
UNIVERSIDAD AUTÓNOMA DE MADRID
ESCUELA POLITÉCNICA SUPERIOR

Double Degree in Computer Science and Mathematics

DEGREE WORK

Development of a Python package for Functional
Data Analysis

Depth Measures, Applications and Clustering

Author: Amanda Hernando Bernabé
Advisor: José Luis Torrecilla

junio 2019

All rights reserved.

No reproduction in any form of this book, in whole or in part
(except for brief quotation in critical articles or reviews),
may be made without written authorization from the publisher.

© 3 de Noviembre de 2017 by UNIVERSIDAD AUTÓNOMA DE MADRID
Francisco Tomás y Valiente, no 1
Madrid, 28049
Spain

Amanda Hernando Bernabé
Development of a Python package for Functional Data Analysis

Amanda Hernando Bernabé
C\ Francisco Tomás y Valiente Nº 11

PRINTED IN SPAIN

A mi familia y a mis amigos

Striving for success without hard work is like

trying to harvest where you haven’t planted.

David Bly

Agradecimientos

Me gustaría dar las gracias a todo el equipo que forma parte de este proyecto. A Alberto Suárez

por proponerlo y darme la oportunidad de participar en una iniciativa con aplicación en el mundo real a

corto plazo. A José Luis Torrecilla por introducirme en la parte más teórica de los datos funcionales y a

Carlos Ramos por el gran esfuerzo hecho enseñándome Python. Además agradezco a mis compañe-

ros Pablo Pérez y Pablo Marcos la facilidad de trabajar con ellos y la motivación puesta en el proyecto.

Por último, agradecer a Eloy Anguiano la plantilla de este artículo que ha hecho la escritura mucho

menos tediosa.

v

Resumen

En este trabajo, se aborda el problema del Análisis de Datos Funcionales (FDA). Cada observación

en datos funcionales es una función que varía sobre un continuo. Este tipo de datos complejos se está

volviendo cada vez más común en muchos campos de la investigación. Sin embargo, el Análisis de

Datos Funcionales es un campo relativamente reciente en el que las implementaciones de software se

limitan básicamente a R. Además, aunque siguan un esquema open-source, la contibución a las mis-

mas puede resultar dificultosa. El objetivo final de este proyecto es proporcionar un paquete completo,

scikit-fda, para el Análisis de Datos Funcionales escrito en Python.

En este trabajo de fin de grado, la funcionalidad implementada en el paquete incluye las medidas de

profundidad funcional junto con sus aplicaciones y nociones elementales de clustering. En los espacios

funcionales, establecer un orden es complicado debido a su naturaleza. Las medidas de profundidad

permiten definir estadísticos robustos para los datos funcionales. En el paquete se pueden encontrar

unas de las más habituales, la medida de profundidad de Fraiman y Muñiz, la band depth o una

modificación de esta última, la modified band depth. Las medidas de profundidad se utilizan en la

construcción de herramientas gráficas, tanto el diagrama de caja funcional como el magnitude-shape

plot se introducen en el paquete además de sus procedimientos de detección de valores atípicos.

Asimismo, se realizan contribuciones en el área del aprendizaje automático en el cual se añaden

algoritmos básicos de clustering al paquete: K-means y Fuzzy K-means. Finalmente, se muestran los

resultados de la aplicación de estos métodos al conjunto de datos del clima canadiense.

El paquete Python está publicado en un repositorio de GitHub. Es open-source con el objetivo de

crecer y mantenerse actualizado. A largo plazo, se espera que cubra las técnicas fundamentales del

FDA y se convierta en una toolbox ampliamente utilizada para la investigación en el FDA.

Palabras clave

Análisis de Datos Funcionales, Medidas de Profundidad, Diagrama de Caja, Detección de datos

atípicos, Clustering, Python, Software

vii

Abstract

In this paper, the problem of analyzing functional data is addressed. Each observation in functional

data is a function that varies over a continuum. This kind of complex data is increasingly becoming

more common in many research fields. However, Functional Data Analysis (FDA) is a relatively recent

field in which software implementations are basically limited to R. In addition, although they may follow

an open-source scheme, the contribution to them may turn out to be complicated. The final goal of this

project is to provide a comprehensive Python package for Functional Data Analysis, scikit-fda.

In this undergraduate thesis, the functionality implemented in the package includes functional depth

measures together with their applications and elementary notions of clustering. In a functional space,

establishing an order is complicated due to its nature. Depth measures allow to define robust statistics

for functional data. In the package you can find some of the most common, Fraiman and Muniz depth

measure, the band depth measure or a modification of the latter, the modified band depth. Depth mea-

sures are used in the construction of graphic tools, both the functional boxplot and the magnitude-shape

plot are introduced in the package along with their outlier detection procedures. Furthermore, contribu-

tions in the area of machine learning are made in which basic clustering algorithms are added to the

package: K-means and Fuzzy K-means. Finally, the results of applying these methods to the Canadian

Weather dataset are shown.

The Python package is published in a GitHub repository. It is open-source wth the aim of growing

and being kept up to date. In the long term it is expected to cover the fundamental techniques in FDA

and become a widely-used toolbox for research in FDA.

Keywords

Functional Data Analysis, Depth Measures, Boxplot, Outlier detection, Clustering, Python, Software

ix

Table of Contents

1 Introduction 1

1.1 Goals and Scope . 1

1.2 Document Structure . 2

2 State of the Art - FDA: Depth Measures, Applications and Clustering 3

2.1 Functional Depth . 5

2.1.1 Fraiman and Muniz Depth . 7

2.1.2 Band Depth and Modified Band Depth . 8

2.2 Functional Boxplot . 10

2.3 Magnitude-Shape Plot . 12

2.4 Clustering Algorithms . 15

2.4.1 K-means . 16

2.4.2 Fuzzy K-means . 17

3 Software Development Process 19

3.1 Analysis . 19

3.2 Design . 20

3.3 Coding, Documentation and Testing . 23

3.4 Version Control and Continuous Integration . 24

4 Results 27

5 Future Work and Conclusions 33

Bibliography 36

Appendices 37

A Documentation 39

xi

Lists

List of algorithms

2.1 K-means algorithm. 17

2.2 Fuzzy K-means algorithm. 18

3.1 Band Depth pseudocode. 21

3.2 Modified Band Depth pseudocode. 21

List of equations

2.1 Multivariate point-type data depth function . 5

2.2 Functional depth function in terms of multivariate point-type data depth 6

2.3 Development of the multivariate functional depth function in terms of univariate depth . 6

2.4 Multivariate functional depth function based on univariate depth function 7

2.5 FM cumulative distribution function . 7

2.6 Univariate Fraiman and Muniz depth function . 7

2.7 Multivariate functional Fraiman and Muniz depth function . 8

2.8 Band defined by several curves . 8

2.9 Proportion of bands containing a specific curve . 8

2.10 Univariate functional band depth . 8

2.11 Multivariate functional band depth . 9

2.12 Proportion of time a curve is contained in the bands . 9

2.13 Functional boxplot central region definition . 10

2.14 Functional outlyingess . 12

2.15 Functional directional outlyingess . 13

2.16 Mean directional outlyingess . 13

2.17 Variation directional outlyingess . 13

2.18 Functional directional outlyingess . 13

2.19 Descompotition of the functional directional outlyingess . 14

2.20 Discrete mean directional outlyingess . 14

2.21 Square robust Mahalanobis distance of Yk,n . 15

2.22 K-means minimization function . 16

2.23 Fuzzy K-means minimization function . 17

xiii

List of figures

2.1 Berkeley Growth Study . 3

2.2 Canadian Weather dataset . 4

2.3 FM depth in terms of the distribution . 7

2.4 Introductory example of BD and MBD . 9

2.5 Example boxplot . 11

2.6 Example enhanced boxplot . 11

2.7 Example surface boxplot . 12

2.8 Introductory magnitude-shape plot . 14

3.1 Functionality map of scikit-fda . 20

3.2 Git flow . 24

4.1 Complete Canadian Weather dataset . 27

4.2 Boxplot of the Canadian temperatures . 28

4.3 Enhanced boxplot of the Canadian temperatures . 28

4.4 MS-plot of the Canadian temperatures-MBD . 29

4.5 MS-plot groupings of the Canadian temperatures-FM . 29

4.6 MS-plot groupings of the Canadian temperatures-MBD . 30

4.7 Clustering plot of the Canadian temperatures . 30

4.8 Clustering lines plot of the Canadian temperatures . 31

4.9 Clustering bars plot of the Canadian temperatures . 31

5.1 scikit-fda logo . 33

xiv

1
Introduction

In recent years, Functional Data Analysis (FDA) has become one of the most active domains in

Statistics. The objects under study are real functions which are assumed to be realizations of stochastic

processes that can represent curves, surfaces or anything else varying over a continuum.

Due to the advances in technology, such functional data can be collected in many scientific areas

including but not limited to biology, finance, engineering, medicine and meteorology. As a result, FDA

has engaged an increasing number of researchers during the past decades. Many methods have been

proposed to extract useful information from functional data. The main references in this field are Ramsay

and Silverman (2005) [1], and Ferraty and Vieu (2006) [2].

Nevertheless, software implementations are restricted fundamentally to R programming language.

The available packages include some general purpose ones, such as fda [3] or fda.usc [4] and others

more specific, among which the refund [5], roahd [6] or rainbow [7] packages can be found. They

implement functionality regarding regression, robust statistics and visualization techniques respectively.

All of them can be found in the The Comprehensive R Archive Network (CRAN) repository. More rare

to encounter, there are also implementations written in Matlab. They include also the fda [3] package or

the PACE [8] package, the latter developed by the Department of Statistics at the University of California.

As a consequence, the implementation of a Python package for FDA was considered to be a valua-

ble tool for the increasing number of researchers who are adopting this language. In addition, dealing

with an open-source software in which continuous collaboration is possible promotes an up-to-date

tool.

1.1. Goals and Scope

The main purpose of this project is to expand the functionality of scikit-fda, the Python FDA package

started last year by the former student Miguel Carbajo [9]. The initial version of the package contained

some basic tools to work with functional data. The functionality implemented was principally related

with the representation of the objects studied: functions.

1

Introduction

The functions are commonly assumed to belong to a Hilbert space and to be able to be represented

with a convenient functional basis, such as B-Splines or Fourier. On the other hand, individual observa-

tions are generally recorded only in a finite number of moments, giving rise to a grid. As a consequence,

we often work with discretized versions of the functional data. These two frameworks were addressed

in scikit-fda by means of two classes: FDataGrid and FDataBasis respectively. They included methods

to compute the basic statistics and to change from one representation to another. Furthermore, simple

smoothing techniques were also covered.

From this base, the functionality implemented includes depth measures along with their applications

and some fundamental methods for clustering functional data. Due to the complexity of functional spa-

ces, they do not present a natural order such as the one found in the real line. An approach proposed

to cover this lack of a definition of distance between functions resides in the idea of functional depth.

Functional depth introduces an ordering within a sample and can provide a measure to analyze how

similar observations are. Functional depth measures implemented include Fraiman and Muniz depth,

the band depth and the modified band depth.

Having ranks of curves, the functional boxplot, an appealing visualization tool, is implemented as

a natural extension of the classical boxplot. Another graphical tool for visualizing centrality and detec-

ting outliers for functional data, the magnitude-shape plot, has been included. Moreover, once specific

distances are defined, clustering algorithms can be applied straightforward to the data. Both K-means

and Fuzzy K-means algorithms can be found in the package. The results can be plotted as an effective

way to illustrate the characteristics that are not apparent from the mathematical models or summary

statistics.

1.2. Document Structure

The paper is organized as follows. In Chapter 2, Functional Data Analysis is introduced. A brief

overview is given followed by a deeper presentation of functional depth, its applications and clustering

analysis in functional data. Each of the tools implemented is discussed in detail, both the practical

context and theoretic calculations are explained. In Chapter 3, the solution implemented is described,

which can be object oriented or consist in a functional approach. The possible customizations of the

classes or methods are also exposed. The results obtained applying the functionality introduced to the

package are shown in Chapter 4. In order to do this, a specific dataset is chosen and the different

methods are applied to it: the boxplot, the magnitude-shape plot and the clustering algorithms. Chapter

5 contains the future work and conclusions. Finally, Appendix A contains the documentation found

online for scikit-fda. First, the practical examples found in Jupyter Notebooks are appended and then,

the documentation of the classes and functions implemented.

2 Development of a Python package for Functional Data Analysis

2
State of the Art - FDA: Depth
Measures, Applications and
Clustering

Nowadays, data are frequently obtained as trajectories or images in many research fields. Typically,

a functional dataset consists of n curves measured at different time points, Tk = {t1, t2, ..., tk}, which do

not need to be equally spaced. In the example below 2.1, obtained from the Berkeley Growth Study [3],

we can observe the heights of 10 children measured at a set of 31 ages, between 1 and 18 years old.

The observations are recorded every 3 months during the first year, every year until the age of 8, and

during the next ten years every half a year.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

age (year)

80

100

120

140

160

180

200

h
ei

gh
t

(c
m

)

Berkeley Growth Study

Figure 2.1: The heights of 10 children measured at 31 ages. The circles indicate the unequally

spaced 31 measurements of each boy or girl.

Interesting questions that could be asked include, how much a child grow on average, at what age

children have a more equally height, is this child abnormally tall/short (which can derive in a growing

problem) or does this observation belong to a girl or a boy. This questions are related to the estimation

of the central tendency of the curves, to the estimation of the variability among the curves, the detection

of outlying curves, and the classification of such curves respectively.

3

State of the Art - FDA: Depth Measures, Applications and Clustering

Multivariate functional data are also considered along the paper. Each multivariate functional datum

consists of a set of d curves. In this context, the Canadian Weather dataset [3] can be mentioned since

it contains simultaneous observations of temperature and precipitation measurements (d = 2) recor-

ded every day during a year in different Canadian weather stations. Only the measurements recorded

in ten weather stations the first two weeks of the year are shown in Figure 2.2 in order to observe the

equally spaced time points. Additionally, spatial surfaces can be considered, in which now the multi-

ple dimensions are found on the domain. Examples include face recognition or neurological disorders

assessment with brain images. These last ones can be found in [10].

0 5 10 15

day

−25

−20

−15

−10

−5

0

te
m

p
er

at
u

re
(º

C
)

0 5 10 15

day

−0.5

0.0

0.5

1.0

1.5

2.0

p
re

ci
p

it
at

io
n

(m
m

.)

Canadian Weather

Figure 2.2: The temperatures and precipitations recorded in 10 different weather stations every day

during a year. Only the fisrt 15 days of the year are plotted to show the equally spaced design points.

Notation

Before going into detail, let specify some notation. Consider a q-variate stochastic process X =

(X1, X2, ..., Xq)
T : I −→ Rq where the coordinates Xi : I −→ R, for 1 ≤ i ≤ q, are univariate

stochastic processes. In most cases, I is a compact interval which belongs to R. Nevertheless, this

definition changes for multiple dimensions on the domain, I should be a compact set defined on the

domain space of X. For example, in a brain image the domain belongs to R2, so the compact set is

the cross-section area of the brain. Besides, q, a positive integer, indicates the dimensionality of the

functional data. If q = 1, univariate functional data are considered, as in the example of the Berkeley

Growth Study, whereas if q ≥ 2, multivariate functional data are found, as in the Canadian Weather

dataset. X takes values in the space C (I,Rq) of real continuous functions with probability distribution

4 Development of a Python package for Functional Data Analysis

2.1. Functional Depth

FX.

Furthermore, a stochastic process can be seen as a family of random variables. At each design

point t ∈ I, X (t) is a q-variate random variable, or random vector, with probability distribution FX(t).

Along the document, the random variables are indexed by the set Tk ⊂ I. In the weather example, the

2-dimensional random vector of each day is composed of the temperature and precipitation measure-

ments. If I is multidimensional, X (t) is called random field.

Additionally, for a sample of independent and identically distributed stochastic processes X1,X2, ...,Xn,

the empirical distribution is denoted with FX,n. Analogously, FX(t),n is used for the random variables

X1(t),X2(t), ...,Xn(t).

2.1. Functional Depth

Statistical depth provides a measure of centrality or outlyingness of an observation with respect to

a given dataset or population distribution. The most central object is assigned the highest value while

the least central, the lowest value. Those values are positive and bounded, without loss of generality,

the explanation is given with the interval [0, 1] ⊂ R. Since in functional spaces there is no natural

order, depths, which provide rankings of curves and a notion of centrality, are very useful. The uses of

statistical depths include the construction of linear estimators, or functional boxplots, the detection of

outlying observations or the classification of the data among others.

