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Abstract: By controlled hydrolysis of chitosan or chitin with different enzymes, three types of
chitooligosaccharides (COS) with MW between 0.2 and 1.2 kDa were obtained: fully deacetylated
(fdCOS), partially acetylated (paCOS), and fully acetylated (faCOS). The chemical composition of
the samples was analyzed by high-performance anion exchange chromatography with pulsed
amperometric detection (HPAEC-PAD) and MALDI-TOF mass spectrometry. The synthesized fdCOS
was basically formed by GlcN, (GlcN)2, (GlcN)3, and (GlcN)4. On the contrary, faCOS contained
mostly GlcNAc, (GlcNAc)2 and (GlcNAc)3, while paCOS corresponded to a mixture of at least 11
oligosaccharides with different proportions of GlcNAc and GlcN. The anti-inflammatory activity
of the three COS mixtures was studied by measuring their ability to reduce the level of TNF-α
(tumor necrosis factor) in murine macrophages (RAW 264.7) after stimulation with a mixture of
lipopolysaccharides (LPS). Only fdCOS and faCOS were able to significantly reduce the production of
tumor necrosis factor (TNF)-α at 6 h after stimulation with lipopolysaccharides.

Keywords: biocatalysis; glycosidases; chitinases; chitosanases; chitosan oligosaccharides;
deacetylation degree; anti-inflammatory

1. Introduction

Chitin [(C8H13O5N)n] is a linear biopolymer of N-acetyl-D-glucosamine (GlcNAc) moieties that
gives toughness to the exoskeleton of arthropods (crustaceans, insects, etc.) and mollusks, as well
as fungi cell walls [1,2]. The hydrolysis of chitin (and of its deacetylated product chitosan, more
soluble than chitin) yields a series of chitooligosaccharides (COS) containing random GlcNAc and
D-glucosamine (GlcN) units [3].

Three families of COS can be differentiated (Figure 1): fully acetylated chitooligosaccharides
(faCOS) (formed exclusively by GlcNAc), partially acetylated chitooligosaccharides (paCOS) (composed
of GlcN and GlcNAc), and fully deacetylated chitooligosaccharides (fdCOS) (formed exclusively by
GlcN) [4]. The bioactivity of COS is well reported [5–7], in particular their anti-inflammatory [8],
neuroprotective [9], antibacterial [10], antiviral [11], antihypertensive [12] antiangiogenic [13],
and antitumor [14] properties, among others. The size of COS (defined by the degree of polymerization,
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DP), degree of deacetylation (DD) and pattern of acetylation (PA) exert a notable influence on their
properties [4,13,15,16].
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Chitinases (EC 3.2.1.14) are hydrolytic enzymes involved in chitin decomposition that play an 
important role as control agents against pathogenic fungi in plants [36–38]. In recent research, we 
cloned chitinase Chit42 from fungus Trichoderma harzianum in Pichia pastoris to produce 3 g/L using 
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partially acetylated (paCOS), and fully deacetylated (fdCOS).

Among the methodologies to perform the partial hydrolysis of chitin/chitosan into COS, the use of
chitinolytic/chitosanolytic enzymes offer some advantages over physical, chemical, or electrochemical
depolymerization [17]. Glycosidic enzymes require mild reaction conditions (moderate temperature
and slightly acidic pH), display high efficiency, and allow for control of the composition of the final
product on the basis of enzyme specificity [4,18–22], which can also be altered by protein engineering
techniques [23,24]. The enzymatic strategies are more environmentally friendly and generate less
waste than the chemical methods [3,25,26]. The physicochemical properties of the starting chitosan
also influence the composition of the resulting oligosaccharides [27,28].

For the hydrolysis of chitosan, chitosanases (EC 3.2.1.132) catalyze specifically the cleavage
of β (1→4) glycosidic linkages between GlcN moieties [29–32]. However, other enzymes such as
pectinases [33], cellulases [34], and proteases [35] also display chitosanolytic activity yielding COS.
We have recently reported that a proteolytic preparation from Bacillus amyloliquefaciens (Neutrase 0.8L)
is able to produce a mixture of COS that is highly enriched in fdCOS [18].

