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The transport properties of massless fermions in 3 + 1 spacetime dimension have been in the focus of 
recent theoretical and experimental research. New transport properties appear as consequences of chiral 
anomalies. The most prominent is the generation of a current in a magnetic field, the so-called chiral 
magnetic effect leading to an enhancement of the electric conductivity (negative magnetoresistivity). 
We study the analogous effect for axial magnetic fields that couple with opposite signs to fermions of 
different chirality. We emphasize local charge conservation and study the induced magneto-conductivities 
proportional to an electric field and a gradient in temperature. We find that the magnetoconductivity is 
enhanced whereas the magneto-thermoelectric conductivity is diminished. As a side result we interpret 
an anomalous contribution to the entropy current as a generalized thermal Hall effect.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction and motivation

Chiral anomalies [1,2] and the specific transport phenomena in-
duced by them such as the chiral magnetic and the chiral vortical 
effects have been extensively discussed in the recent years (see [3,
4] for reviews).

In a theory of massless Dirac fermions the vector current Jμ =
�̄γ μ� and axial current Jμ5 = �̄γ5γ

μ� can be defined. In such a 
theory the chiral magnetic effect (CME) describes the generation of 
an electric current in a magnetic field in the presence of an axial 
chemical potential

�J = μ5

2π2
�B , (1)

where μ5 is the axial chemical potential conjugate to the axial 
charge operator Q 5 = ∫

d3x�̄γ5γ
0�.

This formula has to be interpreted with care. At first sight it 
predicts the generation of a current in equilibrium. It has been 
pointed out however that such an equilibrium current is forbidden 
by the so-called Bloch theorem. In relation to the CME this theo-
rem has first been invoked in a condensed matter context in [5]. 
A recent discussion of the Bloch theorem has been given in [6]. 
The theorem can be formulated as
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∫
d3x �J (x) = 0 , (2)

in thermal equilibrium. Seemingly this is violated by eq. (1) for 
a homogeneous magnetic field. The important point emphasized 
in [6] is that the Bloch theorem is valid only for exactly conserved 
currents. This allows to resolve the tension between eq. (1) and the 
Bloch theorem. More precisely eq. (1) holds only for the so-called 
covariant version of the current. This covariant current is not a 
truly conserved current but rather has the anomaly

∂μ Jμ = 1

8π2
εμνρλ Fμν F 5

ρλ , (3)

where one also introduces a axial field A5
μ as source for insertions 

of the axial current Jμ5 . Similarly the covariant version of the axial 
anomaly is

∂μ Jμ5 = 1

16π2
εμνρλ

(
Fμν Fρλ + F 5

μν F 5
ρλ

)
. (4)

In quantum field theory the currents are composite operators and 
have to be regularized. This regularization introduces certain ambi-
guities that have to be fixed by demanding certain classical prop-
erties of the currents to hold on the quantum level. One way to 
fix these ambiguities is to define Jμ and Jμ5 to be invariant ob-
jects under both vector- and axial-type gauge transformations [7]. 
The disadvantage of this definition is that it does not result in a 
conserved vector like current but rather leads to the anomaly in 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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eq. (3). On the other hand one can insist on the vector like current 
to be exactly conserved ∂μJ

μ = 0. The relation between the two 
definitions of currents is

Jμ = Jμ − 1

4π2
εμνρλ A5

ν Fρλ . (5)

Due to axial anomaly the axial vector Jμ5 is never conserved and 
therefore its source A5

μ can not be interpreted as a true gauge field. 
Therefore the Chern–Simons current in (5) is a physical current in 
a completely analogous way as the Chern–Simons current appear-
ing in the quantum Hall effect. This resolves the tension between 
the chiral magnetic effect and the Bloch theorem in the follow-
ing manner. Thermal equilibrium is defined by the grand canonical 
ensemble with density matrix exp(−(H −μ5 Q 5)/T ). This is equiv-
alent to considering the theory in the background of a temporal 
component of the axial field A5

0 = μ5. Now the chiral magnetic ef-
fect in the exactly conserved current Jμ takes the form [8]

�J= μ5

2π2
�B − A5

0

2π2
�B , (6)

where the second term stems from the Chern–Simons current in 
eq. (5). Since in strict equilibrium A5

0 = μ5 this shows that the 
chiral magnetic effect for the conserved current (5) vanishes as 
demanded by the Bloch theorem. The importance of defining the 
coserved current has also been discussed in chiral kinetic theory 
in [9].

