
 

 

 

 

Repositorio Institucional de la Universidad Autónoma de Madrid 

https://repositorio.uam.es  

Esta es la versión de autor del artículo publicado en: 
This is an author produced version of a paper published in: 

 
Software Quality Journal, 27. 4 (2019): 1505-1530 

 
DOI:    http://dx.doi.org/10.1007/s11219-019-09455-4    
 
Copyright: © 2019, Springer Science+Business Media, LLC, part of Springer 
Nature 
 
El acceso a la versión del editor puede requerir la suscripción del recurso 

Access to the published version may require subscription 
 

https://repositorio.uam.es/
https://link.springer.com/article/10.1007/s11219-019-09455-4


1 
 

Analysis and Measurement of Internal Usability 
Metrics through Code Annotations 

 

Maximilian Schramme 
Technische Universität München 

Department of Business Informatics 
Munich, Germany 

 
 

José A. Macías (*) 
Universidad Autónoma de Madrid 

Computer Engineering Department 
Madrid, Spain 

 

(*) Corresponding Author (j.macias@uam.es) 

 

ABSTRACT 
Nowadays, usability can be meant as an important quality characteristic to be considered throughout 
the software development process. A great variety of usability techniques have been proposed so far, 
mostly intended to be applied during analysis, design and final testing phases in software projects. 
However, little or no attention has been paid to the analysis and measurement of usability in the 
implementation phase. Most of the time, usability testing is traditionally executed in advanced stages. 
However, the detection of usability flaws during the implementation is of utmost importance to 
foresee and prevent problems in the utilization of the software and avoid significant cost increases. In 
this paper, we propose a feasible solution to analyze and measure usability metrics during the 
implementation phase. Specifically, we have developed a framework featuring code annotations that 
provides a systematic evaluation of the usability throughout the source code. These annotations are 
interpreted by an annotation processor to obtain valuable information and automatically calculate 
usability metrics at compile time. In addition, an evaluation with 32 participants has been carried out 
to demonstrate the effectiveness and efficiency of our approach in comparison to the manual process 
of analyzing and measuring internal usability metrics. Perceived satisfaction was also evaluated, 
demonstrating that our approach can be considered as a valuable tool for dealing with usability metrics 
during the implementation phase.  

KEYWORDS 
Internal Software-Product Quality, Usability Metric, Code Annotation, User-Centered Development, 
Human-Computer Interaction.    

ACKNOWLEDGEMENTS 
This work was partially supported by the Madrid Research Council (P2018/TCS-4314). 

 

  



2 
 

1. Introduction 

Usability evaluation comprises techniques and methods that have been used for more than two decades 
(Card et al. 1999). Most commonly used techniques are principally aimed at formative evaluations in 
early development stages and late summative assessments before the installation phase. Actually, there 
is a huge number of existing techniques that can be applied in early prototyping and late evaluation of 
mature products (Nielsen and Molich 1990; Wharton 1992). There is, however, a major lack of 
usability techniques that can be applied during the implementation phase, where important changes to 
functional and non-functional aspects of the software product and its usability take place, influencing 
the usability in-use of the software overall. Companies justify the main reasons for this problem in the 
necessity of counting on additional resources and the developer’s mindset (Otkjær et al. 2008). 
However, collecting quality indicators (such as those that can be found in the code) is highly 
demanded by companies (Tomas et al. 2013). 

Code-based usability evaluation provides strong benefits such as the revision of usability problems 
during the implementation phase, the reduction of usability testing effort and the improvement of 
maintainability in the long term, enabling to control the degradation in quality that happens due to 
software aging (Oliveira et al. 2014). Some of the most common methods used to detect usability 
problems in the coding phase are inspections (IEEE 2008), including informal, walkthroughs and 
technical reviews that are intended to manually analyze the code in order to detect defects. Inspections, 
which are principally carried out by experts, are commonly used to measure specific metrics and 
detect certain problems related to different software quality issues.  

In fact, the inspection of usability problems during the implementation phase comprises a challenging 
task. This is principally due to the lack of explicit high-level information needed to discern usability 
objectives and related requisites in the source code. Another reason is the lack of specific tools, which 
results in limited support for programmers in terms of usability measurement during the 
implementation, in contrast to the vast number of resources available for measuring usability in other 
phases of the development process (Veral and Macías 2019; Tullis and Albert 2013). 

According to the aforementioned drawbacks, we have proposed the following general research 
questions to conduct out research: 

• RQ1. Are there previous approaches and works focusing on usability measurement during the 
implementation phase? 

• RQ2. Is it possible to create a framework to automatically calculate usability metrics, as 
defined in ISO/IEC 25023, from the source code? 

• RQ3. Can the framework crated be considered as effective, efficient and satisfactory for the 
final user? 

To give answers to the above research questions, we have carried out an extensive research of previous 
work, concluding that no specific approaches exist that bring a clear solution to the problems 
mentioned. In this sense, our contribution is aimed at providing a framework for usability 
measurement during the implementation phase of a software project. This way, our framework 
provides code-annotation facilities to codify and automatically process internal usability metrics 
embedded in the code, obtaining measurements at compile time. To carry out this task, our approach 
features internal metrics – i.e., those concerning the software product’s implementation aspects. More 
concretely, our approach is inspired by the internal usability metrics included in ISO/IEC 25023 (ISO 
2016), a current and revised version of ISO/IEC TR 9126-2 (ISO 2002) and ISO/IEC TR 9126-3 (ISO 
2003). These metrics are intended to measure internal values that can be used as early indicators to 
predict usability before the subsequent phases of testing and installation, increasing also the 
maintainability of the software overall. We argue that internal measures are important since they 
represent valuable clues for forestalling further problems that influence the values of corresponding 



3 
 

external and in-use measures (ISO 2001), decreasing the number of usability tests that are usually 
achieved once the product has been fully developed. 

In a nutshell, the main contributions of our work are the following: 

- A set of annotations that can be inserted in the source code to create meta-information 
intended to address internal metrics related to non-executable product quality during the 
implementation phase. 

- A framework where technical users, such as programmer analysts, programmers, usability 
inspectors and so on, can use the aforementioned annotations to analyse and inspect quality 
issues related to usability. Although our approach is independent of the human resources 
planning for a given project, it enables the participation of different roles according to their 
expertise in usability (e.g., programmers with knowledge in usability, usability engineers and 
inspectors, etc.) in order to assume annotation and inspection tasks depending on the 
implementation process chosen. 

- An annotation processor that automatically processes the meta-information in form of 
annotations created by users. The processor calculates and reports internal metrics related to 
usability. This is automatically accomplished, thus metrics are calculated in real time when the 
user modifies the code or creates new meta-information. 

This paper is structured as follows. Section 2 presents the research carried out to find previous works. 
Section 3 presents our approach in detail. Section 4 presents the evaluation of our approach and the 
discussion of results. Finally, Section 5 reports on conclusions and future work. 

2. Related Work 

In order to look for previous works and give an answer to RQ1, we conducted a literature review. We 
utilized the following bibliographical resources: ACM Digital Library, Springer, IEEE Xplore Digital 
Library and Google Scholar. The search pattern utilized was:  

(“usability” or “usable” or “user-centered” or “user-centred”) and  

(“metric” or “measure” or “quality” or “ISO”) and 

(“code” or “coding” or “implementation”)  

This way, we initially identified a total of 70 papers. Then we carried out a screening, selecting papers 
related to code-based metric measurement, preferably related to usability. After screening, we finally 
obtained 15 partially related papers.   

