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ABSTRACT 

 

 

 
 

This Doctoral Thesis is centered in the field of the nanostructured hybrid 

materials, and more specifically addresses the study of the so-called biohybrid 

materials resulting from the assembly of molecular and polymeric species of 

biological origin with inorganic substrates at the nanometer scale. The Thesis 

deals with the preparation and characterization of hybrid and biohybrid 

materials by intercalation of bioactive species in silicates of the type of clays and 

other related inorganic layered solids, and their integration into more complex 

systems such as bionanocomposites and nanoarchitectures, for application as 

controlled release systems of drugs and herbicides. 

In this way, the first study focused on the development of controlled release 

systems of metformin (MF), the most commonly used oral drug for the treatment 

of type II diabetes and currently also explored in treatments of certain types of 

cancer. In a first stage, various hybrid materials were prepared by association of 

MF to clay minerals of the smectite group (montmorillonite and hectorite). 

Specifically, in this work a montmorillonite from Wyoming, marketed as 

Cloisite®Na (Mt), and a synthetic hectorite, commercialized under the tradename 

Laponite® XLG (Lap) were used.  Laponite® XLG is usually used in cosmetics and 

pharmacy and was selected in view to have a well-regulated substrate for 

possible use in the production of pharmaceutical formulations. The combination 

of molecular modelling and experimental characterization techniques, such as 

FTIR, XRD, CHN chemical analysis and EDX, allowed to study the process of 

adsorption of the drug and the final molecular arrangement of MF species in the 

interlayered space of clays, confirming that the intercalated MF follows in both 

cases an ion-exchange mechanism. Furthermore, bionanocomposite systems in 

which the prepared intercalation compounds were incorporated into a 
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biopolymer matrix of pectin or chitosan were also explored, processing them in 

the form of microspheres (beads). These beads were then coated with one or two 

layers of those polymers in order to take advantage of the resistance properties 

of pectin to acidic pH environments, which may help to protect the hybrid at pH 

1.2, and the mucoadhesive properties of chitosan, which can favor residence time 

and assimilation of the drug in the intestinal tract, thus overcoming problems 

linked to its rapid elimination as occurs in the most typical formulations used for 

MF administration. The produced beads were tested for water stability and in 

vitro release simulating the pH changes occurring throughout the gastrointestinal 

tract with the aim of establishing the performance of each system as a possible 

formulation for controlled release of metformin. The results obtained show that 

it is possible to establish a control on the release by varying the characteristics of 

the bionanocomposite system and the coatings of the microspheres, which may 

be useful in view of the application of this type of systems in pharmacology. 

In a second study, the design of a controlled allantoin release system was 

addressed with the target of a possible topical application in skin disease 

treatments. Allantoin is a very particular molecule of great versatility for use in 

cosmetics and pharmacy, but it is very difficult to stabilize with other 

components for controlled release applications. In this sense, the preparation of 

hybrid materials by intercalation in layered metal hydroxides, typically layered 

double hydroxides (LDH), with different metals (MgAl or ZnAl) by different 

methods of synthesis (ion-exchange, reconstruction and co-precipitation) was 

explored. It was proven that hybrid materials based on LDH-MgAl incorporate 

up to a maximum of allantoin of approximately half of the LDH anionic exchange 

capacity, with the ion-exchange method being the least effective, and verifying 

that in all cases there is no intercalation of the associated allantoin. In the case of 

LDH-ZnAl, it is possible to incorporate a greater amount of allantoin, practically 

similar to the anion exchange capacity of the LDH, when the preparation of the 

hybrid is carried out by means of a co-precipitation process of the hydroxide in 

the presence of allantoin. The characterization of the resulting hybrid material 

indicates that actually the LDH was not formed because the Zn: Al ratio is much 
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smaller than the expected 2: 1, with practically no incorporation of Al in the 

structure of the precipitated solid. However, using only a Zn precursor, it was 

possible to successfully co-precipitate a compound in which allantoin is 

associated with a layered single hydroxide (LSH) of Zn. The obtained allantoin-

Zn LSH hybrid was compared to the characteristics of a Zn-allantoin complex 

prepared according to a protocol previously reported in the literature, and for 

which the presence of Zn acts as an enhancer of the therapeutic effects of 

allantoin. A study of the release of allantoin from several of the prepared systems 

confirms that the allantoin-Zn LSH system is the most efficient, even better than 

the Zn-allantoin complex described in the literature. The incorporation of the 

systems developed in biopolymeric matrices such as agar, 

hydroxypropylmethylcellulose (HPMC) or nanocellulose, facilitates subsequent 

processing as stable films that can be used in applications, for example, as tissues 

for wound dressings, and in which the presence of Zn in the incorporated hybrid 

can play a bactericide action. 

The third group of materials prepared in the Doctoral Thesis focused on the 

development of hybrid heterostructures of LDH-sepiolite for herbicide release 

system applications. Specifically, the synthesis of a LDH of Mg-Al in the presence 

of sepiolite fibrous clay and the herbicide known as MCPA (2-methyl-4-

chlorophenoxyacetic acid) was addressed through co-precipitation in a single 

stage to prepare the hybrid nanoarchitecture. It has been proven that the co-

precipitation of the LDH in the presence of the herbicide and sepiolite results in 

systems that incorporate a large amount of herbicide, much greater than the 

amount adsorbed when only the LDH is co-precipitated in the presence of MCPA 

or when the herbicide is intercalated in the LDH-sepiolite nanoarchitecture by 

ion-exchange. MCPA-LDH/sepiolite nanoarchitectures were characterized by 

various physicochemical techniques (XRD, FTIR and 29Si NMR spectroscopy, 

CHN and FESEM analysis) revealing that LDH interacts and remains attached to 

the sepiolite fibers through silanol groups present on the external surface of the 

clay. It is also confirmed that MCPA is intercalated into the LDH as instead of an 

interlayer distance of 0.77 nm, characteristic of the LDH with chloride ions as 
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compensating interlayer anions, the actual interlayer distance in materials with 

MCPA is 2.32 nm. The herbicide release tests in water at pH 5.5, which simulates 

the characteristics of rainwater, show that the release from the sepiolite-LDH 

hybrid nanoarchitectures is much faster and more complete compared to the 

MCPA-LDH hybrid prepared by co-precipitation of the LDH in the presence of 

the herbicide, which confirms its suitability for agricultural applications. In order 

to have release systems for application in soils in which the hybrid 

nanoarchitecture may act as a reservoir for the herbicide and where a longer 

action can be established, a system of microspheres composed of the 

polysaccharide alginate and the hydrophobic zein protein was also developed. 

In in vitro tests and in columns prepared with soils, the release results were very 

satisfactory and allow to confirm a more controlled release process of the 

herbicide from the bionanocomposite systems at levels closer to the outermost 

surface of the soil, avoiding leaching processes of the herbicide at greater depths 

thereof. Other additional advantages of the developed systems refer to the use of 

encapsulation as a means to allow better management and transport of the 

herbicide and to the use of sepiolite present in the hybrid nanoarchitecture to 

incorporate other species of interest that could be released simultaneously to the 

environment. 
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RESUMEN 

 

 

 
 

Esta Tesis Doctoral se encuadra en el campo de los materiales híbridos 

nanoestructurados, y más concretamente de los denominados materiales 

biohíbridos resultantes del ensamblaje de especies moleculares y poliméricas de 

origen biológico con sustratos inorgánicos a través de interacciones a escala 

nanométrica. La Tesis aborda la preparación y caracterización de materiales 

híbridos y biohíbridos basados en la intercalación de especies bioactivas en 

silicatos del tipo de las arcillas y otros sólidos inorgánicos relacionados 

laminares, y su integración en sistemas más complejos como bionanocomposites 

y nanoarquitecturas, para su aplicación como sistemas de liberación controlada 

de fármacos o herbicidas.  

En concreto, se han desarrollado sistemas para actuación en la liberación 

controlada de metformina (MF), el fármaco oral más utilizado para el tratamiento 

de la diabetes tipo II y actualmente explorado en tratamientos de ciertos tipos de 

cáncer. En una primera etapa se han desarrollado materiales híbridos en los que 

la MF ha podido ser intercalada mediante procedimientos de cambio iónico en 

arcillas del grupo de las esmectitas (montmorillonita y hectorita). En concreto, en 

este trabajo se ha utilizado una montmorillonita de Wyoming, comercializada 

como Cloisite®Na (Mt), y una hectorita sintética, comercializada bajo el nombre 

de Laponite® XLG (Lap) y habitualmente empleada en cosmética y farmacia, 

seleccionada con vistas a tener un substrato bien regulado para su posible empleo 

en la producción de formulaciones farmacéuticas. La combinación de técnicas de 

modelado molecular y caracterización experimental, como FTIR, XRD, análisis 

químico CHN y EDX, ha permitido estudiar el proceso de adsorción del fármaco 

y la disposición molecular final de las especies de MF en el espacio interlaminar 

de las arcillas, confirmando que la intercalación de MF en ambos casos sigue un 
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mecanismo de intercambio iónico. Además, se ha explorado el desarrollo de 

sistemas bionanocomposites en los que los compuestos de intercalación 

desarrollados se han incorporado en una matriz biopolimérica de pectina o de 

quitosano, procesando el material bionanocomposite resultante en forma de 

microesferas. Estas fueron recubiertas posteriormente con una o dos capas de 

dichos polímeros para aprovechar las propiedades de resistencia a pHs ácidos de 

la pectina, que ayuda a proteger el híbrido a pH 1.2, y las propiedades de 

mucoadhesividad del quitosano, que pueden favorecer el tiempo de residencia y 

asimilación del fármaco en el tracto intestinal, venciendo así problemas ligados a 

su rápida eliminación como ocurre en las formulaciones más típicas del mismo. 

Las microesferas producidas se sometieron a pruebas de estabilidad al agua y de 

liberación in vitro simulando los cambios de pH a lo largo del tracto 

gastrointestinal con el objetivo de establecer el rendimiento de cada sistema como 

posible formulación para la liberación controlada de metformina. Los resultados 

obtenidos muestran que es posible establecer un control en la liberación variando 

las características del sistema bionanocomposite y de los recubrimientos de las 

microesferas, lo que puede ser de utilidad con vistas a la aplicación de este tipo 

de sistemas en farmacología. 

Un segundo estudio realizado fue el diseño de un sistema de liberación 

controlada de alantoína para una posible aplicación tópica en tratamientos de 

enfermedades de la piel. La alantoína es una molécula muy particular de gran 

versatilidad para usos en cosmética y farmacia, pero que es muy difícil de 

estabilizar con otros componentes para aplicaciones en liberación controlada. En 

este sentido se ha explorado la preparación de materiales híbridos por 

intercalación en hidróxidos metálicos lamelares, típicamente hidróxidos dobles 

laminares (HDL), con distintos metales (MgAl or ZnAl) por diferentes métodos 

de síntesis (intercambio iónico, reconstrucción y co-precipitación). Se ha 

comprobado que los materiales híbridos basados en el HDL-MgAl incorporan 

hasta un máximo de alantoína de aproximadamente la mitad de la capacidad de 

cambio aniónico del HDL, siendo el método de cambio iónico el menos eficaz, y 

comprobándose que en todos los casos no se produce intercalación de la 
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alantoína asociada. En el caso del HDL-ZnAl se observa que es posible incorporar 

una mayor cantidad de alantoína, prácticamente similar a la capacidad de cambio 

del LDH, cuando se lleva a cabo la preparación del híbrido mediante un proceso 

de co-precipitación del HDL en presencia de alantoína. La caracterización del 

material híbrido formado indica que en realidad no se ha formado un HDL ya 

que la relación Zn:Al es mucho menor que la esperada de 2:1 no incorporándose 

prácticamente Al en la estructura del sólido precipitado. Sin embargo, utilizando 

sólo un precursor de Zn ha sido posible co-precipitar con éxito un compuesto en 

el que la alantoína se asocia a un hidróxido sencillo laminar (HSL) de Zn. El 

híbrido alantoína-Zn HSL obtenido ha sido comparado con un complejo de Zn-

alantoína preparado de acuerdo con un protocolo previamente recogido en la 

literatura y para el que se había descrito un efecto de la presencia de Zn como 

potenciador de los efectos terapéuticos de la alantoína. Un estudio de la 

liberación de la alantoína a partir de varios de los sistemas preparados confirma 

que el sistema alantoína-Zn HSL es el más eficiente, incluso que el complejo Zn-

alantoína descrito en la literatura. La incorporación de los sistemas desarrollados 

en matrices biopoliméricas como pueden ser el agar, la 

hidroxipropilmetilcelulosa (HPMC) o la nanocelulosa, facilita un posterior 

procesado como películas estables que puedan ser utilizadas en aplicaciones, por 

ejemplo, como tejidos para apósitos de heridas, y en las que la presencia de Zn 

en el híbrido incorporado puede ejercer un papel bactericida. 

El tercer grupo de materiales preparados en la Tesis Doctoral se ha centrado en 

el desarrollo de heteroestructuras híbridas de hidróxidos dobles laminares-

sepiolita como sistemas de liberación de herbicidas. En concreto, se ha abordado 

la síntesis de hidróxidos dobles laminares de Mg-Al en presencia de la arcilla 

fibrosa sepiolita y del herbicida conocido como MCPA (ácido 2-metil-4-

clorofenoxiacético) para producir mediante co-precipitación en una sola etapa la 

nanoarquitectura híbrida. Se ha comprobado que el proceso de co-precipitación 

del HDL en presencia del herbicida y de sepiolita da lugar a sistemas que 

incorporan una gran cantidad de herbicida, mucho mayor que la cantidad 

adsorbida cuando se co-precipita sólo el HDL o cuando la nanoarquitectura 
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híbrida se prepara mediante un proceso de cambio iónico de los aniones Cl- 

presentes en nanoarquitecturas de HDL-sepiolita previamente obtenidas en un 

proceso de co-precipitación similar pero en ausencia de herbicida en el medio. 

Las nanoarquitecturas MCPA-HDL/sepiolita se caracterizaron por diversas 

técnicas fisicoquímicas (XRD, espectroscopias FTIR y 29Si NMR, análisis de CHN 

y FESEM) que revelaron interacciones del HDL con las fibras de sepiolita a través 

de los grupos silanol presentes en la superficie externa de las fibras de sepiolita, 

junto con la intercalación de MCPA en la LDH confirmada por el aumento del 

espaciado basal de 0,77 nm característico del HDL con aniones compensadores 

cloruro en la interlámina a espaciados de 2,32 nm en materiales con MCPA.  Los 

ensayos de liberación del herbicida incorporado en las nanoarquitecturas 

híbridas en agua a pH 5,5, que simula las características de agua de lluvia, 

muestran que la liberación a partir de las nanoarquitecturas híbridas de sepiolita-

HDL es mucho más rápida y completa en comparación a cuando el herbicida está 

incorporado en un LDH co-precipitado en presencia del herbicida, lo que 

confirma su idoneidad para aplicaciones agrícolas. Con el fin de contar con 

sistemas de liberación de aplicación en suelos donde la nanoarquitectura híbrida 

actúe como reservorio del herbicida y donde se pueda establecer una acción más 

prolongada, se desarrolló también sistema de microesferas compuestas del 

polisacárido alginato y de la proteína hidrofóbica zeína. En pruebas in vitro y en 

columnas preparadas con suelos los resultados de liberación son muy 

satisfactorios y permiten confirmar un proceso de liberación más controlado del 

herbicida a partir de los sistemas bionanocomposites en niveles más próximos a 

la superficie más exterior del suelo, evitando procesos de lixiviación del herbicida 

a mayores profundidades del mismo. Otras ventajas adicionales de los sistemas 

desarrollados se refieren al uso de la encapsulación como medio para permitir 

un mejor manejo y transporte del herbicida y a la utilización de la sepiolita 

presente en la nanoarquitectura híbrida para incorporar otras especies de interés 

que pudieran ser liberadas simultáneamente al medio. 

 

 



9 
 

 

CHAPTER 1 

 

INTRODUCTION 

 

This Thesis deals with the preparation, and characterization of hybrid and biohybrid materials 

based on the intercalation of bioactive species in layered inorganic solids, and their integration 

in more complex systems like bionanocomposites and nanoarchitectures. It deals also with the 

evaluation of the properties of the resulting materials for application as controlled release 

systems of drugs or herbicides. The developed materials are based on cationic clays of the 

smectite type, and anionic clays, such as layered double hydroxides or layered simple hydroxides, 

which are commonly used in the formation of hybrid, bionanocomposite and nanoarchitectured 

materials. This introductory chapter is intended to review some of the most important concepts 

that form the basis of the work reported in this Thesis. First, general concepts of controlled 

delivery will be described, both in pharmaceutical and agriculture areas, followed by a revision 

on the clays used for this purpose, with emphasis on the use of intercalation compounds and more 

complex systems (bionanocomposites and nanoarchitectures) as controlled release systems. 

Finally, the main objectives of this Thesis will be detailed. 

 

 

 

1.1 CONTROLLED DELIVERY SYSTEMS 

 

1.2 CLAY-BASED NANOCARRIERS IN DELIVERY SYSTEMS  

 

1.3 OBJECTIVES OF THIS DISSERTATION 
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1.1 CONTROLLED DELIVERY SYSTEMS 

There is currently an increasing progress in the development of controlled release 

systems in several sectors, both in the areas of food, cosmetics, and 

pharmaceutics (for oral, dermal, transdermal, intravenous, sublingual, or nasal 

administration, among others) as in the environmental field (for the controlled 

release of pesticides, fertilizers, etc.). In the health area, the controlled release can 

be defined as a technique or method in which the active chemical agent is 

delivered at specific rate over a period of time in order to achieve the intended 

therapeutic effect (Hoffman, 2008; Park, 2014; Yun et al., 2015), avoiding or 

minimizing side effects (Zhang and Cresswell, 2016; Robert et al., 2017; Mehtani 

et al., 2019). In the environmental sector, more specifically in the agrochemical 

sector, the development of these controlled release systems is being a potential 

solution to those problems related to the delivery efficiency and the 

environmental pollution derived from pesticides (Campos et al., 2014; Singh et 

al., 2020).   

 

1.1.1 Controlled drug delivery systems 

The search for new therapeutic materials capable of efficiently modifying the 

kinetics and release site of a drug, compared to a conventional release, has 

aroused great interest in the areas of biomedicine and tissue engineering. Figure 

1.1 describes how a controlled release system works compared to conventional 

release formulations. As can be seen, the release rate of active ingredient from 

conventional formulations is generally very fast and complete after 

administration. This means that the concentration in the medium is initially very 

high, reaching toxic levels, and decreases rapidly to low and ineffective levels, 

which makes necessary the administration of multiple doses. In contrast, a 

controlled release system allows the gradual release of the active substance, 

maintaining its concentration within the therapeutic level with a single dose, and 

minimizing side effects (Park, 2014; Dalcanale et al., 2015). 
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Figure 1.1. Drug levels in the plasma released from a traditional release system (blue dashed 
curve) that requires multiple doses, and a controlled release system (red continuous curve). 

(Adapted from Dalcanale et al. (2015)). 

 

Often, in a controlled drug delivery system, the addition of excipients 

(pharmacologically inactive substances used as a vehicle for the active 

ingredient) is required (Park, 2014; Kaur et al., 2018). In addition, they can 

guarantee greater stability, improve the biopharmaceutical properties of the 

drugs and improve the organoleptic characteristics, thus contributing to a better 

acceptance of medication by patients. These excipients should have properties 

such as biocompatibility, biodegradability, and versatility, among others. Among 

the materials most commonly used as carriers or vehicles in release systems, we 

can find surfactants, lipids, polymers and inorganic materials (Yun et al., 2015; 

Mehtani et al., 2019). Among the last ones, clay minerals have shown great 

interest as controlled release systems of drugs, including natural silicates such as 

smectites, sepiolite or palygorskite, and also layered double hydroxides (LDH) 

(Gordijo et al., 2005; Aguzzi et al., 2007; Choy et al., 2007; Carretero and Pozo, 

2009; Viseras et al., 2010; Oh et al., 2012; Siepmann et al., 2012; Kim et al., 2013; 

Hun Kim et al., 2016), as will be detailed in #section 1.2.1. The possibility of 

processing the formulations as powdered materials, films, foams or microbeads 

is of interest to select the more appropriate conformation depending on the type 

of administration in the body (oral, dermal, intravenous...) and the type of 

disease. For instance, administration can be carried out through the nasal 
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membranes (nasal route), the eye (ophthalmic route), the mucous membranes of 

the mouth (oral route), the skin (transdermal route), among others (Shingade, 

2012; Tiwari et al., 2012; Park, 2014; Hun Kim et al., 2016; Ruiz-Hitzky et al., 2019; 

Viseras et al., 2019). 

 

1.1.2 Controlled delivery of herbicides 

Productivist agriculture has had an exponential increase in recent years, mainly 

due to the worldwide population increase, once plants are the main source of 

food in the world (Campos et al., 2014; Singh et al., 2020). This increase in world 

agricultural productivity has had a direct impact on the greater use of pesticides, 

together with new agricultural practices, providing the diffusion of new varieties 

of self-growing crops. In order to meet the current production needs of plants in 

general, the use of pesticides is essential since the plants are susceptible to 

approximately 100,000 diseases due to a wide variety of agents. The use of 

pesticide amounts in large excess tries to overcome its loss due to several factors, 

such as chemical/or biological degradation, photodecomposition and losses due 

to runoff and leaching along the soil profile (Chauhan et al., 2017; Singh et al., 

2020) (Figure 1.2). Leaching of herbicides usually brings more serious 

consequences such as the increase in the residual activity of the herbicide since 

the microbial activity responsible for the degradation of most herbicides 

decreases with depth; reduction of the herbicide concentration in the upper part 

of the soil below the thresholds necessary for the control of weeds and excessive 

accumulation in the root zone of the crop to levels that jeopardize its safety; water 

can carry herbicides below the root, reaching and contaminating groundwater 

(Singh et al., 2020).   
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Figure 1.2. Behavior of herbicides in soils. (Adapted from Miller and Westra, (2004). 

 

In the search for new alternatives to conventional systems that can reduce 

pesticide overdosing and environmental pollution, the formulations of 

controlled release of pesticides, similar to those of drugs, appear to reduce the 

risk in their use by increasing the safety of both the worker and the consumer, 

and being more efficient formulations where the loss of the active substance is 

minimized to the maximum (Nir et al., 2006; Singh et al., 2020). Similarly to 

controlled drug release systems, the design of controlled herbicide release 

formulations has the main purpose of maintaining for a longer time the 

concentration threshold of the active ingredient for the control of the pest in the 

soil or in the plant, through its release at adequate speed. The aim is to provide 

the amount required to achieve the proper biological effect, and thus reducing its 

level in the environment (Celis et al., 2002; Singh et al., 2020). Controlled release 

systems of herbicides are not intended to increase the persistence of herbicides 
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compared to conventional systems, but to control the release of the active 

ingredient to make it more available at the most appropriate time for crop 

protection. Numerous controlled delivery systems of herbicide have been 

developed by coating and microencapsulating pesticides using different 

techniques, such as atomization, encapsulation by nuclear reactors, complex co-

acervation, organic co-acervation, interfacial polymerization, fluid bed coating, 

solvent evaporation, disk recovery swivels, encapsulation of the herbicide in 

biopolymers, clays or in bionanocomposite systems (Gerstl et al., 1998; Taki et al., 

2001; Nir et al., 2006; Roy et al., 2014; Goyal, 2017; Prete et al., 2017; Singh et al., 

2020).  

