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Abstract 

The present PhD Thesis has been realized in the Inorganic Chemistry Department of the 

Autonomous University of Madrid (Universidad Autónoma de Madrid), under the 

supervision of Dr. Félix Zamora Abanades and Dr. Pilar Amo Ochoa of the 

Nanomaterials Research Group. To achieve the completion of this thesis, a series of 

materials based on coordination polymers (CPs) has been designed, synthesized and 

characterized. These compounds present electrical and luminescent properties which 

can be tuned by the presence of physical or chemical stimuli. These materials are 

commonly known to possess a dynamic or stimuli-responsive behavior. Apart from the 

experiments conducted in the presence of several stimuli, theoretical calculations have 

been used when necessary in order to rationalize the observed behaviors. 

This thesis will be divided into six chapters: an introduction to CPs and stimuli-

responsive materials, accompanied by the purposes of the thesis (Chapter 1); three 

chapters where the results of the thesis and the subsequent discussion are detailed 

(Chapters 2-4); the conclusions (Chapter 5) and, finally, the experimental section 

(Chapter 6). 

The compounds described in chapter 2 share a common building block: copper(I) iodide 

and functionalized nitrogen-donor ligands. Aiming to obtain new materials based on 

one- and two-dimensional CPs with double zigzag Cu-I chains, this metal salt has been 

combined with the following organic ligands: methyl isonicotinate (MeIN), methyl 2-

aminoisonicotinate (NH2-MeIN), aminopyrazine (Apyz) and 3-chloroisonicotinic acid 

(Cl-HIN). The obtained compounds have been characterized by means of infrared 

spectroscopy (IR), elemental analysis, single crystal X-ray diffraction (SCXRD) and 

powder X-ray diffraction (PXRD), and their electrical and luminescent properties have 

been evaluated. Afterwards, they have been prepared as nanostructures. Similarly, we 

have been able to obtain nanostructures of three previously described CPs, obtained by 

combining copper(I) iodide and isonicotinic acid (HIN), ethyl isonicotinate (EtIN) or 2-

amino-5-nitropyridine (ANP). 

In chapter 3, a new compound based on a double Cu-I chain, where the terminal ligand 

is 3,5-dichloropyridine (Cl2-py), is described. This compound presents itself in two 

different forms depending on the synthetic method followed to achieve its preparation. 

In this chapter, the difference in the luminescent properties showed by the two forms of 

this compound will be explained, and it will be proven that these differences are caused 

by the presence of defects in one of them. 

Chapter 4 discloses the preparation of new composite materials based on two of the 

already outlined CPs and flexible organic matrices such as polyvinylidene difluoride 

(PVDF) and polylactic acid (PLA). The homogeneity and the luminescent and 

mechanical properties of these new materials will be studied, in order to present them as 

candidates for industrial or daily-life applications. 

  



Resumen 

La presente tesis doctoral se ha realizado en el Departamento de Química Inorgánica de 

la Universidad Autónoma de Madrid bajo la dirección de los doctores Félix Zamora 

Abanades y Pilar Amo Ochoa, del Grupo de Nanomateriales. Para la consecución de 

esta tesis se han diseñado, sintetizado y caracterizado una serie de materiales basados en 

polímeros de coordinación (CPs) con propiedades eléctricas y luminiscentes modulables 

por la presencia de estímulos físicos o químicos, lo que se conoce como materiales con 

comportamiento dinámico o estímulo-respuesta. Además de los experimentos llevados a 

cabo frente a diferentes estímulos, en los casos necesarios se han realizado cálculos 

teóricos con el fin de racionalizar los comportamientos observados. 

Esta tesis se dividirá en seis capítulos: una introducción a los CPs y a los materiales 

estímulo-respuesta, acompañada de los objetivos de la tesis (Capítulo 1); tres capítulos 

detallando los resultados de la tesis y su discusión (Capítulos 2-4); las conclusiones 

(Capítulo 5) y, finalmente, la sección experimental (Capítulo 6). 

Los compuestos descritos en el capítulo 2 comparten uno de los bloques de 

construcción: el yoduro de cobre(I) y ligandos nitrógeno-dadores funcionalizados. Con 

el fin de obtener nuevos materiales basados en CPs monodimensionales y 

bidimensionales con cadenas dobles en zigzag Cu-I, dicha sal metálica se ha combinado 

con los ligandos orgánicos isonicotinato de metilo (MeIN), 2-aminoisonicotinato de 

metilo (NH2-MeIN), aminopirazina (Apyz) y ácido 3-cloroisonicotínico (Cl-HIN). Los 

compuestos obtenidos se han caracterizado mediante espectroscopía infrarroja (IR), 

análisis elemental y difracción de rayos X de monocristal (SCXRD) y de polvo 

(PXRD), y se han estudiado sus propiedades eléctricas y luminiscentes en cristal. 

Seguidamente se han preparado en forma de nanoestructuras. De la misma forma, se 

han fabricado nanoestructuras de tres compuestos ya descritos con anterioridad, 

procedentes de la combinación de yoduro de cobre(I) con ácido isonicotínico (HIN), 

isonicotinato de etilo (EtIN) y 2-amino-5-nitropiridina (ANP). 

En el capítulo 3 se describe un nuevo compuesto basado en una cadena doble Cu-I, en el 

que el ligando terminal es la 3,5-dicloropiridina (Cl2-py). Este compuesto se presenta en 

dos formas distintas según el método de síntesis empleado para su obtención. En este 

capítulo se explicarán las diferencias en propiedades luminiscentes de ambas formas, y 

se demostrará que la causa de estas diferencias es la presencia de defectos en una de 

ellas. 

En el capítulo 4 se describirá la preparación de nuevos materiales compuestos basados 

en dos de estos polímeros de coordinación y matrices poliméricas orgánicas flexibles 

como son el polifluoruro de vinilideno (PVDF) y el poliácido láctico (PLA). Se 

estudiará la homogeneidad de estos nuevos materiales, así como sus propiedades 

luminiscentes y mecánicas, con el fin de demostrar su potencial uso en aplicaciones 

industriales o cotidianas. 
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Chapter 1: Introduction to coordination polymers and 

stimuli-responsive materials. Aims of the thesis 
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1.1. Coordination Polymers (CPs) 

Coordination polymers (CPs), also known as metal-organic coordination networks 

(MOCNs),
1
 are compounds which can be defined as extended arrays based on the self-

assembly of the following building blocks: metal centers, which act like nodes, and 

organic molecules and/or inorganic fragments, which act like linkers or ligands. The 

union of these building blocks leads to the formation of 1D, 2D or 3D frameworks 

(Figure 1.1), depending on the coordination number of the metal and the coordination 

modes of the ligands.
2
 Reversible coordination bonds are crucial tools for the design 

and construction of well-ordered CPs; however, the presence of weaker intermolecular 

interactions such as hydrogen bonds, halogen bonds
3-6

 and π- π interactions will define 

the order of all the elements of the final network.
7
 Reaction conditions, including the 

starting building blocks and solvents,
8
 any counterion present in the reaction medium,

9
 

and the values of temperature and pressure, play a fundamental role in directing the 

dimensionality and topology of the structure of the obtained CPs.
10

 On the other hand, 

their properties will be determined by the nature of the metal center, as well as that of 

the ligands, and how all these elements are positioned within the structure in the solid 

state.
11

 

 

Figure 1.1. Schematic representation of the formation of coordination polymers and 

their dimensionalities. Based on a similar figure seen on reference 
2
. 

Transition metals and rare-earth elements are the most common metal centers used as 

nodes in the construction of coordination compounds, especially in CPs. This is due to 

the wide variety of oxidation states and coordination numbers that these metals can 

display, each one determining the geometry of the coordination bonds around them and, 

therefore, the final properties of the CP (Figure 1.2). For instance, copper presents itself 

mainly in two oxidation states: Cu(I)
12

 and Cu(II);
13

 sometimes we can find compounds 

where copper presents a mixed-valence oxidation state.
14

 Properties such as magnetism, 

electrical conductivity or photoluminescence, as well as the coordination geometries 

Metal centers

Ligands (organic
and/or inorganic)

+
Solution

Self-assembly

Coordination polymers (CPs)

1D

2D

3D
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(trigonal, tetrahedral, square pyramidal or octahedral in the case of Cu) are determined 

by the oxidation state of the metal center. 

 

Figure 1.2. Coordination geometries of CPs as a function to the coordination index of 

the metal center (from 2 to 7). Taken from reference 
15

. 

In some cases, coordination complexes of high nuclearity where metal centers are 

bridged by polydentate ligands act like nodes instead of single metal ions; the clusters 

derived from this union are known as Secondary Building Units (SBU); this term was 

firstly used to refer to paddlewheel structures built from the coordination of four 

carboxylates around two metal centers, but many more SBUs are known nowadays 

(Figure 1.3).
16-19
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Figure 1.3. Examples of common SBUs and their use to form coordination polymers. 

Taken from reference 
16

. 

On the other hand, ligands play a critical role in defining the topology and the final 

properties of the resulting networks. These ligands, both organic and inorganic, can be 

classified as mono-, bi- or polydentate depending on the number of donor atoms that act 

as coordination positions. Most ligands are electrically neutral or anionic, but there are a 

few examples showing positive charge (Figure 1.4).
1
 Other relevant aspects of the 

ligand design are the skeleton of the molecules, their shapes (rigid or flexible), lengths 

(the distance between the coordination positions will be important when designing pores 

with certain diameters
1, 18-19

), and functionalities (further presence of heteroatoms, 

aromatic rings, free functional groups…). In coordination compounds it is common to 

find halides
14, 20-24

 and molecules with nitrogen,
25-31

 oxygen
16, 18-19

 and sulfur-donor 

atoms
32

 in their structure; however, from the point of view of crystal engineering, the 

way organic ligands coordinate to the metal centers plays a key role. In this regard, 
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heterocyclic aromatic molecules, and especially pyridine
25-29

 and pyrazine
25, 30-31

 

derivatives (Figure 1.5), including pyrimidines and biomolecules such as 

nucleobases,
33-39

 have proven themselves as worthy candidates to determine the final 

structure of CPs. 

 

Figure 1.4. Examples of ligands with bridging capability used in the synthesis of 

coordination polymers. Taken from reference 
1
. 
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Figure 1.5. Examples of N-donor aromatic ligands, those used in this thesis. 

Apart from these two essential building blocks, namely ligands and metal centers, other 

molecules present in the reaction medium can strongly influence the final structure. For 

instance, solvent molecules can co-crystallize and increase the number of possible weak 

interactions in the final packing, or can act as guest molecules in the vacant space inside 

the polymeric network.
40

 

As it has been already mentioned, building blocks are essential to determine the final 

features of a CP. Thus, the strength of the bonds present in a CP will determine its 

rigidity, ranging from robust frameworks of enhanced stability to flexible solids. The 

latter can respond to external physical or chemical stimuli, thanks to reversible 

structural transformations that are intrinsically related to the structural flexibility of the 

bonds linking metal and ligands and the ability of the coordination sites to accept, 

release and/or exchange coordinating molecules.
41-43

 In fact, this flexible nature was 

firstly observed for porous coordination polymers (PCPs), a subclass of CPs, also 

known as metal-organic frameworks (MOFs).
44-45

 In addition, some non-porous 

coordination compounds show structural flexibility, to the point of suffering single-

crystal to single-crystal transformations (SCSC).
46-47

 These CPs are part of what is 

known as dynamic materials or stimuli-responsive materials. These materials undergo 

reversible structural changes when an external stimulus is applied, therefore being 

exceptionally useful in the preparation of functional materials with tunable or 

switchable physical properties. Consequently, they are particularly interesting for 

potential applications in the fabrication of electric,
48-50

 magnetic
51

 and photoluminescent 

devices,
52

 since their physical properties are extremely sensitive to minor structural 

changes provoked by an external stimulus. 

Isonicotinic
acid (HIN)

Ethyl
isonicotinate

(EtIN)
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isonicotinate

(MeIN)

2-amino-5-
nitropyridine 
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Methyl 2-
aminoisonicotinate 

(MeIN)

Aminopyrazine
(Apyz)

3-chloro-
isonicotinic 

acid (Cl-HIN)

3,5-
dichloropyridine 
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1.1.1. Synthesis of CPs 

Traditionally, the main goal pursued in the synthesis of CPs has been the formation of 

high quality single crystals for structural analysis, which will hence enable the 

understanding of their structure and properties. However, CPs are generally insoluble in 

common solvents, and often the recrystallization is not plausible.
10

 In a surprisingly 

short period of time, the structural chemistry of CPs has reached a mature level, due to 

the application of useful and novel crystallization and synthetic methods such as slow 

diffusion and solvothermal or microwave-assisted solvothermal synthesis.
53-54

 

Depending on the desired structure of our CPs, we will choose among different 

synthetic procedures. The most common synthetic method is conventional synthesis; 

here, a solution containing the building blocks is stirred either at room temperature or 

another desired temperature value (reflux conditions are usually preferred), followed by 

a crystallization process in order to obtain single crystals suitable for single-crystal X-

ray diffraction (SCXRD). These crystallization processes (Figure 1.6) are based on the 

self-assembly of the building blocks under supersaturation conditions caused by a 

diminishing of the volume (slow evaporation) or temperature, or by the presence of 

vapors of a poor solvent. Sometimes, it can be found that the desired product 

crystallizes in the reaction medium, due to the immediate generation of supersaturation. 

Another synthetic method used to create supersaturation is the diffusion method, where 

layers of the reactants dissolved in miscible solvents slowly diffuse to come in contact 

through an intermediate layer. This is particularly useful for the crystallization of poorly 

soluble products.
55

 

 

Figure 1.6. Scheme of the most widely used methods which lead to the obtainment of 

single crystals valid for X-ray diffraction analysis. The crystals are represented by the 

yellow rhomb. 

Slow evaporation Slow cooling

Vapor diffusion Liquid diffusion
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In the cases where the immediate obtainment of single crystals is required, the 

solvothermal method is used. Herein, the reactions are carried out at high temperature 

under autogenous pressure and the reaction time and temperature are adjusted to allow 

the in-situ crystallization of the product.
56

 However, reaction times in solvothermal 

syntheses are very long (several days); consequently, the microwave-assisted synthesis 

technique has arisen as an alternative to provide an efficient way to synthesize pure 

crystalline materials with short reaction times (several hours).
15

 

It is important to mention that, by changing the synthetic procedure and/or the reaction 

conditions for the same starting materials, the formation of different products or 

polymorphs of a same substance can occur. Polymorphism is defined as the existence of 

the same chemical substance in more than one crystal structure, owing to the fact that 

the forces acting in the arrangement and/or conformation of the crystalline solids lead to 

different networks.
57

 Polymorphism is an interesting phenomenon that plays an 

important role in understanding crystal packing and structure-property relationships.
58-59

 

One interesting example of polymorphism in CPs has been reported by Zhang,
60

 who 

synthesized a 1D-CP formulated as [CdL2]n, where L= 2-mercaptopyridine-N-oxide, in 

two polymorphic forms as a result of the use of glycine as guest molecule in the starting 

reactants. The two crystallographic polymorphs show similar 1D polymeric chains but 

they are significantly different in the binding modes of the 2-mercaptopyridine-N-oxide 

ligand and the 3D packing modes (Figure 1.7). 

 

Figure 1.7. Crystal structures of the two polymorphs of [CdL2]n (L= 2-

mercaptopyridine-N-oxide). Taken from reference 
60

. 

CPs can be classified according to their dimensionalities into one-dimensional (1D-

CPs), two-dimensional (2D-CPs) and three-dimensional coordination polymers (3D-

CPs). The dimensionality of CPs is often determined by the geometry of metal centers. 

The packing of the crystal structures and, therefore, the morphology of the crystals, are 
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strongly influenced by weak interactions such as H-bonds, π-π stacking, and Van der 

Waals forces, but the dimensionality is based on the coordination bonds between ligand 

molecules and metal ions. 1D-CPs are considered to be the simplest ones in terms of 

dimensionality, but they have been found to have interesting electric, magnetic and 

optical properties.
30, 37, 61-63

 

 

1.1.2. Properties of CPs 

Currently, CPs are one of the fastest growing fields in chemistry and material science. It 

has attracted researchers from several areas of science due to their structural diversity, 

tunable properties, and the wide range of potential applications such as catalysis, 

electronics, magnetism, sensing, opto-electronics and nanoprocessing.
64-71

 They can 

also combine multiple properties, e.g. electrical-optical or electrical-magnetic, being an 

interesting source of multifunctional materials. Since this thesis is focused on Cu(I)-

iodide CPs, the following sections will outline, from a general point of view, those 

properties which are most commonly described for these CPs: electrical conductivity 

and luminescent properties, as well as nanoprocessing methods and size-dependent 

properties. 

 

1.1.2.1. Electrical conductivity 

The electrical conductivity of a material is a measure of its ability to conduct electric 

current. This physical magnitude depends on parameters such as temperature, pressure 

or the applied voltage. The measurements of the resistance and, hence, the resistivity, of 

a sample requires the application of a current (I) and measuring the voltage drop across 

the sample (V). According to Ohm’s law of conductivity, V = R×I; where V is the 

voltage, I is the intensity of the electric current, and the proportionality constant, R, is 

the resistance. R depends on geometrical parameters (therefore, it is sample-dependent) 

and is commonly expressed as resistivity (ρ), which is defined as ρ = R(A/l), where A is 

the cross-sectional area of the conductor (A = a×d) and l is the distance between the 

voltage-drop measuring points (Figure 1.8). The conductivity (σ) is the inverse of the 

resistivity (σ = 1/ρ), and measured in Ω
-1

 m
-1

 = S m
-1

 (Ω
-1

 = S = Siemens). The units in 

which electrical conductivity is measured are often changed into S cm
-1

. 

There are two different ways to prepare samples in order to measure their electrical 

conductivity in the solid state: as single crystals or pressed pellets.
67, 72

 Once the 

samples have been prepared, their electrical conductivity can be measured by means of 

the four contacts method or the two contacts method (Figure 1.8). The four contacts 

method, which is mostly used to measure single crystals, involves the connection of 

four parallel in-line contacts to the sample where the two external contacts are used to 

introduce a current (I+ and I-) and the two internal contacts are used to measure the 

voltage drop across the sample (V+ and V-). Its advantage over the two contacts method 
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(where the current is applied and the potential drop is measured through the two parallel 

contacts) is that it eliminates the contribution of the contacts to the resistivity, which 

tends to be higher than the resistivity of the sample itself. In other words, the four 

contacts method erases the possibility of obtaining misleading values of the electrical 

conductivity. 

 

Figure 1.8. Scheme of the four-contacts (left) and the two-contacts method (right) used 

for electrical conductivity measurements. Taken from reference 
67

. 

When the sample is a pressed pellet, the effect of the anisotropy of the crystals is 

removed, and in these cases the resistivity is mainly dominated by the inter-grain 

boundary contacts, which tend to increase the resistivity, usually, between one and three 

orders of magnitude with respect to the values obtained in crystals. These inter-grain 

boundaries act as gaps that block the conductivity or as carrier accumulators. This 

behavior implies that true metallic materials may appear as low band-gap 

semiconductors or semimetals if they are measured as pressed pellets. The four contacts 

method is more accurate since it only measures the resistance of the sample (Rx), 

ignoring that of the wires and contacts. In contrast, in two contacts method, the 

resistance of the sample and those of the wires and contacts are added in the measured 

resistance. The two contacts method is preferred for small-sized samples, with typical 

values of the longest dimensions of about 50 µm, whereas the minimum size of samples 

to be measured by the four contacts method should be higher than 250 µm.
67

 

On the other hand, the experimental technique known as electrochemical impedance 

spectroscopy (EIS) is used to measure the impedance of a given material when applying 

an alternate current (AC) potential to an electrochemical cell. Like resistance, 

impedance is a measure of the ability of a sample to resist the flow of electrical current, 

but unlike resistance, it is frequency-dependent and the current and voltage are phase-

shifted. The impedance (Z) of a system is generally determined by applying a voltage 

perturbation with small amplitude and detecting the current response. EIS is a powerful 

method for analyzing the complex electrical resistance of a material and is sensitive to 

surface phenomena and changes of bulk properties.
73

 Therefore, it is a useful technique 

to measure the conductivity of CPs, in particular those that contain solvents (especially 

protic ones) within their network.
74
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In a linear (or pseudolinear) system, the current response to a sinusoidal potential will 

be a sinusoid at the same frequency but shifted in phase. Therefore, it is possible to 

express the impedance as a complex function. The potential is described as:  

E(t) = E0 exp (jωt) 

E(t) is the potential at time t, E0 is the amplitude of the signal, j is the imaginary unit 

(sqrt(-1)) and ω is the radial frequency. The relationship between radial frequency ω 

(expressed in radians/second) and frequency ν (expressed in hertz) is: 

ω = 2πν 

In addition, the current response is described as: 

I(t) = I0 exp (jωt - φ0) 

An expression analogous to Ohm’s law (R = E/I) allows to calculate the impedance of 

the system. The impedance is then represented as a complex number: 

Z (ω) = E/I = Z0 exp (jφ) = Z0 (cos φ + j sin φ) 

The impedance of a system can be graphically expressed in different ways. The most 

common one is the Nyquist plot, in which the real part (Re(Z) or Z’) is plotted on the X-

axis, and the imaginary part (Im(Z) or Z’’) is plotted in the Y-axis of a chart (Figure 

1.9a). On the Nyquist plot, the impedance at a certain frequency can be represented as a 

vector of length |Z|. The angle between this vector and the X-axis represents the phase 

angle (φ). The electrical conductivity can be calculated from the Nyquist plot as σ = l/a 

× Re(Z), Where l and a are the thickness (cm) and cross- sectional area (cm
2
) of the 

pellet respectively. Re(Z), which was extracted directly from the real impedance axis, is 

the bulk resistance of the sample (Ω). Another representation of impedance 

measurements, less used than the Nyquist plot, is the Bode plot (Figure 1.9b). In this 

case, the logarithm of absolute values of the impedance and the phase angle are plotted 

in the Y-axis and the log frequency on the X-axis. 

In general, the electrical behavior of materials can be distinguished by looking at the 

room temperature conductivity value. This is usually in the range 10
1
-10

5
 S cm

-1
 for 

metallic conductors, 10
-10

-10
1
 S cm

-1
 for semiconductors, and below 10

-10
 S cm

-1
 for 

insulators. The measurement of the thermal variation of the electrical conductivity, 

always within the Ohmic regime region (low potentials), is a more reliable method 

which gives clear picture about the electrical behavior of the targeting material. For 

metals, the conductivity increases or the resistivity decreases with decreasing 

temperature and the opposite behavior will be observed in the case of semiconductors 

and insulators.
67

 This, as well as the conduction mechanisms in solid state materials, can 

be explained by means of the band theory.
75

 These materials can be described, 

according to their band structure, as metals, semiconductors or and insulators. Because 

of the very large number of atoms that interact in a solid material, the discrete energy 

levels are so closely spaced that they form bands. The highest filled energy band is 
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called the valence band (VB). The closest unfilled band is called the conduction band 

(CB). The energy separation between these bands is called the “band gap” (Eg). Fermi 

level, usually found between the valence and conduction bands, refers to the highest 

occupied molecular orbital at absolute zero. 

 

Figure 1.9. (a) General picture of the Nyquist plot of a single electrochemical system; 

the resistance of this system is calculated as the point where the semicircular curve 

intersects with the real part of the impedance (Re(Z), Z’). (b) Bode plot graphs. 

 

Figure 1.10. Schematic illustration of the band structure and band gaps of materials 

according to their electrical properties. 
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The filling of these bands and the size of the band gap determine the electronic behavior 

of solid materials (Figure 1.10). The thermal activation of semiconductors (Eg < 3 eV) 

and insulators (Eg > 3 eV) leads to a decrease in the band gap, therefore leading to an 

improvement in their electrical conductivity; on the other hand, metallic conductors see 

their conductivity decreased when temperature rises due to the discretization of the 

energy levels caused by the broadening of the bands. In classical semiconductors, the 

thermal dependence of the conductivity follows the Arrhenius law: 

σ(T) = σ0 exp(-Ea/kT) 

where Ea represents the activation energy (corresponding to half of the band gap, Ea = 

Eg/2), k is Boltzmann’s constant and σ0 is a pre-exponential factor, corresponding with 

the conductivity at infinite temperature. Phase transitions have been observed, in some 

cases, through the thermal activation of solid materials. These phase transitions, in 

many cases, are followed by structure rearrangements that can be detected through 

structure determination techniques, mainly diffractometric techniques.
76

 

Electrical conductivity of CPs is one of the most important research areas in materials 

science. It is well-known that electrical conductivity of organic polymers has attracted 

the interest of many researchers in material science, however, the research of this 

property in CPs is still very scarce.
67

 Based on recent results, some CPs systems have 

shown very promising macroscopic electronic properties.
67

 In addition, the gradual 

incorporation of theoretical calculations in CPs has become a powerful tool for 

understanding the experimental measurements and for the subsequent rational design of 

new electrically conductive CPs.
76-77

 One potential application of electrical conductive 

CPs deals with their incorporation for the fabrication of electronic devices, either at the 

macroscopic scale or at the nanoscale; regarding the latter, 1D-CPs have been tested as 

nanowires, sometimes reaching the state of molecular wires.
67

 The electrical 

conductivity found in some 1D-CPs seems to be dependent on their building blocks and 

structure.
67

 According to some observations, short bridging ligands are required to make 

metal-metal distances as short as possible in the extended structures. It has been 

reported that a family of CPs known as MMX chains, formed by dimetallic subunits 

(MM units, M = Pt, Rh, Pd, Ru…) bridged by halogens (X= I, Br, Cl), have shown 

reasonable electronic properties.
48-49, 62, 67, 73, 78-79

 In particular, those MMX chains based 

on platinum with dithiocarboxylates and iodide with general formula [Pt2(RCS2)4I]n, 

where R represents alkyl groups, have shown high electrical conductivity values at 

room temperature. Table 1.1 gathers the electrical conductivity values found in 

[Pt2(RCS2)4I]n. A thorough study of structural parameters for these MMX chains shows 

that the only difference between these MMX derivatives is the alkyl chain length, which 

governs the interchain distances and may tune the Pt-Pt and Pt-I distances that are 

responsible for the observed physical properties. 

MMX chains have been subjected to many studies on the side of Zamora and co-

workers.
62, 73, 78-79

 For example, in the case of [Pt2(n-PenCS2)4I]n, direct current (DC) 

electrical conductivity measurements carried out on crystals of this CP at different 
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temperatures using the four contacts method, have revealed this compound’s metallic 

behavior (Figure 1.11) and room temperature conductivities values in the range 

between 0.3 and 1.4 S cm
-1

. The measurements were conducted at three different 

temperatures: 100 (LT), 298 (RT) and 350 K (HT), and showed the existence of three 

different phases.
73

 It is shown in Table 1.1 that, due to these excellent conductivity 

values, these MMX compounds are excellent candidates to be used in electronic 

applications. 

Table 1.1. Summary of the electrical conductivity measured for [Pt2(RCS2)4I]n CPs with 

different R (alkyl) groups. Unless otherwise stated, the measurement conditions are RT, 

1 bar, the four contacts method and single crystals.
67

 

Compound σ (S·cm
-1

) 

[Pt2(MeCS2)4I]n 2
a
 / 10

a,b
 / 7·10

-3 a,c
 / 13 

[Pt2(EtCS2)4I]n 5-30 

[Pt2(n-PrCS2)4I]n 0.23 

[Pt2(n-BuCS2)4I]n 17-83 

[Pt2(n-PenCS2)4I]n 0.3-1.4 

[Pt2(n-HexCS2)4I]n 2·10
-3 

(a) Two-contact method; (b) RT, 7 GPa; (c) Pressed pellet 

 

Figure 1.11. (a) Structure of a single chain of [Pt2(n-PenCS2)4I]n. (b) Thermal variation 

of the electrical resistivity of [Pt2(n-PenCS2)4I]n. The dashed line shows the behavior of 

a non-heated sample. The inset shows the derivative of the resistivity as a function of 

the temperature around the RT-HT transition. (c) Distribution of bond distances and 

formal oxidation states of platinum along the chain of [Pt2(n-PenCS2)4I]n at different 

temperatures. Taken from reference 
73

. 

a

b c
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1.1.2.2. Luminescent properties 

Luminescence can be defined as the emission of light stimulated by the absorption of 

energy. Electron excitations result in different forms of luminescence, which include 

photoluminescence, thermoluminescence, electroluminescence and chemiluminescence, 

depending on the nature of the energy absorbed for the excitation process. 

Photoluminescence can be defined as light emission from any form of matter triggered 

by the absorption of photons (electromagnetic radiation). The processes that occur 

between the absorption and emission of light are usually illustrated by the Jablonski 

diagram (Figure 1.12).
80

 The singlet ground electronic state is called S0. Following light 

absorption, several processes usually occur. A fluorophore is usually excited to some 

higher vibrational level; according to the selection rules, they must move to another 

singlet state (S1 or S2). Molecules in higher exited states rapidly relax to the lowest 

vibrational level of S1. If the molecule was excited to the S2 level, the molecule rapidly 

relaxes to its lowest vibrational level and immediately changes to an isoenergetic 

vibrational level of S1, in a process called internal conversion (IC). This process is non-

radiative and generally occurs within 10
-12

 s or less. IC is always completed prior to 

emission. If the molecule in S2 cannot find an isoenergetic level of S1, it changes to the 

closest level of this state, with a lower energy value; then the process is called external 

conversion (EC). Return to an excited vibrational state at the S0 state is the reason for 

the emission process, which is called fluorescence. This emission is usually 

accompanied by a non-radiative decay which is not registered in the emission spectrum. 

Molecules in the S1 state can also undergo a spin conversion to the first triplet state, T1. 

Emission from T1 is termed as phosphorescence, and is generally shifted to longer 

wavelengths (lower energy) relative to the fluorescence emission. Conversion of S1 to 

T1 is called intersystem crossing (ISC). Transition from T1 to the singlet ground state is 

forbidden, and as a result, the rate constants for triplet emission are several orders of 

magnitude smaller than those for fluorescence. Therefore, we can conclude that there 

are two basic types of luminescence: fluorescence, which is spin-allowed between the 

energetic states and has typical lifetimes approximately 10 ns; and phosphorescence, 

which is spin-forbidden and has lifetimes with values ranging from a few microseconds 

to several seconds.
80

 

The luminescent properties of any material are characterized by several parameters, 

which are depicted in their respective luminescence spectra. The clearest one is defined 

as emission (fluorescence or phosphorescence) intensity, which is measured as a 

function of the wavelength. A second parameter is the quantum yield, which gives the 

efficiency of the fluorescence process and is defined as the ratio of the number of 

emitted photons released in the process of fluorescence with respect to the number of 

photons absorbed in the excitation process; the remaining energy is dispersed as heat by 

means of a non-radiative decay. Finally, the emission lifetime, which refers to the 

average time the molecule stays in its excited state before emitting a photon and is 

determined as being inversely proportional to the sum of all rate constants of a radiative 

process and the non-radiative processes.
80
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Figure 1.12. Schematic representation of the Jablonski diagram. External conversion 

(EC) has been omitted for clarity.
80

 

CPs are considered to be very promising photoluminescent materials where both the 

inorganic and the organic moieties can contribute to generate radiative emission. 

Photoluminescence properties depend on the composition of the materials, the structure, 

and intermolecular packing that stabilizes these materials. Currently, polynuclear d
10

 

metal complexes have attracted considerable attention for their diverse structural and 

rich photoluminescence properties, even at room temperature, that give rise to potential 

applications as light-emitting diodes.
81-85

 One of the most prominent classes of 

photoluminescent coordination compounds, which state as the main theme of this thesis, 

is the one integrated by copper(I) halide
21-24, 27-29, 32, 52, 86-95

 and pseudo-halide
29, 96

 

compounds, namely Cu(I)-X. The variety of available coordination numbers for copper 

and bridging modes for halides and pseudohalides (from terminal to µ
2
- and up to µ

8
- 

bridging modes), as well as the flexibility of these parameters, have introduced great 

structural diversity in copper(I)-halide compounds.
97

 Consequently, copper(I) halides 

can adapt to various structural motifs including square Cu2X2 dimers, cubane or stepped 

cubane Cu4X4 tetramers, zig-zag [CuX]n chains, and double stranded [Cu2X2]n ladders 

(X = Cl, Br, or I anions (Figure 1.13).
97-100

 They are very easy to synthesize and their 

emission color is easily tunable,
101-102

 with high emission quantum yields in the solid 

state.
103-104

 From the economic point of view, copper is also more abundant and less 

expensive than rare-earth and noble metals and is less environmentally problematic than 

the former.
105
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Figure 1.13. Representation of three of the most common structures displayed by Cu(I)-

halide compounds: (a) Polymeric double zigzag chain (or staircase chain); (b) Polymeric 

single zigzag chain; (c) Discrete cubane-like cluster (Cu4X4), acting like a SBU 

tetrahedrally linked to four ligand molecules. Cu: orange; halogen (X): purple; N-donor 

ligand (L): green. 

In general, possible assignments for the excited states that are responsible for emission 

phenomena of Cu(I) complexes are ligand-centered (LC) π → π* transitions and metal-

centered ones (MC). In addition, ligand-to-metal charge transfers (LMCT), involving 

electronic transitions from an orbital of the organic ligand to a metal-centered orbital, 

and metal-to-ligand charge-transfer transitions (MLCT), corresponding to the electronic 

transition from a metal-centered orbital to an orbital of the organic ligand, are 

commonly found in these compounds.
106

 Ford et al. have shown that the 

photoluminescent behavior and geometries of copper(I)-halide aggregates are strictly 

related.
106

 Cu(I)-X aggregates of tetranuclear units [Cu4I4L4] (L is a substituted 

pyridine)
21-22

 and rhombic [Cu2(µ-X)2] dimeric units
107

 are of special interest as they 

have been known to be emissive. Ford et al. studied the case of the cluster compound 

[Cu4I4py4] (py = pyridine), where two different emission bands have been observed. 

The high-energy band (HE) dominating at low temperature (77 K) was attributed to a 

halide-to-ligand charge transfer (XLCT) that may show up in the presence of 

n

a b

n

c
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unsaturated ligands with accessible π-orbitals.
108

 The low-energy band (LE), dominating 

at room temperature, has been assigned to a cluster centered (CC) transition which is a 

mixture of halide-to-metal charge transfer (XMCT) and (d → s,p) metal centered 

transitions. The term ‘metal-cluster-centered’ was coined to emphasize that the 

transition is localized on the Cu4I4 cluster and is essentially independent of the ligand. 

