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Prematurity presents a risk for higher order cognitive functions. Some of these deficits
manifest later in development, when these functions are expected to mature. However,
the causes and consequences of prematurity are still unclear. We conducted a
longitudinal study to first identify clinical predictors of ultrasound brain abnormalities in
196 children born very preterm (VP; gestational age ≤32 weeks) and with very low birth
weight (VLBW; birth weight ≤1500 g). At ages 8–16, the subset of VP-VLBW children
without neurological findings (124) were invited for a neuropsychological assessment
and an MRI scan (41 accepted). Of these, 29 met a rigorous criterion for MRI quality
and an age, and gender-matched control group (n = 14) was included in this study.
The key findings in the VP-VLBW neonates were: (a) 37% of the VP-VLBW neonates
had ultrasound brain abnormalities; (b) gestational age and birth weight collectively with
hospital course (i.e., days in hospital, neonatal intensive care, mechanical ventilation and
with oxygen therapy, surgeries, and retinopathy of prematurity) predicted ultrasound
brain abnormalities. At ages 8–16, VP-VLBW children showed: a) lower intelligent
quotient (IQ) and executive function; b) decreased gray and white matter (WM) integrity;
(c) IQ correlated negatively with cortical thickness in higher order processing cortical
areas. In conclusion, our data indicate that facets of executive function and IQ are the
most affected in VP-VLBW children likely due to altered higher order cortical areas and
underlying WM.

Keywords: preterm, perinatal clinical variables, cognition, MRI, DTI, cognitive function, fornix, memory

Abbreviations: AD, axial diffusivity; BASC, behavior assessment system for children; BW, birth weight; cc, Corpus callosum;
CI, confidence interval; CPT, Conners’ continuous performance test; DTI, diffusion tensor imaging; FA, fractional anisotropy;
Fi, fimbria; Fx, fornix; GA, gestational age; GM, gray matter; ICV, intracranial volume; IQ, intelligence quotient; MD,
mean diffusivity; mPFC, medial prefrontal cortex; MRI, magnetic resonance imaging; NEC, necrotizing enterocolitis; NICU,
neonatal intensive care unit; PCA, principal component analysis; RD, radial diffusivity; ROP, retinopathy of prematurity; SD,
standard deviation; TBSS, tract-based spatial statistics; TOMAL, test of memory and learning; VP-VLBW, very preterm-very
low birth weight; WISC, Wechsler intelligence scale for children; WM, white matter.
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INTRODUCTION

Despite increased survival and decreased morbidity of children
born very premature (VP) with very low birth weight (VLBW),
the long-term outcome of these children is variable. Recognition
of the risks and consequences is a concern through the world
(World Health Organization, 2018). This concern is extensive
from children born VP-VLBW who develop with brain and
neurological deficits to those, the great majority nowadays, that
instead grow with higher order cognitive difficulties. The high
incidence of these subtler cognitive difficulties often apparent
later in development, i.e., at school age and/or teenager hood
and has been indirectly evidenced in large cohort studies –
EPIPAGE (Larroque et al., 2008) and EPICURE (Moore et al.,
2012) – revealing that about one third of children born preterm
seek specialist assistance later in life, especially in psychiatry
and educational services. Common reported concerns are poorer
intelligence quotient (IQ), working memory, attention, and
executive function (Nosarti et al., 2008; Geldof et al., 2013;
Kalpakidou et al., 2014; Eryigit Madzwamuse et al., 2015; Murray
et al., 2016; Franz et al., 2018; Loe et al., 2018; Aanes et al., 2019).
Such deficits, even if subtle, may hinder academic achievement as
well as integration in society. It remains unclear, however, what
specific aspects of these functions are associated with changes in
specific brain areas or networks.

The first step has been to find out what modifiable risk factors
impact cognitive development of children born VP-VLBW; with
the consequent optimization of early interventions (Pierrat et al.,
2017). The second key step is to characterize the cognitive and
brain profile of children born VP-VLBW. One way of doing this
is by measuring cognitive function in association with structural
and functional magnetic resonance imaging (MRI). Structural
brain morphometric data of VP-VLBW children indicate that,
at school age, preterm children show changes in cortical gray
and white matter (WM) volumes, as well as in surface area
in sensorimotor cortex and higher order processing areas of
the cerebral cortex such as the prefrontal, posterior superior
temporal and parietal and occipital cortices (Skranes et al., 2013;
Akazawa et al., 2015; Sølsnes et al., 2015; Zhang et al., 2015).
Not only the cerebral cortex seems to be affected in prematurity
but also the thalamus, cerebellar WM (Martinussen et al., 2009;
Brossard-Racine et al., 2017), the globus pallidus, and the corpus
callosum (cc) (Malavolti et al., 2017; Lean et al., 2019). There
is also an enlargement of the lateral ventricles in adolescence
and early adulthood (Bjuland et al., 2014). This data support
the notion that, in addition to sensoriomotor difficulties, higher
order cognitive function is at risk in very preterm children. Brain
connectivity data from diffusion tensor imaging (DTI) (Anjari
et al., 2007; Rose et al., 2008; Duerden et al., 2019), tractography
(Murray et al., 2016), and more recently, connectome analysis
(Thompson et al., 2016) points to altered WM connectivity in
preterm children compared with infants born at term. There are
also recent studies trying to assess DTI parameters in fetuses,
which can be useful in the future to study abnormalities in utero
as well as the impact the exposure to the ex utero environment
on brain development may have (Mitter et al., 2015; Lockwood
Estrin et al., 2019). However, despite of the flourishing studies

on human brain imaging, clinical data, or animal models, the
problem of risks, mechanisms, and neurocognitive consequences
of being born too early still escape our hands.

