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SUMMARY 
 

The hyper-arid Atacama Desert (North Chile) is one of the most challenging 

polyextreme environments on Earth due to its hyper-aridity, extreme solar 

irradiance, both ultraviolet radiation (UVR) and photosynthetic active radiation 

(PAR), high day/night temperature fluctuations and, in some cases, high salinity. 

Despite the combination of extreme environmental conditions, microbial life has 

found a refuge in endolithic (inside rocks) microhabitats, as in other arid deserts, 

in diverse lithic substrates (gypcrete, granite, calcite, gypsum crust, halite and 

ignimbrite). Endolithic microhabitats are constituted by a network of pores and 

fissures connected to the surface within semi-translucent rock known to provide 

protection from lethal UVR and excess of PAR, as well as enhance moisture 

availability. Despite the fact that the light regime within rocks seems very scarce, 

the microbial communities in these microhabitats are photosynthetic-based, so 

that oxygenic phototrophic primary producers (mainly cyanobacteria) support 

a diversity of heterotrophic microorganisms. Due to the harsh conditions the 

cyanobacterial community is usually dominated by members of the 

Chroococcidiopsis genus, characterized by their extremely high resistance to 

ionizing radiation and desiccation.  

The scope of this doctoral thesis is to explore the endolithic life, paying special 

attention to the phototrophic fraction that supports the microbial community 

and its adaptations strategies and acclimation capacity, by adopting a 

multidisciplinary approach.  This main goal is addressed in four chapters.   

In Chapter 1 the biogeography of microbial communities in three different 

endolithic microhabitats of gypcrete was investigated through a pioneering 

approach, on a micro scale. Microhabitat architecture was characterized using 

Scanning Electron Microscopy in BackScattered Electron mode (SEM-BSE) and 

Computerized Tomography (CT-Scan) along with the exploration of the 
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composition and diversity of the endolithic microbial communities by means of 

high-throughput sequencing. These results demonstrated that microhabitats 

less exposed to sun radiation showed a lower diversity in the endolithic 

community, as well as the presence of unique cyanobacteria taxa. Thus, it was 

suggested that the differences in the habitable architecture of a microhabitat, 

even within the same piece of lithic substrate, determines microbial community 

diversity and composition. 

Chapter 2 was focused on describing the cyanobacterial community inhabiting 

the hypersaline endolithic microhabitat of halite in one of the driest locations on 

Earth, Yungay. The morphology and ultrastructure of the obtained 

cyanobacterial isolates from Chroococcidiopsis genus along with the 

cyanobacterial aggregates was characterized by means of a combination of 

microscopy techniques (light, fluorescence and transmission electron 

microscopy (TEM)). The development of a specific DNA isolation protocol 

allowed to perform a phylogenetic study and describe the adaptation strategies 

to osmotic stress through whole genome sequencing of the Chroococcidiopsis 

isolated strain. The comparison of the Chroococcidiopsis isolate features with 

those of the major cyanobacteria observed inhabiting the halite endolithic 

habitat pointed to Chroococcidiopsis as the dominant cyanobacterium in the 

halite endolithic habitat in Yungay. 

In Chapter 3, the response to UVR and PAR of Chroococcidiopsis strains isolated 

from the chasmoendolithic microhabitat of calcite and the cryptoendolithic 

microhabitat of halite was addressed. Oxidative stress was evaluated by studying 

Reactive Oxygen Species (ROS) accumulation, through spectrofluorometric 

measurements and microscopy observations, and the adaptation strategies of 

the cyanobacterial isolates to oxidative stress were described thanks to whole 

genome sequencing. In addition, the accumulation of the UV-screening 

compound scytonemin was evaluated through high performance liquid 

chromatography (HPLC) along with the metabolic activity and ultrastructural 
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characterization studied by microscopy techniques (fluorescence microscopy 

and TEM). The results revealed differences in their acclimation to similar 

microhabitats exposed to slightly different light conditions. This suggested 

specific adaptation strategies related to their original microhabitat and a strain-

specific environmental pressure selection.  

In Chapter 4, the bioactive compounds present in four cyanobacterial strains 

from the Chroococcidiopsis and Gloeocapsopsis genera isolated from different 

endolithic microhabitats and lithic substrates were explored. Bioassays 

(antibacterial and cytotoxicity), liquid chromatography tandem mass 

spectrometry (LC-MS/MS) and genomic tools (identification, annotation and 

analysis of secondary metabolites gene clusters-antiSMASH) were used to 

determine the actual and potential activity of each strain. The results showed a 

large number of compounds actually and potentially produced by the studied 

cyanobacterial strains with weak antibacterial activity and important cytotoxic 

activity against cancer cells. This suggests that cyanobacterial strains from this 

polyextreme environment constitute a promising source of natural products of 

biomedical interest.   

The set of results presented in this thesis suggests the importance of a “micro” 

perspective when analyzing the distribution and composition of microbial 

communities colonizing such a restrictive microhabitat as the endolithic. The 

microenvironmental conditions in each microhabitat and substrate and the 

specific biotic interactions determine the whole selection of genotypes and 

phenotypes able to colonize efficiently each microhabitat and lithic substrate in 

a polyextreme environment. 

This thesis, which aims to understand the ecology and behavior of endolithic 

microbial communities in extreme environments, encourages further studies 

towards understanding the limits of life, offering a new perspective on 
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environmental selection due to the abiotic and biotic factors that occur in a 

microhabitat as particular as the endolithic. 

RESUMEN 
 

El desierto de Atacama, en el norte de Chile, es uno de los ambientes 

poliextremos más desafiantes de la Tierra debido a su hiperaridez, radiación 

solar extrema, tanto radiación ultravioleta (UVR) como radiación fotosintética 

activa (PAR), grandes fluctuaciones de temperatura entre el día y la noche e 

incluso, en algunos casos, alta salinidad. A pesar de la combinación de 

condiciones ambientales extremas, la vida microbiana ha encontrado refugio en 

los llamados microhábitats endolíticos (dentro de las rocas), como ocurre en 

otros desiertos, en diversos sustratos líticos (yeso, granito, calcita, halita e 

ignimbrita). Los microhábitats endolíticos están constituidos por una red de 

poros y fisuras conectados a la superficie en rocas semitraslúcidas que protegen 

de los letales efectos del UVR y PAR, a la vez que facilitan la retención de agua. A 

pesar de que el régimen de luz dentro de las rocas aparenta ser escaso, las 

comunidades microbianas que habitan estos microhábitats están basados en 

microorganismos fotosintéticos, donde los productores primarios 

(principalmente cianobacterias) sostienen una diversidad de microorganismos 

heterótrofos. Debido a las severas condiciones ambientales, la comunidad de 

cianobacterias suele estar dominada por miembros del género Chroococcidiopsis, 

que se caracterizan por su extrema resistencia tanto a las radiaciones ionizantes 

como a la desecación.  

El objetivo de esta tesis doctoral es explorar la vida endolítica prestando especial 

atención a la porción fototrófica que sustenta a la comunidad microbiana y 

analizar sus estrategias de adaptación y capacidad de aclimatación, mediante el 

uso de un enfoque multidisciplinar.  Este objetivo principal se aborda en cuatro 

capítulos.   
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En el Capítulo 1 se realizó un estudio de la biogeografía de las comunidades 

microbianas en tres microhábitats endolíticos diferentes del yeso mediante una 

aproximación pionera, a escala micro. La arquitectura de los distintos 

microhábitats se caracterizó mediante microscopía electrónica de barrido en 

modo de electrones retrodispersados (SEM-BSE) y el análisis por tomografía 

computarizada (CT-Scan). Por otro lado, se estudió la estructura, composición y 

diversidad de las comunidades microbianas endolíticas de los diferentes 

microhábitats del yeso por medio de secuenciación masiva de ADN. Estos 

resultados mostraron que los microhábitats menos expuestos a la radiación solar 

presentaban una comunidad endolítica menos diversa albergando, a su vez, 

taxones de cianobacterias únicos. Este escenario sugiere que las diferencias en 

la arquitectura habitable de un microhábitat, incluso dentro de una misma pieza 

de sustrato lítico, determinan la diversidad y composición de la comunidad 

microbiana. 

El Capítulo 2 se orientó a la descripción de la comunidad de cianobacterias 

presente en el microhábitat endolítico hipersalino de la halita, específicamente 

en las halitas que se encuentran en uno de los lugares más secos de la Tierra, 

Yungay. En primer lugar, se caracterizaron mediante una combinación de 

técnicas de microscopía (óptica, fluorescencia y microscopía electrónica de 

transmisión (TEM)) la morfología y ultraestructura de las cianobacterias 

aisladas de este microhábitat, identificadas como género Chroococcidiopsis, y las 

de los agregados presentes en el sustrato. Por otro lado, se realizó un estudio 

filogenético y se describieron las estrategias de adaptación al estrés osmótico 

mediante la secuenciación del genoma completo de la cepa aislada de 

Chroococcidiopsis, para lo que fue necesario el desarrollo y puesta a punto de un 

protocolo específico de extracción de ADN. Los resultados derivados de 

comparar las características del cultivo de Chroococcidiopsis con los de las 

cianobacterias mayoritarias observadas en el hábitat endolítico de la halita 
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indicaron que Chroococcidiopsis es el género de cianobacterias dominante en el 

hábitat endolítico de las halitas de Yungay. 

En el Capítulo 3 se abordó la respuesta a la UVR y la PAR de cepas de 

Chroococcidiopsis aisladas del microhábitat casmoendolítico de la calcita y del 

microhábitat criptoendolítico de la halita. Se evaluó la respuesta al estrés 

oxidativo mediante el estudio de la acumulación de especies reactivas de oxígeno 

(ROS) a través de mediciones espectrofluorométricas y microscopía de 

fluorescencia. También se pudieron describir las estrategias de adaptación al 

estrés oxidativo de las cepas de estudio gracias a la secuenciación del genoma 

completo. Se evaluó la acumulación de la scytonemina, un compuesto de 

protector frente a la UVR, mediante cromatografía líquida de alta resolución 

(HPLC), estudiándose a su vez la actividad metabólica y los cambios 

ultraestructurales mediante técnicas de microscopía (fluorescencia y TEM, 

respectivamente). Los resultados revelaron diferencias significativas entre la 

capacidad de aclimatación de ambas cepas procedentes de microhábitats 

endolíticos donde las condiciones lumínicas son ligeramente diferentes. Esto 

sugirió la existencia de presiones ambientales específicas en sus microhábitats 

de origen, donde las condiciones lumínicas son ligeramente diferentes, que 

seleccionarían adaptaciones y capacidades de aclimatación distintas en función 

de sus condiciones microambientales.  

En el Capítulo 4 se investigó acerca de los compuestos bioactivos producidos por 

cuatro cepas de cianobacterias de los géneros Chroococcidiopsis y Gloeocapsopsis 

aislados de diferentes microhábitats endolíticos y sustratos líticos. Para 

determinar la actividad real y potencial de cada cepa se utilizaron bioensayos 

(antibacterianos y citotoxicidad), cromatografía líquida espectrometría de 

masas en tándem (LC-MS/MS) y herramientas genómicas (identificación, 

anotación y análisis de grupos de genes de metabolitos secundarios -

antiSMASH). Los resultados evidenciaron un gran número de compuestos reales 

y potencialmente producidos por las cepas de cianobacterias estudiadas, cuyos 
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extractos mostraron una débil actividad antibacteriana pero importante 

actividad citotóxica contra las células cancerosas. Esto sugiere que las cepas de 

cianobacterias de este ambiente poliextremo constituyen una fuente 

prometedora de productos naturales de interés biomédico.   

El conjunto de resultados presentados en esta tesis doctoral sugiere la 

importancia de aplicar una escala "micrométrica" a la hora de analizar la 

distribución y composición de las comunidades microbianas que colonizan un 

microhábitat tan restrictivo como el endolítico. De esta manera, las condiciones 

microambientales de cada microhábitat en cada sustrato lítico y las interacciones 

bióticas específicas determinan la selección de genotipos y fenotipos capaces de 

colonizar eficientemente cada microhábitat y sustrato lítico en un ambiente 

poliextremo. 

Esta tesis, que tiene por objeto comprender la ecología y el comportamiento de 

las comunidades microbianas endolíticas en ambientes extremos, anima a llevar 

a cabo estudios adicionales para comprender los límites de la vida, ofreciendo 

una nueva perspectiva sobre la selección ambiental debida a los factores 

abióticos y bióticos que se dan en un microhábitat tan particular como el 

endolítico.
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“Everything is everywhere, but, the environment selects” 

The statement developed by Professor Lourens Gerhard Marinus Baas-Becking 

(1934) in the book Geobiologie of inlerding tot de milieukunde (Geobiology or 

introduction to the science of the environment) which established the most 

referred principle for microbial biogeography remains in discussion regarding 

the first half of the statement (everything is everywhere) (de Wit and Bouvier 

2006, O’Malley 2008, Bass and Boenigk 2011, Fontaneto and Hortal 2012, van 

der Gast 2015). Without going into detail about the literal interpretation of this 

statement, it can be considered, from a lukewarm position, that the distribution 

of microorganisms is connected with their high dispersal potential (in 

comparison to macroorganisms), although, their growth and colonization of each 

niche is limited by the environmental conditions (both biotic and abiotic) 

occurring there. Regarding the second half of the statement (but, the environment 

selects) extreme environments are some of the most palpable scenarios. Extreme 

environments are inhabited only by those microorganisms that, after reaching 

those emplacements, have been able to thrive in the respective physical or 

geochemical extreme condition or conditions (for example, temperature, 

radiation, pressure, desiccation, pH) (Rothschild and Mancinelli 2001).  

One of these types of extreme environments are deserts, which are distributed 

worldwide comprising over 30% of Earth’s land and as such represent the most 

extensive terrestrial biome (e.g. Pointing and Belnap 2012). Deserts can be 

classified based on their aridity by the aridity index (AI) which relates average 

annual precipitation (P) to potential evapotranspiration (PET), considering as 

arid regions those where P/PET is below 1 (Barrow 1992). According to this 

classification, hyper-arid deserts (AI<0.05) constitute the most extreme deserts, 

and usually combine a series of stress conditions simultaneously such as water 

stress, extreme high and low temperatures, scarcity of organic carbon, high solar 

radiation and osmotic stress (Pointing and Belnap 2012). While these 

environments can be considered polyextreme, they may be inhabited by 
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microbiota able to survive in such multiple extreme conditions. Hence, 

polyextreme environments are excellent microbial ecology models for the study 

of the biochemical resistance mechanisms of microorganisms.  

What sets the Atacama Desert apart 

Among others deserts, the Atacama Desert (North Chile) is perhaps the most 

challenging polyextreme environment on Earth and the most barren region 

imaginable. Its hyper-arid climate is the result of the confluence of a subtropical 

high-pressure zone, the cold Humboldt Current on the coast, offshore winds, as 

well as the Andean rain-shadow effect and the latitudinal position of the region 

(Houston and Hartley 2003). The Longitudinal Valley of the Atacama Desert is 

the driest place on Earth (Hartley et al. 2005; Houston and Hartley 2003) with 

scarce precipitations of 3.27 mm yr-1 (McKay et al. 2003; Wierzchos et al. 2012a) 

and an extremely low mean annual relative humidity (RH) of 17.3%, as reported 

by (Azúa-Bustos et al. 2015). Further, this desert holds another world record: the 

highest surface ultraviolet radiation (UV) (UV index above 20 in summer season 

(Cordero et al. 2018)), photosynthetic active radiation (PAR up to 2700 μmol       

m -2 s -1) and annual mean surface solar radiation (up to 312 Wm-2). Altogether, 

the hyper-aridity, solar irradiance, high day/night temperature fluctuations (up 

to 60°C; J. Wierzchos unpublished results) and in some cases high salinity, make 

the Atacama Desert an exceptional polyextreme environment. 

The last refuge for life in the Atacama Desert  

In this inhospitable polyextreme desert, microbial life has found a refuge in very 

specific endolithic (inside rocks) microhabitats, which consist of a network of 

pores and fissures connected to the surface within semi-translucent rock (rev. 

by (Wierzchos et al. 2018; Wierzchos et al. 2012b). Three different rock locations 

of these endolithic habitats have been described within rocks of the Atacama 

Desert: cryptoendolithic (occupying pore spaces in the rock), chasmoendolithic 

(living within cracks and fissures in the rock), and hypoendolithic (living inside 
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the rock but close to the soil interface at the bottom). Endolithic colonization can 

be viewed as a stress avoidance strategy whereby the overlying mineral 

substrate provides certain protection from incident lethal UV and PAR radiation, 

and also offers enhanced moisture availability (Walker and Pace 2007; 

Wierzchos et al. 2012b). These habitats are as diverse as the interior of gypsum 

(DiRuggiero et al. 2013; Ziolkowski et al. 2013), gypcrete (Meslier et al. 2018; 

Vítek et al. 2016; Wierzchos et al. 2015), calcite (Meslier et al. 2018; DiRuggiero 

et al. 2013), volcanic rocks (ignimbrite and rhyolite) (Meslier et al. 2018; Vítek 

et al. 2017; Crits-Christoph et al. 2016b; Cámara et al. 2015; Wierzchos et al. 

2013; DiRuggiero et al. 2013) and granite (Meslier et al. 2018).  

These microbial communities, regardless of the position they occupy in the rock 

or the type of rock are supported by oxygenic phototrophic primary producers 

supporting a diversity of heterotrophic microorganisms (rev. in Wierzchos et al. 

2018). Molecular and microscopy characterization of these endolithic microbial 

communities shows that, overall, these communities are dominated by 

Cyanobacteria, mostly from the Chroococcidiopsis genus, and Actinobacteria, 

Proteobacteria, Chloroflexi, Bacterioidetes and Euryarchaeota phyla (Meslier et 

al. 2018).   

The dominant phylum: Cyanobacteria 

Cyanobacteria are photosynthetic prokaryotes that inhabit most types of 

illuminated environments, constituting one of the most important group of 

organisms quantitatively on Earth (estimated 1015 g wet biomass, García-Pichel 

et al. 2003) whose record extends back to about 3,500 million years ago (Whitton 

and Potts, 2012). This phylum is currently divided in 8 orders: Gloeobacteriales, 

Synechococcales, Spirulinales, Pleurocapsales, Chroococcidiopsidales, 

Chroococcales, Oscillatoriales and Nostocales (Komárek et al. 2014). The 

diversity of families comprises unicellular and filamentous members 

occasionally occurring in colonies with a cellular division in one, two or more 

planes leading to diverse tridimensional configurations.  
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The environmental pressures present in the hyper-arid Atacama Desert 

described above constitute the second half of the Baas-Becking (1934) statement 

(but, the environment selects). Thus, only microorganisms or microbial 

communities able to deal with the polyextreme environmental conditions can be 

found inhabiting endolithic communities in this desert. Due to these 

circumstances the cyanobacterial community in these endolithic microhabitats 

is usually dominated by members belonging to the extremely resistant to 

ionizing radiation and desiccation Chroococcidiopsis genus (Meslier et al. 2018, 

Crits-Christoph et al. 2016b, Billi et al. 2000, Cockel et al. 2005). In order to deal 

with the extreme conditions in the Atacama Desert, especially those affecting 

their photosynthetic activity, these organisms have been found to count on 

several strategies (Vítek et al. 2017, Wierzchos et al. 2015, Vítek et al. 2016).  

Some of these adaptations include changes in carotenoid composition (Vítek et 

al. 2017), which could have a possible role in mediating a non-photochemical 

quenching mechanism (Kirlovsky and Kerfeld 2016) or the synthesis of large 

amounts of the UV-screening pigment, scytonemin (Vítek et al. 2016, Vítek et al. 

2014a, Vítek et al. 2012, Vítek et al. 2010) to avoid photoinhibition and 

photooxidative damage.   

Cyanobacteria exhibit a large variety of secondary metabolites (alkaloids, toxins, 

lactones, amino acids, peptides, lipopeptides, polyketides and lipids) (Mazur-

Marzec et al. 2015). It has been suggested that, at least some of them, would 

constitute an element of the adaptive strategies enabling them to survive in a 

wide range of physical and chemical conditions (Kultschar and Llewellyn 2018). 

Thus, considering these substances as a worthy source of new therapeutic lead 

compounds, cyanobacterial strains from still unexplored and polyextreme 

habitats as the Atacama Desert could serve as good candidates in this regard.  



General introduction 

 

7 
 

Understanding the endolithic microhabitat, community and 

mainstream members  

Motivated by the general scenario outlined above, this PhD thesis embarks on a 

multidisciplinary journey in the endolithic life of the polyextreme Atacama 

Desert. This cruise has been conducted through the exploration of the micro-

scale differences in the microhabitats and their effects on the microbial 

community, drawing attention to the main inhabitants of those communities and 

basis of the trophic chain, cyanobacteria, and their responses and adaptations to 

the extreme environmental conditions, considering their potential applications 

in the biomedical field.  
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This thesis is framed in the context of the geomicrobiology and microbial ecology 

of endolithic communities from the Atacama Desert. The work developed 

throughout the different chapters aims to explore endolithic life from different 

perspectives, with special attention to the phototrophic fraction that supports 

the microbial community, by means of the use of a multidisciplinary approach 

with molecular, microscopy and analytical techniques. This holistic basis seeks 

to allow for a more comprehensive understanding of how the endolithic life 

occurs, behaves and responds to the polyextreme environment of the Atacama 

Desert.  

The structure of the thesis along with the outlook and specific objectives of each 

chapter is listed below. 

 

Chapter 1: Endolithic communities’ composition in gypcrete is 

determined by the specific microhabitat architecture 

This chapter addresses the exploration of the microbial communities inhabiting 

three different types of endolithic microhabitats (cryptoendolithic, 

chasmoendolithic and hypoendolithic) in gypcrete from the Monturaqui area.  

Specific goals:  

 Identification of the impact of the architectural features of each 

endolithic microhabitat in gypcrete (cryptoendolithic, chasmoendolithic 

and hypoendolithic) on the availability and access to the resources that 

drive the communities’ composition and diversity.  

 Determination of abiotic drivers on the composition of endolithic 

microbial communities’ on gypcrete. 

In order to achieve these goals, a combination of microscopy techniques (SEM-

BSE, light microscopy, CT-Scan) was used to characterize the microhabitat 
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architecture, as well as high-throughput sequencing (16S rRNA gene amplicon 

sequencing) to characterize the endolithic microbial communities’ composition 

and diversity.   

 

Chapter 2: Chroococcidiopsis, the hidden cyanobacterium supporting 

the endolithic community of halite in Yungay. 

This chapter addresses the exploration of the cyanobacterial members of the 

endolithic community inhabiting halite rocks in Yungay, one of the driest 

locations on Earth, and their specific adaptations to the polyextreme 

environment. 

Specific goals:  

 Determination of the discussed identity of the major cyanobacterial 

component sit on the endolithic microbial community of halite from 

Yungay. 

 Identification of the molecular and ultrastructural tools of this major 

cyanobacterium to deal with extreme osmotic stress.  

These goals were addressed through the morphological and ultrastructural 

characterization of the cyanobacterial community in halite and of cyanobacterial 

isolates using microscopy techniques (light and fluorescence microscopy, TEM).  

The phylogenetic study (16S rRNA gene) was performed by means of the 

development of a new DNA isolation procedure and the description of the 

molecular strategies of the cyanobacterial isolate to deal with osmotic stress 

through the whole genome sequencing    
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Chapter 3: Dealing with one of the highest solar radiation on Earth: 

response of Chroococcidiopsis strains from the Atacama Desert. 

This chapter analyses the different levels of response of two Chroococcidiopsis 

strains against UVR and PAR, isolated from the cryptoendolithic microhabitat of 

halite in Yungay (studied in Chapter 2) and from the chasmoendolithic 

microhabitat of Calcite from the Valle de la Luna area.  

Specific goals:  

 Diagnose the stress response to UVR and PAR of cyanobacterial strains 

belonging to the major genus Chroococcidiopsis. 

 Identify the relation between features related to the original 

microenvironmental conditions of each strain with differences in the 

stress response of each of them. 

 Understand if acclimation strategies developed by these cyanobacterial 

strains have a protective role against UVR for the whole microbial 

community. 

The specific goals of this chapter are addressed through the analysis of the 

response to UVR in the short and long term by means of a combination of 

analyses. The short-term response, oxidative stress, was evaluated by studying 

ROS accumulation (through spectrofluorometric measurements and microscopy 

observations) and the description of the molecular strategies of the 

cyanobacterial isolates to deal with oxidative stress through whole genome 

sequencing. The long-term response was evaluated by studying the 

accumulation of the UV-screening compound scytonemin (HPLC), the analysis of 

metabolic activity (fluorescence microscopy) and ultrastructural 

characterization (TEM).   
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Chapter 4: Bioactivity of secondary metabolites produced by 

cyanobacteria isolated from the Atacama Desert 

This chapter addresses the screening for bioactivity of the secondary metabolites 

of four cyanobacterial strains isolated from endolithic communities from 

different substrates and microhabitats: three Chroococcidiopsis strains isolated 

from the cryptoendolithic microhabitat of Yungay halite (studied in Chapters 2 

and 3), from the chasmoendolithic microhabitat of calcite of Valle de la Luna 

(studied in Chapter 3), and from the cryptoendolithic microhabitat of ignimbrite 

of Monturaqui and one strain of Gloeocapsopsis strains isolated from the 

chasmoendolithic microhabitat of gypcrete from Monturaqui.  

Specific goals:  

 Explore the potential of cyanobacteria from the polyextreme 

environment of the Atacama Desert in the actual and potential 

production of novel bioactive compounds  

The proposed goal has been addressed by means of a multidisciplinary approach 

combining bioassays (antibacterial and MTT assay), LC-MS/MS and genomic 

tools (identification, annotation and analysis of secondary metabolites gene 

clusters-antiSMASH).  

 

Currently, the manuscripts corresponding to the different chapters are in 

preparation for their publication. Nevertheless, during the development of my 

PhD I participated in eight scientific publications tightly related with the content 

of this thesis:  

Crits-Christoph, A., Gelsinger, D.R., Ma, B., Wierzchos, J., Ravel, J., Davila, A., Casero, M.C. 

and Jocelyne DiRuggiero. (2016) Functional interactions of archaea, bacteria, and viruses 

in a hypersaline endolithic community. Environmental Microbiology 18(6), 2064-2077 



Goals and thesis structure 

 

15 
 

Crits-Christoph, A., Robinson, C.K., Ma, B., Ravel, J., Wierzchos, J., Ascaso, C., Artieda, O., 

Souza-Egipsy, V., Casero, M.C. and DiRuggiero, J. (2016) Phylogenetic and Functional 
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CHAPTER 1: ENDOLITHIC COMMUNITIES COMPOSITION IN 

GYPCRETE IS DETERMINED BY THE SPECIFIC MICROHABITAT 

ARCHITECTURE 

1.1. Abstract 

Endolithic microhabitats have been described as the last refuge for life in arid 

and hyper-arid deserts where life has to deal with harsh environmental 

conditions. A number of rock substrates from the hyper-arid Atacama Desert, 

colonized by endolithic microbial communities, such as halite, gypcrete, calcite 

and ignimbrite, have been characterized and compared using different 

approaches. In this chapter, three different endolithic microhabitats are 

described, each one with a particular architecture, found within a lithic substrate 

known as gypcrete. Gypcrete, an evaporitic rock mainly composed of gypsum 

(CaSO4·2H2O) and collected in the Cordon de Lila area of the desert (Preandean 

Atacama Desert), was found to harbor cryptoendolithic (pores beneath rock 

surface), chasmoendolithic (cracks and fissures) and hypoendolithic 

(microcave-like pores in rock-bottom layer) microhabitats. A combination of 

microscopy techniques and high-throughput sequencing approaches were used 

to characterize the endolithic communities at the microscale in different 

microhabitats within the same piece of lithic substrate. Microscopy techniques 

revealed differences in the architecture of the endolithic microhabitats and in 

the distribution of the microorganisms within those microhabitats. 

Cyanobacteria and Proteobacteria were dominant in the endolithic communities, 

of which the hypoendolithic community was the least diverse and hosted unique 

taxa. These results show, for the first time, that the differences in the habitable 

architecture of a microhabitat, even within the same piece of lithic substrate, 

might be an essential factor in shaping the diversity and composition of 

endolithic microbial communities. The microscale dimension and peculiar 

diversity distribution in this unique environment has led us to coin the new term 

“microbiogeography“.   
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1.2. Introduction 

Desert microbial communities are adapted to extreme environmental conditions 

and are particularly sensitive to changes in water availability, which may alter 

their desiccation-tolerance traits (She et al. 2018). In both hot and cold deserts, 

these communities are subject to high solar ultraviolet radiation (UVR) and 

photosynthetic active radiation (PAR), water scarcity, intense desiccation, strong 

temperature fluctuations, and oligotrophic conditions (Wierzchos et al. 2012b; 

Billi et al. 2017). These environments can be considered as polyextreme 

environments and could be inhabited by polyextremophilic and/or 

polyextremotolerant microorganisms (sensu McElroy, 1974) surviving under 

multiple extreme conditions.  

Microorganisms from desert communities have been used as model systems to 

investigate the limits of life (Dassarma 2006; Pikuta et al. 2007), and a number 

of studies have addressed their metabolic diversity and survival strategies 

(Dassarma 2006; Pointing and Belnap, 2012; Wierzchos et al. 2018). 

Additionally, since the most arid and hyper-arid deserts around the world 

(Atacama, Chile; Dry Valley, Antarctica; Mojave, USA; The Qaidam Basin, China) 

are analogues for Mars environments, the study of desert extremophiles might 

help us guide our search for life elsewhere (Fairén et al. 2010; Foing et al. 2011; 

Smith et al. 2014; Xiao et al. 2017; Bull et al. 2018). More recently, extremophiles 

have received attention in applied research as potential sources for high-value 

bioactive compounds or enzymatic activities at high temperatures due to their 

ability to resist extreme environmental conditions (Finore et al. 2016; Stan-

Lotter and Fendrihan 2017; Neifar et al. 2015; Sayed et al. 2019). 

In the world’s arid and hyper-arid deserts, microorganisms find refuge inside 

rock substrates as a survival strategy, colonizing what is known as the endolithic 

habitat (Golubic et al. 1981; Wierzchos et al. 2012b). Apart from the above-

mentioned interest in the ability of these microorganisms to survive extreme 
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environments, the interest of this type of microbial communities also lies in their 

peculiar isolated structure. Thus, they can be observed as “living fossils” of 

endolithic microbial communities of the Proterozoic and Archean, since they are 

known to have already exist in those periods (Mergelov et al. 2018). Nowadays, 

there are many examples of these endolithic microbial communities (EMCs), 

which are photosynthetic-based with primary producers supporting the 

diversity of heterotrophic microorganisms (Friedmann, 1980; Walker and Pace 

2007, de los Ríos et al. 2014), and more specifically, in the Atacama Desert 

(Wierzchos et al. 2006; Wierzchos et al. 2012b; Wierzchos et al. 2018).  

Several ecological features of the EMCs, originally proposed by (Friedmann and 

Ocampo-Friedmann 1984) and later summarized by (Walker and Pace 2007), 

include the following:  

a. EMCs are among the simplest microbial ecosystems. 

b. EMCs are characterized by a core group of microorganisms that co-occur 

within a defined habitat. 

c. The extreme endolithic environment is seeded from a relatively small 

reservoir of microorganisms highly acclimated to this unique 

environment.  

d. The composition of EMCs is influenced by biogeography and 

environmental factors such as the physical and chemical properties of 

substrates and climate.  

Most studies of EMCs from the Preandean Depression of the Atacama Desert 

have focused on the determination of (i) the diversity, structure and composition 

of the communities (who is there?) (Crits-Christoph et al. 2016b; Meslier et al. 

2018; DiRuggiero et al. 2013), (ii) the physico-chemical structure of the 

substrate, also called architecture (Wierzchos et al., 2015), and the spatial 

organization of the community within that substrate (where are they?) 

(Wierzchos et al. 2015;  Meslier et al. 2018; Cámara et al. 2015), and (iii) the 
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acclimation strategies at the community and/or cellular levels (how are they able 

to survive?) (Wierzchos et al. 2015; Vítek et al. 2016; Vítek et al. 2017).  

1.2.1. A multidisciplinary approach to describe EMCs structure, 

composition and spatial arrangement 

The first reports on EMCs from hyper-arid deserts involved the use of direct 

microscopy methods to visualize the microbe-rock interface and the endolithic 

settings [(Wierzchos and Ascaso 2001) and references here in]. At the time, 

EMCs were mostly characterized by their phototrophic members (prokaryotic or 

eukaryotic-based communities), because of the difficulty in identifying 

heterotrophic members solely based on their morphology (Friedmann et al. 

1988; de los Ríos et al. 2014). Early identifications of the heterotrophic 

component of EMCs were performed using culture-based methods (Hirsch et al. 

1988, Siebert and Hirsh 1988) but because of the limitations of these methods, 

their diversity remained largely unexplored at the time. The emergence of high-

throughput sequencing tools has deeply changed our view of microbial diversity 

across ecosystems, including that of the endolithic habitat (Walker and Pace 

2007). Nowadays, characterization of EMCs, including those found in the 

Preandean area of the Atacama Desert, is done through a multidisciplinary 

approach that involves vanguard microscopy and molecular tools (Fig. 1.1). 

The main contributions of microscopy and microanalytical tools to the study of 

EMCs have been the visualization and characterization of the microhabitats, 

including the spatial distribution of the microorganisms within them (Fig. 1.2). 

Scanning electron microscopy in backscattered electron mode (SEM-BSE) was 

essential in defining the different endolithic microhabitats and types of 

colonization. Thus, three different endolithic microhabitats were described (Fig. 

1.3): (i) the cryptoendolithic habitat (Golubic et al. 1981), where microorganisms 

colonized the pore spaces of the lithic substrate, (ii) the chasmoendolithic 

habitat (Golubic et al. 1981), characterized by colonized cracks and fissures, and 
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(iii) the hypoendolithic habitat (Wierzchos et al. 2011; 2015), where the 

colonization is located underneath the lithic substrate. 

SEM-BSE has also provided invaluable information on the distribution of the 

microorganisms within each of these microhabitats (Wierzchos et al. 2011, 

Wierzchos et al. 2013, Wierzchos et al. 2018, Cámara et al. 2015, Crits-Christoph 

et al. 2016b, DiRuggiero et al. 2013, Meslier et al. 2018) and, together with 

computed tomography scanning (CT-Scan), has allowed the description of the 

substrate’s architecture (Wierzchos et al. 2018). Substrate architecture has been 

defined as the space available for colonization, and includes the pores, fissures, 

and cracks of the substrate and how they are connected to the surface, as was 

shown by Wierzchos et al. (2015). The use of SEM at low temperatures (LT-SEM) 

offered additional information, such as the cytological identification of cells in 

situ and the characterization of their ultrastructural features (Wierzchos and 

Ascaso 2001). Other microscopy methods, such as bright field microscopy, led to 

the identification of the major phototrophic members (Wierzchos and Ascaso 

2001, Wierzchos et al. 2013, Wierzchos et al. 2015), while fluorescent 

microscopy and confocal laser scanning microscopy (CSLM) gave us essential 

information about the metabolic status of the microorganisms inhabiting EMCs. 

In particular, these methods revealed assemblages of living and intact dead cells 

(Wierzchos et al. 2011), as well as the spatial organization of cyanobacterial 

aggregates surrounded by extracellular polymeric substances (EPSs) (Crits-

Christoph et al. 2016b, Robinson et al. 2015) and embedded in a matrix of 

heterotrophic microorganisms (Wierzchos et al. 2011).  Microanalytical tools 

such as Energy Dispersive X-ray spectroscopy (EDS) coupled with SEM-BSE have 

further shed light on the spatial arrangements of microbial cells around sepiolite 

nodules in gypcrete rocks (Wierzchos et al 2015, Meslier et al. 2018). This is of 

great significance because sepiolite is a mineral with a high capacity for water 

retention. X-ray powder diffraction (XRD) has also revealed the mineral 

composition of many different lithic substrates such as calcite, ignimbrite, and 
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gypcrete (Wierzchos et al 2015, Meslier et al. 2018). Raman spectroscopy has 

been used to characterize the distribution of pigments in the endolithic 

microhabitat of gypcrete, ignimbrite and halite (Vítek et al. 2010; Vítek et al. 

2013; Vítek et al. 2014a; Vítek et al. 2014b; Vítek et al. 2016;Vítek et al. 2017). 

Microscopy tools, combined with culture-independent methods such as 

denaturing gradient gel electrophoresis (DGGE) (Wierzchos et al. 2013; Cámara 

et al. 2015) and, more recently, Next Generation Sequencing (NGS) (DiRuggiero 

et al. 2013; Meslier et al. 2018; Crits-Christoph et al. 2016b; Wierzchos et al. 

2015), have been used to characterize the phylogenetic diversity of EMCs. 

Pioneer studies have demonstrated discrepancies in biomass estimates between 

microscopy and molecular methods. For example, Dong et al. (2007) reported 

that cyanobacteria in gypsum surface crust endolithic communities represented 

95% of the community when using microscopy, whereas the number fell to 40% 

when molecular methods were used. They suggested that those differences were 

potentially the result of contamination, of the difficulty in isolating DNA from 

cyanobacteria, and of the bias introduced by amplification of the DNA by PCR 

(Dong et al. 2007). Today, molecular tools such as amplicon sequencing of 

marker genes (i.e. 16S rRNA gene) and whole genome shotgun sequencing 

(WGS), combined with microscopy methods, have led to a more comprehensive 

description of the endolithic microbiome. Habitats for these microbiomes 

include (i) the chasmoendolithic habitat of calcite (DiRuggiero et al. 2013; 

Meslier et al. 2018; Crits-Christoph et al. 2016b) and granite (Meslier et al. 2018), 

and (ii) the cryptoendolithic habitat found in gypcrete (Wierzchos et al. 2015; 

Dong et al. 2007; Meslier et al. 2018) and ignimbrite (Wierzchos et al. 2012b; 

Cámara et al. 2015; Crits-Christoph et al. 2016b; Meslier et al. 2018) (Table 1.1). 
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Figure 1.1. Research tools used to study EMCs classified by techniques and specific goals. 
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Some of the most diverse EMCs found in the Preandean Atacama Desert are those 

of gypcrete in Cordón de Lila and Tilocalar (Table 1.1). Phototrophs in these 

communities included Cyanobacteria (36-83%) and algae belonging to the 

Chlorophyta class. The algae were only detected at very low abundance, first 

through microscopy (Wierzchos et al. 2015); their occurrence was later 

confirmed by cloning of the 18S rRNA gene and by metagenome sequencing 

(Meslier, pers. com.). Major heterotrophic bacteria of the gypcrete EMCs 

included Actinobacteria (10-25%) and Proteobacteria (13-30%), and, at lower 

relative abundance, Chloroflexi (0-11%) and Gemmatimonadetes (0-6%) (Table 

1.1).   