On the other hand the closely related chiral separation effect

�J5 = μ

2π2
�B , (7)

does not suffer any such correction. Since the axial current is al-
ways affected by an anomaly there is no contradiction to the Bloch 
theorem as pointed out in [6].

There is however a third related effect if one allows for axial 
magnetic fields, �B5 = �∇ × �A5. This is a magnetic field that cou-
ples with opposite signs to fermions of different chirality. The axial 
magnetic effect takes the form

�J = �J = μ

2π2
�B5 . (8)

Formally it describes the generation of a vector-like current in the 
background of an axial magnetic field at finite (vector-like) chem-
ical potential. Note that the formula holds for both the covariant 
and the conserved form of the currents. Therefore this formula 
seems to be in much greater tension with the Bloch theorem than 
the chiral magnetic effect. One might dismiss this tension on the 
grounds that so far at a fundamental level no axial fields seem to 
exist in nature. However, it has been argued that such fields can 
appear in the effective description of the electronics of advanced 
materials, the so-called Weyl semimetals [10–13]. A low energy 
field theoretical description of the electronics of these materials 
given by the Dirac equation

γ μ(iDμ + bμγ5)� = 0 . (9)

Here Dμ is the usual covariant derivative and the parameter bμ

enters just like the field A5
μ coupling to the axial current. It has 

been argued that straining such materials can lead to spatial vari-
ation of the parameter bμ and in consequence to the appearance 
of effective axial magnetic fields in eq. (9). The reason why there 
is no contradiction to the Bloch theorem in this case is as follows. 
The parameter bμ exists only within the material and necessarily 
vanishes outside. If for definiteness we assume the axial magnetic 
field to be directed along the z direction and we compute the total 
axial flux at through a surface 
 at some fixed z = z0

�5 =
∫



dxdyB5
z (x, y, z0) =

∫
∂


d�S · �b = 0 , (10)

since one can always take the boundary of the surface to lie en-
tirely outside the material where �b = 0. Therefore the axial ana-
logue of the chiral magnetic effect (8) can not induce a net current 
and this resolves the tension with the Bloch theorem since no net 
current can be generated [14,15].

We will take these considerations as motivation to study 
electro- and thermo-magnetotransport in the background of ax-
ial magnetic fields under the assumption that the Bloch theorem 
is implemented by a vanishing net axial magnetic flux (10). This 
implies that the net equilibrium electric current vanishes but as 
we will see upon applying an electric field (or equivalently a gra-
dient in chemical potential) and a temperature gradient leads to 
anomaly induced net contributions to the currents.

2. Anomalous transport

We study a simple model of anomalous transport with coupled 
energy and charge transport. This means that in contrast to a full 
hydrodynamic model we assume that no significant collective flow 
parametrized by a flow velocity develops.1 Not only is this a sim-
pler model allowing to study the effects of anomalies on transport 
it might also be more directly relevant to systems where elastic 
scattering on impurities impedes the build up of collective flow.

We develop now a formal transport model based on the anoma-
lous continuity equations

ε̇ + �∇ · �Jε = �E · �J , (11)

ρ̇ + �∇ · �J = c�E · �B , (12)

where ε is the energy density and �Jε is the energy current. Charge 
conservation is affected by an anomaly with anomaly coefficient c. 
The right hand side of equation (11) quantifies the energy injected 
into the system by an electric field (Joule heating) whereas (12)
describes the (covariant) anomaly. So far this is not specific to ax-
ial magnetic fields but rather relies only on the presence of an 
anomaly in the current Jμ = (ρ, �J ).

To discuss transport we write down constitutive relations for 
�Jε , �J and take as thermodynamic forces the gradients in the ther-
modynamic potentials and external electric and magnetic fields,

( �Jε
�J

)
= L ·

( �∇ ( 1
T

)
�E
T − �∇ (μ

T

)
)

+
(

σ̂B

σB

)
�B . (13)

The matrix L encodes response due to gradients in chemical 
potential and temperature. {σ̂B , σB} describe response due to the 
magnetic field. In principle we could also allow an independent 
response due to the electric field. In our ansatz we have thus an-
ticipated that positivity of entropy production is not compatible 
with such additional terms in the constitutive relations.

