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Abstract General noise cost functions have been recently

proposed for support vector regression (SVR). When

applied to tasks whose underlying noise distribution is

similar to the one assumed for the cost function, these

models should perform better than classical �-SVR. On the

other hand, uncertainty estimates for SVR have received a

somewhat limited attention in the literature until now and

still have unaddressed problems. Keeping this in mind,

three main goals are addressed here. First, we propose a

framework that uses a combination of general noise SVR

models with naive online R minimization algorithm

(NORMA) as optimization method, and then gives non-

constant error intervals dependent upon input data aided by

the use of clustering techniques. We give theoretical details

required to implement this framework for Laplace, Gaus-

sian, Beta, Weibull and Marshall–Olkin generalized

exponential distributions. Second, we test the proposed

framework in two real-world regression problems using

data of two public competitions about solar energy. Results

show the validity of our models and an improvement over

classical �-SVR. Finally, in accordance with the principle

of reproducible research, we make sure that data and model

implementations used for the experiments are easily and

publicly accessible.

Keywords Support vector regression, General noise

model, Naive online R minimization algorithm (NORMA),

Uncertainty intervals, Clustering, Solar energy,
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1 Introduction

Support vector machines (SVMs) and their regression

counterpart, support vector regression (SVR) models have

proved to perform well in many real-world situations, such

as solar radiation [1], time series [2] or healthcare [3].

The classical version of this branch of regression models

is called �-SVR. This name comes from the cost function

used in their optimization problem, the �-insensitive loss

function (ILF). The ILF ignores the errors within a certain

distance � to the target value, giving these points a value of

zero cost and linear cost to errors outside the interval

ð��; �Þ. According to [4], use of the ILF is justified under

the assumption that noise in the data is additive and

Gaussian, with its variance and mean being random vari-

ables. However, it has been proved that in several real-

world problems noise distribution does not belong to the

Gaussian family, with noise following instead significantly

different distributions. This is the case, for example, for

wind data [5]. For this reason, this paper presents a

framework to build general noise SVR models, suited for

any noise distribution assumption.

These proposed general noise SVR models use a dif-

ferent cost function and hence a different formulation of

the optimization problem from the one applied in classical

�-SVR. A consequence of the use of the new formulation is

that the standard optimization method employed in �-SVR,

sequential minimal optimization (SMO), becomes unfea-

sible to apply in these new models. The optimization
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method chosen for the purpose of training the proposed

models is naive online R minimization algorithm

(NORMA); several reasons are behind the choice of

NORMA above other SVM optimization methods for the

purpose of this paper, such as simplicity, generalization

capacity, and easy extension to regression and non-linear

kernels. These factors will be discussed more in-depth later

in this paper.

Furthermore, classical �-SVR models do not provide any

error interval estimates for their predictions. Therefore, a

method to compute these intervals is also provided. The

computation of these intervals is based on the work we

previously carried out in [6], but the problem of constant

intervals is solved in a general way in this paper.

In our previous work, we relied on problem-dependent

techniques, based on expertise on the specific area that

comprises the task we wanted to tackle, to cluster data into

different groups and then we applied the proposed tech-

nique on each group. Here, we propose a general method to

address this problem, based on the use of standard clus-

tering methods, such as k-means or k-prototypes. This

addition is a highly relevant one as intervals with the same

width for each test instance could suppose a critical

drawback for data whose distribution strongly depends on

the input features, and the need of expertise to develop

clustering methods to solve this problem entails a strong

limitation to the application of these methods to general

regression tasks.

This uncertainty interval computation method is used in

combination with our general noise SVRs to provide a

framework which can give predictions adapted to any noise

distribution assumption and, at the same time, supply

uncertainty estimates for these forecasts that also depend

on the distribution assumed to be present in the noise. If we

are able to make an accurate noise distribution assumption

for a particular regression problem, the proposed frame-

work should give optimized predictions and error intervals

and, in particular, surpass classical �-SVR accuracy.

Theoretical details and code implementations for this

framework, that we call general noise SVRs with non-

constant uncertainty intervals, are developed and made

publicly available. We focus on a particular set of noise

distributions, namely Laplace, Gaussian, Beta, Weibull,

and the Marshall–Olkin generalized exponential (MOGE),

but the framework is prepared to be easily applicable to

other distributions.

To test the usefulness of this new framework, experi-

ments using datasets from the American Meteorological

Society (AMS), solar radiation prediction contest [7] and

from the 2014 Global Energy Forecasting Competition

(GEFCom2014) [8] are carried out. The goal of these

contests is to achieve the best short term predictions and

the best probabilistic distribution, respectively. Our results

show that the proposed models can outperform classical �-

SVR models over two real-world regression tasks, and also

that problem-independent techniques applied to tackle the

problem of constant uncertainty intervals contribute sig-

nificantly to improve the intervals accuracy with respect to

constant width estimates and are competitive with clus-

tering techniques based on expert analysis. Furthermore,

Weibull and, specially, Beta distributions seem to be the

best noise distribution assumptions for these solar energy

problems, in accordance with previous results such as

[9].

The main contributions of this paper can be summarized

as follows:

1) The problem of constant width in the uncertainty

intervals formulations described in [6] is addressed

using general techniques, based on standard clustering

methods such as k-means and k-prototypes.

2) A framework for general noise SVRs with non-

constant uncertainty intervals is proposed, combining

the use of general cost functions, NORMA optimiza-

tion, clustering techniques and non-fixed error interval

estimates for a particular choice of noise distribution

assumption. All theoretical background, formulations

and implementation for this framework are given for

several probability distributions, with just some easy

computations required to adapt our method to other

choices of distribution assumption.