Although depth measures in R are trivial, this is not the case in the multivariate setting nor the

functional. First, for each t ∈ Tk, consider the one dimensional random variable X (t) and a depth

measure denoted by d
(
X (t) , FX(t)

)
: X (t) −→ [0, 1]. In this case, there are no doubts of the order

independently of the metric considered. The properties are clear in R and the deepest observation

is the median. One approach of extending this definition to the multivariate setting is to regard the

depth value of a random vector as a weighted average of the marginal depths. As a consequence, the

statistical depth measure d
(
X (t) , FX(t)

)
: X (t) −→ [0, 1] for a multivariate random vector X (t) is

calculated as:

d
(
X (t) , FX(t)

)
=

q∑

i=1

d
(
Xi (t) , FXi(t)

)
· pi,

q∑

i=1

pi = 1, (2.1)

where pi, for 1 ≤ i ≤ q are the weights given to each of the dimensions. As a result, the multi-

variate depths are used to rank the marginal observations of a sample of multivariate functional data

X1 (t) ,X2 (t) , ...,Xn (t) found at each design point.

Noteworthy contributions proposed to rank multivariate data include the halfspace depth by Tukey

(1975) [11] or the simplicial depth by Liu (1990) [12] and Zuo and Serfling (2000) [13] introduced the

Amanda Hernando Bernabé 5

State of the Art - FDA: Depth Measures, Applications and Clustering

key properties that a depth function should verify: affine invariance, maximality at center, monotonicity

and vanishing at infinity.

Finally, we still need to order functions over time. This is a much more difficult problem since, as a

difference with respect to Rq, in a functional space distinct metrics are no longer equivalent. This leads

to very different rankings depending on the depth measure.

A first attempt to extend the previous definitions to the functional setting are the so-called integral

depths, based on the integration of the marginal depths (univariate or multivariate) over time. Hence,

for a stochastic process X, an integral depth function is:

d (X, FX) =

∫

I
d
(
X (t) , FX(t)

)
· w (t) dt,

∫

I
w(t) = 1, (2.2)

where w(t) is a weight function defined on I. Usually, w(t) = {λ(I)}−1 being λ(·) the Lebesgue

measure.

Replacing the multivariate pointwise depth with Equation 2.1:

d (X, FX) =

∫

I
d
(
X (t) , FX(t)

)
· w (t) dt

=

∫

I

(
q∑

i=1

d
(
Xi (t) , FXi(t)

)
· pi
)
· w (t) dt

=

q∑

i=1

(∫

I
d (Xi (t) , FXi

(t)) · w(t)dt

)
· pi

=

q∑

i=1

d (Xi, FXi
) · pi,

(2.3)

another definition for a multivariate stochastic process depth function is obtained in terms of the

univariate processes.

The numerous notions of depth encountered in the literature vary regarding robustness, sensitivity to

reflect asymmetric shapes or computability. In any case, all of them allow to sort a sample of functional

data X1,X2, ...,Xn according to their depth obtaining the order statistics X(1),X(2), ...,X(n). If curves

are sorted by their decreasing depth, the median (based on this depth) can be defined as the deepest

point, X(1). While the median is the observations that stays more in the middle of the set and has the

highest depth value, the curves further away from the rest, with depth values proximate to zero, can be

considered as the outer skin of the data and sometimes outliers.

The functional depths implemented in the package include Fraiman and Muniz, Band Depth and

a modification of this last one, the Modified Band Depth. The first one is explained following the first

approach 2.2 while the others, the second approach (inferred from 2.3) based in a weighted average of

6 Development of a Python package for Functional Data Analysis

2.1. Functional Depth

the univariate stochastic processes:

d (X, FX) =

q∑

i=1

d (Xi, FXi
) ∗ pi. (2.4)

2.1.1. Fraiman and Muniz Depth

Fraiman and Muniz (FM) [14] proposed the first integral depth for functional data. The goal is to

measure how much time every function is deep inside the dataset. Let start with the definition of the

empirical, note the n subindex, cumulative distribution function used for a one dimensional random

variable X(t):

FX(t),n =
1

n

n∑

j=1

I (Xj(t) ≤ X(t)), (2.5)

where I is the indicator function, I(A) = 1 if A is true and I(A) = 0 otherwise. The empirical version

of this depth is:

dn
(
X (t) , FX(t),n

)
= 1−

∣∣∣∣
1

2
− FX(t),n

∣∣∣∣ . (2.6)

In Figure 2.3, the relationship between the cumulative distribution function and the depth defined

in 2.6 can be seen. Note the maximum depth value is obtained at the median for any distribution

considered.

0.0 0.2 0.4 0.6 0.8 1.0

FX(t),n

0.5

0.6

0.7

0.8

0.9

1.0

d
n

(X
(t

),
F

X
(t

),
n

)

Relationship between
FM depth and its distribution

Figure 2.3: Relationship between Fraiman and Muniz depth and the cumulative distribution function

considered.

Amanda Hernando Bernabé 7

State of the Art - FDA: Depth Measures, Applications and Clustering

Applying Equations 2.3 and 2.6, one possible implementation for multivariate stochastic processes

using Fraiman and Muniz definition is the following:

dn (X, FX) =

q∑

i=1

(∫

I
d (Xi (t) , FXi

(t)) ∗ w(t)dt

)
∗ pi

=

q∑

i=1

(∫

I

(
1−

∣∣∣∣
1

2
− FXi(tj),n

∣∣∣∣
)
∗ w(t)dt

)
∗ pi

(2.7)

It is a weighted average of the depth values of each of the dimensions of the image, in turn, this

depth values are calculated as integrals of pointwise data depth values.

2.1.2. Band Depth and Modified Band Depth

Other implemented measure is the Band Depth (BD) introduced by López-Pintado and Romo (2009)

[15] which is based on the graphic representation of functions. It makes use of the bands defined by

their graphs on the plane. First, the original proposal for univariate processes is explained and the one

for multivariate functional data later on.

Let remind the definition of graph of a function, a realization of a stochastic process X, G(X) =

{(t,X(t)) : t ∈ I}. Then, the band in R2 delimited by h curves Xi1 , Xi2 , ..., Xih is defined as:

B (Xi1 , Xi2 , ..., Xih) =

{
(t,X(t)) : t ∈ I, mı́n

r=1,...,h
Xir(t) ≤ X(t) ≤ máx

r=1,...,h
Xir(t)

}
. (2.8)

The grey area in Figure 2.4 is the band delimited by the blue and green curves, but it is also the

band delimited by three curves: the blue, the orange and the green. For any function X in the sample

composed of curves X1, X2, ..., Xn, the quantity

S(h)
n (X) =

(
n

h

) ∑

1≤i1≤...≤ih≤n
I {G(X) ⊂ B (Xi1 , Xi2 , ..., Xih)}, 2 ≤ h ≤ n, (2.9)

denotes the proportion of bands B (Xi1 , Xi2 , ..., Xih) determined by h different curves containing

the graph of X, where I is the indicator function. By computing the fraction of the bands containing the

curve X, the bigger the value of band depth, the more central position the curve has.

With Equation 2.9, the band depth function of a trajectory is defined as:

dn,H (X,FX,n) =

H∑

h=2

S(h)
n (X), 2 ≤ H ≤ n. (2.10)

8 Development of a Python package for Functional Data Analysis

2.1. Functional Depth

As a consequence, using Equation 2.4, the multivariate functional band depth function [16] for q-

dimensional data is given by:

dn,H (X, FX,n) =

q∑

j=1

pj

H∑

h=2

S(h)
n (Xj), 2 ≤ H ≤ n. (2.11)

López-Pintado and Romo (2009) [15] also proposed a more flexible definition of the band depth, the

Modified Band Depth (MBD) . Instead of using the indicator function in Equation 2.9, the proportion of

time the curve is inside the band is measured. It becomes:

S(h)
n (X) =

(
n

h

) ∑

1≤i1≤...≤ih≤n
λk {A (X;Xi1 , Xi2 , ..., Xih)}, 2 ≤ h ≤ n, (2.12)

whereA (X;Xi1 , Xi2 , ..., Xih) = {t ∈ I : mı́nr=1,...,hXir(t) ≤ X(t) ≤ máxr=1,...,hXir(t)} and λk =

λ {A (X;Xi1 , Xi2 , ..., Xih)}/λ {I}, where λ {·} is the Lebesgue measure.

The MBD is more convenient to obtain representative curves in terms of magnitude since less ties

occur in terms of depth values among the observations. On the other hand, the band depth is preferred

to detect shape differences. If curves do not intersect between them, the MBD turns out to give the

same values as the band depth.

0 2 4 6 8 10

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Example BD amd MBD

Figure 2.4: Basic example of BD and MBD applied to a dataset composed of four curves.

Differences between the BD and the MBD are illustrated with a simple example in Figure 2.4. It is

composed of 4 observations (n = 4) and H = 2, so there are 6 bands, one for every pair of curves.

First, note that each curve belongs to those bands that delimits. Furthermore, it can be observed that

the orange curve is completely inside other two bands (blue-green and blue-red), consequently, its BD

Amanda Hernando Bernabé 9

State of the Art - FDA: Depth Measures, Applications and Clustering

is 5/6. On the other hand, the other three curves are not inside any other band resulting in 0.5 their

depth value. The MBD values for the blue and orange observations stay the same since they do not

intersect with other curves. However, the red observation belongs to the grey band 40 % of the time, so

its MBD value consists of (3 + 0,4 + 0,4)/6 = 0,63, where the three comes from the three bands it is

border of, and the two 0.4 of the proportion of time it spends in the green-blue and green-orange bands.

Likewise the MBD of the green observation is (3 + 0,6 + 0,6)/6 = 0,7.

2.2. Functional Boxplot

Sun and Genton (2011) [17] introduced functional boxplots to visualize the result of ranking. Other

informative exploratory tools include the rainbow plots and bagplots proposed by Hyndman and Shang

(2010) [7] and the outliergram by Arribas-Gil and Romo (2013) [18]. The functional boxplot is an ex-

tension of the classical boxplot which displays five statistics: the median, the first and third quartiles

and the non-outlying maximum and minimum observations; and indicates the outlying observations.

Its construction is based on depth measures which define the order statistics and consequently, the

functional quantiles.

Analogously to the classical boxplot, the descriptive statistics shown in this plot include the 50 %

central envelope, the median and the maximum non-outlying envelope. The 50 % central envelope,

or 50 % central region, could be compared to the box of the classical boxplot which represents the

interquartile range (IQR). More formally, the α-central region, Cα, 0 ≤ α ≤ 1, is delimited by the α

proportion of deepest curves:

Cα =

{
(t, y) : t ∈ Tk, mı́n

r=1,...,dα·ne
X(r)(t) ≤ y ≤ máx

r=1,...,dα·ne
X(r)(t)

}
, (2.13)

where dα · ne represents the smallest integer not less than α · n. The median, as mentioned in the

previous section, is X(1), the most central curve with the largest depth value. It is always found inside

the 50 % central region. It is a robust statistic to measure centrality.

The maximum non-outlying envelope is indicated by the whiskers (vertical lines extending from

the box. The maximum non-outlying envelope is composed of the highest values (without taking into

account outliers) found at each design point. So first, the outliers must be identified. The cutoff values

are the fences obtained by inflating the the borders of the central region C0,5 by 1.5 times the range of

the C0,5. The observations outside the fences are flagged as outliers.

In Figure 2.5(a), a dataset composed of ten random realizations of a Brownian process is shown.

Alongside, in 2.5(b), the functional boxplot built from this data can be found. The median is plotted in

black, the envelopes and the vertical lines in blue, the C0,5 in pink and the outliers in red. Note that only

10 Development of a Python package for Functional Data Analysis

2.2. Functional Boxplot

the median and the outliers are real observations.

0.0 0.2 0.4 0.6 0.8 1.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Brownian process

(a) Raw data

0.0 0.2 0.4 0.6 0.8 1.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Example Functional Boxplot

(b) Functional boxplot

Figure 2.5: On the left, a dataset composed of ten random realizations of a Brownian process is

represented and on the right figure its boxplot.

The resulting functional boxplot reveals useful information when looking at their shape, length, po-

sition and size. The spacings between the different parts of the box, intuitively indicate the degree of

dispersion and skewness in the data. Note that in the functional context, robust methods are possibly

more useful than in multivariate problems since there are more ways in which outliers affect functional

statistics. A curve could be an outlier without having any unusually large value; besides magnitude,

shape is also important.

0.0 0.2 0.4 0.6 0.8 1.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Example Enhanced Boxplot

Figure 2.6: Enhanced boxplot of the dataset shown in 2.5(a). The darkest pink color represents the

C0,75 while the lightest, the C0,25

Moreover, there exists an enhanced functional boxplot in which the 25 % and 75 % central regions

Amanda Hernando Bernabé 11

State of the Art - FDA: Depth Measures, Applications and Clustering

are provided as well (Figure 2.6) and a surface boxplot [19], in which I ⊂ R2. To illustrate the surface

boxplot, a functional dataset with a two-dimensional domain space was generated extending the values

of the dataset shown in 2.5(a) along other axis, resulting in 2.7(a). Its surface boxplot is included in

2.7(b).

0.0 0.2 0.4 0.6 0.8 1.0 0.0
0.2

0.4
0.6

0.8
1.0

1.5
1.0
0.5

0.0
0.5
1.0
1.5

Example multidimensional dataset

(a) Raw data

0.0 0.2 0.4 0.6 0.8 1.0 0.0
0.2

0.4
0.6

0.8
1.0

1.5
1.0
0.5
0.0
0.5
1.0
1.5

Example Surface Boxplot

(b) Surface boxplot

Figure 2.7: A dataset of multidimensional functional data is shown alongside its surface boxplot.

2.3. Magnitude-Shape Plot

Outliers in functional spaces are difficult to detect due to the diverse characteristics to consider.

There are two big families of outliers: magnitude outliers (flagged by the boxplot) and shape outliers

(the boxplot is inadequate). As a consequence, other tools are needed.

Dai and Genton (2018) [20] [21] contributed to the functional data toolbox with the magnitude-

shape plot. It is another graphic method that helps visualizing both magnitude and shape outlyingnes of

univariate and multivariate functional data. Given a functional dataset, the shape outlyingness of these

functional data is found on the vertical axis, while both the level and the direction of the magnitude

outlyingness are plotted on the horizontal axis or plane. Moreover, it provides a criterion to identify

various types of outliers that could lead to severe biases in modeling or forecasting functional data.

Directional outlyingness

Note that outlyingness functions are equivalent to statistical depths in an inverse sense. If the

depth function for a multivariate random variable X(t) with distribution function FX(t) is denoted by

d
(
X(t), FX(t)

)
, its outlyingess is given by:

o
(
X(t), FX(t)

)
=

1

d
(
X(t), FX(t)

) − 1. (2.14)

12 Development of a Python package for Functional Data Analysis

2.3. Magnitude-Shape Plot

The magnitude-shape plot measures centrality of functional data by considering both level and di-

rection of deviation from the central region. It adds direction to the conventional concept of outlyingness,

which is crucial in describing centrality of multivariate functional data [22]. To capture both magnitude

and direction of outlyingness, direction is added to the outlyingness function as follows:

O
(
X(t), FX(t)

)
= o

(
X(t), FX(t)

)
· v(t) =

{
1

d
(
X(t), FX(t)

) − 1

}
· v(t), (2.15)

where d can be any conventional depth measure, and v(t) = (X(t)− Z(t)) /‖X(t)− Z(t)‖, being

Z(t) the unique median of FX(t) with respect to d and || · || is the L2 norm. In other words, v is the unit

vector pointing from Z(t) to X(t) and basically, indicates the spatial sign of {X(t)− Z(t)}.

For functional data, there are 3 different measures of directional outlyingness:

1. Mean directional outlyingness (MO):

MO (X, FX) =

∫

I
O
(
X(t), FX(t)

)
· w(t)dt (2.16)

w(t) is a weight function defined on I. MO describes the relative position, both distance and

direction, of X on average to the center curve. Its norm, ||MO||, is regarded as the magnitude

outlyingness of X.

2. Variation of directional outlyingness (V O):

V O (X, FX) =

∫

I
‖O
(
X(t), FX(t)

)
−MO (X, FX)‖2 · w(t)dt (2.17)

It measures the change of O
(
X(t), FX(t)

)
in terms of both the norm and direction across the

whole interval. It is regarded as shape outlyingness. Functional data are usually classified by their

shapes rather than scales because variation outlyingness accounts for both pointwise outlyin-

gness and change in their directions.

3. Functional directional outlyingness (FO):

FO (X, FX) =

∫

I
‖O
(
X(t), FX(t)

)
‖2 · w(t)dt (2.18)

It represents the total outlyingness and the concept is similar to the the one of classical functional

depth. However, classical functional depth maps X ∈ C (I,Rq) to the compact interval [0, 1] ∈ R
whereas the functional directional outlyingess maps X to

(
MOT , V O

)
∈ Rq × R+ which gives

more flexibility to analyze curves.

Amanda Hernando Bernabé 13

State of the Art - FDA: Depth Measures, Applications and Clustering

The functional directional outlyingness is linked to the other first two measures with the relationship:

FO (X, FX) = ‖MO (X, FX)‖2 + V O (X, FX) (2.19)

The above decomposition of the functional directional oulyingness in magnitude and shape provides

great flexibility for describing centrality of functional data and diagnosing potentially abnormal curves.