The Cu···Cu distance is a fundamental parameter which determines the presence of CC 

bands and must be shorter than the orbital interaction radius (which is equal to the sum 

of Van der Waals radii of two copper atoms), estimated to be 2.8 Å.
109

 Usually, at room 

temperature the CC transition is combined with a metal-to-ligand charge transfer 

(MLCT).
109-110

 

 

1.1.2.3. Nanoprocessing and size-dependent properties 

The typical approaches to generate miniaturized systems in a controlled and repeatable 

way are top-down and bottom-up approaches.
111-115

 Top-down methods employ tools 

that reduce the size of bulk materials using different strategies to produce nanostructures 

with the desired geometry. This approach faces many challenges such as complexity, 

size limitation around 10-15 nm, and high cost of clean rooms, operation and 

maintenance of the equipment. On the other hand, bottom-up strategies take the 

advantage of self-assembly processes of the atomic and molecular components into 

nanoscale structures by means of covalent and/or non-covalent interactions. This 

concept somehow tries to mimic the biological systems, for instance, the formation of 

the double helix in the deoxyribonucleic acid (DNA) molecules is based on the self-

assembly of the DNA bases.
116 

The miniaturization of CPs to the nanometer size is an area of growing interest which is 

trying to develop a new class of highly tailorable functional materials that keep the 

classical characteristic of bulk CPs with the advantages of nanometer features.
14, 20, 48-49, 

54, 62, 73, 78-79, 117-121
 According to their dimensionality, nanoscale coordination polymers 

(NCPs) can be classified as 0D (nanoparticles, including nanospheres and particles with 

polyhedral shape),
122-123

 1D (fibers, tubes, rods, tapes…)
124-125

 and 2D (thin films and 

membranes).
126

 On the other hand, NCPs can be classified, based on their structural 

regularity, into amorphous or crystalline. Crystalline NCPs offer a good understanding 

of their composition and structure, and greatly facilitate the determination of structure-

property relationships in this class of nanomaterials. Indeed, many strategies have been 

reported to prepare crystalline NCPs. For instance, crystalline NCPs can be obtained 

controlling the nucleation and growth of the building blocks through the self-assembly 

process, and their interactions at specific locations on surfaces.
127-128

 

Among these strategies, the fast precipitation approach, where nanoparticles are 

insoluble in the solvent system whereas the individual precursors are soluble, is widely 

used for the synthesis of crystalline NCPs.
127

 In addition, hydrothermal synthesis, 

water-in-oil (or reverse) micelles, and microemulsions
129

 (the micelles in the 
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microemulsion act as nanoreactors that assist in controlling the kinetics of particle 

nucleation and growth), have been successfully used to prepare crystalline NCPs. As far 

as 2D NCPs are concerned, it is not unusual to find examples of thin films of these 

nanostructures prepared by liquid-liquid interfacial synthesis; this method is suitable for 

both 1D and 2D CPs, like those described by Nishihara et al.
130-142

 

Due to the important role that 1D nanostructures can play in many applications, 

including electronics,
125

 optics,
143

 magnetic devices,
144

 sensors,
145-146

 and as template 

for functional species,
124

 a great effort has been directed toward the development of 

methods to get control in the formation of 1D-CPs nanostructures (1D-NCPs), such as 

wires, rods, tubes, and fibres. However, this field of research is still in its infancy, so 

very few examples have been reported so far. 

The development in the nanofabrication techniques has given rise to a revolution in the 

nanoelectronics industry by scaling down the electronic chips and devices. Most of the 

interest in nanotechnology is directed toward the precise organization of such 

nanostructures into more complex nano-architectures and devices. In order to 

manufacture electronic devices or integrated circuits in molecular scale, different 

molecular components are required. Molecular wire candidates have to fit some 

requirements, namely good electrical properties, control over the synthesis conditions, 

and nanoscale self-organization. If all these requirements are fulfilled, it will be possible 

to inter-connect and organize them into a molecular circuit.
147-148

 

On the other hand, the endless tailorability of CPs that results from the infinite choice of 

building blocks suggest their potential use for electronic applications.
149

 Thus, 

conductive nanofibers or single chain of 1D-CPs are of great importance for molecular 

electronics, since they can act as molecular wires. The selected building blocks have to 

produce 1D-NCPs with two essential features so as to be accessible for molecular 

electronics applications: firstly, they have to possess high electrical conductivity at the 

nanometer scale; secondly, they must be able to participate in molecular recognition 

processes to assemble complex structures. 

New methodologies have been developed to isolate few/single chains of 1D-NCPs on 

insulator substrates (Figure 1.14) in order to enable their electrical characterization. In 

this regard, few examples of 1D-NCPs have been tested as molecular wires.
150

 Once 

again, MMX have been revealed as some of the most suitable candidates to be subjected 

to these studies, due to their excellent electrical properties.
48-49, 62, 73, 78-79

 Recently, 

Zamora and co-workers
151

 were able to isolate nanoribbons of [Pt2I(dta)4]n (dta = 

MeCS2 = dithioacetate) on mica or highly oriented pyrolytic graphite (HOPG) surfaces. 

The preparation of the samples was performed by sublimation of single crystals of this 

CP under high vacuum conditions, obtaining nanoribbons with thicknesses of 3.5 nm 

and a metallic behavior coincident with that of the bulk crystals. The measurement of 

the electrical conductivity of the nanowires was achieved in the AFM device, by using 

as electrodes a gold layer connected to the nanostructures and the AFM probe itself 

(Figure 1.15). 
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Figure 1.14. Examples of 1D-CPs which have been deposited on surfaces as 

nanostructures, considered as potential candidates to act as nanowires.
125

 

From a different point of view, CPs containing biomolecules or bioinspired molecules 

(Bio-CPs) present great advantages in terms of biocompatibility, turning them into 

excellent candidates to be used in biomedical applications. These applications include 

biosensing
152

 or delivery of certain molecules such as oligonucleotides or DNA itself.
153

 

An example of the latter has recently been reported by Vegas et al.
154

 It consisted of a 

1D-CP with copper(II) as metal center, a modified nucleobase (thymine-1-acetic acid, 

TAcOH) as terminal ligand and 4,4’-bipyridyl (bpy) as bridging ligand, namely 

[Cu(OAcT)2(µ-bpy)(OH2)]n. By a simple bottom-up approach it was possible to obtain 

this CP in the shape of nanofibers with thicknesses equivalent to 12 to 50 single chains, 

widths of 185 nm and lengths of a few microns. The width of the nanofibers could be 

tuned when changing synthetic conditions such as the pH of the starting solution, never 

reaching values over 300 nm. These nanofibers proved to interact with oligonucleotide 

chains, showing preference for Poly-deoxyadenosine (Poly-A). The fact that the 

terminal ligands of the CP could recognize their complementary base, as well as the low 

sizes of the nanostructures (which would allow them to enter the body of a living 

being), opens them the door to be used as nanocarriers (Figure 1.16). 
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Figure 1.15. (a) Schematic representation of a single chain of [Pt2I(dta)4]n. (b) AFM 

image of single nanoribbon on a HOPG surface directly sublimated from [Pt2I(dta)4]n 

crystals. The inset shows its height profile taken across one of the nanoribbons. (c) 

Scheme of the electronic circuit used to measure the current flowing through the 

nanoribbons (the gold electrode has been omitted for clarity). (d) I-V curve taken by 

contacting the nanoribbon at a distance of 100 nm from the gold electrode.
151

 

 

Figure 1.16. (a,b) Crystal structure of [Cu(OAcT)2(µ-bpy)(OH2)]n: (a) asymmetric unit 

with an extra bpy molecule; (b) Schematic representation of the 1D chain which 

conforms the CP. (c) AFM image of [Cu(OAcT)2(µ-bpy)(OH2)]n nanofibers, with its 

height profile across the white horizontal line. (d) Affinity of different oligonucleotides 

towards the CP. Equivalence: Poly-A = 5’-(dA)10-3’; Poly-T = 5’-(dT)10-3’; Poly-C = 

5’-(dC)10-3’; Poly-G: 5’-(dG)10-3’; SCR = 5’-dTdCdGdTdAdAdGdCdAdT-3’. Taken 

from reference 
154

. 
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1.2. Stimuli-responsive materials 

Some materials show what is known as a dynamic structure. This means that small 

variations in physical stimuli, such as temperature or pressure, or chemical ones, such as 

the presence of a certain molecule as a vapor, induces slight variations in the distances 

and angles present in their structure, therefore causing a change in one or more 

properties of these materials, which is called a response. This is why these compounds 

are known as stimuli-responsive materials. The study of stimuli-responsive features has 

its origin in biological systems, where the presence of a stimulus triggers a series of 

reactions within the organism.
94

 Starting from this basis, the field of dynamic materials 

has become a multidisciplinary one.
155

 

Many materials have been proven to act as stimuli-responsive materials. This section 

will be focused on those metal-organic compounds which show this interesting 

behavior. 

Many coordination compounds show a responsive behavior when exposed to a physical 

stimulus, such as temperature or pressure. When the affected property is luminescence, 

the terms “luminescence thermochromism” and “luminescence mechanochromism” 

arise. Compounds with metal centers showing a d
10

 electronic configuration (Cu
+
, Au

+
, 

Zn
2+

…) with flexible ligands or moieties are very likely to exhibit such features. As an 

example, herein we present a gold(I) compound, [(C6F5Au)2(µ-1,4-diisocianobenzene)], 

where C6F5
-
 is pentafluorophenyl.

156
 The as-prepared compound showed a blue 

luminescence, but when it was ground its emission shifted to a yellow color, as an effect 

of the variation in the aurophilic interactions. This behavior could be reverted to its 

original state when the compound was exposed to a liquid solvent. 

 

Figure 1.17. Schematic explanation of the luminescent mechanochromic behavior of 

[(C6F5Au)2(µ-1,4-diisocianobenzene)]. Taken from references 
156

 and 
94

. 

Another kind of iconic dynamic materials are the so-called molecular machines, 

integrated by catenanes and rotaxanes. This research field, developed by Prof. Sauvage 

and Prof. Stoddart, made these two scientists be awarded with the Nobel Prize for 

Chemistry in year 2018. Focusing on catenanes, these entities consist of two interlocked 

macrocycles; to create these structures, the macrocycles must be synthesized starting 

from a precursor which acts as a ligand in a coordination compound. Once the 

macrocycles are generated, the demetallation of the coordination compound in an acidic 

medium yields the final structure of the catenane (Figure 1.18). These molecules are 

Grinding

Solvent

Blue luminescence Yellow luminescence
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known to be sensitive to metals in solution, such as lithium, to which the functional 

groups of the macrocycles can coordinate. Metals can be removed again in an acidic 

medium.
157

 

 

Figure 1.18. (a) Schematic representation of the concept of catenane. (b) An example of 

a catenane synthesized by Sauvage and co-workers.
157

 Taken from reference 
94

. 

 

As far as CPs are concerned, their study as stimuli-responsive materials is a wide and 

well known research matter. Since Hardt and co-workers discovered the thermochromic 

properties of [Cu(py)I]n,
158

 many other compounds with flexible structures have been 

thoroughly studied. Even though Cu(I)-X compounds are the clearest examples of 

coordination polymers and clusters with stimuli-responsive behavior, with changes in 

their luminescent properties when exposed to temperature, pressure or chemical stimuli, 

they will not be discussed in this chapter, but in section 2.1. Instead, herein we will 

illustrate other examples of stimuli-responsive CPs. 

One of the most commonly known and widely studied classes of CPs are those with 

pores in their structures, namely Metal-Organic Frameworks (MOFs). According to 

Férey and Serre (2009),
159

 a MOF will show a stimuli-responsive (or breathing) 

behavior if it shows a tendency to expand and contract with the presence of a chemical 

or physical stimulus, derived from the flexibility of the organic bridging moieties. When 

applying a chemical stimulus, i.e. the presence of a guest molecule which can 

a

b
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accommodate in the pores of the lattice, the interaction of the functional groups of the 

flexible organic linkers with the guest molecule causes several scenarios to take place. 

In general words, these scenarios, discussed by Kitagawa,
160

 involve the expansion of 

the crystal structure of the MOF when the guest is linked, and its contraction when the 

guest is freed (Figure 1.19). 

 

Figure 1.19. The “six classes” of Kitagawa; the upper panel represents the situations 

where the guest molecule (G) is linked to the MOF; the lower panel illustrates the 

opposite. In all cases, circles represent the metal centers or SBUs, and lines stand for the 

organic linkers. (a,b) Elongation and shrinking of the 1D chain of a CP (the spaces 

between chains are occupied by G). (c,d) Superimposed (c) and shifted (d) 2D sheets. 

(e,f) Shifting of interdigitated moieties in (e), forming 1D channels where G 

accommodates. (g,h) Elongation and shrinking of flexible pillars (in (g), G is located 

between the layers). (i,j) Widening and flattening of cages delimited by rigid linkers. 

(k,l) Interpenetrated grids. Taken from reference 
159

, based on Kitagawa’s papers.
160

 

One example of this behavior, and an illustration of situations g and h in Figure 1.19, is 

the case of zirconium phosphates anchored with alkanediphosphonates which act as 

flexible pillars linking layers of these phosphates. Alberti
161

 and Clearfield
162

 

demonstrated that the phosphate groups in ZrP layers could be partially substituted by 

alkanediphosphonates when treated at moderately high temperatures (350 K). When the 

substitution degree is low, a porous 3D moiety is generated, and water molecules can 

accommodate inside the pores if the correct conditions (300 K, atmosphere with 100% 

relative humidity) take place. When water is removed, the flexible nature of the alkane 

chains makes them fold, causing the pores to dramatically shrink (Figure 1.20). This 

behavior is reversible. 
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Figure 1.20. (a) Polyhedral projection of the structure of γ-ZrP along [010] and (b) 

along [001]; (c) and (d) [010] projections of the completely pillared Zr 1,4- and 1,10-

alkane diphosphonates, (e) a schematic view of the fully hydrated 

phosphate/diphosphonate and (f) of the corresponding dehydrated sample showing the 

contraction of the carbon chain. Zr octahedra are in pale blue, phosphate groups in 

yellow, water molecules in dark blue, OH groups in red and white and the carbons in 

black. Taken from reference 
159

. 

As explained before for the general cases of metal-organic entities, it is usual to find 

that a stimuli-responsive behavior induces a reversible shift in a property of the 

material. An example of a CP with such characteristics is the electrically responsive 

MOF [Cu(TCNQ)], where TCNQ
·-
 is the radical anion of 7,7,8,8-

tetracianoquinododimethane. This MOF was synthesized as two polymorphs, namely 

forms I and II, with radically different electrical conductivities: I is a semiconductor 

with a room-temperature electrical conductivity of 4.8·10
-3

 S·cm
-1

, whereas II is almost 

an insulator, showing a conductivity of 5.8·10
-7

 S·cm
-1

. When a sample of II is 

subjected to a voltage in the range between 0 and 6 V, a curious behavior is observed: 

when reaching 3 V, the compound acts as a switch, changing to a different polymorph 

which was named as III, which shows a conducting behavior. At 6 V, this intermediate 
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phase transforms into polymorph I, with the highest conductivity. This behavior is 

reversible, so when the electric potential is removed, the MOF gradually reverts to its 

original state (phase II) (Figure 1.21).
163

 

 

Figure 1.21. (a) Schematic representation of [Cu(TCNQ)]n in its polymorphic forms I 

(left) and II (right). (b) I-V curves of [Cu(TCNQ)]n under applied voltages between 0 

and 6 V; the first scan illustrates the switch-like behavior of this MOF. (c) Ball-and-

stick representation of the voltage-dependent transitions between the three phases of 

[Cu(TCNQ)]n. Adapted from reference 
163

. 
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1.3. Objectives of the thesis 

The purpose of this thesis can be summarized in the following statement: 

The design and synthesis of new stimuli-responsive materials and nanomaterials based 

on CPs with different dimensionalities (one- or two-dimensional), structures bearing 

flexible copper(I)-halogen chains and terminal ligands with molecular recognition 

capability, enabling them to show electrical and luminescent properties which can be 

tuned with physical or chemical stimuli. 

To achieve this goal, we have selected as building blocks copper(I) iodide and several 

nitrogen-donor aromatic ligands. The aim of Cu(I) as metal center is to provide 

luminescent behavior to out CPs thanks to its d
10

 electronic configuration; moreover, the 

presence of iodide as bridging ligand imbues the CPs with very flexible structures. 

As far as the organic ligands are concerned, N-donor aromatic ligands such as pyridines, 

pyrimidines and pyrazines are soft bases which easily coordinate to Cu(I), thus enabling 

the formation of 1D chains where these aromatic molecules act as terminal ligands. The 

functional groups present in the structure of these ligands will add molecular 

recognition capability to our CPs, and therefore they will be able to respond to chemical 

stimuli as well as physical ones. The selected ligands and precursors have been 

isonicotinic acid (HIN), ethyl isonicotinate (EtIN), 2-amino-5-nitropyridine (ANP), 

methyl isonicotinate (MeIN), methyl 2-aminoisonicotinate (NH2-MeIN), aminopyrazine 

(Apyz), 3-chloroisonicotinic acid (Cl-HIN) and 3,5-dichloropyridine (Cl2-py). 

In order to implement these new compounds in industrial or daily-life applications, they 

will also be used as dopants in composite materials by mixing them with organic 

polymers which will act as matrices. The selected organic matrices are the flexible 

polymers polyvinylidene difluoride (PVDF) and polylactic acid (PLA), the latter having 

the advantage of being biodegradable. 

In order to fulfill this general purpose, several specific objectives have been established: 

1. Synthesis and characterization of CPs as multifunctional and stimuli-responsive 

materials and nanomaterials: 

a) Synthesis of coordination polymers via room-temperature and solvothermal methods, 

and characterization of the products by means of spectroscopic and other 

complementary techniques. 

b) Study of their luminescent and electrical properties in bulk, and of the influence of 

physical and chemical stimuli in these properties. 

c) Nanoprocessing of the CPs and study of their properties in the nanoscale. 
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2. Preparation of smart and flexible composite materials 

a) Combination of nanostructures of the CPs with flexible organic matrices; control 

over the thickness of the resulting films by varying the deposition method. 

b) Morphological characterization and study of the luminescent and mechanical 

properties of the composites. 
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Chapter 2. Coordination Polymers based on the flexibility of 

the copper(I)-iodide double zigzag chain 
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2.1. Introduction: the double zigzag Cu(I)-I chain. 

Among coordination polymers (CPs), those containing copper(I) ascend to thousands, 

with as many discrete compounds formed by clusters of this metal center. Within this 

family of CPs arises a large sub-family, formed by compounds with the general formula 

[CuXL]n, where X is a halide and L is an organic ligand, generally a N-donor or S-

donor ligand. Although these compounds were discovered for around a century,
1
 it was 

not until the 1970s that the scientific community started showing a massive interest for 

their synthesis, structure and properties. This was propitiated by a great advance in the 

development of X-ray diffraction techniques.
2-30

 

[CuXL]n CPs can present a wide variety of structural motifs (Figure 2.1), but one of the 

most common ones is the double zigzag chain (Figure 2.2).
10

 These compounds are 

characterized for showing short Cu···Cu distances, close to (or lower than) the sum of 

Van der Waals radii (2.80 Å), as well as great flexibility, arising from a very good 

overlapping between the orbitals of copper and halogen (which is even better when the 

halogen is iodine). As explained in section 1.2, most stimuli-responsive materials show 

this kind of behavior due to slight, but critical, structure changes caused by the effect of 

stimuli such as pressure, temperature or certain chemical compounds present in the 

environment surrounding them. In this case, when these external stimuli exert their 

effects on Cu(I)-I based compounds, they will behave like elastic springs (Figure 2.3), 

with a subsequent modification in the Cu···Cu and Cu-X distances and in the angles. 

Thus, a slight shrinking of the Cu···Cu distances improves the metallophilic interactions 

between the copper atoms, also known as cuprophilic interactions. The term 

cuprophilicity was coined in the 1990s, and this phenomenon has been studied for years 

as the cause of the variations in the luminescent properties of these compounds.
31-33
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Figure 2.1. Compilation of all the structures displayed by CPs based on metal-halogen 

chains (Metal center: ○; Halide ligand: ●). (1) Linear chain. (2) Single bound chain. (3) 

Ribbon-shaped chain (common in anionic chains). (4) Twisted ribbon. (5) Knotted 

string. (6) Single zigzag chain. (7) Double zigzag chain. (8) Double bent chain. (9) 

Zigzag ribbon. (10) Double ribbon. Taken from reference 
10

. 

 

Figure 2.2. Scheme of the double zigzag chain. Taken from reference 
34
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Figure 2.3. Representation of a 1D Cu(I)-I CP behaving like an elastic spring. Cu: 

orange; I: purple; C: grey; H: white; N: blue; O: red Taken from reference 
13

 (front 

cover). 

 

2.1.1. Stimuli-responsive behavior of Cu(I)-I compounds 

As explained above, the presence of stimuli such as temperature, pressure or certain 

vapors can induce structural changes in the Cu(I)-I chains. The aim of this section is to 

outline the effects of these stimuli over several examples of Cu(I)-X based compounds 

studied over the years. 

 

2.1.1.1. Temperature-dependent properties 

Cu(I)-I double chains are especially sensitive to temperature changes, since the usual 

structural contraction that compounds suffer when temperature decreases, this originates 

a shortening of Cu···Cu and Cu-I distances, typically allowing a better interaction 

between these atoms. 

The first Cu(I)-I compound found to show luminescence thermochromism is [CuI(py)]4 

(py = pyridine) a discrete cluster compound discovered by Hardt and co-workers in 

1977.
35

 The features of this compound consist of a shift in the luminescence maximum, 

from 600 nm (orange-yellow) at 300 K to 450 nm (blue) at 77 K. Since this discovery, 

many more cluster-based compounds containing substituted pyridines as terminal 

ligands have been synthesized and studied.
31, 36-37

 In all cases, luminescence at room 

temperature is associated with a combination of a halide-to-metal charge transfer 
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(
3
XMCT) and a cluster-centered 3d

10
→3d

9
4(s,p)

1
 transition (

3
CC), whereas at low 

temperatures a higher energy transition associated to a halide-to-ligand charge transfer 

(
3
XLCT) arises. All these transitions have triplet states as their origin so, according to 

the Jablonski diagram (see section 1.1.2.2, Figure 1.12), they correspond to 

phosphorescence. 

These findings have been verified for CPs where the [CuxIx] cluster is part of the 

structural moiety. Sometimes the emission of this cluster finds itself combined to the 

emissive behavior of another feature of the same compound, including other metal 

entities. This is the case of the 3-dimensional metal-organic framework (MOF) 

[(CuI4I4)3(Cu
I
6)2(3-ptt)12]n·24nDEF·12nH2O (3-ptt = 5-(3-pyridyl)-1H-1,2,4-triazole-3-

thiolate; DEF = diethylformamide), described by Hong and co-workers.
38

 In this CP, the 

thermochromic behavior displayed by the [Cu4I4] cluster coexists with the near infrared 

(NIR) emission of the [Cu6S6] clusters, creating a compound with an extremely rare 

dual emission which exists because the electronic states involving each metal cluster do 

not interfere. Thus, at room temperature, this compound displays only a NIR emission 

corresponding to that of the [Cu6S6] cluster, whereas at low temperatures this NIR band 

shifts to lower energies and a new intense emission centered at 590 nm shows up 

(Figure 2.4). 

 

Figure 2.4. (a) Asymmetric unit of [(CuI4I4)3(Cu
I
6)2(3-ptt)12]n·24nDEF·12nH2O; 

hydrogen atoms are omitted for clarity. (b) Experimental emission spectra of 

[(CuI4I4)3(Cu
I
6)2(3-ptt)12]n·24nDEF·12nH2O at room temperature (black) and low 

temperatures (blue and dark green), and theoretical fits of the room temperature 

spectrum. Taken from reference 
38

. 

The luminescent thermochromic properties of CPs based on Cu(I)-I double zig-zag 

chains follow the similar principles than those of cluster-based compounds, since 

Cu···Cu distances, or at least half of them, also tend to be closely similar to 2.80 Å, 

twice the van der Waals radius of Cu(I), and therefore they display the same 
3
XMCT 

and 
3
CC transitions at room temperature, although the transition at low temperatures 

implies a charge transfer between the metal-halide skeleton and the ligand, namely 
3
(M 

+ X)LCT. Still, depending on the terminal ligands of the Cu(I)-I double chains, the 

thermochromism displayed by each CP may drastically vary (Table 2.1). Some of the 
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compounds presented in this thesis (like, for example, 4 and 5), are examples of the 

dramatic changes in properties caused by the presence of a single functional group in 

the terminal ligands. 

Table 2.1. Temperature-dependent emissive behavior data of some Cu(I)-I double-

chain-based coordination polymers. Taken from reference 
34

. 

CP Dimensionality T 

(K) 

λem 

(nm) 

Cu···Cu 

distances (Å) 

Reference 

[Cu2I2(pyz)]n 2D 300 

80 

560 

606 

2.805 

(unpublished) 

39
 

[Cu2I2(2-Clpyz)]n 2D 300 

80 

628 

616 

(Structure not 

available) 

39
 

[Cu2I2(2,3-dmpyz)]n 2D 300 544 2.736 
40

 

[Cu2I2(2,5-dmpyz)]n 2D 300 570 2.797 
18

 

[Cu(2,6-dmpyz)I]n 1D 300 533 2.748 
18

 

[Cu(4,6-dmpym)I]n 1D 300 512 2.986 
18

 

[Cu(3,5-lut)I]n 1D 300 436 2.889; 3.051 
18

 

[Cu2I2(4,4’-bpy)]n 2D 300 

80 

541 

568 

2.845 

(unpublished) 

41
 

[Cu(EtIN)I]n 1D 300 567 2.797; 2.813 
42

 

Legend: py = pyridine; pym = pyrimidine; pyz = pyrazine; dmpyz = dimethylpyrazine; 

lut = lutidine (dimethylpyridine); bpy = bipyridine; EtIN = ethyl isonicotinate. 

Apart from their luminescent properties, Cu(I)-I double chain-based CPs usually show 

semiconductive behavior, with electrical conductivities ranging from 10
-9

 Scm
-1

 to 10
-3

 

Scm
-1

.
13, 43-44

 Following this principle, when lowering the temperature, the electronic 

band gap will grow and, therefore, the electrical conductivity of these CPs will decrease. 

This semiconductive behavior arises from the electronic delocalization along the Cu-I 

chains, favored by the large size of the iodide ligands. If the asymmetry of the chain 

changes due to a phase transition provoked by a variation of temperature, some changes 

in the electrical conductivity will appear, and eventually this can encompass the 

presence of a hysteresis cycle (vide infra, section 2.2.2). 
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It is important to know that these studies are limited at temperatures higher than 100 °C 

because, according to the thermogravimetric analyses of these CPs, they start 

decomposing at this temperature.
42

 

 

2.1.1.2. Pressure-dependent properties 

Mechanical stresses can also affect Cu-I double chains, causing modifications in the 

Cu···Cu and Cu-I distances just like temperature does. The effect of pressure on Cu(I)-I 

was first studied in 1977. Vogler and co-workers
45

 coined the term ‘‘luminescence 

rigidochromism” referring to a change in the luminescence when the rigidity of the 

medium changed, e. g., when freezing a solution containing the compound by applying 

pressure. Ford et al.
46

 deepened in the study of the tetranuclear compound [CuI(py)]4, 

(py = pyridine); in benzene solution at 1 bar, this compound presents an emission 

centered at 695 nm, corresponding to a 
3
CC excited state. When freezing this solution, 

due to the action of pressure (at P > 72 MPa), this emission band sharply shifts to 575 

nm (Figure 2.5), close to that observed for the compound in the solid state (580 nm). 

This behavior was confirmed for solutions of this cluster-based complex in other 

solvents. 

 

Figure 2.5. Normalized emission spectra of [CuI(py)]4 (py = pyridine) in benzene 

solution, at 1 bar and at 75 MPa. Taken from reference 
46

. 

However, unlike clusters, when a CP is dissolved, two different scenarios can take 

place. On the one hand, it undergoes solvolysis; on the other hand, it dissociates into its 

building blocks. In both cases, it gives rise to the cleavage of the CP and the formation 

of different species in solution. Therefore, the studies of the pressure in solution are 

hampered and the pressure-dependent behavior of a CP must be carried out in the solid 

state. 
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Prior to the description of the mechanochromism of Cu(I)-I chains, it has to be noticed 

that not all these compounds present this kind of behavior. The variations in the 

distances and angles in the structure and the ligands which decorate the chains limit this 

feature. 

Initially, the simplest way to put one of these CPs through a mechanical stress is to 

grind it. Many studies carried out on Cu-I clusters and CPs show that, when they are 

ground, they suffer a loss of crystallinity or a phase transition which causes a sharp 

variation of their emission intensity and wavelength.
15-16

 However, grinding does not 

always imply a loss of crystallinity, so more complex approaches are needed to study 

CPs which keep being crystalline when pressure increases. 

One of these complex approaches consists of the use of a diamond anvil cell (DAC), 

allowing the use of ultra-high pressures with a suitable control of the measurement. This 

experimental set-up allows both the measurement of the changes in emission of the 

material at different pressures and its structural variations, therefore allowing 

establishing a comparison to rationalize the observed variations. Thus, González-Platas 

and co-workers
47

 used this approach to report a 1D CP with 6-methylquinoline (6mq) as 

terminal ligand, namely [Cu(6mq)I]n. This CP showed an emission centered at 550 nm 

at ambient conditions, arising from a halide-to-ligand charge transfer excited state 

(
3
XMCT); as pressure is raised above 800 MPa, and up to 6.45 GPa, three new emission 

bands centered at 515, 647 and 712 nm appear (Figure 2.6). The structural changes 

observed under pressure confirmed that Cu···Cu distances shrank as pressure increased, 

from values of 2.796 and 2.466 Å at 1 bar to 2.683 and 2.932 Å at 6.45 GPa, in this 

case. Then, the appearance of these new bands was attributed to an enhancement of the 

cluster-centered transition (
3
CC). 

 

Figure 2.6. (a) Asymmetric unit of the crystal structure of [Cu(6mq)I]n (6mq = 6-

methylquinoline); C: gray, H: white, N: blue, Cu: indigo; I: purple. (b) Pressure-

dependent emissive behavior of [Cu(6mq)I]n; the sharp peak at 690 nm corresponds to 

the emission of a ruby sphere used as pressure sensor. Taken from reference 
47

. 
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Sometimes the application of pressure to a Cu(I)-I CP leads to a quenching of the 

luminescence, caused by a bad overlapping of the hybridized dz
2
 orbitals of the copper 

atoms. This phenomenon will be explained in further detail for compounds 5 and 6 (vide 

infra, section 2.2.3). 

 

2.1.1.3. Response to vapors 

As afore mentioned, Cu-I chain-based CPs can also be sensitive to chemical stimuli. For 

instance, the presence of certain vapors of molecules can interact with these materials 

and produce a significant change in its physical properties i.e. emission and/or electrical 

conductivity. These vapor-to-solid interactions induce structural changes in the Cu-I 

chain CPs driven by the molecular recognition capabilities of certain terminal ligands. 

The interactions between the terminal ligands and the vapors can occur via π-π stacking, 

van der Waals forces and/or hydrogen bonds. 

Since the discovery of [Cu(py)I]n (py = pyridine) (with n = 4 or ∞),
48-49

 many Cu(I)-I 

based CPs and clusters have been studied, but it was not until 1998 when Ford et al.
50

 

found out the first example of these compounds which showed a vapochromic behavior. 

[Cu(4-pic)I]∞ (4-pic = 4-methylpyridine, or 4-pycoline) suffered a reversible 

transformation from its polymeric staircase motif into a four-member cluster, [Cu(4-

pic)I]4, when exposed to toluene, both in liquid or vapor phase. On the contrary, when 

exposing [Cu(4-pic)I]4 to pentane, it reverted to the polymeric form [Cu(4-pic)I]∞. This 

induced an evident change in the luminescent properties of the compound (Figure 2.7). 
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Figure 2.7. Crystal structures of [Cu(4-pic)I]∞ (4-pic = 4-methylpyridine) (a) and 

[Cu(4-pic)I]4·Toluene (b). (c) Variation of the luminescence spectrum of [Cu(4-pic)I]∞ 

as it transforms into [Cu(4-pic)I]4 in the presence of toluene. (d) Variation of the 

luminescence spectrum of [Cu(4-pic)I]4 as it transforms into [Cu(4-pic)I]∞ in the 

presence of n-pentane. The shapes of the aromatic rings in (a) are due to a 50% 

delocalization for their orientation. (c, d) Taken from reference 
51

. 

This study has been extended to many other compounds since then. In 2000, Ford et 

al.
51

 extended their studies to the similar compounds [Cu(3-pic)I]∞ and [Cu(3-pic)I]4 (3-

pic = 3-methylpyridine, or 3-pycoline), observing no response to gases. 

More recently, Hassanein et al.
13-14

 reported a 1D CP with 2-amino-5-nitropyridine 

(ANP) in its structure (3). Its high ability to establish hydrogen bonding interactions 

with some molecules proved it to be an excellent sensor for vapors of methanol, ethanol 

or, specially, acetic acid. When exposed to these molecules, the conductivity of this CP 

raised drastically, up to three orders of magnitude (Figure 2.8). In this thesis we will 

describe how the presence of acetic vapors affects the lateral dimensions of 

nanostructures of this compound. 

b

c d

a
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Figure 2.8. (a) Crystal structure of [Cu(ANP)I]n (ANP = 2-amino-5-nitropyridine) 

along the a axis. White: H; gray: C; blue: N; red: O; orange: Cu; purple: I. Dashed blue 

lines indicate hydrogen bonds. (b) Variation of the electrical conductivity of 

[Cu(ANP)I]n: pristine (red), exposed to methanol (blue), ethanol (gray) or acetic acid 

(yellow). Taken from reference 
13

. 

 

2.1.2. Nanoprocessing of Cu-X CPs 

To date there are two fundamental approaches for nanoprocessing compounds based on 

the approaches of bottom-up and top-down synthesis. Bottom-up methodologies usually 

enclose on-surface (solid substrates) and interfacial syntheses (in liquid-liquid or liquid-

air interfaces), whereas the most common top-down methods are micromechanical 

exfoliation and liquid phase exfoliation.
52

 

In the case of Cu-X CPs, the general insolubility of this type of compounds allows the 

use of a top-down methodology based on sonication techniques in liquid phase (liquid 

phase exfoliation). This methodology gave its first fruits about 10 years ago, with 

interesting results like the ones obtained by Welte et al. for the 1D CP [Cu(HIN)Br]n, 

where HIN is isonicotinic acid (Figure 2.9)
44

 and for the mixed valence 2D CP 

[Cu2Br(IN)2]n (Figure 2.10).
53
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Figure 2.9. AFM topography images of [CuBr(HIN)]n (HIN = isonicotinic acid) 

nanowires deposited on polylysine treated mica (a) and gold (b) surfaces, with their 

respective height profiles across the blue lines on the upper-left corner.
44

 

 

Figure 2.10. AFM topography image of [Cu2Br(IN)2]n (IN = isonicotinate) nanosheets 

deposited on highly oriented pyrolytic graphite (HOPG) (a), with its height profile 

across the line (b).
53

 

The second approach is based on the bottom-up method, although this methodology is 

truncated by the known insolubility of the CPs. In a preliminary work, the CP 

formation-solution reversibility process based on its solubility in specific solvents was 

successfully demonstrated in related MMX chains.
54-56

 One-dimensional mixed-valence 

CPs [Pt2(RCS2)4I]n (where RCS2
-
 is a dithiocarboxylate with R = n-pentyl) could be 

synthesized as nanowires with lengths of several microns and heights between 1.5 and 

2.5 nm, corresponding to one to three MMX chains, by drop-casting of saturated 

solutions of their respective building blocks in THF over mica surfaces.
55

 On the other 

hand, other MMX-based 1D CPs, namely [Ru2(EtCO2)4X]n (where EtCO2
-
 is propionate 

and X
-
 is Br

-
 or I

-
), the morphology of the obtained nanostructures depends on the 

bridging halide and the surface where they are deposited. [Ru2(EtCO2)4Br]n structures 
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deposited in mica starting from a solution of its building blocks in aqueous SDS show a 

typical nanofiber shape, whereas those deposited on highly oriented pyrolytic graphite 

(HOPG) show a helical structure derived from their interaction with the HOPG steps.
56

 

In the case of [Ru2(EtCO2)4I]n, sonication of ethanol solutions of its building blocks 

gave rise to different nanostructures depending on the subsequent incubation time at 20 

°C before depositing the solution over mica surfaces. Thus, immediately after the 

ultrasound treatment, nanostructures of this CP showed irregular shapes, progressively 

evolving into well-defined nanowires after 43 days of incubation.
57

 

 

Figure 2.11. (a) Crystal structure of [CuX(TAA)]n (with X = Br or I), showing the basic 

Cu6S6 ring (left) and its connection with other rings via the halogen atoms to conform 

the 3-dimensional structure (right). (b) Topological AFM image of a [CuI(TAA)]n sheet 

formed by drop-casting of a saturated solution of the building blocks in acetonitrile, 

with its height profiles across the blue (up) and green lines (down). Taken from 

reference 
58

. 

