

Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

This is the electronic supporting information (ESI) for:

Chemical Communications 54.63 (2018): 8729-8732

DOI: https://doi.org/10.1039/C8CC04346A

Copyright: © The Royal Society of Chemistry 2018

El acceso a la versión del editor puede requerir la suscripción del recurso Access to the published version may require subscription

Electronic Supporting Information

Uracil grafted imine-based covalent organic framework for nucleobase recognition

Sergio Royuela,^{a,b} Eduardo Garcia-Garrido,^c Miguel Martín-Arroyo,^d María J. Mancheño,^a María M. Ramos,^b David Gonzalez,^{d,f} Alvaro Somoza,^{*c} Félix Zamora^{*c,e,f,g} and José L. Segura^{*a}

^a Departamento de Química Orgánica I, Facultad de CC. Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain

^b Departamento de Tecnología Química y Ambiental, Universidad Rey Juan Carlos, Madrid 28933, Spain

[°] Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Cantoblanco, Madrid E-28049, Spain.

^d Departamento de Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain.

^e Departamento de Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain.

^f Institute for Advanced Research in Chemical Sciences (IAdChem). Universidad Autónoma de Madrid. 28049 Madrid, Spain.

^g Condensed Matter Physics Center (IFIMAC). Universidad Autónoma de Madrid. 28049 Madrid, Spain.

General methods. All reactions with air-sensitive materials were carried out under Ar using standard Schlenk techniques. TLC was performed using pre-coated silica gel 60 F254 and developed in the indicated solvent system. Compounds were visualized under UV light ($\lambda = 254$ nm). Merck 60 (230–400 Mesh) silica gel was used for column chromatography.

¹H NMR and ¹³C NMR spectra were recorded on a 300 MHz spectrometer. Chemical shifts are reported in ppm and referenced to the residual non-deuterated solvent frequencies (CDCl₃: δ 7.26 ppm for ¹H, 77.0 ppm for ¹³C). CP/MAS-¹³C NMR were recorded on a 400 MHz spectrometer Wide Bore (probe: 4 mm MAS WB DVT). The sample rotation frequency was 12 kHz and a 2.5 mm ZrO₂ rotor was used. Mass spectra were recorded by means of MALDI-TOF or FAB/IE techniques. Solids were analysed on a diamond plate (ATR) or as films on sodium chloride.

Powder X-ray diffraction

Powder X-ray diffraction measurements were carried out with X'PERT MPD with conventional Bragg-Brentano geometry using K α ($\lambda = 1.5406$ Å) for values of 2 θ from 2° to 40°.

Thermogravimetric analysis

Thermogravimetric analysis was performed on a TGA-Q-50 instrument on a platinum plate, heating the samples under nitrogen atmosphere at a heating rate of 10 °C/min.

UV-visible spectroscopy

UV-visible spectra data were recorded in a Synergy H4 Hybrid reader using 96 well plates.

Materials

The following reagents were commercially available and were used as received: 2,5dimethoxyterephtaldehyde (**DMTA**), CuI, *o*-DCB, *n*-butanol, NaN₃ and DIPEA.

2,5-dihydroxyterephtaldehyde (**DHTA**),¹ 2,5-bis(prop-2-in-1-yloxy)terephtaldehyde (**BPTA**),¹ 1,3,5-tris-(4-aminophenyl)benzene (**TAPB**),² [**HC=C**]_{0.5}-**TPB-DMTP-COF**,¹ were prepared according to reported procedures.

Adenine, cytosine, uracil and thymine were obtained from Sigma-Aldrich. All the compounds were used without further purification.

Nucleobase interaction studies

Stock solutions of each nucleobase (3.7 mM) in water were prepared. Each COF (0.5 mg) was vortexed for 1 min with a solution of each nucleobase at three different concentrations (50, 100 and 150 μ M). The final volume of each sample was 600 μ L. Control experiments using the nucleobases were done at the same concentrations. The samples were incubated at room temperature for the time indicated in the figures and centrifuged at 4 °C for 45 min at 13000 rpm (around 15700 g). The supernatants were collected, the absorbance recorded and the amount of free nucleobases quantified applying Beer-Lambert law. All the experiments were done in triplicates. Statistical analysis was performed using one-way ANOVA Tukey's test (each group vs Control). *P<0.01, **P<0.001, and ***P<0.0001.

Synthesis of the azide-substituted Uracil

 $Br \sim N_3$ **1-azido-3-bromopropane** was synthesized following a described procedure^{3b} using 1,3-dibromopropane (10.7 mL, 105.4 mmol), NaN₃ (7.5 g, 115.4 mmol) and DMF (150 mL). The crude was purified by column chromatography using ciclohexane/AcOEt (10:1) as eluent. 5.0 g of **1-azido-3-bromopropane** was obtained as a colourless oil (29% yield).