When the curves are parallel, the shape otlyingness (V O) is zero and a quadratic relationship can be

observed between the functional and magnitude outlyingness: FO = ‖MO‖2.

The magnitude-shape plot indeed shows a scatter group of points
(
MOT , V O

)
for a sample of

functional data. It is used to illustrate the centrality of curves with a response space up to two dimen-

sions. When the dimension is higher, the points are defined by
(
‖MO‖T , V O

)
. The overall magnitude

outlyingness is still presented, however the shape outlyingness is shown without direction.

1.0 1.2 1.4 1.6 1.8 2.0
0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8
Raw Data

(a) Esta es una subfigura1

6 4 2 0 2 4 6
MO

0.0

0.5

1.0

1.5

2.0

2.5

3.0

VO

MS-Plot

(b) Esta es otra subfigura2

Figure 2.8: A group of curves with various types of outliers and its MS-plot.

In Figure 2.8 a functional dataset is plotted alongside its corresponding magnitude-shape plot to

illustrate the basic concepts. The cluster of grey points found in the below mid-part of the graph corres-

ponds to the central curves; both magnitude and shape outlyingness are small. In the vertical axis the

variation outlyingness is plotted, so shape outliers appear on the top part of the graphic. The magnitude

outlyingness is plotted on the horizontal axis, so shifted outliers appear on the sides of the graphic. The

side is decided according the direction of their shifts.

Additionally, the magnitude shape plot provides a frontier to separate regular data from outliers.

The outlier detection method is designed with the directional outlyingness, more specifically, using the

empirical discrete form of the magnitude and the shape outlyingness, MOTk,n and V OTk,n respectively.

MOTk,n (Xn, FX,n) =

k∑

i=1

On

(
X(ti), FX(ti),n

)
· wn(ti). (2.20)

14 Development of a Python package for Functional Data Analysis

2.4. Clustering Algorithms

The directional outlyingness maps one q-variate curve to a (q + 1)-dimensional vector Yk,n =
(
MOTk,n

T , V OTk,n

)T
which is well approximated with a multivariate normal distribution when X is

generated by a stationary Gaussian process. Hardin and Rocke (2005) results [23] can be used under

these suppositions to detect potential outliers from Yk,n. These results are indicated in the following

steps:

1. Calculate the square robust Mahalanobis distance of Yk,n based on a sample of size h ≤ n:

RMD2
(
Yk,n, Ỹ

∗
k,n,J

)
=
(
Yk,n, Ỹ

∗
k,n,J

)T
S∗k,n,J

−1
(
Yk,n, Ỹ

∗
k,n,J

)
, (2.21)

where J designates the group oh h points estimated by the Minimum Covariance Determinant al-

gorithm, giving rise to the covariance matrix S∗k,n,J =
∑

i∈J

(
Yk,n,i − Ỹ∗k,n,J

)(
Yk,n,i − Ỹ∗k,n,J

)T

where Ỹ∗k,n,J = h−1
∑

i∈J Yk,n,J .

2. Approximation of the tail of the distance distribution with a Fisher’s F distribution as follows:

c(m− q)
m(q + 1)

RMD2
(
Yk,n, Ỹ

∗
k,n,J

)
∼ Fq+1,m−q

,

where c and m are real numbers used to determine the degrees of freedom of the F distribution

and the scaling factor.

3. Flag a curve as an outlier when its distance satisfies:

c(m− q)
m(q + 1)

RMD2
(
Yk,n, Ỹ

∗
k,n,J

)
> C,

where C is a cutoff value chosen as the α-quantile of Fq+1,m−q; α = 0,993 is used in the classical

boxplot for detecting outliers under a normal distribution.

2.4. Clustering Algorithms

Functional depth also indicates how similar observations are and therefore, it can be used in fun-

ctional classification and inference. For example, Flores, Lillo and Romo [24] used depth measures to

perform homogeneity tests. Baillo, Cuevas and Fraiman [25] provide a survey of the literature concer-

ning classification of functional data. This section is focused on some basic notions of clustering [26].

Cluster analysis is a collection of unsupervised classification techniques for grouping objects or seg-

menting datasets into subsets of data called clusters. Clustering methods try to assign similar objects

that share common characteristics into the same cluster.

Amanda Hernando Bernabé 15

State of the Art - FDA: Depth Measures, Applications and Clustering

There are three categories of clustering algorithms: hierarchical, non-hierarchical or flat, and a mixed

approach. In practice, their use is limited to their complexity, efficiency or availability in current software.

Furthermore, the choice of the algorithm to run on a certain dataset depends on the sample size,

structure or even the proper goals of the cluster analysis.

The methods of the k-means family are non-hierarchical partitioninng algorithms with good cluste-

ring results in shorter times and on larger datasets compared to hierarchical ones. As a consequence,

they are the most popular algorithms found in exploratory analysis and data mining applications.

By using a clustering algorithm, the dataset X = {X1,X2, , ...,Xn} is divided into k groups aiming

at obtaining low within-cluster and high between-cluster heterogeneity. In other words, a cluster contains

objects as similar to each other as possible and as far from other objects in other clusters as possible.

To measure the closeness of the observations, a distance measure is needed. Usually, the standard

L2 distance is used but the distance can be calculated using statistics based on depth measures. The

parameter indicating the number of clusters, k, is known or fixed a priori before running the algorithm.

Clusters are described by their member objects and by their centers, which are usually the centroids.

A centroid is the point that minimizes the sum of distances between itself and each point in the cluster.

The prototype vector of cluster centroids is denoted by C = [C1,C2, ...,Cn], Ci ∈ Rd.

2.4.1. K-means

K-means (KM) , or alternatively Hard C-Means, is an iterative clustering algorithm that computes

clusters in order to minimize the sum of distances from each object to its cluster centroid. In other

words, the following function must be minimized:

JKM (X;C) =

c∑

i=1

ni∑

j=1

D2
ij ,

c∑

i=1

ni = n, (2.22)

where ni indicates the number of observations in the ith cluster and Dij denotes the distance

chosen between the jth observation and the ith center.

In each iteration, the observations are reassigned between clusters until a minimum point of JKM

is reached. The algorithm steps are captured in 2.1. The random function indicates the selection of

k random trajectories from X, distance calculates the distance between observation units and cluster

centroids, the partition method assigns each observation to the cluster of the closest centroid and

centroids updates the centroids using: Ci = 1
ni

∑ni

j=1Xj , for 1 ≤ i ≤ k.

K-means is a fast, robust, and easy to implement algorithm. It assigns each object to exactly one

cluster, so it gives comparatively good results if clusters are distinct or well-separated. Nevertheless, it

is not as reliable in finding overlapping clusters with regard to form or scattering. Also, it fails to cluster

16 Development of a Python package for Functional Data Analysis

2.4. Clustering Algorithms

input : X, optionally C
output: P (array of length n): a partition of X, C

1 C← C or random(X);

2 cond← true;

3 while cond do
4 Cold ← C;

5 D← distance(C, X);

6 P ← partition(D, X);

7 C← centroids(P , X);

8 cond← not_equal(C, Cold);

9 end

Algorithm 2.1: K-means algorithm.

noisy data and is not invariant to non-linear transformations of data.

2.4.2. Fuzzy K-means

The Fuzzy K-means (FKM) , or Soft C-Means, algorithm is an extension of KM that was introduced

to overcome the aforementioned disadvantages of KM. It is a soft algorithm clustering fuzzy data and it

assigns each object to different clusters with varying degrees of membership. These values range bet-

ween 0 and 1. It is used in a wide area of applications although it has a relatively higher computational

cost.

Analogously to KM, the Fuzzy K-Means computes clusters iteratively in order to minimize the follo-

wing function:

JFKM (X;U,V) =

k∑

i=1

n∑

j=1

umij ·D2
ij . (2.23)

The difference with respect to KM is the used of weighted square errors. U is the membership

matrix k × n that represents the fuzzy clustering of the dataset X. Each of its entrances, uij , indicates

the membership value of the jth observation to the ith cluster. m is the fuzzifier parameter or weighting

exponent, m ∈ [1,∞). As m approaches to 1, the clustering tends to become crisp, on the contrary, as

m goes to∞, the clusering becomes fuzzified. It is usually fixed as 2.

Fuzzy K-Means must be run under these three constrainsts:

1. uij ∈ [0, 1] , 1 ≤ i ≤ k and 1 ≤ j ≤ n,

2.
∑k

i=1 uij = 1, 1 ≤ j ≤ n,

3. 0 <
∑n

j=1 uij < n, 1 ≤ i ≤ k.

The algorithm can be found in 2.2, in which the random and distance functions are the same as in

Amanda Hernando Bernabé 17

State of the Art - FDA: Depth Measures, Applications and Clustering

KM. The membership_values method calculates the membership values of data points to each cluster

with: uij =
[∑k

c=1 (Dij/Dcj)
2

m−1

]−1
, 1 ≤ i ≤ k and 1 ≤ j ≤ n and the centroids function updates

the centroids using: Ci =
∑n

j=1 u
m
ijXj∑n

j=1 u
m
ij
, 1 ≤ i ≤ k.

input : X, optionally C
output: U, C

1 C← C or random(X);

2 cond← true;

3 while cond do
4 Cold ← C;

5 D← distance(C, X);

6 U← membership_values(D, X);

7 C← centroids(U, X);

8 cond← not_equal(C, Cold);

9 end

Algorithm 2.2: Fuzzy K-means algorithm.

There are many other approaches to cluster data, for example using the coefficients of the B-Splines

basis [27] instead of the actual observation values or the SeqClusFD algorithm in which the functional

boxplot is involved [28].

18 Development of a Python package for Functional Data Analysis

3
Software Development Process

In the previous section, the core functionalities implemented were exposed in detail. In this one,

the development of the Python package, scikit-fda, is going to be explained. First of all, an agile met-

hodology which uses incremental, iterative work cycles was followed. These cycles were assessed by

the developing team in regular meetings which were hold every week. In each cycle the phases of the

Waterfall model (requirements analysis, software design, implementation, testing and integration) were

completed for a specific functionality, before proceeding to the next increment.

3.1. Analysis

The package requirements were already specified from the beginning of the project started last year

by former student Miguel Carbajo [9]. However, an overview is given to remind the main ones. The pac-

kage is written in Python. It is a general purpose language and multi-paradigm, which implies flexibility

in the implementations of a technique. Moreover, it is great for prototyping due to the dynamic typing

and the possibility to use it as a Read-Eval-Print-Loop (REPL) with for example, Jupyter Notebooks. In

addition, it has a rich ecosystem with a great variety of modules in different fields. Pandas can be found

for statistical calculations, Matplotlib for plotting and, Numpy and Scipy stand out in Python scientific

computing modules. Algorithms which are already implemented in those last packages can be reutili-

zed and assure efficiency due to the lower-level languages they are programmed in, such as Fortran or

C. Numpy adds support for large, multi-dimensional arrays and matrices, along with a large collection of

high-level mathematical functions to operate on these arrays. SciPy contains modules for optimization,

linear algebra, integration, interpolation and other tasks common in science and engineering. Moreover,

SciPy builds on the NumPy array object.

The package must be integrated with Python science environment, therefore, it follows scikit-learn

API. Scikit stands for Scipy-Toolkits which are specialized science add-on packages for Scipy. They are

developed separately and independently from the main distribution.

Furthermore, it is an open-source, scalable, software package which implies the presence of an

easy mechanism to contribute to it, along with an extensive test-bench of unit tests and continuous

19

Software Development Process

integration procedures. Also, documentation is important both for the general audience the package is

intended for and the potential developers of the package.

8

exploratory
analysisrepresentation preprocessing

statistical inference machine learning

scikit-fda

Figure 3.1: Division of scikit-fda functionality. The intensity of the colors reflects the level of functio-

nality implemented, being the area of inference the one which requires more contribution.

Finally, the goal is to include as much functionality as possible to cover the areas shown in Figure 3.1

[29]. Regarding this project, the functionality implemented is proportional to the 360 hours of a degree

work and it was decided just after each cycle. The specific analysis for the functionalities implemented

consisted basically in researching to decide what to include in the package, both in the mathematical

and computer science fields, to determine the most innovative, popular and viable methods.

3.2. Design

As commented in the Introduction 1.1, the package in its initial version included two modules con-

taining both representations of functional data, as a grid (FDataGrid) or as a linear combination of basis

functions (FDataBasis); along with a basic math module and a couple related to smoothing techniques.

During this year, the package structure has considerably grown due to the number of people working

on it. The following paragraphs describe the implementation of the concepts explained in Chapter 2.

Depth Measures

The three implemented depth functions: Fraiman and Muniz depth, Band depth and Modified Band

depth, can be found in the depth module. This module is found in the exploratory analysis directory due

to its applications. The three methods follow the signature depth_name(fdatagrid, pointwise=False),

where the first argument expects a FDataGrid object and the second one indicates wether to return

also the pointwise univariate depth. The second parameter was added because, by default, in Equation

2.3, w(t) = 1/|Tk|, 1 ≤ j ≤ k and pi = 1/q, 1 ≤ i ≤ q. So, if the functional result is desired to

be calculated with other weight values, it is possible to obtain it from the pointwise univariate depth.

20 Development of a Python package for Functional Data Analysis

3.2. Design

Besides, the code is scalable since the adding of a new method does not imply to modify anything.

Regarding the BD and MBD, in Equation 2.10 the number of curves determining a band, h, can be

any integer between 2 and H . The order of curves induced by the depths are very stable in H . So to

avoid computational issues, H = 2 is used because a fast method was proposed by Sun and Genton

(2012) [30] based on matrix (or, in higher dimensions, tensor) ranks. The pseudocodes of both functions

are included. Both of them assume univariate functional datasets represented in a matrix M,n × k. In

3.1, na[i] denotes the number of curves that are completely above the ith curve, whereas nb[i] denotes

the number of curves that are completely below the ith curve, 1 ≤ i ≤ n. na, nb and depth are n-

dimensional vectors. In 3.2, na, nb and match are n× k matrices while depth stays the same, a vector

of length n.

input : M

output: depth

1 foreach j ← 1 to k do
2 R[,j]← rank(M[,j]);

3 end
4 foreach i← 1 to n do
5 na[i]← n - max(R[i,]);

6 nb[i]← min(R[i,])- 1;

7 end
8 depth← (na * nb + n- 1) / nchoose2 ;

Algorithm 3.1: Band Depth pseudocode.

input : M

output: depth

1 foreach j ← 1 to k do
2 R[,j]← rank(M[,j]);

3 end
4 na← n - R;

5 nb← R - 1;

6 match← na * nb;

7 foreach i← 1 to n do
8 proportion← sum(match[i,]) / k ;

9 end
10 depth← (proportion + n - 1) / nchoose2 ;

Algorithm 3.2: Modified Band Depth pseudocode.

Boxplot

The boxplot functionality is implemented in two classes: Boxplot and SurfaceBoxplot. They can

be found in the boxplot module, inside the visualization directory which in turn can be found in the

exploratory analysis one. Both classes support FDataGrid objects with as many dimensions on the

Amanda Hernando Bernabé 21

Software Development Process

image as desired whereas the first class only admits one dimensional domains and the second one

bidimensional domains. A graph for each dimension on the image is returned, so domain spaces only

have sense up to two dimensions.

Both classes inherit from an abstract one, FDataBoxplot, whose attributes contain the descriptive

statistics: median, central_evelope and outlying_envelope. To calculate them, the depth function and

the factor to identify outliers can be customized. By default, the modified_band_depth function and the

value 1.5 for the factor are applied. To obtain the graphic, the plot function must be called, and the

colormap used can be chosen. In interactive mode, the plot is the default representation of the class.

Although the procedure to obtain the mathematical results is very similar in both cases, the plotting

part is quite different. In the first case, a line is plotted for each observation while in the second one, a

surface is shown. For clarity reasons, the SurfaceBoxplot does not show outliers nor has the possibility

to produce an enhanced boxplot as in the case of the Boxplot class. Indeed, in the Boxplot class, any

α central regions can be selected to appear.

Magnitude-Shape Plot

This plot is implemented in a class named the same way, MagnitudeShapePlot, in the magnitu-

de_shape_plot module found in the visualization directory. This module also contains the method to

calculate the directional outlyingness of the FDataGrid object considered. This method is used by the

MagnitudeShapePlot class in which the depth function, along with the dimension and pointwise weights,

can be customized.

Once the directional outlyingnes has been computed, the mean and the variation of the directional

outlyingness are calculated to obtain the actual points of the graphic. The norm implemented by default

for Equations 2.16, 2.17 and 2.18 is the L2-norm defined as ‖f‖ =
(∫
I |f |2dx

) 1

2 , where ‖ · ‖∗ denotes

a vectorial norm (also the L2-norm by default).

Finally, the outliers are calculated using the MinCovDet class provided by scikit-learn and the cutoff

value can be adjusted by means of the parameter alpha.

