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aInstituto de F́ısica Teórica UAM/CSIC, Universidad Autónoma de Madrid,

Nicolás Cabrera 13-15, E-28049 Madrid, Spain
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1 Introduction

Gauge theories in the limit of infinite number of colours (N −→ ∞) are very interesting

theoretically [1]. They are simpler than their finite N counterparts, but share most of the

fascinating properties of the latter. Nonetheless, their understanding remains a challenge.

The relevance of this goal is also given by the fact that they seem a point of contact with

other approaches [2]. A good deal of their difficulty lies in the non-perturbative character

of most of its properties. The standard first principles approach to this kind of problems is

the lattice formulation of quantum field theory [3]. However, in contrast with what happens

in perturbation theory, the large N limit involves an extrapolation and seems harder than

the finite N study. Only recently this line of approach has led to trustworthy computations

(for a review see [4]), pioneered by the works of Teper and collaborators [5–7].

Fortunately, there is a very specific simplification which emerges when studying large

N gauge theories on the lattice. This is the so-called Eguchi-Kawai (EK) reduction [8].

According to this result finite volume corrections are subleading in the large N limit.

Hence, there is the possibility that the dynamics of the large N gauge theories is captured

by a matrix model. There are several proposals that have been put forward to transform

this possibility into a reality [9–13]. Here, we will be concerned with one of the early
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proposals called Twisted Eguchi-Kawai model (TEK for short) [14, 15], and introduced

by two of the present authors. Indeed, it was used shortly after EK proposal to compute

the string tension at large N [16, 17]. Lately this has led to a calculation of this quantity

with at least compatible precision to other methods [18]. Several precise tests of the

reduction mechanism have been obtained recently for other quantities [19], providing a

strong verification of the validity and usefulness of this approach.

The previous paragraph justifies our interest in the TEK model. The finite N cor-

rections are different for the matrix model and for the ordinary gauge theory, and their

size and nature are very important from the practical point of view, in order to make this

approach competitive computationally. Curiously, these corrections have a theoretically

interesting interpretation in terms of the so-called non-commutative gauge theories [20].

Their Lagrangian and Feynman rules first appeared in the literature [21] when looking for a

continuous generalization of the TEK model, and before they emerged from the mathemat-

ical construction of non-commutative geometries [22]. A more direct connection appears as

a result of Morita duality on the non-commutative torus. This shows that ordinary gauge

theories with twisted boundary conditions (TBC) a la ’t Hooft [23] are particular cases of

non-commutative field theories. The TEK model is nothing but the volume reduced version

of a gauge theory with twisted boundary conditions on the lattice. TBC are characterized

by a collection of integer-valued fluxes, and their appropriate choice has been found to have

a crucial impact upon the size of the corrections and the absence of phase transitions.

The last ingredient entering in this work is perturbation theory. Although our major

interest when using the lattice approach was in studying the non-perturbative aspects of

the theory, there is also interest in understanding the theory from the perturbative side. At

the least it offers us a method to analytically determine certain observables and estimating

the size and nature of its N dependence. In this spirit a recent perturbative calculation

of Wilson loops in lattice gauge theories with twisted boundary conditions (including the

TEK model) was addressed [24].

In addition, a new set of ideas has focused in explaining the usefulness of perturbation

theory in understanding also non-perturbative contributions. This takes its most extreme

form in the concept of resurgence (see for example [25, 26] and references therein). At

the least, as was already known, the large order behaviour of the perturbative coefficients

is associated with non-perturbative aspects such as the action of other saddles. Very

interesting results have been obtained in this spirit for large N matrix theories [26, 27].

For example, it has been identified that the large N phase transition of the Gross-Witten-

Wadia unitary matrix model [28, 29] is governed by non-trivial saddles and the action can

be reconstructed via the resurgence on the asymptotic expansion about the vacuum [30].

For large N gauge theories in 4 dimensions there are many interesting aspects to be

studied. Perturbation theory is dominated by planar diagrams, whose number does not

grow factorially. This could suggest that the perturbative series is convergent within a given

radius. Furthermore, the instanton action at fixed value of ’t Hooft coupling diverges. This

implies that the corresponding singularity in the Borel plane moves to infinity, suggesting

at least Borel summability. However, the expected singularity associated to infrared renor-

malons [31, 32] does not move away and would induce a factorial growth of the coefficients
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similar to the finite N case. An analysis of the perturbative expansion at high orders should

settle this point. Another issue to be studied is the interplay between the order of pertur-

bation theory and the value of N . The higher rate of growth in the number of non-planar

diagrams would suggest that their contribution could overcome the 1/N2 suppression at

sufficiently high orders. Something of this kind emerges when analyzing the simultaneous

expansion in powers of ’t Hooft coupling and 1/N2 as seen in ref. [27]. The behaviour of

the reduced model could however be quite different.

To close the circle, recently a new method has arisen that allows the numerical com-

putation of high order coefficients in the perturbative expansion. It goes under the name

of Numerical Stochastic perturbation theory (NSPT) and was pioneered by the works of

Di Renzo and collaborators [33–38] (for earlier developments on stochastic quantization [39]

and stochastic perturbation theory, see also [40–42]). Recently, this methodology has led

to remarkable results about high order coefficients in SU(3) gauge theories [43–51]. As

the memory size required is proportional to the highest perturbation order involved in the

computation in NSPT and to the volume, the authors of [47, 49, 50] have used twisted

boundary conditions aware that they lead to reduced finite volume dependence.

Stochastic quantization is based on the Langevin equation, and the first NSPT studies

used the perturbative expansion of this equation. However, for lattice theories various

other Monte Carlo algorithms, such as Kramers, hybrid molecular dynamics (HMD), and

hybrid Monte Carlo (HMC) algorithms, have been developed and used. Recently, extensive

studies have been carried out using NSPT algorithms [52, 53] based on them. In particular,

the HMD based algorithm for NSPT is easy to implement by perturbatively expanding the

HMD/HMC codes used for non-perturbative simulations. In this case, one can benefit from

various numerical integration schemes for the molecular dynamics part to reduce the finite

step size error of the integration. Thus, the NSPT algorithm based on the HMD/HMC

algorithm could open the way to efficiently estimating very high order coefficients.

Our work is a first attempt to apply this methodology to matrix models. For the time

being, our work is mostly exploratory but a necessary step before any attempt of a higher

order and larger N study. Nonetheless, apart from showing that the method works with

an incredibly high precision for the low-order coefficients, we also present results which

extend to higher order the previous analytical results [24]. In addition, our work provides

interesting information about the probability distribution of the perturbative coefficients.

In particular, we have studied the dependence of the cumulants of these distributions with

respect to the different parameters: the value of N and of the fluxes, the size of the loops

and the order of perturbation theory. These results allow us to determine the necessary

computational requirements for any further extension of these studies.

The layout of the paper is the following. In section 2, after introducing the TEK model,

we explain the application of the NSPT algorithm based on the HMD algorithm to the TEK

model. In section 3 we present the numerical results for the perturbative coefficients of the

Wilson loops. We employ (N, k) = (16, 1), (49, 2), (121, 3) for SU(N) and flux parameter k

of the TEK model. The coefficients are computed up to four-loop (O(g8)) and the first two-

loop coefficients are compared to the analytic values. The probability distribution of these

estimates is investigated and used to explore the feasibility for extending our results to
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higher orders. We estimate the numerical computational cost of NSPT for the TEK model

at large values of N and large perturbative orders in section 4. Possible improvements on

the algorithm are also discussed. In the last section we summarize the main results of the

paper. Two technical points are included in appendices.