3) The proposed framework implementation is easily

accessible as libraries for the R programming language

via the comprehensive R archive network (CRAN).

Availability of data sets used in the experiments is also

guaranteed as they come from public competitions.

4) Experiments are carried out to tackle two real-world

regression problems related to solar energy prediction.

The following conclusions can be drawn from these

experiments. First, the proposed models give better

forecasts than classical SVR when a suitable noise

distribution is assumed. Proposed techniques to avoid

constant width in the uncertainty intervals described in

[6] improve the accuracy of error estimates. Finally,

Weibull and Beta distributions seem to capture best

the underlying noise distribution in solar radiation

prediction tasks.

The rest of this paper is organized as follows. A briefly

review of prior theoretical background for classical �-SVR

formulation, general noise SVR models, NORMA opti-

mization, uncertainty intervals for SVR and clustering

methods such as k-means and k-prototypes is presented in

Section 2. Section 3 gives an in-depth description of the

proposed general noise SVRs with non-constant uncer-

tainty intervals framework. Section 4 contains an expla-

nation of implementation details and experiments over two
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real-world solar datasets are described in Section 5. Sec-

tion 6 analyzes the results obtained in these experiments.

The paper ends with a short section on conclusions and

possible lines of further work.

2 Prior theoretical background

2.1 Classical �-SVR

For SVR, the loss function to be minimized is called the

�-ILF:

l�ðdiÞ ¼
�di � � di\� �

0 di 2 ½��; ��
di � � di [ �

8
><

>:
ð1Þ

where di ¼ f ðxiÞ � yi, xiði ¼ 1; 2; . . .;NÞ is the feature

vector and yiði ¼ 1; 2; . . .;NÞ is the target value we want to

predict.

Adding the ridge regression regularization term we

obtain the following optimization problem:

min
b;b0

Hðb; b0Þ ¼
XN

i¼1

l�ðyi � f ðxiÞÞ þ
k
2
jjbjj2 ð2Þ

where f ðxiÞ ¼ bxT
i þ b0; k� 0 is the regularization

parameter; b and b0 are the model weights and the bias

term.

Reference [10] shows that this problem is equivalent to

the following convex constrained optimization problem:

min
b;b0;ni;n̂i

1

2
jjbjj2 þ C

XN

i¼1

ðni þ n̂iÞ
" #

s.t. ni; n̂i � 0

f ðxiÞ � yi � �þ ni

yi � f ðxiÞ� �þ n̂i

8
>>>>>>>>><

>>>>>>>>>:

ð3Þ

where i ¼ 1; 2; . . .;N; ni and n̂i are quantify errors above

and below the �-band, respectively; C is the cost hyper-

parameter used to regulate model complexity and has an

analogous purpose to k in (2).

In practice, the problem solved is the dual formulation

derived using standard Lagrangian techniques [11]:

max
ai;a�i

LDðai; a�i Þ ¼
XN

i¼1

yiða�i � aiÞ�

1

2

XN

i¼1

XN

j¼1

ða�i � aiÞða�j � ajÞxT
i xj�

�
XN

i¼1

ða�i þ aiÞ

s:t: 0� ai; a
�
i �C i ¼ 1; 2;. . .;N

XN

i¼1

ða�i � aiÞ ¼ 0

8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

ð4Þ

Solutions satisfy the Karush–Kuhn–Tucker conditions:

aiðyi � f ðxiÞ þ �þ niÞ ¼ 0

a�i ðf ðxiÞ � yi þ �þ n̂iÞ ¼ 0

ðC � aiÞni ¼ 0

ðC � a�i Þn̂i ¼ 0

8
>>>>>><

>>>>>>:

ð5Þ

It can be shown [10] that:

b̂ ¼
XN

i¼1

ðâ�i � âiÞxi ð6Þ

Therefore, solution functions to the SVR problem have

the following form:

f̂ ðxÞ ¼
XN

i¼1

ðâ�i � âiÞxTxi þ b̂0 ð7Þ

Finally, using the kernel trick and a kernel function

kðxi; xjÞ satisfying Mercer’s condition [12], we can get the

following analogous formulations of (4) and (7).

LD ¼
XN

i¼1

yiða�i � aiÞ�

1

2

XN

i¼1

XN

j¼1

ða�i � aiÞða�j � ajÞkðxi; xjÞ�

�
XN

i¼1

ða�i þ aiÞ

ð8Þ

f̂ ðxÞ ¼
XN

i¼1

ðâ�i � âiÞkðx; xiÞ þ b̂0 ð9Þ

That allow us to extend the previous linear version of the

SVR problem to a non-linear one with no need of explicitly

computing a set of basis functions fhmðxÞ; m ¼
1; 2; . . .;Mg.
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2.2 General noise SVR

In 2002, an SVR formulation to obtain a general noise

version of the model was proposed in [13]. This general

noise SVR can be used with any particular loss function

cðxi; yi; f ðxÞÞ. Its optimization problem is described as:

min
b;b0;ni;n̂i

1

2
jjbjj2 þ C

XN

i¼1

ðciðniÞ þ ciðn̂iÞÞ
" #

s.t. ni; n̂i � 0

f ðxiÞ � yi � �i þ ni

yi � f ðxiÞ� ��i þ n̂i

8
>>>>>>>>><

>>>>>>>>>:

ð10Þ

where i ¼ 1; 2; . . .;N; ciðniÞ ¼ cðxi; yi; yi þ �i þ nÞ;
ciðn̂iÞ ¼ cðxi; yi; yi � ��i � n̂Þ; �i and ��i are chosen such that

cðxi; yi; yi þ nÞ ¼ 0 ; 8 n 2 ½���i ; �i�.