More recently, Troyano et al.
58

 carried out a solubility study on some CPs based on CuI 

and organosulphur ligands. It is well known that, when you dissolve a coordination 

polymer, it dissociates into its building blocks. Common solvents used to dissolve CPs 

are strongly coordinative (this is the case of DMF and DMSO), so the original structure 

of the CP cannot be recovered. However, when these Cu(I)-I based CPs are dissolved in 

acetonitrile, as the solvent evaporates they reorganize to form CP crystals. Therefore, 

when a drop of a saturated solution of these CPs is cast on a surface and allowed to 

evaporate, it leads to the formation of sub-micron structures with the same chemical 

b

a
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composition and structure found for the analogous microcrystals, like the films obtained 

for [CuI(TAA)]n (TAA = thioacetamide) (Figure 2.11). Subsequent studies performed 

on other CuI CPs
42

 confirmed that most of these compounds show the same reversible 

behavior. This finding has been a key fact that has allowed the fruition of further studies 

on the preparation of Cu-X CP based nanostructures by bottom-up methods, including a 

more recent approach based on the direct synthesis of the desired nanostructures in the 

reaction medium, taking advantage of the insolubility of the CPs. 

 

In this chapter, four new compounds based on Cu(I)-I double zigzag chains will be 

synthesized, structurally characterized and nanoprocessed, and their luminescent and 

electrical properties will be studied. Moreover, three compounds which have already 

been described will be re-synthesized as nanostructures, with the aim to compare their 

properties to those of the corresponding bulk crystals. 

 

2.2. Results and discussion 

2.2.1. Synthesis and structural characterization 

The direct reactions between copper(I) iodide and seven different N-donor aromatic 

ligands leads to the formation of compounds 1-7. For these compounds, a conventional 

synthetic approach consisting of reactions at room temperature with magnetic stirring is 

enough to obtain these compounds with reasonable yields and a high degree of purity, 

confirmed by powder X-ray diffraction (PXRD; see appendix B). The selected solvent 

was acetonitrile, or a mixture containing it, mainly because it is the best solvent which 

can dissolve copper(I) iodide. The election of a second solvent depends mainly on the 

solubility of the organic ligand, taking into account that, when both reactants are mixed 

in solution, they react faster. Scheme 2.1 summarizes the synthetic conditions leading to 

the obtainment of compounds 1-7. 

Another well-known synthetic method that is commonly used to prepare CPs is 

solvothermal synthesis. Although we have made several attempts to create different 

compounds by changing the reaction conditions, no positive results were obtained in 

any case. Instead, solvothermal reactions always led to the obtainment of the same 

compounds, but in poor yields and quality. Only a solvothermal reaction between CuI 

and aminopyrazine (Apyz) gave rise to crystals of 6, suitable for single crystal X-ray 

diffraction (SC-XRD). 

If we observe the infrared (IR) spectra of compounds 1-7, they all share typical νC=N 

bands, proper of the stretching of the aromatic rings. The rest of the bands depend on 

the functional groups linked to these rings; for instance, compounds 4, 5 and 7 present 

νC=O bands arising from the carbonyl groups, and compounds 5 and 6 present νN-H bands 

coming from the amino groups (Table 2.2) 
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Scheme 2.1. Summary of the synthetic methods leading to the obtainment of 

compounds 1-7. 

Table 2.2. Most significant stretching bands observed in the IR spectra of compounds 

1-7. 

Compound νC=N (cm
-1

) 
Other ν

~
 values 

(cm
-1

) 

Type of bond and 

vibration corresponding 

to the other ν
~
 values 

1 1290 
2400-3100 

1692 

νO-H with H-bonds 

νC=O 

2 1290 1716 νC=O 

3 1330, 1286 

3447, 3325 

1625, 1602 

1126 

νN-H 

δN-H 

νN=O 

4 1319, 1282 1724 νC=O 

5 1308, 1270 

3450, 3345 

1716 

1634, 1603 

νN-H 

νC=O 

δN-H 

6 1316 
3419, 3316 

1613, 1604 

νN-H 

δN-H 

7 1274, 1263 
2400-3100 

1697 

νO-H with H-bonds 

νC=O 

 

CuI

[Cu(HIN)I]n (1)

[Cu(EtIN)I]n (2)

[Cu(ANP)I]n (3)

[Cu(MeIN)I]n (4)[Cu(NH2-MeIN)I]n (5)

[Cu2I2(Apyz)]n (6)

[Cu(Cl-HIN)I]n (7)

MeCN/H2O 3:1
1 min

MeCN/EtOH 2:1
3 min

M
eC

N
/EtO

H
1

:1
3

0
 m

in

MeCN
1 min

MeCN
1 min

MeCN/EtOH 2:1
1 min

MeCN/EtOH 1:1
1 min
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2.2.1.1. XRD structures description 

Although the structures of compounds 1-3 have already been described by Dr. 

Hassanein,
13-14, 42

 they will also be explained herein, since they will serve to establish a 

comparative study with compounds 4-7, not only of the packing, but also of the 

properties displayed by these compounds. 

All compounds 1-7 share as structural motif the Cu(I)-I double zigzag chain (Figures 

2.12-2.18). The copper centers are coordinated to three iodides and the iminic nitrogen 

of the terminal organic ligands, with a distorted tetrahedral geometry. On the other 

hand, iodides act like bridging ligands, linking themselves to three copper centers. 

However, the intermolecular forces between chains, arising from the different functional 

groups present in the ligands, give rise to different packings. 

The carboxylic acid groups present in isonicotinic acid allow the 1D chains of 

compound 1 to form a 2D supramolecular array via the formation of complementary 

hydrogen bonds between adjacent carboxylic acid residues. This complementary H-

bonding model is a well-known supramolecular synthon which directs the 

supramolecular structure of organic molecules and coordination compounds containing 

carboxylic acid groups.
59

 The 2D supramolecular sheets are parallel to the (102) plane 

and are linked together by weak Van der Waals forces. The double chain can be 

described as Cu2I2 trapezoids sharing opposite sides with dihedral angles of 119.3°. The 

isonicotinic acid ligands are arranged in a way that they are tilted (90.6°) and twisted 

(61.0°) with respect to (w.r.t.) the propagation direction of the double chain (Figure 

2.12; Tables A1-A2 in appendix A). 
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Figure 2.12. Crystal structure of compound 1: (a) asymmetric unit; (b) lateral view of a 

Cu(I)-I double zigzag chain; (c) View of the packing of the crystal structure from the 

crystallographic b axis. Cu: orange; I: purple; C: grey; H: white; N: blue; O: red. 

Dashed red lines indicate the presence of H-bonding interactions. 

An ethoxycarbonyl group instead of a carboxylic acid totally changes the packing of the 

structure of compound 2 w.r.t. compound 1. In this case, the ethyl group makes this 

ligand bulky enough to even prevent the formation of intra-chain π-π stacking 

interactions, so the 1D chains are linked together by weak Van der Waals interactions. 

The double chain can be described as Cu2I2 rhomboids sharing opposite sides with 

dihedral angles of 120.9°. The tilt and twist angles of the ethyl isonicotinate ligands 

show values of 82.0° and 62.5°, respectively (Figure 2.13). 

a b

c
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Figure 2.13. Crystal structure of compound 2: (a) asymmetric unit; (b) lateral view of a 

Cu(I)-I double zigzag chain; (c) View of the packing of the crystal structure from the 

crystallographic a axis. Cu: orange; I: purple; C: grey; H: white; N: blue; O: red. 

Compound 3 shows two polymorphs depending on the reaction conditions used for its 

synthesis.
13

 In this case we are going to focus on the room temperature polymorph, 

since it is the one which has been prepared and subjected to further studies. The 

supramolecular arrangement of this CP is strongly directed by the presence of hydrogen 

bonds between the amino group of an ANP residue and an adjacent nitro group of a 

neighboring chain. Moreover, weak intra-chain interactions between amino groups and 

iodide ligands increase the strength of the structure. The double chain can be described 

as Cu2I2 rhomboids sharing opposite sides with dihedral angles of 120.9° (Figure 2.14). 

a b

c
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Figure 2.14. Crystal structure of compound 3: (a) asymmetric unit; (b) lateral view of a 

Cu(I)-I double zigzag chain; (c) View of the packing of the crystal structure from the 

crystallographic a axis. Cu: orange; I: purple; C: grey; H: white; N: blue; O: red. 

Dashed red lines indicate the presence of H-bonding interactions. 

Compound 4 behaves in a similar way to compound 2, but since the methoxycarbonyl 

group of methyl isonicotinate is less bulky than the ethoxycarbonyl group, the double 

chains in compound 4 are reinforced by the presence of intra-chain π-π stacking 

interactions, and the chains are linked by weak H-bonding interactions between the free 

oxygen atom of an organic residue and the hydrogens linked to the aromatic ring of an 

adjacent molecule. The double chain can be described as Cu2I2 rhomboids sharing 

opposite sides with dihedral angles of 122.1°. The tilt and twist angles of the methyl 

isonicotinate ligands show values of 88.7° and 59.1°, respectively (Figure 2.15; Tables 

A3-A4 in appendix A). 

When the temperature is lowered, compound 4 experiences a phase transition which 

takes place between 125 and 145 K (this phase transition causes a hysteresis cycle in its 

electrical behavior, as will be explained below). To rationalize this phase transition, the 

a b

c



 

 
64 

 

crystal structure of this CP has been solved at 200 and 110 K (Tables A3-A4 in 

appendix A). As can be observed, all distances experience the expected reduction; 

however, when going from 200 to 110 K, a Cu-Irail distance slightly grows (0.0020 Å). 

As a consequence, the asymmetry of the chain changes and, with it, the properties of the 

compound. All these changes are reversible. 

 

Figure 2.15. Crystal structure of compound 4: (a) asymmetric unit; (b) lateral view of a 

Cu(I)-I double zigzag chain; (c) View of the packing of the crystal structure from the 

crystallographic a axis. Cu: orange; I: purple; C: grey; H: white; N: blue; O: red. 

Dashed red lines indicate the presence of H-bonding interactions. 

At first sight, compound 5 differs from compound 4 only by the presence of an amino 

group in the organic residues of the former. However, this induces significant 

differences both in Cu···Cu distances and in the way their structures are packed. The 

amino group in the methyl 2-aminoisonicotinate ligands allows it to establish H-bonds 

with carbonylic oxygen atoms in nearby chains (Figure 2.16); these interactions are 

stronger than those observed for compound 4 due to the higher electronegativity of 

nitrogen versus a sp
2
 carbon. As a consequence of these inter-chain interactions, the 

Cu···Cu distances suffer important alterations: compound 4 is almost symmetric, with 

Cu···Cu distances of 2.751 and 2.818 Å, whereas compound 5 shows values of 2.682 

a b

c
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and 3.514 Å for these distances (Tables A3-A4 in appendix A). Therefore, one way to 

describe the chains of compound 5 is as an array of Cu2I2 dimers connected by weak 

Cu···Cu interactions. These structural differences are the main cause of the 

characteristic luminescent behavior observed for each compound. 

 

Figure 2.16. Crystal structure of compound 5: (a) asymmetric unit; (b) lateral view of a 

Cu(I)-I double zigzag chain; (c) View of the packing of the crystal structure from the 

crystallographic a axis. Cu: orange; I: purple; C: grey; H: white; N: blue; O: red. 

Dashed red lines indicate the presence of H-bonding interactions. 

As temperature is lowered, all distances in compound 5 suffer the expected reversible 

shrinking. This CP also suffers reversible structural variations when it is subjected to 

hydrostatic pressure. Studies carried out in a diamond anvil cell (DAC) using a 

methanol-ethanol-water 16:3:1 mixture as pressure-transmitting medium (it remains 

hydrostatic at pressures up to 10 GPa and above
60

) have allowed calculating the 

equations of state (EoS) and the bulk modulus (K0) of this compound, thus explaining 

a b

c
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the degree of compressibility of this material (Section B1 in appendix B). The usual 

range of bulk modulus values of organometallic compounds oscillates between 10 and 

20 GPa,
61-63

 and it is usual that Cu-I based CPs show values within this range, thus 

explaining the elasticity and flexibility of the chains.
47

 Compound 5 shows a K0 value of 

9.7 GPa, close to the lower limit of this range, due to the deformability of the inter-

chain interactions. Another consequence of the application of pressure is a drastic 

shrinking of all distances. Cu···Cu distances are the softest ones, suffering reductions of 

up to a 10.33% when pressure is increased to 7.16 GPa (Table A7 in appendix A). 

 

Figure 2.17. Crystal structure of compound 6: (a) asymmetric unit; (b) lateral view of a 

2D sheet containing three Cu(I)-I double zigzag chains; (c) View of the packing of the 

crystal structure from the crystallographic a axis. Cu: orange; I: purple; C: grey; H: 

white; N: blue; O: red. Dashed red lines indicate the presence of H-bonding interactions. 

Amino groups appear twice in every ligand residue due to a delocalization between two 

positions with 50% probability. 

So far we have seen CPs where the terminal ligand is a pyridine derivative, with a single 

coordination position available for an intermediate-soft acid like copper(I). However, 

aminopyrazine presents two iminic nitrogen atoms, which makes compound 6 the only 

2D CP among the compounds presented in this thesis. The two-dimensional sheets are 

a b

c
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conformed by 1D double zigzag chains linked together by the aminopyrazine residues, 

with the free amino groups establishing hydrogen bonds with neighboring groups from 

nearby sheets. These amino groups are delocalized between two positions with 50% 

probability. The Cu···Cu distances display an asymmetry which is similar to that of 

compound 5, but less accused, with values of 2.715 and 3.253 Å (Figure 2.17, Tables 

A5-A6 in appendix A). 

Similar to what was observed for compound 5, when lowering the temperature with the 

help of liquid nitrogen we observe a reduction in all the distances present in the 

structure of compound 6. As far as its response to pressure is concerned, pressures as 

high as 8.35 GPa cause, again, a drastic shrinking of all distances, especially Cu···Cu 

distances, which acquire values of 2.543 and 2.693 Å (Table A8 in appendix A). Its 

bulk modulus (14.3 GPa) lies within the range outlined above, given the flexibility of 

the Cu-I chain but with a low deformability of the inter-chain interactions. 

 

Figure 2.18. Crystal structure of compound 7: (a) asymmetric unit; (b) lateral view of a 

Cu(I)-I double zigzag chain; (c) View of the packing of the crystal structure from the 

crystallographic a axis. Cu: orange; I: purple; C: grey; H: white; N: blue; O: red. 

Dashed red lines indicate the presence of H-bonding interactions. 

a b

c
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Compound 7 shows a structure with features closer to those of compound 1. The 

packing is directed by complementary H-bonds between the carboxylic groups of 

neighboring 3-chloroisonicotinic acid ligands, but this CP shows an additional feature, 

consisting of weak intra-molecule chlorine-oxygen interactions which strengthen the 

structure (Figure 2.18, Tables A1-A2 in appendix A). 

 

2.2.1.2. Morphological characterization of nanoscale CPs 

The low solubility of coordination polymers 2-7 in their reaction medium allows the 

immediate formation of precipitates consisting of nanostructures of these compounds. 

Depending on the structures of each compound, these nanostructures will show different 

morphologies. 

The remarkable insolubility of isonicotinic acid in all solvents, caused by extremely 

strong hydrogen bonds, turns compound 1 into the most difficult one to nanoprocess. 

The fact that it does not precipitate in the reaction medium and, when adding a poor 

solvent, the white precipitate that forms is formed uniquely by isonicotinic acid, limits 

the nanoprocessing methods available to these two options: i) a top-down methodology 

consisting of the treatment of crystals of 1 with ultrasounds, or ii) the fast evaporation 

of a saturated solution of the building blocks (the mother solution isolated after the 

reaction is complete). However, opposite to what was expected, the sonication of 

crystals both in ultrasound bath and probe was fruitless, since the crystals tended to 

cleave along the chain, resulting in a shortening of the crystals without a significant 

reduction of the lateral dimensions (directed by H-bonds and VdW forces). This can be 

explained by the fact that inter-chain hydrogen bonding interactions are favored w.r.t. 

chain-solvent ones,
64-66

 and has been observed for all the CPs presented in this thesis. 

On the other hand, the fast evaporation of a 20 µL drop of the mother solution results in 

the formation of razor and needle-like structures with dimensions of (1.7 ± 0.9) × (11 ± 

7) μm
2
 and (0.304 ± 0.082) × (6 ± 1) μm

2
, respectively. This implies a significant 

reduction w.r.t. the length and lateral dimension of single crystals obtained by slow 

evaporation of the mother solution for 72 h, with values of (85 ± 63) × (1244 ± 549) 

μm
2
 (Figure 2.19). 

H-bonds present in 3-chloroisonicotinic acid are less strong than those of isonicotinic 

acid, so its lower insolubility allows compound 7 to be obtained as nanofibers directly 

in the reaction medium. The fibers observed by SEM show mean dimensions of (0.08 ± 

0.02) × (0.8 ± 0.3) × (40 ± 11) μm
3
, in contrast with the dimensions of the micrometric 

crystals obtained by the slow evaporation of the mother solution: (33 ± 11) × (387 ± 40) 

μm
2
 (Figure 2.20). The direct evidence of the formation of nanostructures of 7 was 

confirmed by AFM. In order to prepare the samples in a way that inter-chain 

interactions are minimized, the bottom-up methodology consisting of the direct reaction 

with magnetic stirring at a speed of 1200 rpm was selected, followed by a dilution of the 
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reaction medium. As a result, nanofibers with thicknesses between 5 and 15 nm, 

corresponding to arrays of 5 to 14 single chains, were obtained (Figure 2.21). 

 

Figure 2.19. (a) SEM image of compound 1 microcrystals obtained by slow 

evaporation of the mother solution. (b) General SEM image of compound 1 micro- and 

submicrofibers obtained by fast evaporation of a 20 μL drop of the mother solution (52 

mM). (c) Detailed SEM image of the razor-like microfibers of compound 1. (d) Detailed 

SEM image of the needle-like submicrofibers of compound 1. 

 

Figure 2.20. (a) SEM image of microcrystals of compound 7 obtained by direct reaction 

at 25 °C between CuI and the Cl-HIN ligand in MeCN/EtOH, after 2 days of slow 

evaporation: large area (bar-scale 200 μm). (b−d) General and detailed SEM images of 

compound 7 nanofibers obtained after 3 min of reaction time. 
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Figure 2.21. AFM images of nanofibers of compound 7 on SiO2 prepared by magnetic 

stirring (1200 rpm) and drop-casting, with their height profiles across the green and blue 

lines. 

Compounds 2 and 3 were also obtained by simple one-pot synthetic procedures. By 

mixing copper(I) iodide and liquid ethyl isonicotinate in acetonitrile, compound 2 was 

obtained in the shape of nanoribbons. The SEM and AFM images of these nanoribbons 

(Figure 2.22) show lateral dimensions of (60 ± 28) × (3 ± 2) μm
2
 and thicknesses 

between 6 and 25 nm, in clear contrast with the regular dimensions of the micrometric 

crystals, these ones being (61 ± 15) × (1700 ± 400) μm
2
. 

On the other hand, the reaction between CuI and 2-amino-5-nitropyridine (ANP) in 

acetonitrile-ethanol 2:1 leads to the formation of nanofibers of compound 3. The mean 

dimensions of these fibers have been checked by SEM and AFM (Figure 2.23), finding 

lengths of over 100 μm, widths of (0.3 ± 0.2) μm and thicknesses between 50 and 250 

nm. The respective micrometric crystals showed dimensions of (22 ± 12) × (1000 ± 

500) μm
2
. 

Although we have been able to obtain nanostructures of these compounds, they need to 

be shortened in order to be useful in different applications. Following this principle, we 

have studied the influence of the reaction conditions in the lateral dimensions of these 

nanostructures (Table 2.3). Taking into account the errors made in the measurements, 

we can conclude that sonication and an increase in the initial concentration of the 

building blocks does not produce significant variation in the lateral dimensions of our 

nanostructures, with one exception: the lateral dimensions of compound 3 show 

significantly higher values when they are subjected to sonication in ultrasound bath 

(compare experiment b3 vs. e3). As explained before for compound 1, ultrasounds seem 

to favor the formation of hydrogen bonds, and as temperature increases the rate of 

formation of these H-bonds grows faster, so longer reaction times will provoke an 

increase in the lateral dimensions of the nanofibers of 3. Higher reactant concentrations 

favor agglomeration processes, so the highest width values are obtained for experiment 

f3. Compound 2 does not suffer these variations since it does not have an intrinsic 

capacity to establish hydrogen bonding interactions. 

The use of a mixture of solvents containing water (MeCN/H2O 1:1) for these reactions 

induces a significant decrease in the lengths of the nanostructures of both 2 and 3 

a b
12 
nm

10 nm

15 nm

5 nm
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(experiments g2 and g3). Therefore, the use of a poor solvent seems to play a crucial 

role in the fast precipitation of the CPs once they are formed in a water containing 

medium. Indeed, size reduction using a poor solvent is well-known for nanoparticles of 

CPs, including MOFs.
67-68

 

Table 2.3. Effect of the reaction time, concentration, solvent and stirring method on the 

lateral dimensions of the nanostructures of compounds 2 and 3 at 20 °C for magnetic 

stirring and between 20 and 30 °C for the sonication in ultrasound bath. The means and 

standard deviations have been calculated from data corresponding to 60 nanocrystals. 

Experiment 
Reaction 

method 
Solvent 

Reaction 

Time (min.) 

[CuI] and [ANP] or 

[EtIN] (mM) 

Mean fibre width 

(mm) 

Mean fibre 

length (mm) 

a3 
Magnetic 

stirring 

CH3CN/ 

EtOH 
1 35 0.3 ± 0.2 >100 

b3 
Magnetic 

stirring 

CH3CN/ 

EtOH 
9 35 0.3 ± 0.1 >100 

c3 
Magnetic 

stirring 

CH3CN/ 

EtOH 
9 70 0.5 ± 0.1 >100 

d3 
Ultrasound 

bath 

CH3CN/ 

EtOH 
1 35 0.3 ± 0.2 >100 

e3 
Ultrasound 

bath 

CH3CN/ 

EtOH 
9 35 1.3 ± 0.7 >100 

f3 
Ultrasound 

bath 

CH3CN/ 

EtOH 
9 70 2 ± 1 >100 

g3 
Ultrasound 

bath 

CH3CN/ 

H2O 
9 35 0.6 ± 0.4 65 ± 28 

a2 
Magnetic 

stirring 
CH3CN 1 35 3 ± 2 60 ± 28 

b2 
Magnetic 

stirring 
CH3CN 9 35 7 ± 3 31 ± 18 

c2 
Magnetic 

stirring 
CH3CN 9 70 7 ± 2 20 ± 4 

d2 
Ultrasound 

bath 
CH3CN 1 35 7 ± 2 23 ± 5 

e2 
Ultrasound 

bath 
CH3CN 9 35 5 ± 3 46 ± 5 

f2 
Ultrasound 

bath 
CH3CN 9 70 9 ± 3 22 ± 7 

g2 
Ultrasound 

bath 

CH3CN/ 

H2O 
9 35 2  0.6 92 

 

 

Figure 2.22. (a, b) SEM images of compound 2: microcrystals (a) and nanofibres 

prepared by magnetic stirring at 500 rpm (b). (c) AFM image of fibers of compound 2 

with their height profiles across the lines (insets). 
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Figure 2.23. (a, b) SEM images of compound 3: microcrystals (a) and nanofibres 

prepared by magnetic stirring at 500 rpm (b). (c) AFM image of fibers of compound 3 

with their height profiles across the lines (insets). 

When crystals of compound 3 are exposed to acetic acid vapors, they experience a 

sorption process and, consequently, they become amorphous but their electrical 

conductivity increases by three orders of magnitude. This process is reversible, and can 

be reverted by leaving the crystals in the open air. This is the consequence of the 

outstanding capacity of the ANP residues to selectively recognize certain molecules by 

establishing hydrogen bonding interactions with them, and it is translated in slight 

variations of the distances and angles within the double Cu-I chains. 

In order to check if the nanofibers of compound 3 suffer the same sorption process than 

the single crystals, a sample containing these nanofibers was exposed to acetic acid 

vapors for 72 hours. The new 3·AcOH material was characterized by elemental 

analysis, IR, PXRD and SEM. Elemental analysis quantifies an acetic acid adsorption of 

ca. 10 wt%. The IR spectrum of 3·AcOH shows one additional band to those observed 

in the initial material at 1715 cm
-1

, corresponding to the C=O stretching of acetic acid. 

The PXRD pattern did not show any significant changes (Figure C4 in appendix C) 

with respect to that of the pristine 3. When studying the nanostructures by SEM, the 

morphology of the fibers after exposure to acetic acid changed, with their widths 

doubled to (740 ± 468) nm (Figure 2.24a). Consequently, acetic acid links to the ANP 

terminal ligands via hydrogen bonding interactions, favoring the broadening of the 

fibers without changing their crystal structure. Therefore, it can be stated that the 

interaction between 3 and the AcOH molecules takes place at the surface of the 

nanofibers leading to an enhancement in the width while retaining its crystal structure. 

Finally, the reversibility of the acetic acid adsorption by these nanofibers was studied. 

For this purpose, 3·AcOH was allowed to stay in air for 30 days. The SEM 

characterization of the new material shows lateral dimensions of (600 ± 497) nm, which 

are slightly thinner in width than 3·AcOH but wider than the starting material (Figure 

2.24b). The IR spectrum in this state still shows the vibration assigned to the carboxylic 

group. Desorption of AcOH molecules from 3·AcOH is completed upon heating at 50 

°C for 2 hours. IR spectroscopy confirms the absence of carboxylic groups. 

Morphological characterization of the desorbed crystalline material shows widths of 

(443 ± 332) nm (Figure 2.24c) which agrees with those observed in the starting 

nanofibers of 3. 

a

200 µm 2 µm
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Figure 2.24. (a) SEM image of nanofibers of 3 after being exposed to acetic acid 

(AcOH) vapors for 72 h. (b) SEM image of the same nanofibers exposed to AcOH 

vapors upon standing in air for 30 d. (c) SEM image of the same nanofibres exposed to 

AcOH vapors upon standing in air for 30 d and heated at 50 °C for 2 h. 

Nanofibers of compounds 4 and 5 can easily be obtained in a similar way to those 

outlined for compounds 2 and 3, this is, by direct reactions between their building 

blocks. The micrometric crystals obtained by the slow evaporation of the mother liquors 

show dimensions of (2000 ± 500) × (150 ± 50) µm
2
 for compound 4 (Figure 2.25a) and 

(1500 ± 500) × (78 ± 30) µm
2
 for compound 5 (Figure 2.26a). When these compounds 

are reduced to the nanometric scale they still show lengths higher than 100 µm, but their 

lateral dimensions are significantly lower, these ones being (811 ± 348) nm and (501 ± 

389) nm, respectively (Figures 2.25b-d and 2.26b-d). The AFM images of these 

nanofibers show thicknesses between 50 and 550 nm for compound 4 (Figure 2.27a,b) 

and between 5 and 15 nm for compound 5 (Figure 2.27c,d). 

 

Figure 2.25. (a) SEM image of compound 4 microcrystals obtained by slow 

evaporation at 25 °C. (b-d) SEM images of compound 4 nanofibers obtained by fast 

precipitation at 25 °C. 
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Figure 2.26. (a) SEM image of compound 5 microcrystals obtained by slow 

evaporation at 25 °C. (b-d) SEM images of compound 5 nanofibers obtained by fast 

precipitation at 25 °C. 

 

Figure 2.27. (a) AFM image of nano- and sub-microfibers of compound 4 on SiO2 

prepared by drop casting, with their height profile across the green line. (b) A zoomed 

area of (a), with its height profiles across the blue and green lines. (c) AFM image of 

compound 5 nanofibers on SiO2 prepared by dip-coating. (d) A zoomed area of (c), the 

black rectangle, with its height profiles across the green and blue lines. 
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Due to its two-dimensional nature, compound 6 is the only one in this thesis which 

crystallizes in the shape of sheets. Compound 6 nanosheets can be obtained by the direct 

reaction of CuI and aminopyrazine in acetonitrile/water 3:1. Whereas crystals show 

lateral dimensions of (38 ± 10) × (21 ± 7) μm
2
 (Figure 2.28a,b), nanosheets present 

dimensions of (372 ± 127) × (1209 ± 300) nm
2
, observed by SEM (Figure 2.28c,d). An 

AFM study allows determining the thicknesses of these nanosheets, these ones being in 

the range between 5 and 20 nm, corresponding to 10-32 stacked layers (Figure 2.29). 

However, in the process that leads to the formation of the nanosheets, they can pile up 

to form aggregates with thicknesses from 100 to 300 nm. The advantage of these 

aggregates is that they can be studied by confocal microscopy (see section 2.2.3). 

 

Figure 2.28. (a,b) General (a) and detailed (b) SEM images of compound 6 

microcrystals. (c,d) General (c) and detailed (d) SEM images of compound 6 

microcrystals. 

 

Figure 2.29. a) AFM image of compound 6 nanosheets on SiO2. b) A zoomed area of 

(a). c) A typical height profile of a nanosheet across the green line represented in (b). 
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2.2.2. Electrical conductivity 

In this section, the electrical conductivity values of compounds 4-7 will be outlined and 

explained by means of theoretical calculations of the electronic band-gap. In order to 

experimentally determine the electrical conductivity of all compounds, a two-contact 

method was used, contacting crystals of every compound with graphite paste and 

tungsten wires, and applying a voltage between -10 and 10 V. This same method was 

used to study the thermal dependence of their electrical conductivity, but using four 

contacts instead of two (see Experimental Section, chapter 6.2). 

Compound 4 shows an electrical conductivity value of 4·10
-7

 S/cm at room temperature. 

In order to compare it with the electrical conductivity of compounds 1 (3·10
-3

 S/cm) and 

2 (2·10
-6

 S/cm), we will thoroughly look at the distances and angles present in their 

structures (Appendix A, Table A3).
42

 

Electrical conductivity in Cu(I)-I double chains is determined by the following factors: 

firstly, Cu-Irail distances and their dimerization; secondly, I-Cu-I angles along the chain; 

finally, the dihedral angle between Cu2I2 rhomboid dimers. It has been proved that 

Cu···Cu distances (having average values of 2.872 Å for compound 1, 2.805 Å for 

compound 2 and 2.787 Å for compound 4) are too long and, therefore, the Cu···Cu are 

too weak to determine the electrical conductivity of these compounds. These leaves the 

Cu-Irail distances as the only plausible pathway for electronic delocalization. 

Cu-Irail lengths are shorter in 1 (2.632 Å) than in 2 (2.662 Å) and 4 (2.661 Å), and the 

dimerization of these bonds along the chain is also smaller in 1 (0.001 Å) than in 2 

(0.0876 Å) and 4 (0.0171 Å), in agreement with the higher conductivity value found for 

1. Additionally, although the differences are smaller, the I-Cu-I bond angle along the 

chain is larger in 1 (103.01(3)°) than in 2 (102.69(2)°) and 4 (102.93(3)°). This larger 

angle is expected to lead to a better orbital overlap and, therefore, to a high electrical 

conductivity, again in agreement with the observed values. Finally, the dihedral angle 

between the Cu2I2 rhomboid dimers forming the chain also suggests that compound 1 

should be a better conductor as this angle is closer to 90° in this compound (119.38°) 

than in 2 (120.98°) and 4 (122.18°). This eases the overlapping of hybridized dz
2
 

orbitals of copper centers and the pz orbitals of iodine in 1 (Figure 2.30), therefore 

justifying its conductivity value, which is three orders of magnitude higher than that of 

2. As far as compounds 2 and 4 are concerned, although Cu-Irail lengths and their 

dimerization are longer in 2 and its I-Cu-I bond along the chain has a smaller value, this 

compound shows a lower value for the dihedral angle. All this factors compensate, 

yielding similar experimental values of the electrical conductivity. 
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Figure 2.30. Schematic representation of the overlapping between the hybridized dz
2
 

and pz orbitals of copper and iodine along a Cu(I)-I chain. 

According to its conductivity value, a semiconducting behavior is expected for 

compound 4. As can be seen in Figure 2.31, at temperatures between 145 and 350 K 

resistivity decreases with the increasing temperature, confirming this behavior. The 

activation energy, calculated by means of the Arrhenius equation, shows a value of 300 

meV. Remarkably, between 125 and 145 K a hysteresis cycle is generated due to a 

phase transition (see section 2.2.1.1) between two semiconducting phases, originated by 

slight changes in the asymmetry of the chains. As a result, resistivity decreases by four 

orders of magnitude. The activation energy of this new phase is 80 meV. At 

temperatures above 350 K, the partial degradation of the CP, releasing CO2 with a 

subsequent partial reduction of Cu(I) into Cu(0), derives into an irreversible 

transformation of compound 4 into a quasimetallic phase which remains unaltered in the 

range of temperatures studied (2-400 K). 

 

Figure 2.31. Thermal variation of the electrical conductivity of 4 in four successive 

scans (1-4). The constant horizontal resistivity between 125 and 200 K in scans 1 and 2 

indicates that the resistance has reached the measuring limit of the equipment (5×10
11

 

Ω). 
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Another way to rationalize the electrical properties of compounds 1, 2 and 4 is the use 

of theoretical calculations of the density of states (DOS) and the shape of their valence 

bands (VB) and conduction bands (CB). The computational details of the procedure 

followed for the calculations are outlined in the experimental section (section 2.2.15). In 

the theoretical simulations, we have used the atomic coordinates found in the X-ray 

structures of these CPs to evaluate the real geometry of the materials in the crystalline 

phase, in which the electrical measurements were carried out. For all the compounds, 

the residual forces acting on each atom in all the calculations were below 0.1 eVÅ
-1

, 

which is low enough to guarantee perfectly converged and realistic results for such 

complex systems from a theoretical point of view. This noticeably good geometrical 

transferability between the experimental configurations and our theoretical 

implementation has already provided successful results for other similar CP crystals,
58

 

so it will be used for all the calculations related to the CPs presented in this thesis. 