Clustering Algorithms

The clustering functionality can be found in the clustering directory, inside machine learning. Speci-

fically, a module called base_kmeans was created to include K-means algorithms: K-means and Fuzzy

K-means, which are implemented in two classes named after them. Both classes inherit from BaseK-

Means class which follows scikit-learn API with scrutiny. This latter class inherits from BaseEstimator,

ClusterMixin and TransformerMixin contained in the aforementioned package and implements the fit,

transform and score methods among others. This implementation follows the one found in scikit-learn

of the KMeans class, which uses vectorial L2-norm to compute distances. By default, the functional

KMeans class included in the package also utilizes the L2-norm (but for functions, as explained in the

22 Development of a Python package for Functional Data Analysis

3.3. Coding, Documentation and Testing

previous subsection), nevertheless, it admits any suitable distance function.

In order to visualize the results, a module named clustering_plots located in the visualization direc-

tory was created. It includes three methods: plot_clusters, plot_cluster_lines and plot_cluster_bars. The

first one plots the raw data by colors, in which each color indicates a cluster. The other two methods are

applicable only for the Fuzzy K-means class results which help to visualize the degree of membership

of each observation to each cluster, by means of a kind of parallel coordinates plot or histogram plot

respectively.

3.3. Coding, Documentation and Testing

Any open-source package needs to be composed of scalable source code in order for programmers

to contribute in its development. It is always easier if there are guidelines that assure consistency and

make the code more readable. As a consequence, standard PEP 8: The Style Guide for Python Code is

followed. It contains coding conventions comprising the standard library in the main distribution, which

include information about indentation, maximum line length (79 characters), blank lines, encodings

(PEP 263) or naming conventions.

In turn, PEP 8 references PEP 257 standard for documentation. It describes docstrings (documen-

tation strings) semantics and conventions. Docstrings are found at the beginning of all public modules,

functions, classes and methods, and they should be kept short, simple and avoiding repetitions.

Another point to take into account for a collaborative software is testing in order to produce a quality

product and detect bugs. The testing framework used is based on unittest, which is indeed the de facto

standard in this area. It constitutes the Python language version of JUnit, Java’s testing framework. It

supports test automation, sharing setup and shutdown code for tests, or aggregation of tests into co-

llections. Nevertheless, the tool employed for running the tests is pytest, which contains more features,

including more informative tracebacks, stdout and stderror capturing, or stopping after a fixed number

of failures; and supports more complex functional testing.

Another positive aspect of following standards, is the existence of tools that automatize their use.

Personally, I used PyCharm to write the source code. It has a number of settings to configure the Python

environment. The docstring format can be chosen among plain, reStructuredText, Epytext, Numpy or

Google. The one selected is the Google standard which follows PEP8 and has a more pythonic syntax.

PyCharm can understand the docstrings, aid with their generation and use them for quick fixes and

coding assistance. PyCharm also allows to configure Sphinx working directory.

Sphinx is a documentation generator that converts reStructuredText, an extensible, markup langua-

ge used by the Python community for technical documentation, into HTML websites or other formats

such as pdf. It autogenerates documentation from the source code, writing mathematical notation or

Amanda Hernando Bernabé 23

Software Development Process

highlighting code. Moreover, it is linked with doctest that tests the code by running the examples em-

bedded in the documentation and verifies if the expected results were produced.

3.4. Version Control and Continuous Integration

Due to the high number of potential contributors, there must be some kind of coordination among

them. Fortunately, tools for version control are already spread. In this case, Git has been used. It is a

distributed version-control system that tracks changes in the source code of any file during the software

development and gives support to distributed, non-linear worflows. A Git directory is a repository with

full history and version tracking abilities, independent of network or a central server access.

More specifically, the package can be found on GitHub, in https://github.com/GAA-UAM/

scikit-fda/wiki, a web-based hosting service using Git for version control. Apart from Git fun-

ctionalities, it offers its own features which include access control and regarding collaboration between

programmers, bug tracking, feature request or task management. The repository can be read and clo-

ned but writing is controlled by the owners.

The Git flow is based on branches and supports teams and projects where deployments are made

regularly. It consists on the following steps: create a branch from the repository, add commits, open

pull request, discuss and review code, deploy for testing and finally, merge. The repository contains two

main branches: a master branch in which the releases available can be found and the develop branch,

into which the feature branches are merged during the development process.

Figure 3.2: Git flow.

GitHub also provides some software as a service integrations to add extra features to projects.

Travis CI can be found among the hosted continuous integration services used to build and test software

projects. It gives full control over the build environment to adapt it to the code and runs the tests every

time a push is done. Testing is not a just one-time task. Additionally, it gives support to more than one

version of Python simultaneously.

24 Development of a Python package for Functional Data Analysis

https://github.com/GAA-UAM/scikit-fda/wiki
https://github.com/GAA-UAM/scikit-fda/wiki

3.4. Version Control and Continuous Integration

Another hosting platform linked to GitHub is Read the Docs which generates documentation com-

piled with Sphinx. It simplifies the technical documentation by automatically building, versioning and

hosting the generated documentation in its website. The package documentation can be found here.

Amanda Hernando Bernabé 25

https://fda.readthedocs.io/en/latest/

4
Results

In this section the results of the functionality implemented are shown applied to the Canadian Weat-

her dataset described in the introduction of Chapter 2. More specifically, only the temperatures are

going to be studied, dealing with one dimensional functional data. The Canadian Weather dataset can

be obtained from the datasets module. It contains functions to generate synthetic datasets or to retrieve

specific datasets which are fetched from CRAN or UCR. In Figure 4.1, the raw data is plotted to show

the curves to be analyzed. They are divided according to the target. In this case, it includes the different

climates to which the weather stations belong to: Arctic, Atlantic, Continental and Pacific.

0 50 100 150 200 250 300 350
day

30

20

10

0

10

20

te
m

pe
ra

tu
re

 (º
C)

Arctic
Atlantic
Continental
Pacific

Canadian Temperatures

Figure 4.1: The temperatures of the Canadian Weather dataset.

Boxplot

The functional boxplot, Figure 4.2(a), is constructed based on this data. It can be observed the

median in black, the central region (where the 50 % of the most central samples reside) in pink and the

envelopes and whiskers in blue. The outliers detected, those samples with at least a point outside the

27

Results

outlying envelope, are represented with a red dashed line. In the right plot, Figure 4.2(b), the outliers

(in red) are shown with respect to the other samples (in blue). Note their significantly lower values

compared to the rest. This is the expected result due to the depth measure used, the modified band

depth, which rank the samples according to their magnitude.

0 50 100 150 200 250 300 350
day

30

20

10

0

10

20

te
m

pe
ra

tu
re

 (º
C)

Canadian Temperatures

(a) Functional boxplot

0 50 100 150 200 250 300 350
day

30

20

10

0

10

20

te
m

pe
ra

tu
re

 (º
C)

nonoutliers
outliers

Canadian Temperatures

(b) Outlier detection result

Figure 4.2: The boxplot applied to the Canadian temperatures and the distinction made of outler and

regular curves.

If the band depth measure is used and other central regions are included, the result is shown in

4.3. The outliers detected belong to the Pacific and Arctic climates which are less common to find in

Canada. As a consequence, this measure detects better shape outliers compared to the previous one.

0 50 100 150 200 250 300 350
day

30

20

10

0

10

20

te
m

pe
ra

tu
re

 (º
C)

Canadian Temperatures

Figure 4.3: Enhanced boxplot of Canadian temperatures.

28 Development of a Python package for Functional Data Analysis

Magnitude-Shape Plot

Following the previous example, Figure 4.4 shows the magnitude-shape plot applied to the data

along with its detected outliers plot. The band depth measure was used. Most of the curves pointed as

outliers belong either to the Pacific or Arctic climates, not so common in Canada. The Pacific temperatu-

res are much smoother and the Arctic ones much lower, differing from the rest in shape and magnitude

respectively. There are two curves from the Arctic climate which are not pointed as outliers but in the

MS-Plot, they appear further left from the central points.

15 10 5 0 5
MO

0

10

20

30

40

VO

MS-Plot

(a) MS-Plot

0 50 100 150 200 250 300 350
day

30

20

10

0

10

20

te
m

pe
ra

tu
re

 (º
C)

nonoutliers
outliers

Canadian Weather

(b) Outlier detection result

Figure 4.4: Magnitude-Shape plot applied to the Canadian temperature data along with its detected

outliers plot. The Modified Band depth is used.

In Figure 4.5, the same experiment is carried out but with the Fraiman and Muniz depth measure.

The actual MS-Plot does not point out any observation as an outlier. Nevertheless, if we group them in

three groups according to their position in the MS-Plot, the result is the expected one. Those samples

at the left (larger deviation in the mean directional outlyingness) correspond to the Arctic climate, which

has lower temperatures, and those on top (larger deviation in the directional outlyingness) to the Pacific

one, which has smoother curves. The same is done with the MBD in Figure 4.6.

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
magnitude outlyingness

0.00

0.05

0.10

0.15

0.20

0.25

0.30

sh
ap

e
ou

tly
in

gn
es

s

MS-Plot

(a) Groupings of the MS-Plot points.

0 50 100 150 200 250 300 350
day

30

20

10

0

10

20

te
m

pe
ra

tu
re

 (º
C)

Canadian Weather

(b) Raw data according to the groupings.

Figure 4.5: Magnitude-Shape plot applied to the Canadian temperature. The Fraiman and Muniz

depth is used. The points are divided into three groups.

Amanda Hernando Bernabé 29

Results

15 10 5 0 5
magnitude outlyingness

0

10

20

30

40
sh

ap
e

ou
tly

in
gn

es
s

MS-Plot

(a) Groupings of the MS-Plot points.

0 50 100 150 200 250 300 350
day

30

20

10

0

10

20

te
m

pe
ra

tu
re

 (º
C)

Canadian Weather

(b) Raw data according to the groupings.

Figure 4.6: Magnitude-Shape plot applied to the Canadian temperature. The MBD is used. The points

are divided into three groups.

Clustering Algorithms

For the cluster analysis, the sample to be investigated consists in ten observations picked randomly

from the above dataset. Figure 4.7(a) shows the raw data.

0 50 100 150 200 250 300 350
day

30

20

10

0

10

20

te
m

pe
ra

tu
re

 (º
C)

Atlantic
Continental
Pacific

Canadian Weather

(a) Ten random observations of the Canadian Weather dataset.

0 50 100 150 200 250 300 350
day

30

20

10

0

10

20

te
m

pe
ra

tu
re

 (º
C)

Atlantic
Pacific
Continental

Canadian Weather

(b) Raw data according to clusters. Cluster centroids are represented

with the same colors and bigger linewidth.

Figure 4.7: Ten random observations of the Canadian Weather dataset and its division into three

different clusters.

Note the ten curves chosen belong to three of the four possible climates. The number of clusters is

set to three since there are three pronounced distinctions regarding form. Although the three groups are

composed of bell-shaped curves, the continental ones are more acute and one of the Pacific climate is

considerably shallower. The K-means results are plotted in Figure 4.7(b). The Fuzzy K-Means algorithm

produces the same results as in Figure 4.7(b) if assigning to each observation the cluster with maximum

degree of membership. The groupings have been made according to shape and magnitude.

Furthermore, two other ad-hoc plots have been implemented to better visualize every degree of

membership of each observation. One of them appears in Figure 4.8 and is similar to parallel coordina-

30 Development of a Python package for Functional Data Analysis

Atlantic Pacific Continental
Cluster

0.0

0.2

0.4

0.6

0.8

1.0

De
gr

ee
 o

f m
em

be
rs

hi
p

Degrees of membership of the samples to each cluster

Figure 4.8: Plot implemented to show Fuzzy C-means algorithm results.

tes. The colors are the ones of the first plot (Figure 4.7(a)), dividing the samples by actual climate.

The other one, Figure 4.9, returns a barplot. Each sample is designated with a bar which is filled

proportionally to its membership values with the color of each cluster.

0 1 2 3 4 5 6 7 8 9
0.0

0.2

0.4

0.6

0.8

1.0

Atlantic
Pacific
Continental

Degrees of membership of the samples to each cluster

(a) Without ordering.

7 1 4 8 0 5 3 2 9 6
0.0

0.2

0.4

0.6

0.8

1.0

Atlantic
Pacific
Continental

Degrees of membership of the samples to each cluster

(b) Ordered based to the Pacific climate.

Figure 4.9: Plot implemented to show Fuzzy K-means algorithm results.

Amanda Hernando Bernabé 31

5
FutureWork and Conclusions

Figure 5.1: scikit-fda logo

Along the document, depth measures and its applications have been explained. Both a theoretic

introduction and an implementation have been included. In addition, the final graphic results have been

exposed. In regard with this more specialized area, more depth measures could be incorporated. There

are many heterogeneous notions of depths which can give rise to different outputs in terms of the cha-

racteristic considered. The package could also contain other exploratory tools such as the mentioned

outliergram, bagplot or rainbow plot, as well as, an extension of the MS-Plot to a higher dimension.

Furthermore, distance measures could be built using the depths defined and more cluster techniques

could be added.

In parallel, other two students were working in the project. They focused in preprocessing, which in-

cludes smoothing and registration techniques. These techniques approximate functions in order to deal

with registered noise and variation in phase and amplitude, respectively. Also, some basic regression

methods have been included to model the data. Regarding Figure 3.1 with the expected functionality

of the package, more effort must be invested especially in statistical inference such as estimation and

hypothesis testing of functional data.

Still the outcome of the project has accomplished the expectations. The final goal of the thesis was

to develop a comprehensive Python package for Functional Data Analysis. So firstly, the functionality of

the fda package initiated last year had to be expanded. A lot of work has been invested, not only by me

but also by the other team members. This implied great collaboration which could be achieved thanks to

communication in regular meetings and via GitHub, a very useful tool which helped in the coordination

33

FutureWork and Conclusions

and regulation of the team regarding to code implementation. It also allows the supervision and approval

of merge requests and the addressing of issues. Moreover, its integration with Travis CI allows to follow

the continuous integration practice. Testing and documentation are also monitorized through GitHub

web service.

Not so much along, the first release of the package was delivered under the name of scikit-fda.

It has a BSD license and the logo is the one in Figure 5.1. The long term goal is to implement novel

techniques so that the Python fda package evolves together with the field of Functional Data Analysis.

34 Development of a Python package for Functional Data Analysis

Bibliography

[1] J. O. Ramsay and B. W. Silverman, Functional data analysis. Springer series in statistics, New

York: Springer, 2nd. ed., 2005.

[2] F. Ferraty and P. Vieu, Nonparametric functional data analysis: theory and practice. Springer series

in statistics, New York: Springer, 2006.

[3] J. O. Ramsay and B. W. Silverman, “Functional data analysis - Software.” http://www.psych.

mcgill.ca/misc/fda/software.html, 2017.

[4] M. Febrero-Bande and M. O. de la Fuente, “Statistical computing in functional data analysis: The

R package fda.usc,” Journal of Statistical Software, vol. 51, no. 4, 2012.

[5] J. Goldsmith, F. Scheipl, L. Huang, et al., “refund: Regression with functional data.” https://

CRAN.R-project.org/package=refund, 2016.

[6] N. Tarabelloni et al., “roahd: Robust analysis of high dimensional data.” https://CRAN.

R-project.org/package=roahd, 2018.

[7] R. J. Hyndman and H. L. Shang, “Rainbow plots, bagplots, and boxplots for functional data,” Jour-

nal of Computational and Graphical Statistics, vol. 19, no. 1, pp. 29–45, 2010.

[8] F. Yaoand, B. Liu, H. Müller, et al., “PACE: Principal Analysis by Conditional Expectation.” http:

//www.stat.ucdavis.edu/PACE/, 2015.

[9] M. Carbajo-Berrocal, “FDA-PY: desarrollo de un paquete Python para el análisis de datos funcio-

nales,” 2018.

[10] T. Tian, “Functional data analysis in brain imaging studies,” Frontiers In Psychology, vol. 1, 2010.

[11] J. W. Tukey, “Mathematics and the picturing of data,” pp. 523–531, Canadian Mathematical Con-

gress.

[12] R. Y. Liu, “On a notion of data depth based on random simplices,” The Annals of Statistics, vol. 18,

no. 1, pp. 405–414, 1990.

[13] Y. Zuo and R. Serfling, “General notions of statistical depth function,” Annals of Statistics, vol. 28,

no. 2, pp. 461–482, 2000.

[14] R. Fraiman and G. Muniz, “Trimmed means for functional data,” Test, vol. 10, no. 2, pp. 419–440,

2001.

[15] S. López-Pintado and J. Romo, “On the concept of depth for functional data,” Journal of the Ame-

rican Statistical Association, vol. 104, no. 486, pp. 718–734, 2009.

[16] F. Ieva and A. M. Paganoni, “Depth measures for multivariate functional data,” Communications in

Statistics - Theory and Methods, vol. 42, no. 7, pp. 1265–1276, 2013.

