeletions: moving towards a 3D approach 

In	 this	 study,	 we	 proposed	 a	 new	 way	 of	 studying	 the	 impact	 of	 deletions	 on	 gene	

expression	 in	 trans	 that	 requires	 the	 combination	 of	 genotype,	 gene	 expression,	 and	

genome	organization	data.	Typically,	search	for	cis-eQTLs	is	restricted	to	variants	within	

1Mb	from	the	TSS	of	a	gene.	However,	 there	 is	 less	consensus	 in	the	definition	of	trans-

eQTLs.	In	some	cases,	trans-eQTLs	are	inter-chromosomal	(GTEx	consortium,	2017),	while	

in	others	they	are	variants	beyond	1Mb	from	the	TSS	of	a	gene.	The	definition	of	trans-eQTL	

(Gong	et	al.,	2018).	A	study	by	the	GTEx	consortium	showed	that	most	trans-eQTLs	are	also	

cis-eQTLs	and	suggested	 that	 the	regulation	of	 trans-eGenes	 is	via	 the	cis-eGenes	 (GTEx	

consortium,	2017).	However,	they	also	observed	that	trans-eQTLs	are	enriched	in	cell-type	

matched	enhancers,	 suggesting	 that	other	 regulatory	mechanisms	may	also	be	 involved	

(GTEx	consortium,	2017).		In	our	study,	we	restricted	our	search	of	trans-eQTLs	to	variants	

in	3D	contact	with	the	promoter	of	a	gene.	This	way,	we	expect	the	proportion	of	eVariants	

directly	linked	to	the	expression	change	to	increase	due	to	a	lower	detection	of	eVariants	

that	are	indirectly	affecting	the	expression	of	a	gene	in	trans	through	the	modulation	of	the	

expression	of	a	gene	in	cis.			

Most	contacts	between	enhancer	and	promoter	occur	within	Topologically	Associating	

Domains	(TADs),	which	are	self-interacting	regions	that,	in	mammalian	cells,	range	in	size	

from	 hundreds	 of	 kilobases	 to	 5	Mb,	 with	 an	 average	 size	 of	 1Mb	 (Rocha	 et	 al.,	 2015;	

Vermunt	et	al.,	2019).	We	think	that	genome	spatial	organization	should	be	taken	more	into	

account	when	looking	for	associations	between	variants	and	gene	expression	data.	It	would	

be	 interesting	 to	 redefine	cis-variants	as	 those	within	 the	 same	TAD	of	 the	 tested	gene,	

instead	of	variants	within	a	window	of	arbitrary	size	from	the	TSS.	Correspondingly,	trans-

variants	would	be	inter-TAD	and	could	be	limited	to	regions	in	3D	contact	with	the	tested	

gene.		

Linking	 CNV	 data	 to	 genotype	 and	 expression	 data	 can	 also	 be	 used	 to	 see	 which	 3D	

contacts	detected	in	Hi-C	experiments	have	a	regulatory	role,	and	also	to	determine	if	its	

activating	or	repressing	the	gene.			
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Our	results	are	likely	to	underestimate	the	effect	of	losses	in	introns	on	gene	expression,	on	

the	 one	 hand,	 because	 we	 only	 analysed	 gene	 expression	 in	 one	 cell	 line,	 limiting	 the	

analysis	to	the	genes	expressed	in	these	cells.	On	the	other	hand,	many	contacts	between	

enhancer	and	promoter	are	tissue-specific	(Vermunt	et	al.,	2019),	making	it	necessary	to	

have	cell-type	interaction	maps	to	search	for	trans-eQTLs.	Besides,	interactions	in	which	

one	 of	 the	 fragments	 is	 deleted	 in	 some	 individuals	 in	 the	 population	 might	 be	

underrepresented	in	the	interaction	maps,	since	this	interaction	cannot	be	detected	if	one	

of	the	fragments	is	missing	in	the	genome.	Moreover,	the	probability	of	being	missed	will	

positively	correlate	with	the	frequency	of	the	mutation	because	the	interacting	fragment(s)	

will	be	less	likely	to	be	present	in	the	samples	used	for	the	experiment.	Another	reason	why	

we	are	probably	underestimating	the	effect	of	CNVs	on	gene	expression	is	that	the	samples	

from	the	Geuvadis	project	belong	to	5	of	the	26	populations	from	the	1KGP	(four	European	

and	one	African).	Thus,	it	was	not	possible	to	test	the	variants	specific	to	other	populations.			

We	cannot	ignore	the	fact	that	other	unexplored	variants	could	cause	a	proportion	of	the	

statistical	associations	that	we	found	between	deletions	and	gene	expression,	probably	in	

linkage	disequilibrium	with	the	CNV,	even	if	CNVs	are	more	likely	to	be	eQTLs	than	SNPs	

(Bryois	et	al.,	2014).		

Effect of intronic deletions in transcript differential expression  

In	our	study	of	gene	expression,	we	detected	genes	with	differentially	expressed	transcripts	

in	 individuals	with	an	 intronic	deletion.	We	hypothesized	 that	some	of	 these	eDeletions	

could	be	producing	changes	in	the	structure	of	the	intron	the	individuals	with	the	deletion,	

causing	 an	 imbalance	 of	 expressed	 isoforms	 by	 affecting	 the	 inclusion	 or	 exclusion	 of	

upstream	or	downstream	exons.	We	studied	under	the	assumption	that	lower	expression	

of	an	exon	reflects	exon	exclusion	or	skipping	(the	processed	mRNA	does	not	include	this	

exon),	 while	 higher	 expression	 reflects	 higher	 levels	 of	 exon	 inclusion.	 We	 are	 aware,	

though,	that	the	differences	in	exon	expression	could	be	in	fact	due	to	other	factors,	such	as	

changes	in	the	regulation	or	the	stability	of	the	different	transcripts.			

In	our	analysis,	we	found	a	higher	proportion	of	 intronic	eDeletions	associated	with	the	

changes	in	the	downstream	rather	than	the	upstream	exon	(2.12%	vs.	1.56%),	suggesting	
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that	 maybe,	 downstream	 exons	 are	 more	 affected	 by	 intronic	 deletions.	 Although	 the	

number	of	significant	cases	is	minimal	and	further	analysis	with	bigger	samples	should	be	

carried	to	extract	meaningful	conclusions,	we	observed	that	intronic	deletions	seem	to	

be	mainly	associated	with	the	inclusion	of	the	upstream	exon	and	with	the	exclusion	

of	the	downstream	exon.		

According	to	our	analysis,	the	relative	change	in	the	size	of	the	intron	seems	to	be	relevant,	

with	proportionally	bigger	losses	being	more	associated	with	intron	inclusion	or	exclusion.	

Moreover,	overexpressed	upstream	exons	are	associated	with	relatively	bigger	deletions	

than	 underexpressed	 upstream	 exons.	 The	 size	 of	 the	 deletion,	 thus,	 could	 be	 not	 only	

affecting	splicing	but	determining	if	the	alternative	exon	is	included	or	excluded.		

Given	the	importance	of	the	differential	GC	content	between	exons	and	introns	to	allow	the	

splicing	machinery	to	recognize	exons	flanked	by	long	introns	(Amit	et	al.,	2012;	Gelfman	

et	al.,	2012),	we	analysed	the	GC	content	of	the	tested	deletions	and	genes.	Interestingly,	

we	found	that	deletions	associated	with	exon	inclusion	or	exclusion	were	located	in	introns	

with	a	lower	GC	content,	but	the	deleted	fragment	represented	a	peak	of	GC	within	the	

intron.	These	results	suggest	that	peaks	of	GC	within	the	intron	might	affect	splicing.			

The	 higher	 GC	 content	 of	 the	 deleted	 fragment,	 however,	 is	 not	 limited	 to	 deletions	

associated	with	expression	changes.	Looking	at	the	whole	of	intronic	deletions	in	the	1KGP,	

we	found	a	general	tendency	for	the	deleted	fragments	to	have	a	higher	GC	content	than	

the	rest	of	the	intron.	Further	analyses	remain	to	be	done	to	understand	better	why	the	

deleted	segments	show	this	higher	GC.	The	differential	GC	content	of	the	deleted	fragment	

could	be	causing	epigenetic	differences,	for	example	in	DNA	methylation,	which	tends	to	

occur	in	CpG	islands	and	is	higher	in	exons	than	in	introns	(Gelfman	et	al.,	2012;	Moore	et	

al.,	 2013).	 Since	 DNA	 methylation	 is	 known	 to	 influence	 gene	 expression	 and	 splicing	

(Shayevitch	et	al.,	2018),	deletions	could	be	causing	variability	 in	 isoform	expression	by	

altering	the	density	of	epigenetic	marks	within	the	intron.		