 

1.2  CLAY-BASED NANOCARRIERS IN DELIVERY SYSTEMS 

Clays minerals, known from the first days of humanity, are very abundant in 

nature and are used for multiple purposes, profiting from their low cost and the 

unique structural properties of these hydrated silicates containing alkali and 

alkaline earth metals (Bergaya and Lagaly, 2006; Brigatti et al., 2006). Among the 

layered clay minerals (phyllosilicates), only some of them, including kaolin, talc 

and smectites as well as fibrous clays (sepiolite and palygorskite), are commonly 

used as excipients in the formulation of different dosage forms, as solid, liquid 

or semi-solid (Carretero, 2002; Choy et al., 2007). The structure and general 

characteristics of the clay minerals used in this Thesis is here briefly described:  

 

Montmorillonite: it is a dioctahedral clay mineral of general structural formula 

(Na)0.33(Al,Mg)2(Si4O10)(OH)2·nH2O belonging to the group of smectites. Its 

structure is 2:1 type, that is, with structural layers consisting of two sheets of 

tetrahedral silica and a central sheet of octahedral alumina, joined by oxygen 

atoms common to both sheets (Bergaya et al., 2013) (Figure 1.3). Among these 

sheets, isomorphic substitutions occur in octahedral sheet (typically Al by Mg) 

and frequently also in the tetrahedral one (Si by Al). These isomorphic 
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substitutions generate a positive charge deficiency, resulting in a negative global 

charge layer (Bergaya et al., 2013; Brigatti et al., 2013). The negative charge of the 

network is balanced by the presence of interlamellar cations, generally Na+, Ca2+ 

or K+ among others. The presence of these interlaminar cations gives 

montmorillonite interesting ion-exchange properties, as these cations can be 

exchanged by other cations of diverse origin by a topotactical chemical reaction, 

including organic species that lead to the formation of organic-inorganic hybrid 

materials (Ruiz-Hitzky et al., 2004).  

 

 

Figure 1.3. Schematic representation of the montmorillonite structure (T = tetrahedral sheet and 
O = octahedral sheet). 

 

Laponite®: although less explored than montmorillonite, synthetic hectorites are 

also smectite clays of interest in diverse applications composition and purity can 

be controlled better than in natural clays (Christidis et al., 2018). This clay is a 

trioctahedral magnesium silicate, with the general formula Na0.7[(Si8Mg5.5 

Li0.3)O20(OH)4], being the most representatives those products commercialized 

under the trade-mark Laponite®, firstly by Laporte and currently by BYK 

Additives & Instruments. Normally, the negative charge is in this case 

compensated by Na+ ions, which can be also exchanged for other cations through 

topochemical reactions. Figure 1.4 represents schematically the structure of 

Laponite®, where the negative charge in the clay layers is originated from the 

replacement of Mg2+ with Li+ in the octahedral sheets of the crystal. The edges 
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have a positive charge (or less negative charge) depending on the protonation of 

the exposed hydroxyl groups (BYK Additives & Instruments, 2014). 

 

 

Figure 1.4. Schematic representation of the Laponite® structure. (T = tetrahedral sheet and O = 
octahedral sheet). 

 

Sepiolite: is a natural magnesium silicate of microfibrous morphology of general 

formula [Si12O30Mg8(OH,F)4](H2O)4·8H2O (Santaren et al., 1990; Ruiz-Hitzky, 

2001). The crystalline structure of a fiber is the characteristic of 2:1 phyllosilicates, 

consisting of two tetrahedral silicon and oxygen sheets and a central octahedral 

sheet containing magnesium cations coordinated with oxygen, fluorine and 

hydroxyl (OH) groups, but defining blocks due to discontinuities in the 

octahedral sheet caused by a regular inversion produced every six units of the 

tetrahedron sheets (Brauner and Preisinger, 1956; Ruiz-Hitzky, 2001). Thus, the 

structural blocks of the sepiolite delimit tunnels of dimensions 1.08 x 0.4 nm, 

considering its cross section and channels on the outside of the fiber. In addition, 

due to the systematic discontinuities this silicate has a large number of silanol 

groups (≡Si-OH) regularly disposed on its outer surface (Figure 1.5). 
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Figure 1.5. Schematic representation of a sepiolite nanofiber (A) and sepiolite crystalline 
structure (B). (Adapted from Fernandes et al. (2014))  

 

Although it has no expansion properties, unlike smectite clay minerals, the 

special structure of tunnels and sepiolite channels gives rise to a specific high 

surface area of approximately 300 m2/g, with almost half of this value attributed 

to the external surface. In addition, the presence of pores of different sizes, 

including the micropores defined by the structural tunnels, makes this mineral 

an excellent adsorbent material (Ruiz-Hitzky, 2001). 

 

Layered double hydroxides (LDH): are considered "anionic clays" and are frequently 

also called "hydrotalcite-type" compounds. Hydrotalcites are natural 

magnesium-aluminum double hydroxides containing carbonate anions 

intercalated between their layers for compensating the deficit of charge in the 

inorganic solid (Cavani and Trifirb, 1991). The structure of layered double 

hydroxides is based on that of brucite (Mg(OH)2), which is characterized by a 

laminar geometry of high symmetry where the Mg2+ cation is located in the 

center of an octahedron and coordinated to six OH groups (Constantino and 

Pinnavaia, 1995) (Figure 1.6). Although layered double hydroxides are not very 

abundant in nature, they can be easily synthesized in the laboratory (Bergaya and 

Lagaly, 2006; Forano et al., 2006). These compounds can be represented by the 

following general formula: [M2+ 1-x M3+ x (OH)2]x+ Am-x/m·nH2O], where M2+ 

represents a divalent metal cation (Mg2+, Zn2+, Fe2+, Cu2+...), M3+ a trivalent metal 
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cation (Al3+, Cr3+, Mn3+, Fe3+...) and Am- corresponds to an anion with m- charge 

(Constantino and Pinnavaia, 1995; Costantino et al., 2008). The presence of 

divalent and trivalent cations results in sheets with positive charge, which are 

compensated by interlayer anions (typically CO32-, NO3-, Cl−, or OH−).  

 

 

Figure 1.6. Schematic representation of the classical LDH structure. (Adapted from Li et al. 
(2017)) 

 

Layered Simple Hydroxides (LSH): have a related structure to that of LDH, but in 

LSH the inorganic layers are composed of a single type of metal cation, such as 

Mg2+, Cu2+, Zn2+ or Ni2+, and can be represented by the general formula [MII2 

(OH)4-x(Am-)x/m]·nH2O (Figure 1.7) (Hussein et al., 2012; Si et al., 2012; Abdul 

Latip et al., 2013). In this structure, the anions are coordinated with the metal ions 

in the plane and the inorganic layers are essentially neutral (Rogez et al., 2011). 

In more detail, quasi-planar array of edge-sharing octahedral, incomplete for 

LSH, where metal vacancies are charge balanced by two tetrahedral M(II) sites, 

one adjacently attached on each side of an octahedral void, and as much as one 

quarter of the octahedral sites of the metal hydroxide layers can be vacant at 

maximum (Stimpfling et al., 2016). The anions interleaved between the layers to 

compensate an excessive positive charge stemming from a divalent cation 

(Stimpfling et al., 2016; Langry et al., 2018)  Thus, in the case of LSH, the metal-

anion bond results in a strong interaction, and when ions derived from organic 
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molecules are intercalated between the inorganic metal network, they produce 

highly stable organic-inorganic hybrid compounds (Si et al., 2012). 

 

 

Figure 1.7. Schematic representation of the structure of layered simple hydroxides. (Adapted 

from Stimpfling et al., (2016)) 

 

1.2.1 Clay-based systems for application as controlled drug delivery systems 

Clay minerals have been used in medicine for centuries to treat a wide variety of 

diseases, such as infections, or as antidotes against various toxins and poisons. 

Clays have also been used topically for dermatological treatments, such as 

malignant ulcers (Williams and Haydel, 2010; Williams, 2017) and also by 

geophagy (Allègre, 2002). This interest in the study of clays for health continues 

today, as revealed by the great number of publications related to this topic, which 

has continued to grow in the last years (Carretero, 2002; Choy et al., 2007; 

Carretero and Lagaly, 2007; Viseras et al., 2007; Carretero and Pozo, 2009, 2010; 

López-Galindo et al., 2011; Carretero et al., 2013; Sánchez-Espejo et al., 2014; Hun 

Kim et al., 2016; Ruiz-Hitzky et al., 2019). 

One of the main properties of clays that makes them special and of great interest 

in many areas, including health, is due to their capacity for adsorption and ion-

exchange properties, which make them capable, for example, of adsorbing and 

eliminating ammonia and other nitrogen compounds harmful to the human 

body, capture various types of toxins (such as cholera) and mycotoxins, as well 
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as toxic molecular compounds (alkaloids, stricalasin, etc.), including 

radionuclides, such as 137Cs (Ruiz-Hitzky et al., 2019). These adsorption 

properties are also of great interest in the pharmaceutical field, as they can allow 

the development of drug release systems (DDS) or even controlled drug delivery 

systems (CDDS). For this purpose, typical hybrid drug carriers based on clays are 

produced through a process of intercalation/adsorption of the drug in the 

inorganic solid, forming drug-clay hybrids that allow the release of the drug in 

the gastrointestinal tract (oral drug administration) (Park et al., 2008; Oh et al., 

2013; Cunha et al., 2017; Tian et al., 2018), through the skin for topic usages (e.g., 

treatment of burns, dermatological treatments, incorporation in wound dressing 

tissues, etc.) (Moraes et al., 2017; Caflisch et al., 2018; Rebitski et al., 2018; Viseras 

et al., 2019; Lisuzzo et al., 2020), or even in more sophisticated uses, such as vector 

in vaccines (Ruiz-Hitzky et al., 2009; Wicklein et al., 2012, 2016) or DNA 

transfection (Castro-Smirnov et al., 2016, 2017; Piétrement et al., 2018).  

In addition to natural silicates, the anionic clays such as LDH and LSH are 

promising as nanocarriers in the pharmaceutical field due to their interesting 

properties mentioned above (Choy et al., 2007; Costantino et al., 2008; Bini and 

Monteforte, 2018; Mishra et al., 2018). In this way, numerous types of drugs such 

as DNA, anti-inflammatories (ibuprofen, diclofenac, etc.), steroids (L-tyrosine), 

anticancer (methotrexate) have been intercalated in these layered hydroxides for 

direct application as DDS (Choy et al., 2000; Gordijo et al., 2005; Oh et al., 2006; 

Del Hoyo, 2007; Zhang et al., 2014) or were further entrapped in polymers and 

biopolymers for developing CDDS (Alcântara et al., 2010; Ribeiro et al., 2014; 

Choi et al., 2018; Rebitski et al., 2019). These last drug-clay hybrid systems 

involving the use of polymers and biopolymers in the formulation can overcome 

some of the drawbacks of the just intercalated drug—LDH systems. For instance, 

the encapsulation increases the sensitivity to pH changes and improves thermal 

instability (Aguzzi et al., 2007; Matalanis et al., 2011; Modi et al., 2013). In this 

way, in general, the encapsulation of drug-clay hybrids, based on both LDH and 

clay minerals, in a protective polymer matrix is a methodology used more and 

more (Alcântara et al., 2010; Ribeiro et al., 2014; Rebitski et al., 2019). The resulting 
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composite systems show not only higher stability but, in many cases other 

interesting properties such as targeting for the searched application, better 

control of the release, greater protection of the drugs from pH changes (Ambrogi 

et al., 2008; Oh et al., 2012; Park et al., 2013). Besides, the use of biopolymers as 

encapsulating matrix may offer additional advantages such as biocompatibility, 

biodegradability and non-toxicity which can be of crucial relevance in this type 

of applications (Šimkovic, 2013; Alcântara and Darder, 2018; Ruiz-Hitzky et al., 

2019). Some examples of biopolymers used in controlled delivery applications 

are zein, alginate, chitosan, pectin, carboxymethylcellulose, or xanthan gum, 

among others (Alcântara et al., 2010; Paliwal and Palakurthi, 2014; Ribeiro et al., 

2014; Oliveira et al., 2017; Rebitski et al., 2018, 2019).  

Alginate and pectin are hydrophilic polysaccharides very useful as encapsulating 

matrices due to their ability to form microspheres by crosslinking, typically with 

divalent cations such as Ca2+ and Zn2+ (Gombotz, 1998; Sande, 2005; Sriamornsak, 

2011; Lee and Mooney, 2012) (Figure 1.8). The cross-linking effect is due to these 

divalent ions acting as bridges between the negatively charged groups of 

different units of guluronic acid, which favors the formation of a rigid gel with a 

characteristic structure called "egg-box" (Rees, 1981).  

 

 

Figure 1.8. Egg crate model of calcium crosslinked pectin. (Adapted from Roy et al. (2014). 
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However, this type of polysaccharides typically presents a high-water absorption 

capacity, which may reduce the control in oral drug delivery applications. Thus, 

hydrophobic biopolymers such as zein can be used to modulate the 

hydrophilicity of various biopolymer matrices reducing its swelling capacity 

(Alcântara et al., 2010). Zein is a storage protein from corn composed mainly of 

non-polar amino acids, which are responsible for the hydrophobic properties 

(Shukla and Cheryan, 2001; Lawton, 2002). Other biopolymers such as chitosan 

have mucoadhesive properties that allow their interaction with negatively 

charged surfaces, such as that of mucous membranes (intestinal or nasal mucosa), 

increasing the residence time of the drug in the gastrointestinal tract (Shimoda et 

al., 2001; Donnelly et al., 2011; Cheung et al., 2015; M. Ways et al., 2018; Zhao et 

al., 2018). Chitosan is a hydrophilic polysaccharide, extracted from the 

exoskeleton of crustaceans and some insects, which is also widely used in 

biomedical applications due to its interesting properties (biocompatibility, 

antimicrobial activity, film forming ability, etc.) (Singh and Ray, 2000; Cheung et 

al., 2015). 

A class of biopolymers that is gaining a growing interest mainly in applications 

of controlled topical release are those polysaccharides derived from cellulose, 

present mainly in plants as a structural component, such as 

hydroxypropylmethylcellulose (HPMC) or nanocellulose. HPMC shows good 

film forming ability,  stability in the presence of heat, light, and moderate levels 

of moisture, and it is easy to incorporate additives or active species into the 

HPMC film (Siepmann and Peppas, 2001; Ghosal et al., 2011; Ford, 2014). In the 

recent years, the use of nanocellulose for biomedical applications is increasing 

due to its properties of non-cytotoxicity and immunogenicity, which make it 

promising for use as scaffolds for the engineering of blood vessels, neural tissue, 

bone, cartilage, liver, adipose tissue, to repair connective tissue and congenital 

heart defects, and to build lenses of contact and protective barriers (Klemm et al., 

2006; Lin and Dufresne, 2014; Mohite and Patil, 2014; Jorfi and Foster, 2015a; 

Bacakova et al., 2019) Although bacterial cellulose would seem more appropriate 

for biomedical purposes, as it is obtained as a highly pure material (Mohite and 
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Patil, 2014; Fadel et al., 2017), cellulose nanomaterials derived from 

lignocellulosic biomass are becoming a common material for this type of 

applications (Xue et al., 2017). In this case, both cellulose nanofibers and 

nanocrystals are being used to develop suitable hydrogels as drug delivery 

systems and implants or scaffolds for tissue engineering, exploring also new 

processing methods like 3D printing (Wenyang et al., 2018; Du et al., 2019). 

Figure 1.9 shows schematic representations of drug release systems based on 

clays, biopolymers, or clay-biopolymer composites. In drug-loaded clays (Figure 

1.9a), the drug is contained in the channels or sheets of the inorganic solids, from 

which the drug is released by a diffusion process (Jafarbeglou et al., 2016; 

Sangeetha et al., 2019). In drug delivery systems using biodegradable 

biopolymers, the drug molecules initially dispersed in the polymer are released 

when the polymer begins to erode (with or without changes in chemical 

structure) or degrade (breakdown of the main chain links), as shown in Figure 

1.9b, as a result of exposure to chemicals (water) or biological agents (enzymes) 

(Siepmann et al., 2012; Jafarbeglou et al., 2016). In the bionanocomposite systems, 

where the clay-drug hybrids are encapsulated in a biopolymer, a combination of 

the mechanisms mentioned above is expected (Figure 1.9c) (Jafarbeglou et al., 

2016; Sangeetha et al., 2019). In this last case, the biopolymer matrix will act as an 

additional barrier to the diffusion of the drug molecules from the clay, improving 

the control in the release rate of the drug, and, in some cases, with the possibility 

of allowing a targeted release. 
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Figure 1.9. Different drug release systems based on: clays (A), biopolymers (B), and 

bionanocomposites (C). (Adapted from Sangeetha et al. (2019)).  

 

1.2.2 Formulations for controlled delivery of herbicides based on clay minerals 

Clay minerals are the components of the clay fraction of the soil (<2.0 μm) most 

important from the point of view of adsorption together with organic matter, not 

only because of their abundance in soils, but also due to their high specific surface 

area and ion-exchange capacity. Currently, pesticide formulations are attracting 

considerable interest as they may contribute to reduce the required dosage and 

the leaching, enhancing efficiency in their administration and so decreasing 

pollution of the environment (Nennemann et al., 2001; Undabeytia et al., 2003; 

Nir et al., 2006).In this context, to increase the efficiency of pesticides by reducing 

their leaching in air and water, it has been proposed the development of systems 

involving the reversible binding of the pesticide to clay minerals. Clays can 

protect the pesticide and increase its stability against volatilization and 

photodegradation, making overdosing unnecessary and, thus, reducing 
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environmental pollution (Margulies et al., 1985; El-Nahhal et al., 2001; Nir et al., 

2006, 2013). Slow-release formulations designed to reduce leaching were 

prepared with organoclays, micelles, liposomes, clay minerals (montmorillonite, 

sepiolite, layered double hydroxides, etc), and polymers (Lakraimi et al., 2000; 

Undabeytia et al., 2000, 2003; Casal et al., 2001; El-Nahhal et al., 2001; Nennemann 

et al., 2001; Rytwo et al., 2002; Mishael et al., 2003; Bruna et al., 2009; Alromeed et 

al., 2015a). An example is the incorporation of the diuron herbicide in 

phosphatidylcholine (PC) vesicles absorbed in montmorillonite reported by 

Undabeytia et al., (2012). In that system, the clay was responsible for increasing 

the herbicide sorption capacity. In addition, in soil column experiments with 

sandy soil, herbicide formulations in PC-clay accumulated mainly in the upper 

part of the soil, and there was a reduction of one third in leaching compared to 

the commercial formulation. Other approaches that use clays and polymers have 

also been described. Similarly, to controlled drug release systems, these polymer-

clay herbicide formulations are often prepared from biodegradable materials. 

These materials include synthetic polymers such as polyvinyl alcohol and 

polypeptides; biopolymers obtained from plants, animals and microorganisms, 

such as polysaccharides (for example, starch, cellulose, chitin, gums and pectin), 

proteins, polyesters, lignins, latex and resins; and modified biopolymers (Nir et 

al., 2006, 2013). In these controlled delivery systems, clays can be added to the 

matrix as modifiers to improve the slow release of the active ingredient. An 

illustrative example is the formulation of alginate-bentonite beads incorporating 

the insecticide imidacloprid that reduced its release rate and increased grain 

yield, thus producing a more efficient and economical formulation (Pepperman 

et al., 1991; González-Pradas et al., 1999). This same formulation was studied by 

Fernández-Pérez et al., (1999) and showed that alginate-bentonite formulations 

are efficient systems to reduce leaching of carbofuran in clay soils. 

As reported, the use of clays for herbicide-controlled delivery systems allows 

different systems to be produced with combinations with various materials 

producing complex, bionanocomposite hybrid systems among others (Lakraimi 
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et al., 2000; Celis et al., 2012; Undabeytia et al., 2012), which are very efficient and 

an excellent alternative to avoid damage to the environment. 

 

1.3  OBJECTIVES OF THIS DISSERTATION 

This Thesis intends to contribute to the development of delivery systems that 

could be applied to solve specific problems of current treatments, as well as to 

address diverse specific delivery applications. For this purpose, inorganic solids 

were used, where the specific drug was incorporated to procure convenient 

reservoirs, and they were suitably combined with natural biopolymers to afford 

the adequate control and targeting, if possible, in the delivery. With this premise, 

the Thesis has focused on the development of controlled release systems based 

on the intercalation of bioactive compounds in layered clay minerals and layered 

hydroxides, using various synthesis strategies, followed by their encapsulation 

in protective biopolymer matrixes, typically abundant polysaccharides, to 

produce bionanocomposite systems that can be applied for the specific release of 

pharmaceuticals and pesticides for uses in biomedicine and agriculture.  

The first target to be addressed involves the development of an effective system 

for the delivery of metformin, the most employed drug in the oral treatment of 

diabetes II, and recently also explored in the treatment of various types of cancer. 

In this way, in a first approach it will be explored the direct use of clay minerals 

as substrates where the drug could be intercalated and stabilized, profiting from 

the possibility to use it in its protonated form and, thus, exchange it with the 

interlayer cations of smectites. Natural clays of the smectite type, such as a 

montmorillonite, will be firstly explored, and in a second step synthetic clays, 

such as hectorites of the Laponite® type, will be used to exploit the advantages of 

such type of synthetic substrates in view to its real application in 

pharmacological production. Taking into account the different characteristics of 

those two lamellar silicates, their behavior as substrates for the adsorption of 

metformin will be also explored by applying computational modeling tools at the 

molecular level to better understand possible differences in the characteristics 
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and type of interactions between the drug and the clay host lattice. In a second 

step and with the aim of increasing biological half-life in the body, decreasing the 

daily dose and, presumably, avoiding other side effects described in the regular 

use of metformin, the produced clay-metformin hybrids will be associated with 

biopolymers to produce bionanocomposite materials that can procure a more 

controlled release, or even a possible targeting effect. In this way, core-shell bead 

systems will be designed using chitosan and pectin as components with the aim 

to profit from the stability that pectin could introduce in highly concentrated 

acids, such as the conditions found in the stomach, and chitosan mucoadhesive 

properties could contribute to improve adherence to the mucosa at the intestinal 

tract, favoring metformin absorption and increasing the effectiveness of the 

treatment. The presence of the drug intercalated in the layered silicate is expected 

to procure a convenient reservoir for a more controlled release, as well as other 

possible advantages related to the use of this type of clays that can also act as 

antidiarrheal agent, reducing other side effects due to accumulation of metformin 

in the intestinal tract. The release of the designed systems will be evaluated in in 

vitro tests that simulate the changes in the pH conditions along their passage 

through the gastrointestinal tract.  

The second target to be addressed in this Thesis will be the design of a controlled 

release system of allantoin for potential topical application in skin diseases 

treatments. Allantoin is a very particular molecule of great versatility for uses in 

cosmetics and pharmaceutics, but which is very difficult to stabilize with other 

components for uses in controlled release. In this Thesis, the preparation of 

hybrid materials will be explored by intercalation of allantoin in layered metal 

hydroxides, typically layered double hydroxides, by different methods of 

synthesis (ion-exchange, reconstruction and co-precipitation). The developed 

systems will be used as components in the preparation of bionanocomposites 

using biopolymers, such as hydroxypropylmethylcellulose (HPMC), agar and 

nanocellulose as matrices, and processed as films in view to produce stable 

systems that could be applied as wound dressing tissues. Furthermore, metal 

hydroxide substrates containing elements such as Zn or Cu will be optimized in 
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view to incorporate antibacterial properties in the resulting hybrids and so in the 

produced bionanocomposite films. 

Finally, the third targeted approach will explore the use of nanoarchitectured 

materials combining two types of inorganic host solids as substrate of the 

bioactive species, in view of possible combination of properties and/or use for a 

further incorporation of other functionalities. In this way, the use of 

nanoarchitectures where layered double hydroxides particles have been grown 

on the surface of sepiolite fibers will be explored. This nanoarchitecture will be 

used to incorporate 2-methyl-4-chlorophenoxyacetic acid (MCPA), a frequently 

employed herbicide in agriculture, using different approaches of synthesis: ion-

exchange with interlayer cations of the LDH already assembled to sepiolite, and 

co-precipitation of the LDH in the presence of sepiolite and the herbicide to 

produce directly in one step the hybrid nanoarchitecture. The produced materials 

will be explored alone or encapsulated in a biopolymer matrix to evaluate their 

behavior for the controlled release of MCPA in view to their application in soils. 

The biopolymeric system to be used in this case will be based on a combination 

of alginate and zein biopolymers, as the presence of zein in the generated 

bionanocomposite beads will incorporate hydrophobicity to the system and, 

therefore, will procure controlled swelling properties in order to tune the release 

process. 
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CHAPTER 2 

 

MATERIALS AND METHODS 

 

2.1 STARTING MATERIALS 

In this doctoral thesis, various bionanocomposite materials and 

nanoarchitectured hybrids based on clays of different nature (Na-

montmorillonite, Laponite® XLG and sepiolite) and layered double hydroxides, 

were studied for application in the controlled delivery of different active 

molecules (drugs and herbicides).  