2 TEK model and NSPT

In this section we start by briefly introducing the TEK model together with the gauge

fixing method. Then we recall the Hybrid Molecular Dynamics (HMD) algorithm for

nonperturbative simulations of the TEK model. This algorithm is then perturbatively

expanded to derive the equation of motion for the NSPT algorithm.

The computational cost is estimated in terms of the highest order Ntrunc in the per-

turbative expansion involved in the algorithm and the matrix size N of SU(N).

2.1 TEK model

The partition function of the TEK model in four-dimensions is defined by

Z =

∫ 4∏
µ=1

dUµ e
−S[U ], (2.1)

S[U ] = β

4∑
µ,ν=1,µ 6=ν

Tr
[
I − zµνUµUνU †µU †ν

]
, (2.2)

where Uµ are SU(N) matrices. We choose the symmetric twist characterized by N = L̂2

and zµν given by

zµν = exp

[
2πi

N
nµν

]
,

nµν = εµνkL̂,

εµν =


+1 for µ < ν

0 for µ = ν

−1 for µ > ν

, (2.3)

where k is an integer coprime with L̂ (=
√
N). The bare coupling constant g is defined

through β = 1/g2.

The Wilson loop operator for an R× T rectangle in the µ–ν plane is defined by

Wµν(R, T ) =
1

N
(zµν)RT Tr

[
(Uµ)R (Uν)T

(
U †µ

)R (
U †ν

)T]
. (2.4)

In this paper we restrict ourselves to square loops R = T .

The analytic perturbative expansion of the observables proceeds by expanding the link

matrices around the classical vacuum as

Uµ = e−igAµΓµ, (2.5)
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where the matrices Γµ define the classical vacuum of eq. (2.2) and have the following

property

ΓµΓν = ΓνΓµz
∗
µν . (2.6)

A particular solution (up to multiplication by a phase) is singled out by an appropriately

chosen gauge fixing condition, accompanied by the corresponding ghost term.

In order to stabilize the runaway trajectories, NSPT also requires the use of the stochas-

tic gauge fixing method [54]. Here we are using the functional for the Landau gauge condi-

tion, from which we can extract the stochastic gauge fixing contribution in NSPT [33, 34].

The gauge fixing functional F [G] is defined by

F [G] =

4∑
µ=1

Re
[
Tr
[
GUµG

†Γ†µ

]]
, (2.7)

where G ∈ SU(N) is the gauge transformation matrix. The Landau gauge condition is

achieved by maximizing the functional, by application of several iterations of the form:

Uµ → U ′µ = GUµG
†, (2.8)

with

G = exp [iαΘ] , (2.9)

Θ = i

[(
Y − Y †

)
− 1

N
Tr
(
Y − Y †

)]
, (2.10)

Y =

4∑
µ=1

[
UµΓ†µ − Γ†µUµ

]
, (2.11)

where α is a parameter. When this iteration process is transformed into a continuous

evolution equation with a fictitious time t, we obtain the following differential equation:

G(t) = exp [iw(t)] , (2.12)

dw

dt
≡ αΘ[U(t)], (2.13)

Uµ(t) = G(t)UµG(t)†, (2.14)

where w(t) is an auxiliary Hermitian-traceless matrix tracing the steepest descent trajec-

tory. This evolution equation can be combined with the NSPT process to implement the

stochastic gauge fixing.

2.2 NSPT for the TEK model

NSPT is based on stochastic quantization [39]. This amounts to writing down a stochastic

differential equation of the Langevin type for the field variables of a target system, which

relaxes to the equilibrium probability density at large times [40–42]. The NSPT method is

obtained by expanding these field variables in powers of the coupling constant and casting
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the original Langevin equation into a tower of equations, one for each power. Observables

that are analytic functions of the field variables acquire a corresponding perturbative ex-

pansion. Each term in the expansion becomes an stochastic variable whose mean value at

large times gives us the corresponding coefficient that we are after.

In this paper we employ the HMD based NSPT, which has been introduced in refs. [52,

53]. This is easy to implement through modifications of existing codes of nonperturbative

HMD or HMC algorithms, and is preferable to systematically improve the molecular dy-

namics (MD) part, reducing the error arising from the finite MD step size.

To explain the method in our case, we will begin by reviewing the generalized HMD

(GHMD) algorithm for nonperturbative simulations. Then we will apply the perturbative

expansion to the algorithm, to derive the HMD based NSPT algorithm.

The HMD partition function is introduced by adding the canonical momentum variable

Pµ conjugate to Uµ to the original partition function eq. (2.1).

ZHMD =

∫ 4∏
µ=1

dUµ

4∏
µ=1

dPµ e
−H[P,U ], (2.15)

H[P,U ] =
1

2

4∑
µ=1

Tr [PµPµ] + S[U ]. (2.16)

The classical dynamics for (Pµ, Uµ) with the Hamiltonian H[P,U ] reproduces the micro-

canonical ensemble at fixed energy E = H[P,U ]. Subsequent refreshment of the variable Pµ
with the Gaussian distributions generates the corresponding canonical ensemble e−H[P,U ].

The marginal distribution for Uµ becomes the e−S[U ] distribution that we are looking for.

The HMD algorithm proceeds as described in algorithm 1, where the equations in

Step 2 are discretized in time. This discretization violates the exact energy conservation,

which distorts the distribution shape. In order to ensure that the discretized Markov chain

leads to the correct probability distribution the Monte Carlo process must satisfy time

reversibility and area preservation in the MD evolution, for which the leapfrog type scheme

is normally used. For nonperturbative simulations, the Metropolis test can be inserted

between Step 1 and 2 to compensate the violation of energy conservation, yielding the

HMC algorithm.

The full momentum refreshment in Step 1 will cause random walking in phase space so

that the autocorrelation times becomes longer for the ensemble. To relax random walking

behaviour, the generalized HMC algorithm (GHMC) has been introduced in ref. [55]. For

the GHMC algorithm the momentum is partially refreshed in Step 1 as

P0,µ = c1Pµ +
√

1− c2
1 ηµ, (2.23)

instead of eq. (2.17), where c1 is a mixing parameter. Pµ in the right hand-side is the

solution of Step 2. A momentum reflection step is added after the rejection of the Metropolis

test in the GHMC algorithm, while this step is absent in the GHMD algorithm. We can

further include the gauge fixing process eq. (2.13) into the MD evolution equation.
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Step 0: Set initial state U0,µ arbitrary.

Step 1: Set initial momentum P0,µ from the Gaussian distribution as

P0,µ =

N2−1∑
a=1

ηaµT
a ≡ ηµ, (2.17)

Prob(ηaµ)dηa ∝ exp(−(ηaµ)2/4)dηa, (2.18)

where the matrices T a are SU(N) generators in the fundamental representation normalized as

Tr(T aT b) = 1
2δab.

Step 2: Solve the MD equation defined by

U̇µ = iPµUµ, (2.19)

Ṗµ = Fµ, (2.20)

Fµ ≡ iβ
[[
Sµ − S†µ

]
− 1

N
Tr
[
Sµ − S†µ

]]
, (2.21)

Sµ ≡ Uµ

 4∑
ν=1,ν 6=µ

(
zµνUνU

†
µU
†
ν + z∗µνU

†
νU
†
µUν

) , (2.22)

from the initial state (P0,µ, U0,µ) for a fixed interval in fictitious time. The dot ˙ represents the

left-wise derivative with respect to the fictitious time. These evolution equations preserve the

energy value E = H[P,U ].