1 This does not mean that the velocity or the variation of the velocity is zero, 
just that it cannot be determined by the conserved equations. Our transport model 
can not be obtained from hydrodynamics by setting the flow velocities to zero. Hy-
drodynamic flow (i.e. non vanishing velocity) appears already at zeroth order in 
derivatives and this imposes constraints on the first order transport coefficients that 
can appear in the constitutive relations [16]. Since for strong momentum relaxation 
flow is absent such relations are not present. This model has similarity to the treat-
ment in the theory for incoherent metal in 2+1D [17].
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The transport coefficients are constrained by the second law of 
thermodynamics. Using the thermodynamic relation T ds = dε +
μdρ as guideline we define the entropy current [18] as

�J s = 1

T
�Jε − μ

T
�J + ηB �B . (14)

Up to the terms depending on the magnetic field this is the stan-
dard ansatz for coupled energy and charge transport [19].

Following [18,20] we impose the local form of the second law 
thermodynamics

ṡ + �∇ · �J s ≥ 0 . (15)

Using T ṡ = ε̇ + μρ̇ this leads to

1

T

(
∂ε

∂t
+ �∇ · �J

)
− μ

T

(
∂ρ

∂t
+ �∇ · �J

)
+ �∇

(
1

T

)
· �Jε

− �∇
(μ

T

)
· �J + �∇ηB · �B + ηB∇ · �B ≥ 0 . (16)

We assume absence of magnetic monopoles and thus the last term 
vanishes. Using the constitutive relations we find the constraints 
det(L) ≥ 0 and L11 ≥ 0 and L22 ≥ 0. Positivity of the entropy pro-
duction also assures that the electric field does not give rise to ad-
ditional response not already contained in L. Entropy is produced 
only by the symmetric part of the matrix L. For the magnetic con-
ductivities one finds a set of one algebraic and two differential 
equations

σB − cμ = 0 , (17)

σB + ∂ηB

∂γρ
= 0 , (18)

σ̂B + ∂ηB

∂γε
= 0 , (19)

with γε = 1/T and γρ = −μ/T . These equations are the coeffi-
cients of the terms (�E · �B), ( �∇γε · �B) and ( �∇γρ · �B). These terms 
can be either positive or negative and therefore their coefficients 
must vanish to guarantee the local form of the second law of ther-
modynamics. Since there is no further dimensionful parameter ηB

must also fulfill γε∂ηB/∂γε = −ηB as it has to have dimension 
one, where in our conventions (μ, T ) have dimension one. The 
magnetic conductivities are almost completely determined

σB = cμ, σ̂B = c
μ2

2
+ cg T 2 , ηB = c

μ2

2T
+ cg T . (20)

Up to ambiguities arising due to frame choice these are basically 
the same results as in hydrodynamics [18,20,21].

The priori undetermined integration constant cg is related to 
(mixed) gravitational anomalies [22–30]. In holography it was 
also shown recently that the relation to the (mixed) gravitational 
anomaly is not modified by momentum relaxation in [31]. The 
intuition that dissipationless transport should not be affected by 
momentum relaxation together with the results of [31] and [21]
(the case of weak momentum relaxation) we take as evidence 
that cg �= 0 also in the case of strong momentum relaxation and 
that it is related to the presence of (possibly global) gravitational 
anomalies. For theories containing only spin 1/2 particles and 
holographic theories this relation is cg = 32π2λ where λ is the co-
efficient of the gravitational contribution to the anomaly ∂μ Jμ =
λεμνρλRα

βμν Rβ
αμν . A single Weyl fermion has λ = ± 1

768π2 and 
cg = ±1/24 with the sign depending on the chirality. In the fol-
lowing we assume cg �= 0 to be related to the mixed axial gravita-
tional anomaly as in the case without momentum relaxation and 
study its implications for thermo-electric transport in axial mag-
netic fields.

Using the results for the anomalous transport coefficients σB , 
σ̂B and ηB the entropy current can be written as

�J s = (1/T ,−μ/T ) · L ·
( �∇(1/T )

�E
T − �∇(μ

T

)
)

+ 2cg T �B . (21)

Naively one might have expected that the anomalous transport 
does not contribute to the entropy current. It turns out how-
ever that the temperature dependence encoding the gravitational 
anomalies does contribute to entropy current. This has been previ-
ously observed in [21,32].