Chitinases (EC 3.2.1.14) are hydrolytic enzymes involved in chitin decomposition that play
an important role as control agents against pathogenic fungi in plants [36–38]. In recent research,
we cloned chitinase Chit42 from fungus Trichoderma harzianum in Pichia pastoris to produce 3 g/L using
fed-batch fermentation, and its 3D structure was characterized [39]. This enzyme hydrolyzed chitin and
chitosan with a low DD giving rise to mixtures enriched in faCOS and paCOS, respectively. In general,
the binding site of chitinases of fungal origin is substantially long and interacts with a minimum of
five sugar units. The glycosyl-binding subsites are designated as −3, − 2, −1, +1, and +2, and the split
occurs between the −1 and +1 sugar. A detailed structural analysis of Chit42 indicated that this protein
requires a GlcNAc residue in the substrate located at the −1 position for substrate hydrolysis.

In the present work, we have synthesized three COS mixtures enriched in fdCOS, paCOS, and faCOS.
The samples were chemically characterized by chromatography and mass spectrometry. The effect
of COS composition on anti-inflammatory properties was studied using a murine macrophage cell
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line (RAW 264.7). Although the anti-inflammatory activity of chitosan oligosaccharides is well
reported [40–43], most of the works have been performed with COS mixtures not fully characterized
in terms of DP, DD, or PA, probably due to the difficulties in the controlled synthesis and analysis of
COS mixtures.

2. Results and Discussion

2.1. Enzymatic Production and Characterization of fdCOS

Based on previous work [18], we selected the commercial proteolytic preparation Neutrase 0.8L
and a chitosan (CHIT600) with a high DD (>90%) to scale up the production of fully deacetylated COS
(fdCOS). The reaction was carried out over 24 h with 1% (w/v) chitosan at pH 5.0 and 50 ◦C. After
this time, the enzyme and the remaining chitosan were eliminated by ultrafiltration with a 10 kDa
membrane. Then, the COS of high molecular weight were removed using a 1 kDa cut-off membrane.
The resulting solution was dialyzed over 0.1–0.5 kDa cut-off tubing to eliminate the salts and other small
contaminants, yielding a COS fraction with a molecular mass between 0.2 and 1.2 kDa. This fraction
was further freeze-dried and characterized by high-performance anion exchange chromatography with
pulsed amperometric detection (HPAEC-PAD) chromatography and MALDI-TOF mass spectrometry.

The HPAEC-PAD chromatogram of the COS obtained with Neutrase 0.8 L—purified as described
above—is represented in Figure 2. The chromatogram shows five main peaks corresponding to fdCOS,
which was identified with the corresponding standards as GlcN (1), (GlcN)2 (2), (GlcN)3 (3), (GlcN)4 (4),
and (GlcN)5 (5). In particular, chitobiose [(GlcN)2] and chitotriose [(GlcN)3] were the major products.
Peaks marked with asterisks were not identified due to the lack of available standards.
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partially acetylated COS (paCOS) appeared in the MS spectrum, with significantly lower intensity 
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Figure 2. High-performance anion exchange chromatography with pulsed amperometric detection
(HPAEC-PAD) chromatogram of the chitooligosaccharides produced by Neutrase 0.8 L using chitosan
CHIT600. Reaction conditions: 1% (w/v) chitosan, 10% (v/v) Neutrase 0.8 L, 50 ◦C, 50 mM ammonium
acetate buffer pH 5.0, 24 h. Identified peaks: (1) GlcN; (2) (GlcN)2; (3) (GlcN)3; (4) (GlcN)4; (5) (GlcN)5.

The MALDI-TOF spectrum of the COS mixture was in accordance with the chromatographic
analysis since the main m/z peaks corresponded to the molecular weight of the fdCOS. The main signals
in the mass spectrum in positive mode belonged to the M + [Na]+ and M + [K]+ cations. Table 1
compiles the major m/z signals and the assigned composition. Several m/z values in agreement with
partially acetylated COS (paCOS) appeared in the MS spectrum, with significantly lower intensity than
the fdCOS. These paCOS probably corresponded to the unidentified peaks in the HPAEC-PAD analysis
(Figure 2). However, their chemical structure could not be unequivocally assigned from the obtained
data. The deacetylation degree of this fdCOS sample must be between 95 and 100%.
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Table 1. Main identified signals in the MALDI-TOF mass spectrum of the reaction between chitosan
CHIT600 and Neutrase 0.8 L. Reaction conditions were as described in Figure 2.

m/z Assignation

180.0 GlcN + H+

363.1 (GlcN)2 + Na+

524.2/540.2 (GlcN)3 + Na+/K+

566.2/582.2 (GlcN)2-GlcNAc + Na+/K+

685.3/701.3 (GlcN)4 + Na+/ K+

727.3/743.3 (GlcN)3-GlcNAc + Na+/K+

846.3/862.2 (GlcN)5 + Na+/ K+

888.3/904.3 (GlcN)4-GlcNAc + Na+/K+

1023.3 (GlcN)6 + K+

1049.4 (GlcN)5-GlcNAc + Na+

1210.4 (GlcN)6-GlcNAc + Na+

We calculated the efficiency of COS production with Neutrase 0.8 L. Starting from 1 g chitosan
CHIT600, and after all the purification steps, approximately 210 mg of COS (mostly fully deacetylated)
was obtained.