In this case, the band gap values calculated for compounds 1, 2 and 4 (with values of 

0.13 eV for compound 1, 0.04 eV for 2, 0.19 eV for 4 at 296 K and 0.17 eV for 4 at 110 

K; Figure 2.32) are in good agreement with their activation energies (200, 80 and 300 

meV, respectively); moreover, with these results these CPs are predicted as narrow-gap 

semiconductors, whose behavior is confirmed by their structure. The significant 

differences between their conductivity values can be justified by means of analyzing the 

different contributions of the p and d states of Cu and I. In the case of compound 1, a 

highly effective hybridization of the Cu-dz
2
 states and the I-pz states leads to an 

important electronic delocalization which is the cause of its high conductivity, whereas 

in the case of compounds 2 and 4 this hybridization is very poor (in the case of 

compound 2, I-dz
2
 orbitals play a key role in the formation of its electronic states, 

precluding a slightly better electronic delocalization than that of 4). The better 

overlapping of these Cu-dz
2
 and I-pz orbitals in 1 is due to the lower value of the 

dihedral angle between Cu2I2 planes (119.3° w.r.t. 120.9° and 122.3°). 

Figure 2.33 shows the VB and CB orbital electron isodensities (10
-4

 eÅ
-3

) of 

compounds 1, 2 and 4. In this figure it is possible to appreciate that, in all cases, the 

valence electron isodensity is mostly located along the Cu-I skeleton, whilst the 

conduction electron isodensity shows a continuous orbital side-to-side hybridization 

formed between the ligands. Thus, the conduction will be produced mainly along the 

one-dimensional chains. The increasing temperature enables the charge migration from 

the valence band towards the conduction band, as well as a temperature- induced 

overlapping between both bands that will ease the carrier mobility and the electronic 

conduction along the chains. 

Additionally, a deeper inspection of Figure 2.33 allows us to appreciate that, for the 

CPs showing higher conductivity values (1 and 2), the valence band shows some 

significant weight also within the organic ligands, which may ease the carriers mobility 

towards the conduction band, mostly located on these ligands. Conversely, this finding 

is not evident for compound 4. 
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Figure 2.32. (a-d) Calculated total density of electronic states for 2 and 1 (a,b), and for 

4 at 296 K and 110 K (c,d) as a function of the energy, relative to the Fermi level. Each 

energy level has been broadened with a Lorentzian profile with a linewidth of 0.01 eV, 

and the valence and conduction bands for both compounds have been shaded in blue 

and red, respectively. The transport gap is also indicated in each subpanel. (e-h) 

Calculated projected density of electronic states for 2 (e), 1 (f) and 4 at 296 K (g) and 

110 K (h) on Cu and I atoms. p and d state contributions of all the Cu and I atoms 

participating in each crystal are depicted separately (black, red, blue and green lines 

correspond to Cu-p, Cu-d, I-p, I-d contributions, respectively). 

 

Figure 2.33. Computed VB (middle panels) and CB (bottom panels) orbital electron 

isodensities (10
-4

 eÅ
-3

) for compounds 2 (a), 4 at 296 K (b) and 110 K (c), and 1 (d). 

Clean geometries are also shown (top panels) for better visualization. 
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Figure 2.34. (a) Thermal variation of the electrical resistivity for compound 5. (b) 

Arrhenius plot of compound 5 in the initial heating scan from 380 to 400 K. (c) Thermal 

variation of the electrical conductivity of compound 5 in the cooling scan after the 

initial heating at 400 K. Solid black line is the fit to the variable range hopping model. 

A

B

C
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The thermal dependence of the electrical resistivity of a single crystal of compound 5 

(Figure 2.34a) shows that, initially, this compound is almost an insulator at room 

temperature, with an extrapolated conductivity value of ca. 10
-15

 S/cm. When the 

sample is heated from room temperature to 400 K, the resistance remains above the 

detection limit of our equipment (5 × 10
11

 Ω) up to ca. 360 K and, accordingly, the 

resistivity (ρ) shows a constant value below this temperature. Above ca. 360 K the 

resistivity decreases and reaches a value of ca. 2.2 × 10
6
 Ω cm at 400 K (i.e., σ = 1/ρ = 

2.1 × 10
-7

 S cm
-1

), with an activation energy of 2.0 eV (Figure 2.34b). Interestingly, at 

400 K the resistivity decreases with time and after ca. 10 min at 400 K the resistivity 

reaches a constant value of ca. 3 × 10
3
 Ω cm (σ = 2.3 × 10

-4
 S cm

-1
). Once the resistivity 

value is stabilized, the temperature was decreased to 2 K. In this cooling scan the 

resistivity shows a quasi-metallic behavior and initially decreases to reach a broad 

minimum at ca. 225 K with a value of ca. 8 × 10
2
 Ω cm. Below this temperature the 

resistivity increases to reach a value of ca. 3 × 10
8
 Ω cm at 2 K. If the crystal is heated 

from 2 to 400 K the resistivity shows the same values observed in the cooling scan. This 

behavior does not obey the Arrhenius law (Figure 2.34c), but rather a variable range 

hopping model for 1D systems: σ = σ0 exp[-(T0/T)
α
] with σ0 = 0.032(2) S cm

-1
, T0 = 

2187(72) K and α = 0.51(1), a value very close to the expected one for a 1D system (α = 

1/2). Further cooling/heating cycles show a similar behavior. 

The difference between the electrical conductivity values of compounds 4 and 5 can be 

explained by looking at their crystal structures. Although they seem identical, there is a 

significant difference between the average values of the Cu···Cu distances (2.787 Å for 

4, 3.098 Å for 5), which can be used to justify the lower conductivity of 5. In this case, 

theoretical calculations are more suitable to justify the luminescent properties of 

compound 5 rather than its electrical conductivity (see section 2.2.3). 

Compound 7 shows a room temperature electrical conductivity of 3 × 10
-5

 Scm
-1

 and a 

typical semiconducting behavior (Figure 2.35) that is similar to that of compound 1. A 

very slight degradation process which occurs above 380 K (hampered by the strong 

network of hydrogen bonds present in the structure of this compound) causes the 

resistivity to increase in the successive cooling scan. Afterwards, in the following 

heating and cooling scans show a very smooth hysteresis cycle (180-270 K) between the 

unaltered phase and the slightly degraded one. 

In fact, compounds 1 and 7 show some of the highest electrical conductivity values 

registered for a Cu-X coordination polymer. Still, the differences between them are 

remarkable (two orders of magnitude). Fortunately, these differences can be easily 

explained by four structural factors: firstly, the Cu-Irail distances, which are lower in 1 

(2.632 Å w.r.t. 2.646 Å); secondly, the dimerization of these Cu-Irail distances, which 

once again is lower in 1 (0.010 Å w.r.t. 0.0217 Å); finally, the value of the I-Cu-I angle 

along the chain and the dihedral angle, which in the case of 1 are closer to 90°, therefore 

easing the hybridization of Cu-dz
2
 and I-pz orbitals. All these factors demonstrate that 

compound 1 should show a higher electrical conductivity than that of 7. 
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Figure 2.35. Electrical behavior of compound 7. (a) Thermal dependence of the 

electrical resistivity in four successive cooling and heating scans. (b) Arrhenius plot of 

the first (dark blue) and second (light blue) cooling scans. 

Theoretical calculations also endorse the higher electrical conductivity of 1. The DOS 

diagrams (Figure 2.36) allow calculating the electronic band-gap of these compounds, 

these showing values of 0.13 eV for compound 1 and 0.05 eV for compound 7. 

Nevertheless, the VB and CB of compound 7 are strongly localized, and this can easily 

be observed in a graphical representation of the 3D orbital isodensities (Figure 2.37): 

the VB is localized in the Cu-I skeleton, whereas the CB is located on the ligands. As 

was explained before, the VB and CB of compound 1 are effectively hybridized, so this 

strongly favors the electronic delocalization. 

 

Figure 2.36. Computed total density of electronic states (in eV
-1

) for compounds 1 (a) 

and 7 (b) as a function of the energy (in eV), relative to the Fermi level. Each energy 

level has been broadened with a Lorentzian profile with a line width of 0.01 eV, and the 

VB and CB for both compounds have been shaded in blue and red, respectively. Values 

of the VB-CB band gaps are shown superimposed to each corresponding panel. 
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Figure 2.37. Computed 3D orbital isodensities corresponding to the VB (middle panels) 

and CB (bottom panels) (all with a value of 10
-4

 e
-
 Å

-3
) for the compounds 1 (a) and 7 

(b). Clean geometries are also shown (top panels) for better visualization. 

Finally, compound 6 displays a DC electrical conductivity of 8.6 × 10
-7

 S cm
-1

 at room 

temperature and a classical semiconducting behavior, with an activation energy of 65 

meV (Figure 2.38). The temperature-dependence study does not show any phase 

transition in the range between 100 and 400 K. 

 

Figure 2.38. Electrical conductivity of 6 at temperatures ranging from 80 to 373 K. 
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2.2.2.1. Response to acetic acid vapors 

As explained in the introduction of this chapter (section 2.1.1), the presence of certain 

functional groups in the terminal ligands of Cu-I chain based CPs allows them to 

interact with other molecules by means of weak forces such as H-bonds or Van der 

Waals forces. This is the case of compound 3, since the free amino and nitro groups 

present in its structure can easily form H-bonds with vapors of volatile organic 

compounds such as alcohols or acetic acid. This is translated into a fast and efficient 

electrical response upon the presence of these vapors (see references 
13-14

 and Figure 

2.8). 

The case of compound 3 prompted us to evaluate the electrical response of compounds 

4-7 upon exposure to acetic acid vapors. Among these CPs, only compound 6 exhibited 

a remarkable, yet slow, response. By means of an EIS study under alternate current 

(AC), we observed that the initial conductivity (t = 0h) of 1.32 × 10
-8

 S cm
-1

 is 

enhanced, reaching values of 2.83 × 10
-8

 S cm
-1

 and 2.61 × 10
-7

 S cm
-1

 after 4 and 24 h, 

respectively, upon exposition of pressed pellets of 6 to acetic acid vapors (Table 2.4). 

This chemical response can be ascribed to hydrogen-bonding interactions between the 

acetic acid and the amino group of the 2-aminopyrazine ligands. 

 

Table 2.4. AC conductivity of 6: values at 298 K and their variation with the exposition 

time under acetic acid (AcOH) vapors (from 0 to 48 hours). 

Exposition 

time (h) 

Pellet thickness 

(mm) 

Pellet area 

(cm
2
) 

R (Ω) σ (S·cm
-1

) 

0 0.301 0.13 2.28·10
-7 

1.32·10
-8

 

4 0.303 0.13 1.07·10
-7

 2.83·10
-8

 

24 0.306 0.13 8.47·10
-5

 3.61·10
-7

 

48 0.304 0.13 5.86·10
-5

 5.18·10
-7

 

 

 

2.2.3. Luminescent properties 

The luminescence studies presented in this section will be focused on compounds 4-6, 

since compounds 1-3 have already been reported and compound 7 does not show any 

emissive behavior. 
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2.2.2.1. Luminescence thermochromism 

The structural analysis of compounds 4-6 suggests that they are interesting candidates to 

carry out emission studies at variable temperature. 

From the qualitative point of view, a naked eye experiment shows that the excitation of 

4 and 5 with an UV lamp (λexc = 365 nm or 312 nm) at room temperature produces a 

strong orange emission for 4 and weak yellow emission for 5 (Figures 2.40 and 2.41). 

Upon cooling these materials to 80 K, 4 shows a slight decrease in its emission 

intensity, while 5 exhibits a significant increase (Figures 2.40 and 2.41). These 

processes are reversible, and thus warming up the materials from 80 K to 300 K 

produces a gradual recovery of their initial properties. The comparison between 

micrometric and nanometric samples shows an influence only in the emission intensity, 

being more significant for 4. 

To evaluate in further detail these qualitative observations, emission spectra at variable 

temperature of 4 as well as 5 were recorded from 80 to 300 K (Figure 2.41). Thus, at 

300 K the excitation of the samples with λexc = 440 nm produces a strong emission with 

an asymmetric band centered at λem = 610 nm for 4, and a weak emission at λem ca. 550 

nm for 5. By lowering the temperature from 300 to 80 K, a progressive decrease of the 

emission intensity (up to 5 times lower at 80 than at 300 K) is observed for 4, while a 

progressive increase (up to 50 times higher at 80 than at 300 K) is observed for 5. In 

addition, it is remarkable that between 140 and 80 K a structured band with two 

emission maxima, of similar intensities, centered at 593, 642 nm and a shoulder at ca. 

707 nm appeared for 4. On the other hand, for 5 a very asymmetric band centered at ca. 

550 nm is observed at 140 K and, as temperature decreases, the intensity of this 

asymmetric band increases. However, this band is not resolved like a structured band, 

and a maximum centered at 550 nm together with a shoulder at 516 nm can be 

observed. 

 

Figure 2.40. (a, b, c) Luminescence of 4 at 298 K (a), at 80 K (b) and at 80 K and 2 

GPa (c). (d, e, f) Luminescence of 5 at 298 K (d), at 80 K (e) and at 80 K and 2 GPa (f). 

λexc = 312 nm. 
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Figure 2.41. (a) Representation showing the temperature-dependence behavior of 4 in 

the solid state under UV lamp excitation (λexc = 365 nm) at room temperature (left) and 

under liquid nitrogen (right). (b) Temperature-dependent luminescence spectra of 4. (c) 

Representation showing the thermochromic behavior of 5 in the solid state under UV 

lamp excitation (λexc = 365 nm) at room temperature (left) and under liquid nitrogen 

(right). (d) Temperature-dependent luminescence spectra of 5. 

The stair-type chain structure adopted by 4 and 5 is common for I-Cu-N donor ligand 

coordination polymers and the emission origin, centered around 520-640 nm, can be 

most likely due to a mixed iodide-to-ligand and metal-to-ligand charge transfer 

(IL/MLCT) excited state [
3
(I + M)LCT].

69-72
 This assignment is supported when 

comparing the emission spectra of 4 and 5, where we can see that the emission is 

affected by the nature of the substituent on the pyridine ring. Thus, 5 shows emission 

bands at higher energies than 4, in accordance with a higher HOMO-LUMO gap. 

Finally, the broad and unstructured bands observed at room temperature are also in 

accordance with the assignation made as a combination of 
3
(I + M)LCT states.

73
 

To rationalize the origin of the changes in the emission by lowering the temperature, 

crystal structures for 4 and 5 were solved at 110 K. While in compound 4 all metallic 

distances are shorter than 2.80 Å, which is twice the van der Waals radius, 5 adopts the 

most common disposition of the Cu2I2 units in these stair-step chain structures, showing 

alternation of long (>2.80 Å) and short (<2.80 Å) distances between Cu and Cu atoms. 

These structural differences observed along the Cu2I2 chains, symmetric for 4 versus 

asymmetric for 5, provoke changes in the emission. Comparing the thermochromic 

properties of both compounds, 5 does not display emission at room temperature but, 

upon cooling, a bright yellow emission is observed increasing the intensity of emission 

with decreasing temperature. The crystal structures of compounds 4 and 5 at 296 and 

110 K show that the space group and the general structural features do not change with 
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the temperature (Tables A3-A4 in appendix A). Thus, the Cu-I and Cu···Cu distances 

show the expected decrease with decreasing temperature and the increase observed in 

the emission intensity upon cooling is in accordance with the increase in structural 

rigidity, decreasing the non-radiative rate constant.
74

 

On the other hand, although the space group of 4 is the same at temperatures of 296, 

200 and 110 K, it shows a transition at 125-145 K, confirmed by the study carried out 

on the thermal dependence of the unit cell parameters. Thus, this structural transition 

can be attributed to a slight change in the asymmetry of the Cu–Irail bond lengths along 

the chain, increasing from 0.0171 Å at 296 K to 0.0243 Å at 200 K but decreasing to 

0.0208 Å at 110 K. These changes in the structure will likely induce a variation in the 

shape and energy of the HOMO and LUMO when changing from room temperature to 

80 K. 

The lifetimes measured for 4 at 300 and 80 K were 8.1-7.1 ms, respectively, which fall 

in the microsecond-order decay lifetime range and are assigned to phosphorescence, 

arising from a triplet state. The fact that the structured band observed at 80 K, with 

maxima centered at 592 and 640 nm, has similar lifetime values seems to indicate that 

both emissions belong to the same structured band emitting from the same excited state 

and, alike, lifetime measurements for both temperatures suggest that there is only one 

emission level without any geometrical distortions in the excited state. 

For 5, the lifetime measured at 80 K was 1.25 and 1.15 ms for the emissions centered at 

516 and 550 nm, respectively. Similar values are also indicative of emissions from the 

same excited state. 5 has a lower lifetime than 4, suggesting a greater rigidity in its 

structure due to the presence of the amino group attached to the pyridine ring.
75

 

Theoretical calculations of the excitation spectra for the two structures of 4 and 5 

resolved by X-ray diffraction at low (110 K) and high (296 K) temperatures have been 

carried out to rationalize the thermochromic effect evidenced by the experiments. 

Interestingly, our theoretical approach is able to capture the reduction in the 

photoluminescence performance observed in compound 4 and very weak changes in the 

case of compound 4 from the low-temperature to the high-temperature regime. Figure 

2.42 shows the prominent excitation feature located at around 580 nm for the case of T 

= 110 K. Nevertheless, the intensity of the peaks decreases by around 35(2) % for the 

cases of T = 296 K and T = 110 K, with the maximum of the peak located at 600 nm for 

compound 2 and barely any displacement for compound 1. The decrease in the 

photoluminescence behavior may have its origin in the thermal fluctuations that tend to 

broaden both the VB and CB, subsequently reducing the efficiency of the metal-ligand 

transition for the case of the high-temperature regime as compared with the T = 110 K 

case. Indeed, the global DOS profile morphology of compound 4 (top panel of Figure 

2.43) remains with no significant variations when moving from 296 K to 200 K or 110 

K, excepting slightly for energies out from the gap region, which evinces that the 

structural changes induced by the increasing temperature do not substantially affect the 

electronic structure. In particular, the VB and CB remain practically unaltered and, thus, 
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the electronic band-gap as well, with a value of 0.47 eV. Nevertheless, a more 

pronounced effect induced by the temperature is observed in the DOS profiles for 5 

(bottom panel of Figure 2.43). In this case, not only do evident shifts between 

electronic states appear for the two temperatures, but also does a visible reduction of the 

bandgap from 1.25 eV at RT down to 0.92 eV at T=110 K. This observation will be 

directly related with the thermochromic effect observed for this compound, not 

observed for compound 4. 

 

Figure 2.42. Computed TDDFT photoexcitation spectra (in arb. units) for 4 (a) and 5 

(b) as a function of the photon wavelength (in nm) for two different temperatures at 

standard pressure (T = 110 and 296 K). Ordinate-scale is the same in both graphs for a 

better comparison. 

 

Figure 2.43. Computed density of electronic states (in arb. units) for compounds 4 (top 

panel) and 5 (bottom panel) as a function of the energy referred to the Fermi level (in 

eV), for different temperatures: T=110 (black), 200 (red) and 296 K (blue) for 4 and 

T=110 (black) and 296 K (red) for 5. 
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As far as compound 6 is concerned, excitation of solid crystalline samples with 

micrometric (6m) and nanometric dimensions (6n) with an UV lamp (λexc = 365 nm), at 

room temperature, produces a very weak orange emission for both materials (Figure 

2.44a,c). However, upon cooling at 80 K, both 6m and 6n significantly increase their 

emission intensity showing a perceptive eye shift from orange to yellow (Figure 

2.44b,d). The thermochromic process is fully reversible for 6m and 6n. 

In order to evaluate in more detail these seminal experimental observations, emission 

spectra at variable temperature of 6m and 6n were recorded (Figure 2.45), observing 

similar results for both 6m and 6n. Thus, by lowering the temperature of 6m from 300 

to 80 K, a progressive increase of the emission intensity (30 times higher at 80 K than at 

300 K) and a blue-shift were observed. The very weak emission observed at ≈630 nm at 

300 K is progressively shifted to 566 nm at 80 K (Figure 2.45). The lifetime measured 

at 80 K was 20.9 μs, which falls in the microsecond-order decay lifetime and is assigned 

to phosphorescence, arising from a triplet state. Essentially, the size of the sample 

seems to influence mainly in the emission intensity, which is lower in the case of 6n. 

 

Figure 2.44. a) Optical microscope image of 6m microcrystals at 300 K. b) Optical 

microscope image of 6m microcrystals at 80 K. c) Photograph of 6n crystalline powder 

at 300 K. d) Photograph of 6n crystalline powder at 80 K. All images were taken under 

a UV lamp with λexc = 365 nm. 
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Figure 2.45. a) Emission spectra of compound 6m at different temperatures. b) 

Computed GW-BSE (quasi-particle approximation Bethe-Salpeter equation) 

photoexcitation spectra of 6 as a function of the excitation wavelength (in nm) for two 

structures by X-ray diffraction at low (100 K) and high (296 K) temperatures. 

Similar to what happened to compound 5, the contribution of a 
3
MCC transition in the 

excited state is supported by the short Cu···Cu distances observed, since the half of the 

Cu···Cu distances are below the sum of Van der Waals radii (2.80 Å) and the broad and 

unstructured band observed is also in accordance with the assignation made as a 

combination of 
3
(M + I)LCT states.

69-72
 Additionally, thermochromic effects can be 

largely affected by a change in Cu···Cu distances due to the 
3
MCC excitation state. 

Once again, this shrinking of Cu··· Cu distances and the increase in the rigidity of the 

medium are the main causes of the thermochromism of 6. 

In order to rationalize the thermochromic effect evidenced by the experiments, we have 

performed calculations of the excitation spectra for the two structures of 6 resolved by 

X-ray diffraction at low (100 K) and high (296 K) temperatures (Figure 2.45b). Our 

theoretical approach is able to capture the reduction in the photoluminescence 

performance observed from the low-temperature to the high-temperature regimes. In 

this case, Figure 2.45b shows the prominent excitation feature located at 526 nm for the 

case of T = 100 K. Nevertheless, the intensity of the peak decreases around a 30% for 

the case of T = 296 K with respect to the T = 100 K case, with the maximum of the peak 

located at 530 nm. 
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Figure 2.46. a) Topographic AFM image of 6n nanolayers deposited on an SiO2 

substrate and their height profiles, named as A–C. b) Optical microscope image of the 

6n nanolayers (A–C) characterized in part (a) at 298 K. c) Confocal microscopy image 

of 6n nanolayers (A–C) at 300 K upon irradiation with a laser with excitation 

wavelengths of 351 and 364 nm, at a power of 9.36 μW. d) Confocal microscopy image 

of 6n nanolayers (A–C) at 300 K, when irradiated with a laser with excitation 

wavelengths of 351 and 364 nm, at a power of 6.34 μW. e) Confocal microscopy image 

of 6n nanolayers (A–C) 7 min after being at 80 K, when irradiated with a laser with 

excitation wavelengths of 351 and 364 nm, at a power of 6.34 μW. 

The thermochromic properties of isolated 6n nanolayers deposited on SiO2 have also 

been studied. Figure 2.46a shows topological AFM images with their corresponding 

height profiles showing three different 6n nanolayers with over micrometer-sized lateral 

dimensions, and ≈100, 200, and 350 nm thicknesses. Figure 2.46b displays an optical 

image of the AFM analyzed area. Figure 2.46c-e shows confocal microscopy images of 

the same region upon irradiation with a laser with excitation wavelengths of 351 and 

364 nm at a power of 9.36 μW at 300 K, A–C nanolayers show bright emission between 

500 and 600 nm (Figure 2.46c). However, the emission of the A–C nanolayers is 

significantly reduced (not perceptive under a confocal microscope) when laser power is 

reduced to 6.34 μW (Figure 2.46d), and it becomes more intense at 80 K (Figure 

2.46e). The emission observed at 80 K reverses to the initial state as the sample reaches 

the initial temperature. Therefore, the thermochromism observed in these nanolayers is 

reversible. 
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2.2.2.2. Luminescence mechanochromism 

In order to study the potential mechanoluminescence behavior of compounds 4 and 5, 

we have prepared pressed pellets at different pressures with the materials in the form of 

nano- and micrometric powders for both compounds. The pressed pellets of compound 

4 show slight changes, their emission going from an intense orange to a weaker reddish 

orange, which does not change upon decreasing the temperature to 77 K (Figure 2.40c). 

However, the pressed pellets of 5 (at different pressures from 1 to 5 GPa) show a 

significant change in their luminescence. Indeed, upon applying pressure their emission 

is quenched at both 298 and 80 K (Figure 2.40f), but it is recovered when the pellet is 

decompressed by grinding, indicating reversibility of the emission with the pressure. To 

gain knowledge about this behavior, initial PXRD patterns were collected from the as-

synthetized materials in the form of pressed and ground pellets. The results do not show 

significant differences, suggesting that the structures are the same (Figure C7 in 

appendix C). This is why we performed a high-pressure SC-XRD study on compound 5 

(see section 2.2.1.1). 

High pressure emission has also been measured for compound 5, both in the shape of 

crystals (5m) and a nanometric powder (5n). Both spectra (Figure 2.47) show a spectral 

multicomponent structure. Some similarities between them are observed, particularly 

under ambient conditions (300 K, 0 GPa), where we can see a band located around 500 

nm. However, upon applying pressure, differences between them are clearly observed, 

both in intensity and in spectral shape. Under ambient conditions and with excitation at 

375 nm, 5m shows a structured and asymmetric broadband with three components 

centred approximately at 500 (green), 575 (yellow) and 615 (orange) nm. As pressure 

increases, changes in the shape and intensity are remarkable; the asymmetry and the 

structure of the band disappear at 1.3 GPa, retaining only the orange component, and the 

integrated intensity increases three fold. However, when increasing the pressure, 

gradual decreases of the intensity and large red-shift of the emission bands of around 

440 cm
-1 

per GPa are also noticeable. Above 6 GPa, intensity is almost negligible (less 

than 15%) compared to that obtained under ambient conditions. Upon releasing 

pressure, the system seems to be almost reversible (Figure 2.47a). 
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Figure 2.47. (a) Normalized luminescence spectra of 5m obtained at 298 K under 375 

nm laser excitation for different externally applied hydrostatic pressures (P = 0, 1.3, 4.1, 

6.9, and 9.6 GPa, and 0 GPa after decompressing) within a range between 400 and 800 

nm. (b) Normalized luminescence spectra of 5n obtained at 298 K under 458 nm laser 

excitation for different externally applied hydrostatic pressures (P = 0, 2.4, 5.0, 6.8, 7.5, 

and 9.0 GPa) within a range between 500 and 800 nm. The band at 700 nm corresponds 

to the ruby emission. (c) Computed TDDFT photoexcitation spectra (in arb. units) for 5 

as a function of the photon wavelength (in nm) for different externally applied 

hydrostatic pressures (P = 0, 2.32, 5.15 and 7.16 GPa). Ordinate-scale is the same in 

both graphs for a better comparison. 
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In the case of 5n, no emission was recorded when excited at 375 nm; however upon 

changing the excitation wavelength to 458 nm an intense emission was observed. Due 

to the proximity of the excitation wavelength and the starting wavelength of the 

spectrum, it is impossible to extract valuable information below 500 nm. The emission 

band under ambient conditions consists of an unstructured asymmetric band with two 

green components, centered at 520 nm and 555 nm, respectively, the former being 

larger in amplitude and similar in spectral position to the green component found in 5m. 

At 0.11 GPa the band broadens around 9 nm and shifts to the red by about 5 nm; both 

tendencies continue until 1.4 GPa, with a red-shift rate of ca. 330 cm
-1 

per GPa. From 

this point, the broadening abruptly changes from 0.6 GPa (74 nm) to 1.4 GPa (116 nm), 

as a consequence of the increase in the amplitude of the low-energy component, and the 

band is red-shifted. It seems that the low-energy component, which clearly shifts to the 

red, dominates up to 7.5 GPa, but beyond this pressure two components are now clearly 

identified, one remaining at 520 nm (high-energy component) which matches with that 

observed under ambient conditions, and the low-energy one with a red-shift of ca. 350 

cm
-1

 per GPa, from 7.5 to 9.0 GPa. Regarding intensity, the behavior is also complex, 

showing a 4.7-fold increase in the integrated intensity at 2.5 GPa, which after this point 

gradually decreases by the same amount till 6.8 GPa, just where the splitting of the two 

components is clear. From that pressure to the last one recorded, an increase of 1.7 

times at 9 GPa is observed (Figure 2.47b). The features of luminescence spectra are 

closely related to the surrounding environment of the emitter. In this sense a high 

pressure technique allows gradually modifying and controlling the inter- and 

intramolecular interactions so that a correlation between the structure and luminescence 

can be made. In CuI ladder-type complexes, emission is modulated by some parameters, 

most of them related to bond angles and distances of the nearby surrounding ions, such 

as Cu···Cu, Cu-I, Cu-L (ligands), and I-Cu-I, in particular within the Cu2I2 cluster core. 

The so-called LE emission band usually involves a [Cu2I2] cluster-centered triplet 

excited state (
3
CC), which is a combination of iodide-to-metal charge-transfer (

3
IMCT) 

and Cu 3d → 4s, 4p transitions (
3
MCC*), with the latter strongly dependent on Cu···Cu 

(cuprophilic) interactions, when Cu···Cu distances are lower than the sum of the Van 

der Waals radii of Cu (2.8 Å), although other contributions can also be considered as 
3
ILCT and 

3
MLCT. In order to distinguish among the possible transitions involved, a 

high-pressure technique can be an interesting tool to check the mechanochromic effects 

that can be complemented with the thermochromic one, since pressure induced larger 

changes in bond lengths and angles as well as in interplanar distances than those 

achieved by changing the temperature. In this kind of complex, different non-excluding 

transitions can take place as is reflected in the asymmetric and structured ambient 

condition emission spectrum of 5m and 5n. 

Figure 2.47c shows the computed TDDFT photoexcitation spectra of 5 for different 

externally applied hydrostatic pressures (P = 0, 2.32, 5.15 and 7.16 GPa) within a range 

between 400 and 800 nm. Within this wavelength range we can observe a prominent 

excitation feature centered around 580 nm for the case P = 0, which tends to shift to 

higher photon wavelengths as the pressure increases. This wide feature has its origin in 
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an electronic transition between the VB and the CB (84%) and the VB-1 and the CB 

(1%). As usual in this sort of Cu-based polymers, in this case the VB and VB-1 are 

mostly located in the Cu-based metal skeleton, whilst the CB and CB+1 are located in 

the organic ligands (Figure 2.48). Interestingly, as the pressure starts to increase, the 

intensity of this broad excitation feature progressively decays, which excellently agrees 

with the experimental photoluminescence spectra, where the intensity also decays for 

high pressures. For increasing values of the pressure, theory predicts a slight shift of the 

feature towards higher wavelengths until being located around 610 nm. Nevertheless, it 

is well known that this shift should be taken cautiously since these small variations 

could be framed within the accuracy of this approach. Figure 2.47c also shows another 

excitation feature located at 420 nm for P = 0. This excitation has its origin mostly in an 

electronic transition between the VB and the CB+1 (96%), which also decays and shifts 

towards lower wavelengths. 

Figure 2.48 shows the computed density of electronic states (in arb. units) for 5 as a 

function of the energy referred to the Fermi level (in eV), for different externally 

applied hydrostatic pressures. For the case in which no external pressure is applied (P = 

0), theory predicts a canonical narrow-gap p-type semiconducting character, with the 

Fermi level almost pinning the valence band (VB) of the compound and yielding an 

electronic gap of around 1.25 eV. Interestingly, as the hydrostatic pressure increases we 

can clearly observe different emerging effects. The first one consists of a progressive 

reduction of the band-gap up to a value of 0.8 eV for the case limiting of P = 7.16 GPa. 

This situation is reached by a totally asymmetrical closure around the Fermi energy with 

increasing pressure, even flipping the initial p-type semiconducting character at P = 0 

GPa into a canonical n-type semiconducting character, with the Fermi level almost 

pinning the conduction band (CB) of the material at P = 7.16 GPa. The second and most 

interesting effect is the evident breaking of the electronic degeneracy in most of the 

electronic states lying within the depicted energy window in the figure. The doubly 

electronically degenerated CB splits into two electronic states as the external pressure 

increases. This behavior is also observed for the, initially at P = 0, doubly degenerated 

CB+1, as well as for VB-1. The VB does not experience any splitting since it is, even at 

P = 0, a single occupied electronic state (and no additional electronic impairment effect 

is observed within our spin-polarized calculations). 

The case of compound 6 is very similar to that of compound 5. A qualitative experiment 

carried out on pellets of 6 pressed at 1-5 GPa showed that the CP lost its emissive 

behavior. This was reverted grinding the pellets. In any case, the PXRD patterns 

showed neither amorphization nor phase transitions (Figure C9 in appendix C). In order 

to understand the decrease in the emission intensity as a consequence of the pressure, 

we subjected a crystal of 6 to a high-pressure study, analyzing the variation in its 

structure and emission, and performed theoretical calculations using density functional 

theory (DFT). 
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Figure 2.48. Computed density of electronic states (in arb. units) for 5 as a function of 

the energy referred to the Fermi level (in eV), for different externally applied 

hydrostatic pressures (P = 0, 0.72, 1.36, 2.32, 3.08, 4.18, 4.65, 5.15, 5.63, 6.00 and 7.16 

GPa). 3D orbital density isosurfaces (with a value of 5 × 10
-3

 a.u.) are also included for 

the most representative electronic states and represented over their respective X-ray 

diffraction structures obtained at 298 K. 

A single crystal of compound 1m has been subjected to an emission study versus 

pressure (Figure 2.49). The low-pressure (≈0 GPa) spectrum consists of an asymmetric 

broadband peaking around 645 nm. Upon applying pressure, two different behaviors 

can be observed; on the one hand, there is a pronounced linear redshift of the maximum 

of the band of around 15 nm GPa
-1

 reaching at ≈690 nm and simultaneously a gradual 

quenching of its intensity up to 5 GPa appeared, vanishing beyond that pressure. At 

around 4 GPa, two emission bands are present with maxima at 560 nm and around 690 

nm; the latter band cannot be fully characterized due to the overlapping with the ruby 

emission. The emergence of another broadband blue-shift with respect to the previous 
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one remains up to 8.7 GPa with no significant changes in its maxima at around 590 nm. 

Upon gradual release of pressure, the spectra tend to recover their previous emission 

shapes. 

 

Figure 2.49. a) Computed GW-BSE photoexcitation spectra of 6 as a function of the 

excitation wavelength (in nm) for different externally applied hydrostatic pressures (P = 

0, 2.53, 4.75, 6.44, and 8.35 GPa) within a range between 300 and 800 nm. b) 

Normalized luminescence spectra of 6 obtained at 25 °C under 375 nm laser excitation 

for different externally applied hydrostatic pressures (P = 0, 2.59, 4.23, 6.65, and 8.63 

GPa) within a range between 400 and 800 nm. The inset shows the intensity behavior 

with pressure. The band at 700 nm corresponds to the ruby emission. 

 

a

400 450 500 550 600 650 700 750 800

In
te

n
s
it
y
 (

a
.u

.)