Another highly diverse EMC of the Preandean area of the Atacama Desert is the 

chasmoendolithic community of calcite from the nearby Valle de la Luna area. In 

this substrate, primary producers exclusively included Cyanobacteria with a 

relative abundance of 50 to 60%, while the heterotrophs included Actinobacteria 

(10-20%), Proteobacteria (3-5%), Chloroflexi (0-11%) and Gemmatimonadetes 

(0-15%) (Table 1.1). Using WGS, Crits-Christoph et al. (2016b) identified 

additional heterotrophic bacteria with significant occurrence, such as 

Deinococcus-Thermus and Bacteroidetes.  

EMCs from ignimbrite and granite were found to harbor significantly less diverse 

communities than other EMCs of the Preandean Atacama. In these substrates 

Cyanobacteria were the only primary producers, reaching a relative abundance 

of 80% and 77% in ignimbrite and granite, respectively, while Proteobacteria 

relative abundances dropped below 5% in the ignimbrite community and below 

1% in the granite community (DiRuggiero et al. 2013; Crits-Christoph et al. 

2016b; Meslier et al. 2018). The low relative abundance of heterotrophic bacteria 

in these EMCs might be the result of the phototrophs’ low metabolic activity in 

harsher environments, leading to a reduced amount of fixed inorganic carbon 
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and limiting, in turn, the abundance and diversity of the heterotrophic 

component of the community (Wierzchos et al. 2018; Meslier et al. 2018). 

 

Figure 1.2. Cross-sections of lithic substrates and endolithic microbial 
communities within these habitats from the hyper-arid core of the Atacama 
Desert: halite (a–c); gypcrete (d–h); calcite (i–k) and ignimbrite (l–n). (a) A cross-section 
of halite (from the Yungay area) reveals a distinct gray layer representing the zone 
colonized by cryptoendoliths a few millimeters beneath the surface; the dark color is due 
to scytonemin, a UVR protective pigment produced by cyanobacteria. (Cont.) 
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Cont. legend Figure 1.2: (b) and (c) CLSM images of cryptoendoliths in halites from 
Yungay and Salar Grande respectively; cyanobacterial aggregates (red autofluorescence 
signal), associated heterotrophic bacteria and archaea (SYBR Green stained DNA 
structures – green signal) and scytonemin pigment (blue reflection laser light signal). d) 
SM view of the orange-to-green cryptoendolithic colonization layer comprising algae 
close to the gypcrete surface. (e) SEM-BSE image of alga (A) and detailed view of bacteria 
(arrow). (f) SEM-BSE image of cryptoendolithic cyanobacteria in gypcrete surrounding 
gypsum crystals (Gy) and attached to sepiolite (Sp). (g) SM view of a hypoendolithic 
habitat in gypcrete colonized by cyanobacteria (arrow) and shown in detail by CLSM in 
the image in (h). (i) SM view of the fissure wall of calcite colonized by chasmoendoliths 
(green color); other potentially colonized fissures are indicated with arrowheads. White 
arrow points to the calcite surface exhibiting microrill weathering features. (j) HD-CIM 
view of calcite microrills produced by dewfall at a depth of 1 mm; deep-coded image 
provides surface metrology details. (k) FM image of chasmoendolithic microorganisms 
within calcite rock showing undisturbed aggregates of viable and damaged 
cyanobacteria (red and green-blue autofluorescence respectively); extra polymeric 
substance sheaths surrounding cyanobacterial aggregates are also visible. (l) SM view of 
a cross-section of ignimbrite; arrow points to the distinct green layer of cryptoendolithic 
colonization beneath the rock surface. (m) Cryo-SEM image of cyanobacteria within a 
bottle-shaped pore with glass (Gl) shard walls. (n) CT-Scan 3D reconstruction showing 
pores (yellow signal) distributed within the ignimbrite rock. Abbreviations: CLSM — 
confocal laser scanning microscopy; SM — stereoscopic microscopy; SEM-BSE — 
scanning electron microscopy in backscattered electron detection mode; HD-CIM — high 
definition confocal and interference microscopy Leica DCM8 3D surface measurement 
system; FM — fluorescence microscopy; Cryo- SEM — scanning electron microscopy in 
low temperature mode; CT-Scan — computerized tomography scan; 3D — three 
dimensional. (From Wierzchos et al. 2018).  

Abiotic factors promoting the diversity and composition of EMCs in the 

Preandean Atacama have been investigated through a number of 

multidisciplinary approaches (DiRuggiero et al. 2013, Wierzchos et al. 2015, 

Crits-Christoph et al. 2016b, Meslier et al. 2018). These studies have shown that 

the rock architecture, i.e. the space available for colonization, defined by the size 

of the cracks, fissures, and pores and their connection among them and to the 

surface, tightly linked to substrate water retention capacities, was the main 

driver of community structure and diversity. In addition, certain properties of 

the substrates were also found to have beneficial effects on the EMCs; these 

include sepiolite nodules in gypcrete, which considerably increase the water 

retention capacity of the substrate, or the high thermal conductivity of calcite, 
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which assists dewfall formation (DiRuggiero et al. 2013, Wierzchos et al. 2015, 

Crits-Christoph et al. 2016b, Meslier et al. 2018). 

By colonizing rock substrates, EMCs find protection from the extremely intense 

solar irradiance of hyper-arid deserts (Rondanelli et al. 2015). Additional 

adaptation strategies, in particular against the damaging effects of UV, include 

protective cell-layering, an array of screening pigments, and lipid production by 

phototrophs (see below; Vítek et al. 2013; Wierzchos et al. 2015, Vítek et al. 2016, 

Vítek et al. 2017, Wierzchos et al. 2018). While UVR can significantly be 

attenuated by the substrate, the decline in visible light transmission occurs at a 

much lower rate, allowing for sufficient light for photosynthesis (Hughes and 

Figure 1.3. Endolithic habitats found within rocks in the hyper-arid core of the 
Atacama Desert (figure in part adapted from Golubic et al. 1981). Cryptoendoliths 
inhabit rock pores; chasmoendoliths inhabit cracks and fissures; hypoendoliths inhabit 
the undermost layer of the rock. Small brown ovals represent heterotrophic members of 
the endolithic communities. Green circles represent phototrophic members of the 
endolithic communities. Orange circles represent phototrophic members containing 
UVR protective compounds 

 



Endolithic communities’ and microhabitat architecture 

32 
 

Lawley 2003; Amaral et al. 2006). Meslier et al. (2018) measured light 

transmittance in several substrates from the Preandean Atacama and found a 

direct relationship between the spectral properties of the substrate and the 

depth of the colonization zone; higher light transmitting substrates (calcite, 

gypcrete and granite) exhibited EMCs located deeper in the substrate, while 

EMCs from darker ignimbrite were located closer to the surface (Meslier et al. 

2018).  

The recent use of metagenomics has provided new insight into the adaptation of 

EMCs to their unique environment. The functional analysis of calcite and 

ignimbrite EMCs revealed a broad diversity of stress response pathways, 

especially in relation to survival under harsh conditions (Crits-Christoph et al. 

2016b). These pathways were involved in (i) carbon starvation and low-nutrient 

stress, (ii) cold shock genes, (iii) oxidative stress genes related to osmotic 

stress/desiccation tolerance, and (iv) secondary metabolites production (Crits-

Christoph et al. 2016b). The large number of gene clusters related to iron 

acquisition in the ignimbrite community also suggested iron starvation, while 

the presence of molecular pathways that lead to the production of mycosporine-

like aminoacids (MAAs) in the calcite community, but not in the ignimbrite 

community, indicated possible differences in the UVR radiation exposure of the 

EMCs (Crits-Christoph et al. 2016b). The differential abundances of secondary 

metabolites demonstrate the key role played by the substrate in the molecular 

adaptations of community members. Surprisingly, pathways for nitrogen 

fixation were not found in the metagenome of any of the Atacama EMCs 

investigated so far (Crits-Christoph et al. 2016a; Crits-Christoph et al. 2016b, 

Finstad et al. 2016). It is likely that the long-term accumulation of nitrate in the 

Atacama Desert, via atmospheric deposition, provides a major source of nitrogen 

to microbial communities in the form of nitrate and ammonium (Michalski et al. 

2004; Crits-Christoph et al. 2016b, Finstad et al. 2016). However, another 

explanation for the absence of nitrogen fixation genes could be space limitation 
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in these microhabitats which could restrict sufficient gas exchange. In this 

scenario, oxygen could reach concentrations too high to allow for nitrogen 

fixation in cyanobacteria that do not count on a protective structure such as 

heterocysts. 

As demonstrated by the discussion above, only a comprehensive approach to the 

study of EMCs, through the use a combination of methods and tools, can elucidate 

the mechanisms that generate and maintain their diversity. 

 

1.2.2. Photoautotrophs as primary producers.  

Phototrophs are essential for the survival of EMCs because they are the only 

primary producers in a system where the import of exogenous organic carbon is 

negligible. As such, Cyanobacteria and microalgae fulfill essential functions in 

EMCs.  

Phototrophic microorganisms perform photosynthesis via two photosystems, 

PSI and PSII, connected by an electron transfer chain, as is the case with plants 

(Falkowski and Raven 2013). In oxygenic photosynthesis, photons collected by 

antenna complexes coupled to photosystems are transferred to chlorophyll 

molecules located in the photosystem core. This photon energy is then used to 

break water molecules producing reduced nicotinamide adenine dinucleotide 

phosphate (NADPH) with oxygen as a by-product. In a subsequent step, NADPH 

is used to synthesize organic carbon from carbon dioxide via the Calvin cycle. 

The two main elements required for oxygenic photosynthesis, liquid water and 

light, are often limiting factors for the chlorophototrophs inhabiting endolithic 

substrates in hyper-arid deserts. Endolithic phototrophs can only perform 

photosynthesis during periods of time when liquid water is available and, 

because of high PAR and UVR, they also need to employ strategies to prevent 

photo-inhibition and photo-oxidative damage to their photosystems (Vítek et al. 

2013; Wierzchos et al. 2015; Vítek et al. 2016; Vítek et al. 2017; Wierzchos et al. 
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2018). While substrate colonization at greater depths inside the rock might give 

access to more retained water and increase protection against damaging UVR, it 

might also reduce essential requirements for photosynthesis such as 

photosynthetic active radiation and CO2 availability (Boison et al. 2004; 

Rothschild et al. 1994). An example of such a strategy is the spatial arrangement 

of Cyanobacteria within Preandean EMCs habitats (Meslier et al. 2018). 

Cyanobacteria are found in most types of illuminated environments, and were 

responsible for the “Great Oxidation Event” 2.4-2.1 billion years ago (Lyons et al. 

2014). Their success as primary producers is due to several fundamental 

features (Whitton and Potts 2000).  

a. Their optimum temperature is higher by several degrees than that of 

most eukaryotic algae (Castenholz and Waterbury 1989), allowing them 

to colonize warmer environments.  

b. Desiccation and water stress tolerance have made them some of the most 

successful organisms in hypersaline environments (Hu et al. 2012; Oren 

2012). 

c. They display high tolerance to high levels of UV light radiation 

(Castenholz and García-Pichel 2012). 

d. They can perform efficient photosynthetic CO2 reduction with low 

concentrations of inorganic carbon (Pierce and Omata 1988; Raven 

2012), by means of carbon concentrating mechanisms.  
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Table 1.1. Endolithic microbial communities found in lithic substrates from the Preandean area of the Atacama Desert: main 
members and relative abundances in the community. Abbreviations: ns- not specified, nd- not detected.  [1] Meslier et al. 2018, 
[2] Crits-Christoph et al. 2016b, [3] Cámara et al. 2015 [4] Wierzchos et al. 2015, [5], DiRuggiero et al. 2013, [6] Wierzchos et al. 2012 
b[7] Dong et al. 2007. 

Substrate 
Shannon 

Index 
Main Phyla Relative Abundance (%) 

Other phyla 

detected 
Refs 

  Cyanobacteria Actinobacteria Proteobacteria Chloroflexi Gemmatimonadetes Chlorophyta  

Gypcrete 

and gypsum 

crust 

2.2 – 6.1 36 -83 10 - 25 13 - 30 nd - 11 < 5 - 6 ns 
[1] [4] [5] 

[7] 

Calcite 3.7 – 6.1 50 - 60 10 - 20 3 - 5 nd – 10.9 < 5 - 15 nd [1] [2] [5] 

Ignimbrite 4.3 – 4.9 ns - 80 5-14 < 5 < 5-11 < 1 nd 
[1] [2] [3] 

[6] 

Granite 3.8 77 17 0.3 4 < 1 nd [1] 



Endolithic communities’ and microhabitat architecture 

36 
 

Most of the Cyanobacteria in EMCs from the Atacama Desert are members of the 

Chroococcidiopsis (Wierzchos et al. 2011; Vítek et al. 2013; DiRuggiero et al. 

2013; Wierzchos et al. 2015; Cámara et al. 2015; Vítek et al. 2016; Crits-

Christoph et al. 2016b; Vítek et al. 2017; Meslier et al. 2018; Wierzchos et al. 

2018). This cyanobacterial genus of the Chroococcidiopsiales order (Komárek et 

al. 2014) is the most abundant type of cyanobacteria in hyper-arid environments 

thanks to their adaptability to extreme conditions, as has widely been 

demonstrated (Smith et al. 2014). Chroococcidiopsis is often accompanied by 

other cyanobacterial taxa, including members of other unicellular orders such as 

Chroococales and Synechococcales, and even members of filamentous orders 

such as Oscillatoriales and Nostocales (Table 1.2). Despite the detection of other 

cyanobacterial genera, Chroococcidiopsis is the only genus that has consistently 

been detected in all EMCs through microscopy approaches (Table 1.2).  

Table 1.2. Cyanobacterial taxa in endolithic microbial communities from the 
Preandean area of the Atacama Desert and the approaches used for their 
detection. Gyp: gypcrete; Ca: calcite; Ign: ignimbrite; Gr: granite. [1] Meslier et al. 2018, 
[2] Crits-Christoph et al. 2016b, [3] Cámara et al. 2015 [4] Wierzchos et al. 2015, [5] 
DiRuggiero et al. 2013, [6] Wierzchos et al. 2012b [7] Dong et al. 2007 

 

Order Genus 

Tools used for 

Cyanobacterial 

Detection 

Substrate Refs. 

  Molecular Microscopy   

Chroococcidiopsiales Chroococcidiopsis X X 
Gyp Ca 

Ign Gr 
[1]-[7] 

Chroococcales 
Gloeocapsa X  Ca [2] 

Halothece X  Gyp Ca [1] 

Synechococcales 
Acaryochloris X  Ca [2] 

Synechococcus X  Gyp Ca [1] 

Oscillatoriales 
Aerosakkonema X  

Gyp Ca 

Ign Gr 
[1] 

Phormidium X  Ca [5] 

Nostocales Anabaena X  Gyp Ca [5] 
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The discrepancy observed between molecular and microscopy methods with 

regard to cyanobacterial diversity is the result of a number of factors. First, there 

is a technical aspect associated with the evolution of research tools over the last 

decade, from DGGE to clone libraries, and more recently, to high-throughput 

sequencing platforms (454 pyrosequencing, Illumina-MiSeq, Illumina-HiSeq). 

Additionally, all these methods present intrinsic limitations regarding DNA 

isolation, the selection of marker genes and their primers, library preparation, 

read length and sequencing depth. Each of these steps can introduce significant 

biases which make it difficult to compare studies (Rastogi and Sani 2011). The 

analysis of the sequencing data may also lead to significant biases, particularly 

with regard to the choice of parameters in defining unique taxa and of the type 

of database (and its version) used for taxonomic annotation. While culture-

independent methods have provided a large amount of sequencing information, 

especially during the last few years with NGS platforms, the increasing number 

of sequences in databases that belong to “uncultured cyanobacterium clone” 

seriously impedes the accurate taxonomical assignment of this phylum. On the 

other hand, taxonomical assignment based on microscopy methods is limited to 

morphologically different Cyanobacteria and their relative abundances in the 

sample, and requires extensive experience.  

Another issue is the fact that the taxonomy and phylogeny of Cyanobacteria is an 

ongoing debate, especially because of their antiquity, the existence of fossil 

representatives with very similar morphology to present-day species (Schopf 

1974; Knoll 2008), and their complex evolutionary history. Several features, in 

addition to genetic sequences, should be taken into account when defining 

cyanobacterial taxa, including morphological characteristics, ultrastructural 

details such as the thylakoid structure, and the types of cell division (Komárek et 

al. 2014). This is essential for an accurate taxonomy assignment of Cyanobacteria 

but is not always practical, particularly in studies with large numbers of samples. 
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Several adaptation strategies to water stress have been identified for 

Chroococcidiopsis. Firstly, Chroococcidiopsis belongs to the group of 

anhydrobiotic cyanobacteria. These cyanobacteria cope with the lack of water by 

entering into an ametabolic state involving structural, physiological and 

molecular changes (Feofilova 2003). Another adaptation mechanism to water 

scarcity is the production of EPSs providing a depository for water and 

stabilizing desiccation-related enzymes and molecules (Wright et al. 2006). Since 

Cyanobacteria are major components of EMCs and are most often located in the 

upper part of the endolithic microhabitat, the strategies developed by this 

phylum to deal with extreme environmental conditions brings benefits to the 

entire community.  

This chapter addresses the impact of microhabitat architecture in the diversity 

and composition of gypcrete EMCs. The study is based on the hypothesis that the 

differential architecture of endolithic microhabitats involves small-scale 

differences in the microenvironmental conditions which determine the 

distribution of organisms in each community. The question is addressed by using 

a multidisciplinary approach combining microscopy and molecular tools for 

their characterization.  

 

1.3. Experimental Procedures 

1.3.1. Site description and sampling 

Colonized rocks were collected in the Atacama Desert in December 2015 from 

the Monturaqui area (MTQ) (GPS coordinates 23°57’S; 068°10’W; 2868 m.a.s.l.) 

located in a N-S trending depression of the Cordón de Lila Range. This area 

exhibits a pronounced rain shadow effect by the western slope of the central 

Andes from 15° to 23°S (DiRuggiero et al. 2013; Wierzchos et al. 2015). Gypcrete 

rocks were randomly collected within a 50 m2 area. All samples were packed in 
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sterile bags and stored at room temperature, dry and dark environment before 

further processing.  

1.3.2. Microclimate data 

Microclimate data (Meslier et al. 2018) were recorded using an Onset HOBO® 

Microweather Station Data Logger (H21-USB), as previously described by 

Wierzchos et al. (2015). Air temperature (T), air relative humidity (RH in %) and 

Photosynthetic Active Radiation (PAR in µmol photons m-2 s-1) were recorded 

from January 2011 to February 2013 (22 months) (Wierzchos et al. 2015). 

Rainfall data were obtained from DiRuggiero et al. (2013). Thermal 

measurements of the gypcrete surface were acquired at zenith time at 20 cm 

distance from the substrate. Thermal images were taken using a thermal infrared 

camera (FLIR® E6, FLIR Systems, Oregon, USA) whose technical specifications 

are:  ±2°C or ±2% of reading; < 0.06°C pixel sensitivity; 160 × 120 pixels). 

1.3.3. Total water retention capacity (TWRC) and porosity 

TWRC was determined on rock samples of about 5 cm3 by total immersion of 

samples in H2O at 20°C for 24 h, which corresponds to the estimated time during 

which water content was constant. Dry samples were weighed prior to the 

experiment. Volumes of rock were measured by their immersion into water in a 

graduated cylinder. After 24 h, gravitational water excess was removed, and 

rocks were weighted again. TWRC was expressed in (%) w/w of retained water 

per g of rock and porosity of connected pores in (%) v/v (Meslier et al. 2018).  

1.3.4. Microscopy analyses  

Colonized gypcrete samples were processed for SEM-BSE according to methods 

described by Wierzchos et al. (Wierzchos and Ascaso 1994; Wierzchos et al. 

2011). In brief, several colonized gypcrete fragments were chemically fixed in 

2.5% glutaraldehyde (Sigma Chemical Co., St. Louis, MO, USA) in 0.1 M sodium 

cacodylate buffer pH 7.4 [Na(CH3)2 AsO2•3H2O] (CB) for 16 h at 4°C. Once fixed, 



Endolithic communities’ and microhabitat architecture 

40 
 

the samples were washed in 0.1 M CB (3x30 min) and post-fixed in 1% osmium 

tetroxide (Electron Microscopy Sciences, Port Washington, PA, USA) in H2O for 3 

h at 4°C. Samples were again washed in 0.1 M CB (3x30 min) and then 

dehydrated in a 30% graded ethanol series for 3 h, followed by a 50% one for 

another 3 h. During dehydration with the next ethanol dilution, the samples were 

contrasted overnight with saturated uranyl acetate in 70% ethanol at 4°C. This 

was followed by immersion in 96% (2x3 h) and finally 100% (3x3 h) ethanol. 

Next, the samples were gradually infiltrated with LR-White (The London Resin 

Co. Ltd, Hampshire, UK) embedding medium, first with a 1:1 mixture of LR-White 

in 100% ethanol (3 days at 4°C) and finally with pure LR-White resin (3x3 days 

at 4°C). This step was followed by polymerization in an oxygen-free atmosphere 

(48 h, 60°C). After this, the polymerized specimen blocks were cut at low speed 

with a diamond saw and fine polished using grinding papers (from nr. 300 to 

1200) and silicon carbide abrasive sheets (Electron Microscopy Sciences, 

Hatfield, PA, USA) with grain diameters of 15,9 and 3 μm. For final polishing, a 

liquid diamond polishing compound was used containing diamond particles with 

a size of 1 and 0.25 μm in an oil-based lubricant fluid (Kemet International Ltd., 

Maidstone, UK) on a napped cloth. After washing in distilled water and air-

drying, the polished block surfaces were coated with evaporated carbon and 

observed using a scanning electron microscope (FEI Quantum 200) equipped 

with a solid-state four diodes BSE detector and X-Ray Energy Dispersive 

Spectroscopy system of INCA (Oxford, London, UK). Light microscopy (LM) in 

differential interference contrast mode (DIC) was performed on cell aggregates 

gently isolated from the cryptoendolithic, chasmoendolithic and hypoendolithic 

microhabitats and on cyanobacterial isolated cultures from those microhabitats. 

The samples were examined using a microscope (AxioImager M2, Carl Zeiss, 

Germany) in DIC mode equipped with Apochrome 63x n=1.4 oil immersion 

objective.  
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1.3.5. CT-Scan analysis 

Micro-CT scans were run on a piece of gypcrete with an X-Ray Computed 

Tomography system (CT-scan) — HMXST 225 micro-CT system (Nikon 

Metrology, Tring, UK) to observe volume, bulk density, and variations in internal 

density. For volume and bulk density measurements a Nikon X-Tek CT-Scan 

device was used, placed in the MNCN laboratories, with an X-ray peak voltage of 

146 kV and current of 65 mA, collecting 1583 sections at 1000 micro-seconds on 

average from four frames. The system operates with an X-ray tube of W and 

added filtration (0.875 mm Cu) to reduce the beam hardening. Three 

dimensional viewing and analyses of the obtained X-ray sections were 

performed by software VG Studio Max Version 2.2. The auto-threshold feature 

determined the gray-scale intensity for 3-D surface segmentation and 

subsequent analysis.  

1.3.6. Cyanobacteria isolation and characterization  

Scrapped material from endolithic colonization zones of gypcrete was 

transferred to BG11 1.5%-agar plates. All samples were incubated in growth 

chamber at 28±2°C with illumination of 20 µmol photons m-2 s-1 by cool white 

40W fluorescent tubes (Philips). After 15 days of incubation, when visible 

cyanobacterial growth appeared, colonies were isolated by repeated plating on 

0.8%-agar with BG11 medium (Rippka et al. 1979), and successfully isolated 

colonies were transferred to liquid BG11 medium. Culture material from each 

strain (2 mL) was harvested during exponential growth and centrifuged (10,000 

g, 5 min). Genomic DNA was extracted from the cell pellet using the UltraClean 

DNA isolation kit (MoBio Laboratories, Solana Beach, CA, USA). 16 S rRNA was 

amplified using primers PA (Edwards et al. 1989) and B23S (Lepère et al. 2000), 

PCR reaction and sequencing were performed as described in Casero et al. 

(2014).  
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1.3.7. DNA extraction procedures from natural samples 

Three individual rocks were processed. Colonization zone was scrapped and 

ground for DNA extraction. This DNA extraction was performed using 0.3 g of 

samples and the UltraClean DNA isolation kit (MoBio Laboratories, Solana Beach, 

CA, USA) with minor modifications.  

1.3.8. 16S rRNA gene libraries preparation and sequencing 

A two-step PCR strategy was used to prepare the sequencing libraries of 

endolithic microbial communities, as previously described (Robinson et al., 

2015). DNA was amplified using primers 338F and 806R (V3-V4 hypervariable 

region) barcoded for multiplexing; amplicons from 2 PCR reactions were pooled 

after the first step. Illumina paired-end sequencing (2 x 250bp) was performed 

using the MiSeq platform at the Johns Hopkins Genetic Resources Core Facility 

(GRCF). Libraries from 3 samples were used on all sequencing runs to test for 

batch effect. 

1.3.9. Computational analysis 

After demultiplexing and barcode removal, sequence reads with phred score<20 

and length<100bp were discarded using sickle (Joshi and Fass, 2011), 

representing only 2% of the initial reads count. The Qiime package (v1.6.0) was 

used to further process the sequences (Caporaso et al. 2010) and diversity 

metrics were calculated based on Operational Taxonomic Units (OTUs) at the 

0.03% cutoff against the Ribosomal Database Project (RDP) database release 11 

(Cole et al. 2014). The resulting OTUs table was filtered of the rare OTUs (total 

abundance across all samples 1%), representing 40% of the initial count (1511 

OTUs).  

1.3.10. Phylogenetic analysis  

Sequences of 16S rRNA gene from Cyanobacterial OTUs which showed 

significant differences in their relative abundance between endolithic 
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microhabitats, together with 16S rRNA sequences from cyanobacterial isolates, 

were aligned with sequences obtained from the NCBI GenBank using the Clustal 

W 1.4 software (Thompson et al. 1994). 16S rRNA sequences from GenBank were 

selected using NCBI MegaBlast tool (http://blast.ncbi.nlm.nih.gov/ Blast.cgi, 

accessed 28.08.18). The final alignment length was 400 bp. Phylogenetic trees of 

each of the genes were constructed in MEGA 7.0 using the Maximum Likelihood 

(ML) method (Kumar et al. 2016). The best-fitting evolutionary model, chosen 

following the BIC (Bayesian Inference Criterion) in MEGA 7.0, was the Kimura 2-

parameter model (Kimura 1980) for 16S rRNA. 1000 bootstrap replicates were 

performed for all trees. 

 

1.4. Results 
 

We combined microclimate measurements, microscopy analyses and high 

throughput culture-independent molecular data to identify the effect of micro-

biogeography and the factors underlying the structure and composition of 

microbial assemblages on gypcrete endoliths from the hyper-arid Atacama 

Desert.  

 

1.4.1. Sampling Site 

Eleven samples from 4 different rock substrates were collected from the 

Monturaqui area (MTQ), located in the Preandean Depression of the Atacama 

Desert (Fig. 1.4) on December 2015. Climate data were recorded over a period 

of 22 months (Wierzchos et al. 2015) (Table 1.3). The mean air temperature was 

about 15°C, with strong amplitude between minima and maxima (from -4.7°C to 

49.3°C), while the surface temperature of the gypcrete samples showed a 

maximum daily temperature of 68°C. The average diurnal PAR was ~ 1000 µmol 
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photons m-2 s-1 with a maximum of 2553.7 µmol photons m-2 s-1, providing 

evidence for the extremely intense solar irradiance found in this region (Cordero 

et al. 2014). This area experiences extremely dry conditions, with an average air 

RH of about 20% with frequent lows of 1%. Precipitations were extremely scarce 

with mean annual values of 24.5 mm. Gypcrete surface temperature examined 

with thermal infrared camera revealed a maximum temperature of 68°C. 

Monturaqui 

(MTQ) 

Figure 1.4. Sampling location in the Atacama Desert. Monturaqui area. MTQ, (red 
diamond). Modified from (Hock et al. 2007) 
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Table 1.3. Microclimate data from Monturaqui (MTQ)-Data extracted from 
Wierzchos et al., 2015.  Avg =Annual mean of daily average; Max= Annual mean of daily 
maximum; Min = Annual mean of daily minimum. 

Microclimate Data from Monturaqui (MTQ) 

Air Temperature (°C) 

Min -4.7 

Avg 15.0 

Max 49.3 

PAR (µmol photons m-2 s-1) 
Avg 1178.5 

Max 2553.7 

Air RH (%) 

Min 1.0 

Avg 18.3 

Max 100.0 

Rainfall (mm/year) 24.5 

 

1.4.2. Total water retention capacity, porosity and pores 

micromorphology of gypcrete 

Total water retention capacity (TWRC) and rock porosity were measured by 

total immersion of rocks into water. Gypcrete rocks showed a TWRC of 10.7% 

(w/w) and porosity of 12.15% (v/v). CT-Scan images provided a 3D spatial 

visualization of pore shapes and their distribution inside the gypcrete rock (Fig. 

1.5). The pores revealed capillary-like micromorphology following a vertical 

orientation as is shown in both top and lateral views. Detailed 3D images pointed 

to the apparent absence of connectivity with the surface of most of the pores (Fig. 

1.5). However, the presence of this connectivity cannot be discarded due to the 

limited resolution of the CT-Scan technique. Moreover, CT-scan images of the 

gypcrete surface reveal undulated furrows due to the dissolution of gypsum after 

scarce rains. 

1.4.3. Endolithic microhabitats 

Cross sections of the gypcrete rocks revealed the presence of three clearly 

differentiated microhabitats where a significant heterogeneity in the 

micromorphology and structure was found (Figs. 1.6-1.8). The cryptoendolithic 
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colonization zone was close to the compact gypcrete surface layer. Within 

cryptoendolithic microbial communities, two characteristic pigment layers, 

orange for carotenoids (closer to the gypcrete surface) and green for 

chlorophylls (beneath the orange layer) were distinguished.  The presence of 

these pigments was indicated by Wierzchos et al. (2015) and Vítek et al. (2016) 

(Fig. 1.6, A).  The chasmoendolithic colonization zone reached a deeper position 

in the substrate and was directly connected to the surface. (Fig. 1.7, A). Finally, 

the hypoendolithic colonization zone, as well as the cryptoendolithic 

microhabitat, were located close to a compact gypcrete crust, shaped like 

microcaves (Fig. 1.8, A). 

Cyanobacteria were found in the cryptoendolithic habitat among lenticular 

gypcrete crystals, filling up vertically elongated pores, and aggregated around 

sepiolite nodules (Fig. 1.6, B-C), a clay mineral with high water retention 

capacity, previously identified in gypcrete by Wierzchos et al. (2015). SEM-BSE 

also revealed dense arrangements of cyanobacterial cells embedded in 

concentric sheets of EPSs that were filled by heterotrophic bacteria (Fig. 1.6, C). 

By contrast, the microbial assemblages inhabiting the chasmoendolithic and 

hypoendolithic microhabitats were coating the walls of the cracks and caves 

previously described (Fig. 1.7, B-C). Detailed SEM-BSE (Fig. 1.6, C; Fig. 1.7, C; Fig. 

1.8, C) and OM images (Fig. 1.6, D; Fig. 1.7, D; Fig. 1.8, D) of each microhabitat 

showed mainly Cyanobacteria with different micromorphology (larger cells) 

accompanied by heterotrophic bacteria.  
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Figure 1.5.  CT-Scan images of a colonized piece of gypcrete. 3D spatial distribution of porosity on top (yellow) and lateral (blue) 
views of gypcrete. Porous micromorphology is capillary-shaped in vertical position due to gravity movement direction of water. 
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1.4.4. Cyanobacterial isolates from endolithic microhabitats 

A total of 12 cyanobacterial strains were isolated from the three different 

endolithic microhabitats (Table 1.4, Fig. 1.9): cryptoendolithic (3), 

chasmoendolithic (3) and hypoendolithic (6). The cyanobacterial strains were 

identified, following Komárek et al. (2014), as Chroococcidiopsis sp. (GMTQ2C, 

GMTQ3, GMTQ5, GCL1A, GCL4C, GCL10A, GCL10B, GCL10C), Gloeocapsa sp. 

(GMTQ6, GMTQ12) and Gloeocapsopsis sp. (GCL2, GCL3).  

1.4.5. Structure and composition of endolithic communities  

High throughput sequencing of 16S rRNA gene amplicons across 11 samples and 

3 microhabitats resulted in a total of 385,440 V3-V4 SSU rDNA reads, with an 

average number of paired-end reads per sample of 35,040 ± 6,288 and an 

average length of 456 ± 11 bp.  Diversity metrics, calculated from OTUs clustered 

at 97%, revealed no significant differences between microhabitats in terms of 

alpha-diversity (Table 1.5).  

A total of 11 bacterial phyla with a relative abundance >0.1% were found across 

all microhabitats. Of these only 7 had a relative abundance over 1% of sequences 

across the different microhabitats (Fig. 1.10). Cyanobacteria, Proteobacteria, 

Actinobacteria and Gemmatimonadetes were the most abundant phyla, 

representing 82%–83% of the total community (Fig. 1.10, A). Cyanobacteria 

dominated the communities, inhabiting all endolithic microhabitats; in 

cryptoendolithic and chasmoendolithic communties they did not exceed 40% of 

the sequences, while in the hypoendolithic community they reached a relative 

abundance of 60% (Fig. 1.10, A). Proteobacteria were the second most abundant 

phylum, contributing ~30% of the sequences in the cryptoendolithic and 

chasmoendolithic communities, and less than a half in the hypoendolithic 

community (13%). The relative abundance of Actinobacteria was regular across 

all microhabitats, never exceeding 10% of the sequences. Gemmatimonadetes 

relative abundance showed differences across microhabitats representing 7-
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4.4% and 2.3% of sequences in cryptoendolithic, chasmoendolithic and 

hypoendolithic communities, respectively (Fig. 1.10, A). Bacteroidetes and 

Thermi phyla also exhibited variation between the different endolithic 

communities, showing the higher abundance in the hypoendolithic (8.2%) and 

cryptoendolithic (4.9%) microhabitats respectively. Firmicutes and 

Planctomycetes were also found in all three microhabitats in very low abundance 

(0.003% and 0.002%). No archaeal OTUs were detected after the quality filtering 

of sequences during the samples processing.  

The relative abundance provides a different picture when expressed in 

percentage of OTUs in which the sequences have been clustered (Fig. 1.10, B). 

The abundance of the four main phyla represented ~ 80% of the OTUs occurring 

in every microhabitat, but presents a very different distribution in comparison 

with the % of sequences. The three major phyla, Cyanobacteria, Proteobacteria 

and Actinobacteria, compiled their sequences in very similar % of OTUs across 

all three microhabitats (25%, 32% and 21% respectively). The greatest 

difference between the distribution of the relative abundance of sequences and 

that of OTUs is observed for Cyanobacteria in the hypoendolithic community. 

Compared to other microhabitats this phylum showed the highest relative 

abundance in terms of sequences (60.4%) but the lowest in terms of OTUs 

(21.9%), thus revealing the high abundance of a very low number of 

cyanobacterial OTUs. Adonis and ANOSIM tests, performed with microhabitats 

categories, confirmed the statistical significance of the grouping (R2 =0.38, p- 

value=0.014 and R2=0.48, p-value=0.003 for adonis and ANOSIM respectively). 
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Figure 1.6. Cryptoendolithic colonization zone. Gypcrete cross-sections, SEM-BSE 
and LM images of cryptoendolithic colonization zone and isolated cyanobacteria from 
gypcrete. A. Cross-section of colonized microhabitat. Black arrows indicate green and 
orange colored microorganisms within 5mm beneath the surface. B & C. SEM-BSE 
images revealing aggregates of cryptoendolithic community, in light grey surrounded by 
green dots, inside the pores of gypcrete (white crust). Green arrows indicate aggregates 
of cyanobacteria among gypcrete (Gy) crystals and surrounding sepiolite (Sp) nodules. 
D. LM image in DIC mode of cyanobacterial aggregates, indicated by green arrows, with 
gypcrete crystals (Gy) 
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Figure 1.7. Chasmoendolithic colonization zone. Gypcrete cross-section, SEM-BSE 
and LM images of chasmoendolithic colonization zone and isolated cyanobacteria from 
gypcrete. A. Cross-section of colonized microhabitat. Black arrows indicate green and 
orange colored microorganisms within 8 mm beneath the surface. B & C. SEM-BSE image 
revealing aggregates of chasmoendolithic community, in bright white surrounded by 
green dots, inside cracks of gypcrete. Green arrows indicate aggregates of cyanobacteria 
in the gypcrete (Gy) walls. D. LM image in DIC mode of aggregates of different 
morphotypes of cyanobacteria, indicated by green, yellow and orange arrows. 
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Figure 1.8. Hypoendolithic colonization zone. Gypcrete cross-section, SEM-BSE and 
LM images of hypoendolithic colonization zone and isolated cyanobacteria from 
gypcrete. A. Cross-section of colonized microhabitat. Black arrows indicate blue-green 
and dark green colored microorganisms. B & C. SEM-BSE image revealing aggregates of 
hypoendolithic community, inside micro caves of gypcrete. Green arrows indicate 
aggregates of cyanobacteria in the gypcrete (Gy) walls. D. LM image in DIC mode of 
aggregates of different morphotypes of cyanobacteria, indicated by green, yellow and 
orange arrows, with gypcrete crystals (Gy). 
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1.4.6. Cyanobacterial composition 

As the major component of the three endolithic communities, OTUs and isolates 

of the Cyanobacteria phylum were studied in detail. A phylogenetic analysis of 

the 15 major cyanobacterial OTUs (relative abundance > 1%), together with the 

12 isolated strains, showed that they were distributed in 6 main clusters 

supported by high bootstrap values (Fig. 1.11).  

