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Abstract 

Several studies indicate that cancer is strongly associated with diet, in fact, diet 

constitutes an important risk factor in some types of cancer such as those related to the 

digestive system. Precision nutrition based on adapting nutrients or incorporating 

bioactive compounds to the specific individual circumstances, can contribute to a better 

comprehensive treatment of the disease, either by helping to inhibit its progression or by 

improving the effects associated with the use of chemotherapy. 

This thesis analyzes the transcriptome of 1273 colorectal cancer patients to 

identify genes related to cellular sensing or metabolism of nutrients that are also 

associated with patient prognosis or survival. An integrative analysis identified two groups 

of genes whose differential expression (overexpression or repression) correlates with low 

survival in late stages of the disease (III and IV). The ten differentially expressed genes that 

show best association with poor prognosis in colorectal cancer are: DCBLD2, PTPN14, 

LAMP5, TM4SF1, NPR3, LEMD1, LCA5, CSGALNACT2, SLC2A3 and GADD45B. In addition, 

the 3-gene signature SLC2A3, NPR3 and LCA5 seems to be a strong survival marker related 

to nutrition, especially relevant in early stages I and II (HR: 3.60; CI: 3.43-3.77; p-

val.:0.00187]). 

This thesis also investigates two strategies based on precision nutrition with the 

intention of identifying its implication in the inhibition of cell viability, tumor growth and 

metastases development. At the molecular level, a strategy based on the inclusion of 

bioactive compounds in the diet is analyzed in colorectal cancer, a type of cancer that 

frequently correlates with malnutrition of patients. By means of a screening of several 

phenolic compounds and derivatives, 4,4 'Di-O-methyl ellagic acid is identified as a potent 

agent inhibiting cell proliferation in various colorectal cancer cell lines including a line 

resistant to 5-Fluorouracil. It is found that the inhibition of cell viability is mediated by the 

down regulation of Wnt16, a gene that signals various pathways involved in normal cell 

growth and proliferation during embryogenesis, carcinogenesis and chemotherapy 

resistance. Additionally, this work analyzes a second precision nutrition strategy centered 

in the restriction of nutrients in breast cancer, a type of cancer that frequently correlates 

with patient overweight and metabolic syndrome.  More specifically, this Thesis explores 

the implication of an intervention with intermittent fasting cycles and two different diets 

(standard diet and plant-based diet) in tumor progression and metastasis development. 



It is identified that the intermittent fasting in young Balb/c female mice with induced 

breast cancer, decreases the size of the tumors regardless of the type of diet tested. In 

addition, it is found that mice subjected to intermittent fasting under the conditions 

analyzed here, show higher metastatic burden in the lung. This event occurs irrespective 

of the composition of the diet applied in the experiment. 

 

Resumen 

Diversos estudios indican que el cáncer está fuertemente asociado a la dieta, de 

hecho, constituye un factor de riesgo importante en algunos tipos de cáncer como los 

relacionados con el aparato digestivo. La nutrición de precisión basada en adaptar 

nutrientes o incorporar compuestos bioactivos a las circunstancias específicas del 

individuo, puede contribuir a un mejor tratamiento integral de la enfermedad, ya sea 

ayudando a inhibir su progresión o mejorando los efectos asociados al uso de 

quimioterapia.  

Inicialmente, esta tesis analiza el transcriptoma de 1273 pacientes de cáncer 

colorrectal para identificar genes relacionados con detección o metabolismo celular de 

nutrientes que, además, estén asociados a pronóstico o supervivencia del paciente. Por 

medio de un análisis integrativo, se identifican dos grupos de genes cuya expresión 

diferencial (sobreexpresión o represión) correlaciona con baja supervivencia en estadios 

tardíos de la enfermedad (III y IV). Los diez genes cuya sobre expresión diferencial mejor 

se asocia a mal pronóstico en cáncer colorrectal son: DCBLD2, PTPN14, LAMP5, TM4SF1, 

NPR3, LEMD1, LCA5, CSGALNACT2, SLC2A3 y GADD45B. Además, se identifica la huella de 

3 genes SLC2A3, NPR3 y LCA5 como biomarcador de supervivencia relacionado con 

nutrición, especialmente relevante en estadios tempranos I y II (HR: 3.60; CI: 3.43-3.77; 

p-val.:0.00187]). 

Por otra parte, esta tesis investiga dos estrategias basadas en la nutrición de 

precisión, con la intención de identificar su implicación en la inhibición de la viabilidad 

celular, el crecimiento tumoral y el desarrollo de metástasis. A nivel molecular, se analiza 

una estrategia basada en la inclusión de compuestos bioactivos de la dieta en un tipo de 

cáncer que correlaciona frecuentemente con malnutrición de los pacientes, el cáncer 

colorrectal. Por medio de un screening de varios compuestos fenólicos y derivados, se 

identifica el 4,4' Di-O-metil ácido elágico como potente agente inhibidor de la 



37 

proliferación celular, en diversas líneas de cáncer colorrectal, incluyendo una línea 

resistente al 5 Fluorouracilo. Se identifica que la inhibición de la viabilidad celular esta 

mediada por una disminución de la expresión del gen Wnt16, que señaliza diversas rutas 

implicadas en procesos de crecimiento y proliferación celular durante la embriogénesis, 

carcinogénesis y resistencia a quimioterapia. Finalmente, se analiza una estrategia basada 

en la restricción de nutrientes en cáncer de mama, un tipo de cáncer que correlaciona 

frecuentemente con sobrepeso y síndrome metabólico del paciente.  Se estudia la 

implicación de una intervención que incluye ciclos de ayuno intermitentes con dos tipos 

de dieta diferente (dieta estándar y dieta rica en alimentos de origen vegetal), en la 

progresión tumoral y el desarrollo de metástasis. Se identifica que el ayuno intermitente 

en ratones jóvenes Balb/c con cáncer de mama inducido, disminuye el tamaño de los 

tumores independientemente del tipo de dieta asociada.  Además, se constata que los 

ratones sometidos a ayuno intermitente, en las condiciones analizadas, presentan mayor 

número de metástasis en el pulmón. Este hecho ocurre independientemente de la 

composición de la dieta utilizada. 

  

  



39 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. Introduction 
 
  



41 

 
 
1.1. Cancer. 

1.1.1. Cancer overview 

According to the World Health Organization, cancer is the second leading cause of 

death globally, and it is responsible for an estimated 9.6 million deaths in 2018 (WHO, 

2019).  

Cancer is extraordinarily heterogeneous. Variability in patient response to 

treatment, different mutation map of each individual or tumor, high diversity in cell types 

and clones inside the tumors, wide variety of biomarkers and subtypes; a significant 

number of singularities that make the approach particularly difficult to address. 

Cancer is not a unique disease. The U.S. National Cancer Institute (NCI) describes 

cancer as “a collection of related diseases” and identify more than 100 different cancer 

types according to the organ or tissue (“Cancer Types,” 1980). 

The challenge is to understand the molecular basis of this heterogeneity to 

determine factors implicated in disease initiation, progression, and responsiveness or 

resistance to antitumoral therapies. 

Multifactorial disease 

Cancer is constitutively a multifactorial disease that develops when cells stop 

submitting to the fine-tuned control patterns. Environmental factors and genetic 

alterations switch on the mechanisms causing cancer. In the absence of normal 

regulation, shifts in the genetic map lead to an aberrant transformation of the cell. Cancer 

cells acquire comparative advantages in relation to their predecessors enough to persist, 

grow, proliferate, migrate and colonize new tissues (Hanahan, Weinberg, 2000) (Hanahan 

and Weinberg, 2011).   The advantages or new capabilities of these transformed cells 

comprise: 
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9 Sustaining Proliferative Signaling 

9 Evading growth suppressors 

9 Avoiding immune destruction 

9 Enabling replicative immortality 

9 Tumor-promoting inflammation 

9 Activating invasion & metastasis 

9 Inducing angiogenesis 

9 Genome instability & mutation 

9 Resisting cell to death 

9 Deregulating cellular energetics 

 

  

Figure 1.1. Cancer Hallmarks. Hanahan and Weinberg, 2011. 

 



Since these frequently cited ten-hallmark of cancer (figure 1.1), new observations 

in cancer research raise other abilities that contribute to increase the evidence of 

complexity. Emerging hallmarks include the termed axonogenesis or the infiltration of 

tumors by growing nerves (Magnon et al., 2013), (Pundavela et al., 2015) and the referred 

to as lymphangiogenesis that includes the formation of new lymphatic vasculature  inside 

the tumor and its active implication in the metastatic burden (Stacker et al., 2014). 

Hallmarks are related to each other, mostly in a cause-effect way and it is difficult 

for researcher to discern whether these changes are the cause or an effect of cancer itself.  

 

A disease of the genome 

Probably the most characteristic trait associated to cancer encompasses the 

alteration of genes. Cancer is a disease of the genome (Getty, 2008) (MacConaill and 

Garraway, 2010). Multiple modifications in DNA performance at different levels occurs, 

from nucleotide to chromosome, leading to further changes in transcripts and proteins 

and the consequent dysregulation of multiple biochemical pathways. Although a wide 

variety of these different processes contribute to gene alteration, DNA mutations seems 

to achieve special relevance in the inter and intratumoral individuality.  

 The genome of cancer cells accumulates somatic mutations (a term that is coined 

to distinguish them from the germinal ones) throughout the life of the individual, some 

are acquired when the lineages of the cell are biologically normal and do not show 

phenotypical characteristics of cancer. In a comprehensive review of the cancer genome 

Michael Stratton firstly used the terms "passenger" and "driver" to refer to the two major 

groups of somatic mutations depending on their involvement in oncogenesis. The "driver" 

mutations provide comparative advantages to the cell that contribute to higher 

proliferation of these transformed clones leading to oncogenesis and tumor progression. 

The "passenger" mutations do not grant advantage to the cell compared to the rest of the 

clones (Stratton et al., 2009).  

Cancer mutations have their origin in three defined causes (Tomasetti et al., 2017): 

genetic inheritance, errors during DNA replication and mutations due to exogenous or 

environmental factors. Most driver mutations are caused by errors in DNA replication. 

Recent studies from "The UK cancer database, cancer genome sequencing 

efforts"(Ledford, 2017), carried out in 32 different types of cancer and more than 25,000 
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tumors indicate that around 66% of the mutations are caused by errors in DNA replication, 

more than 29% have their origin in environmental factors and confirm that just 5% are 

due to hereditary mutations. Surprisingly, although cancer is a genetic disease, few cases 

appear to be due to genetic inheritance.  

Although the burden of mutation varies depending on the age of cancer onset, the 

exposure to carcinogenic agents and the DNA-repairing ability, it seems to be directly 

associated to the type of cancer. For instance, Ewing's sarcoma and thyroid cancer have 

relatively lower mutation rates with frequencies ranging 0.1 to 1 mutation per Mb, 

whereas lung cancer or melanoma show the highest mutation frequencies with rates 

above 100 mutations per Mb. (Lawrence et al., 2013) 

All these modification prompts subsequent alterations in gene expression, altered 

allele-specific expression or differential alternative splicing (MacConaill and Garraway, 

2010). 

The specific alterations in the expression of oncogenes and tumor suppressor 

genes have special importance in the appearance of the tumoral phenotype (Hall, 1984) 

(Knudson, 2002).  

Oncogenes encompass the mutated form of genes that in normal cells (referred to 

as proto-oncogenes), drive proliferation and differentiation processes. They code for 

transduction signaling proteins rendering cell cycle or apoptosis. Overexpression of these 

genes due to different causes, e.g. gain of function, amplification, alteration in the 

numbers of copies (Somatic Copy Number alterations [SCNA]) or when a gene is under 

the influence of a very active promotor, prone cell transformation and uncontrolled 

proliferation, previous step for cancer development. (Koolman J Rohm K, 2012). Some 

examples of oncogenes or products of them comprise i) ligands like insulin like growing 

factor 1 (IGF-1) or Wnt; ii) membrane receptors that binds growth factors and hormones 

such as the estrogen or progesterone receptors (ER, PR); iii) GTP binding proteins and 

adaptative proteins such as the RAS family; iv) DNA-specific binding proteins or 

transcription factors such as myc, fos or Jun; v) protein kinases involved in signal 

transduction like AKT, PI3K or ERK, among others. 

Tumor suppressors or Anti-oncogenes comprise a group of genes controlling 

normal cell development and proliferation. They are mainly implicated in the inhibition of 

differentiated cells returning to the cell division cycle, DNA repairing and genome 



instability avoidance. Downregulation or absence of these genes leads to the accelerated 

uncontrolled cell division encompassing cancer. TP53 or RB, the genes that code for the 

protein p53 or retinoblastoma protein, are good examples of tumor suppressor genes. 

A broad variety of genes reveals to have oncogenic or tumor suppressing abilities, 

therefore, the same gene may exert alternatively oncogene or tumor suppressor activity 

depending on the cancer type or the biological background surrounding (Vogelstein and 

Kinzler, 2004).   

Regulatory genes such as those coding for microRNAs are another class of altered 

genes with major implication in cancer progression (Abdelrahim et al., 2006)(Iorio and 

Croce, 2012)(Gambari et al., 2016). MicroRNAs are short non-coding RNA molecules that  

silence specific genes by blocking or degrading target mRNA, inhibiting further translation 

(Tabara et al., 1999) (Zamore, 2006). Figure 1.2 briefly captures the process of microRNA 

maturation and the different steps until final hybridization with the target mRNA which 

results in translation inhibition or mRNA degradation. miRNA has incomplete base-pairing 

and targets multiple mRNA (Pillai et al., 2007).  miRNAs are excised from genome-encoded 

RNA precursors (Großhans and Filipowicz, 2008). Alteration of genes expressing miRNAs 

can post transcriptionally enhance cancer progression, for instance, negatively regulating 

the translation of tumor suppressor mRNAs (Reddy, 2015) (Volinia et al., 2006).  
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Figure 1.2. MicroRNA Pathway. Summarizing a much complex process, MicroRNAs are transcribed as large RNA 

precursors (pri-miRNAs) and then processed in the nucleus by the microprocessor complex, Drosha/DGCR8. The 

resulting pre-miRNAs (70-nucleotides approx. in length) are then exported to the cytoplasm by the protein Exportin 5. 

Once in the cytoplasm, the enzyme Dicer generates the miRNA, a double-stranded RNA (22-nucleotide approx. in 

length). Dicer also originates the formation of the RNA-induced silencing complex (RISC). RISC is responsible for the 

two different outcomes of miRNA-based gene silencing: mRNA degradation and translational repression. Figure 

adapted from sigmaaldrich.com, Functional genomics and RNAi. miRNA.  
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1.1.2. Colorectal cancer (CRC) 

Epidemiology 

CRC is the third more diagnosed cancer overall with 1,8 million new cases and 

862,000 deaths previewed for 2018. (WHO, 2019). CRC affects more to men than women. 

Population over 65 years old and non-Hispanic black race show higher prevalence. It is 

noteworthy the increasing trend of CRC onset in younger individuals (≤ 50years old), in 

contrast to the favorable trend in the older strata. (Siegel et al., 2017). 

Survival, explained as percentage of individuals with CRC that live five years or 

longer free of disease from diagnostic date, exceeds 65% between years 2006 and 2012 

(Siegel et al., 2017) . 

Europe CRC statistics are similar (Malvezzi et al., 2018) and specifically in Spain,  

"The Global Cancer Observatory Project" places CRC as the most prevalent cancer of all 

with 34,331 new cases previewed for 2017 in the Spanish territory (SEOM, 2018). This 

study identifies CRC behind lung as those cancers with higher mortality in 2016. 

  

Etiopathology 

Risk and prevention factors 

CRC is highly related to diet. Among substantiated risk factors, age, physical 

inactivity, excess of body weight, central deposition of adiposity in the body, alcohol 

consumption and smoking, seems to be the most relevant ones. Nutritional habits such 

as low fiber intake and the frequent consumption of red or processed meat seems to 

increase the risk  of suffering CRC. (CRU, 2015) (Giovannucci, 2001) .  

Early screening is the key preventive factor of CRC. Good nutritional habits with 

frequent consumption of legumes, fruit and vegetables, rich in fiber, can contribute to 

decrease risk of CRC as well. Epidemiological studies have also revealed that the recurrent 

use of non-steroidal anti-inflammatory drugs, especially in elder population, contribute to 

lower the risk of this type of cancer. (Bastiaannet et al., 2012) (Markowitz, 2007) 

(Schreinemachers and Everson, 1994) 

Oncogenesis of CRC 

The adenoma-carcinoma sequence of events has been proposed throughout the 

years as the classical pathway leading to CRC. It describes CRC genesis as an sprouting 

process that begins with an early adenoma which evolves into an advanced adenoma with 
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high-grade dysplasia and then progresses to an invasive cancer (Fearon and Vogelstein, 

1990). This process is orchestrated by a number of sequential driver mutations leading to 

the tumor formation and the spreading to other tissues by a process of metastasis 

(Markowitz and Bertagnolli, 2009) (figure 1.3.A).  

Latter studies showed that a minority of CRC tumors develops according to the 

Fearon and Vogelstein model and new oncogenesis pathways were suggested but unable 

to entirely capture the strong complexity of CRC. The chromosomal instability pathway; 

the microsatellite instability (MSI) pathway; and the CpG island methylator pathway, also 

referred to as the serrated neoplasia pathway, are among those majorly accepted by 

experts. (IJspeert et al., 2015). The most relevant molecular characteristics of these 

pathways include a sequence of genetic alterations captured in figure 1.3.B. 

The chromosomal instability (CIN) pathway. It is suggested that more than 70% of 

total CRCs arise due to CIN pathway (Jass, 2007a). CIN occurs due to chromosomal 

alterations, in numbers (gain or loss of entire chromosomes, aneuploidy), structure (e.g., 

duplications, inversions, translocations, or deletions), or a combination of both (Pino and 

Chung, 2010).  

The microsatellite instability (MSI) pathway. Comprises more than 15 % of CRC and 

one out of five tumors includes a germline mutation associated with Lynch syndrome 

(Jass, 2007b). The main feature of this route encompasses deficiencies in the mechanism 

to repair DNA caused by alterations in mismatch repair (MMR) genes such as the human 

MutL homologue MLH1 and MLH2. The name of microsatellite is attributed to small 

segments of DNA between 4 and 6 bp located generally in non-coding zones along the 

genome. It is the variations in the number of repetitions and not the sequence that 

determines each allele in particular. This MSI gives rise to extraordinarily high mutation 

rates, mainly indels and substitution. This, alters the DNA sequence and modifies the 

reading frame at the time of processing each codon, originating the synthesis of 

erroneous proteins (Boland and Goel, 2010) (IJspeert et al., 2015).  

The serrated neoplasia pathway. The precursor lesion of these tumors consists in 

the formation of polyps and serrated adenomas with specific saw-toothed structures as 

representative trait of its morphology (Hawkins et al., 2002). Higher metastasis burden 

and worse survival seem to be highly associated with serrated CRC, in comparison with 

conventional CRC (Laiho et al., 2007). A special phenomenon occurring in cancer and 



highly frequent within tumors arisen through this pathway encompasses the CpG island 

methylator phenotype (CIMP). Methylation is used as epigenetic mechanism by which 

methylases add a methyl group to the carbon 5 of a cytosine located before a guanine 

(CpG). CpG islands are not randomly distributed in the human genome. One high density 

CpG area appears next to the promoter of more than a half of all genes (CpG islands). This 

CpG islands are hardly methylated in normal tissue but frequently methylated in cancer 

cells, silencing tumor-suppressor, mismatch-repair or apoptosis genes, among others. 

CIM achieves unusual relevance in CRC due to the frequent MLH1 silencing by an aberrant 

CpG methylation. This singularity is referred to as "CpG island methylator phenotype" 

(CIMP or CIMP high) (Snover, 2011).  

Figure 1.3 shows three heavily studied pathways found in the literature and some 

of the most relevant molecular singularities of each one. Nevertheless, authors claim to 

be cautious when approaching CRC oncogenesis, since these pathways are unable to fully 

explain CRC heterogeneity, their sequence of events would likely not follow the proposed 

order and overlapping and crosslinking with each other should be expected (IJspeert et 

al., 2015). 

 

Figure 1.3.  Colorectal cancer: Oncogenesis. Cartoon representative of the extreme complexity of CRC oncogenesis. A) In 

the upper part of the figure, a representation of  “Genes and Growth Factor Pathways That Drive the Progression of 

Colorectal Cancer” (Markowitz and Bertagnolli, 2009). Green color indicates oncogenic mediators activated in CRC and 

red color denotes tumor-suppressor de-activated. B) The figure shows main CRC independent genetic alterations in 3 

heavily studied pathways. Adapted from the review (IJspeert et al., 2015)  and previous works (Fearon and Vogelstein, 

1990) (Walther y col., 2009) (Esteve, 2010). Authors claim to be cautious when approaching CRC oncogenesis, since these 

pathways are unable to fully explain CRC heterogeneity, their sequence of events would likely not follow the proposed 

order and overlapping and crosslinking with each other should be expected  
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Clinical Classification of CRC. Staging  

The American Cancer Society classification of CRC differentiates between 

hereditary and sporadic CRC. Hereditary CRCs are associated with a specific inherited 

genetic abnormality and the most frequents are the Non-Polyposis Colon Cancer, Lynch 

Syndrome with less than 5% of total CRCs and the Familial Adenomatous Polyposis with 

1% of total CRC. Some other relevant hereditary CRC are: Attenuated Familial 

Adenomatous Polyposis, Peutz-Jehger’s Syndrome, MYH Associated Polyposis, Juvenile 

Polyposis, Hereditary Polyposis and APCI 1307K. (ACS, 2018). The other group, sporadic 

colorectal cancer, comprises the most common type of CRC, with 90% of people 

diagnosed at the age of 50 or older. (CRU, 2015) 

In the clinic, patients are classified into different stages based in the 

histopathological characteristics of their tumors (severity of dysplasia and the proportion 

of villous component) (Stanley H , Lauri A, 2000). The American Joint Cancer Committee, 

(AJCC) and European Institute of Oncology (EIO) recommend TNM Staging System (where 

T stands for tumor, N for lymph node, and M for metastasis) (Denoix PF, 1952); is the most 

frequently used, but also Full Dukes and Astler-Coller modified classifications are common 

in clinic (Akkoca et al., 2014). All methods categorize CRC by considering the degree of 

bowel wall invasion, the lymph node spreading and the distant metastases appearance. 

TNM also allows grouping the patients in progressive cancer stages, indicated by 0 and 

roman numerals I, II, III, and IV (Table 1. 1. Figure 1.4). In this way, stages 0, I and II 

correspond to cases which had not shown cancer cells beyond the tumor, lymph nodes or 

blood. By contrast, stages III and IV correspond to individuals in where the cancer has 

disseminated to the lymph system or other organs in the body. This five-stage 

categorization determines the treatment and represents significantly distinctive patient 

groups in terms of risk and prognosis (ACS, 2018). 
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Stage Tumor Nodes Metastasis 

Stage 0 T0 N0 M0 

Stage I T1 N0 M0 

  T2 N0 M0 

Stage II T3 N0 M0 

  T4 N0 M0 

Stage III Any of T N1 M0 

  Any of T N2 M0 

Stage IV Any of T Any of N M1 

        

 

 

 

 

 

 

Legend:  

T = primary tumor.  

TX- Primary tumor of unknown. 

T0- No primary tumor. 

Tis- Carcinoma in situ. 

T1- Tumor invades submucosa. 

T2- Tumor invades muscularis propria. 

T3- Tumor invasion to subserosa or to pericolic/perirectal tissue. 

T4- Tumor invasion to neighboring organs or structures and/or 

visceral peritoneum is perforated. 

N = Regional lymph nodes. 

NX- Regional lymph nodes cannot be assessed.  

N0- No lymph node metastases. 

N1- 1 to 3 lymph node involvement.  

N2- 4 or more lymph node involvement.  

M = Distant metastasis. 

MX- Distant metastasis cannot be assessed.  

M0- No distant metastases. 

M1- Distant metastases 

Figure 1.4. Cartoon representative of a section of a human colon with five tumors in different stages (Stage 

0 to V). Stages 0, I and II correspond to cases in which cancer cells has not been detected beyond the tumor, 

or the lymph nodes. By contrast, stages III and IV correspond to tumors in where the cancer  has spread 

outside the tumor to the lymph system or other organs in the body. This event has been considered in this 

Thesis to identify Differentially Expressed Genes (DEG) and explore their implication in prognosis and 

survival. 

Table 1.1. The TNM staging system according 

to primary tumor characteristics, lymph nodes 

invaded and presence of metastases. (Denoix PF, 

1952) 



Molecular classification of CRC 

Because of its heterogeneity, the molecular classification of CRC is difficult, as 

occurred when defining oncogenesis. By using gene expression profiling (GEP) and further 

bioinformatics analysis in large cohorts of samples, a wide number of CRC molecular 

classifications have been identified by researchers in recent years (Calon et al., 2015) (De 

Sousa E Melo et al., 2013) (Sadanandam et al., 2013) (Marisa et al., 2013). GEP is an omics-

level technology that measures expression of thousands of genes at a time to identify 

global cell functionality and it has been used in this Thesis for the identification of genes 

associated with CRC prognosis and patient survival (See next chapter 1.2). Special mention 

deserves the works of Justin Guiney in an international consortium data sharing. To study 

the association among six  highly recognized CRC classification systems, each containing 

three to six subtypes and collectively numbering 27 unique subtypes, a network-based 

approach was performed generating a remarkable CRC categorization that achieved 

strong consensus among professionals. (Guinney et al., 2015). This classification identifies 

4 consensus molecular subtypes (CMS) with dissimilar prognosis and different response 

to treatment: CMS1 shows activation of immune system; CMS2 displays epithelial 

phenotype features, CMS3 has a denoted metabolic reprograming and CMS4 includes 

mesenchymal characteristics. Table 1.2 summarizes the main features of each subtype. 

The CMS classification has been used in the first part of this Thesis to analyze whether any 

of the geneset identified and proposed as CRC biomarkers, is able to recognize or 

discriminate CRC samples of a particular consensus molecular subtype.  
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CMS1  CMS2  CMS3  CMS4 

 

 

MSI Immune  Canonical  Metabolic  Mesenchymal 

 

 
14%  37%  13%  23% 

 
         

 

MSI, CIMP high, 

hypermutation 
 SCNA high  

Mixed MSI 

status, SCNA 

low, CIMP low 

 SCNA high 

 

 
BRAF mutations    KRAS 

mutations 
  

 

 

Immune infiltration 

and actication 
 

WNT and 

MYC 

activation 

 
Metabolic 

deregulation 
 

Stromal infiltration, 

TGF-beta activation, 

angiogenesis 

 

 

Worse survival after 

relapse 
       

Worse relapse-free 

and overall survival 

 
         

 

. 

Although this integrative classification seems to be consistent and well accepted, 

it still leaves an important number of CRC tumors (above 13%) molecularly uncategorized, 

highlighting the extraordinary complexity of the disease (Guinney et al., 2015). 

An approach that could help covering this gap focuses in the sharp singularities 

found in the mutation map inter and intra tumors. It postulates that the great number of 

low frequency mutations in each individual, becomes an authentic fingerprint of the 

tumor itself and explains, to some extent, why similar patients in constitution and 

Table 1.2. Consensus CRC molecular subtype classification (adapted from Guinney et al., 2015a). It 

differentiates four molecular subtypes with dissimilar prognosis and different response to treatment: CMS1 

shows activation of immune system, includes 14% of CRCs; CMS2 encompass epithelial phenotype features, 

is the most frequent, CMS3 has a denoted metabolic reprograming phenotype and CMS4 includes 

mesenchymal characteristics. Abbreviatures: CIMP, CpG Island Methylator Phenotype; MSI, microsatellite 

instability; SCNA, somatic copy number alterations; TGF, transforming growth factor. 



conditions, with similar background and same diagnostic, react contradictory to an 

identical treatment in the clinic. (Chang et al., 2018) 

Following this line of investigation, researchers of the Sloan Kettering Cancer 

Center have recently analyzed, in more than 24,000 tumors, those low frequency 

mutations trying to unravel new molecular patterns, referred to as "meaning in long tails" 

(Chang et al., 2018). Figure 1.5 shows an example of CRC long tail of mutations. Most 

frequently mutated genes from 2,497 CRC samples with a long tail of 18,952 low 

frequency mutations (cBioportal, 2019). The left side of the plot depicts 15 recurrent 

mutated genes (orange colored) with a rate from 20 to 70 % of total samples. The right 

side of the plot displays a blue colored long tail of top 35 mutated genes out of 18,952 

(not shown) with a much lower frequency. 
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Figure 1.5. Plot of mutation frequency from 2,497 CRC samples with a long tail of 18,952 low frequency 

mutations (cBioportal, 2019). The left side of the plot depicts 15 recurrent mutated genes arbitrary 

orange colored with a rate from 20 to 70.30 %. The right side of the plot displays a blue colored long 

tail of top 35 genes with low mutation frequency out of 18,952 (not shown). 
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Treatment of CRC.  

CRC treatment mainly encompass surgery and a broad variety of different drug-

based therapies and targets. CRC chemotherapy (CT) is based in a sort of recurrently used 

drugs, including taxanes, antibiotics, antimetabolites (5-fluorouracil [5-FU] is one the 

most commonly used chemotherapeutic agent in CRC), alkylating agents and platin-based 

agents as the most widely selected by oncologists. The targeted therapies based in the 

use of monoclonal antibodies (MAs) are habitually considered in cancer therapeutics, as 

well (WCRF, 2018).   

Overall, there seems to be strong evidence to indicate that surgery encompasses 

benefits in terms of survival, even in late stage IV (Lee et al., 2016), but results of current 

drug-based therapies show lack of efficacy in many cases and the vast majority of 

therapeutic treatments produce adverse side effects that habitually persist after a long-

term period. Furthermore, cancer cells frequently develop  resistance to these type of 

treatments (WCRF, 2018). All this suggest the need for further molecular-based 

alternatives able to properly identify the biochemical differences between normal and 

cancer cells. The nutritional approach could be particularly helpful in this scenario.  

1.1.3. Breast Cancer (BC) 
 

Epidemiology 

According to the World Cancer Research Fund, breast cancer is the most frequent 

cancer in women and the second most common cancer of all with 2 million new cases 

previewed in 2018. (WCRF, 2018)  

Spain is one of the few exceptions in where  breast cancer incidence rates are 

decreasing 0.8%–1.6% per year (DeSantis et al., 2015). The estimated incidence of the 

most frequent tumors in Spain in 2017 previously mentioned for CRC places BC as the first 

cancer in women and the  fourth major incidence cancer overall with 26,370 new cases 

previewed for 2017 (SEOM, 2018). 

  



Etiopathology 

Risk and preventive factors 

Age, alcohol consumption, obesity and physical inactivity seems to be associated 

with higher risk of BC. Besides these behavioral aspects, reproductive factors such as not 

having children, not breastfeeding, use of oral contraceptives, birth control implants, 

intrauterine devices, skin patches and vaginal rings while including the use of hormones 

increase the risk of suffering sporadic BC. Post-menopausal hormone therapy appears to 

be associated as well. Furthermore, it has been reported that having a first-degree relative 

with BC increases the risk of having cancer more than 2-fold.  (Arriaga et al., 2019) (ACS, 

2015) (Dinger et al., 2011) (Kelsey et al., 1993) (Brinton et al., 1983). Early screening is the 

key factor in BC prevention.  

Mutations in tumor suppressor Breast Cancer Gene 1/2 (BRCA1/2) are associated 

with increased risk for non-sporadic BC (Narod, 1994). They are considered high 

penetrance mutations responsible of 90 to 95% of hereditary BC (5-10% of all BC). Due to 

this high penetrance, monitoring and breast screening achieves special importance in 

women harboring BRCA mutations. Its appearance shows a 5-fold risk of suffering the 

disease (Marcus et al., 1996) (Nkondjock and Ghadirian, 2004).  

 

Clinical classification of BC 

BC is formerly grouped as non-specific ductal carcinoma with 60-75% of total BC 

and specific subtypes comprising 20-25% of all  being lobular, tubular, papillary, and 

mucinous tumors, the most frequent of this last group (Ellis IO, 2003).   

It has been substantially reported that the vast majority of human BC have their 

origin in the luminal cells of the terminal duct lobular units (TLDU) and not in the ductal 

system. (Gusterson et al., 2005) (Wellings, 1980). Each human mammary gland contains 

lobes and each lobe is comprised of TLDU. The TDLU is the functional unit of the breast 

and each TLDU drains the ductal system (Cardiff et al., 2018).  

Although some other structures can be found, two cell layers constitute the main 

arquitecture in the human breast, the inner layer with a luminal cell population and the 

outer basal cell layer located next to the basement membrane. The difference between 

luminal and basal cells expression of high molecular cytokeratin is used to histologically 

categorize BC tumors (Anbazhagan et al., 1998). 
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To classify tumor in order to address treatment decisions, histopathologist 

primarily make an evaluation of tumor differentiation (tubule formation), nuclear 

pleomorphism (nucleus shape) and the mitotic rate of biopsied samples. This leads to the 

microscopic grading of the BC carcinoma. Bloom-Richardson and Nottingham systems are 

the classical three-grade scoring methods used to classify BC tumors according to these 

standards (Galea et al., 1992) (Eliyatkın et al., 2015).  

BC tumors are mainly categorized by immuno-histochemistry detection of 

estrogen receptor (ER), human epidermal growth factor receptor 2 (HER2) and 

progesterone receptor (PR). Hormone receptors ER and PR drives the carcinogenic cell to 

proliferate in presence of estrogen or progesterone. HER2 is a member of the tyrosine 

Kinase receptor family overexpressed in certain types of BC due to an amplification of 

ERBB2, the gene encoding HER2. This pathway also induce BC cell hyper proliferation 

besides hormonal cell response (Torregrosa et al., 1997).  

The presence or absence of these biomarkers determine therapy and prognosis 

and therefore are routinely used to subtype BC in the classical ER+, HER2+ and Triple-

negative (TPN) groups, this last based on the lack of those biomarkers. 

As in CRC, TNM system is also applied in BC to stratify patients and to normalize 

data.  It makes use of previously mentioned criteria comprising tumor size, number of 

lymph nodes invaded and presence of metastasis to establish risk but adds a molecular 

subclassification according the expression of ER, PR and HER2(Veronesi et al., 2006).  

After the 9th St Gallen (Switzerland) BC experts meeting in 2005 onwards, the St. 

Gallen criteria considers response to hormonal treatment (endocrine response) as the 

first step in the decision algorithm to categorize tumors (Goldhirsch et al., 2005). 

The ER, PR, HER2 classification is effective in guiding clinical treatment of BC 

patients, especially those enclosed in the ER+ group but reveals significant differences 

among patients within the same subtypes in response to treatment and recurrence, 

supporting the need of finding a more precise categorization for diagnosis and risk 

stratification (Eliyatkın et al., 2015) 

There have been multiple molecular classifications based on GEP. The first intrinsic 

molecular classification by Perou and the works following by Weigelt and coworkers 

revealed 5 different categories with different prognosis and survival data. These analyses 

exposed  proliferation divergences among subtypes, specifically in the expression of 



MKI67 and PCNA biomarkers (Perou et al., 2000) (Weigelt et al., 2010). The subtyping 

identified 2 ER positive groups, Luminal A and a more aggressive phenotype with higher 

proliferation Luminal B and 3 ER negative, HER2 enriched, Basal like and the normal breast 

cancer subtype. Normal breast is a rare and poorly characterized TPN tumor with adipose 

tissue like gene expression profile and low proliferation features (Weigelt et al., 2010).  

A rare epithelium-mesenchymal-transition (EMT) like phenotype cluster with 

specially bad prognosis was identified in 2007, the claudin low subtype, characterized by 

low expression of genes involved in tight junctions and some intercellular adhesion 

proteins (Herschkowitz et al., 2007). 

Table 1. 3 shows relevant characteristics of the 6 main tumor subtypes  (Eliyatkın 

et al., 2015) (Eroles et al., 2012).  

Some other GEP works have been used to molecularly categorize BC tumors 

leading to a number of different gene signatures with therapeutic application. Oncotype 

(Paik et al., 2004) and MammaPrint (Veer et al., 2002) are two good examples of molecular 

profiling approved by the health authorities and incorporated in many decision algorithms 

employed by oncologist to sage patients (Moo et al., 2018).  

As CRC, breast cancer displays an extreme diversification in the mutation burden. 

Figure 1.6 shows the top ranked recurrent mutated genes of a list over 17,000 mutations 

in nearly 4,500 BC tumor samples, capturing the extraordinary diversity and the high 

difficulty of defining groups of tumors in order to address therapy (cBioportal, 2019) 

(Kalimutho et al., 2019) 
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Figure 1.6. Plot of mutation frequency from 4,437 BC samples with a long tail of low frequency mutations (cBioportal, 

2019).The left side of the plot depicts recurrent mutated genes (orange) with a rate over 5 %. The right side of the plot 

(blue) displays long tail of top 35 genes low frequency mutated out of more than 17,000 (not shown) capturing the 

extraordinary diversity and the high heterogeneity inter and intratumor. 
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Mutation Frequency from 4,437 breast cancer tumors. 

Data obtained from cBioportal (The Cancer Genome Atlas)

Table 1.3. Breast cancer molecular classification. Adaptation of tables (Eliyatkın et al., 2015) (Eroles et al., 2012). Six subtypes 

are included, two ER positive groups, Luminal A and a more aggressive phenotype with higher proliferation Luminal B and 

four ER negative, HER2 enriched, Basal like and the normal breast cancer subtype. Normal breast is a rare and poorly 

characterized triple negative tumor with adipose tissue like gene expression profile and low proliferation features. HMW, 

High molecular weight; LMW, Low molecular weight. St Gallen criteria, endocrine response.  



 

1.2. Bioinformatics applied to genome-wide expression to analyze the cancer 

genome alterations. 

 

One of the main problems in biomedicine is the molecular identification among 

subtypes of complex disease such as cancer. Despite clinical evolution of the patient and 

response to treatment are known to be different, there are no molecular biomarkers 

capable to identify discrepancies among some patient subclasses. Finding new molecular 

markers to recognize subtypes is fundamental to help clinicians addressing therapeutics 

in a more precise and effective way. 

By using bioinformatics approaches and more specific functional genomics 

analysis, researcher can make use of huge amount of genetic data to detect major swifts 

in gene expression and their eventual association to a specific class or condition.  

 

1.2.1. Functional genomics in cancer  

 

Omics technologies 

In biology the neologism "omics" informally refers to large-scale use of pools of 

similar biological molecules such as DNA, (genomics), RNA (transcriptomics), proteins 

(proteomics), etc. (Lederberg, J, 2001). 

Functional genomics (FG) is the field of molecular biology that accomplish the use 

of a vast amount of genomic data meant to identy the biological operative between genes 

and their products. FG mainly focuses on the dynamics characteristics of the genes such 

as transcription, translation, regulation or functional interactions between them or their 

products   (Holtorf et al., 2002) (EMBL-EBI, 2010) (Kellis et al., 2014).  

There are two main families of omics technologies that FG uses: the one based in 

hybridization, using complementarity with nucleotides sequences of reference (probes) 

and the one based in sequencing the nucleotides on nucleic acid fragments. It is worth to 

say that sequencing technology use hybridization to identify fragments as well.  

Since cost has considerable decreased in the last years, sequencing-based 

technologies are the leading edge for omics-level data generating in biomedicine. They 

are open platforms, do not require previous genome knowledge and can implement the 
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new information about genome in an easy and fluent way. The use of these platforms 

permits finding of alterations in sequences like mutations, isoforms, new transcripts, etc. 

They are also used for gene expression quantification by generating absolute-value 

estimations based in frequency annotation of fragment readings. One of the drawbacks 

of sequencing data relies in the computational power associated with its handling.  

Sequencing generates large files, difficult to manage and heavy to process, which requires 

high computational capacity and tedious methods to finally interpret the data. 

A main representative of the hybridization-based family encloses chips and 

microarrays, initially used for quantification of mRNA or DNA among different biological 

conditions. Today microarrays are employed in a wide variety of biomedical analysis such 

as Single Nucleotide Polymorphism, Methylation, Alternative Splicing, etc.  