Wavelength (nm)

 0.00 GPa

 2.59 GPa

 4.23 GPa

 6.65 GPa

 8.63 GPa

b



 

 
98 

 

In both the cases of compounds 5 and 6, the sequential asymmetrical band-gap closure 

and the breaking of the electronic degeneracy have their origin in a pressure-induced 

electronic degeneracy-rupture, which is a direct consequence of Pauli's exclusion 

principle. The external hydrostatic pressure effect shortens bond lengths within the 

compound (in particular within the metallic Cu chain), which tends to force different 

electrons to occupy the same electronic state, which is forbidden by Pauli's exclusion 

principle. Thus, the system electronically reacts by breaking the electronic degeneracy 

of some populated states to accommodate the pressure-induced forced electrons. Some 

of these states are directly involved in the visible emission processes of the material. On 

this basis, this interesting behavior will have a direct reflection in the optical properties 

of the system as the external pressure increases. 

The vanishing of the broad excitation feature described in the previous paragraph as the 

pressure increases can be rationalized in terms of the pressure-induced electronic 

degeneracy-rupture explained in detail above. The degeneracy-rupture produces a loss 

of efficiency in the metal–ligand transition, responsible for the photoluminescence 

behavior since highly degenerated electronic orbitals contributing to that transition 

slightly modify their occupancy and symmetry by the effect of the pressure. Increasing 

pressure produces the compression of bond lengths within the compound, which is the 

case of the Cu···Cu distance (around a 20% bond-length compression followed by a 

reduction of around 3° in the dihedral angle from 0 to 7.16 GPa). In particular, this 

reduction of the Cu···Cu distance, which accommodates occupied electronic states that 

actively participate in the permitted metal-ligand transition (cuprophilic interaction), is 

reflected by a visible vanishing of the photoluminescence. Therefore, electrons 

belonging to the slightly hybridized occupied Cu dz
2
 orbitals (within the Cu···Cu 

interaction) are pushed towards each other by the effect of the pressure, forcing them to 

occupy the same electronic state. Nevertheless, the system reacts by the electronic 

degeneracy-rupture slightly modifying the orbital orientation. For the case of P = 0 the 

slightly hybridized dz
2
 orbitals located in each Cu atom are oriented facing their lobes to 

maximize the cuprophilic interaction, and, thus, the photoluminescence is maximum. 

Nevertheless, for high pressures, with a reduced Cu···Cu distance, the lobes of the dz
2
 

orbitals spin in such a way to avoid the electronic overlapping (Figure 2.50). This 

behavior produces a reduction in the metal-ligand transition efficiency, which finally 

leads to the photoluminescence vanishing. 
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Figure 2.50. (a,b) Computed 3D valence band orbital isodensity (value of 10
-4

 e
-
 Å

-3
) of 

compound 6 at externally applied hydrostatic pressures of P = 0 (part (a), purple) and 

8.35 GPa (part (b) light green). (c,d) Pictorial sketch of both situations for a better 

visualization. 
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2.3. Conclusions 

The direct reactions between copper(I) iodide and different N-donor ligands lead to the 

formation of a series of CPs sharing a structural motif: the Cu(I)-I double zigzag chain. 

The seven chosen compounds have been structurally and morphologically characterized. 

Due to their one-dimensionality, most of them form crystals with shapes of needles or 

blocks from the mother solution generated in the synthesis, and they form nanofibers 

and nanoribbons directly in the reaction medium; on the other hand, compound 6 is two-

dimensional, so it forms sheet-shaped crystals and nanosheets. The nanofibers of 

compound 3 suffer variations in their lateral dimensions when they are exposed to acetic 

acid vapors, in an analogous manner to its electrical conductivity. 

The electrical and luminescent properties of all compounds have been studied. All of 

them show a semiconducting behavior, with a low-energy gap, the valence band mainly 

localized in the Cu(I)-I chain and the conduction band localized in the ligands. Among 

these CPs, compounds 1 and 7 present the best electrical conductivity values, but they 

do not show any emission; parallelly, compound 6 shows a weak response to acetic acid 

vapors, raising its electrical conductivity one order of magnitude. On the other hand, 

compound 4 presents an intense orange emission at room temperature, with a slight and 

reversible variation in the intensity and wavelength of the observed bands as 

temperature drops to 77 K. 

Compounds 5 and 6 show the most remarkable behavior among all compounds 

presented in this chapter: they do not show emission at room temperature, but when the 

temperature is lowered to 77 K they acquire a very intense yellow emission. This 

emission reverts to the original state when the system is warmed back to room 

temperature. This behavior is explained by the shortening of Cu···Cu distances, which 

results in a strengthening of the cuprophilic interactions. However, when high pressure 

values are applied to these two compounds, both of them completely (but reversibly) 

lose their emissive behavior, since the drastic shrinking of the Cu···Cu distances results 

in an ineffective orbital overlapping, and therefore the cuprophilic interactions 

disappear. Thus is proved that compounds 5 and 6 act like multi-stimuli-responsive 

materials. 
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Conclusiones 

Las reacciones directas entre yoduro de cobre(I) y diferentes ligandos N-dadores 

conduce a la formación de una serie de CPs con un motivo estructural común: la doble 

cadena Cu(I)-I en zigzag. Los siete compuestos elegidos se han caracterizado estructural 

y morfológicamente. Casi todos ellos, al ser monodimensionales, generan cristales en 

forma de agujas o bloques a partir de las aguas madres de síntesis, y se forman como 

nanofibras o nanocintas directamente en el medio de reacción, a excepción del 

compuesto 6, ya que debido a su carácter bidimensional cristaliza en forma de láminas o 

nanoláminas. Las nanofibras del compuesto 3 presentan variaciones en su grosor 

cuando son expuestas a vapores de ácido acético, de forma análoga a como ocurre con 

su conductividad eléctrica. 

Se han estudiado las propiedades eléctricas y luminiscentes de todos los compuestos. 

Todos ellos presentan un comportamiento semiconductor, con un bajo valor de energía 

del gap, la banda de valencia localizada fundamentalmente en las cadenas Cu-I y la 

banda de conducción sobre los ligandos. Los compuestos 1 y 7 presentan los mejores 

valores de conductividad eléctrica para este grupo de compuestos, pero no presentan 

emisión; por otra parte, el compuesto 6 presenta una débil respuesta eléctrica a ácido 

acético, mejorando su conductividad en un orden de magnitud a las 24 horas de 

exposición. Por su parte, el compuesto 4 presenta una importante emisión naranja a 

temperatura ambiente, con una ligera variación reversible en la intensidad de emisión y 

en la longitud de onda de las bandas observadas al bajar la temperatura hasta 77 K. 

Los compuestos 5 y 6 presentan el comportamiento más llamativo para este tipo de 

compuestos: a temperatura ambiente presentan emisiones muy débiles, pero al bajar la 

temperatura a 77 K adquieren una intensa emisión en el color amarillo. La emisión 

revierte al anterior estado conforme vuelven a temperatura ambiente. Este 

comportamiento se explica por un acortamiento reversible en las distancias Cu···Cu, 

que implica una mejora en las interacciones cuprofílicas. Sin embargo, al aplicar 

presiones elevadas, la emisión desaparece por completo para ambos compuestos, 

también de forma reversible, debido a que la drástica reducción de las distancias 

Cu···Cu provoca un mal solapamiento de orbitales que impide la interacción. De esta 

forma se demuestra que los compuestos 5 y 6 son materiales multi-estímulo-respuesta. 
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Chapter 3. The effect of defects on the properties of a Cu(I)-I 

coordination polymer 
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3.1. Introduction to defects. 

When the properties of a material are studied, we usually focus on its structure in order 

to justify their origin and, thus, the structure-properties relationship. However, structural 

defects can play an essential role in determining the final values of these properties, e.g. 

luminescence, conductivity or magnetism.
1
 Indeed, the presence of surface defects has 

been described as a cause of changes in the physical properties of a single compound.
2-4

 

In fact, defects of various natures and length scales are key attributes of solid‐state 

materials and strongly affect their physical and chemical properties.
4
 

Structural defects can be classified according to their dimensionality:
1
 

1. Zero-dimensional defects (point defects): These are the most common defects we 

can find in any material, and they involve single atoms (Figure 3.1). They can be 

subdivided into the following categories: 

a) Vacancies. Among point defects, these are the most common, since they are present 

in every solid substance. They are generated when an atom is missing from its position. 

According to thermodynamics, the presence of vacancies in a solid increases its entropy, 

therefore improving its stability. The amount of vacancies (Nv) in a crystalline material 

is calculated via the following equation, similar to Arrhenius’s law: 

Nv = N·exp(-Qv/kT) 

Herein, N represents the total number of atomic sites in the material, and Qv is the 

activation energy that is required for the generation of a vacancy. Since the value of Qv 

is always positive, as temperature rises the factor “exp(-Qv/kT)” will be higher, and so 

will be Nv. 

In metals, it is common to find a ratio of vacancies of 10
-4

. In the case of ionic 

materials, the vanishing of an ion from its position is immediately followed by the 

generation of another vacancy in the position of a complementary ion, in order to keep 

the electroneutrality. This is called a Schottky defect. 

b) Interstitial defects. This kind of defect involves the appearance of an atom in a hole 

(or interstitial position) of the material’s lattice. Since the atom occupying this interstice 

is substantially bigger than the site, it generates important distortions in the surrounding 

lattice region. Therefore, interstitial defects are much less common than vacancies. 

It is common that interstitial defects are generated by the displacement of an atom from 

its usual position to the interstitial site, therefore generating a vacancy as well. This 

combination of an interstitial defect and a vacancy is known as Frenkel defect, and its 

presence is predominant in ionic materials. 

c) Substitutions. This kind of defect is generated when an atom in the crystal lattice is 

replaced by a different one, commonly known as an impurity. 
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In ionic materials, the electric charge of the impurity can alter the structure of the 

material in different ways. If its charge is equal to that of the ion it replaces, the lattice 

remains unaltered, unless the size of the impurity is 15% higher or lower (this would 

generate distortions in the lattice in a similar way than interstitial defects). If its charge 

is lower, vacancies of the complementary ion appear, but if it is higher, the generated 

vacancies will affect ions similar to that which was replaced, in order to keep the 

electroneutrality. An example of the latter situation involves non-stoichiometric solids, 

such as wüstite (iron(II) oxide, FeO). In this mineral, there is always a proportion of 

iron(III) atoms, and for every two Fe(III) substitutional cations, a Fe(II) vacancy is 

generated. Therefore, the formula of wüstite must be written as Fe1-xO, where x is the 

ratio of vacancies and the number of Fe(III) substitutional defects is 2x. 

 

Figure 3.1. Schematic representation of all point defects (Schottky defects are omitted 

since they are exclusive of ionic materials). Based on a series of images in reference 
1
, 

vectorized by Ms. Marina Prada. 

2. One-dimensional defects (linear defects): These defects, also known as 

dislocations, are generated when a row of atoms in the crystal lattice disappear, 

therefore generating a lack of stacking which causes a misalignment of the adjacent 

atoms. Therefore, important distortions of the lattice appear around the dislocation line. 

Depending on the nature of the dislocations, they can be divided into two groups: edge 

dislocations and screw dislocations. Sometimes, dislocations containing both characters 

(known as mixed dislocations) can be found within the structure of a material. 

VacancySubstitutional defect

Interstitial impurity
Vacancy + interstitial
defect: Frenkel defect



 

 
112 

 

a) Edge dislocations. This kind of defect is characterized to be centered around the 

dislocation line (Figure 3.2). Far from the place where the dislocation is originated, the 

lattice structure becomes virtually perfect. 

 

Figure 3.2. Schematic representation of an edge dislocation. The “T” marks the spot 

where this defect takes its origin. Based on a figure in reference 
1
, vectorized by Ms. 

Marina Prada. 

b) Screw dislocations. These defects form by the effect of shear stresses (such as those 

generated by grinding processes), causing the displacement of a row of atoms one 

position to the adjacent site, causing a helical path to be generated around the 

dislocation line (Figure 3.3). 

 

Figure 3.3. Schematic representation of a screw dislocation. Based on a figure in 

reference 
1
, vectorized by Ms. Marina Prada. 

T
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3. Two-dimensional defects (surface defects): These defects, also called interfacial 

defects, separate different regions of a material with different crystal structure or 

orientations, the so-called domains. 

Apart from external surfaces (where the atoms at those edges have some unoccupied 

bonding sites, also called unsaturations), surface defects can be divided into twin planes 

and grain boundaries. 

a) Twin planes. These defects are formed where the separation of two crystalline 

domains takes place through a mirror symmetry plane (Figure 3.4). Due to their nature, 

they can be considered as a special case of grain boundary (vide infra). Twins are 

generated by shear forces, or in annealing processes, and they occur only in specific 

crystallographic planes. 

 

Figure 3.4. Schematic representation of a twin defect. The twin plane is depicted as the 

horizontal line. Based on a series of images in reference 
1
, vectorized by Ms. Marina 

Prada. 

b) Grain boundaries. This is the general term which is used to determine the two-

dimensional boundary which separates two crystalline domains of a material, no matter 

what their orientation is. The difference in orientation of the crystal structure of the two 

domains generates an atomic mismatch (Figure 3.5). 
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Figure 3.5. Schematic representation of grain boundaries. Taken from reference 
1
. 

4. Volumetric or bulk defects: Other defects found in all solid materials are much 

larger than those afore discussed. These include pores, cracks, foreign inclusions, and 

the presence of different phases. These are normally introduced during processing and 

fabrication steps. 

 

The presence of defects in a material is of crucial importance, as has been mentioned 

before. Following this basis, the generation of specific defects through controlled 

doping, using different synthetic routes with the aim to modify the optical properties of 

a specific compound, has already been reported.
5-6

 In most of these investigations, the 

dopant species represent ca. 1 to 20 % and provoke significant changes in the structure 

and morphology of the material that can be studied by using conventional 

characterization techniques.
7
 Therefore, it seems very important to study how to control 

the presence of defects
8-11

 in crystalline compounds to gain control over their properties 

and, therefore, improve their efficiency in any of their possible applications.
12-16

 In fact, 

defect engineering is of paramount importance to manipulate crystal quality and, 

therefore, the specific properties desired in a material. However, the study of structural 

defects is very complicated in particular for low dimensionality defects present in low 

concentration where the usual spectroscopic and diffractometric techniques (IR, XRD, 
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XPS…) do not give this information.
3
 In case of Metal Organic Frameworks (MOFs), 

engineered defects have gained recent attention because their implications in both 

catalysis and porosity.
4
 Despite this, still very little work reports the effect of the 

structural defects of CPs on their electronic properties. Very recently we have shown 

that the electrical conductivity of MMX chains, a particular type of CPs well-related to 

CuI-double chains, strongly varies with the density and type of the metal-halide defects 

along the MMX chains (Figure 3.6).
17

 

 

Figure 3.6. Representation of three possible defect types which could be found in 

[Pt2I(dta)4]n (dta = dithioacetate). Vacancies were found to be the cause of the changes 

in its electrical conductivity. Taken from reference 
17

. 

 

3.2. Results and discussion. 

3.2.1. Synthesis and structural characterization. 

Direct reaction between CuI and 3,5-dicloropyridine (Cl2-py) in acetonitrile gives rise to 

the isolation of the 1D CP [Cu(Cl2-py)I]n. However, when slightly modifying the 

synthetic conditions this CP can be isolated as two different compounds with identical 

structure, named as 8a and 8b. Thus, when the initial CuI and Cl2-py acetronitrile 

solution, in a 1:1 ratio and a range of concentration between 18 and 70 mM, is allowed 

to crystallize at 25 °C, yellow single crystals of 8a are isolated. On the other hand, when 

the initial acetonitrile solution, in a similar range of concentrations, is first submitted to 

a solvothermal treatment at 120 °C for 72 h, then filtered or centrifuged and allowed to 

crystallize, dark-yellow crystals of 8b are formed instead (Scheme 3.1). 

Pt

I
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Scheme 3.1. Synthetic routes which lead to the formation of 8a and 8b. 

Single crystal X-ray analyses of 8a and 8b show that these structures do not present any 

significant difference neither in structure parameters nor distances nor angles 

(Appendix A, Tables A9-A10). The structure of 8a and 8b corresponds to the general 

formula [Cu(Cl2-py)I]n which, same as compounds 1-7 outlined in chapter 2 and many 

other reported Cu(I)-I CPs,
18-19

 consists of a polymeric staircase motif of edge-sharing 

Cu2I2 rhomboids. In this case, the polymeric chain runs parallel to the b axis, and it is 

anchored with 3,5-dichloropyridine as N-donor terminal ligand (Figure 3.7). 
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Figure 3.7. Crystal structure of compounds 8a and 8b: (a) asymmetric unit; (b) lateral 

view of a Cu(I)-I double zigzag chain; (c) View of the packing of the crystal structure 

from the crystallographic b axis. Cu: orange; I: purple; C: grey; H: white; N: blue; Cl: 

green. 

Interestingly, compound 8b is transformed in 8a by slow recrystallization in acetonitrile 

at 25 °C. Additionally, when the reaction conditions were adjusted to produce an 

equimolecular mixture of 8a and 8b in acetonitrile (SI), recrystallization also led to the 

isolation of 8a (Scheme 3.1). Therefore, these reactions confirm that the 

thermodynamic, and therefore the least defective material, corresponds to 8a. It is worth 

mentioning that these reactions have been carried out several times and the results are 

highly reproducible.  

Since the only synthetic difference in the formation of 8a and 8b is the solvothermal 

treatment of the initial CuI and 3,5-dicloropyridine acetonitrile solution, we have 

focused on the comparative analysis of two initial acetonitrile solutions: the one 

prepared at 25 °C and that obtained by solvothermal treatment.  

a b

c
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The experimental difference observed upon the solvothermal treatment of the CuI and 

Cl2-py acetonitrile solution is the formation of a brown colloid that is removed before 

crystallization, in trace amount (0.5 mg per 100 mg of CuI added as starting reagent). 

The TXRF analysis of the solid confirms that it consists of just copper, and therefore a 

partial disproportion of Cu(I) into Cu(0) and Cu(II) takes place (Figure 3.8).  

 

Figure 3.8. TXRF spectrum of the residual brown solid obtained in the synthesis of 8b. 

We have also discarded other potential processes that may occur and coexist during the 

solvothermal process such as: i) partial 3,5-dicloropyridine degradation, ii) Cu(I) 

reduction with iodide oxidation, leading to I2 and Cu(0) formation; iii) insoluble CP 

formation. 

Ligand degradation is discarded using NMR. The 
1
H-NMR spectrum of the acetonitrile 

solution obtained after solvothermal process does not show any additional peak but just 

those corresponding to 3,5-dicloropyridine (Appendix E, Figures E1-E4). 

On the other hand, the UV-visible spectrum of the solution obtained after the 

solvothermal process matches with the one obtained just by mixing the two building 

blocks in acetonitrile at 25 °C (Figure 3.9), therefore discarding the presence of iodine 

in solution (which would be observed by the presence of sharp and strong absorption 

bands centered at 242, 291 and 360 nm). Finally, the absence of iodine and chlorine in 

the TXRF (Figure 3.8) discard the possibility of an insoluble CP or metal complex. 
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Figure 3.9. UV-visible spectra of the reaction solutions of 8a (black) and 8b (red). 

Taking into account all of the explained above, we confirm that a partial disproportion 

reaction of CuI takes place with formation of elemental copper (trace amount), 

therefore, the solvothermal treatment implies a slight reduction of the CuI amount, 

relative to the Cl2-py, but also with the presence of trace quantities of Cu(II). Indeed, it 

has been previously reported that solvothermal conditions, can produce small amounts 

of metallic copper, which can slightly alter the reaction stoichiometry.
20

 

Therefore, the slight alteration in the composition of the reaction mixture, together with 

a faster evaporation of acetonitrile, can explain the formation of more structurally 

defective CuI double chains (8b), that can be recrystallized in acetonitrile to eliminates 

the defects and produce a well-ordered structure (8a). 

Trying to gain control over this process reactions in acetonitrile at room temperature 

with different CuI vs Cl2-py ratios (0.95:1 and 0.9:1), were carried out. However, in all 

these tests formation of 8a was just observed upon crystallization. This observation 

suggests that the defects can only be generated under the specific experimental 

conditions obtained in the solvothermal process. Probably, the presence of small traces 

of Cu(II) and/or the presence of Cu(0) play a role in this process.  

In any case, all these data confirm that the amount of defects present in 8b is clearly 

below the detection limits of the spectroscopic and diffractometric techniques (in the 

scale of ppm). 

Finally, XPS of 8a and 8b were measured to corroborate whether small amounts of 

Cu(0) or Cu(II) could be pre-sent as defects in the crystals of 8b, since they are not 

detected by other techniques. Thus, both samples show analogous peaks, corresponding 

to the binding energies of the electrons coming from the core orbitals of carbon, 
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chlorine, nitrogen, iodine and copper (Table 3.1). As for the energy levels of copper, 

the emission bands relative to the 2p orbitals of copper for 8a and 8b confirm that all 

the metal centers present a +I oxidation state, since the Cu(II) bands present satellite 

signals which cannot be observed in the XPS spectra of the CPs (Figure 3.10), so this 

tells us that the amount of copper(II) is lower than a 0.1 %, which is negligible. To 

confirm the presence of Cu(0) centers in 8a or 8b, the Auger parameter of copper was 

studied. According to Battistoni and co-workers,
21

 samples containing Cu(0) should 

have an Auger parameter about 2 or 3 eV lower than that of Cu(I). The results (Table 

3.1) confirm that, since the Auger parameter does not vary from one sample to the other, 

all the metal centers in both samples are Cu(I). 

 

Figure 3.10. X-ray photoelectron spectra of 8a (black) and 8b (red) showing the 2p 

energy levels of the copper centers. 

Table 3.1. Binding energy (BE) values of 8a and 8b. 

Compound \ BE (eV) C 1s Cl 2p Cu 2p3/2 I 3d N 1s 
Cu Auger 

parameter* 

8a 284.8 200.3 932.3 619.3 398.0 1848.7 

8b 284.8 200.2 932.3 619.3 397.9 1848.6 

*Auger parameter = 1253.6 + BE Cu2p3/2 – BE Cu Auger
22

 

Additionally, in order to check that no traces of solvents have been trapped within the 

structure of 8a or 8b, a thermogravimetric analysis coupled with mass spectrometry 

(TG-MS) of each form of the CP was collected. It is known that Cu(I)-I CPs start 

decomposing at about 80 °C, losing the ligand in the first place. Thanks to the TG-MS 

diagrams of 8a and 8b (Figures D8-D9 in Appendix D) we know that this loss occurs in 

the shape of different fragments of the pyridine ring, or as py
2+

, but none of them 

correspond to acetonitrile or ethanol. On the other hand, at higher temperatures (400-
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800 °C), the fragment at m/z which enters the mass detector corresponds to Cu
+
 or I

2+
 

ions. Therefore, we can conclude that the shift in the luminescence of 8a and 8b is not 

due to the presence of solvents in the structure, thus reinforcing the hypothesis which 

implies the presence of defects in 8b. 

 

3.2.2. Luminescent properties 

Building up onto the above theoretical description, we turned to investigate the impact 

of the structural defects on the photoluminescence behavior under different 

experimental conditions. Precisely, we carried out both temperature and pressure 

dependence photoluminescence assays for both compounds.  

First, the emission spectra (λexc = 375 nm) of 8a and 8b was monitored at temperatures 

ranging from 80 to 300 K (Figure 3.11). Complex 8a displays, at room temperature, an 

asymmetric broad emission band centered at 515 nm associated to photoluminescence 

quantum yield of 12 % and a τav of 1.9 µs. Upon decreasing the temperature, the 

intensity of the emission increases along with a gradually red-shift of the maximum 

wavelength to 530 nm with a new shoulder at ca. 550 nm at, for example, 80 K. 

Interestingly, the analysis at VT reveals that this red shift has its origin in the relative 

increase of a low energy structured band (530 max, 550sh) with respect to a second high 

energy component at ~495 nm, clearly noticeable at intermediate temperatures (see 

150K, for example). The noticeable increase in intensity and the vibrational spacing 

(~680 cm
-1

) of this low energy component points out to direct band gap emission 

associated to CuI core. 

As discussed before, the general morphology of 8b is similar to that of 8a, while the 

structural defects introduce intra band gap states that can be radiatively active. 

Following this rationale, complex 8b shows a weak orange/yellowish emission 

consisting of a low energy band at ~670 nm (τav = 0.5 µs) with a broad shoulder at ~560 

nm (Figure 3.11) that are attributed to the intra band gap emission caused by structural 

defects and the direct band gap emission of the core, respectively. This dual emission is 

noticeable weaker that the one of 8a, reaching photoluminescence quantum yields of 

5%). In contrast to 8a, the decrease of the temperature leads to i) a slight blue shift of 

the low-energy emission band from 670 nm to ~650 nm, and ii) a significant increase in 

intensity of the ~560 nm shoulder, that reveals itself as a prominent structured band at 

80K (530sh, 560max, 590sh). This is expected since the deactivation pathway from the 

CB to the intra band gap defect states are hampered at low temperatures. 

Joining both theoretical (vide infra) and photophysical evidences, Figure 3.11c displays 

the proposal for the emitting excited state scenario ruled by the structural defects. In 

short, the presence of the structural defects leads to reduced photoluminescence due to 

the presence of a low-energy emission with a zero energy of 2.03 eV (611 nm) and a 

high-energy band with a zero energy of 2.21 eV (560 nm) that becomes dominant at low 

temperature. Interesting, the difference between the zero energy values are in line with 
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those noted by the calculations (2.40 and 1.95 eV). In the case of 8a as structural defect 

free compounds the emission only corresponds to the direct band gap (530 nm) with 

zero energy of 2.34 eV. Again, the differences between the zero energy of the direct 

band gap of 8a and 8b (0.13 eV) are also in good agreement with those noted by the 

calculations (2.40 eV). 

 

Figure 3.11. Thermal dependence of the luminescence spectra of 8a (a) and 8b (b). λexc 

= 375 nm. (c) Emitting excited state scenario ruled by the structural defects. 

8a 8b
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Finally, we have also evaluated the emission properties of 8a and 8b under hydrostatic 

pressure (1 GPa, 3 GPa, 5 GPa) using pressed pellets of 8a and 8b crystals (Figure 

3.12). 8a shows an interesting behavior in which the direct band gap emission band is 

quenched at low applied pressures of 1 GPa. In contrast, 8b shows negligible changes in 

the low-energy band, while the direct band gap emission also disappears at pressures >3 

GPa. 

 

Figure 3.12. Mechanical dependence of the luminescence spectra of 8a (a) and 8b (b). 

λexc = 375 nm and 300K. 

In order to understand the deactivation of the direct band gap emission under pressure, 

we first analyze the powder X-ray diffraction patterns of the pressed pellets of 8a after 

applying 5 GPa for 2 min. They show neither amorphization nor displacements of the 

signals with respect to the pristine crystals (Figure C12 in appendix C). These results 

indicate that the changes suffered by the 8a are reversible and only appreciable 

immediately after pressure is applied. Indeed, the emission is recovered after relishing 

the applied pressure (Figure 3.12). Next, we carried out the same analysis under 

different pressures. This allowed us to calculate the equations of state (EoS) and bulk 

modulus of 8a and 8b, indicating the degree of compressibility of these materials. Since 

8a deteriorated at low pressures, and considering the analogous behavior and identical 

crystal structures of 8a and 8b, the latter was taken as the reference for these studies. Its 
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bulk modulus (K0 = 7.5 ± 0.4 GPa) is substantially smaller than the lower limit of the 

range expected for organometallic compounds (10-20 GPa), as a consequence of the 

deformability of the intermolecular interactions present in the structure. At pressures 

above 6 GPa a first order phase transition occurs, implying an isosymmetric transition 

without change of the space group. In these conditions, the bulk modulus triples its 

value, reaching K0 = 24 ± 2 GPa. Therefore, after the phase transition the single crystal 

of 8b loses elasticity, with reversible effects as pressure is released. 

The increase of pressure induces a significant variation in some distances and angles of 

the structure (Table A11 in Appendix A). On one hand, the evolution of these 

parameters shows that the main changes produce a slight deformation of the Cu-I 

ladders. The softest distances are those of Cu···Cu interactions, being reduced 

significantly (up to a 7.5 % at 5.56 GPa) close to the point where the phase transition 

occurs. On the other hand, Cu-I bonds are stiffer. Cu-I-Cu and I-Cu-I angles along the 

chains also suffer important distortions, these ones lying between 3 and 4° As usual for 

this kind of CPs, the layers maintain their planarity and orientation but the small 

displacement of the ligands over one another appears to be the cause for the changes in 

angles and, therefore, in the unit-cell parameters. As above mentioned, the behavior of 

the compound is reversible, returning to the initial distances and angles at 0 GPa. The 

theoretical PXRD patterns obtained at different pressures, taken from the respective 

SCXRD structures, allow the visualization of the variation in the diffraction peaks as a 

consequence of the modifications in the lattice parameters, distances and angles (Figure 

3.13).  

 

Figure 3.13. Theoretical PXRD of 8a at different pressures, showing the diffraction 

peak corresponding to the (100) planes. 
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Something completely different happens above 6 GPa, after the crystal has suffered the 

phase transition. The shortenings of distances and the modifications in the angles are 

partially reverted, the asymmetry of the Cu-I changes and the structure itself becomes 

stiff. When pressure is raised above this point, distances and angles along the chains 

suffer changes almost negligible compared to those suffered at lower pressures. 

Thus, the pressure dependent photoluminescence highlighted by the deactivation of the 

direct band emission is attributed to the above described decrease in structural network 

parameters involving i) a reduction of the volume of the cell in almost 20% and ii) a 

shortening in the Cu-I and Cu-Cu distances that produce a distortion in the angles, 

increasing the interligand interactions,
23

 obtained in the single crystal XRD study at 

different pressures (Table A11 in Appendix A). 

Furthermore, the reversible emission behavior is in perfect agreement with the high 

flexibility of this type of Cu-I chains, where the small structural changes that occur 

when exerting pressure are usually reverted when it is stopped (see section 2.2.2.2). 

Indeed, this observation is not unusual, since something similar could be seen in the 

temperature-dependent luminescence study (Figure 3.11). However, it is very striking 

that the structural defects are not affected by both thermal and pressure stress scenarios. 

 

3.2.3. Point defects: Theoretical calculations 

In order to rationalize the differences observed between 8a and 8b, a theoretical study 

of the influence in their electronic structure versus the existence of structural defects in 

the Cu2I2 double chains from the first-principles theoretical point of view has been 

carried out. 

Here, we have used DFT theoretical calculations to model the pristine infinite chain 

(Figure 3.14) and different defective chain systems (Figure 3.14 a, b and c). This was 

realized on the basis of the structure obtained by X-ray diffraction experiments, and the 

relatively low bond energies of coordination bonds (15-50 kcal mol
-1

), which lead to a 

certain lability and in some cases kinetic reversibility of the coordination bonds. 

As a proof of concept, three different point defects have been considered: the two first 

types of defects for representative chain fragments of three different lengths: 3, 5 and 9-

units chain fragments, and the third one for a defective infinite chain.  

The first type of defects consists of cutting a chain, leaving Cu
+
 terminating atoms. 

Charge compensation has been realized by alternating OH
-
 as counteranion and H2O 

groups (Figure 3.14 a.3). The second type of defect considered consists of cutting an 

infinite chain leaving I
-
 terminating atoms, which, again, has been saturated to balance 

charge by alternating H
+
 atoms (Figure 3.14 a.4). Finally, the third type of defect 

considered modelled on an infinite chain has been the lack of an organic ligand (with a 

defect density of 1/12). The Cu dangling bond after removing the ligand has been fully 
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relaxed and subsequently saturated by a water molecule yielding a bond-length of 2.36 

Å (Figure 3.14 a.2). Nonetheless, among the rest of defect types, the latter seems to be 

the most unlikely; since a CI-NEB (climbing-image nudge elastic band) transition state 

calculation corresponding to the detachment of an organic ligand from the chain yields 

an energy barrier > 2.2 eV, which turns this detachment mechanism unfeasible. 

In order to check the influence of the modelled defects on the electronic properties of 

the compound, we have computed the density of electronic states (DOS) of the pristine 

infinite chain to be compared with that of the longest 9-units defective chain fragments 

and the defective infinite chain, normalized to the number of atoms per unit cell for a 

better comparison (Figure 3.14 b.1-b.4). 

In Figure 3.14, the density of states shows a rich profile and yields an electronic band-

gap between the valence and conduction bands (VB and CB, respectively) of around 0.9 

eV (taking into account that the band gap is underestimated by 1.5 eV in the 

calculations, the actual value would be 2.4 eV). The pristine compound can be 

categorized as a narrow-gap n-type semiconductor with the Fermi energy very close to 

the conduction band. For the defective infinite chain with the lack of organic ligands 

(Figure 3.14 a.2 and b.2), the density of states profile remains almost unaltered with a 

similar band-gap and semiconducting character than that obtained for the pristine case, 

which indicates that, electronically, the system would not be substantially affected by 

this kind of defects (at least for a defect concentration of 1/12). For the 9-units defective 

chain fragment with the defect (Cu
+
 terminal) shown in Figure 3.14 a.3 and b.3 its 

density of states profile has changed substantially. A direct comparison between this 

case and the DOS profile for the pristine infinite chain reveals the appearance of a 

defect state at around 0.2 eV below the Fermi energy within the mid-gap region. The 

new band-gap for this defective fragment is around 0.45 eV (1.95 eV after the 

correction). Finally, the 9-units defective chain fragment with the terminating (I
-
 

terminal) defect shown in Figure 3.14 (a.4, b.4) shows a density of states profile also 

quite different to that of the pristine case. Again, a direct comparison between this 

situation and the DOS profile for the pristine infinite chain reveals a closing of the 

band-gap up to a value of 0.5 eV (2.0 eV after the correction), close to the obtained for 

the previous defective case. Thus, for these two defective cases we observe a reduction 

of the band-gap, although with two different origins, which will have a reflection in the 

optical properties of the system.  
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Figure 3.14. Computed density of states (in arb. units) as a function of the energy 

(referred to the Fermi energy) for: the pristine infinite chain case (a.1, b.1); an infinite 

defective chain with a lack of organic ligands (with a density of defects of 1/12) (a.2, 

b.2); 9-units defective chain fragments with two different terminating effects (a.3, a.4 

and b.3 and b.4)). Electronic states involved, photon wavelength, oscillator strength and 

weight of the contributing transitions are shown for the most pronounced low-lying 

optical excitation in the infinite pristine chain. Structures are also shown for each case. 
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This observation can be reinforced by computing the most pronounced low-lying optical 

excitation for the infinite pristine chain. This computed excitation corresponds to a 

combination between two electronic transitions: one from VB  CB (with a weight of 

around 75 %), and other from VB-1  CB (with a weight of around 25 %) at a photon 

wavelength of 550 nm and with a computed oscillator strength of 0.16. Interestingly, the 

most important states involved in this optical transition, VB and CB, are spatially 

located, as usual in this kind of compounds, in the metallic skeleton and the organic 

ligands, respectively (Figure 3.15). 