 

2.1.1 Montmorillonite 

Montmorillonite (Mt) from Wyoming (USA), marketed by Southern Clay 

Products corresponds to the commercial product known as Cloisite®Na whose 

structural general formula is (Na)0.33(AlMg)2(Si4O10)(OH)2nH2O. The Mt  used in 

this thesis has a cation exchange capacity (CEC) of approximately 93 mEq Na+ 

per 100 g montmorillonite (Maes et al., 1979) and a particle size of 600 nm ± 92 

nm (as measured in sonicated water dispersion with Zetasizer Nano ZS from 

Malvern). 

 

2.1.2 Laponite® XLG 

Laponite® XLG is a synthetic layered clay kindly provided by the company BYK 

Additives & Instruments with high purity, indicated especially for the control of 

rheology in personal care and cosmetic applications, where it is used to stabilize 

emulsions, lotions and creams. Laponite® XLG has Na0.7[(Si8Mg5.5 Li0.3)O20(OH)4] 
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general formula, CEC of 63 mEq per 100 g and disk-shaped crystals of 

approximately 25 nm in diameter and 0.92 nm in thickness (BYK Additives & 

Instruments, 2014; Tomás et al., 2018). 

 

2.1.3 Sepiolite 

The sepiolite (Sep) microfibrous clay used in this thesis is from Vallecas-

Vicalvaro (Madrid-Spain), commercialized as Pangel® S9 by Tolsa S.A. This 

microfibrous clay has a total specific surface area determined from BET 

measurements of 320 m2 per g, being its external surface 150 m2 per g  and its 

CEC approximately 15 mEq per 100 g (Brauner and Preisinger, 1956; Santaren et 

al., 1990). The chemical composition presented by this clay of purity <95% is 

shown in Table 2.1. 

 

Table 2.1. Chemical composition of Pangel® S9 sepiolite (Santaren et al., 1990). 

 SiO2 Al2O3 MgO Na2O MnO3 CaO K2O F- 

Sepiolite 62.5% 1.20% 25.2% 0.09% 0.5% 0.4% 0.3% ≈ 1% 

 

2.1.4 Biopolymers 

The biopolymers used for the preparation of the bionanocomposite materials of 

this thesis were: chitosan (CHT), pectin (PEC), alginate (ALG), zein (Z), 

hydroxypropylmethylcellulose (HPMC) and agar (A), all obtained from Sigma-

Aldrich, and cellulose nanofibers (CNF) was kindly provided by “La 

Montañanesa” pulp mill (Torraspapel - Lecta Group, Spain). 

 

Chitosan: it is a natural polycationic linear polysaccharide derived from the 

partial deacetylation of chitin (Galed et al., 2005; Cheung et al., 2015) (Figure 2.1). 

The chitosan used in this Thesis present deacetylation 75 - 85% medium 

molecular weight (190,000-310,000 Da). 
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Figure 2.1. Molecular structure of chitosan. 

 

Pectin: are typical polysaccharides found in vegetables that are commonly used 

in the food industry as gelling and stabilizing agents (Thakur et al., 1997; 

Munarin et al., 2012; Zhang et al., 2020). Basically, pectins are polymers of (1-4) 

α-D-galacturonic acid partially esterified with methyl (Thakur et al., 1997; 

Synytsya, 2003) (Figure 2.2). Pectins with more than 50% methyl-ester groups are 

classified as high methoxy (HM) and those with less than 50% methyl-ester 

groups as low methoxy (LM) (Synytsya, 2003). The pectin used in this Thesis is 

obtained from citrus peel and contains ≥ 74.0 % galacturonic acid groups. 

 

Figure 2.2. Molecular structure of pectin. 

 

Alginate: is an anionic co-polymer consisting of β-D-manuronic acid (M) and α-

L-guluronic acid (G) monomers that are organized in sequential blocks of only 

one of the monomers (-MMMGGG-) or in blocks in which the monomers 

alternate (-MGMGMG -) (Lee and Mooney, 2012), as shown in Figure 2.3.  The 

alginate used in this Thesis is alginic acid sodium salt from brown algae medium 

viscosity. 
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Figure 2.3. Molecular structure of alginate. 

 

Zein: is a protein of prolamin class found in corn with a molecular weight of 

approximately 40 kDa (Figure 2.4). The zein used in this Thesis is a class 

of prolamine protein found in maize (corn). 

 

 

Figure 2.4. Molecular structure of zein.  

 

Hydroxypropylmethylcellulose (HPMC): is a cellulose backbone with ether-linked 

methoxy and hydroxypropyl side group substituents linked via ether bonds to 

the cellulosic chain hydroxyl groups (Figure 2.5). The properties of the polymer 

are strongly influenced by the methoxyl and hydroxypropyl substitution ratio. 

https://en.wikipedia.org/wiki/Prolamine
https://en.wikipedia.org/wiki/Protein
https://en.wikipedia.org/wiki/Maize
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Figure 2.5. Molecular structure of hydroxypropylmethylcellulose (HPMC). (Adapted from 

Ford, (2014). 

 

Cellulose nanofibers: is a linear polymer of glucose prepared from cellulose the 

most abundant biopolymer in nature. Cellulose is a homopolysaccharide 

composed of β-1,4-D-glucopyranose units (Figure 2.7). Vegetable nanocellulose 

can be obtained from abundant sources derived from trees, shrubs, various herbs, 

flowers, tubers, succulents, etc (Jorfi and Foster, 2015b; Bacakova et al., 2019). The 

cellulose nanofibers used in this Thesis was prepared from fully bleached 

eucalyptus pulp. This never-dried pulp was first exchanged to their sodium form 

and then refined in a PFI mill (until Schopper-Riegler degree above 90º) to 

enhance fiber accessibility and fibrillation efficiency. The refined fibers were 

processed in a high-pressure microfluidizer (Microfluidizer M-110P, 

Microfluidics Corp.) The fibers were passed thirteen times though an intensifier 

pump that increased the pressure, followed by an interaction chamber, which 

defibrillated the fibers by shear forces and impacts against the channel walls and 

colliding streams. The first six steps were carried out using only one chamber of 

200 µm, while the rest of the steps were performed adding a second chamber of 

100 µm. The obtained slurry of nanofibrillated cellulose was stored at 4ºC until 

use. 

 

 

hydroxypropoxyl
substitution

methoxyl
substitution
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Figure 2.6. Molecular structure of cellulose nanofibers. 

 

Agar: is a polysaccharide extracted from the Gelidiaceae and Gracilariaaceae 

seaweed families and it is composed mainly of repeating units of d-galactose and 

3,6-anhydro-l-galactopyranose that alternate along the polymer  (Armisén, 1991; 

Lai and Lii, 1997; Labropoulos et al., 2002) (Figure 2.7). The agar is insoluble in 

cold water, but melts on heating and cooling, and this cycle can be repeated for 

an indefinite number of times without compromising the mechanical properties 

of the gel (Wang and Rhim, 2015). One of the most significant uses of agar is in 

the preparation of microbiological media, stable and firm gels that can be used 

as support for the cultures, therefore it is commonly employed in the food, 

biomedical and other areas which that purpose (Settanni and Corsetti, 2008; 

Shukla et al., 2012; Fekete et al., 2019).  The agar used in this Thesis is or agar-

agar is a jelly-like substance, obtained from red algae. 

 

 

Figure 2.7. Molecular structure of agar. 

 

2.1.5 Organic compounds  

The organic compounds used in this Thesis as active species in the release study 

were: 
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Metformin: is the drug most frequently used for the treatment of type II diabetes 

and was purchased from Sigma Aldrich as 1,1-dimethylbiguanide chloride 

(C4H12ClN5) (Figure 2.8), with a molecular weight of 165.62 g mol-1 and a 97% 

purity.  

 

 

Figure 2.8. Molecular structure of metformin hydrochloride. 

 

Allantoin: is a compound widely used in cosmetics and pharmacy as a 

complement in various treatments for skin diseases. Allantoin is also known as 

5-ureidohydantoin or glyoxylic (acid) diureide, with chemical formula C4H6N4O3 

(Figure 2.9), and molecular weight 158.12 g mol-1. It was acquired from Sigma 

Aldrich with 98%purity.   

 

 

Figure 2.9. Molecular structure of allantoin. 

 

4-Chloro-2-methylphenoxyacetic acid: is an herbicide used to combat weeds, and 

commonly referred as MCPA. Its chemical formula is C9H9ClO3 (Figure 2.10), and 
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its molecular weight 200.62 g mol-1. It was purchased from Sigma Aldrich with 

95% purity. 

 

Figure 2.10. Molecular structure of 4-chloro-2-methylphenoxyacetic acid. 

 

 

2.1.6 Other reagents and solvents 

Other reagents used in this work, including its formula, provenance and purity 

are listed in Table 2.3. The deionized water (resistivity of 18.2 MΩ cm) was 

obtained with a Maxima Ultrapure Water system from Elga. 
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Table 2.3. Reagents used in this work with its corresponding formula, supplier and purity. 

Reagent Formula Supplier Purity (%) 

Aluminum chloride hexahydrate AlCl3·6H2O Sigma Aldrich ≥99% 

Magnesium chloride hexahydrate MgCl2·6H2O Sigma Aldrich ≥99% 

Aluminum nitrate nonahydrate Al(NO3)3·9H2O Sigma Aldrich ≥99% 

Zinc chloride hexahydrate ZnCl2·6H2O Sigma Aldrich ≥99% 

Zinc nitrate hexahydrate Zn(NO3)2·6H2O Sigma Aldrich ≥99% 

Sodium carbonate anhydrous Na2CO3 Sigma Aldrich ≥99% 

Sodium hydroxide anhydrous NaOH Sigma Aldrich ≥97% 

Calcium chloride CaCl2 Sigma Aldrich ≥93% 

Sodium phosphate monobasic monohydrate  NaH2PO4·H2O Sigma Aldrich ≥98% 

Sodium chloride  NaCl Sigma Aldrich ≥99.5% 

Hydrochloric acid 37% HCl Sigma Aldrich A.C.S. 

Ethanol C2H5OH Panreac A.C.S. 

Glacial acetic acid  CH3CO2H Sigma Aldrich A.C.S. 

 

2.2 SYNTHESIS AND PREPARATION METHODS 

2.2.1 Preparation of bionanocomposite systems containing clay-metformin 

hybrids and biopolymers  

For the preparation of the oral systems for the release of the drug metformin, two 

hybrid systems were prepared using as host matrices two layered clays with 

different characteristics and properties: Na-montmorillonite and Na-Laponite® 

XLG. 

 

 

 

https://www.sigmaaldrich.com/catalog/substance/sodiumphosphatemonobasicmonohydrate137991004921511
https://www.sigmaaldrich.com/catalog/substance/sodiumchloride5844764714511
https://www.sigmaaldrich.com/catalog/substance/glacialaceticacid60056419711
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a) Montmorillonite-metformin and laponite-metformin hybrids 

 

➢ Preparation of montmorillonite-metformin hybrids: the adsorption of 

metformin into the Na-montmorillonite (Mt) clay mineral was carried out by first 

dispersing a certain amount (150 mg) of the starting Mt in water to facilitate the 

intercalation of the drug by swelling the clay in water. Subsequently, variable 

amounts of metformin (MF) (5, 10, 25, 30, 50, 100, 200, 300 and 500 mg) were 

slowly added to the dispersion under continuous magnetic stirring that was 

maintained at 23 ᵒC for 24 h. The Mt–MF hybrid compounds were recovered in 

two ways: (1) one part was centrifuged, washed with water and dried overnight 

at 60 °C and (2) another part was only centrifuged to separate the solid from the 

supernatant, without further washing, and then dried overnight at 60 °C. The 

resulting hybrid materials were denoted as “Mt-MF/X” for the centrifuged 

samples without washing and “Mt-MF/Xw” for the washed samples, where X 

indicates the initial amount of MF (mg) added per 150 mg of Mt. The Mt-MF/X 

series was used to establish the corresponding MF adsorption isotherm. 

Afterwards, the hybrid materials were characterized by various physicochemical 

techniques. 

 

➢ Preparation of Laponite® XLG-metformin hybrids: the intercalation of MF in 

Laponite® XLG (Lap) was performed by adding one, two and three times the CEC 

of the clay (63 mEq per 100 g), that is, 20.86, 41.73 and 62.58 mg of metformin, 

respectively, to a dispersion of 0.2 g of the clay in 20 ml of water. The system was 

maintained under slow magnetic stirring for 48 h at room temperature. A part of 

the solid was recovered by centrifugation (Lap-MF/X) and dried in an oven at 60 

°C, and the other one was centrifuged and the recovered solid was washed 3 

times to remove any excess of MF weakly adsorbed on the clay surface (Lap-

MF/Xw), where X indicates the relative CEC proportion of MF used (i.e., 1, 2 or 

3).  
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b) Bionanocomposite beads based on Mt-MF and Lap-MF hybrids incorporated in 

chitosan and pectin 

 

➢ Preparation of bionanocomposite beads based on chitosan-pectin/Mt-MF: the 

bionanocomposites based on the washed and unwashed Mt-MF hybrid were 

prepared in the form of spheres, beads, using the biopolymers chitosan and 

pectin. The experimental procedure proposed by Ribeiro et al., (2014) and 

schematized in Figure 2.12 was used as reference for the preparation of these 

systems, with the exception of some adaptations according to the need of the 

experiment as described: 

Step 1:  In this step, spheres of chitosan have been prepared incorporating the 

pure MF drug or the Mt-MF hybrids as follows: i) a chitosan gel was prepared 

from 1 g of chitosan in 100 ml of 1% acetic acid solution. This gel was maintained 

under magnetic stirring at room temperature for approximately 4 h until a 

homogeneous gel was obtained. Adding dropwise 1 M NaOH solution, the pH 

of the gel was increased to approximately 5, to avoid possible alterations in the 

clay at acid pH, since the minerals are usually sensitive to very acid pH. In this 

case the pH of the gel should not exceed a maximum of ≈ 5 to prevent the chitosan 

gel from precipitating; ii) 0.1 g of pure drug (in the form of MF·HCl) or the 

amount of Mt-MF hybrid containing exactly the same amount of metformin is 

added to the chitosan gel prepared in the previous step. This system is 

maintained in magnetic stirring until a homogeneous system is obtained. The 

resulting gel is introduced into a burette and small drops were poured slowly 

into a 2 M NaOH solution. The drops are formed into rigid gel spheres due to the 

insolubility of chitosan at alkaline pH values, which are collected after 

approximately 20 min and washed with water in abundance to remove the 

residual Na+ ions and reach a neutral pH. The materials were labelled as 

CHT/MF, CHT/Mt-MFw or CHT/Mt-MF. 

Step 2: The spheres prepared as explained in step 1, were coated by pectin using 

a dispersion of the biopolymers at concentrations of 0.5, 1 or 1.5% (v/w). The 

chitosan spheres remained approximately 10 min in contact with the pectin gel. 
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Then, they were collected using a funnel Büchner and immersed in a 10% 

solution of CaCl2 for approximately 15 min. The spheres were collected, rinsed 

thorough by with water, and labelled as: PEC0.5%@CHT/Mt-MFXw, 

PEC0.5%@CHT/Mt-MF, PEC1%@CHT/Mt-MFXw, and PEC1.5%@CHT/Mt-

MFXw. The prepared microspheres of the bionanocomposites were frozen at -20 

°C with liquid nitrogen and lyophilized (Cryodos -80, Telstar) to produce the 

final beads tested in the controlled release application. 

 

 

Figure 2.12. Scheme of the general procedure used for the preparation of the chitosan-pectin 
beads entrapping the drug metformin, directly or incorporated in the hybrids prepared from 

montmorillonite. 

  

➢ Preparation of bionanocomposite beads based on PEC-CHT-PEC / Mt-MF and 

Lap-MF: pectin spheres, incorporating MF drug or the Mt-MF and Lap-MF hybrid 

materials, and then coated with a layer of chitosan and another layer of pectin 

was carried out as followed: 

Step 1: the pectin gel was prepared by dispersion of pectin in 100 ml of bidistilled 

water at 5% (v/w). Subsequently, 0.1 g of the drug, or the suitable amount of Mt-
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MFw, Mt-MF or Lap-MF hybrid containing the same amount of MF i.e. 0.1 g, was 

added, maintaining the system under stirring until its complete homogenization. 

The resulting gel was then introduced into a burette and slowly dripped into a 

10% (v/w) CaCl2 solution for about 20 min. The formed spheres were collected 

and washed with water in abundance to remove residual Ca+2 ions, being the 

products denominated as PEC/MF, PEC/Mt-MFw, PEC/Mt-MF and PEC/Lap-

MF. 

Step 2: The previously prepared pectin spheres were coated with a layer of 

chitosan by immersing them in a 0.5% aqueous dispersion of chitosan (pH ≈ 3) 

for 10 min, removed by filtration and incorporated then into a 2 M NaOH 

solution for approximately 10 min. After that there were collected by filtration 

and washed with abundant water. Subsequently these spheres went through an 

additional coating by immersing them in a 0.5% (v/w) pectin solution. After 10 

min, they were transferred to a 10% CaCl2 solution to consolidate the coating, 

followed by washing with abundant water. The bionanocomposite beads were 

denominated as PEC@CHT@PEC/MF, PEC@CHT@PEC/Mt-MFw, 

PEC@CHT@PEC/Mt-MF and PEC@CHT@PEC/Lap-MF. All the prepared 

materials were frozen at -20 °C with liquid nitrogen and lyophilized in a Cryodos 

-80, Telstar equipment, to produce the consolidated beads for later application as 

drug delivery systems. 

 

2.2.2 Preparation of hybrid systems based on allantoin and layered double 

hydroxides 

Various routes of synthesis were explored to obtain hybrid layered double 

hydroxide materials incorporating allantoin. These procedures involved the use 

of diverse layered double hydroxides (LDH) containing different inorganic 

anions in the interlayer region and with different salts.  
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a)  Allantoin- layered double hydroxide hybrids 

 

➢ Synthesis of layered double hydroxides: Mg/Al and Zn/Al LDH with a 2:1 

MII/MIII ratio and containing different anions in the interlayer (Cl- and CO3-2) 

were prepared by co-precipitation following the procedure described by 

Constantino and Pinnavaia (1995). 

For the preparation of the MgAl-LDH, a mixture of MgCl2·6H2O (9.34 mmol) and 

AlCl3·6H2O (4.68 mmol) was dissolved in 250 ml of double distilled water. This 

aqueous solution was added dropwise at a rate of 2 ml·min-1, with the help of a 

800 Dosino equipment from Metrohm, to 200 ml of bidistilled water maintained 

under nitrogen flow to remove CO2. Simultaneously, a solution of 1 M NaOH 

was added dropwise to the aqueous system to maintain a constant pH of ≈ 8 

during the synthesis, all automatically controlled by the Dosino unit. The 

resulting suspension was vigorously magnetic stirred under nitrogen flow for 24 

h for aging the formed LDH. The solid product was isolated by centrifugation, 

washed three times with bidistilled and degassed water and dried at 60 °C 

overnight. The material is denoted as MgAl-LDH.  

For the synthesis of ZnAl-LDH, also with 2:1 (MII/MIII) ratio and, containing Cl-

or CO32- ions, the co-precipitation reaction was carried out at a constant pH of 9.0 

according to the procedure described above. In this case, a mixture of 

ZnCl2·2H2O (15.58 mmol) and AlCl3·6H2O (7.79 mmol) was dissolved in 250 ml 

of decarbonates double-distilled water. This aqueous solution was added 

dropwise at a rate of 2 ml·min-1 to 200 ml of deionized water maintained under 

nitrogen flow to remove the CO2. Simultaneously, a solution of 1 M NaOH was 

added dropwise to the aqueous system to maintain a constant pH of ≈ 8 during 

the synthesis. The resulting suspension was vigorously magnetic stirred under 

nitrogen flow for 24 h. The solid product was isolated by centrifugation, washed 

three times with bidistilled and degassed water and dried at 60 °C overnight. The 

material was denoted as ZnAl-LDH. 

The ZnAl-LDH/CO3- was obtained analogously to the ZnAl-LDH described 

above, including the same salts and their respective concentrations, except that 
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the nitrogen flow was not used in the different stages of the synthesis, and the 

pH of precipitation (≈ 8) was adjusted with a 0.2 M Na2CO3- aqueous solution 

instead of NaOH. Once formed, the ZnAl-LDH/CO3- was recovered, washed and 

dried in an oven at 60 °C overnight. The material was denoted as ZnAl-

LDH/CO3-. 

 

➢ Allantoin-LDH hybrids preparation 

Ion-exchange method: for the preparation of all the hybrids by ion-exchange 

method, 0.5 g of allantoin was dissolved in 250 ml of bidistilled water. The pH of 

the solution was adjusted to approx. 9 with 1 M NaOH. This solution was slowly 

added to a suspension containing 1 g of the selected LDH (MgAl-LDH and ZnAl-

LDH) described above, and then kept at room temperature under magnetic 

stirring and nitrogen flux for 72 h. Subsequently, the solid product was isolated 

by centrifugation, washed with distilled water and dried at 60 °C overnight. The 

resulting materials were labelled as: allantie:MgAl-LDH and allantie:ZnAl-LDH.  

Co-precipitation method: the allantoin hybrids based on MgAl and ZnAl LDH were 

prepared by the co-precipitation method as described in the previous section, but 

in this case the salts were dropped into 200 ml of 1% (w/v) allantoin solution. 

The resulting suspensions were stirred at room temperature under nitrogen flow 

for 24 h. The solid fraction was separated by centrifugation, washed with 

bidistilled water and dried at 60 °C overnight. The hybrid materials synthesized 

by the co-precipitation method were labelled as allantcop:MgAl-LDH and 

allantcop:ZnAl-LDH. 

Reconstruction method: the synthesis of allantoin-LDH hybrid materials by the 

reconstruction method was performed by a calcination-rehydration reaction of 

the corresponding LDH-carbonate solids. Thus, 0.5 g of ZnAl-LDH containing 

carbonate ions in the interlaminar space (ZnAl-LDH/CO3-) was calcined in a 

muffle furnace at 350 ᵒC heating the sample from room temperature at 10 ᵒC min-

1 and then maintained at that temperature for 5 h to assure the formation of the 

corresponding dehydrated layered double oxide (ZnAl:LDO). On the other hand, 
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allantoin (1.56 g) was dissolved in 250 ml of bidistilled water and the pH was 

adjusted to 9 with 1 M NaOH, similarly to that described for the ion-exchange 

reaction. Then, 0.5 g of ZnAl-LDO was added to the allantoin solution, while the 

system was maintained under magnetic stirring and nitrogen atmosphere to 

prevent the formation of LDH-carbonate. The solid product was separated by 

centrifugation, washed and dried at 60 ᵒC overnight. The resulting hybrid 

material was labelled as allantrec:ZnAl-LDH. 

 

b) Allantoin-zinc systems 

 

➢ The allantoin-Zn layered single hydroxide: the LSH hydrid was prepared 

according to the same procedure followed in the preparation of allantcop:ZnAl-

LDH, but in this case, no aluminum was added to the salts solution. Thus, a 

solution of ZnCl2·2H2O (15.58 mmol) in 250 ml was dropped at a rate of 2 ml·min-

1  into an allantoin solution (2 g in 200 ml of bidistilled water) using the 800 Dosino 

from Metrohm. The material was kept under stirring under nitrogen atmosphere 

for 24 h. The solid product was separated by centrifugation, washed with 

bidistilled water and dried at 60 ᵒC overnight. The resulting hybrid material was 

labelled as allant:Zn-LSH. A Zn-LSH (in this case an LSH is not formed, it is only 

used as a nomenclature) has also been prepared under the same conditions 

without the presence of allantoin. 

 

➢ Allantoin-Zinc complexes: the allantoin-zinc complex was prepared based 

on the patent by Margraf (1974), using in this case 2 g of allantoin and 3.51 g of 

ZnCl2, which were added to 62 ml of warm double-distilled water (60 ᵒC). The pH 

was neutralized to approximately 7-8 by adding 1 M NaOH. Upon addition of 

NaOH, a white precipitate started to form. It was recovered by centrifugation, 

washed several times with bidistilled water, and dried at room temperature in a 

desiccator for 48 h. The resulting product was labelled as allant:Zn-complex. 