Microarray technologies like Illumina or Affymetrix do not require much 

computational power when processing the information. Since they have been persistently 

used for many years, a wide variety of statistical tools and algorithms have been 

developed to integrate and compare arrays, identify biological-specific signal and correct 

background noise.  

 They are very reproducible as well but contrary to sequencing, these technologies 

are closed platforms which does not allow to quantify unknown sequences or sequences 

that are not included in the microarray. Since knowledge about genome is constantly 

evolving, probe measures in the array can be mismatched or inaccurate unless probe set 

mapping is adequately updated. To overcome this issue, a file referred to as Chip 

Definition File (CDF) is used when processing the data to indicate which probe sets 

correspond to a particular gene, in a process known as gene mapping. The CDF needs to 

be updated to include genomics recent discoveries and adapt probe set mapping 

according to the latest biological information available. 

Human Genome microarrays 

This thesis focuses on high-density oligonucleotide one-channel expression arrays. 

Figure 1.7 shows an example of this technology.  

High-density oligonucleotide expression arrays are composed by micro cells 

distributed in rows and columns. Each cell includes small fraction of nucleic acids that will 

hybridize with a specific complimentary sequence of targeted nucleic acid marked with 

fluorescent molecules. By using short oligonucleotides (25 bases aprox.) this type of 



microarrays probes for genes in an RNA sample. Since probes may not hybridize due to its 

shortness, multiple probes are used to improve specificity. Each of these microarrays 

contains between 40 and 60000 probe sets with sequences of the entire transcriptome of 

the studied specie. Each probe set comprises 11 to 16 different oligonucleotide probes 

corresponding to different coding regions of the gene they represent. Each specific 

sequence-probe includes two oligos (probe pair) called perfect match (PM) that 

corresponds exactly to a section of the mRNA molecule of interest, next to an oligo called 

mismatch (MM). MM has the same sequence excluding one nucleotide and is used for 

detecting nonspecific hybridizations (www.affymetrix.com) (www.agilent.com)  

(Fontanillo, 2013).  

Microarrays can be classified according to the number of channels or fluorescent 

colors used. Two channels microarrays are used for contrasting relative quantities 

between two samples, usual in control-vs-disease assessment. The data resulting is a 

relative value indicating which sample has larger amount of each gene with a specific color 

(E.g. Red fluorescent Cy5 for higher amount and green fluorescent Cy3 for lower amount 

of gene related RNA in a sample). One channel arrays measure absolute quantity of 

transcript in a given sample by out putting a variety of one-color intensities (Aibar Santos, 

2015).  

Despite sequencing based technology is the forefront in large scale data analysis, 

microarrays are still considered by scientist to perform GEP or analyzing multiple genes in 

several samples, which allows to shape normalized expression profiles, i.e. groups of 

genes showing differential expression levels, associated to a particular condition or 

phenotype, identify classes and detect patterns. GEP has been used in cancer to identify 

gene signatures associated to prognosis and survival or to classify molecular subtypes of 

diverse cancer types (Guinney et al., 2015) (Perou et al., 2000) (Weigelt et al., 2010).  
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Figure 1.7 High-density oligonucleotide expression arrays. Detail of technology.  Microarrays are composed by micro 

cells distributed in rows and columns. Each cell includes small fraction of nucleic acids that will hybridize with a 

specific complimentary sequence of targeted nucleic acid marked with fluorescent molecules. By using short 

oligonucleotides (25 bases aprox.) this type of microarrays probes for genes in an RNA sample. Since probes may not 

hybridize due to its shortness, multiple probes are used to improve specificity. Each of these microarrays contains 

between 40 and 60,000 probesets with sequences of the entire transcriptome of the studied species. Each probe set 

comprises 11 to 16 different oligonucleotide probes corresponding to different coding regions of the gene they 

represent. Each specific sequence-probe includes two oligos (probe pair) called perfect match (PM) that corresponds 

exactly to a section of the mRNA molecule of interest next to an oligo called mismatch (MM). MM has the same 

sequence excluding one nucleotide and is used for detecting nonspecific hybridizations. The chip definition file (CDF) 

maps probe sets to genes. The use of updated CDFs permits new probe-gene assignation according to latest biological 

knowledge. By analyzing multiple genes in several samples, this technique allows to shape normalized expression 

profiles, i.e. groups of genes showing differential expression levels, associated to a particular condition or phenotype. 
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Preprocessing algorithms 

The integrative analysis (IA) of multiple microarray gene expression datasets has 

been recognized to be a very useful approach for obtaining relevant biological information 

from genomic datasets (Rhodes and Chinnaiyan, 2005).  

Two main strategies are commonly followed when performing integrative analysis 

of gene expression datasets: “meta-analysis” and “integrative analysis via data merging 

or pooling" (Ma, 2009). In meta-analysis, each study is independently analyzed, and 

results are combined to assume (or not) that significant results for a big number of studies 

will be significant for a particular study with similar background. 

In merged IA, individual results are not considered in the process. This approach is 

based in combining single datasets to build a new integrated large dataset in where 

further analysis can be achieved obtaining results with more statistical relevance and 

leading to more robust inferences. The main drawback of this type of IA is that pooled 

data inevitably suffers of batch effect(Lazar et al., 2013a). 

Batch effect is a common issue that occurs when multiples arrays from different 

sources are integrated in one assay. An appropriate definition says that batch effect 

represents the "systematic technical differences" when samples are processed and 

measured in different batches and which are unrelated to any biological variation 

recorded during the experiment (Chen et al., 2011). The term batch denotes a collection 

of microarrays (or samples) processed at the same site over a short period of time using 

the same platform and under approximatively equal conditions. (Chen et al., 2011)  

The choice of one preprocessing method to avoid batch effect entails substantial 

impact on the ultimate result in a genomic analysis. It always encompasses a tradeoff 

between homogenizing information to make data comparable and maintain signal as raw 

as possible to preserve maximal biological meaning.  

In regular one channel microarrays, the scanner yields raw values that comprise 

the intensity signal of each cell given by the hybridation of probes plus the undesired 

signals due to noise in the optical detection system or unspecific hybridation. This data is 

not used directly in subsequent analysis. The background must be removed in a process 

call background correction. Other factors such as the RNA degradation, the physical 

location of probesets in the array, proportion of GC, etc. can interfere the signal and make 

impossible a proper comparison among arrays. By using a similar scale, these systematic 
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interferences in the arrays and among them can be minimized in a process referred to as 

normalization. In platforms where transcripts are represented by many probes, intensities 

need one third step. A summarization process by which adjusted and normalized 

intensities are transformed into a unique value proportional to the quantity of transcript 

per gene (Gentleman et al., 2006). 

These three steps are known as "preprocessing method" and are present in most 

of the algorithms used in microarrays for transforming the intensity signal into useful 

information. The selection of an appropriate method is extremely important (Gentleman 

et al., 2006). Result validation highly depends on the adequate choice 

Robust Multiarray Average (RMA) (Irizarry et al., 2003) is one of the most 

frequently used preprocessing methods  for one channel Affymetrix microarrays. It uses 

three particular steps: convolution background correction, quantile normalization, and 

summarization based on a multi-array model, fitted robustly using the median polish 

algorithm. 

Most of the background correction methods calculate probe specific signal by 

subtracting MM from PM. The problem is that more than 30% of MM show signal of larger 

magnitude than related PM, resulting in a significative number of negative values. This 

attenuates the average signal. (Irizarry et al., 2003). The convolution background 

correction of RMA computes a specific background for each probe set, using MM only 

when it is physically possible, and quantities smaller than PM in the remaining cases. This 

leads to avoid negative values and signal attenuation. RMA's quantile normalization 

method transforms the distribution of probe intensities for each array in a set of arrays 

into the same value. (Bolstad et al., 2003). RMA is widely used in bioinformatics but has 

important limitations when preprocessing a substantial number of samples, since RMA 

needs to analyze all the arrays simultaneously.  

Frozen RMA, (fRMA) (McCall et al., 2010) is another frequently used preprocessing 

algorithm that solves the limitation in computational resources of dealing with large 

number of arrays at a time. The basic idea sustaining fRMA consist in using precomputed 

parameters estimates (probe-specific effects and variances) from a large database of 

microarrays in order to grasp the variability in probe behavior, and then "freeze" it.  This 

frozen parameter vector can be later employed to preprocess new-added arrays.  



There is a wide variety of techniques to address batch effect removal (BER) 

contained in two main groups of methods: location-scale (LS) methods and matrix-

factorization (MF) methods. LS methods assume a model for the mean and/or variance of 

the data within the batches and adjust the batches to these models. MF techniques 

assume that the variation in the data corresponding to batch effects is independent on 

the variation corresponding to the biological variable of interest and it can be captured in 

a small set of factors which can be estimated through some matrix factorization methods 

(Lazar et al., 2013a). Batch mean centering, gene standardization, scaling relative to a 

dataset of reference or an Empirical Bayes method known as Extended Johnson-Li-

Rabinovitch or Combat (Johnson et al., 2007) are some of the most broadly used LS 

method for removing batch effect. Combat removes batch effect by pooling information 

from multiple genes with similar expression characteristics in each batch and making least 

square estimations for each gene (Lazar et al., 2013b). 

In this Thesis an IA has been performed including 7 different CRC studies. Two 

broadly used preprocessing methods (RMA and fRMA) for Affymetrix arrays and two 

standard BER processes (Batch mean centering and Combat) have been applied trying to 

find an adequate balance between eliminating batch effect and preserving the expression 

signal to the maximum.  

. 
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1.3. Nutritional strategies in cancer based on molecular effects:  

 

Several recent studies show that 25%-70% of patients visiting an oncology clinic 

for the first time are malnourished. The Prevalence of Malnutrition in Oncology (PreMiO) 

study over 1,952 cancer patients enrolled showed that 51% had nutritional impairment 

and 9% were clearly malnourished (Laviano et al., 2018). Cancer-associated malnutrition 

encompasses the inadequate nutritional intake leading to a depletion in body deposits of 

fat and lean mass, and ultimately resulting in reduced physical function (Lochs et al., 

2006). It is associated to stage and commonly presents three major clinical consequences: 

anorexia, cachexia and sarcopenia. Eventual cancer-associated anorexia arise due to 

altered appetite signals concurrent with the disease (Blauwhoff-Buskermolen et al., 

2016). This loss of appetite, together with physical restrictions caused by therapy or 

surgery (i.e. diarrhea, vomiting, malabsorption), obstructions, inflammation or molecular 

shift in the metabolism, can derive in a massive loss of weight of some patients. Its 

extreme manifestation involves the termed cancer-associated cachexia. In some types of 

cancer such as pancreatic, lung or CRC, cachexia arises in more than a half of all diagnosed 

individuals (Baracos et al., 2018). The cachectic phenotype of the last stages curses with 

accelerated loss of lean body mass and physical function impairment in what is known as 

sarcopenia (Laviano et al., 2018). Sarcopenia occurs in overweight/obese patients as well, 

hindering diagnosis. Malnutrition has implications in patient quality of life, worsening 

prognosis and survival rates (Meyerhardt et al., 2017)  (Muscaritoli et al., 2017). For 

instance, malnourished CRC patients showed toleration to fewer cycles of chemotherapy 

(Aaldriks et al., 2013), different grades of malnutrition in cancer patients correlated with 

higher risk of toxicity to chemotherapy (Prado et al., 2016), malnourished oral cancer 

patients undergoing therapy achieved lower score on quality of life (QOL) scales regarding 

physical function (Gellrich et al., 2015). In fact, short- and long-term longitudinal studies 

revealed that malnourished patients displayed higher risk of fatal outcome, ranging from 

2- to 5-fold, compared to patients with slight or no sign of malnourishment (Maasberg et 

al., 2017)  (Aaldriks et al., 2013)  (Pressoir et al., 2010). Infection after surgery is also 

associated to malnutrition.  For instance, the frequently diagnosed malnutrition (based 

on at least one of the following four criteria: weight loss >10 % within 6 months, body 

mass index < 18.5 kg/m2, Subjective Global Assessment Grade C, and serum albumin <3.0 



g/dl.) of gastric cancer was associated with higher rates of wound area infection after 

surgery. It was also observed a significant rate-reduction when patients received pre-

operative nutritional support to reach a minimum of  25 Kcal/kg per day (Fukuda et al., 

2015). 

Apart from the National Cancer Institute recommendation of increasing calorie 

intake to counterbalance cachexia (Nutrition in Cancer Care (PDQ®), 2019) there are no 

clear guidelines about dietary interventions using nutrients and/or micronutrients, or its 

deprivation, to improve the effectiveness or ameliorate side effects of drug-based 

therapies or to extent survival time of patients.  

Recent evidence suggests that nutritional intervention improves outcome in 

cancer patients. Non-malnourished cancer patients significantly improved nutritional 

status and reduced post-surgical complications when received nutritional support for 14 

days before surgery (Kabata et al., 2015). A systematic review including a meta-analysis 

over 1,400 glutamine-supplemented patients on critical illness and surgery found trends 

to suggest that glutamine supplementation could reduce mortality (Avenell, 2006). 

Nutritional supplementation of ω-3 fatty acids in patients undergoing lung cancer, 

improved appetite, food intake, body composition, physical function and quality of life 

while decreased fatigue (Van der Meij et al., 2012) (Sánchez-Lara et al., 2014). A recent 

prospective study of post diagnostic calcium supplementation in 1,660 nonmetastatic CRC 

patients displayed lower CRC–specific mortality in supplemented patients with no 

described side effects (Hazard ratio (HR), 0.67; 95% confidence interval (CI), 0.42–1.06; P 

trend = 0.047) (Yang et al., 2019). Alone or in combination with ω-3 fatty acids, glutamine, 

vitamins or nucleotides, arginine-based supplementation has been reported to 

ameliorate immune response of patient undergoing cancer, such as head and neck or 

esophageal. These cocktails of nutrients and micronutrients, given at supra-physiological 

doses, have also made known benefits in inflammatory and oxidative stress parameters 

of patients undergoing chemotherapy (Machon et al., 2012) (Vasson et al., 2014) 

(Sunpaweravong et al., 2014) (Talvas et al., 2015).  

Diets as Mediterranean or Japanese have shown statistical evidence of being 

cancer protective in different longitudinal studies (Vecchia, 2004) (Giacosa et al., 2013) 

(Toledo et al., 2015) (Tsugane and Sawada, 2014). Consequently, isolating and 

investigating food-related compounds highly consumed in these diets, are common 
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practices with motivating results in cancer context. Although molecular effects of 

different bioactive compounds present in food are being studied nowadays, no 

therapeutic approaches are currently used in the clinical setting. 

 Since diet is increasingly recognized as a key factor associated with most cancer 

types worldwide, especially those related to the gastrointestinal (GI) duct (CRU, 2015) and 

plays an important role in cancer genesis and development, diet-related approaches could 

be particularly helpful in the treatment of this type of tumors.  

On the other hand, one of every two women diagnosed BC experiences weight 

gain during cancer treatment (Wahnefried et al., 1997) (Goodwin et al., 1999).  Some 

types of BC treatments implicate decrement in the amount of estrogen or progesterone 

in women and the subsequent increment in fat, loss of muscle mass and significant 

metabolism lowering. Fatigue, edema, menopause and the use of steroid medication to 

palliate inflammation, pain or nausea are also reported factors that can contribute to the 

body weight increment (Wahnefried et al., 1997). However, heterogeneity of tumor and 

treatment make difficult to clarify the effect of weight gain on BC.  

Obese BC patients often present hypertension, hyperlipidemia, and diabetes, also 

known as metabolic syndrome (MS). Complications associated to MS can be confounding 

factors when trying to identify the prognostic impact of obesity in BC survival (Cho et al., 

2018).  

Many BC subtypes have been recognized to be hormone related. Elevated levels 

of estrogen associated to excessive adipose tissue seems to increase the risk of developing 

the disease and may influence progression (Suzuki et al., 2009)  (Niraula et al., 2012). 

Obesity also alters response to BC treatment. For instance, higher levels of leptin or insulin 

in obese patients can reduce the effect of aromatase inhibitors (Gnant et al., 2013); 

excessive adipose tissue may induce resistance to systemic therapy (Widschwendter et 

al., 2015) or large body surface can lead to insufficient treatment dosage (Griggs et al., 

2012).  

Another nutrient-based expanding line of investigation based on specific 

molecular effects, addresses cancer therapeutics from the restrictive point of view. 

Caloric restriction, time restriction feeding, intermittent fasting, even fasting mimicking 

diets and compounds, reveal promising findings in cancer progression, chemotherapy 

effectiveness or sides effects amelioration. Although the scientific evidence of beneficial 



effects associated to dietary restriction are increasing, the detrimental situation of many 

cancer patients, leads the healthcare professionals to be reluctant to use these types of 

interventions and new alternatives in this field are required.  

This important aspect should be considered when suggesting any biomedical 

strategy. A nutrient-based strategy requires to be precise at molecular level but also 

adequate to the patient environment and his clinical status. In this sense, two types of 

cancer models have been selected here to investigate the link between nutrition and 

cancer: colorectal cancer, a type of cancer that is frequently associated with depletion in 

body energetic stores and breast cancer, a type of cancer that significantly correlates with 

a progressive gain of weight in an important number of individuals suffering the disease.  

This Thesis addresses two differential approaches suitable with each nutritional 

status: nutrient supplementation by bioactive compounds and nutrient deprivation by 

caloric restriction. On one hand, a screening of phenolic compounds (found in fruits and 

nuts) and derivatives molecules in different colorectal cancer cell lines, has been 

performed to propose any of them as a complement to standard therapy in the frequently 

detrimental colorectal cancer. A further analysis of fasting cycles with two different diets 

has been analyzed in rodents suggesting a restrictive strategy in the commonly gain-

weight breast cancer framework. 

 

1.3.1. Bioactive compounds: Phitochemicals, Phenolic compound Ellagic acid 

and derivatives in colorectal cancer. 

 

Phytochemicals and food 

Food contains a broad variety of components with recognized effects as promoters 

or inhibitors of nutrient-related diseases such as obesity, type-II diabetes and cancer. 

Phytochemicals comprehend one of the most relevant groups of health-promoting 

compounds found in plants. Since they are abundant in fruit, seeds and vegetables, they 

play a key role preventing these type of diseases through the diet.  

It has been substantially reported the anticarcinogenic effect of some 

phytochemicals from food and plants in many studies. They prevent the tumorigenic 

action of carcinogens, suppress cancer cell proliferation and modulate inflammatory and 

immune response.(Kotecha et al., 2016) (González-Vallinas et al., 2013). 
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Furthermore, many of these components present lack of toxicity at the 

concentrations found in food so developing dietary supplements based on 

phytochemicals and their molecular targets can help, not only to prevent but also to 

improve pharmacological treatment once the cancer arises.  

Phenolic compounds  

 Phenolics are phytochemical compounds that comprise, with terpenoids and 

alkaloids, the three largest classes of secondary metabolites from higher plants with more 

than 10,000 known structures so far. (Garde-Cerdán A et al., 2017, p. 58) 

As a secondary metabolite, phenolic compounds contribute to the defense 

mechanisms against external stressful factors, UV protection and signaling, among some 

other important functions of the plant. Moreover, they contribute to the pigmentation, 

flavor and astringency of fruits and vegetables. Due to the presence of hydroxyl groups 

most of the phenolic compounds are highly antioxidant (Angelo and Jorge, 2007). 

Structurally, phenolics are characterized by the existence of one aromatic ring with 

a hydroxyl group (Liu et al., 2015), originating an extraordinary broad variety of 

compounds, from single phenols (C6) or hydroxybenzoic acids (C6-C1) to highly 

polymerized (C6-C3-C6)n skeleton structures (Waterman and Mole, 1994).  

Tannins are polyphenols mainly constituted by polymers of gallic acid single 

structures C6-C1 (hydrolysable tannins) or condensed C6-C3-C6 structures like 

Leucocyanidins or proanthocyanidins (condensed tannins). (Angelo and Jorge, 2007) 

Ellagitannins (ET) are a class of hydrolysable tannins often found as glucose esters 

in different foods including berries (straw-berries, raspberries, blackberries), 

pomegranate, tropical fruits, nuts (walnuts, chestnuts, almonds, oak acorns, pistachios, 

pecans), muscadine grapes, oak barrel aged wines and spirits, and tea.(Espín et al., 

2013a),(Arapitsas, 2012), (Bakkalbaşi et al., 2008).  

The ET hydrolysis in the human gastrointestinal (GI) duct  releases ellagic acid (EA), 

weakly absorbed in the gut but properly metabolized by microbiota to release different 

Urolithins (Espín et al., 2007),(Cerdá et al., 2005a). Tannin acyl hydrolase (Tannase) 

appears to be the key enzyme involved in the bacterial biotransformation of EA (Wu et 

al., 2015). Several urolithin aglycones are present in fecal samples while products of phase 

II biotransformation, particularly glucuronide and sulphate conjugates, are mainly found 

in plasma and urine. (García-Villalba et al., 2016) (González‐Sarrías et al., 2010) (Larrosa 



et al., 2010). The ellagic acid dimethyl ethers  conjugated with glucuronide and sulphate 

are common metabolites also found in those two fluids (Tomás-Barberan et al., 2009) 

(Cerdá et al., 2004). Urolithins can be detected in systemic bloodstream at concentrations 

in the range of 0.2–20 𝜇M (Espín et al., 2013a). It has also been reported that 

concentrations of ET-derived metabolites can reach the µM range in the colon, following 

oral intake of ET-containing products (Nuñez-Sánchez et al., 2014) (González-Sarrías et al., 

2016) (Romo-Vaquero et al., 2015). Both urolithin conjugates and Di-O-methyl Ellagic 

acids seems to reach the human tissues after consumption of ETs, in concentration that 

vary considerably and do not exceeds the range of ng per g of tissue (González‐Sarrías et 

al., 2010) 

 Several studies that uses quantitative analysis in human samples, revealed that 

urolithins production depends on single and specific phenotype. The observed differences 

in the amounts yielded, indicate that the individual microbiota composition and type of 

ingested ellagitannins could determine the rate of urolithin production (Piwowarski et al., 

2016). Different criteria have been employed to categorize individuals: According to the 

urolithin production capacity, subjects can be classified from non-producers to high 

producers (Puupponen-Pimiä et al., 2013) (Li et al., 2015);  According to the main type of 

urolithin synthetized, individuals are categorized in metabotype 0 (urolithin non-

producers), metabotype A (production of urolithin A as unique final urolithin) and 

metabotype B (urolithin B and/or isourolithin A are produced besides urolithin A)(Tomás-

Barberán et al., 2014). ET-metabolite detection in urea can be used to classify as well 

(Cerdá et al., 2005b)(González‐Sarrías et al., 2010) (Truchado et al., 2012) (Tomás-

Barberán et al., 2017) 

Different strains of bacteria,  Gordonibacter pamelaeae (DSM 19378T) and 

Gordonibacter urolithinfaciens (DSM 27213T) (Selma et al., 2014a)  (Selma et al., 2014b) 

have been recognized to be involved in urolithin production in the gut. Novel 

Eggerthellaceae family strains recently isolated from human feces seem to contribute 

generating urolithins as well, particularly isoUrolithin-A (Selma et al., 2017), setting off a 

promising scenario in the probiotic field for phenolic effectiveness. 

Ellagic acid ant its derivatives have shown to be active against several cancer 

hallmarks: inhibit colon cancer cell proliferation, induce cell cycle arrest, modulate some 

important cellular processes involved in colon cancer development such as the 
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inflammatory process, transformation, hyperproliferation, initiation of carcinogenesis, 

angiogenesis, and metastasis (table 1.4)  

  



Table 1. 4  

Phenolic compounds and in vivo derivatives included in the study and the main reported properties related to antitumor potential. 

 

Compound 

 

 

Biological Activities 

 

Uro-A 

CAS # 

1143-70-0 

 

Chemical Structure 
 
 
 
 
 
 
Uro-B 

CAS # 

1139-83-9 

Chemical Structure 

 

o Inhibits P450 CYP1B1-activity in 22Rv1 prostate cancer cells (Kasimsetty et al., 2009) 

o Arrested cell growth at the S- and G(2)/M-phases and MAPK signaling regulation. (González-Sarrías et 

al., 2009a) 

o Decreases clonogenic efficiency and cell proliferation through cell cycle arrest in the G(0)/G(1) and 

G(2)/M stages, followed by induction of apoptosis in HT-29 cells (Kasimsetty et al., 2010) 

o Inhibits Wnt signaling in the human 293T cell line (Sharma et al., 2010a) 

o Decreases inflammatory markers, including iNOS, COX-2, prostaglandin E synthase, and PGE2, in 

colonic mucosa (González-Sarrías et al., 2010) 

o Inhibits aromatase activity in breast cancer MCF-7 cells (Adams et al., 2010) 

o Inhibits cell proliferation and reduces oxidative stress status in bladder cancer (Qiu et al., 2013) 

o Modulates and is substrate for the drug efflux transporter breast cancer resistance protein 

(ABCG2/BCRP) (González-Sarrías et al., 2013) 

o Synergistically inhibit Androgen-Independent Prostate Cancer Cell Growth via Distinct Effects on Cell 

Cycle Control and Apoptosis.(Vicinanza et al., 2013) 

o Inhibits expression of the prostate-specific antigen (PSA) and the androgen receptor in prostate cancer 

cells (Sánchez-González et al., 2014)  

o Inhibits cell proliferation and cell cycle progression in a time- and dose-dependent manner and arrested 

the cells at S and G2/M phases in CRC Caco-2 and SW480 cells (González-Sarrías et al., 2014) 

o Inhibits cell proliferation and cell cycle progression by a cell cycle arrest at the G1 phase, and 

urolithins caused cell cycle arrest at the G2/M phase and upregulated p21 expression(Cho et al., 2015a) 

o Potentiates the anticancer effects of 5-fluorouracil chemotherapy on human colon cancer Caco-2, SW-

480 and HT-29 cells (González-Sarrías et al., 2015) 

o Shows antiproliferative activity on HepG2 cells decreasing expression of β-catenin, c-Myc and Cyclin 

D1 and increase  expression of p53, p38-MAPK and caspase-3 (Wang et al., 2015) 

o Exert anticancer effects against colon cancer cells via a common CDKN1A p21 up regulatory 

mechanism (González-Sarrías et al., 2016) 

o Up-regulates p21 in prostate cancer cells (Sánchez-González et al., 2016) 

o Inhibit phenotypic and molecular colon cancer stem cell features (Núñez-Sánchez et al., 2016) 

o Exerts strong antiproliferative activity, arrested cell cycle at S and G2/M phases and induced apoptosis 

in human colon cancer cells (Caco-2) (González-Sarrías et al., 2017) 

o Impair cell proliferation, arrest the cell cycle, induce apoptosis in UMUC3 bladder cancer cells (Liberal 

et al., 2017) 

o Shows antiproliferative effect by regulating the Lin28a/let-7a axis on hepatocellular carcinoma 

HepG2.2.15 cells (Qiu et al., 2018) 

o Exert anti-inflammatory activity mediated through the Aryl Hydrocarbon Receptor in human colon 

cancer cells (Caco-2) (Muku et al., 2018) 

o Induces autophagy, inhibits metastasis in human sw620 colorectal cancer cells (Zhao et al., 2018) 
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Table 1. 4 (Continue) 

Phenolic compounds and in vivo derivatives included in the study and the main reported properties related to antitumor potential. 

 

Compound 
 

 

Biological Activities 

EA (Continue) 

CAS # 476-66-4 
Chemical Structure 

 

o Induces apoptosis via mitochondrial pathway in colon cancer Caco-2 cells but not in normal colon cells. 

(Larrosa et al., 2006) (Mertens-Talcott et al., 2006) 

o Inhibits proliferation by a cell cycle arrest at the S- and G(2)/M-phases and MAPK signaling regulation 

in Caco‐2 cells (González-Sarrías et al., 2009b) (Cho et al., 2015b) 

o Exhibits anti-inflammatory property by iNOS, COX-2, TNF-a, and IL-6 downregulation due to inhibition 

of NF-kB and exerts its chemo preventive effect on colon carcinogenesis in rats (Umesalma and 

Sudhandiran, 2010)  

o Inhibits Wnt signaling in a human 293T cell line (Sharma et al., 2010b) 

o Prevents colon carcinogenesis in rats induced by 1,2-dimethylhydrazine through inhibition of the 

AKT/phosphoinositide-3 kinase pathway (Umesalma and Sudhandiran, 2011) (Yousef et al., 2016) 

o Induces apoptosis up regulating p53 expression in rats (Umesalma et al., 2014) 

o Induced apoptosis via the Akt signaling pathway in HCT-15 colon adenocarcinoma cells (Umesalma et 

al., 2015) 

o Ameliorates Cisplatin-induced nephrotoxicity and gonadotoxicity through a mechanism involving 

modulation of oxidative stress (Goyal et al., 2019) 

 

3,3’-DiOMEA 

CAS # 2239-88-5 

Chemical Structure 

 

 

 

 

 

o Exhibits antimutagenic activity in S. typhimurium (Smart et al., 1986) 

o Exhibits anti-PLA2 activity, an enzyme that stimulates the growth of the human pancreatic cancer cell 

line, and correlates with HER2 overexpression and mediates estrogen-dependent breast cancer cell growth 

(Da Silva et al., 2008) 

 

 

 

 

 

 

 

4,4’-DiOMEA 

CAS # 3374-77-4 

Chemical Structure 

 
 
 
 

o Exhibits antimutagenic activity in S. typhimurium (Smart et al., 1986) 

o Inhibits Colon Cancer Cell Growth through a mechanism involving Wnt16 (Ramírez de Molina et al., 

2015) 

 

 

 

 

 

 

 

 

 

 

CAS, Chemical Abstracts Service; AKT, Protein Kinase B; MAPK, mitogen-activated protein kinase;COX-2; Cyclooxygenase 2; CDKN1A, Cyclin dependent 

kinase 1 A (p21);IGF-II, Insulin like growing factor II;  bFGF, basic fibroblast growth factor;; IL, interleukin; iNOS, inducible nitric oxide synthase; LPS, 

lipopolysaccharide; NF-kβ, nuclear factor k-light-chain-enhancer of activated β cells; NO, nitric oxide; PARP, ADP ribose polymerase; ROS, reactive oxygen 

species; TNF-α, tumor necrosis factor-a; VEGF, vascular endothelial cell growth factor. pro-matrix metalloproteinase-2 (pro-MMP-2 vascular endothelial growth 

factor 

 

 

  



1.3.2. Caloric restriction and fasting in breast cancer. 

 
Partial or whole food deprivation have been extensively studied as a form of 

preventive or assisted treatment against cancer (Fernandes et al., 1976) (Weindruch and 

Walford, 1982) (Klurfeld et al., 1989) (Kritchevsky, 2001) (Colman et al., 2009) (Omar et 

al., 2010) (Brandhorst et al., 2013a). More than one hundred years ago, Moreschi 

observed that tumors transplanted into caloric restricted fed mice grew slower than those 

fed ad libitum (Moreschi, 1909).  

Specifically related to BC, Tannenbaum was the first that observed the implication 

of reducing calorie intake in the minor size of breast tumors (Tannenbaum A, 1940). 

Different combinations in the lap of time that restriction lasts and the proportion 

of nutrient suppressed lead to classify the more generally referred to as dietary restriction 

(DR) in three main different entities:  

Caloric restriction (CR), in mice is usually described as a 20-40% reduction in calorie 

intake irrespective of its caloric source.(de Cabo et al., 2014) (Brandhorst and Longo, 

2016a). 

Fasting, consist in a more severe restriction of nutrients or the total lack of food 

(not water), usually for a shorter period of time, to avoid malnutrition. Depending on the 

frequency and the extent of the fasting cycles, authors differentiate between intermittent 

fasting (IF) and periodic fasting (PF). The difference underlays severity of the treatment in 

term of time and frequency. In rodent models, IF treatments usually encompass 

alternation between 24h ad-libitum fed of mice and 24h fasting. In PF treatment, fasting 

cycles last 2 or more days and mice access to normal feeding for one week or more after 

each restriction cycle, to recover weight. (Longo and Mattson 2014)  

Another important group of DRs that has shown good results in animal models 

involves isocaloric diets that restraint specific nutrients in favor to others. Two relevant 

examples of these approaches are the Ketogenic diet (KD) and methionine restricted diet 

(MRD). KD encompasses a high-fat low-carbohydrates diet that rises ketonic bodies 

synthesis and has been reported to improve anticancer therapy in animal models with 

specific solid tumors, e.g. glioma, astrocytoma, pancreas, prostate, breast, colon, gastric 

and lung (Vidali et al., 2015) (Allen et al., 2014) (Seyfried et al., 2008). MRD limits the  
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sulfur amino acid methionine which seems to impair BC growth and carcinogenesis (Jeon 

et al., 2016) (Cavuoto and Fenech, 2012)  (Durando et al., 2010) (Cellarier et al., 2003)  

CR has been proven to be an effective intervention associated with the reduction 

of BC incidence and tumor size, and better survival in animal models (Tannenbaum A, 

1940) (Klurfeld et al., 1989) (Kritchevsky et al., 1989) (Cleary et al., 2007) (Lee et al., 2012c) 

(Morgan E. Levine et al., 2014) (Brandhorst et al., 2017).  

Generally, CR rises rodent life span by up to 60 % and delays cancer onset and 

improves stress resistance (Fernandes et al., 1976) (Mattson, 2005) (Mattson and Wan, 

2005) (Simpson et al., 2017). Nevertheless, there is reported evidence of genetic-

associated variability in CR response and specific genetic backgrounds may reverse 

effects, even anticipate tumor appearance and reduce longevity (Forster et al., 2003) (Liao 

et al., 2010) 

The translationality of CR benefits to human cancer is unclear and obviously 

difficult. In a 23-year longitudinal study in primates undergoing 30% CR, Colman shows a 

decrease in cancer incidence by more than 50% in relation to control group (Colman et 

al., 2009), whereas in a 20-year longitudinal study performed at the National Institute of 

Aging, Mattison was unable to find significant differences between macaques in the 

control group and those in the old-beginners CR group, suggesting that not only the CR 

but also the early application of the intervention may be required to reduce cancer onset 

(Mattison et al., 2012). 

The molecular mechanisms of DR have been profoundly investigated and reviewed 

throughout last years (Lu et al., 2019)  (Madeo et al., 2019) (Kopeina et al., 2017) (Ingram 

and de Cabo, 2017) (Brandhorst and Longo, 2016b) (Lopez-Guadamillas et al., 2016a) 

(Tucci, 2012) suggesting different pathways with key implication in some cancer hallmarks 

(figure 1.8). 
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Figure 1.8. Major pathways implicated in cancer altered by caloric restriction in mammals. Figure adapted from Kopeina et 
al., 2017, and several reviews and papers (Lu et al., 2019) (Ma et al., 2018) (Lopez-Guadamillas et al., 2016b) (Brandhorst 
and Longo, 2016b). 
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CR and proliferative pathways 

The drop of nutrients by CR outcomes in various biochemical changes leading to 

further metabolic adaptions that essentially consist in the sequential mobilization of 

internal energetic deposits. Metabolism is an extraordinary broad and complex process 

with thousands pathways and multiple interactors implicated. In mammals, some key 

processes with high implication in cancer progression encompass the decrement in levels 

of plasmatic glucose, the immediate alterations of acetyl-CoA/CoA, NAD(P)H/NAD(P)+ 

and ATP/ADP ratios and the decrement in the concentrations of growth factors (GFs) such 

as insulin-like growth factor 1 (IGF-1). Besides glucose and GF reduction, CR modulates 

hormonal response in different ways depending on severity and extend, which also affects 

plasmatic levels of a wide number of  hormones such as leptin, Growth hormone (GH), 

insulin, glucagon, etc. (Brandhorst and Longo, 2016b) (Baljinnyam et al., 2011) (Fontana 

et al., 2010). 

GH and IGF-1 are leading extracellular controllers of cell growth and proliferation 

in postnatal (Hanahan, Weinberg, 2000) and their targeting, a very active area of research 

(Christopoulos et al., 2015). A number of anti IGF-1 MA and TK inhibitors have been 

developed and currently tested in numerous clinical trials with unsuccessful results so far 

because of the extreme toxicity  due to ubiquity of IGF-1 receptors along different tissues 

(Yee, 2018). Thus, one of the main advantages of CR seems to relay in its capacity of 

downregulating pathways triggered by this GFs. 

Probably, the two most heavily studied axes in this context may be the 

PI3K/AKT/mTORC1 and the Ras/Raf/MAPK. They are both major signal transduction 

pathways that control cell growth and proliferation in response to extracellular 

stimulation of IGF-1, insulin and GH, among some others. Due to diverse DNA alterations 

(e.g., chromosomal rearrangement, SCNA, gain of function mutations in genes that 

constitutively activate the pathway, e.g. PI3KCA, AKT1, HERC2 or loss of function 

mutations in tumor suppressor genes involved in pathway inhibition e.g. TP53, PTEN) 

these cascades are frequently amplified in different BC subtypes, principally those 

encompassing endocrine-resistant response (Steelman et al., 2016).  

As occurs with IGF-1, targeting of various components of this pathway have 

achieved high interest in the research field including PI3K, AKT, mTORC1 (Ma, 2015) 

(Yamamoto-Ibusuki et al., 2015) as well as crucial downstream constituents involved in 
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ribosome biogenesis and protein translation (Steelman et al., 2016) (Toker and Marmiroli, 

2014) (Karthik et al., 2015).  

The activation of the tumor suppressor activity of AMP-dependent kinase (AMPK), 

a master regulator of cell metabolism and energy homeostasis, is another mechanism that 

inhibits cancer cell proliferation by CR. Lower levels of glucose reduce ATP/ADP and 

acetyl-CoA/CoA ratios increasing AMPK phosphorylation. This AMPK activation 

contributes to diminish cell growth and proliferation by phosphorylating inhibitors of 

oncogenic mTORC1 (Meynet and Ricci, 2014). 

Besides acting as a tumor suppressor, AMPK has a dual role in carcinogenesis since 

higher levels of AMPK have been associated with chemotherapy resistance in many cancer 

types (Wang et al., 2016). Furthermore, AMPK expression has been correlated with some 

clinicopathological factors of poor prognosis in BC (Al-Maghrabi et al., 2017). 

Autophagy 

Starvation promotes autophagy, a catabolic pathway to disassemble unnecessary 

or dysfunctional cellular components for recycling. In starvation, autophagy is associated 

to cellular survival by maintaining energy levels to assure homeostasis (Kuma et al., 2004) 

(Mattson et al., 2017) 

Autophagy has opposite implications in carcinogenesis. It helps to avoid 

accumulation of damaging components and metabolites which contributes to cell 

recycling and genome stability but can also induce tumor progression, since autophagy 

fosters adaptation to hypoxia and nutrient-reduced environment inside the tumor 

(Mizushima et al., 2008). 

It has been widely evidenced that the activation of AMPK by CR induces cancer cell 

autophagy (Kopeina et al., 2017) (Mihaylova and Shaw, 2011). This process is also 

promoted in most type of cancer by a heavily studied family of deacetylases referred to 

as silent mating-type information regulation family or Sirtuins (SIRTs), that regulates 

epigenetic gene silencing. An extraordinary paper published by Lu and coworkers reflect 

the implications of different SIRTs and the crosstalk among them by CR in cancer context 

(Lu et al., 2019). SIRT1, a NAD+ dependent deacetylase, is activated by the alterations in 

NAD(P)H/NAD(P) ratios and the shifts in hormonal status by CR. This activation prompts 

the deacetylation of pro autophagic transcription factors (TF), autophagy related proteins 



and proteins implicated in TF compartmentalization (Kopeina et al., 2017) (Huang et al., 

2015).  

However, SIRT1 reveals different patterns of expression in BC depending on cancer 

subtype. Its overexpression corelates with luminal and HER2+ subtypes and reduced 

expression appears in the TPN subtype. It has also been reported an inverse correlation 

between SIRT1 expression and BC aggressiveness which suggest a dual function of SIRT1 

as a tumor suppressor or oncogene (Rifaï et al., 2017) (Jin et al., 2018).  