2.2. Enzymatic Production and Characterization of faCOS

For the production of faCOS, the first step was the transformation of chitin flakes into colloidal
chitin as previously described [39]. Chitinase Chit42 was used for the hydrolysis of chitin into
fully acetylated chitooligosaccharides. Figure 3 illustrates the HPAEC-PAD chromatogram of the
reaction mixture obtained with Chit42, which was purified as described in the Experimental Section.
The presence of the faCOS GlcNAc (1), (GlcNAc)2 (2), and (GlcNAc)3 (3) was verified by using the
corresponding standards. The deacetylation degree of this faCOS sample was between 0 and 5%.
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Figure 3. HPAEC-PAD chromatogram of the chitooligosaccharides obtained with chitinase Chit42
employing chitin (colloid). Reaction conditions: 1% (w/v) colloidal chitin, 10% (v/v) chitinase, 70 mM
potassium phosphate pH 6.0. Identified peaks: (1) GlcNAc; (2) (GlcNAc)2; (3) (GlcNAc)3.

The MALDI-TOF spectrum of this mixture was simpler than that of fdCOS. Table 2 summarizes
the main m/z peaks and their assignations. The main signal in the mass spectrum corresponded to
(GlcNAc)2. It is worth noting that both the monomer GlcNAc and the trimer (GlcNAc)3 did not appear
in the MS spectrum, probably due to bad ionization or low stability of the formed ions. In contrast,
several peaks containing a GlcN moiety were present, which probably corresponded to the minor peaks
detected in the HPAEC-PAD analysis, indicating that GlcN units favor MALDI ionization. Starting
from 1 g of colloidal chitin, 75.8 mg of the characterized faCOS was obtained.
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Table 2. Main identified signals in the MALDI-TOF mass spectrum of the reaction between chitinase
Chit42 and colloidal chitin. Reaction conditions were as described in Figure 3.

m/z Assignation

405.2 GlcN-GlcNAc + Na+

447.2/463.2 (GlcNAc)2 + Na+/K+

608.3/624.2 GlcN-(GlcNAc)2 + Na+

769.3/785.2 (GlcN)2-(GlcNAc)2 + Na+/K+

811.3 GlcN-(GlcNAc)3 + Na+

853.3 (GlcNAc)4 + Na+

2.3. Enzymatic Production and Characterization of paCOS

Chitosan QS1—with a lower DD (81%) than CHIT600 (>90%)—and chitinase Chit42, which
requires a GlcNAc residue at −1 position [39], were used for the preparation of partially acetylated
chitooligosaccharides (paCOS). The analysis of this family of COS is quite difficult due to the lack of
commercial standards. Figure 4 illustrates the HPAEC-PAD chromatogram of the resulting mixture.
At least 11 unidentified peaks were detected.
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Figure 4. HPAEC-PAD chromatogram of the chitooligosaccharides produced by chitinase Chit42 using
chitosan QS1 as substrate. Reaction conditions: 1% (w/v) chitosan, 10% (v/v) chitinase Chit42, 70 mM
potassium phosphate pH 6.0.

Table 3 summarizes the main m/z peaks detected in the MALDI-TOF spectrum and the proposed
composition. However, the chemical structure of these compounds cannot be inferred from the mass
spectrometry data. Since chitinase Chit42 only cleaves chitosan when a GlcNAc residue is located at
the −1 position, the synthesized COS should present a GlcNAc at the reducing end. Table 3 includes
COS containing up to nine residues with GlcN as the main component, which correlates well with the
degree of deacetylation of chitosan QS1. After the purification steps, starting from 500 mg of chitosan
QS1, 18 mg of paCOS was isolated. The lower yield obtained in comparison with fdCOS and faCOS
was probably a consequence of the requirement of Chit42 for a GlcNAc at −1 position and the presence
of a high proportion of GlcN (81%) in chitosan QS1.
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Table 3. Main identified signals in the MALDI-TOF mass spectrum of the reaction between chitosan
QS1 and chitinase Chit42. Reaction conditions were as described in Figure 4.