Several	 questions	 remain	 to	 be	 answered	 regarding	 the	 impact	 on	 splicing	 and	 gene	

expression	of	the	changes	in	intron	structure	caused	by	a	deletion.	Hopefully,	some	of	these	

questions	will	 be	 answered	using	 larger	 datasets	 that	 also	 combine	 sequence	 and	 gene	



	 110	

expression	data	 from	the	same	 individuals,	or	maybe	with	 further	experimental	 studies	

modifying	intron	sequence	(Amit	et	al.,	2012)	or	epigenetics	(Shayevitch	et	al.,	2018).		

Genes of different evolutionary ages have different patterns of CNVs 

We	have	found	that	human	genes	of	born	at	different	times	during	evolution	accumulate	

different	types	of	CNVs.	While	ancient	genes	accumulate	most	intronic	CNVs,	young	genes	

are	enriched	with	coding	CNVs.	These	two	types	of	CNVs	can	have	a	different	impact	on	the	

gene,	suggesting	that	CNVs	are	shaping	the	evolution	of	genes	differently,	depending	on	

their	 age.	 For	 example,	 new	 genes	 born	 via	 whole	 gene	 duplications,	 which	 are	 an	

important	substrate	for	functional	innovation,	will	more	probably	arise	from	young	genes.	

At	 the	 same	 time,	 modifications	 in	 the	 protein	 sequence	 caused	 by	 partial	 losses	 or	

duplications	of	the	coding	sequence	will	also	tend	to	happen	in	young	genes.	In	the	article	

previously	 published	 in	 our	 group	 by	 Juan,	 Rico	 and	 others	 (Juan	 et	 al.,	 2013),	 they	

described	 that	 young	 genes	 replicate	 later	 in	 the	 S-phase	 and	 they	 suggested	 that	

duplications	 of	 young	 genes	 tend	 to	 be	 inserted	 in	 late-replicating	 regions.	 These	 late-

replicating	 regions	 are	 enriched	 in	 CNVs	 and	 thus	 make	 the	 duplicated	 genes	 more	

susceptible	to	be	further	duplicated.	Contrarily,	they	observed	that	ancient	genes	tend	to	

have	a	fix	copy	number.	However,	they	did	not	look	at	the	variability	in	introns	or	intergenic	

regions	in	these	genes.		

We	observed	that	ancient	genes,	despite	being	impoverished	with	coding	CNVs,	carry	most	

of	 the	 intronic	 deletions	 in	 the	 genome	 and,	 more	 interestingly,	 most	 of	 the	 intronic	

deletions	associated	with	gene	expression	changes.	These	genes	are	in	general	larger,	with	

longer	 introns	 that	 probably	 carry	more	 regulatory	 elements.	 Based	 on	 our	 results,	we	

suggest	 that	 intronic	 CNVs	 cause	 gene	 expression	 variability	 in	 the	 population,	 likely	

through	the	direct	overlap	with	RFs	or	interfering	with	the	regulation	by	contacts	in	3D.	

This	effect	on	gene	regulation	will	happen	mainly	in	ancient	genes	and	might	provide	with	

the	capacity	to	adapt	to	new	environments.		

In	fact,	previous	studies	have	suggested	that	changes	in	gene	expression	have	been	more	

prevalent	in	human	adaptation	than	changes	at	the	protein	level	(King	and	Wilson,	1975;	

Fraser,	2013),	 suggesting	a	strong	evolutionary	potential	of	 intronic	CNVs.	Although	we	
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expect	the	functional	effects	of	the	coding	CNVs	to	be	stronger	than	intronic	CNVs,	we	found	

a	 similar	 proportion	 of	 coding	 and	 intronic	 eDeletions	 showing	 signatures	 of	 potential	

positive	selection.		

Interestingly,	structural	variation	within	introns	can	affect	regulation	in	a	tissue-specific	

way.	We	found	that	there	is	a	negative	correlation	between	the	number	of	tissues	in	which	

some	 regulatory	 regions	 are	 active	 and	 their	probability	 to	be	disrupted	by	 an	 intronic	

deletion,	 suggesting	 that	mutations	 in	ancient	genes	may	have	 	 a	 tissue-specific	 impact.	

Indeed,	coding	mutations	can	also	have	a	tissue-specific	impact.	For	example,	exonic	CNVs	

modifying	the	protein-coding	sequence	can	have	a	cell-type	specific	impact	if	they	the	gene	

is	only	expressed	in	some	cell-types,	but	we	expect	that	the	impact	will	be	similar	anywhere	

where	the	protein	is	produced.	Whole	gene	duplications,	as	discussed	by	Juan	and	others,	

can	also	have	a	tissue-specific	effect	if	they	are	inserted	in	a	part	of	the	chromatin	that	is	

only	active	in	specific	tissues	(Juan	et	al.,	2013).	However,	we	think	that	intronic	variation	

will	more	frequently	cause	variability	in	a	cell-type	specific	manner	than	coding	CNVs.		

Besides	the	impact	intronic	deletions	may	have	on	gene	expression,	these	can	also	affect	

the	time	taken	to	transcribe	a	gene	and	their	splicing.	Modifications	in	these	two	processes	

can	also	have	tissue-specific	consequences.	For	example,	an	increase	in	gene	length	could	

be	 deleterious	 in	 a	 tissue	 where	 cells	 are	 rapidly	 replicate,	 if	 this	 increase	 makes	 it	

impossible	for	the	protein	to	be	produced	before	the	next	cycle	starts	(Seoighe	and	Korir,	

2011).			

We	 propose	 a	 model	 in	 which	 CNVs	 are	 shaping	 the	 evolution	 of	 genes	 differently,	

depending	 on	 the	 age	 of	 the	 gene.	 In	 ancient	 genes,	 CNVs	 are	 currently	modifying	 the	

expression,	splicing,	and	the	time	taken	to	transcribe	the	gene;	while	in	young	genes,	CNVs	

impact	 on	 the	 coding	 sequence,	modifying	proteins	 and	providing	 the	 substrate	 for	 the	

birth	of	new	genes	(Figure	37).			



	 112	

	

Figure	37	|	Impact	of	CNVs	on	genes	and	their	evolution.	Evolutionarily	ancient	and	
young	genes	accumulate	different	types	of	CNVs.	While	young	genes	are	enriched	in	coding	
deletions	(which	alter	gene	dosage	or	modify	or	disrupt	the	protein,	sometimes	affecting	
gene	expression),	ancient	genes	normally	have	a	conserved	coding	sequence	but	a	high	
load	of	intronic	deletions,	which	are	sometimes	associated	with	gene	expression	under	or	
overexpression.		

Future perspectives 

One	 of	 our	 main	 findings	 is	 that	 genes	 that	 have	 essential	 functions	 and	 a	 conserved	

protein-coding	 sequence	 can	 accumulate	 SVs	 in	 their	 introns,	 providing	 a	 substrate	 for	

adaptation	through	changes	in	gene	regulation.	Although	we	found	some	characteristics	in	

the	intronic	deletions	that	could	be	causing	an	impact	on	gene	expression	or	splicing,	 in	

most	 of	 the	 analyses	 we	 had	 minimal	 numbers	 of	 intronic	 deletions	 or	 to	 test	 hour	

hypothesis	 or	 not	 enough	 individuals	 for	 whom	we	 had	 expression	 data.	 Having	more	

intronic	deletions	to	test	(more	expression	data	or	more	sensitive	CNV	calls)	would	help	to	

predict	 better	 the	 impact	 of	 the	 structure	 of	 intronic	 variation	 on	 gene	 expression	 and	

splicing.	However,	even	with	the	variability	of	CNVs	among	maps	and	the	low	number	of	

intronic	CNVs	in	some	of	them,		most	of	our	results	were	consistent	across	maps,	such	as	
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the	distribution	of	CNVs	on	the	genes	of	different	ages,	or	the	lower-than-expected	overlap	

of	CNVs	with	RFs.		

The	variability	of	types	of	CNVs	among	the	maps,	even	when	the	sequenced	individuals	are	

essentially	the	same,	highlights	the	limitations	of	the	current	methods.	Scientists	checking	

if	 a	 gene	 of	 interest	 contains	 CNVs	 should	 consider	 looking	 at	 as	many	maps	 of	 SV	 as	

possible.	