Under the same conditions a reference sample (blank) was prepared without the 

presence of allantoin, labelled as Zn-NaOH. 
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c) Preparation of bionanocomposite films by incorporating the allantoin hybrids in 

biopolymers  

 

For the studies of antibacterial activity, the materials based on ZnAl-LDH 

(without allantoin), allant:ZnAl-LDH, allant:Zn-LSH and the allant-Zn 

complexes were incorporated in the agar (A), hydroxypropylmethylcellulose 

(HPMC) and cellulose nanofibers (CNF) biopolymers.  

Agar: for this purpose, a 1.5% w/v agar solution was prepared in hot water until 

the gel was completely homogeneous. Before the agar solution reached room 

temperature, a certain amount of hybrid material containing 8.5 mg of zinc was 

added. After total homogenization, the resulting dispersions were placed in Petri 

dishes and dried in an oven at 40 °C for approx. 48 h. The resulting materials 

were labelled as: A/allant, A/Zn, A/LDH, A/allant:LDH, A/LSH, 

A/allant:complex, A/Zn-complex and A/allant:LSH. 

Hydroxymethylcellulose: the same materials cited for the agar biopolymer were 

incorporated into the HPMC films and the same drying conditions were used. 

Except in this case, a 2% w/v HPMC solution was prepared at room temperature. 

Nanocellulose fibers: In this case, nanocellulose fiber films incorporating pure 

allantoin and allant:Zn-LSH hybrid were prepared, using the same conditions as 

in the previous preparations. Except in this case, a 0.6% w/v nanocellulose fiber 

solution was prepared at room temperature. 

 

2.2.3 MCPA-LDH /sepiolite hybrid nanoarchitectures 

The preparation of MgAl-LDH/Sep nanoarchitectures involves the formation of 

a MgAl-LDH in the presence of a suspension of sepiolite (Gómez-Avilés et al., 

2016).  In this work, this procedure was followed to produce organic-inorganic 

hybrid nanoarchitectures associating organic molecules to the MgAl-LDH/Sep 

nanoarchitectures by ion-exchange reaction, or in one step process by co-
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precipitation of the LDH in presence of sepiolite and the organic specie, in this 

study the herbicide MCPA. For comparative purposes, hybrids resulting from 

MCPA intercalation on the neat MgAl-LDH were also prepared. 

 

a) Layered double hydroxide materials 

MgAl-LDH was prepared by co-precipitation reaction following the method 

described in #Section 2.2.2. The resulting solid was labelled as MgAl-LDH. 

 

b) MCPA-LDH hybrids 

Ion-exchange method: 1.5 g of MCPA was dissolved in 125 ml of bidistilled water 

and, then, the pH slowly adjusted to 7 by adding 1 M NaOH to assure the 

presence of the herbicide in its anionic form (Figure 2.13). The resulting herbicide 

solution was slowly added to a suspension of 0.5 g of MgAl-LDH (prepared as 

described above) in 125 ml of bidistilled water. This system was kept at room 

temperature under stirring and nitrogen flow for 72 h. Subsequently, the solid 

was recovered by centrifugation, washed 3 times with water and dried at 60 °C 

overnight. The resulting solid was labelled as MCPAie:MgAl-LDH. 

Co-precipitation method: here again the LDH is prepared following the method 

described by Constantino and Pinnavaia (1995), but in this case the aqueous 

metal salts solution was here added slowly to 350 ml of a MCPA (2.5 g) water 

solution. Once the addition is completed, the system is kept at room temperature 

under stirring and N2 flow for 24 h, in order to complete the reaction. Then, the 

solid was recovered by centrifugation, washed three times with bidistilled water 

and oven dried at 60 ᵒC overnight. The resulting solid is labelled as MCPA:MgAl-

LDH. 
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Figure 2.13. Diagram showing the distribution (percentage) of the protonated and anionic 
species of the MCPA molecule at different pH (obtained with the MarvinSketch program 6.1.5 

software). 

 

c) Preparation of LDH /sepiolite nanoarchitectures 

 

The LDH/Sep nanoarchitectures were prepared according to a previously 

reported procedure (Gómez-Avilés et al., 2016), by forming the MgAl-LDH from 

a solution of MgCl2·6H2O (9.34 mmol) and AlCl3·6H2O (4.68 mmol) in 500 ml of 

bidistilled water that was dripped with the 800 Dosino equipment from Metrohm 

to a dispersion of 4 g of sepiolite  in 350 ml of bidistilled water. At the same time, 

the system was maintained at pH ≈ 9 by controlled addition of 1 M NaOH 

solution. After the complete addition of the salts, the system was kept under 

magnetic stirring and nitrogen flow for 24 h to complete the formation of the 

LDH crystals. In this study, LDH:sepiolite materials with 2:1, 1:1, 0.5:1 and 0.3:1 

theoretical ratio were prepared. The product was then centrifuged, washed 3 

times with water and dried in the oven at 60 °C or, alternatively heated at 26 °C/h 

until reaching 150 °C, and then kept it at this temperature for 3 h (nitrogen flow 

of 100L·min-1) to achieve its drying and the consolidation of the formed 

nanoarchitecture (Gómez-Avilés et al., 2016). 
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d) Preparation of MCPA-LDH /sepiolite hybrid nanoarchitectures  

 

To obtain the hybrid nanoarchitectures, two methods were studied: ion-exchange 

method and co-precipitation. 

Ion-exchange method: the previously prepared LDH/Sep nanoarchitectures were 

used to incorporate MCPA by an ion-exchange process. For this purpose, 1.5 g of 

MCPA was solubilized in 125 ml of bidistilled water and the pH was adjusted to 

7 to have the herbicide in its anionic form. On the other hand, 0.5 g of a given 

nanoarchitecture was dispersed in an equal volume of water. The herbicide 

solution was slowly added to the nanoarchitecture dispersion and the system 

was kept under stirring for 72 h. Then, it was centrifuged, washed 3 times with 

water, and dried at 60 °C overnight. The hybrid nanoarchitectures were prepared 

from LDH/Sep nanoarchitectures of 2:1 and 0.5:1 LDH:sepiolite theoretical ratio 

consolidated at 60 and 150 °C. The resulting hybrid nanoarchitectures were 

labelled as: MCPAie-LDH/Sep2:1_60C, MCPAie-LDH/Sep2:1_150C, MCPAie-

LDH/Sep 0.5:1_60C, MCPAie-LDH/Sep 0.5:1_150C. 

Co-precipitation method: MCPA-LDH/sepiolite hybrid nanoarchitectures were 

also obtained in a single step by co-precipitation of the LDH in the presence of 

sepiolite and MCPA. In this case, the amount of Mg+2 and Al+3 chlorides required 

to obtain LDH:sepiolite of 2:1, 0.5:1 and 0.3:1 theoretical ratios was dripped into 

a dispersion containing 4 g of sepiolite and 2.5 g of MCPA in 500 ml of water. The 

solid recovered by centrifugation was then heated at 60 °C or 150 °C for 3 h under 

nitrogen flow (100 ml·min-) to consolidate the resulting hybrid 

nanoarchitectures. They were labelled as: MCPA-LDH/Sep2:1_60C, MCPA-

LDH/Sep2:1_150C, MCPA-LDH/Sep0.5:1_60C, MCPA-LDH/Sep0.5:1_150C, 

MCPA-LDH/Sep0.3:1_150C and MCPA-LDH/Sep0.5:1_60C. 
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e) Bionanocomposite beads based on the incorporation of MCPA hybrid systems in 

alginate-zein matrices 

 

The biopolymers alginate and zein were selected for the encapsulation of the 

MCPA hybrid systems, following the protocol described by Alcântara et al. 

(2010). Thus, i) 1.66 g of alginate in the solution was dissolved in 80 ml of water 

previously heated to 60 °C; ii) 0.34 g zein (corresponding to 17% of the total 

amount of biopolymers), to obtain a 2% concentration of biopolymers 

(considering the total amount of zein and alginate),  together  with 34 mg of 

MCPA, or the required amount of MCPA-LDH hybrid or MCPA-LDH/Sep 

nanoarchitecture that contains 34 mg of MCPA, were incorporated in 20 ml of 

ethanol-water (80%, v/v); iii) then, this mixture was homogenized and slowly 

added to the alginate solution, and kept under stirring for about 30 min; iv) the 

formed gel was poured drop by drop with a burette in a 5% CaCl2 solution to  

form spheres that were kept under constant stirring for 15 min; at the end of the 

process, the beads were washed with double distilled water to remove residual 

Ca+2 ions; and, finally, v), the recovered bionanocomposite beads were dried at 

40 °C overnight. The resulting materials were labelled as: ALG-Z@MCPA-LDH 

(incorporating the MCPA-LDH hybrid material) and ALG-Z@MCPA-LDH/Sep 

(incorporating the MCPA-LDH/Sep hybrid nanoarchitecture). 

 

2.3 CHARACTERIZATION METHODS 

The characterization of the prepared materials and the study of their controlled 

release properties were carried out by means of various physicochemical 

characterization techniques. 
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2.3.1 Powder X-ray diffraction (XRD) 

The structural information of crystalline materials was obtained using powder X-

ray diffractometry (XRD). In this study, this technique was essential to 

characterize materials derived from montmorillonite and Laponite® clays, and 

from layered double hydroxides, where changes in the basal spacing deduced 

from the position of reflections provide useful information on the intercalation of 

molecules in the interlaminar space. The diffractograms of the samples were 

obtained in a D8-ADVANCE unit from Bruker, equipped with a “Lynxeye” 

detector using the characteristic radiation for the copper Kα line (λ1 = 0.154060 

nm and λ2 = 0.154439 nm). The voltage and current of the source used were 40 

kV and 30 mA, respectively. The diffractograms were obtained with a goniometer 

speed of 0.3 s/step between 3 and 70 degrees of 2θ angle values. 

 

2.3.2 Elemental chemical analysis (CHN) 

Elemental chemical analysis was used to determine the amount of organic 

component present in the prepared hybrid materials. The samples were analyzed 

in duplicate either in a LECO CHNS-932 or in a PERKIN ELMER 2400 analyzer. 

 

2.3.3 Infrared spectroscopy (FTIR) 

Fourier transform infrared spectroscopy (FTIR) is a widely used technique for 

the identification of functional groups especially in organic compounds, as well 

as in organo-inorganic hybrid materials, which can also provide information on 

interaction mechanisms. FTIR was applied to characterize diverse samples 

prepared in this work using a BRUKER IFS 66v/S spectrophotometer. In general, 

the samples were diluted in KBr (~ 2%) and pellets were formed under a pressure 

of 10 tons prior to obtain the corresponding spectrum from 4000 to 400 cm-1 with 

a resolution of 2 cm-1. The samples based on sepiolite were prepared as a free-

standing film (from a 2% w/v suspension) that was directly placed in the sample 
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holder. This configuration was required in order to detect changes in the 

characteristics O-H stretching vibrations of Si-OH of this silicate appearing 

around 3720 cm-1. 

 

2.3.4 Thermal analysis (TG/DTA) 

Thermal analysis is an analytical technique that allows the study of both mass 

and thermal variations provoked when a sample is heated in a controlled 

atmosphere. The thermal behavior of the different prepared materials was 

analyzed from the simultaneously recorded thermogravimetric (TG) and 

differential thermal analysis (DTA) curves in a SDT Q600-TA equipment, in 

experiments carried out under air atmosphere (flux of 100 ml/min) from room 

temperature to 1000 ºC at 10 ºC/min heating rate. 

 

2.3.5 UV-visible spectroscopy (UV-Vis) 

Ultraviolet-visible spectroscopy is an instrumental technique that provides 

qualitative and quantitative information based on the process of absorption of 

ultraviolet-visible radiation (with wavelength between 160 and 780 nm) by a 

molecule or solid. In this Thesis, this technique was used in the quantitative 

evaluation of the content in solutions containing the drug or herbicide released 

from the hybrid and bionanocomposite materials in in vitro release assays. The 

measurements were carried out in a UV-1201 spectrophotometer from Shimadzu, 

using quartz cuvettes with 1 cm path length. The determination of concentration 

of the specie of interest was obtained by applying the Lambert-Beer law.  

 

 

 



52 
 

2.3.6 Electron microscopy 

a) Field Emission Scanning Electron Microscopy (FESEM) 

Scanning electron microscopy is an important technique used in the 

characterization of materials as it allows to investigate their morphology and 

texture as well as other relevant aspects such as homogeneity and composition. 

In this work, the morphology of the prepared materials was studied with a field 

emission scanning electron microscope FEI NOVA NANO 230 high resolution 

scanning electron microscope with an EDAX-Ametek detector, which allowed to 

quantify semiquantitatively the elements (e.g., sodium, chloride, aluminum, 

magnesium and zinc) present in the studied samples. The sample preparation 

was carried out by adhering the sample particles on a carbon adhesive tape and 

they were visualized directly without the need of any conductive coating. In 

some studies, the EDX analysis was carried out in a Hitachi S-3000N scanning 

electron microscope. 

b) Transmission electron microscopy 

Transmission Electron Microscopy (TEM) allows the study of the structure and 

morphology of particulate materials, in a very small scale with nanometric 

resolution. For the observation of some of the hybrids, the samples as powders 

were dispersed in bidistilled water and submitted to ultrasonic stirring for 15 

min. A drop of the resulting dispersion was deposited on a copper grid covered 

with a carbon conductive coating and allowed to dry at room temperature. The 

images of the corresponding samples were obtained with a JEOL JEM1010 (100 

kV) or JEOL 2100F STEM 200 kV microscope. 

 

2.3.7 High resolution solid state nuclear magnetic resonance spectroscopy 

(NMR) 

Through Nuclear Magnetic Resonance (NMR) spectroscopy that uses 

electromagnetic radiation in atomic nucleus, physical or chemical properties of 
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atoms or molecules in which they are contained can be determined. From the 

spectra of the 3C and 29Si nucleus, information about the structure of the 

metformin molecule or its organization in the inorganic solid can be obtained, or 

disturbances in the structure of a solid, a silicate, for example, as is the case with 

sepiolite. 

13C solid state NMR spectra were recorded at room temperature with a Bruker 

AV-400-WB spectrometer on a 2.5 mm twin channel probe using ZrO2 rotors with 

Kel-F plug. The pulse sequence used in the 13C spectra was cross polarized (CP-

MAS) 1H-13C. The working frequencies were 400.13 MHz for 1H and 100.32 MHz 

for 13C. The rotational speed was set to 10 kHz. The spectra were recorded using 

a spectral width of 35 kHz, an excitation pulse π/2 1H of 1.8 μs, a contact time of 

3 ms and a relaxation time of 4 s, with a decoupling of 1H type tppm 15 at 80 kHz. 

The number of scans was 1024 for MF. The spectra of the Mt-MF300 and Mt-

MF300w samples were accumulated throughout the night. The 13C chemical shift 

was referred to the tetramethylsilane (TMS) signal as the main reference and to 

the CH2 signal of adamantane (29.5 ppm) as a secondary reference. The 29Si NMR 

spectra were obtained using the same equipment and speed of rotation of the 

sample (10 KHz) but applying 79.49 MHz as the resonance frequency for 29Si, a 

pulse of π/2 for 5 μs and collecting between 1200 and 2000 accumulations with a 

waiting time of 5 s between successive accumulations. TMS was used as the 

standard reference signals for the 29Si nucleus, respectively. 

 

2.3.8 Total reflection X-Ray Fluorescence (TXRF) 

Total reflection X-Ray Fluorescence (TXRF) is a technique used in atomic 

chemical analysis, being based on the classical X-ray fluorescence spectroscopy 

(XRF). This technique allows to qualitative and quantitative evaluate the 

elements of the periodic table preferentially from Z=13 to Z=92, with a dynamic 

range of 5 orders of magnitude and a sensitivity of ppb (ng/ml) in liquids, and 

the percentage of weight (% wt) in solids. In this work, the technique was used 
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to determine the content of Zn in the materials based in allantoin in the release 

assays. The TXRF S2 PicoFox Bruker spectrometer of fixed geometry was used. 

 

2.3.9 Total Organic Carbon (TOC) 

The analysis of total organic carbon was used to determine the concentration of 

allantoin released from the samples prepared in this work. The samples were 

analyzed with an Analytik Jena multi N/C 2100 equipment. 

 

2.3.6 Zeta potential  

Zeta Potencial is a measure of the stability of a particle and indicates the potential 

that is required to penetrate the surrounding ion layer in the particle to 

destabilize it. Therefore, the zeta potential is the electrostatic power that exists 

between the separation of the layers surrounding the particle. In this Thesis to 

determine the zeta potential of allantoin and the various hybrid systems 

prepared from allantoin was used an equipment  NanoBrook 90Plus PALS from 

Brookhaven Instruments, using the BI-ZEL electrode, in the diluted aqueous 

dispersion of the samples. 

 

2.4 COMPUTATIONAL MODELING 

To complement the studies of the hybrids based on the intercalation of MF in Mt 

and Lap, theoretical studies of computational models were necessary. For this 

purpose, a theoretical materials package from Materials Studio was used. This 

software presents a simple graphical interface to prepare the models and systems 

to study. In addition, it presents a variety of available methods and various types 

of calculations in combined theoretical-experimental studies in which it allows 

the use of theoretical-chemistry at an interpretive level of the atomistic point of 

experimental results. Among the variety of modules with specific functions for 
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different studies and theoretical problems integrating the Materials Studio 

Software, FORCITE (FF) and CASTEP was used in this Thesis.  

 

a) Computational methodology 

A Force field (FF) based on empirical interatomic potentials previously refined 

by Heinz et al., (2005) for organics and clays was used in the optimization of the 

atomic structures, applying the Forcite code and periodical boundary conditions 

within the Materials Studio package (Biovia, 2018). This method yielded 

satisfactory results in similar systems previously studied (Borrego-Sánchez et al., 

2016, 2018). The Ewald method was used for the Coulomb and Van der Waals 

interactions with a cut-off at 15 Å. The SPC water model (Rick et al., 1995)  was 

used with atomic charge values of 0.41 and -0.82 for the H and O atoms, 

respectively. To set up the FF to the MF molecule, DFT calculations were applied 

for the optimization of this molecule using the Dmol3 code, calculating the 

atomic charges adjusted to the electrostatic potential (ESP charges) (Cox and 

Williams, 1981). These charges were compared with those calculated by the same 

FF and by the QEq method (Rappe and Goddard, 1991). 

In addition, quantum mechanical calculations have been performed using the 

Castep code (Clark et al., 2005) based on a plane wave DFT (Density Functional 

Theory) with periodical boundary conditions for comparison with previously 

applied FF. The generalized gradient approximation (GGA) and Perdew–Burke–

Ernzerhof (PBE) correlation exchange functional were used (Perdew et al., 1997) 

with an energy cutoff of 630 eV. On-the-fly generated (OTFG) ultra-soft 

pseudopotentials were used with Koelling-Harmon relativistic treatment 

(Vanderbilt, 1990). The effect of the dispersion corrections of Tkatchenko were 

included (Tkatchenko and Scheffler, 2009). 
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b)  Mineral and molecular models 

Models of Mt and Lap with a composition similar to the experimental one were 

used as a starting point, applying periodic boundary conditions to reproduce the 

crystallinity of this material. A periodic crystalline structure of the dioctahedral 

smectite, montmorillonite, with the unit-cell formula 

Na0.6(Al3.4Mg0.6)Si8O20(OH)4 was created and a 2x2x1 supercell model was 

generated with a formula Na2(Al14Mg2)Si32O80(OH)16.  The Mg atoms were placed 

in the octahedral sheet taking into account their dispersion tendency observed in 

previous work (Ortega-Castro et al., 2010). For the structure of the trioctahedral 

smectite, Laponite®, we created a model close to the experimental composition 

the Laponite® XLG used Na0.7(Mg5.5Li0.30.2)Si8O20(OH)4, with no tetrahedral 

substitution and Li substitutions and vacant sites in the octahedral sheet. A 2x2x1 

supercell was generated with formula Na3(Mg22Li11)Si32O80(OH)16. The Li 

substitution and the octahedral vacancy were placed in a maximal dispersion 

way in order to avoid charge concentration generated by these alterations of the 

Mg octahedral sheet. Then, both mineral solid models were studied for the MF 

adsorption in the interlayer space of the clays. In the experimental conditions MF 

is protonated being a monocation extracted from experimental crystal structure 

(Childs et al., 2004). Then, in the cation exchange we replaced in the intermediate 

layer a Na+ cation by a MF cation that would be intercalated, keeping the entire 

system electrically neutral. The quantity of water present in the pure clays and in 

the MF intercalated clays used in the calculations were the experimental values 

obtained from TG/DTA measurements. 

 

2.5 Evaluation of the properties of the hybrid and bionanocomposite materials 

2.5.1 Metformin-based materials 

a) Water absorption properties of MF-loaded bionanocomposite beads  

Water absorption properties of pectin-chitosan bionanocomposite beads were 

evaluated at room temperature by immersing the beads (≈ 10 mg) in 25 ml of 
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water or a solution simulating the pH of the first intestinal zone (around 6.8) 

using a phosphate buffer solution. At predetermined times, the beads were 

removed from the liquid and the excess of water whipped with absorbent paper, 

and then weighed on an analytical balance. The percentage of adsorbed water 

was determined by equation (1). 

           𝑤𝑎𝑡𝑒𝑟 𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 𝑔/𝑔 =
Wt − W0

W0
                                                                          (1) 

where Wt and W0 are the wet and initial mass of beads, respectively. 

 

b) Determination of the efficiency of encapsulation of metformin in pectin-chitosan 

bionanocomposite beads 

After incorporation of the drug MF in montmorillonite and Laponite® and in the 

chitosan/pectin bionanocomposite beads, the amount of drug incorporated, and 

the encapsulation efficiency were determined. For this purpose, 0.2 g of spheres 

were immersed in a buffer solution of pH 6.8 prepared with 0.030 g of NaOH, 

0.40 g of NaH2PO4.H2O and 0.62 g of NaCl to completely extract the drugs from 

the beads. The system was maintained under magnetic stirring at 37 °C for 24 h. 

The supernatant was recovered by centrifugation at 9000 rpm for 10 min, and 

then, the MF content was determined using UV-spectroscopy. Thus, the 

absorbance of the solution at 233 nm was determined and the concentration 

calculated by applying the Lambert-Beer law. 

The percentage of incorporated metformin and encapsulation efficiency were 

calculated using equations (2) and (3) (Babu et al., 2006), respectively. 

 

% 𝑑𝑟𝑢𝑔 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 =
amount of drug in beads

amount of beads
   𝑥100                                   (2) 
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% 𝑒𝑛𝑐𝑎𝑝𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑑𝑟𝑢𝑔 𝑙𝑜𝑎𝑑𝑖𝑛𝑔

theoretical loading
  𝑥100       (3) 

 

c) In vitro evaluation of metformin release 

A preliminary assay of MF release from the Mt-MF or Lap-MF hybrids was 

performed in bidistilled water for 5 h. Then, the in vitro release study that 

simulates the gastrointestinal tract was performed for 8 h. This study aims to 

simulate the sequential pH changes and time of residence that occur during the 

passage of the formulation through the gastrointestinal tract in the in vivo 

process. The materials selected for this study were first maintained for 2 h in a 

0.006M HCl solution (pH 1.2) containing 0.1% by weight NaCl to simulate the 

fluid in the gastric tract. The in vitro release studies of the different prepared 

materials were carried out by putting approximately 5 mg of the Mt-MF or Lap-

MF hybrids, or around 50 mg of bionanocomposite beads, into 100 ml of the 

selected delivery medium, which was kept in a thermostatic bath at 37 °C for the 

selected time. Then, it was kept at pH 6.8 for other 2 h, by adding a buffer 

prepared by the addition of 0.03 g of NaOH, 0.40 g of NaH2PO4·H2O and 0.62 g 

of NaCl to the solution of pH 1.2, in order to simulate the pH of the first zone of 

the intestinal fluid (small intestine). Finally, the system was kept for 4 h at pH 7.4 

by adding 1 M NaOH to the solution of pH 6.8, in order to simulate the pH of the 

intestinal colon area. At appropriate time intervals, an aliquot of 3 mL was 

withdrawn, and the amount of MF released from the drug-loaded beads was 

determined by UV spectrophotometry (λ = 233 nm) by applying the Lambert-Beer 

law. After the measurement, the aliquot was added back to the solution, in order 

to maintain the volume constant. All the experiments were carried out in 

triplicate. For the measurement of the MF released at pH 1.2, the pH has to be 

raised to 7 by adding a buffer solution, so that the MF band at λ= 233 nm can be 

observed. In this case, the collected aliquot (1 ml) is not returned to the main 

solution, and 1 mL of fresh pH 1.2 solution is replenished to keep the volume 

constant. 
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2.5.2 Allantoin-based materials  

 

a) Release of allantoin in phosphate buffered saline 

The release of allantoin from the prepared hybrid systems was investigated by 

immersing a quantity of the selected compound containing 55 mg of allantoin in 

100 ml of phosphate buffer solution (PBS) (pH ≈ 5.5) that simulates the pH of the 

human skin. The systems were kept at 36 °C under slow stirring in a thermostatic 

bath (50 rpm) for 24 h. In order to determine the concentration of the drug in the 

liquid, 5 ml of the solution was taken at certain time intervals and 5 ml of the 

phosphate buffer were added in order to keep a constant volume. The content of 

allantoin in the aliquot was determined by analyzing the total organic carbon in 

the solution and, then, the released allantoin was calculated considering the 

gravimetric factor. 