To start addressing some of the causes and consequences of
neurocognitive impairment in preterm children, we designed
a two phases study. Phase I aimed to identify causes of brain
damage in VP-VLBW neonates by looking at the association
of perinatal risk factors and ultrasound brain abnormalities
detected in new-born VP-VLBW babies (i.e., gestational age,
GA≤ 32 weeks, and birth weight, BW≤ 1500 g). Our hypothesis
is that some specific perinatal factors explain, at least in part,
the variability in neonatal brain abnormalities in VP-VLBW
neonates. Phase II was designed to determine neurocognitive
outcome of high order cognitive functions in a subgroup of
neurologically healthy children from the VP-VLBW cohort at
school age (8–16 years old). With this aim, we used restrictive
selection criteria to include only those children that were VP-
VLBW and showed no brain abnormalities in MRI and no
neurological signs. Our hypothesis is that higher order cognitive
functions such as executive function and memory are affected
in association with altered higher order processing areas of the
cerebral cortex and underlying WM in the VP-VLBW group.

MATERIALS AND METHODS

Participants
Neonates
For Phase I, preterm babies from total live births from 01/01/95
to 31/12/04 born/referred at born to the Albacete University
Hospital were included. Inclusion criteria were GA ≤ 32 weeks
and BW ≤ 1500g. Chromosomal syndromes, often associated
with cardiac, respiratory, and/or brain abnormalities, could
be confounding factors in this study, and therefore, children
diagnosed with such syndromes were excluded.

School Age (8–16 Years Old)
In Phase II, children from the previous group who had no
neurological or MRI findings were invited to take part at 8–
16 years of age. An age and gender matched control group was
recruited in schools in the same demographic area.

Ethics Statement
This study was conducted according with the World Medical
Association ethical principles for research (Rickham, 1964) and
with the local ethical University of Castilla-La Mancha Medical
School and the Albacete University Hospital clinical research
committee (Acta 02/12). Written and signed informed consent
was obtained for all the participants and their parents.

Perinatal Variables and Brain
Ultrasonography at Birth
To identify risk factors for abnormal brain ultrasonography
(Phase I of the study), we examined medical charts of all
the VP-VLBW children. Table 1 defines the neonatal variables
included in this study. Brain ultrasonography was performed
with a General Electric LOGIA 400 CL ProSeries system at birth
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TABLE 1 | Neonatal clinical variables included in this study.

Variables Definition

Mother/pregnancy

Toxic habits Smoking

Reproductive/Gynecological Fertilization treatments, previous preterm births

Medical condition Diabetes mellitus, hypertension

Intrapartum

Amniorrhexis Prelabor rupture of membranes.

Pre-eclampsia Hypertension, proteinuria, and edema after the 20th week of gestation

Mode of delivery Normal vaginal, cesarean, emergency cesarean, elective cesarean

Fetal presentation Unknown, cephalic, podalic, bottom, transverse

Neonatal

Gestational age (weeks) Positive ultrasonography, last menstrual period, clinical assessments

Apgar scores at 1′ and 5′ Scores from 1 to 2 of Appearance, Pulse, Grimace, Activity, Respiration

Respiratory

Respiratory distress Bronchopulmonary dysplasia, oxygen dependency, apnea, hyaline membrane disease

Bradycardia Heart rate <100 l pm

Pulmonary hemorrhage Positive bronquial aspiration for blood and respiratory deterioration

Pulmonary hypertension Superior right limb and left inferior limb gradient in oxygen saturation >5% + hypoxemic trend

Pneumothorax Thorax x-ray confirmation of air in pleural space

Asphyxia Metabolic acidosis in umbilical cord pH + neonatal encephalopathy + background of alterations in cardiotocographic fetal
exploration

Cardiac hemodynamic

Systolic murmur Positive auscultation for heart murmur

Patent ductus arteriosus Sistolc murmur + tensional gradient + bounding pulses and respiratory deterioration. Arterial flow between aorta and
pulmonary artery shown via bidimensional echocardiography

Hypertension Systolic pressure higher than percentile 90 Hg for gestational age

Hypotension Mean arterial blood pressure lower than the gestational age during the first 3 days

Jaundice of prematurity Increased bilirubinemia over birth weight expressed in g/100

Anemia Level of hemoglobin in blood count <12 g/dl

Thrombocytopenia Level of platelets <100.000/mm3

Coagulopathy Altered of activated partial thromboplastine time or prothrombine time

Ultrasound brain abnormalities

Periventricular leukomalacia Unilateral/bilateral hypo-echogenicity areas in brain parenquima adjacent to lateral boundaries of the ventricular system.