Figure 1.9. Light microscopy images from representative cyanobacteria isolated 
from endolithic microhabitats of gypcrete belonging to Chroococcidiopsis (1), 
Gloeocapsa (2) and Gloeocapsopsis (3) genera. Series A: Cryptoendolithic microhabitat. 
Series B: Chasmoendolithic microhabitat. Series C: Hypoendolithic microhabitat. 
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Most of these OTUs (9) and isolates (8) were assigned to the Chroococcidiopsis 

genus and were distributed in three clusters (I, III and V) containing 

representatives of Chroococcidiopsis isolates sequences and clone sequences 

from various deserts. Cluster I was the one that included a higher number of 

sequences from this study: six of the cyanobacterial strains (GMT3, GCL10B, 

GMTQ5, GCL10A, GMTQ2C and GCL4C) and four of the cyanobacterial OTUs 

(OTU1, OTU497, OTU8, OTU112).  This cluster was constructed around two 

reference Chroococcidiopsis sp. sequences from soils of the Atacama Desert 

(Patzelt et al. 2014). Cluster III included only one sequence from isolated strains 

(GCL1A) and three OTUs sequences (OTU1772, OTU420 and OTU4) 

accompanied by reference sequences belonging to Chroococcidiopsis sp. strains 

from three different culture collections. The last Chroococcidiopsis sp. cluster, 

number V, had no sequences from isolates and two OTUs sequences (OTU7 and 

OTU98), together with sequences from cloning libraries from two deserts, 

Atacama and Jordan (Dong et al. 2007, and one Chroococcidiopsis sp. sequence 

from Mediterranean biocrust (Muñoz-Marín et al. 2019).   

 

Table 1.4. Cyanobacterial strains isolated from cryptoendolithic, 
chasmoendolithic and hypoendolithic microhabitats of gypcrete from MTQ. 

Microhabitat Strain code Taxonomical Assignment 

Cryptoendolithic 

GCL3 Gloeocapsopsis sp. 

GCL4C Chroococcidiopsis sp. 

GMTQ3 Chroococcidiopsis sp. 

Chasmoendolithic 

GCL1A Chroococcidiopsis sp. 

GCL2 Gloeocapsopsis sp. 

GMTQ2C Chroococcidiopsis sp. 

Hypoendolithic 

GMTQ5 Chroococcidiopsis sp. 

GMTQ6 Gloeocapsa sp. 

GMTQ12 Gloeocapsa sp. 

GCL10A Chroococcidiopsis sp. 

GCL10B Chroococcidiopsis sp. 

GCL10C Chroococcidiopsis sp. 
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Cluster II comprised cyanobacterial sequences belonging to the Nostocales order 

from the Fischerella and Calothrix genera to which OTU18 and OTU11 were 

assigned respectively. A total of 6 members of this study were clustered with 

members of the Gloeocapsa and Gloeocapsopsis genera (order Chroococcales), 

four isolated strains (GCL2, GCL3, GMTQ12 and GMTQ6) and two OTUs (OTU9, 

OTU854), resulting in cluster IV.  Two reference sequences of Synechococcus 

together with the OTU5 constitute Cluster VI.  

Table 1.5. Diversity estimates of microbial communities in the microhabitats of 
gypcrete. 

Microhabitats Chao OTU Richness Shannon 

Cryptoendolithic 
Avg 583.8 430 6.3 

SD 43.2 38 0.2 

Chasmoendolithic 
Avg 574.9 419 6.1 

SD 46.0 29 0.1 

Hypoendolithic 
Avg 564.9 409 4.6 

SD 31.7 32 1.0 

The sequences that were more similar (% identity) to OTU2 (Supp. Mat. 1.1) 

were chosen to develop its phylogeny (Fig. 1.11). However, due to the low % of 

identity with its closest relatives in the database (< 95%) and with the sequences 

obtained from the endolithic isolates (Fig. 1.11), it was not possible to provide 

an accurate taxonomical assignment for it. 

Nine of the cyanobacterial OTUs were found to be differentially abundant among 

microhabitats (Fig. 1.12). Both OTUs phylogenetically assigned to the Nostocales 

order (OTU11- Calothrix sp., OTU18- Fischerella sp.) showed a differential 

abundance (p-value < 0.01) in the chasmoendolithic community, representing 

3.8% and 1.5%, respectively, compared to the cryptoendolithic and 

hypoendolithic communities (< 0.4% for both OTUs). OTUs clustered with 

Gloeocapsa and Gloeocapsopsis (cluster IV), with Synechococcus (cluster VI), as 

well as Chroococcidiopsis sp. OTUs from the three different clusters (I, III and V), 
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showed significantly different abundances (p-value < 0.001) in the 

hypoendolithic community and in the two endolithic communities from the 

upper side of the substrate (cryptoendolithic and chasmoendolithic). OTU8 

(Chroococcidiopsis sp.) was the only one displaying a higher abundance in the 

hypoendolithic community, while OTU9 (Gloeocapsopsis sp.), OTU5 

(Synechococcus sp.), OTU854 (Gloeocapsa sp.) and OTU1772, OTU7 

(Chroococcidiopsis sp.) exhibited a higher abundance in cryptoendolithic and 

chasmoendolithic communities.  The Unassigned Cyanobacterial OTU (OTU2) 

displayed the highest differential abundance (p-value < 0.0001) in the 

hypoendolithic community, attaining an average relative abundance of more 

than 39%, while its relative abundance in the other two communities barely 

reach 0.4%.    

Figure 1.10. Average relative abundance of sequences (A) and OTUs (B) of major 
bacterial phyla (at least 1% across the samples) on microbial assemblages in the 
cryptoendolithic (Cr) chasmoendolitic (Ch) and hypoendolithic (He) microhabitats of 
gypcrete. 
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Figure 1.11. Maximum likelihood tree based on partial 16S rRNA sequences of the 
Cyanobacteria OTUs above 1% relative abundance (orange) and cyanobacterial 
strains isolated from the three different microhabitats (purple). Scale bars indicates 
5% sequence divergence 
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Figure 1.12. Average relative abundance of sequences of cyanobacterial OTUs 
above 1% relative abundance. Differentially abundant cyanobacterial OTUs across the 
three different microhabitats are represented by *(Diff-OTUs p-value <0.01 Ch / Cr-He), 
** (Diff-OTUs p-value <0.001 He / Cr-Ch), ***(Diff-OTUs p-value <0.0001 He / Cr-Ch). UC-
OTU (Unclassified Cyanobacterial OTU). 

 

1.5. Discussion 

In this study we addressed the characterization of the microbial communities 

inhabiting gypcrete collected from the Monturaqui area (Preandean 

Depression), which is of particular interest due to its location in the hyper-arid 

Atacama Desert. While endolithic colonization of the gypsum crust and gypcrete 

in this area has previously been studied (Dong et al. 2007, DiRuggiero et al. 2013, 

Wierzchos et al. 2015, Meslier et al. 2018), this is the first work in which 

cryptoendolithic and chasmoendolithic communities have been characterized 

separately. The novelty of this study lies in the consideration of two different 
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EMCs inhabiting two different endolithic microhabitats located in the upper part 

of the substrate, and in the description of the structure and composition of the 

hypoendolithic community, firstly described by Wierzchos et al. (2011) in the 

gypsum crust from the Tarapacá region of the Atacama Desert. This work was 

based on a multidisciplinary approach to elucidate the relationship between 

microhabitat architecture and community composition of EMCs hosted in three 

different endolithic microhabitats coexisting within the same piece of rock.  

The Monturaqui region, located in the Preandean Depression of the Atacama 

Desert has been found to harbor two different substrates colonized by microbial 

communities, namely gypcrete (Wierzchos et al. 2015) and ignimbrite, volcanic 

rock (Wierzchos et al. 2013). Both substrates showed endolithic colonization 

and, at the same time, the lack of epilithic colonization (rock surface 

colonization). The absence of this second type of microbial communities in both 

substrates may be explained by the microclimate conditions of this area 

(Wierzchos et al. 2015) related to aridity, relative humidity, air and surface 

temperature, solar irradiation and precipitation. Monturaqui has been described 

as a hyper-arid area, showing an aridity index – based on the relation between 

mean annual precipitation (P) and potential evapotranspiration rate (PET) 

(P/PET) – of 0.0093, up to one order of magnitude lower than the limit 

established by Nienow (2009) for the classification of a region as hyper-arid 

(0.05). Regarding the air temperature observed in this region, it showed one of 

the lowest values registered in the hyper-arid Atacama Desert (-4.7°C), very 

similar to previously studied areas, such as Lomas de Tilocalar (-7.4°C) 

(Wierzchos et al. 2013) and Yungay (-6.2°C) (Wierzchos et al. 2012a). On the 

other hand, the RH values recorded in Monturaqui revealed the greatest range 

between the maximum (100% RH) and minimum (1% RH) on the Preandean 

Depression, while other locations such as Valle de la Luna, in which the minimum 

RH never dropped below 17% (DiRuggiero et al. 2013). The large amplitude on 

temperatures and RH in this specific region in comparison to other locations 
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included in the hyper-arid core reveals the need of the EMCs inhabiting the 

substrates of this area for high adaptability. Concerning the intense solar 

irradiance recorded in this region of the Preandean Depression compared to 

other highly irradiated desert areas, PAR values reached 2500 µmol photons      

m-2 s-1 and an annual mean of 1178 µmol photons m-2 s-1, twice the PAR values 

detected in the Arctic (maximum PAR: 1393 µmol photons m-2 s-1, annual mean: 

196.3 µmol photons m-2 s-1) (Omelon et al. 2006). Specific measurements of 

surface temperature for gypcrete revealed values of almost 70°C on its surface, 

thus approximating the upper limit temperature for photosynthesis, 74°C, under 

which thermophilic cyanobacteria in hot springs have been found to live 

(Castenholz et al., 2001). The sum of these environmental conditions has led to 

the avoidance of epilithic colonization in pursuit of endolithic colonization.  

The porosity of lithic substrates is tightly linked to their potential endolithic 

habitability since the distribution and size of pores have been found to be related 

to water retention capacity (Cámara et al. 2015; Herrera et al. 2009; Matthes et 

al. 2001; Omelon 2008; Pointing et al. 2009). Porosity in gypcrete allows 

microbial communities to survive in different microhabitats, providing sufficient 

space for the microbial communities while receiving enough light and available 

water for their development. This porous network slows down water loss by 

rapid evaporation and helps its longer retention by capillary forces acting in 

small capillary-like shape pores. The inner architecture of gypcrete allows the 

habitability of three different locations inside the substrate. The CT-Scan and 

SEM-BSE images showed that all three types of microhabitats share a vertical 

axis morphology where vertical cracks constitute the chasmoendolithic (CH) 

microhabitat and capillary-like pores constitute the cryptoendolithic (CR) and 

hypoendolithic (HE) microhabitats. This capillary like pore architecture found in 

the CR microhabitat could be explained by the progressive substrate dissolution 

due to scarce rains and by the water retained and condensed within the pores, 

as it occurs in halite endolithic microhabitats (Wierzchos et al. 2012a). The 
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observed HE microhabitat architecture consolidates the proposal of Wierzchos 

et al. (2015), in which the authors described the presence of a dense crust 

delimiting the bottom part of the HE microhabitat. This structure reveals 

different dissolving and crystallization processes of the gypsum following the 

water gravity flow and giving rise to the cave-shaped pores, thus providing this 

HE microhabitat with a hard permeable bottom gypsum layer.  

The larger distance between the HE microhabitat and the top surface, as 

compared to CR and CH microhabitats, may be thought to be a limiting factor for 

EMC development in terms of water access. However, at the same time, the 

location of the HE microhabitat in the rock could reduce water losses related to 

evaporation processes. Thus, the micro-cave structure observed in the HE 

microhabitat would retain liquid water for longer times, leading to facilitation of 

cyanobacterial grow.  The inner architecture of the gypcrete HE microhabitat 

differs substantially from the one described by Wierzchos et al. (2011) in the 

gypsum crust of the Tarapacá Region. The absence of micro-caves and the 

availability of liquid water through frequent dew formation (J. Wierzchos pers. 

com.) in the gypsum crusts leads to an extraordinarily different EMC that is 

dominated by algae and fungal members. Therefore, the higher ratio of 

cyanobacteria in the gypcrete HE microhabitat in comparison with CR and/or CH 

microhabitats could be explained by the architectural features just described: 

the micro-cave structure with dense gypsum crusts and the high distance from 

the top surface, both of which allow higher liquid water retention and 

availability. 

The microstructure characteristics of endolithic microhabitats located at the top 

of the substrate also explain the possible ways of access of the EMCs inhabiting 

them to water. The microstructural features of the CR microhabitat allow the 

identification of a combination of water retention systems present in this 

endolithic microhabitat. Pores connected directly or indirectly to the surface 
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may act as cavities where condensed water running through the rambling 

substrate would condense and become available for the microbial communities. 

Additionally, the presence of sepiolite aggregates improves water retention in 

those pores. On the other hand, although the CH microhabitat does not supply a 

similar semi-closed space for water condensation and retention, there is an 

absence of a lithic barrier between rainfall water and the microbial community, 

so that the less efficient water retention capacity of this microhabitat would be 

offset by higher direct accessibility to this resource.   

Microbial communities inhabiting all three microhabitats occur in aggregates 

and are often deeply embedded in an EPSs matrix. Both aspects are closely linked 

to survival strategies under harsh environmental conditions related to water 

availability and nutrient reservoir. Since water is the most limiting factor for the 

development of microbial communities inhabiting endolithic microhabitats of 

gypcrete, it is the component on which adaptive strategies are primarily focused. 

This is the case with EPSs production, due to their role in hydration and 

dehydration processes in lithobiontic communities in Antarctic deserts (de los 

Ríos et al 2007) and the Atacama Desert (Dong et al. 2007; Wierzchos et al. 2011; 

Wierzchos et al. 2015; Crits-Christoph et al. 2016b). The aggregates-like 

structure of these communities composed by cyanobacteria and other 

heterotrophic bacteria with a different physiological status also helps their 

survival against drought, since dead cells could provide physical protection 

against desiccation processes (Postgate 1967; Roszak and Colwell 1987; Billi 

2009; de los Rios et al. 2004).  In the case of the CR community, a special strategy 

against dryness was observed: microorganisms were located close to sepiolite, 

as previously reported with respect to gypcrete endolithic communities (Meslier 

et al. 2018). EPS and dead cells taking part in the aggregates can also act as a 

nutrient reservoir in such an oligotrophic environment as the endolithic 

microhabitats, as demonstrated by the low amounts of water soluble ions 

detected by Meslier et al. (2018).   
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Water has been described as the main driver for diversity in the EMCs of the 

Atacama Desert (Meslier et al. 2018).  The absence of significant differences in 

diversity between the three EMCs of gypcrete corroborates this proposal, in 

accordance with the diversity values of previously reported EMCs in the Atacama 

Desert (Table 1.1). All three types of microhabitats in gypcrete are encountered 

under equal climatic conditions, with the same water input as rainfall and 

sporadically high RH values (Table 1.3). Despite their different architecture, each 

microhabitat counts on a different set of characteristics for water retention, as 

has been described in detail: CR counts on porous condensation and sepiolite, CH 

has an easier access to water, and HE suffers less water loss. Regarding 

community composition at a phylum level, three main phyla were dominant, 

Cyanobacteria, Proteobacteria and Actinobacteria (Fig. 1.10) as in other EMCs 

(Wierzchos et al. 2015, Meslier et al. 2018, Dong et al. 2007). However, a switch 

in the Proteobacteria and Actinobacteria relative abundances was found 

compared to other gypcrete cryptoendolithic communities (Meslier et al. 2018). 

That switch is presumably associated to the bias resulting from the application 

of different DNA extraction methods. Despite the absence of significant 

differences in terms of diversity between all three EMCs, a remarkable difference 

in composition was observed. These main phyla, Cyanobacteria, Proteobacteria 

and Actinobacteria, were distributed differentially between microhabitats, 

exhibiting differences between the CR and CH communities as compared to the 

HE community, especially regarding cyanobacterial OTUs. This notable 

difference in the relative abundance of cyanobacteria could be related to the 

particular resources of the phototrophic community. The differential access to 

sun radiation could explain the contrast between cyanobacterial proportions on 

both sides, at the top (CR and CH) and bottom (HE) of the substrate. Thus, an 

update to the proposal in Wierzchos et al. (2018) is here suggested, in which a 

causal link is evoked to explain the higher abundances of phototrophs as 

opposed to heterotrophs in EMCs. According to that study, the scarcity of water 



Endolithic communities’ and microhabitat architecture 

64 
 

was suggested to cause a lower metabolic activity in phototrophs, thus leading 

to a lower support of the heterotrophic community. However, in this scenario, 

light should also be considered a crucial factor in understanding the differences 

between the composition of top and bottom EMCs, since the HE community has 

a notably lower access to sun radiation. Thus, for EMCs communities based on 

phototrophic microorganisms, a limitation to one of those resources essential for 

photosynthesis would further lead to low rates of CO2 fixation and, consequently, 

to a smaller heterotrophic community.   

While multiple genera of cyanobacteria were found among the different 

microhabitats, most of them belonged to the genus Chroococcidiopsis. Several 

strains of this genus have previously been described in EMCs of both hot and cold 

deserts (Friedman 1980) as a result of their capacity to cope with extreme 

environmental conditions (Billi et al. 2011; Verseux et al. 2017).  Further support 

for the greater difference between the microbial composition of the HE 

microhabitat and the two endolithic microhabitats located at the top is found in 

the discovery of an unexpected unclassified cyanobacterial OTU (UC-OTU, 

New.ReferenceOTU2) which was remarkably more abundant and almost 

exclusive of the HE microhabitat, covering nearly 40% of the relative abundance 

of sequences in that community. Although the low percentage of sequence 

similarity did not allow an accurate taxonomical assignment, its closest relative 

sequences (~94% sequence identity) were from habitats where light is the 

limiting factor for photosynthesis, a pinnacle mat at 10 m depth from a sinkhole 

(Hamilton et al. 2017) and groundwater sample from a tectonically-formed 

cavern (Supp. Mat. 1.1). This UC-OTU stresses in parallel the effort required in 

cyanobacteria isolation, description, taxonomical assignment and phylogeny.  

The differential distribution of the key element of these EMCs, their primary 

producers, between microhabitats in the same lithic substrate and the same 

piece of rock, reveals an “environmental filtering” process (Kraft et al. 2015). 
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This concept focuses on the relationship between an organism and the 

environment, recognizing that not all organisms will be able to establish 

themselves successfully and persist in all abiotic conditions. Thus, in this 

scenario, the abiotic conditions linked to the architecture and the placement of 

the endolithic microhabitat would force the development of community 

assemblages highly specialized to small scale differences, thereby exhibiting a 

microbiogeographical behavior in the EMCs composition.  

 

1.6. Concluding Remarks and future perspectives 

This is the first study addressing the differences between microbial communities 

inhabiting three differentiated endolithic microhabitats in the same lithic 

substrate, even in the same piece of rock.  

In this study, water was confirmed to be a driver of diversity since the specific 

architecture features of each microhabitat facilitate water input and retention, 

suppressing differences in diversity between microhabitats. Furthermore, light 

was proposed as a driver for phototrophic composition with a specific 

distribution of certain cyanobacteria, as highlighted with respect to the 

hypoendolithic community. Water, light, and CO2, are indispensable resources 

for photosynthetic activity. Thus, we propose a cause and effect relationship 

where the restriction of these factors may affect the proportion of phototrophic 

and heterotrophic components in the EMC communities.   

The Chroococcidiopsis genus displayed a variety of strains distributed among all 

microhabitats, proving its high capacity to colonize effectively endolithic 

microhabitats under polyextreme conditions. Nevertheless, the presence of a 

singular cyanobacterial OTU stresses the importance of additional efforts in 

cyanobacterial characterization in these extreme environments.  
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The obtained results on community composition in this work reveal the 

importance of using an appropriate scale for the study of microbial communities. 

The microstructural and microarchitectural features of the lithic substrate are 

decisive for the structure of endolithic microbial communities. This is due to the 

effect of architecture on the availability of vital resources as water and light, 

especially for those taxa supporting the entire endolithic microbial community. 

Thus, this study suggests a cautious use of “macroenvironmental” parameters in 

understanding the differences between endolithic microbial communities from 

different deserts or substrates. Rather, the results obtained point to the need for 

a more thorough description and study of the microenvironmental conditions 

that directly exert an effect on this type of microbial communities: light, water 

and CO2. Therefore, once the relationship between factors affecting the absence 

and/or presence of certain taxa, the actual environmental filtering in these 

microhabitats could be described in more detail, it will be possible to draw on 

conclusions on the interactions and specific roles of the different members in the 

community.  
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1.7. Supplementary Material 

Supplementary Material 1. 1. Taxonomical assignment of cyanobacterial OTUs by BLASTn to sequences belonging to uncultured 
and cultured material. 

CYANOBACTERIAL OTUs 

 

Uncultured Cultured 

BLASTn  
Accession 

Number 

Identity 

(%) 
Environment BLASTn  

Accession 

Number 

Identity 

(%) 
Environment 

OTU18 
Uncultured 

cyanobacterium clone 

332-12 

KT453633 99 

Sublacustrine 

thermal vents 

Yellowstone 

Lake 

Chroococcidiopsis 

sp. CC4 
DQ914866 99 

China quartz 

hypoliths 

OTU11 
Uncultured 

cyanobacterium clone 

FWS-B15 

KC437357 100 Hot Spring 
Calothrix sp. NIES-

3974 
AP018254 100  

OTU854 
Uncultured Gloeocapsa sp. 

clone HL4SH30 
LN880050 97 

shoots of 

Haloxylon in 

high salinity 

Gloeocapsa sp. 

PKUAC-GDTS1-13 
MG822744 97  

OTU9 
Uncultured 

cyanobacterium clone 

Alchichica_AQ2_1_1C_10 

JN825312 99 

microbialites 

from Alchichica 

alkaline lake 

Gloeocapsa sp. 

Ryu5-15d 
LC325265 99 

blackened part 

of a surface of a 

building 
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OTU497 
Uncultured 

Chroococcidiopsis sp. clone 

ATA4-8-EC03 

KC311895 95 
soil Atacama 

Desert 

Chroococcidiopsis 

sp. A789-2 
JF810071 94 

Antarctica: 

University Valle 

OTU420 
Uncultured 

cyanobacterium clone 

IGW2-36 

KP238411 98 

volcanic rock 

ignimbrite, 

Atacama 

Desert, Lomas 

de Tilocalar 

Chroococcidiopsis 

sp. RQEC 
KY303728 97 

Hypolith quartz 

Taklimankan 

desert, 

Xingjiang 

OTU1 
Uncultured 

Chroococcidiopsis sp. clone 

ATA4-8-EC03 

KC311895 98 
soil Atacama 

Desert 

Chroococcidiopsis 

sp. CC1 
DQ914863 96 

quartz hypoliths 

China 

OTU4 
Uncultured 

cyanobacterium clone 

IGD2-37 

KP238398 98 

volcanic rock 

ignimbrite, 

Atacama 

Desert, Lomas 

de Tilocalar 

Chroococcidiopsis 

sp. A789-2 
JF810071 99 

Antarctica: 

University Valle 

OTU1772 
Uncultured 

cyanobacterium clone 

IGW2-36 

KP238411 96 

volcanic rock 

ignimbrite, 

Atacama 

Desert, Lomas 

de Tilocalar 

Chroococcidiopsis 

sp. RQEC 
KY303728 96 

Hypolith quartz 

Taklimankan 

desert, 

Xingjiang 

OTU98 
Uncultured 

cyanobacterium clone 

AY6_21 

FJ891051 99 
quartz, Yungay, 

Atacama Desert 

Chroococcidiopsis 

sp. RQEC 
KY303729 95 

Hypolith quartz 

Taklimankan 

desert, 

Xingjiang 

OTU8 
Uncultured 

cyanobacterium clone 

AY6_17 

FJ891047 99 
quartz, Yungay, 

Atacama Desert 

Chroococcidiopsis 

sp. CC1 
DQ914863 97 

quartz hypoliths 

China 
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OTU112 
Uncultured bacterium 

clone BJ201305-46 
KX507829 100 rain water 

Chroococcidiopsis 

sp. CC1 
DQ914863 97 

quartz hypoliths 

China 

OTU2 
Uncultured bacterium 

clone LSS_Cyano_OTU5 
KP728185 95 sinkhole lake 

Aphanocapsa 

muscicola 5N-04 
FR798920 94 

fountain made 

of Sierra Elvira 

Stone, gray 

semi-dry patina 

on a water jet 

Spain:Granada, 

Generalife, Patio 

de la Sultana" 

OTU5 
Uncultured 

cyanobacterium clone 

3GA1-12_K89 

JX127189 99 
stone of castle 

wall Germany 

Synechococcus sp. 

CIBNOR 42 
AY274622 99 

cyanobacterial 

bloom in the 

Urias  estuary 

(Mazatlan, 

Sinaloa, Mexico) 

during a fish  

mortality event 

in spring 1999 

OTU7 
Uncultured bacterium 

clone Atacama-colB11 
EF071511 100 Atacama Desert 

Chroococcidiopsis 

sp. A789-2 
JF810071 94 

Antarctica: 

University 

Valley 
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CHAPTER 2: Chroococcidiopsis: THE HIDDEN CYANOBACTERIUM 

SUPPORTING THE ENDOLITHIC COMMUNITY OF HALITE IN YUNGAY 

2.1. Abstract 

Chroococcidiopsis is known as the most widespread cyanobacterial genus on 

both hot and cold deserts due to its endurance to diverse extreme environmental 

conditions. Controversy has surrounded the discovery of cyanobacterial 

endolithic colonization of halite pinnacles in the polyextreme Yungay area, in the 

hyper-arid Atacama Desert, for the last decade, since the different taxonomic 

approaches have provided different identification. While microscopy techniques 

offered images where the major component had Chroococcidiopsis morphology 

and ultrastructure, the sequences obtained by molecular studies showed 

phylogenies close to the halophile genus Halothece. A Chroococcidiopsis strain 

from this halite endolithic habitat has been isolated and characterized combining 

imaging and molecular approaches such as: light and fluorescent microscopy for 

morphological characterization, TEM for its ultrastructure and the development 

of a specific DNA isolation protocol and whole genome sequencing for its 

molecular characterization. Morphological and ultrastructural features and 

specific adaptations to the specific environmental conditions compared with 

those of the major cyanobacteria observed inhabiting the halite endolithic 

habitat leaded to the determination of indeed Chroococcidiopsis, and not 

Halothece, as the dominant cyanobacterium in the halite endolithic habitat in 

Yungay. 
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2.2.  Introduction 

2.2.1. Yungay: one of the driest sites on Earth 

The Atacama Desert harbors in its hyper-arid core one of the most polyextreme 

environments on Earth: the Yungay area (Fig. 2.1, A), a site that was labeled as 

the dry limit of photosynthetic life on Earth (Warren-Rhodes et al. 2006). 

However, this statement was soon refuted by Wierzchos et al. (2006), who 

described the abundant endolithic colonization in halite pinnacles from this 

region and drew a new label for Yungay as one of the driest places on Earth and 

the driest site in the Atacama Desert where phototrophic life can be found 

(Wierzchos et al. 2006, Wierzchos et al. 2012a, Robinson et al. 2015).  

The Yungay region’s most prominent feature is the halite (NaCl) pinnacles, which 

form part of the Neogene salt-encrusted playas and have been isolated from any 

significant source of ground or surface water for the entire Quaternary (Pueyo et 

al. 2002). The environmental conditions outside this halite pinnacles or nodules 

are characterized by a strong diary thermal amplitude, up to 60°C, combined 

with extremely high PAR values (Table 2.1), and a mean annual precipitation 

below 1 mm (de los Ríos et al. 2010; Wierzchos et al. 2012a). Similar scenarios, 

harboring halite pinnacles colonized by phototrophic microorganisms, can also 

be found elsewhere in the Atacama Desert. Such are Salar Grande and Salar 

Soronal (Tarapacá Region), where camanchaca fog and stratocumulus clouds 

occur during more than a third of the year (Robinson et al. 2015). By contrast, 

the Yungay region has been shown to be under the influence of clouds less than 

50 days per year (Robinson et al. 2015).  

Water activity (aw) is a crucial parameter since it is a quantification of the 

chemical availability of water. Its values range from 0 (absolutely no water) to 1 

(pure water) serving as a thermodynamic measure of salinity (Tosca et al. 2008).  

Most organisms cannot multiply at aw < 0.9, and few are known to tolerate aw < 
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0.85 (Brown 1976; Moyano et al. 2013), although the most halophilic and 

xerophilic organisms from the three domains of life can multiply at lower aw 

values (Pitt 1975; Williams and Hallsworth, 2009; Stevenson et al. 2015). The 

minimum water activity determined for eukaryotic systems reaches 0.640 

(theoretical aw =0.632), whereas for Archaea and Bacteria the lower limit is 0.635 

(theoretical aw=0.611) (Stevenson et al. 2015). Water activity in NaCl saturated 

brine ranges from 0.765 to 0.745 in temperatures between 2-50°C (Winston and 

Bates 1960); it is therefore the range of aw occurring in the halite endolithic 

microhabitat. Thus, only highly halotolerant or halophilic organisms are 

expected to be found in this type of habitat.  

 

 

 

The only phototrophic microorganisms found in the Yungay’s halite belong to 

Cyanobacteria, a phylum mostly dependent on the presence of liquid water. 

Other phototrophic microorganisms such as microalgae, which can more easily 

use water vapor for their development (Palmer and Friedmann, 1990), were not 

identified in this endolithic habitat in Yungay, although they have been found in 

the same microhabitat in Salar Grande (Robinson et al. 2015; Crits-Christoph et 

Table 2.1. Microclimate data from Yungay from three 1 year-periods: June 2006 – June 
2007 (Davila et al. 2008); May 2008 - May 2009 (Vítek et al. 2010; de los Ríos et al. 2010) 
and April 2010 - April 2011 (Robinson et al. 2015). Avg =Annual mean of daily average; 
Max= Annual mean of daily maximum; Min = Annual mean of daily minimum 

Microclimate Data from Yungay 

Air Temperature (°C) 

Min -5.85 (± 2.33) 

Avg 18.16 (± 0.42) 

Max 47.78 (± 3.54) 

PAR (µmol photons m-2  s-1) 
Avg 820.51 (± 395) 

Max 2281.5 (± 125) 

Air RH (%) 

Min 2.02 (± 0.78) 

Avg 35.93 (± 1.92) 

Max 88.83 (± 12.97) 
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al. 2016a). The question of liquid water sources for the cyanobacteria inhabiting 

the endolithic habitats of halite pinnacles, in the light of scarce precipitations, 

uncommon fog and absence of dew, was addressed by Davila et al. (2008) and 

Wierzchos et al. (2012a). Wierzchos et al. (2006) and Davila et al. (2008) report 

deliquescence of NaCl as the main source of liquid water, occurring when the air 

relative humidity (RH) is above 75%. Moreover, Wierzchos et al. (2012a) showed 

that the nano-porous structure of halite also allows the condensation of water 

vapor and the retention of liquid water for prolonged periods when the RH is 

over 55%. Both processes, deliquescence and capillary condensation, occurs 

during more than 5 months per year (4000 h y-1) (Wierzchos et al. 2012a).  

Cyanobacteria, as the main primary producers supporting the endolithic 

microbial communities inside the halite nodules of Yungay, furthermore need to 

deal with the osmotic stress from the always saturated with NaCl hypersaline 

environment.    

2.2.2. Cyanobacteria in hypersaline environments  

Cyanobacteria are known to inhabit most of the environments on Earth due to 

their capacity to adapt to diverse environmental conditions, colonizing different 

ecosystems on land and water (Whitton 1992). The presence of unicellular and 

filamentous representatives in a variety of hypersaline environments (salt lakes, 

hypersaline lagoons, solar salterns) is due to the capacity of many species to 

adapt to changing salinity [Oren (2000), Oren (2012), Oren (2015) and 

references therein] and to the fact that most of the halophilic and halotolerant 

species are able to live in a range of salt concentrations from 5% (one and a half 

times that of seawater) to 25%.  

Cyanobacteria inhabiting hypersaline environments possess acclimation 

mechanisms against osmotic stress generated by the high salt concentration in 

the surrounding medium in order to maintain osmotic equilibrium and cell 

turgor. Extremely halophilic microorganisms have developed the “salt-in” or 
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“salt-out” strategy, which consists of the massive accumulation of K+ and Cl- in 

the cytoplasm and involves the adaptation of the enzymatic machinery to the 

high ionic concentrations (Oren 2006). However, in cyanobacteria, although ions 

such as Na+, K+ or Cl- can transiently enter the cells following sudden increases 

in the salinity of the medium, there is a maintenance ionic concentration at low 

levels via the accumulation of organic osmotic solutes, also called compatible 

solutes. These small, uncharged compounds with high solubility are used to 

osmotically adjust the cytoplasm to the external medium. While less salt-tolerant 

species use disaccharides such as sucrose and trehalose, the most salt-tolerant 

or salt-requiring species use glycine betaine as osmotic solute. However, 

cyanobacteria found in halite pinnacles always live in 100% salt concentration 

with aw of 0,75. According to Oren (2015), this is an exceptional hypersaline 

microbial ecosystem.  

2.2.3. The problem of taxonomic assignment  

Before defining the distribution of cyanobacteria along the salinity gradient in 

different hypersaline environments, it is relevant to introduce the problems 

derived from the taxonomical assignment. Synonymy and oversimplification are 

general problems in cyanobacteria identification, but this reaches a greater 

extent in extreme environments. 

One notable example is the classification of the most halotolerant organisms. The 

problems of identification have been pointed out in different studies indicating 

the variety of names given to a unicellular halotolerant cyanobacterial species, 

the Halothece cluster: from Aphanothece halophitica (Oren 2015) to Halothece, 

Euhalothece (García-Pichel et al. 1998), Cyanothece, Synechococcus (De Philippis 

et al. 1993; Campbell and Golubic 1985), depending on the morphological and 

ultrastructural criteria used. Especially Komárek has made a huge effort to re-

evaluate the classification of this group of unicellular halotolerant cyanobacteria 

(Komárek 1976; Komárek and Cepak 1998; Komárek et al. 1999; Komárek et al. 
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2004; Margheri et al. 2008; Komárek and Johansen 2015) using the “polyphasic 

approach” to define them through different methodological approaches 

(paleobotanical research, phenotype approach, ecological investigations, 

ultrastructure by electron microscopy and molecular approach by DNA/DNA 

hybridization) in order to merge all types of information in the definition of the 

different taxa (Komárek 2003).  

In any case, under this scenario taxonomical assignment is empeded when any 

of these sources of information is not available, since the definition of 

cyanobacterial species requires most of these elements: “Group of populations 

which belongs to one genotype, is characterized by stabilized phenotypic 

features and by identical ecological demands. These characters should occur 

repeatedly in various localities with the same ecological conditions” (Komárek 

2003).  

2.2.4. Cyanobacterial diversity in hypersaline environments 

Both unicellular and filamentous types can be found, depending on the salinity 

range. Revision of cyanobacteria in hypersaline environments by Oren (2015) 

showed that only unicellular types from the Halothece cluster (Aphanothece, 

Halothece, Euhalothece) have resulted the most halotolerant, inhabiting 

hypersaline environments with over 22% salt concentration. However, 

environments with lower salt concentration (15-22%) have also been reported 

to harbor the picocyanobacterial genus Synechococcus together with some 

filamentous types such as Oscillatoria, Coleofasciculus, Phormidium, 

Leptolyngbya, Halospirulina/Spirulina (Arthrospira) and Plectonema. A higher 

cyanobacterial diversity can be found at a lower salt concentration range (5-

15%) where, in addition to the genera already mentioned, more unicellular 

(Dactilococcopsis, Gloeoccapsa, Pleurocapsa and Chroococcidiopsis) and 

filamentous types (Lyngbya, Johannesbaptistia, Halomicronema and Nodularia) 

have been detected. The list of these typical genera found in hypersaline 
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environments can be completed with Komárek and Johansen’s (2015) data 

collection: unicellular genera such as Staineria and Synechocystis, and species of 

the filamentous type such as Oxynema.  

2.2.5. Cyanobacteria in hypersaline endolithic habitats in the 

Atacama Desert 

Living in the hyper-arid core of the Atacama Desert is already a major challenge 

for cyanobacteria, and its combination with the hypersaline halite endolithic 

habitat becomes a real feat. One of the photosynthesis requirements, water, is 

the most limiting factors and when it is available, it is in the form of NaCl 

saturated brine which counts with 36% salt concentration and aw 0.75. This 

circumstances would limit primary production to extremely halophilic and the 

most halotolerant cyanobacteria. However, this scenario in conjuction with other 

extreme environmental conditions (extreme solar radiation and thermal 

amplitude) restrict even more the possible cyanobacterial colonizers.    

During the last decade, several studies have focused on endolithic microbial 

colonization supported by phototrophs in halite nodules in the Atacama Desert, 

mainly at two locations: Salar Grande, in the northern Atacama Desert close to 

the western coastal range (de los Ríos et al. 2010; Vítek et al. 2010; Stivaletta et 

al. 2012; Roldán et al. 2014; Robinson et al. 2015; Dávila et al. 2015; Christoph et 

al. 2016a; Uritskiy et al. 2019) and Yungay (Wierzchos et al. 2006; de los Ríos et 

al. 2010; Vítek et al. 2010; Wierzchos et al 2012a; Vítek et al. 2012; Roldán et al. 

2014; Vítek et al. 2014a; Wierzchos et al. 2015; Robinson et al. 2015), while a 

couple of them included studies from Salar Llamará, in the Central Depression 

(de los Ríos et al. 2010; Demergasso et al. 2003) and Salar Soronal (Robinson et 

al. 2015).  

While all these studies point to the presence of cyanobacteria, only a few of them 

supply information about the relative abundance of this phylum in those 

communities: 15% in Yungay (Robinson et al. 2015; Wierzchos et al. 2018) and 
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between 5–15% in Salar Grande (Robinson et al. 2015; Crits-Christoph et al. 

2016a; Wierzchos et al. 2018; Uritskiy et al. 2019) and in Salar Soronal 

(Robinson et al. 2015). This scenario differs notably from the cyanobacterial 

abundance found in other endolithic microbial communities in this desert (~ 40-

80%) (Table 1.1, Chapter 1; Wierzchos et al. 2018). 

Two cyanobacterial genera have been found in these halite endolithic 

communities, Chroococcidiopsis and Halothece, with differential results 

depending on the methodological approach used for their taxonomic adscription. 

In Salar Grande, Stivaletta et al. (2012) detected Chroococcidiopsis by using both 

morphological and molecular approaches in contrast with molecular studies 

performed by Robinson et al. (2015), Crits-Christoph et al. (2016a) and Uritskiy 

et al. (2019) in which the only cyanobacterium detected was Halothece. While 

the study of de los Ríos et al. (2010) showed cyanobacterial cells morphologically 

resembling Chroococcidiopsis, the obtained clones exhibit a genetic affiliation 

similar to Halothece.  