In general, the problem that we identified during the screening of the selected papers is that there is a 
high amount of works focusing on automatically computing different source code measures such as 
complexity, size and so on (Jabangwe et al. 2015; Tomas et al. 2013; Jabangwe and Šmite 2012; Singh 
et al. 2010; Kanellopoulos et al. 2010; Briand and Wüst 2002), but there are few works related to 
usability measures. Other works found are mainly based on developed metrics or usability metrics, but 
according to an existing conceptual model as part of a model-driven approach (Ammar et al. 2013; 
Fernandez et al. 2012; Panach et al. 2011; Feuerstack et al. 2008). Also, other existing papers are 
mainly based on computing external usability metrics (Lettner and Holzmann 2011; Bailey et al. 2009; 
Seffah 2006) or even on evaluating the product in-use (Clemente and Macías 2010). Besides, we 
identified previous works focused on quality characteristics in several application domains, but not 
specifically related to internal characteristics. This is the case for the work proposed by Carvalho et al. 
(2017), which is mainly focused on discovering quality characteristics and measures that should be 
taken into account in the evaluation of ubiquitous systems. Other works are focused on the Web to 
identify data-oriented quality characteristics (Han 2017; Orehovački et al. 2013), proposing specific 
web metrics (Fraternali et al. 2002) or utilizing specific tools to evaluate in-use metrics (Brajnik 
2000).  



4 
 

However, there is a lack of papers investigating on usability metrics related to the source code of a 
software application. A paper by Memon (2009) reports on techniques of reverse engineering for the 
automated usability evaluation of a GUI (Graphical User Interface). This allows to automate usability 
evaluations but only when the application includes a GUI. Another shortcoming found was the 
utilization of the word “metric" in the area of software development, where it is very common to find 
this term related to the size and complexity of the software rather than being related to usability. This 
way, we found papers based on metrics that are not specifically related to end-user usability, but to the 
understandability of the program by the developer.  

Another related paper, written by Dubey and Rana (2011), is focused on usability estimation in 
software systems, using diverse object-oriented metrics to relate usability with software architecture. 
However, it mentions but does not further investigate the metrics suggested by ISO/IEC 9126 (ISO 
2001) or ISO/IEC 25023. Anyway, the approach is quite technical and not specifically oriented to 
usability.  

All in all, the literature review verified the lack of existing proposals related to the analysis and 
measurement of usability based on source code. This provided an answer to research question RQ1 
and a challenge to carry through our research.   

3. Our Approach 

In order to give an answer to RQ2, we propose a framework for the analysis and measurement of 
usability through the source code. To carry out this task, we have based on the ISO/IEC 25023 internal 
usability metrics to create a set of custom annotations combined with an annotation processor that can 
be used in Java (Oracle 2018) implementations. Based on these annotations, which can be inserted in 
the source code, the annotation processor computes the metrics and provides automatic advising in 
real time. Our framework can be applied under a role-based approach, where different technical users, 
such as programmer analysts, programmers, usability inspectors and so on, can use the annotations to 
codify and inspect quality issues related to usability, splitting up responsibilities for the different 
annotation tasks if desired. 

3.1. Proposed Method to Measure Internal Usability 

As stated in ISO/IEC 25023, the measurement of internal metrics requires from experts to carefully 
review and calculate each of the values in order to evaluate the internal usability of the product by 
analyzing the code manually. This task is principally achieved by technical members of the project 
team or quality staff, according to the standard specification. However, as modern project teams today 
are composed of persons with different competencies and background, usability analysis and 
evaluation can be assumed by different roles. 

We propose a method that conceptually operates as follows: 

1) First, the roles in charge of annotations should be defined. In general, our approach is 
independent of any human resources planning, which is out of the scope of our research. In 
general, only the role of a usability inspector (or similar) is necessary to fully annotate the 
code previously generated by programmers and analyze the resulting metrics. However, 
different roles can participate in code annotations and further analysis, as our approach can be 
used under incremental and iterative programming and inspection processes as desired. This 
facilitates the management and interpretation of the values for each metric in order to support 
decision-making, which may imply to compare the results with the usability objectives of the 
software, thus addressing usability issues during the implementation phase by splitting up 
responsibilities. For instance, programmers and usability engineers can work together (i.e, 
programmers can write the code and usability engineers can deal with annotations, parameters 
and results) to get a first version of the annotated code and analyze the resulting metrics to 
improve and inspect the code in next refinement steps.  



5 
 

2) Second, the source code has to be annotated. This enables the calculation of the internal 
usability metrics as specified in ISO/IEC 25023. This is achieved by means of the annotation 
facilities that certain programming languages and environments provide. We have based on 
Java annotation facilities in order to implement our annotation processor. However, the 
proposed annotations and parameters can be used in other programing languages as long as 
they directly or indirectly provide annotation facilities (i.e., using comments to include the 
annotations and creating an application to process such comments).  

3) Third, annotations are automatically processed to obtain the resulting metrics with no need to 
run any test. We have developed an annotation processor that is in charge of automatically 
processing the annotations in the code and calculate the metrics at compile time (i.e., with no 
need to execute the code), providing numerical results for the internal usability metrics, in 
terms of percentage values, according to the calculations and optimal values specified in 
ISO/IEC 25023. This facility is automatically triggered when any change in the code occurs, 
which supports iterative revision of the code that can be further improved according to the 
results observed through the metrics. 

3.2. ISO/IEC 25023 

In order to carry out our approach, we have based on the specification of internal metrics included in 
ISO/IEC 25023. This standard is part of ISO/IEC 25000 (ISO 2005), which is known as SQuaRE – 
System and Software Quality Requirements and Evaluation. ISO/IEC 25000 comprises an attempt to 
gather and improve previous quality models. The standard was specifically designed to replace 
ISO/IEC 9126 and ISO/IEC 14598 (ISO 2006). More specifically, ISO/IEC 25023 is concerned with 
the measurement of system and software product quality, providing a set of quality measures for each 
characteristic and sub-characteristic defined in ISO/IEC 25010 (ISO 2011), as well as specific 
explanations of how to apply such measures. Coming from ISO/IEC TR 9126-2 and ISO/IEC TR 
9126-3, the new ISO/IEC 25023 provides three different kinds of metrics. On the one hand, internal 
metrics are directly related to the source code but not to the execution of it, therefore they are affected 
by the quality of the development process. On the other hand, external metrics require the software to 
be executed, and they are applicable to the running application. They depend on the internal software 
quality and affect the quality in-use of the software product (Bevan 2009). Finally, in-use metrics are 
applied when the software is fully developed and can be tested under real conditions. In-use metrics 
always depend on the context of use. 

However, and contrary to ISO/IEC 9126, ISO/IEC 25023 features some changes related to the 
calculation of the metrics, presenting also a slightly different structure. In general, this new standard 
combines both external and internal metrics. Nevertheless, we are principally interested in internal 
metrics involving usability. This way, we have based on the 6 quality sub-characteristics related to the 
usability characteristic that can be found in ISO/IEC 25023. These 6 sub-characteristics comprise a 
total of 12 metrics including 22 parameters required for the calculations. In summary, all this 
information is shown in Appendix A1. 

All in all, the information provided by ISO/IEC 25023 is too general, and the metrics included are 
barely described to be of any benefit to usability engineers (Bevan et al. 2016). This way, the metrics 
provided by the standard, as well as the suggested parameters for the calculations, have to be 
interpreted and further detailed for specific utilization through the source code. This would provide 
strong benefits such as the revision of usability problems in the implementation phase, the reduction of 
usability testing effort and the increase of the source code maintainability in the long term. Our 
approach provides these benefits for usability engineers, proposing a semi-automatic mechanism to 
obtain metric values using meta-information through code annotations. With that in mind, the 
proposed mechanism will be developed in the following sections. 

 



6 
 

3.3. Code Annotations 

In order to annotate to code with meta-information intended to automatically calculate internal 
usability metrics as specified in ISO/IEC 25023, we have utilized Java annotations (Oracle 2018). Java 
annotations were first introduced as a part of Java version 5, and now they are used in many popular 
technologies like JavaBeans, JDBC and Javadoc. Java annotations are widely used in Java 
programming as they allow enriching the code with meta-information that can be later evaluated by a 
developed compiler plugin called annotation processor. Annotation facilities can be found in other 
programing languages and environments. However, Java programing language and Eclipse 
development environment (IBM 2018) are widely used for software development, and we have based 
on both technologies to develop our approach. Java provides native annotations as part of the 
programming language. The default annotation processor is triggered during the compilation of the 
program code, and it is able to analyze the annotations, display warnings and generate additional 
source code. 