IV hemorrhage Unilateral/bilateral abnormally extensive hypo-echogenicity areas in the ventricular system

Hydrocephalus Symmetric bilateral increased size of the ventricular system

Microcephaly <Percentile 10

Neurological

Cerebral palsy Chronic disability of central nervous system origin characterized by aberrant control of movement and posture, appearing early
in life

Severe mental retardation Severely retarded individuals have IQ scores of <40

Seizures/Epilepsy Presence of convulsive movements with or without electroencephalography correlation

Tetraplegia, diplegia Paralysis affecting the four limbs, paralysis affecting symmetrical parts of the body

Inflammatory

Sepsis Clinically, symptoms and alterations from laboratory results compatibles with infection with negative cultures. Confirmed,
symptoms of infection + blood culture or urine culture and/or positive cerebrospinal fluid

Necrotizing enterocolitis Digestive tolerance alteration necrotizing enterocolitis type II or higher

Otitis Otic pain + positive symptom with compatible eardrum exploration

Conjunctivitis Presence of conjunctival pus drainage

Ophthalmic

Retinopathy of prematurity Defined according to the criteria established by the Committee for the Classification of Retinopathy of Prematurity (The
International Classification of Retinopathy of Prematurity| Neonatology | JAMA Ophthalmology | The JAMA Network)

Medical treatments

Red blood cell transfusion Hemoglobin level below 10 g/dL or hematocrit falls below 25%

Oxygen therapy Oxygen is applied up to get saturations of 90–95% in pulse oxymetry

Mechanical ventilation Mechanically assist or replace spontaneous breathing

Surgery Any surgery during hospitalization
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and/or before the end of the first week of life. Brain ultrasound
abnormalities were diagnosed by a pediatrician (AM) and a
neuroradiologist (FM).

Neuropsychological Assessment and
MRI Scan
In Phase II, the 8–16 years old VP-VLBW and the control group
were assessed by the pediatric neurologist and had an MRI scan
before being assessed with a neuropsychological battery of tests.

The battery of standardized neuropsychological tests assessed:
intelligence (Wechsler Intelligence Scale for Children, WISC-
IV) (Wechsler, 2003), general memory (Test of Memory and
Learning, TOMAL) (Reynolds and Bigler, 1994), spatial and
everyday memory (Rivermead Behavioral Memory Test, RBMT)
(Wilson et al., 1985), attentional interference (STROOP)
(Golden, 1978), and verbal fluency (Children Executive
Functions, ENFEN) (Portellano et al., 2009). Selective attention,
impulsivity, and vigilance were tested with a computerized
test (Continuous Performance Test, CPT-II) (Conners, 2000).
Parents, participants and teachers filled in the questionnaire
Behavioral Assessment System for Children (BASC) (Reynolds
and Kamphaus, 1992). Parents also filled a socioeconomic
questionnaire specifically created for this study to register annual
parental income and academic degree.

Statistics
Statistical analysis (SPSS, v.20.0) was conducted for both,
neonates and the 8–16 years old group.

In Phase I, neonatal clinical data was first reduced by means
of a principal component analysis (PCA) stepwise backward.
Second, to identify possible associations between neonatal
variables and presence of ultrasound brain abnormalities, a
multivariate logistic regression analysis was calculated with
maximum likelihood model estimation (p ≤ 0.05 and 95%
confidence interval). Presence/absence of ultrasound brain
abnormality was considered as dependent variable and the factors
obtained in the PCA analysis were included as independent
variables. p ≤ 0.05 was considered significant for all the analyses.

In Phase II, neuropsychological data of the 8–16 years
old participants was analyzed with multivariate analysis of
variance (ANOVA) tests or Mann-Witney U tests. Kolmogorov-
Smirnov and Shapiro-Wilk normality tests were used. Significant
differences were taken if p ≤ 0.05.

Brain Imaging
MRI Acquisition at 8–16 Years of Age
Phase II participants’ (ages 8–16) were scanned in an Optima
MR 450 W General Electric 1.5T scanner with: (1) anatomical
SPGR 3D, TR: 8.5 ms, TE: 3.2 ms, TI: 400 ms, thickness: 1 mm,
gap: 0, isotropic matrix: 256 × 256 × 256, nex: 1, acquisition
time = 7.28 min; (2) Diffusion Tensor Imaging: 20 directions,
TR: 9425 ms, TE: 103 ms, angle: 90◦, thickness: 3, gap: 0,
nex: 2, voxel size: 3 × 3 × 3, acquisition time = 6.45 min.
A clinical neuroradiologist (FM) reported no significant findings.
MRI data pre-processing started by converting the DICOM

images into NIfTI format using dcm2nii tool from MRIcron
(Rorden and Brett, 2000).

Brain Gray Matter Integrity
Cortical reconstruction and volumetric segmentation of gray
matter (GM) was performed with Freesurfer (version 6.0.01)
(Dale et al., 1999; Fischl et al., 1999a,b, 2001, 2002, 2004a,b;
Ségonne et al., 2004). Accuracy of automated segmentation
was reviewed and control points were used according with
Freesurfer guidelines.

Cortical surface was segmented according with the Desikan-
Killiany atlas (Desikan et al., 2006). Surface area was the sum of
the area of the vertices in each parcellation; cortical thickness was
calculated as the closest distance from the WM/GM boundary
to the pial surface at each vertex on the tessellated surface
(Fischl and Dale, 2000). Volume was the product of the surface
area by cortical thickness for each region. In the automatic
subcortical segmentation, each voxel in the normalized brain
volume was assigned to one of about 40 labels, determined by
location and intensity.

Cortical thickness analysis was run by using the single-
binary application included in Freesurfer QDEC 1.5. Multivariate
analysis of variance (ANCOVA, SPSS) was used for surface area,
cortical and subcortical GM volume with intracranial volume
(ICV), gender, and age at scan as covariates.

Spatial correlations were run between cortical thickness
and neuropsychological values below control levels in the VP-
VLBW group. General linear model in QDEC 1.5 was used,
controlling for ICV, gender, and age. SPSS v.20.0 was used for the
correlations between cortical surface area and GM volume with
the cortical and subcortical parcellations and neuropsychological
scores. Bonferroni multiple was used for correction. Significant
differences were taken if p ≤ 0.05.