Step 3: Store Uµ as the configuration and set U0,µ = Uµ, then return to Step 1.

Algorithm 1. HMD algorithm for nonperturbative simulations.

With the leapfrog algorithm and the partial momentum refreshment, the updating

algorithm for one step having a small ∆t interval, is given by
Pµ = c1P0,µ +

√
1− c2

1ηµ,

w = c1w0,

Uµ = U0,µ,

(2.24)


P̄µ = Pµ + (∆t/2)Fµ[U ],

U ′µ = exp
[
iP̄µ∆t

]
Uµ,

P ′µ = P̄µ + (∆t/2)Fµ[U ′],

(2.25)


w1 = w + ∆tαΘ[U ′],

P1,µ = exp [iw1∆t]P ′µ exp [−iw1∆t] ,

U1,µ = exp [iw1∆t]U ′µ exp [−iw1∆t] ,

(2.26)

where (P0,µ, U0,µ, w0) is the initial state and (P1,µ, U1,µ, w1) is the final state. Eq. (2.25)

corresponds to the leapfrog evolution for ∆t, for which various higher-order schemes are

available. For simplicity we will explain the second order leapfrog scheme only. The

gauge fixing evolution (2.12)–(2.14) is interleaved into the MD evolution [56, 57] and the

transformation in eq. (2.26) does not affect the gauge invariant observables, however, we

– 7 –
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introduce this to explain the stochastic gauge fixing for NSPT [33, 34, 54]. Taking the

∆t→ 0 limit with c1 = e−γ∆t, as shown in ref. [53], this evolution reduces to

U̇µ = i [Pµ −Dµw]Uµ,

Ṗµ = Fµ − γPµ + i [w,Pµ] + ζµ,

ẇ = −γw + αΘ, (2.27)

where Dµw is defined as

Dµw = UµwU
†
µ − w, (2.28)

and ζµ is a random noise satisfying

〈ζaµ(t)ζbν(s)〉 = 4γδ(t− s)δa,bδµ,ν . (2.29)

The terms with w act as the gauge damping force. Eq. (2.27) corresponds to the Kramers

equation and in the limit γ → +∞ (c1 = 0) to the Langevin equation with gauge damp-

ing force.

In the GHMD algorithm Step 2 is obtained by repeating eqs. (2.25) and (2.26) until

the total evolution time becomes a fixed value, and then applying eq. (2.24) to implement

Step 1. When the evolution time in Step 2 reduces to ∆t, the method becomes Langevin

(c1 = 0) or Kramers (c1 6= 0) algorithm.

Having explained the GHMD algorithm, we now describe the corresponding NSPT al-

gorithm. This follows by expanding (Pµ, Uµ, w) and the MD equation (2.22) or eqs. (2.24)–

(2.26) in a power series in g. We will now describe the perturbative expansion for

eqs. (2.24)–(2.26), because it is sufficient to write the simulation program. In order to

simplify notation, we first define the ?-product as the convolution product of two pertur-

bative series, given by

C = A ? B, (2.30)

A =

∞∑
k=0

gkA(k), B =

∞∑
k=0

gkB(k), C =

∞∑
k=0

gkC(k), (2.31)

C(k) = (A ? B)(k) ≡
k∑
j=0

A(j)B(k−j), (2.32)

where A,B,C are matrices and A(k), B(k), C(k) are the coefficient matrices.

The perturbative expansion for (Pµ, Uµ, w) is defined by

Pµ = β1/2
∞∑
k=1

β−k/2P (k)
µ = P (1)

µ + gP (2)
µ + g2P (3)

µ + . . . , (2.33)

Uµ =

∞∑
k=0

β−k/2U (k)
µ = U (0)

µ + gU (1)
µ + g2U (2)

µ + g3U (3)
µ + . . . , (2.34)

w = β1/2
∞∑
k=1

β−k/2w(k) = w(1) + gw(2) + g2w(3) + . . . , (2.35)
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where U
(0)
µ = Γµ is kept fixed in NSPT as it is the perturbative vacuum. Rescaling the

fictitious time and the gauge fixing parameter as t′ = t/g and α′ = g2α, and substituting

eqs. (2.33)–(2.35) into eqs. (2.24)–(2.26), we obtain
P (k)
µ = c1P

(k)
0,µ +

√
1− c2

1ηµδk,1,

w(k) = c1w
(k)
0 ,

U (k)
µ = U

(k)
0,µ ,

(2.36)


P̄ (k)
µ = P (k)

µ + (∆t′/2)F (k)
µ [U ],

U (k)
µ

′
=
(
exp

[
iP̄µ∆t′

]
? Uµ

)(k)
,

P (k)
µ

′
= P̄ (k)

µ + (∆t′/2)F (k)
µ [U ′],

(2.37)


w

(k)
1 = w(k) + ∆t′α′Θ(k)[U ′],

P
(k)
1,µ =

(
exp

[
iw1∆t′

]
? P ′µ ? exp

[
−iw1∆t′

])(k)
,

U
(k)
1,µ =

(
exp

[
iw1∆t′

]
? U ′µ ? exp

[
−iw1∆t′

])(k)
,

(2.38)

for each perturbative order k = 1, 2, . . . . The details of the perturbative expansion of

the matrix exponential exp[A] = I + g (exp[A])(1) + g2 (exp[A])(2) + . . . with A = gA(1) +

g2A(2) + . . . are explained in appendix A. The perturbative expressions for F
(k)
µ and Θ(k)

are extracted from eqs. (2.21)–(2.22), and (2.10)–(2.11), respectively:

Fµ = β

∞∑
k=1

β−k/2F (k)
µ , Θ =

∞∑
k=1

β−k/2Θ(k), (2.39)

F (k)
µ = i

[
S(k)
µ − S(k)†

µ −
1

N
Tr
[
S(k)
µ − S(k)†

µ

]]
, (2.40)

S(k)
µ =

Uµ ?∑
ν 6=µ

[
zµνUν ? U

†
µ ? U

†
ν + z∗µνU

†
ν ? U

†
µ ? Uν

](k)

, (2.41)

Θ(k) = i

[(
Y (k) − Y (k)†

)
− 1

N
Tr
(
Y (k) − Y (k)†

)]
, (2.42)

Y (k) =

4∑
µ=1

[
U (k)
µ Γ†µ − Γ†µU

(k)
µ

]
. (2.43)

In the limit ∆t′ → 0, the equation of motion should conserve the energy eq. (2.16) order

by order in perturbation theory. This energy conservation can be monitored during the

simulation.

The Wilson loop operator eq. (2.4) is expanded similarly:

W (k)
µν (R, T ) =

(zµν)RT

N
Tr

[(
(Uµ)?R ? (Uν)?T ?

(
U †µ

)?R
?
(
U †ν

)?T)(k)
]
, (2.44)

where we used a shorthand notation for matrix power with the ?-product such as (A ?A ?

A) ≡ A?3. The expectation values at large times of our W
(k)
µν (R, T ) yield the coefficients
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Step 0: Set an initial state P
(k)
0,µ = 0, U

(k)
0,µ = 0, w

(k)
0 = 0 for k = 1, · · · .

Step 1: Repeat the MD evolution and gauge transformation as

for j = 0, NMD − 1 do

1-1: Compute eq. (2.36) with partial momentum refreshment parameter c1 =e−γ∆t′.

1-2: Evolve state with the discretized MD equation eq. (2.37) or higher order scheme for

∆t′.

1-3: Transform state with eq. (2.38) for gauge fixing.