 

Figure 3.15. 3D orbital isodensities (all with a value of 10
-3

 a.u.) corresponding to the 

valence (blue) and conduction (red) bands for: a) the pristine infinite chain case; b) and 

c) defective chain fragments with two different terminating effects; and d) an infinite 

defective chain with a lack of organic ligands with a density of defects of 1/12. 

 

At this point, it would be interesting to check the spatial distribution of the CB and VB 

for the three defective chain fragments analyzed (Cu
+
, I

-
 terminal and remove the 

terminal ligand). Figure 3.15b shows that the spatial distribution of the new defect state 

appearing in the DOS profile of the defective chain Cu
+
 fragment is also located mostly 

in the skeleton chain, whilst the CB is mostly located on the ligands. This could yield 

similar photoexcitation efficiency as happens in the pristine case but with a red-shift in 

the wavelength of the main peak coming from the band-gap reduction. The same effect 

occurs for the defective I
-
 chain fragment of Figure 3.15c; VB and CB are once again 

located in the metallic chain and organic ligands, respectively. Similarly, one could 

expect similar photoexcitation efficiency as in the previous defective case exhibiting a 

similar associated red-shift in the wavelength of the main peak again coming from the 



 

 
129 

 

band-gap reduction. Nevertheless, no significant change in the photoexcitation 

efficiency is expected for the defective infinite chain of Figure 3.15d since their 

electronic properties rather vary w.r.t. the pristine case. Based on these findings one 

could expect a red-shift in the emission properties due to the presence of the terminating 

Cu
+
 and I

- 
defects, whilst not for the unlikely situation of lack of organic ligands. 

Interestingly, the almost 2
nd

-order electronic degeneracy observed in the conduction 

band for the case of the pristine infinite chain disappears as a consequence of a visible 

splitting into two peaks for the cases reported in Figure 3.14.  

This could give rise to both, new absorption bands as highlighted by the color of the 

crystals and new photoluminescence features, that should correspond to transitions 

between VB-1 and VB  CB and CB+1. 

 

3.2.4. Electrical conductivity 

Conductivity measurements were carried out in order to study the sensibility change in 

the conductivity of 8a and 8b upon the exposition to acetic acid vapors. Interaction was 

demonstrated by the change in the conductivity of 8a and 8b by Electrochemical 

Impedance Spectroscopy (EIS).  

The conductivity values σ (Scm
-1

) were determined from the Nyquist plot by arc 

extrapolation to the Z’ real axis on the low frequency side. Each plot shows the presence 

of a depressed semicircular arc at high-medium frequencies (1 MHz-1 Hz), which is 

attributed to the bulk properties of the compound. The shapes of the Nyquist plots 

recorded after different exposure times for both 8a and 8b compounds are similar; 

however, the intercept of the semicircle with the Z’ axis shifts towards lower Z’ values 

with increasing exposition time (Figure 3.16). 

Both materials present the same behavior; σ increases (ca. 3 orders of magnitude) with 

increasing exposition time to acetic acid vapors from starting values of 7·10
-7

 for 8a and 

1.2·10
-7

 S cm
-1

 for 8b (t= 0h) respectively to values around 1.5·10
-4

 or 8·10
-4

 S cm
-1

 for 

8a and 8b (t = 24h) respectively (Figure 3.17), and reaches saturation after ca. 24h of 

exposure. Therefore, vapors of acetic acid produce a similar effect in 8a and 8b. 

In agreement with the Bode diagram, the semicircle representing the bulk properties of 

compounds shifted to higher frequencies when the acetic acid exposure time increases. 

This fact indicates that the material/electrode interphase capacitive character becomes 

less important, and the highly conductive phase of 8a and 8b appears. When saturated 

acetic acid pellets were exposed to air for longer times a poor value of conductivity was 

obtained. If we compare these results with the experiments involving different exposure 

times to Acetic acid vapor, the behavior clearly indicates the crucial role of the acetic 

acid molecules in establishing the conductivity pathway. In addition, there are not 

important differences between 8a and 8b.  
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Figure 3.16. Nyquist plot of 8a after 0, 3, 6 h of exposure to acetic acid vapors at 298K, 

with the fitting circuit: Experimental values (  ), fitting values (-). 

 

Figure 3.17. Electrical response of 8a (black) and 8b (red) with different exposition 

time to vapors of acetic acid. 
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3.3. Conclusions 

The direct reaction between copper(I) iodide and 3,5-dichloropyridine leads to the 

formation of a one-dimensional CP which is analogous to those presented in chapter 2. 

However, the synthetic method employed in the preparation of this compound generates 

important variations in their luminescent properties: at room temperature we obtain the 

8a form, which presents a green emission; in solvothermal conditions the 8b form is 

obtained, with an orange emission. The structural characterization does not allow the 

distinction of the two forms of this CP. Albeit, a DFT theoretical calculation allows 

demonstrating that the different behavior of the 8b form is due to the presence of point 

defects along its Cu(I)-I chain. 

 

Conclusiones 

La reacción directa entre yoduro de cobre(I) y 3,5-dicloropiridina conduce a la síntesis 

de un CP monodimensional análogo a aquellos presentados en el capítulo 2. Sin 

embargo, el método de síntesis empleado en su preparación produce importantes 

variaciones en sus propiedades luminiscentes: al prepararlo a temperatura ambiente se 

obtiene la forma 8a, que presenta emisión verde, y en condiciones solvotermales se 

obtiene la forma 8b, de emisión naranja. La caracterización estructural de ambas formas 

no permite diferenciarlas, pero un cálculo teórico por DFT permite demostrar la 

presencia de defectos puntuales en la cadena Cu(I)-I de la forma 8b, explicando así el 

diferente comportamiento. 
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Chapter 4. Smart composite films based on Cu(I)-I CPs 
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4.1. Introduction to composite materials and mixed-matrix membranes 

(MMMs) 

Despite their outstanding properties and the easy way to be generated as nanostructures, 

Cu(I)-I coordination polymers do not present the mechanical properties needed to be 

used in certain applications. Therefore, their use as raw materials at the industrial scale 

is very limited. A solution which has been presented to face this disadvantage is to use 

them as dopants in composite materials. 

Composite materials, also called hybrid materials, are conformed by a mixture of two 

components: a matrix, which is the majoritarian one and the responsible of the shape of 

the final material (and, usually, of its mechanical properties), and a dopant, which 

includes an extra property which is desired. For example, in reinforced concrete the 

matrix would be the cement, whereas the dopants are iron bars which enhance the 

mechanical properties of the material. Functional composites usually include a dopant 

which adds other features to the material, usually electronic properties such as those of 

quantum dots (QD).
1
 

In the case of hybrid materials including CPs, these would act as dopants, while the 

chosen matrices are organic polymers; the resulting composites are known as mixed-

matrix membranes (MMM). The advantages of organic matrices over glasses are their 

flexibility and an easier way to process them (even in extrusion processes these 

polymers do not need temperatures higher than 180 °C); this, apart from the good 

optical quality (including transparency and a high refractive index) shown by some of 

them, makes them great candidates to be used. For instance, two popular matrices which 

are normally used to create composite materials including coordination compounds are 

polymethyl methacrylate (PMMA) and polyvinylidene difluoride (PVDF). The former, 

despite its rigidity, shows great transparency; this turned it into the most popular matrix 

used to engulf some CPs containing d
10

 metals, especially Cu(I).
2-3

 Moreover, the high 

refractive index of PMMA allows it to be used as optical fiber devices and amplifiers 

and optical glasses.
2
 

In the case of PVDF, it shows a great flexibility and deformability, therefore increasing 

the durability of the manufactured devices. These advantages prompted its use in the 

last five years, due to the possibilities of using it as plastic coverages, e.g. for farms. 

Other flexible polymers used as matrices for the preparation of MMMs are polylactic 

acid (PLA), a biopolymer with high biocompatibility and biodegradability, polyimide-

based polymers
4
 and polyethyl-vinyl-acetate (EVA). The first attempt to prepare 

flexible MMMs was published in 2015 by Rodenas et al.,
4
 and it consisted of 

nanosheets of the two-dimensional MOF [Cu(BDC)]n (BDC = 1,4- 

benzenedicarboxilate, terephthalate) implemented inside a polyimide-based organic 

polymer in weight ratios between 2 and 12%. The resulting materials showed the same 

adsorption properties than the pristine MOF, due to the homogeneous distribution of the 

CP along the matrix and the higher surface area exposed to the gas. In a similar way, 

Denny et al.
5
 prepared a series of MMMs starting from several MOFs and PVDF, 
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obtaining flexible materials which retained the original properties (adsorption and 

mechanical properties) of both dopant and matrix (Figure 4.1). 

 

Figure 4.1. a) Free-standing MMMs (1 × 1 cm
2
) produced from a variety of MOFs 

embedded in PVDF. b) Photographs demonstrating that large area MMMs containing 

HKUST-1, UiO-66, and MIL-53 (Fe) (3 × 5 cm
2
) are resilient to mechanical stress and 

can be easily handled. Taken from reference 
5
. 

Focusing on luminescent composites, the main drawbacks of rare earth containing 

MMMs are the high dopant concentration and the single luminous color, apart from the 

high cost of the raw materials needed to prepare the coordination complexes. This is 

why the use of d
10

 metals, more common in the Earth’s crust and cheaper, has become 

of widespread interest to prepare CPs which can be used as dopants for MMMs. 

Furthermore, the easy nanoprocessability of these CPs (see chapter 2) offers the 

possibility to manufacture thin films of these composites, with thicknesses of microns or 

even in the nanoscale. A recent example, published by Troyano et al.,
6
 consists of 

nanosheets of two CPs based on Cu(I) and sulfur-donor ligands, which were used to 

prepare flexible and homogeneous films of MMMs, with thicknesses ranging from 35 to 

75 µm (Figure 4.2). The process to prepare these MMMs was very simple: a solution of 

PVDF which contained the desired CP in suspension was treated in an ultrasound bath 

to favor the dispersion of both components; afterwards, the suspensions were deposited 

on flat glass surfaces by drop-casting and the solvent was evaporated at 85 °C. 
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Figure 4.2. a) Schematic diagram of the fabrication of CP@PVDF composites via drop 

casting. b) Picture of as-prepared 1@PVDF and 2@PVDF thin films with 50% (w/w) 

of 1 and 2, respectively. c) Pictures of 1@PVDF and 2@PVDF thin films showing their 

flexibility. d) Cross-section FE-SEM images of 1@PVDF and 2@PVDF thin films. e) 

PXRD patterns of 1@PVDF (left) and 2@PVDF (right) compared to the corresponding 

polycrystalline solids. f) SEM-EDX elemental mapping images of the outward facing 

surfaces of 1@PVDF (left) and 2@PVDF (right), showing the homogeneous 

distribution of fluorine (green), sulfur (red), and copper (blue). 1 = [Cu(CT)]n, where 

CT = 4-carboxylthiophenolate; 2 = [Cu(MCT)]n, where MCT = 4-

methoxycarbonylthiophenolate.
6
 

 

4.2. Results and discussion 

4.2.1. Preparation of MMMs of different thicknesses 

The outstanding optical sensing properties of compounds 5 and 6, as well as the 

mechanical properties of polyvinylidene difluoride (PVDF) and polylactic acid (PLA), 

prompted us to produce composites of potential interest for the fabrication of new 

devices. In particular, the production of thin films is of potential interest towards 

applications. However, the preparation of film composites of nanometric thickness is 

hampered by the size of the integrated materials. Thus, composites with CPs have been 

limited to the bulk scale
5, 7-10

 because of their macroscopic dimensions. Following this 

basis, we have very recently demonstrated that the nanoscale production of CP nano-

layers enables us to produce composites of submicrometric thickness. As 5 and 6 

consist of nanostructures (nanofibers and nanosheets, respectively), they are excellent 
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candidates for thin-film fabrication. Additionally, 5 shows the ability to reversibly 

dissolve and recrystallize from a DMF solution and 6 is able to form stable colloids in 

chloroform under ultrasound conditions. This feature has been still little explored but, as 

we previously demonstrated, it is very useful for the fabrication of CP-based 

nanomaterials.
11-12

 However, it has never been used for composite thin-film preparation. 

Thus, following the first strategy, a dispersion of nanofibers of 5 in DMF has been 

prepared at over-saturated concentrations (leading to final concentrations of 15 and 30 

% w/w of 5 in the PVDF matrix). Alternatively, a bottom-up strategy based on in situ 

fibers of 5 formed from a DMF solution of 5 with PVDF, in a final concentration of 4% 

w/w in the matrix, was tested. For both approaches, the thin-film composites were 

prepared either by drop-casting (Figure 4.3), dip-coating or spin-coating on different 

substrates (Figure 4.5), and the solvent was eliminated upon soft heating. The so-

formed composite-films 5@PVDF were fully morphologically and structurally 

characterized (Figures 4.3-4.5). IR and PXRD data confirm that the original structure of 

5 is retained after the composite formation process in all the cases (Figures 4.3e and 

C13 in appendix C). 

Additionally, AFM, SEM and EDX analyses confirm the formation of highly 

homogeneous films with thicknesses ranging from 40 mm for the drop-casting method, 

to thicknesses between 25 and 60 nm for the films prepared by dip-coating or spin-

coating (Figures 4.3c-d, 4.4, 4.5c-d). The AFM measurements confirmed that, 

independently from the concentration of 5 in the film composites, those prepared by 

spin or dip-coating show a roughness of 20-60 nm, likely due to the intrinsic 

morphology of PVDF, while, for the films prepared by drop-casting, the roughness rises 

up to 40 mm, without significant differences between concentrations. Therefore, the 

most significant effect on the thickness of the film composite depends on the method 

used for its fabrication. Thus, just spin- and dip-coating methods allow us to form 

5@PVDF films of nanometric thicknesses. It is also worth mentioning that the 5 nano-

structuration procedure does not significantly affect the 5@PVDF thin-film formation. 

This is understandable because the low dimensions of 5 fibers produced are 

significantly smaller than the thickness of the 5@PVDF thin-film formed. The 

5@PVDF films show both good elasticity and flexibility. 

The process followed to prepare 6@PLA composite films is very similar to that 

followed for 5@PVDF. The process to obtain the composite materials involves 

dissolving the PLA in chloroform, the addition of 6 (1, 4, and 30 w/w %) and the 

sonication of the suspensions to form a homogeneous colloid (Figure 4.6) which upon 

slow solvent evaporation gives rise to the formation of flexible films of composite 

materials. The analytical, diffractometric, and spectroscopic analyses confirm the 

integration of 6 in the PLA matrix without alteration of its structure and composition 

(Figure C14 in Appendix C). The obtained films are extremely flexible, and their 

transparency depends on the concentration of 6: 6@PLA films with 1% w/w of 6 are 

translucent, films with 4% w/w of 6 are almost opaque, and films with 30% w/w are 

fully opaque (Figure 4.7). 
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Figure 4.3. (a) Scheme of the slow-evaporation synthesis (DMF suspension) of the 

5@PVDF hybrid materials. (b, c) SEM images of the 5@PVDF film, with 30 % w/w of 

5. (d) Luminescence spectra of the 5@PVDF film, with 30% w/w of 5, at several 

temperatures (λexc = 375 nm). (e) PXRD patterns of 5 (black), PVDF (red) and the 

5@PVDF film, with 30 % w/w of 5 (blue). 
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Figure 4.4. (a-c) Backscattered electrons SEM images of the 5@PVDF films with 4% 

(a), 15% (b) and 30% w/w of 5 (c) prepared by drop-casting. (d-f) EDX analysis of the 

same 5@PVDF films with 4% (d), 15% (c) and 30% w/w of 5 (f). The analyses confirm 

that the Cu/I proportion is always 1:1. 

 

Figure 4.5. (a) Scheme of the spin-coating synthesis of the 5@PVDF composite. (b) 

Photography of a 2 × 2 cm 5@PVDF thin-film. (c and d) SEM images of the 5@PVDF 

thin-film with 4% w/w of 5. (e) AFM image of the 5@PVDF thin film with 4% w/w of 

5, and its height profile across the line. 
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Figure 4.6. Scheme of the process that leads to the obtainment of homogeneous 

suspensions of 6@PLA. 

 

Figure 4.7. Flexibility of 6@PLA-30% (a,b,c) and degree of visual transparency of the 

6@PLA -1% (d), 6@PLA-4% (e) and 6@PLA-30% (f). 

The homogeneity of the nanosheets of 6 dispersed in the PLA matrix has been studied 

by FE-SEM (Figure 4.8) and SEM-EDX (Figure 4.9). High resolution SEM images 

give a first approximation of the high homogeneity of the 6@PLA (1%, 4%, and 30%) 

films, showing surfaces with low roughness (Ra (mean arithmetic roughness) = 0.24, 

0.23, and 0.20 µm and Rq (mean square roughness) = 0.31, 0.34, 0.29 µm, respectively); 

moreover, the CP is well dispersed within the matrix, with no fibers poking out of it. In 

addition to this, the SEM-EDX data confirm both the homogeneity of the samples and 

the 1:1 proportion between copper and iodine in the composites. 
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Figure 4.8. FE-SEM images of the 6@PLA thin films with 1% w/w (a, d, g), 4% w/w 

(b, e, h) and 30% w/w of 6 (c, f, i) prepared by drop casting of the corresponding 

suspension. 

 

Figure 4.9. (a-c) Backscattered electrons SEM images of the 6@PLA thin films with 

1% w/w (a), 4% w/w (b) and 30% w/w of 6 (c) prepared by drop casting of the 

corresponding suspension. (d-f) EDX analyses of the same 6@PLA thin films with 1% 

w/w (d), 4% w/w (e) and 30% w/w of 6 (f). 

Once again, the thickness of film-composites can be controlled by changing the 

deposition method, from few microns for films prepared by drop-casting (Figure 

4.10a,d) to few tens of nanometers for thin films generated by spin-coating or dip-

coating (Figure 4.10b-c,e-h). 



 

 
144 

 

The thicknesses of the films have been studied by means of scanning electron 

microscopy (SEM) and atomic force microscopy (AFM) (Figure 4.10). When the 

composite material is generated by drop-casting, the SEM images of the films supported 

on SiO2 show lateral thicknesses between 25 and 70 microns (Figure 4.10d). However, 

the thicknesses of the films obtained by spin coating or deep coating observed by AFM 

show heights between 20 and 40 nanometers (Figure 4.10e-h). 

 

Figure 4.10. (a-c) Scheme of the deposition methods used to get 6@PLA thin films: (a) 

Drop casting, (b) spin coating, (c) dip coating. (d) FE-SEM image of the 6@PLA film 

with 30% w/w of 6 obtained using drop-casting as deposition method. (e,g) FE-SEM (e) 

and AFM (g) images of the 6@PLA thin film with 30% w/w of 6 obtained using spin-

coating as deposition method. (f,h) FE-SEM (f) and AFM (h) images of the 6@PLA 

thin film with 30% w/w of 6 obtained using dip-coating as deposition method. 

The thicknesses of the films prepared via drop-casting appear in the ranges reported for 

similar hybrid materials, also known as mixed-matrix membranes (MMMs). Usually, 

the thicknesses reported for MMMs fall in the range between 35 to 100 microns.
5-6

 On 

the other hand, the use of spin-coating has allowed the preparation of thin-films in 

which the thicknesses can be controlled with the centrifugation speed up to few 

nanometers. At smooth speeds, the resulting films can have thicknesses of 50 to 100 

microns if the rotation speed is low,
13-14

 or in the rank between 300 and 470 nm at 

speeds up to 800 rpm.
15

 However, at higher spinning rates (17000 rpm) we have been 

able to obtain films with nanometric thicknesses (under 100 nm). 
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4.2.2. Luminescent response to temperature and pressure 

The spectroscopic characterization of 5@PVDF composites shows that the optical bulk 

properties of compound 5 are retained in the composite films showing weak yellow 

emission (571 nm at 298 K, λexc = 400 nm) that is enhanced upon lowering the 

temperature (549 and 580 nm at 80 K, λexc = 400 nm) with a similar lifetime, 1.42 ms, to 

that observed for 5 (Figure 4.11). Additionally, the emission spectra of 5@PVDF 

materials excited at 375 nm have also been measured at ambient and high pressures 

(Figure 4.12). The main difference found between 5@PVDF and 5 is the presence of a 

high energy (HE) band at ca. 435 nm. In particular, the emission of the 4% w/w 

5@PVDF sample consists of a single asymmetric band that can be de-convoluted into 

three components, two HE (424 nm and 454 nm) ones with a strong contribution and a 

weak LE (510 nm) contribution. However, for 15 and 30% w/w 5@PVDF samples the 

spectra can be clearly divided into two different bands, one HE (435 nm) and one LE 

(577 nm and 558 nm), respectively. Unfortunately, due to the band overlapping with the 

diamond emission of the DAC, because of the UV excitation in 375 nm, and the HE 

emissions in the UV of the samples, it is not possible to resolve these bands for high 

pressures and, therefore, we can only focus on the pressure evolution of the LE 

emission bands. Thus, in the 4% w/w 5@PVDF sample regarding the LE component of 

the band (510 nm), it remains almost constant in wavelength from 0 to 10 GPa, as well 

as the integrated intensities. On the other hand, the behavior of 15 and 30% w/w 

5@PVDF is similar to that observed for 5, thereby showing different tendencies. 

Hence, in both samples the intensity gradually decreases by around 80% with the 

pressure at 5 GPa compared to their values at 0 GPa, and a red-shift of the LE emission 

bands is also noticeable. However, in 15% w/w 5@PVDF this red-shift is linear with a 

slope of around 330 cm
-1

 per GPa, whereas a more complicated behavior is observed for 

30% w/w 5@PVDF, in which from 2 to 4.7 GPa the red-shift can be considered as 

linear (ca. 326 cm
-1

 per GPa). Therefore, a different origin for the transition observed 

for the 4% w/w 5@PVDF sample with respect to 15 and 30% w/w 5@PVDF samples 

is expected. Analyzing the pressure induced spectral behavior of the hybrid samples, 

some conclusions can be extracted; focusing only on the LE band of the 4% w/w 

5@PVDF sample, cuprophilic interaction (
3
MMC) can be disregarded due to the 

absence of a red shift in the emission band; however, in the other two samples 15 and 

30% w/w 5@PVDF, different behaviors are observed showing red-shifts with different 

rates and quenching of the emission, similar to those considered for compound 5. 
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Figure 4.11. Thermoluminescent behavior of 5@PVDF thin film with 30 % w/w of 5 

before (a) and after applying a 5 GPa pressure (b). λexc = 312 nm. 

The same studies were carried out for 6@PLA composites. Figure 4.13 shows the 

luminescence spectra of 6@PLA films (Figure 4.13b) and the pristine 6 (Figure 4.13a) 

with the temperature. We can observe that, while no significant changes in the emission 

bands are showed between the film composites and the pristine CP, the emission 

intensities of the 6@PLA films decrease. As an example, 6@PLA 30% w/w film and 6 

show a very weak band emission centered at 630 nm at 300 K, which increases in 

intensity upon lowering the temperature (30 times higher from 300 to 100 K), and both 

materials show a progressive blue-shift. Since naked PLA does not show emission, the 

emission bands observed for the composites arise from metal-halide skeleton to ligand 

charge transfer triplet states (
3
(M+X)LCT) of the CP. Therefore, these observations 

corroborate the potential use of the 6@PLA thin-films as temperature sensors. 

Additionally, since the emission of 6 is very sensitive to the pressure, we have studied 

the variations of the 6@PLA thin-films’ emission with the pressure. It would be 

expected that 6@PLA composite films displayed mechanical response as well as the 

thermal one. However, it has been found that the PLA matrix absorbs the effect of 

pressure. This has been observed in a naked-eye experiment where 6@PLA films with 

the studied concentrations of 6 were compressed at pressures up to 6 GPa. Whereas the 

naked 6 would have lost its luminescence at 77 K, the hybrid materials kept their 

previous luminescent behavior. Although this fact rules out the possibility to use our 

composite as pressure sensors, they reveal the high resistance to impacts that these 

materials display. 
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Figure 4.12. Luminescence spectra of the 5@PVDF thin films with 4 % (a), 15 % (b) 

and 30 % w/w (c) of 5 at different pressures (λexc = 375 nm). 
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Figure 4.13. Thermal dependence of the luminescence spectra of 6 (a) and the 6@PLA 

thin film with 30% w/w of 6 (b). 

 

4.2.3. Mechanical properties 

The mechanical behavior of pristine PVDF and 5@PVDF thin-films are shown in 

Figure 4.14-4.17. 

The addition of small amounts of 5 (4% w/w) to the PVDF matrix does not seem to alter 

the ultimate tensile strength of the 5@PVDF thin-films, but higher concentrations (15 

and 30% w/w) provoke a gradual diminishing of this parameter (Figure 4.15). 

Remarkably, the elastic modulus (Young modulus) of these composites remains 

invariable regardless of the amount of 5 that is added to the PVDF matrix. This is 

indicative of good adhesion between the polymeric matrix and the CP nanofibers 

(Figure 4.16). Finally, as should be expected, the elongation at failure point decreases 

as the concentration of 5 increases; nonetheless, the difference between concentrations 

of 15% and 30% of 5 in the 5@PVDF thin-films is not significant (Figure 4.17). 
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Table 4.1. Tensile strength (TS), Young Modulus or Elastic Modulus (E) and total 

elongation of the composite films 5@PVDF with different amounts of 5. 

Sample TS (MPa) E (MPa) Total Elongation (%) 

PLA 23 ± 4 385 ± 146 13 ± 1 

5@PVDF 4% 23 ± 4 375 ± 96 11 ± 3 

5@PVDF 15% 14 ± 6 393 ± 120 7 ± 1 

5@PVDF 30% 11 ± 1 392 ± 10 6 ± 2 

 

 

Figure 4.14. Stress-strain curves for pristine PVDF (blue line) and 5@PVDF thin-films 

(red line 4% w/w, green line 15% w/w, and purple line 30% w/w). 
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Figure 4.15. Ultimate tensile strength for naked PVDF film and 5@PVDF thin films 

composites with 4%, 15% and 30% (w/w) of 5. Different amounts of 5 produce slight 

changes in the ultimate tensile strength. 

 

Figure 4.16. Elastic tensile modulus (Young Modulus) for naked PVDF film and thin 

films composites with 4%, 15% and 30% (w/w) of 5. An increase in the quantity of CP 

does not alter the elastic modulus. 
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Figure 4.17. Elongation (%) at failure point for naked PVDF film and film composites 

with 4%, 15% and 30% (w/w) of 5. Any amount of CP in the composite films produces 

a decrease of the total elongation of the material. 

 

On the other hand, the mechanical behavior of pristine PLA and 6@PLA thin-films are 

shown in Figures 4.18-4.21. 

The addition of different amounts of 6 to the PLA matrix does not induce changes in the 

tensile strength of the films. Although there seems to be a slight increase in the ultimate 

tensile strength for the samples 6@PLA-1% with respect to that observed for naked 

PLA (Figure 4.19), the statistical analysis indicates that there are no significant 

differences between them. A different behavior can be observed in the stiffness of the 

polymer (Figure 4.20), since the 6@PLA-1% films showed an increase of 14% in the 

elastic modulus (E) when compared with PLA films (with a statistically significant 

difference, p-value = 0.017). The increase in the elastic modulus with this few amount 

of CP is indicative of good adhesion between polymer matrix and CP nanosheets. 

However, the addition of a high quantity of 6 (4% and 30%) gives rise to significant 

reductions in the Elastic Modulus of the films. The Young Modulus decreases a 16.6% 

for samples 6@PLA-4% and a 27.3% for samples 6@PLA-30% when compared with 

the samples 6@PLA-1% films, being the differences of 4.9% and 17.0% when 

compared with the raw PLA (Figure 4.20). The decrease in the Young Modulus with 

the increase of the CP concentration should be related with the agglomeration of the CP 

and with a weak interfacial interaction between the CP and the organic matrix.
16
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Table 4.2. Tensile strength (TS), Young Modulus or Elastic Modulus (E), total 

elongation, plastic deformation and elastic elongation of the composite films 6@PLA 

with different amounts of 6. 

Sample TS (MPa) E (MPa) 
Total Elongation 

(%) 

Plastic 

Deformation (%) 

Elastic 

Elongation (%) 

PLA 41 ± 1 948 ± 42 33 ± 4 19 ± 2 14 ± 3 

6@PLA 1% 44 ± 3 1081 ± 24 16 ± 1 9 ± 4 7 ± 3 

6@PLA 4% 41 ± 1 902 ± 29 15 ± 2 6.1 ± 0.4 9 ± 1 

6@PLA 30% 38 ± 1 786 ± 72 17 ± 4 3.6 ± 0.4 14 ± 4 

 

 

Figure 4.18. Stress-strain curves for pristine PLA (purple line) and 6@PLA thin-films 

(blue line 1% w/w, red line 4% w/w, and orange line 30% w/w). 
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Figure 4.19. Ultimate tensile strength for naked PLA film and 6@PLA thin films 

composites with 1%, 4% and 30% (w/w) of 6. Different amounts of 6 produce slight 

changes in the ultimate tensile strength. 

 

Figure 4.20. Elastic tensile modulus (Young Modulus) for naked PLA film and thin 

films composites with 1%, 4% and 30% (w/w) of 6. A small amount of CP (1%) 

produces a slight increase in the Elastic modulus, while an increase in the quantity of 

CP causes the elastic modulus to decrease. 
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Figure 4.21. Elongation (%) at failure point for naked PLA film and film composites 

with 1%, 4% and 30% (w/w) of 6. Any amount of CP in the composite films produces a 

decrease of roughly 50% in the total elongation of the material. As the amount of CP 

increases, so does the elastic elongation. 

 

Moreover, Figure 4.21 shows that any amount of 6 in the composite films produces a 

decrease, close to 50%, in the total elongation of the film composites. During the tensile 

test the films undergo two different types of elongation: the elastic elongation which 

reverses when the applied load is released or when the film breaks, and the plastic or 

permanent deformation which remains when the material breaks. Figure 4.21 shows the 

total elongation, including plastic and elastic elongation. It is observed that increasing 

the content of 6 in the PLA composite from 1% w/w to 30% w/w produces no 

significant changes in the total elongation of the films. However, the samples exhibit a 

slight decrease in plastic deformation by increasing the amount of 6, while the elastic 

elongation enhances due to its lower elastic modulus and, therefore, higher elasticity. 

Usually, MMMs based on porous or non-porous CP and a flexible organic matrix 

undergo a reduction in their ductility and ultimate tensile strength as the CP load 

increases. Taking these facts into account, 6@PLA composite films show a mechanical 

behavior very close to that of analogous MMMs.
5-6
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4.3. Conclusions 

Starting from suspensions of nanostructures of CPs 5 and 6 in solutions of, respectively, 

PVDF and PLA, highly homogeneous composite materials based on mixed-matrix 

membranes (MMMs) have been prepared. By means of a drop-casting deposition 

method, the obtained composite films show thicknesses of microns, whereas spin or 

dip-coating have allowed us to prepare nanometer-thick thin films. The CPs engulfed in 

the organic matrices contribute to the properties of the MMMs with thermochromism; 

as far as mechanochromism is concerned, 5@PVDF composite films keep this 

behavior, slightly quenched by the flexibility of PVDF, while the great flexibility of 

PLA totally absorbs the effect of pressure on 6@PLA composites. The presence of the 

CPs within the organic polymers slightly reduces their mechanical strength, embrittling 

the MMMs with respect to the naked matrices; all the same, our composites still show 

remarkable mechanical properties, allowing their use in potential applications. 

 

Conclusiones 

A partir de suspensiones de nanoestructuras de los CPs 5 y 6 en disoluciones de, 

respectivamente, PVDF y PLA, se han preparado materiales híbridos basados en 

membranas de matriz mixta (MMMs), de alta homogeneidad. Mediante un método de 

deposición de gotas se generan láminas de micras de espesor, mientras que por 

recubrimiento por rotación o por inmersión somos capaces de reducir los espesores a 

unos pocos nanómetros. Los CPs embebidos en las matrices orgánicas aportan las 

propiedades termocrómicas de los CPs solos; en cuanto al mecanocromismo, los 

composites 5@PVDF conservan dicho comportamiento, aunque ligeramente atenuado 

por la flexibilidad del PVDF, mientras que la gran flexibilidad del PLA absorbe 

totalmente el efecto de la presión sobre los composites 6@PLA. La presencia de los 

CPs en el seno de la matriz orgánica reduce ligeramente su resistencia mecánica, 

haciendo que estos materiales sean más frágiles que los polímeros orgánicos de origen; 

a pesar de ello, conservan unas buenas propiedades mecánicas, haciendo a estos 

materiales aptos para diferentes aplicaciones. 
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Chapter 5. Conclusions 

The main conclusion of this PhD Thesis can be summarized as: coordination polymers 

based on double Cu(I)-I chains decorated with a variety of N-donor aromatic 

ligands can be processed as multifunctional stimuli-responsive (nano)materials, 

retaining their features when they are integrated in composite materials. 

In this work we have been able to synthesize a series of coordination polymers bearing 

double zigzag Cu(I)-I chains decorated with a variety of N-donor aromatic ligands. The 

ten compounds have been characterized structurally, and their properties have been 

studied. The extraordinary structural flexibility of the Cu(I)-I chains bestows 

outstanding luminescence and multi-stimuli-responsive behaviors to our CPs. The easy 

processability in solution of these compounds makes our CPs great candidates for their 

fabrication as nanostructures, which can be embedded inside organic matrices in order 

to make smart composites. The inclusion of these CPs and composites in industrial 

fields or daily-life applications would allow the manufacture of cheaper opto-electronic 

devices and sensors, in opposition to those containing rare-earth elements. 
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Conclusiones 

La conclusión principal de esta tesis doctoral se resume en lo siguiente: los polímeros 

de coordinación basados en cadenas dobles Cu(I)-I decorados con una variedad de 

ligandos aromáticos N-dadores pueden ser procesados como (nano)materiales 

multifuncionales estímulo-respuesta, conservando sus características cuando se 

integran en materiales compuestos. 

En este trabajo hemos sido capaces de sintetizar una serie de polímeros de coordinación 

que contienen dobles cadenas Cu(I)-I en zigzag decoradas con ligandos aromáticos N-

dadores. Los diez compuestos se han caracterizado estructuralmente y se han estudiado 

sus propiedades. La extraordinaria flexibilidad estructural de las cadenas de cobre(I) y 

yodo otorgan una destacable luminiscencia y comportamiento multi-estímulo-respuesta 

a nuestros CPs. La facilidad para procesar estos compuestos en disolución permite 

prepararlos en forma de nanoestructuras, que pueden ser embebidas en matrices 

orgánicas para fabricar materiales compuestos inteligentes. La inclusión de estos CPs y 

composites en campos industriales y aplicaciones cotidianas permitiría la fabricación de 

dispositivos optoelectrónicos y sensores más baratos, en contraposición a aquellos que 

contienen elementos de tierras raras. 
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Chapter 6: Experimental procedures 
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6.1. Materials 

All starting reagents were purchased from commercial sources and used without further 

purification, unless otherwise stated. Copper(I) iodide (CuI) was purchased from 

Sigma-Aldrich and Tokyo Company International (TCI). Methyl isonicotinate (MeIN), 

ethyl isonicotinate (EtIN), isonicotinic acid (HIN), 3-chloroisonicotinic acid (Cl-HIN), 

methyl 2-aminoisonicotinate (NH2-MeIN), aminopyrazine (Apyz), 3,5-dichloropyridine 

(Cl2-py) and polyvinylidene difluoride (PVDF; Mw = 180000, Mn = 71000) were taken 

from Sigma-Aldrich. Biopolymer-quality polylactic acid (PLA; 3 mm mean granule 

diameter) was purchased from Goodfellow via Sigma-Aldrich. Benzimidazole, 

iodometane (MeI), 5-nitrobenzimidazol, sodium hydride (NaH) and sodium methoxide 

(NaOMe) were taken from TCI. All synthesis and ultrapure solvents were purchased 

from Scharlau except for acetonitrile (VWR Chemicals) and dry tetrahydrofuran (TCI), 

and were used without previous drying processes. 