As yet, the available information about the identity of cyanobacteria inhabiting 

halite endolithic communities in Yungay is not complete, despite the fact that 

they were the very first to be discovered by Wierzchos et al. (2006). In that 

microscopy work, the cyanobacterium found was assigned to the 

Chroococcidiopsis genus following morphological and ultrastructural criteria. 

Four years later the use of a cloning library allowed a molecular approach 

accompanied by microscopy performed by de los Ríos et al. (2010) where the 

authors determined that, as in Salar Grande, the cyanobacterium belonged to the 

Halothece genus, although its morphology and ultrastructure resembled that of 

the Chroococcidiopsis genus. 

This chapter is focused on unraveling the identity of the cyanobacteria inhabiting 

one of the most polyextreme environmental contexts on Earth, Yungay, and the 

problematics of their description, finding and classification. Further, this chapter 
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aims to explore their adaptations to cope with the different adverse 

environmental conditions of this site in the hyper-arid Atacama Desert. 

 

2.3. Experimental Procedures 

2.3.1. Site description and sampling 

Colonized halite rocks were collected in the Atacama Desert in December 2015 

from the Yungay area (GPS coordinates 24°04’059′′S; 069°54’24′′W). This area 

is located 60 km from the coast at an altitude of 962 m between two mountain 

ranges–the coastal mountains to the west (1000–3000 m high) and the Domeyko 

Mountains to the east (about 4000 m high). The coastal mountains block most of 

the marine fog and humid air from reaching Yungay, except during very rare 

episodes. All samples were packed in sterile bags and stored at room 

temperature, dry and dark environment before further processing. (Fig. 2.1) 

2.3.2. Cyanobacteria isolation  

Three weeks after the collection of the lithic samples, scrapped material from 

two endolithic colonization zones of halite, the green zone (Z1) and the black 

zone (Z2), were transferred to two different sets of plates. The first set contained 

BG11 1.5% - agar plates (Purified Agar, Condalab, Spain) with 20% NaCl and the 

second set BG11 1.5% - agar plates without NaCl. All samples were incubated in 

a growth chamber at 28 ± 2°C with illumination of 20 µmol photons m-2 s-1 by 

cool white 40W fluorescent tubes (Philips). After 30 days of incubation, visible 

cyanobacterial growth appeared only in the second set of plates, with BG11 

1.5%-agar without NaCl. Colonies from that set of plates were isolated by 

repeated plating on 0.8%-agar with BG11 medium (Rippka et al., 1979). The 

successfully isolated colonies were then transferred to liquid BG11 medium. The 
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first set of plates (with 20% NaCl) was checked every week during 6 months and 

no cyanobacterial growth was observed.  

2.3.3. Light and fluorescence microscopy  

Halite samples from the endolithic colonization zone (3-5 mm below the crust 

surface) were scrapped and dissolved in 5M NaCl. After brief precipitation of 

scarce mineral particles, the supernatant was centrifuged at 12,000x g for 10 

min. Cell aggregates on the pellet were resuspended in 20µL of 5M NaCl. Both 

cell aggregates from cyanobacterial isolated cultures were observed in DIC mode 

and with fluorescence microscopy (FM) with Apochrome oil immersion 

objective x64 n=1.4, using a D1 Zeiss fluorescence microscope (AxioImager M2, 

Carl Zeiss, Germany). The DAPI (Zeiss Filter Set 49; Ex ⁄Em: 365 ⁄ 420–470 nm) 

filter set was used for the acquisition of single section images of autofluorescence 

signal potentially proceeding from chlorophyll. AxioVision 4.8 software was used 

for image acquisition and processing. 

2.3.4. Transmission Electron Microscopy (TEM) 

Specimens of natural endolithic colonization were prepared by dissolving 0.3g 

of representative colonized halite in distilled water. Following brief precipitation 

of the scarce mineral particles, the supernatant was centrifuged at 12,000x g for 

10 min. The microbial cells precipitated were fixed following the protocol 

described by de los Ríos et al. (2010). Cyanobacterial cells from the culture were 

centrifuged at 3,000x g and transferred to vials with 3% glutaraldehyde in 0.1M 

cacodylate buffer and incubated at 5°C for 3 hours. The cells were then washed 

three times in cacodylate buffer, postfixed in 1% osmium tetroxide for 5 hours 

before being dehydrated in a graded series of ethanol and embedded in LR White 

resin. Poststained ultrathin sections were observed in a JEOL JEM-2100 200kV 

electron microscope (Tokio, Japan) with Gatan Orius CCD camera (Pleasatan, CA, 

USA).  
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Figure 2.1. Yungay Sampling site. A) Sampling location in the Atacama Desert, Chile. Yungay area (red diamond) and its analog Salar 
Grande (black diamond). Modified from (Hock et al. 2007) B) Yungay area landscape with halite pinnacles. C) Top view of a halite 
pinnacle with salt efflorescence crystals (white dots pointed by black arrow) and scytonemin deposits on its surface (black regions 
pointed by empty arrows). D) Fragment of halite pinnacle exhibiting endolithic colonization (black arrows). 
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2.3.5. Customized DNA extraction procedure  

Multiple and unsuccessful attempts to recover DNA were performed using 

diverse DNA isolation kits known to be successful for other endolithic microbial 

communities and endolithic cyanobacterial isolates (UltraClean, PowerSoil, 

PowerBiofilm) with or without modifications. Also, the specific methodology 

described by Billi et al. (1998) for Chroococcidiopsis, which combines enzymatic 

lysis with the phenol-chloroform protocol, was applied to extract DNA from 

Chroococcidiopsis-like isolates with ineffective results. Thus, a novel DNA 

isolation method was developed both for the culture material and the 

cyanobacteria inhabiting the endolithic microbial community in halite from 

Yungay (Fig. 2.2). Differential procedure for the first lysis step was applied to 

cyanobacteria from the culture and from the colonization zone. Culture material 

from each strain (50 mL) was harvested during exponential growth and 

centrifuged (10,000 x g, 5 min). The pellet was washed 3 times with TE Buffer, 

resuspended in a final volume of 5mL of TE Buffer and passed through French 

pressure cell press 3 times at 9000 PSI (62,05 MPa). The principle underpinning 

the high efficiency of French pressure cell press (French and Milner, 1955) 

consists in subjecting a suspension of microbial cells to high pressure and then 

abruptly reducing the pressure (Jaschke et al. 2009).  

For cyanobacterial material from the endolithic microhabitat in halite, 2g of the 

colonized zone from the halite were scrapped and dissolved in 5M NaCl. A total 

of 10 washing steps with decreasing concentrations of NaCl (serial dilutions) 

were performed in order to avoid an osmotic shock on the cyanobacteria. Finally, 

cells were resuspended in a final volume of 5mL of TE buffer and passed through 

French pressure cell press 1 time at 9000 PSI (62.05 MPa) to prevent the damage 

of DNA from cyanobacteria with weaker membranes. At this point cell lysates 

from both types of material followed the same protocol. Working with 400μL 

aliquots, 0.010g of silica beads 20μL of 10% SDS and 250μL of hot phenol 
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ultrapure (65°C) were added. After 3 steps of vortex and incubation at 65°C, 

250µL of chloroform were added, followed by 3 steps of vortex and incubation 

at 4°C and centrifugation at 13,000x g for 15min at 4°C. A second extraction with 

1mL of hot ultrapure phenol and vortex and spin down 13,000 rpm for 15min at 

4°C, as well as two subsequent extractions with chloroform, were performed. 

The aqueous phase was transferred and absolute ethanol was added for its 

incubation for 12h at -20°C. DNA pellets were washed with 70% ethanol and 

finally resuspended in 20µL of MilliQ water.  An estimated 20% efficiency in DNA 

isolation with customized DNA extraction method was obtained for both cultures 

(YU-1 and YU-2) and natural samples. This estimation was made by microscopy 

observation of cellular lysis.  

2.3.6. Cyanobacterial isolates molecular characterization.  

16S rRNA gene was amplified using primers PA (Edwards et al. 1989) and B23S 

(Lepère et al. 2000), and PCR conditions from Ballot et al. (2008): 1 cycle of 5 

min at 94°C, then 30 cycles of 30 s at 94°C, 30 s at 50°C and 1 min at 70°C, and a 

final elongation step of 72°C for 3 min. Sequencing was performed as described 

in Casero et al. (2014).   

2.3.7. Chroococcidiopsis YU-2 strain whole genome library 

preparation, sequencing and computing analysis.  

The genomic DNA of Chroococcidiopsis YU-2 was subjected to paired-end 

Illumina HiSeq sequencing (Johns Hopkins Genetic Resources Core Facility) after 

creating a library using KAPA HyperPlus (KAPA Biosystems). Raw reads were 

quality trimmed with TrmGalore, after quality filtering, library contained over 

7.6 Gbp of sequence. Resulting pairs were processed with the MetaWrap pipeline 

(Uritskiy et al. 2018). A total of 175 high-coverage contigs, encompassing a total 

of 5,957,924 bases, were selected for further analyses. Among these contigs, the 

N50 value was 63,683 bases, with an average G+C% of 46.3. CheckM v1.0.7 
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(Parks et al. 2015) reported a genome completeness of 99.48% and a genome 

contamination of 1.93%. Finally, gene prediction and annotation of the 

Chroococcidiopsis sp.  YU-2 contigs were carried out with the Rapid Annotations 

using Subsystems Technology (RAST) pipeline (Overbeek et al. 2014). A total of 

6,412 coding DNA sequences (CDSs), 36 tRNA genes, and 2 rRNA genes were 

identified. 

2.3.8. Characterization of the cyanobacterial diversity in the halite 

endolithic community. 

The 16S rRNA genes in the extracted DNA from the natural sample were 

amplified using cyanobacteria-specific oligonucleotide primers CYA359F and 

CYA781R(a)/CYA781R(b) (Nübel et al. 1997). PCR reaction was performed as 

described in Casero et al. (2019). Cloning libraries were performed using the 

StrataCloneTM PCR Cloning Kit (Agilent Technologies).  

2.3.9. Phylogenetic analysis  

Sequences of 16S rRNA gene from cyanobacterial isolates were aligned with 

sequences obtained from the NCBI GenBank using the Clustal W 1.4 software 

(Thompson et al. 1994). 16S rRNA sequences from GenBank were selected using 

NCBI MegaBlast tool (http://blast.ncbi.nlm.nih.gov/ Blast.cgi, accessed 

28.08.18). The final alignment length was 400 bp. Phylogenetic trees were 

constructed in MEGA 7.0 using the Maximum Likelihood (ML) method (Kumar et 

al. 2016). The best fitting evolutionary model, chosen by following the BIC 

(Bayesian Inference Criterion) in MEGA 7.0, was the Kimura 2-parameter model 

(Kimura 1980) for 16S rRNA. 1000 bootstrap replicates were performed for all 

trees.  
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Figure 2.2. Customized DNA isolation lysis step for Chroococcidiopsis-like cyanobacterial cultures isolated from halite 
endolithic community and for endolithic microbial communities inhabiting halite from Yungay. Detailed description in section 
2.3.5. 
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2.4. Results 

2.4.1. Cyanobacterial strains isolation 

Light microcopy images (DIC) from cyanobacterial aggregates scrapped from 

two different colonization zones are shown in Fig. 2.3 and Fig. 2.4: Zone 1 (Z1) 

with green aggregates (Fig. 2.3) and Zone 2 (Z2) with black aggregates (Fig. 2.4). 

Both preparations showed the presence of cyanobacterial cells with the typical 

morphology of Chroococcidiopsis aggregates according to Komárek and Johansen 

(2015). 

Z1 Green aggregates (Fig. 2.3) exhibited green round shape cells grouped in sacs 

containing from four to more than ten cells. These aggregates are surrounded by 

an uncolored thick envelope. By contrast, Z2 brown aggregates (Fig. 2.4) were 

composed of bigger irregular cells grouped in couples or tetrads surrounded by 

thick layers from green-orange to intense brown.  

During the isolation process, the culture YU-1 obtained from the green endolithic 

colonization zone Z1 revealed the co-occurrence of two clearly differentiated 

cyanobacterial morphotypes (Fig. 2.5, B): Chroococcidiopsis, solitary or small 

aggregates of bigger blue-green cells, and Synechococcus, lighter green smaller 

cells organized in spherical aggregates. Again the Cyanobacterial cells were 

identified according to Komárek and Johansen (2015). Chroococcidiopsis 

aggregates were generated following one or two binary divisions with their 

planes orthogonal to each other, releasing baeocytes once the sheath envelope 

was broken. In fact, light microscopy images (DIC) showed the presence of empty 

sheath envelopes after this release. Concerning the fluorescence microscopy 

image of this mixed cyanobacterial culture, differences in autofluorescence 

intensity between Chroococcidiopsis and Synechococcus-like could easily be 

observed, detecting a higher intensity in the former. Unfortunately, 
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Synechococcus- like members were lost during the following steps of the isolation 

process so that the study based on molecular tools could not be performed.  

Culture YU-2 isolated from black colonization zone Z2, in contrast to the 

previously described YU-1, resulted in an unicyanobacterial culture of 

Chroococcidiopsis (Fig. 2.5, C). Light microscopy images (DIC) showed the co-

occurrence of 3 different stages of Chroococcidiopsis: a) aggregates where the 

parental cell was divided in two or four daughter cells after one or two binary 

divisions respectively, b) some aggregates where these daughter cells started 

dividing in different planes without intermediate growth and c) baeocytes. Cells 

exhibiting a lower chlorophyll autofluorescence allowed the observation of a 

parietal disposal of thylakoids (Fig. 2.5, C).    

2.4.2. Ultrastructure characterization and taxonomical assignment 

Ultrastructural features of the three samples of the study: the natural sample 

scrapped from the colonization zone of halite and both YU-1 mixed culture and 

YU-2 isolate were used for their characterization and taxonomical assignment. A 

summary of the features found in the TEM micrographs (Fig. 2.6 and Fig. 2.7) and 

a comparison with the literature description of these genera are shown in Table 

2.2.  
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Figure 2.3. Colonization zone Z1 with green aggregates. A) Halite sample with 
colonization zone (square). B) Detailed colonization zone with green aggregates pointed 
by arrows). C) Scrapped big green cyanobacterial Chroococcidiopsis-like aggregate from 
Z1 colonization zone. Green arrows point at green aggregates containing numerous 
round shape cells surrounding by a thick envelope. White arrow points NaCl crystal.  
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Figure 2.4. Colonization zone Z2 with black aggregates A) Halite sample with 
colonization zone (square). B) Detailed colonization zone with black aggregates (dark 
dots pointed by arrows). C) Scrapped dark brown-orange Chroococcidiopsis-like 
aggregate from Z2 colonization zone. Brown arrows point at brown aggregates where 
scytonemin is accumulated on the EPS envelope (Chapter 3). Green arrow points at a 
green aggregate with a thick green-orange envelope where less scytonemin has been 
accumulated. White arrow points NaCl crystal. 
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Figure 2.5. Light and fluorescence microscopy images from cyanobacteria from 
endolithic microbial community of halite. A) Cyanobacteria scrapped from natural 
sample. Empty arrows point at cyanobacterial cells with chlorophyll autofluorescence 
(red). B) Mixed cyanobacterial culture YU-1 isolated from Z1 containing 
Chroococcidiopsis cells with high chlorophyll autofluorescence (asterisks) and 
Synechococcus like cells with low autofluorescence (stars). C) Chroococcidiopsis culture 
YU-2 isolated from Z2. Arrows indicate cells exhibiting a parietal disposal of thylakoids. 
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2.4.2.1. Chroococcidiopsis YU-1 and Chroococcidiopsis YU-2 

Starting with the cyanobacterial cultures, by comparing light microscopy 

information (Fig. 2.5, B-C) with the ultrastructural features (TEM) found in the 

bigger cyanobacterial cells from YU-1 (Fig. 2.6, B; Fig. 2.7, B; Table 2.2) and the 

cyanobacterial isolate YU-2 (Fig. 2.6, C; Fig. 2.7, C; Fig. 2.8, C; Table 2.2), both 

cyanobacteria were assigned to Chroococcidiopsis genus. 

Cells from cultures YU-1 (Fig. 2.6, B) and YU-2 (Fig. 2.6, C; Fig. 2.7, C) exhibited 

the typical morphology of Morphotype II (baeocystous) as described by Rippka 

et al.  (1979). Two main characteristics of this Morphotype II can be observed in 

the micrographs: the presence of a denser outermost fibrous layer surrounding 

the aggregates (Fig. 2.6, B-C; Fig. 2.7, C and Fig. 2.8, C) and reproduction through 

multiple fission in different planes (Fig. 2.7, C). 

Although thylakoid structure was not easy to discriminate, regarding the three 

main patterns of thylakoid arrangement, Chroococcidiopsis from YU-1 (Fig. 2.6, 

B) exhibited a coiled pattern, an irregular distribution in a wavy and dense 

structure. However, Chroococcidiopsis YU-2 exhibited a parietal thylakoid 

arrangement (Fig. 2.7, C and Fig. 2.8, C) as previously deduced from fluorescence 

microscopy images (Fig. 2.5, C). 

Decisive morphology and ultrastructural features for this taxonomical 

assignment were cell size, shape of aggregates, binary fission as division pattern 

and the presence of a dense outermost layer which revealed the identity of both 

cyanobacteria (Table 2.2). All these factors along with their original habitat, 

cryptoendolithic, allowed the determination of both cyanobacterial isolates as 

belonging to the Chroococcidiopsis genus.  
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Figure 2.6. TEM micrographs of cyanobacteria from 
endolithic microbial community of halite. A) Cyanobacteria 
scrapped from natural sample. Asterisk point 
Chroococcidiopsis-like cells. Empty blue arrows point thick 
fibrous layer. B) Mixed cyanobacterial culture YU- YU-1 
isolated from Z1 containing Chroococcidiopsis cells (asterisks) 
with thick fibrous layers (empty blue arrows) and 
Synechococcus-like cells (stars) C) Cyanobacterial culture YU-
2 isolated from Z2. Chroococcidiopsis cells (asterisks) with 
thick fibrous layers (empty blue arrows). 
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Figure 2.7. TEM micrographs of cyanobacteria from 
endolithic microbial community of halite.  A) 
Cyanobacteria scrapped from natural sample. Asterisks point 
Chroococcidiopsis-like cells. Empty blue arrows point thick 
fibrous layer. B) Synechococcus-like cells (stars) from mixed 
culture YU-1 isolated from Z. Green stars indicate sagittal 
sections, yellow stars indicate cross-sections of the cells. 
Empty red arrows point Synechococcus-like cells starting 
binary fission. C) Cyanobacterial culture YU-2 isolated from 
Z2. Chroococcidiopsis cells (asterisks) with thick fibrous layers 
(empty blue arrows) and parietal disposition of thylakoids 
pointed by green empty arrows.  
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Figure 2.8. Detailed TEM micrographs of cyanobacteria from endolithic microbial 
community of halite. A) Chroococcidiopsis-like cell scrapped from natural sample 
Empty blue arrow points the thick fibrous layer. B) Synechococcus-like cell exhibiting 
parietal thylakoid arrangement (green empty arrow). C) Chroococcidiopsis cell from 
culture YU-2 isolated from Z2. Thick fibrous layer (empty blue arrows) and parietal 
disposition of thylakoids pointed by green empty arrow. 
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This taxonomical assignment was complemented by phylogenetic data based on 

the 16S rRNA gene (Fig. 2.9 and Fig. 2.10) of Chroococcidiopsis sp. YU-2. As it is 

shown in Fig. 2.9, Chroococcidiopsis YU-2 was located on the green framed 

cluster, whose singularity is its closeness to the Gloeocapsa and Gloeocapsopsis 

cluster (blue framed), and is clearly different from the Halothece cluster (red 

framed). The phylogenetic tree of cyanobacterial strains isolated from different 

endolithic microhabitats from separate lithic substrates of the Atacama Desert 

(Fig. 2.10) grouped this Chroococcidiopsis sp. YU-2 strains with most of the 

cryptoendolithic isolated strains from gypcrete (Chapter 1) and ignimbrite 

(isolated during this thesis), separating them from the cluster containing 

chasmoendolithic isolated strains from calcite and gypcrete.   

2.4.2.2. Synechococcus-like from mixed culture YU-1 

Smaller cells and aggregates found in the YU-1 mixed culture follow the typical 

description of Morphotype I (unicellular) according to Rippka et al. (1979) (Fig. 

2.7, B and Fig. 2.8, B): oval single cells reproduced by binary fission, highlighted 

on Fig. 2.7, B. This second morphotype found in the YU-1 culture was defined as 

Synechococcus based mainly on two features and their differences from the 

expected Halothece as described by Margheri et al. (2008). Synechococcus cells 

exhibited a cell size almost 10-fold smaller than Halothece  (Table 2.2) and a clear 

parietal thylakoid arrangement following the oval shape (Fig. 2.8, B).  
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Table 2.2. Main taxonomic intergeneric features of the natural sample 
Chroococcidiopsis-like, both Chroococcidiopsis isolates YU-2 and YU-1, compared to 
Chroococcidiopsis sp. features described by [a] Donner 2013. And Synechococcus-
like found in the mixed culture YU-1 compared to Halothece sp. described by [b] 
Margheri et al. 2008.   

 

Halite 
Cyanobacteria 

Chroococcidiopsis 
sp. 

YU-2 | YU-1 

Chroococcidiopsis 
sp. [a] 

Synechococcus  
on 

YU-1 

Halothece  sp. 
[b]  

C
e

ll
 

D
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e
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(μ
m

) 
 

1-4 1.5-5 1.25-5.43  1-2 x 0.6-1 2.5-12.6 x 2.6-7.8 

S
h
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e
 

Spherical Spherical 
Spherical, oval to 

irregular-rounded 
Rod shape Oval 
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e

ll
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n
 

Multiple fision Binary fision 

Irregular, 
successive in 

numerous 
baeocytes 

Binary fision 
Perpendicular 
binary fission 
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id
 

a
rr

a
n
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e
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e
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Coiled Parietal Coiled 
Parietal, coiled or 

stacked thylakoids 
Parietal 

Irregular 
position 

O
th
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r 

 
fe

a
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s 

Dense 
outermost 

layer 

Dense outermost 
layer 
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rm

, s
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, 
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rm

a
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o
n

 

Solitary 
Two cell 

aggregates, 
tetrades and 

irregular 
groups 

Solitary 
Two cell 

aggregates, 
tetrades and 

irregular groups 

Solitary or 
aggregated in 

irregular groups 

Solitary cells or 
aggregates 

 

Solitary cells.  
No colonies. No 

mucilage. 
Facultative short 
pseudofilaments 
(2-8 cells long) 
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2.4.2.3. Natural halite sample visualized Chroococcidiopsis 

cyanobacteria:  

Cyanobacterial cells directly scrapped from the colonization zone of halite 

micrographs (Fig. 2.6, A and Fig. 2.7, A) exhibited the typical morphology of 

Morphotype II (baeocystous) as described by Rippka et al.  (1979). Both features 

found in the YU-1 and YU-2 Chroococcidiopsis cultures were also observed here: 

a denser outermost fibrous layer surrounding the aggregates (Fig. 2.6, A: Fig. 2.7, 

A and Fig. 2.8, A), especially developed in Chroococcidiopsis from the natural 

sample, and reproduction through multiple fission in different planes (Fig. 2.7, 

A). Chroococcidiopsis cells on natural sample exhibited the same thylakoid 

pattern found in the Chroococcidiopsis YU-1, i.e. a coiled arrangement.  

The morphology of the Cyanobacteria scrapped from halite and their 

ultrastructural features are similar to those described by Donner (2013) and 

found in the Chroococcidiopsis YU-2 strains (Table 2.2). Spherical shape, cell size 

(1-4μm), aggregates (Fig. 2.3, Fig. 2.4) binary fission as division pattern, forming 

two cells groups or tetrades (Fig. 2.6, A) and the presence of a dense outermost 

layer (Fig. 2.6, A; Fig. 2.7, A and Fig. 2.8, A) revealed their morphological 

correspondence with Chroococcidiopsis. The disparity with Halothece (Table 2.2) 

is indicated by several features exhibited by this halophilic cyanobacterium: a) 

oval shape, instead of spherical shape, b) the lack of mucilage in contrast with 

the dense outermost layer, c) their occurrence in solitary cells or 

pseudofilaments instead of  aggregates, d) their irregular distribution of 

thylakoids. Thus, light microscopy and TEM visualization of this major 

cyanobacterium inhabiting the endolithic microbial community of halite 

determined its belonging to the Chroococcidiopsis genus. On the other hand, the 

16S rRNA sequences of the clones performed on DNA isolated from scrapped 

material were phylogenetically related to the Halothece cluster, as  is also the 

case with the previus clones obtained from this and similar areas in the Atacama 

Desert (Fig. 2.9)  
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Figure 2.9. Maximum likelihood tree based on partial 16S rRNA sequences of 
Cyanobacteria from endolithic and halophilic environments. Strain of study is 
marked in bold. Scale bars indicates 10% sequence divergence. Yellow cluster: 
Chroococcidiopsis cluster containing the only Chroococcidiopsis sp. sequence from halite 
endolithic microhabitat (Stivaletta et al. 2012). Green cluster: Chroococcidiopsis cluster 
containing the Chroococcidiopsis sp. sequence from halite endolithic microhabitat from 
Yungay from this study (bold). Blue cluster: Gloeocapsa and Gloeocapsopsis cluster. Red 
cluster: Halothece cluster containing cyanobacterial sequences from halite endolithic 
microhabitats in the Atacama Desert (de los Ríos et al. 2010) and Yungay clone sequence 
from this study (bold). 
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2.4.3. Osmotic stress on Chroococcidiopsis sp. YU-2 strain 

The functional analysis of the genome of Chroococcidiopsis sp. YU-2 uncovered a 

diversity of stress response pathways related to osmotic stress response (Table 

2.3). Three SEED subsystems were involved in this kind of stress response: 

osmoregulation, ectoine biosynthesis and regulation, and choline and betaine 

uptake and betaine biosynthesis.  

Regarding osmoregulation, a gene encoding an aquaporin Z water channel, 

mediating rapid flux of water across the cellular membrane in response to abrupt 

changes in osmotic pressure (Calamita 2000), was found. Likewise, a gene was 

Figure 2.10. Maximum likelihood tree based on partial 16S rRNA sequences of 
cyanobacterial isolates from endolithic microhabitats of different lithic substrates 
of the Atacama Desert. Strain of study is marked in bold. Scale bars indicates 5% 
sequence divergence. Color indicates the substrate of origin: purple – ignimbrite, orange 
– gypsum, green – halite, black – calcite. 
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also found encoding a diaminobutyrate-pyruvate aminotransferase concerning 

the biosynthesis and regulation of the organic osmolyte ectoine.  

Finally, several genes encoding L-proline glycine betaine ABC transport systems 

and sarcosine oxidase subunits involved in biosynthetic pathway and uptake of 

the compatible solute betaine were found too (Table 2.3).  

Table 2.3. Functional roles of sequence reads assigned to SEED categories (RAST) 
related to osmotic stress in Chroococcidiopsis YU-2 strain genome. 

Subsystem Role 

Osmoregulation Aquaporin Z 

Ectoine biosynthesis 

and regulation 

Diaminobutyrate-pyruvate aminotransferase (EC 

2.6.1.46) 

Choline and Betaine 

Uptake and Betaine 

Biosynthesis 

L-proline glycine betaine ABC transport system permease 

protein ProV (TC 3.A.1.12.1) 

L-proline glycine betaine binding ABC transporter 

protein ProX (TC 3.A.1.12.1) 

Sarcosine oxidase alpha subunit (EC 1.5.3.1) 

Sarcosine oxidase beta subunit (EC 1.5.3.1) 

Sarcosine oxidase gamma subunit (EC 1.5.3.1) 

Sarcosine oxidase delta subunit (EC 1.5.3.1) 

 

 

2.5. Discussion 

This study contributes to a more comprehensive knowledge of the identification 

and characterization of the cyanobacterial component in one of the most 

polyextreme environments on Earth, the endolithic habitat in the halite 

pinnacles of Yungay, in the Atacama Desert. Despite the presence of 

cyanobacteria in this habitat located in the “dry limit for photosynthetic life” 

(Warren-Rhodes et al. 2006) as was reported for the first time more than 13 

years ago (Wierzchos et al. 2006), the question of the identity of this essential 
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primary producer for the community remained unclear (de los Ríos et al. 2010; 

Robinson et al. 2015; Gómez-Silva 2018 and Wierzchos et al. 2018).  

In this chapter that question is addressed using microscopy and molecular tools 

after the pioneering isolation and culture of cyanobacteria from this habitat and 

a taxonomical assignment for the observed cyanobacterial component is 

advanced, clarifying the possible reasons for the disparities pointed by previous 

studies and proposing a methodology to approach this type of studies in the 

future.  

The importance of relying on extremophile and extremotolerant cyanobacterial 

isolates for a proper characterization and taxonomical assignment is constrained 

by the associated problematics of their collection, specific requirements, low 

growth rates and the fact that most of them are not cultivable. Thus, the obtaining 

of cyanobacterial isolates such as Chroococcidiopsis YU-2 from such an extreme 

environment as the halite endolithic habitat in Yungay for the first time, allowed 

us to explore its identity, Chroococcidiopsis, and characterization.  

The ultrastructural and morphological features of the small cyanobacteria 

growing in the mixed culture YU-1, led to its identification as the 

picocyanobacterium Synechococcus instead of the expected Halothece, following 

the criteria of Komárek and Cepák (1998); Komárek et al. (1999); Margheri et al. 

(2008), Komárek and Johansen (2015). However, the loss of these cells during 

the purification process did not allow the comparison of these results with 

molecular data and integrate both approaches.  

The presence of thick envelopes surrounding the cells reveals the extreme 

halotolerance of this Chroococcidiopsis YU-2, and classifies it as a halotolerant 

rather than a halophile, since it did not require saline conditions for its isolation 

and culture. Those mucilaginous envelopes whose complexity increases with age 

and the high production of polysaccharides have been described to interfere 
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with DNA extraction by Billi et al. (1998), who already developed a specific DNA 

isolation protocol for this cyanobacterium with a more aggressive lysis step. The 

requirement of a specific DNA isolation method in this study for the YU-2 strain 

exhibits their higher resistance compared to other Chroococcidiopsis strains 

isolated from other endolithic communities in the Atacama Desert (as those 

isolates reported in Chapter 1). The extremely difficult cell lysis and DNA 

extraction from Chroococcidiopsis from halites in Yungay would explain the 

absence of its sequences in previous reports (de los Ríos et al. 2010 and Robinson 

et al. 2015) as well as in the cloning library of this study, while imaging 

information about its morphology and ultrastructure clearly supported the 

Chroococcidiopsis assignment. In this study, the application of a harder lysis 

method, using French cell press, but still light to avoid disrupting Halothece DNA 

(just one cycle instead of three as for Chroococcidiopsis sp. cultures) resulted in 

a still inefficient method to isolate the entire cyanobacterial DNA.  In the light of 

the outcome, although molecular techniques, especially NGS, are particularly 

useful for biological identification and functional biology due to the depth of the 

results, including information from low abundant taxa not detected by imaging 

techniques (Casero et al. 2019), the unbalanced DNA extractions represent a 

clear caveat. On the other hand, the limiting factor of microscopy techniques 

could contribute to differentiating the dominant organisms, since this less 

diverse highly abundant community would most be probably revealed by 

imaging. Therefore, the combination of both approaches, molecular and 

microscopy, is a crucial requirement to making a closer identification, especially 

in these extreme environments and unfamiliar microorganisms.  

As previously explained, the complicated DNA isolation of Chroococcidiopsis and 

the discrimination of microorganisms in high abundance by microscopy, would 

justify both the occurrence of Halothece sequences and the relative low 

abundance of the cyanobacterial component in the community in previous 

reports (de los Ríos et al. 2010 and Robinson et al. 2015) and in our cloning 
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library. Thus, Halothece cells would easily have lysated in spite of occurring in 

lower abundance, as they have never been detected by imaging techniques in 

halite samples. The case is strengthened by the detection of scytonemin, a UV-

protective pigment produced by cyanobacteria, in the endolithic community 

(Vítek et al. 2010; Vítek et al. 2012; Vítek et al. 2014a) since Halothece has never 

been reported to produce this pigment in contrast to Chroococcidiopsis (Dillon 

and Castenholz 1999; Dillon et al. 2002; Fleming and Castenholz 2007) and the 

Chroococcidiopsis YU-2 strain in particular (Chapter 3). Following this line of 

argument, two conclusions could be drawn: a) Chroococcidiopsis, not Halothece, 

would be the dominant cyanobacterium supporting the microbial community in 

the halite endolithic community and b) there was a probable underestimation of 

cyanobacteria abundance in this endolithic community due to the DNA 

extraction method bias that would not have lysate Chroococcidiopsis cells.  

The possible dominance of a halotolerant cyanobacterium as Chroococcidiopsis 

instead of the highly halophilic Halothece in an extremely hypersaline 

environment as the halite could raise questions regarding ecological 

competitiveness. Accordingly, it would be expected that Halothece dominates the 

cyanobacterial component due to its specific adaptations to high salt 

concentrations (up to 30-35%) such as the osmolite glycine betaine and an 

increasing ratio of uncharged to charged lipids with increasing salinity in favor 

of membrane stability (Oren 2012). However, Chroococcidiopsis rely on some of 

those osmotic stress adaptations as found in its genome:  the production, as is 

already known, by some strains of glycine betaine and the potential production 

of ectoine, combined with the anhydrobiosis, namely the ability to enter into a 

dormancy state at the desiccation onset and resume metabolic activities when 

water becomes scarce (Caiola and Billi 2007), and the scytonemin production.  

The above mentioned arguments may explain why the halotolerant 

Chroococcidiopsis can be a more qualified cyanobacterium compared to the 
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halophile Halothece when it comes to cohabiting in the endolithic microhabitat 

of Yungay, where more than one extreme factors occur simultaneously. Thus, the 

higher plasticity exhibited by Chroococcidiopsis in multiple extreme conditions, 

and especially its capacity to deal with long drought periods, allow 

Chroococcidiopsis to be more competitive in this context. 

 

2.6. Concluding Remarks and Future projects 

A Chroococcidiopsis strain arising from the most polyextreme environment in the 

hyper-arid Atacama Desert, the endolithic habitat of halite nodules in Yungay, 

has been isolated for the first time, corroborating the first morphological 

identification of these cyanobacteria by Wierzchos et al. (2006).  

This study reflects how a greater effort on cyanobacterial isolation, integrating 

both microscopy and molecular techniques, enables a suitable approach to the 

task of taxonomical assignment. Furthermore, the high endurance of 

Chroococcidiopsis strains under extreme environmental pressures has been 

demonstrated by its ultrastructural characterization and the requirement of a 

specific DNA isolation method, which explains its nonappearance in previous 

studies that used traditional protocols. Thus, previous studies of this endolithic 

environment describing the diversity of this microbial community and the 

notably low abundance of cyanobacterial members in contrast with other 

endolithic communities should be revised. 

In the future, following the application of an optimized DNA isolation protocol 

with different lysis conditions, a new NGS analysis should be done to clarify the 

real abundance of the cyanobacteria phylum in endolithic halite communities 

including Chroococcidiopsis contribution. In parallel, immunological techniques 

such as CYANOCHIP (Blanco et al. 2015) or Life Detector Chip (LDChip300) 
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(Parro et al. 2011) could be optimized including more Chroococcidiopsis 

antibodies to explore the diversity of these communities, in case no possible 

balance of DNA isolation lysis was possible.  

This study proves that biodiversity studies of microbial communities, especially 

from extreme environments, should be performed in the light of a combination 

of molecular and microscopy techniques. The resistance exhibited by some 

microorganisms to DNA extraction with conventional protocols, on the one hand, 

and the appearance in low abundance of some other microorganisms, on the 

other, are introducing bias in the community composition observed through 

these methodologies respectively. In fact, specific modifications and the 

optimization of DNA isolation methods should be performed in order to avoid 

the loss of information from key members of these communities.  
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CHAPTER 3: DEALING WITH ONE OF THE HIGHEST SOLAR 

RADIATION ON EARTH: RESPONSE OF Chroococcidiopsis STRAINS 

FROM THE ATACAMA DESERT 

3.1. Abstract 

The Atacama Desert is known to be the location on Earth with one of the highest 

solar radiation, including PAR and UVR, limiting the presence of life to specific 

niches as endolithic microhabitats. Endolithic microbial communities are 

supported by photosynthetic primary producers, mainly cyanobacteria, which 

can be injured by UVR (240-400nm). Therefore, cyanobacteria exposed to high 

solar radiation and its harmful effects have developed a series of defense 

mechanisms: avoidance, antioxidant systems or production of photoprotective 

compounds such as scytonemin among others. Scytonemin is a liposoluble 

pigment whose absorption maxima (370, 252 nm) are located in UVA and UVC 

spectrum and highly absorbing in the UVB range.  

In order to elucidate the protection capacity of cyanobacteria in endolithic 

microbial communities, two cyanobacterial strains from Chroococcidiopsis genus 

isolated from different endolithic microhabitats in the Atacama Desert: YU-2 

strain, originally from the cryptoendolithic microhabitat of halite (NaCl), and 

CVL strain from chasmoendolithic microhabitat of calcite (CaCO3). Both were 

exposed to PAR and UVR+PAR conditions studying their short-term response 

(oxidative stress) and long-term response (scytonemin production, metabolic 

activity and ultrastructural damage). The observed response of both strains 

reveals a high sensitivity to direct light exposure, even to PAR, while differences 

in their acclimation suggest specific adaptation strategies related to their 

original microhabitat, unraveling their protective potential and the strain 

specific environmental pressure selection to inhabit similar microhabitats 

exposed to slightly different light conditions.   



Response to UVR and PAR  

112 
 

3.2. Introduction 

3.2.1. UV radiation effects on Cyanobacteria  

It is well known that UVR exerts lethal effects onbiological systems since it is 

absorbed by the biomolecules (Diffey 1991). Some of the harmful effects of UVR 

are the alteration of biomolecules (proteins, DNA, lipids), chronic depression of 

key physiological processes, and acute physiological stress leading to either 

reduction in growth and cell division, pigment bleaching, N2 metabolism, energy 

production, or photoinhibition of photosynthesis (Sinha and Häder 2008) (Fig. 

3.1).  