The previous considerations are general and assume only the 
presence of an anomaly in the charge current. We can now special-
ize to the case of the axial magnetic field. In this case the charge 
conservation takes the form

ρ̇ + �∇ · �J = N f

2π2
(�E · �B5 + �E5 · �B) , (22)

where N f is the number of Dirac fermions. Rather than an 
anomaly in this case the right hand side should be interpreted 
as the divergence of the Chern–Simons current in eq. (5). Since we 
are mostly concerned with the effects of axial magnetic fields we 
will set �E5 = �B = 0 in the following. In this case the conservation 
equations are precisely as in the general case before and we can 
take over the previous results by simply replacing �B with �B5 and 
setting c = N f

2π2 and cg = N f /12.
Now we want to give an interpretation for the anomalous con-

tribution to the entropy current in eq. (21). We consider an axial 
magnetic field configuration of the form

�B5(x) = êz�̄5
[
δ(x) − δ(x − L)

]
. (23)

According to our assumption of compatibility with Bloch’s theorem 
the total axial magnetic flux along the z direction vanishes but the 
regions of positive and negative fluxes are well separated which 
for simplicity we model by delta-functions distribution localized 
in x = 0 and x = L but spread out in the y direction. The first 
thing to notice is that according to (21) there is an anomalous 
entropy current localized at the locations of axial magnetic flux. If 
there is a temperature gradient such that T (x = 0) = T + δT and 
T (x = L) = T a net entropy current flows along the z-direction

δ�Is =
∫

dx�J s = 2cg(δT )�5êz . (24)

This current flows in a direction orthogonal to the temperature 
gradient. Heat is not a thermodynamic state variable still it can 
be defined as δQ = T δS and in an analogous way we can define a 
heat current as δ�I Q = T δ�Is . This leads to the net heat current

δ�I Q = 2cg T δT �̄5êz . (25)

We interpret this as anomalous thermal Hall effect. In this way the 
anomalous contribution to the entropy current in (21) can be un-
derstood as a generalization of the anomalous thermal Hall effect. 
Previous discussions of the relation between thermal Hall effect 
and gravitational anomalies are [33,34]. Let us also note that the 
very concept of heat current can be questioned on the grounds 
that heat is not a state variable [35]. In the context of anoma-
lous transport there certainly arises the question if in the common 
definition of heat current �J Q = �Jε − μ�J the current �J should be 
taken to be the covariant or the conserved current. Defining the 
heat current as δ�J Q = T δ�J s resolves this issue.
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2.1. Induced conductivities

Let us now come to the main subject: the linear response of 
this system to a temperature gradient and an external electric field 
both aligned with the axial magnetic field. The continuity equa-
tions (11), (12) together with the constitutive relations (13) form 
a dynamical system that allows to compute current and charge 
distributions given some initial and boundary conditions. The ef-
fective response to an applied electric field and a temperature 
gradient can be computed by solving these equations.

Before studying the axial magnetic field case of interest it is 
worth to briefly recall how the chiral magnetic effect leads to 
negative magneto-resistivity [36–38]. One assumes a homogeneous 
magnetic field and a parallel electric field. Axial charge is not sub-
ject to an exact conservation law and thus it is natural to intro-
duce an axial charge relaxation time τ5. Non-conservation of axial 
charge is provided e.g. by a mass term in the Dirac equation or by 
inter-valley scattering the context of Weyl semimetals. The effec-
tive axial charge (non-)conservation is then

ρ̇5 = c�E · �B − 1

τ5
ρ5 . (26)

We note that if an external electric field is absent but instead a 
gradient of the chemical potential is induced the current has a 
non-vanishing gradient �∇ · �J5 = c �∇μ · �B which leads to en effec-
tively equivalent equation for the time development of axial charge 
by replacing �E → −�∇μ. Axial charge is built up until a steady state 
is reached with δρ5 = τ5c�E · �B . The axial charge can be related to 
the axial chemical potential via χ5δμ5 = δρ5 where χ5 is the axial 
susceptibility. Combining Ohmic and chiral magnetic currents leads 
to the enhanced current

�J = σ �E + τ5
c2(�E · �B)

χ5

�B . (27)

For infinite axial charge relaxation time the anomaly induced mag-
netoconductivity is formally infinite and this might be referred to 
as chiral magnetic superconductivity [39]. In nature fermions are 
however massive and effective chiral fermions in materials such as 
Weyl semimetals do not preserve there chirality at all energies due 
to the compact nature of the Brillouin zone.