Angiogenesis 

Angiogenesis is the development of new blood vasculature from existing vessels 

through sprouting, proliferation, and migration of endothelial cells (ECs). The expression 

of vascular endothelial growth factor (VEGF) command this process, particularly 

emphasized in cancer by the need of fueling tumor growth and further metastasis and the 

low oxygen microenvironment surrounding. VEGF binds on ECs cell-surface TK receptor 

VEGFR2, triggering signal transduction via the PI3K and MAPK pathways (Longchamp et 

al., 2018) 

The data reported by different authors appear to hold the assumption that CR 

decreases tumor angiogenesis in rodents undergoing cancer. (O’Flanagan et al., 2017a) 

(Lashinger et al., 2011) (De Lorenzo et al., 2011) (Mukherjee et al., 2002). Fall in glucose 

and glutamine and reduced VEGF levels found in the serum of mice, are suggested to be 

key causes of the decrease in DR-associated angiogenesis. However, recent studies have 

revealed that DR in specific sulfur amino acids contribute to increase angiogenesis by 

promoting an increment in VEGF levels leading to higher micro vessel density after CR 

(Longchamp et al., 2018). This may indicate that CR-associated antiangiogenic effects rely 

on the combination of macronutrients rather than the number of calories reduced, 

specially the proportion of proteins included in the diet and the type of amino acids which 

conform their structure. 

Metabolic alterations 

Cancer cells consume high levels of glucose and glucogenic amino acids such as 

glutamine to fuel aerobic glycolysis diverting oxidative phosphorylation (Warburg effect). 

A restriction in glycolysis  and glutaminolisys occurs during CR concurrently with an 

increased lipolysis and ketonic bodies (KB) synthesis or ketogenesis. (Kopeina et al., 2017). 

One of the key mechanism underlying this seems to rely in the stimulation by CR of an 
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enzyme directly involved in FFA metabolism, Peroxisome proliferator-activated receptor 

α (PPARα). Tumor suppressor p21 seems to foster this stimulation under restriction of 

nutrients (Lopez-Guadamillas et al., 2016b) . PPARα regulates the transcription of genes 

driving FFAs oxidation and KBs. Inhibition of glycolysis through PPARα stimulation may 

have anti-cancer features as long as increases mitochondrial activity and reactive oxygen 

species (ROS) production, which has been fully associated with cell apoptosis (Vamecq et 

al., 2012) 

Another reported consequence of higher levels of FFA though PPARα-mediated 

lipolysis, encompasses the inhibition of the mTORC1 cascade, which originates apoptosis 

by targeting the same mechanism implicated in the upstream PI3K/AKT axe (Kopeina et 

al., 2017) (Laplante and Sabatini, 2013).  

 Others mechanism of anticarcinogenic effect by CR  

An additional event proposed to be implicated in the anticarcinogenic effect of CR 

is the suppressed post-translation glycosylation activity of proteins due to glucose 

withdrawal. As a consequence of drop in glycosylation , a subsequent accumulation of 

unfolded or misfolded proteins in the endoplasmic reticulum (ER) occurs, which lead to 

ER stress and induce cancer cell apoptosis (Scheuner et al., 2001) (Zhang and Kaufman, 

2006). 

CR can also repress tumor growth by activating the ALDOA/DNA-PK/p53 signaling 

pathway (Ma et al., 2018). Fructose-1,6-bisphosphate aldolase A (ALDOA) is an enzyme 

that catalyzes C6 fructose-1,6-bisphosphate detachment into two C3-skeleton 

glyceraldehyde 3-phosphate and dihydroxyacetone phosphate during glycolysis. ALDOA 

promotes DNA-dependent protein kinase (DNA-PK) leading to augment tumor suppressor 

TP53 phosphorylation (Ma et al., 2018) (Lu et al., 2019). Beyond promising results by CR 

in animal models, little is known about this novel pathway and its implication in BC 

modulation. 

 

CR and chemotherapy  

The mechanism by which many anti-cancer agents introduce DNA damage in the 

transformed cells is highly toxic to normal cells with high rates of replacement. CR, in the 

setting of anti-tumoral therapy, has the capability to foster adaptative processes of 

normal cells to counterbalance the stress caused by toxic treatments. A great number of 



researches support the evidence that the combination of stress stimuli and CR acts in a 

synergistic way against cancer cell, while reduce deleterious side effects on normal ones. 

This phenomenon is called differential stress resistance (DSR) (Kopeina et al., 2017) 

(Brandhorst and Longo, 2016b) (Martín-Montalvo et al., 2011) 

Furthermore, CR promotes the transcription of several genes involved in cell 

protection against xenobiotics and damaging metabolites such as ROS. The transcription 

factor NF-E2-related factor (Nrf2) is upregulated under nutrient deprivation via PPARα 

induction (Martín-Montalvo et al., 2011). Nrf2 is implicated in the activation of 

detoxification enzymes and regulates lipid and glucose metabolism enhancing cellular 

protection (Menegon et al., 2016). 

Despite the proven effects of the combination CR and anticancer treatments in 

different cell lines and animal models (Raffaghello et al., 2008) (Johnson et al., 2009) (Lee 

et al., 2012a) (de Groot et al., 2015) (Dorff et al., 2016) (O’Flanagan et al., 2017b), the  

response in humans undergoing cancer is still unelucidated. Table 1. 5 shows the clinical 

trials identified so far that combines different types of DR in breast cancer patients.  
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Status Treatment Diet NTC 

Completed 
Effects of short-term fasting on tolerance 

to chemotherapy 
Fasting NCT01304251 

Active, not 

recruiting 

Caloric Restriction in Treating Patients with Stage 0-I Breast 

Cancer Undergoing Surgery and Radiation Therapy 
CR NCT01819233 

Recruiting 
Caloric Restriction and Exercise for Protection from Anthracycline Toxic 

Effects 
50% CR NCT03131024 

Active, not 

recruiting 

Caloric Restriction Before Surgery in Treating Patients with Endometrial, 

Prostate, or Breast Cancer 
CR NCT02983279 

Not yet 

recruiting 

Diet Restriction and Exercise-induced Adaptations in Metastatic Breast 

Cancer 
DR + exercise NCT03795493 

Not yet 

recruiting 

Prevention of Breast Cancer Recurrence Through Weight Control, Diet, 

and Physical Activity intervention 
DR NCT02035631 

Recruiting 
Intermittent Fasting Accompanying Chemotherapy in 

Gynecological Cancers 
Fasting NCT03162289 

Active, not 

recruiting 

Short-Term Fasting During Chemotherapy in Patients with 

Gynecological Cancer- a Randomized Controlled Cross-over Trial 
Fasting NCT01954836 

Recruiting 
Controlled Low Calorie Diet in Reducing Side Effects and increasing 

Response to Chemotherapy in Patients with Breast or Prostate Cancer 
CR NCT01802346 

Recruiting 
Dietary Restriction as an Adjunct to Neoadjuvant Chemotherapy for 

HER2 Negative Breast Cancer 
FMD NCT02126449 

 

 

 

 

The Fasting Mimicking Diet. 

The most reported unfavorable effect of CR is the down-regulation of the immune 

system with reduction of the amount of specific cytokines in plasma,  antigen-specific 

lymphocytes, increment in CD8+ T-cells populations and lymphoid atrophy (Christadoss 

et al., 1984) (Howard et al., 1999) (González-Torres et al., 2013) (Colman et al., 2009). It 

has also been reported a significant delay in wound healing concurrent with neutropenia 

associated to CR, a non-recommendable effect for cancer patients undergoing surgery 

(Kim and Demetri, 1996). Furthermore, some authors have highlighted the implication of 

DR in fertility impairment (Bates, 1985) (Selesniemi et al., 2008) but further researches 

indicate that nutrient deprivation in mammals transitorily downregulates fertility while 

Table 1.5. Clinical trials involving different types of dietary restriction in patients with breast cancer. Legend: FMD Fasting 

mimicking diet, DR, dietary restriction; CR, caloric restriction. 



upregulates systems involved in germline protection. This suggests a standby mechanism 

until conditions improve, and then  restore fertility (Tilly and Sinclair, 2013) 

CR is problematic from the practical point of view in cancer therapeutics, especially 

when treating with old and delicate patients undergoing chemotherapy with exacerbated 

immune depression. Consequently, sort PF or IF have been designed as dietary 

alternatives showing positive benefits against cancer while reducing the limitations of CR 

(Brandhorst et al., 2013b). Nevertheless, interventions still remain difficult to adapt and 

recently a fasting mimicking diet (FMD) have been proposed by the group of Longo and 

coworkers as a short-term strategy enabling the patients to eat while mimics water-only 

fasting with similar benefit but without all its burden (Brandhorst et al., 2015a) (Buono 

and Longo, 2018).  

FMD is a plant-based diet program designed to attain fasting-like effects while 

providing micronutrient nourishment (vitamins, minerals, etc.)(Brandhorst et al., 2013b) 

Whether this dietary intervention has similar benefits as chronic caloric restriction 

is not fully understood but results in 16-month-old C57BL/6 mice fed with FMD 

significantly reduced hematopoietic tumor incidence and delayed onset, versus an 

isocaloric diet in the control group (Brandhorst et al., 2015a).  

This diet has been tested in different models.  A later publication reported that 

FMD-cycles combined with targeted therapy drug Doxorubicin, stimulates the 

hematopoietic system and enhances CD8-positive-dependent cytotoxicity which increase 

effectiveness of T-cell against cancer cells, both  in young breast-cancer and melanoma 

murine models (Di Biase et al., 2016).  

FMD also regulates microbiota and reduce glucose and IGF-1 levels, in serum 

which may help to explain its benefits in antiproliferative effects in cancer context 

(Rangan et al., 2019)  

FMD has been tested in this thesis. Initially, downstream cascade of mTORC1, a 

key complex involved in nutrient sensing and cancer proliferation, has been analyzed in 

order to investigate the eventual modulation by FMD in comparison with SD, under 

intermittent fasting conditions. Furthermore, this work explores the implication of fasting 

cycles under FMD and SD in tumor size and metastasis trying to elucidate whether diet 

composition and not only restriction influences breast cancer progression  
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2. Hypothesis 
 

The differential expression of genes involved in cell metabolism and/or nutrition 

sensis could be associated to prognosis of cancer patients, which might be useful to 

identify populations susceptible of being modulated by nutritional factors.  

 

Precision nutrition strategies, including bioactive compounds or caloric restriction, 

could be used to target metabolic pathways with an impact in response to chemotherapy.  

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Objectives 
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3. Objectives 

 
3.1. Identification of genes involved in nutrient sensing or cell metabolism 

associated with CRC prognosis and patient survival.  

 

3.2. Identification of potential precision strategies in cancer focused on molecular 

nutrition.  

 
 

3.2.1. Nutritional strategies based on the inclusion of bioactive compounds:  

Identification of bioactive compounds with potential beneficial effect 

in CRC  

3.2.2. Nutritional strategies based on the inhibition of tumor nutrient 

requirements:  Identification of the inhibition of tumor progression 

and metastatic burden in BC through fasting strategies. 
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4. Materials and methods 
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4.1. In silico analysis: Identification of genes involved in nutrient sensing or cell 

metabolism associated with CRC prognosis and patient survival. 

 

CRC in-silico model was built using datasets from genome-wide expression 

microarrays corresponding to different CRC studies obtained from public repositories. 

After evaluating the quality of the microarrays, datasets were integrated into a large 

integrative meta dataset (IMD) of 1,273 CRC samples using different preprocessing 

methods and Batch effect removal (BER) tools. BER was assessed by PCAs, dendrograms 

and a linear regression model. The preprocessed IMD that showed best BER was used to 

perform a subsequent differential expression analysis meant to identify genes that 

significantly alter their expression between early stages (I and II) and late stages (III and 

IV). Following, top hit candidates from previous analysis were tested in both univariate 

and multivariate survival analysis to evaluate their correlation with prognosis and patient 

survival. After adjusting the model by the confounding variables available and validating 

it in two external datasets, a gene set enrichment analysis was performed with top hit 

genes obtained in the survival analysis meant to identify enriched pathways related to 

nutrient sensing or cell metabolism. The association between level of expression of best 

candidate genes in normal colorectal epithelial tissue and tumoral tissue was assessed as 

well.  

Genome-wide expression datasets used in this study 

A large IMD was built, comprising datasets from different CRC studies, all available 

at the Gene Expression Omnibus repository (NCBI-GEO, 2017). Datasets included genome-

wide expression microarray data corresponding to tumoral samples obtained with the 

platform Affymetrix GeneChip U133 Plus 2.0 for Homo sapiens. The samples were 

selected under the following criteria of inclusion: 

o Presence of raw expression signal (non-processed intensities). 

o Only primary tumor samples with no radio or chemotherapy treatment 

applied prior to surgery. 

o Existence of phenotypic information regarding outcome in terms of overall 

survival (OS), disease specific survival (DSS) and/or relapse free survival (RFS) 

time. The samples that did not have any survival information were discarded 

from the study. 



o Inclusion of cancer stage information. 

Seven datasets of CRC samples (Table 4.1) were included, corresponding to 7 series 

with the following GEO accession numbers: GSE14333, GSE17536, GSE31595, GSE33113, 

GSE38832, GSE39084 and GSE39582. From a total of 1,407 samples only 1,273 were 

considered in the meta dataset. The remaining 134 were discarded due to lack of quality 

detected in the quality control (QC) of microarrays or errors in records or annotations. 

For the external validation, two independent datasets were used. A cohort of 269 

CRC samples including RNA-seq gene expression profiling and survival data (Cancer 

Genome Atlas Network, 2012) and a second cohort of CRC samples from the platform 

SurvExpress called "Colon-Metabase-Uniformized", including 482 CRC samples (Aguirre-

Gamboa et al., 2013) (Table 4.2)  
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GEO dataset Sample Source 
Sample 

description 
Samples 

Pubmed 

PMID. 

Author and 

year of study 

Samples 

discarded 

Samples 

processed 

    
 

  
 

  
  

GSE14333 Royal Melbourne Hospital, Western 

Hospital and Peter MacCallum 

Cancer Center, Australia. H. Lee 

Moffitt Cancer Center, USA.  
  

Primary 

colorrectal 

cancers 

290 19996206 Jorissen RN et 

al. 

(2009) 

64 226 

        

GSE17536 Moffitt Cancer Center, USA CRC 

patients 

177 19914252 Smith JJ et al. 

(2010) 

  

0 177 

        

GSE31595 Roskilde Hospital, Denmark Patients with 

stage II and III 

colorectal cancer 
 

37 ON-going Thorsteinsson 

M et al. (2011) 

0 37 

        

GSE33113 Academic Medical Center (AMC) in 

Amsterdam, The Netherlands. 

Primary tumor 

resections from 

stage II 

colorectal 

patients 
 

90 22496204 Kemper K et al. 

(2012) 

0 90 

        

GSE38832 Vandervilt University Medical 

Center, USA 

Tumor collected 

from colorectal 

patients 
 

122 25320007 Tripatihi MK et 

al. (2014) 

0 122 

        

GSE39084 Toulouse Hospital, France Sporadic early 

onset primary 

colorectal 

carcinomas 
 

70 25083765 Kirzin S et al. 

(2014) 

1 69 

        

GSE39582 Institut G. Roussy (Villejuif), 

Hospital Saint Antoine (Paris), the 

Hospital G. Pompidou (Paris), 

Hospital Hautepierre (Strasbourg), 

Hospital Purpan (Toulouse), Institut 

P. Calmettes (Marseille) and Centre 

Antoine Lacassagne (Nice), France. 

 
 

Colorectal 

cancer samples 

566 23700391 Marisa L  et al. 

(2013) 

 552 

Total   
 

1407     134 1273 

 

 

 

 

 

 

Table 4..1 Integrative meta  dataset (IMD) used in this study. Seven data sets of CRC microarrays obtained with the platform 

Affymetrix GeneChip U133 Plus 2.0 for Homo sapiens available in GEO, were considered for inclusion. 

4 

https://www.ncbi.nlm.nih.gov/pubmed/19996206
https://www.ncbi.nlm.nih.gov/pubmed/?term=Smith%20JJ%5bAuthor%5d
https://www.ncbi.nlm.nih.gov/pubmed/?term=Thorsteinsson%20M%5bAuthor%5d
https://www.ncbi.nlm.nih.gov/pubmed/?term=Thorsteinsson%20M%5bAuthor%5d
https://www.ncbi.nlm.nih.gov/pubmed/22496204
https://www.ncbi.nlm.nih.gov/pubmed/?term=Medema%20JP%5bAuthor%5d
https://www.ncbi.nlm.nih.gov/pubmed/25320007
https://www.ncbi.nlm.nih.gov/pubmed/?term=Beauchamp%20RD%5bAuthor%5d
https://www.ncbi.nlm.nih.gov/pubmed/25083765
https://www.ncbi.nlm.nih.gov/pubmed/?term=Kirzin%20S%5BAuthor%5D&cauthor=true&cauthor_uid=25083765
https://www.ncbi.nlm.nih.gov/pubmed/23700391
https://www.ncbi.nlm.nih.gov/pubmed/?term=Marisa%20L%5bAuthor%5d


 

Characteristics 

CRC patients 

Training group Validation group I Validation group II 

n° of Patients (%) n° of Patients (%) n° of Patients (%) 

Total sample size (n)   1273 100%   482 100%   269 100% 

Age at Diagnosis (years) 

Mean 66.48     64.34     68.9     

Sd 13.63     13.51     11.94      

Age Range 22-97     19-92     35-90     

≤50   142 12.4%   68 14.1%   20 7.4% 

50–70   480 41.8%   222 46.1%   115 42.8% 

≥70   527 45.9%   192 39.8%   134 49.8% 

Sex 

Female   540 46.9%   224 46.5%   130 48.3% 

Male   611 53.1%   258 53.5%   139 51.7% 

Stage 

I 
55.1% 

116 9.4% 
44.4% 

74 15.4% 
59.5% 

55 20.4% 

II 566 45.8% 140 29.0% 105 39.0% 

III 
47.8% 

443 35.8% 
55.6% 

145 30.1% 
40.5% 

67 24.9% 

IV 148 12.0% 123 25.5% 42 15.6% 

Location of Primary tumor 

Right (proximal)   371 42.0%   92 30.2%   86 31.7% 

Transverse (proximal)         22 7.2%   18 6.7% 

Left(distal)   472 53.4%   142 46.6%   92 34.2% 

Rectum   38 4.3%   48 15.7%   75 27.9% 

Other 

Lynch sindrome   8               

Outcome 

Overal survival on 

exitus 
  881 69.2%   256 53.1%   244 90.7% 

 

 

 
  

Table 4.2. Phenotypical data of patients used in the present study. The table displays the phenotypical data of the IMD, and the two 

studies used for external validation. The IMD (1273 patients) was used as a Training group. Validation group I comprises a cohort 

of 482 CRC samples from the platform SurvExpress called "Colon-Metabase-Uniformized" (Aguirre-Gamboa et al., 2013) and 

Validation group II comprises a cohort of 276 colorectal carcinomas that had been studied using RNA-seq gene expression profiling 

and include survival data for only 269 (Cancer Genome Atlas Network, 2012).  
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All data processing, statistical modelling and graphical analysis were performed 

using R language (R Core Team, 2017) and the integrated development environment (IDE) 

RStudio  Version 1.1.463 (Allaire, 2012). Most of the R packages used were downloaded 

from the Bioconductor website at bioconductor.org that provides tools for the analysis 

and comprehension of high-throughput genomic data.  

The R package GEOquery (Davis and Meltzer, 2007) was used to download and 

operate the microarray compressed files, specifically the getGEOSuppFiles() and 

getGEO() functions. File uncompressing and renaming was performed with the untar() 

and gunzip() functions.  

Text editing and reformatting for standardization was executed using jEdit 

software v 4.4 (www.jedit.org). Edited tab delimited files were subsequently imported 

into the R environment for statistical analiysis. 

For CRC stage unification among Dukes, Asler-Colles, TNM, etc., the tables detailed 

in  the  paper "TNM and Modified Dukes staging along with the demographic 

characteristics of patients with colorectal carcinoma" (Akkoca et al., 2014), were used. 

Times to outcome were re-calculated into month-based periods. 

QC of microarrays was performed by Probe Level Model analysis using normalized 

Unscaled Standard Error [NUSE] plot and exploratory data analysis (EDA) using microchip 

images of natural scale and log-scale intensities comparison , MA-plots  and boxplots of 

unprocessed log scale probe intensities.(Figure 4.2 displays representative examples of 

graphical exploratory data analysis representatives images). 

Probe sets homogeneity was determined by Normalized Unscaled Standard Error 

(NUSE) plot. A NUSE plot represents normalized standard error estimates from the Probe-

Level Model (PLM) fit which computes expression measures on a probe set by probe set 

basis. The function fitPLM() inside the affyPLM package (Bolstad, 2011)was used to fit 

the PLM and a to create the PLMset class objects. PLMset objects were subsequently used 

in the NUSE()function (affyPLM) to draw the NUSE plots. (Figure 4.1). A box plot of NUSE 

values is drawn for each array in the IMD aiming to check whether all distributions are 

centered near 1 and whether a microarray shows a higher spread of the NUSE distribution 

than the other arrays. Only arrays with median distribution centered under 1.1, were 

included in final IMD.  



 

 

  

igure 4. 1. Example of NUSE boxplot for quality control of microarrays. With only 127 microarrays (10% random sampling 

from the total IMD for easy viewing). Most arrays are centered near 1. Each box represents a microarray, each color illustrates 

a different batch. Only arrays with median distribution centered under 1.1, were included in the final integrative meta 

dataset. 
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4.1.1. Dataset Integration and batch effect removal. 

For dataset integration in the IMD, the following preprocessing and batch effect 

removal methods were assayed: RMA; RMA plus ComBat; fRMA; fRMA plus Combat and 

fRMA plus scaling of the data using mean-centered expression values. fRMA method was 

computed with a self-made specific frozen parameter vector built from a random 

sampling proportional to batch-size and stage-group (I-II vs III-IV). The 

makeVectorsAffyBatch() function from  the affy package (Gautier et al., 2004), was 

employed to build the vector. A Chip Definition File (CDF) v21 downloaded from the 

igure 4. 2. Representative examples of graphical exploratory data analysis. It shows two types of spatial images: 

(A) Microchip images of natural scale and (B) log-scale intensities of an array. Spatial images are artificial visualizations of 

a microarray that are created to visually detect spatial trends or biases; and (C). MA-plot. MA plot allows pairwise 

comparison of the log-intensity of each microarray to a reference median one, meant to identify intensity-dependent biases. 

In a non-problematic microarray, MA-plot is centered on the y=0 axis from low to high intensities. 

A B 

 

C 



website Brainarray (University of Michigan, USA) was used for updated-gene mapping 

(http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/).  

AffyBatch objects were built using the ReadAffy() function from the affy 

package. fRMA preprocessing was performed using the function frma()from frma 

package (McCall et al., 2010). RMA preprocessing was performed using the justRMA() 

function of the affy package.  All series were integrated into a single dataset with the 

merge() function available through the InSilicomerging package (Taminau et al., 2013) 

and the Combat method was implemented alternatively for later comparison. Scaling and 

mean-centering were fulfilled once the fRMA preprocessed IMD was constructed. 

Gene annotation was performed applying the AnnotationDECO() function from 

the DECO R package v 0.99 (Campos-Laborie et al., 2016). 

4.1.2. Batch effect removal evaluation. 

BER was evaluated by correlation plots, hierarchical clustering of microarrays, 

principal component analysis (PCA) and linear regression (Martinez-Romero et al., 2018). 

Five ExpressionSet objects were created, one per preprocessing method, using the 

Biobase()package (Huber et al., 2015).  

Correlation among arrays was evaluated on each IMD by the creation of 

correlation heatmaps (pair-wise Pearson correlations among microarrays were 

qualitatively presented as a colored matrix) and further hierarchical clustering of 

microarrays. Hierarchical clustering was performed in two steps: first, the distances 

between all pairs of arrays were calculated and second, a decision tree was created from 

these distances by repeatedly grouping the arrays that were closest to each other.  

PCA was carried out using the prcomp() function in the Stats R package v 3.7.0 

(R Core Team, 2017). 

As a final testing for BER evaluation, a linear regression of the averaged expression 

value per batch was fitted on each five IMDs. Each batch was computed as explanatory 

variable in the model and coefficients and p-values compared.  
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4.1.3. Differential expression analysis 

The expression levels of probe sets corresponding to arrays from tumors in early 

stages (I and II) versus tumors in advanced stages (III and IV) were considered in a 

Differential Expression Analysis performed to identify altered genes (adjusted p < 0.05) in 

either direction: genes up-regulated with the progression of the disease or genes down-

regulated with the progression of the disease. The Linear Models for Microarrays, LIMMA 

package (Ritchie et al., 2015) was used to accomplish the hypothesis contrast. 

Using the model.matrix()and lmFit() functions, a linear model was fitted to the 

expression data, for each probe set, in the IMD that showed best BER. Subsequently, the 

empirical Bayes method through the eBayes() function for differential expression was 

used to estimate eBayes values and to perform a moderated t-test between early and late 

stage samples.  

4.1.4. Survival analysis 

Differentially expressed genes identified in previous analysis were then ranked by 

adjusted p-values as described in (Martinez-Romero et al., 2018) and a second analysis 

was performed using 2,707 candidate genes to look for  eventual association between 

gene expression and survival. The first step consisted in defining for each gene two 

separated Kaplan-Meier distributions of high and low gene expression along samples and 

compare them. Gene expression level of 1273 samples were sorted in ascending order 

and split in every sample between quantile 25% and 75% assigning a two-level factor (High 

and low expression) and storing data in a vector (group assignation vector [GAV]).  

Kaplan-Meier (KM) objects were created computing both overall survival time and 

status (death or censored) using Survfit() function from Survival R package 

(Therneau and Grambsch, 2013).  

A Cox proportional hazard (Coxph) regression model was fitted using coxph()and 

the GAV was included as explanatory variable for every cutting point. 

Log rank test was them performed testing for equality of survival curves and 

associated Chi-square p-value recorded. The minimum p-value was selected to 

accomplish final group assignation of high and low expression and then fitting the Coxph 

model. The correspondent hazard ratios were recorded for each gene and candidates 

were ranked by p-value. A stringent cut-off value (adjusted p < 0.0003) was used to select 



the genes that were considered successful candidates. This allowed the identification of 

genes in which the high or low expression correlated with poor survival. All analyses were 

adjusted by age and sex. 

To asses stability and robustness of markers, a further cross-validation of the top-

ranked genes was carried out. This internal cross-validation was done by a recurrent 

algorithm testing validity for each gene by 80% random sampling with replacement along 

100 iterations.  

External validation of top hit genes was carried out by applying same process in 

two datasets (See Validation group I and II, table 4.2) 

To explore the potential improvement in CRC risk prediction of a multigenic 

signature, further multivariate survival analysis of 100 top markers and combinations of 

top 10 markers (2 to 10 gene collections) were performed using a regularized Cox 

proportional-hazards regression model with L1 norm penalty (Gui and Li, 2005). The 

coxnet algorithm (Simon et al., 2011) in the R glmnet package (Friedman et al., 2009) was 

used to determine the risk score or prognostic index (PI) of each patient. A 10-fold cross-

validation was applied to identify the optimal penalizing parameter λ and subsequently 

estimate the β coefficients associated to each gene. Those coefficients were used to 

predict the PI. GAVs were built following the same strategy used in the univariate analysis 

(minimum p-value).  

4.1.5. Gene expression profiles of epithelial CRC samples vs CRC tumor samples. 

To simplify further diagnostic in the clinic, the level of expression in normal colon 

tissue of top hit genes was tested by gathering a collection of 25 normal epithelium 

colorectal samples included in both series GSE33113 and GSE39582 and performing a de 

novo integration of the whole IMD, using same parameters and methods previously 

described. Normality of top hit genes distribution was tested using qqnorm plots and 

Shapiro-Wilk tests. Since normality was not proofed, subsequent paired Wilcox rank test 

was carried out to compare the levels of expression of the top hit genes with the 

expression from 25 normal colon samples obtained from same individuals. A subsequent 

unpaired Wilcox rank text was accomplished to contrast expression from iterative random 

25-sampling (1000i) obtained from remaining 1248 individuals versus expression in the 

normal tissue. Both analyses yielded similar results 
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4.1.6. Geneset enrichment analysis (GSEA) 

Geneset enrichment analysis tool located in Reactome.org was used for the 

identification of enriched pathways by top hit genes associated to poor prognosis found 

in previous assays. 

  



4.2. In vitro analysis: Identification of bioactive compounds with potential 

beneficial effect in CRC. 

 

4.2.1. Phenolic Compounds and Derived Metabolites  

Phenolic compounds gallic acid, dihydrocaffeic acid, homovanillic acid, ellagic acid 

and derived metabolites 4-O-methylgallic acid and 3-O-methylgallic acid were purchased 

from Sigma-Aldrich (St. Louis, MO). Derivatives 3,3’-Di-O-methylellagic acid (3,3’-DiOMEA; 

99% purity) and 4,4’-di-O-methylellagic acid (4,4’-DiOMEA; 99% purity) were provided by 

Bertin Pharma (Montigny le Bretonneux, France). Derivatives Uro-A and Uro-B, both with 

purity higher than 95%, were supplied by the Centro de Edafología y Biología Aplicada del 

Segura, Consejo Superior de Investigaciones Cientificas, CEBAS-CSIC (Murcia, Spain). 

4.2.2. Cell Culture 

HT-29, SW-620 human colon cancer cells, 4T1 breast cancer and CCD18Co normal 

human colon cells, were supplied by American Type Culture Collection, ATCC (Manassas, 

VA). Chemo resistant cell termed SW-620-5FuR corresponds to a cell line derived from 

SW-620 submitted to incremental concentrations of chemo drug 5-Fluorouracile up to 

150 µM over 15 months, as previously described (González-Vallinas et al., 2013). 

HT-29, SW-620, 4T1 and SW-620-5FuR, were cultured  at 37°C with 5% CO2 and 

95% humidity in Dulbecco’s modified Eagle’s medium (Gibco/Invitrogen, Grand Island, NY) 

supplemented with 10% fetal bovine serum (Gibco/Invitrogen), 2 mM glutamine 

(BioWhittaker; Lonza Group, Basel, Switzerland) and 1% antibiotics/antifungal agents 

(containing 10,000 U/ml penicillin base, 10,000 µg/ml streptomycin base, and 25,000 

ng/ml amphotericin B; Gibco/Invitrogen). CCD18Co cells were cultured in Eagle’s minimal 

essential medium (American Type Culture Collection) at standard condition 37°C with 5% 

CO2 and 95% humidity. Mediums were supplemented with 10% fetal bovine serum 

(Gibco/Invitrogen) and 1% antibiotics/antifungal agents (containing 10,000 U/ml penicillin 

base, 10,000 µg/ml streptomycin base, and 25,000 ng/ml amphotericin B; 

Gibco/Invitrogen). Cells were kept sub confluent, and media were changed 3 times a 

week. The 4T1 cell used for establishing the BC primary tumor in the mice were not 

maintained in vitro more than two months to maintain full malignity and metastatic 

capabilities. Dimethyl sulfoxide (DMSO) was used as solvent in all stock and serial 
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solutions for each phenolic based treatment. DMSO concentration never exceeded 0.2 µl 

of DMSO per ml of final solution in culture media. 

4.2.3. Cell Viability Assays  

For testing cell feasibility after 72 hours with polyphenol-based treatments, SW-

620, SW-620-5FuR, HT-29, and CCD18Co cells were seeded in 24-well plates at 

exponential growth phase using 500 µl/well cell suspension with a density between 15 x 

103 and 60 x 103 cells. 

After 24 hours, media was replaced by treatment covering serial concentrations of 

each polyphenol diluted in previously cited solution, or culture medium with DMSO in 

control cells. At 0-hour (baseline) and after 72-hour treatment, 3-(4,5-dimethylthiazol-2-

yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed using 50 µl/well of MTT 

(5 mg/ml in phosphate-buffered saline) (Sigma-Aldrich). Three hours after incubation at 

37°C, MTT-containing media was removed and the MTT reduced to purple colored 

formazan by cell mitochondrial dehydrogenase was solubilized in 200 µl/well DMSO. 

Formazan absorbance, which proportionally correlates with the number of viable cells 

(Tested compounds shall not alter mitochondrial enzyme activity), was measured one 

hour after solubilization, at 560 nm using a spectrophotometer microplate reader 

(Biochrom Asys UVM 340 Reader; ISOGEN, De Meern, The Netherlands). 

At least two independent experiments were performed in triplicate for testing 

each compound. Proportion of viable cells was calculated both prior and post treatment. 

The concentrations corresponding to the IC50 parameters (inhibition of 50% of cell 

viability), GI50 (inhibition of of 50% of cell proliferation), TGI (total inhibition of 

proliferation) and LC50 (50% cell death) were calculated according to the descriptions of 

the American National Institute of Health (NIH) (Boyd and Paull, 1995) 

4.2.4. RNA Extraction and Quantification  

SW-620 colon cancer cells (1.7 x 105 cells per well) were seeded in six-well plates 

for overnight incubation under standard culture conditions. After 24 hours medium was 

replaced with 0 (nontreated), 5, 20, and 50 µM concentrations of 4,4’-DIOMEA, three 

replicates per tested concentration. Culture medium was discarded 72 hours after 

treatment and total RNA was isolated from each plate using the RNeasy Mini Kit (Qiagen, 

Germantown, MD) following the manufacturer’s instructions. For total RNA including 



miRNA, miRNeasy Mini Kit from same supplier was used following manufacturer 

instruction. 

RNA quantity and quality were checked by UV spectroscopy (NanoDrop 2000 

Spectrophotometer; Thermo Scientific, Waltham, MA). 

The experiment was independently repeated four times in the same conditions 

and total RNA from each experiment was independently analyzed. 

4.2.5. Gene Expression Assays  

A comparative microarray gene expression analysis between nontreated and 5 µM 

4,4’-DiOMEA–treated SW-620 colon cancer cells for 72 hours was performed at the 

Genomic Service Facility at the Spanish National Center for Biotechnology (Madrid, Spain). 

RNA integrity was determined using a 2100 Bioanalyzer (Agilent Technologies, Santa 

Clara, CA), and 200 ng total RNA from each sample was reverse transcribed and 

fluorescently labeled using the one-color Low Input Quick Amp Labeling Kit (Agilent 

Technologies) according to the manufacturer’s protocol. The complementary RNAs were 

prepared for hybridization in an Agilent SurePrint G3 Human 8 x 60 K (Whole Human 

Genome Microarray Kit) platform using the one-color gene expression system following 

the manufacturer’s protocol (Agilent Technologies). 

4.2.6. Real time qPCR 

Validation of microarray data was achieved using quantitative real-time 

polymerase chain reaction (PCR) analysis for measuring the transcript levels in the 

selected group of differentially regulated genes. Total RNA was extracted using the 

RNeasyMini Kit (Qiagen) following the manufacturer’s instructions, and 1 µg total RNA 

was reverse transcribed by a High-Capacity cDNA Reverse Transcription Kit (Applied 

Biosystems). TaqMan assays for gene expression (Applied Biosystems, Foster City, CA), 

which contain the specific primer and TaqMan probe for each gene, were used. 

Quantitative PCR was accomplished in real time and in triplicate on the 7900 HT Real-Time 

PCR System (Applied Biosystems) according to the manufacturer’s instructions. 

Glyceraldehyde 3-phosphate dehydrogenase gene expression in each sample was used as 

an endogenous reference for the relative quantification of transcripts. 

RQ Manager software (Applied Biosystems) was used for data extraction and 

analysis. To calculate the relative expression of each gene, the the 2-ΔΔCt threshold cycle 

method was performed as previously described (Ramírez de Molina et al., 2007, 2008). 
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4.2.7. Top-Fop tranfection assay 

Wnt can activate several key signaling cascades including the canonical Wnt/β-

catenin pathway. Canonical pathway requires β-catenin while the other axes signal 

independently of it (Nusse, 2005) (Polakis, 2000). In the canonical pathway, the 

transcription of Wnt target genes starts when nuclear β-catenin molecules translocate to 

the nucleus and form a complex with TCF/LEF. This complex binds to TCF/LEF binding sites 

of the promoters of these target genes, and then transactivates the process (Ku et al., 

2016). In order to detect Wnt activity, a series of Wnt reporters have been developed such 

as the TOP/FOP reporter assay. TOP-FLASH (Catalog # 21-170, Merk Millipore) is a 

transfection grade T-cell factor (TCF) reporter plasmid comprising two sets (with the 

second set in the reverse orientation) of three copies of the TCF binding site (wild type) 

upstream of the Thymidine Kinase (TK) minimal promoter and Luciferase open reading 

frame. FOP-FLASH (Catalog # 21-169, Merk Millipore) is a transfection grade T cell factor 

(TCF) reporter plasmid comprising two full and one incomplete copy of the TCF binding 

site (mutated) followed by three copies in the reverse orientation, upstream of the 

Thymidine Kinase (TK) minimal promoter and firefly luciferase open reading frame. This 

plasmid serves as a negative control to TOP-FLASH. (Figure 4.3.A) 

For monitoring ß-catenin/TCF/LEF activity, a dual luciferase reporting assay was 

performed according to the following protocol.  

50,000 SW620 cells were seeded in triplicated to form sub confluent cultures in 

M-24 plates adding 0.5 mL culture media per well. 

Then, cells were transfected using a mix of 0.8µl of Lipofectamine 2000 

(Invitrogen), 100µl Optimen (Promega) per well. 600ng/well of a firefly luciferase TOP-

FLASH or FOP-FLASH plasmid was co-transfected with 20ng/well of a control plasmid, pRL-

SV40 renilla luciferase reporter plasmid (Promega)(Figure 4.3.B). 380 ng/well of pcDNA3 

plasmid were included as carrier DNA.  

After overnight incubation, medium was replaced with 0.5mL of fresh medium 

containing 20 µM 4,4’DiOMEA (treated culture) or same concentration of DMSO (control 

culture). 



After 48h on standard condition, dual luciferase was measured: the experimental 

signal from firefly luciferase and the control signal from renilla luciferase. Sequential 

readings of both firefly and renilla luciferase reporter activities were performed in a 

GloMax® multidetection Luminometer (Promega) using the Dual-Luciferase® Reporter 

Assay System (Promega) according to manufacturer's instructions. 

 

 

 

Figure 4.3 Plasmids used to transfect SW620 CRC cells for monitoring ß-catenin/TCF/LEF activity after 24 hr. treatment 

with 20 µM 4,4’DiOMEA, TOP/FOP and dual luciferase detection was performed using transfection grade T cell factor 

(TCF) reporter plasmid TOPFLASH and FOPFLASH and the pRL-SV40 vector. A) TOPFLASH plasmid comprises two sets 

(with the second set in the reverse orientation) of three copies of the TCF binding site (wild type) upstream of the Thymidine 

Kinase (TK) minimal promoter and Luciferase open reading frame. FOP-FLASH comprises two full and one incomplete 

copy of the TCF binding site (mutated) followed by three copies in the reverse orientation, upstream of the Thymidine 

Kinase (TK) minimal promoter and firefly luciferase open reading frame. This plasmid serves as a negative control to TOP-

FLASH. (Merk Millipore). B) The pRL-SV40 plasmid was used as an internal control reporter vector. It contains the SV40 

enhancer and early promoter elements to provide high-level expression of Renilla luciferase in co-transfected mammalian 

cells (Promega) 

A B 

TOPFLASH 

(wt TCF binding sites) 

FOPFLASH 
(mutant TCF binding sites) 



111 

4.2.8. miRNAs Expression Assay 

The analysis of the miRNAs modulation of SW620 CRC cells under 4,4’ DiOMEA was 

performed using qRT-PCR by mean of microfluid TaqMan Array panels Human MicroRNA 

A+B Cards Set v3.0 (Applied Biosystems), containing the specific Taqman® assays for the 

quantitative expression analysis of 754 miRNAs plus three endogenous controls and one 

negative control assay. 

RT-PCR of miRNAs was carried out with the TaqMan miRNA Reverse Transcription 

and the primers Megaplex Primers Pools, human pools set v3.0, according to the 

manufacturer's instructions (Applied Biosystems). Subsequently, the TaqMan Universal 

PCR Master Mix No AmpErase UNG (Applied Biosystems) was employed together with the 

panels to carry out the qPCR in the 7900 HT equipment (Applied Biosystems), following 

the protocol indicated by the manufacturer. The results were analyzed by the 2-ΔΔCt 

method (Livak and Schmittgen, 2001). 