2.3 NORMA optimization

In [14], an optimization method suitable for SVRs in an

online setting was proposed. This method focuses on the

so-called instantaneous regularized risk:

Rinst;k½ft; xt; yt� :¼ lðftðxtÞ; ytÞ þ
k
2
jjftjj2H ð11Þ

where l is a given loss function; ft is a function where

ft 2 H with H a reproducing kernel Hilbert space and k the

corresponding kernel; xt and yt are the feature vectors and

targets available at instant t, respectively.

NORMA performs gradient descent with respect to

Rinst;k, i.e., it uses as update rule:

ftþ1 ¼ ft � gtof Rinst;k½ft; xt; yt� ð12Þ

where gt [ 0 is the learning rate, which usually is constant,

i.e., gt ¼ g.

We can split the derivative of Rinst;k½ft; xt; yt� into two

factors: of lðftðxtÞ; ytÞ and of kjjftjj2H=2. As stated in [14], the

following equations for these factors hold true.

of lðftðxtÞ; ytÞ ¼ l0ðftðxtÞ; ytÞkðxt; �Þ ð13Þ

of
k
2
jjftjj2H ¼ kft ð14Þ

where l0ðx; yÞ ¼ oxlðx; yÞ.
Substituting (13) and (14) into (12) we get:

ftþ1 ¼ ft � gtðl0ðftðxtÞ; ytÞkðxt; �Þ þ kftÞ
¼ ð1 � gtkÞft � gtl

0ðftðxtÞ; ytÞkðxt; �Þ
ð15Þ

In (14), it is needed for the algorithm to work properly

that gt\1=k holds.

Reformulating ft in (15) in the form of kernel expansions

as described in [14] we get:

ftþ1ðxÞ ¼
Xt

i¼1

âikðxi; xÞ ð16Þ

âi :¼ ð1 � gtkÞai i\t ð17Þ

âi :¼ �gtl
0ðftðxtÞ; ytÞ i ¼ t ð18Þ

where usually f1 ¼ 0.

In practice, the set of update rules used to apply

NORMA optimization is precisely (16), (17) and (18). As

shown in [14], if it is necessary to take into account the

possibility of existence of an offset b for the function f, this

can be added through an extra update rule:

btþ1 ¼ bt � gtl
0ðftðxtÞ; ytÞ ð19Þ

2.4 Uncertainty intervals for SVR

A method to compute error intervals for SVR predic-

tions is proposed in [15]. The idea is to estimate the real

distribution of prediction errors W, performing maximum

likelihood estimation (MLE) over a set of out-of-sample

residuals fwi; i ¼ 1; 2; . . .; lg obtained by applying k-fold

cross-validation over the training data.

In this work, the authors assume that conditional dis-

tribution of y given x depends on x only through f̂ ðxÞ. In

theory, the distribution of prediction errors W may depend

on input x and therefore the length of the uncertainty

interval with a pre-specified coverage probability may vary

from one example to another. The authors in [15] admit

this could be a critical drawback for some particular

regression tasks but the problem remains unaddressed.

Only two noise distributions assumptions are considered

in [15], zero-mean Laplace and Gaussian, which are fitted

using MLE. Specifically, we can estimate the distributions

parameters by maximizing the logarithm of the likelihood l

of sample residuals. Assuming that fwi; i ¼ 1; 2; :::;Ng is

independent, this is equivalent to:

max
h

XN

i¼1

ln gðwijhÞ ð20Þ

where g denotes the density function of prediction errors; h
is the distribution parameter to estimate.

Finally, given a pre-specified probability 1 � 2s with

s 2 ð0; 0:5Þ, the goal is to obtain the corresponding error

interval (a, b), which in this method is constant for each

point. For a zero-mean symmetric variable this is obtained

setting a ¼ �ps and b ¼ ps, where ps is the upper sth

percentile.

2.5 Clustering methods

In [16], the k-means algorithm is proposed. Its aim is to

find k clusters that minimize the within-cluster sum of
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squares, or squared Euclidean distance shown in (21) with

S ¼ fs1; s2; . . .; skg clusters and their centroids Di.

min
S

Xk

i¼1

X

x2si
jjx� Dijj2 ð21Þ

The solution found by k-means depends on how the

centroids are initialized. Forgy method, i.e., to randomly

choose k points from the dataset and use them as initial

centroids, is recommended for standard k-means.

Given an initial set of cluster centroids

fD0
i ; i ¼ 1; 2; . . .; kg, the k-means algorithm proceeds by

iterating two steps:

1) Assignment step: assign each observation xi to the

cluster sw with the minimum euclidean distance

between its centroid Dw and the observation.

2) Update step: compute the mean of all points in each

cluster and set it to be the new cluster centroid.