¹**H-NMR** (300 MHz, CDCl₃) δ (ppm) = 3.49 (t, J = 6.4 Hz, 2H, BrCH₂CH₂CH₂N₃), 3.48 (t, J = 6.3 Hz, 2H, BrCH₂CH₂CH₂N₃), 2.08 (p, 6.4 Hz, 2H, N¹CH₂CH₂CH₂N₃).

1-(3-azidoprop-1-yl)-Uracil. Cs₂CO₃ (9.67 g, 70.0 mmol) was added over a suspension of **Uracil** (10 g, 89.2 mmol) in dry DMF (225 mL). The mixture was heated to 40°C. After 30 min, **1-azido-3-**

bromopropane (4.2 g, 25.6 mmol) was added and the mixture was heated to 40°C. After 24 h, the solvent was removed over low pressure and H₂O (200 mL) was added. After sonication, the mixture was extracted with a CHCl₃/MeOH mixture (10:1, 3x200 mL). The combined organic phases were dried with MgSO₄ and filtered, and the solvent was eliminated under low pressure. The crude was purified by column chromatography using CHCl₃/THF (3:1) as eluent. 1.45 g of **UR3N3** was obtained as a white solid (29% yield).

¹**H-NMR** (300 MHz, CDCl₃) δ (ppm) = 9.12 (s, 1H, N³*H*), 7.17 (d, *J* = 7.9 Hz, 1H, *H*⁶), 5.72 (d, *J* = 7.9 Hz, 1H, *H*⁵), 3.83 (t, *J* = 6.8 Hz, 2H, N¹CH₂CH₂CH₂N₃), 3.41 (t, *J* = 6.3 Hz, 2H, N¹CH₂CH₂CH₂CH₂N₃), 3.41 (t, *J* = 6.3 Hz, 2H, N¹CH₂CH₂CH₂CH₂N₃), 1.97 (p, 6.7 Hz, 2H, N¹CH₂CH₂CH₂N₃).

¹³**C-NMR** (75 MHz, CDCl₃) δ (ppm) = 163.5, 150.8, 144.5, 102.4, 48.2, 46.5, 28.0.

HRMS (FAB): calculated for C7H10N5O2 [M+H]⁺: 196.0834. Found: 196.0833 [M+H]⁺.

Synthesis of COFs and characterization

• Synthesis of [HC≡C]_{0.5}-TPB-DMTP-COF:¹

Scheme S1. Synthesis of [HC=C]_{0.5}-TPB-DMTP-COF.

Following the procedure previously described, from **DMTA** (215.3 mg, 1.109 mmol), **BPTA** (268.8 mg, 1.110 mmol), **TAPB** (520.4 mg, 1.481 mmol) and *o*-DCB/*n*-Butanol (10 mL/10 mL) and acetic acid (6 M, 2.1 mL) in a Pyrex vessel ($\phi = 29$ mm, h = 10 cm) were obtained, after Soxhlet extraction in THF, 866.0 mg (94 %) of a yellow solid. FTIR (ATR) (cm⁻¹): 3288, 2957, 2127, 1689, 1592, 1504, 1415, 1291, 1208, 1146, 1036, 878, 829, 694.

Figure S1. FTIR (ATR) spectrum of [HC≡C]_{0.5}-TPB-DMTP-COF.

Figure S2. PXRD pattern of [HC≡C]_{0.5}-TPB-DMTP-COF.

Pos.	d-spacing	Rel. Int.	FWHM
(°20)	(Å)	(%)	(°2θ)
2.9750	29.698	100	0.3149
4.9836	17.732	7.81	0.3149
5.7930	15.256	15.63	0.3542
7.5515	11.707	7.27	0.3542
9.8914	8.942	1.64	0.1968
25.457	3.499	1.21	0.1447

Table S1. PXRD of [HC≡C]_{0.5}-TPB-DMTP-COF.

• Synthesis of [Uracil]_{0.5}-TPB-DMTP-COF:

Scheme S2. Synthesis of [Uracil]_{0.5}-TPB-DMTP-COF.

To 100.9 mg of [HC=C]_{0.5}-TPB-DMTP-COF in 2 mL of anhydrous DMF were added 24.3 mg (0.128 mmol) of CuI and 75 μ L of *N*,*N*-diisopropylethylamine (DIPEA). The suspension was purged with argon for 5 min and then 51 mg (0.261 mmol) of 1-(3-azidopropyl)uracil were added. The mixture was stirred overnight at room temperature under argon and centrifuged at 6000 rpm for 5 min. After washing with DMF, H₂O and THF the solid was dried under vacuum at 120 °C yielding an orange powder (151.8 mg, quantitative yield). FTIR (ATR) (cm⁻¹): 3026, 2946, 1682, 1618, 1592, 1507, 1455, 1416, 1373, 1289, 1209, 1145, 1040, 829, 697.