3.2.1.1. UV-induced oxidative stress 

UVB has the greatest potential for cell damage since it has both direct effects on 

DNA and proteins regardless of the presence of oxygen (Gao and García-Pichel, 

2011) and, like UVA, produces indirect effects through the production of highly 

active oxidizing agents such as reactive oxygen species (ROS) (Fig. 3.1).  

The UVR-induced generation of ROS, such as hydroxyl radical (OH-), hydrogen 

peroxide (H2O2), singlet oxygen (1O2) and superoxide anion (O2-), has been 

reported in some cyanobacteria (Rastogi et al. 2010a; Rastogi et al. 2010b; He 

and Häder 2002a), yet very little is known about the subsequent effects of 

oxidative stress in cyanobacteria.
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Figure 3.1. Summary of damaging effects, stress responses and tolerance strategies in cyanobacteria against long term 
exposure to extreme solar radiation. (modified from Rastogi et al. 2014). 
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3.2.1.2. UV effects on biomolecules  

Oxidative stress produced by UVR can induce nucleotides modifications, 

translocations and DNA-DNA cross-links, and an increase in the susceptibility to 

proteolysis and fragmentation of the peptide chain and oxidation of specific 

aminoacids (Rastogi 2015) (Fig. 3.1). In fact, UVR affects genomic function and 

fidelity, as in the case of Arthrospira platensis, where an increase in thymine 

dimers frequency has been observed after a continued UVR exposure (Gao et al. 

2008), in Synechocystis PCC 6308, whose DNA degradation due to UVR exposure 

has been reported by (O’Brien and Houghton 1982), or in Prochlorococcus 

marinus PCC 9511, where UVR induced a delay in chromosomal replication 

(Kolowrat et al. 2010).  Furthermore, a differential lipid peroxidation in response 

to UVB exposure has been reported in Nostoc muscorum, Plectonema boryanum 

and Aphanothece (Zeeshan and Prasad 2009), related to the oxidative 

degradation of polyunsaturated fatty acids in the cell membranes.   

3.2.1.3. UV effects on cyanobacterial physiology  

The inactivation of photosynthesis has been shown to occur when cyanobacteria 

are exposed to intense solar light, above the normal capacity of the 

photosynthetic electron flow, due to the production of ROS (Rastogi et al. 2015) 

(Fig. 3.1). Furthermore, different photosynthetic parameters are known to be 

inhibited when cyanobacteria are exposed to UVR, such as CO2 uptake, O2 

evolution or ribulose-1,5 bisphosphate carboxylase (RuBisCo) activity (Sinha et 

al. 1997).  Likewise, UVB radiation is known to cause photobleaching of 

photosynthetic pigments such as chlorophyll a (Rastogi et al. 2014) and 

phycobiliproteins, generating a reduction on its content together with the 

disassembly of the phycobilisomal complex (Quesada et al. 1995, Sinha et al. 

1995, Quesada and Vincent 1997).  
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3.2.2. UV stress tolerance and mitigation strategies in cyanobacteria 

Since cyanobacteria originated in the Precambrian area, when the ozone shield 

was absent, UVR has presumably acted as an evolutionary pressure leading to 

the selection of UVR efficient protecting mechanisms (Rahman et al. 2014), 

although UVR tolerance varies between species. The mitigation strategies 

against the harmful effects of the exposure to UVR include avoidance, scavenging 

of ROS by antioxidant systems, the synthesis of UV-screening compounds, 

repairing systems for UV-induced DNA damage and protein resynthesis (Rastogi 

et al. 2014) (Fig. 3.1). The three first line of defense will be described below.   

3.2.2.1. Avoidance 

Cyanobacteria rely on avoidance as a first line of defense against the potential 

damage caused by their exposure to UVR, preventing its harmful effects through 

various strategies. Those inhabiting aquatic ecosystems can use migration to 

escape from high UV to low UV conditions in the water column (Reynolds et al. 

1987), while some cyanobacterial species, especially terrestrial species, can form 

microbial mats in order to minimize the harmful effects of intense solar light and 

UVR (Quesada and Vincent 1997; Büdel 1999) or colonize endolithic habitats 

(Wierzchos et al. 2018). On the other hand, it has been shown that some 

cyanobacterial species, as Arthrospira platensis, suffer a morphological 

transformation to increase self-shading (Wu et al. 2005) and in some other 

species, the synthesis of EPSs is stimulated by UVR, thus increasing the effective 

path length for the absorption of radiation (Ehling-Schulz et al. 1997).  

3.2.2.2. Antioxidant systems 

As a second line of defense, cyanobacteria have developed complex antioxidant 

enzymatic or non-enzymatic systems to cope with UV-induced oxidative stress 

(Singh et al. 2013). Enzymatic antioxidants in cyanobacteria comprise 

superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and 

the enzymes involved in the ascorbate-glutathione cycle. On the other hand, 
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carotenoids, α-tocopherols (α-TOC; vitamin E) and ascorbic acid (ASA, vitamin 

C) are non-enzymatic antioxidants (Rastogi et al. 2014).   

SOD protects different cellular proteins against oxidative stress and exists in four 

different metalloforms: Fe-SOD, Mn-SOD, Cu/Zn-SOD and Ni-SOD. All four SODs 

have been found in cyanobacteria, exhibiting a pattern: Fe-SOD and Mn-SOD 

occur in higher orders of cyanobacteria, Ni-SOD is the only one found in primitive 

cyanobacteria and Cu/Zn-SOD is rarely observed in cyanobacteria (Priya et al. 

2007).  

3.2.2.3. UV absorbing /screening compounds 

The third line of defense against UVR photodamage in cyanobacteria comprises 

the synthesis of UV-absorbing and/or UV-screening compounds (Cockel and 

Knowland 1999). Two main UV-absorbing/screening compounds are known in 

cyanobacteria: mycosporine-like amino acids (MAAs) and scytonemin.  

MAAs have an absorption spectrum from 310 to 362 nm. They contribute to 

photostabilization and resist different physico-chemical stressors such as 

temperature, strong UVR and pH, becoming successful photoprotectants in 

diverse habitats (Gröniger and Häder 2000). Several abiotic factors have been 

reported to affect the biosynthesis of MAAs in cyanobacteria (Quesada and 

Vincent, 1997), such as PAR and UVR (Rastogi et al. 2014), osmotic stress and 

desiccation (Rastogi et al. 2010c; Rastogi et al. 2015).  

On the other hand, scytonemin is the most widespread sunscreen pigment 

exclusively produced by cyanobacteria (Rastogi and Incharoensakdi 2014b; 

Rastogi et al. 2015). It is a yellow-brown lipid-soluble dimeric compound 

composed of indolic and phenolic subunits (Proteau et al. 1993) and occurs in 

both oxidized (MW 544 Da) and reduced (MW 546 Da) forms (Fig. 3.2). Its in vivo 

absorption maximum is at 370nm and purified at 386nm, in the UVA region. 
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Although scytonemin displays an absorption maximum at 252, 278 (UVC) and 

370 nm, it shows high absorbance in the entire UVB region. 

 

Figure 3.2. Chemical structure of scytonemin found in both oxidized and reduced 
form (Rastogi et al. 2015). 

 

This pigment is located in the EPS sheath of certain terrestrial cyanobacterial 

species and is highly stable under different abiotic stresses being able to reduce 

about 90% of the UVA that reaches the cell (García-Pichel and Castenholz 1991).  

Its stability allows it to persist very long in terrestrial crusts or in dried mats 

(Potts 1994,) and performs its function without any further metabolic 

investment even under prolonged physiological inactivity. It is therefore a 

successful mechanism against UVR for cyanobacteria in combination with other 

mechanisms (Jones et al. 2011).  

3.2.3. Extreme solar regime in the Atacama Desert and its 

consequences for life.  

The solar spectrum is fractionated in three regions depending on the 

wavelength: infrared radiation (IR) (750-1000 nm), PAR (400-700nm) and UVR 

(240-400 nm). The quantity and quality of that solar spectrum in a terrestrial 

surface depends on seven features: the Sun-Earth distance at that point, the 

altitude, the solar zenith angle, ground reflectivity or albedo, the ozone and water 

vapor column, cloudiness and aerosol concentrations (Cordero et al. 2014).   
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The Atacama Desert has been pointed out as the place where some of the highest 

surface irradiance is likely to occur based on diverse features: its latitude (close 

to equator), its high altitude, relatively low ozone column values, prevalent 

cloudless conditions and low aerosol loading (McKenzie et al. 2015; Cordero et 

al. 2016) (Fig. 3.3).    

UV irradiance is of special interest due to the adverse effects for life on both 

terrestrial and aquatic ecosystems (Cordero et al. 2014). The World Health 

Organization uses the international standard measure, the UV index (UVI), to 

establish different risk levels of harm so that regions where the UVI is greater 

than 11 would be positioned in the extreme risk of harm category. Following this 

criterium, the Atacama Desert has been described as the location on the Earth 

where the highest levels of surface UV irradiance have been measured with UVI 

reaching values up to 20 (Cordero et al. 2014).  

The extreme solar radiation is considered a limitation for life development, and 

thus not even epilithic (over the rock surfaces) microbial communities can be 

found in most of the hyper-arid region of the Atacama Desert due to the excessive 

exposure to the harmful effects of UVR (Cockell et al. 2008).  

However, inhabiting endolithic microhabitats constitute an excellent first line of 

avoidance of the damaging effects of high radiation exposure for microorganisms 

in the Atacama Desert. The presence of few millimeters of lithic substrate over 

the endolithic microbial communities provides a certain barrier for UVR damage, 

as proposed by Cockell et al. (2003), since only a 0.1-2.5% of the total incident 

solar radiation reaches the endolithic habitat depending on the substrate 

(Nienow et al. 1988, Wierzchos et al. 2015).  
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Figure 3.3.(a) The global horizontal surface radiation. The numbers between parentheses correspond to the observed and 
modeled mean surface radiation in the format (b) Mean cloud fraction between 10:00 and 16:00 local time derived from 
geostationary satellite data in the visible channel. Both panels correspond to the mean climatological value from 2004 to 
2012. Gray areas are regions in which the high albedo of the surface, owing to snow cover or salt pans (Modified from Rondanelli et 
al. 2015). 
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Despite the UV-blocking effect provided by the lithic substrate used as an 

avoidance strategy, cyanobacteria from endolithic microbial communities in the 

Atacama Desert have been reported to exhibit the second line of defense, namely 

the production of carotenoids and antioxidant orange-carotenoid protein (Vítek 

et al. 2017) as well as the third line of defense, the production of a UV-screening 

compound, such as scytonemin detected in situ by  Raman spectrometry (Vítek 

et al. 2016; Wierzchos et al. 2015, Vítek et al. 2014a, Vítek et al. 2017).  

3.2.4. Chroococcidiopsis: extremotolerant cyanobacteria 

Chroococcidiopsis species are considered extremotolerant organisms, occurring 

in a variety of terrestrial habitats. Members of the Chroococcidiopsis genus avoid 

high light intensities and UVR by living within soil, rocks and caves or in 

lithobiontic habitats (Wierzchos et al. 2018).   

Several strains from Chroococcidiopsis have been well characterized in order to 

identify their UVR tolerance by exposing Chroococcidiopsis cells to similar 

conditions as those occurring on Mars (Cockell et al. 2005, Baqué et al. 2016, Billi 

et al. 2019). Also the UVR defense mechanism of Chroococcidiopsis, the 

production of scytonemin was analyzed by Fleming and Castenholz (2007), 

Dillon et al. (2002) and Dillon and Castenholz (1999). Moreover, the special 

capacity of this genus to deal with UVR has been studied to reveal potential 

biotechnological applications of its mechanisms (Abed et al. 2011, Gabani and 

Singh 2013).  

The cryptoendolithic habitat in halite has previously been reported to harbor 

scytonemin produced by Chroococcidiopsis (Vítek et al. 2014a). Thus studying 

the response of the Chroococcidiopsis strain (YU-2) isolated from the translucent 

halite to direct solar simulated radiation gives an approach to its sensibility to 

this type of abiotic stress among with its capacity to protect the whole 

community.  The second Chroococcidiopsis strain, isolated from the 

chasmoendolithic habitat in calcite (CVL), was chosen since this type of 
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endolithic habitat is more exposed to direct solar radiation. Hence this chapter 

aims to describe for the first time the response and potential role in their 

respective communities of two representatives of the main genus in endolithic 

communities, Chroococcidiopsis, from two highly exposed microhabitats as the 

cryptoendolithic habitat of halite and the chasmoendolithic habitat of calcite 

originally from the region with one of the highest solar radiation on Earth.  

 

3.3. Experimental Procedures 

3.3.1. Culture organisms and conditions  

Two strains of cyanobacteria isolated from endolithic habitats of the Atacama 

Desert were used in this study: Chroococcidiopsis YU-2, from the cryptoendolithic 

microhabitat in halite from Yungay and Chroococcidiopsis CVL, from the 

chasmoendolithic microhabitat in calcite from Valle de la Luna (DiRuggiero et al. 

2013). Both strains are preserved at the Universidad Autónoma de Madrid, 

Madrid, Spain. Chroococcidiopsis YU-2 and CVL were grown as batch cultures in 

BG11 medium (Rippka et al. 1979) at 28°C under continuous 12 W m-2 visible 

light (~ 60 µmol photons m-2 s-1) generated by coolwhite fluorescent lamps.  

All described experiments were performed in triplicates following the Fleming 

and Castenholz (2007) indications. The experimental design remained as 

follows: cultures were gently homogenized by orbital shaking. Three milliliter 

aliquots of the homogenized cultures were then filtered onto 25 mm diameter, 

0.2 µm pore size Cyclopore Track-Etch Membranes (Whatman), producing a thin 

layer of cells on the filter. The filtered cells were immediately transferred to 1% 

agar plates made with BG11 medium. The agar plates with the filtered cells were 

then kept under the following conditions: continuous 40 W m-2 PAR at 25°C, 

without increasing humidity conditions for 2 days. At the end of the 48 h period, 

a UV lamp (F20T10/BLB lamp (315-400nm)) was turned on exposing half of the 
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entire set of filtered cells to continuous 2 W m-2 UVA radiation in addition to 

visible light.  

It is assumed that the experimental conditions described above are definitely not 

exactly the same microenvironmental conditions which can be expected within 

the cryptoendolithic (halite) or chasmoendolithic (calcite) habitats. However, 

this experimental design is as close as possible simulating UVA+PAR irradiance 

within the endolithic habitat in the Atacama Desert. 

Visible light (400-700 nm) and UVR (215-400 nm) measurements were made 

using an ULM-500 universal light meter (Heinz Walz GmbH, Effeltrich, Germany) 

and Apogee UV Radiation MU-200 meter, respectively. All readings refer to 

values measured on the surface of the cultures.  

3.3.2. In vivo detection of oxidative stress  

The spectrophotometric detection of the production of ROS after defined time 

intervals (24, 48 and 72 hours) of exposure to simulated solar radiation was 

performed by using 2’,7’-Dichlorodihydrofluorescein diacetate (DCFH-DA) 

(Sigma Aldrich- Merck KGaA, Darmstadtm Germany) solubilized in ethanol. 

Filtered cells were resuspended in 1 mL phosphate buffer where a 5 µM (final 

concentration) of DCFH-DA was added. Samples were then incubated in a shaker 

at room temperature in the dark for 1 h DCFH is nonfluorescent but switched to 

highly fluorescent DCF when oxidized by intracellular ROS or other peroxides 

having an excitation wavelength of 485 nm and an emission band between 500 

and 600 nm. After 1 h incubation, samples were subjected to fluorescence 

spectrophotometric analysis. The fluorescence of the samples was measured by 

a spectrofluorophotometer with an excitation wavelength of 485 nm and an 

emission band between 500 and 600 nm. The fluorescence intensity was 

corrected against the blank control experiments without cells and then 

normalized to dry weight. Its comparison with control samples was used to 
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determine the oxidative stress. All fluorescence measurements were performed 

in triplicates.  

CellROX Green reagent (Invitrogen) was used to detect ROS in both 

Chroococcidiopsis by microscopy following the optimized method described by 

Cornejo-Corona et al. (2016). Briefly, 2 µL of 5 mM CellROX Green was added to 

100 µL of cyanobacterial culture followed by incubation at room temperature 

and shaking at 120 rpm for 30 min in the dark. The cells were then washed twice 

for 5 min, each time at room temperature with 1× PBS, 0.1% Triton X-100, and 

fluorescence was observed using a Zeiss AxioImager M.2 fluorescence 

microscope (Carl Zeiss, Jena, Germany) and a Apochrome x60, n=1.4 Zeiss oil-

immersion objective. Multichannel Image Acquisition (MIA) system was used 

with a combination of the following filter sets: filter set for eGFP (Zeiss Filter Set 

38; Ex/Em: 450-490/500-550 nm) for CellROX Green fluorescence and EPS 

autofluorescence, and Rhodamine (Zeiss Filter Set 20; Ex/Em: 540-552/567-647 

nm) for chlorophyll autofluorescence signal. At least one hundred cells were 

evaluated for each experimental time and treatment. The samples were observed 

under white light to locate aggregates for evaluation and then the microscope 

was switched to fluorescence to identify the number of fluorescent cells.  

Every measurement was normalized to dry weight using a XP6 microbalance 

(Mettler Toledo, Columbus, OH, USA). Although cultures were not axenic, 

heterotrophic biomass never exceeded 1-2% of the total biovolume based on cell 

counts according to Schallenberg et al. (1989).  

 

3.3.3. Whole genome library preparation, sequencing and 

computing analysis.  

Genomic DNA from the Chroococcidiopsis strains YU-2 and CVL were subjected 

to paired-end Illumina HiSeq sequencing (Johns Hopkins Genetic Resources Core 



Response to UVR and PAR  

124 
 

Facility) after creating a library using KAPA HyperPlus (KAPA Biosystems). Raw 

reads were quality trimmed with TrmGalore, and the resulting pairs were 

processed with the MetaWrap pipeline (Uritskiy et al. 2018). For the 

Chroococcidiopsis YU-2 strain, a total of 175 high-coverage contigs, 

encompassing a total of 5,957,924 bases, were selected for further analyses. 

Among these contigs, the N50 value was 63,683 bases, with an average G+C% of 

46.3. CheckM v1.0.7 reported a genome completeness of 99.48% and genome 

contamination of 1.93%. Finally, gene prediction and annotation of the 

Chroococcidiopsis sp.  YU-2 contigs were carried out using RAST (Overbeek et al. 

2014) pipeline. A total of 6,412 CDSs, 36 tRNA genes, and 8 rRNA genes were 

identified. For the Chroococcidiopsis CVL strain, a total of 324 high-coverage 

contigs, encompassing a total of 5,884,528 bases, were selected for further 

analyses. Among these contigs, the N50 value was 32,524 bases, with an average 

G+C% of 46.3. CheckM v1.0.7 (Parks et al. 2015) reported a genome 

completeness of 98.88% and genome contamination of 1.55%. Finally, gene 

prediction and annotation of the Chroococcidiopsis sp. CVL contigs were carried 

out using RAST pipeline (Overbeek et al. 2014). A total of 6,465 CDSs, 37 tRNA 

genes, and 7 rRNA genes were identified.  

A search for SEED categories (RAST) related to oxidative stress in the 

Chroococcidiopsis YU-2 strain and the Chroococcidiopsis CVL strain genomes was 

performed. The obtained results were then contrasted with 376 cyanobacterial 

genomes available in CyanoBase (Fujisawa et al 2017). 

(http://genome.microbedb.jp/cyanobase/).  

3.3.4. Scytonemin induction experiment  

Filtered Chroococcidiopsis YU-2 and CVL cells were exposed to PAR or UVR+PAR 

light in two separate sets for 3, 6, 9, 12 and 15 days. After the respective 

experimental exposure time cells were scraped out of the filters and suspended 

in the BG11 medium and then gently homogenized by pumping them multiple 

http://genome.microbedb.jp/cyanobase/
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times with a 1000 ml Pipetman (Gilson, Middleton, WI, USA). For the 

determination of scytonemin content, cells were suspended in 1:1 (v/v) 

methanol: ethyl acetate by overnight incubation at 4°C in darkness.  After 

centrifugation (10,000x g for 5 min) samples were filtered through 0.2 µm pore-

sized sterilized syringe-driven filter (Symta, Madrid, Spain) before being 

subjected to HPLC analyses.  

Partially purified scytonemin was analyzed using a HPLC system (Agilent 

Technologies 1200 Series, Photodiode Array). 20 μL were injected into the HPLC 

column Phenomenex Peptide 100 A, 3.6 μ x 4.60 mm; XB C18. Elution was at a 

flow rate of 0.5 mL min-1 using the mobile phase of solvent A (5% acetonitrile in 

milliQ water + 0.1% formic acid) and solvent B (100% acetonitrile + 0.1% formic 

acid). The 30 min gradient elution program was set with 0–15 min linear 

increase from 15 % solvent A to 80 % solvent B, and 15–30 min at 100 % solvent 

B. The detection wavelength was at 384 nm. The PDA scan wavelength ranged 

from 200 to 700 nm. Oxidized and reduced scytonemin were identified by their 

characteristic absorption maxima in the solvent corresponding to the 

appropriate retention time.  

At the same time, the absorbance of each extraction was measured at 384 

(scytonemin maximum), 490 (pooled carotenoids) and 663 nm (Chl a). These 

absorbance values were partially corrected for residual scatter by subtracting 

the absorbance at 750 nm. Absorbance measurements were made on a Flame 

Spectrometer (Ocean Optics, Florida, US.).   

Every measurement was normalized to dry weight using a XP6 microbalance 

(Mettler Toledo, Columbus, OH, USA).  Although cultures were not axenic, 

heterotrophic biomass never exceeded 1-2% of the total biovolume based on cell 

counts according to Schallenberg et al. (1989).  
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3.3.5. Metabolic Activity experiment and UVR effect on 

Chroococcidiopsis cellular ultrastructure 

The metabolic activity of Chroococcidiopsis cells was evaluated at 6 experimental 

times (0, 3, 6, 9, 12, 15 days) for both experimental conditions, PAR and 

UVR+PAR. For this purpose, the cell-permeable 5-Cyano-2,3-Ditolyl Tetrazolium 

Chloride (CTC) redox dye was used. This dye is reduced from a soluble colorless 

form into its corresponding fluorescent insoluble formazans (CTF) that 

accumulate intracellularly. The formazan crystals are viewed as intracellular 

opaque dark-red deposits under transmitted illumination, or as yellow-orange 

fluorescent spots (excitation and emission maxima at 488 and 630 nm) when 

using epifluorescence microscopy.  

Procedures described by Tashyreva et al. (2013) were followed for CTC staining, 

increasing incubation times from 2 to 5 hours. A D1 Zeiss fluorescence 

microscope (AxioImager M2, Carl Zeiss, Germany) was used with Apochrome oil 

immersion objective x64, n=1.4. The optical system for CTF fluorescence 

observations included a filter set (Ex/Em: 426-446 / 545-645 nm). 

3.3.6. Light microscopy  

Light microscopy in DIC mode DIC was performed on cell aggregates of both 

Chroococcidiopsis strains at each experimental time for the scytonemin induction 

experiment. The samples were examined using a microscope (AxioImager M2, 

Carl Zeiss, Germany) equipped with Apochrome x64, n=1.4 oil immersion 

objective.  

3.3.7. Transmission Electron Microscopy (TEM) 

Cyanobacterial cells from YU-2 and CVL Chroococcidiopsis strains were 

centrifuged at 3,000x g and resuspended in 3% glutaraldehyde in 0.1M 

cacodylate buffer and incubated at 4°C for 3 hours. The cells were then washed 

three times in cacodylate buffer, postfixed in 1% osmium tetroxide for 5 hours, 
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before being dehydrated in a graded series of ethanol and embedded in LR White 

resin. Ultrathin sections were stained with lead citrate and observed with a JEOL 

JEM-2100 200kV electron microscope (Tokio, Japan) with Gatan Orius CCD 

camera (Pleasatan, CA, USA). 

3.3.8. Statistical analysis 

All results are presented as mean values of three replicates. Data from 

scytonemin induction and oxidative stress were analyzed by one-way analysis of 

variance. Once a significant difference was detected post-hoc multiple 

comparisons were made by using the Tukey test. The level of significance was 

set at 0.05, 0.01 and 0.001 for all tests.  

 

3.4. Results 

3.4.1. Oxidative stress in Chroococcidiopsis  

3.4.1.1. Semi quantitative analysis of intracellular ROS by DCF 

fluorescence 

Oxidative stress on both Chroococcidiopsis strains was examined in vivo by DCF 

fluorescence normalized to dry weight at 4 experimental times for a 72 hours’ 

period. The strains were exposed to two different light conditions: to 40 Wm-2 

PAR (PAR), or under that PAR radiation together with 2 Wm-2 UVR (UVR+PAR).  

ROS accumulation, represented by DCF fluorescence, in the YU-2 strain increased 

after 24 hours of exposure, increasing sequentially and reaching maximum 

fluorescence after 72 hours of exposure (Fig. 3.4). Light treatment revealed a 

significant effect on ROS accumulation (R2, 0.979) and punctual significant 

differences were observed at all three experimental times. Specifically, PAR 

conditions revealed a higher accumulation of ROS after 24 and 72 hours of 
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exposure, while UVR+PAR conditions involved significantly greater ROS 

accumulation after 48 hours of exposure.  

Oxidative stress response in the CVL strain shared an increase after 24 hours of 

exposure for both light treatments where maximum DCF fluorescence values 

were registered. A significant decrease in DCF fluorescence was observed after 

48 and 72 hours. This strain showed a significantly lower accumulation of ROS 

after 24 hours of PAR in comparison to UVR+PAR conditions. By contrast, 

significant differences observed at 48 and 72 hours of exposure occurred due to 

a higher ROS accumulation after PAR exposure (Fig. 3.4).  

3.4.1.2. Reactive oxygen species formation  

The visualization of ROS produced by Chroococcidiopsis under PAR and UVR 

stress was performed based on the dye CellROX Green at time 0 and after 24 

hours of exposure to UVR+PAR on both strains (Fig. 3.5).  

Light microscopy images on Fig. 3.5 at time 0 (A1, C1) and 24 hours of exposition 

to UVR+PAR (B1, D1) already exhibited differences in the color of the cells. The 

YU-2 strain and CVL strain were light green and blue-green respectively at time 

0 turning to brownish green yellow-brown color after 24 hours of exposure to 

UVR+PAR light conditions.  

Over the red chlorophyll autofluorescence of Chroococcidiopsis cells (Fig. 3.5), a 

weak green fluorescence could be observed inside the cells of both YU-2 (A2) and 

CVL (C2) strains at time 0.  After 24 hours of treatment on YU-2 (B2) and CVL 

(D2), the oxidation of CellROX by ROS and its binding to DNA resulted in most of 

the cells exhibiting a bright spot-like green fluorescence.  
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Figure 3.4. DCF fluorescence measurements in Chroococcidiopsis strains YU-2 
(upper graph) and CVL (lower graph) after irradiation with PAR (plain bars) or 
UVR+PAR (scratched bars) for 72h normalized to dry weight. Significant differences 
between light conditions at marked by *** (0.001). 
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Two types of events were also found after the irradiation for 24 hours (Fig. 3.5) 

by comparing light microscopy (B1, D1) with fluorescence images (B2, D2) in 

both Chroococcidiopsis strains. Arrows on these images point to cells that did not 

emit red autofluorescence from chlorophyll but a green fluorescence. Arrow 

heads point to cell-shaped brown covers on light microscopy with no 

autofluorescence signal.  

3.4.2. Oxidative stress systems in YU-2 and CVL Chroococcidiopsis 

strains  

The functional analysis of the genome from the Chroococcidiopsis strains YU-2 

and CVL uncovered a diversity of stress response pathways related to oxidative 

stress (Table 3.1).  

Seven SEED subsystems related to oxidative stress were found in both genomes 

(Table 3.1). Despite the fact that both Chroococcidiopsis genomes shared most of 

the genes involved in oxidative stress response, they also exhibited some 

differences. On the one hand, the CVL genome revealed a higher diversity of 

genes directly related to protection from ROS owing to the iron superoxide 

dismutase (Fe-SOD) and the cytochrome c551 peroxidase. The former, indeed, 

was only found in two more cyanobacterial genomes from the Acaryochloris and 

Tolypothrix genera (Supp. Mat 3.1). On the other hand, the YU-2 genome showed 

a higher diversity in genes involved in rubrerythins synthesis, which are 

peroxide scavengers, and the antioxidant molecule glutathione (redox cycle) 

with the glutaredoxin 3 and a cell wall endopeptidase from family M23/M37. 

This cell wall endopeptidase was only found in one more cyanobacterial genome 

from the Synechocystis genus.  
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Figure 3.5. CellRox staining for intracellular detection of ROS in Chroococcidiopsis 
strains YU-2 (Series A and B) and CVL (Series C and D).  Light microscopy and 
fluorescence images of Series A and C correspond to exposure time t=0, and from Series 
B and D after24 hours of exposure to UVR+PAR.  Red cells correspond to chlorophyll 
autofluorescence, higher in non-exposed cells (A2, C2) than in UVR+PAR exposed cells 
(B2, D2). Bright yellow/green dots in fluorescence images are due to CellRox 
fluorescence, the oxidative stress indicator, higher in UVR+PAR exposed cells (B2, D2) 
than in non-exposed cells (A2, C2). On images of UVR+PAR treated cells, arrows point at 
cells revealing apparently structural integrity with green autofluorescence signal (B1, 
B2, D1, D2). In images of UVR+PAR treated cells, arrow heads point at cells revealing 
apparently structural integrity and brown color, suggesting an increase in scytonemin 
content, and no autofluorescence signal (B1, B2, D1, D2). Scale bar=8 µm. 
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Both strains showed similar features for the four subsystems left: general 

oxidative stress, glutathione biosynthesis, glutathione (non-redox rections) and 

cluster containing glutathione synthetase (Table 3.1).  However, two of those 

shared genes were found almost exclusively in the studied Chroococcidiopsis 

strains compared to the database, since the Cu/Zn-SOD was only found in 

Synechococcus strains and the paraquat-inducible protein B was not found in any 

of the cyanobacterial genomes available (Supp. Mat. 3.1).  

3.4.3. Scytonemin induction in Chroococcidiopsis 

The total scytonemin content in the Chroococcidiopsis strains YU-2 and CVL was 

evaluated using two different methodologies, HPLC quantification and 

trichromatic equation based on UV-VIS absorption spectra. No statistical 

differences in scytonemin values were found between applied the 

methodologies.  

The scytonemin content in YU-2 strain (Fig. 3.6,) increases with time during the 

first 9 days of experiment in both experimental conditions. When this strain was 

exposed only to PAR light, the maximum content of 16.4 μg scytonemin mg-1 DW 

was detected after 9 days of exposure. When the strain was exposed to UVR and 

PAR light, maximum scytonemin content of 20.8 μg scytonemin mg-1 DW, was 

detected also after 9 days of exposure. Significant differences between both 

experimental conditions were observed after only 6 days of exposure, where the 

scytonemin content under UVR+PAR conditions was 14.6 μg scytonemin mg-1 

DW, while it remained as low as 1.9 μg scytonemin mg-1 DW under PAR only. 

Significant differences in scytonemin content between both light treatments 

were also observed during the last 6 days of experiment. The scytonemin content 

decreased drastically after 12 days of experiment under PAR light down to the 

original values at time 0. However, the tendency was significantly different when 

UVR+PAR light were used, finding non-significant differences in scytonemin 

content between the last experimental time and the value detected after 9 days.  
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Table 3.1. Functional roles of sequence reads assigned to SEED categories (RAST) 
related to oxidative stress in Chroococcidiopsis YU-2 strain and Chroococcidiopsis 
CVL strain genomes. 

Subsystem Role YU-2 CVL 

Protection from ROS 

Manganese superoxide dismutase (EC 1.15.1.1) • • 
Superoxide dismutase [Cu-Zn] precursor (EC 

1.15.1.1) 
• • 

Cytochrome c551 peroxidase (EC 1.11.1.5)  • 

Superoxide dismutase [Fe] (EC 1.15.1.1)  • 

Catalase (EC 1.11.1.6) • • 

Oxidative Stress 

Iron-binding ferritin-like antioxidant protein • • 

Alkyl hydroperoxide reductase subunit C-like protein • • 

Fe2+/Zn2+ uptake regulation proteins • • 

Paraquat-inducible protein B • • 

Peroxide stress regulator • • 
Phytochrome, two-component sensor histidine 

kinase  
(EC 2.7.3.-) 

• • 

Non-specific DNA-binding protein Dps • • 

Zinc uptake regulation protein ZUR • • 

Ferroxidase (EC 1.16.3.1) • • 

Ferric uptake regulation protein FUR • • 

Metallothionein • • 

transcriptional regulator, Crp/Fnr family • • 

Glutathione: 
Biosynthesis and  
gamma-glutamyl 

cycle 

Gamma-glutamyltranspeptidase (EC 2.3.2.2) • • 

Glutathione synthetase (EC 6.3.2.3) • • 

5-oxoprolinase (EC 3.5.2.9) • • 

Glutathione:  
Non-redox reactions 

Glutathione S-transferase family protein • • 

Glutathione S-transferase (EC 2.5.1.18) • • 

Uncharacterized glutathione S-transferase-like 
protein 

• • 

Lactoylglutathione lyase (EC 4.4.1.5) • • 

Hydroxyacylglutathione hydrolase (EC 3.1.2.6) • • 

Glutathione S-transferase, unnamed subgroup (EC 
2.5.1.18) 

• • 

Glutathione S-transferase, omega (EC 2.5.1.18) • • 

Rubrerythrin 
Rubrerythrin •  

Rubredoxin • • 

Alkyl hydroperoxide reductase subunit C-like protein • • 

Glutathione: Redox 
cycle 

Glutathione reductase (EC 1.8.1.7) • • 

Glutaredoxin 3 • • 

Uncharacterized monothiol glutaredoxin ycf64-like • • 

Glutaredoxin 3 (Grx1) •  

Cell wall endopeptidase, family M23/M37 •  

Cluster containing 
Glutathione 
synthetase 

Ribosomal RNA small subunit methyltransferase E  
(EC 2.1.1.-) 

• • 

Putative Holliday junction resolvase YggF • • 
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Figure 3.6. Total scytonemin content on Chroococcidiopsis strains YU-2 (upper 
graph,) and CVL (lower graph) after irradiation with PAR (plain bars) or UVR+PARR 
(scratched bars) for 15 days normalized to dry weight. Significant differences between 
light conditions are marked by *** (0.001); ** (0.01); * (0.05). 
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The maximum scytonemin content in the CVL strain (Fig. 3.6) was reached after 

9 days of exposure to both experimental conditions, with no significant 

differences between them. This maximum content was 62.3 μg scytonemin mg-1 

DW for PAR light conditions and 52 μg scytonemin mg-1 DW for UV+PAR light 

conditions. Relative scytonemin content under both light conditions decreased 

during the last 6 days of exposure. Significant differences were observed 

between the experimental conditions at three different times, after 3, 6 and 12 

days of exposure. The greater difference between both treatments occurred after 

6 days of exposure, exhibiting an almost three times higher scytonemin content 

after UVR+PAR treatment (29.6 μg scytonemin mg-1 DW) in comparison with 

PAR treatment (11.4 μg scytonemin mg -1 DW).  

3.4.3.1. Scytonemin characterization 

A further analysis was performed to partially characterize scytonemin. The HPLC 

analysis of the scytonemin showed two prominent peaks in both 

Chroococcidiopsis strains (Fig. 3.7, A-B) at 16.57 min (a) and 17.89 min (b) with 

a UV absorption maximum at 385 nm identified as reduced scytonemin (a) and 

oxidized scytonemin (b). The obtained chromatogram revealed the presence of 

both reduced and oxidized scytonemin on the ethyl acetate: methanol extracts of 

both Chroococcidiopsis strains. However, the proportion of each type of 

scytonemin occurring in both Chroococcidiopsis strains cannot be taken into 

account due to the absence of a N2 atmosphere during the extraction procedure. 
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Figure 3.7. The HPLC chromatogram and absorption spectra of scytonemin extract of Chroococcidiopsis strains YU-2 (A, C, E) 
and CVL (B, D, F). A and B: The HPLC chromatogram of the reduced (a) and oxidized (b) scytonemin in YU-2 and CVL. The absorption 
spectra of the reduced scytonemin of YU-2 (C) and CVL (D), and the oxidized scytonemin of YU-2 (E) and CVL (F) 
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3.4.4. Metabolic activity of Chroococcidiopsis 

3.4.4.1. Chroococcidiopsis cells metabolic activity analysis 

The metabolic activity of the Chroococcidiopsis cells was evaluated after 15 days 

of exposure to two different light conditions, PAR and UVR+PAR.  

Three categories were stablished for the vital status of the Chroococcidiopsis cells 

depending on their fluorescence emittance after the CTC staining. Those with 

green autofluorescence (GF+) were defined as not viable cells, cells exhibiting 

only red chlorophyll autofluorescence (CHL+) were defined as damaged (not 

metabolically active); while cells presenting both chlorophyll red 

autofluorescence and bright orange spots (CTF crystals) (CHL+ / CTC+) were 

defined as active (Fig. 3.8) 

Counting results in the YU-2 strain (Fig. 3.9) revealed a growth in active cells 

during the first 12 days of exposure to PAR (86.9-96.2%). A final decrease in this 

active cells occurred after 15 days of exposure (90.1%). However, maximum 

relative abundance of active cells under UVR+PAR light conditions was reached 

after 9 days of exposure (93.2%), exhibiting a progressive decrease after 12 and 

15 days of exposure decaying below the original values (70.5%).  In both PAR 

and UVR+PAR conditions, maximum values of damaged cells (5.9% for PAR, 

21.6% for UVR+PAR) were observed after 15 days of exposure, while the relative 

abundance of not viable cells reached its maximum after 6 days under PAR 

(4.7%) and after 15 days for UVR+PAR (7.9%).  

The CVL strain cells metabolic activity (Fig. 3.9) exhibited a different behavior 

where the maximum values of active cells for PAR exposure were found after 3 

days of exposure (95.2%) maintaining lower relative abundances during the 

following experimental times (86-90%). That maximum was reached after 15 

days under UVR+PAR light conditions (94%) upon a progressive increase during 

the experiment. This progressive increase was accompanied by a total loss of 
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damaged cells under UVR+PAR, whereas that loss was disrupted by a recurrence 

of damaged cells (2.5 %) when they were exposed only to PAR light for 15 days. 

High presence of death cells was detected during the whole experiment for both 

light conditions. When exposed to PAR for 9 days the culture experienced its 

maximum ratio of death cells (15.1%) which fell to 7% after 15 days of 

experiment. A similar proportion was found when cells were exposed to 

UVR+PAR, reaching a maximum of death cells after 9 days (15%) and falling to 

6% at the end of the experiment.  