1-4: Set (P
(k)
0,µ , U

(k)
0,µ , w

(k)
0 ) = (P

(k)
1,µ , U

(k)
1,µ , w

(k)
1 ).

end for

Step 3: Project the state (P
(k)
0,µ , U

(k)
0,µ , w

(k)
0 ) out to SU(N) group and algebra.

Step 4: Compute observables with U
(k)
0,µ and return to Step 1.

Algorithm 2. NSPT algorithm based on GHMD. The MD time step size ∆t′ = 1/NMD, momen-

tum mixing parameter γ, and gauge fixing parameter α′ are given.

of the perturbative expansion of Wilson loops. For the latter we take the notation given

in ref. [24] where the first two coefficients have been computed analytically. If we consider

for example an R× T Wilson loop in the µ–ν plane, the relation is as follows

Ŵ
(R×T )
` = −N−`

〈
W (2`)
µν (R, T )

〉
,

0 =
〈
W (2`+1)
µν (R, T )

〉
. (2.45)

Notice that, since the perturbative expansion is in powers of ’t Hooft coupling λ = g2N ,

the expectation value of W
(k)
µν for odd values of k has to vanish.

A technical point is the necessity to correct for deviations from the unitarity constraint

induced by the numerical round-off error from the finite precision of computer arithmetic.

While imposing the traceless-Hermitian character of (P
(k)
µ , w(k)) is easily done, the condi-

tions on {U (k)
µ } following from the unitarity of the link matrices can be imposed by the

matrix logarithm scheme for reunitarization [38]. The details of the group projection is

described in appendix B.

Let us conclude by summarizing our NSPT algorithm. As explained earlier, the finite

time step induces a distortion in the probability distribution, which in NSPT cannot be

corrected by a Metropolis test. Hence, it is preferable to employ a higher order integration

scheme in the MD evolution. Although, for simplicity, we used the simple (second order)

leapfrog scheme to explain the HMD based NSPT algorithm, in practice we employed the

fourth order leapfrog scheme for eq. (2.37), while the evolution of w is not changed. The

properties of second and fourth order Omelyan-Mryglod-Folk schemes [58, 59], and second

order Runge-Kutta scheme in NSPT have been investigated in [52, 53]. We summarize

the NSPT algorithm used in this paper in algorithm 2. This corresponds to the Kramers

type NSPT algorithm (called KSPT in [52]). The specific parameters are fixed to γ = 0.5

for the momentum refreshing parameter c1 = e−γ∆t′ and α′ = 2 for the gauge damping

parameter. The trajectories are performed over a fixed time t′ = 1, with a perturbative

reunitarization step at the end. The Wilson loop coefficients are computed at the end of

every trajectory.
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2.2.1 Computational estimates

The maximum power of g that is studied Ntrunc is limited by the total computer memory

available. For the SU(N) TEK model, the total memory requirement is of O(NtruncN
2).

Most of the computational time is spent in matrix multiplication, whose cost is of O(N3).

The cost of the convolutional ?-product is of O(N2
trunc) with a naive implementation. The

evaluation of the perturbative matrix function requires one more factor of Ntrunc, yielding

the cost of O(N3
trunc) (see appendix A). The cost of the reunitarization we implemented is

of O(N4
trunc) (see appendix B).

The energy difference in a trajectory ∆H is non-zero for a finite MD step size ∆t.

The relation between the energy conservation violation ∆H and ∆t depends on the MD

integration scheme. We assume that algorithm 2 with 4th order leapfrog scheme yields

∆H(k) ∼ ∆t4 at each perturbation order [52], where ∆H(k) is the energy conservation

violation for the perturbative coefficient of the total energy in NSPT. Since the energy

is proportional to N2, to achieve a constant energy conservation violation, the number of

steps NMD, therefore, should scale as NMD =
√
N .

The total computational cost of the NSPT algorithm truncated at Ntrunc for the SU(N)

TEK model, then, scales as O(N3
truncN

3NMD) = O(N3
truncN

7/2) for the MD part and

O(N4
truncN

3) for the reunitarization part. Our estimates of total CPU time do not take

into account autocorrelation times. For that we need experimental studies on the statistical

properties of the Monte Carlo data, which depends on models and algorithms. As far as

the parameters we investigated, no sizable autocorrelation and parameter dependence are

observed and the autocorrelation length is of O(1) in units of the trajectory length t′ = 1.

3 Numerical results

In this section we show the results for the perturbative coefficients of the Wilson loops with

NSPT, and investigate the statistical properties of the distribution. We have implemented

the NSPT algorithm as explained in the previous section. We accumulate the statistics for

the perturbative coefficients of Wilson loops up to order g8 (Ntrunc = 8). The mean value

gives us the corresponding perturbative quantity, but the variance and higher cumulants

allow us to estimate the required statistics to achieve a given error in these coefficients.

Fortunately, we have analytic results for the one and two-loop coefficients to test our

results at these orders, but we can extend these results two more orders in powers of λ.

Furthermore, we monitor the coefficients at odd-orders O(g2`+1) which should be zero for

Wilson loops. This provides a test of the cancellation of the non-loop effect in NSPT.

Indeed, our results are consistent with zero within the two standard deviation. Therefore,

we will concentrate in giving the results of even-order coefficients.

The parameters and statistics are shown in table 1. NMD is the number of MD steps

for unit trajectory t′ = 1. Statistical errors are estimated with the jackknife method after

binning in 1000 trajectory samples. We discard the first ≥ 1000 trajectories to account

for thermalization. Since we employ the 4th order leapfrog scheme for the MD integrator,

a ∆t′4 = 1/N4
MD dependence is expected in observables [52]. We also study the limit of

vanishing step size for some representative cases.
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N L̂ k NMD Statistics

121 11 3 40 216 000

32 175 000

28 182 000

49 7 1 32 516 000

49 7 3 32 520 000

49 7 2 32 510 000

24 528 000

20 504 000

16 4 1 32 1 140 000

20 1 170 000

16 1 120 000

Table 1. Simulation parameters and statistics.

Given the pilot nature of our study we have concentrated in studying cases which have

been analyzed in detail in the analytic calculations of ref. [24]. Thus we concentrated in

the three values of N = 16, 49, 121. The lowest values are not so interesting from the point

of view of approximating large N Yang-Mills theory at infinite volume. Corrections are

expected to be large. However, only for a value as low as N = 16 can one see clearly two

effects of the twisted boundary conditions: the breakdown of CP and of cubic-rotational

invariance. The first phenomenon manifests itself in non-vanishing imaginary parts of

Wilson loops. We included this case to test this phenomenon in our NSPT determinations.

On the other hand having N = 49 and 121 allows us to test the dependence on N of

both the physical and computational parameters. We also tested several values of the

flux parameter k. For sufficiently large values of k/L̂ the dependence is quite small. For

large values of N and small values of k the dependence can be quite strong even in the

perturbative calculation. Non-perturbatively this restriction is even more important to

preserve a remnant of center symmetry [60] that validates reduction in the limit N →∞.

3.1 Comparison with analytic calculations

As mentioned earlier the presence of the twist breaks part of the symmetries of the standard

lattice symmetries with periodic boundary conditions. In particular, part of the cubic

group is broken. This translates into a dependence of the coefficients of the Wilson loop

perturbative expansion on the plane in which the Wilson loop lies. Due to the remaining

symmetry for our choice of twist, there are two sets of planes which we label as S1 = {(µ, ν) :

(1, 2), (2, 3), (3, 4), (4, 1)} and S2 = {(µ, ν) : (1, 3), (2, 4)} [24], such that the results for all

µ− ν planes contained in each Si should be the same. The results for all planes in S1 need

not be equal to those contained in S2. To increase the statistics we can average all the

planes within each set.