4.2.9. Cell Culture, Protein Extraction and Quantification 

The protein extraction from cell cultures started by washing the cells with PBS and 

afterwards lysing them with a buffer solution containing 50 mM Tris-HCl, 1 mg/mL sodium 

dodecyl sulfate (SDS), 1 mg/mL deoxycholic acid, 0.1 mM Ethylene diamine tetra acetic 

acid (EDTA), 0.1 mM Ethylene glycol-bis(β aminoethylether) -N,N,N',N'-tetracetic acid 

(EGTA), 10 mM NaF, 10 mM Na4P2O7, 10 μL/mL Igepal CA-630, 1 mM Na3VO4 (Sigma-

Aldrich), 1 mg/mL Complete Protease Inhibitor Cocktail, and 0.27 mg/mL AEBSF (Roche). 

The supernatant was collected after lysate centrifugation for 15 min at 13,500 g. High 

protein concentration samples were processed by an alternative method using Laemmli 

buffer (60 mM Tris-HCl at pH 6.8, 10% glycerol (Sigma-Aldrich) and 2% SDS) to obtain cell 

lysates. All samples were subsequently submitted to a 5 min at 95°C heating cycle for 

denaturation. The protein quantification was completed by using the Bio-Rad kit DC 

Protein Assay (Bio-Rad Laboratories, Hercules, CA) according to supplier’s specifications. 

4.2.10. Western Blot analysis 

25-50 μg of total protein was separated by 8-14% density polyacrylamide SDS-Page 

gel electrophoresis (BioRad, Hercules, CA) under reducing conditions and transferred onto 

nitrocellulose membranes (BioRad, Hercules, CA) before blocking unspecific sites with 5% 

milk in PBS with 0.05 % of tween-20. The membranes were incubated overnight at 4°C 

with either one of the primary antibodies specified in table 4.3.  



Subsequently membranes were incubated with secondary horse radish 

peroxidase-conjugated antibodies anti-mouse (antibody AP130P, 1:40,000 dilution, 

Millipore Corporation, Billerica, MA, USA) or anti-rabbit (antibody AP106P, 1:20,000 

dilution, Millipore Corporation) for one hour at room temperature. Detection was 

performed using the Clarity Western ECL Substrate (BioRad Laboratories). Data image 

output from the chemiluminescence enhanced membrane was scanned and subsequently 

translated to 8-bit and analyzed directly with ImageJ software for protein quantification.  

 

Target protein 
MW 

(kDa) 
Dilution Supplier Reference Host Specie 

AKT 60 1:1000 Cell Signaling 9272S Rabbit 

p-AKT (Ser473) 60 1:1000 Cell Signaling 9217s Rabbit 

mTOR 289 1:1000 Cell Signaling 2972S Rabbit 

p-mTOR (Ser2448) 289 1:1000 Cell Signaling 2971S Rabbit 

P70 S6 Kinase 75 1:1000 Cell Signaling 9202S Rabbit 

p-P70 S6K (T389) 75 1:1000 Cell Signaling 9205S Rabbit 

S6 Ribosomal protein 32 1:1000 Cell Signaling 2217S Rabbit 

P-S6 Ribosomal protein (S240-244) 32 1:1000 Cell Signaling 5364S Rabbit 

Nrf2 68 1:5000 Abcam ab62352 Rabbit 

p-Nrf2 (S40) 68 1:5000 Abcam ab76026 Rabbit 

SLC2A3 54 1:8000 Abcam ab41525 Rabbit 

Wnt16 41 1:3000 GeneTex GTX128468 Rabbit 

 

  

Table 4.3. Primary antibodies used in Western Blot analysis 
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4.2.11. Cell Migration Assay 

Cell migration was analyzed by wound healing assay (Moreno-Bueno et al., 2009). 

50,000 SW-620 cells cultured in M24 plates and once confluence was reached, a wound 

was done by scratching the monolayer surface carefully and washed with PBS. After 

addition of culture media (control culture) and 5 µM of 4,4' DiOMEA and EA solution 

(treated culture) and incubate, sequential pictures of same surface of the wound were 

taken every 12 hours until its closure using a Leica DM IL microscope, with a 10X Plan 

Fluotar objective. Pixel quantification by software TScratch 1.0 of control cells and treated 

was performed. Data represent average open area ratio at 48 and 72 hrs divided by the 

average open area at 0 hrs of three independent experiments, with three replicates per 

tested concentration. (Two-tailed unpaired t.test, α=0.05). 

4.2.12. Mitochondrial respiration and glycolytic function monitoring.  

Mitochondrial respiration and glycolytic functions were analyzed by monitoring 

Oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) of non-treated 

and treated cultures (5 and 20 µM). A XF96 Seahorse Extracellular Flux Analyzer (Agilent 

Technologies) was used to perform the experiment. According to previous titration, 

50,000 SW620 cells per well were plated into a XF96 multiwell-plate. After 24 hr and 

several washes, culture media was replaced with base media supplemented with 2 mM 

pyruvate, 2 mM glutamine and 10mM glucose (Agilent technologies) in order to supply 

substrate-rich environment for the cell to perform normal glycolysis and respiration. 60 

min ahead the assay, cells were incubated in a non-CO2 atmosphere at 37 °C. Basal 

measurements of respiration and acidification were recorded of both control and treated 

cells and rates were calculated at intervals of 7 minutes. Afterwards, an oxidative 

phosphorylation uncoupler, carbonilcyanide p-triflouro methoxy phenylhydrazone (FCCP) 

(Agilent technologies) at a concentration of 0,3 µM was added to the media to record the 

maximal respiration of cells. For the FCCP preparation and injection, XF Cell Mito Stress 

Test kit Kit ref 103015-100 instructions were followed. FCCP is a potent oxidative 

phosphorylation uncoupler that disrupts ATP synthesis by transporting protons across 

mitochondrial inner membranes depolarizing membrane potential (Heytler and Prichard, 

1962). Previous titration showed FCCP concentrations of 0.2 to 0,5 µM as the optimal 

range to be used in SW620 cell cultures. Same data was collected following injection of 

the drug (3 measures of OCR ECAR) and spare respiratory capacity (SRC) calculated. 



Phenotype test report was subsequently obtained using Seahorse manufacturer Wave 

software 2.6.0 (Agilent Technologies) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

igure 4.4. lowchart representing the experimental design to test fasting cycles with different diets in breast cancer 

murine models. 60 emale Balb/c mice were single housed at 8 weeks of age and injected 4 weeks later with 2x10 5 4T1 

Breast cancer cells subcutaneously in the fourth mammary gland. Thereafter mice were randomized into three groups: 

i) “Standard Diet” SD group (n=16): mice were fed ad-libitum (AL); ii) “Fasting Mimicking Diet” FMD group (n=22): mice 

underwent 2 cycles of 4-3 days of fasting followed by 8-6 days of AL refeeding, respectively. On day 1 of fasting, mice 

received a pellet of FMD containing 50% of the daily calories of AL controls. On days 2-4, the FMD pellet contained 30% 

of the daily calories; and iii)“ Fasting Standard Diet” FSD group (n=22): mice underwent the same feeding paradigm than 

FMD but were fed SD during the fasting cycles. On day 1 of fasting, mice received a pellet of SD containing 50% of the 

daily calories. On days 2-4, the FMD pellet contained 30% of the daily calories. At the end of the study (30 days after 

injection, day 6 of refeeding), mice were sacrificed, and tissues were harvested. 13 mice (2-SD, 5-FMD, 6-FSD) developed 

tumor ulceration and were euthanized before the end of the study to fulfill the endpoint criteria of the animal protocol. 
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4.3. In vivo analysis: Identification of the inhibition of tumor progression and 

metastatic burden in BC through fasting strategies. 

 60 mice were initially randomized in 3 groups, one of them feed ad-libitum on 

standard diet (SD) and the two others submitted to short fasting cycles with a specific diet 

each, Fasting Mimicking Diet (FMD) and Fasting Standard Diet (FSD). A flowchart captured 

in figure 4.4 briefly explains the experimental design. 

Figure 4.4 
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All the work was performed in the Biomedical Research Center, National Institutes 

of Health NIH, NIA, Translational Gerontology Branch Laboratory at Johns Hopkins 

Bayview Campus, Baltimore, MD, USA.  

4.3.1. Animals  

60 female 8-week-old BALB/c (wild-type) mice purchased from Jackson 

Laboratories were single housed in duplexes (#15 Single Housed Duplexed Cage; 

Dimensions 22.2 x 30.8 x 16.24 cm; Thoren Caging Systems, Hazeltown, PA, USA). Nestlet 

for enrichment and autoclaved corncob bedding was included in each duplex. The 

experiment was performed at the NIA Biomedical Research Center vivarium (Baltimore, 

MD, USA), under pathogen-free setting in rooms maintained at 22-22ºC, 30 to 70% 

relative humidity and 12 hr day/light cycles (Artificial light supply from 6:00 AM to 6:00 

PM). Free access to individual bottles of municipal tap water treated by reverse osmosis 

and hyper chlorinated (2-3 ppm) was provided. Low velocity HEPA filtered air was pumped 

through sealed shelf plenums directly into the cages through holes practiced above each 

cage filter top. 

All animal protocols were approved by the Animal Care and Use Committee (352-

TGB-2018) of the National Institute on Aging, National Institutes of Health. Baltimore, MD, 

USA. Animals were inspected twice a day for health issues. Euthanasia criteria were 

established on an independent valuation by veterinarians according to the Association for 

Assessment and Accreditation of Laboratory Animal Care International (AAALAC) 

guidelines.  
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4.3.2. Diets 

All animals were fed ad-libitum (AL) irradiated AIN-93G Envigo Teklad purified diet 

(TD.94045 Envigo,MI, USA) for 4 weeks prior to injecting the breast cancer cells. 

Thereafter mice were randomized into three groups maintaining between groups tumor 

size homogeneity and fed as specified bellow:  

1) Standard Diet (SD) group (n=16): mice were fed ad-libitum (AL); 2) Fasting 

Mimicking Diet (FMD) group (n=22): mice underwent 2 cycles of 4-3 days of fasting 

followed by 8-6 days of AL refeeding, respectively. On day 1 of cycle, mice received a pellet 

of FMD containing 50% of the daily calories of AL controls. On days 2-4, the FMD pellet 

was reduced to the 30% of the daily calories; and 3) Fasting Standard Diet (FSD) group 

(n=22): mice underwent the same feeding paradigm (2 cycles of 4-3 days of fasting with 

same reductions in caloric intakes followed by 8-6 days of AL refeeding) but the 

composition of the food consisted in AIN-93G Standard  

For calculating dietary proportions, food consumption of 16 animals randomly 

selected and fed ad-libitum on SD were monitored before starting point. An average daily 

intake of 2.35 gr chow per mouse was used subsequently as baseline to calculate calorie 

requirements. Manufacturer indicates a caloric charge of 3,76 kcal/gr of AIN-93G so an 

ad-libitum daily caloric intake reference of 8.85 kcal per animal was estimated as caloric 

baseline. The AIN-93G macronutrient proportion of proteins, carbohydrates and fats 

(P:C:F) is 25:58:17 (TD.94045 Envigo,MI, USA). 

The day 1 of each cycle every animal was transferred into a fresh cage to avoid 

coprophagy, supplied with new tap water and fed a diet including 4.43 kcal (50% of 

baseline) of total digestible energy. The day 2-4 rations were reduced to a daily amount 

of 2.67 kcal (30% of baseline) per animal. After fasting, mice were re-fed ad libitum for 8 

days until following restriction cycle. Restricted food diets were isocaloric. FSD group was 

fed AIN-93G chow and FMD group FMD chow. Mice on restricted diet consumed all the 

supplied food while on the cycles.  

The FMD is based on a nutritional diet consisting on a mix of various low-calorie 

broth powders, a vegetable medley powder, extra virgin olive oil, and essential fatty acids, 

all inside a hydrogel matrix to achieve binding and to allow cage feeder dispensation 

(Brandhorst et al., 2015b). The macronutrient distribution of FMD is 6:65:29 (P:C:F). No 



animal proteins are included in the chow composition and the caloric charge per gram 

including hydrogel is 2.90 Kcal, some 30% fewer than the standard diet used as control.  

4.3.3. Establishing and monitoring BC tumor 

Every Balb/c mouse were subcutaneously inoculated with 2x105 4T1 breast cancer 

cells diluted with 100 µl serum-free medium at the age of 12-weeks-old, 4 weeks after 

reception from Jackson Labs. Tumor onset was monitored after injection by primarily 

palpating injection area and subsequently measuring dimensions with a Vernier caliper 

every 3 to 4 days. None of the primary tumors reached a mean tumor diameter (TD) of 16 

mm and neither any animal became moribund (IACUC guidelines) but 13 mice (2-SD, 5-

FMD, 6-FSD) showed tumor ulceration and were euthanized and removed from the 

experiment fulfilling criteria of the animal protocol. Animal weight and food consumption 

data was also recorded every 3 days during ad libitum feeding time and every day while 

on food restriction time. 

4.3.4. Sacrifice, collection of tissues, lysates and protein extraction, metastasis 

analysis.  

At the end of the study (30 days after injection), mice were sacrificed, and tissues 

were harvested, snap-frozen in liquid nitrogen and stored at -80ºC. Lungs were analyzed 

for metastasis by ex-vivo injecting indian ink through the trachea, which was detained in 

Fekete’s solution to count tumor nodules. (Pulaski and Ostrand-Rosenberg, 2001). 

Metastasis counting was performed by three independent researcher and results included 

average values of all three recordsets. 

Frozen tissues were disrupted and homogenized for 3 min at 30 MHz using high-

speed shaking in a QIAGEN TissueLyser II equipment. Samples were processed in batches 

of 20 units using 2-mL-Eppendorf Safe-Lock micro test tubes with one stainless steel bead 

per tube in presence of  a 450 µL solution incluiding Pierce ® RIPA buffer (Thermo 

Scientific, Rockford, lL), protease inhibitor cocktails (PIC) 1, PIC 2 and PIC 3 (Sigma-Aldrich 

St-Louis, MO) phosphatase inhibitor phenylmethylsulfonyl fluoride (PMSF, Thermo 

Scientific, Rockford, lL) and lysine deacetylase inhibitors (10 µM trichostatin A, 10 µM 

nicotinamide, and 50 µM butyric acid, all from Sigma-Aldrich, St-Louis, MO). Total protein 

extracts were quantified with BCA assay (Thermo Scientific, Rockford, lL), dissolved in 

NuPAGE buffer (Thermo Scientific, Rockford, lL) and denatured by boiling for 5 min at 

100°C.  
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5. Results 
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5.1. Identification of genes involved in nutrient sensing or cell metabolism 

associated with CRC prognosis and patient survival. 

 
5.1.1. Identification of 765 genes associated with differential survival among 

CRC patients.  

 

5.1.1.1. Data integration: RMA plus Combat and fRMA plus Combat 

achieved effective BER among the five methods tested 

 

Hierarchical clustering correlation heatmap in figure 5.1 shows adequate batch 

effect removal in those IMD that has been pre-processed with RMA or fRMA only when 

the Combat algorithm was applied (5.1.B and 5.1.D). The figures represent association 

between 210 random samples from 7 different batches identified by a different colour, 

shown in the upper side bar of each plot (30 samples from each batch). This unsupervised 

analysis displays samples clustered together when batch effect remains after pre-

processing with RMA, fRMA and fRMA plus mean centering (5.1.A, C and E). The heatmap 

indicates clear colour shuffling and lack of clusters when applying the other two methods.  

Figure 5.2 displays score plot of the first two principal components (PCA) of 1,273 

CRC samples normalized with the 5 different methods 5.2.A (RMA method) and 5.2.C 

(fRMA) clearly identify clusters by colours suggesting a strong batch effect remaining after 

pre-processing. By contrast, PCA data provided by the other 3 procedures (5.2.B, D and E, 

RMA plus Combat, fRMA plus Combat and fRMA plus mean-centered scaling methods 

respectively) show an adequate mix of all the samples. 

Table 5.1 displays coefficients obtained from regressing gene expression on array 

batch per pre-processing method. The largest p-values indicating lack of significant 

difference and no batch effect were achieved when regressing the arrays in where RMA 

plus Combat and fRMA plus Combat algorithms were used.  

Since no more datasets where previewed to be added, the IMD pre-processed with 

RMA plus Combat was selected (and fRMA plus Combat discarded) for further differential 

expression, survival and GSEA analysis. 

 



5.1.1.2. 765-candidate genes correlated with low survival were identified  

Differential expression analysis performed in the IMD using LIMMA, revealed that 

a substantial number of genes, more than one tenth of the entire genome, significantly 

alter their expression when cancer progresses between early stages (I and II) and late 

stages (III and IV).  2,707 genes out of 20,079 CDF-mapped genes were differentially 

expressed between those two conditions (adjusted p-value < 0.05). 

Univariate KM survival analysis using the expression level of those 2,707 genes 

identified 765 genes that mark survival differences among samples in either direction (i.e. 

429 genes whose high expression correlated with bad prognosis and 336 genes whose low 

expression correlated with same outcome). Supplemental table S1. 

Table 5.1 presents the top 50 genes selected as best survival markers of CRC: the 

first part of the table corresponds to the top 25 genes, where up-regulation correlates 

with shorter survival and higher risk (HR > 1); the second part of the table displays the top 

25 genes, where up-regulation corresponds to longer survival and lower risk (HR < 1). The 

genes were ranked by their p-values and the HR values calculated for the whole dataset. 

As indicated previously (See materials and methods), the stability and robustness of the 

gene survival markers were assessed by 80% random sampling along 100 iterations. For 

the final ranking only genes achieving significance under cut-off value in more than 80 

cases out of 100, were considered as successful candidates. 
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Figure 5.1 Hierarchical clustering correlation 

heatmap in same gene expression integrative 

dataset preprocessed with 5 diferent algoritms . 

Each plot shows the correlation between 210 

random samples from 7 batches identified by a 

different color and shown in the upper side bar 

(30 samples from each batch). Higher 

correlation between samples are displayed in 

yellow and lower in red. This unsupervised 

analysis displays samples clustered together 

when batch effect remains after pre-processing 

(A, C and E). The heatmap indicates clear color 

shuffling and lack of clusters in B and D (A) 

Robust Multiarray Analysis (RMA). (B) RMA 

plus Combat. (C) Frozen Robust Multiarray 

Analysis (fRMA). (D) fRMA plus Combat. (E) 

fRMA plus mean centering.  

 
0                       0.5                       1 

 

A B 

C D 

E 



 

 

  

Figure 5.2.  Score plot of the first two principal components (PCA) of 1,273 CRC samples corresponding to 7 

independent studies integrated with 5 different preprocessing methods. Batches are identified by colors. (A) Robust 

Multiarray Analysis (RMA). (B) RMA plus Combat. (C) Frozen Robust Multiarray Analysis (fRMA). (D) fRMA plus 

Combat. (E) fRMA plus mean centered expression values. PCA of the global gene expression profile of each sample 

converts the signal of each sample using an orthogonal transformation in linearly uncorrelated variables called principal 

component or dimension. Each plot presents the values of the two main dimensions (dim 1 versus dim 2). PCA in plot 

A (RMA) and C (fRMA) clearly identifies batches suggesting a strong batch effect remaining after normalization. By 

contrast, plots of PCA data provided by the other 3 procedures (B, D and E, RMA plus Combat, fRMA plus Combat 

and fRMA plus mean-centered scaling respectively) captures an adequate mix of all the samples suggesting adequate 

batch effect removal. 

A B 

C D 

E 
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Table 5.1.   

 
 

A) RMA 
 

Coefficients: Estimate Std. Error t value P-value Factor effect 

Intercept (GSE 14333) 6.925 0.014 512.610 <2e-16  

GSE17536 0.387 0.019 20.230 <2e-16 yes 

GSE31595 -1.212 0.019 -63.440 <2e-16 yes 

GSE33113 -0.577 0.019 -30.210 <2e-16 yes 

GSE38832 -0.355 0.019 -18.570 <2e-16 yes 

GSE39084 -0.978 0.019 -51.180 <2e-16 yes 

GSE39582 -1.375 0.019 -71.970 <2e-16 yes 

 

B) RMA plus Combat  

Coefficients: Estimate Std. Error t value P-value Factor effect 

Intercept  6.219     0.013     473.582    <2e-16  

GSE17536  0.000     0.019     0.001    0.999 no 

GSE31595  0.002     0.019     0.122    0.903 no 

GSE33113  0.001     0.019     0.051    0.959 no 

GSE38832 -0.001     0.019    -0.033    0.973 no 

GSE39084  0.002     0.019     0.092    0.927 no 

GSE39582  0.001     0.019     0.029    0.977 no 

 

C) FRMA 
   

Coefficients: Estimate Std. Error t value P-value Factor effect 

Intercept  6.535     0.015     450.434    <2e-16  

GSE17536 -0.011     0.021    -0.553    0.580 no 

GSE31595  0.089     0.021     4.329    0.000 yes 

GSE33113  0.071     0.021     3.455    0.001 yes 

GSE38832  0.054     0.021     2.641    0.008 yes 

GSE39084  0.096     0.021     4.695    0.000 yes 

GSE39582  0.089     0.021     4.336    0.000 yes 

 

 

 

 

 

 



Table 5.1 (Continue).   

 

 

D) FRMA plus Combat 
 

Coefficients: Estimate Std. Error t value P-value Factor effect 

Intercept  6.590     0.014     457.338    <2e-16  

GSE17536  0.000     0.020     0.001    1.000 no 

GSE31595  0.002     0.020     0.093    0.926 no 

GSE33113  0.001     0.020     0.072    0.942 no 

GSE38832  0.000     0.020     0.019    0.985 no 

GSE39084  0.002     0.020     0.089    0.929 no 

GSE39582  0.000     0.020     0.007    0.994 no 

 

E) FRMA Mean Centered 

 

Coefficients: Estimate Std. Error t value P-value Factor effect 

Intercept -0.000     0.000    -1.638    0.101  

GSE17536  0.000     0.000     1.264    0.206 Low* 

GSE31595  0.000     0.000     0.288    0.773 no 

GSE33113  0.000     0.000     1.605    0.108 yes 

GSE38832  0.000     0.000     1.449    0.147 yes 

GSE39084 -0.000     0.000    -0.076    0.940 no 

GSE39582  0.000     0.000     1.395    0.163 yes 

 

 

 

 

  

Table 5.1 Coefficients obtained from regressing gene expression on array batch per preprocessing method The methods applied 

were: (A) RMA; (B) RMA plus ComBat; (C) fRMA; (D) fRMA plus ComBat; (E) fRMA plus scaling of the data using mean-

centered expression values. The linear regression is done to evaluate the “batch effect” (i.e. considering that the tested factors are 

the fact of “belonging” to a given dataset). Thus, when the p-value of the factors are significant (< 0.05), the “batch effect” remains 

on the overall expression signal. *A marginal low significance was considered when p-values were < 0.20 in the case E. The largest 

p-values indicating lack of significant difference and no factor effect were achieved for both RMA plus Combat and fRMA plus 

Combat algorithms. The largest p-values indicating lack of significance and no factor effect were achieved for both RMA plus 

Combat and fRMA plus Combat algorithms. A marginal low significance was considered when p-values were < 0.20 in the case 

E 
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Table 5.2:  Genes selected as top-50 best survival markers of colorectal cancer (CRC). The upper part of the table includes the top-25 genes 

whose UP-regulation correlates with shorter survival and higher risk (i.e. Hazard Ratios, HR > 1); the bottom part of the table shows the top-25 

genes whose UP-regulation correlates with longer survival and lower risk (Hazard Ratios, HR < 1). The genes were ranked by their adjusted p 

values and the Hazard Ratio values calculated with 1,273 samples sourced from all datasets. To provide the results with more stability, a cross-

validation of top hits were accomplished by testing the algorithm in randomized 80 % samples with replacement along one hundred iterations.  

Only genes that obtained a significant adjusted p-value in more than 80 iterations out of 100, were included in the ranking. Legend: Hazard 

ratio, the HR obtained in first KM analysis considering all datasets; Nsinf, number of iterations using 80% random sampling achieving 

significance (cut-off: p-value < 0.0003); Avg HR (100i), average HR in 100 iterations; pval (KM), p-value corresponding to log rank test including 

all datasets (95%CI and remaining relevant data in supplemental table 2) 

Gene
Accession 

number
Hazard 
Ratio Nsinf Avg. HR (100i) p-val (KM) Description [HGNC ]

DCBLD2 ENSG00000057019 2.02            99 2.105577851 0.00000000000  discoidin; CUB and LCCL domain containing 2 [HGNC:24627]
PTPN14 ENSG00000152104 1.99            99 2.081980089 0.00000000000  protein tyrosine phosphatase; non-receptor type 14 [HGNC:9647]
LAMP5 ENSG00000125869 1.99            93 2.046377013 0.00000000000  lysosomal associated membrane protein member 5 [HGNC:16097]
TM4SF1 ENSG00000169908 1.96            93 2.030914773 0.00000000010  transmembrane 4 L six family member 1 [HGNC:11853]
NPR3 ENSG00000113389 1.95            97 2.136437795 0.00000000020  natriuretic peptide receptor 3 [HGNC:7945]
LEMD1 ENSG00000186007 1.95            85 1.936983243 0.00000000030  LEM domain containing 1 [HGNC:18725]
LCA5 ENSG00000135338 1.89            97 2.020869585 0.00000000030  LCA5; lebercilin [HGNC:31923]
CSGALNACT2 ENSG00000169826 1.91            92 1.974005294 0.00000000080  chondroitin sulfate N-acetylgalactosaminyltransferase 2 [HGNC:24292]
SLC2A3 ENSG00000059804 1.93            89 1.993164569 0.00000000140  solute carrier family 2 member 3 [HGNC:11007]
GADD45B ENSG00000099860 1.92            97 2.074130061 0.00000000180  grow th arrest and DNA damage inducible beta [HGNC:4096]
SCEL ENSG00000136155 1.88            87 1.928223891 0.00000000180  sciellin [HGNC:10573]
SIX4 ENSG00000100625 1.89            91 1.950776377 0.00000000190  SIX homeobox 4 [HGNC:10890]
AKAP12 ENSG00000131016 1.85            95 2.09190669 0.00000000280  A-kinase anchoring protein 12 [HGNC:370]
COLEC12 ENSG00000158270 1.84            92 1.940993256 0.00000000280  collectin subfamily member 12 [HGNC:16016]
PDLIM3 ENSG00000154553 1.84            91 1.985228488 0.00000000470  PDZ and LIM domain 3 [HGNC:20767]
ITGB5 ENSG00000082781 1.82            88 1.910536646 0.00000000490  integrin subunit beta 5 [HGNC:6160]
GULP1 ENSG00000144366 1.81            88 1.911473199 0.00000000500  GULP; engulfment adaptor PTB domain containing 1 [HGNC:18649]
SCG2 ENSG00000171951 1.81            93 2.033681411 0.00000000510  secretogranin II [HGNC:10575]
AHNAK2 ENSG00000185567 1.80            87 1.895908709 0.00000000660  AHNAK nucleoprotein 2 [HGNC:20125]
CYP1B1 ENSG00000138061 1.84            85 1.883705242 0.00000000750  cytochrome P450 family 1 subfamily B member 1 [HGNC:2597]
PRKD1 ENSG00000184304 1.74            87 1.872420442 0.00000004510  protein kinase D1 [HGNC:9407]
SPARCL1 ENSG00000152583 1.74            85 1.862917692 0.00000004710  SPARC like 1 [HGNC:11220]
CDKN2B ENSG00000147883 1.73            84 1.846935684 0.00000007170  cyclin dependent kinase inhibitor 2B [HGNC:1788]
MLLT11 ENSG00000213190 1.70            84 1.812843086 0.00000019890  myeloid/lymphoid or mixed-lineage leukemia; translocated to, 11 [HGNC:16997]
CD36 ENSG00000135218 1.69            85 1.891001875 0.00000027510  CD36 molecule [HGNC:1663]

Gene
Accession 

number
Hazard 
Ratio Nsinf Avg. HR (100i) p-val (KM) Description [HGNC ]

EPHB2 ENSG00000133216 0.43            100 0.426450798 0.00000000000  EPH receptor B2 [HGNC:3393]

DUS1L ENSG00000169718 0.49            98 0.481106549 0.00000000000  dihydrouridine synthase 1 like [HGNC:30086]

NUAK2 ENSG00000163545 0.51            96 0.495293636 0.00000000010  NUAK family kinase 2 [HGNC:29558]

FANCC ENSG00000158169 0.51            95 0.497635109 0.00000000020  Fanconi anemia complementation group C [HGNC:3584]

CISD3 ENSG00000277972 0.51            87 0.511094605 0.00000000020  CDGSH iron sulfur domain 3 [HGNC:27578]

TIMM13 ENSG00000099800 0.53            95 0.510758919 0.00000000030  translocase of inner mitochondrial membrane 13 [HGNC:11816]

AGMAT ENSG00000116771 0.52            95 0.514839807 0.00000000050  agmatinase [HGNC:18407]

MYB ENSG00000118513 0.52            93 0.508188656 0.00000000060  MYB proto-oncogene. transcription factor [HGNC:7545]

CHDH ENSG00000016391 0.53            90 0.51951104 0.00000000060  choline dehydrogenase [HGNC:24288]

FHDC1 ENSG00000137460 0.52            96 0.505062052 0.00000000080  FH2 domain containing 1 [HGNC:29363]

ZBED3 ENSG00000132846 0.52            88 0.522153296 0.00000000090  zinc f inger BED-type containing 3 [HGNC:20711]

NOL9 ENSG00000162408 0.54            92 0.52661077 0.00000000150  nucleolar protein 9 [HGNC:26265]

GAR1 ENSG00000109534 0.50            99 0.47897017 0.00000000170  GAR1 ribonucleoprotein [HGNC:14264]

FAM83F ENSG00000133477 0.54            93 0.51778748 0.00000000190  family w ith sequence similarity 83 member F [HGNC:25148]

TXN2 ENSG00000100348 0.53            88 0.527441942 0.00000000360  thioredoxin 2 [HGNC:17772]

GALK1 ENSG00000108479 0.55            88 0.524508995 0.00000000360  galactokinase 1 [HGNC:4118]

MLEC ENSG00000110917 0.55            96 0.476092921 0.00000000450  malectin [HGNC:28973]

MAPKAPK3 ENSG00000114738 0.55            92 0.520129905 0.00000000480  mitogen-activated protein kinase-activated 3 [HGNC:6888]

CASP1 ENSG00000137752 0.56            87 0.523042004 0.00000001800  caspase 1 [HGNC:1499]

MCCC2 ENSG00000131844 0.57            93 0.515787771 0.00000001830  methylcrotonoyl-CoA carboxylase 2 [HGNC:6937]

BEND3 ENSG00000178409 0.55            88 0.529440815 0.00000001930  BEN domain containing 3 [HGNC:23040]

CISH ENSG00000114737 0.55            87 0.508288272 0.00000002160  cytokine inducible SH2 containing protein [HGNC:1984]

LARS2 ENSG00000011376 0.55            91 0.528494178 0.00000002390  leucyl-tRNA synthetase 2; mitochondrial [HGNC:17095]

CDC25A ENSG00000164045 0.57            90 0.53902196 0.00000004810  cell division cycle 25A [HGNC:1725]
L3MBTL4 ENSG00000154655 0.54            90 0.506115452 0.00000006060  l(3)mbt-like 4 (Drosophila) [HGNC:26677]



Figure 5.3 shows the Kaplan-Meier analysis of top two genes related to the survival 

profiles of the two groups of risk according to level of expression in either side, up-

regulation (red) correlated to poor survival (Fig. 5.3.A) and down-regulation (green) 

correlated to poor survival (Fig. 5.3.B). Figures 5.3.C and D display the distribution of 

expression levels increasingly ordered. Each dot represents a CRC patient and the colours 

evidence the segregated group performed by the recurrent algorithm used to find de 

minimum adjusted p-value (red for group of patients with higher level of gene expression 

and green for patients with low level). 

Notched boxplots in Fig 5.3. E and F, shown the distribution groups of two genes 

and two risk levels.  The variability in the populations are very similar in terms of range 

(whiskers) and interquartile range (boxes). Notches do not overlap and a very low p-value 

in both t-test indicates a very significant difference between level of expression of DCBLD2 

and EPHB2 for the two groups. 

 The separation of the two populations in both cases is very significant, with KM p-

values bellow 1.0e-10 and HR of 2.02 (95%CI:  1.65-2.48) for the binomial gene-

overexpression-short-survival and 0.43 (95%CI:  0.35-0.52) for gene-repression-short-

survival. High level of EPHB2 seems to be CRC protective and high levels of DCBL2 increase 

the hazard ration by more than 2, leading to sorter survival time. 

The list of survival markers genes obtained from the meta-dataset containing 

1,273 samples was subsequently externally validated in two series. Figure 5.4 shows 

validation of gene EPHB2 as a representative example of the validation process in two 

external series selected for that purpose (See materials and methods 4.2.6). 

Of the top-10 genes, for the case of up-regulation associated with poor survival, 7 

genes were validated (PTPN14, LAMP5, TM4SF1, LCA5, CSGALNACT2, SLC2A3 and 

GADD45B). Of the top-10 found for down-regulation associated with poor survival, 6 

genes were validated (EPHB2, DUS1L, NUAK2, FANCC, MYB and CHDH). 
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Figure 5.3:  Plots of survival analysis using 1273 samples from human colorectal cancer (CRC) patients. Only top two genes 

shown, DCBLD2 and EPHB2. The patients are separated in two groups (high expression in red and low expression in green): 

Plots in A and B display Kaplan -Meier distributions. Plots in C and D shows level of gene expression increasingly ordered 

(each dot represent a patient. Change of color indicates where the algorithm split the samples for group assignation. E) and 

F) reflects boxplot of the two groups and a highly significant p-value of a doubled sided unpaired t.test. In the case of 

DCBLD2 high expression correlates with short survival time HR = 2.02 (95%CI:  1.65-2.48); and in the case of EPHB2 the 

low expression correlates with shorter survival time HR = 0. 43 (95%CI:  0.35-0.52). 

KM pval = 1.00e-12 

HR = 0. 43 (95%CI:  0.35-0.52) 

 

Gene EPHB2 

Gene EPHB2 

Gene EPHB2 Gene DCBLD2 

Gene DCBLD2 

Gene DCBLD2 

KM pval = 9.35e-12 

HR = 2.02 (95%CI:  1.65-2.48) 

Split in sample 916 Split in sample 330 
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Patient 1273 Patient 1273 
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C                               D                               
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T-test p-value: 7.81e-31 

Samples grouped by level of gene expression 

C) Validation series II: 269 samples (RNA-seq from the TCGA) 

T-test p-value: 4.92e-240 

Samples grouped by level of gene expression 

A) Training series: 1,273 samples (microarrays) 

Gene EPHB2 

Gene EPHB2 

KM pval = 1.00e-12 
HR = 0.43 (95%CI:  0.35-0.52) 

KM pval = 4.00e-05 
HR = 0.28 (95%CI:  0.11-0.71) 

B) Validation series I: 482 samples (microarrays from Colon-Metabase-unif) 

T-test p-value: 5.53e-73 

Samples grouped by level of gene expression 

Gene EPHB2 

KM pval = 2.28e-06 

HR = 0.47 (95%CI 0.35-0.63) 

Figure 5.4 
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5.1.2. Identification of one major pathway (IGFBP signalling), deeply involved in 

cell nutrition and highly modulated by caloric restriction. 

Geneset enrichment analysis (Table 5.3) displays 11 significantly enriched 

pathways with FDR (<0.05) corresponding to a hypergeometric test using the 765-

candidate geneset. The Regulation of Insulin-like Growth Factor (IGF) transport and 

uptake by Insulin-like Growth Factor Binding Proteins (IGFBPs), is one of the enriched 

pathways. This axe is profoundly involved in nutrient sensing and proliferation.  

Table 5.3 

 Gene pathway 

Pathway name 
Pathway 

identifier 
Found Total Ratio pValue FDR 

Extracellular matrix (ECM) organization R-HSA-1474244 47 329 0.0232 0.000 0.000 

ECM proteoglycans R-HSA-3000178 19 79 0.0056 0.000 0.001 

Non-integrin membrane-ECM interactions R-HSA-3000171 16 61 0.0043 0.000 0.001 

Integrin cell surface interactions R-HSA-216083 19 86 0.0061 0.000 0.001 

Assembly of collagen fibrils and other 

multimeric structures 
R-HSA-2022090 16 67 0.0047 0.000 0.002 

Regulation of Insulin-like Growth Factor 

(IGF) transport and uptake by Insulin-like 

Growth Factor Binding Proteins (IGFBPs) 

R-HSA-381426 21 127 0.0090 0.000 0.013 

Post-translational protein phosphorylation R-HSA-8957275 19 109 0.0077 0.000 0.013 

Degradation of the extracellular matrix R-HSA-1474228 23 148 0.0105 0.000 0.013 

Laminin interactions R-HSA-3000157 9 31 0.0022 0.000 0.025 

Chondroitin sulfate biosynthesis R-HSA-2022870 8 25 0.0018 0.000 0.027 

Collagen formation R-HSA-1474290 17 104 0.0073 0.000 0.045 

Figure 5.4 Validation of previous KM analysis corresponding to top hit gene EPHB2 . Fig. 5.4.A display previous EPHB2 

analysis for better comparison referred to as training series. Validation of survival data was performed in two independent 

set of samples taken from the CRC dataset selected “Colon-Metabase-Uniformized” (validation serie I Fig.5.4.B) including 

482 samples with overall survival data and genome-wide expression determined with Affymetrix microarrays and The Cancer 

Genome Atlas series for CRC (Validation serie II 5.4.C), that included 269 colorectal carcinomas with survival information 

and RNA-seq expression profiling. Results in the three series shows similar trend for gene EPHB2 highlighting a much more 

protective HR of 0.28 (95%CI:  0.11-0.71) in the RNA-seq series. Boxplot in the left side of each figure represents groups of 

samples assignation according to gene expression level.  

Table 5.3 Pathway enrichment analysis Results after performing a hypergeometric test of 765 top hit candidate genes 

showed eleven overrepresented pathways that achieved statistical significance (FDR<0.05). Of note, the pathway R-HSA-

381426 “Insulin-like Growth Factor (IGF) transport and uptake by Insulin-like Growth Factor Binding Proteins (IGFBPs)”, 

with an FDR=0.013, was enriched. This node is profoundly involved in cell nutrient sensing and consistently modulated 

by caloric restriction (Reactome database) 



5.1.3. SLC2A3, NPR3 and LCA5 involvement in patient survival  

 

5.1.3.1. The SLC2A3, NPR3 and LCA5 geneset achieved best risk 

identification among patient of CRC in early stage I and II 

 

Multivariate survival analysis performed with the combinatory of top ten genes, 

shows that the best separation of survival curves in all-stage samples was obtained when 

computing the 7-gene combination DCBLD2, LAMP5, TM4SF1, NPR3, LEMD1, LCA5, 

CSGALNACT2  (HR: 2.68; CI:2.58-2.78; p-val: 0.31e-05). Table 5.4 shows those 

combinations that displayed higher hazard ratio in different stages.  

Since a gene signature requires predictive value in those stages where is more 

needed, preferably early than late ones, all gene sets were analysed computing samples 

of stage I and II.  The gene combination SLC2A3, NPR3 and LCA5 achieved best results 

predicting risk when processing early stage (I-II) samples (HR: 3.60; CI: 3.431.73-7.83; p-

val.:0.0024])  

Final multivariate survival analysis performed computing top 100 candidate genes 

allowed to identify the genes that were the most influential factors in this risk analysis. 