These two steps are iterated until the convergence criteria

Dt
i ¼ Dt�1

i is reached, where t is a particular iteration of the

algorithm and t � 1 the previous one.

k-means algorithm can only be applied to numerical

values. k-prototypes [17] is an algorithm which extends k-

means algorithm to datasets of mixed numeric and cate-

gorical values by changing the squared Euclidean distance

to:

dðw; zÞ ¼
Xp

j¼1

ðwj � zjÞ2 þ c
Xm

j¼pþ1

Gðwj; zjÞ ð22Þ

where w and z are two mixed vectors; w1; . . .;wp; z1; . . .; zp
are numerical variables; wpþ1; . . .;wm; zpþ1; . . .; zm are

categorical variables; c is a weight factor to balance each

type of attributes; G is defined by:

Gðwj; zjÞ ¼
0 wj ¼ zj

1 wj 6¼ zj

�

ð23Þ

3 Proposed framework

3.1 General noise SVR models via NORMA

optimization

The use of the �-insensitive loss function in the classical

SVR formulation explained in Section 2.1 implies the

assumption of a particular error distribution, related to the

Gaussian family, in the data [4]. However, it has been

observed that the noise in some real-world applications

may satisfy other distributions. For example, it has been

proved that for wind power forecast it is preferable to

assume a Beta distribution [5]. We think that examining

whether some distributions other than the Gaussian better

fit also the problem of solar energy prediction may be

worthwhile.

Taking this into account, we look to build a general

noise formulation for SVR where a particular distribution

p for the noise is assumed, the optimal loss function for that

distribution is computed, and then this function is plugged

into the model to obtain a SVR formulation for that dis-

tribution assumption.

As described in Section 2.2, a general noise formulation

for SVR has been described in the past, providing an

expression of the dual problem that allows to insert dif-

ferent loss functions into it. The difficulty with this for-

mulation is that it aims to solve the dual problem, which for

some choices of noise distributions results in a very com-

plex optimization problem, one that cannot be tackled

using standard optimization techniques such as SMO [18].

Therefore, we need to find a different optimization method

for our proposed model.

On the other hand, NORMA optimization can be used in a

straightforward manner not only in classification problems,

but also in novelty detection and regression tasks, the latter

being the focus of this paper. Furthermore, its extension from

linear models to non-linear ones is also largely direct via the

use of the kernel trick. Finally, its formulation and imple-

mentation is fairly simple and its generalization to any loss

function does not suppose great difficulties. Our goal is to

find a rather simple formulation of the model that is the most

general possible, one that allows to insert the optimal loss

function corresponding to any choice of noise distribution

without this decision increasing significantly the difficulty of

the optimization problem to solve.

NORMA is perfectly suited for this task, avoiding the

extra complexity derived of inserting general noise func-

tions to the dual problem in (10). For all these reasons,

NORMA is the optimization method used in our

research.

We study now the optimization problem resulting of

using NORMA with the distributions considered for this

work. These distributions have been chosen for either being

standard alternatives, as Laplace and Gaussian distributions

[15], being related to radiation forecasting, as is the case

for the Beta and Weibull distributions [19], or being rele-

vant to other particular kind of regression tasks such as

healthcare problems, as the Marshall–Olkin distribution

[20]. First, we have to compute their optimal loss functions.

Following [19], the optimal loss function in a maximum

likelihood sense for a particular choice of error distribution

PðwiÞ can be formulated as:

lðwiÞ ¼ � lnPðwiÞ ð24Þ

Therefore, using (24) and removing all factors constant

with respect to wi, we can obtain the optimal loss functions
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associated to a given choice of noise distribution. Optimal

loss functions for the distributions considered in this paper

and their derivatives can be expressed as:

1) Laplace

lðwiÞ ¼
jwi � lj

r
ð25Þ

l0ðwiÞ ¼

1

r
wi � l[ 0

0 wi � l ¼ 0

� 1

r
wi � l\0

8
>>>>><

>>>>>:

ð26Þ

where l and r are the mode and standard deviation of wi,

respectively.

2) Gaussian

lðwiÞ ¼
ðwi � lÞ2

2r2
ð27Þ

l0ðwiÞ ¼
wi � l
r2

ð28Þ

where r2 is the variance of wi.

3) Beta

lðwiÞ ¼ ð1 � AÞ lnwi þ ð1 � BÞ ln ð1 � wiÞ ð29Þ

l0ðwiÞ ¼
1 � A

wi

� 1 � B

1 � wi

ð30Þ

where A and B are the shape parameters of the Beta

distribution.

4) Weibull

l0ðwiÞ ¼
ð1 � jÞ lnwiþ

�
wi

L

�j

wi [ 0

0 wi � 0

8
><

>:
ð31Þ

l0ðwiÞ ¼
1 � j
wi

þ j
L

�
wi

L

�j�1

wi [ 0

0 wi � 0

8
><

>:
ð32Þ

where L and j are the scale and shape of the Weibull

distribution, respectively.

5) MOGE

lðwiÞ ¼
2 ln ðT þ ð1 � TÞð1 � e�L2wiÞ

A2 Þþ

L2wi þ ð1 � A2Þ ln ð1 � e�L2wiÞ wi [ 0

0 wi � 0

8
>>><

>>>:

ð33Þ

l0ðwiÞ ¼

L2

�

1 þ e�L2wi

�

2A2ð1 � TÞð1 � e�L2wiÞA2�1

þ 1 � A2

1 � e�L2wi

��

wi [ 0

0 wi � 0

8
>>>>><

>>>>>:

ð34Þ

where A2, L2, T are the parameters of the MOGE

distribution.