[17] Y. Sun and M. G. Genton, “Functional boxplots,” Journal of Computational and Graphical Statistics,

vol. 20, no. 2, pp. 316–334, 2011.

http://www.psych.mcgill.ca/misc/fda/software.html
http://www.psych.mcgill.ca/misc/fda/software.html
https://CRAN.R-project.org/package=refund
https://CRAN.R-project.org/package=refund
https://CRAN.R-project.org/package=roahd
https://CRAN.R-project.org/package=roahd
http://www.stat.ucdavis.edu/PACE/
http://www.stat.ucdavis.edu/PACE/

Bibliography

[18] A. Arribas-Gil and J. Romo, “Shape outlier detection and visualization for functional data: The

outliergram,” Biostatistics, vol. 15, no. 4, pp. 603–619, 2014.

[19] M. G. Genton, C. Johnson, K. Potter, G. Stenchikov, and Y. Sun, “Surface boxplots,” Stat, vol. 3,

no. 1, pp. 1–11, 2014.

[20] W. Dai and M. G. Genton, “Multivariate functional data visualization and outlier detection,” Journal

of Computational and Graphical Statistics, vol. 27, no. 4, pp. 923–934, 2018.

[21] W. Dai and M. G. Genton, “An outlyingness matrix for multivariate functional data classification,”

Statistica Sinica, vol. 28, no. 4, pp. 2435–2454, 2018.

[22] W. Dai and M. G. Genton, “Directional outlyingness for multivariate functional data,” Computational

Statistics and Data Analysis, vol. 131, pp. 50–65, 2019.

[23] J. Hardin and D. M. Rocke, “The distribution of robust distances,” Journal of Computational and

Graphical Statistics, vol. 14, no. 4, pp. 928–946, 2005.

[24] R. Flores, R. Lillo, and J. Romo, “Homogeneity test for functional data,” Journal of Applied Statistics,

vol. 45, no. 5, pp. 868–883, 2018.

[25] A. Baíllo, A. Cuevas, and R. Fraiman, “Classification methods for functional data,” The Oxford

Handbook of Functional Data Analysis, pp. 259–297, 01 2011.

[26] Z. Cebeci and F. Yıldız, “Comparison of k-means and fuzzy c-means algorithms on different cluster

structures,” Journal of Agricultural Informatics, vol. 6, pp. 13–23, 10 2015.

[27] C. Abraham, P. A. Cornillon, E. Matzner-Løber, and N. Molinari, “Unsupervised curve clustering

using b-splines,” Scandinavian Journal of Statistics, vol. 30, no. 3, pp. 581–595, 2003.

[28] A. Justel and M. Svarc, “Sequential clustering for functional data,” 2016.

[29] C. Ramos-Carreño, “Scikit-fda: A Python package for Functional Data Analysis.” III International

Workshop on Advances in Functional Data Analysis, 05 2019.

[30] Y. Sun, M. G. Genton, and D. W. Nychka, “Exact fast computation of band depth for large functional

datasets: How quickly can one million curves be ranked?,” Stat, vol. 1, no. 1, pp. 68–74, 2012.

36 Development of a Python package for Functional Data Analysis

Appendices

A
Documentation

39

Docs » Examples » Boxplot

 Note

Click here to download the full example code

Boxplot

Shows the use of the func�onal Boxplot applied to the Canadian Weather dataset.

Author: Amanda Hernando Bernabé
License: MIT

sphinx_gallery_thumbnail_number = 2

from skfda import datasets
from skfda import FDataGrid
from skfda.exploratory.depth import band_depth, fraiman_muniz_depth
import matplotlib.pyplot as plt
from skfda.exploratory.visualization.boxplot import Boxplot
import numpy as np

First, the Canadian Weather dataset is downloaded from the package ‘fda’ in CRAN. It
contains a FDataGrid with daily temperatures and precipita�ons, that is, it has a 2-
dimensional image. We are interested only in the daily average temperatures, so another
FDataGrid is constructed with the desired values.

dataset = datasets.fetch_weather()
fd = dataset["data"]
fd_temperatures = FDataGrid(data_matrix=fd.data_matrix[:, :, 0],
 sample_points=fd.sample_points,
 dataset_label=fd.dataset_label,
 axes_labels=fd.axes_labels[0:2])

The data is plo�ed to show the curves we are working with. They are divided according to
the target. In this case, it includes the different climates to which the weather sta�ons belong
to.

Each climate is assigned a color. Defaults to grey.
colormap = plt.cm.get_cmap('seismic')
label_names = dataset["target_names"]
nlabels = len(label_names)
label_colors = colormap(np.arange(nlabels) / (nlabels - 1))

plt.figure()
fd_temperatures.plot(sample_labels=dataset["target"], label_colors=label_colors,
 label_names=label_names)

We instan�ate a functional boxplot object with the data, and we call its plot function to
show the graph.

By default, only the part of the outlier curves which falls out of the central regions is plo�ed.
We want the en�re curve to be shown, that is why the show_full_outliers parameter is set to
True.

fdBoxplot = Boxplot(fd_temperatures)
fdBoxplot.show_full_outliers = True

plt.figure()
fdBoxplot.plot()

We can observe in the boxplot the median in black, the central region (where the 50% of the
most centered samples reside) in pink and the envelopes and ver�cal lines in blue. The
outliers detected, those samples with at least a point outside the outlying envelope, are
represented with a red dashed line. The colors can be customized.

The outliers are shown below with respect to the other samples.

color = 0.3
outliercol = 0.7

plt.figure()
fd_temperatures.plot(sample_labels=fdBoxplot.outliers[0].astype(int),
 label_colors=colormap([color, outliercol]),
 label_names=["nonoutliers", "outliers"])

The curves pointed as outliers are are those curves with significantly lower values to the rest.
This is the expected result due to the depth measure used, the modified band depth which
rank the samples according to their magnitude.

The functional boxplot object admits any depth measure defined or customized by the
user. Now the call is done with the band depth measure and the factor is reduced in order to
designate some samples as outliers (otherwise, with this measure and the default factor, none
of the curves are pointed out as outliers). We can see that the outliers detected belong to the
Pacific and Arc�c climates which are less common to find in Canada. As a consequence, this
measure detects be�er shape outliers compared to the previous one.

fdBoxplot = Boxplot(fd_temperatures, method=band_depth, factor = 0.4)
fdBoxplot.show_full_outliers = True

plt.figure()
fdBoxplot.plot()

Another func�onality implemented in this object is the enhanced func�onal boxplot, which
can include other central regions, apart from the central or 50% one.

In the following instan�a�on, the Fraiman and Muniz depth measure is used and the 25% and
75% central regions are specified.

fdBoxplot = Boxplot(fd_temperatures, method=fraiman_muniz_depth,
 prob = [0.75, 0.5, 0.25])
plt.figure()
fdBoxplot.plot()

The above two lines could be replaced just by fdBoxplot since the default representa�on of
the boxplot object is the image of the plot. However, due to genera�on of this notebook it
does not show the image and that is why the plot method is called.

Total running �me of the script: (0 minutes 2.578 seconds)

 Download Python source code: plot_boxplot.py

 Download Jupyter notebook: plot_boxplot.ipynb

Gallery generated by Sphinx-Gallery

Docs » Examples » Surface Boxplot

 Note

Click here to download the full example code

Surface Boxplot

Shows the use of the surface boxplot, which is a generaliza�on of the func�onal boxplot for
FDataGrid whose domain dimension is 2.

Author: Amanda Hernando Bernabé
License: MIT

sphinx_gallery_thumbnail_number = 3

import numpy as np
import matplotlib.pyplot as plt
from skfda import FDataGrid
from skfda.exploratory.visualization.boxplot import SurfaceBoxplot, Boxplot
from skfda.datasets import make_sinusoidal_process, make_gaussian_process

In order to instan�ate a surface boxplot object , a func�onal data object with bidimensional
domain must be generated. In this example, a FDataGrid represen�ng a func�on

 is constructed to show also the support of a mul�variate dimensional image.
The first dimension of the image contains sinusoidal processes and the second dimension,
gaussian ones.

First, the values are generated for each dimension with a func�on implemented
in the make_sinusoidal_process method and in the make_gaussian_process method ,
respec�vely. Those func�ons return FDataGrid objects whose ‘data_matrix’ store the values
needed.

n_samples = 10
n_features = 10

fd1 = make_sinusoidal_process(n_samples = n_samples, n_features=n_features,
 random_state=5)
fd1.dataset_label = "Sinusoidal process"
fd2 = make_gaussian_process(n_samples = n_samples, n_features=n_features,
 random_state=1)
fd2.dataset_label = "Brownian process"

f : ⟼R
2

R
2

f : R⟼ R

A�er, those values generated for one dimension on the domain are propagated along another
dimension, obtaining a three-dimensional matrix or cube (two-dimensional domain and one-
dimensional image). This is done with both data matrices from the above FDataGrids.

cube1 = np.repeat(fd1.data_matrix, n_features).reshape(
 (n_samples, n_features, n_features))
cube2 = np.repeat(fd2.data_matrix, n_features).reshape(
 (n_samples, n_features, n_features))

Finally, both three-dimensional matrices are merged together and the FDataGrid desired is
obtained. The data is plo�ed.

cube_2 = np.empty((n_samples, n_features, n_features, 2))
cube_2[:, :, :, 0] = cube1
cube_2[:, :, :, 1] = cube2

fd_2 = FDataGrid(data_matrix=cube_2, sample_points=np.tile(fd1.sample_points, (2,1)),
 dataset_label = "Sinusoidal and Brownian processes")

plt.figure()
fd_2.plot()

Since matplotlib was ini�ally designed with only two-dimensional plo�ng in mind, the three-
dimensional plo�ng u�li�es were built on top of matplotlib’s two-dimensional display, and
the result is a convenient (if somewhat limited) set of tools for three-dimensional data
visualiza�on as we can observe.

For this reason, the profiles of the surfaces, which are contained in the first two generated
func�onal data objects, are plo�ed below, to help to visualize the data.

fig, ax = plt.subplots(1,2)
fd1.plot(ax=[ax[0]])
fd2.plot(ax=[ax[1]])

To terminate the example, the instan�a�on of the SurfaceBoxplot object is made, showing
the surface boxplot which corresponds to our FDataGrid represen�ng a func�on

 with a sinusoidal process in the first dimension of the image and a gaussian
one in the second one.

surfaceBoxplot = SurfaceBoxplot(fd_2)
plt.figure()
surfaceBoxplot.plot()

f : ⟼R
2

R
2

The default representa�on of the object its the graph.

surfaceBoxplot

The surface boxplot contains the median, the central envelope and the outlying envelope
plo�ed from darker to lighter colors, although they can be customized.

Analogous to the procedure followed before of plo�ng the three-dimensional data and their
correponding profiles, we can obtain also the func�onal boxplot for one-dimensional data
with the fdboxplot function passing as arguments the first two FdataGrid objects. The
profile of the surface boxplot is obtained.

fig, ax = plt.subplots(1,2)
boxplot1 = Boxplot(fd1)
boxplot1.plot(ax=[ax[0]])
boxplot2 = Boxplot(fd2)
boxplot2.plot(ax=[ax[1]])

Total running �me of the script: (0 minutes 4.461 seconds)

 Download Python source code: plot_surface_boxplot.py

 Download Jupyter notebook: plot_surface_boxplot.ipynb

Gallery generated by Sphinx-Gallery

Docs » Examples » Magnitude-Shape Plot

 Note

Click here to download the full example code

Magnitude-Shape Plot

Shows the use of the MS-Plot applied to the Canadian Weather dataset.

Author: Amanda Hernando Bernabé
License: MIT

sphinx_gallery_thumbnail_number = 2

from skfda import datasets
from skfda import FDataGrid
from skfda.exploratory.depth import fraiman_muniz_depth
from skfda.exploratory.visualization.magnitude_shape_plot import (
 MagnitudeShapePlot)
import matplotlib.pyplot as plt
import numpy as np

First, the Canadian Weather dataset is downloaded from the package ‘fda’ in CRAN. It
contains a FDataGrid with daily temperatures and precipita�ons, that is, it has a 2-
dimensional image. We are interested only in the daily average temperatures, so another
FDataGrid is constructed with the desired values.

dataset = datasets.fetch_weather()
fd = dataset["data"]
fd_temperatures = FDataGrid(data_matrix=fd.data_matrix[:, :, 0],
 sample_points=fd.sample_points,
 dataset_label=fd.dataset_label,
 axes_labels=fd.axes_labels[0:2])

The data is plo�ed to show the curves we are working with. They are divided according to
the target. In this case, it includes the different climates to which the weather sta�ons belong
to.

Each climate is assigned a color. Defaults to grey.
colormap = plt.cm.get_cmap('seismic')
label_names = dataset["target_names"]
nlabels = len(label_names)
label_colors = colormap(np.arange(nlabels) / (nlabels - 1))

plt.figure()
fd_temperatures.plot(sample_labels=dataset["target"], label_colors=label_colors,
 label_names=label_names)

The MS-Plot is generated. In order to show the results, the plot method is used. Note that
the colors have been specified before to dis�nguish between outliers or not. In par�cular the
tones of the default colormap, (which is ‘seismic’ and can be customized), are assigned.

msplot = MagnitudeShapePlot(fdatagrid=fd_temperatures)

color = 0.3
outliercol = 0.7

plt.figure()
msplot.color = color
msplot.outliercol = outliercol
msplot.plot()

To show the u�lity of the plot, the curves are plo�ed according to the dis�nc�on made by
the MS-Plot (outliers or not) with the same colors.

plt.figure()
fd_temperatures.plot(sample_labels=msplot.outliers,
 label_colors=msplot.colormap([color, outliercol]),
 label_names = ['nonoutliers', 'outliers'])

We can observe that most of the curves pointed as outliers belong either to the Pacific or
Arc�c climates which are not the common ones found in Canada. The Pacific temperatures
are much smoother and the Arc�c ones much lower, differing from the rest in shape and
magnitude respec�vely.

There are two curves from the Arc�c climate which are not pointed as outliers but in the MS-
Plot, they appear further le� from the central points. This behaviour can be modified
specifying the parameter alpha.

Now we use the Fraiman and Muniz depth measure in the MS-Plot.

msplot = MagnitudeShapePlot(fdatagrid=fd_temperatures,
 depth_method = fraiman_muniz_depth)

plt.figure()
msplot.color = color
msplot.outliercol = outliercol
msplot.plot()

We can observe that none of the samples are pointed as outliers. Nevertheless, if we group
them in three groups according to their posi�on in the MS-Plot, the result is the expected
one. Those samples at the le� (larger devia�on in the mean direc�onal outlyingness)
correspond to the Arc�c climate, which has lower temperatures, and those on top (larger
devia�on in the direc�onal outlyingness) to the Pacific one, which has smoother curves.

group1 = np.where(msplot.points[:, 0] < -0.6)
group2 = np.where(msplot.points[:, 1] > 0.12)

colors = np.copy(msplot.outliers).astype(float)
colors[:] = color
colors[group1] = outliercol
colors[group2] = 0.9

plt.figure()
plt.scatter(msplot.points[:, 0], msplot.points[:, 1], c=colormap(colors))
plt.title("MS-Plot")
plt.xlabel("magnitude outlyingness")
plt.ylabel("shape outlyingness")

labels = np.copy(msplot.outliers)
labels[group1] = 1
labels[group2] = 2

plt.figure()
fd_temperatures.plot(sample_labels=labels,
 label_colors=colormap([color, outliercol, 0.9]))

Total running �me of the script: (0 minutes 3.186 seconds)

 Download Python source code: plot_magnitude_shape.py

 Download Jupyter notebook: plot_magnitude_shape.ipynb

Gallery generated by Sphinx-Gallery

Docs » Examples » Clustering

 Note

Click here to download the full example code

Clustering

In this example, the use of the clustering plot methods is shown applied to the Canadian
Weather dataset. K-Means and Fuzzy K-Means algorithms are employed to calculate the
results plo�ed.