3.4.4.2. Chroococcidiopsis ultrastructure after its exposure to UVR and 

PAR.   

Ultrastructural changes were examined in both YU-2 and CVL Chroococcidiopsis 

strains before UVA irradiation and after 9 days of exposure to UVR+PAR light 

(Fig. 3.10, Fig. 3.11).  

External changes in color were already visible in YU-2 strain cells after UVR+PAR 

exposure, from light green to brownish (Fig. 3.10, A1-B1). Regarding the 

thylakoid placement in YU-2 strain cells after UVR+PAR exposure (Fig. 3.10, B2), 

an increase in the intra-thylakoid space was observed while the thylakoid 

membranes in cells not exposed to UVR (Fig. 3.10, A2) were positioned touching 

each other tightly showing a nucleoid area. A more developed electron dense 

outermost layer was observed in cells after their exposure to UVR+PAR (Fig. 

3.10, B2) with a granulose and fibrous appearance (Fig. 3.10, B3) compared to 

the compact sheath observed in Chroococcidiopsis YU-2 cells that did not suffer 

UVR exposure (Fig. 3.10, A3).  
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Figure 3.8. Light (DIC) and fluorescence microscopy images as examples of criteria 
on metabolic activity assay of Chroococcidiopsis sp. CVL cells after 6 days of 
irradiation with UVR + PAR (A, B, C, D). A) Light microscopy image (DIC) where CTF 
crystals appear are are already visible in active cells (black arrows). B) Fluorescence 
image with EGFP filter set exhibiting dead cells (GF+) (white arrows). C) Fluorescence 
image with rhodamine filter set exhibiting cells with chlorophyll autofluorescence (white 
arrows) (CHL+). D) Fluorescence image with HE rhodamine filter set exhibiting cells with 
chlorophyll autofluorescence and CTF fluorescence (granulose red fluorescence) (blue 
dotted) (CHL+/CTC+).  E) Chroococcidiopsis sp. CVL cells aggregate after 3 days of 
irradiation with UVR + PAR. The aggregate exhibits cells with chlorophyll 
autofluorescence and high metabolic activity (CHL+/CTC+) (empty arrows) and damaged 
cells (white arrows) (CHL+). Scale bar = 10 μm. 
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Figure 3.9. Metabolic activity of Chroococcidiopsis sp. YU-2 and CVL cells after 
irradiation with PAR (left graphs) or UVR + PAR (right graphs) for 15 days. Green: 
(CTC+/CHL+) active cells. Brown: (CHL+) damaged cells. Black: (GF+) dead cells. 
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Figure 3.10. Light and transmission electron microscopy images from 
Chroococcidiopsis sp. YU-2 strain. Series A: Cells and aggregates at the beginning of the 
experiment. A1) Green Chroococcidiopsis sp. YU-2 cells. A2) TEM micrograph with cells 
exhibiting a visible nucleoid area (yellow dotted line). A3) TEM micrograph with an 
aggregate exhibiting a thin outermost fibrous layer (blue arrows). Series B: Cells and 
aggregates with maximum scytonemin content after 9 days of irradiation with UVR+PAR. 
B1) Brown Chroococcidiopsis sp. YU-2 cells with higher scytonemin content on the edge 
of cells. B2) TEM micrograph with cells exhibiting a higher distance between thylakoids 
(yellow lines) and the presence of an electron dense outermost fibrous layer (red 
arrows). B3) TEM micrograph of the outer part of the cells from the same aggregate 
exhibiting a highly fibrous outermost layer (red dotted line).  
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Figure 3.11. Light and transmission electron microscopy images from 
Chroococcidiopsis sp. CVL strain. Series C: Cells and aggregates at the beginning of the 
experiment. C1) Green Chroococcidiopsis sp. CVL cells. C2) TEM micrograph with cells 
exhibiting the original thylakoid arrangement. C3) TEM micrograph with a 
Chroococcidiopsis sp. CVL cell exhibiting a slightly developed outermost fibrous layer 
(blue arrow). Series D: Cells and aggregates with maximum scytonemin content after 9 
days of irradiation with UVR+PAR. D1) Brown Chroococcidiopsis sp. CVL cells with higher 
scytonemin content on the outer part of the cells. D2) TEM micrograph with cells 
exhibiting disaggregation of thylakoid membranes (blue dotted line), glycogen granules 
(dark spots pointed by yellow arrows) and a highly electron dense outermost fibrous 
layer (red dotted line).  D3) TEM micrograph of the outer part of the cell exhibiting a 
highly fibrous outermost layer (red dotted line). 
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CVL Chroococcidiopsis cells showed evident color differences too, when exposed 

to UVR+PAR for 9 days (Fig. 3.11, C1-D1). In particular, especially darker brown 

was observed on the outer part of the cell aggregates. Ultrastructural changes 

were found in different features as thylakoid arrangement showing the 

beginning of thylakoid membrane disintegration and glycogen granules along 

thylakoids (Fig. 3.11, D2).  The outermost fibrous layer observed in cells before 

the treatment (Fig. 3.11, C3) exhibited a more developed denser aspect with an 

assembly of various fibrous layers, an electron dense matrix within the EPSs, 

after its exposure to UVR+PAR for 9 days (Fig. 3.11, D3).  

 

3.5. Discussion 

This work provides a new insight into the role of cyanobacteria in endolithic 

communities under extreme solar radiation, as happens in the hyper-arid core 

of the Atacama Desert, apart from its main function as primary producers. 

Despite the sole development of lithobiontic microbial communities in endolithic 

habitats in different lithic substrates in this desert (Wierzchos et al. 2006, 

Wierzchos et al. 2015, Crits-Christoph et al. 2016a) which act as a first line of 

defense against the damage provoked by high light exposure, the presence of 

second and third lines of cyanobacterial defense (Vítek et al. 2014a, Wierzchos 

et al. 2015, Vítek et al. 2017) points to the existence of specific,  not previously 

characterized, adaptations to the harmful effects of high PAR and UVR, too.  

In this chapter, two isolates from the extremotolerant genus Chroococcidiopsis, 

widely distributed in the endolithic communities, were used to unravel the 

specific responses and adaptations to direct exposure to PAR and UVR. It was 

shown that both strains reveal specific differences matching their distinct 

microhabitat origin, cryptoendolithic from halite (YU-2) and chasmoendolithic 
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from calcite (CVL), and thus the biological implications for the whole microbial 

community in their original endolithic context.  

Both strains shared several features: same genus – Chroococcidiopsis -, same type 

of original habitat –endolithic-, and similar original climatic conditions -those 

occurring in the hyper-arid Atacama Desert. Despite their similarities, evident 

differences were found in their response to direct light exposure that will be 

discussed below.  

Accepting the differences found between light treatments, PAR or UVR+PAR, in 

both Chroococcidiopsis strains, a high response to PAR was observed in contrast 

with other studies when analyzing short-term (ROS accumulation) (Heand 

Häder 2002) and long-term response (scytonemin content) (Dillon et al. 2002, 

Fleming and Castenholz 2007, Rajneesh et al. 2019). In fact, both 

Chroococcidiopsis strains exhibited a lower short-term acclimation to PAR, 

compared to UVR+PAR light treatment. The same pattern was found regarding 

the long-term response of the CVL strain in both the scytonemin content and the 

metabolic activity tests. The high sensitivity to PAR light displayed in both cases 

could be explained by their original habitat, since by living in the endolithic 

microhabitat the direct and harmful exposure to solar radiation is avoided. This 

behavior was different in comparison to other studies where no PAR-induced 

oxidative stress was found in Anabaena (He and Häder 2002) or Nostoc and 

Fischerella (Rajneesh et al. 2019). The high response observed in the endolithic 

Chroococcidiopsis strains to PAR certainly support the requirement of a second 

and third line of defense against radiation, despite inhabiting endolithic 

microhabitats.   

Concerning the short-term response exhibited by both Chroococcidiopsis strains, 

it is worth noting the remarkable finding of the very rare Cu/Zn-SOD precursor 

in both genomes, which reveals the particular evolutionary origin of this 

extremotolerant genus. The YU-2 strain exhibited a considerably lower 
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acclimation to both light conditions. The observed subsequent increase of ROS in 

the YU-2 strain during the 3 days of exposure with no signs of recovery finds its 

answer in the YU-2 genome where the oxidative stress systems Fe-SOD and 

cytochrome c551 peroxidase were not found. However, the CVL strain exhibited 

an acclimation to both light conditions, even better to UVR+PAR, with a similar 

response pattern to the one reported in Anabaena by He and Häder (2002), 

although CVL acclimation started 24 hours earlier.  

Long-term response to direct light should be explored considering three 

elements: scytonemin production, metabolic activity and ultrastructural 

changes. Both Chroococcidiopsis strains displayed clearly different responses in 

all three parameters. No severe ultrastructural damages were observed in the 

YU-2 strain when exposed to 9 days of direct light although a visible increase of 

cover thickness was detected. This characteristic might be linked to the 

proportion of dead and damaged cells observed after 15 days of exposure, where 

both types of physiological status reached their maxima. This fact could explain 

the low relative content of scytonemin in this strain during the experimental 

period. The YU-2 strain already showed its low capacity to deal with UVR in 

short-term exposure, and it seemed to happen again in long-term exposure. The 

relative scytonemin content reached its maximum after 9 days of exposure. 

Subsequently, the low abundance of new cells able to produce scytonemin, as 

exhibited in the metabolic activity test, together with a slight increase in DW due 

to the thickening of the cellular covers would maintain or slightly decrease the 

proportion between scytonemin and DW in the culture.  

The long-term response of the CVL strain against UVR+PAR could be explained 

by its ultrastructural changes and metabolic activity. Higher ultrastructural 

damage could be observed after 9 days of exposure to UV, coinciding with the 

experimental time where a major dead and damaged cell proportion was 

observed. The recovery of the physiological status after that point can be 
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explained by the major capacity of the CVL strain to deal with this type of stress, 

as demonstrated in the short-term experiment (ROS accumulation). Its capacity 

to recover and acclimate to the stressful conditions would allow an increase in 

the population leading to a subsequent decrease in the relative scytonemin 

content, since, thanks to its high acclimation capacity, growth would occur faster 

than the scytonemin production.  

It was shown that acclimation capacity is strain-dependent, with significantly 

lower scytonemin content values in both Chroococcidiopsis strains from 

endolithic communities of the Atacama Desert than previously reported 

Chroococcidiopsis from desert crusts of the Vizcaíno Desert (Mexico) (Dillon et 

al. 2002; Fleming and Castenholz, 2007).  

The lower acclimation capacity of the YU-2 strain was observed in both short-

term and long-term responses, which could be tightly linked to its original 

microhabitat. Since the Chroococcidiopsis YU-2 strain is originally from a 

cryptoendolithic microhabitat, it would never be directly exposed to light, being 

always protected by the halite crust. This could explain its lower acclimation 

capacity to direct light exposure. On the contrary, the Chroococcidiopsis CVL 

strain comes from a chasmoendolithic microhabitat, thus being more exposed to 

the effect of direct PAR and UVR. The Chroococcidiopsis strains isolated from this 

microhabitat would therefore be expected to be faster in the acclimation to light 

exposure.  

There could be a linkage between each strain and its original microhabitat 

explained by a microhabitat specific environmental pressure, as previously 

suggested in Chapter 1. In this case, the Chroococcidiopsis strains inhabiting 

certain endolithic microhabitats and lithic substrates could be absent from a 

different endolithic microhabitat and substrate in the same Desert. This 

differential distribution could be explained by the possession of specific 
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adaptations and the acclimation capacity of these organisms to the specific 

abiotic stresses occurring in the endolithic microhabitat they are inhabiting.  

The third line of defense displayed by these strains, the production of 

scytonemin, would have two simultaneous functions: at an individual level and 

at a community level. The protection provided by scytonemin at an individual 

level, even against the excess of PAR, as previously discussed, seems expected 

since these strains have extremely low growth rates in their original 

microhabitat (Ziolkowski et al. 2013).  Thus, each cyanobacterial cell would 

suffer long exposure times that would lead to scytonemin production and 

accumulation. Furthermore, the individual protection provided by scytonemin in 

these microhabitats would influence role of cyanobacteria at an additional 

community level, apart from the primary production, based on two 

considerations. On the one hand, the high stability of scytonemin previously 

reported (Dillon et al. 2002, Fleming and Castenholz 2007, Rastogi et al. 2014, 

Vítek et al. 2017) that stays in EPS covers even in death cells as observed in this 

study (Fig. 3.5). On the other, the original microhabitat of these strains where the 

environmental factors known to promote the induction of scytonemin 

production occur: high salinity or desiccation (Dillon et al. 2002, Fleming and 

Castenholz 2007). Hence, the outcome of the combination of both conditions is a 

UV-screening effect over the whole EMC that could enable its easier development 

through time, avoiding the harmful effects of extreme solar radiation.  

 

3.6. Concluding Remarks and future projects 

This is a pioneer study since it explores the response of cyanobacteria against 

UVR and PAR in cyanobacterial strains isolated from a place on Earth where one 

of the highest solar radiation levels have been detected, the hyper-arid core of 

the Atacama Desert.  
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The observed response of both Chroococcidiopsis strains to radiation suggests a 

strain specific distribution related to the greater or lesser exposure to abiotic 

stresses. That distribution would be based on the acclimation capacity and 

adaptation strategies displayed by different strains, confirming the statement 

“Everything is everywhere and the environment selects”. Everything meaning, 

the different Chroococcidiopsis strains, everywhere, the endolithic microhabitats 

of the hyper-arid core of the Atacama Desert, and selective environment, the 

slight differences in direct exposure, in this case to solar radiation, between lithic 

substrates and the type of endolithic microhabitat.   

To continue with the exploration of the response to UVR in organisms inhabiting 

the most extreme places in terms of solar radiation and answer the strain 

distribution proposal suggested in this chapter, the metagenomic and 

metatranscriptomic analysis of the whole endolithic community could be 

pursued to reveal the global response to the stress. In addition, those analyses 

could be merged with qPCR at a community level for genes related to oxidative 

stress and specific fluorescence staining in order to explore the oxidative stress 

and activity of the different organisms configuring the endolithic community.  
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3.7. Supplementary Material 

Supplementary Material 3.1. Functional roles of sequence reads assigned to SEED categories (RAST) related to oxidative stress in 
Chroococcidiopsis YU-2 strain and Chroococcidiopsis CVL strain genomes and hits found in CyanoBase. N.strains: number of strains 
where gene was found. N. genera: number of genera that those strains belong. 

Subsystem Role YU-2 CVL 
N. 

strains 
N. 

Genera 
Genera 

P
ro

te
ct

io
n

 f
ro

m
 R

O
S

 

Manganese superoxide 
dismutase  

(EC 1.15.1.1) 
• • 41 20 

Anabaena, Calothrix, Chroococcidiopsis, Crocosphaera, Cyanobacterium, 
Cyanothece, Cylindrospermopsis, Fischerella, Geitlerinema, Gloeocapsa, Halothece, 

Microcoleus, Microcystis, Nodularia, Nostoc, Oscillatoria, Pseudanabaena, 
Raphidiopsis, Richelia, Stanieria 

Superoxide dismutase 
[Cu-Zn] precursor  

(EC 1.15.1.1) 
• • 5 1 Synechococcus 

Cytochrome c551 
peroxidase  

(EC 1.11.1.5) 
 • 2 2 Acaryochloris, Tolypothrix 

Superoxide dismutase 
[Fe]  

(EC 1.15.1.1) 
 • 15 9 

Acaryochloris, Arthrospira, Coelofasciculus, Cyanobium, Microcystis, Nodularia, 
Oscillatoria, Synechococcus, Synechocystis 

Catalase (EC 1.11.1.6) • • 82 40 

Acaryochloris, Anabaena, Calothrix, Chamaesiphon, Chroococcidiopsis, 
Chrysosporum, Coleofasciculus, Crinalium, Cyanobacterium, Cyanobium, 

Cyanothece, Cylindrospermum, Fischerella, Geitlerinema, Gloeobacter, Gloeocapsa, 
Hapalosiphon, Hassallia, Leptolyngbya, Limnoraphis, Lyngbya, Mastigocladus, 

Mastigocoleus, Microcoleus, Nodularia, Nostoc, Oscillatoria, Phormidesmis, 
Pleurocapsa 

Rhodopseudomonas, Richelia, Rivularia, Rubidibacter, Scytonema, Stanieria, 
Synechococcus, Synechocystis, Tolypothrix, Trichodesmium, Xenococcus 
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O
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a
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v

e
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e
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Iron-binding ferritin-like 
antioxidant protein 

• • 7 4 Crocosphaera, Nodularia, Richelia, Synechocystis 

Alkyl hydroperoxide 
reductase subunit C-like 

protein 
• • 40 7 

Crocosphaera, Microcystis, Nodularia, Prochlorococcus, Richelia, Synechocystis, 
Thermosynechococcus 

Fe2+/Zn2+ uptake 
regulation proteins 

• • 6 3 Crocosphaera, Microcystis, Richelia 

Paraquat-inducible 
protein B 

• • 0 0 - 

Peroxide stress regulator • • 14 6 Chrysosporum, Crocosphaera, Microcystis, Nodularia, Prochlorococcus, Richelia 

Phytochrome, two-
component sensor 
histidine kinase(EC 

2.7.3.-) 

• • 9 4 Crocosphaera, Microcystis, Nodularia, Richelia 

Non-specific DNA-
binding protein Dps 

• • 11 6 Chrysosporum, Crocosphaera, Microcystis, Nodularia, Richelia, Synechocystis 

Zinc uptake regulation 
protein ZUR 

• • 37 6 Crocosphaera, Microcystis, Nodularia, Prochlorococcus, Richelia, Synechocystis 

Ferroxidase (EC 1.16.3.1) • • 10 7 
Chrysosporum, Crocosphaera, Cyanothece, Halothece, Nodularia, Richelia, 

Synechocystis 

Ferric uptake regulation 
protein FUR 

• • 37 7 
Chrysosporum, Crocosphaera, Microcystis, Nodularia, Prochlorococcus, Richelia, 

Synechocystis 

Metallothionein • • 69 31 

Anabaena, Arthrospira, Calothrix, Chamaesiphon, Chroococcidiopsis, Crinalium, 
Crocosphaera, Cyanobacterium, Cyanobium, Cyanothece, Dactylococcopsis, 
Fischerella, Geitlerinema, Gloeobacter, Gloeocapsa, Leptolyngbya, Lyngbya, 

Mastigocoleus, Microcoleus, Microcystis, Nodularia, Nostoc, Oscillatoria, 
Phormidium, Pleurocapsa, Pseudanabaena, Rivularia, Stanieria, Synechococcus, 

Thermosynechococcus, Xenococcus 
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transcriptional regulator, 
Crp/Fnr family 

• • 79 39 

 
Acaryochloris, Anabaena, Arthrospira, Calothrix, Chlorobium, Chroococcidiopsis, 

Chrysosporum, Coleofasciculus, Crinalium, Crocosphaera, Cyanobacterium, 
Cyanobium, Cyanothece, Cylindrospermopsis, Fischerella, Geitlerinema, Gloeobacter, 

Gloeocapsa, Halothece, Leptolyngbya, Lyngbya, Microcoleus, Microcystis, Moorea, 
Nodularia, Nostoc, Oscillatoria, Phormidesmis, Phormidium, Prochlorococcus, 

Pseudanabaena, Raphidiopsis, Rhodopseudomonas, Richelia, Stanieria, 
Synechococcus, Synechocystis, Tolypothrix, Trichodesmium 
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Gamma-
glutamyltranspeptidase 

(EC 2.3.2.2) 
• • 86 34 

 
Aphanocapsa, Arthrospira, Calothrix, Chamaesiphon, Coleofasciculus, Crocosphaera, 

Cyanobium, Cyanothece, Gloeobacter, Hapalosiphon, Hassallia, Leptolyngbya, 
Limnoraphis, Lyngbya, Mastigocladus, Mastigocoleus, Microcoleus, Microcystis, 

Neosynechococcus, Nodularia, Nostoc, Oscillatoria, Phormidium, Planktothricoides, 
Pleurocapsa, Prochlorococcus, Rhodopseudomonas, Richelia, Scytonema, 

Synechococcus, Synechocystis, Thermosynechococcus, Tolypothrix, Xenococcus 
 

Glutathione synthetase 
(EC 6.3.2.3) 

• • 161 43 

 
Acaryochloris, Anabaena, Aphanizomenon, Aphanocapsa, Arthrospira, Calothrix, 

Chamaesiphon, Chrysosporum, Crocosphaera, Cyanobium, Cyanothece, 
Cylindrospermopsis, Dactylococcopsis, Fischerella, Gloeobacter, Gloeocapsa, 

Hapalosiphon, Hassallia, Leptolyngbya, Limnoraphis, Lyngbya, Mastigocladus, 
Matigocoleus, Microcoleus, Microcystis, Neosynechococcus, Nodularia, Nostoc, 

Oscillatoria, Planktothricoides, Pleurocapsa, Prochlorococcus, Raphidiopsis, 
Rhodopseudomonas, Richelia, Rivularia, Rubidibacter, Scytonema, Synechococcus, 

Synechocystis, Thermosynechococcus, Tolypothrix, Xenococcus 
 

5-oxoprolinase (EC 
3.5.2.9) 

• • 93 42 

Acaryochloris, Anabaena, Aphanizomenon, Aphanocapsa, Arthrospira, Calothrix, 
Chroococcidiopsis, Crinalium, Crocosphaera, Cyanobacterium, Cyanobium, 
Cyanothece, Fischerella, Geitlerinema, Gloeobacter, Gloeocapsa, Halothece, 

Hapalosiphon, Hassallia, Leptolyngbya, Limnoraphis, Lyngbya, Mastigocladus, 
Mastigocoleus, Microcoleus, Microcystis, Nodularia, Nostoc, Oscillatoria, 

Phormidesmis, Phormidium, Planktothricoides, Prochlorococcus, Prochlorothrix, 
Pseudanabaena, Richelia, Scytonema, Stanieria, Synechococcus, Synechocystis, 

Tolypothrix, Trichodesmium 
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Glutathione S-transferase 

family protein 
• • 20 14 

Acaryochloris, Calothrix, Chrysosporum, Cylindrospermum, Microcoleus, Microcystis, 
Nodularia, Oscillatoria, Pleurocapsa, Prochlorococcus, Richelia, Rivularia, 

Synechococcus, Synechocystis 

Glutathione S-transferase  
(EC 2.5.1.18) 

• • 

195 58 

Acaryochloris, Anabaena, Aphanizomenon, Aphanocapsa, Arthrospira, Calothrix, 
Chamaesiphon, Chlorobium, Chroococcidiopsis, Chrysosporum, Coleofasciculus, 

Crinalium, Crocosphaera, Cyanobacterium, Cyanobium, Cyanothece, 
Cylindrospermopsis, Cylindrospermum, Dactylococcopsis, Fischerella, Geitlerinema, 

Gloeobacter, Gloeocapsa, Halothece, Hapalosiphon, Hassallia, Leptolyngbya, 
Limnoraphis, Lyngbya, Mastigocladus, Mastigocoleus, Microcoleus, Microcystis, 

Moorea, Neosynechococcus, Nodularia, Nostoc, Oscillatoria, Phormidesmis, 
Phormidium, Planktothricoides, Planktothrix, Prochlorococcus, Prochlorothrix, 

Pseudanabaena, Raphidiopsis, Rhodopseudomonas, Richelia, Rivularia, 
Rubidibacter, Scytonema, Stanieria, Synechococcus, Synechocystis, 
Thermosynechococcus, Tolypothrix, Trichodesmium, Xenococcus 

Uncharacterized 
glutathione  

S-transferase-like protein 
• • 

Lactoylglutathione lyase  
(EC 4.4.1.5) 

• • 144 43 

Acaryochloris, Anabaena, Arthrospira, Calothrix, Chamaesiphon, 
Chroococcidiopsis, Chrysosporum, Coleofasciculus, Crocosphaera, Cyanobacterium, 

Cyanobium, Cyanothece, Cylindrospermum, Dactylococcopsis, Fischerella, 
Geitlerinema, Gloeobacter, Gloeocapsa, Leptolyngbya, Lyngbya, Microcoleus, 

Microcysitis, Moorea, Neosynechococcus, Nodularia, Nostoc, Oscillatoria, 
Phormidesmis, Phormidium, Pleurocapsa, Prochlorococcus, Prochlorothrix, 

Pseudanabaena, Rhodopseudomonas, Richelia, Rivularia, Rubidibacter, Stanieria, 
Synechococcus, Synechocystis, Tolypothrix, Trichodesmium, Xenococcus 

Hydroxyacylglutathione 
hydrolase (EC 3.1.2.6) 

• • 172 50 

Acaryochloris, Anabaena, Aphanizomenon, Aphanocapsa, Arthrospira, Calothrix, 
Chamaesiphon, Chlorobium, Chroococcidiopsis, Chrysosporum, Crinalium, 
Crocosphaera, Cyanobacterium, Cyanobium, Cyanothece, Cylindrospermum, 

Dactylococcopsis, Fischerella, Geitlerinema, Gloeobacter, Gloeocapsa, Halothece, 
Hapalosiphon, Hassallia, Leptolyngbya, Lyngbya, Mastigocladus, Mastigocoleus, 

Microcoleus, Microcystis, Nodularia, Nostoc, Oscillatoria, Phormidesmis, 
Planktothrix, Pleurocapsa, Prochlorococcus, Prochlorothrix, Pseudanabaena, 

Richelia, Rivularia, Rubidibacter, Scytonema, Stanieria, Synechococcus, 
Synechocystis, Thermosynechococcus, Tolypothrix, Trichodesmium, Xenococcus 

Glutathione S-
transferase, unnamed 

subgroup (EC 2.5.1.18) 
• • 2 2 Nodularia, Richelia 
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Glutathione S-
transferase, omega (EC 

2.5.1.18) 
• • 10 4 Crocosphaera, Nodularia, Richelia, Synechocystis 
R

u
b

re
ry

th
ri

n
 

Rubrerythrin •  51 23 

Anabaena, Aphanizomenon, Calothrix, Chlorobium, Coleofasciculus, Cyanothece, 
Cylindrospermopsis, Cylindrospermum, Gloeobacter, Hapalosiphon, Hassallia, 

Limnoraphis, Lyngbya, Mastigocladus, Mastigocoleus, Nostoc, Oscillatoria, 
Pleurocapsa, Prochlorococcus, Rivularia, Scytonema, Synechococcus, Tolypothrix 

Rubredoxin • • 194 57 

Acaryochloris, Anabaena, Aphanizomenon, Aphanocapsa, Arthrospira, Calothrix, 
Chamaesiphon, Chlorobium, Chroococcidiopsis, Chrysosporum, Coleofasciculus, 

Crinalium, Crocosphaera, Cyanobacterium, Cyanobium, Cyanothece, 
Cylindrospermopsis, Cylindrospermum, Dactylococcopsis, Fischerella, Geitlerinema, 

Gloeobacter, Gloeocapsa, Halothece, Hapalosiphon, Hassallia, Leptolyngbya, 
Limnoraphis, Lyngbya, Mastigocladus, Mastigocoleus, Microcoleus, Microcystis, 

Moorea, Neosynechococcus, Nodularia, Nostoc, Oscillatoria, Phormidesmis, 
Planktothricoides 

Pleurocapsa, Prochlorococcus, Prochlorothrix, Pseudanabaena, Raphidiopsis, 
Rhodopseudomonas, Richelia, Rivularia, Rubidibacter, Scytonema, Stanieria, 

Synechococcus, Synechocystis, Thermosynechococcus, Tolypothrix, Trichodesmium, 
Xenococcus 

Alkyl hydroperoxide 
reductase subunit C-like 

protein 
• • 40 6 Crocosphaera, Microcystis, Nodularia, Prochlorococcus, Richelia, Synechocystis 
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Glutathione reductase 
(EC 1.8.1.7) 

• • 176 52 

Acaryochloris, Anabaena, Aphanizomenon, Aphanocapsa, Arthrospira, Calothrix, 
Chamaesiphon, Chroococcidiopsis, Chrysosporum, Coleofasciculus, Crinalium, 
Crocosphaera, Cyanobium, Cyanothece, Cylindrospermopsis, Cylindrospermum, 

Dactylococcopsis, Fischerella, Geitlerinema, Gloeocapsa, Halothece, Hapalosiphon, 
Hassallia, Leptolyngbya, Limnoraphis, Lyngbya, Mastigocladus, Mastigocoleus, 

Microcoleus, Microcystis, Moorea, Neosynechococcus, Nodularia, Nostoc, 
Oscillatoria, Phormidesmis, Phormidium, Pleurocapsa, Prochlorococcus, 
Pseudanabaena, Raphidiopsis, Rhodopseudomonas, Richelia, Rivularia, 

Rubidibacter, Scytonema, Stanieria, Synechococcus, Thermosynechococcus, 
Tolypothrix, Trichodesmium, Xenococcus 

Glutaredoxin 3 • • 179 53 

Acaryochloris, Anabaena, Aphanizomenon, Aphanocapsa, Arthrospira, Calothrix, 
Chamaesiphon, Chroococcidiopsis, Chrysosporum, Coleofasciculus, Crinalium, 
Crocosphaera, Cyanobacterium, Cyanobium, Cyanothece, Cylindrospermopsis, 
Cylindrospermum, Dactylococcopsis, Fischerella, Geitlerinema, Gloeobacter, 

Gloeocapsa, Halothece, Hapalosiphon, Hassallia, Leptolyngbya, Lyngbya 
Mastigocoleus, Microcoleus, Microcystis, Moorea, Neosynechococcus, Nodularia, 

Nostoc, Oscillatoria, Phormidesmis, Planktothricoides, Planktothrix, Pleurocapsa, 
Prochlorococcus, Pseudanabaena, Raphidiopsis brookii, Richelia, Rivularia, 

Rubidibacter, Scytonema, Stanieria, 
Synechococcus, Synechocystis, Thermosynechococcus, Tolypothrix, Trichodesmium, 

Xenococcus 
Uncharacterized 

monothiol glutaredoxin 
ycf64-like 

• • 9 3 Crocosphaera, Microcystis, Richelia 

Glutaredoxin 3 (Grx1) •  36 6 Chrysosporum, Crocosphaera, Microcystis, Nodularia, Prochlorococcus, Richelia 

Cell wall endopeptidase, 
family M23/M37 

•  1 1 Synechocystis 
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Ribosomal RNA small 
subunit 

methyltransferase E 
(EC 2.1.1.-) 

• • 109 36 

Acaryochloris, Anabaena, Arthrospira, Calothrix, Chamaesiphon, Chrysosporum, 
Coleofasciculus, Crinalium, Crocosphaera, Cyanobacterium, Cyanobium, 

Cylindrospermum, Dactylococcopsis, Fischerella, Gloeocapsa, Leptolyngbya, 
Lyngbya, Mastigocoleus, Microcoleus, Microcystis, Moorea, Nodularia, Nostoc, 

Oscillatoria, Phormidesmis, Phormidium, Planktothrix, Pleurocapsa, 
Prochlorococcus, Pseudanabaena, Richelia, Rivularia, Stanieria, Synechocystis, 

Tolypothrix, Xenococcus 

Putative Holliday 
junction resolvase YggF 

• • 3 2 Microcystis, Synechocystis 
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CHAPTER 4: BIOACTIVITY OF SECONDARY METABOLITES 

PRODUCED BY CYANOBACTERIA ISOLATED FROM THE ATACAMA 

DESERT 

4.1. Abstract 

Microorganisms inhabiting extreme environments constitute a promising source 

for natural products with biotechnological applications. Cyanobacteria, 

dominant in extreme environments, are already known as producers of diverse 

secondary metabolites with biotechnological potential. So far, cyanobacteria 

from extreme environments have not been studied in depth with this purpose 

due to the difficulties in their isolation and biomass culture. In this chapter, crude 

extracts from four cyanobacterial strains from Chroococcidiopsis and 

Gloeocapsopsis genera isolated from endolithic habitats of the Atacama Desert 

were obtained. Genomic screening for secondary metabolites and bioassays 

were conducted in order to test their potential protease inhibitory activity, 

antibacterial activity against multidrug resistant bacterial strains and cytotoxic 

effect on the T47D breast cancer cell line.  Although no inhibition was observed 

on the tested proteases by any crude extract, fractions from all four strains 

revealed a significant inhibition of Enterococcus durans 66 cells. The most apolar 

fractions of Chroococcidiopsis strains revealed a significant decrease in the 

viability of breast adenocarcinoma cells. Active fractions were screened with   

LC-MS/MS optimized for the detection of peptides, for preliminary 

characterization of bioactive compounds determining ions possibly linked with 

effects observed in conducted tests. This work shows for the first time the 

existing potential of cyanobacterial strains isolated from the polyextreme 

environment of the Atacama Desert as a source of antibacterial and cytotoxic 

agents. 
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4.2. Introduction 

The discoveries of new bioactive compounds from microorganisms have been of 

great interest during the last decades due to their potential biotechnological 

applications in different fields such as cosmetics, agriculture, pharmacology or 

biomedicine.  Most research has been focused in the discovery of new antibiotics, 

especially after the publication in 2014 of the first report on the surveillance of 

antimicrobial resistance by the World Health Organization (WHO) (WHO 2014). 

An increase in the global resistance to existing antibiotics has been detected 

linked to the prevalence of multidrug-resistant pathogens which has become a 

public health problem (Roca et al. 2015).  

4.2.1. Extreme environments as a source of bioactive compounds 

Microorganisms inhabiting extreme environments, both extremophile and 

extremotolerant strains, have become a promising source of new bioactive 

compounds of interest (Neifar et al. 2015). The high expectations placed on these 

microorganisms are due to the atypical survival strategies they display in order 

to deal with harsh environmental conditions and to achieve competitive 

advantages, particularly necessary in those extreme environments where 

essential resources such as water or nutrients are also scarce or difficult to 

uptake (Nuñez-Montero and Barrientos 2018).  Thus, the genetic adaptation of 

microorganisms inhabiting extreme conditions could be expected to allow the 

synthesis of novel metabolites with unique structures and specific biological 

activity (Okoro et al. 2009), helping in their colonization while establishing 

antagonistic relationships (Bratchkova and Ivanova, 2011).  

Despite the difficulties regarding their sampling and culture, in comparison to 

mesophiles, the isolation and cultivation of microorganisms from extreme 

habitats is still productive (Axenov-Gribanov et al. 2016). Recently, an increasing 

research interest has been observed to discover novel bioactive compounds with 
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diverse biomedical properties such as antibacterial, antifungal antitumor, anti-

inflamatory or antiviral in underexplored habitats (desert soils, permafrost soils, 

deep-sea sediments, acidic, saline and thermal habitats) (Gulder and Moore, 

2009; Undabarrena et al. 2016; Mehetre et al. 2018; Yogabaanu et al. 2017, Sayed 

et al. 2019). This exploration of natural products has mainly been focused on 

actinobacteria, cyanobacteria and fungi (Sayed et al. 2019).  

Regarding desert environments, decades of studies in Antarctica have allowed 

the description of dozens of bacterial species exhibiting antagonist activities 

against microorganisms of biomedical interest such as Bacillus subtilis, Listeria 

monocytogenes, Staphylococcus aureus and Candida albicans (Nuñez-Montero 

and Barrientos 2018). A large variety of microorganisms belonging to the 

Actinobacteria, Cyanobacteria, Firmicutes and Bacteroidetes phyla where these 

activities were found, were isolated from diverse habitats as freshwater, sea 

water, soils, benthic microbial mats, epilithic habitats, and marine sediments, 

exhibiting the high potential of this cold desert for the discovery of novel 

compounds.  

Apart from the potential of novel natural products from the hyper-arid Atacama 

Desert for medical purposes (Sayed et al. 2019, Cortés-Albayay et al. 2019), there 

is a high interest in biotechnological applications in biomining (Azua-Bustos and 

González-Silva, 2014), biofuel production (Arias-Forero et al. 2013), anti-

biofouling (Leyton et al. 2017) or bioremediation (Martínez et al. 2018).  

4.2.1.1. Bioactive compounds with biomedical interest in the Atacama 

Desert 

The screening of bioactive compounds with biomedical interest from 

microorganisms in the Atacama Desert has particularly focused on strains from 

the Actinobacteria phylum. However, within the last five years, few works have 
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explored the potential of and fungal members (Gonçalves et al. 2016) isolated 

from this extreme desert.  

The different studies of bioactive compounds from the Atacama actinobacterial 

strains led to the discovery of secondary metabolites from diverse chemical 

classes such as alkaloids, peptides, polyketides, macrolides and terpenes (Rateb 

et al. 2018). Most of these actinobacterial strains belonged to the Streptomyces 

genus exhibiting both antibiotic and antitumor activities deriving from bioactive 

compounds (Cortés-Albayay et al. 2019, Rateb et al. 2011, Nachtigall et al. 2011, 

Leirós et al. 2013, Schulz et al. 2011, Abdelkader et al. 2018). Genomic studies of 

some of those isolates revealed the potential synthesis of many novel specialized 

metabolites and the presence of stress-related genes that provided an insight 

into how these organisms deal with extreme environmental conditions on their 

habitats (Busarakam et al. 2016; Carro et al. 2019).  

Concerning the bioactive potential of cyanobacterial members inhabiting the 

Atacama Desert, the main interest has focused on the UV-screening compound 

scytonemin (Vítek et al. 2014a; Chapter 3). The biotechnological interest in this 

compound lies in its anti-inflammatory effects (D’Orazio et al. 2012). 

4.2.2. Cyanobacteria as a source of bioactive compounds 

Cyanobacteria are characterized by an active secondary metabolism being a 

source of more than 600 peptidic metabolites (Welker and von Döhren 2006) 

although the function of many of them remains unknown. Cyanotoxins have 

received most of the attention so far due to their presence in water bodies with 

recreational and drinking uses which become a threat for human health (Metcalf 

and Codd 2012). Furthermore, cyanotoxins have even been found in different 

extreme environments (Cirés et al. 2017) as hot and cold deserts (Metcalf et al. 

2012, Kaasalainen et al. 2012), alkaline lakes (Ballot et al.2004, Nonga et al. 
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2016), hypersaline environments (Oren 2012; Vishwakarma and Rai 2014), and 

hot springs (Krienitz et al. 2005, Mohamed 2008).  

In addition, cyanobacteria are known to provide a wide range of bioactive 

compounds possessing antibacterial, antifungal, antialgal and antiviral activities 

(Dahms et al. 2006, Yadav et al. 2017), most of them produced by members from 

the orders Nostocales, Stigonematales and Oscillatoriales (Singh et al. 2005). 