m/z Assignation

405.2/421.2 GlcN-GlcNAc + Na+/K+

447.2/463.2 (GlcNAc)2 + Na+/K+

566.3/582.2 (GlcN)2-GlcNAc + Na+/K+

608.3/624.3 GlcN-(GlcNAc)2 + Na+/K+

727.3/743.3 (GlcN)3-GlcNAc + Na+/K+

769.3/785.3 (GlcN)2-(GlcNAc)2 + Na+/K+

811.3/827.3 GlcN-(GlcNAc)3 + Na+/K+

888.4/904.3 (GlcN)4-GlcNAc + Na+/K+

930.4/946.3 (GlcN)3-(GlcNAc)2 + Na+/K+

1049.4/1065.4 (GlcN)5-GlcNAc + Na+/K+

1091.4/1107.4 (GlcN)4-(GlcNAc)2 + Na+/K+

1133.4/1149.4 (GlcN)3-(GlcNAc)3 + Na+/K+

1210.4/1226.4 (GlcN)6-GlcNAc + Na+/K+

1252.5/1268.4 (GlcN)5-(GlcNAc)2 + Na+/K+

1294.5/1310.4 (GlcN)4-(GlcNAc)3 + Na+/K+

1413.5/1429.5 (GlcN)6-(GlcNAc)2 + Na+/K+

1532.6/1548.5 (GlcN)8-GlcNAc + Na+/K+

2.4. Anti-Inflammatory Activity of fdCOS, faCOS, and paCOS

Inflammation plays an important role in the development of a series of pathologies including
autoimmune diseases and cancer [44]. The anti-inflammatory activity of the three samples of COS
previously obtained was assessed by measuring their ability to reduce the level of TNF-α (tumor necrosis
factor) in murine macrophages (RAW 264.7) after stimulation with a mixture of lipopolysaccharides
(LPS). TNF-α is a cytokine involved in systemic inflammation and one of the cytokines released by
activated macrophages during the acute phase reaction of inflammation [45].

Three concentrations of COS were tested in a multi-well plate: 100, 250, and 500 ng per well. The
ELISA methodology for the detection of TNF-α was properly validated through the accuracy of the
standard curve obtained, which allowed the quantification of samples with a TNF-α concentration
between 30 and 1000 pg/mL. The amount of TNF-α was measured at 2 and 6 h after incubation with
LPS (10 ng/well). To discard the possible inflammatory effect of the compounds, the cells were also
exposed to the three COS samples in the absence of LPS. However, no significant effect was observed
in samples supplemented only with fdCOS, faCOS, or paCOS (data not shown). After the stimulations,
both the culture supernatants and the cells were collected at 2 and 6 h.

Figure 5 shows the TNF-α concentration in the supernatants after 2 and 6 h stimulated with fdCOS,
faCOS, and paCOS (at the three concentrations) in combination with 10 ng LPS. The results of the
control experiment of cells stimulated only with LPS are also included in the figure. As illustrated in
Figure 5, the TNF-α concentration tended to increase over time for most samples. The highest TNF-α
concentration (1575 pg/mL) was obtained after 6 h post-stimulation with 10 ng of LPS per well.

The three types of COS were able to decrease the production of TNF-α at 6 h after stimulation
with LPS. The highest effect was obtained using 250 ng/well (Figure 5). It is worth noting that fdCOS
exhibited a negligible anti-inflammatory effect at concentrations of 100 and 500 ng/well after a 2-h
incubation, but this effect increased significantly at 6 h. This relates well with our preliminary results
with fdCOS [18]. In contrast, paCOS (except for 100 ng/well) and faCOS displayed a more stable effect
between 2 and 6 h. These results could be indicating a critical role of the acetamido group of COS in
their properties. However, only the fdCOS and faCOS at a concentration of 250 ng/well and after 6 h
incubation displayed a statistically significant anti-inflammatory effect.
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Figure 5. Tumor necrosis factor-alpha (TNF-α) concentration in the supernatants from cells stimulated
with fdCOS, faCOS, and paCOS (at 100, 250, and 500 ng per well) in combination with 10 ng
lipopolysaccharide (LPS) per well. Graphs show the amount of TNF-α at 2 and 6 h post-stimulation.
The data is expressed as the mean ± SD (*p < 0.05 vs. LPS control).