In	our	case,	we	think	that	our	analyses	should	be	repeated	with	more	complete	maps	of	

population	CNVs.	We	expect	that	long-read	sequencing	methods,	which	have	been	shown	

to	improve	the	sensitivity	of	SV	detection,	will	provide	the	scientific	community	with	more	

accurate	maps.	 In	a	very	recent	study,	Audano	and	others	have	 long-read	sequenced	15	

genomes,	and	they	have	detected	99,604	SVs,	the	40.8%	of	which	are	novel	relative	to	a	

combination	of	CNV	maps	that	includes	Sudmant-Nature,	Sudmant-Science	and	the	long-

read	 sequencing	 data	 from	Huddleston	 et	 al.	 2017	 (Audano	 et	 al.,	 2019).	 In	 this	 study,	

besides	providing	a	much	more	extensive	catalog	of	SVs,	they	developed	an	algorithm	to	

improve	 genotyping	 SVs	 from	 short-read	 data	 and	 generated	 and	 released	 a	 reference	

genome	containing	SVs	as	alternative	loci.	In	their	final	map	of	SVs,	insertions	outnumber	

deletions	(57,994	insertions,	41,388	deletions).	

A	future	analysis	to	complement	our	result	could	be	the	analysis	of	the	CNVs	provided	by	

Audano	and	others.	In	this	case,	given	that	the	authors	inform	of	the	position	where	the	

insertions	occur(Audano	et	al.,	2019),	we	could	check	which	genes	accumulate	insertions	

(and	thus,	grow	in	size),	complementing	our	analysis	on	which	genes	tolerate	or	not	size	

reductions.	

In	summary,	we	have	studied	in	depth	the	distribution	of	CNVs	in	the	human	genome	and	

their	possible	functional	implication,	but	our	study	has	been	based	on	current	maps	of	SV	

that	show	several	limitations.	We	expect	that	further	analyses	with	more	comprehensive	

maps	 will	 have	 more	 power	 to	 validate	 our	 findings.	 A	 better	 understanding	 of	 the	

functional	 impact	of	CNVs	will	help	 facilitate	 the	 functional	prediction	of	new	CNVs,	 for	

example	after	checking	 if	 they	overlap	or	are	close	to	an	RFs,	 in	which	tissues	the	RF	 is	

active,	if	any	contacts	are	disrupted	or	if	the	change	in	gene	size	is	considerable.		
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Conclusions 
	

1. In	the	maps	analysed	in	this	study,	intronic	CNVs	are	mostly	deletions	and	they	

are	more	frequent	than	those	that	affect	exons.	

2. Introns	accumulate	more	CNV	losses	than	expected	by	chance,	although	less	than	

intergenic	 regions	 of	 similar	 sizes.	 These	 CNVs	 in	 introns	 are	 smaller	 than	

intergenic	 ones,	 suggesting	 that	 introns	 are	 more	 sensitive	 to	 losses	 than	

intergenic	regions.	

3. Intronic	deletions	are	impoverished	in	genes	related	to	development	or	required	

in	 stimulus-activated	 reactions,	 possibly	 because	 the	 time	 required	 for	

transcription	is	important	in	these	groups	of	genes.	

4. Intronic	 deletions	 are	 also	 depleted	 in	 neuronal	 genes	 in	 which	 pathogenic	

intronic	CNVs	have	been	 found,	highlighting	 the	 importance	of	considering	 the	

introns	of	such	genes	in	future	genetic	tests.		

5. Intronic	deletions	can	be	associated	with	changes	 in	the	expression	of	the	host	

gene	or	in	other	genes	that	show	long-range	interactions	with	the	intronic	CNV	

region.	

6. Intronic	 deletions	 associated	with	 changes	 in	 gene	 expression	 tend	 to	 overlap	

with	enhancers	or	are	linearly	close	to	them,	suggesting	that	CNVs	in	introns	can	

contribute	 to	 gene	 expression	 variability	 in	 the	 populations	 by	 interfering	 the	

three-dimensional	interactions	of	promoters	and	intronic	enhancers.	

7. Intronic	losses	tend	to	occur	in	genes	with	a	high	differential	GC	content	between	

the	exon	and	the	introns	that	flank	it.	The	regions	lost	tend	to	be	GC-rich	and	their	

disappearance	 leads	 to	 higher	 exon-intron	 GC	 differences	 that	 could	 influence	

exon	recognition	during	splicing.	
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8. Intronic	deletions	appear	to	affect	splicing	processes	by	altering	the	inclusion	or	

exclusion	 of	 the	 alternative	 exons	 that	 flank	 them,	 altering	 the	 balance	 of	 the	

isoforms	expressed	in	the	cell.	This	effect	seems	to	be	dependent	on	the	size	and	

GC	content	of	the	deletion.			

9. Genes	 of	 different	 evolutionary	 ages	 show	 different	 patterns	 of	 overlap	 with	

CNVs:	young	genes	are	enriched	in	CNV	that	overlap	coding	regions,	with	possible	

functional	impact	at	the	protein	level,	while	old	genes	are	impoverished	in	coding	

CNVs	and	enriched	in	intronic	CNVs,	possibly	with	a	weaker	functional	impact	on	

the	proteins	but	influencing	their	regulation.		

10. According	 to	 our	 model,	 CNVs	 are	 shape	 the	 evolution	 of	 genes	 differently	

depending	on	the	age	of	 the	gene.	CNVs	are	modifying	the	expression,	splicing,	

and	 the	 time	 taken	 to	 transcribe	 of	 ancient	 genes	while	 they	 alter	 the	 coding	

sequence	or	gene	dosage	of	new	genes.	
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Conclusiones 
1. En	 los	mapas	analizaos	en	este	estudio,	 las	CNVs	 intrónicas	son	en	su	mayoría	

deleciones	y	son	más	frecuentes	que	las	que	afectan	a	los	exones.	

2. Los	 intrones	acumulan	más	deleciones	de	 lo	esperado	por	azar,	aunque	menos	

que	las	regiones	intergénicas	de	tamaños	similares.	Las	CNVs	en	intrones	son	más	

pequeñas	que	las	intergénicas,	lo	que	sugiere	que	los	intrones	son	más	sensibles	

a	las	pérdidas	que	las	regiones	intergénicas.	

3. Las	deleciones	 intrónicas	están	empobrecidas	en	 los	genes	relacionados	con	el	

desarrollo	o	activados	en	la	reacción	a	estímulos,	posiblemente	porque	el	tiempo	

requerido	para	la	transcripción	es	importante	en	estos	grupos	de	genes.	

4. Las	deleciones	intrónicas	también	están	empobrecidas	en	genes	neuronales	en	los	

que	se	han	encontrado	CNVs	intrónicas	patógenicas,	lo	que	destaca	la	importancia	

de	considerar	los	intrones	de	dichos	genes	en	futuras	pruebas	genéticas.	

5. Las	deleciones	intrónicas	pueden	asociarse	a	cambios	en	la	expresión	del	gen	que	

las	contiene	o	de	otros	genes	ubicados	 lejos	en	 la	secuencia	cuando	se	pierden	

contactos	 con	 el	 promotor	 del	 otro	 gen	 en	 la	 estructura	 tridimendional	 de	 la	

cromatina.	

6. Las	deleciones	intrónicas	asociadas	con	cambios	en	la	expresión	génica	tienden	a	

solapar	con	los	enhancers	o	están	linealmente	cerca	de	ellas,	lo	que	sugiere	que	

las	CNVs	intrónicas	pueden	contribuir	a	la	variabilidad	de	expresión	al	interferir	

sobre	 las	 interacciones	 tridimensionales	 de	 los	 promotores	 y	 los	 enhancers	

intrónicos.	

7. Las	 pérdidas	 intrónicas	 tienden	 a	 ocurrir	 en	 genes	 con	 una	 pronuncidad	

diferencia	 de	 contenido	 GC	 entre	 el	 exón	 y	 los	 intrones	 que	 lo	 flanquean.	 Las	

regiones	perdidas	tienden	a	ser	ricas	en	GC	y	su	desaparición	conduce	a	mayores	
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diferencias	de	 contenido	GC	que	podrían	 influir	 en	el	 reconocimiento	del	 exón	

durante	el	proceso	de	splicing.	

8. Las	supresiones	intrónicas	parecen	afectar	los	procesos	de	empalme	al	alterar	la	

inclusión	o	exclusión	de	 los	exones	alternativos	que	los	flanquean,	alterando	el	

equilibrio	de	las	isoformas	expresadas	en	la	célula.	Este	efecto	parece	depender	

del	tamaño	y	el	contenido	de	GC	de	la	eliminación.	

9. Los	 genes	 de	 diferentes	 edades	 evolutivas	 muestran	 diferentes	 patrones	 de	

solapamiento	 con	 CNVs:	 los	 genes	 jóvenes	 están	 enriquecidos	 en	 CNVs	 que	 se	

afectan	las	regiones	codificantes,	con	un	posible	impacto	funcional	a	nivel	de	la	

proteína,	 mientras	 que	 los	 genes	 antiguos	 están	 empobrecidos	 de	 CNVs	

codificantes	y	enriquecidos	con	CNVs	 intrónicas,	posiblemente	con	un	 impacto	

funcional	más	débil	en	las	proteínas	pero	influyendo	en	su	regulación.	