Our results for Ŵ 11
` and Ŵ 33

` at (N, k) = (16, 1) are shown in figures 1 and 2, re-

spectively. The mean values are plotted as a function of 1/N4
MD and extrapolated linearly
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Figure 1. MD step size dependence and extrapolation for ReŴ 11
` (upper) and ImŴ 11

` (lower) at

(N, k) = (16, 1).
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ReŴ33
2

S1
S2

−1.000
0.000
1.000
2.000
3.000
4.000
5.000
6.000
7.000

0 0.5 1 1.5

(×10−5)

(×10−4)

1/N4
MD

ReŴ33
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Figure 2. MD step size dependence and extrapolation for ReŴ 33
` (upper) and ImŴ 33

` (lower) at

(N, k) = (16, 1).
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S1 S2

Analytic NSPT χ2/DoF Analytic NSPT χ2/DoF

ReŴ 11
1 0.124 511 72 0.124 522 3(93) 1.0 = S1 0.124 512(12) 0.068

ReŴ 22
1 0.328 125 00 0.328 138(37) 0.60 = S1 0.328 096(45) 4.4

ReŴ 33
1 0.452 636 72 0.452 662(50) 0.35 = S1 0.452 601(57) 1.8

ReŴ 11
2 0.005 055 99 0.005 047 3(96) 0.057 0.005 042 42 0.005 055(13) 0.52

ReŴ 22
2 −0.014 673 13 −0.014 691(43) 1.0 −0.014 736 99 −0.014 698(56) 4.1

ReŴ 33
2 −0.045 993 08 −0.045 988(62) 2.3 −0.045 920 18 −0.045 817(74) 2.9

ReŴ 44
2 0.158 384 33 0.158 400(45) 9.4 ×10−8 0.157 896 05 0.157 894(45) 0.023

ReŴ 11
3 0.000 798(14) 1.4 0.000 775(20) 1.8

ReŴ 22
3 0.000 114(69) 0.38 0.000 051(89) 2.3

ReŴ 33
3 0.000 481(96) 0.010 0.000 38(12) 4.4

ReŴ 44
3 −0.023 093(53) 0.050 −0.022 910(56) 1.2

ReŴ 11
4 0.000 118(25) 2.7 0.000 179(33) 1.1

ReŴ 22
4 −0.000 13(12) 2.5 0.000 10(15) 1.2

ReŴ 33
4 −0.000 34(16) 0.51 −0.000 18(20) 3.2

ReŴ 44
4 0.000 837(83) 0.72 0.000 775(93) 0.83

|ImŴ 11
2 | 0.000 008 51 0.000 009 62(100) 0.37 0.000 016 08 0.000 015 2(14) 2.3

|ImŴ 22
2 | 0.000 208 33 0.000 208 4(36) 0.90 0.000 044 85 0.000 050 7(51) 1.4

|ImŴ 33
2 | 0.001 358 65 0.001 366 6(74) 1.1 0.001 056 71 0.001 060(10) 0.000 16

|ImŴ 11
3 | 0.000 000 4(21) 0.23 0.000 004 6(31) 0.13

|ImŴ 22
3 | 0.000 002 3(71) 1.7 0.000 016(10) 0.075

|ImŴ 33
3 | 0.000 086(15) 0.99 0.000 024(22) 0.011

|ImŴ 44
3 | 0.000 000 7(12) 0.18 0.000 001 2(17) 0.035

|ImŴ 11
4 | 0.000 000 7(42) 1.5 0.000 003 0(59) 0.94

|ImŴ 22
4 | 0.000 004(13) 0.24 0.000 017(19) 0.000 84

|ImŴ 33
4 | 0.000 028(31) 0.22 0.000 018(45) 0.65

|ImŴ 44
4 | 0.000 005 2(36) 0.20 0.000 002 8(51) 2.6

Table 2. Perturbative coefficients for Wilson loops on S1, S2 planes. (SU(16),k = 1).

to vanishing step size. The linear dependence in this variable is the expectation for our

4th order leapfrog scheme for the MD integrator, and our data are consistent with this

expectation. The data for the S1 and S2 planes are plotted and extrapolated separately

(purple dashed: S1, green dotted: S2). The analytic results, depicted by horizontal lines

in the same plots, only predict differences among planes for Ŵ2. At all orders, the cubic

symmetry breaking in the real parts is found to be small and of the order of the errors of

our calculation. As mentioned earlier the imaginary parts beyond the leading order are

non-zero and different for the two families of planes. Our results reproduce both features

and match nicely with the analytic results for the first two coefficients.

All our results for (N, k) = (16, 1) and (49, 2), extrapolated linearly in 1/N4
MD to zero,

are collected in tables 2 and 3. We also tabulate the analytic values from ref. [24] and
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S1 S2

Analytic NSPT χ2/DoF Analytic NSPT χ2/DoF

ReŴ 11
1 0.124 947 94 0.124 954 2(53) 0.030 = S1 0.124 957 9(65) 0.038

ReŴ 22
1 0.341 345 68 0.341 372(21) 2.7 = S1 0.341 395(25) 0.78

ReŴ 33
1 0.570 101 77 0.570 171(46) 0.34 = S1 0.570 128(54) 1.6

ReŴ 44
1 0.789 492 99 0.789 596(71) 0.44 = S1 0.789 543(82) 1.1

ReŴ 11
2 0.005 101 03 0.005 103 7(61) 7.6 0.005 100 26 0.005 101 2(77) 0.22

ReŴ 22
2 −0.016 678 06 −0.016 682(26) 0.013 −0.016 680 76 −0.016 677(33) 1.0

ReŴ 33
2 −0.088 228 03 −0.088 249(61) 0.0043 −0.088 235 09 −0.088 183(74) 0.018

ReŴ 44
2 −0.206 182 50 −0.206 18(10) 0.12 −0.206 240 12 −0.206 13(12) 0.034

ReŴ 11
3 0.000 774 1(96) 1.1 0.000 784(13) 1.3

ReŴ 22
3 −0.000 029(43) 0.021 −0.000 107(54) 2.6

ReŴ 33
3 0.002 795(95) 0.068 0.002 64(12) 0.064

ReŴ 44
3 0.019 48(16) 0.0025 0.019 24(19) 0.0023

ReŴ 11
4 0.000 177(18) 0.48 0.000 171(24) 0.64

ReŴ 22
4 0.000 128(77) 0.044 0.000 254(97) 0.22

ReŴ 33
4 0.000 21(17) 0.019 0.000 55(21) 0.43

ReŴ 44
4 −0.000 17(27) 0.045 0.000 38(34) 0.28

|ImŴ 11
2 | 0.000 000 29 0.000 000 55(59) 0.31 0.000 001 02 0.000 000 01(85) 1.7

|ImŴ 22
2 | 0.000 014 24 0.000 013 5(27) 0.32 0.000 001 99 0.000 004 1(38) 0.35

|ImŴ 33
2 | 0.000 018 24 0.000 016 4(63) 1.3 0.000 064 97 0.000 054 4(89) 0.097

|ImŴ 44
2 | 0.000 383 14 0.000 386(11) 1.2 0.000 447 56 0.000 438(17) 0.14

|ImŴ 11
3 | 0.000 000 1(13) 0.0017 0.000 002 2(20) 1.5

|ImŴ 22
3 | 0.000 005 9(56) 3.9 0.000 004 4(76) 0.75

|ImŴ 33
3 | 0.000 018(14) 1.4 0.000 031(18) 0.67

|ImŴ 44
3 | 0.000 102(25) 0.61 0.000 088(37) 0.053

|ImŴ 11
4 | 0.000 000 8(26) 0.044 0.000 003 5(39) 0.22

|ImŴ 22
4 | 0.000 003(11) 2.2 0.000 008(15) 0.39

|ImŴ 33
4 | 0.000 056(29) 0.25 0.000 068(39) 1.8

|ImŴ 44
4 | 0.000 108(53) 0.86 0.000 021(79) 0.15

Table 3. Perturbative coefficients for Wilson loops on S1, S2 planes. (SU(49),k = 2).