 

b) Study of the antibacterial properties of allantoin containing materials  

The antibacterial activity of the different samples obtained from allantoin-Zn 

systems was evaluated in vitro by the disc diffusion method (Hudzicki, 2012) 

using Mueller-Hinton agar (MHA) (Sigma-Aldrich) with inhibition zones 

determined in millimeters (mm). Gram-positive bacteria (Staphylococcus aureus 

CECT 239) and Gram-negative bacteria (Escherichia coli K 12 CECT 433) were used 

for this study previously grown in LB broth (10 g L−1 tryptone, 5 g L−1 yeast 

extract, and 5 g L−1 NaCl) at 36 ± 1 °C for 24 h. Each bacterial suspension (100 μL, 

108 CFU ml−1) was inoculated on MHA and spread with a sterile Drigalski 

handle. The 5-6 mm cm disks of agar agar (A) or Whatman filters (W) containing 

each one of the tested materials (A/allant, A/Zn, A/LDH, A/allant:LDH, 

A/LSH, A/allant:complex, A/Zn-complex and A/allant:LSH; W/allant, W/Zn, 

W/LDH, W/allant:LDH, W/LSH, W/allant:complex, W/Zn-complex and 

W/allant:LSH) were placed in the previously inoculated agar plates and 
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incubated at 36 ± 1 °C for 24 h. After incubation, the diameter of the inhibition 

zone was measured.  

 

2.5.3 MCPA-based materials  

 

a) Release of MCPA in water 

 

The release of MCPA herbicide from the MCPA-LDH hybrid, MCPA-LDH/Sep 

nanoarchitectures and the alginate/zein (ALG-Z) bionanocomposite materials 

was performed in 100 ml of bidistilled water at pH 5.5, with the addition of the 

required quantity of material to provide 20 mg of MCPA. The experiment was 

maintained at room temperature under slow magnetic stirring for 48 h or 8 days. 

At predetermined times, aliquots of 3 ml were removed from the system and then 

the MCPA concentration was evaluated by measuring the absorbance at 279 nm 

in a UV-Vis spectrophotometer and applying the Lambert-Beer law. After the 

analysis, the collected solution was returned to the initial solution to keep the 

volume constant. All the experiments were performed in triplicate. 

 

b) Experiments MCPA release in the soil column 

The soil used in this experiment was collected from an area of Madrid (Spain) 

located at the campus of the Autonomous University of Madrid. The soil has a 

sandy appearance on the surface (Figure 2.14A) and was removed from about 10 

cm under the surface and its color suggests the presence of some organic matter 

content. Before its incorporation in a column, it was sieved at 2 mm and allowed 

to dry at room temperature. 

The soil release studies were based on those described by Alromeed et al., (2015) 

where a methacrylate tube was used to build a 20 cm column. The column was 

covered at the opposite end of the 8 cm unit using a 1 mm nylon mesh padded 

with a thin layer of glass wool (0.5 g) to keep the soil in the column. The sand soil 
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(0.164 kg) was placed from the top of the column creating a 16 cm column Figure 

2.14B. Approximately 3 ml of a suspension of the prepared formulations (pure 

MCPA, MCPA-LDH hybrid, MCPA-LDH/Sep nanoarchitectures, and 

ALG/Z@MCPA-LDH/Sep beads) were sprayed on the soil surface. Distilled 

water simulating the equivalent to 70 mm of rain (50 ml) was added to the top of 

the column throughout 24 h. The leachate was collected and analyzed by HPLC 

to determine the level of herbicide. 

 

 

Figure 2.14 Soil used in the experiments of this work (A) and columns used for the release of 
MCPA from the formulations (B). 
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CHAPTER 3 

 

CLAY- BASED BIONANOCOMPOSITES AS 

CONTROLLED DRUG DELIVERY SISTEMS FOR 

RELEASE OF METFORMIN 

 

This chapter presents a comparative study on the use of two layered clays, a natural 

montmorillonite from Wyoming (Mt) and a synthetic hectorite known as Laponite® XLG (Lap), to 

encapsulate metformin (MF), which is the oral drug most used to treat type II diabetes. The 

objective was to evaluate the suitability of Mt and Lap as substrates for controlled release of MF 

in order to have a convenient and well-regulated clay-based component to produce 

pharmaceutical formulations. The combination of molecular modeling and experimental 

characterization techniques allowed to study the adsorption process and the final molecular 

arrangement of MF in the interlayer region of each of the silicates. As observed in “in vitro” 

release tests, the large release of MF in acidic media from both systems makes additional 

encapsulation in a protective polymer matrix necessary to increase the drug delivery in the small 

intestine. Promising results were obtained using chitosan and pectin as encapsulating matrix in 

a core shell configuration, leading to a gradual release of MF in the simulated gastrointestinal 

tract. 

 

3.1 INITIAL CONSIDERATIONS 

3.2  METFORMIN-MONTMORILLONITE HYBRIDS 

3.3  METFORMIN-LAPONITE® HYBRIDS 

3.4 IN VITRO TESTS OF METFORMIN RELEASE  

                             FROM THE METFORMIN-CLAY HYBRIDS 

3.5 BIONANOCOMPOSITE SYSTEMS BASED ON CLAY-

METFORMIN HYBRIDS 

3.6 CONCLUDING REMARKS 
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3.1 INITIAL CONSIDERATIONS 

Metformin (MF) is a biguanide type medication widely prescribed for more than 

60 years for the treatment of type II diabetes (Sirtori, 1994; Turner, 1998). This is 

a chronic metabolic disease whose main feature is to raise blood glucose levels 

(hyperglycemia), which may be associated with a body's resistance to insulin 

causing long-term serious problems in blood vessels, eyes, heart, kidneys and 

nerves (King et al., 2001; Lenhard and Gottschalk, 2002; Krentz and Bailey, 2005; 

Levetan, 2007; Chatterjee et al., 2017). Type 2 diabetes mellitus is a progressive 

and complex disorder that is difficult to treat effectively in the long term. Most 

patients are overweight or obese at diagnosis and will be unable to reach or 

sustain near normoglycemia without oral antidiabetic agents. A considerable 

proportion of patients will eventually require insulin therapy to maintain long-

term glycemic control, either as monotherapy or in conjunction with oral 

antidiabetic therapy (Turner, 1998; Krentz and Bailey, 2005; Levetan, 2007).  

According to the World Health Organization (WHO) the number of deaths from 

diabetes reached 1.6 million in 2016, which made this disease the seventh cause 

of death in the world (WHO, 2019). Currently, metformin hydrochloride is the 

reference drug used for the treatment of type 2 diabetes, being able to decrease 

blood glucose concentration by mechanisms other than insulin or sulphonylurea 

(Sirtori, 1994; Rojas and Gomes, 2013; Pala and Rotella, 2014; Sterrett et al., 2016; 

Chatterjee et al., 2017). This drug also decreases plasma insulin concentrations, 

contributing to increase peripheral glucose uptake and decreasing hepatic 

glucose production (Laliberte and Neumiller, 2010; Sterrett et al., 2016). 

Metformin does not promote weight gain and has beneficial effects on various 

cardiovascular risk factors (Turner, 1998; UK Prospective Diabetes Study Group, 

1998; Krentz and Bailey, 2005). For these reasons, the World Health Organization, 

has listed metformin as an essential medicine (WHO, 2019), being the most used 

oral medication for diabetes. Moreover, this drug is gaining great prominence in 

recent years, showing high efficacy as antitumor agent mainly in the treatment 

of prostate, colon, polycystic ovary syndrome and breast cancers (Lord, 2003; 

Gupta et al., 2013, 2018; Aldea et al., 2014). However, this drug has several 
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disadvantages caused by the low absolute bioavailability of 50-60% and the 

plasma half-life is 1.5–4 h, which implies the administration of high doses for an 

optimal therapeutic effect that can produce serious gastrointestinal problems 

(Pala and Rotella, 2014; Markowicz-Piasecka et al., 2017). Besides approximately 

30–50% of an oral dose is excreted in the urine as unchanged drug within 24 h, 

and 30% of the dose is eliminated unchanged with the feces (Graham et al., 2011; 

Emami Riedmaier et al., 2013; Markowicz-Piasecka et al., 2017). In this context, 

the design of controlled drug delivery systems (CDDS) is required to offer a 

controlled release and, consequently, to diminish these side effects. Currently, 

there is a commercial extended-release formulation of metformin, 

GLUCOPHAGE® XR, which contain the inactive ingredients sodium 

carboxymethyl cellulose, hydroxypropyl methylcellulose, microcrystalline 

cellulose, and magnesium stearate (Bristol-Myers Squibb. U.S. FDA., 2009). 

However, with a view to having even more efficient results, MF support 

materials based mainly on biopolymers are still being investigated (Ghazaie et 

al., 2017; Martínez-Gómez et al., 2017; Verma and Ahuja, 2017), considering that 

they are biocompatible, biodegradable and also some biopolymers can offer 

mucoadhesive properties increasing the effectiveness of a CDDS system. Other 

materials studied are inorganic mesoporous solids (X. Li et al., 2017; Shariatinia 

and Zahraee, 2017), porous silicon (García-Briones et al., 2019). In particular, clay 

minerals that to date have not been studied as CDDS for MF, are frequently used 

as carriers of a wide variety of medications in CDDS or DDS (Carretero, 2002; 

Aguzzi et al., 2007; Viseras et al., 2010; Hun Kim et al., 2016; Yang et al., 2016; 

Alcântara and Darder, 2018; Massaro et al., 2018; Ruiz-Hitzky et al., 2019), and so 

they could also serve as substrates for MF. Based on these premises, the 

possibility of using smectites, such as montmorillonite and hectorite, to stabilize 

metformin is evaluated here, which will allow its subsequent incorporation into 

a formulation that can increase its biological half-life, decrease the daily dose and, 

presumably, other side effects associated with the regular use of metformin 

(Figure 3.1A). The selected clays in this study have been a natural 

montmorillonite from Wyoming commercialized as Cloisite® (Mt) and a 
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synthetic hectorite commercialized as Laponite® XLG (Lap) which is commonly 

used in cosmetic and pharmacology. Taking into account the different 

characteristics of these two layered silicates, this study was set with the aim of 

exploring and analyzing in a comparative way their behavior as substrates for 

adsorption and release of metformin.   

Computational modeling tools at the molecular level are here applied for a better 

understanding of the interactions between the drug and clays. Computational 

modeling allows to determine the geometrical structure of metformin, the 

structural dimensions of the unit cell, the distribution of the drug along the 

interlayer space, the interpretation of the clays interlayer spacing shift, atomic 

organization etc., including the interaction energy associated with the adsorption 

process. Several works based on computational modeling have achieved results 

of great relevance in the understanding of the interactions between diverse 

molecules (drugs, herbicides, surfactants, etc.) and clay minerals (sepiolite, 

palygorskite, halloysite, montmorillonite, Laponite®, etc.) as for example the 

adsorption of sulfonamides on phyllosilicate (Francisco-Márquez et al., 2017), 

pilocarpine on Laponite® (Cunha et al., 2017), surfactants on montmorillonite 

(Borrego-Sánchez et al., 2018), neomycin on montmorillonite and sepiolite 

(Rebitski et al., 2018), or to study the interaction of ethambutol with palygorskite 

(Meirelles et al., 2019). The final objective of the present study is also to evaluate 

and compare the release of MF intercalated in the Lap and Mt substrates 

incorporated in a biopolymers matrix of chitosan and pectin, forming 

bionanocomposite materials (Figure 3.1B). Bionanocomposites are known as 

good carriers of different types of drugs (Darder et al., 2007) like ibuprofen 

(Alcântara et al., 2010b; Ribeiro et al., 2014c), diclofenac (Lisuzzo et al., 2019), or 

amoxicillin  (Rebitski et al., 2019) among others. The selected biopolymers has 

been chitosan and pectin that present properties of biocompatibility, 

biodegradability, and have very interesting mucoadhesive properties, especially 

in the case of chitosan, for biomedical applications, while pectin may improve 

the stability of the developed systems at the pH of the stomach (Shimoda et al., 
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2001; Chourasia and Jain, 2003; Thirawong et al., 2007; Rajpurohit et al., 2010; Liu 

et al., 2012; Yadu et al., 2017; Zhao et al., 2018; George et al., 2019).  

 

Figure 3.1. Schematic representations of the formation of the Lap-MF and Mt-MF hybrids (A) 
and the bionanocomposite systems based on chitosan and pectin core-shell (B). 

 

3.2 METFORMIN-MONTMORILLONITE HYBRIDS 

3.2.1 Intercalation of metformin in montmorillonite 

Metformin is a biguanide, a hydrophilic organic molecule that is a strong base 

with a pKa of 12.4. Therefore, it exists mainly in protonated form with positive 

charge under physiological conditions. MF contains 5 nitrogen atoms with 

different tendencies towards protonation. Within a large pH range (between ca. 

1.5 and 10.5), the main species correspond to mono-protonated molecules Figure 

3.2 (Foretz et al., 2014; Kinaan et al., 2015).  
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Figure 3.2. Graphic showing the percentage of the various protonated species of the metformin 
molecule stable at different pH values (obtained by simulated calculations with the 

MarvinSketch program 6.1.5 software). 

 

The positive charge in MF contributes to its spontaneous adsorption in Mt from 

aqueous solutions of MF hydrochloride. As described in the Chapter 2 #section 

2.2.1, the adsorption isotherm at 298 K (Figure 3.3A) was constructed from the 

data of adsorbed amounts of MF that were determined from CHN elemental 

analysis. These results can be fitted to a L-type (Langmuir) adsorption isotherm 

(equation 1) according to the Giles classification (Giles et al., 1960). The fitting to 

the Langmuir isotherm data (R = 0.986) is indicative of the high affinity (b = 7.163 

mmol-1·L) between the adsorbate (MF) and the adsorbent (clay).  

 

                                                   ɼ ‗  bxm Cs                                                                           (1) 
    1+bCs 

 

where ɼ represents in the present case the adsorbed amount of MF in a specific 

point of the isotherm, Cs is the equilibrium concentration, xm is the maximum 

amount of adsorbed MF and b is the constant affinity between the MF organic 

adsorbate and the montmorillonite clay adsorbent. 
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Figure 3.3.  Adsorption isotherm at 298 K of MF (water solutions) in Na-montmorillonite (A), 
retained amounts of MF in Na-montmorillonite after washing the samples (B). 

 

The constant b can be related to the Gibbs energy of the adsorption process, 

calculated by the equation 2: 

 

                                              ΔGads = ˗RT ln K                                                          (2) 

 

where 𝑅 is the gas constant, 𝑇 the adsorption temperature, and K corresponds to 

(𝑏ρ/4)2 for ionic species (Miller et al., 2002), where ρ is the ratio of the solvent 

(water) density to its molecular weight (ρ ≈ 1000/18). Thus, the calculated Gibbs 

energy is 𝛥𝐺 = -76.5 kJ·mol-1, indicating an elevated tendency to the adsorption 

of the MF species on the montmorillonite clay surface. This value is comparable 

to the Gibbs energy obtained from adsorption of other type of cationic organic in 

Na-montmorillonite also involving intercalation processes (Colilla et al., 2005; 

Wicklein et al., 2010). 

It is known that the CEC of the commercial montmorillonite Cloisite®Na is 93 

mEq per 100 g, but the values of the adsorption isotherm plateau correspond to 

a drug content of about 260 mEq per 100 g, around thrice the CEC of the 

employed montmorillonite clay mineral (Figure 3.3A). The inset of Figure 3.3A 

shows the detailed evolution of the isotherm for the lowest values of the 

equilibrium concentration, which can be attributed mainly to intercalation 
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through an ion-exchange mechanism. Higher equilibrium concentration values 

lead to the adsorption of MF on the outer surface of the clay particles, which are 

easily removed by washing the samples. The "pseudoisotherm" representing the 

retained amount of MF after washing (Figure 3.3B) shows a plateau 

corresponding to 94 meq per 100 g, that is, almost coincident with the CEC value 

of this montmorillonite. Semi-quantitative EDX analyses of the hybrids produced 

at each point of the isotherm indicate a progressive decrease in the content of  

Na+ in the clay with the concomitant increase in adsorbed MF-H+ species (Figure 

3.4A). Unwashed samples corresponding to equilibrium concentration values 

greater than ca. 100 mEq per 100 g contain also chloride species (Figure 3.4B) that 

must be related to the presence of adsorbed MF·HCl species, which most 

probably remain assembled on the outer surface of the clay, in some cases 

forming even crystallites as deduced from the corresponding XRD patterns 

(Figure 3.5A). 

 

 

Figure 3.4. Evolution of the Na/Si ratio in samples with different amount of adsorbed MF on 
Na-montmorillonite (A), and content in chloride species in samples with different amount of 

adsorbed MF on Na-montmorillonite (samples from the adsorption isotherm study, i.e., without 
washing) (B). Note: sodium to silicon and chloride to silicon ratios in atomic % are deduced 

from EDX measurements and represented as a function of MF content in mmol per 100 g of the 
composite. 

 

Taking into account that the total accessible surface area of montmorillonite is 

750 m2 g-1 ( Olphen, 1977), and that the clay used in this study has a CEC of 93 

meq per 100 g, it can be calculated a value of 0.66 nm2 available per monovalent 
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cation, taking into account also such ion is sandwiched between two silicate 

sheets. The packaging of MF, deduced from the molecular models, is estimated 

to be around 0.4 nm2, which is below the area available per cation. Therefore, 

protonated MF species are compatible with the available area of this clay and, 

therefore, could easily exchange interlayer Na+ ions, and be freely 

accommodated in the interlayer space as a monolayer, leading to the formation 

of montmorillonite-MF intercalation compounds. 

The intercalation of MF in the interlamellar space of MT is deduced from the XRD 

patterns of the prepared hybrids containing different amounts of adsorbed drug 

(Table 3.1), before and after washing (Figure 3.5A & B). The intercalation is clearly 

deduced by the change in the position of the most intense peak, attributed to the 

(001) reflection plane, towards lower angles in 2. Given that the thickness of a 

single layer of montmorillonite is approximately 0.96 nm (Bergaya et al., 2013), it 

is possible to deduce a basal spacing increase of around 0.4 nm in the prepared 

Mt-MF hybrids due to the intercalation of MF. In addition, other (00l) reflections 

peaks, e.g. the d002 reflection peak at around 13.5º in 2, start to be also detected, 

confirming that at least a part of metformin is easily adsorbed in the interlamellar 

space of the clay mineral. The basal spacing of 1.20 nm in the initial Mt increases 

to values of around 1.35 nm in the Mt-MF hybrids, independently of the 

concentration of the drug used in the preparation or the washing processes. In 

samples prepared with high MF contents and without further washing, 

additional peaks related to the presence of crystalline MF·HCl adsorbed at the 

external surface of the clay may be also observed (Figure 3.5A). 
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Figure 3.5.  X-ray diffraction patterns of metformin (MF), Na-montmorillonite (Mt) and various 
Mt-MF hybrids obtained after adsorption of MF at different equilibrium concentrations without 
further washing (A) and X-ray diffraction patterns of metformin (MF), Na-montmorillonite (Mt) 

and washed Mt-MF hybrids with different content in metformin (B). 

 

Table 3.1   Amount of MF adsorbed on Na-montmorillonite before and after washing in 
samples preapred at 298 K in different equilibrium conditions. 

Sample Unwashed 

mEq MF per 100 g Mt 

Washed 

mEq MF per 100 g Mt 

Sample 

Mt-MF5 40.02 30.9 Mt-MF5w 

Mt-MF10 52.2 51.6 Mt-MF10w 

Mt-MF25 83.0 72.0 Mt-MF25w 

Mt-MF50 127.8 78.3 Mt-MF50w 

Mt-MF100 219.9 81.3 Mt-MF100w 

Mt-MF200 238.6 81.8 Mt-MF200w 

Mt-MF300 243.6 94.2 Mt-MF300w 

Mt-MF500 264.7 101.8 Mt-MF500w 

 

The proposed ion-exchange mechanism supports the high observed tendency of 

MF to intercalate Na-montmorillonite according to the Gibbs energy value 

calculated above. In fact, only by mixing both components in a mortar, the 
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ambient humidity is sufficient to spontaneously promote rapidly a partial 

intercalation according to XRD patterns (Figure 3.6). 

 

 

Figure 3.6. X-ray diffraction patterns of MF·HCl, Na-Mt, Mt-MF300w hybrid and the physical 
mixture Mt-MF with a content in MF similar to Mt-MF300w sample. 

 

FTIR spectroscopy corroborates the formation of Mt-MF hybrids. The spectrum 

of the used montmorillonite (Figure 3.7a) shows the typical vibration bands of 

this type of phyllosilicate, which also shows vibration bands at approximately 

1635 cm-1 ascribed to water directly coordinated with the exchangeable cations of 

the clay (Porubcan et al., 1978; Madejová et al., 1999). The spectrum of metformin 

hydrochloride (Figure 3.7b) shows a series of N-H vibrations bands centered at 

around 3370, 3300 and 3170 cm-1 that can be assigned to the primary and 

secondary amine groups, respectively. The band attributed to the bending 

vibration mode of the primary amine appears as a double band at 1635 and 1625 

cm-1, while the NH flexion of the imine group with the contribution of the 

secondary NH flexion amine is also shown as a double band at 1580 and 1565 cm-

1.  The bands between 1475 and 1415 cm-1 can be assigned to the bending 

vibration modes involving CH3 groups, and those that are around 1060, 940 and 
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740 cm-1 to the stretching C-N and bending and wagging vibration modes 

involving NH groups, respectively (Gunasekaran et al., 2006). The spectra of the 

washed and unwashed Mt-MF hybrids (Figure 3.7c, d and f) show bands within 

the typical regions where Mt and MF bands were observed but with some 

differences, especially with respect to those assignable to the organic molecule. 

These differences reveal the existence of interactions between MF and the 

montmorillonite substrate. Firstly, a new band is observed at around 3470 cm-1, 

while the band at 3370 cm-1 relatedto the N-H of the primary amine groups is still 

visible. Actually, the vibration band attributed to the N-H of the secondary amine 

is disturbed and changes to higher wave numbers, now appearing at around 3200 

cm-1. More significant are the changes in the band observed at around 3300 cm-1 

related to the stretching mode of the imine group, which is less visible within the 

broad background and only clearly defined in the spectrum of the Mt-MF300 

hybrid, probably due to to the presence of MF located on the external surface of 

the clay, involved here in low interaction with the silicate substrate. Other 

changes affect the bands in the region of 1400-1600 cm-1, involving both an 

enlargement of the bands and, in some cases, also slight changes in the frequency. 

IR bands of MF that appear in the 1000-1100 cm-1 region are not detected due to 

the highly intense νSi-O silicate vibration bands. The same applies to bands in the 

region of 700-950 cm-1, although the band of MF that appears at around 940 cm-1 

is still detectable in the spectrum of Mt-MF300 near that of the silicate at 

approximately 935 cm- 1, pointing again to the presence of a greater amount of 

MF in this hybrid sample with a part of it scarcely perturbed.  
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Figure 3.7. FTIR spectra of the Na-montmorillonite (a), metformin hydrochloride (b), and the 
Mt-MF25 (c) Mt-MF25w (d), Mt-MF300 (e) and Mt-MF300w (f) hybrids. 