Brain White Matter Integrity
Tract-based spatial statistics (TBSS)
The pipeline for DTI data processing was conducted with the
FMRIB’s Diffusion Toolbox (FDT, FSL, FMRIB Software Library,
Oxford, United Kingdom). The DTI images were registered to the
non-diffusion-weighted (b0) image to minimize artifacts due to
eddy currents distortions, and a mask was created to exclude non-
brain voxels. The skull was then removed from the image using
the FSL BET tool. Fractional anisotropy (FA), mean diffusivity
(MD), and λ1, λ2, and λ3 values were calculated by using
the FSL DTI-FIT to fit all the tensors. λ1 is considered axial
diffusivity (AD). λ2 and λ3 values were averaged to obtain radial
diffusivity (RD) maps.

Participants’ FA maps were aligned to a 1 × 1 × 1 mm
standard space by a non-linear registration and the FMRIB58
image as a target. The aligned images were used to create a
mean FA map and a mean FA skeleton, with the centers of
all the tracts common to the group. This FA skeleton was
thresholded at FA >0.2 to include the major WM pathways and
exclude most of the GM. Then, each subject’s aligned FA data
were projected onto this skeleton and the resulting data were

1http://surfer.nmr.mgh.harvard.edu/
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fed into it voxelwise across subjects. Multiple error correction
was controlled with the randomize tool, and FSL’s TFCE was
used to carry out non-parametric permutation-based statistical
comparisons of VP-VLBW vs. control FA, MD, AD, and RD
maps (5000 permutations) with ICV, gender, and age at scan as
covariates. Significance if p ≤ 0.05.

Whole brain FA and RD as well as the anatomical
tracts were investigated in terms of correlation analysis with
neuropsychological data.

RESULTS

Neonates
In Phase I of the study, of the 36,001 live births at the Albacete
University Hospital, approximately 8% were preterm and 1%
were VP-VLBW. Of the 270 (0.7%) potentially eligible children,
207 (77%) survived. Causes of demise were: cardiac arrest (27),
asphyxia (23), septic shock (10), and multiple malformation
syndrome (3). Of the 207 survivors, 4 had chromosomal
malformations and 7 had incomplete charts and were excluded.
The final sample that forms the VP-VLBW cohort was of 196
babies. Neonatal data of all the VP-VLBW children included is
summarized in Table 2.

Neonatal Ultrasound Brain and Neurological Findings
Within the VPLBW new-born babies, 72 (37% of 196) had
one type of ultrasound brain abnormality. Intraventricular
hemorrhage was the most common (20 cases), followed by
choroid plexus pathology (13), microcephalia (6), periventricular
leukomalacia (5), and hydrocephalus (2). The remaining children
(26) had more than one finding. Convulsions without any
ultrasonography abnormality were seen in 6 cases.

Of the 72 babies with brain findings, 18 had severe
neurological consequences defined by the neurological
pediatrician and the neonatologist: 6 were diagnosed with
one problem only (cerebral palsy, severe mental retardation,
epilepsy, blindness, deafness, encephalopathy) whereas 12
presented multiple diagnoses.

Data Reduction and Multivariate Logistic Regression
The PCA reduced the 17 neonatal variables that discriminated
those children with brain ultrasound abnormalities into 6
components. These PCAs explained up to 70% of the variance.
Table 2 illustrates the PCAs extracted (PCA, row headings)
together with the results from the multivariate logistic regression
(column headings). The first (Table 2, PCA 1 – Post-birth
hospitalization) and second factors (Apgars) carried the main
weight, 30 and 11%, respectively and together explain most of the
variability. Gestational age, birth weight and severe respiratory
factors explain less variability, but were effective predictors
of ultrasound brain abnormalities. The logistic regression
showed that post-birth hospitalization course [Exp(B) = 3.08;
p < 0.001], apgars (Exp(B) = 0.61; p < 0.001), gestational and
severe respiratory problems [i.e., asphyxia and pneumothorax;
Exp(B) = 2.37; p < 0.01], and NEC and hemodynamic
[Exp(B) = 1.58; p < 0.05] were significant predictors of

ultrasound brain abnormalities [constant Exp (B) = 0.584;
p< 0.01]. On the other hand, respiratory distress, ventilation and
in vitro fertilization, although more frequent in the group with
brain injury, were less determinant of brain injury.

School Aged Children (8–16 Years Old)
For Phase II, 124 children were eligible and 41 (33%) agreed to
participate. Of them, 2 had no MRI scan, 2 no neuropsychological
assessment, and 8 had poor quality MRI due to motion artifacts,
leaving a final sample of 29 VP-VLBW children (16 males, 55%,
mean age at scan = 11.38, SD = 2.82). Within the initial control
group (n = 20), 6 had poor quality MRI, so 14 participants formed
the final control group (9 males, 64%, mean age at scan = 10.90,
SD = 2.67). Both VP-VLBW (n = 29) and control groups (n = 14)
had similar ages at scan (t41 = −0.50, p = 0.62), similar gender
proportion (X1

2 = 0.32 p = 0.74), and similar parental annual
family income (t41 = 1.62, p = 0.13).