10. Según	 nuestro	modelo,	 las	 CNVs	modelan	 la	 evolución	 de	 los	 genes	 de	 forma	

diferente	según	la	edad	del	gen,	modificando	la	expresión,	el	splicing	y	el	tiempo	

necesario	para	transcribir	los	genes	antiguos	mientras	que	alteran	la	secuencia	

codificante	o	la	dosis	génica	en	genes	evolutivamente	recientes.	
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A) Local	randomization	

	
B) RT	randomization	

	
Supplementary	 figure	 2	 |	Equivalent	 to	Figure	 9	 using	 local	model.	 Enrichment	 of	 deletions.	
Height	of	the	bar	is	the	median	of	the	ratio	between	the	observed	number	of	overlaps	and	each	of	
the	 10,000	 randomized	 sets.	 Whiskers	 show	 median	 absolute	 deviation	 and	 asterisks	 mark	
significance:	*	for	P<0.05,	**	for	P<0.005	and	***	for	P<0.0005.	The	randomized	sets	were	obtained	
by	A)	Local	or	B)	RT-controlling	randomizations	(see	section	“Statistical	assessment	of	genome-
wide	distribution	of	CNVs”	from	Materials	and	Methods).	

coding
intron−intersecting

purely intronic
intergenic

Local randomization

En
ric

hm
en

t o
f d

el
et

io
ns

 lo
g2

(o
bs

/e
xp

)

−2
.0

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

Sud
man

t

(N
atu

re) Zarr
ei

Aby
zo

v

Sud
man

t

(Scie
nc

e)

Han
ds

ak
er

***
* **
*

**
*

**
* **
* **
*

**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
*

Coding vs Intronic vs intergenic deletions

coding
intron−intersecting

purely intronic
intergenic

RT randomization

En
ric

hm
en

t o
f d

el
et

io
ns

 lo
g2

(o
bs

/e
xp

)

−2
.0

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

Sud
man

t

(N
atu

re) Zarr
ei

Aby
zo

v

Sud
man

t

(Scie
nc

e)

Han
ds

ak
er

*

*

** **
*

**
*

**
* **
* **

*

**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
*

Coding vs Intronic vs intergenic deletions



	 139	

	
	

	

	 	

	
Supplementary	 figure	 3	 |	 Size	 of	 the	 deletions	 generated	 through	 different	mechanisms.	
Differences	in	the	size	of	deletions	from	Sudmant-Nature,	classified	by	their	generation	mechanism.	
Statistical	significance	marked	with	asterisks	for	P	<	0.05,	calculated	using	Wilcoxon	tests	(NAHR-
TEI:	P=	5.30e-31,	NH-TEI	P=	4.02e-21.		

	
Supplementary	figure	4	|	Size	distribution	of	intronic	and	intergenic	regions	
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Zarrei                                       Abyzov 

		 	
	

Handsaker                                                  Sudmant - Science 

  
Supplementary	figure	5	|	Percentage	of	genes	from	each	evolutionary	age	group	that	are	
completely	covered	by	a	CNV	in	other	maps.	This	figure	is	equivalent	to	panel	A	from	Figure	
13.	Figure	13	represents	data	from	Sudmant-Nature	and	this	figure	the	results	obtained	with	
the	other	CNV	maps.	Notice	that	Abyzov	has	only	deletions. 
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Supplementary	figure	6	|	Percentage	of	genes	from	each	evolutionary	age	group	that	are	
completely	covered	by	a	deletion	in	other	maps.	This	figure	is	equivalent	to	panel	B	from	
Figure	13.	Figure	13	represents	data	from	Sudmant-Nature	and	this	figure	the	results	obtained	
with	the	other	CNV	maps.	Notice	that	Abyzov	has	only	deletions.		
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Supplementary	figure	7	|	Impact	of	deletions	on	genes	of	different	evolutionary	ages	
in	other	maps.	Figure	equivalent	to	Figure	14	showing	the	percentage	of	genes	from	each	
gene	evolutionary	age	that	harbor	exon-overlapping	deletions	or	that	carry	intronic	deletions	
(B).	 Handsaker	 and	 Sudmant-Science	 not	 shown	 due	 to	 the	 lower	 number	 of	 intronic	
deletions	in	these	maps.		
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Supplementary	figure	8	|	Proportion	of	intronless	genes	per	age.	Percentage	of	genes	
from	each	age	group	that	does	not	have	introns.			
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Sudmant-Nature                                                     Zarrei	

	
Sudmant-Science                                         Handsaker 

  
Supplementary	 figure	9	 |	 Enrichment	of	CNVs	overlapping	with	 coding	 sequence	 in	
different	evolutionary	ages.	Ratios	of	observed	versus	expected	number	of	genes	from	each	
gene	evolutionary	age	that	carry	exon-overlapping	deletions	or	gains.	Expected	values	were	
calculated	with	10,000	 random	permutations	using	a	global	background	model.	Asterisks	
mark	the	significance	for	each	age	group:	*	for	P<0.05,	**	for	P<0.005	and	***	for	P<0.0005.	
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										Zarrei                                                   Abyzov 

	
Supplementary	 figure	 10	 |	 Enrichment	 of	 gene-overlapping	 deletions	 in	 Abyzov	 and	
Zarrei.	Ratios	of	observed	vs.	expected	number	of	genes	per	evolutionary	age	 that	are	 fully	
deleted	(A)	or	carry	exon-overlapping	deletions	(B)	or	purely-intronic	deletions	(C).	Expected	
values	calculated	with	10,000	randomizations	using	a	global	background	model.	Asterisks	mark	
the	significance	in	each	group:	*	for	P<0.05,	**	for	P<0.005	and	***	for	P<0.0005.		
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Supplementary	 figure	 11	 |	 Number	 of	 regulatory	 regions	 overlapping	 introns	 of	
different	sizes			
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Supplementary	figure	12	|		Effect	size	of	different	types	of	eDeletions.	Absolute	log2	ratio	
between	 the	 median	 gene	 expression	 of	 wild-type	 versus	 heterozygous	 individuals.	
Significant	differences	using	Wilcoxon	tests	are	marked	with	an	asterisk	at	P	<	0.05.	
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Supplementary tables 
Supplementary	table	1	|	Characteristics	of	brain-specific	genes		

	 Brain	enriched	genes		
(419	genes)	

Brain	elevated	genes		
(1460	genes)	

	 Brain	genes	
median	

Other	genes	
median	

P-value		 Brain	genes	
median	

Other	genes	
median	

P-value	

Size	of	genes	(kb)	 41.32	 25.80	 2.75e-9	 52.78	 25.06	 4.59e-56	
Size	of	introns	(kb)	 1.89	 1.46	 3.37e-25	 2.24	 1.42	 1.88e-270	
Size	of	exons	(bp)	 144	 134	 8.56e-16	 142	 134	 3,73e-37	
Exons	per	gene	 9	 9	 0.52	 10	 9	 1.14e-4	
Exonic	bp	per	gene	 2,376	 1,597	 9.23e-21	 3,632	 2,561	 1,80e-67	

Differences	in	structure	between	brain	genes	and	other	genes.	The	lists	of	brain-specific	genes	
was	 retrieved	 from	 the	 The	 Human	 Protein	 Atlas	 (Uhlén	 et	 al.,	 2015)	 on	 April,	 2019.	 Brain-
enriched	genes	include	genes	at	least	five-fold	higher	mRNA	levels	in	brain	compared	to	all	other	
tissues.	Brain-elevated	genes	include	all	brain-enriched	genes	plus	genes	with	at	least	five-fold	
higher	mRNA	levels	in	a	group	of	2-7	tissues	plus	genes	with	at	least	five-fold	higher	mRNA	levels	
compared	to	average	levels	in	all	tissues.	