Full computations to obtain these optimal loss functions

are given in our previous work [21]. Note that, technically,

at wi ¼ 0 the derivatives corresponding to Laplace distri-

butions are non-differentiable. However, this case corre-

sponds to predictions with no error, so we take as a proxy

for the derivative at this point the value l0 ¼ 0. Plugging the

derivatives l0ðwiÞ into the NORMA update rules as shown

in (18) and (19), we get a NORMA formulation adapted to

a particular choice of distribution. For instance, for the

Gaussian distribution we get:

ât :¼ �gt
wi � l
r2

btþ1 ¼ bt � gt
wi � l
r2

8
>><

>>:

ð35Þ

Equations (16) and (17) do not depend directly on the

choice of loss function so they remain the same regardless

of the noise distribution assumption.

NORMA is based on stochastic gradient descent.

Asymptotic convergence to a stationary point for these

methods is proved in [22] in the non-convex case, but this

point is not guaranteed to be a global minima as opposed to

the convex situation. Therefore, this problem must be

addressed and in Section 5.4 we describe how we have deal

with it.

The extension of the approach presented here to other

choice of distribution assumption is straightforward, with

only simple computations of MLE to get the optimal loss

functions and calculation of the derivatives of these func-

tions required.

As far as we know, at the time of writing this paper there

has not been described a methodology to give explicit,

feasible to solve and easy to extend formulations of general

noise SVR models that allow to use noise distribution

assumptions such as the Weibull distribution. In particular,

we have not found in the literature any approach that tried

to use NORMA to solve the optimization problem of

general noise SVR. We think this is one of the main con-

tributions of our work and one that may prove to be useful

in this line of research.
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3.2 Nonconstant uncertainty intervals using

clustering methods

For the computation of uncertainty intervals for our

model predictions we propose to follow an approach, based

in the method described in Section 2, consisting of three

stages: clustering, parameter estimation via maximum

likelihood, and probability interval computation.

3.2.1 Clustering

As stated before, in [15] the conditional distribution of y

given x is assumed to depend on x only through the pre-

diction value f̂ ðxÞ and therefore the width of the uncer-

tainty intervals is the same for each instance in the test set.

To solve this drawback we propose the following method:

1) Use clustering methods to split train, and validation

data if used, into several groups si, i ¼ 1; 2; . . .; k. k-

means or k-prototypes are suggested as clustering

algorithms. Forgy method is preferable as initialization

method for standard k-means.

2) Fit a model Mi for each cluster si.

3) For each si use cross-validation or validation errors of

model Mi to build uncertainty intervals following steps

described below in Sections 3.2.2 and 3.2.3.

4) For each test instance xi;test, assign it to the cluster si
with the nearest centroid using a given distance metric

and apply to xi;test the error interval corresponding to

this selected cluster. We suggest the Euclidean

distance for k-means and (22) for k-prototypes as

distance functions.

To choose the value of k we propose to use a grid search

over a region of possible values and pick the k that results

in the most accurate uncertainty intervals with respect to a

given metric. Our choice of accuracy metric for error

intervals perr is described in Section 5.1.

3.2.2 Parameter estimation

In [21] we gave the computational steps required for

parameter estimation via MLE for all the distributions

considered in this work. Newton–Raphson method is used

for the Beta, Weibull, and MOGE computations.

3.2.3 Probability intervals

Given a pre-specified probability 1 � 2s, we can obtain

the prediction error interval (a, b) as follows:

1) Laplace and Gaussian: the percentile ps is computed

by solving:

1 � s ¼
Z ps

�1
pðzÞdz ð36Þ

As the distribution is centered at l and not necessarily at

zero, the prediction error interval is

ðl� ðps � lÞ; lþ ðps � lÞÞ.
2) Beta, Weibull, and MOGE: for Beta distribution it

holds that z� 0, so ps is obtained by solving:

1 � s ¼
Z ps

0

pðzÞdz ð37Þ

The prediction error interval is then ð0; psÞ. For Weibull

and MOGE distributions only the case z� 0 is relevant, so

we determine the error interval the same way as for the

Beta distribution.

4 Implementation

We used the R programming language for implemen-

tation of the proposed framework. In particular, we

developed two R libraries:

1) NORMA: used to build general noise SVR models by

applying NORMA optimization.

2) errint: employed to compute and analyze error inter-

vals for a particular model predictions assuming

different distributions for noise in the data.

Four other already implemented R libraries and one

python library have also been used to carry out our

experiments:

1) e1071: R version of the popular library LIBSVM [23].

We used it to build standard �-SVR models.

2) stats: included in the basic packages for R. Contains

functions for statistical calculations and random num-

ber generation. Employed to apply k-means.

3) clustMixType: functions to perform k-prototypes par-

titioning for mixed variable-type data according to

[17].

4) ncdf4: provides a high-level R interface to files written

using Unidata’s network common data form version 4

(netCDF4), as is the case for the files used in the AMS

contest and described in Section 5.3.

5) pvlib-python: provides a set of functions and classes

for simulating the performance of photovoltaic energy

systems [24]. Used to compute clear sky curves.