In order to include meta-information as code annotations to automatically calculate internal usability 
metrics, we have developed the following method: 

1) First, using the original definitions appearing in ISO/IEC 25023, we have classified each metric 
according to the parameters needed for its calculation. This way, Table 1 depicts an enumeration of the 
metrics used in our approach, together with a comprehensive description and the parameters needed 
for the corresponding code annotation. 

# Metric Metric Name Comprehensive Description Parameter for Code Annotation  

1 Integrity of 
Description 

This metric helps ensure that 
potential users will understand 
the capability of the product 
after reading the product 
description –i.e., users can 
understand whether the 
software product is suitable for 
their intended use and that it 
can be used for particular 
tasks. This way, code functions 
have to be adequately 
described along the whole 
project in order to be 
consistent with user 
requirements. 

A function can be annotated using 
a parameter that can take the 
value true or false depending on 
whether the function is intended 
to be described as understandable 
in the product description or not 
according to expert criteria. 

2 Demonstration 
Capability 

This metric is used to identify 
the demonstration capability of 
a code function –i.e., 
demonstration steps showing 
how the product is used, also 
including facilities for wizards. 
This facilitates the interaction 
with functional elements. 

A function can be annotated using 
a parameter that can take the 
value true or false depending on 
whether the function has 
demonstration capability or not 
according to expert criteria. 

3 Evident 
Function 

This metric is useful to 
identify whether users are able 
to identify specific functions 
by interacting with the 
interface elements –i.e., 
navigating through the 
interface options or menus. 
This facilitates the validation 

A function can be annotated using 
a parameter that can take the 
value true or false depending on 
whether the function is evident to 
user or not according to expert 
criteria. 



7 
 

of user requirements and tasks. 
4 Completeness of 

User 
Documentation 
and/or Help 
Facility 

This metric can be used to 
identify the completeness of 
documentation, help facility or 
both. This facilitates the 
identification of functionality 
that is completely documented 
or not, which eases the user 
interaction with the software 
product. 

A function can be annotated using 
a parameter that can take the 
value true or false depending on 
whether the function is 
completely described in the user 
documentation and/or help facility 
or not according to expert criteria. 

5 Operational 
Error 
Recoverability 

This metric can be used to 
identify functionality that 
tolerates user errors, which is 
essential to assure usability, 
ensuring that software controls 
user errors and responds 
accordingly.  

A function can be annotated using 
a parameter that can take the 
value true o false depending on 
whether the function is 
implemented with user error 
tolerance or not according to 
expert criteria. 

6 Operational 
Consistency 

This metric is useful to ensure 
consistency –i.e., same 
operations behave the same 
way in different parts of the 
software, which guarantees a 
consistent interaction when the 
same operation appears in the 
software product. 

A function or operation can be 
annotated using a parameter that 
can take the value true or false 
depending on whether it behaves 
the same way to similar 
operations in other parts of the 
system or not according to expert 
criteria. 

7 Message Clarity This metric helps identify the 
clarity of user messages. For 
instance, clear error messages 
enable the user to know how to 
recover from errors. As 
messages are important 
interaction elements, those 
should be clear and well 
composed enough to fulfill 
their purpose. 

A message can be annotated using 
a parameter that can take the 
value true or false depending on 
whether the message provides 
clear explanations or not 
according to expert criteria. 

8 Customizing 
Possibility 

This metric is used to identify 
customizable elements in the 
code. This helps assess the 
flexibility of the software 
functionality to be configured 
according to user criteria. 
Customizable functionality 
facilitates user interaction 
according to the user’s needs. 

A function or operation can be 
annotated using a parameter that 
can take the value true or false 
depending on whether it can be 
customized by user during 
operation or not according to 
expert criteria. 

9 Input Validity 
Checking 

This metrics can be used to 
identify interactive input 
functionally that allows 
validity checking –i.e., 
functionality that checks 
whether the user introduces the 
required data or not. This 
enables controlling the 
interaction, providing user 
with the necessary support to 
input information into the 

An input user interface element 
can be annotated using a 
parameter that can take the value 
true or false depending on 
whether this element checks for 
valid data or not according to 
expert criteria. 



8 
 

software product. 
10 Avoidance of 

Incorrect 
Operation 

This metric enables to identify 
fault tolerance. More 
specifically, it is useful to 
identify functionality to avoid 
critical and serious failures, as 
well as data damage, caused by 
incorrect operations. This is 
necessary to avoid the 
interruption of user interaction 
due to fatal errors. 

A function or operation can be 
annotated using a parameter that 
can take the value true or false 
depending on whether it avoids 
incorrect operational patterns 
according to expert criteria. 

11 Appearance 
Customizability 
of User 
Interface 

This metric is used to identify 
user interface elements that 
can be customized in 
appearance. This facilitates the 
customization of the user 
interface depending on the 
user’s criteria (i.e., look and 
feel). 

A user interface element can be 
annotated using a parameter that 
can take the value true or false 
depending on whether this 
element can be customized in 
appearance or not according to 
expert criteria. 

12 Physical 
Accessibility 

This metric helps identify user 
interface elements that can be 
customized for universal 
access. This is an important 
issue to ensure that all users 
can interact with the software 
product. 

A user interface element can be 
annotated using a parameter that 
can take the value true or false 
depending on whether this 
element can be customized for 
access by users with physical 
handicaps or not according to 
expert criteria. 

Table 1. Metrics used in our approach, together with a comprehensive description and the parameters 
needed for the implementation through code annotations  

As shown in Table 1 some metrics, such as 1 and 2, need to take into account code functions. However 
other metrics, such as 9 and 11, are intended to process UI (User Interface) elements. Finally, the 
metric number 7 calculates on the number of messages. This classification is shown in Figure 1. It is 
worth noting that some metrics, such as 8 and 10, appear in two different categories (i.e., Function and 
Operation) as they are related to parameters involving functional and operational information for the 
calculation. 

2) Second, we have created annotation types for the metric classification previously described. The 
identification for each annotation type begins with the letters ME, which means Measurement, 
followed by the name of the annotation type. This way, we have created the following 4 annotation 
types (see Figure 1): 

• MEFunction  
• MEMessage  
• MEOperation  
• MEUIElement 

3) Third, we have created annotation parameters as inputs for each annotation type according to the 
parameters needed to calculate each related metric (as described in Table 1). 



9 
 

  

 

Fig. 1 Types of annotations and classification of metrics  

Since the terms function, message, operation and UI element are not clearly defined in the ISO 
standard (Abran et al. 2003), we defined those terms in the context of our work: 

• Function: represents a functional piece of code that has several inputs and generally one 
output. In the case of Java, a function can be meant as a method. 

• Message: represents an interaction between the user and the system that is initiated by the 
system. 

• Operation: represents an interaction between the user and the system that is initiated by the 
user. 

• UI Element: represents a single functional entity in the user interface of the application that 
the user can interact with. 

As for annotation parameters, they are defined according to the nature of the measure and the 
parameters needed to calculate each metric. This way, and according to the information appearing in 
Table 1, we have considered parameters that can take the value true (when the parameter is satisfied) 
or false (when the parameter is not satisfied). Table 2 presents the parameters associated to each 
type of code annotation and metric (according to the information presented in Figure 1).   

Annotation Parameter to be Used in the Code Related 
Annotation Type 

Related 
# Metric 

isDescribedAsUnderstandableInProductDescription MEFunction 1 

hasDemonstrationCapability MEFunction 2 

isEvidentToUser MEFunction 3 

isCompletelyDescribed MEFunction 4 

isImplementedWithUserErrorTolerance MEFunction 5 

hasInconsistentBehavior MEOperation 6 

hasClearExplanations MEMessage 7 

canBeCustomizedByUser MEFunction, 
MEOperation 

8 

hasCheckForValidData MEUIElement 9 

avoidsIncorrectOperationalPatterns MEFunction, 10 



10 
 

MEOperation 

canBeCustomizedInAppearance MEUIElement 11 

canBeCustomizedForUsersWithHandicaps MEUIElement 12 

Table 2. Annotation parameters to be used in the code, together with the related annotation types and 
metrics. 