Author: Amanda Hernando Bernabé
License: MIT

sphinx_gallery_thumbnail_number = 6

from skfda import datasets
from skfda.representation.grid import FDataGrid
from skfda.ml.clustering.base_kmeans import KMeans
from skfda.exploratory.visualization.clustering_plots import *

First, the Canadian Weather dataset is downloaded from the package ‘fda’ in CRAN. It
contains a FDataGrid with daily temperatures and precipita�ons, that is, it has a 2-
dimensional image. We are interested only in the daily average temperatures, so another
FDataGrid is constructed with the desired values.

dataset = datasets.fetch_weather()
fd = dataset["data"]
fd_temperatures = FDataGrid(data_matrix=fd.data_matrix[:, :, 0],
 sample_points=fd.sample_points,
 dataset_label=fd.dataset_label,
 axes_labels=fd.axes_labels[0:2])

The desired FDataGrid only contains 10 random samples, so that the example provides
clearer plots.
indices_samples = np.array([1, 3, 5, 10, 14, 17, 21, 25, 27, 30])
fd = fd_temperatures[indices_samples]

The data is plo�ed to show the curves we are working with. They are divided according to
the target. In this case, it includes the different climates to which the weather sta�ons belong
to.

climate_by_sample = [dataset["target"][i] for i in indices_samples]
Note that the samples chosen belong to three of the four possible target groups. By
coincidence, these three groups correspond to indices 1, 2, 3, that is why the
indices
(´climate_by_sample´) are decremented in 1. In case of reproducing the example with
other
´indices_samples´ and the four groups are not present in the sample, changes should
be
made in order ´indexer´ contains numbers in the interval [0, n_target_groups) and at
least, an occurrence of each one.
indexer = np.asarray(climate_by_sample) - 1

indices_target_groups = np.unique(climate_by_sample)
climates = dataset["target_names"][indices_target_groups]

Assigning the color to each of the groups.
colormap = plt.cm.get_cmap('tab20b')
n_climates = len(climates)
climate_colors = colormap(np.arange(n_climates) / (n_climates - 1))

plt.figure()
fd.plot(sample_labels=indexer, label_colors=climate_colors, label_names=climates)

The number of clusters is set with the number of climates, in order to see the performance of
the clustering methods, and the seed is set to one in order to obatain always the same result
for the example.

n_clusters = n_climates
seed = 2

First, the class K-Means is instan�ated with the desired. parameters. Its fit method is called ,
resul�ng in the calcula�on of several a�ributes which include among others, the the number
of cluster each sample belongs to (labels), and the centroids of each cluster. The labels are
obtaiined calling the method predict

kmeans = KMeans(n_clusters=n_clusters, random_state=seed)
kmeans.fit(fd)
print(kmeans.predict(fd))

Out:

[0 1 0 0 0 2 2 1 0 2]

To see the informa�on in a graphic way, the method plot_clusters can be used found in the
visualiza�on directory.

Customization of cluster colors and labels in order to match the first image
of raw data.
cluster_colors = climate_colors[np.array([0, 2, 1])]
cluster_labels = climates[np.array([0, 2, 1])]

plot_clusters(kmeans, fd, cluster_colors=cluster_colors,
 cluster_labels=cluster_labels)

Other clustering algorithm implemented is the Fuzzy K-Means found in the class
FuzzyKMeans . Following the above procedure, an object of this type is instan�ated with the

desired. data and then, the fit method is called. Internally, the a�ribute labels_ is calculated,
which contains ´n_clusters´ elements for each sample and dimension, deno�ng the degree of
membership of each sample to each cluster. They are obtained calling the method predict .
Also, the centroids of each cluster are obtained.

fuzzy_kmeans = FuzzyKMeans(n_clusters=n_clusters, random_state=seed)
fuzzy_kmeans.fit(fd)
print(fuzzy_kmeans.predict(fd))

Out:

[[0.872 0.112 0.016]
 [0.462 0.513 0.026]
 [0.974 0.019 0.007]
 [0.912 0.054 0.034]
 [0.791 0.184 0.025]
 [0.179 0.059 0.763]
 [0.011 0.005 0.984]
 [0.032 0.964 0.005]
 [0.808 0.134 0.057]
 [0.038 0.019 0.943]]

To see the informa�on in a graphic way, the method plot_clusters can be used. It assigns
each sample to the cluster whose membership value is the greatest.

plot_clusters(fuzzy_kmeans, fd, cluster_colors=cluster_colors,
 cluster_labels=cluster_labels)

Another plot implemented to show the results in the class Fuzzy K-Means is the below one,
which is similar to parallel coordinates. It is recommended to assign colors to each of the
samples in order to iden�fy them. In this example, the colors are the ones of the first plot,
dividing the samples by climate.

colors_by_climate = colormap(indexer / (n_climates - 1))

plt.figure()
plot_cluster_lines(fuzzy_kmeans, fd, cluster_labels=cluster_labels,
 sample_colors=colors_by_climate)

Lastly, the func�on plot_cluster_bars found in the module clustering_plots , returns a
barplot. Each sample is designated with a bar which is filled propor�onally to the membership
values with the color of each cluster.

plt.figure()
plot_cluster_bars(fuzzy_kmeans, fd, cluster_colors=cluster_colors,
 cluster_labels=cluster_labels)

The possibility of sor�ng the bars according to a cluster is given specifying the number of
cluster, which belongs to the interval [0, n_clusters).

plt.figure()
plot_cluster_bars(fuzzy_kmeans, fd, sort=0, cluster_colors=cluster_colors,
 cluster_labels=cluster_labels)

plt.figure()
plot_cluster_bars(fuzzy_kmeans, fd, sort=1, cluster_colors=cluster_colors,
 cluster_labels=cluster_labels)

plt.figure()
plot_cluster_bars(fuzzy_kmeans, fd, sort=2, cluster_colors=cluster_colors,
 cluster_labels=cluster_labels)

Total running �me of the script: (0 minutes 4.532 seconds)

 Download Python source code: plot_clustering.py

 Download Jupyter notebook: plot_clustering.ipynb

Gallery generated by Sphinx-Gallery

Docs » API Reference » Exploratory analysis » Depth Measures

Depth Measures

Func�ons to order func�onal data.

Each sample of the dataset is assigned a number between 0 and 1. Larger values correspond
to more centered samples and smaller ones to those samples more outward.

The possibility of obtaining the ordering of each point of the sample (compared to the other
samples) is given if a parameter is specified in the func�ons.

All of them support mul�variate func�onal data, with more than one dimension on the image
and on the domain.

skfda.exploratory.depth.band_depth (fdatagrid) Implementa�on of Band Depth for func�onal d

skfda.exploratory.depth.modified_band_depth (…) Implementa�on of Modified Band Depth for fu

skfda.exploratory.depth.fraiman_muniz_depth (…) Implementa�on of Fraiman and Muniz (FM) De

Docs » API Reference » Exploratory analysis » Depth Measures »
skfda.exploratory.depth.band_depth

skfda.exploratory.depth.band_depth

Implementa�on of Band Depth for func�onal data.

The band depth of each sample is obtained by compu�ng the frac�on of the bands
determined by two sample curves containing the whole graph of the first one. In the case
the fdatagrid domain dimension is 2, instead of curves, surfaces determine the bands. In
larger dimensions, the hyperplanes determine the bands.

Parameters: fdatagrid (FDataGrid) – Object over whose samples the band depth is
going to be calculated.
pointwise (boolean, op�onal) – Indicates if the pointwise depth is also
returned. Defaults to False.

Returns: Array containing the band depth of the samples.

Return type: depth (numpy.darray)

Returns: Array containing the band depth of the samples at each point of
discre�sa�on. Only returned if pointwise equals to True.

Return type: depth_pointwise (numpy.darray, op�onal)

Examples

Univariate se�ng:

>>> data_matrix = [[1, 1, 2, 3, 2.5, 2], [0.5, 0.5, 1, 2, 1.5, 1],
... [-1, -1, -0.5, 1, 1, 0.5], [-0.5, -0.5, -0.5, -1, -1, -1]]
>>> sample_points = [0, 2, 4, 6, 8, 10]
>>> fd = FDataGrid(data_matrix, sample_points)
>>> band_depth(fd)
array([[0.5],
 [0.83333333],
 [0.5],
 [0.5]])

Mul�variate Se�ng:

skfda.exploratory.depth.band_depth(fdatagrid, pointwise=False) [source]

>>> data_matrix = [[[[1, 3], [2, 6]], [[23, 54], [43, 76]], [[2, 45], [12, 65]]],
... [[[21, 34], [8, 16]], [[67, 43], [32, 21]], [[10, 24], [3,
12]]],
... [[[4, 6], [4, 10]], [[45, 48], [38, 56]], [[8, 36], [10, 28]]]]
>>> sample_points = [[2, 4, 6], [3, 6]]
>>> fd = FDataGrid(data_matrix, sample_points)
>>> band_depth(fd)
array([[0.66666667, 0.66666667],
 [0.66666667, 0.66666667],
 [1. , 1.]])

Docs » API Reference » Exploratory analysis » Depth Measures »
skfda.exploratory.depth.modified_band_depth

skfda.exploratory.depth.modified_band_depth

Implementa�on of Modified Band Depth for func�onal data.

The band depth of each sample is obtained by compu�ng the frac�on of �me its graph is
contained in the bands determined by two sample curves. In the case the fdatagrid
domain dimension is 2, instead of curves, surfaces determine the bands. In larger
dimensions, the hyperplanes determine the bands.

Parameters: fdatagrid (FDataGrid) – Object over whose samples the modified band
depth is going to be calculated.
pointwise (boolean, op�onal) – Indicates if the pointwise depth is also
returned. Defaults to False.

Returns: Array containing the modified band depth of the samples.

Return type: depth (numpy.darray)

Returns: Array containing the modified band depth of the samples at each point of
discre�sa�on. Only returned if pointwise equals to True.

Return type: depth_pointwise (numpy.darray, op�onal)

Examples

Univariate se�ng specifying pointwise:

skfda.exploratory.depth.modified_band_depth(fdatagrid, pointwise=False) [source]

>>> data_matrix = [[1, 1, 2, 3, 2.5, 2], [0.5, 0.5, 1, 2, 1.5, 1],
... [-1, -1, -0.5, 1, 1, 0.5], [-0.5, -0.5, -0.5, -1, -1, -1]]
>>> sample_points = [0, 2, 4, 6, 8, 10]
>>> fd = FDataGrid(data_matrix, sample_points)
>>> modified_band_depth(fd, pointwise = True)
(array([[0.5],
 [0.83333333],
 [0.72222222],
 [0.66666667]]), array([[[0.5],
 [0.5],
 [0.5],
 [0.5],
 [0.5],
 [0.5]],
<BLANKLINE>
 [[0.83333333],
 [0.83333333],
 [0.83333333],
 [0.83333333],
 [0.83333333],
 [0.83333333]],
<BLANKLINE>
 [[0.5],
 [0.5],
 [0.83333333],
 [0.83333333],
 [0.83333333],
 [0.83333333]],
<BLANKLINE>
 [[0.83333333],
 [0.83333333],
 [0.83333333],
 [0.5],
 [0.5],
 [0.5]]]))

Mul�variate Se�ng without specifying pointwise:

>>> data_matrix = [[[[1, 3], [2, 6]], [[23, 54], [43, 76]], [[2, 45], [12, 65]]],
... [[[21, 34], [8, 16]], [[67, 43], [32, 21]], [[10, 24], [3,
12]]],
... [[[4, 6], [4, 10]], [[45, 48], [38, 56]], [[34, 78], [10, 28]]]]
>>> sample_points = [[2, 4, 6], [3, 6]]
>>> fd = FDataGrid(data_matrix, sample_points)
>>> modified_band_depth(fd)
array([[0.66666667, 0.72222222],
 [0.72222222, 0.66666667],
 [0.94444444, 0.94444444]])

Docs » API Reference » Exploratory analysis » Depth Measures »
skfda.exploratory.depth.fraiman_muniz_depth

skfda.exploratory.depth.fraiman_muniz_depth

Implementa�on of Fraiman and Muniz (FM) Depth for func�onal data.

Each column is considered as the samples of an aleatory variable. The univariate depth of
each of the samples of each column is calculated as follows:

Where stands for the marginal univariate distribu�on func�on of each column.

The depth of a sample is the result of adding the previously computed depth for each of
its points.

Parameters: fdatagrid (FDataGrid) – Object over whose samples the FM depth is going
to be calculated.
pointwise (boolean, op�onal) – Indicates if the pointwise depth is also
returned. Defaults to False.

Returns: Array containing the FM depth of the samples.

Return type: depth (numpy.darray)

Returns: Array containing the FM depth of the samples at each point of discre�sa�on.
Only returned if pointwise equals to True.

Return type: depth_pointwise (numpy.darray, op�onal)

Examples

Univariate se�ng specifying pointwise:

skfda.exploratory.depth.fraiman_muniz_depth(fdatagrid, pointwise=False) [source]

D(x) = 1 − − F(x)
∣
∣
∣
1

2

∣
∣
∣

F

>>> data_matrix = [[1, 1, 2, 3, 2.5, 2], [0.5, 0.5, 1, 2, 1.5, 1],
... [-1, -1, -0.5, 1, 1, 0.5], [-0.5, -0.5, -0.5, -1, -1, -1]]
>>> sample_points = [0, 2, 4, 6, 8, 10]
>>> fd = FDataGrid(data_matrix, sample_points)
>>> fraiman_muniz_depth(fd, pointwise = True)
(array([[0.5],
 [0.75],
 [0.91666667],
 [0.875]]), array([[[0.5],
 [0.5],
 [0.5],
 [0.5],
 [0.5],
 [0.5]],
<BLANKLINE>
 [[0.75],
 [0.75],
 [0.75],
 [0.75],
 [0.75],
 [0.75]],
<BLANKLINE>
 [[0.75],
 [0.75],
 [1.],
 [1.],
 [1.],
 [1.]],
<BLANKLINE>
 [[1.],
 [1.],
 [1.],
 [0.75],
 [0.75],
 [0.75]]]))

Mul�variate Se�ng without specifying pointwise:

>>> data_matrix = [[[[1, 3], [2, 6]], [[23, 54], [43, 76]], [[2, 45], [12, 65]]],
... [[[21, 34], [8, 16]], [[67, 43], [32, 21]], [[10, 24], [3,
12]]],
... [[[4, 6], [4, 10]], [[45, 48], [38, 56]], [[34, 78], [10, 28]]]]
>>> sample_points = [[2, 4, 6], [3, 6]]
>>> fd = FDataGrid(data_matrix, sample_points)
>>> fraiman_muniz_depth(fd)
array([[0.72222222, 0.66666667],
 [0.66666667, 0.72222222],
 [0.77777778, 0.77777778]])

Docs » API Reference » Exploratory analysis » Visualiza�on » Func�onal Data Boxplot

Functional Data Boxplot

Classes to construct the func�onal data boxplot. Only supported for func�onal data with
domain dimension 1 or 2 and as many dimensions on the image as required.

The base abstract class from which the others inherit is FDataBoxplot.

If the dimension of the domain is 1, the following class must be used. See Boxplot Example
for detailed explana�on.

If the dimension of the domain is 2, this one. See Surface Boxplot Example for detailed
explana�on.

skfda.exploratory.visualization.boxplot.FDataBoxplot ([…]) Abstract class inherited by the Boxp

skfda.exploratory.visualization.boxplot.Boxplot (…) Representa�on of the func�onal boxplot.

skfda.exploratory.visualization.boxplot.SurfaceBoxplot (…) Representa�on of the surface boxp

Docs » API Reference » Exploratory analysis » Visualiza�on » Func�onal Data Boxplot »
skfda.exploratory.visualiza�on.boxplot.Boxplot

skfda.exploratory.visualization.boxplot.Boxplot

Representa�on of the func�onal boxplot.

Class implemen�ng the func�onl boxplot which is an informa�ve exploratory tool for
visualizing func�onal data, as well as its generaliza�on, the enhanced func�onal boxplot.
Only supports 1 dimensional domain func�onal data.

Based on the center outward ordering induced by a depth measure for func�onal data,
the descrip�ve sta�s�cs of a func�onal boxplot are: the envelope of the 50% central
region, the median curve,and the maximum non-outlying envelope. In addi�on, outliers
can be detected in a func�onal boxplot by the 1.5 �mes the 50% central region empirical
rule, analogous to the rule for classical boxplots.

Object containing the data.

Type: FDataGrid

contains the median/s.

Type: array, (fdatagrid.ndim_image, nsample_points)

contains the central envelope/s.

Type: array, (fdatagrid.ndim_image, 2, nsample_points)

contains the outlying envelope/s.

Type: array, (fdatagrid.ndim_image, 2, nsample_points)

class skfda.exploratory.visualization.boxplot.Boxplot(fdatagrid, method=<func�on
modified_band_depth>, prob=[0.5], factor=1.5) [source]

fdatagrid

median

central_envelope

outlying_envelope

colormap

Colormap from which the colors to represent the central regions are selected.

Type: matplotlib.colors.LinearSegmentedColormap

nsample_points)): contains the central regions.

contains the outliers

Type: array, (fdatagrid.ndim_image, fdatagrid.nsamples)

Color of the envelopes and ver�cal lines.

Type: string

Color of the ouliers.

Type: string

Color of the median.