 

6.2. Methods 

6.2.1. Fourier-Transform Infrared Spectroscopy (FT-IR). 

IR spectra were registered in a Perkin-Elmer 100 spectrophotometer in the wavenumber 

range between 4000 and 650 cm
-1

, using a PIKE Technologies MIRacle Single 

Reflection Horizontal universal attenuated total reflectance (ATR) accessory. 

 

6.2.2. Elemental Analysis. 

The elemental analyses of all samples were conducted in a LECO CHNS-932 analyzer. 

 

6.2.3. Powder X-ray Diffraction (PXRD). 

The X-ray diffraction patterns of all samples were registered in a PANalytical X’Pert 

Pro diffractometer with θ/2θ primary monochromator and X’Celerator fast detector. The 

samples were analyzed by means of θ/2θ scanning. 

 

6.2.4. Thermogravimetric analysis (TGA) and TGA coupled with mass spectrometry 

(TG-MS). 

The thermogravimetric analyses of all samples and the TG-MS of compounds 8a and 8b 

were registered on a Q500 thermobalance from TA instruments, equipped with a 

platinum sample holder and a mass detector. The purge gas was nitrogen (N2), at a 
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constant flow speed of 90 mL·min
-1

. The samples were heated from 25 to 1000 °C, at a 

speed of 10 °C·min
-1

. 

 

6.2.5. Raman Spectroscopy. 

The Raman spectra of compounds 8a and 8b were registered in a Bruker Senterra 

Raman microscope, using a 785 nm laser at a power of 25 mW as excitation source. 

 

6.2.6. Proton Nuclear Magnetic Resonance Spectroscopy (
1
H-NMR). 

The 
1
H-NMR spectra of compounds 8a and 8b were measured in a Bruker Advance III-

HD Nanobay spectrometer, with an excitation frequency of 300 MHz for 
1
H, using the 

TOPSPIN 3.2 program. All spectra were registered using deuterated acetonitrile 

(D3CCN) as solvent. Tetramethylsilane (TMS) was used as the reference (δ = 0 ppm). 

 

6.2.7. Diffuse reflectance UV-visible spectroscopy. 

UV-visible spectra of all compounds were registered in the solid state using a Cary 5G 

spectrophotometer. A Praying Mantis solid sample holder was used in order to carry out 

diffuse reflectance measurements, and Teflon was used as the blank. The data were 

transformed by means of the Kubelka-Munk function. 

 

6.2.8. X-ray Photoelectron Spectroscopy (XPS). 

The X-ray photoelectron spectra of 8a and 8b, were obtained with a VG Escalab 200R 

spectrometer equipped with a hemispherical electron analyzer and a MgKα (hν = 1254.6 

eV, λ = 9.719 Å) X-ray source, powered at 120W. The contamination Cs line was 

selected as the kinetic energies reference, at a value of 284.6 eV. Wagner sensitivity 

factors were used in order to quantify the different elements on the surface. Peaks were 

considered to be combinations of Gaussian and Lorentzian functions in an 80/20 ratio, 

working with a Shirley type baseline background subtraction by using XPS Peak Fit 

software. An estimated error of ±0.1 eV can be assumed for all measurements. 

 

6.2.9. Single Crystal X-ray Diffraction (SC-XRD). 

The XRD data collections and structure determinations for all CPs detailed in this thesis 

at ambient pressure were conducted in a Bruker Kappa Apex II diffractometer with 

graphite-monochromated Moκα radiation (λ = 0.71073 Å). Measurements were carried 

out at 296K and 110K. The cell parameters were determined and refined by a least-
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squares fit of all collected reflections, applying a semiempirical absorption correction 

(SADABS) in every case. All structures were resolved by direct methods using the 

SIR92 program
1
 and refined by a full-matrix least-squares fit on F

2
 including all 

reflections with the SHELXTL97 program.
2
 All non-hydrogen atoms were refined 

anisotropically. The hydrogen atoms were included in their calculated positions and 

refined riding on the respective parent atoms. All calculations were performed using the 

WINGX crystallographic software package.
3 

The structure determinations for compounds 5, 6 and 8 at high pressure values were 

done using a Rigaku SuperNOVA diffractometer equipped with an EOS detector (CCD) 

and Mo radiation micro-source (λ = 0.71073Å). All measurements were conducted by 

means of the CrysAlisPro software.
4
 The reference structures at room temperature and 

ambient pressure were determined by a dual-space algorithm using the SHELXT 

program
5
 and and refined by a full-matrix least-squares fit on F

2
 including all reflections 

with the SHELXL program.
6
 All non-hydrogen atoms were refined anisotropically and 

hydrogen atoms were included in the model at calculated positions and refined with a 

rigid model where their Uiso value equals 1.2Ueq of their parent atoms. The PLATON 

program
7
 has been used for geometric calculations. For high pressure measurements, we 

have used a Diacell Bragg-S diamond anvil cell (DAC) from Almax-EasyLab, with an 

opening angle of 90º and anvil culets of 600 μm diameter, fitted with a stainless gasket 

containing a hole of 220 μm diameter and 50 μm depth. A methanol-ethanol-water 

mixture (16:3:1) was used as pressure-transmitting medium, as it remains hydrostatic in 

the range of pressure used in our experiments.
8,9

 In order to minimize deviatory stresses 

which can cause incorrect values for bulk modulus.
10

 The sample was placed on one of 

the diamond anvils (diffraction side) together with a small ruby sphere as pressure 

sensor. The structure was refined, for each pressure, using previous results as starting 

point, on F
2
 by full-matrix least-squares refinement using the SHELXL program. Due to 

limitations of the opening angle of our DAC it is only possible to collect about 35% of 

the total reflections present in a full dataset at ambient conditions. In this situation, 

structure refinements were performed with isotropic displacement parameters for all 

atoms except for the heavy atoms (Cu and I) that were refined with anisotropic 

displacement parameters whenever they did not become non-positive definite. 

Hydrogen atoms were included in the final procedure in the same way as for ambient 

conditions. No restraints were used during this process. 

 

6.2.10. Luminescence Spectroscopy. 

Luminescence excitation and emission spectra of all ligands and of compound 4 were 

performed at 25 °C on a 48000s (T-Optics) spectrofluorometer from SLM-Aminco. A 

front-face sample holder was used for data collection and oriented at 60° in order to 

minimize light scattering from the excitation beam on the cooled R-928 photomultiplier 

tube. Appropriate filters were used to eliminate Rayleigh and Raman scatters from the 

emission. Excitation and emission spectra were corrected for the wavelength 
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dependence of the 450 W xenon arc excitation but not for the wavelength dependence of 

the detection system. Spectroscopic properties were measured by reflection (front-face 

mode) on finely ground samples placed in quartz cells of 1 mm path length. No attempt 

was made to remove adsorbed or dissolved molecular oxygen from the materials. 

Reference samples that do not contain any fluorescent dopant were used to check the 

background and optical properties of the samples. 

The thermal dependence of the luminescence spectra and the emission lifetimes of all 

compounds was measured in the temperature range between 80 and 300 K in a a Jobin-

Yvon Horiba Fluorolog FL-3-11 spectrometer using band pathways of 3 nm for both 

excitation and emission. Phosphorescence lifetimes were recorded with an IBH 5000F 

coaxial nanosecond flash lamp. Fluorescent lifetimes with a Data station HUB-B with a 

nanoLED controller and DAS6 software. The lifetime data were fitted with the Jobin-

Yvon software package. Measurements at variable temperature were done with an 

Oxford Cryostat Optistat DN. The lifetime data were fitted using the Jobin-Yvon IBH 

software DAS6 v6.1. 

The mechanical dependences of the luminescence emission spectra of compounds 5, 6 

and 8 were recorded exciting either with 375 nm or 457 nm diode lasers, respectively, 

using a 0.75 m single grating monochromator (Spex 750M) equipped with a cooled 

photomultiplier tube (Hamamatsu 928b). All spectra have been corrected for the 

instrument response. High pressure was generated with a miniature diamond anvil cell 

(mini-DAC), designed at The University of Paderborn (Germany), with low 

luminescent II-a type diamonds for optical, infrared and diffraction measurements. A 

stainless-steel gasket was pre-indented to 80 µm and a centered hole of typical diameter 

of 150 µm constitutes the sample chamber. Ruby chips were used as pressure calibrant 

using the ruby R1line fluorescence. A 16:3:1 methanol-ethanol-water mixture was used 

as pressure-transmitted medium since it provided hydrostatic pressures up to 14 GPa.
8,9

 

 

6.2.11. Electrical Conductivity and Electrochemical Impedance Spectroscopy (EIS). 

Preliminary direct current (DC) electrical conductivity measurements were performed 

on different single crystals of all compounds, with graphite paste at 300 K and two 

contacts. The contacts were made from tungsten wires (25 mm diameter). The samples 

were measured at 300 K by applying an electrical current with voltages from +10 to -10 

V. The measurements were performed in the compounds along the crystallographic axis 

along which the Cu-I chain grows. The thermal dependence of the DC electrical 

conductivity was measured with the four (or two, depending on the size of the crystal) 

contacts method on up to four single crystals each compound, in the temperature range 

between 2 and 400 K. The contacts were made with Pt wires (25 mm diameter) using 

graphite paste. The samples were measured in a Quantum Design PPMS-9 equipment 

connected to an external voltage source (Keithley model 2450 source-meter) and 

amperometer (Keithley model 6514 electrometer). All the quoted conductivity values 
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were measured in the voltage range where the crystals are Ohmic conductors. The 

cooling and warming rates were 1 and 2 K·min
-1

. 

EIS measurements of compound 6 data at 298 K were collected using an Autolab 

electrochemical system II PGSTAT30 (Ecochemie, The Netherlands) impedance 

analyzer, from 1 Hz to 1 MHz with an applied voltage of 0.01 V using a two-probe 

method. AC measurements were performed to determine the conductivity parameters at 

different exposition times to acetic acid vapor (0, 4, 24 and 48 h). Through-plane 

conductivity was determined in three samples of this compound. Thus, ca. 5 mg of solid 

were pressed at up to ca. 5 GPa to form pellets with an approximate area of 0.071 cm
2
 

and a thickness around 0.30 mm. Symmetrical stainless steel electrodes were used as 

electrical contact. This was made by applying a pressure of 350 N cm torque in a 

conductivity cell configuration SS/ CP /SS, where SS refers to stainless steel. Each 

impedance measurement was repeated three times with different pellets to corroborate 

the consistency of the conductivity measurements. The subsequent Nyquist plots were 

obtained from the average of these three measurements. 

 

6.2.12. Field-Emission Scanning Electron Microscopy (FE-SEM). 

FE-SEM images were taken in a Philips XL 30 S-FEG electron microscope, applying an 

electron beam of 300 μA intensity and 10.0 kV potential, at a pressure of 10
-7

 Pa. To 

obtain reproducible results, very flat substrates were used with precisely controlled 

chemical functionalities, freshly prepared just before the chemical deposition of the 

samples. Doped SiO2 surfaces were sonicated in ultrasound bath (Elma, 37 kHz, 380 

W), for 15 min in acetone and 15 min in 2-propanol, and then dried under an Argon 

flow. After sample preparation, the surfaces were metallized with a 10 nm thick Cr 

layer, at a pressure of 10
-3

 Pa. 

 

6.2.13. Scanning Electron Microscopy coupled with analysis by Energy-Dispersive X-

ray Spectroscopy (SEM-EDX). 

SEM-EDX images and EDX spectra were taken in a Hitachi S-3000N microscope with 

an ESED detector coupled to an INCAx-sight EDX analyzer. For this technique, 

samples deposited on SiO2 surfaces were metallized with a 15 nm thick Au layer, at a 

pressure of 10
-3

 Pa. 

 

6.2.14. Atomic Force Microscopy (AFM). 

AFM images were registered in a Nanotec Electronica microscope, at room temperature 

and in an open atmosphere, using Olympus cantilevers with a constant nominal force of 

0.75 N/m. Images were processed by the use of the WSxM program.
11,12

 To obtain 
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reproducible results, very flat substrates were used with precisely controlled chemical 

functionalities, freshly prepared just before the chemical deposition of the samples. 

Doped SiO2 surfaces were sonicated in ultrasound bath (Elma, 37 kHz, 380 W), for 15 

min in acetone and 15 min in 2-propanol, and then dried under an Argon flow. 

 

6.2.15. Theoretical Methodology. 

These calculations have been used to compute mechanical and electronic properties, 

total energies, density of electronic states profiles and excitation spectra in the visible 

region. An efficient TDDFT formalism has been used to calculate the excitation 

spectra
13-18

 as implemented within the plane wave (PW) basis set within the 

QUANTUM ESPRESSO distribution (http://www.quantum-espresso.org). In the 

calculations we have used the simulation cells and structures as obtained by X-ray 

diffraction experiments (for different T and P conditions), yielding residual forces 

acting on each atom below 0.1 eVÅ
-1

, sufficient to guarantee fully converged results. 

Spin-polarized calculations did not show any significant variation with respect to the 

spin-unpolarized tests. In all the calculations the Brillouin zones (BZs) were sampled by 

means of optimal Monkhorst–Pack grids.
19

 We used the Perdew-Burke-Ernzerhof 

(PBE) XC-GGA functional, ultra-soft pseudopotentials
20

 and a PW’s basis set up to a 

kinetic energy cut-off of 40 Ry, as well as 300 Ry for the charge density. The excitation 

spectra are calculated as: l(ω) ∝ ωIm[α(ω)], where α is the spherical average (average 

of the diagonal elements) of the dipole polarizability; an imaginary part of 0.002 Ry has 

been added to the frequency in order to smooth the emerging divergences of the 

polarizability. Additionally, once the different TDDFT spectra were obtained as 

aforementioned, we have carried out a battery of calculations with the GAUSSIAN09 

package
21

 to obtain oscillator strengths, and elucidate transitions and electronic states 

involved in the most intense excitations by using the same GGA-PBE functional and the 

rather large 6-311G* basis set. To compute the individual transitions we have made use 

of the configuration interaction singles (CIS) method,
22

 which requests a calculation on 

excited states using single-excitation CI (CI-Singles). This implementation provides 

excellent results in both closed-shell and open-shell systems. 

 

6.3. Synthetic procedures 

6.3.1. Synthesis of CPs with double zigzag Cu-I chains. 

6.3.1.1. Synthesis of [Cu(HIN)I]n (1) micro- and sub-microstructures 

This CP was prepared following a variation of a published method.
23-25

 Copper(I) iodide 

(200 mg, 1.05 mmol) was dissolved in 10 mL of acetonitrile. On the other hand, HIN 

(130 mg, 1.05 mmol) was dispersed in 10 mL of ethanol and added to the copper iodide 

solution, both at 25 °C. The resulting orange-red suspension was stirred (500 rpm) for 
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30 min and filtered to remove the unreacted ligand. A 20 μL drop of the solution was 

deposited on a doped SiO2 surface and left to evaporate completely; the resulting red 

solid consisted of submicroribbons and nanofibers. The rest of the solution was left to 

slowly evaporate at room temperature, obtaining red microcrystals after 72 h. 

Total yield: 98 mg (30% based on Cu). Elemental analysis calculated (%) for 

C6H5CuINO2: C 22.88, H 1.65, N 4.47; found: C 21.34, H 1.54, N 3.92. IR selected data 

(ATR): ν
~
 (cm

-1
) = 3444 (w), 1697 (s), 1604 (m), 1556 (m), 1411 (s), 1324 (m), 1292 

(s), 1209 (m), 1133 (s), 1058 (w), 917 (w), 825 (w), 759 (m), 696 (m), 676 (m). 

The PXRD patterns show that both micrometric and sub-micrometric crystals have the 

same structure (Figure C1 in appendix C). 

 

6.3.1.2. Synthesis of [Cu(EtIN)I]n (2) nanostructures 

This CP was prepared following a modified literature method.
23,24,26

 To 15 mL of an 

acetonitrile solution of copper(I) iodide (0.53 mmol, 100 mg), 0.53 mmol (80 μL) of 

ethyl isonicotinate (EtIN) were added while magnetically stirring (500 rpm) the 

mixture. Immediately, the solution turned into a yellow suspension. The yellow solid 

was filtered off, washed carefully with acetonitrile (1 mL) and ethanol (2 × 2 mL), and 

dried in a vacuum. 

Yield: 110 mg, 61% based on Cu. Elemental analysis calculated (found) % for 

C8H9CuINO2: C 28.13 (28.20), H 2.66 (2.44), N 4.10 (4.02); selected IR data ν
~
 (cm

-1
) 

= 3421 (w), 1716 (m), 1556 (w), 1414 (s), 1394 (w), 1363 (m), 1322 (m), 1288 (s), 1257 

(m), 1226 (w), 1135 (w), 1114 (w), 1061 (m), 1018 (m), 856 (w), 759 (m), 698 (m). The 

homogeneity of the sample was confirmed by PXRD (Figure C2 in appendix C). 

In order to study the nanoribbons of 2 by SEM, 1 mL of the yellow suspension was 

centrifuged (5 min, 10000 rpm) and washed with ethanol (2 × 1 mL). Then the solid 

was redispersed in 1 mL of double-distilled water and 20 µL of the yellow suspension 

were deposited over clean glass substrates and left to adsorb for 10 minutes. Afterwards, 

the surfaces were dried with an argon flow. 

For their study by AFM, 400 μL of the redispersed suspension were diluted with 3600 

μL of double-distilled water (the dilution factor is 10
-1

), and 15 μL of the new 

suspension were drop-cast onto doped SiO2 substrates. After 3 min of adsorption, the 

surfaces were dried under an argon flow. 

 

6.3.1.3. Synthesis of [Cu(ANP)I]n (3) nanostructures 

This CP was prepared following a modified literature method.
23,26,27

 Two solutions of 

0.53 mmol (100 mg) of copper(I) iodide in 10 mL of acetonitrile and 0.53 mmol (73 

mg) of 2-amino-5-nitropyridine (ANP) in 5 mL of ethanol were prepared at 30 °C, and 
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then mixed with magnetic stirring at 500 rpm. Immediately, the solution turned from 

yellow to orange and an orange solid precipitated as nanocrystals after 1 min. The solid 

was filtered off, washed carefully with acetonitrile (1 mL) and ethanol (2 × 2 mL), and 

dried in a vacuum. 

Yield: 62 mg, 26% based on Cu. Elemental analysis calculated (found) % for 

C5H5CuIN3O2: C 18.22 (18.90), H 1.53 (1.60), N 12.75 (12.93); selected IR data ν
~
 (cm

-

1
) = 3444 (m), 3323 (m), 3087 (w), 3056 (w), 1625 (s), 1601 (m), 1570 (m), 1491 (s), 

1421 (m), 1329 (s), 1285 (s), 1161 (w), 1124 (m), 941 (m), 869 (w), 826 (vs), 760 (m), 

723 (m), 667 (w). The homogeneity of the sample was confirmed by PXRD (Figure C3 

in appendix C). 

For its study by SEM, 1 mL of the orange suspension was centrifuged (5 min, 10000 

rpm) and washed with ethanol (2 × 1 mL). Then the solid was redispersed in 1 mL of 

double-distilled water and 20 µL of the yellow suspension were deposited over clean 

glass substrates and left to adsorb for 10 minutes. Afterwards, the surfaces were dried 

with an argon flow. 

In order to study the nanofibers by AFM, 40 μL of the redispersed suspension were 

diluted with 3960 μL of double-distilled water (the dilution factor is 10
-2

), and 15 μL of 

the new suspension were drop-cast onto doped SiO2 substrates. After 3 min of 

adsorption, the surfaces were dried under an argon flow. 

 

6.3.1.4. Synthesis of [Cu(MeIN)I]n (4) 

Copper(I) iodide (201 mg, 1.05 mmol) was dissolved in 15 mL of acetonitrile. Methyl 

isonicotinate (126 μL, 1.07 mmol) was added to the mixture; instantly, the solution 

turned orange, and an orange solid precipitated. The solid was immediately filtered, 

washed carefully with methanol (2 × 3 mL) and dried in vacuum. Single crystals were 

formed upon standing the mother orange solution at 25 ºC for 72 h. The orange crystals 

obtained were filtered off, washed with methanol (2 × 3 mL) and dried in vacuum. 

Yield: 170 + 59 mg, 49 + 17 % based on Cu. Elemental analysis calculated (%) for 

C7H7CuINO2: C 25.66, H 2.15, N 4.28; found: C 25.72, H 2.15, N 4.28; IR selected data 

(ATR): ν
~
 (cm

-1
) = 3039 (vw), 2950 (w), 1728 (vs), 1560 (w), 1433 (m), 1414 (m), 1321 

(m), 1288 (s), 1184 (w), 1119 (m), 1061 (w), 955 (w), 854 (w), 758 (m), 700 (m), 690 

(m). PXRD data of both nanofibers and crystals confirm their purity (Figure C5 in 

appendix C). 

In order to study the nanofibers of 4 by SEM, 30 mg of the orange solid were 

redispersed in 5 mL of double-distilled water, and 20 μL of the suspension were 

deposited on a doped SiO2 surface; the drop was left to adsorb for 3 min. and dried with 

an Argon flow. 
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For their study by AFM, 1 mL of the orange suspension obtained in the synthetic 

process was centrifuged (5 min, 10000 rpm) and washed with methanol (2 × 1 mL). 

Then the solid was redispersed in 1 mL of double-distilled water and 40 μL of the 

redispersed suspension were diluted with 3960 μL of double-distilled water (the dilution 

factor is 10
-2

), and 15 μL of the new suspension were drop-cast onto doped SiO2 

substrates. After 3 min of adsorption, the surfaces were dried under an argon flow.
24,28

 

 

6.3.1.5. Synthesis of [Cu(NH2-MeIN)I]n (5) 

Copper(I) iodide (100 mg, 0.53 mmol) was dissolved in 8 mL of acetonitrile at 20 ºC, 

and methyl 2-aminoisonicotinate (81 mg, 0.53 mmol) was dissolved in 8 mL of ethanol 

at 50 ºC. Then, both solutions were mixed at 25 ºC under magnetic stirring (500 rpm). A 

pale-yellow solid is immediately formed, filtered off, washed with acetonitrile (2 × 5 

mL), ethanol (2 × 5 mL) and diethyl ether (2 × 3 mL), and dried in vacuum (Yield: 85 

mg; 50 % based on Cu). Single crystals were formed upon standing the mother yellow 

solution at 25 ºC for 48 h (Yield: 43 mg; 25 % based on Cu). 

Yield: 85 + 43 mg, 50 + 25 % based on Cu. Elemental analysis calculated (%) for 

C7H8CuIO2N2: C 24.52, H 2.34, N 8.17; found: C 24.96, H 2.34, N 8.07; IR selected 

data (ATR): ν
~
 (cm

-1
) = 3450 (s), 3345 (s), 3186 (w), 3078 (w), 2992 (w), 2945 (w), 

2845 (w), 1788 (w), 1716 (vs), 1634 (vs), 1603 (m), 1560 (vs), 1489 (w), 1448 (vs), 

1432 (s), 1346 (m), 1308 (vs), 1270 (vs), 1249 (s), 1123 (s), 999 (s), 900 (m), 830 (w), 

816 (m), 762 (vs), 737 (m), 697 (w). PXRD data of both nanofibers and crystals confirm 

their purity (Figure C6 in appendix C). 

In order to study the nanofibers of 5 by SEM, 30 mg of the yellow solid were 

redispersed in 5 mL of double-distilled water, and 20 μL of the suspension were 

deposited on a doped SiO2 surface; the drop was left to adsorb for 3 min. and dried with 

an Argon flow. 

For their study by AFM, 1 mL of the yellow suspension obtained in the synthetic 

process was centrifuged (5 min, 10000 rpm) and washed with ethanol (2 × 1 mL). Then 

the solid was redispersed in 1 mL of double-distilled water and 40 μL of the redispersed 

suspension were diluted with 3960 μL of double-distilled water (the dilution factor is 

10
-2

), and 15 μL of the new suspension were drop-cast onto doped SiO2 substrates. After 

3 min of adsorption, the surfaces were dried under an argon flow.
28

 

 

6.3.1.6. Synthesis of [Cu2I2(Apyz)]n (6) 

Copper(I) iodide (51 mg, 0.27 mmol) was dissolved in 10 mL of acetonitrile; on the 

other hand, 2-aminopyrazine (13 mg, 0.14 mmol) was dissolved in 3 mL of distilled 

water. Both solutions were mixed and magnetically stirred at 25 °C for 5 min, at a speed 

of 500 rpm. The resulting mixture was consisted of a yellowish solution and a yellow 
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solid formed of nanosheets. The solid was filtered off, washed with acetonitrile (2 × 5 

mL), water (2 × 5 mL), and ethanol (2 × 3 mL), and dried in vacuum. 

Total yield: 43 mg (67% based on Cu). Elemental analysis calculated (%) for 

C4H5Cu2I2N3: C 10.09, H 1.06, N 8.83; found: C 10.53, H 1.18, N 8.82; IR-selected data 

(ATR): ν
~
 (cm

-1
) = 3426 (s), 3321 (s), 3190 (w), 3024 (w), 1901 (w), 1615 (vs), 1606 

(vs), 1584 (vs), 1524 (vs), 1471 (s), 1437 (vs), 1351 (s), 1317 (s), 1208 (vs), 1169 (m), 

1069 (s), 1049 (m), 1027 (vs), 898 (m), 820 (vs), 744 (m). PXRD data of both 

nanofibers and crystals confirm their purity (Figure C8 in appendix C). 

In order to study the nanosheets of 6 by SEM, 30 mg of the yellow solid were 

redispersed in 5 mL of double-distilled water, and 20 μL of the suspension were 

deposited on a doped SiO2 surface; the drop was left to adsorb for 3 min. and dried with 

an Argon flow. 

For their study by AFM, 1 mL of the yellow suspension obtained in the synthetic 

process was centrifuged (5 min, 10000 rpm) and washed with double-distilled water (2 

× 1 mL). Then the solid was redispersed in 1 mL of double-distilled water and 40 μL of 

the redispersed suspension were diluted with 3960 μL of double-distilled water (the 

dilution factor is 10
-2

), and 15 μL of the new suspension were drop-cast onto doped 

SiO2 substrates. After 3 min of adsorption, the surfaces were dried under an argon 

flow.
29

 

 

6.3.1.7. Synthesis of [Cu(Cl-HIN)I]n (7) 

Copper(I) iodide (200 mg, 1.05 mmol) was dissolved in 10 mL of acetonitrile; in 

contrast, Cl-HIN (167 mg, 1.05 mmol) was dispersed in 5 mL of ethanol, at 50 °C. Both 

solutions were mixed and stirred (1000 rpm) at 25 °C for 3 min. The resulting mixture 

consisted of a dark yellow solution and an orange solid consisting of [Cu(Cl-HIN)I]n 

nanofibers. The solid was filtered off, washed with acetonitrile (2 × 5 mL), ethanol (2 × 

5 mL), and diethyl ether (2 × 3 mL), and dried in vacuo. The solution was left to 

crystallize at room temperature, obtaining red needle-like microcrystals after 48 h. 

Total yield: 254 mg (69% based on Cu): 151 mg of nanofibers (41%) and 103 mg of 

microcrystals (28%). Elemental analysis calculated (%) for C6H4CuIClO2N: C 20.69, H 

1.15, N 4.02; found: C 20.93, H 1.24, N 3.88. IR selected data (ATR): ν
~
 (cm

-1
) = 3024 

(w), 2885 (w), 2643 (w), 2524 (w), 1711 (vs), 1698 (vs), 1589 (w), 1530 (w), 1473 (m), 

1391 (vs), 1275 (vs), 1264 (vs), 1217 (vs), 1140 (w), 1090 (s), 1055 (s), 876 (m), 854 

(vs), 784 (m), 733 (vs), 690 (s), 666 (vs). 

The PXRD patterns show that both micrometric and nanometric crystals have the same 

structure (Figure C10 in appendix C). 

In order to study the nanostructures by SEM, the solid (61 mg) was redispersed in 1000 

μL of double-distilled water, and 20 μL of the suspension were deposited on a doped 
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SiO2 surface. The drop was left to adsorb until it dried and the surface was purged under 

an argon flow. 

In order to study the nanostructures by AFM, copper(I) iodide (200 mg, 1.05 mmol) was 

dissolved in 10 mL of acetonitrile; in contrast, Cl-HIN (167 mg, 1.05 mmol) was 

dispersed in 5 mL of ethanol, at 50 °C. Both solutions were mixed and stirred (1000 

rpm) at 25 °C for 3 min. The resulting mixture consisted of a dark yellow solution and 

an orange solid consisting of [Cu(Cl-HIN)I]n nanofibers. Then, 400 μL of this 

suspension were diluted with 3600 μL of acetonitrile (the dilution factor is 10
-1

). Next, 

15 μL of this new suspension was deposited on a doped SiO2 surface. The drop was left 

to adsorb for 1 min, and the surface was purged under an argon flow.
25

 

 

6.3.1.8. Synthesis of [Cu(Cl2-py)I]n (8) 

8a: 200 mg (1.05 mmol) of copper(I) iodide are dissolved in 10 mL of acetonitrile. On 

the other hand, 167 mg (1.05 mmol) of 3,5-dichloropyridine are dissolved in 5 mL of 

ethanol. Both solutions are mixed under magnetic stirring (1000 rpm), giving rise to a 

greenish yellow suspension of 8a after 3 minutes. The solid is filtered off, washed with 

acetonitrile (2 × 2 mL) and ethanol (2 × 3 mL), and dried in vacuum. Yellow rod 

crystals of 1 were obtained after 2 days of evaporation of the mother solution. Yield: 

244 mg (66% based on Cu). Elemental analysis calculated (%) for C5H3CuICl2N: C 

17.74, H 0.89, N 4.14; found: C 18.04, H 1.02, N 4.10; IR selected data (ATR): ν
~
 (cm

-

1
) = 3123 (vw), 3063 (vw), 3044 (w), 1867 (w), 1837 (w), 1810 (w), 1781 (w), 1561 

(ms), 1551 (ms), 1415 (vs), 1387 (s), 1290 (m), 1217 (m), 1109 (s), 1094 (s), 1036 (m), 

1015 (m), 903 (w), 873 (vs), 848 (m), 818 (vs), 678 (vs). TG-MS: 80-200 °C: m/z = 38, 

48, 50, 63, 64, 78; 600-800 °C: m/z = 63. 

The characterization data confirmed that both the solid and crystals correspond to 8a. 

PXRD data confirmed the purity of both crystals and solid (Figure C11 in appendix C). 

 

8b: 100 mg (0.53 mmol) of copper(I) iodide and 83 mg (0.53 mmol) of 3,5-

dichloropyridine are dissolved in 15 mL of acetonitrile. The solution is sealed in a glass 

vial with a Teflon cap, heated at 120 °C for 72 hours and cooled to 20 °C at a speed of 

4.2 °C/h. The resulting yellow solution is filtered to eliminate impurities and left to 

slowly evaporate. After 2 days, yellow rod-like crystals (8b) form. The crystals are 

filtered off, washed with acetonitrile (2 × 2 mL) and ethanol (2 × 3 mL), and dried in 

vacuum. Yield: 23 mg (26% based on Cu). Elemental analysis calculated (%) for 

C5H3CuICl2N: C 17.74, H 0.89, N 4.14; found: C 18.38, H 1.04, N 4.34; IR selected 

data (ATR): ν
~
 (cm

-1
) = 3063 (vw), 3044 (w), 1867 (w), 1837 (w), 1810 (w), 1782 (w), 

1560 (ms), 1551 (ms), 1415 (vs), 1387 (s), 1290 (m), 1217 (m), 1110 (s), 1094 (s), 1037 

(m), 1015 (m), 903 (w), 874 (vs), 846 (m), 817 (vs), 678 (vs). TG-MS: 80-200 °C: m/z 

= 38, 48, 50, 63, 64, 78; 600-800 °C: m/z = 63. 
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The PXRD data confirmed the purity of 8b and the similarity of its structure to that of 

8a (Figure C11 in appendix C). 

Thermal stability studies by thermogravimetric analysis (TGA) and TG-MS confirm 

that both crystals (8a and 8b) exhibit the same behavior (Figures D6-D9 in appendix 

D). 

 

6.3.2. Preparation of composite materials based on CPs engulfed in a flexible organic 

polymeric matrix. 

6.3.2.1. Preparation of 5@PVDF composites 

Polyvinylidene difluoride (PVDF) was mixed with compound 5 in weight 

concentrations of 4, 15 and 30% w/w. Compound 5 was dispersed in acetone, and 

PVDF was dissolved in DMF. Both components were mixed in different ratios and 

dispersed with sonication for 30 min., allowing an almost total solution of 5. The 

resulting homogeneous suspension was used to prepare different-sized 5@PVDF films: 

thicker ones were prepared by casting the suspension on microscope slides and drying at 

75 ºC for 1 h to remove DMF; the films were delaminated via immersion in water and 

dried in air. Thin films were prepared by depositing the suspension on SiO2 surfaces by 

dip-coating for 2 min. or spin-coating for 30 sec. at 17000 rpm and dried with an Argon 

flow. IR, PXRD and TGA data showed the presence of 5 in the films (Figure C13 in 

appendix C and Figures D10-D11 in appendix D). 

 

6.3.2.2. Preparation of 6@PLA composites 

Polylactic acid (PLA) was mixed with compound 6 in weight concentrations of 1, 4 and 

30% w/w. PLA was dissolved in chloroform at a weight concentration of 4% w/w. 

When it was fully dissolved, an amount of compound 6 (dependent of the final 

concentration of the MMM) was added to the solution, and both components were 

dispersed with sonication for 30 min., allowing a perfect scattering of 6. The resulting 

homogeneous suspension was used to prepare different-sized 6@PLA films: thicker 

ones were prepared by casting the suspension on microscope slides and drying at 25 ºC 

for 24 h to remove chloroform; the films were delaminated manually. Thin films were 

prepared by depositing the suspension on SiO2 surfaces by dip-coating for 2 min. or 

spin-coating for 30 sec. at 17000 rpm and dried with an Argon flow. IR, PXRD and 

TGA data showed the presence of 6 in the films (Figure C14 in appendix C and 

Figures D12-D13 in appendix D). 
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Appendix A: Crystallographic tables 

Table A1. Crystal structure parameters of compounds 1 and 7. 