The number of functions, messages, operations and user interface elements needed to measure the 
metrics is automatically calculated by the annotation processor when processing MEFunction, 
MEMessage, MEOperation and MEUIElement annotations, respectively. In the same way, some 
of the parameters needed to measure the metrics, as they originally appear in ISO/IEC 25023 (see 
Appendix A1), are automatically calculated by the annotation processor. This is the reason why we 
have considered in Table 1 only one parameter per metric, facilitating the codification to users. For 
instance, in the measurement of metric 9 (input validity checking), a function or method has to be 
annotated as an input UI element checking or not for valid data (parameter A). However, our approach 
automatically computes the total number of input UI elements that could check for valid data 
(parameter B), which provides with the other value needed to finally calculate the metric as X = A/B, 
having the user to take into account only a single parameter (hasCheckForValidData), as specified 
in Table 2. 

The following Java code represents an example that includes some of the annotations and parameters, 
appearing in Table 2, to calculate metrics. Let us suppose that we have two methods, called 
showMenuOptions and createCustomTextField. The former is used to show the (specific 
level) options of a visual menu, whereas the latter is used to create a customized input text field in the 
UI:  

@MEFunction (isEvidentToUser=true) 

public void showMenuOptions(int i); 

@MEUIElement (hasCheckForValidData=true,  

  canBeCustomizedInAppearance=true) 

public void createCustomTextField(String name); 

In the above fragment of Java code, the two methods, showMenuOptions and 
createCustomTextField, are annotated with MEFunction and MEUIElement annotations, 
respectively. In the case of showMenuOptions, the annotation is parameterized with the parameter 
isEvidentToUser, which is related to the measurement of metric 3, whereas the method 
createCustomTextField is parameterized with parameters hasCheckForValidData and 
canBeCustomizedInAppearance, which are related to the measurement of metrics 9 and 11, 
respectively. In all cases, the parameters are set to true, which means that the parameters are 
satisfied, denoting, for the case of showMenuOptions, that the user is able to identify specific 
functions by navigating through the menu. Similarly for the case of createCustomTextField, 
the parameters denote that the method creates input text fields that enable validity checking and can be 
configured according to user criteria. Therefore, depending on the total number of functions and UI 
elements, a measure for metrics 3, 9 and 11 will be automatically calculated by the annotation 
processor.  

Together with the customized annotation processor, we provide with auto-complete facilities in order 
for the different users that interact with our framework to annotate the code easily, thus helping in 
reducing the cognitive burden. Users only have to bear in mind the four ME annotation types, as the 
system triggers automatically a list intended to help complete the corresponding parameters according 
to each annotation type.   



11 
 

3.4. Role-Based Annotations  

The main aim of our work is to propose a mechanism for measuring internal usability metrics with 
minimal effort. According to standard ISO/IEC 25023, the process of measuring internal usability 
metrics is traditionally carried out by reviewers and inspectors that inspect the source code in order to 
find the clues needed to calculate the metrics manually. 

In our approach, the only role required to deal with the metrics could be a technical usability inspector 
with expertise in source-code review. This way, and once the software code is in an advanced stage, it 
could be delivered to the usability inspector in order for her/him to annotate the code with the 
proposed annotations and analyze the resulting values of the metrics. However, this task can be also 
supported by the help of a programmer who can create initial annotations in the code depending on the 
characteristics of each function. 

Although tasks and roles assignment is not the focus of our work, our approach can be utilized under a 
role-based paradigm. In fact, modern project management today comprises team members who are in 
charge of different tasks involving usability measurement. Based on this concept, we include an 
example of role-based annotation that allows assigning the creation and analysis of the different types 
of annotations according to specific roles during the implementation phase.  

This mechanism can be useful for sequential workflows or even for inspection meetings, where 
annotations can be arranged cooperatively and/or in a distributed way using SCM (Software 
Configuration Management) tools that allow programing and annotating collaboratively. This allows 
team members to be assigned different tasks and play more than one role according to the project plan. 

As an example, we propose the following division of annotation responsibilities. It is worth noting that 
this is only an instance (but not the only one) that may vary depending on the project size and the roles 
required. In fact, the project team might be interested only in a subset of metrics. 

More specifically, we propose the following roles in our example:  

- Programmer Analyst: This is an intermediary role between functional analyst and 
programmer. S/he is concerned with technical requirements tasks but also with programming 
duties. This role is especially appropriate to deal with annotations related to requirements 
inspection at code level, as most usability metrics are influenced by functional and non-
functional requirements. 

- Usability Inspector: This role is in charge of inspecting the resulting code and verifying that it 
meets the usability requirements specified and then programmed. 



12 
 

 

 

Fig. 2 Example of different roles dealing with the annotation types and corresponding parameters 

Figure 2 presents an example that splits up annotation tasks, including the different annotations (see 
Figure 1 and Table 2) and the associated roles dealing with each annotation type and parameter. 
Considering Figure 2, an example of annotation workflow could be the following: 

1) First of all, the programmer analyst is in charge of programming the code and creating all the 
principal annotation types (MFunction, MEOperation, MEMessage and 
MEUIElement) for every function in the source code. In addition, this role would annotate 
some specific parameters related to functional aspects of the usability metrics, such as error 
tolerance, validity checking and other specific parameters involving functional and operational 
usability issues, such as incorrect operational patterns and demonstration capability. 

2) Then, the usability inspector is in charge of creating specific parameters for the principal 
annotations created by the programmer analyst. In this case, the usability inspector would deal 
with annotation parameters involving ergonomic issues embedded in the code, such as 
whether a function is evident to user, can be customized for users with handicaps and so on.  

In this example, the programmer analyst creates the code together with the basic structure of 
annotations and parameters related to functional issues, whereas the usability expert creates the main 
parameters related to ergonomic aspects (combined with non-functional usability concerns) that have a 
straight impact on the usability (and accessibility) of the system. In general, all functions can be 
annotated, independently of their level, as long as they have impact on the usability of the software. 
This will mostly depend on the requirements and the project team strategy 

Our contribution also enables an iterative and incremental approach, where annotations can be drafted 
and modified depending on the evolutionary versioning of the code, as the calculation of the metrics is 
automatic and the visual effect is immediate in order to revise the code or even improve usability 
requirements with the help of other team roles. All in all, and depending on the background, the 
usability expert should finally review all the code to set up and analyze the metrics that are more 
related to human factors. 



13 
 

 

3.5. Annotations Processor 

In order to process the aforementioned annotations and parameters, we have developed a customized 
annotation processor that can be installed in the Eclipse development environment. 

At compile time, the annotation processor recognizes all the annotation types, the parameters and their 
location in the code. By counting the occurrences of the annotation elements, the annotation processor 
is able to compute the metrics according to ISO/IEC 25023, displaying warning messages for elements 
that do not meet the syntax. In Eclipse environment, the compilation is achieved every time a change 
occurs in the code. This means that the annotation processor is automatically triggered every time a 
change is made, thus providing updated information about the metrics, which is transparent to the user. 
This offers a significant advantage compared with directly using other approaches such as Java 
Reflection API, which is the alternative way of obtaining information about annotations in Java.   

The architecture of the annotation processor and also its implementation is predefined by the way Java 
evaluates annotations. The annotation definition contains the structure of the annotation types. The 
approach can be seen as a compiler plugin related to the Java API for annotation processing. Before 
including the annotations in the source code of the application, the developer needs to add the 
customized annotation processor as a compiler plugin. Many development environments such as 
Eclipse or Netbeans (Sun 2018) support this native implementation. 

In order to calculate the metrics, we rely on the structure of projects, packages and compilation units 
defined by the JDT Core Component API. This allows to analyze the structure of the application based 
on a tree, and thus explore specific annotations as the ones defined previously. 

 

Fig. 3 Metric analyzer plugin for Eclipse displaying 6 different metrics for an specific Java project 

Figure 3 depicts the Analysis View window, appearing in the upper-right corner of an Eclipse project 
and showing an example of the resulting metrics for a given project. The metrics node allows an 
overview of all the metrics that can be evaluated based on the annotations inserted in the code. In this 
case, 6 measures are visualized, corresponding to metrics 2, 3, 5, 6, 9 and 12 in Table 1. Results are 
calculated as percentage values in order to easily show the compliance percentage for a given metric. 
For instance, the Accessibility result (metric 12 in Table 1) is indicating that 70.3% of the UI elements 
included in the source code can be customized for access by users with physical handicaps. The 
annotation processor is designed in a way that allows developers to work with an arbitrary set of 
metrics depending on the project’s characteristics. 