	

Supplementary	table	2	|	Additional	information	on	the	origin	of	the	CNV	maps	

	 Sudmant	
(Nature)	 Zarrei	 Abyzov	 Handsaker	 Sudmant	

(Science)	

Individuals	 2504		 2647	 1092	 849	 236	

Project	 1KGP,	
Phase	3	

Meta	analysis	of	
DGV	collection	

1KGP,	
Phase	1	

1KGP,	
Phase	1	 	

Populations	 26*	 15	 14*	 14*	 125	

Methods	
WGS,	

Multiple	
algorithms	

Multiple	
genome-wide	
techniques	

WGS,	
Multiple	
algorithms	

WGS,	
Read-depth	

WGS,	
Read-depth	

CN	states	 Absolute	CN	 Gains	/	Losses	 Losses	 Absolute	CN	 Absolute	CN	
Characteristics	 of	 the	maps	 analysed	 in	 this	 thesis.	 *Abyzov	 and	Handsaker	 analyse	 the	 low-
coverage	 alignments	 from	 the	 phase	 1	 of	 the	 1KGP.	 Abyzov	 analyses	 all	 the	 samples	 and	
Handsaker	a	subset	that	includes	samples	from	all	the	populations	represented	in	Abyzov’s	map.	
Each	of	the	26	populations	in	Sudmant-Nature	include	60-100	individuals	from	Europe,	Africa,	
America	(South	-not	in	phase	1-	and	North)	and	Asia	(South	-not	in	phase	1-	and	East).			
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Supplementary	table	3	|	Enrichment	of	deletions	in	essential	genes		

	 Sudmant-Nature	 Zarrei	 Abyzov	

Essential	 0,127	(P	=	0,0001)	 0,1438	(P	=	0,002)	 0,0345	(P	=	0,2683)	

Not	essential	 0,0358	(P	=	0,0299)	 0,1235	(P	=	0,0001)	 0,0053	(P	=	0,4282)	

Log2	ratios	of	observed	versus	expected	number	of	 intronic	deletions	in	essential	and	non	
essential	 genes.	 Expected	 values	 calculated	 using	 the	 “global”	 randomization	 model	 (see	
Methods	for	details).		

	

Supplementary	table	4	|	List	of	genes	with	less	intronic	deletions	than	expected		

ABI1	 ABL2	 ADAM23	 ADAMTS16	 ADAMTS20	 ADCY2	
ADCY5	 ADRA1A	 ADRBK2	 AGBL1	 AGTPBP1	 AJAP1	
AK5	 AKAP7	 ALCAM	 ALPK2	 AMBRA1	 ANK3	
ANKFN1	 ANKH	 APBA2	 ARFIP1	 ARHGAP10	 ARHGAP20	
ARHGAP22	 ARHGEF26	 ARHGEF35	 ARHGEF4	 ARID2	 ARSG	
ASAP1	 ASXL3	 ATE1	 ATP9A	 ATXN10	 ATXN7	
BBX	 BCAT1	 BCL11B	 BMPER	 BRINP1	 BRINP2	
C10orf76	 C12orf56	 C4orf45	 CACNA1D	 CACNA1E	 CADM1	
CADPS2	 CCSER2	 CD247	 CDC42SE2	 CDH11	 CDH2	
CDH6	 CDH9	 CDK17	 CELF4	 CEP85L	 CFTR	
CGNL1	 CHCHD3	 CHD6	 CHD7	 CHRM2	 CHRM3	
CHST8	 CLMP	 CLNK	 CLPB	 CLYBL	 CNGB3	
CNNM2	 CNTNAP3B	 COBLL1	 COL14A1	 COL21A1	 COL8A1	
COLEC12	 CPEB3	 CPNE8	 CPPED1	 CRIM1	 CRYL1	
CTDSPL	 CTNNBL1	 CTTNBP2	 CYP2C19	 CYP7B1	 CYSTM1	
CYTH3	 CYYR1	 DAAM1	 DAPK2	 DCDC1	 DEPTOR	
DERA	 DIAPH3	 DKK2	 DNAJC6	 DNM3	 DOK5	
DPH6	 DPY30	 DPYD	 DSCAML1	 DTD1	 DTNBP1	
DYNC1I1	 E2F3	 EBF1	 EBF2	 EEFSEC	 EEPD1	
EGFLAM	 EHBP1	 EIF3H	 ELAVL2	 ENPP6	 ENTHD1	
ENTPD1	 EPB41L4A	 EPB41L5	 EPC2	 EPHA5	 EPHA7	
EPHB2	 EPM2A	 ERP44	 EXT2	 FAM110B	 FAM117B	
FAM168A	 FAM172A	 FAM19A1	 FAM53B	 FAM78B	 FANCC	
FANK1	 FAR2	 FARP1	 FAT4	 FBXO42	 FBXW11	
FBXW7	 FCHSD2	 FER1L6	 FIGN	 FLI1	 FLRT2	
FLT1	 FNDC3A	 FNDC3B	 FNIP1	 FOXO3	 FOXP1	
FOXP2	 FRK	 FRMD6	 FSIP1	 FTO	 FUT10	
GAB1	 GAB2	 GABRA2	 GABRB1	 GABRB2	 GALNT2	
GAP43	 GBF1	 GFOD1	 GFRA2	 GNAO1	 GNG12	
GPR176	 GRB10	 GRB14	 GRIN2A	 GRM1	 GRM3	
GTDC1	 HCAR1	 HCRTR2	 HIVEP1	 HOMER1	 HTR1E	
HTR4	 HYDIN	 IGF1R	 IGSF21	 IKZF2	 INPP4A	
INSC	 IQCK	 ITFG1	 ITPKB	 ITPR2	 JAKMIP2	
KALRN	 KCNC2	 KCND3	 KCNH1	 KCNH5	 KCNH7	
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Continuation	of	supplementary	table	4		

KCNJ6	 KCNK13	 KCNN2	 KCNN3	 KCNQ3	 KCNU1	
KIAA0247	 KIAA1199	 KIAA1211	 KIAA1211L	 KIAA1549	 KIF21A	
KIRREL3	 KSR1	 KSR2	 LAMC1	 LARP1B	 LCORL	
LDB2	 LDLRAD4	 LEF1	 LIN28B	 LIN52	 LIN7A	
LIPC	 LMX1B	 LNX1	 LPAR1	 LPHN2	 LRCH1	
LRP12	 LRRC49	 LRRC8D	 LRRIQ1	 LRRIQ3	 LYPD6	
MAN2A1	 MAP2	 MAP2K6	 MAPK1	 MAPK4	 MAPK8	
MAPKAP1	 MARK1	 MATN2	 MBOAT2	 MCF2L2	 MCTP1	
MCU	 MDFIC	 MEGF11	 MEIS1	 MEIS2	 MEMO1	
METTL8	 MICU1	 MIPOL1	 MKL2	 MLLT10	 MME	
MNAT1	 MRPS28	 MSRB3	 MTSS1	 MYLK	 MYO18B	
MYO1B	 MYO1D	 MYO1E	 MYO3A	 MYO5A	 NARS2	
NAV3	 NCOA1	 NCOA3	 NECAB1	 NEDD4	 NEK11	
NEK7	 NFASC	 NFAT5	 NFATC3	 NFIA	 NIPBL	
NMNAT3	 NPSR1	 NREP	 NRG1	 NSF	 NTRK3	
NXPH2	 OCA2	 OPRM1	 OSBP2	 OSBPL3	 OTUD7A	
PACRG	 PARM1	 PARP8	 PAX3	 PAX5	 PAX7	
PCDH17	 PCDHA5	 PCDHA6	 PCDHA7	 PCDHA8	 PCDHA9	
PCED1B	 PCNXL2	 PDE10A	 PDE1C	 PDE3A	 PDZRN3	
PEBP4	 PELI2	 PEPD	 PGM5	 PHF14	 PHLDB2	
PHTF2	 PIBF1	 PKIA	 PKN2	 PKP4	 PLA2G4A	
PLAGL1	 PLCXD2	 PLXDC2	 PLXNA2	 POLN	 POU2F1	
PPAP2A	 PPP1R12B	 PREP	 PRICKLE2	 PRKCQ	 PRR5L	
PTPN14	 PTPN4	 PTPRQ	 RAI14	 RALGPS1	 RALGPS2	
RANBP17	 RARB	 RASGRF2	 RBMS1	 REEP1	 REEP3	
RERG	 RFWD2	 RHOBTB1	 RIT2	 RNF144A	 RNF180	
RNF217	 RORA	 RREB1	 RSU1	 RUNX2	 RYR2	
SAMD4A	 SCAI	 SCN2A	 SCN8A	 SEL1L2	 SESN1	
SFMBT2	 SGPP2	 SH3PXD2A	 SH3RF2	 SH3RF3	 SHB	
SHC3	 SHROOM3	 SIL1	 SIPA1L1	 SIPA1L2	 SLC16A10	
SLC16A12	 SLC1A2	 SLC24A3	 SLC35F1	 SLC41A2	 SLC4A10	
SLC6A11	 SLCO1B3	 SLCO1B7	 SLX4IP	 SMAP1	 SMARCC1	
SNCAIP	 SND1	 SNRK	 SOBP	 SORCS1	 SORCS3	
SPATA16	 SPATA5	 SPATS2L	 SPECC1	 SPECC1L	 SPHKAP	
SPOCK1	 ST18	 ST5	 ST8SIA1	 STAG1	 STK3	
STON2	 STRBP	 STX18	 STXBP4	 SUSD4	 SV2C	
SYN3	 SYNPO2	 SYNPR	 SYT16	 TACR1	 TAOK3	
TASP1	 TBC1D4	 TBC1D8	 TCF12	 TCF4	 TCF7L2	
TDRD3	 TEC	 TGFA	 TGFB2	 TMEM241	 TOM1L2	
TOX	 TOX3	 TPD52	 TPST1	 TRAF3	 TRIQK	
TSHZ2	 TSPAN18	 TSPAN5	 UBL3	 USP12	 UVRAG	
VEPH1	 VKORC1L1	 VPS41	 VSNL1	 VWC2	 WARS2	
WASF3	 WDFY2	 WDFY4	 WDR49	 WDR7	 WWC1	
XXYLT1	 ZBTB16	 ZCCHC7	 ZEB1	 ZEB2	 ZFHX4	
ZHX2	 ZNF608	 ZNF618	 ZNF644	 ZNF704	 ZPLD1	
ZSWIM6	 ZZZ3	 	 	 	 	