 
1 (296 K) 7 (296 K) 7 (150 K) 

Empirical formula C6H5CuINO2 C6H4CuIClNO2 C6H4CuIClNO2 

Formula weight 313.55 347.99 347.99 

Space group P21/c P-1 P-1 

Crystal System Monoclinic Triclinic Triclinic 

a (Å) 14.6503(7) 4.1563(1) 4.1277(3) 

b (Å) 4.1198(2) 6.8049(2) 6.7277(3) 

c (Å) 14.3078(7) 15.9619(6) 15.910(1) 

α (°) 90 95.998(2) 96.336(4) 

β (°) 104.892(2) 92.787(2) 92.834(4) 

γ (°) 90 95.733(2) 96.282(4) 

V (Å
3
) 834.56(7) 445.94(2) 435.64(5) 

Z 4 2 2 

ρcalc (g·cm
-3

) 2.496 2.592 2.653 

μ (mm
-1

) 6.263 6.164 6.310 

Reflections collected/Rint 11064/0.0514 12775/0.0341 21566/0.0988 

Unique data/parameters 1526/101 1614/110 1568/110 

Goodness of fit (S) 1.176 1.018 1.164 

R1/wR2 [I>2σ(I)] 0.0286/0.0668 0.0184/0.0350 0.0291/0.0668 

R1/wR2 [all data] 0.0515/0.0998 0.0224/0.0364 0.0451/0.0993 
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Table A2. Selected distances (Å) and angles (°) of compounds 1 and 7. 

 1 (296 K) 7 (296 K) 7 (150 K) 

Cu-I1rail 2.632(1) 2.6568(5) 2.644(1) 

Cu-I1
i
rail 2.631(1) 2.6351(4) 2.625(1) 

∆[Cu-I1rail] 0.001 0.0217 0.019 

Cu-I1rung 2.658(1) 2.6296(5) 2.620(1) 

Cu-N1 2.054(5) 2.059(3) 2.059(6) 

Cu-Cu
ii
 2.872(1) 2.8141(8) 2.786(2) 

Cu-Cu
iii

 2.872(1) 2.7546(8) 2.719(2) 

∆[Cu-Cu] 0.000 0.0595 0.067 

I1-Cu1-I1
i
 103.01(3) 103.51(2) 103.13(3) 

I1-Cu1-I1
ii
 114.24(3), 114.27(4) 115.68(2) 116.10(4) 

I1
i
-Cu1-I1

i
 114.27(4), 114.24(3) 116.90(2) 117.55(4) 

Cu1-I1-Cu1
ii
 65.74(3), 65.75(3) 64.32(2) 63.90(4) 

Cu1-I1-Cu1
iii

 103.01(3) 103.51(2) 103.13(3) 

Cu1
ii
-I1-Cu1

iii
 65.75(3), 65.74(3) 63.10(2) 62.45(4) 

Dihedral angle 119.3 122.3 122.7 

Tilt angle 90.6 88.3 89.2 

Twist angle 61.0 57.4 59.3 
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Table A3. Crystal structure parameters of 4 and 5. 

 
4 (296 K) 4 (200 K) 4 (110 K) 5 (296 K) 5 (110 K) 

Empirical 

formula 
C7H7CuINO2 C7H7CuINO2 C7H7CuINO2 

C7H8CuIN2

O2 

C7H8CuIN2

O2 

Formula weight 327.58 327.58 327.58 342.59 342.59 

Space group P21/c P21/c P21/c P-1 P-1 

Crystal System Monoclinic Monoclinic Monoclinic Triclinic Triclinic 

a (Å) 4.1603(1) 4.128(1) 4.1003(1) 4.2503(2) 4.2103(3) 

b (Å) 24.2918(8) 24.186(6) 24.1725(7) 10.1169(4) 9.9279(6) 

c (Å) 9.5711(3) 9.370(3) 9.3158(3) 11.3784(5) 11.2864(7) 

α (°) 90 90 90 81.030(3) 82.189(3) 

β (°) 99.171(2) 97.62(1) 96.696(2) 88.843(3) 89.223(3) 

γ (°) 90 90 90 82.580(4) 83.312(3) 

V (Å
3
) 954.90(5) 927.1(4) 917.03(5) 479.24(4) 464.21(5) 

Z 4 4 4 2 2 

ρcalc (g·cm
-3

) 2.279 2.347 2.372 2.374 2.451 

μ (mm
-1

) 5.479 5.643 5.705 5.467 5.644 

Reflections 

collected/Rint 

15471/ 

0.0305 
6987/ 0.0412 3329/ 0.0315 

2481/- 1691/- 

Unique 

data/parameters 
1734/110 1684/110 1609/109 2481/127 1691/119 

Goodness of fit 

(S) 
1.259 1.157 1.089 1.036 1.319 

R1/wR2 

[I>2σ(I)] 

0.0342/ 

0.0635 

0.0293/ 

0.0805 

0.0342/ 

0.0596 

0.0247/ 

0.0477 

0.0189/ 

0.0548 

R1/wR2 [all 

data] 

0.0472/ 

0.0671 

0.0436/ 

0.1050 

0.0446/ 

0.0647 

0.0292/ 

0.0493 

0.0235/ 

0.0740 

  



 

 
180 

 

Table A4. Selected distances (Å) and angles (°) of 4 and 5. 

 4 (296 K) 4 (200 K) 4 (110 K) 5 (296 K) 5 (110 K) 

Cu-I1rail 2.6678(9) 2.663(1) 2.6616(8) 2.643(2) 2.6257(6) 

Cu-I1
i
rail 2.6507(9) 2.639(1) 2.6408(8) 2.733(2) 2.7181(6) 

∆[Cu-I1rail] 0.0171 0.024 0.0208 0.090 0.0924 

Cu-I1rung 2.647(1) 2.641(1) 2.6376(8) 2.680(2) 2.6682(6) 

Cu-N1 2.051(5) 2.057(6) 2.057(4) 2.04(1) 2.028(4) 

Cu-Cu
ii
 2.751(2) 2.719(2) 2.698(1) 2.682(4) 2.627(1) 

Cu-Cu
iii

 2.823(2) 2.764(2) 2.724(1) 3.514 3.523 

∆[Cu-Cu] 0.072 0.045 0.026 0.832 0.896 

I1-Cu1-I1
i
 102.93(3) 102.25(4) 101.30(3) 104.33(8) 103.96(2) 

I1-Cu1-I1
ii
 115.83(3) 117.19(4) 118.13(3) 99.05(7) 98.31(2) 

I1
i
-Cu1-I1

i
 117.44(3) 118.02(4) 118.51(3) 119.51(8) 120.50(2) 

Cu1-I1-Cu1
ii
 64.17(3) 62.81(4) 61.87(3) 80.95(7) 81.69(2) 

Cu1-I1-Cu1
iii

 102.93(3) 102.25(4) 101.30(3) 104.34(8) 103.96(2) 

Cu1
ii
-I1-Cu1

iii
 62.56(3) 61.99(4) 61.49(3) 60.49(8) 59.50(2) 

Dihedral angle 122.1 122.9 122.9 112.22 111.65 

Tilt angle 88.7 88.3 88.0 87.47 88.19 

Twist angle 59.1 58.3 58.1 53.52 52.87 
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Table A5. Crystal structure parameters of 6. 

 
6 (296 K) 6 (110 K) 

Empirical formula C4H5Cu2I2N3 C4H5Cu2I2N3 

Formula weight 475.99 475.99 

Space group P-1 P-1 

Crystal System Triclinic Triclinic 

a (Å) 4.2224(2) 4.2003(4) 

b (Å) 7.6959(4) 7.6091(7) 

c (Å) 7.7567(4) 7.7271(7) 

α (°) 107.789(5) 107.773(5) 

β (°) 97.912(4) 97.910(5) 

γ (°) 101.030(4) 100.762(5) 

V (Å
3
) 230.33(2) 225.98(4) 

Z 1 1 

ρcalc (g·cm
-3

) 3.424 3.498 

μ (mm
-1

) 11.256 11.473 

Reflections collected/Rint 4976/0.017 5808/0.0299 

Unique data/parameters 1150/55 810/55 

Goodness of fit (S) 1.054 1.283 

R1/wR2 [I>2σ(I)] 0.0184/0.0405 0.0228/0.0712 

R1/wR2 [all data] 0.0202/0.0415 0.0196/0.0701 
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Table A6. Selected distances (Å) and angles (°) of 6. 

 6 (296 K) 6 (110 K) 

Cu-I1rail 2.6500(7) 2.631(1) 

Cu-I1
i
rail 2.6824(7) 2.6738(9) 

∆[Cu-I1rail] 0.0324 0.043 

Cu-I1rung 2.6576(7) 2.655(1) 

Cu-N1 2.042(3) 2.035(6) 

Cu-Cu
ii
 2.715(1) 2.660(2) 

Cu-Cu
iii

 3.253 3.269 

∆[Cu-Cu] 0.538 0.609 

I1-Cu1-I1
i
 104.74(2) 104.71(3) 

I1-Cu1-I1
ii
 118.47(2) 119.58(3) 

I1
i
-Cu1-I1

i
 104.93(2) 104.34(3) 

Cu1-I1-Cu1
ii
 61.53(2) 60.42(3) 

Cu1-I1-Cu1
iii

 104.74(2) 104.71(3) 

Cu1
ii
-I1-Cu1

iii
 75.07(2) 75.66(3) 
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Table A7. Most representative variation in the Cu-Cu distances (Å) and I-Cu-I and Cu-

I-Cu angles (°) for 5 at ambient pressure (0 GPa) and 7.16 GPa. 

 5 (0 GPa) 5 (7.16 GPa) ∆ 

Cu-Cu
ii
 2.682(4) 2.53(1) -0.15 (5.60 %) 

Cu-Cu
iii

 3.514 3.151 -0.363 (10.33 %) 

I1-Cu1-I1
i
 104.33(8) 100.7(1) -3.6 (3.45 %) 

I1-Cu1-I1
ii
 99.05(7) 105.5(2) +6.5 (6.56 %) 

I1
i
-Cu1-I1

i
 119.51(8) 121.7(3) +2.2 (1.84 %) 

Cu1-I1-Cu1
ii
 80.95(7) 74.5(2) -6.5 (8.03 %) 

Cu1
ii
-I1-Cu1

iii
 60.49(8) 58.3(3) -2.2 (3.64 %) 

 

Table A8. Most representative variation in the Cu-Cu distances (Å) and I-Cu-I and Cu-

I-Cu angles (°) for 6 at ambient pressure (0 GPa) and 8.35 GPa. 

 6 (0 GPa) 6 (8.35 GPa) ∆ 

Cu-Cu
ii
 2.715 2.543 -0.172 (6.34%) 

Cu-Cu
iii

 3.253 2.693 -0.560 (17.21%) 

I1-Cu1-I1
i
 104.74 101.83 -2.91 (2.78%) 

I1-Cu1-I1
ii
 118.47 121.01 +2.54 (2.14%) 

I1
i
-Cu1-I1

i
 104.93 116.15 +11.22 (10.69%) 

Cu1-I1-Cu1
ii
 61.53 58.99 -2.54 (4.13%) 

Cu1
ii
-I1-Cu1

iii
 75.07 63.85 -11.22 (14.95%) 
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Table A9. Crystal structure parameters of 8a and 8b. 

 
8a (296 K) 8a (110 K) 8b (296 K) 

Empirical formula C5H3Cl2CuIN C5H3Cl2CuIN C5H3Cl2CuIN 

Formula weight 338.42 338.42 338.42 

Space group P21/c P21/c P21/c 

Crystal System Monoclinic Monoclinic Monoclinic 

a (Å) 13.1164(6) 12.961(2) 13.1301(6) 

b (Å) 4.2363(2) 4.2177(5) 4.2377(2) 

c (Å) 15.1474(5) 15.008(2) 15.1614(7) 

α (°) 90 90 90 

β (°) 94.613(4) 94.247(5) 94.623(4) 

γ (°) 90 90 90 

V (Å
3
) 838.94(6) 818.2(2) 840.86(7) 

Z 4 4 4 

ρcalc (g·cm
-3

) 2.679 2.747 2.673 

F(000) 624 624 624 

μ (mm
-1

) 6.840 7.013 6.824 

Reflections collected/Rint 3723/0.0189 12661/0.0320 2141/0.0160 

Unique data/parameters 2059/91 1495/91 1211/91 

Goodness of fit (S) 1.089 1.280 1.079 

R1/wR2 [I>2σ(I)] 0.0330/0.0550 0.0144/0.0420 0.0223/0.0425 

R1/wR2 [all data] 0.0464/0.0596 0.0200/0.0699 0.0291/0.0454 
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Table A10. Selected distances (Å) and angles (°) of 8a and 8b. 

 8a (296 K) 8a (110 K) 8b (296 K) 

Cu-I1rail 2.6159(6) 2.6163(6) 2.6173(6) 

Cu-I1
i
rail 2.6812(6) 2.6742(6) 2.6832(6) 

∆[Cu-I1rail] 0.0653 0.0579 0.0659 

Cu-I1rung 2.6415(6) 2.6352(6) 2.6427(7) 

Cu-N1 2.083(3) 2.084(3) 2.083(4) 

Cu-Cu
ii
 2.8092(7) 2.7689(6) 2.8118(8) 

Cu-Cu
iii

 2.8092(7) 2.7689(6) 2.8118(8) 

∆[Cu-Cu] 0.000 0.000 0.000 

I1-Cu1-I1
i
 106.20(2) 105.73(2) 106.16(2) 

I1-Cu1-I1
ii
 116.97(2), 

114.72(2) 

117.77(2), 

115.72(2) 

116.95(2), 

114.68(2) 

I1
i
-Cu1-I1

i
 114.72(2), 

116.97(2) 

115.72(2), 

117.77(2) 

114.68(2), 

116.95(2) 

Cu1-I1-Cu1
ii
 64.59(2), 63.70(2) 63.64(1), 62.86(1) 64.63(2), 63.73(2) 

Cu1-I1-Cu1
iii

 106.20(2) 105.73(2) 106.16(2) 

Cu1
ii
-I1-Cu1

iii
 63.70(2), 64.59(2) 62.86(1), 63.64(1) 63.73(2), 64.63(2) 

I1-Cu1-N1 110.3(1) 109.65(9) 110.3(1) 

I1
i
-Cu1-N1 101.8(1) 105.1(1) 101.9(1) 

Dihedral angle 125.38 127.22 125.25 

Tilt angle 89.89 89.62 89.86 

Twist angle 59.15 58.43 59.17 

Interchain 

distance 

2.834 2.730 2.839 

Symmetry codes: i) x-1, y, z; ii) -x, -y, -z+1; iii) -x+1, -y, -z+1 
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Table A11. Variation of Cu···Cu distances and I-Cu-I and Cu-I-Cu angles for 

compound 8b with pressure. 

Distances (Å) 

and angles (°) 
8b (0 GPa) 

8b (5.56 GPa) (variation 

w.r.t. 0 GPa) 

8b (6.20 GPa) (variation 

w.r.t. 0 GPa) 

Cu-Cu
ii 

2.8118(8) 2.602(9) (-7.5%) 2.73(1) (-2.8%) 

Cu-Cu
iii

 2.8118(8) 2.602(9) (-7.5%) 2.73(1) (-2.8%) 

I1-Cu1-I1
i 

106.16(2) 103.6(5) (-2.4%) 104.7(7) (-1.4%) 

I1-Cu1-I1
ii
 116.95(2) 121.0(3) (+3.4%) 118.6(4) (+1.4%) 

I1
i
-Cu1-I1

i
 114.68(2) 118.4(3) (+3.2%) 115.0(4) (+0.3%) 

Cu1-I1-Cu1
ii 

64.63(2) 60.7(2) (-6.0%) 63.8(3) (-1.2%) 

Cu1
ii
-I1-Cu1

ii
 63.73(2) 59.9(2) (-6.0%) 62.5(3) (-1.9%) 

Symmetry codes: i) x-1, y, z; ii) -x, -y, -z+1; iii) -x+1, -y, -z+1 
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Appendix B: Pressure-dependent SC-XRD studies 

B1. Compound 5 

 

Figure B1. Variation of the cell distances and volume (a) and angles (b) of 5 with 

pressure. Error bars are smaller than their respective size symbols. Curve lines in (a) 

correspond to the respective EoS model fit. 

Evolution of all unit cell parameters is smoothed up to the maximum pressure achieved. 

The b-axis is substantially softer than a and c-axes while the α angle is the most variable 

angle and β angle remains almost unchanged but with a maximum around 1.5 GPa. The 

softest direction found for this compound is [1 2 1] as is showed on Figure B1a. 

For EoS calculations we have selected the 3rd-order Birch-Murnaghan (BM) according 

to the information obtained from the plots of the axes and V unit-cell parameters as 

normalized pressure (F) pressure against finite strain (f) (i.e. f-F plots, Figure B2). The 

f-F plots for unit-cell parameters exhibit a curvature at low pressures indicating that 

values at zero pressure are not strictly consistent with the higher-pressure data. 

However, comparison of data collected from crystals within the DAC but without 

pressure fluid and data from crystals in air, shows that the formal uncertainties obtained 

for the unit-cell parameters are underestimated, and this accounts for the observed 

curvature in the f-F plots. 

A B
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Figure B2. f-F plots for Volume (a) and cell parameters (b-d) for 5. 

The volume (V) and cell parameters (a, b and c) at equilibrium are displayed as V0 and 

L0, in Table B1, linear and bulk moduli M0 and K0, both in GPa, and their first 

derivative M’0 and K’0 for each axis and the bulk respectively. The fitting procedure 

was done with the EosFit7-GUI programme
1
 using the BM EoS, with the linear 

modification of Angel et al. used to fit individual cell parameters and directions. The 

refinements of EoS all yield wχ
2
 < 1 because of the overestimation of the σ(P), but none 

of the fits show any systematic variation of Pobs-PCalc with pressure, indicating that the 

reported parameters represent the data well. Lines on Figure B1a show the fitted EoS 

models. 

Table B1. EoS parameters for 5. 

Parameter EoS Model L0 (Å) M0 (GPa) M’0 (GPa) 

a BM3 4.25029(3) 32(2) 40(3) 

b BM3 10.1169(6) 15.1(6) 19.0(8) 

c BM3 11.3784(8) 42(2) 26(2) 

d[1 2 1] BM3 25.5519(8) 12.4(3) 13.8(3) 

  V0 (Å
3
) K0 (GPa) K’0 (GPa) 

V BM3 479.24(4) 9.7(2) 9.0(3) 

A B

C D
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The value of K0 falls in the lower limit of the range typical for organometallic 

compounds (10-20 GPa),
2-3

 whereas the diamond anvil shows a K0 value of 440 GPa.
4
 

This, and the fits shown in Table B1, confirm that the hydrostatic compression of this 

material is very anisotropic, with the b-axis being much softer than the other two unit-

cell axes. However, this material is triclinic and therefore the compression of the unit-

cell axes alone does not necessarily represent the true compressibility tensor. The true 

pattern of compressibility is represented by the strain ellipsoid due to compression; two 

of the principal axes of this ellipsoid represent the directions of minimum and maximum 

compression, which can rotate with respect to the unit-cell axes during compression. 

The principal strains from the measured unit-cell parameters at each pressure and the 

room-pressure unit-cell were calculated with the Win_Strain programme
5
 We used the 

Eulerian finite strain definition because this is the same as used for BM EoS 

calculations; the orientation of the strain ellipsoid is not sensitive to the choice of strain 

definition. The softest direction was determined as [1 2 1] direction and not so far with 

values obtained for the b-axis. 

 

Figure B3. (a,b) Variation of the Cu···Cu and I···I distances (a) and angles (b) of 5 with 

pressure. Error bars represent the standard deviation for each value. c) Schematic 

representation of the Cu2I2 chain in 5. Symmetry codes: a: -1+x, y, z; b: 1+x, y, z; c: 1-

x,-y,1-z; d: 2-x,-y,1-z; e: 3-x,-y,1-z. 

A B

C
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Figure B4. Perpendicular distances between layers (a, b) and their respective mutual 

slippage (in-plane component of relative displacement) (c) with pressure. 

 

B2. Compound 6 

Figure B5 presents the behavior of the main bond distances and angles of compound 6 

with pressure. The evolution of these parameters shows that, in a similar way than in the 

case of compound 5, the main change is a slight deformation of the Cu-I ladders. The 

layers maintain their planarity and orientation but the small displacement of the ligands 

over one another (Figure B6) appears to be the cause for the changes on the α and β 

angles with pressure (Figure B7). 

 

Figure B5. Variation of the Cu···Cu, Cu-N and Cu-I distances (a) and angles (b) with 

pressure for compound 6. Error bars represent the standard deviation for each value. 

A B C

a) b)
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Figure B6. Perpendicular distances between 6 layers (a) and their respective mutual 

slippage (in-plane component of relative displacement) (b) with pressure. 

 

Figure B7. Variation of the crystallographic angles α, β and γ of compound 6 with 

pressure. The angles are normalized with respect to their values at 0 GPa. 

a) b)
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The study of the isothermal EoS gives details of interatomic interactions that are 

influenced by the externally applied compressive stresses. From this study, it is possible 

to obtain the bulk modulus (K0), which measures the compressive strength of the 

material and in this case has a value of 14.1(3) GPa (Table B2). This value falls into the 

range of 10-20 GPa typical for organometallic compounds,
2-3

 while diamond has a K0 of 

440 GPa.
4
 In general, these lower values are attributable to deformability of the 

intermolecular interactions or voids present in the structure. A similar CP based on a 

Cu(I)-I chain was studied by Aguirrechu et al.
6
 yielding a K0 value of 10.2(2) GPa, so 

the values obtained for 5 and 6 suggest that their elastic properties are close to those of 

other similar CPs. 

Moreover, the fits shown in Table B2 confirm that the hydrostatic compression of this 

material is very anisotropic, with the b-axis being much softer than the other two unit 

cell axes (Figure B8). However, this material is triclinic and therefore the compression 

of the unit-cell axes alone does not necessarily represent a true compressibility tensor. 

The true pattern of compressibility is represented by the strain ellipsoid due to 

compression; two of the principal axes of this ellipsoid represent the directions of 

minimum and maximum compression, which can rotate with respect to the unit-cell 

axes during compression. The Win_Strain program
5
 was used to calculate the principal 

strains from the measured unit-cell parameters at each pressure and the room pressure 

unit-cell. We used the Eulerian finite strain definition because this is the same as used 

for BM EoS calculations; the orientation of the strain ellipsoid is not sensitive to the 

choice of strain definition. Unfortunately, some changes in the orientation were 

observed in the strain calculations. The softest direction points to [3 0 2] direction after 

2 GPa. The stiffest direction is 90º from this direction and is thus close to the (-2 0 3) 

normal plane. The refined linear modulus is double respect to the soft b-axis but the 

main difference arises from the fact that pressure derivative of the linear modulus is like 

the c-axis but a quarter of the value for b-axis (Table B2). 

Evolution of all unit cell parameters is smoothed up to the maximum pressure achieved. 

The b axis is substantially softer than a and c axes and the β angle is the most variable 

angle while γ angle remains almost unchanged. Plots of the axes and V unit-cell 

parameters as normalized pressure (F) pressure against finite strain (f) (i.e. f-F plots) are 

straight lines with positive slopes within the uncertainties, indicating that they can be fit 

with 3rd-order Birch-Murnaghan (BM) EoS (Figure B8). The f-F plots for unit-cell 

parameters exhibit a curvature at low pressures indicating that values at zero pressure 

are not strictly consistent with the higher-pressure data. However, comparison of data 

collected from crystals within the DAC but without pressure fluid and data from crystals 

in air, shows that the formal uncertainties obtained for the unit-cell parameters are 

underestimated, and this accounts for the observed curvature in the f-F plots. The 

refinements of EoS all yield wχ
2
 < 1 because of the overestimation of the σ(P), but none 

of the fits show any systematic variation of Pobs-PCalc with pressure, indicating that the 

reported parameters represent the data well (Figure B9). 
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Figure B8. f-F plots for Volume and cell parameters for 6. The volume V (a) and cell 

parameters a, b and c, b-d respectively, at equilibrium are displayed as V0 and L0, in 

Table B2, along with the linear moduli M0 of each axis, the bulk modulus K0 (both in 

GPa) and the bulk modulus first derivative K’0. The fitting procedure was done with the 

EosFit7-GUI program
5
 using the BM EoS, with the linear modification of Angel et al.

1
 

used to fit individual cell parameters and directions. 

Table B2. EoS parameters for 6. 

Parameter EoS Model L0 (Å) M0 (GPa) M’0 (GPa) 

a BM3 4.222(1) 70(3) 26(2) 

b BM3 7.697(3) 16(1) 46(4) 

c BM3 7.752(2) 44.6(9) 15.6(5) 

d[3 0 2] BM3 18.622(5) 30.3(6) 11.5(3) 

  V0 (Å
3
) K0 (GPa) K’0 (GPa) 

V BM3 230.2(1) 14.1(3) 7.4(2) 

a) b)

c) d)
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Figure B9. Normalized parameters for compound 6. Curve lines correspond with the 

respective EoS model fit. 

 

B3. Compound 8 

The differences between samples were negligible as can be observed on Figure B10 

except for b-axis. However, compound 8a deteriorated after exceeding pressures of 6 

GPa, so for the rest of experiments we will focus on compound 8b. 
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Figure B10. Evolution of cell parameters a (a), b (b), c (c) and β (d) with pressure for 

compound 8a (black) and 8b (red). Cell axis distances are expressed in Å; the β angle, 

in degrees. 

Figures B10 and B11 present the behavior of the cell parameters with pressure. The b-

axis is substantially stiffer than a and c-axes. At around 6 GPa we can observe a 

discontinuity on the evolution of volume with pressure and a leap on the β angle. It is 

associated with a reversible isosymmetric phase transition, stating as a first order 

transition where there is no change in the space group. 

 

a

c

b

d



 

 
196 

 

 

Figure B11. Variation of the cell parameters of 8b with pressure. Error bars are smaller 

than their respective size symbols. Empty symbols represent the parameter after phase 

transition. 

For equations of state (EoS) calculations we have selected the 3rd-order Birch-

Murnaghan (BM) EoS according with the information obtained from the plots of V unit-

cell parameters as normalized pressure (F) pressure against finite strain (f) (i.e. f-F 

plots). The f-F plots for unit-cell parameters exhibits a curvature at low pressures 

indicating that values at zero pressure are not strictly consistent with the higher-pressure 

data. However, comparison of data collected from crystals within the DAC but without 

a

b
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pressure fluid and data from crystals in air, shows that the formal uncertainties obtained 

for the unit-cell parameters are underestimated, and this accounts for the observed 

curvature in the f-F plots. 

 

Figure B12. f-F plots for Volume for 8b before (a) and after phase transition (b). 

The fitting procedure was done with the EosFit7-GUI program
1-5

 using the BM EoS. 

The refinements of EoS all yield wχ
2
 < 1 because of the over-estimation of the σ(P), but 

none of the fits show any systematic variation of Pobs-Pcalc with pressure, indicating that 

the reported parameters represent the data well. Lines on Figure B12 show the fitted 

EoS models. 

a

b
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The bulk modulus obtained for C5H3CuINCl2 (8a and 8b) before 6 GPa is softer than 

other similar copper iodide Cu-I ladders that have recently been studied under 

hydrostatic pressure, including compounds 5 and 6 and the CP described in reference 6. 

In general, these lower values are attributable to deformability of the intermolecular 

interactions present in the structure. The situation changes dramatically after 6 GPa 

where the bulk modulus increases by a factor of 3 (Figure B13). 

 

Figure B13. EoS fitting for 8b before and after phase transition. 

 

Figures B14 and B15 present the behavior of the main bond distances and angles with 

pressure. The evolution of these parameters shows that the main changes produce a 

slight deformation of the Cu-I ladders. It is clear the different behavior after phase 

transition of the compound where the pyridine ring suffers a tilting and rotation. 
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Figure B14. (a-c) Variation of the main distances on the Cu-I staircase. Error bars 

represent the standard for each value. (d) Referential fragment of the Cu-I staircase 

motif. 

a b

c d
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Figure B15. Variation of the main angles on the Cu-I ladder. Error bars represent the 

standard for each value. 

The structure presents a weak - stacked interactions between pyridine rings with 

Cg…Cg from 4.238(3) to 4.041(16) Å. Also, there is a C4-Cl2…Cg from 3.640(2) Å to 

3.210(18) Å that change to 2.84(3) Å. After phase transition appears a C1-H1…Cg 

weak interaction with C…Cg around 3.25(3) Å (Figure B16).
5 

a

c

b

d
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Figure B16. Variation of the Cg…Cg distances with pressure. 

a

b

c
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Appendix C: PXRD patterns 

 

Figure C1. Simulated (black) and experimental PXRD patterns of 1 in micro- (red) and 

sub-microscale (blue). 

 

Figure C2. Simulated (black) and experimental PXRD patterns of 2 in micro- (red) and 

sub-microscale (blue). 
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Figure C3. Simulated (black) and experimental PXRD patterns of 3 sub-microfibers 

prepared by magnetic stirring (500 rpm) (red) and sonication in ultrasound bath (1 min) 

(blue). 

 

Figure C4. Experimental PXRD patterns of 3 submicrofibers: pristine (black), exposed 

to acetic acid vapors for 72 hours (red) and exposed to acetic acid for 72 hours and 

heated at 50 °C for 2 hours (blue). 
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Figure C5. Simulated (black) and experimental PXRD patterns of 4 in micro- (red) and 

nanoscale (blue). 

 

Figure C6. Simulated (black) and experimental PXRD patterns of 5 in micro- (red) and 

nanoscale (blue). 
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Figure C7. Experimental PXRD patterns of 5: pristine nanofibers (black), pellets 

prepared at pressures of 1 GPa (red), 3 GPa (blue) and 5 GPa (green), and a ground 

pellet (pink). 

 

Figure C8. Simulated PXRD pattern of 6m crystals (black) and experimental PXRD 

pattern of 6n nanosheets (red; the same pattern is obtained for 6m crystals). 
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Figure C9. Experimental PXRD patterns of 6: pristine nanosheets (black), a pellet 

prepared at a pressure of 5 GPa (red), and a ground pellet (blue). 

 

Figure C10. Simulated (black) and experimental PXRD patterns of 7 in micro- (red) 

and sub-microscale (blue). 
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Figure C11. PXRD patterns of 8a (simulated in black, experimental in red) and 8b 

(simulated in blue, experimental in green). 

 

Figure C12. PXRD patterns of 8a and 8b: pristine solid (8a in black, 8b in red) and 

pellets pressed at 5 GPa (8a in blue, 8b in green). 
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Figure C13. PXRD patterns of 5 (black), PVDF (red) and the 5@PVDF film with 30 % 

w/w of 5 (blue). 

 

Figure C14. PXRD patterns of PLA (black), 6 (red) and the 6@PLA film with 30 % 

w/w of 6 (blue). 
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Appendix D: TGA analyses 

D1. Pristine CPs 

As will be observed in all the figures depicted in this appendix, all the coordination 

polymers detailed in this thesis decompose following the same mechanism: from 100 to 

300 ºC, we see a first weight loss which corresponds to the ligand. The second loss, 

which occurs from 400 to 700 ºC, corresponds to iodine and some volatile copper-

iodine compounds. This behavior is observed for both micrometric crystals and 

nanometric fibers of these compounds. 

 

Figure D1. Thermogravimetric analysis of compound 4 at a heating rate of 10 Kmin
-1

 

under a nitrogen flow rate of 90 mL·min
-1

. 
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Figure D2. TGA-MS analysis of compound 4 using a heating rate of 10 K/min under 

helium. A continuous release of CO (m/z = 28) and CO2 (m/z = 44) can be detected. 

The intense peak mass loss takes place at ca. 175 °C. Depicted MS traces can be 

attributed to the 4-(methoxycarbonyl)pyridine fragments – m/z (78, 106, and 137). 

 

Figure D3. Thermogravimetric analysis of compound 5 at a heating rate of 10 Kmin
-1

 

under a nitrogen flow rate of 90 mL·min
-1

. 
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Figure D4. Thermogravimetric analysis of compound 6 at a heating rate of 10 Kmin
-1

 

under a nitrogen flow rate of 90 mL·min
-1

. 

 

Figure D5. Thermogravimetric analysis of compound 7 at a heating rate of 10 Kmin
-1

 

under a nitrogen flow rate of 90 mL·min
-1

. 
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Figure D6. Thermogravimetric analysis of compound 8a at a heating rate of 10 Kmin
-1

 

under a nitrogen flow rate of 90 mL·min
-1

. 

 

Figure D7. Thermogravimetric analysis of compound 8b at a heating rate of 10 Kmin
-1

 

under a nitrogen flow rate of 90 mL·min
-1

. 
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Figure D8. TG-MS analysis of compound 8a at a heating rate of 10 K·min
-1

 under a 

nitrogen flow rate of 90 mL·min
-1

. The ions detected between 80 and 150 °C correspond 

to different fragments of the 3,5-dichloropyridine ligand. 

 

Figure D9. TG-MS analysis of crystals of 8b at a heating rate of 10 K·min
-1

 under a 

nitrogen flow rate of 90 mL·min
-1

. The ions detected between 80 and 150 °C correspond 

to different fragments of the 3,5-dichloropyridine ligand. 
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D2. Composite thin films 

 

Figure D10. Thermogravimetric analysis of PVDF (a) and 5@PVDF film with 4% w/w 

of 5 (b), under nitrogen gas with flow rate 90 mL/min and heating rate 10 ºC/min. 

PVDF fully decomposes between 400 and 600 ºC; therefore, about 70% of the carbon 

remains as a residue (100% would suppose 37.5% of the total mass of PVDF). 

5@PVDF films show the decomposition patterns of both 5 (Figure D3) and PVDF. 

A

B
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Figure D11. Thermogravimetric analysis of 5@PVDF films with 15% (a) and 30% 

w/w of 5 (b), under nitrogen gas with flow rate 90 mL/min and heating rate 10 ºC/min. 

PVDF fully decomposes between 400 and 600 ºC; therefore, about 70% of the carbon 

remains as a residue (100% would suppose 37.5% of the total mass of PVDF). 

5@PVDF films show the decomposition patterns of both 5 (Figure D3) and PVDF. 

B

A
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Figure D12. Thermogravimetric analysis of PLA (a) and 6@PLA film with 1% w/w of 

6 (b), under nitrogen gas with flow rate 90 mL/min and heating rate 10 ºC/min. PLA 

fully decomposes between 300 and 400 ºC, vanishing almost completely when this 

process is completely. 6@PLA films show the decomposition patterns of both 6 

(Figure D4) and PLA. 

b

a
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Figure D13. Thermogravimetric analysis of 6@PLA films with 4% (a) and 30% w/w of 

6 (b), under nitrogen gas with flow rate 90 mL/min and heating rate 10 ºC/min. PLA 

fully decomposes between 300 and 400 ºC, vanishing almost completely when this 

process is completely. 6@PLA films show the decomposition patterns of both 6 

(Figure D4) and PLA. 
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a
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Appendix E: 
1
H-RMN studies of compound 8 

 

Figure E1. 
1
H-NMR spectrum of commercial Cl2-py in CD3CN. 

 

Figure E2. 
1
H-NMR spectrum of Cl2-py treated in solvothermal conditions 

(acetonitrile, 120 °C, 72 hours) in CD3CN. The high noise levels are due to a low 

sample concentration. 
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Figure E3. 
1
H-NMR spectrum of redissolved crystals of 8a in CD3CN. 

 

Figure E4. 
1
H-NMR spectrum of redissolved crystals of 8b in CD3CN. 
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