We propose this annotation processor to be used in the implementation phase of a project. The 
immediacy of results makes this approach helpful to be considered in collaborative environments (i.e., 
using SCM tools) or even stand-alone setups, where modifications can be instantaneously applied and 
visualized thanks to the automatic triggering related to changes in the source code. 



14 
 

 

Fig. 4 An example of the same code fragment together with the corresponding metric measures (1) and 
the results perceived after modifications (2) 

Figure 4 presents a code fragment comprising 3 methods that has been annotated with 
MEUIElement, also including parameters to study the accessibility (metric 12 in Table 1) and the 
validation of input data (metric 9 in Table 1): 

- Accessibility (Physical Accessibility) => X = A / B, where A represents the number of UI 
elements that can be customized for access by users with physical handicaps, and B represents 
the total number of UI elements. The closer to 1 the better physical accessibility.  

- Validation of Input Data (Input Validity Checking) => X = A / B, where A represents the 
number of UI elements that check for valid data, and B represents the number of UI elements 
that could check for valid data. The closer to 1 the better. 

As shown in the situation marked with 1 (at the top of Figure 4), methods plusOne and minusOne 
have the parameter canBeCustomizedForUsersWithHandicaps set to false, whereas 
method currentCount has the same parameter set to true. In addition, method minusOne has 
the parameter hasCheckforValidData set to false. This situation indicates that the measures 
for the aforementioned metrics are (see Figure 4): 

- Accessibility: X = 1 / 3 = 33.3% 
- Validation of Input Data: X = 0 / 1 = 0.0% 

In the situation 2 (at the bottom of Figure 4), after an improvement in the source code, the person in 
charge has changed the metric parameters to true in all cases, which implies the automatic update of 
metric calculations, resulting now in (see Figure 4): 

- Accessibility: X = 3 / 3 = 100.0% 
- Validation of Input Data: X = 1 / 1 = 100.0% 



15 
 

This means that all annotated UI elements and methods satisfy accessibility and input verification 
metrics at 100% level (the better possible), respectively. 

All in all, the reported mechanism helps answer RQ2, showing that internal usability metrics, as 
defined in ISO/IEC 25023, can be automatically calculated from the source code using the framework 
developed. This enables technical users to easily inspect the usability, also facilitating decision-
making in order to improve the code accordingly. 

4. Evaluation 

In order to corroborate RQ3, we have carried out a controlled evaluation with real users. The main 
objective of this evaluation is twofold. On the one hand, we want to demonstrate that, when evaluating 
code-based internal usability metrics, our framework is more effective and efficient than using the 
traditional and manual inspection process. On the other hand, we want to demonstrate that our 
approach provides suitable values of usefulness and satisfaction.  

4.1. Procedure and Method 

Our evaluation has been carried out following a two-step procedure. In the first part, we asked 
recruited participants to calculate internal usability metrics with and without the proposed annotations 
framework. In the second part, we asked the participants who used our proposed framework to fill in a 
questionnaire, as it will be detailed down below. 

Recruited participants were divided into two different groups: a control group carrying out the 
measurement of internal usability metrics manually, and an experimental group carrying out the same 
task but using our framework. In the experimental group, participants were given a previous short talk 
of 20 minutes about the objective of the task, the framework including the developed annotations and 
the relationship with the corresponding metrics. By contrast, participants in the control group were 
given only a previous short talk of 10 minutes about the objective of the task. We provided 
participants with the same Java code of 100 lines in a single file that comprises a total of 10 functions 
and user interface elements. Participants in each group where asked to calculate the metrics in the code 
as specified in ISO/IEC 25023. Measures comprising effectiveness and efficiency were assessed for 
every user. This way, a between-subject design was accomplished in order to obtain independent 
measures of the mentioned variables.  

After finishing the task, we asked participants in the experimental group to complete a questionnaire in 
order to measure the perceived satisfaction with our framework. 

4.2. Variables and Research Questions 

We have considered the method –i.e., manually or automatic with our framework, as the independent 
variable to study, according to the group division in which each participant was enrolled (i.e., control 
or experimental). As for dependent variables, we have considered the effectiveness –i.e., the extent to 
which participants are able to carry out the principal task of measuring the metrics, and the efficiency 
–i.e., average time in minutes spent by participants in measuring the metrics. Also, we considered 
usefulness, satisfaction, ease of use, and ease of learning as dependent variables. To obtain such 
values, users were asked to fill in the USE questionnaire (Perlman 2015; Lund 2001), which helps 
measure user perceived satisfaction in-use by means of the 4 aforementioned variables (Tullis and 
Albert 2013). USE questionnaire includes 30 questions grouped into 4 different categories: 8 questions 
for measuring usefulness, 11 questions devoted to measure ease of use, 4 questions used to measure 
ease of learning, and 7 questions for measuring overall satisfaction. Responses were assessed in a 
Likert scale ranging from 1 to 7, where 1 implies “strongly disagree” and 7 “strongly agree”. Results 
were normalized in order to obtain percentage values. Questions were worded for the intended subject 
of evaluation –i.e., the framework proposed. 



16 
 

We established specific research questions for the evaluation, which are related to RQ3 described in 
Section 1: 

• RQ3.1. Do the users perform the measurement of internal usability metrics more efficiently 
and effectively using our framework than using the manual process? 

• RQ3.2. Do the users consider the proposed framework as satisfactory? 

These research questions will be validated through the results obtained from the evaluation. 
Specifically, to answer RQ3.1 we expect to get higher efficiency and effectiveness values in the 
experimental group than in the control one. Additionally, to answer RQ3.2 we expect to obtain 
percentage values over 75% for usefulness, ease of use, ease of learning and overall satisfaction. In 
fact, 75% represents a positive benchmark level to indicate agreement when responding to the 
different questions in a 1-7 Likert scale. A normalized average value of 75% represents a number 
between 5 and 6 (i.e., between agree and very agree), which can be considered as an acceptable 
measure for these dependent variables. 

4.3. Apparatus 

The evaluation task was accomplished using 2 laptop computers with similar technical characteristics: 
a MacBook Air with a 1.8GHz dual-core Intel Core i5, 8 GB of onboard memory, 13.3-inch LED-
backlit glossy widescreen, and macOS Sierra operating system. Recruited participants accomplished 
the task using Eclipse Oxygen 4.7 IDE for Java Developers, with Java SE 9, loaded and ready to be 
used in every evaluation. One of the laptops, utilized by the users in the experimental group, included 
the annotation processor and facilities, which was already installed in the Eclipse environment. The 
other laptop, used by the users in the control group, did not include the annotations framework. In both 
cases, the source code was already loaded in order to save time. All evaluations were carried out in a 
research laboratory of our institution. 

4.4. Participants 

We recruited 32 participants with ages ranging from 25 to 35 (M=32.5, SD=2.3). They were 10 
women and 22 men. All participants had at least knowledge, for more than 5 years on average, on the 
specific topics required –i.e., Java software inspections, software quality and usability evaluation, 
being also familiar with the usability metrics included in ISO/IEC 25023. As for the provenance, all 
participants were recruited from the university environment –i.e., instructors and researchers on 
software engineering and human-computer interaction, and professionals from software development 
companies working in the topics required on a regular basis. This way, we initially carried out a 
random process to assign the half of the participants to the control group (16) and the other half (16) to 
the experimental one, but ensuring also to counterbalance the groups to be as homogeneous as possible 
in terms of gender, age, knowledge, years of experience and provenance. 