All these libraries can be publicly downloaded via

CRAN, for the R libraries, or GitHub, for the case of the

pvlib-python library.
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5 Experiments

5.1 Metrics

The metric used to evaluate the quality of model pre-

dictions in the AMS competition is the pure mean absolute

error (MAE):

MAE ¼

PN

i¼1

jf̂ ðxiÞ � yij

N

ð38Þ

However, based on our experience in solar and wind

energy tasks we consider the relative mean absolute error

(RMAE) to be a better choice to evaluate performance of a

model in this particular task. This metric is defined as

follows:

RMAE ¼ 100

PN

i¼1

jf̂ ðxiÞ�yij
jyij

N

ð39Þ

Regarding evaluation of the uncertainty interval

accuracy, given a pre-specified probability 1 � 2s we

compare the percentage of test prediction errors wi;test

lying inside the corresponding uncertainty intervals [a, b],

with the expected number 1 � 2s:

perr ¼
�
�
�
�
jfwi;test : wi;test 2 ½a; b�gj

N
� ð1 � 2sÞ

�
�
�
� ð40Þ

We choose here an absolute error as the accuracy

measure over one with different weights for positive or

negative deviations because our preference towards a

positive or negative error, i.e. which one is considered

more or less detrimental of the two, is extremely problem-

dependent. In some tasks it is preferable to take a more

conservative approach, penalizing more negative errors,

but in others a more risky approach could be a better

option, tending to punish positive errors more. Here we opt

to use the most neutral possible option as our measure.

In the GEFCom2014 competition the goal is to find the

best quantile predictions for solar power generation.

Therefore, an evaluation metric suited to this purpose must

be used. They opt to use the pinball loss function to

evaluate the accuracy of these probabilistic forecasts. This

metric is defined as follows:

PLsðy; zÞ ¼
ðy� zÞs y� z

ðz� yÞð1 � sÞ y\z

�

ð41Þ

where s is the target quantile; z is the predicted quantile

value; y is the exact numerical value of solar power.

5.2 Model parameters selection

We use the Gaussian kernel for all models considered,

as it has been shown in the past and based on our own

experience to be the best choice for SVR models for most

regression tasks. The formulation of the Gaussian kernel is:

Kðx; x0Þ ¼ exp ð�c k x� x0 k2Þ ð42Þ

Before performing our tests we must select the best

hyperparameters for each model. We select fC; �; cg for

classical �-insensitive SVR by a standard grid search over a

fixed validation set.

For general noise SVR models using loss functions other

than ILF, the density parameters are selected applying the

MLE formulas shown in [21], which in some cases involve

solving numerically the equations over a set of residuals.

We use for this purpose the validation residuals of the

previously computed optimum �-insensitive SVR. After-

wards, these same equations are solved to obtain the den-

sity parameters used to build the corresponding error

intervals for each model, but in this case the validation

residuals of the corresponding optimum general noise SVR

calculated previously are used. Finally, the kernel width c
is obtained for each general noise SVR model the same

way as for the �-insensitive SVR case, i.e by means of a

grid search over the validation set.

5.3 Datasets

The first dataset analyzed corresponds to the Kaggle

AMS 2013–2014 solar radiation prediction contest. The

goal of this contest is to discover which statistical and

machine learning models provide the best predictions of

daily-aggregated solar radiation. In particular, models must

predict the total daily incoming solar radiation at 98

Oklahoma mesonet sites, which will serve as ‘solar farms’

for the contest. Real values of total daily incoming solar

radiation (J=m2) at these 98 points are provided in the AMS

dataset. Location coordinates and elevation for each station

are also given.

Input numerical weather prediction data for the contest

comes from the global ensemble forecast system (GEFS)

reforecast version 2. The data are in netCDF4 files; each

one contains the total data for one of the model variables

and is stored in a multidimensional array. The first

dimension is the date of the model run. The second

dimension is the ensemble member that the forecast comes

from. The GEFS has 11 ensemble members with perturbed

initial conditions but we use only ensemble 1 in our

experiments for simplicity. The third dimension is the

forecast hour, which runs from 12 to 24 hours in 3 hours

increment. All models run start at 00 coordinated universal
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time (UTC), so they will always correspond to the same

universal time although local solar time will vary over each

year. The fourth and fifth dimensions are the latitude and

longitude uniform spatial grid. The longitudes in the file

are in positive degrees from the prime meridian, so sub-

tracting 360 from them will translate them to a similar

range of values as the ones given for the stations. The list

of variables is given in [25]. Elevation of each GEFS point

is provided in a separate netCDF4 file.

Data of the contest covers years from 1994 to 2007. For

the purpose of our experiments, we split this dataset into

train (1994–2005), validation (2006) and test (2007). The

complete dataset is freely available at [25].

The second dataset employed in the experiments is the

one used in the GEFCom2014 contest, where the proba-

bilistic solar power forecasting track aims to estimate the

probabilistic distribution, in quantiles, of solar power

generation for three adjacent solar farms on a rolling basis.

The target variable is solar power and there are 12 inde-

pendent numerical weather prediction (NWP) variables

from the European centre for medium-range weather

forecasts (ECMWF). The complete list of these 12 vari-

ables is given in Table 1.

Data is given in comma separated values with each row

corresponding to one hour of a particular day. The dataset

includes 15 different tracks, but we will focus only in track

15 for the purpose of this paper. Data available goes from

2012-04-01 to 2014-07-01. We will split the data using the

following approach: 1) train from 2012-06-01 to 2013-05-

31; 2) validation from 2013-06-01 to 2014-05-31; 3) test

from 2014-06-01 to 2014-07-01. The complete dataset is

accessible via [8].

5.4 Experiment I—general noise SVR

versus classical �-SVR

The purpose of this experiment is to test the perfor-

mance of classical �-SVR versus our proposed general

noise SVR models for the AMS and GEFCom2014 datasets

described in Section 5.3. In particular, we build general

noise SVR models following the approach proposed in

Section 1 using the Laplace, Gaussian, Beta, Weibull, and

MOGE distributions as noise assumptions. Hyperparame-

ters are optimized as described in Section 5.2. We discard

night hours, where solar radiation is zero or close to zero,

for evaluation.