 

Figure 3.8 shows the TG/DTA curves obtained in the air atmosphere for Na-

montmorillonite, MF, and the four selected Mt-MF hybrids. The curves 

corresponding to the initial Mt (Figure 3.8a) show the typical pattern of this type 

of silicate with a loss of mass at moderate temperatures that is accompanied by 

an endothermic peak at around 80 o C, which corresponds to the removal of water 

physically adsorbed water, approximately 7%. At higher temperatures, there is a 

progressive and small mass loss, probably associated with the elimination of 

water molecules attached to the cations between layers and the characteristic 

dehydroxylation of clay at temperatures between 600 and 700 ᵒC, also associated 

with an endothermic process (Heller-Kallai, 2013). In the case of pristine MF 

(Figure 3.8b), the first significant event is the melting process observed at 235 °C. 

Above this temperature, the compound begins to degrade, losing about 80% of 

the mass between 300 and 400 ᵒC in an endothermic process with a maximum at 

about 330 ᵒC, although there is still another mass loss between 550-600 °C to 

complete the degradation of the molecule (Santos et al., 2008; Ghazaie et al., 2017). 

In the case of the Mt-MF hybrid materials, the TG and DTA curves (Figure 3.8c, 

d, e, and f) are very complex, even assuming the superposition of the effects 

observed in the two components separately, which indicates the existence of 
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interactions between the two counterparts, MF and clay ore. In all cases, a small 

mass loss is observed at temperatures below 100 ᵒC also associated with an 

endothermic peak, which is related to the elimination of physisorbed water as in 

pure silicate. In intercalation compounds, water removal occurs in a similar 

temperature range, with mass losses of around 3-4%. Metformin removal begins 

at temperatures of around 200 ᵒC and can also last up to temperatures of 650-700 

ᵒC, being more complex and continuous than in pure MF and accompanied by 

several endothermic effects. The endothermic peak attributed to the fusion of MF 

is not clearly defined as in pure MF, but it could be the maximum observed at 

around 220 ᵒC on the Mt-MF300 DTA curve (Figure 3.8e), indicating a different 

aggregation state of the MF molecules. In this case, the sample contains an excess 

of crystalline MF·HCl on the outer surface of the clay as determined from the 

corresponding XRD pattern. Although it is not evident, the presence of MF on 

the outer surface of Mt-MF25 (Figure 3.8c) can not be discarded since certainly 

the thermal decomposition of MF in this hybrid is complex and slightly different 

from that of the sample after washing (Figure 3.8d). An endothermic peak near 

245 ᵒC can be distinguished, which is the temperature where MF fusion occurs. 

Finally, it is also remarkable that the TG and DTA curves of all washed hybrid 

materials are quite similar regardless of the initial MF content in the sample, 

indicating that once the samples are washed, the remaining MF should be located 

in the interlayer region of the clay. 
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Figure 3.8. TG (black, solid line) and DTA (red, dashed line) curves of Na-montmorillonite (a), 
metformin hydrochloride (b) and the Mt-MF25 (c) Mt-MF25w (d), Mt-MF300 (e), and Mt-

MF300w (f) hybrids. Experiments carried out in air atmosphere.  

 

The 13C NMR spectrum of starting metformin hydrochloride (Figure 3.9) shows 

resonance signals at 38, 40, 157 and 160 ppm described in greater detail in Table 

3.2. The two signals C1 and C2 at higher field are assigned to the carbon nuclei 

of the two methyl groups in the molecule. The two other signals, (C3 and C4) 

appearing at 157 and 160 ppm are attributed to the carbons involved in the bonds 

with the imine group of the molecule, respectively (Gadape and Parikh, 2011).  
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The spectra of the Mt-MF300 hybrid before and after washing show signals at 

close chemical shifts but with a very large background, especially in the 140-70 

ppm region, that is more evident in the sample without washing, confirming the 

presence of MF in excess in the outer surface of the clay in this last case. Beyond 

the possible changes due to the presence of MF intercalated within the clay, 

which may produce enlargement of the signals making difficult to distinguish 

them as two separated peaks as in pure MF, the notorious background indicates 

the existence of MF intermolecular interactions that can strongly affect the 

conformation of MF. In the samples where MF is only located at the interlayer 

region of the clay, this effect is much lower because the MF molecules remain 

isolated only in interaction with the clay surface.   

 

Figure 3.9. 13C NMR spectra of metformin hydrochloride (MF.HCl), and the Mt-MF300w and 
Mt-MF300 hybrids. 

 

Table 3.2 Assignments of 13C NMR  signal in the spectrum of  MF·HCl 

 

Type of Carbons Assignation 13C ppm (δ) 

2-CH3 (aliphatic) 1, 2 38.4, 40.5 

1-C (1-imine) 3 157.4 

1-C (1-imine) 4 160.7 
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3.2.2 Molecular modeling of the intercalation of MF in Mt  

Computational modeling studies are used in this Thesis to understand at a 

molecular level the interactions between MF and clay (detailed in Chapter 2 

#section 2.4). Computational modeling has revealed the geometric structure of 

intercalated metformin, the structural dimensions of the unit cell, the distribution 

of the drug along the interlayer space, the interpretation of the increase in the 

interlayer distance of clays, the atomic organization, etc., including the 

interaction energy associated with the adsorption process and all this 

information was compared to the results obtained experimentally. 

For the simulation, several tautomers of MF mono-protonated salt have been 

considered and we selected that considered as the most stable in previous studies 

(Wei et al., 2014). For the application of the Forcite (FF) to this protonated MF 

molecule, several atomic charges were explored finding that those calculated by 

Density Functional Theory (DFT) and associated with the electrostatic potential 

yielded the best results. Hence, these charges were used for the rest of 

calculations with FF. Nevertheless, the conformational structures were similar in 

all cases (Figure 3.10). This preoptimized protonated MF molecule was placed in 

a periodical box of 2x2x2 nm and was re-optimized. The re-optimized MF 

molecule has slightly changed its conformation from the original. The two 

terminal NH2 groups (N3 - N2) acquire a more planar conformation, forming a 

C2–N1–C1–N2 torsion angle of 72.09º. The terminal CH3 groups form an C4–N5–

C2–N4 angle of 11.74º and the central N form a torsion C4–N5–C2–N4 angle of -

178.88ᵒ (Table 3.3). 
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Figure 3.10. Molecular structure of metformin obtained by Castep program. Atoms in white-
gray, gray and blue colors are H, C, N atoms, respectively. This color assignment is extended to 

the rest of figures of this Chapter. 

 

An initial model of montmorillonite was prepared and optimized taking into 

account the chemical composition and the water content (7%) found in in TG-

DTA (see figure 3.8a). Then, the 2x2x1 supercell of montmorillonite with 12 water 

molecules per supercell was fully optimized relaxing the atomic positions and 

lattice cell parameters, yielding a basal spacing of d001=1.198 nm, matching the 

experimental value of 1.2 nm. This result validates the FF and methodology used 

in this work (Figure 3.11A).  

The water content decreases during the intercalation of MF to 3.5 - 4.5% (Figure 

3.8f). This means that there will be 8 water molecules per supercell during the 

adsorption of MF. Hence, two Na+ cations were substituted by two protonated 

MF cations per supercell and the intercalation complex was optimized with two 

MF protonated cations (Mt-MF) (Figure 3.11B). The (001) interlayer spacing of the 

optimized structure is d001=1.363 nm, matching the experimental value of 1.365 

nm (see figure 3.5). The intercalated MF remains in the center of the interlayer 

space with H atoms of the protonated N atoms oriented towards the tetrahedral 

O atoms of the mineral surface forming a monolayer of MF. The MF molecules H 

forms bridges with the O of the clay surface and also with the water O atoms 

through the H atom of the terminal CH3 and central and terminal NH2 groups 

with a distances range of 1.95 nm - 2.50 nm (Figure 3.11B). In addition, the MF 

changes its conformation after intercalation, with the terminal CH3 groups in a 
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more coplanar way compared to the starting MF, acquired new torsion angles 

(Table 3.2), and new dimensions of 0.34 x 6.72 nm, a value that approximates that 

obtained experimentally 0.39 nm for intercalated MF. 

 

Figure 3.11. Supercell 2×2×1 of montmorillonite intercalated with Na+ cations with 12 molecules 
of water (A), and metformin cations with 8 water molecules (B) per supercell. Atoms in white-

gray, red, gray, blue, yellow, pink and green colors are H, O, C, N, Si, Al, and Mg atoms. This is 
extended to the rest of figures of this chapter. 

 

Table 3.3 Torsion angles comparison of FF and CASTEP methods results for protonated MF and 
intercalated in Mt and Lap. 

Torsion angle MF+ Mt-MF 

(FF method) 

Mt-MF 

(CASTEP method) 

Lap-MF 

(CASTEP method) 

C2–N1–C1–N2 72.04ᵒ 11.40ᵒ 17.36ᵒ 20.84ᵒ 

N5–C2–N1–C1 -178.88ᵒ 70.02ᵒ -159.37ᵒ -144.14ᵒ 

C4–N5–C2–N4 11.74ᵒ 5.30ᵒ 7.98ᵒ 6.71ᵒ 

 

To calculate the adsorption energy, we have to consider all the species involved 

in the interaction process by cation exchange mechanism. Then, we prepared a 

Mt supercell with 2 Na+ cations with 8 water molecules (Mt-Na) and optimized 

in the same conditions, obtaining a (001) spacing basal of d001=1.197 nm close to 
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the experimental value. Besides, one box of MF hydrochloride with 4 water 

molecules (MFCl4w), and another one with Na chloride with 4 water molecules 

(NaCl4w) were optimized in the same conditions at constant volume. Hence the 

adsorption energy was calculated using equation (3): 

 

Eads = EMt-MF + ENaCl4w – (EMt-Na + EMFCl4w)             (3) 

 

yielding an energy of -42.73 kcal.mol-1. This means that the intercalation of MF in 

Mt is energetically favorable. 

This intercalation process was studied also at quantum mechanical level. These 

species involved in the intercalation process were optimized with CASTEP. The 

adsorption energy was -47.28 kcal.mol-1 similar to that obtained above with FF 

(Figure 3.12A and B). However, the (001) interlayer space of the calculated 

structures is shorter than experimental value, d001 = 1.192 nm for the Mt and d001 

= 1.275 nm for the Mt-MF, due to that the CASTEP method overestimates the 

interactions between the tetrahedral sheets in the interlayer space. 

 

 

Figure 3.12. Structure of montmorillonite with Na+ (A) and two molecules of MF (B) in the 
2×2×1 supercell in presence of 8 molecules of water.  
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3.3 METFORMIN-LAPONITE® HYBRIDS 

3.3.1 Intercalation of the metformin in Laponite® 

To prepare the MF-Lap hybrids the results of the previous study on the 

intercalation of MF in the clay mineral Mt was used and so, in that case, a given 

amount of Mt was mixed with a set of MF solutions with a concentration that 

varies from 1 to 30 times the CEC of the clay but for the intercalation of MF in 

Lap the process was carried out using amounts of MF 1, 2 and 3 times the CEC 

of the clay following the same experimental conditions of the previous isotherm 

study. The Table 3.4 shows the content of MF in the prepared samples both before 

and after washing of the formed hybrids. In contrast to the Mt system, Lap-MF 

samples do not show large excesses of absorbed MF with respect to the CEC of 

the clay, regardless of the amount of drug present in the reaction medium, 

observing only a small excess in unwashed samples compared to the final 

washed products.  

 

Table 3.4 Amount of MF adsorbed on Laponite® XLG (Lap) and Cloisite®Na (Mt). 

Sample Unwashed meq MF per 

100 g Lap 

Washed meq MF per 

100 g Lap 

Sample 

Lap-MF1 53.6 52.6 Lap-MF1w 

Lap-MF2 69.0 62.5 Lap-MF2w 

Lap-MF3 76.0 68.3 Lap-MF3w 

 

Similarly to the Mt-MF hybrid systems, the fact that MF intercalation occurs 

through a cation-exchange process is supported by the EDX analysis, which 

shows the decrease in sodium content after MF adsorption, since the initial Na/Si 

ratio is reduced from 0.069 in pristine Lap to 0.020, 0.012 and 0.018 in the Lap-

MF1w, Lap-MF2w and Lap-MF3w hybrids, respectively. 
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The XRD patterns of the Lap-MF2w and Lap-MF3 hybrid compounds show a 

shift of the (001) reflection peak towards angles greater than 2θ, giving basal 

spaces that vary from 1.44 nm for the pristine Lap to 1.317 and 1.321 nm for the 

intercalation compounds, regardless of the concentration of MF used, which 

leads to a interlayer distance increase of 0.35-0.36 nm in the hybrids (Figure 3.13). 

The fact the interlayer distance in the hybrids is lower than in the pristine silicate 

can be associated with a large amount of water present in Lap, which shows a 

basal space increase of 0.44 nm, i.e., twice that observed in the used Mt. The 

reflection d002 can be observed in the XRD patterns of the hybrids, which shows 

that there is an alteration in the stacking of the clay layers due to the presence of 

intercalated organic species. In contrast to the XRD pattern of the unwashed Mt-

MF hybrid that shows reflections related to the presence of crystalline MF·HCl 

on the surface of Mt (Figure 3.5), the Lap-MF3 diffractogram (Figure 3.13), which 

contains a small amount of excess MF, does not show any characteristic peak 

attributed to crystalline MF·HCl. 

 

 

Figure 3.13. XRD patterns of pristine Laponite® XLG (Lap), Lap-MF1w, Lap-MF2w and Lap-
MF3 hybrids. 
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Figure 3.14 shows the TG curves of pristine Lap and Lap-MF2w intercalation 

compounds. The neat clay mineral shows a main mass loss of 15% below 100 °C, 

which corresponds to the removal of water. Dehydroxylation processes occur 

above 600 °C in clay, taking place at lower temperature in Lap than Mt as 

typically occurs in hectorites (Bergaya and Lagaly, 2013). In the intercalation 

compounds, removal of water occurs in a similar interval of temperatures but 

revealing much lower content (7 % for the Lap-MF2w sample). The mass loss 

ascribed to the combustion of MF occurs in a very large interval of temperatures 

(200-650 °C) in what seems two steps, as observed in MF.HCl (see inset Figure 

3.14). The amount of MF in the Lap-MF2w hybrid that can be deduced from the 

TG curve is approximately 11 %, which is in good accordance with the MF 

content deduced from the elemental chemical analysis. 

 

 

Figure 3.14. TG curves of Lap and the Lap-MF2w intercalation compound. The inset includes 
the TG curve of MF.HCl. Experiments carried out in air atmosphere. 

 

The interactions between MF species and the clay substrate were studied by 

FTIR, as shown in Figure 3.15. The spectra of the hybrid materials show the 

characteristic bands of the clay and those of MF species, being observed changes 

in some of the bands assignable to the organic molecule The spectrum of pristine 

Lap shows the characteristic bands assigned to Si-O stretch vibration modes with 
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a maximum centered at around 1005 cm-1 (Ding et al., 2016). The bands in the 

3700-3300 cm-1 region and the one at around 1643 cm-1 ascribed to νOH and ẟOH 

vibration modes of water molecules reveal the presence of physisorbed water in 

Lap (Herrera et al., 2005; Pálková et al., 2010). In the case of the hybrids, it is 

important to highlight the presence of bands in the region of 3370-3170 cm-1 

corresponding to the asymmetric and symmetric stretching vibrations of N-H 

and the bands at 1630-1520 cm-1 attributed to C=N stretching and N-H 

deformation vibrations. Analyzing these areas in more detail, changes and 

displacements of all bands with respect to the ones in the spectrum of the MF·HCl 

are observed, confirming the interaction of the MF intercalated with the clay 

substrate. Since bands of MF·HCl do not appear in the spectrum of Lap-MF3  as 

observed in some of the Mt-MF hybrid with excess of MF it is clear evidence that 

in the Laponite® system the adsorption of MF on the surface external of the clay 

is not significant. 

 

 

Figure 3.15. FTIR spectra of pure MF·HCl, pristine Lap, Lap-MF2w and Lap-MF3 hybrids. 
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3.3.2 Molecular modeling of the intercalation of MF in Lap  

Laponite®-based hybrids were also simulated using the previously described 

molecular modeling (Chapter 2 #section 2.4), also applied to study the Mt-MF 

hybrids,  and the model contrasted with experimental results  in order to 

understand, at a molecular level, the interactions between MF and this new clay. 

In the present case the study was carried out using only DFT calculations. The 

replacement of Li in the octahedral sheet and the existence of a vacancy in this 

octahedral sheet generates a structure impedes the use of the Forcite model. 

Therefore, Lap-Mf hybrids were simulated using only the CASTEP model based 

on DFT calculations. Thus, similarly than for the DFT calculations used in Mt-

MF, all species involved in the interaction process have been considered to evolve 

through a cation exchange mechanism. In this way, an initial Lap model was 

prepared taking into account its chemical composition and water content (15%) 

determined from the TGA experimental results, (Figure 3.14). Based on these 

data, a Lap 2x2x1 supercell with 30 water molecules per supercell was created 

and completely optimized by relaxing the atomic positions and lattice 

parameters, producing a (001) interlayer spacing equal to d001=1.439 nm, which 

is close to the experimental value of d001=1.44 nm (Figure 3.16A). 

In the intercalation process of MF in Lap, the water content decreases to 7% in 

our experiments (see figure 3.14). This amount of water corresponds to 9 water 

molecules per the 2x2x1 supercell of our Lap model. Therefore, initially two Na+ 

cations were replaced by two protonated MF cations per supercell as a cation 

exchange process and the intercalation complex was optimized (Figure 3.16B). 

The (001) basal spacing of the optimized structure is d001=1.318 nm, which is 

coincident with the experimental value (see figure 3.13). The intercalated MF 

molecule remains at the center of the intercalated space with H atoms of the 

protonated N atoms oriented towards the tetrahedral O atoms of the mineral 

surface forming a monolayer of MF.  The MF intercalated in Lap presents new 

torsion angles Table 3.3, compared to the starting MF and also with respect to MF 

intercalated in Mt. In addition, the bond sizes, in the case of the MF intercalated 
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in the Lap are greater than in the Mt-MF hybrid, it should be noted that this result 

may justify the different behavior of MF in the release test (see later). 

 

 

Figure 3.16. Supercell 2×2×1 of Lap intercalated with Na+ cations with 30 molecules of water 
(A), and metformin cations with 9 water molecules (B) per supercell. Atoms in green are Li, 

highlighted in the form of a ball. 

 

In a second stage, several amounts of MF cations were intercalated in the Lap 

interlayer with one and three cations per supercell. The optimization of the 

hybrid complex with the cation exchange of one MF cation per Na+ yielded a 

basal spacing of 1.249 nm slightly shorter than the above calculated with two MF 

cations per supercell and close to the experimental one (Figure 3.17A).  The 

optimization of the complex where the three Na+ cations were exchanged with 3 

MF cations per supercell showed an (001) interlayer spacing of d001=1.361 nm 

been higher than the one found in the experimental that was d001=1.31 nm (Figure 

3.17B). This result indicates that the exchange of 3 Na+ cations by MF per 

supercell is not likely to be produced.  
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Figure 3.17. Lap structure with 2 cations of Na+ and one MF (A) and 3 molecules of MF (B) in 
the 2×2×1 supercell in presence of 9 molecules of water. Atoms in green is Li, highlighted in the 

form of a ball. 

 

 For the adsorption energy calculations, we prepared a Lap supercell with 3 Na+ 

cations with 9 water molecules (Lap-Na) optimized in the same conditions 

obtaining a (001) basal spacing of d001=1.257 nm, shorter than the experimental 

value in the pristine Lap because the amount of water is lower in the calculated 

model. In addition, one periodical box with two MF hydrochloride ion pairs with 

8 water molecules (MF2Cl2w8), and another one with two pairs of Na-Cl species 

with 8 water molecules (Na2Cl2w8) were optimized in the same conditions at 

constant volume. Hence the adsorption energy was calculated using equation (4): 

 

Eads = ELap-MF + ENa2Cl2w8 – (ELap-Na + EMF2Cl2w8)            (4) 

 

producing an energy of -60.69 kcal.mol-1 for the cation exchange of two MF 

cations per supercell. This energy is more negative than in the montmorillonite 

case, indicating that the adsorption can be easier in Laponite® than in 

montmorillonite. Similar procedure was performed for the adsorption models 

with the exchange of one MF cation yielding -32.1 kcal.mol-1. This means that the 

intercalation of MF in Lap is energetically favorable. 

 



90 
 

3.4 IN VITRO TESTS OF METFORMIN RELEASE FROM THE METFORMIN-

CLAY HYBRIDS 

3.4.1 In vitro release of MF from MF-clay hybrids in water  

For the release studies of metformin from the various hybrids prepared using Mt 

and Lap clays, a first study was performed putting the systems in bidistilled 

water at pH ≈ 5.5 for 5 h (Figure 3.18). The Mt-MF25w, Mt-MF300w, Mt-MF300, 

and Lap-MF2w formulations were selected for this study. The unwashed Mt-

MF25 was not evaluated since its MF content is close to that of the washed sample 

and slightly lower than the clay CEC in both Mt-MF hybrid materials. For the Mt-

MF25w hybrid, the release of the drug after 5 h is approximately 15% and then it 

remains constant over time. In the case of the compound Mt-MF300w the release 

of drug reaches a constant value of around 25% after 3 h. In both cases, the use of 

the washed formulations show a slower initial release than that observed for the 

unwashed Mt-MF300 hybrid, which releases 50% of the drug in a few minutes 

and then remains almost constant until the end of the experiment. This rapid 

release is probably due to the fact that the excess of MF associated with the 

external surface of the clay is easily removed in contact with water, while the 

release of intercalated MF, which is more strongly assembled to the support, 

occurs much more slowly. In the case of the Lap-MF2w hybrid, the release of MF 

reaches a vaule of about 25% after 3 h, similar to that found for the Mt-MF300w 

hybrid (Figure 3.18).  
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Figure 3.18. Percentage of MF released from montmorillonite and Laponite® formulations in 
contact with bidistilled water (pH ≈ 5.5). Error bars are not visible in this graphic due to their 

small value. 

 

3.4.2 In vitro release of MF from MF-clay hybrids in simulated media of the 

gastrointestinal tract 

The in vitro release of metformin from the hybrid materials based on Mt and Lap 

was evaluated in a simplistic manner under release conditions that simulate the 

sequence of pH changes when in the human body. Considering the residence 

time and the different pH values in each section of the gastrointestinal tract, the 

samples are initially maintained a pH of 1.2 for 2 h (mimicking stomach fluid), 

moving to pH 6.8 for 2 h (mimicking fluid from the small intestine) and changing 

to pH 7.4 in the last 4 h (mimicking fluids in the colon section of the intestine) 

(Figure 3.19). For these MF release tests, the same formulations previously 

evaluated in the release study carried out in water were also selected. As shown 

in Figure 3.19, all Mt-based formulations show a rapid initial release of MF at pH 

1.2, loosing approximately 60% of the adsorbed MF in the first 2 h and reaching 

80% total release at the end of the 8 h experiment. Meanwhile, the Lap-MF2w 

hybrid already releases the 100% of the intercalated drug in the first 2 h. This 

dissimilar behavior of release of metformin from the two clays may be ascribed 
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to some of the different characteristics of the two involved smectites such as 

particle size, which is lower in Lap than in Mt and may favor the more rapid 

kinetic release of intercalated MF, as well as a possible magnesium release in the 

case of Laponite® due to the low pH conditions that may alter the silicate 

structure, making even faster the release process. As a whole, the process of 

release occurring at the pH of the stomach can be explained considering the 

presence of H+ ions that replace intercalated MF+ cations following ion-exchange 

reactions. Despite this hostile environment, in the case of the montmorillonite 

systems the silicate structure seems to remain unchanged as determined by the 

XRD patterns recorded after the acid-media release experiment (Figure 3.20). In 

the case of the Laponite® systems, the characterization by XRD was not 

performed because practically all the drug is released in the first two hours. 