The experimental group, including 16 users, is the more relevant for the evaluation of the annotations 
framework. In order to justify this sample size, we have based on the binomial probability. This way, 
we expect to identify problems that impact 17% or more users with a 95% probability of observing 
these problems in the evaluation. This way, the number of users to test can be calculated as Log (1-
0.95) / Log (1-0.17) ≈ 16 users. It is worth noting that the discovery rate can be considered as high 
(95%), and an impact percentage of 17% enables to find complex problems. In fact, a problem-impact 
percentage among 30%-60% implies problems affecting a great deal of users (i.e., coarse-grain errors), 
whereas reducing this figure to a more restrictive percentage (10%-20%) helps find a higher number of 
problems, and more specifically those being more difficult to find (i.e., less obvious problems). This 
tradeoff would help find most important problems, so we think that a sample size of 16 is adequate, 
given the typology of the problems that we expect to observe in the evaluation (Tullis and Albert 
2013; Sauro 2012; Hwang and Salvendy 2010; Faulkner 2003; Dix et al. 2004; Nielsen and Landauer 
1993). 



17 
 

4.5. Parameters Summary 

Table 3 depicts the most important settings of the evaluation carried out. 

Parameter Value 
Subjects 32 participants randomly divided into two 

groups: half of the participants were in the 
control group, and the other half in the 
experimental one. 

Main hypotheses related to research questions Evaluation is based on RQ3 that is twofold. On 
the one hand, RQ3.1 is used to corroborate that 
users perform the measurement of internal 
usability metrics more efficiently and effectively 
using our framework than using the manual 
process. On the other hand, RQ3.2 is used to 
corroborate that the users consider the proposed 
framework as satisfactory. 

Independent variable Method to measure the metrics: manually or 
automatic according to the group division. 

Dependent variables Effectiveness and efficiency, as well as those 
obtained from USE questionnaire: usefulness, 
satisfaction, ease of use and ease of learning. 

Statistics utilized T-test, with a previous Shapiro-Wilk test to 
corroborate normality, is used to compare 
effectiveness and efficiency in both groups. 
Mean, min, max, SD, median and CI (95%) were 
also calculated. The same descriptive statistics 
were used to represent USE questionnaire 
results, including also the Cronbach alpha value 
for each variable. 

Validation criteria Higher efficiency and effectiveness values in the 
experimental group than in the control one. Also, 
values above 75% for usefulness, ease of use, 
ease of learning and satisfaction. 

Table 3. Summary of evaluation parameters 

4.6. Results and Discussion 

As for the first part of the study, a t-test with a significance level of 95% for independent means was 
carried out in order to compare effectiveness and efficiency values in both groups. Data normality was 
ensured using a Shapiro-Wilk test. Results corroborated that group differences for the proposed 
measures can be considered as significant at p-value < 0.05 for both measures. 

 Control Group Experimental Group 
Measure Effectiveness (%) Efficiency (minutes) Effectiveness (%) Efficiency (minutes) 
Mean 76.08 71.16 96.05 35.09 
Min 55.11 35.23 89.20 24.12 
Max 92.51 102.45 100.00 55.20 
SD 11.79 16.64 3.37 9.82 
Median 79.47 76.88 96.99 34.26 
CI (95%) 5.77 8.15 1.65 4.81 

Table 4. Descriptive statistics on effectiveness and efficiency for each group 

As depicted in Table 4, control group obtained a 76% average value for effectiveness when measuring 
internal usability metrics manually, whereas the experimental group obtained 96%. This means that 



18 
 

the users were 20% more effective using our framework. This difference was mainly due to metric 
miscalculations. Effectiveness was normalized and measured by comparing the results obtained from 
users with the expected results pursued –i.e., the number of metrics correctly calculated (right 
quantitative results desired for each metric according to the code’s characteristics). In addition, 
efficiency value was also normalized, denoting a significant reduction of average time (more than 
50%) in the case of users using our framework. Additionally, lower statistical values were obtained in 
the experimental group for standard deviation and confidence interval 95%, denoting that the mean 
values obtained in the experimental group can be considered as an accurate indicator in this case. 

Results obtained demonstrate that users in the experimental group carried out the analysis and 
calculation of metrics more effectively and efficiently than users in the control group. In general, users 
in the experimental group took advantage of the automatic calculations and the facilities for code 
annotation provided by the framework, rather than using paper sheets, desk calculators and other 
resources (e.g., spreadsheets) utilized by users in the control group. On the other hand, no major 
problems were found during the interaction with the framework. It is worth mentioning, however, that 
some users missed graphical facilities, such as icons and tool bars, in order to have a more pleasant 
interaction experience, instead of bearing in mind the main annotation tags. All in all, most users 
appreciated the automatic calculation of the metrics and the immediacy of the results obtained. 
Comments received will be considered as future work. 

As for the second part of the study, a reliability analysis of the variables used to measure perceived 
satisfaction was carried out. As shown in Table 5, we obtained values a > 80% for all variables. In 
general, Cronbach’s alpha values above 70% are considered as acceptable. 

Measure (%) Usefulness Ease of Use Ease of Learning Overall Satisfaction 
Mean 89.08 83.06 86.01 87.17 
Min 74.67 64.20 72.39 72.94 
Max 100.00 94.33 97.52 100 
SD 8.28 8.96 8.08 7.48 
Median 89.66 85.69 86.63 89.07 
CI (95%) 4.05 4.39 3.96 3.66 
Cronbach alpha 82.20 83.10 85.00 82.30 

Table 5. Statistics for each variable related to perceived satisfaction 

In addition, high average percentage values were obtained for all the satisfaction variables studied (see 
Table 5): 89% usefulness, 83% ease of use, 86% ease of learning and 87% overall satisfaction. In 
general, most users agreed that the framework comprises a useful tool to measure internal usability 
metrics through the implementation phase.  

Results obtained helped answer the proposed research questions. This way, RQ3.1 can be answered in 
the affirmative as users carried out the measurement of internal usability metrics more efficiently and 
effectively using our framework in comparison with the manual process. Additionally, RQ3.2 can be 
also answered in the affirmative as users perceived a high satisfaction using our approach. Average 
values obtained for perceived satisfaction in-use are above 83% in all cases, while the minimum value 
considered for validation was 75%.  

All in all, results obtained helped answer RQ3 affirmatively, and thus affirm that the framework 
proposed to systematize the measurement of internal usability metrics results effective, efficient, and 
satisfactory for the final user. 

4.7. Threats to Validity 

Main threats are principally related to the between-subject design, which comprises several concerns 
that must be understood and addressed. In general, between-subject designs require a representative 
number of participants to generate reliable data. In our case, we have divided the total number of 



19 
 

participants into two groups, which may be seen as a threat. However, data normality was checked in 
both groups to satisfy t-test initial conditions. In addition, fishing and error rate problems are 
minimized by fitting the t-test initial conditions and avoiding testing many different hypotheses to find 
a significant effect, reducing the alpha rate (or type I error) by avoiding to repeatedly test the data and 
pre-specifying the outcomes of interest. On the other hand, we have considered a representative 
sample size for the experimental group, which is the most important and representative in order to test 
perceived satisfaction with the framework proposed. Sample size has been justified in order to find a 
high percentage or problems that might be representative of the utilization of our framework with real 
users. Another issue related to the between-subject design is the assignment bias, which causes skewed 
data results and leads to false conclusions. In our case, we prevent this problem by initially carrying 
out a random process to assign participants to each group, but also counterbalancing the assignments 
to have groups as homogeneous as possible. Other drawbacks with respect to the between-subject 
design are related to generalization and individual variability. Admittedly, we considered groups of 
users with background on (at least) code inspections, usability evaluation and quality, which are the 
main target for our approach, but also with different ages, gender and provenance. This helps 
minimize the risk of generalization problems in order to extrapolate the result to broader groups, and 
also the individual variability by reducing the lack of homogeneity. In addition, the arbitrary time 
devoted for the initial short talk in the experimental group may be considered as a threat, however this 
was an interactive talk that most users also utilized to clarify missing concepts, and where the 
evaluator ensured that all important issues were made clear enough.  

Another alternative would have been considering a within-subject design, asking all users to measure 
internal usability metric with and without our framework. However, we wanted to test effectiveness 
and efficiency variables in an independent way, saving time by testing both groups simultaneously, 
and avoiding carryover effects that can negatively affect the evaluation. For instance, asking all users 
to utilize both evaluation methods –i.e., with and without the framework, may cause that the first test 
influences the other, arising effects of previously acquired knowledge that may affect the results 
obtained. 