As stated before, the use of non-convex loss functions

could lead to local minima when applying NORMA opti-

mization. We use two mechanisms to deal with this

problem:

1) Constrain the parameters of the chosen distribution to

be outside the set of parameters which cause the loss

function to be non-convex, e.g. in the beta distribution

it will mean to use the constraints a� 1; b� 1.

2) A more general and less restrictive alternative to deal

with this obstacle is to compute several times the

optimization algorithm using different choices of

initial points and keep the best solution to the

optimization problem as our final function.

In this experiment we try both approaches and keep the

model that gives the best results. Moreover, we have also

tested the use of a theoretical clear sky solar irradiance

model and add its estimates as a new feature to the winning

model in the case of the AMS contest, where stations

geolocation is available, to test if performance is improved.

For this purpose, we follow the simplified Solis method

proposed by Ineichen in [26] and implemented in pvlib-

python.

5.5 Experiment II—uncertainty intervals

for general noise SVR

In this experiment we test the accuracy of uncertainty

intervals built following the method proposed in Sec-

tion 3.2 under different assumptions of noise distribution

and distinct choices of clustering methods. As noise dis-

tributions we try the same options as in experiment I. The

list of clustering methods tested is the following one:

1) Munique: build a unique interval for all instances in the

test set.

2) Mk: cluster data using standard and general methods as

described in Section 3.2. In particular, we use k-means

here as all features are numerical.

Table 1 GEFCom2014 dataset variables and their corresponding

units

Variable Description Unit

VAR78 Total column liquid water kg/m2

VAR79 Total column ice water kg/m2

VAR134 Surface pressure Pa

VAR157 Relative humidity at 1000 mbar %

VAR164 Total cloud cover 0–1

VAR165 10 metre eastward wind m/s

VAR166 10 metre northward wind m/s

VAR167 2 metre temperature K

VAR169 Surface solar rad down J/m2

VAR175 Surface thermal rad down J/m2

VAR178 Top net solar rad J/m2

VAR228 Total precipitation m
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3) Mexpert: analogous to Mk but using this time techniques

based on expertise to cluster data. Keeping in mind

that the experiment corresponds to a solar radiation

regression task and based on results showed in [27],

we propose to split data into 3 groups: group 1

corresponds to low radiation hours; group 2 corre-

sponds to medium radiation hours; group 3 corre-

sponds to high radiation hours.

The experiment is carried out two times, the first one

computing intervals that should contain 80% of the test

predictions and the second time with 90% intervals, i.e.

choosing s ¼ 0:1 and s ¼ 0:05, respectively. The mean of

both results is then computed to obtain the final error.

Besides, we also compute the required quantiles in order to

compare our proposed method with the public leaderboards

available for the GEFCom2014 competition at CrowdA-

NALYTIX, where the pinball function is used for evalu-

ation as described in Section 5.1. As in experiment I, once

again the datasets used are the ones corresponding to the

AMS and GEFCom2014 contests.

6 Results analysis

6.1 Experiment I

The global results for experiment I are shown in

Table 2. Three conclusions can be drawn for them. First,

the choice of noise distribution assumption is highly rele-

vant for model accuracy, as the worst result is 79% and

74% higher than the lowest RMAE obtained for the AMS

and GEFCom2014 datasets, respectively. Second, provid-

ing that the distribution assumption is properly chosen,

general noise SVR models achieve significantly higher

precision than classical �-SVR. Finally, the Weibull and

primarily Beta distributions seem to capture better the

underlying noise distribution for the task of solar energy

prediction. Although we would need further testing of our

models with different datasets to confirm these results, they

seem to be in line with previous works, such as [9] or [28],

that suggest the Beta distribution as a good choice to model

solar irradiation.

In Table 3 we can see that, for each choice of noise

distribution assumption, the total number among the 98

Oklahoma mesonet sites for the AMS competition or

among the 3 available solar farms for the GEFCom2014

contest where the corresponding model achieves the best

performance. It is again clear that the Beta distribution is

consistently performing better than the other distributions,

with Weibull in second place. For the AMS dataset, we

have analyzed sites where Beta is not the winning model

and have not found any clear patterns in geolocation or

other of the available input features that could allow us to

distinguish between these stations and the rest.

Moreover, although as we stated before, we consider

RMAE as a more suited metric for the problem at hand, we

also tested our models through the Kaggle site where

standard MAE is used for evaluation. Results can be found

in Table 4. Our model using Beta noise assumption gets a

score of 2207121.72, good enough for eight place among

all the 160 participants visible on Kaggle private leader-

board. This is a quite positive result, specially taking into

account that the goal of this work is not to find the best

possible model in terms of accuracy, as we follow a quite

simple and straightforward pipeline to tackle the problem

with very little data processing and almost nothing of

feature engineering or expertise integration, and we also

use a relative small grid for the parameter search. Our aim

is instead to compare the performance of the different noise

distributions among themselves and to compare the pro-

posed models with classical �-SVR.

Finally, the results of adding clear sky information as a

new feature to the best model for the AMS contest, i.e. the

Beta-noise SVR, are shown in Table 5. It appears to be

clear that addition of this clear sky feature has a positive

impact on the model, improving even more the score pre-

viously obtained for all evaluation metrics considered:

RMAE, MAE and number of sites where the model per-

forms better than any other.