χ2/DoF from the extrapolating fit. The violation of CP and cubic invariance due to the

twist is well seen for the N = 16 case at the two loop level and the differences between S1

and S2 averages are consistent with the analytic values. For the (N, k) = (49, 2) case, the

results of our NSPT analysis are also consistent with analytic values. However, the violation

of CP and cubic invariance is too small to be seen in comparison with the statistical errors.

Since the violation of CP and cubic invariance disappears in the large N limit, we conclude

that in practice one would not be able see any effect of this symmetry breaking for even

larger values of N . Hence, hereafter, we show the coefficients averaged over all µ–ν planes
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Ŵ44
2

1.920
1.940
1.960
1.980
2.000
2.020
2.040

1 2 3

(×10−2)

k
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Figure 3. k dependence for Ŵ 11
` and Ŵ 44

` at N = 49. Open triangles show the results extrapolated

to 1/NMD → 0 and the other values are at NMD = 32. Dashed line in ŴRR
1 and filled squares in

ŴRR
2 are the analytic values [24, 61].

(S = S1 + S2) in order to study the k dependence and N dependence. We emphasize the

small errors of our coefficient determinations, typically of order 10−5. This gives about 3

to 5 significant digits in some determinations.

We next investigate the dependence on the flux parameter k at N = 49. For that

purpose we studied the k = 1 and k = 3 results at fixed value of NMD = 32. The

results for the coefficients for the plaquette and 4×4 Wilson loop are displayed in figure 3.

The results for k = 2 are given both at NMD = 32 as well as extrapolated 1/NMD → 0

(open triangles). From the data we conclude that NMD = 32 is sufficient for the current

analysis as the statistical error and the systematic error from the finite MD time step are

comparable. The horizontal dash lines in ŴRR
1 and the filled squares in ŴRR

2 correspond

to the analytic values. For the plaquette, the observed k-dependence is compatible with

statistical errors. As expected, the differences are small but well beyond statistical errors

for the 4 × 4 loop. This is also the case for the third order coefficient ŴRR
3 for which we

have no analytic results. Anyhow, no dramatic k dependence is seen for the third and

fourth order coefficients.

Our results averaged over all planes are displayed in table 4. The choice of val-

ues (N, k) = (16, 1), (49, 2), (121, 3) are selected so as to keep k/L̂ at ∼ 0.27 (k/L̂ =

1/4, 2/7, 3/11 for each data set). The results at the one and two-loop level are consistent

with the analytic values within two standard deviations. We also display (NPT fit) an es-

timate of the three-loop coefficients for N = 16 and 49 obtained by fitting nonperturbative

expectation values to a third order polynomial in λ with the first coefficients fixed to the

analytic values [24]. The results are roughly consistent with our NSPT determinations,

which are expected to be more reliable.
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SU(16), k = 1 ` = 1 ` = 2 ` = 3 ` = 4

Ŵ 11
` 0.124 518 8(86) 0.005 049 7(84) 0.000 791(12) 0.000 138(21)

Ŵ 22
` 0.328 123(34) −0.014 695(38) 0.000 094(61) −0.000 05(11)

Ŵ 33
` 0.452 642(47) −0.045 930(56) 0.000 448(88) −0.000 29(15)

Ŵ 44
` 0.0 0.158 232(44) −0.023 032(51) 0.000 816(79)

PT Analytic PT Analytic NPT Fit

Ŵ 11
` 0.124 511 72 0.005 051 46 0.000 826(36)

Ŵ 22
` 0.328 125 00 −0.014 694 41 0.000 04(12)

Ŵ 33
` 0.452 636 72 −0.045 968 78 0.000 34(16)

Ŵ 44
` 0.0 0.158 221 57 −0.022 88(6)

SU(49), k = 2 ` = 1 ` = 2 ` = 3 ` = 4

Ŵ 11
` 0.124 955 5(47) 0.005 103 0(53) 0.000 777 4(85) 0.000 175(16)

Ŵ 22
` 0.341 380(19) −0.016 680(24) −0.000 055(40) 0.000 171(71)

Ŵ 33
` 0.570 156(42) −0.088 227(55) 0.002 743(84) 0.000 33(15)

Ŵ 44
` 0.789 578(66) −0.206 163(97) 0.019 40(14) 0.000 01(25)

PT Analytic PT Analytic NPT Fit

Ŵ 11
` 0.124 947 94 0.005 100 77 0.000 883(9)

Ŵ 22
` 0.341 345 68 −0.016 678 96 0.000 086(36)

Ŵ 33
` 0.570 101 77 −0.088 230 39 0.002 93(5)

Ŵ 44
` 0.789 492 99 −0.206 201 71 0.019 59(7)

SU(121), k = 3 ` = 1 ` = 2 ` = 3 ` = 4

Ŵ 11
` 0.124 988 7(37) 0.005 103 6(41) 0.000 788 4(69) 0.000 156(12)

Ŵ 22
` 0.342 179(15) −0.016 760(19) −0.000 030(32) 0.000 020(55)

Ŵ 33
` 0.575 489(34) −0.090 700(43) 0.002 995(68) 0.000 03(12)

Ŵ 44
` 0.812 537(56) −0.220 758(80) 0.022 06(12) −0.000 39(21)

Ŵ 55
` 1.049 316(88) −0.407 28(14) 0.070 62(21) −0.004 59(38)

Ŵ 66
` 1.281 72(12) −0.645 07(21) 0.160 12(33) −0.019 33(57)

PT Analytic PT Analytic [61]

Ŵ 11
` 0.124 991 46 0.005 105 92

Ŵ 22
` 0.342 183 32 −0.016 797 72

Ŵ 33
` 0.575 499 81 −0.090 734 26

Ŵ 44
` 0.812 550 00 −0.220 851 02

Ŵ 55
` 1.049 336 25 −0.407 409 49

Ŵ 66
` 1.281 751 42 −0.645 311 88

Table 4. Perturbative coefficients for Wilson loops (1/NMD → 0 extrapolated). Data in PT

Analytic are obtained analytically and data in NPT Fit are obtained by fitting the non-perturbative

data with a polynomial of λ [24].
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N →∞ ` = 1 ` = 2 ` = 3

Ŵ 11
` 0.124 999 9(54) 0.005 113 4(59) 0.000 790 5(99)

Ŵ 22
` 0.342 336(21) −0.016 775(27) −0.000 025(46)

Ŵ 33
` 0.576 534(49) −0.091 185(63) 0.003 044(98)

Ŵ 44
` 0.817 004(80) −0.223 62(11) 0.022 59(17)

PT Analytic PT Analytic PT Analytic

Ŵ 11
` 0.125 000 00 0.005 106 929 7 0.000 794 223(19)

Ŵ 22
` 0.342 327 88 −0.016 814

Ŵ 33
` 0.576 298 27 −0.091 07

Ŵ 44
` 0.815 370 98 −0.222 87

Table 5. Perturbative coefficients for ŴRR
` in N →∞. Values in PT Analytic for Ŵ 11

` are N →∞
limit of results from lattice SU(N) gauge theory with Wilson gauge action [64].