In the case of the axial magnetic field the role of the axial 
chemical potential is played by the (electric) chemical potential μ. 
Electric charge is an exactly conserved quantity due to electro-
magnetic gauge invariance. Therefore it is not possible to intro-
duce a relaxation time for electric charge without violating gauge 
invariance. If it were possible then to engineer homogeneous ax-
ial magnetic fields an analogous argument would lead necessarily 
to infinite axial magneto-conductivity. As we have argued how-
ever in the introduction the assumption of such a homogeneous 
axial magnetic field is by itself inconsistent with the Bloch theo-
rem, which by itself is a consequence of gauge invariance [6]. Thus 
we are naturally lead to study induced electro- and thermo-axial 
magneto conductivity under the constraint of vanishing net axial 
magnetic flux. This makes the problem more complicated as dif-
fusion from regions where charge is accumulated to regions with 
charge outflow has to be taken into account. It is this diffusion 
process that can lead to a stationary state and finite induced axial 
magneto-conductivities.

As external driving forces we assume a homogeneous electric 
field and a temperature gradient pointing in the z direction. We 
also assume an axial magnetic field directed along the z direc-
tion but inhomogeneous in the (x, y) plane and with zero net flux 
�5 = ∫

dxdyB5(x, y) = 0. The dynamical variables are the chemical 
potential μ and the temperature T . We allow the system to adjust 
to the external forces by developing non-trivial profiles of chemi-
cal potential and temperature in the (x, y) plane around a constant 
background value. Thus our ansatz is

�B5 = B5(x, y)êz , �E = Eêz , (28)

μ = μ0 + δμ(x, y) , T = T0 + δT (x, y) + z∇z T . (29)

The response in δμ and δT to E and ∇T is now calculated in linear 
approximation.

Since the axial magnetic field is not uniform in the (x, y) plane 
the system will react to the local charge inflow induced by the 
anomalous Hall and axial magnetic effects by building up diffu-
sion currents. Eventually a stationary state is reached. This station-
ary state can be obtained from the constitutive relations and the 
conservation equations by dropping the time derivative. We fur-
thermore assume the matrix L to be spatially isotropic. Using (11), 
(12) the constitutive relations (13) with the anomalous transport 
coefficients (20) we find that the fluctuations δT and δμ have to 
fulfill a system of Poisson equations

L · Y �⊥
(

δT (x⊥)

δμ(x⊥)

)
=

( −2cg T0 cμ0
0 c

)
·
( ∇z T

E

)
B5(x⊥) . (30)

Here �⊥ is the two dimensional Laplace operator (�⊥ = ∂2
x + ∂2

y ) 

and Y = 1
T 2

0

( −1 0
μ0 −T0

)
is the transformation matrix relating the

thermodynamic forces δ(1/T ) and δ(−μ/T ) to the fluctuations δT , 
δμ. Once the fluctuations are determined they can be plugged 
into the anomalous part of constitutive relations (13) to find the 
anomaly induced contribution to the currents(

J z
ε

J z

)
anom

= −B5(x⊥)u(x⊥)� ·
( ∇ z( 1

T )
E
T − ∇z(

μ
T )

)
, (31)

with the conductivity matrix

� =
(

2cg T0 cμ0
0 c

)
· (L · Y )−1 ·

( −2cg T0 cμ0
0 c

)

·
(

T 2
0 0

−T0μ −T0

)
(32)

and the solution to the Poisson equation �⊥u(x⊥) = B5(x⊥), i.e.

u(x⊥) =
∫

dx′⊥G(x⊥ − x′⊥)B5(x′⊥) . (33)

We have written the induced conductivity matrix as acting on 
the naturally defined thermodynamic forces. This has the advan-
tage that the Onsager reciprocity relations are automatically satis-
fied, i.e. � is symmetric,

�11 = 1

det(L)
T 2

(
(L22(2cg T 2 + cμ2)2 + c2μ2L11)

− 2cμ(2cg T 2 + cμ2)L12

)
, (34)

�22 = 1

det(L)
c2T 2

(
L11 − 2μL12 + μ2L22

)
, (35)

�12 =�21 = 1

det(L)
cT 2

(
2cg T 2(μL22 − L12)

+ cμ(L11 − 2μL12 + μ2L22)
)

. (36)