Table 2 RMAE for AMS and GEFCom2014 competitions

Dataset �-SVR Laplace Gaussian Beta Weibull MOGE

AMS 12.35 13.38 12.47 9.76 10.81 17.48

GEFCom 18.05 19.88 17.95 15.83 16.32 27.48

Table 3 Number of sites where a particular model performs best than

the rest for AMS and GEFCom2014 competitions

Dataset �-SVR Laplace Gaussian Beta Weibull MOGE

AMS 5 1 6 71 15 0

GEFCom 0 0 0 3 0 0

Table 4 MAE given by Kaggle after submission in AMS contest

with corresponding leaderboard ranking

Model MAE (J/m2) Leaderboard ranking

�-SVR 2328401.83 36

Laplace 2403362.81 48

Gaussian 2328018.55 36

Beta 2207121.72 8

Weibull 2259056.34 18

MOGE 2559516.97 109
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6.2 Experiment II

Table 6 contains the results obtained in experiment II.

The negative impact of computing error intervals with

constant width in method Munique is clear when looking at

these table, as the best perr obtained when using this

approach is more than twice the ones accomplished when

applying some sort of clustering techniques, as is the case

for Mk and Mexpert. Besides, when following this method,

the noise distribution assumption that gives best results for

the AMS dataset is the Laplace, whereas the Beta is the

most accurate one for the other two approaches. This is a

result more in line with previous research and the outcome

of experiment I, a fact that seems to indicate a bad func-

tioning of Munique that makes this method unable to prop-

erly capture the underlying noise distribution of the task at

hand.

General clustering techniques such as k-means seem to

solve, at least in large part, this drawback, with Mk method

obtaining results that are competitive with ad hoc expertise

clustering approaches that are problem-dependent, as the

one employed in Mexpert. Moreover, we also tested our

method against the available CrowdANALYTIX public

leaderboard for the GEFCom2014 contest. The results are

detailed in Table 7, with our best model achieving fifth

position.

7 Conclusion

In this paper we have proposed a framework to build

general noise SVRs with non-constant uncertainty intervals

that involves two main phases. On one hand, a method to

build general noise SVR models using NORMA as the

optimization algorithm. On the other hand, an approach to

compute error intervals for these regression models

avoiding constant width by the use of standard clustering

methods, instead of employing ad hoc partitioning

approaches as proposed in our previous work [6].

Both techniques rely on a concrete choice of noise

distribution assumption and in this work we have given the

mathematical framework needed for their implementation

under several distributions, namely Laplace, Gaussian,

Beta, Weibull, and MOGE. It is important to remark that

just some easy computations are needed to extend the

method to other distribution choices. The algorithms nec-

essary to apply these two techniques have been imple-

mented using R as programming language and made

publicly available via CRAN. Moreover, the datasets

employed in the experiments correspond to public com-

petitions and therefore are freely accessible. Therefore, we

have carried out our work in accordance with the principles

of reproducible research, which was one of our main

goals.

Finally, experiments have been made to test our pro-

posed framework in real-world tasks related to the prob-

lems of solar radiation and energy prediction. These tests

show that the suggested general noise SVR models can

achieve more accurate predictions than classical �-SVR

models if the noise distribution assumption is properly

chosen. Furthermore, the proposed clustering methods

seem to largely solve the critical drawback of constant

width in the uncertainty estimates that could arise in our

framework, and are shown to be competitive with problem-

dependent clustering based on expertise such as the ones

employed in our previous works. Lastly, the distributions

that seem to capture best the underlying noise distribution

in these solar tasks are the Weibull and, even more, Beta

distributions.

Table 5 Impact of adding clear sky, CS, information in the perfor-

mance of the best model for AMS competition

Model RMAE Sites MAE (J/m2) Leaderboard ranking

Beta 9.76 71 2207121.72 8

Beta ? CS 9.41 75 2188527.25 6

Table 6 Uncertainty intervals perr by noise assumption and cluster-

ing technique for AMS and GEFCom2014 competitions (mean perr
value for s = 0.1 and s = 0.05 is shown)

Model Munique Mk Mexpert

AMS GEFCom AMS GEFCom AMS GEFCom

Laplace 1.78 2.94 1.21 1.68 1.17 1.64

Gaussian 1.85 2.94 1.32 1.64 1.15 1.66

Beta 1.86 2.72 0.82 1.34 0.68 1.30

Weibull 1.97 2.86 0.87 1.34 0.78 1.33

MOGE 2.12 3.37 1.57 2.02 1.31 1.98

Table 7 PL given by CrowdANALYTIX after submission in GEF-

Com2014 contest with corresponding leaderboard ranking

Model PL Leaderboard ranking

�-SVR 0.01412 10

Laplace 0.01467 14

Gaussian 0.01403 10

Beta 0.01298 5

Weibull 0.01342 7

MOGE 0.01821 17
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Regarding possible lines of further work, one of them

could be to add more distributions to the ones studied in

this paper, such as Cauchy or Logistic, and then test the

performance of our proposed framework for problems

where these distributions may be of relevance.

Another reasonable extension of the research carried out

here will be to compare the accuracy of the uncertainty

intervals built following the approach suggested here ver-

sus error intervals computed using ensemble weather pre-

diction as the one from GEFS, which provides 11 separate

forecasts, or ensemble members, and therefore allows to

build 11 different predictions and compute error intervals

by counting how many of these predictions fall within a

specific range.

Lastly, checking the use of general noise loss functions

like the ones considered in this research in other regression

methods where models are built by minimizing concrete

loss functions, such as deep learning or model stacking

frameworks, could also be an interesting idea worthy of

further investigation.
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