Since the main interest of the TEK model is its large N limit, which coincides with

Yang-Mills at infinite N and infinite volume, we give the infinite N extrapolation of our

results. As mentioned previously finite N corrections are expected to grow for large val-

ues of R/L̂. Thus, we exclude the data of (N, k) = (16, 1) and base our analysis on

(N, k) = (121, 3) and (49, 2) only and assuming a 1/N2 dependence of the coefficients. The

results are displayed in figure 4 and the numerical values of the extrapolated coefficients

are tabulated in table 5. In the figure we only show the plaquette and 4×4 Wilson loop up

to three-loop order. The error includes only the statistical one. The values extrapolated

to N → ∞ are shown as filled circles, while the horizontal solid lines are the correspond-

ing analytic values [24, 61–64]. We see a reasonable good agreement within errors. The

deviations for the 4 × 4 loop might include also a systematic error due to the relatively

large values of 4/L̂. For a more precise control of the systematic errors in the extrapolated

results it would be necessary to have at least 3 sufficiently large values of N , which is left

out of this exploratory work.

3.2 Analysis of the distribution

For the purpose of determining the statistical requirements involved in a precise determina-

tion of the perturbative coefficients we performed an analysis of the probability distribution

of the corresponding NSPT estimates. As a quantitative measure we computed the cumu-

lants up to the 5th cumulant. The N dependence of the variance (second cumulant) is

important since the statistical error at fixed statistics is proportional to the square root of

this variance. The non-zero value of higher order cumulants measures the deviation from

the normal distribution. This is of practical importance since, as seen in ref. [65], the distri-

bution for perturbative coefficients at higher order in NSPT could show strong deviations

from a normal distribution, the so-called “Pepe effect”. We show the histograms for Ŵ 11
`

and Ŵ 33
` in figures 5 and 6, respectively. We have fixed NMD = 32 for better comparison.
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Figure 4. N → ∞ limit of perturbative coefficients using data from (N, k) = (49, 2) and (121, 3)

(upper: plaquette, lower: 4 × 4 Wilson loop).

The distributions are plotted in logarithmic scale for which the normal distribution corre-

sponds to a parabola. The dotted lines are the best fit to a normal distribution. One can

see deviations in the tail for some plots for N = 16, but it disappears for larger N . Hence,

the problem of “Pepe effect” is absent in the TEK model for sufficiently large N , similarly

to what happens for pure SU(3) lattice gauge theory. Since the 3rd–5th cumulants have

minor effect or are not detectable on the distribution, we focus on the variance only in the

following analysis.

We have studied the dependence of the variance of ŴRR
` on R, ` and N . Notice that we

can also use the results for half-integer ` in this analysis. The R dependence is illustrated

in figure 7, and is seen to go linearly with R4. On the other hand the dependence on j = 2`,

displayed in figure 8 shows an exponential behaviour for sufficiently large j. Altogether,

an ansatz of the form

σ2(N, j) =
cR4

N2

(
2− 1√

N

)2`

, (3.1)

with c = 0.0013 (solid lines in these figures) describes our data quite well. For large N

this corresponds to a dependence on the ratio of the loop size with respect to the effective

size of the box R/L̂ to the fourth power, similar to the observed subleading corrections in

perturbation theory.

The 1/N2 dependence of the variance follows from the perturbative realization of

factorization 〈W 2〉 = 〈W 〉2 +O(1/N2). Similar arguments lead to the prediction that the

p-th cumulant scales as O(1/N2p−2). This by itself explains why the distribution tends to
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1

10−4

10−3

10−2

10−1

100

101

102

−2.0 0.0 2.0 4.0

SU(16),k = 1

(×10−2)Ŵ11
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Figure 5. Histogram of Ŵ 11
` at ` = 1, 2, 3, 4 from left to right (top row: N = 16, middle: N = 49,

bottom: N = 121). Results from NMD = 32.

normal at large N . We cannot check this behaviour of the higher cumulants since their

values are too small.

The exponential dependence of the variance on the order 4` coincides precisely with the

characteristic growth in the number of planar diagrams [27, 66, 67], given by the Catalan

number. In the absence of renormalons, a similar growth is also expected for the mean

values Ŵ`, but it is hard to check this behaviour with our results reaching only up to order

` = 4. Indeed, as observed in ref. [49], extremely large order perturbative coefficients are

needed to detect the expected factorial behavior for the pure SU(3) lattice gauge theory.

Hence, it would be interesting to extend our results to higher order to explore this point.

The computational requirements will be studied in the next subsection.

4 Estimate of the computational cost at high order and large N

Here we will evaluate the computer requirements to extend our calculation Ŵ` up to order

` = Ntrunc/2. The precision in the determination is proportional to the standard deviation

of the corresponding probability distribution. Hence, if we want to keep this precision fixed

our data sample should grow with the square, the variance. We previously estimated that

for each sample point the computational cost goes as O(N7/2N3
trunc) for the MD part and
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4

10−4

10−3

10−2

10−1

100

101

102

5.6 5.8 6.0

SU(121),k = 3

(×10−1)Ŵ33
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4

Figure 6. Same as figure 5, but for Ŵ 33
` .

as O(N3N4
trunc) for the reunitarization part. Using eq. (3.1), we can then give an estimate

of the total computational cost as follows:

[Cost] ∝ (N7/2N3
trunc)× σ2(N,Ntrunc) ∝ N3/2N3

trunc

(
2− 1√

N

)Ntrunc

, (4.1)

or

[Cost] ∝ (N3N4
trunc)× σ2(N,Ntrunc) ∝ NN4

trunc

(
2− 1√

N

)Ntrunc

. (4.2)

This estimate can be reduced by improving the algorithm. To obtain perturbative co-

efficients at very higher order, the exponential scaling behaviour, 2Ntrunc , has to be relaxed

by reducing the variance using a method such as a kind of reweighting method in NSPT.

Furthermore, the factor N4
trunc comes from our implementation of the reunitarization al-

gorithm, for which a better algorithm could be applicable. One possibility is to use the

perturbative Gram-Schmidt algorithm for the reorthogonalization followed by the pertur-

bative subtraction of the U(1) phase. The estimation of the U(1) phase still requires the

perturbative trace-log computation whose cost is of O(N3
trunc). At least one can reduce the

factor from N4
trunc to N3

trunc. In that case eq. (4.1) would dominate the total cost.

The cost of O(N2
trunc) in the convolutional product of two series could be amelio-

rated by using the fast Fourier transformation (FFT) algorithm, which reduces the cost to

O(Ntrunc logNtrunc). Improvement in this direction can be used in future studies.
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Ŵ 33
j/2

Ŵ 22
j/2
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N = 16, 49, 121, respectively.

5 Summary

In this paper we have developed and applied an HMD-based NSPT algorithm to compute

the perturbative expansion of Wilson loops in the TEK model. At large N these coefficients

coincide with those of large volume Yang-Mills theory, hence their interest. The low order

coefficients are very precise and match with the values obtained by the analytic calculation

of ref. [24]. We have been able to extend the perturbative series two more orders, up

to O(λ4).