Neuropsychological Results at Ages 8–16
At age 8–16, VP-VLBW children’s mean full scale IQ (WISC) was
11 points below control levels, with perceptual reasoning index
especially affected (see Table 3). Mean scores in phonological
fluency (ENFEN; executive function), were lower in the target
group relative to control levels. Teachers reported learning
difficulties (BASC-T) and poorer academic results in the VP-
VLBW group. Nevertheless, the VP-VLBW had intact selective
attention, impulsivity, vigilance, and resistance to (STROOP)
interference, as well as spatial, everyday memory, and the
different forms of recognition, learning and delayed memory
assessed by the general memory and learning test TOMAL.
However, the TOMAL test revealed poor performance in two
measures of working-memory – immediate memory for stories
and inverse letter sequencing.

In sum, working and verbal immediate memory appear to be
below control levels as well as general cognitive abilities measured
by the intelligence test. The impairments, even if mild, may
preclude learning difficulties as reported by the teachers (BASC-
T, VP-VLBW mean = 51.54 ± 8.15; control = 45.25 ± 10.45;
p = 0.07). These children’s attention and spatial and everyday
memory were at control levels.

Brain Gray Matter Integrity
A 5.7%, decreased total GM and 10% subcortical GM volumes
(F = 8.68, p < 0.01; F = 6.91, p < 0.05, respectively)
were observed in the VP-VLBW group relative to control
levels. After Bonferroni correction for multiple comparisons,
significant decreased volumes were found bilaterally in the left
and right thalamus, and left ventral diencephalon including
hypothalamus, basal forebrain, sublenticular extended amygdala,
and ventral tegmentum (although the last three are not part of
the diencephalon, Freesurfer software includes them together as
part of it) in the VP-VLBW group. This group had significant
decreased cortical volume in right fusiform gyrus and enlarged
left lateral ventricle relative to control levels, but no correlations
with neuropsychological variables were observed. Surface cortical
area in children VP-VLBW was increased in right entorhinal
cortex. Values for volumes and areas are reported in Table 3.
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TABLE 2 | Neonatal data of babies born very preterm/very low birth weight with presence/absence of ultrasound brain abnormalities. Summary of results from the
principal component (PCA) and the multivariate logistic regression analyses.

Brain abnormality (n = 72) No brain abnormality (n = 124)

Neonatal data n Median (IQR) Median (IQR) U Mann Whitney Cohen’s d value

Gestational age (weeks) 196 29 (28–31) 30 (28–31) 3733.50∗ 0.33

Birth weight (g) 196 1126 (950–1300) 1225 (1075–1368) 3472.00∗∗ 0.38

Body length (cm) 196 37 (35–39.4) 38 (36.6–40) 3822.50 0.27

Head circumference (cm) 196 27 (25–28) 27 (26–28) 3714.00∗ 0.33

Apgar 1′ 196 6 (4.2–8) 8 (6–8) 3417.00∗∗ 0.47

Apgar 5′ 196 8 (7–9) 9 (8–9) 3206.50∗∗∗ 0.40

Mechanical ventilation 196 6.50 (1–14.5) 1 (0–4) 2588.00∗∗∗ −0.73

Oxygen therapy 196 20 (3–53) 8 (2–30) 3528.50∗ −0.54

Hospitalization 196 65.50 (51.25–88) 50 (40.25–59) 2519.50∗∗∗ −0.75

Neon. intensive care unit 196 31.50 (18–53.25) 19.50 (10.25–29.75) 2724.50∗∗∗ −0.74

N (%) N (%) χ2
(1) OR-CI

Hypotension 195 27 (19) 13 (16) 5.89∗∗ 0.41–0.19–0.85∗

Asphyxia 196 11 (8) 1 (1) 11.04∗∗∗ 0.07–0.01–0.53∗∗

Resp. distress 196 82 (59) 65 (81) 6.16∗∗ 0.42–0.21–0.84∗

Pneumothorax 195 6 (4) 0 7.13∗∗ 0.94–0.90–0.99∗∗

Necrotizing enterocolitis 196 26 (19) 10 (12) 9.55∗∗ 0.3–0.14–0.66∗∗

Retinop. of prematurity 196 44 (32) 23 (29) 9.42∗∗ 0.38–0.21–0.71∗∗

Principal component analysis PCA weight Explained variance (%) OR (95% CI) p

PC 1 – Post-birth hospitalization 30.586 3.08 (1.89–4.99) 0.000∗∗

Hospitalization (days) 0.866

Neonatal intens. care unit (days) 0.856

Mechanical ventilation (days) 0.825

Oxygen therapy (days) 0.679

Surgeries 0.602

Retinopathy of prematurity 0.574

PC 2 - Apgars 11.290 0.61 (0.43–0.87) 0.006∗∗

Apgar 1′ 0.905

Apgar 5′ 0.864

PC 3 – Respiratory distress and ventilation 8.597 1.34 (0.95–1.89) 0.096

Respiratory distress 0.856

Mechanical ventilation (freq.) 0.651

PC 4 – Gestational and severe respiratory problems 6.815 2.37 (1.23–4.55) 0.010∗

Gestational age (weeks)

Birth weight (g)

Asphyxia 0.749

Pneumothorax 0.689

PC 5 – NEC and hemodynamic 6.399 1.58 (1.09–2.27) 0.015∗

Necrotizing enterocolitis 0.799

Hypotension 0.566

PC 6 – Fertilization treatments 5.992 0.69 (0.45–1.05) 0.083

In vitro fertilization 0.916

∗p ≤ 0.05, ∗∗p ≤ 0.01, ∗∗∗p ≤ 0.001.