Supplemental table S5 displays the β factors assigned to each gene. 
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ALL STAGES (n=1273)  

 
Gene signature (HG symbol)  HR   CI (95%) 

 
p-val (KM) 

 

 

DCBLD2, LAMP5, TM4SF1, NPR3, 

LEMD1, LCA5, CSGALNACT2 
 2.68  2.58 2.78  0.0000031 

 

 

DCBLD2, PTPN14, TM4SF1, LEMD1, 

LCA5, CSGALNACT2 
 2.54  2.43 2.64  0.0000052 

 

 

SLC2A3, NPR3, LCA5, LAMP5, 

CSGALNACT2 
 2.31  2.20 2.41  0.0001140 

 

 
SLC2A3, NPR3, LCA5, LAMP5  2.34  2.24 2.44  0.0000519 

 

 
SLC2A3, NPR3, LCA5  2.36  2.25 2.46  0.0000056 

 
 

 STAGE II & III (n=1009)  

 
Gene signature (HG symbol)   HR  

 
CI (95%) 

 
p-val (KM) 

 

 

DCBLD2, LAMP5, TM4SF1, NPR3, 

LEMD1, LCA5, CSGALNACT2 
 

2.85  2.73 2.96  0.0000052 

 

 

DCBLD2, PTPN14, TM4SF1, 

LEMD1, LCA5, CSGALNACT2 
 

2.75  2.63 2.87  0.0000024 

 

 

SLC2A3, NPR3, LCA5, LAMP5, 

CSGALNACT2 
 

2.02  1.90 2.14  0.0004610 

 

 
SLC2A3, NPR3, LCA5, LAMP5 

 
2.23  2.11 2.35  0.0003440 

 

 
SLC2A3, NPR3, LCA5 

 
2.22  2.10 2.34  0.0008660 

 
 

 STAGE I & II (n=682)  

 
Gene signature (HG symbol)  HR  

 
CI (95%) 

 
p-val (KM) 

 

 

DCBLD2, LAMP5, TM4SF1, NPR3, 

LEMD1, LCA5, CSGALNACT2 
 

2.88  2.72 3.03  0.0024200 

 

 

DCBLD2, PTPN14, TM4SF1, LEMD1, 

LCA5, CSGALNACT2 
 

2.85  2.69 3.00  0.0017400 

 

 

SLC2A3, NPR3, LCA5, LAMP5, 

CSGALNACT2 
 

3.06  2.89 3.22  0.0057100 

 

 
SLC2A3, NPR3, LCA5, LAMP5 

 
3.30  3.13 3.47  0.0045700 

 

 
SLC2A3, NPR3, LCA5 

 
3.60  3.43 3.77  0.0018702 

 

Table 5.4 Multivariate survival analysis. A multivariate survival analysis performed with combinations of top 10 hits, 

grouping then from 2 to 10-gene collections. Best separation of survival curves was achieved with 7-gene signature 

DCBLD2, LAMP5, TM4SF1, NPR3, LEMD1, LCA5, CSGALNACT2 yielding a Hazard Ratio of 2.68 (CI: 2.58-2.78 p-

val.:0.31e-05).Signature SLC2A3, NPR3 and LCA5 achieved highest risk differences when only samples in early stage 

were processed (I and II) (HR: 3.60; CI: 3.43-3.77; p-val.:0.0018702]).  



 
Description 

 
Value 

 

β(NPR3) 
 

0.3535 
 

β(LCA5) 
 

0.9781 
 

β(SLC2A3) 
 

0.1292 
 

 
 
 
 

Forest plot in figure 5.5 captures the survival analysis of the 3-gene signature 

SLC2A3, NPR3 and LCA5 performed in each independent dataset, reaching hazard ratios 

above 4.5 in two out of seven studies. The study GSE14333 only includes patients in stage 

I and II and the study GS33113 includes patients in stage I and II, 18 patients in stage III 

and none in stage IV. 266 patients out of a total of 552 included in study GSE39582 

correspond to stage III and IV. The distribution of ages and genders are similar in all studies 

analyzed (Table 4.2). The variability in the results obtained from each study, highlights the 

Figure 5.5:  Forest plot representing the hazard ratio of the 3-gene signature SLC2A3, NPR3, LCA5 in each independent 

dataset, reaching values above 4.5 in two of the seven studies analyzed. The study GSE14333 only includes patients in stage 

I and II and the study GS33113 includes patients in stage I and II, 18 patients in stage III and none in stage IV. 266 

patients out of a total of 552 included in study GSE39582 corresponds to patients in stage III and IV. The distribution of 

ages and genders are similar in all studies analyzed (see table in material and methods). This confirms that the gene 

signature SLC2A3, NPR3, LCA5 better identifies risk when samples from early stages are computed. 

Hazard Ratio 

Table 5.5:  β Coefficients after performing the multivariate Cox regression considering the gene signature SLC2A3, NPR3, 

LCA5 as explanatory variable and using samples of stage I and II only. Mean values after cross validation. 
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importance of building large integrated datasets to appreciate relevant generalized 

changes or trends in the population of a specific class. 

 
5.1.3.2. Difference of top-hit-gene expression levels between tumoral and 

epithelial tissue in the cohort of 1273 samples analyzed. 

 To support potential further diagnostic in the clinic, the behavior in normal 

colon tissue of top hit genes was compared to explore eventual association between the 

genset expression in both types of tissues, tumoral and epithelial. In general, tumoral 

tissue displays higher levels of mRNA than the epithelial (Figure 5.6). Heatmap and table 

5.7 shows results of iterative Wilcox-rank tests exploring differential expression between 

genes from both tissues. Random iteratively selection of 25 samples from tumor (1000i) 

were compared to 25 colon epithelial samples. Genes with low numbers of significant 

results are shown in red and genes with high number are shown in green, e.g. GADD45B, 

which only achieved significant difference between tissues in 14 samplings (25 patients 

each) out of 1000 random groups tested. This suggest association between levels of 

expression of GADD45B and NUAK2 in both tumor and epithelium. Further, levels of 

expression of DUS1L or PTPN14 were significantly different in all 1000 samplings 

contrasted, indicating poor association between tissues in the expression of these genes. 

  



 

 

 

 

 

 

 

 

 

 

Gene  

 

Significant 

Tests (1000i) 

 

 

Expression 

level 

association 
 

 GADD45B 
 

14 
 

High 
 

 NUAK2 
 

19 
   

 NPR3 
 

26 
   

 FHDC1 
 

35 
   

 FANCC 
 

60 
   

 MYB 
 

71 
   

 LCA5 
 

184 
   

 LAMP5 
 

211 
   

 CHDH 
 

340 
   

 AGMAT 
 

377 
   

 TM4SF1 
 

665 
   

 CSGALNACT2 
 

887 
   

 CISD3 
 

933 
   

 SLC2A3 
 

947 
   

 TIMM13 
 

961 
   

 DCBLD2 
 

964 
   

 EPHB2 
 

992 
   

 LEMD1 
 

999 
   

 DUS1L 
 

1000 
   

 PTPN14 
 

1000 
 

Low 
 

       

Figure 5.6 Distribution comparison of expression signal 

corresponding to twenty top-ranked genes in 25 samples 

from normal colorectal epithelium (green boxplots) 

versus 25 samples from CRC tumor (red boxplots). The 

genes in boxplot A are the top-10 best survival marker 

genes found to be up-regulated for poor and the genes in 

plot B are the top-10 best survival marker genes found 

up-regulated for good prognosis  

 

Figure 5.6 

B                             

Table 5.6                            

A         

Table 5.6 Association between level of expression in 

tumor and normal colon epithelium. Unpaired Wilcox-

rank test was accomplished to compare gene expression 

level from iterative 25 random sampling (1000i) obtained 

from 1273 tumors versus expression in the 25 normal 

tissue samples. Central column shows number of test 

achieving significant difference out of 1000 iteration. 

Genes with low numbers of significant test are shown in 

red and genes with high number are shown in green. 

GADD45B or NUAK2 only achieved significant 

difference between tissues in 14 samplings of 25 patients 

out of 1000 random groups tested. This suggest 

association between levels of expression of GADD45B 

and NUAK2 in both tumor and epithelium. Levels of 

expression of DUS1L or PTPN14 were significantly 

different in all 1000 samplings contrasted, indicating poor 

association between tissues in the expression of these 

genes 
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5.1.3.3. The SLC2A3, NPR3 and LCA5 gene set identifies patients with the most 

aggressive mesenchymal CRC subtype 

To explore whether the gene signature SLC2A3, NPR3 and LCA5 was able to 

identify any particular CRC subtype, a hierarchical clustering following a similar strategy 

to the one used to assay batch effect removal, was carried out using the expression level 

of the 3-gene signature from 569 CRC samples. These samples included molecular subtype 

among the phenotypical information of the tumours. The samples were categorized in 6 

different subtypes, C1 to C6 (Marisa et al., 2013).Despite it has two more subtypes, this 

classification is similar to the previously described in the introduction as "Consensus 

Molecular Subtype" and the C4 subtype clearly overlaps the highly aggressive, 

mesenchymal like CMS4 (Guinney et al., 2015).  

The heatmap in figure 5.7 shows a clear cluster corresponding to C4 subtype (cyan 

colour) in the left side of the plot suggesting that this gene signature could molecularly 

identify that poor prognosis group. 

 

 

  



 

 

 

 

 

 

Molecular  
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Figure 5.7 Hierarchical clustering correlation heatmap of 1273 microarrays to identify   cluster corresponding to any 

specific CRC subtype (C1 to C6). The plot shows the Pearson's correlation between 300 random samples from 6 

molecular subtypes C1 to C6 (Marisa et al., 2013) identified by six different colors and shown in the upper side bar 

(50 samples from each subtype). Higher correlation between samples are displayed in yellow and lower in red. 

Correlation index was calculated using Euclidean distance from expression level of 3 genes SLC2A3, NPR3 and LCA5 

(569 CRC samples). C4 subtype samples are clearly clustered together (cyan color in the left part of the sidebar). This 

subtype shows highly aggressive mesenchymal like phenotype and overlaps poor prognosis consensus molecular 

subtype 4 (CMS4), previously described in the introduction to this Thesis (Guinney et al., 2015) 
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5.2. Identification of potential precision strategies in cancer focused on molecular 

nutrition.  

 
5.2.1. Nutritional strategies based on the inclusion of bioactive compounds:  

Screening of bioactive compounds with potential beneficial effect in CRC. 

 

5.2.1.1. Identification of the Ellagic Acid derivative 4,4’ Di-O-Methyl Ellagic Acid 

(4,4’DIOMEA) as an effective agent in the inhibition of the proliferation of 

colon cancer cells. 

  

The growth inhibitory effect of 10 different phenolic compounds and derived 

metabolites in a preliminary screening on HT-29 cells was analyzed by MTT assay (Table 

4.1). 6 out of the 10 compounds tested (homovanillic acid, dihydrocaffeic acid, gallic acid, 

4-Omethylgallic acid, 3-O-methylgallic acid, and Uro-B) had no effect on cell viability in 

the CRC lines tested at the assayed concentrations (1–100 µM). 

By contrast, 4 of the 10 analyzed compounds (EA, 3,3'-DiOMEA, 4,4'-DiOMEA, and 

Uro-B) displayed antiproliferative activity in CRC cell lines under the assayed conditions 

(Table 5.7). 

4,4'-DiOMEA is the most effective agent against CRC cells within the members of 

the EA family tested, which was confirmed using an additional human colon CRC–derived 

cell line (SW-620) (Table 5.7).  

 

5.2.1.2. 4,4'DIOMEA inhibits viability of CRC cells resistant to the chemo-therapeutic 

drug 5-FU 

 

The phenolic compounds were tested in the 5-FU resistant SW620 cell line 

(SW620-5FuR), previously developed by the group (See materials and methods). The data 

collected in preceding experiments regarding cell sensitivity of both SW620 and SW620-

5FuR to drug 5-FU determined an IC50 value of 7.1 ±1.3 µM for the SW620 line and an IC50 

value over 5,000.0 µM for the SW620-5FuR cell line (Table 5.7).  



MTT assay results show that SW-620-5FuR cells seems to be sensitive to EA; 

3,3'DIOMEA; 4,4'-DiOMEA as can be observed in Table 5.7, being 4,4'DIOMEA the 

strongest molecule against this line, with an IC50 in the range of 30.  

 

  

  
Polyphenol 

Cell line 

HT-29 SW-620 SW-620-5FuR CCD18Co 

  [IC50 (µM)] 

  

 

5-FU 

 

- 

 

7.1±1.3 

 

>5,000.0 

 

<3.0 

 EA 95.0±10.4 79.0±4.0 45.0±5.0 37.50±2.5 

 3,3’DIOMEA 106.0±3.3 72.5±2.5 145.0±5.0 47.5±2.5 

 4,4’DIOMEA 7.6±1.5 5.8±1.6 28.8±3.2 59.5±4.55 

 Urolithin A 38.5±3.5 26.0±1.0 - - 

  

  

1 Data represent mean ± s.e.m. of at least two independent experiments, with three replicates per test concentration. 

 - not determined 

  

 

 

Compounds were also assayed in epithelial colon CCD18Co cells with the intention 

of analyze the behavior of these compounds in normal tissue. 4,4' DIOMEA was the only 

agent that showed an IC50 of larger magnitude in epithelial cells than the one required in 

tumoral and chemo resistant lines, which may suggest the presence of a therapeutic 

window.  

EA and 3,3'-DiOMEA exhibited relatively low sensitivity against colon cancer cells 

(IC50 >70 µM) and their growth inhibitory activity was almost 2-fold compared to normal 

cells (IC50 ≈ 40 µM). 4,4'-DiOMEA displayed effectiveness against both HT-29 and SW-620 

colon cancer cells (IC50 ≤ 10 µM), a concentration in which normal cells are lowly affected 

by the compound (IC50 ≈ 60µM) suggesting this derivate as a promising candidate in colon 

cancer therapy (Table 5.7). 

 Table 5.7: Anti-proliferative activity [IC50 (µM)] of different polyphenols in several CRC cell lines: HT-29, SW-620, colon 

cancer resistant to 5-FU SW-60-5FuR and normal colon epithelium CCD18Co. 
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Figure 5.8 shows dose-response curves of the cell viability assays after 72 h 

treatment of SW620 colon cancer cells with increasing concentrations of EA and its 

derivatives (33'-Di-O-Methylellagic and 44'-Di-O-Methylellagic). 

 

 

 

5.2.1.3. The Antiproliferative Activity of 4,4'-DiOMEA is not associated to 

antioxidant Activity  

 

FRAP and DPPH antioxidant assays were performed to analyze whether the 

antiproliferative phenotype of CRC cells under these phenolics was mediated by their 

antioxidant capacity or should be modulated by antioxidant-based mechanisms. Results 

shown in figure 5.9 confirm the previously reported antioxidant capacity of EA with a very 

steep slope in the graphic but 4,4'-DiOMEA does not show this activity in any cell line 

tested.  
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Figure 5.8  Dose-response curves after treating SW620 CRC cell line with EA and derivatives. 4,4'-Di-O-Methylellagic acid 

strongly induces human CRC cell growth inhibition. Curves show cell viability assays after 72 h treatment of SW620 colon 

cancer cells with increasing concentrations of EA and its derivatives 3,3'-Di-O-Methyl ellagic acid and 44'-Di-O-Methyl 

ellagic acid. Data represent mean ± s.e.m. of at least two independent experiments each performed in triplicate. The results 

were analyzed by analysis of variance (ANOVA) with Bonferroni and Tukey as post hoc tests. 



Interestingly, 3,3'-DiOMEA and 4,4'-DiOMEA display different antioxidant capacity 

despite their similar chemical structure.  

 

 

 

 

 

 

 

 

5.2.1.4. The Antiproliferative Activity of 4,4'-DiOMEA might be mediated by 

the inhibition of the Wnt signaling cascade. 

 

A comparison between full transcriptomes of SW-620 cells treated at 5 µM vs 

control was performed by means of microarray technology in order to analyze the 

molecular mechanism underlying the anticarcinogenic effect of 4,4'-DiOMEA. A 

subsequent hypothesis contrast using Limma, was performed to identify DEG and the FDR 

correction was applied previously to rank all genes by fold change and correspondent p-
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Figure 5.9. Antioxidant activity of EA and derivatives 3,3’DiOMEA and 4,4’DiOMEA. FRAP Assay shows 

less antioxidant activity in the methylated species in comparison with EA. 4,4’ DiOMEA does not display 

any antioxidant capacity. Data represent mean ± s.e.m. of equivalent of TROLOX. 
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value. A restringing threshold of 2-fold was used to identify 11 genes whose altered 

expression achieved statistical significance (data in table 5.8). 

A subsequent Gene set enrichment analysis was carried out using The Gene 

Ontology Database meant to identify any relevant cancer pathway significantly enriched 

by the candidates. Table 5.9 shows the top ranked axes and the p-values associated to 

their correspondent hypergeometric test, showing the proliferative Wnt signaling cascade 

among those pathways significantly enriched with better FDR (0.0112).   

Wnt signaling is one of the most frequently activated pathways associated to 

cancer hallmarks such as proliferation or epithelial-to-mesenchymal transition (EMT) in 

different type of cancers (Polakis, 2000) (Camps et al., 2013) and 4,4'DIOMEA repress 

Wnt16 expression according to the microarray results (table 5.8). KEGG, Reactome and 

Cytoscape databases were also consulted to identify functional interactions, transcription 

factors and relevant networks in which the candidates might be molecularly involved. 

Table 5.9 shows the most relevant interactors found in the analysis.  

 

  



 Prior to biologically validate those 11 genes, a genset enrichment analysis was A  

Table 5.8: Differentially expressed genes identified after treating SW-620 colon cancer cells with phenolic 4,4’DiOMEA. 

Microarray analysis of SW620 CRC cells treated during 72 h with 5 µM of commercial 44'DiOMEA was performed to identify 

DEG. A threshold of 2-fold absolute change in gene expression was used to consider significant. Results include (log) fold changes, 

log-intensity values (control: logControl; and experiment: logExperiment), standard errors (StdErr) and p-values for Limma 

package (linear models for microarray data). 

Gene
Accession 

number
Fold Change logControl

StdErr 

(logControl)
logExperiment

StdErr 

(logExperiment)

p-value 

(limma)
Description

RHBDL1 NM_001278720 2.54 -           13.67      0.10               12.33              0.70                    0.039    Homo sapiens rhomboid, veinlet-like 1 (Drosophila) 
(RHBDL1), transcript variant 1

A4GALT NM_017436 2.49 -           14.02      0.30               12.71              0.50                    0.016    Homo sapiens alpha 1,4-galactosyltransferase 
(A4GALT)

WNT16 NM_057168 2.30 -           7.14        0.70               5.94                0.10                    0.050    Homo sapiens w ingless-type MMTV integration site 
family, member 16 (WNT16), transcript variant 1

PCSK1N NM_013271 2.19 -           14.66      0.30               13.53              0.50                    0.029    Homo sapiens proprotein convertase subtilisin/kexin 
type 1 inhibitor (PCSK1N)

PAPPA NM_002581 2.12 -           7.36        0.60               6.27                0.10                    0.033    Homo sapiens pregnancy-associated plasma protein 
A, pappalysin 1 (PAPPA)

WDR52 NM_001164496 4.50            6.40        0.10               8.57                1.20                    0.039    Homo sapiens WD repeat domain 52 (WDR52), 
transcript variant 1

MUSK NM_005592 2.46            6.47        0.10               7.77                0.70                    0.044    Homo sapiens muscle, skeletal, receptor tyrosine 
kinase (MUSK), transcript variant 1

GRHL1 NM_198182 2.20            6.50        0.10               7.64                0.50                    0.013    Homo sapiens grainyhead-like 1 (Drosophila) (GRHL1)

GTF2I ENST00000473333 2.10            6.17        -                  7.24                0.30                    0.002    General transcription factor Iii

SLC22A8 ENST00000451262 2.06            7.13        0.10               8.18                0.30                    0.002    Solute carrier family 22 (organic anion transporter), 
member 8

S100A5 NM_002962 2.05            7.95        0.20               8.98                0.40                    0.013    Homo sapiens S100 calcium binding protein A5 
(S100A5)

Table 5.9: Bioinformatic analysis of biological processes, pathways and transcription factors significantly altered by 44'DiOMEA 

in SW-620 colon cancer cells according to microarray data. The list shows the most altered cellular functions and molecular 

networks in colon cancer cells treated with 44'DiOMEA under conditions in which it exerts anti-proliferative activity according to 

microarray data. p-value (Hyp) represents the p-value of the hypergeometric test used in this analysis. p-value (Hyp)* represents 

the p-value of the hypergeometric test adjusted for False discovery rate (FDR) correction. These data were obtained from Gene 

Ontology, KEGG pathways and GSEA databases. 

Biological Process Reference Support p-value (Hyp) p-value (Hyp)* Genes

Tripeptide transport 2 0.0012 0.0377 SLC22A8

Regulation of synaptic grow th at neuromuscular junction 2 0.0012 0.0377 MUSK

Stress-induced premature senescence 5 0.0031 0.0419 WNT16

Regulation of gene expression 3160 0.0021 0.0424 EIF3K,MUSK,GRHL1,BARX1,CHD4,GTF2I,WNT16

Response to methotrexate 4 0.0025 0.0431 SLC22A8

Vasculature development 468 0.0028 0.0433 FZD9,GTF2I,EPHB4

Oxidative stress-induced premature senescence 3 0.0018 0.0453 WNT16

Cardiovascular system development 693 0.0008 0.0467 FZD9,GTF2I,WNT16,EPHB4

KEGG Pathways Reference Support p-value (Hyp) p-value (Hyp)* Genes

Basal cell carcinoma 55 0.0005 0.0047 WNT16,FZD9

Melanogenesis 98 0.0016 0.0074 WNT16,FZD9

Wnt signaling pathw ay 149 0.0037 0.0112 WNT16,FZD9

Glycosphingolipid biosynthesis - globo series 14 0.0086 0.0193 A4GALT

Pathw ays in cancer 324 0.0167 0.0300 WNT16,FZD9

Basal transcription factors 39 0.0237 0.0355 GTF2I

Hedgehog signaling pathw ay 56 0.0338 0.0435 WNT16

Bile secretion 71 0.0427 0.0480 SLC22A8

Transciption factors Reference Support p-value (Hyp) p-value (Hyp)* Genes

CP2 178 0.0002 0.0132 CHD4,RHBDL1,PAPPA

PAX4 164 0.0001 0.0208 RBMS3,CHD4,PAPPA

E12 1805 0.0006 0.0225 A4GALT,MUSK,GTF2I,WNT16,RHBDL1,SLC22A8

AP4 1119 0.0005 0.0250 RBMS3,MUSK,FZD9,CHD4,CRHBP

TEF-1 384 0.0016 0.0495 RBMS3,MUSK,CHD4
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The downregulation of Wnt16 by 4,4'-DiOMEA was later validated by quantitative 

real-time PCR in a dose-dependent manner, showing decreased levels of mRNA 

correlating with incremental concentration of compound (Figure 5.10). 

  

 

5.2.1.5. SW-620 CRC cells treated with 20 µM 4,4'DIOMEA do not lower 

levels of downstream Wnt signal, ß-catenine  

 

 Wnt signaling encompass different transduction pathways triggered by binding 

Wnt ligands to their membrane receptor and activating genes implicated in different 

development processes required for embryonic progress and tissue maintenance and 

regeneration in adults (Liu et al., 2008). Inadequate activation of the Wnt pathway is 

involved in the progression of numerous tumors, supporting an important role of this 

pathway in promoting cancer (Brennan and Brown, 2004). Mutations in the Wnt/β-

catenin signaling pathway trigger a great number of sporadic CRC; thus, one approach for 

CRC therapy is to inhibit Wnt activity (Lazarova and Bordonaro, 2012a). 

Wnt can activate several key signaling cascades including the canonical Wnt/β-

catenin pathway, and the noncanonical Wnt pathways such as the PCP (planar cell 

polarity), c-Jun amino-terminal kinase (JNK), Rho, and calcium signaling pathway (Moon 

et al., 2004) (Reya and Clevers, 2005). The main difference between canonical and 

Figure 5.10: WNT16 expression in human SW-620 CRC cells treated with different concentrations of 4,4’-DiOMEA. 

Relative quantification for WNT16 in SW-620 cells treated with 5, 20, and 50 µM 4,4’-DiOMEA in relation to nontreated 

cells normalized to the endogenous control (glyceraldehyde 3-phosphate dehydrogenase).  

-0,9

-0,8

-0,7

-0,6

-0,5

-0,4

-0,3

-0,2

-0,1

0
0 µM 5 µm 20 µM 50 µM

WNT16 mRNA level (RQ)

     0 
-0.1 
-0.2 
-0.3 
-0.4 
-0.5 
-0.6 
-0.7 
-0.8 
-0.9 



noncanonical signaling relies in the role played by the protein β-catenin. Canonical 

pathway requires this protein while the other axes signal independently of it (Nusse, 

2005) (Polakis, 2000). To detect activity of Wnt canonical signaling under 4,4'DIOMEA, the 

TOP/FOP plasmid was transfected into both control SW-620 and treated cells (20 µM, 72 

hr). Renilla luciferase was used to measure transfection efficiency and firefly luciferase to 

properly quantity levels of ß-catenine. A higher luciferase intensity should be expected in 

low Wnt activity cells like those treated with the compound of interest. 

Graph in figure 5.11 (A) shows that Treated SW-620 cells do not display a decrease 

in ß-catenin levels (firefly luciferase normalized to renilla intensity) in comparison with 

cells non treated with the phenolic compound. 

In figure 5.11 (B) the negative controls (FOP) display slight activity, in the two 

group of cells, control vs treated, whereas figure 5.11 (C) shows that transfection of 

plasmids containing the reporters TOP occurs more effectively than the transfection of 

the plasmids with the negatives control FOP.    

To obtain the net ratios (fig 5.11.A), the signal of luciferase reporter (TOP) is 

normalized to the negative reporter (FOP). 
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Epithelium-mesenchymal transition (EMT) is a process by which epithelial cells 

lose their epithelial characteristics and gain migratory and invasive abilities to acquire a 

mesenchymal-like phenotype (Cano and Portillo, 2010) 

Since Wnt signaling is deeply involved in the EMT process of cancer cells, a 

combination of EMT markers detection by RT-qPCR and cell motility behavior by wound 

healing assay were performed in monolayer SW620 cultures to explore whether the 

phenolic might contribute to modulate EMT. 

 Downregulation of E-cadherin is one of the crucial leading events for EMT and is 

considered a hallmark of the process (Moreno-Bueno et al., 2009) although a great 

number of factors and signals  seems to be involved in the transition. Based mainly in the 

finding of different authors regarding EMT, the markers stated in table 5.10 were selected 

for RT-qPCR analysis mean to detect the eventual repression of the EMT process by the 

4,4' DIOMEA. 

 

 

Figure 5.11 Results of the TOP/FOP assay performed on SW-620 CRC cells treated with 4,4’DIOMEA.as a reporter of 

Wnt/ß-catenine activity. A) TOP/FOP ratio display an increment (non-significative) in luciferase signal levels (firefly 

luciferase normalized to renilla intensity) in the treated cells in comparison with cells non treated with the phenolic, indicating 

no significant differences in Wnt/ß-catenin activity. (B) Plot showing levels of negative controls (FOP). (C) Plot showing 

levels of transfection control (renilla luciferase). It is shown that transfection of plasmids containing the reporters TOP occurs 

more effectively than the transfection of negatives control FOP.  
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Gene name Marker 

N-Cadherin Mesenchimal 

Vimentine Mesenchimal 

E-Cadherin Epithelial 

Keratin 18 Epithelial 

Na+/K+ ATPase β1 Epithelial 

Snail Mesenchimal 

β-Catenin Mesenchimal 

 

 

 

  

Table 5.10 Genes selected for EMT analysis and related phenotype 
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Figure 5.12 shows contradictory results regarding EMT since both increment in 

epithelial and mesenchymal markers were achieved. Drop in E cadherin levels, which is 

one of the most robust marker of EMT was reversed by the treatment with 4,4' DIOMEA 

suggesting eventual inhibition of EMT, but the concurrent increment in mesenchymal 

markers contradicts this finding. RT-qPCR results also confirmed the increment in mRNA 

levels of β-Catenin in the line with the previous data collected by the TOP/FOP 

transfection assay. 

Figure 5.12 RT-qPCR analysis showing the SW-620 cells mRNA levels of the epithelial markers E-Cadherin, K18 and 

Na+/K+ATPase β1, the mesenchymal markers N-Cadherin, Vimentin, and EMT inductors Snail and β-catenin upon 72 

hours of treatment with 4,4’DIOMEA (5 μM and 20 μM). The increment in epithelial markers (except for the marker 

Na+/K+ATPase β1 in cells treated at 20 μM) is counterbalanced by the increment in mesenchymal markers as well, which 

lead to an uncertain conclusion about EMT modulation by the phenolic derivative. The increment in β-catenin confirms 

previous results of TOP/FOP transfection assay to monitor Wnt signaling. Two-tailed unpaired t.test (α=0.05) was 

performed to detect significative differences between control and treated groups (n=2). 



Trying to understand these contradictory results, a functional assay was 

performed aimed to detect alteration in migration of CRC cells treated with 4,4' DIOMEA. 

A wound healing assay was carried out, testing different concentrations of the compound 

in SW620 cells. The protocol previously referred in material and methods to test cell 

migration (Moreno-Bueno et al., 2009),  was accomplished and results brought up non-

significative differences between treated with 4,4'DIOMEA (5 μM and 20 μM) and control 

cells. 

The phenolic compound Ellagic Acid was also tested using same concentrations to 

compare efficiency between the precursor EA and its in-vivo derivative but neither 

differences were achieved. 

Figure 5.13 A) captures representative cartoon of wound healing assay and B) 

captures representative pictures at different timepoints (only 5 μM shown) and the 

transformed image by the software used for grey-scale pixel quantification, TScratch 1.0 

(Gebäck et al., 2009). Control cells (most left column of images) seems to show a much 

more cohesive unidirectional migration than the one shown by cells treated with Ellagic 

Acid and 4,4DIOMEA (right two columns of the panel). Quantification did not detect 

statistical dissimilarities between treated and control groups at any concentration tested.  

Figure 5.13.C 
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Figure 5.13: Wound Healing Assay.  A) Cartoon representatives of main steps in wound healing assay.  B) 

Representative pictures of wound in control cells at time 0hr, 24, 48 and 72 hr (left column). Image transformed for 

pixel quantification by software TScratch 1.0 of control cells and treated (center and right columns). The two columns 

on the most right shows a slightly random migration at 48 and 72 hr. in comparison with control (more cohesive 

unidirectional behavior)  

C) D) Pictures Quantification.  Data represent avg. open area ratio at 48 and 72 hr (Divided by avg. area at 0 hr) ± sd. 

of two independent experiments, with three replicates per tested concentration. (Two-tailed unpaired t.test, α=0.05). 

 



5.2.1.6. Epigenetic analysis of 754 miRNA in CRC SW-620 cells. Modulation 

by 4,4' DIOMEA. 

In order to investigate the eventual role of several miRNAs in the mechanism of 

action of 4,4' DIOMEA, the differential levels of expression of 754 miRNAs after treatment 

of CRC cells with two concentration of the compound (5 and 20 μM), were tested by 

means of TLDA cards, following the protocol previously detailed in materials and methods. 

In a first filtering considering only those miRNA showing dose-dependent response, a set 

of 33 candidates were selected, 15 of them experienced treatment-mediated over-

expression and 18 underwent treatment-mediated repression. Figure 5.15 displays the 33 

candidates and related log RQ.  
The miRNA set was subsequently ranked by its folding change and restringing 

thresholds of 2 (for the miRNA upregulated) and 0.5 (for the miRNAs downregulated) 

were applied to bring up a final list of 9 candidate miRNAs for further validation by RT-

qPCR (table 5.11).  

Special relevance display two top candidates: The miRNA-203 (Fig 5.14.A), since its 

epigenetic silencing is essential for EMT and cancer stem cells properties (Deng et al., 

2016) (Taube et al., 2013) (Liao et al., 2015) and oncogenic miR-96 (Fig 5.14.B), directly 

implicated in DNA mismatch repair deficiency (Sarver et al., 2009) and associated to bad 

prognosis in CRC (Xu et al., 2012).  

 

Figure 5.14. Level of expression of miRNA 203 and miRNA 96 after performing a Taqman Low Density Array (TLDA) 

analysis on SW-620 CRC cells treated with 4,4’ DiOMEA at different concentrations . Plots display miRNA levels of top 

hit miR-203.and miR-96 after 72 hr treatment with 4,4’DIOMEA. A) miRNA-203 expression level. Its epigenetic silencing 

is essential for EMT and cancer stem cells properties (Deng et al., 2016) (Taube et al., 2013) (Liao et al., 2015) B) miRNA-

96 expression level. It has been reported that oncogenic miR-96 is directly implicated in DNA mismatch repair deficiency 

(Sarver et al., 2009) and associated to bad prognosis in CRC (Xu et al., 2012) 
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Figure 5.15 TLDA analysis results showing the expression levels of 33 miRNA from SW620 CRC cells that responded to 

4,4’DIOMEA treatment in a dose dependent way.  (72 hr treatment with 4,4’DIOMEA at 5 μM [blue] and 20 μM 

[orange].) 
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Table 5.11. TLDA analysis showing modulation of the expression level of top miRNAs by 4,4’ DiOMEA at different 

concentrations. SW620 CRC cells were treated for 72 hr with two concentrations of 4,4’DIOMEA. The table displays top 

miRNAs that were modulated in a dose dependent way. 
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5.2.1.7. Analysis of cell bioenergetics after 4,4' DIOMEA treatment. 

 

One of the cancer hallmarks in close relationship with nutrition comprise the 

cancer-associated metabolic deregulation. Cancer profoundly modifies energy balance. 

The metabolic reprogramming of the cancer cells underly the need of fueling uncontrolled 

growth and proliferation. Traditionally, the most studied alteration in the metabolism of 

cancer cell encompasses the heavily studied “Warburg effect”. Under presence of oxygen 

(aerobic conditions), normal cell glycolysis ends up with pyruvate entering the 

mitochondria for an oxidative phosphorylation yielding ATP and carbon dioxide. If oxygen 

is not present, anaerobic conditions, glycolysis dispatch less pyruvate to the mitochondria 

and the cell produce most of the ATP in a cytosolic fermentation to lactate. Normal cells 

ferment glucose to make ATP in low oxygen environment. Otto Warburg discovered that 

cancer cell reprograms the metabolism  to accomplish fermentation even under aerobic 

conditions (Warburg, 1956) (Figure 5.16). 

Glycolysis encompass the biochemical reaction that converts a 6-carbon molecule 

of glucose into two 3-carbon molecules of pyruvate yielding ATP and NADH+, but the term 

is used in its broadest sense to refer the process only when a subsequent pyruvate 

reduction to lactate in the fermentation reaction take place.  

Although the Warburg effect has governed much of the viewpoint on altered 

cancer metabolism over the last years, glucose cannot supply all the necessary resources 

for cancer to progress, in fact not all transformed cells show glycolytic phenotype and 

depressed mitochondrial activity. Another blend of metabolic deregulation in cancer is 

the elevated glutaminolisys, meant to use glutamine rather than or together with glucose 

as energy supply and building-blocks provider for cancer cells to grow and proliferate 

(Dang, 2010). The de-novo fatty acid synthesis and related pathways aimed to supply 

energy or deliver lipidic components for anabolic processes such as cell membrane 

building, is another trait of metabolic deregulation of transformed cells (Mashima et al., 

2009).  



 

 

To investigate the eventual modulation of mitochondrial activity by 4,4'DIOMEA, 

the Extra-Cellular Acidification Rate (ECAR) and the Oxygen Consumption Rate (OCR) were 

monitored in the surrounding media of both cultures of SW-620 CRC non treated cells and 

SW-620 CRC cells treated for 72 hr with 4,4'DIOMEA. The equipment used for this purpose 

was an extracellular flux analyzer (See materials and methods). The concentration tested 

were the IC50 and twice the IC50 achieved in the previous MTT cell viability assays for the 

4,4' DIOMEA phenolic.  

 

Normal cell  

Figure 5.16 Representation of the Warburg effect. One of the key metabolic reprogramming in cancer 

cells together with glutaminolisys and de-novo fatty acids synthesis, among others. Under the presence 

of oxygen (aerobic conditions), glycolysis of most normal cells ends up with pyruvate entering the 

mitochondria for an oxidative phosphorylation (oxPhos) yielding ATP and carbon dioxide. If oxygen is 

not present (anaerobic conditions) glycolysis dispatch less pyruvate to the mitochondria and the cell 

produce most of the ATP in a cytosolic fermentation to lactate. Differentiated non-transformed cells 

ferment glucose to make ATP in low oxygen environment. Otto Warburg discovered that cancer cell 

reprograms the metabolism to accomplish fermentation under aerobic conditions and use this reaction 

as one of the main pathways to produce ATP (Warburg, 1956) 
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This analysis was performed in two different situation, a basal nutrient-rich 

metabolic setting and a stressed nutrient-rich metabolic situation in which a high energy 

demand is simulated. By adding a metabolic perturbation agent to the culture media, 

(carbonyl cyanide-4-[trifluoromethoxy] phenylhydrazone [FCCP]), protons freely flow 

through the mitochondrial membrane due to a FCCP-mediated H+ permeability. This flow 

disrupts the existing membrane potential (mito Ψ) which uncouples respiration from ATP 

synthesis by the electron transport chain complex V. Without this system regulating 

respiration, any oxidizable substrates present in the medium can be oxidized only limited 

by the maximum OCR achieved by  the cell (Winer and Wu, 2014).By measuring OCR after 

FCCP injection, the maximum OCR is obtained and a parameter referred to as spare 

respiratory capacity (SRC) can be therefore calculated by the difference between basal 

and maximum OCR. Lowering this parameter by compounds such as the phenolics may 

impair cancer cell viability since it seems to exist strong correlation between enhanced 

SRC and apoptotic death-resistance  (Nickens et al., 2013), furthermore attenuated SCR 

has been reported to increase vulnerability to oxidative stress and cell death in some 

types of cancer (Sriskanthadevan et al., 2015).  

Figure 5.17 A shows the averaged OCR and ECAR phenotype plot of CRC SW-620 

cells that have been non-treated and treated with 4,4'DIOMEA at two concentrations (IC50 

and 2xIC50). Graph shows a slight change in the metabolic profiles towards a less oxidative 

phosphorylation once the phenolic is applied, in stressed setting, but the high variability 

in the data obtained does not permit drawing clear conclusions. Figure 5.17.B and C 

displays OCR and ECAR of the three conditions tested and figure 5.18 reflects a dose-

dependent decrement in SRC after treating the cells. This suggest that the compound does 

not modify bioenergetics when CRC cells are in rich nutrient basal environment, but it 

seems that it could impair mitochondrial activity when cells undergo stress, displaying a 

less flexible metabolic phenotype.  
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Figure 5.17 Energy Phenotype analysis on CRC SW-620 cells after 4,4'DIOMEA treatment at two concentrations. (IC50 and 

2xIC50). A) Energy phenotype represents the utilization of both major energy producing pathways (mitochondrial, respiration 

and glycolysis), to meet their energy demand. Energy Phenotype comprises a baseline phenotype, a stressed phenotype (High 

energy demand), and a metabolic potential (Dot line) The plot shows four energetic status: Quiescent: The cell is not very 

energetic for either metabolic pathway, Energetic: The cell utilizes both metabolic pathways; Aerobic: The cell utilizes 

predominantly mitochondrial respiration; Glycolytic: The cell utilizes predominantly glycolysis. Despite seem to show a slightly 

tendency to a less oxidative phosphorylation in stressed setting, SW620 cells do not significantly alter the bioenergetic 

phenotype after adding 4,4’DiOMEA. Figure 5.17 B and C displays OCR and ECAR of SW620 cells under the three conditions 

tested (control; 4,4’DiOMEA at IC50; 4,4’ DiOMEA at 2xIC50). 
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Figure 5.18. Spare respiratory capacity of CRC SW620 cells after treatment with concentrations of 4,4’DiOMEA 

equivalent to the IC50 and 2xIC50. The bars show a dose-dependent decrement in SRC after treating the cells with the 

compound. 

 



 

5.2.2. Nutritional strategies based on the inhibition of tumor nutrient requirements: 

Intermittent Fasting as a potential precision nutrition strategy in BC  

 

5.2.2.1. Fasting cycles decrease growth of BC primary tumor in 4T1-induced breast 

cancer Balb/c mice. 

 

Nutritional deficiencies often appear in many CRC patients, which make them 

suitable for nutritional strategies based on the inclusion of bioactive compounds. 