We also studied the statistical properties of the coefficients in NSPT. We found that

their distribution tends to normal at large N and there is no Pepe effect. Furthermore,

we have determined the dependence of the corresponding variance on N and the order

of perturbation theory. This has allowed us to estimate the computational requirements

necessary to extend our results to higher orders. This would allow extending studies of the

type described in ref. [27] to Yang-Mills theory in the limit of infinite number of colours.
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A Perturbative matrix functions

In this appendix we describe the details of evaluating the perturbative coefficients of a

matrix function with a perturbative series as the argument. After introducing the generic

algorithm for perturbative matrix functions, we explain the cases with matrix exponential

and matrix logarithm explicitly.

We consider a matrix function f(F ) whose argument F is a matrix. We assume that

f(F ) has the following Taylor expansion form:

f(F ) =
∞∑
k=0

ckF
k. (A.1)

We also assume that the perturbative expansion of F is

F =

∞∑
k=1

gkF (k), (A.2)

where g is the coupling constant and F (k) are the coefficient matrices. Note that the leading

term of F is O(g). We truncate the perturbative expansion at Ntrunc-th order.

F =

Ntrunc∑
k=1

gkF (k). (A.3)

The perturbative expansion of f(F ) with eq. (A.3) is also truncated at Ntrunc as

f

(
Ntrunc∑
k=1

gkF (k)

)
= c0I +

Ntrunc∑
k=1

gk [f(F )](k) . (A.4)

We would like to know the coefficient [f(F )](k) in terms of ck’s and F (k)’s. A recursion

relation to evaluate the coefficient [f(F )](k) can be obtained by expanding the Horner’s

method for polynomials as follows.
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As F is truncated at Ntrunc-th order, the Taylor expansion is also truncated at Ntrunc-th

order,

f(F ) ' G =

Ntrunc∑
k=0

ckF
k, (A.5)

where the matrix G is introduced for the truncated form. G can be evaluated via the

Horner’s method:

G = f(F ) = c0 + c1F + c2F
2 + · · ·+ cNtruncF

Ntrunc

= c0 [I + d1F [I + d2F [I + · · · [I + dNtruncF ] · · · ]]] , (A.6)

dj ≡ cj/cj−1. (A.7)

This form leads to the following recursion relation:

GN = I + dNtruncF, (A.8)

Gj = I + djFGj+1, for j = Ntrunc − 1, Ntrunc − 2, . . . , 2, 1, (A.9)

G = c0G1, (A.10)

where Gj are working area. As F has the series form eq. (A.2), Gj also has the series form:

Gj = I +

Ntrunc∑
k=1

gkG
(k)
j . (A.11)

Substituting the series form (A.3) for F and (A.11) for Gj into the recursion relation,

we obtain

Gj = I +

Ntrunc∑
k=1

gkG
(k)
j

= I + dj

(
N∑
k=1

gkF (k)

)(
I +

N∑
k=1

gkG
(k)
j+1

)

= I + dj

[
Ntrunc∑
k=1

gkF (k) +

Ntrunc∑
k=1

Ntrunc∑
`=1

gk+`F (k)G
(`)
j+1

]

= I + dj

[
Ntrunc∑
k=1

gkF (k) +

Ntrunc∑
k=2

gk
k−1∑
`=1

F (k−`)G
(`)
j+1

]
. (A.12)

Here we discard higher order terms O(gk) with k > Ntrunc.

Consequently the perturbative coefficient [f(F )](k) of f(F ) can be obtained as

algorithm 3. The computational cost scales with N3
trunc.
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1: for k = 1 to Ntrunc do

2: G
(k)
Ntrunc

= dNtrunc
F (k)

3: end for

4: for j = Ntrunc − 1 to 1 do

5: for k = Ntrunc to 1 do

6: G
(k)
j = dj

[
F (k) +

∑k−1
`=1 F

(k−`)G
(`)
j+1

]
7: end for

8: end for

9: for k = 1 to Ntrunc do

10: G(k) = c0G
(k)
1

11: end for

Algorithm 3. Recursion algorithm for the perturbative expansion of a matrix function f(F ). The

maximum order Ntrunc of expansion is fixed. G(k) is the perturbative coefficient [f(F )](k).

A.1 Matrix exponential for updating U

Here we consider the case of f(F ) = exp(F ) = exp(iP∆τ) with P =
∑∞

k=1 β
−k/2P (k). The

Taylor expansion for f(F ) is

f(F ) = exp(F ) = I +

∞∑
k=1

1

k!
F k

exp(iP∆τ) = I +
∞∑
k=1

(i∆τ)k

k!
P k. (A.13)

Thus the coefficients are ck = (i∆τ)k/k!. We identify F = P , F (k) = P (k), dj = i∆τ/j,

and [exp(iP∆τ)](k) = G
(k)
1 with g = β−1/2 for the recursion algorithm 3 (omitting the last

step lines 9–11 as c0 = 1).

A.2 Matrix logarithm for reunitarization

Next we consider the case of f(F ) = ln(I + F ) = ln(U) with U = I +
∑∞

k=1 β
−k/2U (k) =

I + F . The Taylor expansion for f(F ) is

f(F ) = ln(I + F ) =

∞∑
`=1

(−1)`+1

`
F `. (A.14)

Thus the coefficients are c0 = 0, c` = (−1)`+1/`. As F is expanded as F =
∑∞

k=1 β
−k/2U (k),

we can identify F (k) = U (k), and [ln(U)](k) = G
(k)
1 with g = β−1/2 and dj = −(j − 1)/j for

the recursion algorithm 3.

B Perturbative reunitarization

Reunitarization of U is applied perturbatively on U (k) via the perturbative expansion of

the matrix logarithm:

A ≡ ln[U ]⇔ U = exp[A], (B.1)
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1: for k = 1 to Ntrunc do

2: if k = 1 then

3: A = U (1)

4: else

5: A = U (k) +X[U (1), U (2), . . . , U (k−1)]

6: end if

7: B =
(
A−A†

)
/2

8: A = B − Tr[B]/N

9: if k = 1 then

10: U (1) = A(1)

11: else

12: U (k) = A(k) −X[U (1), U (2), . . . , U (k−1)]

13: end if

14: end for

Algorithm 4. Perturbative reunitarization algorithm for a SU(N) matrix. A and B are working

area.

where A should be anti-Hermitian and traceless for U to be SU(N). From the perturbative

expansion of the matrix logarithm and A =
∑∞

k=1 g
kA(k), we have

[ln[U ]](k) = A(k), (B.2)

where [ln[U ]](k) is described in subsection A.2. The SU(N) condition on the perturbative

coefficients A(k) is

A(k)† = −A(k), Tr[A(k)] = 0. (B.3)

By inspecting algorithm 3, we can find that the coefficient [ln[U ]](k) = A(k) has the following

dependency on U (k):

A(1) = U (1), (B.4)

A(k) = U (k) +X[U (1), U (2), . . . , U (k−1)], for 1 < k, (B.5)

where X[U (1), U (2), . . . , U (k−1)] ≡ [ln[U ]](k)−U (k). Thus the SU(N) condition on A(k) can

be guaranteed by applying algorithm 4 on U (k). The computational cost of algorithm 4 is

O(N4
trunc).

In order to apply algorithm 4 to the TEK model, we have to reunitarize the ma-

trix V
(k)
µ = U

(k)
µ Γ†µ as the perturbative vacuum is U

(0)
µ = Γµ. After reunitarizing V

(k)
µ ,

U
(k)
µ = ΓµV

(k)
µ is computed.
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