Using a + b ≥ 2
√

ab for a, b ≥ 0 and the fact L11 ≥ 0, L22 ≥ 0, 
det(L) ≥ 0 one shows that �11 and �22 are positive. Furthermore 
the total current is proportional to the expression
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−
∫

d2x⊥d2x′⊥B5(x⊥)u(x′⊥) =
∫

d2q

(2π)2

B̃5(−q)B̃5(q)

q2
(37)

which for a real function B5(x⊥) is positive definite. Thus the re-
sponse matrix in the net current described by (32) has the same 
properties as L since its determinant is also positive

det(�) = 1

det(L)
4c2c2

g T 8 . (38)

The electric and thermoelectric conductivity is defined as �J =
σ �E − α �∇T . The thermoelectric conductivity α is non-vanishing 
only because of the contribution of the mixed axial-gravitational 
anomaly,

σ = σ0 − uB5
�22

T
, (39)

α = α0

(
1 + uB5

1

det(L)
2ccg T 4

)
, (40)

with σ0 = L22/T and α0 = (L12 − μL22)/T 2. Measuring therefore 
the total current induced by a temperature gradient in the back-
ground of an axial magnetic field is an experimental signature of 
the mixed axial-gravitational anomaly. Note however that the elec-
tric conductivity is enhanced whereas the thermoelectric conduc-
tivity gets diminished. This is in contrast to the anomaly induced 
thermoelectric conductivity in a usual magnetic field [40–43].

2.2. Example

Finally we would like to discuss a simple example demonstrat-
ing the finiteness of the total induced current. We assume the 
periodic axial magnetic field configuration of the form

�B5 = êz B̄5 sin(2πx/L) . (41)

Integrating over a period the net flux vanishes. The solution to the 
Poisson equation is now

u = −B̄5
L2

4π2
sin(2πx/L) . (42)

As boundary conditions we have imposed that no chemical poten-
tial is induced over one period. Now the net current density over 
one period of oscillation is proportional to

−1

L

L∫
0

dxu(x)B5,z(x) = (B̄5)
2 L2

8π2
. (43)

The gradient in this field configuration is proportional to the in-
verse of the period L. The current density is therefore inversely 
proportional to the square of the field gradient as expected and 
diverges in the limit of homogeneous field L → ∞. In this limit 
diffusion is not effective and since there is no relaxation of the 
exactly conserved electric charge we end up again with infinite 
conductivities.

3. Discussion

We have developed a simple model of coupled energy and 
charge transport for chiral fermions in the background of axial 
magnetic fields. Our study was motivated by considerations based 
on compatibility with the Bloch theorem that forbids net cur-
rents in thermal equilibrium. In order to circumvent this we as-
sumed axial magnetic field configurations with vanishing net flux 
such that in equilibrium the integrated total current vanishes. The 
anomalous transport model was constructed demanding a positive 
definite entropy production. Even without assuming full hydrody-
namics, i.e. assuming that no significant collective flow can develop 
we found that anomalies induce chiral magnetic charge and energy 
currents. The form of the chiral magnetic transport coefficients 
contain a priori undetermined integration constant depending on 
the temperature which can be related to the presence mixed gauge 
perturbative and global gravitational anomalies. As previously ob-
served in [21,32] the entropy current contains somewhat unex-
pectedly an anomalous term. We gave a physical interpretation 
relating it to a generalized form of the thermal Hall effect, i.e. the 
generation of a heat current perpendicular to a temperature gradi-
ent.

Then we studied electro- and thermo-magneto conductivities. 
We found that the assumption of vanishing net axial magnetic 
flux activates the diffusion terms in the constitutive relations lead-
ing to finite induced conductivities. Despite the fact there is no 
net magnetic flux a net electric current is induced either by an 
external electric field or by a temperature gradient. The result-
ing net axial magneto conductivity is enhanced whereas the axial 
thermo-magneto conductivity is diminished and is proportional to 
the coefficient of the mixed axial-gravitational anomaly.

The focus in the previous literature is considers the effects 
due to anomalies in the presence of background magnetic fields. 
Anomaly related enhancement of electric and thermoelectric con-
ductivities in magnetic fields have indeed been observed in [38,
43]. In contrast in this work we have concentrated on the observ-
able effects in the presence of background axial magnetic fields. 
Our study differs in two important points from previous ones [11,
13] in that we take the Bloch theorem into account and also study 
the thermo-electric conductivity. We hope that the effects can be 
measured in the future and will enrich our current understanding 
of the role of chiral anomaly.
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