Contrary, BC is frequently associated with weight gain and metabolic syndrome, which 

could rationalize precision nutrition strategies based on caloric restriction. To furtherly 

study this approach, female mice inoculated with BC cells underwent a nutritional 

intervention based on fasting cycles. 

Figure 5.19 shows monitored body weight of mice along the experiment and 

reveals significant differences until third day post fasting-cycle and a progressive recovery 

to almost normal weight within one week after each interval. 

Figure 5.20.A (See next page) displays tumor size measured weekly and before and 

after each fasting cycle (dark area of the graphic). It reveals significant differences of 

tumor sizes between both FMD and FSD groups compared to control group, however, 

there is no difference between diets in fasted animals. This suggests that the reduction in 

calories impairs tumor growth, but the diet composition tested (FMD and FSD) does not 

seem to have significative effect in the tumor size when fasting. The tumor size changes 

after the first fasting interval and differences improve significantly after the second cycle. 

Figure 5.20 B shows significant differences in tumor weight in the same way that occurs 

with size. Figure 5.20 C displays most representative pictures of tumors from animals of 

each diet group, i.e. FMD, FSD and SD showing clear differences in size between fasted 

groups and control group.  

Regarding the length of the fasting cycles, the plot reveals that the second interval 

(one day shorter than the previous gap) has more incidence in the tumor impairment than 

the first cycle.  
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Figure 5.19 Body weight trajectories of mice fed SD, FSD and FMD. Graph includes averages of all animals 
at each time point until the end of the study. (✱ SD vs FMD, # SD vs FSD).  
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Figure 5.20 Breast tumor size measurements of mice fed SD, FSD and FMD. A) Graph includes all animals 
at each time point until the study termination. Tumor area (length x width) was measured with an electronic 
caliper. (✱ SDvsFMD, # SDvsFSD).  B) Tumor weight. (✱ SDvsFMD, # SDvsFSD). C) Most representative 
pictures of tumors from animals of each diet group in where different size can be appreciated between fasted 
and ad-libitum fed animals but not between FMD and FSD. 
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5.2.2.2. Fasting cycles increase BC lung metastatic burden despite reduction 

in tumor size. 
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Figure 5.21.  Lung metastatic nodules of mice fed SD, FSD and FMD. A) Image representation of lung 
metastatic nodules of animals from the three groups (SD, FSD and FMD). An intratracheal injection with India 
ink solution was performed to contrast tumor metastases in the right lung (n=45). An increment in the numbers 
of metastasis can be appreciated in both fasted groups compared to standard diet group. B) Bars-Plot 
representing metastatic nodules differences among groups. Despite tumor reduction in fasted groups a highly 
signification increment between FMD and FSD compared to the control SD has been achieved.  
 

A) 

B)  



To analyze whether fasting diets elicit beneficial response in metastasis, an 

intratracheal injection with indian ink solution was performed in each mouse to contrast 

tumor metastases in the right lung (n=45). The counting of three independent researcher 

revealed an unexpected strong association between fasting and an increment in the 

number of metastatic nodes.  Moreover, the FMD fed animals did not show differences in 

metastasis compared to the group on FSD. This similarities in the results of both groups 

undergoing fasting suggest that the augment in the metastatic burden is mediated by the 

number of calories restricted and the length of the fasting intervals, whereas the 

composition of these diets does not seem to affect in the process (Figure 5.21). 

5.2.2.3. Fasting cycles: Molecular mechanism of action 

As was pointed out in the introduction to this work, one of the key pathways 

involved in caloric restriction to inhibit cancer proliferation involves the downregulation 

of IGF1/PI3K/AKT/mTOR/p70/S6K/rpS6 and its modulation by fasting cycles in murine 

models fed on two different diets. 

A clear explanation of this cascade is described in a deep review regarding 

ribosomal protein S6 (rpS6) and its implication in a broad variety of molecular processes 

(Ruvinsky and Meyuhas, 2006).  In brief, this cascade starts with the activation of the 

dimerized receptor tyrosine kinase by GFs which activates class I phosphatidylinositol 3-

kinase (PI3K). Two kinases, 3-phosphoinositide-dependent kinase 1 (PDK1) and protein 

kinase B (Akt) are recruited by PIP3 to the plasma membrane (Brazil and Hemmings, 

2001), and then PDK1 phosphorylates and activates Akt (Belham et al., 1999). Activated 

Akt triggers a cascade of events leading to the activation of the mammalian target of 

rapamycin complex 1 (mTORC1) (Ruvinsky and Meyuhas, 2006). Active mTORC1 

phosphorylates two translational regulators, S6 kinase (S6K) and eukaryotic initiation 

factor 4E (eIF-4E)-binding protein (4E-BP1, 2, and 3) (Hay and Sonenberg, 2004). 

Activation of S6Ks requires also phosphorylation by PDK1 in a reaction where binding of 

PDK1 to PIP3 is not required (Alessi et al., 1998). At the end of this cascade, activated S6Ks 

phosphorylates different substrates being ribosomal protein S6 (rpS6) one of them 

(Meyuhas and Dreazen, 2009). Among some other functions, rpS6 have been suggested 

as one of the best indicators of mTOR cascade blockade (Tabernero et al., 2008) 

(Majumder et al., 2004) (Torres-Arzayus et al., 2004).  
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p70S6K is amplified in some breast carcinomas (Couch et al., 1999). Mostly, for 

tumors that have an amplification of p70S6K, there is a concurrent increment in the level 

of p70S6K protein (Couch et al., 1999). In several models of BC, mTORC1 pathway has 

been proposed to be a major signaling transduction node responsible for controlling 

metastasis (Akar et al., 2010). It has also been proposed that the activation of S6K1 or high 

S6 phosphorylation in primary BC tumors might be implicated in developing relapse 

and/or metastases  (Khotskaya et al., 2014). 

As a first approach to investigate the molecular mechanism underlying the 

effectiveness of fasting under the two diets compared to the group fed standard diet, 

Western blot analysis from tumoral and lung tissue were carried out using antibodies 

against diverse proteins of this pathway.  

Despite both phosphorylated and non-phosphorylated proteins AKT, mTOR, 

p70S6K, and rpS6 were analyzed in both lung and tumor tissue, only consistent results 

were obtained in ribosomal protein S6. Figure 5.22 to 5.24 shows preliminary results of 

Western Blots regarding assays from samples of non-phosphorylated AKT, mTOR and 

p70S6K and the ratio after quantification of the phosphorylated/non-phosphorylated 

levels of rpS6 protein performed with tumor tissue from 8 animals per group of diet.   

Fasted mice (FMD and FSD groups) show non-significant decrement in levels of 

active p70S6K but display significant inactivation of rpS6, which suggest a downregulation 

of the mTOR cascade. It has not been reported rpS6 involvement in cell proliferation, only 

in regulation of cell size, glucose homeostasis and protein synthesis (Ruvinsky et al., 2005). 

However, it might be indicative of mTOR inactivation which would explain the inhibition 

in proliferation and tumor shrinkage.  

Finally, the results do not show differences between fasted and standard diets 

indicating that caloric restriction (and not diet composition) mainly explains this 

antiproliferative phenotype.  
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Figure 5.22. Western blot analysis in tumoral tissue from mice fed SD, FSD and FMD including mTOR and AKT proteins. 
Plots display level of protein corresponding to 8 mice per group of diet, SD: Standard diet, FMD: Fasting mimicking Diet, 
FSD: Fasting Standard Diet. Roman numerals identify the Ponceau staining image correspondent to each gel. ImageJ software 
was used to quantify the protein’s relative intensity. p value of <0.05 (Unpaired two-sided t-test) was considered significant. 
(*p-value < 0.05) 
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Figure 5.23. Western blot analysis of protein p70S6K in tumoral tissue from mice fed SD, FSD and FMD.  
Plot displays level of protein corresponding to 8 mice per group of diet, SD: Standard diet, FMD: Fasting mimicking Diet, 
FSD: Fasting Standard Diet. ImageJ software was used to quantify the protein’s relative intensity. p value of <0.05 (Unpaired 
two-sided t-test) was considered significant. (*p-value < 0.05) 
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Figure 5.24. Western blot analysis in tumoral tissue from mice fed SD, FSD and FMD including rpS6 and p-rpS6 proteins. 
Image corresponding to 8 mice per group of diet (SD, FMS, FSD). ImageJ software was used to quantify the protein’s relative 
intensity. Roman numerals identify the Ponceau staining image correspondent to each gel. Plot representing ratio between 
levels of phosphorylated and non-phosphorylated rpS6 protein. p value of <0.05 (Unpaired two-sided t-test) was considered 
significant. (*p-value < 0.05).    
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5.3. Comparative analysis of different nutritional strategies throughout in 
vivo, in vitro and in silico results 

 

Levels of proteins of top hit gene identified as biomarker of survival in the in-silico 

analysis SLC2A3 and the gene identified to be inhibited by the phenolic compound 

4.4'DiOMEA in the in-vitro analysis were examined in tumoral tissue from mice fed on 

standard , fasting mimicking and fasting standard diet to identify eventual modulation by 

the caloric restriction and a plant-based diet. Figure 5.25 and 5.26 display the results of 

the Western blot analysis and correspondent quantifications  
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Figure 5.25. Western blot analysis of protein SLC2A3 in tumoral tissue from mice fed SD, FSD and FMD.  
Plot displays level of protein corresponding to 8 mice per group of diet, SD: Standard diet, FMD: Fasting mimicking Diet, 
FSD: Fasting Standard Diet. ImageJ software was used to quantify the protein’s relative intensity. p value of <0.05 (Unpaired 
two-sided t-test) was considered significant. (*p-value < 0.05).    
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Figure 5.26. Western blot analysis of protein Wnt16 in tumoral tissue from mice fed SD, FSD and FMD.  
Plot displays level of protein corresponding to 8 mice per group of diet, SD: Standard diet, FMD: Fasting mimicking Diet, 
FSD: Fasting Standard Diet. ImageJ software was used to quantify the protein’s relative intensity. p value of <0.05 (Unpaired 
two-sided t-test) was considered significant. (*p-value < 0.05).    
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6.1. Identification of genes involved in nutrient sensing or cell metabolism 

associated with CRC prognosis and patient survival  

 

One important concept to take into consideration when accomplishing survival 

analysis is the selection of the statistical model to be used. Survival models consider ‘time 

to event’ as response variable while include one or several explanatory variables. The R 

survival package used in this Thesis contains different parametric and non-parametric 

models. Briefly, parametric models are fitted using survreg() and a non-parametric 

models are fitted using coxph(). Model selection mainly depends on the data structure 

and the target of the analysis. If the model is fitted for prediction, then the use of 

parametric survreg() becomes a must, because coxph() does not extrapolate beyond 

the last observation. Both techniques can be productively used depending on the 

particular question being asked. Crawley suggest typical questions addressed with 

coxph(): How much does the risk of dying decrease if a treatment is given?. In contrast, 

parametric techniques are routinely used for answering the following questions: What 

proportion of patients will die in x years based on data from an experiment that ran for 

just months? (Michael J Crawley, 2013) 

Age-specific hazard has been considered in the survival analysis by including the 

Weibull distribution, since hazard changes with age regardless other factors. Weibull age-

specific hazard model is very flexible because it can deal with hazards that increase with 

age in an accelerating or decelerating manner. 

Another aspect to be considered in survival analysis is the fact that Coxph produces 

overfitted models when computing a large number of explanatory variables in 

multivariate survival analysis. In this Thesis, this issue has been addressed by using a Lasso 

penalized Cox regression model particularly convenient when the model has computed 

the top 100 genes at the same time to identify the weight of each gene in the survival risk 

score. 

The selection of one preprocessing method to avoid batch effect is another 

important aspect when accomplishing integrative analysis. The use of different 

methodologies may lead to different biological results. The Venn diagram displayed in 

figure 6.1, shows a good example of this issue. The data analyzed corresponds to the same 



IMD of 1273 CRC samples preprocessed with fRMA in where different BER algorithms has 

been applied (fRMA, FRMA plus Combat and fRMA plus mean centering). A later 

hypothesis contrast performed using LIMMA to identify genes deferentially expressed 

among early and late stages (p-val < 0.01) obtains dissimilar number of DEG depending on 

the BER method applied. In the IMD preprocessed with fRMA alone, more candidates 

were found to be significant in comparison with those brought up when computing IMDs 

using fRMA plus Combat and fRMA plus mean centering. Batch effect removal modifies 

the data and could lead to biological information missing, thus should be managed with 

caution. 

. 

  

The work of this Thesis addressed a question regarding the implication of nutrient-

sensing or metabolism related genes in cancer survival for subsequent exploration of their 

modulation by different nutritional strategies. The examination of 1273 transcriptomes of 

CRC samples and the application of the stringent cut-off values (adjusted p < 0.0003) 

revealed 765 differentially expressed genes (DEG) that marked strong correlation 

between level of mRNA and survival time.  

Besides the functional implication in a specific pathway, the consistency of some 

survival markers found here is widely supported by previous discoveries: top hit EPHB2, a 

receptor tyrosine kinase for ephrin ligands, has been considered to be a CRC tumor 

Figure 6.1. Venn diagram showing different hits after 

performing LIMMA analysis using same gene 

expression microarrays preprocessed with 3 different 

methods (fRMA, fRMA+Combat, fRMA+Mean 

centering). (fRMA in blue, fRMA plus Combat in 

green and fRMA plus mean centering in red). A 

LIMMA analysis was performed in the three IMDs to 

identify genes deferentially expressed between early 

and late stages (p-val < 0.01).  Despite the three IMDs 

contains same probesets and same samples, Venn 

diagram shows only 613 genes common to the three 

IMD. 
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suppressor and solid prognostic factor (Batlle et al., 2005) (Oba et al., 2001) (Jubb et al., 

2005); LAMP5 has been included in a multigenic assay to predict recurrence after 

surgery(Lee et al., 2014); Discoidin CUB And LCCL Domain Containing 2 (DCBLD2), member 

of a family of neuropilin-like proteins, has been identified as CRC biomarker (Pagnotta et 

al., 2013); growth arrest and DNA-damage-inducible 45 beta (GADD45B) is a gene 

associated with cell cycle regulation, DNA repair and apoptosis. Its overexpression has 

been recently correlated with worse survival in CRC (Wang et al., 2012). Moreover, a 

recent integrative analysis of multiple CRC subtype classifiers reported that one of the 

three highest scoring genes included in several classifiers was GADD45B (Sztupinszki and 

Győrffy, 2016) 

Among the less studied genes found in the 765 prognosis markers proposed here, 

CDGSH iron sulfur domain 3 (CISD3) is probably one of the best candidates for further 

research in the nutrient-cancer scenario. Its overexpression indicates to be strongly 

cancer-preventive (HR 0.51 [95%CI:0.41-0.63] p=1.8E-10). 

CISD3 is highly expressed in colon, duodenum and small intestine and codes for 

CISD3 protein, one of the three members of the iron-sulfur (Fe-S) NEET family. This family 

of mitochondrial proteins is involved in iron and ROS homeostasis (Lipper et al., 2018). 

There has been growing interest in the products of CISD1 and CISD2 because they are key 

regulators of mitochondrial function and lipid homeostasis and they are directly involved 

in obesity, cardiovascular disease, cancer and aging (Kusminski et al., 2012). Meanwhile, 

the importance of the inner mitochondrial isoform 3 is still lowly explored in cancer field 

which may suggest new opportunities for novel investigation. 

The Geneset enrichment analysis identified 11 overrepresented pathways (table 

5.2) according to the functional annotation of those 765 genes, mostly describing changes 

in the motile behavior of the cell i.e., cell adhesion, extracellular matrix organization, 

integrin, laminin, chondroitin, collagen formation. These results were likely presumed 

since expression level from samples in early-stage vs late-stage were contrasted to 

identify the DEG. In early stages (I-II) the tumor is still local whereas late stages (III-IV) 

encompass full activation of the invasive and migrative mechanisms to spread 

malignancy.  

Beyond this sort of axes, a pathway with major implication in nutrient sensing and 

cancer proliferation was revealed to be highly enriched as well. Pathway R-HSA-381426, 



"The Regulation of Insulin-like Growth Factor transport and uptake by Insulin-like Growth 

Factor Binding Proteins". A group of genes i.e., APOE, CYR61, FBN1, FN1, FSTL1, FSTL3, 

IGF1, IGFBP3, IGFBP4, IGFBP7, LAMC1, LGALS1, LTBP1, MXRA8, SCG2, SPARCL1, SPP1, 

TIMP1, TIMP2, VCAN, included in the CRC survival markers whose overexpression 

correlates with bad prognosis, were identified to be active members of this biochemical 

pathway.  

As described in previous pages, IGFs have a fundamental role in carcinogenesis 

since they trigger diverse pathways involved in cell proliferation. Decreasing IGF seems to 

be one of the key mechanism implicated in the anticarcinogenic benefits of caloric 

restriction. In the bloodstream and in local tissues, most IGFs molecules are bound by one 

of the six members of the IGF-binding protein (IGFBP) family. Most IGFs are found in 

complexes with IGFBPs, which seems to increase time in the body, modulate accessibility 

of IGFs to receptors, decrease insulin like effects of IGFs, and perform signaling processes 

independently of IGFs. Mainly, IGFs become active when are released from the IGF:IGFBP 

complexes by proteolysis mechanisms. However, IGFs may also show activity when still 

bound to some IGFBPs (Allard and Duan, 2018) (Guler et al., 1989) (Jones and Clemmons, 

1995) (Hwa et al., 1999). 

The three genes proposed as survival prognosis signature (LCA5, NPR3 and 

SLC2A3) due to the strong correlation between upregulation and poor survival of CRC 

patients in early stages (HR: 3.60; CI: 3.43-3.77; p=0.00187]), have different level of 

implication in nutrient sensing or cell metabolism. 

Solute Carrier Family 2 Member 3 (SLC2A3 or GLUT3) is a gene located in 

chromosome 12 that belongs to SLCA2 or GLUTs family. There are currently 14 members 

of GLUTs in humans plus 4 pseudogenes in chromosomes 1,2, 5 and 8 (Mueckler and 

Thorens, 2013). The first class of genes (class I) are known as the classical glucose 

transporters and they including GLUT 1–4 and GLUT 14(Adekola et al., 2012).  

SLC2A3 is highly expressed in human bone marrow, placenta, gall, urinary bladder 

and brain (NCBI). CRC tumors with higher levels of expression of this gene correlates with 

sorter survival times of patients (HR 1.93 [95%CI:1.56-2.39] p=1.4E-09).  SLC2A3 codes for 

the GLUT3 protein, implicated in sugar transport across the cell membrane with high 

affinity for glucose but not fructose. It has also been reported binding with less affinity 

galactose, mannose, maltose, xylose and dehydroascorbic acid (Simpson et al., 2008) .  
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Traditionally, GLUT 3 has been recognized as a neuronal glucose transporter due 

to substrate specificity and high expression of SLC2A3 in the brain, but further studies 

have make moving beyond that thinking since GLUT3 has been identified in a wide variety 

of cell types, particularly those with high requirements of glucose, including sperm, 

preimplantation embryos, circulating white blood cells and diverse tumoral cell lines 

(Simpson et al., 2008). This ubiquity of GLUT3 in human tissues does not appear in many 

experimental models such as monkeys, rats, or mice, where the pattern of expression of 

GLUT3 is profuse only in brain. 

Despite glucose transport and the GLUTs family have been profoundly studied in 

cancer due to high glucose consumption exhibited by transformed cells, GLUT3 is one of 

the less studied isoforms in CRC context  (Watanabe et al., 2010) (Adekola et al., 2012) 

(Medina and Owen, 2002) (Simpson et al., 2008). In brain, glucose uptake is facilitated by 

GLUT3 that controls the transport of glucose into the neuron by high affinity and high 

capacity, and by the heavily studied GLUT1 responsible for glucose transportation across 

the blood-brain barrier. GLUT3 appears to be responsible for basal glucose transportation 

in humans together with GLUT1, mainly due to the ubiquitous distribution of GLUT3 in 

human tissues. Moreover, research in rodents suggest that, in contrast to GLUT1, glucose 

concentrations do not regulate expression of GLUT3 since levels of both mRNA and 

protein does not drop in presence of high concentrations of glucose. (Simmons, 2017).  

Recent discoveries regarding GLUT3 regulation in CRC has identified this carrier as 

a Yes-Associated Protein 1 (YAP1) regulated gene involved in glucose metabolism, 

invasion and metastasis. YAP1 is a transcriptional regulator that controls organ size in 

diverse species acting as a downstream regulator in the Hippo pathway. GLUT3 activates 

YAP triggering glycolytic gene expression, including GLUT3 itself. In late stage CRC 

patients, this pathway deregulation can induce GLUT3 expression and increased glycolytic 

capacity. Moreover, GLUT3 and YAP silencing effectively inhibits CRC aggressiveness and 

metastasis (Kuo et al., 2019)  

Caveolin 1 (CAV1) is another protein related to GLUT3 with implications in glucose 

metabolism. This scaffolding protein is the main component of the caveolae plasma 

membranes found in most cell types and is involved in multiple functions such as 

cholesterol transportation, membrane trafficking or signal transduction through the 

interaction with a wide variety of ligands (Liu et al., 2002).  It has been reported to increase 



aerobic glycolysis in CRC cells via activation of SLC2A3 transcription. Reduction of CAV1 

levels decreases glucose uptake, ATP level and lactate accumulation in the cell  triggering 

autophagy trough the AMPK-TP53/p53 pathway (Ha and Chi, 2012).  

The implication of SLC2A3 in Vitamin C transport across the membrane is another 

important aspect to consider in the nutrition-cancer scenario. Preliminary studies in the 

1970s conducted by Nobel laureate Pauling Linus, described vitamin C on prolonging the 

survival of patients with terminal cancer(Cameron and Pauling, 1976) (Cameron and 

Pauling, 1978). The mechanistic understanding of the anticancer activity of Vitamin C is 

still unelucidated. The interaction between ascorbate radicals and transition metals has 

been proposed as a presumed molecular mechanism, since involves the formation of ROS 

which induce cancer cell apoptosis (Chen et al., 2005). More recent studies have shown 

that aerobic glycolysis greatly enhances vitamin C-induced toxicity in multiple cancer cell 

lines through a mechanism involving the hypoxia-inducible factor (HIF) pathway. HIF 

enhances vitamin C uptake by different transporters including the GLUTs. Resulting higher 

intracellular levels induce higher oxidation, ATP exhaustion, ROS level increment and 

cellular apoptosis (Tian et al., 2014).   

SLC2A3 has been profoundly studied in the brain, where it seems not to be 

regulated by extracellular glucose availability but further studies in tissues with high 

demand for glucose, like tumors, seems to be particularly interesting in the nutritional 

field, for instance, testing different combinations of glucose restriction and vitamin C 

supplementation at the same time to explore competence for the carrier, intracellular 

availability, cytotoxicity and the molecular mechanism driving the implication of SLC2A3 

in cellular apoptosis.  

Leber congenital amaurosis 5 (LCA5), the second gene of the proposed CRC 

prognostic signature has not been studied in cancer framework. Located in chromosome 

6, this gene is mainly expressed in testis, thyroid and ovary. It encodes a protein that is 

thought to be involved in centrosomal or ciliary functions (Gupta et al., 2015).This finding 

drives to hypothesize implication of LCA5 in processes of abnormal division of cancer cells 

during mitosis. Mutations in LCA5 lead to retinal dystrophy and an eye disorder named 

LCA (Genetics Home Reference, 2019). Despite this gene has no evidenced involvement 

in nutrient sensing or metabolism, Palmer and coworkers have identified in a 4,176 cohort 

GWAS, a single nucleotide polymorphism (rs196701) in LCA5 which seems to alter glucose 
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and insulin homeostasis and the risk of suffering type 2 diabetes (Palmer et al., 2015). CRC 

patients with higher level of expression of this gene present sorter survival times (HR 1.89 

[95%CI:1.55-2.31] p=3.25E-10). Since its role in cancer is unknown, further research about 

this gene seems to be specially fascinating in CRC, so far. 

Natriuretic Peptide Receptor 3 (NPR3) or Natriuretic Peptide Receptor 

C/Guanylate Cyclase C (Atrial natriuretic Peptide Receptor C) is the last gene of the 

signature. This gene encodes one of three natriuretic peptide receptors. Guanylin, 

uroguanylin and lymph guanylin are three natriuretic peptides (NP) discovered initially in 

the GI tract. They contribute to regulate electrolyte and water transport in both intestinal 

and adrenal epithelium by means of cyclic GMP (cGMP)-dependent mechanisms 

(Beltowski, 2001). Uroguanylin is believed to be the key intestinal NP, since its expression 

is strongly conditioned by the content of dietary salt (Potthast et al., 2001). NPR3 is in 

charge of clearing circulating and extracellular NP through endocytosis of the receptor to 

alter circulating levels of these peptides (Chang et al., 1989) (Wilkins et al., 1997). 

Besides the natriuretic functionality, Guanylin peptides regulate intestinal 

epithelial cell growth. Cl- secretion is known to be linked to the guanylyl cyclase-C signaling 

pathway and this pathway seems to be implicated in CRC proliferation (Laney Jr et al., 

1992). 

NPR3 has been identified as a marker of intestinal metaplasia, dysplasia, and 

adenocarcinoma of the GI duct (Carrithers et al., 1996) (Birbe et al., 2005). Camici 

reviewed the physiological aspect of NPs and describes activation of the second 

messenger cGMP by NPR3 to increase colon epithelial cell proliferation by triggering a 

signaling pathway with different ion channels, phosphodiesterases and kinases involved 

(Camici, 2008) . However, mice lacking NPR3  in the multiple intestinal neoplasia mouse 

model essentially confirmed a decline in the number of polyps (and no change in polyp 

size), suggesting a compensatory mechanism of cell apoptosis associated to loss of NPR3 

(Mann et al., 2005). 

This link between NP-NPRs resulting in modulation of intracellular second 

messenger cGMP and CRC proliferation could be specially sensible to diet, particularly diet 

poor in some electrolytes enhancing this cascade such as Na+. Furthermore, given that the 

colon is highly proliferative, understanding how NPR3 regulates cancer cell division under 



conditions where food is restricted could be particularly revealing in the precision 

nutrition and cancer framework. 

As occurs with the previous two genes of the signature CRC patients with higher 

level of expression of NPR3 present sorter survival times (HR 1.95 [95%CI:1.59-2.39] 

p=1.56E-10).  

It is important to remark the ability of this three gene signature (SLC2A3, LCA5 and 

NPR3) to identify the CRC subtype associated with worse survival, the CMS4 or 

mesenchymal like phenotype. CMS4 displays higher chromosomal instability as measured 

by SCNA counts, is enriched in signatures associated with the activation of transforming 

growth factor β (TGF β) signaling, angiogenesis, matrix remodeling pathways and 

pathways of the complement inflammatory system. CMS4 encompasses a gene 

expression profile compatible with stromal infiltration and higher admixture with non–

cancer cells, as measured by the significant overexpression of proteins implicated in 

stromal invasion, mesenchymal activation, and complement pathways (Guinney et al., 

2015). 

Hypothesizing, the relationship about the signature and the molecular subtype 

could be led by NPR3.  This gene has been reported as a biomarker of metastatic CRC in 

lymph nodes when  patients on CRC stage II and no histologic sign of lymph node invasion 

develop recurrent disease, likely because of hidden micro-metastases  (Cagir et al., 1999). 

Moreover, its implication in volume homeostasis is narrowly linked with the inflammatory 

response and CSM4 displays pathways of the inflammatory system significantly altered.  

It has been described that the induction of SLC2A3 facilitates metabolic adaptation 

to nutrient deprivation in brain tumor-initiating cells (Flavahan et al., 2013) and it is 

responsible for TGFβ-induced EMT in non-small cell lung cancer (Masin et al., 2014), 

although the implication in CRC is still unelucidated. The capacity of SLC2A3 to identify 

CMS4, could involve the previously mentioned Hippo cascade, by which Glut3 promotes 

invasiveness and stemness in YAP-dependent manner. Activation of YAP sequentially 

transactivates Glut3 which seems to enhance expression of a group of genes involved in 

aerobic glycolysis and metastatic phenotype (Kuo et al., 2019). 

LCA5 has not been studied in cancer context and its ability to identify CMS4 is 

unknown. Conjecturing, the association of the SNP rs196701 in LCA5 with altered glucose 

and insulin homeostasis and the risk of suffering type 2 diabetes could suggest an alleged 
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metabolic link between this gene and the EMT-like phenotype presented by the CMS4, 

but this has to be explored. 

Summarizing, the results presented in this work provide a set of genes that marks 

survival among CRC patients and an open list of 765 differentially expressed genes when 

tumor delocalizes that provide prognostic strength. By integrating data from different 

microarray experiments, a reliable large-scale model of genomic data (with more than 

1200 samples) is available for biological questioning. The size brings robustness and 

contributes to overcome the limitations of relatively weak statistical power when results 

come from evaluating small datasets. The proposed list includes genes widely studied in 

CRC and previously annotated in biological databases such as EPHB2 or LAMP5, which 

provides reliability to the method applied, but also genes far less known or without 

recognized implication in the disease such as LCA5 or CISD3. This allows to hypothesize 

about novel nodes in cancer biology. Furthermore, the regression fitted considering the 

top 100 genes, paves the way for building other risk predictors or researching putative 

cancer-related networks, pathways or any other functional interactions by focusing in the 

genes with higher weight in the model. The involvement of these genes in nutrient sensing 

opens a question regarding their putative role as potential biomarkers of molecular 

nutrition strategies. Of course, this is only an open gate for further research in the field.  

  



 

6.2. Identification of potential precision strategies in cancer focused on molecular 

nutrition.  

 
6.2.1. Nutritional strategies based on the inclusion of bioactive compounds:  Screening 

of bioactive compounds with potential beneficial effect in CRC. 

 

The beneficial activity of EA is significantly affected by its low bioavailability. Gut 

microbiota has been acknowledged to metabolize EA yielding the derivatives molecules 

that play an active role in CRC inhibition. This work tries to identify the structures with 

higher anticancer activity among those metabolites. It has revealed strong differences 

within derivatives regarding their antiproliferative effects in CRC. Particularly one, the 

4,4'DIOMEA, has demonstrated to be the most effective compound of all tested (lower 

IC50) inducing cell viability inhibition in a dose-dependent manner. This inhibitory effect of 

4,4'-DiOMEA was around 13-fold higher than that exerted by the precursor EA and the 

other methylated specie tested, the 3,3'-DiOMEA (See the dose response curve displayed 

in table 5.5). 

The structure-activity divergences among the compounds in the CRC cell lines 

tested may indicate that the hydroxyl group substitutions are key factors in the 

antiproliferative capacity of each molecule. EA, 4,4' DIOMEA and 3,3' DIOMEA present 

similar chemical structure but the two methoxy groups present in the last two molecules, 

reduce polarity, suggesting easier passage across the cell membrane in comparison to EA. 

Moreover, MTT results reflect better performance when the metoxi group is present in 

4,4'-position suggesting further implication of the methoxy group location in the 

molecular interaction with other components in the cell.  

Attention should also be drawn to the fact that different hydroxyl substitutions of 

Urolithin-A and Urolithin-B resulted in a considerably dissimilar inhibition of cell 

proliferation. This suggest that the additional hydroxyl group at 8-position in Urolithin-A 

is essential for this biological activity of the molecule.  

Nor the molecular size, neither the presence of a lactone ring, seems to have 

implication in the antiproliferative activity of this group of compounds. Urolithins are 

smaller dibenzopyran-6-one derivatives formed by the opening and decarboxylation of 
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one of the lactone rings of EA and the sequential removal of different hydroxyl groups 

(Ramirez de Molina et al., 2015). 4,4'-DiOMEA was more active than Urolithin-A, and this 

was more active than both EA and its 3,3'-DiOMEA derivative. 

Microarray analysis revealed that the downregulation of Wnt16 signaling might be 

involved in the antiproliferative effect of 4,4'-DiOMEA. This result is consistent with 

previous knowledge reporting modulation of the Wnt pathway by ETs, EA and Urolithins 

in cancer cells (Sadik and Shaker, 2013) (Sharma et al., 2010b) (Espín et al., 2013b).The 

main advantage of 4,4'-DiOMEA in comparison with other phenolics tested here is that it 

seems to be much more effective inhibiting the pathway (13fold EA). 

The WNT gene family is comprised of fundamentally associated genes that encode 

secreted signaling proteins (more than 19 Wnt isoforms identified so far).  These ligands 

are implicated in several canonical and non-canonical Wnt signaling cascades and 

numerous crosslinks which are tightly regulated by multiple mechanisms including post-

translational modification of Wnts, antagonist binding (to Wnts or their receptors), and 

regulation of the availability of Wnt receptors.  This sort of networks lead to multiple cell 

phenotypes (Malinauskas and Jones, 2014).  

Similar to β-catenin in the canonical Wnt pathway, the calcium-responsive 

transcription factor Nuclear Factor of Activated T-cells (NF-AT) has been suggested as a 

potential target in noncanonical Wnt cascades. (Murphy and Hughes, 2002), (Saneyoshi 

et al., 2002). These pathways, called the Wnt/calcium pathways or the Wnt/planar cell 

polarity pathway to distinguish from the canonical Wnt/β-catenin pathway (Kühl et al., 

2000) are also activated by Wnt ligands, leading to the transcrition of genes involved in 

cytoskeleton reconfiguration, growth and proliferation (Zhan et al., 2017) (Jessen, 2009) 

(Staal et al., 2008). Wnt16 ligand can signal via both canonical and non-canonical cascades 

(Gori et al., 2015). 

Figure 6.2 displays the main nodes implicated in the canonical Wnt/β-catenin 

pathway (Veeman et al., 2003) and figure 6.3 capture non-canonical Wnt signaling 

showing the extraordinary complexity of this network (Zhan et al., 2017). 
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Figure 6.2 Canonical Wnt signaling in vertebrates. A) Non activated and B) activated ( Adapted from Veeman et al., 2003)  

Wnt ligands binds to Frizzled and LRP5/6 coreceptors activating Dishevelled (Dsh). Dsh inhibits β-catenin destruction 

complex comprising APC, Axin, and GSK-3. If complex is not destructed by the ubiquitin-proteasome pathway, free β-

catenin entries into the nucleus where it recruits transactivators to HMG box DNA binding proteins of the LEF/TCF 

family.   
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. 

  

Figure 6.3.  Non-Canonical Wnt signaling in mammals (Adapted from Zhan et al., 2017.)  

Non-canonical Wnt signaling or β-catenin-independent Wnt signal transduction. During Wnt/PCP signaling, Wnt ligands 

bind to the ROR-Frizzled receptor complex. Then Dvl is recruited and activated. Dvd binds to Rho by de-inhibition of 

the cytoplasmic protein DAAM1 (Dvl associated activator of morphogenesis 1). Rac1 and Rho together trigger ROCK 

(Rho kinase) and JNK producing diverse transcriptional responses, for example via ATF2 (activating transcription factor 

2). Wnt/Ca2+ signaling start by G-protein activation of phospholipase C resulting in calcium fluxes to the cytoplasm which 

activates the phosphatase, calcineurin. Calcineurin induces de-phosphorylation of NFAT, subsequently translocation to 

the nucleus and final transcriptional regulation of NFAT dependent genes. 
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The member of the WNT family Wnt16 comprises two transcript variants which 

seem to be the final products of discrete promoters and not to be splice variants from a 

single one (Correa-Rodríguez et al., 2016). They are differentially expressed in normal 

tissues. Variant B is expressed only in the pancreas, whereas variant A is expressed more 

ubiquitously, mainly in the spleen, brain, kidney, heart placenta, and slightly in the 

digestive system. Many studies have reported the role of Wnt16 gene in bone 

development and disease (Zheng et al., 2016) (Alam et al., 2015). Wnt16 stimulates tumor 

growth and promotes resistance to chemotherapy in different cancer types (Johnson et 

al., 2013) 

The results of this thesis, particularly the TOP/FOP transfection assay and the RT-

qPCR assay, revealed no decrement of β-catenin levels, a read-out of the canonical Wnt 

signaling pathway, after treating different CRC cell lines with 4,4'DIOMEA.  

This unchanged level of β-catenin, despite the presence of lower levels of Wnt16, 

may suggest another interactor implicated in the inhibition of cell proliferation. It has 

been reported that overexpression of non-canonical Wnt signaling can enhance or 

antagonize with the canonical pathway (Veeman et al., 2003). Given that many WNT 

ligands can signal through both axis depending on the cellular status (nature of 

receptors/co-receptors involved, presence of co-activators, antagonists, etc.) which 

induce distinct phenotypes, results showing unaltered levels of β-catenin in the treated 

CRC cells suggest that 4,4'DiOMEA could activate a non-canonical Wnt pathway trough 

Wnt16. Probably measuring levels of NFAT phosphorylation could contribute to clarify this 

hypothesis, or at least suggest a hint of an eventual crosslinking between the canonical 

and non-canonical signaling. 

There was no clear conclusion regarding the inhibition of epithelium-

mesenchymal-transition in different CRC cell lines under treatment with 4,4' DiOMEA. The 

EMT process is associated with the canonical pathway of Wnt and involves a more 

aggressive cell phenotype (Moustakas and Heldin, 2007)  (Huber et al., 2005). RT-qPCR 

assays of the expression of 8 EMT marker genes were unable to reveal significant 

alteration in EMT activity but confirmed previous TOP/FOP results; β-catenin, an epithelial 

marker, remained unaltered in treated cells. Neither motile behavior tested by wound 

healing assay, showed significant changes between treated and non-treated cells.   
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Wnt16 is deeply involved in chemotherapy resistance. High expression of this gene 

in the tumor microenvironment diminishes the cytotoxic effects of chemotherapy. It has 

been proposes as a mechanism by which drug resistance augment after consecutive cycles 

of chemotherapy (Sun et al., 2012). 4,4' DIOMEA showed an IC50 of larger magnitude in 

epithelial cells than the one required in both SW620 and chemo resistant SW620 cell lines. 

This suggests the presence of a therapeutic window, at least when it comes to epithelial 

preservation. Taking these two skills together, 4,4'DiOMEA could be particularly effective 

as a coadjutant agent since it could overcome resistance by increasing drug cytotoxicity 

whereas lower doses of chemotherapy should be required, protecting normal epithelium 

from damaging. 

 Another interesting aspect of this work encompass oxidation. FRAP and DHPP 

assays display poor antioxidant capacity of 4,4'DiOMEA. Moreover, the inhibition of 

mitochondrial activity monitored by the Seahorse Extra flux analyzer in stressed setting 

after 4,4' DiOMEA treatment could be caused by multiple causes, maybe oxidative-

mediated pathways. Structurally, 4,4'DiOMEA does not seem to be antioxidant, neither 

oxidant, but its modulation of mitochondrial respiration could suggest a hint towards that 

line of investigation. It could be interesting analyzing ROS production after treatment as 

a putative explanation linking inhibition in proliferation to inhibition in mitochondrial 

activity. ROS can be indicative of pro or anticarcinogen activity. It has been reported that 

increasing ROS prone EMT and cancer cell aggressiveness (Wu, 2006). On the other hand 

increasing oxidative phosphorylation in mitochondria has been widely hypothesized as 

one of the targets for cancer therapeutics, since it has been strongly associated to ROS 

accumulation and further apoptosis (Marchetti et al., 2015)(Omar et al., 2010) (Ferreira, 

2010) (Samudio et al., 2009). In this line of investigation, molecules such as 3-

bromopyruvate, lonidamine or the dichloroacetate (DCA), have shown anticancer 

effectiveness affecting cancer cells' metabolism and mitochondrial deregulation (Pelicano 

et al., 2006). (Michelakis et al., 2008) (Johnstone et al., 2013) (Sutendra and Michelakis, 

2013) (Szczuka et al., 2017) (Cheng et al., 2019).  

Although further studies are needed for better understanding of the molecular 

characteristics responsible for the anticancer activity of 4,4'DiOMEA in different CRC cell 

lines, our results seem to reveal 4,4'DiOMEA as a promising complementary agent in 

colorectal cancer therapy.  