Type: string

If False (the default) then only the part outside the box is plo�ed. If True, complete
outling curves are plo�ed

Type: boolean

Example

Func�on .

central_regions (array, (fdatagrid.ndim_image * ncentral_regions, 2,

outliers

barcol

outliercol

mediancol

show_full_outliers

f : R⟼ R

>>> data_matrix = [[1, 1, 2, 3, 2.5, 2], [0.5, 0.5, 1, 2, 1.5, 1], [-1, -1, -0.5,
1, 1, 0.5],
... [-0.5, -0.5, -0.5, -1, -1, -1]]
>>> sample_points = [0, 2, 4, 6, 8, 10]
>>> fd = FDataGrid(data_matrix, sample_points, dataset_label="dataset",
axes_labels=["x_label", "y_label"])
>>> Boxplot(fd)
Boxplot(
 FDataGrid=FDataGrid(
 array([[[1.],
 [1.],
 [2.],
 [3.],
 [2.5],
 [2.]],
<BLANKLINE>
 [[0.5],
 [0.5],
 [1.],
 [2.],
 [1.5],
 [1.]],
<BLANKLINE>
 [[-1.],
 [-1.],
 [-0.5],
 [1.],
 [1.],
 [0.5]],
<BLANKLINE>
 [[-0.5],
 [-0.5],
 [-0.5],
 [-1.],
 [-1.],
 [-1.]]]),
 sample_points=[array([0, 2, 4, 6, 8, 10])],
 domain_range=array([[0, 10]]),
 dataset_label='dataset',
 axes_labels=['x_label', 'y_label'],
 extrapolation=None,
 interpolator=SplineInterpolator(interpolation_order=1,
smoothness_parameter=0.0, monotone=False),
 keepdims=False),
 median=array([[0.5, 0.5, 1. , 2. , 1.5, 1.]]),
 central envelope=array([[[0.5, 0.5, 1. , 2. , 1.5, 1.],
 [-1. , -1. , -0.5, 1. , 1. , 0.5]]]),
 outlying envelope=array([[[1. , 1. , 2. , 3. , 2.25, 1.75],
 [-1. , -1. , -0.5 , -0.5 , 0.25, -0.25]]]),
 central_regions=array([[[0.5, 0.5, 1. , 2. , 1.5, 1.],
 [-1. , -1. , -0.5, 1. , 1. , 0.5]]]),
 outliers=array([[1., 0., 0., 1.]]))

Ini�aliza�on of the Boxplot class.

__init__(fdatagrid, method=<func�on modified_band_depth>, prob=[0.5], factor=1.5) [source]

Parameters: fdatagrid (FDataGrid) – Object containing the data.
method (depth measure, op�onal) – Method used to order the data.
Defaults to modified band depth .

prob (list of float, op�onal) – List with float numbers (in the range from
1 to 0) that indicate which central regions to represent. Defaults to
[0.5] which represents the 50% central region.
factor (double) – Number used to calculate the outlying envelope.

Methods

A�ributes

central_envelope

central_regions

colormap

factor

fdatagrid

median

outliers

outlying_envelope

show_full_outliers

__init__ (fdatagrid[, method, prob, factor]) Ini�aliza�on of the Boxplot class.

plot ([fig, ax, nrows, ncols]) Visualiza�on of the func�onal boxplot of the fdat

Docs » API Reference » Exploratory analysis » Visualiza�on » Func�onal Data Boxplot »
skfda.exploratory.visualiza�on.boxplot.SurfaceBoxplot

skfda.exploratory.visualization.boxplot.SurfaceBoxplot

Representa�on of the surface boxplot.

Class implemen�ng the surface boxplot. Analogously to the func�onal boxplot, it is an
informa�ve exploratory tool for visualizing func�onal data with domain dimension 2.
Nevertheless, it does not implement the enhanced surface boxplot.

Based on the center outward ordering induced by a depth measure for func�onal data, it
represents the envelope of the 50% central region, the median curve, and the maximum non-
outlying envelope.

Object containing the data.

Type: FDataGrid

contains the median/s.

Type: array, (fdatagrid.ndim_image, lx, ly)

contains the central envelope/s.

Type: array, (fdatagrid.ndim_image, 2, lx, ly)

contains the outlying envelope/s.

Type: array,(fdatagrid.ndim_image, 2, lx, ly)

Colormap from which the colors to represent the central regions are selected.

class skfda.exploratory.visualization.boxplot.SurfaceBoxplot(fdatagrid, method=
<func�on modified_band_depth>, factor=1.5) [source]

fdatagrid

median

central_envelope

outlying_envelope

colormap

Type: matplotlib.colors.LinearSegmentedColormap

Color of the box, which includes median and central envelope.

Type: string

Color of the outlying envelope.

Type: string

Example

Func�on .

boxcol

outcol

f : ⟼R
2

R
2

>>> data_matrix = [[[[1, 4], [0.3, 1.5], [1, 3]], [[2, 8], [0.4, 2], [2, 9]]],
... [[[2, 10], [0.5, 3], [2, 10]], [[3, 12], [0.6, 3], [3, 15]]]]
>>> sample_points = [[2, 4], [3, 6, 8]]
>>> fd = FDataGrid(data_matrix, sample_points, dataset_label= "dataset",
... axes_labels=["x1_label", "x2_label", "y1_label", "y2_label"])
>>> SurfaceBoxplot(fd)
SurfaceBoxplot(
 FDataGrid=FDataGrid(
 array([[[[1. , 4.],
 [0.3, 1.5],
 [1. , 3.]],
<BLANKLINE>
 [[2. , 8.],
 [0.4, 2.],
 [2. , 9.]]],
<BLANKLINE>
<BLANKLINE>
 [[[2. , 10.],
 [0.5, 3.],
 [2. , 10.]],
<BLANKLINE>
 [[3. , 12.],
 [0.6, 3.],
 [3. , 15.]]]]),
 sample_points=[array([2, 4]), array([3, 6, 8])],
 domain_range=array([[2, 4],
 [3, 8]]),
 dataset_label='dataset',
 axes_labels=['x1_label', 'x2_label', 'y1_label', 'y2_label'],
 extrapolation=None,
 interpolator=SplineInterpolator(interpolation_order=1,
smoothness_parameter=0.0, monotone=False),
 keepdims=False),
 median=array([[[1. , 0.3, 1.],
 [2. , 0.4, 2.]],
<BLANKLINE>
 [[4. , 1.5, 3.],
 [8. , 2. , 9.]]]),
 central envelope=array([[[[1. , 0.3, 1.],
 [2. , 0.4, 2.]],
<BLANKLINE>
 [[1. , 0.3, 1.],
 [2. , 0.4, 2.]]],
<BLANKLINE>
<BLANKLINE>
 [[[4. , 1.5, 3.],
 [8. , 2. , 9.]],
<BLANKLINE>
 [[4. , 1.5, 3.],
 [8. , 2. , 9.]]]]),
 outlying envelope=array([[[[1. , 0.3, 1.],
 [2. , 0.4, 2.]],
<BLANKLINE>
 [[1. , 0.3, 1.],
 [2. , 0.4, 2.]]],
<BLANKLINE>
<BLANKLINE>
 [[[4. , 1.5, 3.],
 [8. , 2. , 9.]],
<BLANKLINE>
 [[4. , 1.5, 3.],
 [8. , 2. , 9.]]]]))

__init__(fdatagrid, method=<func�on modified_band_depth>, factor=1.5) [source]

Ini�aliza�on of the func�onal boxplot.

Parameters: fdatagrid (FDataGrid) – Object containing the data.
method (depth measure, op�onal) – Method used to order the data.
Defaults to modified band depth .

prob (list of float, op�onal) – List with float numbers (in the range from 1 to
0) that indicate which central regions to represent. Defaults to [0.5] which
represents the 50% central region.
factor (double) – Number used to calculate the outlying envelope.

Methods

A�ributes

boxcol

central_envelope

colormap

factor

fdatagrid

median

outcol

outlying_envelope

__init__ (fdatagrid[, method, factor]) Ini�aliza�on of the func�onal boxplot.

plot ([fig, ax, nrows, ncols]) Visualiza�on of the surface boxplot of the fdatagrid (ndim_

Docs » API Reference » Exploratory analysis » Visualiza�on » Magnitude-Shape Plot

Magnitude-Shape Plot

The Magnitude-Shape Plot is implemented in the MagnitudeShapePlot class.

The MagnitudeShapePlot needs both the mean and the varia�on of the direc�onal
outlyingness of the samples, which is calculated in the below func�on.

Once the points assigned to each of the samples are obtained from the above func�on, an
outlier detec�on method is implemented. The results can be shown calling the plot method

of the class.

skfda.exploratory.visualization.magnitude_shape_plot.directional_outlyingness (…) Computes t

skfda.exploratory.visualization.magnitude_shape_plot.MagnitudeShapePlot (…) Implementa�on of

Docs » API Reference » Exploratory analysis » Visualiza�on » Magnitude-Shape Plot »
skfda.exploratory.visualiza�on.magnitude_shape_plot.direc�onal_outlyingness

skfda.exploratory.visualization.magnitude_shape_plot.directional_ou

Computes the direc�onal outlyingness of the func�onal data.

Furthermore, it calculates both the mean and the varia�on of the direc�onal outlyingness of the
samples in the data set, which are also returned.

The first one, the mean direc�onal outlyingness, describes the rela�ve posi�on (including both
distance and direc�on) of the samples on average to the center curve; its norm can be regarded
as the magnitude outlyingness.

The second one, the varia�on of the direc�onal outlyingness, measures the change of the
direc�onal outlyingness in terms of both norm and direc�on across the whole design interval
and can be regarded as the shape outlyingness.

Firstly, the direc�onal outlyingness is calculated as follows:

where is a stochas�c process with probability distribu�on , a depth func�on and
 is the spa�al sign of , denotes

the median and ∥ · ∥ denotes the norm.

From the above formula, we define the mean direc�onal outlyingness as:

and the varia�on of the direc�onal outlyingness as:

where a weight func�on defined on the domain of , .

Then, the total func�onal outlyingness can be computed using these values:

Parameters: fdatagrid (FDataGrid) – Object containing the samples to be ordered according to
the direc�onal outlyingness.
depth_method (depth measure, op�onal) – Method used to order the data.
Defaults to modified band depth .

dim_weights (array_like, op�onal) – an array containing the weights of each of the
dimensions of the image. Defaults to the same weight for each of the
dimensions: 1/ndim_image.
pointwise_weights (array_like, op�onal) – an array containing the weights of each
point of discre�sa�on where values have been recorded. Defaults to the same
weight for each of the points: 1/len(interval).

Returns:
tuple containing:

dir_outlyingness (numpy.array((fdatagrid.shape))): List containing the values of
the direc�onal outlyingness of the FDataGrid object.

mean_dir_outl (numpy.array((fdatagrid.nsamples, 2))): List containing the values
of the magnitude outlyingness for each of the samples.

varia�on_dir_outl (numpy.array((fdatagrid.nsamples,))): List containing the values
of the shape outlyingness for each of the samples.

skfda.exploratory.visualization.magnitude_shape_plot.directional_outlyingness(fdatagrid,
depth_method=<func�on modified_band_depth>, dim_weights=None, pointwise_weights=None) [source]

O (X(t),) = { − 1} ⋅ v(t)FX(t)
1

d (X(t),)FX(t)

X F d

v(t) = {X(t) − Z(t)} /∥X(t) − Z(t)∥ {X(t) − Z(t)} Z(t)
L2

MO (X,) = O (X(t),) ⋅ w(t)dt;FX ∫
I

FX(t)

VO (X,) = ∥O (X(t),) − MO (X,) ⋅ w(t)dtFX ∫
I

FX(t) FX ∥2

w(t) X I

FO (X,) = ∥MO (X,) + VO (X,) .FX FX ∥2
FX

Return type: (tuple)

Example

>>> data_matrix = [[1, 1, 2, 3, 2.5, 2], [0.5, 0.5, 1, 2, 1.5, 1],
... [-1, -1, -0.5, 1, 1, 0.5], [-0.5, -0.5, -0.5, -1, -1, -1]]
>>> sample_points = [0, 2, 4, 6, 8, 10]
>>> fd = FDataGrid(data_matrix, sample_points)
>>> directional_outlyingness(fd)
(array([[[1.],
 [1.],
 [1.],
 [1.],
 [1.],
 [1.]],
<BLANKLINE>
 [[0.],
 [0.],
 [0.],
 [0.],
 [0.],
 [0.]],
<BLANKLINE>
 [[-1.],
 [-1.],
 [-0.2],
 [-0.2],
 [-0.2],
 [-0.2]],
<BLANKLINE>
 [[-0.2],
 [-0.2],
 [-0.2],
 [-1.],
 [-1.],
 [-1.]]]), array([[1.66666667],
 [0.],
 [-0.73333333],
 [-1.]]), array([0.74074074, 0. , 0.36740741, 0.53333333]))

Docs » API Reference » Exploratory analysis » Visualiza�on » Magnitude-Shape Plot »
skfda.exploratory.visualiza�on.magnitude_shape_plot.MagnitudeShapePlot

skfda.exploratory.visualization.magnitude_shape_plot.MagnitudeS

Implementa�on of the magnitude-shape plot

This plot, which is based on the calcula�on of the directional outlyingness of each of the
samples, serves as a visualiza�on tool for the centrality of curves. Furthermore, an outlier
detec�on procedure is included.

The norm of the mean of the direc�onal outlyingness () is plo�ed in the x-axis, and the
varia�on of the direc�onal outlyingness () in the y-axis.

Considering , the outlier detec�on method is implemented as described
below.

First, the square robust Mahalanobis distance is calculated based on a sample of size
:

where denotes the group of samples that minimizes the determinant of the corresponding

covariance matrix, and .

The sub-sample of size h controls the robustness of the method.

Then, the tail of this distance distribu�on is approximated as follows:

where is the dmension of the image, and and are parameters determining the degrees of
freedom of the -distribu�on and the scaling factor.

where are the diagonal elements of MCD and

where is the es�mated coefficient of varia�on of the diagonal elements of the MCD shape
es�mator.

Finally, we choose a cutoff value to determine the outliers, C , as the α quan�le of .
We set , which is used in the classical boxplot for detec�ng outliers under a normal
distribu�on.

Object to be visualized.

Type: FDataGrid

Method used to order the data. Defaults to modified band depth .

Type: depth measure, op�onal

class
skfda.exploratory.visualization.magnitude_shape_plot.MagnitudeShapePlot(fdatagrid,
depth_method=<func�on modified_band_depth>, dim_weights=None, pointwise_weights=None, alpha=0.993,
assume_centered=False, support_frac�on=None, random_state=0) [source]

∥MO∥
VO

Y = (,VO)MO
T T

h ≤ fdatagrid.nsamples

(Y,) = (Y −)RMD2
Y
~ ∗

J (Y −)Y
~ ∗

J

T

S
∗
J

−1
Y
~ ∗

J

J h

=Y
~ ∗

J h−1 ∑i∈J Yi = (−)S
∗
J h−1 ∑i∈J Yi Y

~ ∗

J (−)Yi Y
~ ∗

J

T

RM (Y,) ∼
c (m − p)

m (p + 1)
D2

Y
~ ∗

J Fp+1,m−p

p c m

F

c = E []s∗
jj

s∗
jj

m =
2

CV 2

CV

Fp+1,m−p

α = 0.993

fdatagrid

depth_method

an array containing the weights of each of the dimensions of the image.

Type: array_like, op�onal

an array containing the weights of each points of discre�sa�on where values have been
recorded.

Type: array_like, op�onal

Denotes the quan�le to choose the cutoff value for detec�ng outliers Defaults to 0.993,
which is used in the classical boxplot.

Type: float, op�onal

2-dimensional matrix where each row contains the points plo�ed in the graph.

Type: numpy.ndarray

Contains 1 or 0 to denote if a sample is an outlier or not, respecively.

Type: 1-D array, (fdatagrid.nsamples,)

Colormap from which the colors of the plot are extracted. Defaults to ‘seismic’.

Type: matplotlib.pyplot.LinearSegmentedColormap, op�onal

Tone of the colormap in which the nonoutlier points are plo�ed. Defaults to 0.2.

Type: float, op�onal

Tone of the colormap in which the outliers are plo�ed. Defaults to 0.8.

Type: float, op�onal

Label of the x-axis. Defaults to ‘MO’, mean of the direc�onal outlyingness.

Type: string, op�onal

Label of the y-axis. Defaults to ‘VO’, varia�on of the direc�onal outlyingness.

Type: string, op�onal

Title of the plot. defaults to ‘MS-Plot’.

Type: string, op�onal

dim_weights

pointwise_weights

alpha

points

outliers

colormap

color

outliercol

xlabel

ylabel

title

Example

>>> data_matrix = [[1, 1, 2, 3, 2.5, 2], [0.5, 0.5, 1, 2, 1.5, 1],
... [-1, -1, -0.5, 1, 1, 0.5], [-0.5, -0.5, -0.5, -1, -1, -1]]
>>> sample_points = [0, 2, 4, 6, 8, 10]
>>> fd = FDataGrid(data_matrix, sample_points)
>>> MagnitudeShapePlot(fd)
MagnitudeShapePlot(
 FDataGrid=FDataGrid(
 array([[[1.],
 [1.],
 [2.],
 [3.],
 [2.5],
 [2.]],
<BLANKLINE>
 [[0.5],
 [0.5],
 [1.],
 [2.],
 [1.5],
 [1.]],
<BLANKLINE>
 [[-1.],
 [-1.],
 [-0.5],
 [1.],
 [1.],
 [0.5]],
<BLANKLINE>
 [[-0.5],
 [-0.5],
 [-0.5],
 [-1.],
 [-1.],
 [-1.]]]),
 sample_points=[array([0, 2, 4, 6, 8, 10])],
 domain_range=array([[0, 10]]),
 dataset_label=None,
 axes_labels=None,
 extrapolation=None,
 interpolator=SplineInterpolator(interpolation_order=1, smoothness_parameter=0.0,
monotone=False),
 keepdims=False),
 depth_method=modified_band_depth,
 dim_weights=None,
 pointwise_weights=None,
 alpha=0.993,
 points=array([[1.66666667, 0.74074074],
 [0. , 0.],
 [-0.73333333, 0.36740741],
 [-1. , 0.53333333]]),
 outliers=array([0, 0, 0, 0]),
 colormap=seismic,
 color=0.2,
 outliercol=(0.8,),
 xlabel='MO',
 ylabel='VO',
 title='MS-Plot')

Ini�aliza�on of the MagnitudeShapePlot class.