5. Conclusions 

Quality is an important concern in software development. Quality models, such as ISO/IEC 25000, 
comprise an interesting approach to address software quality according to diverse characteristics, such 
as usability, that can be measured through different metrics. In general, a great deal of work has been 
focused on external and in-use quality metrics. However, less attention has been paid to internal 
quality measures related to the source code. Internal quality metrics are important as they are related to 
other usability measures. In general, usability is affected by functional and non-functional 
requirements, thus it should be measured at the source-code level as well in order to assure usability 
during all the development process (Cayola and Macías 2018, Sánchez and Macías 2017). 

In general, internal usability metrics are analyzed and measured using a manual process by means of 
code inspections and reviews. This can be time-consuming and costly in terms of the resources 
needed. In this paper, we propose an approach to improve the manual process, providing users with 
parameterized annotations that our processor computes automatically, showing the measurement of the 
metrics at compile time. This allows the development team to save time in analyzing the usability of 
the code, which can also help compare the results with the usability objectives of the software, 
enabling to split up responsibilities among different team members. In addition, our approach 
increases the maintainability of the source code and the software overall by enabling meta-
information. Our approach is based on internal usability metrics as they appear in ISO/IEC 25023, but 
we have contributed by developing technical aspects to get a feasible code implementation. 

Our framework has been tested with 32 real users through a controlled evaluation, providing 
promising results involving effectiveness and efficiency in comparison with the manual inspection 
process. In addition, the evaluation has provided acceptable results in terms of satisfaction, 



20 
 

demonstrating that users perceived our approach as useful, easy to use and learn and satisfactory. 
Therefore, initial research questions have been affirmatively answered, demonstrating that internal 
usability metrics, as defined in ISO/IEC 25023, can be automatically calculated from the source code 
using annotations, being the proposed solution effective, efficient and satisfactory for users. 

As for limitations, the proposed solution is mainly intended for Java code. However, annotations can 
be developed in other programming languages such as Python, .NET and C#, maintaining the same 
annotations and parameters proposed in our approach, but probably developing specific annotation 
facilities for each programming language. This would imply to create or extend the annotation 
processor where applicable, and proposing annotation alternatives (i.e., using code comments) if the 
programing language does not provide straight facilities to deal with annotations. All in all, our 
research is an attempt to provide an acceptable solution to the measurement of internal usability 
metrics. This is not a definitive solution, but a contribution that can be useful to broaden the research 
in this area, which may lead to explore other programming languages and development environments, 
and addressing other internal quality characteristics and metrics.  

With respect to future work, we expect to carry through a more interactive annotation process (using 
icons and tool-bar facilities) in order to increase automation and reduce the cognitive burden (Macías 
2008; Macías and Castells 2003). Another interesting issue is how internal metrics can predict external 
and in-use metrics, determining the overall usability of a software product, and thus connecting 
internal usability metrics with those related to external and in-use quality measurements. Also, we 
expect to apply our approach to a real project in order to obtain feedback and improve the framework 
further.  

 

Conflict of Interest: The authors declare that they have no conflict of interest. 

References  
 

Abran, A., Khelifi, A., Suryn, W., & Seffah, A. (2003). Usability meanings and interpretations in ISO 
standards. Software Quality Journal, 11(4), 325-338. 

Bailey, R. W., Wolfson, C. A., Nall, J., & Koyani, S. (2009). Performance-based usability testing: 
Metrics that have the greatest impact for improving a system’s usability. In Proceedings of the 
International Conference on Human Centered Design. 

Ammar, L. B., Trabelsi, A., & Mahfoudhi, A. (2013). Dealing with Usability in Model-Driven 
Development Method. In Proceedings of the International Conference on Enterprise Information 
Systems. 

Bevan, N. (2009). Extending quality in use to provide a framework for usability measurement. In 
Proceedings of the International Conference on Human Centered Design. 

Bevan, N., Carter, J., Earthy, J., Geis, T., & Harker, S. (2016). New ISO standards for usability, 
usability reports and usability measures. In Proceedings of the International Conference on Human-
Computer Interaction. Springer, Cham. 

Brajnik, G. (2000, June). Automatic web usability evaluation: what needs to be done. In Proc. Human 
Factors and the Web, 6th Conference. 

Briand, L. C., & Wüst, J. (2002). Empirical studies of quality models in object-oriented systems. 
Advances in computers, 56, 97-166. 

Card, S., Newell, K., & Moran, T. (1999). The Psychology of human-computer interaction. Lawrence 
Erlbaum Associate. 



21 
 

Borges, C.R, & Macías, J.A. (2010). Feasible database querying using a visual end-user approach. In 
Proceedings of the ACM SIGCHI Symposium on Engineering Interactive Computing Systems. 

Carvalho, R.M., de Castro Andrade, R.M., de Oliveira, K.M. et al. (2017). Quality characteristics and 
measures for human–computer interaction evaluation in ubiquitous systems. Software Quality Journal 
25, 743-795.  

Cayola, L, & Macías, J.A. (2018). Systematic guidance on usability methods in user-centered software 
development. Information and Software Technology, 97, 163-175.  

Dix, A., Finlay J.E., Abowd, G.D., & Beale, R. (2004). Human-Computer Interaction. Prentice-Hall. 

Dubey, S. K., & Rana, A. (2011). Usability estimation of software system by using object-oriented 
metrics. ACM SIGSOFT software Engineering notes, 36(2), 1-6. 

Faulkner, L. (2003). Beyond the five-user assumption: Benefits of increased sample sizes in usability 
testing. Behavior Research Methods 35, 379-383. 

Fernandez, A., Insfran, E., Abrahão, S., Carsí, J. Á., &  Montero, E. (2012). Integrating usability 
evaluation into model-driven video game development. In Proceedings of the International Conference 
on Human-Centred Software Engineering. 

Feuerstack, S., Blumendorf, M., Kern, M., Kruppa, M., Quade, M., Runge, M., et al. (2008). Automated 
usability evaluation during model-based interactive system development. In Proceedings of the 
Engineering Interactive Systems. 

Fraternali, P., Matera, M., & Maurino, A. (2002). WQA: an XSL framework for analyzing the quality 
of web applications. In Proc. of IWWOST (Vol. 2). 

Han, W.M. (2017). Evaluating perceived and estimated data quality for Web 2.0 applications: a gap 
analysis. Software Quality Journal, https://doi.org/10.1007/s11219-017-9365-7. 

Hwang, W., & Salvendy, G. (2010). Number of people required for usability evaluation: the 10±2 rule. 
Communications of the ACM, 53, 130-133. 

IBM (2018). Eclipse Development Framework. http://www.eclipse.org. Accessed 11 November 2018. 

IEEE (2008). IEEE 1028 Standard for software reviews and audits. 

ISO (2001). ISO/IEC 9126-1:2001. Software engineering- Product Quality – Part 1: Quality model.  

ISO (2002). ISO/IEC TR 9126-2:2002. Software Engineering – Product Quality – Part 2: External 
Metrics. 

ISO (2003). ISO/IEC TR 9126-3:2003. Software Engineering – Product Quality – Part 3: Internal 
Metrics. 

ISO (2005) ISO/IEC 25000. Systems and Software Engineering – Systems and Software Quality 
Requirements and Evaluation (SQuaRE).  

ISO (2006). ISO/IEC 14598:2006. Information Technology – Software Product Evaluation. 

ISO (2011). ISO/IEC 25010:2011. Systems and software engineering — Systems and software Quality 
Requirements and Evaluation (SQuaRE) — System and software quality models – Quality Model 
Division. 

ISO (2016). ISO/IEC 25023:2016. Systems and Software Engineering – Systems and Software Quality 
Requirements and Evaluation (SQuaRE) – Measurement of System and Software Product Quality. 



22 
 

Jabangwe, R., Börstler, J. & Petersen, K. (2015). Handover of managerial responsibilities in global 
software development: a case study of source code evolution and quality. Software Quality Journal, 
23, 539-566.  

Jabangwe, R., & Šmite, D. (2012). An exploratory study of software evolution and quality: Before, 
during and after a transfer. In Proceedings of the IEEE International Conference on Global Software 
Engineering. 