 
6.2.2. Nutritional strategies based on the inhibition of tumor nutrient 

requirements: Intermittent Fasting as a potential precision nutrition 

strategy in BC  

 
To fulfill the last objective and give response to the hypothesis of whether the 

differences in diet composition during fasting inhibit processes of tumor proliferation and 

metastasis, a Bal/c murine model was selected, in where transplantable mammary tumor 

cells, 4T1, were injected. 

The adequacy of this TPN breast cancer model for analyzing metastasis has been 

widely proved due to the tumorigenic and invasive characteristics of the tumor that, 

unlike other tumor models, can spontaneously and rapidly reach distant organs such as 

liver, lung, brain, and bone which permits to start detecting the tumor within less than 7 

days from injection and gather metastatic data in less than 30 days. The 4T1 mammary 

carcinoma cells were originally isolated from a single spontaneously arising mammary 

tumor of a BALB/c mouse (Dexter et al., 1978) (Aslakson and Miller, 1992).  

The pattern of metastasis of 4T1 and the anatomical location after injection is very 

similar to that of human mammary cancer (Pulaski and Ostrand-Rosenberg, 1998). 

Moreover, this murine model has been extensively used in caloric restriction experiments 

(Brandhorst et al., 2013b) (Morgan E. Levine et al., 2014) (Suzuki et al., 2012) (Zhuang et 

al., 2014).  

This Thesis provides evidence that intermittent fasting significantly decreases  

breast tumor size and weight in this model, which is consistent with similar studies and 

fully substantiated by literature (De Lorenzo et al., 2011) (Lee et al., 2012b) (Di Biase et 

al., 2016) . However, the difference in diet composition (standard diet [SD] versus a low 

in sugar, rich in vegetables and unsaturated fats and lack of animal protein [FMD]), did 

not achieved significant differences regarding tumor size and tumor weight between the 

two groups of mice undergoing fasting.  

Contrary to expectations, this study did not find a significant reduction in 

metastasis in the fasted animals. In fact, the number of lung metastasis counted in both 

fasted groups strongly increased (Avg. ≈ 45%), compared to the number counted in the 
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animals fed ad-libitum. In this regard, diet composition neither achieved significant 

differences between FSD and FMD group. 

The BC metastasis decrement associated to restriction in nutrients, has been 

reported in different studies in the last decades. Kari et al. evidenced that functional 

disruption of the IGF-1 receptor dropped BC metastasis in immune deficient nude mice 

by suppressing cellular adhesion and invasion (Kari et al., 1999) . De Lorenzo and 

coworkers  designed  a  similar study to the one used in this Thesis to investigate the 

effects of a 40% CR on metastases, in female 8 week-old BALB/c mice, using the 4T1  BC 

cells (De Lorenzo et al., 2011). They exposed that CR alone seems to reduce the number 

and size of lung nodules in both spontaneous and experimental metastases.  

A few years later Simone et al. reported similar results in female 8 week-old 4T1-

BALB/c mice using a combination of 30% CR with ionizing  radiation (Simone et al., 2016).   

On the other hand, and besides breast cancer models, Ershler and coworkers  

previously proved that the number of pulmonary metastases  increased in mice on 30% 

CR, while growth  of  primary  B16  melanomas were  reduced (Ershler et al., 1986). 

The main difference between the above-mentioned studies and the one presented 

in this Thesis is remarkable: All those studies encompass less severe protocols in calories 

restricted in comparison with the 70% IF (4 and 3 days fasting) tested here.  

Strong fasting reduces IGF-1 drastically. The 75% reduction in serum IGF-1 caused 

by a 2 to 5 day fast in mice and humans cannot be achieved by a more moderate CR, which 

does not reduce IGF-1 levels in humans unless the protein intake is also restricted 

(Clemmons and Underwood 1991; Fontana, Weiss et al. 2008; Lee, Safdie et al. 2010). 

Even when combined with protein restriction, chronic CR only causes a small reduction of 

IGF-I in humans (Fontana, Weiss et al. 2008).     

One main evidenced difference between diverse degrees of caloric restrictions 

involves glucose levels in serum. In an outstanding Thesis about dietary strategies in 

cancer context, Brandhorst reports decreases in glucose levels in Female CD-1 mice, aged 

12-15 weeks, under nutrient deprivation, some of them could be considered as fasting 

(40%, 60%, 80%, 90% and 100% reduction in calories [48 hr. intervention]).  Interestingly, 

this work shows that the percentage of calories restricted positively correlates with 

glucose levels. Besides total fasting, that showed the higher reduction of glucose (70%), 

lower levels of blood glucose were achieved in mild restriction (40% restriction) following 



a positive trend to a maximum level of glucose when 90% calories were restricted. This 

results could be indicative of higher levels of catabolism and tissue destruction concurrent 

with higher levels of nutrient restriction. Levels of IGF-1 did not show significant 

differences among different degrees of restriction. (Brandhorst, 2013). 

The results reported by Brandhorst could give us a hint about the unexpected 

outcome regarding metastasis in comparison with other studies. The above mentioned 

studies (reporting decrement of metastasis associated to CR), were performed under mild 

caloric restriction which seems to encompass lower glucose levels and that could be 

explained by lower catabolism, since more nutrients are supplied. In contrast, a more 

extreme restriction like the 70% IF of the present study produce higher levels of glucose, 

which could be indicative of higher tissue catabolism. This higher catabolism would 

explain, at least in part, the CR-associated tumor shrinkage and could be responsible of 

promoting a migrative phenotype as a survival mechanism of cancer cell to find nutrients 

beyond the restrictive environment of the tumor. More precisely, a question arises: Does 

an extreme nutrient-limitation, resulting in tumor reduction concurrent with increment 

in metastasis, induce a proliferative-to-invasive phenotype shift?".  

 The malignancy of a tumor is measured not by its size, but by its ability to invade 

and metastasize. Understanding what makes a tumor cell metastatic is a major concern 

in cancer research (Jang and Hill, 1997).   

The mechanism by which exposure to microenvironmental stress, such as lack of 

nutrients, affects the metastatic ability of cancer cells is not known. In an extraordinary 

work García-Jiménez and Goding approach the link between cell starvation and metastasis 

(García-Jiménez and Goding, 2019). 

Invasion could be proposed as a conserved strategy in response to nutrient 

deprivation. It comprises the process by which cells from the primary tumor occupy 

surrounding tissue and then enter blood or lymphatic vasculature, for further colonization 

and proliferation in new locations (Coghlin and Murray, 2010; Klein, 2009; Lambert et al., 

2017). Motility confers an evolutive advantage to look for nutrients in those environments 

where are limited rather than waiting inactively for them to arrive. Many unicellular 

organisms use motility to restore supply-demand balance under nutrient limitations 

(Carey et al., 2018). 
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  Suggesting similar behavior seems to be too simple when it comes to mammalian 

cells that respond more complexly and coordinately to nutritional stimuli, but cancer 

profoundly deregulates proliferative signaling which increase nutrients demand (García-

Jiménez and Goding, 2019). The exacerbated aerobic glycolysis is also a blend associated 

to resources expenditure in cancer framework. It is not efficient compared to oxPhos in 

terms of ATP production, so more sugar is required to obtain same amount of energy. The 

glycolysis-concomitant increment in gluconeogenesis, the augmented energy expenditure 

due to cancer-associated inflammation, the deregulation of immune response, even the 

activation of futile cycles to produce heat in white-adipose-tissue browning (a common 

trait of cachexia), are good examples as contributors to this status of high-demand. On 

the other side of this model, nutrient supply governed by a delayed chaotic angiogenesis 

may not be sufficient to cover source requisitions by the tumor(Nagy et al., 2009). For 

instance, it has been reported that poor blood flow in the newly built capillaries leads to 

lower amino acids and glucose levels in the tumor area. An abundant anabolic amino acid 

in blood such as glutamine, can display lower levels in the tumor microenvironment (Pan 

et al., 2016). The nitric oxide precursor amino acid, arginine, can also be depleted due to 

the need of increasing blood flow in the new vasculature (Fukumura and Jain, 1998). 

Decrement in the amount of some immune-response-associated essential amino acids, is 

also a trait linked to some types of cancer  (Sullivan et al., 2018) (Timosenko et al., 2016) 

(Platten et al., 2012).  This supply-demand setting proposes a cellular competition for 

resources and a subsequent adaptation to satisfy imbalance. The sequence EMT, invasion, 

migration and metastasis might be one suitable nutrient-based adaptative strategy of 

cancer cell to counterbalance resources deficit.  

García-Jiménez and Goding strongly suggest starvation in the tumor micro-

environment as drivers of cancer metastasis (García-Jiménez and Goding, 2019). Under 

energy-limiting conditions a key mechanism to decrease nutrient demand encompasses 

protein-synthesis inhibition. mTORC1 regulates protein synthesis. By phosphorylating 

S6Ks and eukaryotic translation initiation factor 4E (elF4E)-binding protein (4E-BP1), 

mTORC1 can promotes protein translation.  Nutrient limitation activates AMPK which 

reduce translation by restricting mTORC1 complex (Ng et al., 2012) (Sancak et al., 2008) 

(Saxton and Sabatini, 2017).  Protein translation is also modulated by regulation of the 

eukaryotic translation initiation factor 2 (eIF2). The phosphorylation of Ser51 located in 



the smallest α subunit of eIF2α by GCN2 reduce protein translation in response to stress 

such as imbalance in nutrient supply-demand (Muaddi et al., 2010).  

Besides this mechanism to inhibit protein synthesis by eIF2α phosphorylation, 

increasing evidence suggests that invasion is linked eIF2α phosphorylation. Activation of 

the eIF2α kinase (PERK) is associated to EMT-phenotype and triggers EMT and invasion in 

BC (Nagelkerke et al., 2013) (Feng et al., 2014), pancreatic cancer (Dekervel et al., 2017) 

and melanoma (Falletta et al., 2017). Increased p-eIF2α is also known to drive invasion in 

chronic leukemia (Podszywalow-Bartnicka et al., 2016). Starvation promotes a translation 

reprogramming through phosphorylation of eIF2α (reversable by the action of 

phosphatases such as GADD34) that leads to a proliferative-to-invasive phenotypic 

transition of cancer cells. However, the mechanism by which changes in the translation of 

specific mRNAs towards migration over proliferation needs to be unraveled (García-

Jiménez and Goding, 2019) . Figure 6.4 displays a representation of the control of the 

translation reprogramming by eIF2α phosphorylation, described by García-Jiménez and 

Goding. 

  



195 

 

 

 

The hypothesis of whether the extreme lack of nutrients triggered this transition 

towards invasiveness, through phosphorylation of eIF2α (which could justify the 

metastasis increment), and at the cost of inhibiting cell proliferation (which could explain 

the tumor reduction), appears to be a reasonable option which deserves to be explored. 

Another approach to this issue focuses in the specific tissue where metastasis 

occur, the lungs, and addresses the increment from a more clinical perspective. Is there 

any alteration associated to lung tissue and nutrient deprivation that could molecularly 

promote metastasis? 

In an extensive paper, Wilson et al.  widely approach the effect of diet on lung-

associated diseases. They summarized the impact of nutrition on the integrity of normal 

lung structure approaching mechanism of lung injury and repair, surfactant alterations 

and the pulmonary defense system, and suggest a potential association between 

starvation and  damage in the lung (Wilson et al., 1985). 

Figure 6.4. Control of Translation Reprogramming by eIF2a Phosphorylation.  (Adapted from García-Jiménez and Goding, 
2019). eIF-2-alpha kinase GCN2 senses nutrient limitation and phosphorylates translation initiation factor eIF2α. GADD34 

reverses phosphorylation. To decrease nutrient demand, p-eIF2α inhibits global translation. To increase nutrient supply, p-

eIF2α increases translation of specific mRNAs including transcription factor for nutrient uptake and autophagy. P-eIF2α 

also drives invasion, promoting cells to leave nutrient-poor settings and searching for new environments to restore nutrient 

supply.  
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Further biochemical and morphological evidence of changes in the structure of the 

lung have been reported, particularly in collagen and elastin, when rodents were 

submitted to severe calorie-protein restriction (Riley and Thakker-Varia, 1995). 

Remarkably, the results in animal models agree with injuries in pulmonary tissue reported 

in young patients with anorexia nervosa (Overby and Litt, 1988) (Coxson et al., 2004).  

The mechanism explaining this association seems to relay in different causes. The 

weakening of pulmonary defense system is one of them. 

Elastase is a serine proteinase secreted by neutrophils and macrophages during 

inflammation, it destroys bacteria and host tissue. One mechanism to counteract this 

proteinase convey a group of anti-proteinases, the SERPINA superfamily. One member of 

this superfamily, α1-antitrypsin (AAT) or SERPINA1 coats lungs protecting them from 

elastase. This enzyme maintains lung integrity. Congenital AAT deficiency typically leads 

to severe emphysema in humans. In its absence, elastase is free to break down elastin, 

which contributes to the elasticity of the lungs, resulting in respiratory complications such 

as emphysema, or chronic obstructive pulmonary disease (COPD) (Law et al., 2006).  

It has been reported that caloric restriction decrease levels of AAT in mice (Wilson 

et al., 1985). It is not clear whether this AAT reduction by nutrient deficiency is enough to 

damage tissue. In this regards an oxidative action has been proposed as the mechanism 

driving inefficiency of AAT.  When the methionine residue of the elastase binding site of 

AAT is oxidized, this anti-proteinase become inactive to block activity of elastase (Johnson 

and Travis, 1979). This help to explain the high incidence of lung damage in smokers. 

In the experiment performed in this Thesis, severe fasting cycles could decrease 

AAT leaving lung tissue unprotected for the elastase to act leading to lung injury and 

fostering metastasis dissemination. Since the half-life of mature elastin in rodents is 

approximately 6 months (Dubick et al., 1981), time of recovery between fasting cycles (9 

days feeding ad-libitum) would be insufficient for tissue repairing and an accumulative 

effect should be produced (Figure 6.5). 

The antioxidant hypothesis would not explain the increment in the metastatic 

burden in fasted groups since one of the diets (FMD) includes an important load of 

antioxidants from vegetables and no difference in metastasis were found compared to 

the standard diet (FSD). 
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Notwithstanding, the results of this work need to be contrasted but the evidence 

of whether the metastasis increased under fasting condition by lack of protection against 

own immune system in the lungs, could be an attractive explanation to this unexpected 

result. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 6.5. Cartoon representing the hypothesis of CR-mediated increment in BC cancer metastasis in the lung due to lack 

of protection against own immune system. One member of SERPIN superfamily produced in the liver, α1-antitrypsin (AAT) 

or SERPINA1 coats lungs protecting them from enzymes secreted by inflammatory cells such as neutrophil elastase. It has 

been reported that caloric restriction decreases levels of AAT in mice (Wilson et al., 1985) Reduction of ATT could leave 

lung tissue unprotected for the elastase to act leading to lung injury and fostering metastasis dissemination. 



 
6.3. Comparative analysis of different nutritional strategies throughout in vivo, in 

vitro and in silico results 
 
As a final approach to the link between nutrition and cancer, this Thesis tackles a 

comparative analysis comprising main findings in the three different studies performed.  

Levels of one gene product identified as prognostic biomarker of CRC in the in-

silico analysis (SLC2A3) and one gene product identified in the in-vitro analysis to mediate 

in the antiproliferative effect of the phenolic acid 4,4'DiOMEA, (Wnt16), were analyzed in 

the tumoral tissue of mice submitted to different nutritional strategies, in order to 

evaluate their modulation by caloric restriction and diet composition.       

 

6.3.1. Modulation of SLC2A3 in BC tumor by IF  

It has been previously described in this work that high expression of 

SLC2A3/GLUT3 in CRC (through the phosphorylation of YAP1, an active member of the 

Hippo pathway), correlates with bad prognosis of CRC patients.  SLC2A3 overexpression 

increases the transcription of EMT genes and promotes cell migration and invasion in 

different in-vitro CRC models. Furthermore, knockout of GLUT3 using the CRISPR/Cas9 

systems significantly reduced cell migration and invasion in CRC (Kuo et al., 2019b) and a 

recent study has shown that YAP promotes GLUT3 transcription in glioma (Cosset et al., 

2017).  

To verify whether the unexpected increment of metastasis observed in fasted 

animals could involve the Hippo pathway in BC, levels of SLC2A3 were analyzed by 

Western blot assays in mice under fasting conditions. Results showed significant 

increment of this carrier only in animals fasted and fed FMD but not FSD. From this results 

it seems that diet composition modulates the receptor. A combination of antioxidant rich 

diet with restriction in nutrient significantly increase GLUT3 which would be a hint of 

metastasis increment through the Hippo pathway, but further results in animal under 

nutrient restriction on standard diet did not show GLUT3 increment.  This result reveals 

that metastasis increment in the lung of fasted mice after IF is independent of GLUT3 

overexpression. Diet seems to modulate levels of SLC2A3 in the tumoral tissue but not 

fasting. 
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6.3.2. Modulation of Wnt16 in BC tumor by IF  

 
Wnt pathway has been proposed to be one of the cell sensors for nutritional 

signaling, and therefore, seems to be “at the crossroads of nutritional regulation” (Sethi 

and Vidal-Puig, 2008). Lazaroba and Bordorano suggest that the likely physiological 

behavior of Wnt signaling is dual regarding nutrient availability: Should be "on" in the 

presence of nutrients encompassing moderate levels of activation to maintain cell 

proliferation and should be “off” in the absence of nutrients, suppressing cell proliferation 

(Lazarova and Bordonaro, 2012b). 

Diet composition appears to be implicated in Wnt modulation, particularly in cell 

lines where this route is frequently mutated such as CRC cells. For instance, high fiber 

intake which encompasses higher concentrations of short chain fatty acids such as 

butyrate, hyper-activates Wnt transcriptional activity in CRC cells with mutations in the 

Wnt pathway, but not in cells without such mutations  (Lazarova et al., 2004) (Bordonaro 

et al., 2008). Changes of Wnt signaling are linearly correlated to the levels of CRC cell 

apoptosis. This finding suggests that it is not only the Wnt activation but also the intensity 

of the change what leads cell fate when it comes to cell proliferation. The presence of 

glucose also prone autocrinal activation of Wnt signaling (Anagnostou and Shepherd, 

2008) 

Lack of nutrients, on the other hand, may inhibit the Wnt signaling. There is 

evidence that Wnt signaling is silenced in colonic cells in the absence of nutrients and 

induced in the presence of metabolites (Bordonaro et al., 2007) 

In contrast to CRC, Wnt pathway mutations are hardly detected in BC tumors. 

However, several sources of evidence reveal that loss of expression of negative pathway 

regulators seems to be under the Wnt pathway alterations in BC tumors. Although the 

implication of Wnt16 in BC is largely unknown, many Wnt ligands and receptors have been 

reported to be expressed in human BC cell lines and tumors (Howe and Brown, 2004). 

Furthermore, β-catenin is often detected stabilized and within the nucleus of BC cells and 

seems to be associated with poor prognosis (Ryo et al., 2001) (Lin et al., 2000). All these 

considerations suggest that WNT signaling may recurrently be de-regulated in BC. 



In this Thesis, Wnt16 modulation by both caloric restriction and diet composition 

were assayed in the BC tumoral tissue in order to start exploring the eventual 

activation/inactivation of Wnt signaling in this type of cancer by this isoform. Levels of 

ligand were significantly lower (p<0.01) in the two cohorts of mice undergoing caloric 

restriction compared to the control but no differences were achieved regarding diet 

composition. It seems that under strong nutrient restrain, the proliferative mechanism 

induced by Wnt16 remains inactive, preserving resources for other cellular tasks, maybe 

migration. The protective function of metabolites derived from a vegetable- and fiber-rich 

diet seems not to be so relevant concerning Wnt activation when a strong nutrient 

restriction is present. Probably, a metabolomic study from breast and tumoral tissue 

samples could give a better picture to clarify whether any anticarcinogenic metabolite 

such as butyrate for colon could reach the breast tumor. This could contribute to identify 

differential Wnt-associated activity. However, the beneficial modulation by diet seems 

not to be so evident when lack of nutrients exists. 
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7. Conclusions 
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Conclusions 

 

7.1. More than one tenth of the entire human genome shows significantly altered 

levels of expression once cancer spreads beyond the tumor. Integrative analysis 

of different independent datasets provides information of the most relevant 

genes commonly related to clinical outcome.   

7.2. Integrative analysis of 7 datasets including 1273 CRC cancer patients revealed 

two sets of genes that are candidate prognostic markers for CRC, showing 

either up-regulation or down-regulation correlated with poor prognosis. The 

top 10 up-regulated genes found as survival markers of poor prognosis in late 

stages III and IV (i.e. low survival) were: DCBLD2, PTPN14, LAMP5, TM4SF1, 

NPR3, LEMD1, LCA5, CSGALNACT2, SLC2A3 and GADD45B. 

7.3. Regarding early stages (I-II), a 3-genes signature (SLC2A3, NPR3 and LCA5) was 

identified as a strong biomarker of survival (HR: 3.60; CI: 3.43-3.77; p-

val.:0.00187]). This gene signature is related to nutrient sensing and cell 

metabolism.  

7.4. The phenolic acid derivative 4,4'DiOMEA is able to inhibit cell viability of 

different CRC cell lines, including a 5 fluorouracil-resistant CRC cell line. It is 

more effective (13-fold) than its precursor ellagic acid. 

7.5. The antiproliferative effect of 4,4DiOMEA in CRC cancer cells seems to be 

mediated through downregulation of Wnt16, although it does not result in a 

significant reduction of the invasive properties of cancer cells. 

7.6. Caloric restriction by intermittent fasting decreases tumor size in vivo in BC-

induced young female Balb/c mice. However, intermittent fasting increases 

lung metastasis in this model, irrespective the diet composition tested. 

  



 

Conclusiones 

 

7.1.  Más de una décima parte del genoma humano muestra niveles de expresión 

significativamente alterados, una vez que el cáncer se disemina fuera del tumor. 

El análisis integrativo de datos independientes proporciona información de los 

genes más relevantes relacionados con desenlace clínico. 

7.2  Por medio del análisis integrativo de los datos de 7 estudios independientes, 

incluyendo muestras tumorales de 1273 pacientes con cáncer colorrectal (CCR), se 

identificaron dos conjuntos de genes candidatos como marcadores de pronóstico 

en CCR. Dichos genes muestran asociación entre altos (o bajos) niveles de 

expresión y pronóstico desfavorable del paciente. Los 10 genes que muestran 

mejor asociación entre altos niveles de expresión y mal pronóstico (baja 

supervivencia) en estadios tardías III y IV son: DCBLD2, PTPN14, LAMP5, TM4SF1, 

NPR3, LEMD1, LCA5, CSGALNACT2, SLC2A3 y GADD45B 

7.3.  Con respecto a los estadios tempranos (I-II), se identifica una firma genética 

(SLC2A3, NPR3 y LCA5) como claro biomarcador de supervivencia en CCR (HR: 3.60; 

IC: 3.43-3.77; p-val.:0.00187]). Esta huella genética está relacionada con la 

detección celular de nutrientes y el metabolismo celular. 

7.4.  El derivado del ácido fenólico 4,4'Di-O-Metil ácido elágico inhibe la viabilidad 

celular de diferentes líneas de CCR, incluida una línea resistente a 5 fluorouracilo. 

El 4,4'Di-O-Metil ácido elágico muestra una eficacia inhibitoria 13 veces mayor que 

la molécula precursora, el ácido elágico. 

7.5.  El efecto anti proliferativo en células de CCR demostrado por el 4,4'Di-O-Metil 

ácido elágico, parece estar mediado por la regulación negativa de Wnt16. Esta 

regulación negativa no resulta en una reducción significativa de las propiedades 

invasivas de las células cancerígenas. 

7.6.  La restricción calórica por medio del ayuno intermitente disminuye el tamaño del 

tumor in vivo en ratones Balb/c, hembras, jóvenes, con CM inducido. Sin embargo, 

el ayuno intermitente aumenta la metástasis pulmonar en este modelo, 

independientemente de la composición de la dieta probada. 
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8. Perspectives. 
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One of the main issue emerging in almost every field of science is the 

extraordinary amount of data that new technologies are daily providing. Public 

repositories are extraordinarily useful but many times the user get lost in that mare 

magnum of information. A correct approach to any biological question should start 

by reviewing the huge volume of information rather than going directly to generate 

new data. Bioinformatics and more specific integrative analysis can substantially 

help in this aspect. It can indicate the correct path to follow, or at least suggest 

which one not to follow, making research more straight forwarding, more efficient. 

The road towards identifying a gene involved in ocular dystrophy as Leber 

Congenital Amaurosis 5 (LCA5) as a CRC prognosis biomarker, would be probably 

much longer without the help of bioinformatic tools. 

Of course, the result of this Thesis is only a first approach to the subject. 

Building a risk predictor including the 3-gene signature SLC2A3, NPR3 and LCA5 

could be a reasonable pathway to follow. Firstly, requires identifying cofounding 

variables in survival models to discard eventual gene modulation by them. Human 

CRC gene expression microarrays or RNA-Seq datasets with phenotypical and 

histopathological information should be needed. Analyzing modulation of tissue-

specific endogenous genes and normalizing levels of expression of this gene 

signature could help to rationalize the use of the predictor in the clinic.  

A further molecular validation of the DEG signature in several CRC cell lines of 

different stages would give consistency to this finding, for instance, by contrasting 

expression from tumoral SW480 vs metastatic SW620 CRC cell line samples. 

Another interesting line of investigation could be opened by exploring 

bibliography regarding the top 100 genes with higher β factors shown in the 

multivariate survival analysis. This would contribute to identify those genes less 

studied in CRC and enquire about their implication in the disease. It is also 

meaningful to explore the transcriptome of those patients living remarkably longer, 

particularly, by analyzing levels of expression of those 765 genes proposed as 

prognosis biomarkers. This could give us a hint of the genetic behavior in these 

outliers and identify putative targets for patients with shorter survival or a more 

aggressive phenotype. 

 



Regarding the inhibition of the proliferation shown by 4,4'DiOMEA, the 

precise molecular mechanism of action has not been unraveled in this work, so 

further research is required. It seems to downregulate Wnt16, but β-catenin levels 

remain unchanged. Exploring non canonicals Wnt signaling, for instance the 

Wnt/Calcium pathway, could help identifying further interactors involved in the 

Wnt mediated antiproliferative effect of the 4,4' DiOMEA. It is also important to 

investigate modulation of Wnt16 in different CRC cell lines at protein level, by 

Western blot assay. It might be interesting to confirm the antiproliferative activity 

identified in the MTT assays by a more precise flow cytometer, identify eventual cell 

cycle arrest, analyze genes involved in apoptosis, explore the modulation of major 

oncogenes or tumor suppressor by different concentrations of this phenolic, analyze 

aggressiveness modulation by Trans well Migration Assay. Moreover, the dose-

dependent modulation by 4,4'DiOMEA of oncogenic miR96 and tumor suppressor 

miR203 achieved in the comparison of the Taqman Low Density Array (TLDA) should 

be validated by RT-qPCR analysis and could give a hint about putative epigenetic 

modulation by the phenolic. 

Another interesting approach relies in the fact that 4,4' DiOMEA does not 

show antioxidant activity. There are no pro-oxidative enriched pathways found in 

the GSEA performed using only DEG genes after treating the cells with the phenolic. 

It might be quite revealing to perform a second GSEA using a less restrictive list of 

genes and another bioinformatic tool such as the Broad Institute Software GSEA or 

similar. This new analysis could reveal enrichment of others biochemical pathways 

involved in the antiproliferative effect of the 4,4' DiOMEA, maybe pro-oxidative, 

ROS producing or pro-apoptotic routes. 

One important shortcoming of this work encompasses the fact that 4,4'-

DiOMEA has shown to be a very difficult compound to handle with low solubility in 

culture media and propension to form aggregates. Thus, a correct vehiculation of 

the bioactive compound 4,4' DiOMEA is essential for its effectiveness against 

tumoral cells using, for instance,  liposomes or micelles (Molina et al., 2013) (Martí 

et al., 2014). The importance of developing delivery system with new formulation 

leading to improve bioavailability and efficiency are aspects widely approached in 

biomedicine. In this regard, lipid-based delivery systems have been reported to be 
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excellent bioactive vehicles to increase phytochemical bioavailability. Fish oils from 

certain shark species as ratfish liver oil (RLO) possesses a high content in 

Alkylglycerols (AKG), which have shown anticarcinogenic and immunomodulatory 

effects (Molina et al., 2013) (Corzo-Martínez et al., 2016). They seem to foster 

stability during gastric digestion and improve the intestinal bio accessibility and 

bioavailability as well. Results of an intervention in humans recently published by 

our group using specific alkylglycerols (AKG) from RLO together with one 

anticarcinogenic extract of Rosmarinus officinalis (RE), display both higher 

bioavailability and bioaccessibility and a synergistic effect when is vehiculated with 

AKGs (Gómez de Cedrón et al., 2019). Testing whether the same synergy occurs with 

4,4' DiOMEA could be a good approach to improve efficacy. 

Another important limitation regarding the 4,4'DiOMEA is the extremely 

expensive price of this compound which justifies the exploration of new ways of 

synthetizing the molecule at a lower cost. In this sense, one interesting approach 

could be exploring the possibility of enzymatically produce 4,4' DiOMEA in-vitro 

from not expensive EA, using different enzymes to catalyze the reaction, such as 

methyl transferases or catechol-O-methyl transferases and, obviously evaluating 

quality of final products and the yield in the process. 

The unexpected results achieved in murine models under IF regarding 

higher metastatic burden suggest being cautious when addressing precision 

nutrition strategies based on caloric restriction in BC patients, particularly in late 

stage IV. It is required to confirm results by repeating the entire experiment under 

the same feeding paradigm. Probably, a cohort of mice feed FMD ad-libitum should 

be included in the experiments since outcomes obtained are unable to discriminate 

diet-composition specific effects from fasting associated effects. 

Examining levels of Serpina1 in BC tumoral tissue could clarify the 

hypothesis exposed about whether the increment in lung metastasis is linked to a 

fasting-associated lack of protection in lungs against own immune system. Testing 

levels of eIF2α phosphorylation would pave the way to explain whether the extreme 

lack of nutrients triggers a transition from cell proliferation towards cell 

invasiveness supporting the phenotype shown of tumoral shrinkage and higher 

number of metastasis.  



Cancer therapeutic has shown solid advances within last few years, mainly 

in early diagnosis. But still many cancer subtypes continue to be untreatable. This is 

mostly due to inter- and intra-tumor heterogeneity, both in primary lesions and 

distal metastasis. For this reason, it is important to make a comprehensive approach 

and from different perspectives, that allows to know the characteristics of each 

lesion and the status of each patient, in order to find the most appropriate 

treatment in each case. Nutrition displays a plethora of opportunities to improve 

integral treatment of cancer. Omics technologies play an important role in 

understanding the molecular mechanism underlying this heterogeneity.  

The crosslinking of these considerations, among several others, might 

contribute to transform normal nutrition in patient-based precision nutrition, which 

could improve treatment efficacy or, at least, ameliorate patient’s quality of life. It 

seems to be an unquestionable line of research. Of course, knowing its potential 

requires broad and deep research in the field. 
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Parts of this dissertation appeared in the following publications: 

 

10.1. Paper 1: BMC Genomics: “Gene markers of colorectal cancer survival derived from 

consistent transcriptomic profiling” 
 

Jorge Martinez-Romero, Santiago Bueno-Fortes, Manuel Martín-Merino, Ana Ramirez de 

Molina & Javier De Las Rivas.   

https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-018-5193-9 

Abstract 

Background 

Identification of biomarkers associated with the prognosis of different cancer subtypes is critical to achieve 

better therapeutic assistance. In colorectal cancer (CRC) the discovery of stable and consistent survival 

markers remains a challenge due to the high heterogeneity of this class of tumors. In this work, we 

identified a new set of gene markers for CRC associated to prognosis and risk using a large unified cohort 

of patients with transcriptomic profiles and survival information. 

Results 

We built an integrated dataset with 1273 human colorectal samples, which provides a homogeneous 

robust framework to analyze genome-wide expression and survival data. Using this dataset, we identified 

two sets of genes that are candidate prognostic markers for CRC in stages III and IV, showing either up-

regulation correlated with poor prognosis or up-regulation correlated with good prognosis. The top 10 

up-regulated genes found as survival markers of poor prognosis (i.e. low survival) were: DCBLD2, 

PTPN14, LAMP5, TM4SF1, NPR3, LEMD1, LCA5, CSGALNACT2, SLC2A3 and GADD45B. The 

stability and robustness of the gene survival markers was assessed by cross-validation, and the best-ranked 

genes were also validated with two external independent cohorts: one of microarrays with 482 samples; 

another of RNA-seq with 269 samples. Up-regulation of the top genes was also proved in a comparison 

with normal colorectal tissue samples. Finally, the set of top 100 genes that showed overexpression 

correlated with low survival was used to build a CRC risk predictor applying a multivariate Cox 

proportional hazards regression analysis. This risk predictor yielded an optimal separation of the 

individual patients of the cohort according to their survival, with a p-value of 8.25e-14 and Hazard Ratio 

2.14 (95% CI: 1.75–2.61). 

Conclusions 

The results presented in this work provide a solid rationale for the prognostic utility of a new set of genes 

in CRC, demonstrating their potential to predict colorectal tumor progression and evolution towards 

poor survival stages. Our study does not provide a fixed gene signature for prognosis and risk prediction, 

but instead proposes a robust set of genes ranked according to their predictive power that can be selected 

for additional tests with other CRC clinical cohorts. 

 

  



 

10.2. Paper 2: Journal of Pharmacology: “The Ellagic Acid Derivative 4,4′-Di-O-Methylellagic 

Acid Efficiently Inhibits Colon Cancer Cell Growth through a Mechanism involving Wnt16” 

 

Ana Ramírez de Molina, Teodoro Vargas, Susana Molina, Jenifer Sánchez, Jorge Martínez-Romero, 

Margarita González-Vallinas, Roberto Martín-Hernández, Ruth Sánchez-Martínez, Marta Gómez de 

Cedrón, Alberto Dávalos, Luca Calani, Daniele Del Rio, Antonio González-Sarrías, Juan Carlos Espín, 

Francisco A. Tomás-Barberán and Guillermo Reglero. 

Journal of Pharmacology and Experimental Therapeutics May 2015, 353 (2) 433-444; DOI: 

https://doi.org/10.1124/jpet.114.221796 

http://jpet.aspetjournals.org/content/353/2/433 

 

Abstract 

Ellagic acid (EA) and some derivatives have been reported to inhibit cancer cell proliferation, induce cell 

cycle arrest, and modulate some important cellular processes related to cancer. This study aimed to identify 

possible structure-activity relationships of EA and some in vivo derivatives in their antiproliferative effect 

on both human colon cancer and normal cells, and to compare this activity with that of other polyphenols. 