	



	 152	

Supplementary	table	5	|	List	of	genes	with	more	intronic	deletions	than	expected	
A2ML1	 ABCB5	 ACAA1	 ACAP1	 ACER1	 ACKR4	
ACOT11	 ACOT12	 ACOT6	 ACSF3	 ACVR1B	 ACYP1	
ADA	 ADAMTS10	 ADIPOR2	 AK1	 AKR1C4	 ALKBH3	
ALLC	 ALPK1	 AMN1	 ANKRD36C	 ANKS3	 ANLN	
ANO1	 APPBP2	 AQP8	 ARHGAP19	 ARHGAP8	 ARHGEF10	
ARMC7	 ASCC2	 ASNA1	 ATOX1	 ATP2A3	 ATP5A1	
ATP5H	 ATP6V0E1	 ATP6V1E1	 AVPI1	 AZU1	 B3GALT4	
BACE1	 BAHD1	 BAX	 BCL2L11	 BCL2L13	 BDKRB2	
BOK	 BOLL	 BOP1	 C11orf74	 C16orf46	 C17orf85	
C1orf170	 C1orf177	 C1QBP	 C2orf73	 C4BPA	 C6orf10	
C6orf203	 CAB39L	 CACNA1H	 CACNG7	 CASS4	 CBWD1	
CBX1	 CCDC114	 CCDC169	 CCDC50	 CCDC66	 CCDC77	
CCNB2	 CCND2	 CCR6	 CD2	 CDA	 CDC40	
CDCA2	 CDCP2	 CEACAM4	 CENPC	 CEP120	 CERS5	
CHADL	 CHMP1A	 CHPT1	 CLCC1	 CLEC17A	 CLHC1	
CLIC6	 CLPTM1	 CLSTN1	 CLUL1	 CNN2	 CNOT1	
COL10A1	 COL18A1	 COLEC10	 COMMD7	 COX20	 CRABP2	
CSF1R	 CSNK1G2	 CSNK2A2	 CWC25	 CWF19L2	 CXCL16	
CYP4F11	 DACT2	 DAD1	 DAK	 DAP3	 DAPL1	
DBF4B	 DCAKD	 DCPS	 DCST2	 DCTN5	 DDB2	
DEAF1	 DEFB107B	 DEPDC1B	 DHCR24	 DIABLO	 DMPK	
DNAJC8	 DOCK5	 DOK7	 DRAM1	 DUSP3	 DVL3	
DYRK3	 EBNA1BP2	 EDEM2	 EGLN1	 EIF2B5	 EIF3E	
ELMSAN1	 ELP6	 EMID1	 EWSR1	 EXD3	 F7	
FADS6	 FAHD1	 FAM104A	 FAM105A	 FAM117A	 FAM153A	
FAM153B	 FAM154B	 FAM167A	 FAM179A	 FAM195B	 FAM220A	
FBXL12	 FBXO28	 FBXO41	 FBXO6	 FGL1	 FKBP3	
FLYWCH2	 FRZB	 FSTL1	 FUT5	 GABRR1	 GALNT15	
GALNTL5	 GAS6	 GATA4	 GATSL3	 GCFC2	 GFRA3	
GIPC1	 GJA3	 GLOD4	 GMEB2	 GMPR	 GOLGA8A	
GOLGA8B	 GPR161	 GRK4	 GRTP1	 GSTA2	 GTF2F1	
GTF3C5	 GUCY1A3	 HAT1	 HEATR4	 HGF	 HIF3A	
HOPX	 HSD17B11	 HSF1	 IARS2	 IDI1	 IFT52	
IL17REL	 IL1A	 IL1RL1	 IL27RA	 IL2RA	 IL32	
INSIG2	 IRAK2	 IRS2	 JMJD7	 KANK2	 KBTBD11	
KCNE2	 KCNJ15	 KIAA0101	 KIAA0368	 KIAA1257	 KIAA1467	
KIF19	 KLB	 KMO	 L2HGDH	 LAIR2	 LATS1	
LGI1	 LHX4	 LHX9	 LILRA2	 LINGO1	 LITAF	
LMF1	 LMNB2	 LOXL4	 LRRC8E	 LRRN4	 MAP1LC3B2	
MAPK9	 MAPKAPK5	 MARCO	 MAX	 MCCC2	 MCFD2	
MCM3AP	 METAP1D	 MINPP1	 MITF	 MOV10	 MRPL19	
MRPS35	 MS4A6A	 MSTO1	 MTERFD2	 MXD1	 MYADML2	
MYCT1	 MZT1	 NAA15	 NAA20	 NAT1	 NCMAP	
NFE2L3	 NINJ1	 NIPSNAP1	 NLN	 NLRP5	 NOC4L	
NOD1	 NOTCH1	 NOTCH4	 NPAS1	 NPAT	 NT5M	
NTSR1	 NUDT4	 NUP205	 NUP43	 NXPE1	 ODF1	
ODF4	 OIP5	 OR2W3	 OTUD6B	 PADI4	 PAIP2	
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PANK2	 PANX1	 PARD6B	 PBLD	 PCCB	 PCGF3	
PCYOX1	 PDE6B	 PDLIM3	 PDSS1	 PFKP	 PGAP3	
PHAX	 PHYHD1	 PLA2G2C	 PLA2G5	 PLBD1	 POGZ	
POLR3K	 POPDC3	 POU1F1	 PPP1R13L	 PPP1R37	 PPP2R5A	
PPP6C	 PPT1	 PRKAA1	 PRPSAP1	 PRPSAP2	 PRR11	
PRR5-ARHGAP8	 PRRG4	 PSMA8	 PSMD9	 PTGR1	 PWWP2A	
PWWP2B	 PYGL	 QPRT	 QRFPR	 QRICH2	 RAB19	
RAB4A	 RAD52	 RAP1B	 RAP2A	 RASA3	 RASSF4	
RBM25	 RD3	 REEP5	 REV1	 RGS13	 RHOF	
RIBC2	 RNF11	 RNF168	 RNF212	 RNF219	 RNF38	
RPGRIP1	 RPH3AL	 RPL27	 RSPH6A	 SAFB	 SAMHD1	
SBK2	 SBNO1	 SCAP	 SCN3A	 SELPLG	 SERPINF2	
SESN3	 SETD1A	 SEZ6L2	 SGSM3	 SH3GLB2	 SH3TC1	
SH3TC2	 SHC2	 SIRT4	 SLC15A5	 SLC16A13	 SLC17A5	
SLC1A7	 SLC22A2	 SLC25A18	 SLC25A37	 SLC27A5	 SLC3A2	
SLC6A20	 SMAD1	 SNRNP27	 SNRPN	 SP3	 SPATA24	
SPIRE2	 SSC5D	 STK17A	 STMN3	 STYXL1	 SULT2B1	
SUN1	 SVOPL	 SYNM	 SYPL1	 TADA2A	 TAS1R1	
TBC1D2	 TBCE	 TCEA3	 TCTN3	 TECR	 TEKT5	
TERT	 TES	 TFIP11	 TIMMDC1	 TIMP4	 TJP3	
TM4SF19	 TMCO1	 TMEM11	 TMEM121	 TMEM165	 TMEM192	
TMEM39B	 TMEM41B	 TMEM65	 TMEM68	 TMEM72	 TMIGD2	
TNFSF13B	 TNN	 TOPBP1	 TOX4	 TPH1	 TRAPPC6A	
TRAPPC6B	 TRIM13	 TRIM29	 TRIM67	 TRMT61B	 TSPAN13	
TSPAN16	 TUBGCP6	 TXLNB	 UNC119B	 USP8	 UTP20	
UTS2	 VANGL1	 VPS33A	 VSTM5	 WDR34	 WDR46	
WDR47	 WDR65	 WDR76	 WDSUB1	 WDYHV1	 WFDC8	
XCL1	 XCR1	 XRN2	 YIF1B	 ZBTB5	 ZC3H12D	
ZC3H18	 ZC3H7A	 ZCCHC24	 ZDHHC13	 ZDHHC19	 ZDHHC7	
ZER1	 ZFAND2A	 ZFP14	 ZFP2	 ZFR2	 ZNF106	
ZNF14	 ZNF142	 ZNF143	 ZNF207	 ZNF264	 ZNF268	
ZNF429	 ZNF43	 ZNF454	 ZNF483	 ZNF487	 ZNF490	
ZNF492	 ZNF554	 ZNF566	 ZNF57	 ZNF570	 ZNF665	
ZNF675	 ZNF700	 ZNF701	 ZNF730	 ZNF763	 ZNF814	
ZSCAN5A	 ZYG11A	 	 	 	 	
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 Deletion	type	 Gene	(ENSEMBL)	 Gene	
(HUGO)	