Figure S3. FTIR (ATR) spectrum of [Uracil]_{0.5}-TPB-DMTP-COF.

Figure S4. PXRD pattern of [Uracil]_{0.5}-TPB-DMTP-COF.

Pos.	d-spacing	Rel. Int.	FWHM
(°20)	(Å)	(%)	(°2θ)
2.9724	29.724	100	0.2755
4.9368	17.900	7.85	0.1968
5.7669	15.325	13.24	0.2755
7.6366	11.577	3.84	0.3149
9.8292	8.999	3.37	0.1574
25.5176	3.491	3.49	0.1574

Table S2. PXRD of [Uracil]_{0.5}-TPB-DMTP-COF.

Figure S5. Comparative FTIR (ATR) spectra of [**HC≡C**]_{0.5}**-TPB-DMTP-COF** (black), [**Uracil**]_{0.5}**-TPB-DMTP-COF** (red), and 1-(3-azidopropyl)uracil (blue).

• Synthesis of TPB-DMTP-COF:¹

Scheme S3. Synthesis of TPB-DMTP-COF.

DMTA (84.4 mg, 0.435 mmol), **TAPB** (102.5 mg, 0.292 mmol) and *o*-DCB/*n*-Butanol (2 mL/2 mL) and acetic acid (6 M, 0.4 mL) in a Pyrex vessel ($\phi = 18$ mm, h = 10 cm) were obtained, after Soxhlet extraction in THF, 162.1 mg (95 %) of a yellow solid. FTIR (ATR) (cm⁻¹): 2957, 1592, 1504, 1464, 1410, 1290, 1211, 1144, 1042, 879, 823, 639.

Figure S6. FTIR (ATR) spectrum of TPB-DMTP-COF.

Figure S7. PXRD pattern of TPB-DMTP-COF.

Pos.	d-spacing	Rel. Int.	FWHM
(°20)	(Å)	(%)	(°20)
2.9531	29.919	100	0.2362
4.9972	17.684	11.25	0.2755
5.7309	15.422	15.95	0.3149
7.5433	11.720	8.92	0.2755
9.8263	9.001	2.51	0.1968
25.5271	3.499	1.03	0.1378

Table S3. PXRD of TPB-DMTP-COF.

• Synthesis of TPB-DMTP-COF-TAZ:⁴

Scheme S4. Synthesis of TPB-DMTP-COF-TAZ.

34.4 mg (0.18 mmol) of CuI and 129.2 mg of [HC=C]_{0.5}-TPB-DMTP-COF were suspended in a mixture of THF/H₂O (3.9/1.7 mL). The suspension was purged with Argon for 5 min and then *N*,*N*-diisopropylethylamine (DIPEA) was added (92.7 μ L). The mixture was purged with Argon for 5 min and toluene (0.2 mL) and 60 mg of 1-azidopropane³ were added. The suspension was stirred overnight at room temperature under argon. The solid was centrifuged with 5 mL of THF. Then, it was washed thoroughly with water, THF and dried, yielding a yellow solid (166 mg). FTIR (ATR) (cm⁻¹): 2965, 2971, 1769, 1591, 1503, 1463, 1414, 1380, 1290, 1146, 1042, 877, 829, 733, 696, 607.

Figure S8. FTIR (ATR) spectrum of TPB-DMTP-COF-TAZ.

Figure S9. PXRD patterns of TPB-DMTP-COF-TAZ.

Table 54. FARD OF TI D-DWITT-COF-TAL.	Table S4.	PXRD	of TPB	-DMTP-	-COF-TAZ.
---------------------------------------	-----------	------	--------	--------	-----------

Small-angle range		Wide-angle range			
Pos.	d-spacing	Rel. Int.	Pos.	d-spacing	Rel. Int.
(°20)	(Å)	(%)	(°20)	(Å)	(%)
2.7299	32.338	100	5.6783	15.564	100
5.6243	15.714	9.23	7.4671	11.829	45.80
			25.4213	3.504	18.83

	a=b / Å	c / Å	α=β / °	γ / °
[HC=C] _{0.5} -TPB-DMTP-COF	35.3	3.50	90	120
[Uracil]0.5-TPB-DMTP-COF	35.3	3.49	90	120
TPB-DMTP-COF	35.4	3.49	90	120
TPB-DMTP-COF-TAZ	36.6	3.50	90	120

Table S5. Lattice parameters of the synthesized COFs.