No differences in global cortical thickness were found, but
cortical thickness in several brain areas was negatively correlated
with full scale IQ, so the lower the IQ the thicker the cortex (see
spatial correlation in Figure 1). Furthermore, cortical thickness
was also negatively correlated with the perceptual reasoning
index and the subscales of information, block design, and
arithmetic in the VP-VLBW group.

As illustrated in Figure 1, full scale IQ correlated negatively
with thickening of frontal pole, medial prefrontal cortex (mPFC,
approximately in areas 32 and 8/9), and anterior cingulate cortex
(approximately area 24), left (posterior) inferior frontal gyrus,
sensory and motor areas, dorsal and posterior insular cortex,
posterior superior temporal gyrus, and extrastriate visual cortex.
However, the neonatal clinical data had not predictive value
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TABLE 3 | Neuropsychological and gray matter volume (mm3) differences in control and preterm groups.

Test Control (n = 14) Preterm (n = 29) F1,41(p)

Mean (SEM) Mean (SEM)

Intelligence (WISC IV)

Full IQ 112.57 (3.83) 101.69 (3.06) 4.46 (0.04)∗

Perceptual reasoning 109.07 (4.06) 96.97 (3.18) 5.07 (0.03)∗

Block design1 10.93 (0.67) 8.66 (0.63) 4.96 (0.03)∗

Information1 13.00 (0.59) 10.55 (0.58) 6.80 (0.01)∗∗

Arithmetic1 12.86 (0.67) 9.59 (0.70) 8.58 (0.01)∗∗

General memory (TOMAL)

Immediate memory for stories1 14.29 (0.69) 11.93 (0.55) 6.41 (0.02)∗

Letters backward1 12.00 (1.14) 9.41 (0.48) 6.09 (0.02)∗

Executive function (ENFEN)

Phonological fluency1,2 0.05 (0.25) −1.03 (0.32) 4.09 (0.01)∗∗

Brain region

Left

Thalamus 8247.97 (907.33) 7362.94 (563.73) 12.03 (0.001)

Lateral ventricle 5684.77 (2730.78) 10117.43 (5871.07) 10.77 (0.002)

Ventral diencephalonT 4038.12 (506.15) 3559.78 (282.80) 14.14 (0.001)

Right

Thalamus 7987.00 (884.50) 7043.21 (559.03) 15.01 (≤ 0.001)

Fusiform gyrus cortex 11071.00 (1393.64) 9936.41 (1011.79) 17.21 (≤ 0.001)

Entorhinal cortex area (mm2) 374.28 (75.14) 458.28 (67.49) 15.09 (≤ 0.001)

1Subtests, 2Standard z scores, TVentral diencephalon in FreeSurfer includes: hypothalamus, basal forebrain, sublenticular extended amygdala and ventral tegmentum
(although the last one is part of the midbrain). ∗p ≤ 0.05, ∗∗p ≤ 0.01.

in terms of prediction for the neuropsychological nor brain
imaging parameter.

Brain White Matter Integrity
After correction for multiple comparisons, significant differences
in WM voxels between groups (p < 0.05) are shown in Figure 2.
According to the segmentation from previous studies (Córcoles-
Parada et al., 2017), results showed significant decreased FA
values in preterm born children in the WM of mPFC areas
14, 24, 32, and 25 (Figure 2A in red-yellow), and diencephalic
WM (Figure 2C). In addition, decreased FA was observed in the
medial parietal WM, pyramidal tract, and optic radiation. None
of the WM areas showed significant increase in FA in the preterm
group relative to the term-born group.

Voxels with significant increased RD values overlapped with
regions of decreased FA values (Figures 2B,D, in blue) except for
the medial parietal region, where this overlap is less evident.

DISCUSSION

Here we examined a cohort of children who were both born with
less than 32 gestational weeks and less than 1500g as babies and
at a later stage in development; i.e., 8–16 years of age. This cohort
study had a percentage of preterm babies (8%) like that reported
by other countries, with circa 1% born with same gestation and
birth weight. Data presented here confirmed that one third of
the babies had ultrasound brain abnormalities and, of those,
still a quarter had severe neurological problems. Those children
with ultrasound brain abnormalities had lower GA, birth weight,

cranial perimeter, and Apgars; together with hospitalization
course (i.e., hypotension, necrotizing enterocolitis, retinopathy
of prematurity), and severe respiratory complications such as
asphyxia and pneumothorax. This confirms previous data on the
frequent postnatal comorbidities of the preterm infant (Wheater
and Rennie, 2000; Schmidt et al., 2003; Becher et al., 2004;
Hintz et al., 2005; Schulzke et al., 2007). As several variables
seem to interact and, it seems difficult to predict neonatal brain
injury from a specific clinical risk factor (Becher et al., 2004;
Limperopoulos et al., 2007; Thompson et al., 2019).

Subtle neurodevelopmental deficits are difficult, if not
impossible, to detect at such an early stage - one basis for looking
at much older children in the second part of the study.