Adj.	p-
value	

log2(FC)	 Gene	age	

1 whole	gene	 ENSG00000184674	 	 2.17e-45	 -1.89	 	
2 whole	gene	 ENSG00000100068	 LRP5L	 	2.11e-03	 -1.78	 Eutheria	
3 whole	gene	 ENSG00000184923	 NUTM2A	 	2.15e-04	 -1.55	 HomoSapiens	
4 whole	gene	 ENSG00000187010	 RHD	 	3.10e-11	 -1.43	 HomoSapiens	
5 whole	gene	 ENSG00000008128	 	 	5.93e-04	 -1.38	 	
6 whole	gene	 ENSG00000008128	 	 	8.45e-05	 -1.28	 	
7 whole	gene	 ENSG00000184022	 	 	1.42e-14	 -1.97	 	
8 whole	gene	 ENSG00000197888	 UGT2B17	 	7.15e-29	 -1.99	 Catarrhini	
9 exonic	 ENSG00000100068	 LRP5L	 	9.53e-04	 -1.68	 Eutheria	
10 exonic	 ENSG00000136527	 TRA2B	 	6.16e-16	 -1.09	 Euteleostomi	
11 exonic	 ENSG00000177335	 	 	2.94e-06	 -12.4	 	
12 exonic	 ENSG00000214562	 NUTM2D	 	6.07e-05	 -1.63	 HomoSapiens	
13 exonic	 ENSG00000215252	 GOLGA8B	 	5.45e-14	 -1.52	 HomoSapiens	
14 exonic	 ENSG00000130812	 ANGPTL6	 	2.83e-07	 -1.6	 Euteleostomi	
15 exonic	 ENSG00000249679	 	 	1.18e-06	 -2.03	 	
16 exonic	 ENSG00000179119	 SPTY2D1	 	1.22e-07	 -1.17	 Bilateria	
17 exonic	 ENSG00000128383	 APOBEC3A	 	6.31e-16	 -1.45	 Hominoidea	
18 exonic	 ENSG00000179750	 APOBEC3B	 	2.85e-32	 -1.8	 Hominoidea	
19 exonic	 ENSG00000179750	 APOBEC3B	 	1.11e-24	 -1.73	 Hominoidea	
20 exonic	 ENSG00000116791	 CRYZ	 	2.98e-02	 -1.57	 Bilateria	
21 exonic	 ENSG00000100197	 CYP2D6	 	1.49e-02	 -1.47	 Sarcopterygii	
22 exonic	 ENSG00000117226	 GBP3	 	3.41e-18	 -1.37	 Simiiformes	
23 exonic	 ENSG00000160867	 FGFR4	 	5.77e-03	 -4.07	 Euteleostomi	
24 exonic	 ENSG00000188677	 PARVB	 	4.24e-03	 -1.15	 Euteleostomi	
25 exonic	 ENSG00000105501	 SIGLEC5	 	2.31e-05	 1.46	 HomoSapiens	
26 exonic	 ENSG00000157326	 DHRS4	 	2.49e-02	 -1.19	 Hominoidea	
27 exonic	 ENSG00000187630	 DHRS4L2	 	7.71e-04	 -1.24	 Hominoidea	
28 exonic	 ENSG00000187630	 DHRS4L2	 	3.64e-02	 -1.2	 Hominoidea	
29 exonic	 ENSG00000187630	 DHRS4L2	 	7.13e-04	 -1.23	 Hominoidea	
30 exonic	 ENSG00000221923	 ZNF880	 	2.78e-04	 -1.22	 Catarrhini	
31 exonic	 ENSG00000204267	 TAP2	 	5.89e-10	 1.16	 HomoSapiens	
32 exonic	 ENSG00000134184	 GSTM1	 	1.88e-11	 -1.93	 Simiiformes	
33 exonic	 ENSG00000134184	 GSTM1	 	4.84e-10	 -1.81	 Simiiformes	
34 exonic	 ENSG00000197888	 UGT2B17	 	1.74e-28	 -1.96	 Catarrhini	
35 exonic	 ENSG00000197888	 UGT2B17	 	1.52e-28	 -1.98	 Catarrhini	
36 exonic	 ENSG00000196620	 UGT2B15	 	1.06e-03	 2.97	 Catarrhini	
37 exonic	 ENSG00000188603	 CLN3	 	7.30e-61	 -1.53	 HomoSapiens	
38 exonic	 ENSG00000165935	 SMCO2	 	6.74e-04	 -1.42	 Theria	
39 exonic	 ENSG00000183486	 MX2	 	2.29e-03	 1.4	 Eutheria	
40 exonic	 ENSG00000175265	 GOLGA8A	 	1.71e-11	 -1.42	 HomoSapiens	
41 exonic	 ENSG00000112787	 FBRSL1	 	1.17e-02	 -1.25	 Euteleostomi	
42 exonic	 ENSG00000134326	 CMPK2	 	3.02e-02	 -1.63	 Chordata	
43 exonic	 ENSG00000141569	 TRIM65	 	4.70e-02	 -1.1	 Euteleostomi	
44 exonic	 ENSG00000008128	 	 	2.13e-02	 -1.41	 	
45 exonic	 ENSG00000173272	 MZT2A	 	2.78e-03	 -1.15	 HomoPanGorilla	
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46 exonic	 ENSG00000213366	 	 	1.57e-02	 -1.28	 	
47 exonic	 ENSG00000204449	 TRIM49C	 	1.75e-03	 -4.16	 HomoSapiens	
48 exonic	 ENSG00000142794	 NBPF3	 	9.50e-03	 -1.51	 Hominoidea	
49 intronic	(cis)	 ENSG00000143156	 NME7	 	6.06e-03	 1.11	 Bilateria	
50 intronic	(cis)	 ENSG00000094975	 SUCO	 	4.24e-05	 1.04	 FungiMetazoa	
51 intronic	(cis)	 ENSG00000123684	 LPGAT1	 	2.06e-07	 -1.08	 Bilateria	
52 intronic	(cis)	 ENSG00000143740	 SNAP47	 	6.10e-03	 1.08	 Euteleostomi	
53 intronic	(cis)	 ENSG00000144451	 SPAG16	 	1.37e-22	 -1.3	 Bilateria	
54 intronic	(cis)	 ENSG00000163359	 COL6A3	 	1.96e-03	 2.13	 Chordata	
55 intronic	(cis)	 ENSG00000163686	 ABHD6	 	1.27e-06	 -1.5	 Euteleostomi	
56 intronic	(cis)	 ENSG00000163754	 GYG1	 	2.89e-08	 -1.16	 Euteleostomi	
57 intronic	(cis)	 ENSG00000109667	 SLC2A9	 	5.91e-03	 1.17	 Chordata	
58 intronic	(cis)	 ENSG00000138759	 FRAS1	 	6.79e-03	 1.86	 Chordata	
59 intronic	(cis)	 ENSG00000151466	 SCLT1	 	6.04e-42	 -1.14	 Chordata	
60 intronic	(cis)	 ENSG00000112977	 DAP	 	2.45e-07	 -1.09	 Bilateria	
61 intronic	(cis)	 ENSG00000123213	 NLN	 	3.69e-02	 1.11	 Euteleostomi	
62 intronic	(cis)	 ENSG00000164176	 EDIL3	 	9.85e-09	 2.33	 Euteleostomi	
63 intronic	(cis)	 ENSG00000113615	 SEC24A	 	6.58e-04	 -1.03	 Euteleostomi	
64 intronic	(cis)	 ENSG00000182578	 CSF1R	 	6.22e-04	 1.57	 Euteleostomi	
65 intronic	(cis)	 ENSG00000170074	 FAM153A	 	2.44e-07	 9.19	 HomoSapiens	
66 intronic	(cis)	 ENSG00000112685	 EXOC2	 	2.78e-04	 -1.11	 Bilateria	
67 intronic	(cis)	 ENSG00000112137	 PHACTR1	 	3.02e-02	 1.23	 Amniota	
68 intronic	(cis)	 ENSG00000112378	 PERP	 	7.78e-04	 1.45	 Euteleostomi	
69 intronic	(cis)	 ENSG00000005020	 SKAP2	 	9.33e-03	 -1.21	 Euteleostomi	
70 intronic	(cis)	 ENSG00000164543	 STK17A	 	1.82e-07	 -1.26	 Euteleostomi	