The release in neutral media can also take place by ion-exchange of the remained 

intercalated MF with sodium ions present in the simulated intestinal fluid, being 

observed the release of greater amounts of MF than those determined in the 

above mentioned tests performed in bidistilled water (Figure 3.18). For better 

visualization, the amount of MF released per mg of hybrids is depicted in Figure 

3.19B. These results show that the release of MF from clay minerals was not as 

successful as expected since in both clay-based systems the majority release of 

MF occurs in acidic medium, which corresponds to the conditions the 

formulation will find at the beginning of its travel though the digestive tract. 

Therefore, an additional optimization of the formulation is required and so its 

encapsulation in a convenient  shell that may procure s adequate protection 

during its passage through the stomach was proposed with the aim to use the 

hybrid as a metformin reservoir able to afford a greater release of MF in the 

intestine.  
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Figure 3.19. Percentage of MF released from Lap-MF2w and Mt-MFw in the simulated 
gastrointestinal tract pH conditions (A), and amount of MF released referred to the mass of in 

hybrids (B). 

 

 

Figure 3.20. X-ray diffraction patterns of Na-Mt, Mt-MF300w and Mt-MF300w after release in 
pH 1.2. 

 

3.5 BIONANOCOMPOSITE SYSTEMS BASED ON CLAY-METFORMIN 

HYBRIDS  

As the clay-MF hybrid systems were not satisfactory formulations for application 

as controlled release system for oral administration of metformin they were 

combined with biopolymers to improve their delivery properties. Thus, new 
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delivery systems were designed by combining the clay-metformin hybrids with 

pectin and chitosan biopolymers. The approach consists on the incorporation of 

a montmorillonite-metformin hybrid (Mt-MF) in chitosan, forming beads that 

were later coated with a pectin layer in a core-shell configuration. In a second 

stage clay-metformin hybrids (Mt-MF300w and Lap-MF2w) were incorporated 

in pectin beads that were later coated with a first layer of chitosan and a second 

layer of pectin. As pectin is very resistant to acidic pH, the external coating will 

protect the drug to be release in the stomach, assuring its presence of the delivery 

system in the intestinal tract where metformin is absorbed. The presence of the 

chitosan shell can be used to increase its permanence in the gastrointestinal tract 

due to its mucoadhesive properties and then, the drug can be slowly released 

from the clay-pectin bionanocomposite.  

 

3.5.1 Pectin@chitosan/Mt-MF bionanocomposite systems 

Bionanocomposite were first prepared by dispersing the Mt-MF300w 

intercalation compounds in a chitosan matrix. These bionanocomposite systems 

were processed into beads, as explained in Chapter 2 #section 2.2 by dripping 

the chitosan solution in a 2M NaOH solution. Subsequently, the beads were 

coated with pectin to procure resistance to acid pH to the produced beads. 

Pectine was adsorbed onto the bionanocomposite beads from solutions of the 

biopolymer dispersed at 0.5, 1 and 1.5% w/w in water. For comparison, 

analogous core-shell beads were prepared but incorporating pure MF·HCl in 

chitosan instead of the clay-MF hybrid. Additionally, core-shell beads 

incorporating the Mt-MF300 hybrid in chitosan were coated with the 0.5% pectin 

dispersion. Table 3.5 shows the amount of MF loaded in the beads as well as the 

efficiency of the encapsulation in each system. The systems incorporating the 

pure drug (CHT/MF) have a lower loading and efficiency of encapsulation 

compared to the materials loaded with the Mt-MF hybrids , showing only 

encapsulation efficiency values of 25.0, 29.5 and 31.8%, for the system prepared 

for incorporating 0.1, 0.3 and 0.5 g of metformin, respectively. This result may be 
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related to the fact that though MF·HCl is a neutral specie if they are dissociated 

the protonated MF species may suffer scarce affinity and even electrostatic with 

the biopolymer, making difficult to increase the loading of drug into the chitosan 

matrix. In fact, the increase of the starting amount of MF added to chitosan does 

not result in an increase of the drug loading. Therefore, 0.1 g of MF was used as 

reference to prepare the other bionanocomposite systems. In the case of 

incorporate the MF stabilized in the hybrid Mt-MF300w it is possible to load a 

large amount of drug with encapsulation efficiencies close to 60% independently 

if the bead contains just chitosan or if it was later on coated with different 

amounts of pectin, indicating the good stability of the chitosan-hybrid 

bionanocomposite system. The system prepared using the non-washed hybrid 

(Mt-MF), with MF content about three times higher than that of the Mt-MFw 

hybrid, showed a very close encapsulation efficiency (60.9%), which suggests 

that the use of clay-based hybrids with large excess of drug adsorbed on the 

external surface of the clay is not necessary. 

 

Table 3.5 Encapsulation efficiency and relative content of MF loaded in the beads of MF, either 
as pure drug or as Mt-MF, in different polymer systems. 

Formulation MF loaded (%) Encapsulation     

efficiency (%) 

CHT/MF0.1 2.5 ± 0.2 25.0 ± 0.8 

CHT/MF0.3 1.9 ± 0.4 29.5 ± 1.0 

CHT/MF0.5 1.2 ± 0.5 31.7 ± 0.6 

CHT/Mt-MF300w 5.8 ± 0.2 58.2 ± 0.8 

PEC0.5%@CHT/Mt-MF300w 5.7 ± 0.1 56.8 ± 1.0 

PEC0.5%@CHT/Mt-MF300 6.1 ± 0.3 60.9 ± 1.0 

PEC1%@CHT/Mt-MF300w 5.7 ± 0.2 57.3 ± 0.9 

PEC1.5%@CHT/Mt-MF300w 5.7 ± 0.2 57.5 ± 1.2 
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Figure 3.21 shows SEM images of the surface and interior of a PCT@CHT/Mt-

MF bionanocomposite bead. In the cross-section image it is possible to 

distinguish the pectin coating covering CHT/Mt-MF bionanocomposite core. 

The externa surface of the bead is fairly homogeneous and smooth while the 

interior presents a quite homogeneous and porous pectin layer over a more 

compact and bulky material in the bionanocomposite core. The CHT/Mt-MF 

bionanocomposite is very homogeneous without segregation of phases where 

the Mt-MF300w hybrid could be agglomerated, confirming the good dispersion 

of the hybrid in the polymer matrix. The two biopolymers phases seems to be in 

good interaction confirming the adherence between these two biopolymers 

already reported in other works (Ribeiro et al., 2014a; Chinnaiyan et al., 2019).  

 

 

Figure 3.21. SEM images of the external surface and cross-section of PEC@CHT/Mt-MF300w 
bionanocomposite beads, together with and schematic illustration of the core-shell 

configuration. 

 

Figure 3.22 shows the FTIR spectra of the pure biopolymers as well as of beads 

with and without the pectin coating. In the spectrum of chitosan (Figure 3.22b) 

are clearly defined the characteristic bands of amide II and amine at 1650 and 

1585 cm-1, respectively. The bands appearing at 2925 and 2875 cm-1 can be 

assigned to νC-H vibration modes and those between 3400 and 3300 cm-1 to νN-H 

and νO-H vibration modes of functional groups in the biopolymer (Domszy and 

Roberts, 1985; Negrea et al., 2015). In the spectrum of the CHT/Mt-MF beads, the 

bands ascribed to amide II and amine groups, which appear in pure chitosan at 
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1660 and 1580 cm-1, respectively, are no longer appreciated in the CHT/Mt-MF 

beads, which is related to the δNH2 inversion modes due to an almost complete 

deprotonation of the chitosan amine groups during the beads formation process 

(Ribeiro et al., 2014b). Moreover, in the CHT/Mt-MF bionanocomposite 

spectrum (Figure 3.22d) are observed bands at 1075 and 950 cm-1 bands attributed 

to characteristic vibration modes of the montmorillonite structure, confirming 

the presence of the clay mineral (νSi-O and δOH) (Madejová and Komadel, 2001). 

The spectra of the CHT/Mt-MF bionanocomposite beads coated with pectin 

(figure 3.22c, d and e) present similar profiles to that of the neat beads except for 

some additional bands that could be ascribed to the presence of pectin. In the 

spectrum of pectin (Figure 3.22a) are clearly defined bands at 1750 and 1620 cm-

1, attributed to the νC=O vibration mode of carbonyl ester groups and to the 

symmetric and antisymmetric stretching vibration of carboxilic groups, 

respectively (Gnanasambandam, 2000; Synytsya, 2003). However, in the spectra 

of the beads covered with the pectin coating (Figure 3.22c, d and e)  it is 

appreciated a unique band at 1640 cm-1 probably due to the blocking of the 

carboxylic groups once crosslinked by Ca+2 during the process of formation of 

the bead. 
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Figure 3.22. FTIR spectra of PEC (a), CHT (b), CHT/Mt-MF (c), PEC@CHT/MF (d) and 
PEC@CHT/Mt-MF (e). 

 

3.5.1.1 Water absorption properties of the beads 

For controlled drug release applications, it is important to study the water uptake 

capacity and swelling properties of the beads. Thus, these parameters were 

evaluated in the different prepared systems using aqueous media at pH 1.2 and 

6.8 corresponding to a HCl solution and phosphate buffer, respectively. Figure 

3.23 shows the evolution in the content of water absorbed by the beads as a 

function of their time in contact with the aqueous media. It is observed that water 

uptake of the different beads strongly depends on the pH of the medium. At pH 

1.2 (Figure 3.23 graphic on the left), chitosan beads directly incorporating 

MF·HCl shows a fast water uptake, and in just 10 minutes of contact the absorbed 

water is enough to produce the disintegration of the beads making impossible to 

continue the measurements. In previous studies, this behavior was explained 

considering the ability of the amino groups in chitosan t to become easily 

protonated, provoking the gradual dissolution of the biopolymer till the 

complete disintegration of the beads (Ribeiro et al., 2014). However, when the 

chitosan beads is covered with a pectin coating, the stability in the presence of 
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that large amount of H+ increases and all the beads show lower absorption of 

water without their complete disintegration within the time set for the 

experiment. The uptake of water is reduced in core-shell beads incorporating the 

bionanocomposite in the core, probably due to a physical crosslinking effect 

within the hybrid component and the chitosan matrix as there are not relevant 

differences between beads with different pectin coatings. 

Figure 3.23 (graphic on the right) shows the evolution of water uptake in various 

types of beads immersed in the phosphate buffer at pH 6.8. In this case, beads 

CHT/MF and CHT/Mt-MF prepared just with chitosan exhibit the greatest 

stability with very similar swelling profiles. However, the pectin-coated systems 

shows larger uptake of water probably affected by the presence of phosphate ions 

in the medium that can favor the release of Ca+2 ions acting as crosslink points of 

pectin chains in the bead (Remunan-López and Bodmeier, 1997).  From the results 

of these water uptake experiments it is confirmed that the pectin coating in the 

beads is crucial to protect the chitosan core from became fast disintegrated in low 

pH conditions as that of the stomach, allowing the beads to reach the 

gastrointestinal tract where the drug can be release upon a fast and progressive 

uptake of water by the bead favored by the presence of the pectin coating. 

 

 

Figure 3.23. Water uptake of various types of beads immersed in water at pH 1.2 (HCl 0.1 M) 
and pH 6.8(phosphate buffer). Each value is the mean ± S.D. n = 3. 
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3.5.1.2 In vitro tests of the release of metformin from the beads 

The in vitro release tests of the various prepared beads were carried out 

simulating the the sequence of pH conditions that the formulation would follow 

along its passage through the gastrointestinal tract (Figure 3.24).  

Firstly it was analyzed the system based on the direct incorporation of MF·HCl 

in the beads showing that in the case of the CHT/MF beads the  drug was 

completely released in the first two hours (Figure 3.24). This result was already 

expected because chitosan is not resistant to acid pH as shown in the previous 

water uptake study. The core-shell beads in which the chitosan bead was further 

coated with pectin show a higher resistance at low pH, obtaining a more 

controlled release over the 8 hours of the experiment (Figure 3.24).  

When comparing core-shell incorporating a clay-MF hybrid in the chitosan core 

the release of metformin depends on the characteristics of the bionanocomposite 

that forms the core and also the thicknes of the pectin coating. Thus, the bead 

incorporating in the core the bionanocomposite prepared from the unwashed 

hybrid (PEC0.5@CHT/Mt-MF300), presents a fast initial release at pH 1.2 with 

about 40% of the metformin liberated in those conditions, reaching after the 8 h 

a total release of 80%. The large amount of MF released at the stomach pH may 

be associated with the presence of drug within the biopolymer matrix coming 

from MF released from that adsorbed at the external surface of the clay in the 

Mt/MF300 hybrid during the bead preparation. Although the 

PEC0.5%@CHT/Mt-MF300 beads exhibit an initial release greater than the 

washed hybrid, the release is gradual in comparison with the Mt-MF300 hybrid 

alone (Figure 3.19). In contrast, the PEC0.5@CHT/Mt-MF300w bead shows a more 

controlled release with a about the 20% liberated at the stomach conditions but a 

really progressive and continuous release following the squence of pH conditions 

in the intestinal tract till a practically complete MF release upon the 8 h of the 

experiment. When the beads present a thicker coating of pectin, i.e., those 

prepared using pectin solutions of concentration 1 and 1.5% (PEC1%@CHT/Mt-

MF300w and PEC1.5%@CHT/Mt-MF300w beads, respectively) it is possible to 

reduce further the release of metformin at the pH conditions of the stomach. 

mailto:PEC0.5@CHT/Mt-MF300w
mailto:PEC1%25@CHT/Mt-MF300w
mailto:PEC1%25@CHT/Mt-MF300w
mailto:PEC1.5%25@CHT/Mt-MF300w
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However, the release in the conditions of the intestine is also slowered, reaching 

in both cases upto a 60% of liberated MF at the end of 8 hours experiment.  

 

 

Figure 3.24. Profiles of the in vitro release of metformin (MF) from various types of beads 
incorporating MF·HCl or Mt-MF hybrids into chitosan with and without a pectin coating. The 
experiment simulates the pH conditions that occur in the passage through the gastrointestinal 
tract (pH and residence time) and was carried out at 37 °C. Each value is the mean ± S.D. n = 3. 

 

3.5.2 Pectin-chitosan@pectin/clay-MF bionanocomposite systems  

Given that all the prepared beads of the pectin@chitosan/clay-MF system 

showed an encapsulation efficiency below 60%, it was further explored other 

alternative biopolymer-based systems in order to increase the amount of 

entrapped drug. To improve the approach, it was considered that the possible 

reason of the low encapsulation efficiency values found in the pectin@chitosan 

systems could be due to a partial replacement of the intercalated MF by the 

protonated chitosan chains during the preparation of the bionanocomposite. In 

order to overcome this problem, it was explored the preparation of the bead core 

from bionanocomposites of the clay-MF hybrids in a pectin matrix, then produce 

a double coating of the bead, first with chitosan and at the exterior with pectin. 

As pectin is an anionic polymer it is expected that during the preparation of the 
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bionanocomposite it will not compete with the intercalated MF molecules 

producing a partial release from the hybrid.  

In the present study it was developed beads based on the hybrid Mt-MF300w 

previously investigated in the pectin@chitosan beads and also one of the hybrids 

based on the incorporation of MF in Laponite® clay (Lap-MF2w). Both 

intercalation materials were so dispersed in a pectin gel and processed as beads 

as detailed in Chapter 2 #section 2.2.1, then the beads were first coated with 

chitosan coating, and finally with an external coating of pectin, using in both 

cases biopolymers solution at a concentration of 0.5% w/w. The idea is that the 

double coating will give the systems greater stability at the acidic pH (first zone 

of the gastrointestinal tract) due to the pectin that will be progressively dissolved 

in the conditions of the intestinal tract and then the chitosan coating will provide 

mucoadhesive properties while the bead is desintegrated and metformin is 

liberated from the pectin core.  

Table 3.5 shows the loading drug and the encapsulation efficiency values for all 

the prepared pectin-core based beads. All these materials show higher 

encapsulation efficiency than the systems prepared with chitosan. For instance, 

the encapsulation of the pure drug in chitosan (CHT/MF) gave rise to values of 

25% for, while almost a 70% of encapsulation efficiency was reached in pectin 

(PEC/MF). The PEC/Mt-MF300w and PEC/Lap-MF2w beads exhibit very good 

encapsulation efficiency reaching values of 87 and 91%, respectively, clearly also 

higher than when using encapsulated the MF·HCl. As in the chitosan system, this 

result may be associated with the protective effect exerted by the clay minerals, 

where the drug is protected within the sheets of the mineral.  Here again, the 

encapsulation efficiency of pectin beads and the core-shell system is practically 

the same, confirming there is not loss of drug during the coating of the beads to 

produce the shell. 
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Table 3.5 Encapsulation efficiency and amount of MF loaded, either as pure drug or as clay-
based hybrids, in different polymer systems. 

Formulation MF loaded (%) Encapsulation efficiency (%) 

PEC/MF 6.9 ± 0.4 69.3 ± 1.1 

PEC/Mt-MF300w 8.7 ± 0.3 87.3 ± 0.9 

PEC@CHT@PEC/Mt-MF300w 8.6 ± 0.2 86.2 ±0.8 

PEC/Lap-MF2w 9.1 ± 0.9 91.1 ± 1.1 

PEC@CHT@PEC/Lap-MF2w 9.0 ± 1.2 90.0 ± 1.2 

 

Figure 3.25 shows images of the morphology of various beads encapsulating 

MF·HCl and the Mt-MF300w hybrid in just pectin and also this las one but after 

the double coating with chitosan and then with pectin. It is clear that the freeze-

drying process produce certain deformation of the spheres but all of them show 

a very homogeneous aspect. When observed the surface of the beads by FESEM 

it is confirmed that they are quite smooth and do not present polymer 

agglomerates. Specially, in the case of the PEC/Mt-MF300w beads it FESEM 

images  (Figure 3.25b) shows the Mt-MF300w hybrid is homogeneously 

dispersed in the pectin matrix and the external surface of the bead does not show 

practically  any roughness or cracking confirming an excellent integration of the 

hybrid between the biopolymer matrix. In Figure 3.25c it is shown a cross-section 

of a PEC@CHT@PEC/Mt-MF300w bead, being possible to distinguish in more 

detail the two layers of the coating (chitosan sandwiched between the external 

pectin coating and the internal pectin bionanocomposite core). The three phases 

are very homogenous though show different type of roughness probably 

ascribed to the presence of porosity created during the lyophilization process 

used to produce the final bead. 

. 
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Figure 3.25. FESEM images of the external surface of PEC/MF (A), PEC/Mt-MF300w (B) and a 
cross-section of the PEC@CHT@PEC/Mt-MF300w (C)  bionanocomposite beads. 

 

3.5.2.1 Water adsorption properties of the beads 

Swelling and water absorption properties of the prepared beads was evaluated I 

aqueous media at pH 1.2 and at pH 6.8, corresponding to a HCl solution and 

phosphate buffer, respectively. Figure 3.26 shows the evolution in the content of 

water absorbed by the beads as a function of their time in contact with the 

aqueous media, revealinga different behavior chitosan-based beads (Figure 3.23). 

In the present case it is clearly observed that at pH 1.2 all the beads present a 

rapid uptake of water that after 5 minutes remain constant, reaching water 

uptakes values upto 10%. This result was expected because pectin spheres had 

greater stability in the presence of acidic pH, as discussed in the previous study. 

Here again, the maximum uptake corresponds to the beads prepared with 

MF·HCl though in the present case the beads do not completely desintegrate. The 

lower uptake of water corresponds to the beads based on pectin and the hybrids, 
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being larger in the bionanocomposite based on the Laponite® clay. This effect 

may be associated with the good synergy between biopolymer/clay improving 

its properties, offering greater resistance to swelling of the bead. Besides, this is 

supported by the SEM images (Figure 3.24b), where it is observed that the bead 

of PEC/Mt-MF300w is quite compact, with practically no porosity and cracking. 

The beads containing the double coating show higher water uptake though in 

this case the water directly intereact with pectin insteead of the 

bionanocomposite, which confirms the existence of intereactions between pectin 

and the hybrid in the prepared bionanocomposites.  

An interesting result is observed in the study of water absorption test carried out 

at pH 6.8. At previously indicated (#section 3.5.1.1), in this medium pectin begins 

to disintegrate due to the presence of phosphate ions in the solution, which 

capture the calcium ions acting as bridges between the polymer chains and 

facilitates the increase of water uptake. Here again the highest water uptake 

corresponds to the beads incorporating the MF·HCl in pectin. However when 

compared the beads prepared just with pectin and the two hybrids the one 

involving the motmorillonite intercalation compound is again the most stable but 

the one based on Laponite® shows water uptakes higher than the double-coated 

beads.  This result confirms clearly that though the presence of clay hybrid may 

reduce the water intake in the bionanocomposite systems the nature of the hybrid 

determine different swelling properties, probably related to the degree of 

physical crosslinking effect of the dispersed phase in the biopolymer matrix.  

Based on these results of the low swelling of the systems at both 1.2 and 6.8pHs, 

the thernary core-shell beads can be proposed as promising system for the release 

of metformin, and as the chitosan coating may be preserved until it reaches the 

gastrointestinal tract it will be possible to useits mucoadhesive properties to 

favour a better adsorption of metformin. 
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Figure 3.26. Water uptake of various types of beads beads immersed in water media at pH 1.2 
(HCl 0.1 M) and pH 6.8 (phosphate buffer). Each value is the mean ± S.D. n = 3. 

 

3.5.2.2 In vitro tests of the release of metformin from the beads 

Firstly it was analyzed the system based on the direct incorporation of MF·HCl. 

The in vitro release tests of the various prepared beads  were carried out 

similating the sequence of pH conditions that the formulation would follow 

along its passage through the gastrointestingal tract (Figure 3.27). The beads 

prepared from pectin incorporating MF·HCl exhibit an initial release of about 

40% at pH 1.2, releasing 100% MF at pH 6.8 in the conditions that simulat the first 

zone of the gastrointestinal tract. Thus the PEC/MF system is much more 

satisfactory than the one encapsulating the MF in CHT (CHT/MF) which releases 

all the drug in approximately 60 min in the pH 1.2 medium.  For the systems 

incorporating the clay-MF hybrids, i.e., PEC/Mt-MF300w and Lap-MF2w, the 

release at pH 1.2 is considerably reduced (Figure 3.27), specially for the system 

based on the montmorillonite hybrid. This behaviour can be related to the 

presence of the clay that reduces the swelling capacity, as observed in the water 

uptake study (#section 3.5.2.1), the different protection afforded by the host 

inorganic solid in the intercalation compounds explaining the differences in the 

release reached in this medium. Once in the medium at pH 6.8 the presence of 

phosphate anions capture the calcium ions serving as bridges to crosslink the 

biopolymer and the drug is libered at a quite  constant rate, reaching 100% of MF 

released in approximately 6 hours. I the case of the double-coateed core-shell 
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beads, PEC@CHT@PEC/Mt-MF300 and PEC@CHT@PEC/Lap-MF2w, both 

systems shows a quite similar behaviour with  a  initial slow kinetic in the release 

in the acidic medium, which corroborates the protective effect exerted by the 

external pectin coating. In these systems, a significant slow release rate is kept at 

the high pH values, 6.8 and 7.4, providing a controlled release of MF alone the 

whole gastrointestinal tract.  

 

 

Figure 3.27. Profiles of the in vitro release of metformin  from various types of beads based on a 
pectin core and protected or not with a double coating of chitosan and pectin. The experiment 
simulates the pH conditions that occurs in the passage through the gastrointestinal tract (pH 

and residence time) and was carried out at 37°C. Each value is the mean ± S.D. n = 3. 

 

3.6 CONCLUDING REMARKS 

This chapter reports a comparative study on the suitability of two lamellar clays, 

a synthetic hectorite and natural montmorillonite, as supports for the controlled 

release of metformin, the most used drug for the treatment of type II diabetes. 

Metformin was intercalated in both clays following an ion exchange mechanism 

and may led to hybrid materials with intercalated quantities that coincide with 

the CEC of each clay. The computational methods confirmed the experimental 

results, giving rise to basal spacing (001) similar to the experimental ones, 1.36 
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nm for the Mt-MF300w hybrid and 1.31 nm for the Lap-MF2w hybrid. The 

calculations indicate an energetically favorable cation exchange reaction with MF 

forming a monolayer in the space between layers of both clays. According to the 

calculations result more favorable adsorption energy values for Lap than Mt, that 

is, the intercalation process is more favorable for producing the Lap-MF hybrid. 