- Nitrogen adsorption isotherms data

Table S6. Surface area, pore volume and pore size of COFs.

	BET surface area (m ² g ⁻¹)	Pore volume (cm ³ g ⁻¹)	Pore size (nm)
[HC≡C]₀.5-TPB-DMTP-COF (ref 1)	1642	1.02	3.03
[HC≡C]0.5-TPB-DMTP-COF (this work)	1510	0.94	2.53
[Uracil]0.5-TPB-DMTP-COF	105	0.088	1.30

TGA of COFs

Figure S10. TGA profile of [HC≡C]_{0.5}-TPB-DMTP-COF.

Figure S11. TGA profile of [Uracil]_{0.5}-TPB-DMTP-COF.

Figure S12. TGA profile of TPB-DMTP-COF.

Figure S13. TGA profile of TPB-DMTP-COF-TAZ.

- ¹H NMR, ¹³C NMR and FTIR spectra of starting materials and COFs

¹H NMR 1-(3-azidopropyl)uracil

FTIR 1-(3-azidopropyl)uracil

Figure S14. CP/MAS-¹³C NMR of [HC≡C]_{0.5}-TPB-DMTP-COF.

Figure S15. CP/MAS-¹³C NMR of [Uracil]_{0.5}-TPB-DMTP-COF.

Figure S16. CP/MAS-¹³C NMR of TPB-DMTP-COF-TAZ.

- Elemental Analysis

• [HC=C]_{0.5}-TPB-DMTP-COF

Calculated - C: 80.75 %, H: 4.84 %, N: 6.73 % Experimental - C: 78.73 %, H: 5.06 %, N: 6.46 % Experimental - C: 79.20 %, H: 4.99 %, N: 6.48 % Experimental - C: 79.04 %, H: 5.05 %, N: 6.47 %

• [Uracil]_{0.5}-TPB-DMTP-COF

Calculated – C: 68.73 %, H: 4.78 %, N: 16.03 % Experimental – C: 60,91 %, H: 4,72 %, N: 13,71 % Experimental – C: 61,50 %, H: 4,80 %, N: 14,00 % Experimental – C: 61,39 %, H: 4,76 %, N: 13,78 %

• TPB-DMTP-COF

Calculated - C: 79.57 %, H: 5.14 %, N: 7.14 % Experimental - C: 78.38 %, H: 5.67 %, N: 6.06 % Experimental - C: 75.56 %, H: 5.43 %, N: 5.83 % Experimental - C: 78.36 %, H: 5.69 %, N: 6.12 %

• TPB-DMTP-COF-TAZ

Calculated - C: 73.60 %, H: 5.56 %, N: 14.31 % Experimental - C: 64.14 %, H: 4.99 %, N: 10.24 % Experimental - C: 64.58 %, H: 5.00 %, N: 10.27 % Experimental - C: 64.10 %, H: 4.91 %, N: 10.13 %

Figure S17. Concentration of nucleobases in the media after incubation at 150 μ M using **TPB-DMTP-COF-TAZ (COF-P)** and **[Uracil]**_{0.5}-**TPB-DMTP-COF (COF-U)** for 22 hours. (a) Adenine, (b) Cytosine. The interaction of adenine with **[Uracil]**_{0.5}-**TPB-DMTP-COF** is superior compared with any other combination. All the experiments were done in triplicates. Statistical analysis was performed using one-way ANOVA Tukey's test (each group vs Control). *P<0.01, **P<0.001, and ***P<0.001.

- References

- 1. H. Xu, J. Gao and D. Jiang, *Nat. Chem.*, 2015, **7**, 905.
- A. de la Peña Ruigómez, D. Rodríguez-San-Miguel, K. C. Stylianou, M. Cavallini, D. Gentili, F. Liscio, S. Milita, O. M. Roscioni, M. L. Ruiz-González, C. Carbonell, D. Maspoch, R. Mas-Ballesté, J. L. Segura and F. Zamora, *Chem. Eur. J.*, 2015, **21**, 10666-10670.
- 3. S. Balabadra, M. Kotni, V. Manga, A. D. Allanki, R. Prasad and P. S. Sijwali, *Bioorg. Med. Chem.*, 2017, **25**, 221-232.
- 4. L. Meri-Bofi, S. Royuela, F. Zamora, M. L. Ruiz-Gonzalez, J. L. Segura, R. Munoz-Olivas and M. J. Mancheno, *J. Mater. Chem. A*, 2017, **5**, 17973-17981.