This variety of compounds include alkaloids, lactones, amino acids, peptides, 

lipopeptides, polyketides and lipids (Mazur-Marzec et al. 2015) produced 

through nonribosomal peptide synthetases (NRPS) or polyketide synthases 

(PKS) (Hoffmann et al. 2003). It has been suggested that some of these 

compounds would constitute an adaptive strategy enabling them to survive in a 

variety of environmental conditions as they can be involved in interactions with 

co-occurring organisms (Sønstebø and Rohlrlack, 2011, Sedmak et al. 2008). This 

phylum has gained attention, since besides its environmental significance, they 

also display a potential application in biotechnology especially due to their 

exclusive properties such as low-cost growth requirement, short generation time 

and ease of genetic manipulation (Yadav et al. 2017) and the unique biological 

activity of these products.  

Most of the studies screening for bioactive compounds have focused on 

freshwater strains (Mejean and Ploux 2013, Micallef et al. 2014) or marine 

strains (Szubert et al. 2017, Mazur-Marzec et al. 2015, Chang et al. 2004) while 

terrestrial strains have hardly been studied with this purpose (Liaimer et al. 

2015). Moreover, the synthesis of bioactive compounds by cyanobacteria from 

extreme environments remains unexplored.  

Despite the increasing research efforts on the screening of microorganisms 

inhabiting extreme environments and cyanobacteria as sources of novel 

bioactive compounds, a very limited number of studies can be found regarding 
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this topic. Few Antarctic strains from Pseudophormidium, Phormidium, 

Leptolyngbya and Nostoc genera have been described to display some bioactivity 

(Asthana et al. 2009, Biondi et al. 2008).    

This chapter aims to explore the potential of cyanobacteria from the polyextreme 

environment of the Atacama Desert in the actual and potential production of 

novel bioactive compounds with a biomedical interest. The screening and 

characterization of the activity of secondary metabolites extracted from 

cyanobacterial strains isolated from endolithic habitats has been conducted for 

the first time. For that purpose, a multidisciplinary approach has been applied 

using a series of bioassays, liquid chromatography tandem mass spectrometry 

(LC-MS/MS) and genomic tools following the steps involved in the culture-

dependent discovery of natural products: (i) the selection of environmental 

samples, (ii) a selective isolation and generation of microbial strain libraries. (iii) 

the screening of the biosynthetic potential of strains (iv) the preparation of 

extracts of selected isolates and (v) the structural determination of drug leads 

and biological testing of purified compounds (Sayed et al. 2019).  

 

4.3. Experimental Procedures 

4.3.1. Culture organisms and conditions  

Four cyanobacterial strains isolated from different lithic substrates and 

endolithic microhabitats in the Atacama Desert were tested in this study (Table 

4.1). Three Chroococcidiopsis strains: YU-2, CVL, and IGM; and one Gloeocapsopsis 

strain: GCL. All four strains were grown in 500 mL Erlenmeyer flasks with 300 

mL BG11-medium (Rippka et al. 1979) at 28°C and under continuous white light 

illumination of 35 μmol photons m-2 s-1 continuously shaken at 135 rpm.  
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Table 4.1. Features of strains used in this study. 

Strain Genus 
Endolithic  

Microhabitat 
Substrate Sampling site 

YU-2 Chroococcidiopsis Cryptoendolithic Halite Yungay 

CVL Chroococcidiopsis Chasmoendolithic Calcite Valle de la Luna 

IGM Chroococcidiopsis Cryptoendolithic Ignimbrite Monturaqui 

GCL Gloeocapsopsis Chasmoendolithic Gypcrete Monturaqui 

 

4.3.2. Extraction and fractionation of cyanobacterial strains 

Cyanobacterial biomass from the four cyanobacterial strains was harvested after 

from the culture 4 weeks during 5 months, in the mid exponential growth phase, 

in order to reach freeze-dried biomass between 1.5-2 g. The lyophilized biomass 

was then extracted with 75% methanol (20 mL) by vortexing for 10 min, 

followed by 10 min bath sonication. Then, the extract was centrifuged (10,000 x 

g) for 10 min. The obtained supernatant was dissolved in water, so that the 

methanol content did not exceed 15%. The sample was loaded onto the 10-[g] 

SPE cartridge (Sep-Pak; C18 cartridge, Waters, Milford, USA). The cartridge was 

first washed with MilliQ water and then the sorbed substances were eluted with 

aqueous solutions of methanol, gradually increasing the strength of the eluent 

from 0% to 100%, at 10% step. The collected fractions were evaporated to dry 

residue. 

4.3.3. Screening for enzyme inhibitors 

Compounds able to deregulate activity of proteases can find application in the 

treatment of several metabolic disorders, such as urticaria, contact dermatitis, 

asthma, inflammatory bowel disease, blood clogging, neurological disorders or 

cancer (Patel 2017; Sapio and Fricker 2014). Thus, crude extracts from the four 

cyanobacterial strains were screened for enzyme inhibitors against four serine 

proteases (chymotrypsin, trypsin, elastase, and thrombin) since they are found 

ubiquitously in both eukaryotes and prokaryotes. For each extract serial 

dilutions (1:1, 1:10, 1:100, 1: 1,000 and 1: 10,000) and the solutions of inhibitors 
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were prepared in MilliQ water. The assays were conducted in 96-well 

microplates; absorbance was measured using microplate reader: Varioskan 

Flash (Thermo Scientific). 

4.3.3.1. Trypsin inhibition assay 

Trypsin from porcine pancreas (T0303), the inhibitor aprotinin (A6103) and the 

substrate (Nα-benzoyl-L-arginine 4-nitroanilide hydrochloride BAPNA, B4875) 

were purchased from Sigma-Aldrich (St. Louis, USA). Trypsin (0.2 mg mL-1) was 

dissolved in buffer solution (50 mM Tris-HCl, 100 mM NaCl, 1 mM CaCl2, pH 7.5) 

and BAPNA in 100% DMSO (2 mM). Solutions of inhibitor within the range 

between 2.5 – 100 μg mL-1 were prepared. The mixtures containing MilliQ water 

(negative control) or the sample (10 µL) or inhibitor (10 µL), enzyme (10 µL) 

and buffer (100 µL) were preincubated for 5 min at 36°C. Then, the substrate 

solution (100 µL) was added. The absorbance was measured at 405 nm after 10 

and 20 min. 

4.3.3.2. Chymotrypsin inhibition assay 

Chymotrypsin (C4129), the inhibitor aprotinin (A6103) and the substrate Suc-

Gly-Gly-p-nitroanilide (S1899) were purchased from Sigma-Aldrich (St. Louis, 

USA). Chymotrypsin (0,2 mg mL-1) was dissolved in buffer solution (50 mM Tris-

HCl, 100 mM NaCl, 1 mM CaCl2, pH 8), the substrate in 100% DMSO (2 mM). 

Solutions of inhibitor within the range between 1.5 – 100 μg mL-1 were prepared. 

The mixtures containing MilliQ water (negative control) or the sample (10 µL) 

or inhibitor (10 µL), enzyme (10 µL) and buffer (100 µL) were preincubated for 

5 min at 36°C. Then, the substrate solution (100 µL) was added. The absorbance 

was measured at 405 nm after 10 and 20 min. 

4.3.3.3. Thrombin inhibition assay 

Thrombin from bovine plasma (T4648), the inhibitor 4-(2-aminoethyl) 

benzenesulfonyl fluoride hydrochloride-AEBSF (A8456) and the substrate, N-p-
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tosyl-Gly-Pro-Lys-p-nitroanilide acetate salt (T6140) were purchased from 

Sigma-Aldrich. Thrombin (0.5 mg mL-1) was dissolved in the buffer (Tris-HCL 0.2 

M, pH 8), and the substrate was dissolved in 100% DMSO (2mM). Solutions of 

inhibitor within the range between 60 – 2400 μg mL-1 were prepared. To each 

microplate well MilliQ water (negative control) or the sample (10 µL) or 

inhibitor (10 µL, 24–600 µg mL-1), thrombin (10 µL) and buffer (170 µL) were 

added and preincubated at 36°C for 10 min after which the substrate solution 

(20 µL) was added. The absorbance was measured at 405 nm after 3 and 10 min. 

4.3.3.4. Elastase inhibition assay 

Elastase from porcine pancreas (E0258), the inhibitor elastatinal (E0881) and 

the substrate N-succinyl-AlaAla-Ala-p-nitroanilide (S4760) were purchased 

from Sigma Aldrich. Elastase (0,75 mg mL-1) was dissolved in the buffer (Tris-

HCL 0.2 M, pH 8), and the substrate was dissolved in MilliQ water (0.5 mg mL-1). 

Solutions of inhibitor within the range between 5 – 200 μg mL-1 were prepared. 

To each microplate well MilliQ water (negative control) or solutions of the 

cyanobacterial extract (10 µL) or inhibitor (10 µL), enzyme (10 µL) and buffer 

(150 µL) were added and preincubated at 36°C for 20 min. Then, 30 µL of 

substrate solution was added to start the reaction. After 5 and 10 min, 

absorbance was measured at 405 nm. 

4.3.4. Antibacterial activity 

4.3.4.1. Agar diffusion assay 

Crude extracts from the four cyanobacterial strains were used in the agar 

diffusion assay to test antibacterial activity. Bacterial strains carrying antibiotic-

resistance genes (see Table 4.4) are preserved in the Culture Collection of 

Northern Poland in 50% glycerol (- 80 °C). From freeze cultures bacteria were 

recovered by streaking on Mueller Hinton Agar (Sigma Aldrich). After 24 h of 

incubation at 37 °C (STL B50 incubator, POL-EKO) bacteria were transferred to 

liquid Mueller Hinton Medium (Sigma-Aldrich). After incubation for the next      
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24h (37°C, 200rpm), bacteria were again transferred to fresh Mueller Hinton 

Broth. In the test, bacterial cultures were prepared in such a way that the 

turbidity of cell suspensions was adjusted to an equivalent 0.5 McFarland 

standard as measured by absorbance (0.08–0.1 at 625 nm). The absorbance was 

measured using microplate reader (Versa Max Microplate Reader, Molecular 

Devices). Agar disc diffusion assay was done in accordance with the EUCAST 

standard, version 5.0 (European Committee on Antimicrobial Susceptibility 

Testing). Briefly, Sterilized Whatman® filter paper discs (6 mm diameter) 

(Sigma-Aldrich, St. Louis, Missouri, USA) were saturated with the cyanobacterial 

extract (50 μg/disc) and placed on Mueller Hinton II Agar (Becton Dickinson, 

Loveton Circle, Maryland, USA) plates seeded with a lawn of the tested 

microorganism. Positive controls (streptomycin, trimethoprim, 

chloramphenicol, methicillin, amphotericin B at 5 mg mL-1) and negative control 

(water) were run simultaneously.  After 24 h incubation at 37°C, the diameter of 

the inhibition zone was measured. 

4.3.4.2. Broth microdilution procedure 

Combinations of fractions with the same compounds were used for the broth 

microdilution assay in order to test their antibacterial activity. Antibacterial 

assays were performed following the guidelines of the Clinical and Laboratory 

Standards Institute (CLSI) (2012) and European Committee on Antimicrobial 

Susceptibility Testing (EUCAST) (http://www.eucast.org). The bacterial strains 

were precultured in Mueller Hinton II Broth (Becton Dickinson) at 37°C for 16–

20 h at 100 rpm. At the beginning of the experiment the density of the culture 

was 5 × 105 CFU mL-1. Bacterial cultures were incubated in the presence of 

cyanobacterial SPE fractions at concentrations of 0.1 mg mL-1 for 24 h (n=3). 

Assay plates were incubated for 24 h at 37°C, then optical density was measured 

at 620 nm. For all microbial strains used in the broth microdilution assay, growth 

stimulation effects were considered to be significant if the absorbance of the 
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treated culture was at least 50% higher than in the control (untreated) culture 

(Mazur-Marzec et al. 2015). Growth inhibition effect was considered significant 

if absorbance of the treated culture was at least 30% lower than that of the 

control. Otherwise, effects were considered to be non-significant (Mazur-Marzec 

et al. 2015).  

4.3.5. Cytotoxic activity 

Human breast adenocarcinoma cell line was obtained from CLS Cell Lines Service 

GmbH (Eppelheim, Germany). Monolayer cultures of T47D cells were 

maintained in RPMI 1640 medium supplemented with 10% (v/v) fetal bovine 

serum and 1% antibiotics mixture (penicillin and streptomycin). Cells were 

incubated at 37°C in CO2 (5%) incubator (New Brunswick Galaxy 170s, 

Eppendorf, Germany). Cell viability was determined by MTT method as 

described by Felczykowska et al. (2015). For this purpose, T47D cells were 

seeded at a density of 4 x 103 (for 24 hours) and 2x103 (for 72 hours) per well of 

96-well plate and allowed to attach overnight. Next, the medium was replaced 

with a fresh portion of medium containing cyanobacterial extracts at the 

following concentrations 25, 50, 100 and 200 µg mL-1. Then, 100 µl of MTT 

solution (4 mg mL-1) were added to each well. After 2h of incubation, the medium 

was removed and formazan was dissolved in 100 μL of added DMSO. The 

absorbance of the reaction mixtures was measured at 570 nm (with reference 

wavelength 660 nm) with a microplate reader. Data from three independent 

experiments were collected. In MTT assay, cell viability drop below 50% of 

control was considered as significant. 

4.3.6. Mass spectrometry analysis 

LC-MS/MS analyses were performed on an Agilent 1200 (Agilent Technologies, 

Waldboronn, Germany) coupled with a triple-quadrupole mass spectrometer 

(5500 QTRAP, AB Sciex, Concord, ON, Canada). Sample compounds were 

separated on a Zorbax Eclipse XDB-C18 column (4.6 mm × 150 mm; 5 µm) 



Bioactivity of secondary metabolites 

170 
 

(Agilent Technologies, Santa Clara, CA, USA) with a mobile phase composed of 

5% acetonitrile in MilliQ water (A) and acetonitrile (B), both containing 0.1% 

formic acid. The flow rate was 0.6 Ml min-1, and the injection volume was 5 µL. 

The column temperature was 35°C. The conditions of gradient elution are shown 

in Table 2. Mass spectrometer was operated in positive mode, with turbo ion 

spray (550°C) voltage 5.5 kV and declustering potential of 80 V. Two types of 

MS/MS experiments were performed. In the first step, the information 

dependent acquisition method (IDA) was used and fragmentation spectra of all 

ions with m/z (mass to charge) in a range 500–1250 and signal above the 

threshold of 500,000 cps were collected. The rough estimation of the relative 

amount of peptides in the extract was performed based on the intensity of the 

signal in extracted ion chromatogram. For selected ions, enhanced ion product 

mode (EIP) was used at a collision energy (CE 60 V) optimized in order to get the 

richest ion fragmentation spectrum. Data acquisition and processing were 

accomplished using Analyst QS® 1.5.1 software. 

4.3.7. antiSMASH analysis of the genome 

Genomic DNA from all four cyanobacterial strains was subjected to paired-end 

Illumina HiSeq sequencing (Johns Hopkins Genetic Resources Core Facility) after 

creating a library using KAPA HyperPlus (KAPA Biosystems). Raw reads were 

quality trimmed with TrmGalore, after quality filtering, library contained over 

7.6 Gbp of sequences. Resulting pairs were processed with the MetaWrap 

pipeline (Uritskiy et al. 2018). The detailed features of the four cyanobacterial 

genomes are presented in Table 4.2.  

To analyze the putative secondary metabolite gene clusters in all four genomes, 

the Antibiotics and Secondary Metabolite Analysis Shell antiSMASH 4.0 (Blin et 

al. 2017) software was used with its default parameters.  
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Table 4.2. Genomic features of four cyanobacterial strains in the study. N50: median contig size the genomic assembly. CDSs: 
coding sequences 

Genome Feature 

Cyanobacterial Strain 

Chroococcidiopsis 
YU-2 

Chroococcidiopsis 
CVL 

Chroococcidiopsis  
IGM 

Gloeocapsopsis 
GCL 

Contigs 175 324 166 356 

Total bases 5,957,924 5,884,528 5,741,744 5,738,043 

N50 63,683 32,524 60,020 26,980 

G+C% average 46.3 46.3 46.3 42,5 

Completeness / Contamination (%) 99.48 / 1.93 98.88 / 1.55 99.25 / 2.07 98.66 / 1.3 

CDSs 6,412 6,465 6,179 5,802 

tRNA genes 36 37 36 35 

rRNA genes 8 7 8 7 
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4.4. Results 

4.4.1. Activity of crude extracts 

4.4.1.1. Inhibition of enzyme activity 

No inhibitory activity of SPE fractions against proteases was found using trypsin, 

chymotrypsin, thrombin and elastase at the tested concentrations for any of the 

cyanobacterial crude extracts (Table 4.3).  

Table 4.3. Inhibition of serine proteases by crude extracts from cyanobacterial 
strains from the Atacama Desert. Results are mean of tests done in triplicate; “-“ no 
effect observed. Table summarizes results obtained in serial dilutions (1:1, 1:10, 1:100, 
1:1,000 and 1:10,000) 

Cyanobacterial 
strain 

Activity 

Trypsin Chymotrypsin Thrombin Elastase 

Chroococcidiopsis YU-2 - - - - 

Chroococcidiopsis CVL - - - - 

Chroococcidiopsis IGM - - - - 

Gloeocapsopsis GCL - - - - 

 

4.4.1.2. Antibacterial activity  

Crude extracts showed no antibacterial activity for the gram negative drug 

resistants Proteobacteria Klebsiella oxytoca WW-D 55, Enterobacter cloacae PP-

VR 3073, Citrobacter freundii MW-D 2210 B and Escherichia coli ESBL MW-W 727 

at tested concentrations (Table 4.4). However, weak antibacterial activity 

(inhibition zones ranged 2-4mm) was observed for the gram negative drug 

resistant Enterococcus durans 66 and the gram positive Enterobacter sp. MW-W 

814 by the highest concentrations of CVL, IGM and GCL crude extracts (Table 

4.4). Weak activity was found for the gram positive Proteobacteria Vibrio 

cholerae 01 MW D 2329 by YU-2 crude extract, too. 
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Table 4.4. Antibacterial activity of crude extracts from cyanobacterial strains from the Atacama Desert; “+” weak bacterial 
growth inhibition; “-” no effect. 

Bacterial strain 

Cyanobacterial strain / 
extract concentration (mg mL-1) 

Chroococcidiopsis YU-2 Chroococcidiopsis CVL Chroococcidiopsis IGM Gloeocapsopsis GCL 

1 0.1 1 0.1 1 0.1 1 0.1 

Enterococus durans 66 - - + - + - + - 

Vibrio cholerae 01 MW-D 2329 + - - - - - - - 

Klebsiella oxytoca WW-D 55 - - - - - - - - 

Enterobacter sp. MW-W 814 - - + - + - + - 

Enterobacter cloacae PP-VR 3073 - - - - - - - - 
Citrobacter freundii MW-D 2210 

B - - - - - - - - 

Escherichia coli ESBL MW-W 727 - - - - - - - - 



Bioactivity of secondary metabolites 

174 
 

Microdilution assays performed for Escherichia coli ESBL MW-W 727 (Supp. Mat. 

4.1) using crude extracts in a range of concentrations between 0.002 and 1.25 

mg mL-1 revealed a very weak activity when maximum concentration was 

applied (80% relative viability).  On the other hand, the microdilution assays 

performed for Pseudomonas aeruginosa exhibited no antibacterial activity (Supp. 

Mat. 4.1).  

4.4.2. LC-MS/MS analysis of SPE fractions 

The content of the active fractions was analyzed with LC-MS/MS system 

optimized for the detection of peptides. The m/z values, retention time and a 

peak area of the detected ions were determined for each cyanobacterial strain 

(Tables 4.5, 4.6, 4.7, 4.8). For the most intensive peaks the product ion spectra 

were collected (Supp. Mat. 4.2) and putative compounds were assigned for m/z 

values when possible (Supp. Mat. 4.3). 

No ions were detected in fractions 50, 70 and 100 from the YU-2 extract (Table 

4.5). Besides that, a total of 18 ions were detected and those found in highest 

concentration were eluted in fraction 0 characterized by m/z at 457 and 527, 

found also in the same fraction of IGM extract. Other highly present ions were 

those characterized by m/z at 673 (in fractions 0 and 10),1057 (in fraction 90) 

and 506 (in fraction 80); last two were only detected in the YU-2 extract.  

Table 4.6 exhibits ions detected in SPE fractions of the CVL extract where the 

lowest number of ions was detected, a total of 10 among all SPE fractions. In 

fractions 10, 20, 30, 60 and 100 no ions were detected. As it happened in the YU-

2 extract, ions in highest concentrations were found in fraction 0, characterized 

by m/z at 834 and 674, both ions only detected in the CVL extract. Other ions 

found in high concentrations were those characterized by m/z 527 (in fraction 

70), also found in the IGM extract, 689 (in fraction 0), found also in the same 
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fraction in the IGM extract, and 558 (in fraction 80) which was only detected in 

the CVL extract.  

Table 4.5. Characteristics of ions detected by LC-MS/MS in Chroococcidiopsis       YU-
2 strain SPE fractions. 

 

 

 

 

 

 

 

 

 

 

 

In contrast with the CVL ion content, the highest number of ions of the studied 

strains was detected in IGM SPE fractions, a total of 31 ions (Table 4.7). Also, the 

IGM extract was the only one where ions could be detected in every SPE fraction. 

Twelve ions distributed in four main SPE fractions were detected in high 

concentrations in the IGM extract (Table 4.7).  Notably, the ion characterized by 

m/z at 420, only detected in the IGM extract, eluted in fractions 60, 70, 80, 90 

and 100 in high concentrations. Other ions were found eluted in more than one 

SPE fractions: m/z 527 (in fractions 60 and 70), found as well in fraction 70 from 

Fraction 
Retention time 

(min) 
m/z 

Peak area of 
extracted ion 

0 

2.7 457 2.01 x 10 10 

2.7 527 2.01 x 10 10 

3 673 1.41 x 10 10 

3.06 837 5.32 x 10 8 

3.1 997 6.65 x 10 8 

3.1 1013 5.86 x 10 8 

10 
2.7 673 5.35 x 10 9 

11.8 786 6.37 x 10 7 

20 3 478 7.95 x 10 9 

30 

3.09 677 7.17 x 10 8 

10 1063 5.32 x 10 7 

10.8 1042 3.20 x 10 7 

40 3.06 1002 6.27 x 10 8 

60 

3.09 1067 4.94 x 10 8 

3.1 1128 4.49 x 10 8 

10.8 1106 1.85 x 10 8 

80 2.6 506 5.02 x 10 9 

90 2.76 1057 8.50 x 10 9 
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the CVL extract; 673 (in fraction 0 and 10) also detected in fractions 0 and 10 

from the YU-2 and GCL extracts; 1041 (in fractions 20 and 30) found in fraction 

30 of the YU-2 extract as well, and 786 (fractions 40 and 50) found in the same 

SPE fractions of the CVL extract. In the SPE fractions of IGM, a double-charged 

ion was detected in high concentration characterized by a m/z at 339/677 

(fraction 60), also detected in fraction 50 of the GCL extract. 

Table 4.6. Characteristics of ions detected by LC-MS/MS in Chroococcidiopsis CVL 
strain SPE fractions. 

 

 

 

 

 

During the LC-MC/MS analysis of the SPE fractions of the GCL extract 25 ions 

were detected (Table 4.8), although fractions 40, 70 and 100 exhibited no ions. 

The GCL extract contained 3 different doubly charged ions found in high 

concentrations characterized by m/z at 511/349 and 457/365 in fraction 0, only 

detected in the GCL extract, in addition to the previously mentioned doubly 

charged ion found also in the IGM extract at 339/677 in fraction 50.  There was 

one more ion found in high concentration and only present in GCL extract, 

characterized by m/z 422 in fraction 30. 

Fraction 
Retention time 

(min) 
m/z 

Peak area of extracted 
ion 

0 

2.6 834 9.38 x 10 9 

2.9 674 9.38 x 10 9 

3 689 1.40 x 10 9 

40 11.8 786 6.66 x 10 7 

50 
11.2 1106 1.62 x 10 8 

12.3 786 4.53 x 10 8 

70 2.7 527 9.27 x 10 9 

80 2.7 558 5.11 x 10 9 

90 
10.6 1041 5.89 x 10 8 

11.2 1106 1.86 x 10 8 
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Table 4.7. Characteristics of ions detected by LC-MS/MS in Chroococcidiopsis IGM 
strain SPE fractions 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fraction 
Retention time 

(min) 
m/z 

Peak area of 
extracted ion 

0 

1.6 573 3.79 x 10 9 

1.7 937 3.79 x 10 9 

2.2 725 3.84 x 10 9 

2.7 457 1.97x 10 10 

2.7 527 1.97 x 10 10 

2.9 673 1.97 x 10 10 

3 689 1.53 x 10 10 

3.1 835 1.53 x 10 10 

10 2.7 673 5.87 x 10 9 

20 10.4 1041 3.89 x 10 7 

30 10.6 1041 1.57 x 10 7 

40 12 786 2.00 x 10 7 

50 

1.7 839 3.30 x 10 9 

2.4 871 1.10 x 10 8 

11.7 786 1.18 x 10 7 

60 

2.69 420 1.98 x 10 10 

2.7 527 1.98 x 10 10 

3 339/677 1.98 x 10 10 

70 
2.65 420 5.88 x 10 9 

3 527 1.07 x 10 10 

80 

2.6 420 1.72 x 10 10 

2.8 515 1.72 x 10 10 

3.3 1113 1.72 x 10 10 

90 

2.6 420 8.35 x 10 9 

2.7 499 8.35 x 10 9 

2.9 407 9.29 x 10 9 

2.9 472 9.29 x 10 9 

100 

2.7 420 1.54 x 10 10 

2.8 438 1.54 x 10 10 

3 1149 1.54 x 10 10 

10.7 454 9.17 x 10 7 
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Table 4.8. Characteristics of ions detected by LC-MS/MS in Gloeocapsopsis GCL 
strain SPE fractions 

  

 

 

 

 

 

 

 

 

 

 

 

A Venn diagram was created revealing the number of unique and shared ions 

between the different cyanobacterial strains extracts (Fig. 4.1). Out of the 51 

different detected ions among the SPE fractions, only 1 was shared by all 

cyanobacterial strains, characterized by m/z 786 (Supp. Mat. 4.4). This shared 

ion was found in SPE fraction 10 from Chroococcidiopsis YU-2 sp. (Table 4.5) and 

Fraction 
Retention time 

(min) 
m/z 

Peak area of 
extracted i-on 

0 

2.7 511/349 1.21 x 10 10 

2.7 457/365 1.21 x 10 10 

3 673 1.15 x 10 10 

3 837 1.15 x 10 10 

10 

2.5 871 6.77 x 10 9 

2.7 511 6.77 x 10 9 

2.7 673 6.77 x 10 9 

2.9 402 6.00 x 10 9 

3 835 6.00 x 10 9 

3 997 6.00 x 10 9 

11.3 786 6.09 x 10 7 

20 

1.7 1074 2.40 x 10 9 

2.3 1099 7.04 x 10 7 

2.7 483 7.13 x 10 9 

2.9 402 6.88 x 10 9 

3 403 6.88 x 10 9 

10.9 1099 1.31 x 10 7 

11 1100 2.71 x 10 7 

11.2 1094 3.97 x 10 7 

30 
3.1 422 1.09 x 10 10 

10.3 1042 5.79 x 10 7 

50 3 339/677 7.39 x 10 9 

60 2.7 622 4.41 x 10 9 

80 
1.75 839 3.22 x 10 9 

3.1 538 2.90 x 10 8 
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Gloeocapsopsis sp. GCL (Table 4.8), whereas it was found in SPE fractions 40 and 

50 from Chroococcidiopsis sp. CVL (Table 4.6) and IGM (Table 4.7).  

The distribution of these shared ions was studied regarding different features 

(Table 4.1): cyanobacterial genus (Chroococcidiopsis or Gloeocapsopsis), type of 

endolithic microhabitat of origin (cryptoendolithic or chasmoendolithic), and 

original sampling site (Monturaqui IGM and GCL). A first look at each strain on 

the Venn diagram (Fig.4.1) reveals a remarkable lower number of compounds in 

the CVL strain (Chroococcidiopsis from chasmoendolithic microhabitat), which 

owned only 3 unique ions characterized by m/z 558, 834 and 647 (Supp. Mat. 

4.4), the former one putatively assigned to aeruginosamide C (Supp. Mat. 4.3). In 

contrast, strains originally from the Monturaqui region, IGM and GCL, exhibited 

the highest number of compounds along with the highest number of unique ions 

(12 and 13 respectively). Regarding the genera distribution, the 

Chroococcidiopsis sp. strains shared only one more ion apart from the previously 

mentioned with m/z 786 (Fig. 4.1). This one is characterized by m/z 527 (Supp. 

Mat. 4.4) and occurs in high abundance in all of these Chroococcidiopsis extracts 

Figure 4.1. Venn diagram of shared and unique detected ions among 
Chroococcidiopsis strains YU-2, CVL, IGM and Gloeocapsopsis GCL strains. 
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(Table 4.5, Table 4.6, Table 4.7). However, no possible Gloeocapsopsis assignment 

could be done due to the absence of several strains from this genus. Concerning 

the endolithic microhabitat, no shared ions were detected in the 

chasmoendolithic strains (CVL and GCL), with exception of the one shared with 

the YU-2 and IGM strains (Fig. 4.1), whereas cryptoendolithic strains (YU-2 and 

IGM) shared one more highly abundant ion characterized by m/z 457 in SPE 

fraction 0 (Table 4.5, Table 4.7). The cyanobacterial strains isolated from 

substrates located in the same sampling site, IGM and GCL, shared the highest 

number of ions (Fig. 4.1). Four ions were found exclusively in both strains: the 

double charged ion characterized by m/z 339/677 and ions characterized by 

m/z 835, 839 and 871 (Supp. Mat. 4.4).  

At this point, in order to obtain enough mass to perform the following analyses 

in triplicates, SPE fractions from each cyanobacterial crude extract were 

combined as follows: YU-2 (0-10, 20-40, 50-60, 70-100), CVL (0-10, 20-30, 40-

50, 60-70, 80-100), IGM (0-10, 20-50, 60-70, 80-100) and GCL (0-10, 20-30, 40-

60, 70-100).  

4.4.3. Activity of combined SPE fractions  

4.4.3.1. Antibacterial activity 

During the agar disk diffusion assay with cyanobacterial crude extracts, three 

antibiotic resistant bacterial strains showed weak inhibition (Table 4.4). Thus, 

these three strains were further studied in broth microdilution assay against the 

combined SPE fractions from cyanobacterial extracts.  

No activity was detected against Vibrio cholerae 01 MW-D 2329 and Enterobacter 

sp. MW-W 814 strains (Fig. 4.3 and Fig. 4.4). These results obtained for every SPE 

fraction were supported by their high replicability. 
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In contrast with the previous results observed for the two bacterial strains, weak 

activity could be observed by some SPE fractions from every cyanobacterial 

strains for the antibiotic resistant Enterococcus durans 66 (Fig. 4.2). The activity 

shown by several combined SPE fractions among all cyanobacterial strains 

extracts exhibited large SD. Therefore, the absence of replicability of those 

results does not allow their consideration. That is the case of fraction 0-10 from 

the YU-2 extract, 20-50 and 80-100 fractions from the IGM extract and 40-60 and 

70-100 fractions from the GCL extract, where SD exceeded 20.   

YU-2 fractions, except for 0-10, showed antibacterial activity (Fig. 4.2), especially 

observed for fraction 20-40 which promoted a mean relative viability of 

Enterococcus durans 66 cells of 28%. In general, CVL fractions revealed the 

greatest antibacterial activity, where fractions 20-30, 40-50, 60-70 and 80-100 

inhibited viability in Enterococcus durans 66 cells up to 29-36%.  IGM fractions 

exhibited similar mean antibacterial activity through 0-10 and 60-70 SPE 

fractions, ~56%, lower than the observed in the most active CVL and YU-2 

fractions.  Finally, 20-30 SPE fraction from the GCL extract exhibited a strong 

antibacterial activity, similar to that observed in the strongest CVL and YU-2 

fractions, causing a 34% relative viability in Enterococcus durans 66 cells. Very 

weak antibacterial activity was also observed in fraction 0-10 of the GCL extract, 

58%, similar to the one previously described for the IGM fractions and the 0-10 

CVL fraction.  

4.4.3.2. Cytotoxicity against human breast cancer cells 

MTT viability test was used to evaluate the cytotoxic activity of combined SPE 

fractions from cyanobacterial extras toward the T47D human breast cancer cell 

line. A range of different cytotoxic effects from weak to strong was observed in 

all SPE fractions from every cyanobacterial extract (Fig. 4.5 and Fig. 4.6) 

exhibiting a consistent concentration-dependent effect except for the 70-100 

fraction from the GCL extract (Fig. 4.6).   
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 The 70-100 combined fraction from the YU-2 extract showed the highest activity 

in decreasing T47D cells viability, with IC50 value 50 μg mL-1 (Fig. 4.5).  The 

cytotoxic activity of the CVL extract was shown by the combined fraction 80-100 

with IC50 value of 50 μg mL-1, exhibiting a concentration-dependent effect (Fig. 

4.5). The IGM 80-100 combined fraction exhibited the highest cytotoxic activity 

against T47D cells, decreasing their viability to 8% at 200 μg mL-1 (Fig. 4.6). By 

contrast, weak cytotoxic activity, not reaching a decrease of 50% in cells viability, 

was observed in every combined fraction of the GCL extract (Fig. 4.6). 
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Figure 4.2. The effects of available SPE fractions from cyanobacterial strains extracts on the viability of Enterococcus durans 
66 antibiotic resistant strain cells. Blue, green, red and yellow bars represent YU-2, CVL, IGM and GCL SPE fractions respectively. 
Each bar represents a mean (±SD) of two experiments performed in triplicate 
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 Figure 4.3. The effects of available SPE fractions from cyanobacterial strains extracts on the viability of Vibrio cholerae 01 
MW-D 2329 antibiotic resistant strain cells. Blue, green, red and yellow bars represent YU-2, CVL, IGM and GCL SPE fractions 
respectively. Each bar represents a mean (±SD) of experiments performed in triplicate. 
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Figure 4.4. The effects of available SPE fractions from cyanobacterial strains extracts on the viability of Enterobacter sp. MW-
W 814 antibiotic resistant strain cells. Blue, green, red and yellow bars represent YU-2, CVL, IGM and GCL SPE fractions respectively. 
Each bar represents a mean (±SD) of experiments performed in triplicate. 
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Figure 4.5. The effects of available SPE fractions from Chroococcidiopsis strains YU-2 and CVL extracts on the viability of T47D 
human breast cancer cells. Each bar represents a mean (±SD) of three experiments performed in triplicate. 
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Figure 4.6. The effects of available SPE fractions from Chroococcidiopsis IGM strain and Gloeocapsopsis GCL strain extracts 
on the viability of T47D human breast cancer cells. Each bar represents a mean (±SD) of three experiments performed in 
triplicate. 
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4.4.4. Prediction of potential bioactive compounds with antiSMASH 

To predict gene clusters that encode the biosynthetic pathways for secondary 

metabolites potentially produced by the Chroococcidiopsis strains YU-2, CVL and 

IGM and the Gloeocapsopsis strain GCL, their genomes where analyzed with 

antiSMASH ver 4.0 (Table 4.9).  

The results indicated that the YU-2, CVL and GCL strains harbored 12 gene 

clusters encoding biosynthetic pathways of secondary metabolites while IGM 

harbored a lower number of gene clusters, 9 (Table 4.9).  At least 4 bioactive 

metabolites were found to be potentially produced by all four cyanobacterial 

strains: nostophycin, anabaenopeptin. terpene and bacteriocin. All the 

Chroococcidiopsis strains contained clusters for the production of 

puwainaphycins, while the Gloeocapsopsis GCL strain contained clusters to 

produce micacocidin and aminoglycoside, and two clusters for merocyclophane 

C and D.     

As shown in Table 4.9, the YU-2 strain was found to be the only studied strain 

that potentially produces vioprolide and lassopeptide, sharing the theonellamide 

cluster with the CVL strain and the hapalosin cluster with the Gloeocapsopsis GCL 

strain. The Chroococcidiopsis CVL strain was the only studied strain where a 

cyanopeptolin cluster was found, and together with the Gloeocapsopsis GCL 

strain, that could potentially produce nostopeptolide and micropeptin.   

The products of three of the biosynthetic pathways detected by antiSMASH 4.0 

could also be assigned as putative compounds based on the ions m/z detected by 

LC-MS/MS (Supp. Mat. 4.3). On the one hand, despite the fact that cyanopeptolin 

biosynthetic pathway was only detected in the Chroococcidiopsis CVL genome, it 

was detected as a putative product in extracts from the YU-2 and IGM 

Chroococcidiopsis strains too. In addition, micropeptin was assigned as a putative 

compound in YU-2 and CVL strains, although its biosynthetic pathway was 
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detected in CVL and GCL strains. Lastly, two anabaenopeptin variants were 

assigned based on LC-MS/MS results for YU-2 and GCL strains, while all four 

strains exhibited biosynthetic pathways for this peptide.  

Finally, Tables 4.10-4.13 show the summary of the results for each 

cyanobacterial strain. These tables (Table 4.10-4.13) exhibit the major ions 

found in each SPE fraction assigned to a putative compound when possible, 

together with the activities displayed by each fraction and the biosynthetic 

pathways found in each genome. 
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Table 4.9. The information of secondary metabolite biosynthetic gene clusters in Chroococcidiopsis strains YU-2, CVL, IGM 
and Gloeocapsopsis strain GCL predicted by antiSMASH ver. 4. Intensity of green means % similarity of genes 

 

 

  

   % similar genes   

Cluster type 
Most similar known 

cluster 
MIBiG BCG 

ID 
YU-2 CVL IGM GCL Bioactivity Reference 

NRPS 

Nostophycin BGC0001029 54 27 18 54 27 27 Cytotoxic Fewer et al. 2011 

Cyanopeptolin BGC0000332  28   
Protease  

inhibitor 
Tooming-Klunderud et al. 