__init__(fdatagrid, depth_method=<func�on modified_band_depth>, dim_weights=None,
pointwise_weights=None, alpha=0.993, assume_centered=False, support_frac�on=None, random_state=0)

[source]

Parameters: fdatagrid (FDataGrid) – Object containing the data.
depth_method (depth measure, op�onal) – Method used to order the data.
Defaults to modified band depth .

dim_weights (array_like, op�onal) – an array containing the weights of each of
the dimensions of the image.
pointwise_weights (array_like, op�onal) – an array containing the weights of
each points of discre�sa� on where values have been recorded.
alpha (float, op�onal) – Denotes the quan�le to choose the cutoff value for
detec�ng outliers Defaults to 0.993, which is used in the classical boxplot.
assume_centered (boolean, op�onal) – If True, the support of the robust
loca�on and the covariance es�mates is computed, and a covariance es�mate
is recomputed from it, without centering the data. Useful to work with data
whose mean is significantly equal to zero but is not exactly zero. If False,
default value, the robust loca�on and covariance are directly computed with
the FastMCD algorithm without addi�onal treatment.
support_frac�on (float, 0 < support_frac�on < 1, op�onal) – The propor�on of
points to be included in the support of the raw MCD es�mate. Default is
None, which implies that the minimum value of support_frac�on will be used
within the algorithm: [n_sample + n_features + 1] / 2
random_state (int, RandomState instance or None, op�onal) – If int,
random_state is the seed used by the random number generator; If
RandomState instance, random_state is the random number generator; If
None, the random number generator is the RandomState instance used by
np.random. By default, it is 0.

Methods

A�ributes

alpha

color

colormap

depth_method

dim_weights

fdatagrid

outliercol

outliers

points

pointwise_weights

__init__ (fdatagrid[, depth_method, …]) Ini�aliza�on of the MagnitudeShapePlot class.

plot ([ax]) Visualiza�on of the magnitude shape plot of the fdatagrid.

Docs » API Reference » Machine Learning » Clustering

Clustering

Func�ons to cluster func�onal data in a FDataGrid object.

This module contains func�ons to group observa�ons in such a way that those in the same
group (called a cluster) are more similar (in some sense) to each other than to those in other
groups (clusters).

Modules:

KMeans algorithms
skfda.ml.clustering.base_kmeans.KMeans
skfda.ml.clustering.base_kmeans.FuzzyKMeans

Docs » API Reference » Machine Learning » Clustering » KMeans algorithms

KMeans algorithms

The following classes implement both, the K-Means and the Fuzzy K-Means algorithms
respec�vely. They both inherit from the BaseKMeans class .

skfda.ml.clustering.base_kmeans.KMeans ([…])

skfda.ml.clustering.base_kmeans.FuzzyKMeans ([…])

In order to show the results in a visual way, the module clustering_plots can be used.

See Clustering Example for detailed explana�on.

Docs » API Reference » Machine Learning » Clustering » KMeans algorithms »
skfda.ml.clustering.base_kmeans.KMeans

skfda.ml.clustering.base_kmeans.KMeans

Ini�aliza�on of the KMeans class.

Parameters: n_clusters (int, op�onal) – Number of groups into which the samples
are classified. Defaults to 2.
init (FDataGrid, op�onal) – Contains the ini�al centers of the different
clusters the algorithm starts with. Its data_marix must be of the shape
(n_clusters, fdatagrid.ncol, fdatagrid.ndim_image). Defaults to None,
and the centers are ini�alized randomly.
metric (op�onal) – metric that acceps two FDataGrid objects and
returns a matrix with shape (fdatagrid1.nsamples,
fdatagrid2.nsamples). Defaults to pairwise_distance(lp_distance).
n_init (int, op�onal) – Number of �me the k-means algorithm will be
run with different centroid seeds. The final results will be the best
output of n_init consecu�ve runs in terms of iner�a.
max_iter (int, op�onal) – Maximum number of itera�ons of the
clustering algorithm for a single run. Defaults to 100.
tol (float, op�onal) – tolerance used to compare the centroids
calculated with the previous ones in every single run of the algorithm.
random_state (int, RandomState instance or None, op�onal) –
Determines random number genera�on for centroid ini�aliza�on. Use
an int to make the randomness determinis�c. Defaults to 0.

Methods

__init__ ([n_clusters, init, metric, n_init, …]) Ini�aliza�on of the KMeans class.

fit (X[, y, sample_weight]) Computes K-Means clustering calcula�ng the a�

fit_predict (X[, y, sample_weight]) Compute cluster centers and predict cluster inde

fit_transform (X[, y, sample_weight]) Compute clustering and transform X to cluster-d

class skfda.ml.clustering.base_kmeans.KMeans(n_clusters=2, init=None, metric=<func�on
pairwise_distance.<locals>.pairwise>, n_init=1, max_iter=100, tol=0.0001, random_state=0) [source]

__init__(n_clusters=2, init=None, metric=<func�on pairwise_distance.<locals>.pairwise>,
n_init=1, max_iter=100, tol=0.0001, random_state=0) [source]

get_params ([deep]) Get parameters for this es�mator.

predict (X[, sample_weight]) Predict the closest cluster each sample in X belo

score (X[, y, sample_weight]) Opposite of the value of X on the K-means objec

set_params (**params) Set the parameters of this es�mator.

transform (X) Transform X to a cluster-distance space.

Docs » API Reference » Machine Learning » Clustering » KMeans algorithms »
skfda.ml.clustering.base_kmeans.FuzzyKMeans

skfda.ml.clustering.base_kmeans.FuzzyKMeans

Ini�aliza�on of the FuzzyKMeans class.

Parameters: n_clusters (int, op�onal) – Number of groups into which the samples
are classified. Defaults to 2.
init (FDataGrid, op�onal) – Contains the ini�al centers of the different
clusters the algorithm starts with. Its data_marix must be of the shape
(n_clusters, fdatagrid.ncol, fdatagrid.ndim_image). Defaults to None,
and the centers are ini�alized randomly.
metric (op�onal) – metric that acceps two FDataGrid objects and
returns a matrix with shape (fdatagrid1.nsamples,
fdatagrid2.nsamples). Defaults to pairwise_distance(lp_distance).
n_init (int, op�onal) – Number of �me the k-means algorithm will be
run with different centroid seeds. The final results will be the best
output of n_init consecu�ve runs in terms of iner�a.
max_iter (int, op�onal) – Maximum number of itera�ons of the
clustering algorithm for a single run. Defaults to 100.
tol (float, op�onal) – tolerance used to compare the centroids
calculated with the previous ones in every single run of the algorithm.
random_state (int, RandomState instance or None, op�onal) –
Determines random number genera�on for centroid ini�aliza�on. Use
an int to make the randomness determinis�c. Defaults to 0.
fuzzifier (int, op�onal) – Scalar parameter used to specify the degree of
fuzziness in the fuzzy algorithm. Defaults to 2.
n_dec (int, op�onal) – designates the number of decimals of the labels
returned in the fuzzy algorithm. Defaults to 3.

Methods

__init__ ([n_clusters, init, metric, n_init, …]) Ini�aliza�on of the FuzzyKMeans class.

class skfda.ml.clustering.base_kmeans.FuzzyKMeans(n_clusters=2, init=None, metric=
<func�on pairwise_distance.<locals>.pairwise>, n_init=1, max_iter=100, tol=0.0001, random_state=0,
fuzzifier=2, n_dec=3) [source]

__init__(n_clusters=2, init=None, metric=<func�on pairwise_distance.<locals>.pairwise>,
n_init=1, max_iter=100, tol=0.0001, random_state=0, fuzzifier=2, n_dec=3) [source]

fit (X[, y, sample_weight]) Computes Fuzzy K-Means clustering calcula�ng

fit_predict (X[, y, sample_weight]) Compute cluster centers and predict cluster inde

fit_transform (X[, y, sample_weight]) Compute clustering and transform X to cluster-d

get_params ([deep]) Get parameters for this es�mator.

predict (X[, sample_weight]) Predict the closest cluster each sample in X belo

score (X[, y, sample_weight]) Opposite of the value of X on the K-means objec

set_params (**params) Set the parameters of this es�mator.

transform (X) Transform X to a cluster-distance space.

Docs » API Reference » Exploratory analysis » Visualiza�on » Clustering Plots

Clustering Plots

In order to show the results of the cluster algorithms in a visual way, this module is
implemented. It contains the following methods:

In the first one, the samples of the FDataGrid are divided by clusters which are assigned
different colors. The following func�ons, are only valid for the class FuzzyKMeans to see the
results graphically in the form of a parallel coordinates plot or a barplot respec�vely.

See Clustering Example for detailed explana�on.

skfda.exploratory.visualization.clustering_plots.plot_clusters (…) Plot of the FDataGrid

skfda.exploratory.visualization.clustering_plots.plot_cluster_lines (…) Implementa�on of the

skfda.exploratory.visualization.clustering_plots.plot_cluster_bars (…) Implementa�on of the

Docs » API Reference » Exploratory analysis » Visualiza�on » Clustering Plots »
skfda.exploratory.visualiza�on.clustering_plots.plot_clusters

skfda.exploratory.visualization.clustering_plots.plot_cluste

Plot of the FDataGrid samples by clusters.

The clusters are calculated with the es�mator passed as a parameter. If the es�mator is not
fi�ed, the fit method is called. Once each sample is assigned a label the plo�ng can be done.
Each group is assigned a color described in a leglend.

Parameters: es�mator (BaseEs�mator object) – es�mator used to calculate the clusters.
X (FDataGrd object) – contains the samples which are grouped into different
clusters.
fig (figure object) – figure over which the graphs are plo�ed in case ax is not
specified. If None and ax is also None, the figure is ini�alized.
ax (list of axis objects) – axis over where the graphs are plo�ed. If None, see
param fig.
nrows (int) – designates the number of rows of the figure to plot the different
dimensions of the image. Only specified if fig and ax are None.
ncols (int) – designates the number of columns of the figure to plot the different
dimensions of the image. Only specified if fig and ax are None.
sample_labels (list of str) – contains in order the labels of each sample of the
fdatagrid.
cluster_colors (list of colors) – contains in order the colors of each cluster the
samples of the fdatagrid are classified into.
cluster_labels (list of str) – contains in order the names of each cluster the
samples of the fdatagrid are classified into.
center_colors (list of colors) – contains in order the colors of each centroid of the
clusters the samples of the fdatagrid are classified into.
center_labels (list of colors) – contains in order the labels of each centroid of the
clusters the samples of the fdatagrid are classified into.
center_width (int) – width of the centroid curves.
colormap (colormap) – colormap from which the colors of the plot are taken.
Defaults to rainbow.

Returns:
tuple containing:

fig (figure object): figure object in which the graphs are plo�ed in case ax is
None.

ax (axes object): axes in which the graphs are plo�ed.

skfda.exploratory.visualization.clustering_plots.plot_clusters(es�mator, X, fig=None,
ax=None, nrows=None, ncols=None, sample_labels=None, cluster_colors=None, cluster_labels=None,
center_colors=None, center_labels=None, center_width=3, colormap=
<matplotlib.colors.LinearSegmentedColormap object>) [source]

Return type: (tuple)

Docs » API Reference » Exploratory analysis » Visualiza�on » Clustering Plots »
skfda.exploratory.visualiza�on.clustering_plots.plot_cluster_lines

skfda.exploratory.visualization.clustering_plots.plot_cluster_

Implementa�on of the plo�ng of the results of the Fuzzy K-Means method.

A kind of Parallel Coordinates plot is generated in this func�on with the membership values
obtained from the algorithm. A line is plo�ed for each sample with the values for each cluster.
See Clustering Example.

Parameters: es�mator (BaseEs�mator object) – es�mator used to calculate the clusters.
X (FDataGrd object) – contains the samples which are grouped into different
clusters.
fig (figure object, op�onal) – figure over which the graph is plo�ed in case ax is
not specified. If None and ax is also None, the figure is ini�alized.
ax (axis object, op�onal) – axis over where the graph is plo�ed. If None, see
param fig.
sample_colors (list of colors, op�onal) – contains in order the colors of each
sample of the fdatagrid.
sample_labels (list of str, op�onal) – contains in order the labels of each sample of
the fdatagrid.
cluster_labels (list of str, op�onal) – contains in order the names of each cluster
the samples of the fdatagrid are classified into.
colormap (colormap, op�onal) – colormap from which the colors of the plot are
taken.
xlabel (str) – Label for the x-axis. Defaults to “Sample”.
ylabel (str) – Label for the y-axis. Defaults to “Degree of membership”.
�tle (str, op�onal) – Title for the figure where the clustering results are ploted.
Defaults to “Degrees of membership of the samples to each cluster”.

Returns:
tuple containing:

fig (figure object): figure object in which the graphs are plo�ed in case ax is
None.

ax (axes object): axes in which the graphs are plo�ed.

Return type: (tuple)

skfda.exploratory.visualization.clustering_plots.plot_cluster_lines(es�mator, X,
fig=None, ax=None, sample_colors=None, sample_labels=None, cluster_labels=None, colormap=
<matplotlib.colors.LinearSegmentedColormap object>, xlabel=None, ylabel=None, �tle=None) [source]

Docs » API Reference » Exploratory analysis » Visualiza�on » Clustering Plots »
skfda.exploratory.visualiza�on.clustering_plots.plot_cluster_bars

skfda.exploratory.visualization.clustering_plots.plot_cluster_

Implementa�on of the plo�ng of the results of the Fuzzy K-Means method.

A kind of barplot is generated in this func�on with the membership values obtained from the
algorithm. There is a bar for each sample whose height is 1 (the sum of the membership values
of a sample add to 1), and the part propor�onal to each cluster is coloured with the
corresponding color. See Clustering Example.

Parameters: es�mator (BaseEs�mator object) – es�mator used to calculate the clusters.
X (FDataGrd object) – contains the samples which are grouped into different
clusters.
fig (figure object, op�onal) – figure over which the graph is plo�ed in case ax is
not specified. If None and ax is also None, the figure is ini�alized.
ax (axis object, op�onal) – axis over where the graph is plo�ed. If None, see
param fig.
sort (int, op�onal) – Number in the range [-1, n_clusters) designa�ng the cluster
whose labels are sorted in a decremen�ng order. Defaults to -1, in this case, no
sor�ng is done.
sample_labels (list of str, op�onal) – contains in order the labels of each sample of
the fdatagrid.
cluster_labels (list of str, op�onal) – contains in order the names of each cluster
the samples of the fdatagrid are classified into.
cluster_colors (list of colors) – contains in order the colors of each cluster the
samples of the fdatagrid are classified into.
colormap (colormap, op�onal) – colormap from which the colors of the plot are
taken.
xlabel (str) – Label for the x-axis. Defaults to “Sample”.
ylabel (str) – Label for the y-axis. Defaults to “Degree of membership”.
�tle (str) – Title for the figure where the clustering results are plo�ed. Defaults
to “Degrees of membership of the samples to each cluster”.

Returns:
tuple containing:

fig (figure object): figure object in which the graph is plo�ed in case ax is None.

ax (axis object): axis in which the graph is plo�ed.

Return type: (tuple)

skfda.exploratory.visualization.clustering_plots.plot_cluster_bars(es�mator, X,
fig=None, ax=None, sort=-1, sample_labels=None, cluster_colors=None, cluster_labels=None, colormap=
<matplotlib.colors.LinearSegmentedColormap object>, xlabel=None, ylabel=None, �tle=None) [source]

	Introduction
	Goals and Scope
	Document Structure

	State of the Art - FDA: Depth Measures, Applications and Clustering
	Functional Depth
	Fraiman and Muniz Depth
	Band Depth and Modified Band Depth

	Functional Boxplot
	Magnitude-Shape Plot
	Clustering Algorithms
	K-means
	Fuzzy K-means

	Software Development Process
	Analysis
	Design
	Coding, Documentation and Testing
	Version Control and Continuous Integration

	Results
	Future Work and Conclusions
	Bibliography
	Appendices
	Documentation