These results correlate well with previous works that analyzed the anti-inflammatory activity
of COS. Yoon et al. reported the attenuation of secretion of TNF-α and IL-6 induced by LPS upon
incubation with COS, demonstrating that the expression of these cytokines was regulated by COS
at the transcription level [41]. However, the authors employed a commercial COS that was not
fully characterized (MW < 10000; 90–95% DD). The dependence of anti-inflammatory activity on the
molecular weight of COS was studied by Fernandes et al. [8] and Pangestuti et al. [46], concluding
that COS of a low molecular weight were the most efficient. Sánchez et al. reported that a mixture
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with a similar content of deacetylated and monoacetylated HMW COS (5–10 kDa) produced the best
anti-inflammatory effects [47].

Our results correlate well with those of Lee et al. [48]. They demonstrated that COS with
90% N-deacetylation (90-COS) displayed a higher anti-inflammatory effect than COS with 50%
N-deacetylation (50-COS, more related to paCOS); interestingly, the 90-COS with a molecular mass
between 5 and 10 kDa showed the highest inhibition activity.

In conclusion, the secretion of TNF-α decreased during the first 6 h in macrophages treated with
the three COS mixtures in comparison with macrophages stimulated with LPS only. These results
confirm the inhibitory effect of COS against inflammation, which confirms their potential as ingredients
in functional foods and nutraceutical and pharmaceutical preparations.

3. Materials and Methods

3.1. Enzymes and Reagents

Neutrase 0.8 L was kindly donated by Novozymes A/S (Bagsværd, Denmark). The expression
and production of Chit42 (chitinase from Trichoderma harzianum) by Pichia pastoris was performed
as previously described [39]. Chitosan CHIT600 from shrimp shells (600–800 kDa, DD > 90%) was
purchased from Acros Organics (Geel, Belgium). Chitosan QS1 from Paralomis granulosa (98 kDa,
81% DD) was supplied by InFiQus (Madrid, Spain). Chitin (coarse flakes, DD ≤ 5%) from shrimp
shells and N-acetyl-glucosamine (GlcNAc) were from Sigma-Aldrich (Madrid, Spain). Chitobiose
[(GlcN)2], chitotriose [(GlcN)3], chitotetraose [(GlcN)4], N,N′-di-N-acetyl-glucosamine [(GlcNAc)2],
and N,N′,N”-tri-N-acetyl-glucosamine [(GlcNAc)3] were acquired from Carbosynth Ltd. (Compton,
Berkshire, UK). All other reagents were of the highest purity grade available.

3.2. Preparation of Colloidal Chitin

Colloidal chitin was prepared following the method of Jeuniaux [49]. In particular, 10 g of chitin
and 175 mL of 10 M HCl were stirred for 16 h at 4 ◦C. Then, the mixture was filtered using thick glass
fibers and mixed with 1 L of ethanol. After 16 h at 4 ◦C, the precipitated chitin floccules were separated
by centrifugation at 5000× g for 10 min and washed with distilled water. Finally, 200 mL of potassium
phosphate buffer (70 mM, pH 6.0) was added to the pellet. To determine the concentration of colloidal
chitin, 1 mL of solution was frozen at −70 ◦C, lyophilized, and weighed.

3.3. COS Production and Purification

Chitooligosaccharides with different deacetylation degrees were produced by different
combinations of enzymes and substrates based on previous works [18,39]. The reaction conditions for
the production of each type of COS are summarized in Table 4.

Table 4. Experimental conditions for the preparation of COS samples.

Enzyme Substrate Reaction Conditions Main Products

Chit42 Colloidal chitin 35 ◦C, pH 6.0 faCOS
Chit42 Chitosan QS1 35 ◦C, pH 6.0 paCOS

Neutrase 0.8 L Chitosan CHIT600 50 ◦C, pH 5.0 fdCOS

Reactions were carried out in a final volume of 40 mL containing 4 mL of enzyme solution and
36 mL of 1% (w/w) substrate dissolved properly in ammonium acetate at the optimal pH for the
reaction. The formation of COS was followed by HPAEC-PAD until the hydrolysis was complete.
Samples were filtrated through a paper filter to remove any insoluble particles and further purified by
a series of membranes. First, the reaction mixture was fractionated using a 50 mL Amicon system with
a 10 kDa cut-off membrane. This step separated the enzyme and the unreacted high molecular weight
chitosan from the chitooligosaccharides. Then, the fraction of COS (< 10 kDa) was further fractionated
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with a 1 kDa cut-off membrane. The fraction of COS whose MW was lower than 1 kDa was then
dialyzed with a 0.1–0.5 kDa membrane (Biotech Cellulose Ester Dialysis Membrane, Spectra/Por, Fisher
Scientific, Madrid, Spain) to remove the salts and small contaminants from the sample, yielding a COS
fraction with a MW between 0.1 and 1 kDa. This fraction was lyophilized, analyzed by HPAEC-PAD
and MALDI-TOF, and used for bioactivity assays.