71 intronic	(cis)	 ENSG00000127952	 STYXL1	 	8.58e-10	 1.19	 Chordata	
72 intronic	(cis)	 ENSG00000187391	 MAGI2	 	6.23e-06	 -4.54	 Bilateria	
73 intronic	(cis)	 ENSG00000158528	 PPP1R9A	 	2.43e-04	 -4.34	 Euteleostomi	
74 intronic	(cis)	 ENSG00000135250	 SRPK2	 	2.30e-03	 -1.12	 Euteleostomi	
75 intronic	(cis)	 ENSG00000164946	 FREM1	 	2.49e-02	 2.23	 Chordata	
76 intronic	(cis)	 ENSG00000106853	 PTGR1	 	1.55e-02	 -1.32	 Bilateria	
77 intronic	(cis)	 ENSG00000136848	 DAB2IP	 	7.78e-07	 -3.9	 Chordata	
78 intronic	(cis)	 ENSG00000136895	 GARNL3	 	3.31e-02	 -1.79	 Bilateria	
79 intronic	(cis)	 ENSG00000175287	 PHYHD1	 	2.01e-02	 -1.98	 Bilateria	
80 intronic	(cis)	 ENSG00000148948	 LRRC4C	 	8.91e-04	 -1.54	 Euteleostomi	
81 intronic	(cis)	 ENSG00000148948	 LRRC4C	 	2.57e-03	 -1.82	 Euteleostomi	
82 intronic	(cis)	 ENSG00000118971	 CCND2	 	3.18e-03	 -1.16	 Euteleostomi	
83 intronic	(cis)	 ENSG00000118971	 CCND2	 	3.18e-03	 -1.16	 Euteleostomi	
84 intronic	(cis)	 ENSG00000165714	 LOH12CR1	 	1.52e-03	 -1.14	 Bilateria	
85 intronic	(cis)	 ENSG00000165714	 LOH12CR1	 	1.52e-03	 -1.14	 Bilateria	
86 intronic	(cis)	 ENSG00000205323	 SARNP	 	3.54e-05	 -1.12	 Chordata	
87 intronic	(cis)	 ENSG00000196792	 STRN3	 	9.51e-08	 1.12	 Euteleostomi	
88 intronic	(cis)	 ENSG00000151812	 SLC35F4	 	3.46e-02	 -6.17	 Euteleostomi	
89 intronic	(cis)	 ENSG00000133985	 TTC9	 	5.88e-03	 -1.39	 Euteleostomi	
90 intronic	(cis)	 ENSG00000140157	 NIPA2	 	6.84e-25	 1.09	 Euteleostomi	
91 intronic	(cis)	 ENSG00000066933	 MYO9A	 	2.78e-03	 1.84	 Euteleostomi	
92 intronic	(cis)	 ENSG00000067225	 PKM	 	3.45e-02	 -1.09	 Euteleostomi	
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93 intronic	(cis)	 ENSG00000064270	 ATP2C2	 	2.25e-30	 -29.52	 Euteleostomi	
94 intronic	(cis)	 ENSG00000131469	 RPL27	 	4.82e-02	 1.08	 FungiMetazoa	
95 intronic	(cis)	 ENSG00000121104	 FAM117A	 	3.05e-02	 1.07	 Euteleostomi	
96 intronic	(cis)	 ENSG00000141376	 BCAS3	 	9.07e-04	 -2.27	 Bilateria	
97 intronic	(cis)	 ENSG00000150477	 KIAA1328	 	2.79e-03	 -1.37	 Euteleostomi	
98 intronic	(cis)	 ENSG00000197256	 KANK2	 	2.47e-03	 -1.15	 Euteleostomi	
99 intronic	(cis)	 ENSG00000197013	 ZNF429	 	1.02e-13	 1.27	 Simiiformes	
100 intronic	(cis)	 ENSG00000142065	 ZFP14	 	1.47e-02	 -1.07	 Eutheria	
101 intronic	(cis)	 ENSG00000149596	 JPH2	 	1.94e-04	 1.27	 Euteleostomi	
102 intronic	(cis)	 ENSG00000124092	 CTCFL	 	9.33e-03	 -2.48	 Euteleostomi	
103 intronic	(cis)	 ENSG00000160207	 HSF2BP	 	1.19e-02	 -1.47	 Euteleostomi	
104 intronic	(cis)	 ENSG00000100154	 TTC28	 	3.31e-02	 -5.86	 Bilateria	
105 intronic	(trans)	 ENSG00000130939	 UBE4B	 	7.17e-03	 -1.28	 Bilateria	
106 intronic	(trans)	 ENSG00000121897	 LIAS	 	1.53e-06	 1.17	 FungiMetazoa	
107 intronic	(trans)	 ENSG00000002745	 WNT16	 	3.74e-02	 -1.61	 Euteleostomi	
108 intronic	(trans)	 ENSG00000197892	 KIF13B	 	1.75e-27	 1.23	 Euteleostomi	
109 intronic	(trans)	 ENSG00000154359	 LONRF1	 	9.54e-25	 1.21	 Euteleostomi	
110 intronic	(trans)	 ENSG00000168092	 PAFAH1B2	 	9.25e-05	 -1.13	 Euteleostomi	
111 intronic	(trans)	 ENSG00000171471	 MAP1LC3B2	 	6.71e-03	 1.03	 HomoSapiens	
112 intronic	(trans)	 ENSG00000198146	 ZNF770	 	1.00e-06	 1.07	 Euteleostomi	
113 intronic	(trans)	 ENSG00000178226	 PRSS36	 	1.98e-02	 -4.14	 Tetrapoda	
114 intronic	(trans)	 ENSG00000125107	 CNOT1	 	2.81e-11	 -1.52	 FungiMetazoa	
115 intronic	(trans)	 ENSG00000176401	 EID2B	 	3.21e-02	 -1.03	 Eutheria	
116 intronic	(trans)	 ENSG00000167619	 TMEM145	 	3.08e-03	 -1.89	 Bilateria	
117 intergenic	 ENSG00000155903	 RASA2	 	3.72e-23	 -1.44	 Euteleostomi	
118 intergenic	 ENSG00000256825	 	 	6.28e-03	 2	 	
119 intergenic	 ENSG00000095015	 MAP3K1	 	1.01e-05	 -1.33	 Chordata	
120 intergenic	 ENSG00000129596	 CDO1	 	2.30e-03	 2.42	 Bilateria	
121 intergenic	 ENSG00000113758	 DBN1	 	1.49e-57	 -2.51	 Euteleostomi	
122 intergenic	 ENSG00000196735	 HLA-DQA1	 	6.25e-14	 -1.47	 Simiiformes	
123 intergenic	 ENSG00000196735	 HLA-DQA1	 	1.48e-10	 -1.4	 Simiiformes	
124 intergenic	 ENSG00000231389	 HLA-DPA1	 	5.85e-04	 -1.14	 Tetrapoda	
125 intergenic	 ENSG00000020181	 GPR124	 	2.89e-04	 -1.44	 Euteleostomi	
126 intergenic	 ENSG00000177335	 	 	9.14e-12	 24.97	 	
127 intergenic	 ENSG00000148200	 NR6A1	 	2.26e-18	 -1.46	 Chordata	
128 intergenic	 ENSG00000160613	 PCSK7	 	8.71e-03	 -1.22	 Bilateria	
129 intergenic	 ENSG00000123297	 TSFM	 	4.71e-02	 1.13	 Bilateria	
130 intergenic	 ENSG00000122971	 ACADS	 	1.98e-02	 1.17	 Bilateria	
131 intergenic	 ENSG00000139971	 C14orf37	 	3.46e-02	 -3.42	 Euteleostomi	
132 intergenic	 ENSG00000007129	 CEACAM21	 	2.37e-07	 -1.59	 Euteleostomi	
133 intergenic	 ENSG00000007129	 CEACAM21	 	2.37e-07	 -1.59	 Euteleostomi	
134 intergenic	 ENSG00000125772	 GPCPD1	 	7.17e-03	 -1.11	 FungiMetazoa	
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