Neuropsychological Consequences of
Prematurity at 8–16 Years Old
Children born with very low birth weight (VP-VLBW), but who
could be considered healthy as they had neither brain injuries
detectable by ultrasound at birth or MRI later in life, however:
a) not only VP-VLBW children had IQs below control levels,
but, importantly, cortical thickness in higher order processing
areas of the cerebral cortex was correlated negatively with IQ; and
b) they had deficits in immediate memory (immediate memory
for stories and letters backward) and executive function (verbal
fluency), but spared basic attentional functions and memory
(general, spatial and episodic). These impairments, even if mild,
seem to hinder school results and learning levels as reported
by the teachers.
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FIGURE 1 | Spatial negative correlation of cortical thickness and intelligence quotient (IQ) in children born very preterm and with VLBW at ages 8–16 (p ≤ 0.05,
corrected for ICV, age, and gender). Thickness of high order processing cortical areas (in blue) was associated with full scale IQ, specifically with perceptual
reasoning index, and the subscales of information, block design, and arithmetic. Perceptual reasoning: frontal pole, mPFC (areas 24, 32, and 9), insula, posterior
superior temporal gyrus, right inferior parietal cortex and extra striate visual cortex; Information: left inferior frontal and superior frontal gyrus, sensory and motor
areas; Block design: left frontal pole and anterior cingulate cortex (area 24), superior medial frontal gyrus (areas 32 and 8/9), left inferior parietal cortex, and left
extrastriate visual cortex, right posterior superior temporal gyrus, and insula; Arithmetic: left frontal pole and extrastriate visual cortex (unpublished data).

Intelligence Quotient
The lower IQ in the VP-VLBW group in this study is
in agreement with previous reports (Isaacs et al., 2003),
even when applying different methods (Tideman, 2000;
Weisglas-Kuperus et al., 2009). Within the WISC-IV subtests,
our study detected deficits in the preterm children in arithmetic,
information, and block design, which is in agreement with
previous studies (Hack et al., 2002; Tulsky, 2003; Kulseng et al.,
2006; Taylor et al., 2009; Løhaugen et al., 2010). In particular, the
arithmetic subtest has been described as a multifaceted test that
requires mathematical and working memory skills among others
and in our study were the ones that showed worst outcome
(Tulsky, 2003). Mathematical problems have been previously
found to be especially common in preterm children, even when
controlling for IQ and neurodevelopmental disorders (Taylor
et al., 2009). Statistical differences on the block design subtest,
which seems to be one of the most sensitive subtests to clinical
conditions, are also in accordance with previous findings (Hack
et al., 2002; Tulsky, 2003; Kulseng et al., 2006). No further
significant differences were observed when participants were
re-grouped by age (≤11 vs. >12 years), indicating that age was
not a confounding variable in this study.

Attention
Although attentional deficits are often diagnosed in preterm
cohorts (Bhutta et al., 2002; Rommel et al., 2019), there are
variable findings when profiling the impaired subdomains in
preterm cohorts with some reporting deficits in only some of the
attentional networks (Bayless and Stevenson, 2007; Fazzi et al.,
2009; Mulder et al., 2011; Cserjesi et al., 2012). In our study,
some of the basic components of attention were preserved in the
VP-VLBW group. However, they had poorer immediate memory
and phonological fluency relative to control levels, suggesting that
higher order executive functions, likely dependent on prefrontal
connectivity with cortical (temporal, parietal) and subcortical
structures (diencephalon, striatum), had been affected.

General and Episodic Memory
Other deficit usually reported in preterm children are episodic-
like memory problems associated with hippocampal damage
(Isaacs et al., 2001; Giménez et al., 2004; Rose et al., 2011;
Aanes et al., 2019; Strahle et al., 2019). There is, however, recent
controversy (Brunnemann et al., 2013; Omizzolo et al., 2013;
Thompson et al., 2014). This contradictory data is likely to
be related with the magnitude of the decrease in hippocampal
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FIGURE 2 | White matter regions with significant changes in fractional anisotropy (FA) and radial diffusivity (RD) after correction for intracranial volume, age, and
gender (p ≤ 0.05). (A) Cortical regions with decreased FA (red-yellow) and (B) with increased RD (blue) in the very preterm/very low birth weight group. Decreased
FA/increased RD was found in medial frontal areas, temporal, and extrastriate visual and parietal white matter. (C) Significant decreased FA (red-yellow) and (D)
increased RD (blue) in diencephalon, including the fornix (Fx) and thalamic white matter (Thal) in children in the very preterm/very low birth weight group.

volumes in preterm babies – from 10 to 16%, with only occasional
cases with 20% volume reduction or over. In our study, general
memory (TOMAL), spatial, and everyday memory (Rivermead
Behavioral Memory Test) were spared. In addition, we observed
no reduction in hippocampal volume (data not shown) and
no correlations were found between hippocampal volume and
neuropsychological variables. However, our cohort of children
VPT-VLBW did have reduced immediate memory for stories and
letters backward below control levels, again confirming published
data (Isaacs et al., 2003). These results might be indicative of
weak semantic and sequential immediate recall and working
memory (Ramsay and Reynolds, 1995). Verbal memory has
been associated with a decreased integrity of the fornix (Nosarti
et al., 2014), but further research on the possible changes of the
anatomical and functional organization of the fornix, thalamic,
and frontal connectivity in preterm children is required.

Gray Matter Integrity
Previous studies have shown that cortical thickness is an indicator
of the number of neurons per cortical column (la Fougère et al.,
2011) as well as of the folding and gyrification of the cortex

(Panizzon et al., 2009). In our study, even global cortical thickness
was at control levels in the VP-VLBW group, cortical thickness
in certain areas was negatively correlated with full scale IQ as
well as with some of the subscales whereby the target group was
below control levels. This correlation indicates that the thicker
the reported areas, the worst performance in full scale IQ and
some of its subscales. Previous studies have found disparate
results; while some of them showed a positive relation between
cortical thickness and IQ (Skranes et al., 2012; Bjuland et al.,
2013; Mürner-Lavanchy et al., 2018), others found a negative
association (Nam et al., 2015; Sølsnes et al., 2015).