Our results showed that 4,4′-di-O-methylellagic acid (4,4′-DiOMEA) was the most effective compound in 

the inhibition of colon cancer cell proliferation. 4,4′-DiOMEA was 13-fold more effective than other 

compounds of the same family. In addition, 4,4′-DiOMEA was very active against colon cancer cells 

resistant to the chemotherapeutic agent 5-fluoracil, whereas no effect was observed in nonmalignant colon 

cells. Moreover, no correlation between antiproliferative and antioxidant activities was found, further 

supporting that structure differences might result in dissimilar molecular targets involved in their 

differential effects. Finally, microarray analysis revealed that 4,4′-DiOMEA modulated Wnt signaling, 

which might be involved in the potential antitumor action of this compound. Our results suggest that 

structural-activity differences between EA and 4,4′-DiOMEA might constitute the basis for a new strategy 

in anticancer drug discovery based on these chemical modifications. 
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11.2. Supplemental figures and tables 

All supplemental files are available online at: 
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Additional files 
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# Symbol HR p-val 

 

HGNC 
 

# Symbol HR p-val 

 

HGNC 
 

# Symbol HR 

 

 

 

p-val 

 

HGNC 

1 DCBLD2 2.02 0.00E+00 24627 
 

255 SPARC 1.6 4.11E-05 11219 
 

509 MAB21L3 0.59 3.73E-07 26787 

2 PTPN14 1.99 0.00E+00 9647 
 

256 ATP2B4 1.5 4.15E-05 817 
 

510 DUS3L 0.6 3.81E-07 26920 

3 LAMP5 1.99 0.00E+00 16097 
 

257 FEZ2 1.5 4.38E-05 3660 
 

511 SHQ1 0.6 3.93E-07 25543 

4 TM4SF1 1.96 1.00E-10 11853 
 

258 INAFM1 1.6 4.62E-05 27406 
 

512 RUVBL2 0.59 3.97E-07 10475 

5 NPR3 1.95 2.00E-10 7945 
 

259 ITGA7 1.5 4.75E-05 6143 
 

513 POLR1A 0.6 4.07E-07 17264 

6 LEMD1 1.95 3.00E-10 18725 
 

260 CCDC88A 1.5 4.77E-05 25523 
 

514 ANKS4B 0.59 4.11E-07 26795 

7 LCA5 1.89 3.00E-10 31923 
 

261 CCL2 1.5 4.81E-05 10618 
 

515 RBM15B 0.6 4.12E-07 24303 

8 CSGALNACT2 1.91 8.00E-10 24292 
 

262 LHFP 1.5 4.82E-05 6586 
 

516 NAT2 0.59 4.21E-07 7646 

9 SLC2A3 1.93 1.40E-09 11007 
 

263 NRK 1.5 4.83E-05 25391 
 

517 IMPA2 0.59 4.22E-07 6051 

10 GADD45B 1.92 1.80E-09 4096 
 

264 FMO2 1.5 4.83E-05 3770 
 

518 MMACHC 0.59 4.41E-07 24525 

11 SCEL 1.88 1.80E-09 10573 
 

265 RND3 1.5 4.96E-05 671 
 

519 SWSAP1 0.6 4.65E-07 26638 

12 SIX4 1.89 1.90E-09 10890 
 

266 LRRC17 1.5 4.97E-05 16895 
 

520 TPMT 0.6 4.77E-07 12014 

13 NOTCH3 1.84 2.40E-09 7883 
 

267 PRKAB2 1.6 5.11E-05 9379 
 

521 FAM84A 0.59 5.14E-07 20743 

14 AKAP12 1.85 2.80E-09 370 
 

268 EMC2 1.7 5.15E-05 28963 
 

522 RITA1 0.6 5.16E-07 25925 

15 COLEC12 1.84 2.80E-09 16016 
 

269 SMARCA1 1.6 5.23E-05 11097 
 

523 MRPL4 0.58 5.41E-07 14276 

16 PDLIM3 1.84 4.70E-09 20767 
 

270 PEA15 1.5 5.26E-05 8822 
 

524 SNRNP25 0.58 5.47E-07 14161 

17 ITGB5 1.82 4.90E-09 6160 
 

271 FSTL1 1.5 5.30E-05 3972 
 

525 LIG1 0.59 5.59E-07 6598 

18 GULP1 1.81 5.00E-09 18649 
 

272 CTHRC1 1.5 5.31E-05 18831 
 

526 L3MBTL2 0.6 5.78E-07 18594 

19 SCG2 1.81 5.10E-09 10575 
 

273 COL10A1 1.5 5.34E-05 2185 
 

527 ASRGL1 0.59 5.85E-07 16448 

20 AHNAK2 1.8 6.60E-09 20125 
 

274 GGT5 1.5 5.38E-05 4260 
 

528 OXNAD1 0.6 5.93E-07 25128 

21 CYP1B1 1.84 7.50E-09 2597 
 

275 MSR1 1.5 5.83E-05 7376 
 

529 FARSA 0.6 6.11E-07 3592 

22 NRP2 1.84 9.70E-09 8005 
 

276 LRRFIP1 1.5 5.96E-05 6702 
 

530 FARP2 0.58 6.18E-07 16460 

23 LATS2 1.78 1.23E-08 6515 
 

277 GFPT2 1.5 5.99E-05 4242 
 

531 TAMM41 0.59 6.41E-07 25187 

24 CALB2 1.79 2.48E-08 1435 
 

278 OLFML2B 1.5 6.11E-05 24558 
 

532 ARSE 0.59 6.52E-07 719 

25 EMP1 1.8 3.14E-08 3333 
 

279 HCFC1R1 1.5 6.17E-05 21198 
 

533 WBP11 0.6 6.88E-07 16461 

26 SERPINE1 1.79 3.74E-08 8583 
 

280 CHST3 1.5 6.28E-05 1971 
 

534 CHAF1A 0.59 6.99E-07 1910 

27 PRKD1 1.74 4.51E-08 9407 
 

281 ADGRL2 1.5 6.29E-05 18582 
 

535 MYL5 0.57 7.55E-07 7586 

28 TNS1 1.74 4.53E-08 11973 
 

282 FAM127A 1.5 6.39E-05 2569 
 

536 STOX1 0.59 7.67E-07 23508 

29 SPARCL1 1.74 4.71E-08 11220 
 

283 CHSY3 1.5 6.46E-05 24293 
 

537 LYPD6 0.6 7.71E-07 28751 

30 TPT1 1.79 5.11E-08 12022 
 

284 SAMD4A 1.5 6.49E-05 23023 
 

538 TMEM106C 0.6 8.10E-07 28775 

31 MAP4K4 1.77 5.84E-08 6866 
 

285 KIAA1462 1.5 6.56E-05 29283 
 

539 TELO2 0.61 8.24E-07 29099 

32 ITGA5 1.73 6.05E-08 6141 
 

286 PINLYP 1.5 6.78E-05 44206 
 

540 GLYCTK 0.61 8.62E-07 24247 

33 SCHIP1 1.73 6.70E-08 15678 
 

287 PPP1R18 1.5 6.81E-05 29413 
 

541 TRAP1 0.6 8.75E-07 16264 

34 CDKN2B 1.73 7.17E-08 1788 
 

288 C10orf10 1.5 7.08E-05 23355 
 

542 SAMM50 0.59 8.77E-07 24276 

35 ANXA1 1.74 8.51E-08 533 
 

289 MXRA8 1.5 7.18E-05 7542 
 

543 HNRNPAB 0.59 9.45E-07 5034 

36 NEK7 1.75 8.78E-08 13386 
 

290 LIX1L 1.5 7.32E-05 28715 
 

544 DIS3L 0.6 9.53E-07 28698 

37 PTTG1IP 1.73 9.14E-08 13524 
 

291 SERPINH1 1.6 7.32E-05 1546 
 

545 MRPS34 0.6 1.05E-06 16618 

38 FOXC1 1.72 9.29E-08 3800 
 

292 NR3C1 1.5 7.50E-05 7978 
 

546 GMPPB 0.61 1.05E-06 22932 

39 SLIT2 1.72 9.34E-08 11086 
 

293 DMXL2 1.5 7.74E-05 2938 
 

547 C19orf24 0.6 1.05E-06 26073 

40 GPX3 1.74 1.31E-07 4555 
 

294 DIP2C 1.5 7.78E-05 29150 
 

548 CENPX 0.6 1.08E-06 11422 

41 CST6 1.76 1.33E-07 2478 
 

295 VCAN 1.5 7.78E-05 2464 
 

549 AXIN2 0.59 1.08E-06 904 

42 AKT3 1.7 1.46E-07 393 
 

296 TMEM55A 1.5 7.84E-05 25452 
 

550 COQ2 0.6 1.12E-06 25223 

43 SRPX 1.71 1.72E-07 11309 
 

297 GALNT15 1.5 7.88E-05 21531 
 

551 ACVR1C 0.6 1.12E-06 18123 

44 MLLT11 1.7 1.99E-07 16997 
 

298 ITM2B 1.5 8.17E-05 6174 
 

552 GALM 0.57 1.14E-06 24063 

45 MAP1B 1.7 2.15E-07 6836 
 

299 PLK3 1.5 8.21E-05 2154 
 

553 ZNF552 0.57 1.19E-06 26135 

46 GEM 1.71 2.27E-07 4234 
 

300 L1CAM 1.6 8.33E-05 6470 
 

554 GTSE1 0.61 1.25E-06 13698 

47 NID1 1.69 2.34E-07 7821 
 

301 JAM3 1.5 8.51E-05 15532 
 

555 COA3 0.55 1.33E-06 24990 

48 FABP4 1.73 2.54E-07 3559 
 

302 AMIGO2 1.5 8.63E-05 24073 
 

556 TIMM44 0.61 1.37E-06 17316 

49 PABPC4L 1.69 2.56E-07 31955 
 

303 RRAS 1.5 8.64E-05 10447 
 

557 RMI1 0.59 1.39E-06 25764 

50 HOXB2 1.69 2.60E-07 5113 
 

304 ARMCX2 1.5 8.68E-05 16869 
 

558 SMARCD2 0.61 1.42E-06 11107 

51 CD36 1.69 2.75E-07 1663 
 

305 C16orf52 1.5 8.71E-05 27087 
 

559 ANKRD16 0.61 1.42E-06 23471 

52 FRMD6 1.72 2.79E-07 19839 
 

306 UACA 1.5 8.83E-05 15947 
 

560 NDUFB7 0.61 1.43E-06 7702 

53 SFRP2 1.71 2.88E-07 10777 
 

307 LGALS1 1.5 8.90E-05 6561 
 

561 CHAF1B 0.61 1.44E-06 1911 

54 MICU3 1.9 3.04E-07 27820 
 

308 COL11A1 1.5 8.95E-05 2186 
 

562 MED24 0.61 1.44E-06 22963 

55 C5AR1 1.69 3.15E-07 1338 
 

309 HIST1H2AC 1.5 9.01E-05 4733 
 

563 C2CD4A 0.59 1.48E-06 33627 

56 ARHGAP29 1.68 3.20E-07 30207 
 

310 ADAMTS1 1.5 9.07E-05 217 
 

564 MRPL35 0.61 1.49E-06 14489 

57 ABLIM3 1.73 3.46E-07 29132 
 

311 THBS4 1.5 9.12E-05 11788 
 

565 NDUFA8 0.61 1.49E-06 7692 

58 VAT1 1.69 3.57E-07 16919 
 

312 FBXL7 1.5 9.34E-05 13604 
 

566 SRM 0.61 1.51E-06 11296 

59 POSTN 1.69 3.94E-07 16953 
 

313 MRAS 1.5 9.43E-05 7227 
 

567 TOMM22 0.58 1.53E-06 18002 



60 CAPRIN2 1.71 4.02E-07 21259 
 

314 PLA2G16 1.5 9.48E-05 17825 
 

568 QRSL1 0.6 1.55E-06 21020 

61 PTPN12 1.71 4.21E-07 9645 
 

315 IGFBP4 1.5 9.67E-05 5473 
 

569 POLA2 0.6 1.55E-06 30073 

62 PLN 1.67 4.56E-07 9080 
 

316 RGS17 1.5 9.73E-05 14088 
 

570 ACADSB 0.61 1.63E-06 91 

                 

63 ARL4C 1.67 4.58E-07 698 
 

317 KLHDC1 1.5 9.79E-05 19836 
 

571 SLC2A8 0.6 1.66E-06 13812 

64 GLRB 1.68 4.74E-07 4329 
 

318 BASP1 1.5 9.84E-05 957 
 

572 DFFB 0.58 1.67E-06 2773 

65 ZNF83 1.73 4.99E-07 13158 
 

319 COL1A2 1.5 9.91E-05 2198 
 

573 PPP2R1B 0.61 1.77E-06 9303 

66 PIM1 1.67 5.04E-07 8986 
 

320 FAM129A 1.5 1.00E-04 16784 
 

574 LMNB2 0.61 1.91E-06 6638 

67 BICD1 1.68 5.47E-07 1049 
 

321 HIVEP2 1.5 1.01E-04 4921 
 

575 XPNPEP3 0.56 1.92E-06 28052 

68 ADAMTS6 1.7 5.53E-07 222 
 

322 BNC2 1.5 1.03E-04 30988 
 

576 EPB41 0.61 1.92E-06 3377 

69 SUGCT 1.69 5.58E-07 16001 
 

323 CMTM3 1.5 1.04E-04 19174 
 

577 SLC12A2 0.61 1.96E-06 10911 

70 SLC20A1 1.66 5.90E-07 10946 
 

324 JAZF1 1.5 1.05E-04 28917 
 

578 EMC1 0.62 2.13E-06 28957 

71 TAGLN 1.67 5.97E-07 11553 
 

325 QKI 1.5 1.06E-04 21100 
 

579 DTYMK 0.61 2.14E-06 3061 

72 TMEM136 1.65 6.59E-07 28280 
 

326 BHLHE41 1.5 1.06E-04 16617 
 

580 TMEM186 0.6 2.15E-06 24530 

73 LAMA4 1.67 6.69E-07 6484 
 

327 LOX 1.5 1.06E-04 6664 
 

581 TPRN 0.61 2.19E-06 26894 

74 RGS2 1.66 6.74E-07 9998 
 

328 CRISPLD1 1.6 1.11E-04 18206 
 

582 SLC35D1 0.62 2.27E-06 20800 

75 KANK4 1.68 6.94E-07 27263 
 

329 SUSD2 1.5 1.11E-04 30667 
 

583 OGFOD3 0.61 2.32E-06 26174 

76 RHOD 1.69 7.48E-07 670 
 

330 FGFR1 1.5 1.14E-04 3688 
 

584 HNF1A 0.54 2.45E-06 11621 

77 WWTR1 1.7 7.59E-07 24042 
 

331 ZNF292 1.5 1.15E-04 18410 
 

585 CNOT10 0.59 2.51E-06 23817 

78 FN1 1.65 8.89E-07 3778 
 

332 FAM229B 1.5 1.17E-04 33858 
 

586 STARD5 0.62 2.62E-06 18065 

79 CAMSAP2 1.65 9.09E-07 29188 
 

333 ZNF333 1.5 1.17E-04 15624 
 

587 GSTCD 0.61 2.74E-06 25806 

80 THBS2 1.67 9.80E-07 11786 
 

334 CTSL 1.5 1.17E-04 2537 
 

588 SDSL 0.61 2.82E-06 30404 

81 CYR61 1.66 1.02E-06 2654 
 

335 VIP 1.5 1.18E-04 12693 
 

589 TNFRSF11A 0.6 2.84E-06 11908 

82 PCSK5 1.64 1.03E-06 8747 
 

336 ZNF25 1.5 1.18E-04 13043 
 

590 MCM6 0.62 2.89E-06 6949 

83 LRRC8A 1.66 1.06E-06 19027 
 

337 SNAI2 1.5 1.19E-04 11094 
 

591 MED16 0.61 2.90E-06 17556 

84 LAMC1 1.66 1.06E-06 6492 
 

338 CRISPLD2 1.5 1.21E-04 25248 
 

592 IDH1 0.52 2.92E-06 5382 

85 ZNF117 1.64 1.09E-06 12897 
 

339 ARID4B 1.5 1.24E-04 15550 
 

593 GOLIM4 0.62 3.08E-06 15448 

86 NRP1 1.64 1.11E-06 8004 
 

340 ELK3 1.5 1.24E-04 3325 
 

594 SRRM1 0.62 3.10E-06 16638 

87 BTBD19 1.65 1.14E-06 27145 
 

341 ASAP1 1.5 1.25E-04 2720 
 

595 IDH2 0.61 3.11E-06 5383 

88 FAM63B 1.64 1.15E-06 26954 
 

342 SFTA2 1.5 1.25E-04 18386 
 

596 ALYREF 0.62 3.16E-06 19071 

89 UGCG 1.68 1.19E-06 12524 
 

343 GPNMB 1.5 1.27E-04 4462 
 

597 REEP4 0.62 3.22E-06 26176 

90 SLC35G2 1.65 1.22E-06 28480 
 

344 KCNMB1 1.5 1.30E-04 6285 
 

598 POLR3H 0.62 3.30E-06 30349 

91 TCEAL4 1.76 1.22E-06 26121 
 

345 ERRFI1 1.5 1.30E-04 18185 
 

599 NLE1 0.62 3.33E-06 19889 

92 CD59 1.68 1.24E-06 1689 
 

346 BGN 1.5 1.30E-04 1044 
 

600 NMNAT1 0.62 3.34E-06 17877 

93 DZIP1 1.81 1.32E-06 20908 
 

347 NXN 1.5 1.32E-04 18008 
 

601 AP3D1 0.61 3.42E-06 568 

94 HSPA1A 1.9 1.35E-06 5232 
 

348 HLX 1.5 1.33E-04 4978 
 

602 PHACTR4 0.62 3.44E-06 25793 

95 RUNX2 1.66 1.36E-06 10472 
 

349 C20orf194 1.5 1.37E-04 17721 
 

603 MPND 0.6 3.50E-06 25934 

96 RGCC 1.76 1.39E-06 20369 
 

350 NOX4 1.5 1.38E-04 7891 
 

604 NUDT16 0.61 3.51E-06 26442 

97 RABGAP1 1.63 1.50E-06 17155 
 

351 IRF2BPL 1.5 1.39E-04 14282 
 

605 ZNHIT2 0.62 3.65E-06 1177 

98 CYBRD1 1.64 1.50E-06 20797 
 

352 HBP1 1.6 1.44E-04 23200 
 

606 CCRL2 0.61 3.67E-06 1612 

99 DUSP5 1.69 1.50E-06 3071 
 

353 COL6A3 1.5 1.45E-04 2213 
 

607 SLC19A1 0.62 3.67E-06 10937 

100 FLNA 1.64 1.62E-06 3754 
 

354 MRC2 1.5 1.48E-04 16875 
 

608 SLC35G1 0.61 3.72E-06 26607 

101 PNMA1 1.64 1.70E-06 9158 
 

355 CTGF 1.5 1.50E-04 2500 
 

609 MLST8 0.62 3.74E-06 24825 

102 HSPG2 1.66 1.71E-06 5273 
 

356 BACH2 1.5 1.50E-04 14078 
 

610 FBXW9 0.62 3.76E-06 28136 

103 VGLL3 1.65 1.72E-06 24327 
 

357 PLPPR2 1.5 1.51E-04 29566 
 

611 PDP2 0.62 3.80E-06 30263 

104 DNAJB2 1.63 1.74E-06 5228 
 

358 HTRA1 1.5 1.53E-04 9476 
 

612 C4orf19 0.62 3.82E-06 25618 

105 ABCA6 1.69 1.77E-06 36 
 

359 ANKRD10 1.5 1.57E-04 20265 
 

613 FGD3 0.62 3.99E-06 16027 

106 MITF 1.66 1.83E-06 7105 
 

360 ZEB1 1.5 1.58E-04 11642 
 

614 SLC35E3 0.63 4.02E-06 20864 

107 CRYAB 1.8 1.91E-06 2389 
 

361 LUM 1.5 1.62E-04 6724 
 

615 DCAKD 0.6 4.09E-06 26238 

108 ECM2 1.63 1.99E-06 3154 
 

362 LOXL1 1.5 1.62E-04 6665 
 

616 TMEM201 0.62 4.16E-06 33719 

109 ZFPM2 1.65 2.03E-06 16700 
 

363 DPYSL3 1.5 1.64E-04 3015 
 

617 HIRA 0.61 4.22E-06 4916 

110 CLK1 1.64 2.07E-06 2068 
 

364 PTPRM 1.6 1.65E-04 9675 
 

618 CYP20A1 0.59 4.30E-06 20576 

111 GJA1 1.64 2.24E-06 4274 
 

365 UNC5B 1.5 1.67E-04 12568 
 

619 POLD2 0.63 4.36E-06 9176 

112 SPON1 1.62 2.25E-06 11252 
 

366 CERCAM 1.6 1.67E-04 23723 
 

620 RRM2 0.62 4.61E-06 10452 

113 C15orf52 1.65 2.29E-06 33488 
 

367 ATL1 1.5 1.71E-04 11231 
 

621 SLC25A15 0.63 4.65E-06 10985 

114 ASPN 1.66 2.41E-06 14872 
 

368 ADGRA2 1.5 1.71E-04 17849 
 

622 GSR 0.62 4.69E-06 4623 

115 COMP 1.64 2.51E-06 2227 
 

369 CNPY4 1.5 1.73E-04 28631 
 

623 TRAIP 0.61 4.79E-06 30764 

116 FBXO32 1.62 2.61E-06 16731 
 

370 ZSWIM8 1.5 1.73E-04 23528 
 

624 MRPS9 0.61 4.90E-06 14501 

117 RFLNB 1.63 2.91E-06 28705 
 

371 SOX11 1.5 1.82E-04 11191 
 

625 QDPR 0.56 5.06E-06 9752 
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118 EHD2 1.63 3.02E-06 3243 
 

372 PALLD 1.5 1.84E-04 17068 
 

626 FIGNL1 0.63 5.10E-06 13286 

119 HOPX 1.63 3.08E-06 24961 
 

373 ZBTB4 1.5 1.85E-04 23847 
 

627 MCM5 0.63 5.15E-06 6948 

120 MEIS2 1.61 3.12E-06 7001 
 

374 CAP2 1.5 1.89E-04 20039 
 

628 MYRIP 0.63 5.15E-06 19156 

121 GDI1 1.62 3.15E-06 4226 
 

375 CLMP 1.5 1.89E-04 24039 
 

629 PANK1 0.61 5.27E-06 8598 

122 SYDE1 1.61 3.23E-06 25824 
 

376 EFNB2 1.5 1.90E-04 3227 
 

630 ASF1B 0.61 5.28E-06 20996 

123 SPOCD1 1.73 3.35E-06 26338 
 

377 ZCCHC24 1.5 1.93E-04 26911 
 

631 KIF9 0.63 5.29E-06 16666 

124 MMP19 1.6 3.46E-06 7165 
 

378 LGALS8 1.5 1.94E-04 6569 
 

632 LHX2 0.62 5.40E-06 6594 

125 FAP 1.61 3.57E-06 3590 
 

379 METRN 1.6 1.94E-04 14151 
 

633 GPX2 0.61 5.40E-06 4554 

126 ANKRD65 1.64 3.65E-06 42950 
 

380 OMD 1.5 1.95E-04 8134 
 

634 LONP1 0.63 5.49E-06 9479 

127 PICALM 1.6 3.76E-06 15514 
 

381 PLAT 1.5 1.97E-04 9051 
 

635 MED18 0.55 5.54E-06 25944 

128 AMOTL1 1.6 4.07E-06 17811 
 

382 BOC 1.5 1.97E-04 17173 
 

636 TBC1D14 0.6 5.57E-06 29246 

129 COL4A2 1.6 4.20E-06 2203 
 

383 TSC22D3 1.5 2.00E-04 3051 
 

637 AIM1 0.62 5.83E-06 356 

130 ABHD4 1.61 4.36E-06 20154 
 

384 SYNPO2 1.6 2.03E-04 17732 
 

638 RANBP1 0.62 6.15E-06 9847 

131 LPP 1.63 4.39E-06 6679 
 

385 MYL9 1.5 2.06E-04 15754 
 

639 POP5 0.63 6.20E-06 17689 

132 RNF146 1.61 4.60E-06 21336 
 

386 NAP1L3 1.5 2.09E-04 7639 
 

640 SGPP2 0.62 6.21E-06 19953 

133 ACTA2 1.62 4.73E-06 130 
 

387 PRRX1 1.5 2.14E-04 9142 
 

641 TNFRSF14 0.63 6.41E-06 11912 

134 TIMP2 1.59 4.86E-06 11821 
 

388 NAXD 1.5 2.15E-04 25576 
 

642 MKI67 0.63 6.45E-06 7107 

135 HTR2B 1.59 5.06E-06 5294 
 

389 C16orf45 1.5 2.15E-04 19213 
 

643 PRKAR2A 0.61 6.59E-06 9391 

136 THSD7A 1.59 5.22E-06 22207 
 

390 SERINC1 1.5 2.17E-04 13464 
 

644 PIAS4 0.62 6.59E-06 17002 

137 PRICKLE1 1.63 5.30E-06 17019 
 

391 DSE 1.5 2.19E-04 21144 
 

645 CDPF1 0.63 6.70E-06 33710 

138 SYNE1 1.58 5.35E-06 17089 
 

392 RBMS3 1.5 2.19E-04 13427 
 

646 PSMG1 0.63 6.70E-06 3043 

139 TRPS1 1.58 5.44E-06 12340 
 

393 NMNAT2 1.6 2.22E-04 16789 
 

647 NANS 0.63 6.99E-06 19237 

140 OLR1 1.59 5.70E-06 8133 
 

394 RICTOR 1.6 2.24E-04 28611 
 

648 PREP 0.63 7.30E-06 9358 

141 TRPC1 1.6 5.77E-06 12333 
 

395 DNM1 1.5 2.25E-04 2972 
 

649 SERINC5 0.64 7.32E-06 18825 

142 SAMD11 1.59 5.81E-06 28706 
 

396 SYNC 1.5 2.26E-04 28897 
 

650 SEL1L3 0.63 7.42E-06 29108 

143 IDS 1.6 5.85E-06 5389 
 

397 CACNA2D1 1.5 2.32E-04 1399 
 

651 RBBP9 0.63 7.71E-06 9892 

144 ITGAV 1.59 5.85E-06 6150 
 

398 IGFBP5 1.5 2.32E-04 5474 
 

652 CYFIP2 0.62 7.73E-06 13760 

145 PCDHB16 1.6 6.16E-06 14546 
 

399 TYROBP 1.5 2.34E-04 12449 
 

653 ATP5G3 0.57 7.75E-06 843 

146 DST 1.58 6.30E-06 1090 
 

400 EFEMP2 1.5 2.35E-04 3219 
 

654 AURKA 0.63 7.99E-06 11393 

147 COL8A1 1.58 6.34E-06 2215 
 

401 COL18A1 1.5 2.35E-04 2195 
 

655 ELP3 0.63 8.46E-06 20696 

148 SNX9 1.59 6.42E-06 14973 
 

402 TDRP 1.6 2.37E-04 26951 
 

656 UQCRC1 0.64 8.60E-06 12585 

149 AOC3 1.74 6.44E-06 550 
 

403 PHF20L1 1.5 2.43E-04 24280 
 

657 NCAPG2 0.62 8.66E-06 21904 

150 PMP22 1.58 6.53E-06 9118 
 

404 ARMCX1 1.5 2.47E-04 18073 
 

658 MRTO4 0.62 8.69E-06 18477 

151 FSTL3 1.62 6.71E-06 3973 
 

405 ZNF135 1.5 2.47E-04 12919 
 

659 POLE3 0.61 8.69E-06 13546 

152 ZMYM5 1.61 6.82E-06 13029 
 

406 TTC7B 1.6 2.47E-04 19858 
 

660 E2F2 0.64 8.93E-06 3114 

153 SGCE 1.81 7.07E-06 10808 
 

407 APOE 1.5 2.47E-04 613 
 

661 MAP7 0.62 9.19E-06 6869 

154 ISM1 1.61 7.38E-06 16213 
 

408 AP3M2 1.5 2.51E-04 570 
 

662 UBE4B 0.63 9.45E-06 12500 

155 STK3 1.62 7.47E-06 11406 
 

409 IFRD1 1.5 2.55E-04 5456 
 

663 C19orf48 0.64 9.55E-06 29667 

156 DACT3 1.59 7.55E-06 30745 
 

410 NT5E 1.5 2.55E-04 8021 
 

664 GINS2 0.64 9.62E-06 24575 

157 LAMC2 1.59 7.63E-06 6493 
 

411 AHNAK 1.5 2.56E-04 347 
 

665 FAM117B 0.64 9.85E-06 14440 

158 KCNE4 1.6 7.73E-06 6244 
 

412 LIMS2 1.5 2.56E-04 16084 
 

666 CCNF 0.64 1.01E-05 1591 

159 MPDZ 1.62 7.74E-06 7208 
 

413 SSPN 1.5 2.60E-04 11322 
 

667 HMCES 0.64 1.01E-05 24446 

160 RDX 1.57 7.83E-06 9944 
 

414 ABCA1 1.5 2.66E-04 29 
 

668 SLC25A1 0.63 1.02E-05 10979 

161 ADAMTS5 1.57 7.90E-06 221 
 

415 SLC27A1 1.5 2.67E-04 10995 
 

669 KATNB1 0.62 1.02E-05 6217 

162 CILP 1.61 7.97E-06 1980 
 

416 OSMR 1.5 2.70E-04 8507 
 

670 MRPS26 0.63 1.03E-05 14045 

163 LMCD1 1.57 8.32E-06 6633 
 

417 A2M 1.5 2.71E-04 7 
 

671 EMC8 0.63 1.03E-05 7864 

164 COL3A1 1.59 8.52E-06 2201 
 

418 GLI3 1.5 2.76E-04 4319 
 

672 EIF2B4 0.63 1.03E-05 3260 

165 SPOCK1 1.57 8.54E-06 11251 
 

419 LOXL4 1.4 2.78E-04 17171 
 

673 AP5S1 0.63 1.04E-05 15875 

166 ACTN1 1.58 8.73E-06 163 
 

420 CRIP2 1.6 2.79E-04 2361 
 

674 TK1 0.63 1.05E-05 11830 

167 KAT6A 1.59 8.87E-06 13013 
 

421 LAYN 1.5 2.82E-04 29471 
 

675 USP19 0.63 1.06E-05 12617 

168 CAV2 1.61 8.97E-06 1528 
 

422 CHST15 1.5 2.84E-04 18137 
 

676 PDZD8 0.64 1.10E-05 26974 

169 PTRF 1.6 9.08E-06 9688 
 

423 GAP43 1.5 2.84E-04 4140 
 

677 DDX49 0.63 1.10E-05 18684 

170 PRKCDBP 1.6 9.22E-06 9400 
 

424 APOD 1.6 2.84E-04 612 
 

678 ELP6 0.64 1.11E-05 25976 

171 PRICKLE2 1.57 9.48E-06 20340 
 

425 NLRP1 1.5 2.86E-04 14374 
 

679 UTP20 0.64 1.11E-05 17897 

172 CDR2L 1.6 9.69E-06 29999 
 

426 PPFIA2 1.5 2.87E-04 9246 
 

680 C20orf196 0.62 1.11E-05 26318 

173 PPP1R13L 1.59 9.73E-06 18838 
 

427 PDLIM7 1.5 2.98E-04 22958 
 

681 BRIP1 0.62 1.12E-05 20473 

174 TPBG 1.6 9.83E-06 12004 
 

428 NUAK1 1.5 2.98E-04 14311 
 

682 EPHX2 0.63 1.13E-05 3402 

175 RGL2 1.57 9.85E-06 9769 
 

429 TUBA1A 1.5 2.99E-04 20766 
 

683 RTCB 0.64 1.13E-05 26935 

176 CNTN4 1.58 9.91E-06 2174 
 

430 EPHB2 0.4 ######## 3393 
 

684 URB2 0.63 1.13E-05 28967 



177 CLDN11 1.61 1.01E-05 8514 
 

431 DUS1L 0.5 ######## 30086 
 

685 NF2 0.64 1.17E-05 7773 

178 CCDC8 1.6 1.03E-05 25367 
 

432 NUAK2 0.5 1.00E-10 29558 
 

686 C12orf49 0.63 1.19E-05 26128 

179 EFS 1.59 1.06E-05 16898 
 

433 CISD3 0.5 2.00E-10 27578 
 

687 CENPH 0.63 1.20E-05 17268 

180 CLIP4 1.59 1.07E-05 26108 
 

434 FANCC 0.5 2.00E-10 3584 
 

688 TUBA1B 0.63 1.21E-05 18809 

181 EHBP1 1.6 1.07E-05 29144 
 

435 TIMM13 0.5 3.00E-10 11816 
 

689 SUV39H1 0.63 1.21E-05 11479 

182 SPP1 1.66 1.08E-05 11255 
 

436 AGMAT 0.5 5.00E-10 18407 
 

690 KAT14 0.64 1.22E-05 15904 

183 SFXN3 1.59 1.09E-05 16087 
 

437 MYB 0.5 6.00E-10 7545 
 

691 CCNE1 0.63 1.29E-05 1589 

184 MSRB3 1.6 1.13E-05 27375 
 

438 CHDH 0.5 6.00E-10 24288 
 

692 RFC5 0.64 1.30E-05 9973 

185 MYOF 1.59 1.17E-05 3656 
 

439 FHDC1 0.5 8.00E-10 29363 
 

693 ABHD17B 0.62 1.31E-05 24278 

186 C8orf88 1.65 1.19E-05 44672 
 

440 ZBED3 0.5 9.00E-10 20711 
 

694 FAM136A 0.64 1.32E-05 25911 

187 CNN1 1.58 1.22E-05 2155 
 

441 NOL9 0.5 1.50E-09 26265 
 

695 CEP85 0.59 1.32E-05 25309 

188 LRCH1 1.62 1.23E-05 20309 
 

442 GAR1 0.5 1.70E-09 14264 
 

696 CDC25C 0.64 1.32E-05 1727 

189 ITGAM 1.56 1.25E-05 6149 
 

443 COA7 0.5 1.70E-09 25716 
 

697 ACADS 0.64 1.34E-05 90 

190 KLF6 1.72 1.26E-05 2235 
 

444 SNRPA 0.5 1.70E-09 11151 
 

698 WDR5 0.64 1.35E-05 12757 

191 PRDM6 1.58 1.28E-05 9350 
 

445 FAM83F 0.5 1.90E-09 25148 
 

699 PRELID1 0.64 1.35E-05 30255 

192 NNMT 1.56 1.29E-05 7861 
 

446 TXN2 0.5 3.60E-09 17772 
 

700 BRI3BP 0.64 1.39E-05 14251 

193 NDN 1.56 1.39E-05 7675 
 

447 GALK1 0.6 3.60E-09 4118 
 

701 NAT1 0.64 1.39E-05 7645 

194 BACE1 1.55 1.47E-05 933 
 

448 GCDH 0.5 4.10E-09 4189 
 

702 HSD17B4 0.64 1.42E-05 5213 

195 RIMKLB 1.76 1.48E-05 29228 
 

449 ILVBL 0.5 4.20E-09 6041 
 

703 GTPBP6 0.64 1.42E-05 30189 

196 RAI14 1.55 1.49E-05 14873 
 

450 MLEC 0.6 4.50E-09 28973 
 

704 PUS7L 0.61 1.44E-05 25276 

197 ISLR 1.59 1.51E-05 6133 
 

451 MAPKAPK3 0.6 4.80E-09 6888 
 

705 RCAN3 0.56 1.49E-05 3042 

198 CHST1 1.58 1.56E-05 1969 
 

452 FITM2 0.6 1.08E-08 16135 
 

706 CD320 0.64 1.49E-05 16692 

199 WWC2 1.62 1.58E-05 24148 
 

453 SLC25A10 0.6 1.17E-08 10980 
 

707 SHMT1 0.63 1.53E-05 10850 

200 CFH 1.56 1.59E-05 4883 
 

454 PRMT7 0.6 1.25E-08 25557 
 

708 WDR77 0.64 1.54E-05 29652 

201 CYS1 1.55 1.59E-05 18525 
 

455 SAPCD2 0.6 1.45E-08 28055 
 

709 MCRS1 0.62 1.56E-05 6960 

202 TIMP1 1.55 1.63E-05 11820 
 

456 DEPDC5 0.6 1.65E-08 18423 
 

710 SAAL1 0.64 1.61E-05 25158 

203 HOOK3 1.55 1.66E-05 23576 
 

457 CASP1 0.6 1.80E-08 1499 
 

711 PRMT1 0.63 1.62E-05 5187 

204 CCDC50 1.57 1.71E-05 18111 
 

458 MCCC2 0.6 1.83E-08 6937 
 

712 ACOT7 0.63 1.68E-05 24157 

205 FZD1 1.56 1.86E-05 4038 
 

459 BEND3 0.6 1.93E-08 23040 
 

713 DHX37 0.64 1.69E-05 17210 

206 CCDC82 1.56 1.91E-05 26282 
 

460 RPP14 0.6 1.99E-08 30327 
 

714 ADH6 0.65 1.71E-05 255 

207 TGFB1I1 1.54 1.93E-05 11767 
 

461 SAFB 0.6 2.04E-08 10520 
 

715 POC1A 0.63 1.72E-05 24488 

208 EMILIN1 1.56 1.97E-05 19880 
 

462 CISH 0.6 2.16E-08 1984 
 

716 LSM6 0.63 1.72E-05 17017 

209 CALD1 1.58 2.03E-05 1441 
 

463 TTC38 0.6 2.30E-08 26082 
 

717 CECR5 0.65 1.73E-05 1843 

210 TSPAN2 1.54 2.05E-05 20659 
 

464 LARS2 0.6 2.39E-08 17095 
 

718 ART3 0.63 1.74E-05 725 

211 VIM 1.54 2.08E-05 12692 
 

465 QTRT1 0.6 2.79E-08 23797 
 

719 TMEM52 0.65 1.75E-05 27916 

212 NTM 1.55 2.09E-05 17941 
 

466 TCHP 0.6 3.13E-08 28135 
 

720 LANCL2 0.6 1.77E-05 6509 

213 COL4A1 1.54 2.32E-05 2202 
 

467 TRMU 0.6 3.37E-08 25481 
 

721 NOP16 0.64 1.84E-05 26934 

214 TSHZ2 1.55 2.33E-05 13010 
 

468 SLC39A8 0.6 3.51E-08 20862 
 

722 DHRS13 0.62 1.86E-05 28326 

215 SPG20 1.73 2.35E-05 18514 
 

469 CDC25A 0.6 4.81E-08 1725 
 

723 ARHGEF39 0.64 1.92E-05 25909 

216 COL5A2 1.57 2.38E-05 2210 
 

470 SOCS1 0.6 4.96E-08 19383 
 

724 WDR18 0.64 1.92E-05 17956 

217 SHC1 1.55 2.38E-05 10840 
 

471 HADH 0.6 6.02E-08 4799 
 

725 GGT6 0.62 1.93E-05 26891 

218 WSB1 1.54 2.38E-05 19221 
 

472 L3MBTL4 0.5 6.06E-08 26677 
 

726 OXSM 0.65 1.95E-05 26063 

219 IGFBP7 1.58 2.39E-05 5476 
 

473 UBIAD1 0.6 6.42E-08 30791 
 

727 SIMC1 0.62 1.96E-05 24779 

220 IGFBP3 1.55 2.46E-05 5472 
 

474 ATOH1 0.6 7.22E-08 797 
 

728 BIRC5 0.65 1.96E-05 593 

221 ST3GAL6 1.57 2.55E-05 18080 
 

475 ALKBH7 0.6 7.79E-08 21306 
 

729 POLR2E 0.63 2.05E-05 9192 

222 RHOJ 1.53 2.62E-05 688 
 

476 PIWIL2 0.6 8.69E-08 17644 
 

730 C2orf82 0.64 2.06E-05 33763 

223 RB1CC1 1.56 2.64E-05 15574 
 

477 THUMPD3 0.6 8.91E-08 24493 
 

731 PAICS 0.65 2.06E-05 8587 

224 FERMT2 1.53 2.68E-05 15767 
 

478 ACTL10 0.6 9.30E-08 16127 
 

732 THOC6 0.65 2.07E-05 28369 

225 ZEB2 1.6 2.69E-05 14881 
 

479 BID 0.6 9.68E-08 1050 
 

733 MRPL54 0.65 2.09E-05 16685 

226 PLXND1 1.55 2.69E-05 9107 
 

480 AGPAT5 0.6 1.06E-07 20886 
 

734 CENPO 0.62 2.13E-05 28152 

227 LTBP1 1.53 2.71E-05 6714 
 

481 CENPM 0.6 1.10E-07 18352 
 

735 CASP6 0.63 2.17E-05 1507 

228 MCC 1.54 2.72E-05 6935 
 

482 NPRL2 0.6 1.39E-07 24969 
 

736 TTLL12 0.65 2.17E-05 28974 

229 RNF180 1.53 2.94E-05 27752 
 

483 HNRNPA0 0.6 1.39E-07 5030 
 

737 RABL6 0.63 2.17E-05 24703 

230 CDC42BPA 1.54 2.95E-05 1737 
 

484 IFRD2 0.6 1.50E-07 5457 
 

738 ANKEF1 0.65 2.19E-05 15803 

231 MACF1 1.54 2.96E-05 13664 
 

485 MAEA 0.5 1.62E-07 13731 
 

739 HEMK1 0.65 2.21E-05 24923 

232 DDR2 1.53 2.99E-05 2731 
 

486 SH3RF2 0.6 1.65E-07 26299 
 

740 CDCA3 0.64 2.21E-05 14624 

233 FBN1 1.54 2.99E-05 3603 
 

487 ETS2 0.6 1.66E-07 3489 
 

741 DENND1A 0.64 2.25E-05 29324 

234 CHPF 1.53 3.03E-05 24291 
 

488 NCAPD2 0.6 1.69E-07 24305 
 

742 RCC1 0.65 2.28E-05 1913 

235 TROVE2 1.57 3.08E-05 11313 
 

489 SFXN4 0.6 1.89E-07 16088 
 

743 ANKRD9 0.63 2.31E-05 20096 
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236 PLPP4 1.53 3.13E-05 23531 
 

490 ATP5G1 0.6 2.16E-07 841 
 

744 APOL6 0.64 2.36E-05 14870 

237 TUBB6 1.56 3.16E-05 20776 
 

491 INTS9 0.6 2.17E-07 25592 
 

745 NDUFS3 0.61 2.36E-05 7710 

238 ITSN1 1.56 3.19E-05 6183 
 

492 FUT6 0.6 2.30E-07 4017 
 

746 ECSIT 0.65 2.37E-05 29548 

239 TXNIP 1.53 3.23E-05 16952 
 

493 ACO2 0.6 2.36E-07 118 
 

747 UBE2J2 0.65 2.39E-05 19268 

240 IL1R1 1.54 3.25E-05 5993 
 

494 TUSC2 0.6 2.37E-07 17034 
 

748 CENPA 0.64 2.40E-05 1851 

241 JMJD1C 1.66 3.33E-05 12313 
 

495 APEH 0.6 2.40E-07 586 
 

749 PTGES2 0.65 2.43E-05 17822 

242 IGF1 1.56 3.33E-05 5464 
 

496 TIMM50 0.6 2.51E-07 23656 
 

750 PLEKHJ1 0.64 2.46E-05 18211 

243 TSPYL2 1.52 3.34E-05 24358 
 

497 TACC3 0.6 2.57E-07 11524 
 

751 ARHGEF10L 0.64 2.52E-05 25540 

244 LOXL2 1.57 3.44E-05 6666 
 

498 LSM7 0.6 2.76E-07 20470 
 

752 GPN2 0.64 2.53E-05 25513 

245 MXRA7 1.52 3.44E-05 7541 
 

499 COPE 0.6 2.91E-07 2234 
 

753 RTN4IP1 0.61 2.57E-05 18647 

246 TSC22D2 1.52 3.56E-05 29095 
 

500 MCAT 0.6 3.01E-07 29622 
 

754 PBK 0.65 2.59E-05 18282 

247 ADAM12 1.52 3.59E-05 190 
 

501 MRPS7 0.6 3.09E-07 14499 
 

755 ZBTB24 0.65 2.61E-05 21143 

248 MGP 1.52 3.68E-05 7060 
 

502 TMEM177 0.6 3.11E-07 28143 
 

756 SFT2D3 0.65 2.64E-05 28767 

249 PCDHB5 1.66 3.69E-05 8690 
 

503 SDHAF1 0.6 3.12E-07 33867 
 

757 HSPBP1 0.64 2.65E-05 24989 

250 TCEAL7 1.56 3.88E-05 28336 
 

504 CDX1 0.6 3.32E-07 1805 
 

758 FAM169A 0.65 2.75E-05 29138 

251 FRY 1.55 3.89E-05 20367 
 

505 GMNN 0.6 3.39E-07 17493 
 

759 LRRC59 0.65 2.78E-05 28817 

252 MMP24-AS1 1.54 3.95E-05 44421 
 

506 CCDC94 0.6 3.59E-07 25518 
 

760 NHP2 0.64 2.79E-05 14377 

253 CREBRF 1.54 4.03E-05 24050 
 

507 TCF20 0.6 3.61E-07 11631 
 

761 PFDN6 0.65 2.79E-05 4926 

254 VEGFC 1.54 4.03E-05 12682 
 

508 FOXD2 0.6 3.63E-07 3803 
 

762 MRPS27 0.64 2.84E-05 14512 

255 SPARC 1.55 4.11E-05 11219 
       763 IRF1 0.64 2.93E-05 6116 

            764 QARS 0.65 2.96E-05 9751 

            765 NOP14 0.65 2.97E-05 16821 
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