Kanellopoulos, Y., Antonellis, P., Antoniou, D., Makris, C., Theodoridis, E., Tjortjis, C., et al. (2010). 
Code quality evaluation methodology using the ISO/IEC 9126 standard. International Journal of 
Software Engineering and Applications, 1, 17–36. 

Lettner, F., & Holzmann, C. (2011). Usability evaluation framework: automated interface analysis for 
android applications. In Proceedings of the International Conference on Computer Aided Systems 
Theory.  

Lund, A.M. (2001) Measuring usability with the USE questionnaire. Usability Interface 8, 3-6. 

Macías, J.A. (2008). Intelligent Assistance in Authoring Dynamically Generated Web Interfaces. World 
Wide Web, 11, 253-286. 

Macías, J. A., & Castells, P. (2003). Dynamic web page authoring by example using ontology-based 
domain knowledge. In Proceedings of the 8th international conference on Intelligent user interfaces. 
ACM. 

Memon, A. M. (2009). Using reverse engineering for automated usability evaluation of gui-based 
applications. In Proceedings of the Human-Centered Software Engineering. 

Nielsen, J., & Molich, R. (1990, March). Heuristic evaluation of user interfaces. In Proceedings of the 
SIGCHI Conference on Human factors in Computing Systems. 

Nielsen, J., & Landauer, T.K. (1993). A Mathematical model of the finding of usability problems. In 
Proceedings of the Conference on Human Factors in Computing Systems. 

Oliveira, P., Valente, M. T., & Lima, F. P. (2014). Extracting relative thresholds for source code 
metrics. In Proceedings of the Software Evolution Week-IEEE Conference on Software Maintenance, 
Reengineering, and Reverse Engineering. IEEE. 

Oracle (2018). Java Development Kit. http://www.oracle.com/technetwork/java. Accessed 11 
November 2018. 

Orehovački, T., Granić, A., & Kermek, D. (2013). Evaluating the perceived and estimated quality in 
use of Web 2.0 applications. Journal of Systems and Software, 86, 3039–3059. 

Otkjær Ba, J., Nguyen, K., Risgaard, P., & Stage, J. (2008). Obstacles to usability evaluation in practice: 
a survey of software development organizations. In Proceedings of the Nordic Conference on Human-
Computer Interaction. 

Panach, J. I., Condori-Fernandez, N., Vos, T., Aquino, N., & Valverde, F. (2011). Early usability 
measurement in model-driven development: Definition and empirical evaluation. International 
Journal of Software Engineering and Knowledge Engineering, 21(03), 339-365. 

Perlman, G. (2015). User Interface Usability Evaluation with Web-Based Questionnaires, 
http://garyperlman.com/quest/quest.cgi?form=USE. Accessed 11 November 2018. 

Sánchez, E., & Macías, J.A. (2017). A set of prescribed activities for enhancing requirements 
engineering in the development of usable e-Government applications. Requirements Engineering, 
https://doi.org/10.1007/s00766-017-0282-x. 



23 
 

Sauro, J. (2018). MeasuringU. https://measuringu.com. Accessed 11 November 2018. 

Seffah, A., Donyaee, M., Kline, R. B., & Padda, H. K. (2006). Usability measurement and metrics: A 
consolidated model. Software Quality Journal, 14(2), 159-178. 

Singh, Y., Kaur, A., & Malhotra, R. (2010). Empirical validation of object-oriented metrics for 
predicting fault proneness models. Software Quality Journal, 18, 3–35. 

Sun (2018). NetBeans Development Framework. https://netbeans.org. Accessed 11 November 2018. 

Tomas, P., Escalona, M. J., & Mejías, M. (2013). Open source tools for measuring the Internal Quality 
of Java software products. A survey. Computer Standards & Interfaces, 36(1), 244-255. 

Tullis, T., & Albert, W. (2013). Measuring the User Experience. Morgan Kaufmann. 

Veral, R., & Macías, J.A. (2019). Supporting User-Perceived Usability Benchmarking Through a 
Developed Quantitative Metric. International Journal of Human-Computer Studies. 122, 184-195 

Wharton, C. (1992). Cognitive walkthroughs: instructions, forms and examples. Technical Report CU-
ICS-92-17, University of Colorado. 

  



24 
 

Appendix 

A1. Quality sub-characteristics related to the usability characteristic, as specified in ISO/IEC 25023, 
together with the set of 12 metrics considered in our approach, including also a brief description, 
calculations and optimal values 

Quality Sub-
Characteristic 

Metric Description Calculation Optimal 
Value 

Appropriate 
Recognizability 

Integrity of 
Description 

Proportion of 
functions that are 
described as 
understandable in the 
product description 

X = A/B, where 
A represents the 
number of 
functions 
described as 
understandable in 
the product 
description, and 
B represents the 
total number of 
functions 

The closer to 
1 the better 

Demonstration 
Capability 

Proportion of 
functions that have 
demonstration 
capability 

X = A/B, where 
A represents the 
number of 
functions that 
have 
demonstration 
capability, and B 
represents the 
total number of 
functions 
requiring 
demonstration 
capability 

The closer to 
1 the more 
capable 

Learnability Evident 
Function 

Proportion of 
functions that are 
evident to user 

X = A/B, where 
A represents the 
number of 
functions that are 
evident to user, 
and B represents 
the total number 
of functions 

The closer to 
1 the better 

Completeness of 
User 
Documentation 
and/or Help 
Facility 

Proportion of 
functions that are 
completely described 
in the user 
documentation and/or 
help facility 

X = A/B, where 
A represents the 
number of 
functions 
completely 
described, and B 
represents the 
total number of 
functions  

The closer to 
1the more 
complete 

Operability Operational 
Error 
Recoverability 

Proportion of 
functions that can 
tolerate user errors 

X = A/B, where 
A represents the 
number of 
functions 
implemented 
with user error 

The closer to 
1 the more 
recoverable 



25 
 

tolerance, and B 
represents the 
number of 
functions 
requiring the 
tolerance 
capability 

Operational 
Consistency 

Proportion of 
operations that 
behave the same way 
to similar operations 
in other parts of the 
system 

X = A/B, where 
A represents the 
number of 
instances of 
operation with 
inconsistent 
behavior, and B 
represents the 
total number of 
operations 

The closer to 
0 the more 
consistent 

Message Clarity Proportion of 
messages that are 
self-explanatory 

X = A/B, where 
A represents the 
number of 
implemented 
messages with 
clear 
explanations, and 
B represents the 
number of 
messages 
implemented 

The closer to 
1 the more 
clear 

Customizing 
Possibility 

Proportion of 
functions that can be 
customized by user 
during operation 

X = A/B, where 
A represents the 
number of 
functions that 
can be 
customized by 
user during 
operation, and B 
represents the 
number of 
functions 
requiring the 
customization 
capability 

The closer to 
1 the better 
customizabili
ty 

User Error 
Protection 

Input Validity 
Checking 

Proportion of items 
that provide checking 
for valid data 

X  = A/B, where 
A represents the 
number of input 
items that check 
for valid data, 
and B represents 
the number of 
input items that 
could check for 
valid data 

The closer to 
1 the better 

Avoidance of 
Incorrect 
Operation 

Proportion of 
functions 
implemented with 

X = A/B, where 
A represents the 
number of 

The greater 
the better 
incorrect 



26 
 

incorrect operation 
avoidance capability 

functions 
implemented to 
avoid incorrect 
operational 
patterns, and B 
represents the 
number of 
incorrect 
operation 
patterns to be 
considered 

operation 
avoidance 

User Interface 
Aesthetics 

Appearance 
Customizability 
of User 
Interface 

Proportion of user 
interface elements 
that can be 
customized in 
appearance 

X = A/B, where 
A represents the 
number of 
interface 
elements that can 
be customized, 
and B represents 
the total number 
of interface 
elements 

The closer to 
1 the better 

Accessibility Physical 
Accessibility 

Proportion of 
elements that can be 
customized for access 
by users with 
physical handicaps 

X = A/B, where 
A represents the 
number of 
interface 
elements that can 
be customized 
for access by 
users with 
physical 
handicaps, and B 
represents the 
total number of 
interface 
elements 

The closer to 
1 the better 
physical 
accessibility 

 