2007 
Anabaenopeptin NZ 857 / 

nostamide A 
BGC0001479 100 100 100  Protease inhibitor Rouhiainen et al. 2010 

Vioprolide BGC0001822 41    Cytotoxicity Yan et al. 2018 
Anabaenopaeptin BGC0000302    57 Protease inhibitor Harms et al. 2016 

Nostopeptolide BGC0001028  50  50 Antitoxins Liaimer et al. 2015 

NRPS-T1PKS 

Puwainaphycins BGC0001125 30 20 50 30  Cytotoxic Mareš et al. 2014 

Hapalosin BGC0001467 40   60 
 MDR- reversing 

activity 
Stratmann et al. 1994b 

Theonellamide BGC0001800 21 21     
Micropeptin BGC0001018  50  25 Protease inhibitor Nishizawa et al. 2011 
Micacocidin BGC0001014    20 Antibacterial Kobayashi et al. 1998 

Polyketide Merocyclophane C/ D BGC0001663    55 55 Cytotoxic May et al. 2017 

Other Heterocyst glycolipid BGC0000869 57 71 57    

Lassopeptide  NA X    Antimicrobial  Hegemann et al. 2015 

Terpene  NA X X X X 
Antimicrobial 
/Citotoxicity 

Paduch et al. 2016 

Bacteriocin  NA X X X X Antimicrobial  Yang et al. 2014 

Aminoglycoside 
/aminocyclitol 

 NA    X Antibiotic Flat and Mahmud 2007 

Ladderane  NA   X    
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Table 4.10. Summary of activities from Chroococcidiopsis YU-2 strain in this study.  -: no activity, +: very weak activity, ++: weak 
activity, +++: significant activity, ++++: strong activity. Blue: shared by all cyanobacterial strains. Green: shared exclusively by 
Chroococcidiopsis strains. Red: shared by two Chroococcidiopsis strains. Orange: shared between one Chroococcidiopsis and 
Gloeocapsopsis strain. Refs: [1] (Fastner et al. 1999). na: not assigned compound. 

 

 

 

 

 

 

YU-2 

SPE  
fraction 

Major ions 
(m/z) 

Putative compound 

Activity antiSMASH Clusters 

Enterococcus durans 66 T47D 
Nostophycin 

Anabaenopeptin NZ 857/nostamide A 
Terpene 

Bacteriocin 
Puwainaphycins 

Heterocyst glycolipid 
Theonellamide 

Hapalosin 
Vioprolide 

Lassopeptide 

0-10 
457  
527  
673 

na 
na 
na 

- + 

20-40 
478   
677 

na 
na + + + 

50-60 
1067  
1128 

MC-WR [1] 
na + + + 

70-100 
506  

1057 

na 
na + + + + 
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Table 4.11. Summary of activities from Chroococcidiopsis CVL strain in this study.  -: no activity, +: very weak activity, ++: weak 
activity, +++: significant activity, ++++: strong activity. Blue: shared by all cyanobacterial strains. Green: shared exclusively by 
Chroococcidiopsis strains. Red: shared by two Chroococcidiopsis strains. Orange: shared between one Chroococcidiopsis and 
Gloeocapsopsis strain. Refs: [2] (Leikoski et al. 2013). na: not assigned compound. 

 

 

 

 

 

CVL 

SPE 
fraction 

Major ions 
(m/z) 

Putative compound 

Activity antiSMASH  Clusters 

Enterococcus durans 66 T47D 

Nostophycin 
Anabaenopeptin NZ 857/nostamide A 

Terpene 
Bacteriocin 

Puwainaphycins 
Heterocyst glycolipid 

Theonellamide 
Micropeptin 

Cyanopeptolin 
Nostopeptolide 

0-10 
834 
674 
689 

na 
Aeruginosamide C [2] 

na 
+ + 

20-30 - - + + - 

40-50 786 na + + + 

60-70 527 na + + + 

80-100 558 na + + + + 
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Table 4.12. Summary of activities from Chroococcidiopsis IGM strain in this study.  -: no activity, +: very weak activity, ++: weak 
activity, +++: significant activity, ++++: strong activity. Blue: shared by all cyanobacterial strains. Green: shared exclusively by 
Chroococcidiopsis strains. Red: shared by two Chroococcidiopsis strains. Orange: shared between one Chroococcidiopsis and 
Gloeocapsopsis strain. Refs: [3] (Beversdorf et al. 2017) [4] (Sandonato et al. 2017) [5] (Harada et al. 1993). na: not assigned 
compound. 

 

 

IGM 

SPE  
fraction 

Major ions  
(m/z) 

Putative compound 
Activity antiSMASH  Clusters 

Enterococcus durans 66 T47D 

Nostophycin 
Anabaenopeptin NZ 857/ nostamide A 

Terpene 
Bacteriocin 

Puwainaphycins 
Heterocyst glycolipid 

Ladderane 

0-10 

457 
527 
673 
689 
835 

na 
na 
na 
na 
na 

+ + 

20-50 
1041 
786 
839 

Cyanopeptolin [3] 

na 
Nodularin-R [4] 

- + 

60-70 
420 
527 

339/677 

na 
na 
na 

+ - 

80-100 

420 
515 

1113 
438 

1149 

na 
na 
na 
na 

Aeruginopeptin 95B [5] 

- + + + + 



Bioactivity of secondary metabolites 

194 
 

Table 4.13. Summary of activities from Gloeocapsopsis GCL strain in this study.  -: no activity, +: very weak activity, ++: weak 
activity, +++: significant activity, ++++: strong activity. Blue: shared by all cyanobacterial strains. Green: shared exclusively by 
Chroococcidiopsis strains. Red: shared by two Chroococcidiopsis strains. Orange: shared between one Chroococcidiopsis and 
Gloeocapsopsis strain. Refs: [4] (Sandonato et al. 2017), [6] (Erhard et al. 1999). na: not assigned compound. 

GCL 

SPE 
fraction 

Major ions 
(m/z) 

Putative compound  
Activity antiSMASH  Clusters 

Enterococcus durans 66 T47D 

Nostophycin 
Anabaenopaeptin 

Terpene 
Bacteriocin 
Hapalosin 

Micropeptin 
Micacocidin 

Merocyclophane C/ D 
Nostopeptolide 

Aminoglycoside /aminocyclitol 

0-10 

511/349 
457/365 

673 
837 

na 
na 
na 

Anabaenopeptin B [6] 

+ + 

20-30 

422 
483 
402 
403 

na 
na 
na 
na 

+ + + 

40-60 
339/677 

622 
na 
na - + 

70-100 839 Nodularin-R [4] - + 
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4.5. Discussion 

Secondary metabolites constitute essential tools for organisms in the ecosystem 

providing competitive advantages. In the endolithic microhabitat of the 

polyextreme Atacama Desert, several resources can be limited (space, water, sun 

radiation). Thus, microorganisms inhabiting such an extreme and competitive 

habitat are expected to produce a high variety of novel compounds in order to 

deal with these biotic and abiotic factors.  

This chapter constitutes a pioneering research in the potential of endolithic 

cyanobacteria from the hyper-arid Atacama Desert, whose interest lies in the 

absence of previous studies of this kind regarding these organisms from this 

polyextreme environment. The screening of the antibacterial and antitumor 

activity of extracts and SPE fractions via bioassays is crucial for the future finding 

of natural products with bioactivities of interest.  

Cyanobacterial strains isolated from such a polyextreme environment as the 

Atacama Desert could be promising in producing metabolites to inhibit bacterial 

growth. The ecological justification for this expectation is based on the benefits 

provided by minimizing the growth of other microorganisms in their vicinity as 

a possible competition strategy for limiting resources as space or water.   

One of the possible ways  to inhibit microbial growth would be the inhibition of 

diverse enzymatic activities. A common bioassay is the analysis of the effect of 

metabolites on the proteolytic activity of proteases. These enzymes prove 

essential for the functioning of live structures occurring in all living organisms 

(Patel, 2017). In this study, the wide range of concentrations of peptidic 

compounds present in the crude extract from all four cyanobacterial strains 

tested against the enzymes trypsin, chymotrypsin, thrombin and elastase reveals 

the rare occurrence of enzymatic inhibitors among the metabolites produced by 

these microorganisms. However, these strains exhibited a high potential in 
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protease inhibitors as anabaenopeptins, cyanopeptolines and micropeptins 

(Table 4.9, Supp. Mat. 4.3) that could be active at other concentrations or against 

other not tested proteases. Taking into account the original microhabitat and 

environmental conditions of the studied strains, it could be thought that the 

protease inhibitors found could have specific targets from organisms coexisting 

in the original extreme environment.  

To this date, significant activity has mainly been found among the 

representatives of the Nostocales, Oscillatoriales and Chroococales although in 

the work by Silva-Stenico et al. (2011) most of the metabolites with antimicrobial 

activity were produced by cyanobacteria from the Chroococcales, being more 

frequently active against bacteria than against other microorganisms as fungi 

(Silva-Stenico et al. 2011, Mazur-Marzec et al. 2015). Since genomic data from 

cyanobacterial strains from the Chroococcidiopsidales, YU-2, CVL and IGM, and 

the Chroocococales, GCL exhibited possible antibacterial metabolites such as 

bacteriocins, terpenes, lasso peptide and micacodin, it would be of great interest 

to test their antibacterial activity in clinically important pathogens that have 

developed multiresistance to the currently used antibiotics. Despite the fact that 

crude extracts revealed antibacterial activity against Vibrio cholerae 01 MW D 

2329¸ by YU-2 strains, and Enterobacter sp.  MW-W814 and Enterococcus durans 

66 by CVL, IGM and GCL strains, an inconsistency was observed after the 

evaluation of SPE fractions via microdilution assay.  The absence of Vibrio 

cholerae 01 MW D 2329 inhibition by the YU-2 strain SPE fractions and 

Enterobacter sp. MW-W814 inhibition by the CVL, IGM and GCL strains SPE 

fractions could be explained through two scenarios. In the first one, some 

compounds present in YU-2, CVL, IGM and GCL crude extracts could have been 

lost or separated into several different fractions during the SPE procedure and, 

as a consequence, their concentration could have been too low to exert any effect 

on the growth of Vibrio cholerae and Enterobacter sp. MW-W814. On the other 

hand, the unexpected inhibition of Enterococcus durans 66 exerted by 20-40, 50-
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60 and 70-100 SPE fractions of the YU-2 strain, despite the absence of effect by 

the crude extract, could be explained by the 0-10 fraction, where the highest 

concentration of ions could be observed. A possible antagonistic effect of ion 

peaks m/z 457 or 527 found in high concentration in the 0-10 fraction in the 

crude extract could have masked the effect of the other SPE fractions. Concerning 

active fractions, the exerted effect observed in different fractions on the IGM, CVL 

and GCL extracts could be linked to the shared presence of major peaks in the 

TIC at m/z 527, in fractions 0-10 and 60-70 of the IGM extract and 60-70 of the 

CVL extract, and m/z 673, in fractions 0-10 of the IGM and GCL extracts. The TIC 

of the highly active fractions 60-70 and 80-100 of the IGM extract also showed 

the presence of a major peak at m/z 420 which could be responsible for the 

observed inhibition, as would also happen for the major peak at m/z 422 found 

in the TIC of fraction 20-30 in GCL extract. By contrast, it is not possible to 

establish any relationship between ion presence and the high activity exerted by 

fraction 20-30 of CVL since they could not be detected possibly due to an 

extremely low concentration of these compounds.  

An additional point of interest in the discovery of natural products is their 

potential anticancer properties. Cytotoxic activity against cancer cells has been 

observed in diverse cyanobacterial strains although active agents were not 

identified in most of those studies (Szubert et al. 2018, Singh et al. 2011, Rastogi 

and Sinha, 2009) and some of their mechanisms have not been elucidated yet 

(Humisto et al. 2016). The T47D cell line derives from a 54-year-old woman, one 

of the most widely used cell lines in breast cancer studies and previously used to 

prove cytotoxic activity from cyanobacterial extracts (Szubert et al. 2018, 

Hassouani et al. 2017, Costa et al. 2014). All cyanobacterial strains tested in this 

study exhibited a potential cytotoxic effect related to the potential production of 

nostophycin, terpenes, vioprolide, puwainaphycins and merocyclophane (Table 

4.9). Additionally, MTT tests proved that the most polar SPE fractions from 

Chroococcidiopsis sp. YU-2, CVL and IGM strains contain cytotoxic metabolites 
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against human breast cancer cells line T47D. Mass spectrometry analysis 

revealed major peaks in the TIC of fractions 70-100 of YU-2 and 80-100 of CVL, 

probably linked with the observed cytotoxic activity against T47D cells. These 

ions detected in IDA mode are characterized by m/z 506 and 1057 in fraction 70-

100 of the YU-2 strain, and by m/z 558 in fraction 80-100 in of the CVL strain. 

The exceptional cytotoxic activity exerted by fraction 80-100 in IGM could be 

linked to the major peak observed in the TIC of all 80, 90 and 100 SPE fractions 

characterized by m/z 420.  

The studied strains displayed an interesting actual and potential production of 

bioactive compounds (Tables 4.10-4.13) as expected due to their original 

environmental conditions and microhabitat. In fact, the obtained results 

concerning their cytotoxic activity against eukaryotic cells finds their analogy in 

their original EMCs (Table 4.1) since these communities exhibit no eukaryotic 

members or their very rare presence (Yungay halite - Robinson et al. 2015; Valle 

de la Luna calcite – DiRuggiero et al. 2013, Meslier et al. 2018; Monturaqui 

ignimbrite – Crits-Christoph et al. 2016b, Meslier et al. 2018; and Monturaqui 

gypcrete – Meslier et al. 2018, Chapter 1). This absence is particularly 

remarkable in the case of fungal members, since algae where found in similar 

environments to those of the EMCs of halite from Salar Grande (Robinson et al. 

2015) and of gypcrete from Cordón de Lila (J. Wierzchos pers. com.); however, 

there is no coexistence of cyanobacteria and fungi among all of these EMCs. 

Although the expected antifungal potential of these and other cyanobacterial 

strains from these communities remains unknown, the chemical diversity 

presented in this study looks promising.    
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4.6. Conclusions 

The bioactivity of metabolites produced by cyanobacterial strains from the 

Atacama Desert has never been reported before. This study illustrates the 

variety of compounds actually and potentially produced by these 

extremotolerant cyanobacterial strains. The tested extracts not only have 

antibacterial activity against the multidrug resistant Enterococcus durans and 

cytotoxic activity against T47D cancer cells, but also seem to work selectively, as 

they do not have any inhibitory effect against the tested enzymes. Despite the 

fact that the compounds responsible for the observed antibacterial and cytotoxic 

activities in the conducted bioassays were not characterized and unequivocally 

identified, some characteristic features of their polarity were exposed together 

with their putative assignment when available. The tests showed for the first 

time the existing potential of the desert Chroococcidiopsis and Gloeocapsopsis 

strains to be used as a source of important cytotoxic agents. In view of these 

promising results, further studies are worth to be continued.
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4.7. Supplementary Material 

 
Supplementary Material 4.1. The effects of different concentrations of crude extracts from cyanobacterial strains on the 
viability of Escherichia coli ESBL MW-W 727 and Pseudomonas aeruginosa antibiotic resistant strains cells. 
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Supplementary Material 4.2. The extracted ion chromatogram (XIC) of highly abundant ions. Code for each figure results from 
the combination of 3 types of information: STRAIN – FRACTION – m/z.  Retention times of described ions are marked with round 
frames. 
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Supplementary Material 4.2. The extracted ion chromatogram (XIC) of highly abundant ions. Code for each figure results from 
the combination of 3 types of information: STRAIN – FRACTION – m/z.  Retention times of described ions are marked with round 
frames.  
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Supplementary Material 4.2. The extracted ion chromatogram (XIC) of highly abundant ions. Code for each figure results from 
the combination of 3 types of information: STRAIN – FRACTION – m/z.  Retention times of described ions are marked with round 
frames.  
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Supplementary Material 4.2. The extracted ion chromatogram (XIC) of highly abundant ions. Code for each figure results from 
the combination of 3 types of information: STRAIN – FRACTION – m/z.  Retention times of described ions are marked with round 
frames.  
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Supplementary Material 4.2. The extracted ion chromatogram (XIC) of highly abundant ions. Code for each figure results from 
the combination of 3 types of information: STRAIN – FRACTION – m/z.  Retention times of described ions are marked with round 
frames.  
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Supplementary Material 4.2. The extracted ion chromatogram (XIC) of highly abundant ions. Code for each figure results from 
the combination of 3 types of information: STRAIN – FRACTION – m/z.  Retention times of described ions are marked with round 
frames.  
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Supplementary Material 4.3. Putative compounds detected in Chroococcidiopsis strains YU-2, CVL and IGM, and 
Gloeocapsopsis GCL strain from endolithic microhabitats in the Atacama Desert. 

m/z 
Putative  

Compound 
Reference 

Observed in  
cyanobacterial strains 

Bioactivity 

674 Aeruginosamide C Leikoski et al. 2013 CVL Protein phosphatase inhibitor 

725 Aeruginosin 724 Silva-Stenico et al. 2011 IGM Protein phosphatase inhibitor 

837 Anabaenopeptin B Erhard et al. 1999 YU-2 / GCL Protein phosphatase inhibitor 

839 Nodularin-R Sandonato et al. 2017 IGM / GCL PP1 inhibitor, PP2A inhibitor 

871 Viridamide A Esquenazi et al. 2008 IGM / GCL Cytotoxic 

937 Cyanopeptolin Silva-Stenico et al. 2011 IGM Serine protease inhibitor 

1002 MC-LY Ballot et al. 2014 YU-2 PP1C and PP2A inhibitor 

1013 Cl- Cyanopeptolin W Welker et al. 2004 YU-2 Serine protease inhibitor 

1041 Cyanopeptolin Beversdorf et al. 2017 CVL / IGM Serine protease inhibitor 

1063 Micropeptin 88-E Ishida et al. 1998 YU-2 Protein phosphatase inhibitor 

1067 MC-WR Fastner et al. 1999 YU-2 PP1C and PP2A inhibitor 

1074 Microcystilide-A Tsukamoto et al. 1993 GCL Protein phosphatase inhibitor 

1106 Micropeptin 1106 Isaacs et al. 2014 YU-2 / CVL Protein phosphatase inhibitor 

1149 Aeruginopeptin 95B Harada et al. 1993 GCL Protein phosphatase inhibitor 
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Supplementary Material 4.4. Shared and unique ions by the cyanobacterial strains used in this study 

Strains 
Shared 

ions 
m/z 

CVL/GCL/IGM/YU-2 1 786             

CVL/IGM/YU-2 1 527             

GCL/IGM/YU-2 1 673             

CVL/YU-2 1 1106             

IGM/YU-2 1 457             

GCL/YU-2 3 837 997 1042           

CVL/IGM 2 689 1041            

GCL/IGM 4 339/677 839 835 871          

YU-2 9 478 506 677 1002 1013 1057 1063 1067 1128     

CVL 3 558 674 834           

IGM 12 407 420 438 454 472 499 515 573 725 937 1113 1149  

GCL 13 402 403 422 457/365 483 511 511/349 538 622 1074 1094 1099 1100 
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A new insight into the microbial ecology and biogeography 

of endolithic communities 

This Dissertation dwells on two central questions regarding endolithic microbial 

communities: the relevance of the biogeographic scale to their ecological traits 

and the strategies developed by their primary producers and major component, 

cyanobacteria, to survive in the polyextreme environment of the hyper-arid 

Atacama Desert.  

Chapter 1 addresses the impact of microhabitat architecture in microbial 

communities inhabiting three different endolithic microhabitats in gypcrete. On 

the other hand, Chapter 2 is devoted to the exploration of the cyanobacterial 

community colonizing the halite endolithic microhabitat of one of the driest 

locations on Earth. In Chapter 3 the response of cyanobacterial isolates from 

endolithic communities to UVR and PAR was studied. Finally, in Chapter 4 the 

bioactivity of secondary metabolites from cyanobacterial isolates was analyzed 

by means of bioassays, analytical chemistry and genomic tools.  

This General Discussion aims to synthetize and integrate the main findings and 

proposals suggested along the four chapters in the context of the microbial 

ecology principles.  

…, THE ENVIRONMENT SELECTS (Baas-Becking 1934) 

The environment selects…, but, what does “environment” mean 

when referring to microbial communities? 

The spatial distribution of microorganisms has often been understood in terms 

of the Baas-Becking (1934) statement: “everything is everywhere, but the 

environment selects”, whose second half (the environment selects) would 

constitute the environmental filtering metaphor (Kraft et al. 2015). In hyper-arid 

deserts, the polyextreme environment represents the first environmental 
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filtering since the set of extreme environmental factors already prevents the 

establishment or persistence of organisms that are not previously adapted to or 

able to tolerate the polyextreme environment. When investigating endolithic 

communities, the search for the next level of abiotic filter has attracted attention 

mainly in two directions: (i) microbial biogeography on a macro scale, where the  

hypothesis is that EMCs from the same type of lithic substrate show differences 

in diversity and/or composition due to the different (macro)environmental 

conditions accross different deserts (Qu et al. 2019, Dong et al. 2007; Omelon et 

al. 2008) and (ii) the physico-chemical properties of the lithic substrate, where 

it can be hypothesized that different substrates harbor different communities in 

terms of diversity and/or composition based on their physicochemical 

characteristics (Meslier et al. 2018; Crits-Christoph et al. 2016b).    

At this stage, it is essential to make a brief discussion on the meaning of the term 

“microbiogeography”. Biogeography is a science that attempts to describe and 

explain spatial patterns of biological diversity and how these patterns change 

over the time (Ganderton and Coker 2005, Lomolino et al. 2006). The study of 

these patterns (in space, in time and along environmental gradients) can be used 

to understand why organisms live where they do, how many taxa can coexist in 

a place and how they will respond to environmental changes (Green et al. 2008). 

When studying this field with regard to microorganisms, the term 

microbiogeography has been used as a synonym for microbial biogeography 

(Tofalo et al. 2013). However, this study (Chapter 1) proposes to understand the 

term “microbiogeography” as a “micro” perspective of biogeography similar to 

the concept used by Stacy et al. (2016). Thus, the “micro” prefix refers not only 

to the size of the organisms (microorganisms), but also to the size of the patterns 

that determine why they live where they do, how many different taxa can coexist 

and how they respond to (micro)environmental changes.  
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Despite the microscale of the habitat and processes of these communities, few 

studies considered scale when comparing their composition (Meslier et al. 

2018), and no studies have focused on differences on a microscale within the 

same lithic substrate. However, this aspect has previously been addressed with 

regard to soil microbial communities, and to the way in which the structure of 

soil and pore space results in a complex distribution of oxygen, water films and 

gradients of solutes determining radically different local conditions on very fine 

scales (Ruamps et al. 2011; Vos et al. 2013; Tecon and Or, 2017; Rabot et al. 

2018). The three different endolithic microhabitats within gypcrete have been 

shown to harbor different microbial communities in terms of composition, 

particularly observed in the photosynthetic fraction of the community composed 

by cyanobacteria (Chapter 1). The observed impact of different microhabitat 

architectures in the microenvironmental conditions occurring in them even 

when they are found in the same piece of lithic substrate, sheds light to the 

factors determining the microbiogeography of this type of communities, i.e. 

those essential for photosynthesis, especially light and liquid water. The lower 

availability of both these resources appear to shape microbial community 

composition, decreasing the proportion of the phototrophic fraction, 

cyanobacteria, in relation to the heterotrophic fraction, since the former would 

not fix enough CO2 to support a more developed heterotrophic community.  

The environment selects… for specific adaptations and acclimation 

capacities 

The greater the number of extreme conditions concurrent in a specific location, 

the more restrictive it becomes, and therefore only those organisms tolerant or 

previously adapted to such conditions will be able to proliferate successfully. 

Thus, polyextreme environments harbor unique communities constituted by 

both extremotolerant and extremophile organisms.  
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Throughout this dissertation, the differences in microenvironmental conditions 

linked to the features of the lithic substrate and the type of endolithic 

microhabitat have been found to be a potential selective pressure not only for 

community composition and structure (Chapter 1) but also for specific 

adaptation strategies (Chapter 1, Chapter 2, Chapter 3) and acclimation 

capacities (Chapter 2, Chapter 3). Regarding the adaptation strategies associated 

with the features of the lithic substrate, the Chroococcidiopsis YU-2 strain 

exhibited in its genome specific adaptations to the osmotic stress caused by the 

hypersaline environment of halite: the production of osmolites such as glycine 

betaine and ectoine (Chapter 2), while the thick EPS’s envelopes exhibited by this 

strain seem to be an acclimation response to that hypersalinity and to long 

drought periods. In addition, Chapter 3 showed in both genomes of the studied 

Chroococcidiopsis strains (YU-2 and CVL) the occurrence of the very rare Cu/Zn 

SOD precursor, related to the oxidative stress response, which suggests a 

particular evolutionary origin of this lithobiontic genus, along with their capacity 

to produce the UV-screening compound scytonemin under stressful light 

conditions (Chapter 3). Moreover, the environmental filtering caused by the 

substrate in the distribution of certain previously adapted strains (Chapter 2) 

could also be observed in the cyanobacterial distribution at microhabitat level 

(Chapter 1), since the light-limited hypoendolithic microhabitat of gypcrete 

harbor a highly abundant unclassified OTU (UC-OTU) (40%), whose closest 

relative sequences belongs to habitats where light is a limiting factor. This 

suggests the presence of specific adaptation mechanisms for low-light conditions 

in this highly abundant UC-OTU such as more densely packed photosynthetic 

membrane systems previously reported in cyanobacteria from light-deprived 

cave environments belonging to Chroococcidiopsis, Cyanosarcina, Leptolyngbya, 

Phormidium, Pseudocapsa (Asencio and Aboal, 2004), Chroococcus (Cox 1977) 

and Gloeocapsa (Cox et al. 1981) genera.  
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Besides the lithic substrate properties, the microhabitat features also seem to 

exert an impact on the distribution and selection of acclimation capacities as 

demonstrated in Chapter 3. Thus, different Chroococcidiopsis strains (YU-2 and 

CVL) owe their different acclimation capacities to the environmental pressure 

exerted by their original microhabitats. The lower acclimation capability 

exhibited by the YU-2 strain could be due to its original scattered light-exposed 

cryptoendolithic microhabitat in comparison to the direct light-exposed 

chasmoendolithic microhabitat to which the CVL strain belonged, which would 

explain its higher acclimation capacity.  Thus, the “micro” scale becomes 

essential again when exploring the pressures exerted by the extreme 

environmental conditions on the selection and distribution of organisms and 

their adaptations or acclimation capacities.  

The occurrence of several extreme environmental conditions as it happens in the 

Atacama Desert could lead to a tradeoff between adaptation strategies and 

acclimation capacities, that is, between the philia and the tolerance to extreme 

environmental conditions, as proposed in Chapter 2. The halite endolithic 

microhabitat constitutes the most polyextreme environment studied in this 

desert, since it is hypersaline in addition to the common extreme Atacama Desert 

conditions. The cyanobacterial community inhabiting this microhabitat 

illustrates the differential colonization efficiency between the extremophile (i.e. 

Halothece (Oren 2012)) and extremotolerant (i.e. Chroococcidiopsis (Caiola and 

Billi, 2007)) members when more than one extreme condition occurs 

simultaneously and thus, it also illustrates the differential efficiency between 

adaptation and acclimation capacity. Here it is proposed that polyextreme 

environments select, to a larger extent, organisms with higher acclimation 

capacity than highly adapted organisms, namely, extremotolerant organisms 

rather than extremophiles.  
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Biotic competition: the significance of traveling 

companions  

Apart from the role of environmental conditions, biotic competition creates an 

evolutionary pressure on microbial communities that in some cases could have 

a greater impact on the evolution of strains that overlap in resource use (Bauer 

et al. 2018). Competition strategies can be classified according to the passive or 

active harm exerted on the other competitors: (i) it is considered passive 

competition if one strain harm another through resource consumption, i.e. 

restricting the competitor’s access to nutrients or gaining enhanced access to a 

given space; (ii) active competition occurs when the strains that are competing 

damage each other through direct and active interference commonly through 

chemical warfare in order to eliminate the competitor (Ghoul and Mitri 2016).  

The endolithic microhabitat in the hyper-arid Atacama Desert can be considered 

a highly competitive environment since the limitation of essential resources as 

water and space allows endolithic microbial communities to meet the criteria 

that promote competition: (i) a high overlap between coexisting strains in their 

metabolic and/or spatial niche along with the requirement for similar resources, 

(ii) a relatively high cell density rate compared to the available resources and 

(iii) the intermixture of populations increasing the possibility of interaction, 

shared nutrients and joint secretions (Bauer et al. 2018).  

Concerning the phototrophic fraction of the microbial community in endolithic 

environments of the Atacama Desert, the co-existence of both prokaryotic 

(cyanobacteria) and eukaryotic (algae) members is highly uncommon (Robinson 

et al. 2015, Wierzchos et al. 2015). The recurrent absence of eukaryotic 

phototrophs in endolithic microhabitats where cyanobacteria dominate 

(Robinson et al. 2015; DiRuggiero et al. 2013, Meslier et al. 2018; Crits-Christoph 

et al. 2016b, Meslier et al. 2018; Wierzchos et al. 2006, de los Ríos et al. 2010, 
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Wierzchos et al. 2013, Chapter 1) suggests a competition for essential 

photosynthetic resources (light, water) that has led to two of the three  possible 

ecologically stable long-term consequences proposed by Ghoul and Mitri (2016): 

(i) the establishment of a metabolic niche and (ii) the assignment of territorial 

niches or patches. Thus, as proposed in Chapter 1, cyanobacteria inhabit 

microhabitats where liquid water is available (Yungay halite – Wierzchos et al. 

2012a, Robinson et al. 2015; Valle de la Luna calcite – DiRuggiero et al. 2013, 

Meslier et al. 2018; Monturaqui ignimbrite – Wierzchos et al. 2013, Crits-

Christoph et al. 2016b, Meslier et al. 2018; and Monturaqui gypcrete – Meslier et 

al. 2018, Chapter 1) while algae inhabit those where high RH values prevail (Salar 

Grande halite -Robinson et al. 2015 and Tarapacá region gypsum crust - 

Wierzchos et al. 2011).  

The cyanobacterial community studied in this Thesis exhibited diverse 

competitive strategies. In the frame of passive competition, the observed 

production of EPSs (Chapter 1, Chapter 2, Chapter 3), besides their function as 

water retaining structures (de los Ríos et al. 2007; Dong et al. 2007, Wierzchos 

et al. 2015) and their role in retaining and exchanging nutrients (Meslier et al. 

2018), are useful to colonize and gain better access to the limited space available 

in the endolithic microhabitat. The active competition strategies displayed by 

some of the cyanobacterial inhabitants of these limiting and competitive 

environments are shown in Chapter 4. The studied cyanobacterial strains 

isolated from four different lithic substrates and endolithic microhabitats 

exhibited a potential production of antibacterial metabolites (bacteriocins, 

terpenes, lasso peptide, micacodin), protease inhibitors (anabaenopeptins, 

cyanopeptolines and micropeptins) and cytotoxic activity against eukaryotic 

cells. This information suggests the evolutionary selection of these pathways and 

compounds in order to effectively compete for the limited resources both 

intraspecifically (other cyanobacterial strains from the same genus) and 

interspecifically (other prokaryotic members and eukaryotic members). The 
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active competition against eukaryotic cells is of particular interest not only with 

respect to the previously mentioned competition against other phototrophs 

(algae) but also to fungal members, since cyanobacteria and fungi have not yet 

been reported to co-inhabit endolithic microhabitats in the Atacama Desert.  

The result of active interference or competition in microorganisms is of special 

interest in case they can be used for biotechnological and biomedical purposes 

in the current circumstances where the multiresistant pathogenic bacterial 

strains become a public health problem (Gottlieb and Nimmo 2011) and 

alternative cancer therapies are necessary (Demain and Vaishnav 2011). Thus, 

the results obtained through the diverse bioassays performed to cyanobacterial 

extracts, especially those exhibiting cytotoxic activity against cancer cells 

(fraction 80-100 in Chroococcidiopsis IGM strain extract), are very promising for 

further research and the development of new natural anticancer products.  

The need for a multidisciplinary analysis 

The benefits of using diverse techniques and managing several types of 

information (molecular, imaging, chemical) have already been highlighted in 

Chapter 1. In fact, the Dissertation, throughout all four chapters, each one with 

its own goals, illustrates the urgency of using a multidisciplinary approach when 

addressing microbial ecology studies, especially from unique and polyextreme 

environments. The use of different types of information is the only way to 

understand as much as possible the ecology of these communities, being aware 

of the technical limitations in each case.  

This General Discussion integrates the diversity of evidence and proposals 

collected throughout the four chapters by means of a multidisciplinary analysis 

to elucidate the behavior and distribution of microorganisms inhabiting the 

endolithic microhabitats in the hyper-arid Atacama, with particular focus on the 

main primary producers, cyanobacteria. Despite the many open-ended 
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questions that remain after this work and its approach proposal, all these 

findings point towards the uniqueness of microenvironmental conditions in each 

microhabitat and substrate and thus, how those conditions along with the 

specific biotic interactions selected to inhabit such a restrictive environment, 

determine the whole selection of genotypes and phenotypes able to efficiently 

colonize each microhabitat and lithic substrate.  This proposal, focused on the 

“micro” perspective when analyzing the ecology and behavior on that scale, 

stimulates further experimentation and the achievement of both descriptive and 

applied studies in order to understand the limits of life.  
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1. The analysis of the structure and composition of microbial communities 

inhabiting three different microhabitats of gypcrete reveals the importance of 

using an appropriate space scale for the study of microbial communities in 

these environments. The microstructural and microarchitectural features of 

the lithic substrate are decisive for the structure of endolithic microbial 

communities due to their impact on vital resources as water and light.  

El análisis de la estructura y la composición de las comunidades microbianas 

que habitan los tres microhábitats endolíticos del yeso revela la importancia del 

uso de una escala apropiada para el estudio de las comunidades microbianas. 

Las características microestructurales y microarquitectónicas del sustrato 

lítico resultan decisivas para la estructura de las comunidades microbianas 

endolíticas debido al impacto de estas características en recursos esenciales 

como son el agua y la luz.  

 

2. The high capacity to colonize effectively endolithic microhabitats under 

polyextreme conditions by the Chroococcidiopsis genus has been proved. 

Nevertheless, the higher abundance of a singular cyanobacterial OTU without 

proximity to any known cyanobacteria in the hypoendolithic microhabitat in 

gypcrete stresses the importance of additional efforts in the characterization 

of cyanobacteria and other microorganisms in extreme environments.  

Se ha probado alta capacidad del género Chroococcidiopsis de colonizar de 

manera efectiva microhábitats endolíticos que se encuentran en ambientes 

poliextremos. Sin embargo, la abundancia de una OTU singular del filo 

Cyanobacteria en el microhábitat hipoendolítico del yeso subraya la necesidad 

de aplicar esfuerzos adicionales en la caracterización de cianobacterias y otros 

microrganismos en ambientes extremos.  
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3. The presence of Chroococcidiopsis in the hypersaline endolithic microhabitat 

in halite from the Yungay region has been proved, corroborating the first 

morphological identification of cyanobacteria present in the endolithic 

microbial community in halite at this specific location in the Atacama Desert.   

Se ha probado la presencia de Chroococcidiopsis en el microhábitat endolítico 

de halitas en la región de Yungay, corroborando así la primera identificación 

morfológica de las cianobacterias presentes en la comunidad endolítica de 

halitas de esta ubicación del Desierto de Atacama.  

 

4. The high endurance of Chroococcidiopsis strains under extreme 

environmental pressures, as those occurring in the endolithic microhabitat in 

halite, has been demonstrated by its ultrastructural characterization and the 

requirement of a specific DNA isolation method, which explains its apparent 

absence in previous studies of halite endolithic communities that used 

traditional protocols.  

Se ha demostrado la gran resistencia de las cepas de Chroococcidiopsis bajo 

presiones ambientales extremas, como se da en el microhabitat endolítico de 

halitas, gracias a la caracterización de su ultraestructura y debido a la 

necesidad de emplear un método específico para la extracción de su ADN. Esto 

explica la aparente ausencia de este género en estudios previos acerca de la 

comunidad endolítica de halitas que usan métodos tradicionales de extracción 

de ADN.  
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5. It has been proved that biodiversity studies of microbial communities, 

especially from extreme environments, should be performed in the light of a 

combination of molecular and microscopy techniques due to the detection 

limits of both types of approaches: the endurance exhibited by some 

microorganisms to DNA extraction with conventional protocols, and the 

appearance in low abundance of some other microorganisms.  

Se ha demostrado que los estudios de biodiversidad de comunidades 

microbianas, especialmente de aquellas que habitan ambientes extremos, deben 

llevarse a cabo mediante la combinación de técnicas tanto moleculares como de 

microscopía para compensar las limitaciones de ambas técnicas: la resistencia 

que algunos microorganismos ejercen frente a la extracción de ADN con 

métodos convencionales y la presencia de algunos taxones en muy baja 

abundancia.  

 

6. The Chroococcidiopsis strains isolated from chasmoendolithic (CVL) and 

cryptoendolithic (YU-2) microhabitats from calcite and halite, respectively, 

show a significantly different response to UVR and PAR, with CVL exhibiting 

a higher acclimation capacity than YU-2.  The differential behavior reveals the 

impact of the greater (chasmoendolithic) and lesser (cryptoendolithic) 

exposure to light in their original microhabitat.  

Las cepas de Chroococcidiopsis aisladas de los microhábitats casmoendolítico 

(CVL) y criptoendolítico (YU-2) de calcita y halita, respectivamente, muestran 

diferencias significativas en su respuesta frente a UVR y PAR, mostrando la cepa 

CVL una mayor capacidad de aclimatación que la cepa YU-2. Las diferencias de 

comportamiento de ambas cepas revelan el efecto de una mayor 

(casmoendolítico) y una menor (criptoendolítico) exposición a la luz en el 

microhábitat del que fueron aisladas.  
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7. The Chroococcidiopsis strains YU-2, CVL and IGM, and Gloeocapsopsis strain 

GCL exhibit a large variety of bioactive compounds actually and potentially 

produced. The presence of SPE fractions from the extracts obtained from 

these strains with antibacterial and cytotoxic activity suggests the highly 

competitive environment they inhabit and their potential as sources of 

cytotoxic agents.  

Las cepas de Chroococcidiopsis YU-2, CVL e IGM y la cepa GCL de 

Gloeocapsopsis muestran la producción real y potencial de una amplia 

variedad de compuestos bioactivos. La actividad antibacteriana y citotóxica 

observada por parte de las fracciones de los extractos de estas cepas sugiere la 

alta competitividad existente en el microhábitat en el que se encuentran, a la 

vez que revela su potencial como fuentes de agentes citotóxicos.  
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