3.4. COS Characterization by HPAEC-PAD and MALDI-TOF

COS samples were analyzed at 30 ◦C by HPAEC-PAD on a chromatograph ICS3000 (Dionex,
Thermo Fischer Scientific Inc., Waltham, MA, USA) formed by a gradient pump (model SP),
an electrochemical detector consisting of a working electrode (Au) and a reference electrode (Ag/AgCl),
and a AS-HV autosampler. The column was an anion exchange Carbo-Pack PA-200 (Dionex,
4 × 250 mm) connected to a CarboPac PA-200 guard column (4 × 50 mm). A post-column delivery
system (PC10) pumped 200 mM NaOH to enhance the detector response. The mobile phase was 1 mM
NaOH at a flow rate of 0.3 mL/min for 20 min, followed by a gradient from 0 to 320 mM sodium
acetate/100 mM NaOH in 10 min, that was kept for another 10 min. Equilibration of the column to
the initial conditions was made for 40 min. The chromatograms were analyzed using Chromeleon
software. The identification and quantification of the different carbohydrates were done based on
commercial standards when available.

The molecular size of COS was analyzed by MALDI-TOF mass spectrometry using Ultraflex
III TOF/TOF equipment (Bruker, Billerica, MA, USA) equipped with a NdYAG laser. The spectra
were acquired in positive reflector mode in the mass interval 40–5000 Da, employing 20 mg/mL
2,5-dihydroxybenzoic acid (DHB) in acetonitrile: H2O (3:7) (v/v) as matrix and external calibration.
The samples were mixed with the DHB matrix in a 4:1 (v/v) ratio and 0.5 µL was injected.

3.5. Anti-Inflammatory Activity of COS

RAW 264.7 cells were cultured in DMEM (Dulbecco’s Modified Eagle’s medium) supplemented
with 10% FBS (fetal bovine serum) and 1% penicillin/streptomycin. Cells were counted with a Neubauer
chamber in order to seed a concentration of 2 million cells per well. Each of the compounds was tested in
duplicate at three different concentrations: 500, 250, and 100 ng/well. A mixture of lipopolysaccharides
(LPS, potent immune cell activator) at a concentration of 10 ng per well was used as a positive control,
and PBS (phosphate buffered saline) was used as a negative control and added to the wells in the same
volume as the rest of the compounds. The cells were also exposed to the three chitooligosaccharides
(without LPS) as a control for the inflammatory effect of the compounds. After the stimulations, both
the culture supernatants and the cells were collected at 2 and 6 h. Samples were frozen and kept at
−80 ◦C until analysis.

The quantification of anti-TNF-α antibodies in culture supernatants was assessed by ELISA
using a murine TNF-α ELISA kit (Diaclone, Besançon, France) following the protocol provided by
the manufacturer. Samples were diluted 1:2 (v/v) in an appropriate buffer (provided by the kit) and
100 µL was added in duplicate to the plate. Serial dilutions of the standard were made to provide a
concentration range from 1000 to 31.25 pg/mL, and 100 µL was added per well in duplicate to the ELISA
plate. Biotinylated anti-murine TNF-α antibody was properly diluted according to the manufacturer’s
protocol and 50 µL was added to each well. Plates were sealed and incubated at room temperature
for 3 h. After incubation, plates were washed three times with the wash buffer provided with the
kit. Streptavidin-Horseradish Peroxidase (HRP) solution (100 µL) was added for the detection of the
biotinylated detection antibody and plates were incubated at room temperature for 30 min. Then,
100 µL of ready-to-use 3,3’,5,5’-Tetramethylbenzidine (TMB) substrate solution was transferred into
each well. Plates were incubated in the dark at room temperature (10 min) for color development.
To stop the color reaction, 50 µL of 2 N H2S04 was added. The optical density (OD) for each well was
measured with a microplate reader set to 450 nm.
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Data were expressed as the mean ± standard deviation (SD) with n = 2. Brown–Forsythe test
and post-hoc Games–Howell method were used to find differences with respect to the LPS control.
Statistical analysis was performed with IBM® SPSS® Statistics v25 and differences were considered
significant when p < 0.05.
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