Our results also showed a paradoxically larger right entorhinal
area while some other studies show reductions in cortical
thickness or surface area of the entorhinal cortex (Skranes et al.,
2012, 2013). One potential explanation for this discrepancy is
the different age of samples, and the possible atypical cortical
development in terms of timing and patterns in preterm
entorhinal cortex.

Although the relationship between cortical thickness and
cognitive status is not completely defined, some degree of
thinning is expected in the cerebral cortex during development.
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Our data suggest that cortical thinning is occurring in less degree
in some areas of the cortex in the VP-VLBW group, which
could explain, at least in part, the lower IQ level. This finding
requires further research with longitudinal studies to obtain the
full picture of the cortical development of the preterm brain.

In line with previous studies with preterm or late-preterm
infants (Munakata et al., 2013), children (Reiss et al., 2004;
Rogers et al., 2014), adolescents (Nagy et al., 2009), and adults
(Pascoe et al., 2019), our study shows also a smaller volume
in total GM, subcortical GM (Taylor et al., 2011), thalamus
(Nosarti et al., 2008; Martinussen et al., 2009; Bjuland et al.,
2014), and fusiform gyrus (Nosarti et al., 2008), as well as
enlarged lateral ventricles (Nosarti et al., 2002; Allin et al.,
2004; Bjuland et al., 2014) relative to control levels. We also
found smaller volume in left ventral diencephalon that includes
hypothalamus, basal forebrain, sublenticular extended amygdala
and ventral tegmentum. Given the importance of these structures
in emotional, social, reward processing, this may explain, at least
in part, the frequent need of psychiatric assistance in children
born preterm as reported in both large cohort studies (Larroque
et al., 2008; Moore et al., 2012).

White Matter Integrity
In line with previous studies in VP-VLBW neonates (Miller
et al., 2002), infants (Partridge et al., 2004; Lean et al., 2019),
children (Nagy et al., 2003; Constable et al., 2008; Young et al.,
2019), adolescents (Thomas et al., 2005; Skranes et al., 2007;
Mullen et al., 2011), and young adults (Eikenes et al., 2011;
Pascoe et al., 2019), our study shows significant decreased
FA and increased RD in higher order association areas of
the such as frontal, temporal and parietal regions and in the
diencephalic WM. As AD and MD appeared affected in the
preterm group, this decreased WM integrity might be due,
therefore, to increased diffusivity in the mean perpendicular
axis (λ2 and λ3). Although the precise mechanisms of WM
injury in prematurity are still unclear, global delay in glial
maturation after premature brain injury has been previously
reported (Salmaso et al., 2014). Animal model data support
the hypothesis that gliogenesis, oligodendrocytes and myelin
may be at the root of the changes seen in WM integrity in
prematurity. In normal development, myelin commences to
be visible after 24 weeks of gestation and progress until 36
gestational weeks (Counsell and Boardman, 2005). This supports
the hypothesis that migratory pathways from ventricular zone
to cerebral cortex and cortico-diencephalic and cortico-striatal
connections may be vulnerable to prematurity and other
insults occurring during this prenatal period. Further research
is needed in the normal and abnormal development of
these WM pathways.

Limitations of the Study
We acknowledge several possible limitations in the present
study. One factor that may be contributing to different results
in brain-behavior studies of preterm children is the different
inclusion/exclusion criteria. Here we examined children who
were born very preterms and had VLBW, but who could be
considered relatively ‘healthy’ as they had neither brain injuries

detectable by ultrasound at birth nor by MRI at school age.
The design of the study excluded children with any form of
brain abnormality.

This made our sample very restrictive and may be biased
toward the high performance. However, despite of this, the
sample of our children’s IQ was still below about 10 points below
control level. We believe this is a robust result and consistent
with the literature. Nevertheless, our results are optimistic in
terms of spared functions in at risk prematurity, and contribute
to define the phenotype of this population. This study calls
for further research on whether there is a specific cognitive
profile in prematurity with some cognitive functions altered and
some other spared.

The necessary high quality MRI data (i.e., no movement
artifacts) reduced the size of our sample, and this is another
limitation: the small number of participants, especially
in the control group. This was compensated by using
multiple (5000) permutations in FSL, a stringent multiple
correction method for false discovery. Brain injuries cause
methodological problems in terms of reliability of the
registration process of gray and WM analysis, and therefore,
we use stringent inclusion criteria (i.e., no neurological
impairment or brain damage) to address this and secured the
quality of the data.

Further analysis with larger numbers of participants and
longitudinal studies will allow more accurate results on the
influence of clinical variables on neonatal brain damage and later
neuropsychological development.

CONCLUSION

In conclusion, the interplay between different perinatal variables
has a clear association with brain damage as identified with
ultrasound in new born babies with gestational age ≤32
and birth weight ≤1500 g. Selective increased of cortical
thickness in higher order processing areas of the frontal,
perisylvian, sensory motor and visual cortices is associated
with specific components of lower IQ scores in the preterm
group. Furthermore, decreased integrity of WM tracts is
suggestive of higher order cognitive processing deficits.
Identifying these specific neurocognitive deficits might be
of help to design interventions aimed to improve academic
achievements and mental health, and ultimately, adaptability
later in life to society.
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