The resulting hybrid materials were studied as new release systems for 

controlled oral administration of MF. The tests carried out in simulated 

gastrointestinal media indicate the controlled release of MF was not as successful 

as expected due to a high amount of drug liberated at pH 1.2, conditions of the 

first zone of the gastrointestinal tract. To improve the control in the MF release, 

the intercalation compounds were encapsulated in two core-shell systems based 

on chitosan and pectin, designed to combine the advantages of the three 

components, pectin, chitosan, and clays: 

(i) the outer pectin coating will protect the DDS in acidic media, in the 

first zone of the gastrointestinal tract (stomach);  

(ii) the chitosan matrix, used as encapsulating matrix or as protective 

coating on pectin beads, will provide the DDS with mucoadhesive 

properties of interest for specific adsorption in the intestinal tract; and 

(iii) the incorporation of the drug intercalated into the layered clay will 

offer the possibility of controlling the kinetics of drug release when the 

biopolymeric matrix was degrading. 

The first core-shell system studied consists in the incorporation of a Mt-MF 

intercalation in a chitosan matrix prepared as a bead that was further coated with 

a pectin layer, e.g., PCT@CHT/Mt-MF300. In vitro test of MF release in fluids 

simulating the changes in pH and residence time that occur during the in vivo 

passage of the drug through the gastrointestinal tract demonstrated higher 

efficacy of those core-shell bionanocomposite systems than those based solely on 

chitosan or on the direct incorporation of the drug without the Mt host. Another 

important factor is that the release kinetics can be controlled by adjusting the 

thickness of the pectin coating. However, the encapsulation efficiency of these all 



109 
 

system with chitosan core is relatively low, which may be due to a partial 

replacement of the intercalated drug by the positively charged chitosan chairs.  

This drawback in the use of chitosan for preparing the bionanocomposite core of 

the beads led to design a more complex core-shell system based on the use of 

pectin as biopolymeric matrix of the core in the beads. Thus, the new systems 

consist in the preparation of beads of pectin incorporating MF·HCl or a MF-clay 

hybrid (Mt-MF300w or Lap-MF2w), which were coated first with a chitosan layer 

and then with an external pectin coating. This second configuration has proven 

to be more efficient as controlled drug delivery because it is able to encapsulate 

around 90 % of metformin in contrast to the upto 60 % reached in the first system 

preparations. In addition, the second configuration provides a very slow release 

at low pH, allowing to deliver most part of metformin in the intestinal tract, as it 

is desired for this drug. 

These results may be of special relevance to prepare appropriate formulations for 

the controlled oral administration of this medicament, this will allow the 

ingestion of lower amounts than those usually indicated to obtain an optimal 

therapeutic effect. With the proposed bionanocomposite controlled drug 

delivery system (CDDS), the residence time of MF in the intestinal region could 

be increased and, consequently, its efficiency may be higher, avoiding also many 

of the common side effects. In addition, the possibility of including more specific 

functionalities in the chitosan and/or pectin could be exploited to make the 

release location even more specific depending on the disease to be treated with 

metformin, for instance, in those cases where it is used as a targeted delivery will 

be preferred. The advantages of these bionanocomposites for application as 

CDDS are their availability, biocompatibility, biodegradability and low cost, 

which make them a very promising approach for the treatment of different 

diseases. 
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CHAPTER 4 

ANIONIC CLAYS AS NANOPLATAFORM FOR 

CONTROLLED DELIVERY OF ALLANTOIN 

 

This chapter presents a study based on the use of layered double hydroxides and layered single 

hydroxides involving different metals (Mg, Zn or Cu) as substrates for stabilizing allantoin. 

Allantoin is a compound of natural origin that can be synthetically produced, being widely used 

as a component of numerous cosmetic and pharmaceutical compounds due to its properties to 

promote healing and regenerate the skin. In this Chapter it has been explored the association of 

this molecule with hydroxide layered solids, mainly in the presence of Zn, seeking to increase its 

stability and control its action in various applications for improving its effectiveness compared 

to the formulations existing in the market today. In this sense, the release properties of these 

materials were evaluated in a phosphate saline solution, simulating the skin pH (≈ 5.5), conditions 

in which the hydroxide may slowly dissolve. Likewise, these hybrid allantoin systems were also 

incorporated in a polymer matrix (hydroxyproplymethylcellulose (HPMC), agar and 

nanocellulose), evaluating their activity against bacteria cultures on agar plates in view to their 

possible application as wound dressings. 

 

 

4.1 INITIAL CONSIDERATIONS 

4.2 ALLANTOIN:MgAl-LDH 

4.3 ALLANTOIN:ZnAl-LDH 

4.4 ALLANTOIN-ZINC SYSTEMS 

4.5 EVALUATION OF PROPERTIES OF ALLANTOIN-BASED HYBRIDS 

4.6 CONCLUDING REMARKS 
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4.1 INITIAL CONSIDERATIONS 

 

Allantoin, also known as (2,5-dioxo-4-imidazolidinyl) urea o 5-ureidohydantoin, 

is produced by many animals and plants, being for instance extracted from aloe 

vera or from snail’s slime  (Fu et al., 2006; Akena Fine Chemicals S.r.l., 2012; Xu 

et al., 2015) (Figure 4.1), and it can be also synthetically produced in large 

amounts from the chemical reaction between urea and glyoxylic acid (Becker et 

al., 2010). Allantoin is used by its medical properties for more than 70 years, 

especially in dermatology to treat skin problems such as irritations, burns, 

ulcerations, etc(Loren, 1995; Fu et al., 2006; Araújo et al., 2010). Allantoin is used 

in a wide variety of cosmetic products, such as creams and foams of shaving and 

post-shave products, shampoos, lipsticks, toothpaste, moisturizing lotions (body 

or facial), bar soaps, after sun creams, post depilatory cosmetics (Becker et al., 

2010). Also, in dermatology for the treatment of burns, resistant ulcers, seborrhea, 

ichthyosis, psoriasis, and other dermatological conditions, as it is a very versatile 

and highly effective product.  One of the most important properties of allantoin 

is its keratoitic action, stimulating the desquamation of the skin, that is, it has a 

great capacity to cause a cutaneous renewal and, in this way, to refine the most 

superficial layer of human skin acting like a mild exfoliation. And at the same 

time, this epidermal regeneration collaborates in the formation of collagen, the 

dermal fiber responsible for giving support to the skin (Fu et al., 2006). Another 

important characteristic of allantoin is its high power to act as a restructuring 

agent in the cornea layer due to its soothing and anti-irritant properties, 

promoting healing and acting as a very mild natural anesthetic (Fu et al., 2006). 

Allantoin can also promote the  healing of internal tissues by inducing cell 

proliferation, for instance promoting tissue repair in the whole gastrointestinal 

tract (Fu et al., 2006; Xu et al., 2011). 

Recent studies have shown that the properties of allantoin could be enhanced 

through the formation of complexes with different metals such as zinc, copper or 

silver  among others (Margraf, 1974; Loren, 1995; Xu et al., 2015). There are also 

some studies where allantoin was incorporated into porous 
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silice/polycaprolactone nanofiber materials to obtain controlled release systems 

of allantoin (Ke et al., 2016). As described, the association of this molecule with 

an inorganic solid or in polymers, or even the formation of complexes allows to 

increase its stability, improving its properties and controlling its action in various 

applications. Thus, in this Thesis, the intercalation of allantoin in layered 

hydroxides systems from different salts and precursor metals has been proposed 

with the aim of forming hybrid materials that could show greater efficiency 

compared to the formulations existing today in the market. Likewise, the 

incorporation of these allantoin hybrid systems in a polymer matrix (agar, HPMC 

or nanocellulose) was discussed, evaluating their activity against bacteria 

cultures on agar plates, in view to their possible application as wound dressings, 

facial masks, etc. 

 

 

Figure 4.1. Main natural sources of allantoin: comfrey (Symphytum officinale) (A), aloe vera (B) 
and snail slime (C). 

 

4.2 ALLANTOIN:MgAl-LDH 

Allantoin is a nitrogenous amphoteric molecule derived from hydantoin, with a 

zeta potential of -20.23 ± 1.21 mV, determined in this work with a NanoBrook 

90Plus PALS from Brookhaven Instruments, using the BI-ZEL electrode, in water. 

Hydantoins are considered weak acids and for the maximum relocation of the 

conjugate anion charge to occur, being the first deprotonation  at the nitrogen N2 

(pKa ≈ 8.5) (Oliveira et al., 2008), as shown in Figure 4.2. But allantoin may exist 
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in solution as a tautomeric mixture of ketonic and enolic forms in equilibrium, as 

shown in Figure 4.2B (Becker et al., 2010). Figure 4.2 also shows that allantoin is 

neutral at acid pH and presents several deprotonated species at pH higher than 

≈ 9, as observed in the simulation obtained with the MarvinSketch software 6.1.5. 

Therefore, this anionic species may intercalate inorganic solids such as layered 

double hydroxides (LDH), also known as anionic clays, showing anion exchange 

properties. 

 

 

Figure 4.2. Distribution diagram of allantoin species at different pH values (A) and allantoin as 
a tautomeric mixture of ketonic and enolic forms (B) (obtained with the MarvinSketch software 

6.1.5). 

 

The first approach to intercalate allantoin here explored was in a 2:1 magnesium-

aluminum LDH (MgAl-LDH), the most typical of the LDH solids. Thus, 
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intercalation was intended by ion-exchange reaction and by co-precipitation of 

the LDH in presence of allantoin, as described in Chapter 2 #section 2.5.2. The 

XRD pattern (Figure 4.3) of the starting LDH shows the characteristic peaks of 

the inorganic solid structure with the most intense diffraction reflection at 11.35ᵒ 

2theta angle, which corresponds to the (003) reflection. The additional diffraction 

peaks were assigned to (006), (012), (015), (018), (110) and (113) (double) to the 

characteristics LDH structure reflections corresponding to 0.37, 0.25, 0.23, 0.19,  

0.151 and 0.149 nm, allowing to confirm the structure of the hydroxide and a 

interlayer distance of 0.76 nm (Miyata, 1977; Bish, 1980; Meyn et al., 1990; Rives, 

2001). Taking into account the thickness of the LDH brucite sheet is about 0.48 

nm, a basal spacing increase of 0.28 nm is determined, confirming the presence 

of Cl- ions in the interlayer region (Cavani et al., 1991). The intercalation of 

allantoin in the MgAl LDH prepared by the ion-exchange or the co-precipitation 

methods is not evident because there is no shift of the (00l) reflections towards a 

lower 2theta angle. However, the elemental chemical analysis shows a significant 

amount of allantoin in the hybrid compounds with a content of 142 and 50 mEq 

per 100 g for allantcop:MgAl-LDH and allantie:MgAl-LDH, respectively, clearly 

below  the AEC of LDH which is of approximately 330 mEq per 100g (Inacio et 

al., 2001; Forano et al., 2013). In the diffractogram of the allantie:MgAl-LDH 

hybrid (Figure 4.3), various additional peaks probably ascribed to allantoin are 

observed, though two of the most intense ones cannot be observed which may 

suggest a preferred orientation of allantoin crystals precipitated on the surface of 

the LDH. In fact, from EDX (Table 4.1) it is confirmed that the allantie:MgAl-LDH  

hybrid contains practically the same amount of Cl- ions than the starting MgAl-

LDH, which confirms that there is not intercalation of allantoin by an ion-

exchange process. In the case of the allantcop:MgAl-LDH hybrid from the EDX 

study (Table 4.1) it is observed a decrease in the amount of Cl- ions compared to 

the expected one for the formation of a pure MgAl-LDH, going from a total of 

approx. 15.4 in the MgAl-LDH to 9.7% in the allantcop:MgAl-LDH. This result in 

combination with the data obtained by CHN suggest that a part of the allantoin 

may be intercalated between the LDH sheets during the synthesis process 
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although neither changes in position of the (00l) reflection peaks of the LDH 

beyond broadening nor presence of reflections from the organic compound are 

detected in the XRD diffractogram (Figure 4.3). Thus, this observation may be 

related to the presence of some allantoin species associated with the precipitated 

solid by electrostatic interactions, perhaps neutralizing part of the charge of a low 

crystalline LDH formed in these particular experimental conditions.  

 

 

Figure 4.3. X-ray diffraction patterns of allantoin, the MgAl-LDH and the hybrids prepared 
from allantoin by ion-exchange (ie) and coprecipitation (cop) methods. 

 

Table 4.1 Relative content of various elements in LDH-based systems deduced by EDX. 

Element MgAl-LDH 

(At %) 

allantcop:MgAl-LDH 

(At %) 

allantie:MgAl-LDH 

(At %) 

Al 36.3 ± 1.9 30.3 ± 3.4 36.3 ± 2.1 

Mg 46.9 ± 1.0 45.5 ± 2.9 40.7 ± 0.5 

Cl 15.4 ± 1.9 9.7 ± 0.3 13.5 ± 1.1 

Na 1.4 ± 0.2 0.4 ± 0.1 0.5 ± 0.1 

N -- 14.0 ± 2.8 5.2 ± 1.1 
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The interactions between the inorganic solid and the allantoin molecules in the 

hybrid material prepared by the co-precipitation method were corroborated by 

infrared spectroscopy Figure 4.4. The intense bands at 3460 cm-1 and 1630 cm-1 

that appear in the spectra of the neat LDH and the hybrids, correspond to the 

stretching vibrations of hydroxyl groups and the bending vibration of water 

δ(H2O), respectively (Badreddine et al., 1998; Lakraimi et al., 2000). The bands at 

around 785, 660 and 435 cm-1observed in the spectrum of the LDH correspond to 

the reticular vibration modes Mg-O, Al-O and O-M-O, respectively  (Miyata, 

1977; Cavani et al., 1991; Badreddine et al., 1998; Houri et al., 1999; Lakraimi et 

al., 2000; Pavlovic et al., 2005), appearing at the same frequencies in the hybrid 

compound. It should be noted the presence of the band at 1360 cm-1, characteristic 

of vibration modes of CO32- species, indicates that despite the precautions taken 

during the synthesis of the materials a small contamination by carbonate is 

present in the produced LDH solids. 

Table 4.2 summarizes the vibration bands observed in the FTIR spectrum of 

allantoin (Kuş et al., 2009; Alam and Ahmad, 2015). Figure 4.4 shows the 

spectrum of allantoin and next to the graph it is represented the species of 

deprotonated allantoin originated at pH 8-9, pH where the hybrid materials were 

prepared. Allantoin (1) shows the deprotonation of the N2 and allantoin (2) 

shows the possible existence of the tautomeric species with the deprotonated O2. 

In the spectrum of allantoin the bands in the 3440 - 3345 cm-1 region with medium 

to strong intensity are assigned to antisymmetric and symmetric vibrations of 

NH2, respectively. These bands do not appear in the allantcop:MgAl-LDH hybrid, 

as they may be overlapped by a wide band due to the O-H vibrations of the LDH 

sustrate. The NH2 scissoring vibration (βcissNH2) band is observed at 1603 cm-1 in 

allantoin and in the hybrid appears at 1611 cm-1. The bands that appear at 1431 

cm-1 referring to the plane bending of β[(N1─C4) + (C2─N6)] of the molecule ring (Kuş 

et al., 2009; Alam and Ahmad, 2015). The band at 1284 cm-1 is ascribed to the 

contributions of the plane bending and asymmetric stretch vibrations of the 

allantoin ureidyl group and it is not observed in the spectrum of the hybrid. The 

band at 1326 cm-1 referring to the stretching vibrations of the N2-C1 does not 
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appear in the hybrid. According to the studies carried out using the 

MarvinSketch software 6.1.5, the N-H group involving the N2 is deprotonated at 

the studied pH (approx. 8-9), as shown in Figure 4.2 B. Then, the disappearance 

of this band and the alterations of the ring bands points out to the existence of 

interactions of a deprotonated N- (N2) with the LDH sheets. In addition, the 

bands at 1782 and 1716 cm-1 ascribed to the symmetric stretching vibration modes 

of the C4=O1 and C1=O2 groups do not appear in the hybrid material. This result 

may be associated with the existence of allantoin also in its tautomeric form of 

keto-enol with a deprotonated oxygen (O2 of C1), which may also be interacting 

with the LDH sheets. 

 

 

Figure 4.4. FTIR spectra of the MgAl-LDH, allantoin and allantcop:MgAl-LDH hybrid(A). At the 
right side the Allantoin (1) shows the deprotonation of the N2 and allantoin (2) shows the 

possible existence of the tautomeric species with the deprotonated O2 (B) obtained with the 
MarvinSketch software 6.1.5. 
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Table 4.2 Assignation (Kuş et al., 2009; Alam and Ahmad, 2015) of infrared bands of allantoin 
observed in it the spectrum obtained in a KBr diluted sample. 

wavenumber assignment wavenumber assignment 

3343 νsNH2 1194 νring 

3190 νNH (imide) 1184 ν[N3-C2]+βC2– C1 

3061 νC2-H 1115 νN-H 

2948 νC-H 1060 νN1-C2+rNH2 

1780 νsC4=O1+ C1=O2 (ring) 1015 νring 

1716 νasC4=O1+ C1=O2 (ring) 967 ẟRU 

1660 νsC3=O3 (amide) 867 νC-N 

1603 βcissNH2 816 νring 

1530 β[N3-C+βC2–N3]+[Ν3-C+N1-C2] 778 ẟC=O (amide) 

1431 β[N1-C4+βC2– N3] 761 ẟC=O (ring) 

1402 νring 707 ẟring 

1385 ẟCH 670 ẟC=O (ring) 

1359 ẟNH (ring) 632 ẟring 

1326 β[N2-C1+C1-C2] 593 ɣNH (ring) 

1285 wRU 524 ɣNH (ring) 

ν, stretching; ẟ, bending; w, wagging; ɣ, rocking; as., anti-symmetric; s., symmetric; RU means movements of 

the ring (R) in relation to the ureidyl moiety (U).  

 

Figure 4.5 shows TG-DTA curves corresponding to the MgAl-LDH, pure 

allantoin and the allantcop:MgAl-LDH hybrid. In the curve of the MgAl-LDH is 

observed the loss (approx. 20%) of physically adsorbed and interlayer water 

molecules in a continuous process between 95-165 ᵒC. Events related to the 

dehydroxylation of the brucite sheets are evidenced between 165 and 395 o C, with 

a total mass loss of approximately 43% (Constantino and Pinnavaia, 1995). On 

the other hand, allantoin is thermally stable up to approx. 200 ᵒC, being observed 

its melting point at 237 ᵒC as described in the literature (Kuş et al., 2009), point 

from which starts its decomposition with a first mass loss of 30 %, and then 
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several more up to slightly above 600 ᵒC, representing a total mass loss of 96% 

(Kuş et al., 2009). These degradation processes were accompanied by other 

representative endothermic peaks at 255, 323 and 427 ᵒC. In this case of the 

allantcop:MgAl-LDH hybrid it is clearly observed differences in the 

decomposition profile expected for the incorporated allantoin while maintains 

the two endothermic peaks attributed to desorption of physically adsorbed water 

and interlayer water in the LDH now at 57 and 200 ᵒC. Above this last 

temperature it is observed an endothermic event at 292 ᵒC that is assigned to a 

partial decomposition of allantoin with a total mass loss of 5%, followed by other 

endothermic process at 395 o C assigned to the dehydroxylation of the MgAl-LDH 

layers. These last events are associated with a total mass loss of 31% that lasts till 

500 ºC and includes also the final steps of decomposition of allantoin. It should 

be noted that in the hybrid it is not observed the melting point of allantoin and a 

different pathway in the decomposition process, confirming the interaction of the 

organic molecule with the LDH, possibly as discrete species intercalated in a non-

well stacked layered solid particles. 
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Figure 4.5. TG (black, solid line) and DTA (red, dashed line) curves of MgAl-LDH, allantoin and 
allantcop:MgAl-LDH hybrid. 

 

Figure 4.6 shows FESEM images of MgAl-LDH where it is possible to observed 

the characteristic morphology of this solid with laminar particles that form a 

compact sandrose structure (Costantino et al., 1998; Leroux et al., 2004). The aspect 

of the allantcop:MgAl-LDH hybrid, in which the LDH is formed in presence of 

allantoin, shows a morphology less compacted where the lamellar particles 

appear to be aggregated in planes (Figure 4.6B). 
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Figure 4.6. FESEM images of the MgAl-LDH (A) and the allantcop:MgAl-LDH hybrid (B). 

 

4.3 ALLANTOIN:ZnAl-LDH 

4.3.1 Synthetic approaches to allantoin:ZnAl-LDH hybrids 

Considering that the amount of allantoin incorporated in the MgAl-LDH system, 

by co-precipitation method, is relevant for applications in systems of topical uses 

of allantoin, it was then proposed to prepare a hybrid incorporating the allantoin 

into a ZnAl-LDH. Considering that zinc has antibacterial properties, it was 

assumed that the presence of this specie in the solid will add more value to the 

resulting hybrid system. In fact, it has been reported allantoin complexes with 

various metals (Zn, Ag, Cu, etc.) where the presence of the metal in the final 

material introduces antibacterial properties that improves also the generation of 

skin cells, which is advantageous for treatments of various skin diseases, burns, 

hair usages, among others, etc, (Margraf, 1974; Klippel et al., 1977; Loren, 1995). 

Taking into account these premises, the preparation of hybrids based on a ZnAl- 

LDH was explored using the methods of co-precipitation, ion-exchange and 

reconstruction (Figure 4.7), as described in Chapter 2 #2.2.2.  



123 
 

 

Figure 4.7.  Synthesis strategies for allant:ZnAl-LDH hybrids. 

 

Figure 4.8 shows the zeta potential of allantoin, the ZnAl-LDH and the 

allantoin:ZnAl-based hybrids resulting from each of the three explored synthetic 

methods. It is observed a correlation between the zeta potential and the content 

in allantoin in the hybrid. Thus, the pristine ZnAl-LDH shows a positive value of 

+52.3 mV, which was modified towards more negative values as increases the 

content in allantoin in the hybrid, showing values of +45.0 mV for the 

allantie:ZnAl-LDH  with 46 mEq per 100g, +25.9 mV for the allantrec:ZnAl-LDH 

with 135 mEq per 100 g and +11.2 mV for the allantcop:ZnAl-LDH hybrid that 

contains 348 mEq per 100g. It should be noted that this last hybrid shows a zeta 

potential slightly positive, indicating that possibly the incorporated amount of 

allantoin is able to neutralize most of the charge of the LDH.   
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Figure 4.8. Zeta potential of allantoin, ZnAl-LDH, and allantrec:ZnAl-LDH, allantie:ZnAl-LDH  
and  allantcop:ZnAl-LDH hybrids in relation to the relative content of allantoin in the solid. 

 

 

Figure 4.9 shows the diffractogram of the hybrid prepared by reconstruction 

method of a ZnAl-LDH previously heated to  350 ᵒC for 5  h to produce a phase 

that in presence of allantoin may lead to the formation of the intercalation 

compound, following a methodology that has proved efficient in the preparation 

of other LDH hybrid materials such as the assembly of organic polymers, anionic 

surfactants, dichlophenac and porphyrins (Bonnet et al., 1996; Leroux and Besse, 

2001; Leroux et al., 2001; Dupin et al., 2004; Starukh et al., 2016; Duan et al., 2017). 

Figure 4.9 shows the diffractograms of the LDH when the reconstruction method 

is applied to produce the hybrid. Thus, the diffractogram of the starting ZnAl-

LDH prepared incorporating carbonate ions in this case, shows the characteristic 

pattern of the LDH but it is calculated a basal spacing of 0.75 nm slightly lower 

than in the LDH incorporating Cl- ions. Upon calcination in air at 350 ᵒC for 5 h a 

mixture of zinc and aluminum oxides is obtained, the LDH is transformed into 

the so-called double laminar oxide phase (ZnAl-LDO) that shows the reflections 

in the XRD pattern of ZnAl calcined LDH in which are visible some 

characteristics peaks of ZnO wurtzite phase (Starukh et al., 2016). It is known 

that, at a certain temperature, the original hydrotalcite becomes a mixture of 
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oxides that have "memory" of the original structure (Kooli et al., 1997). In fact, in 

the presence of aqueous solutions, these oxides regenerate the double hydroxides 

in the form of brucite type sheets and the positive charges are balanced with 

anions presented in solutions. When the ZnAl-LDO is reconstructed in water in 

order to verify it is possible to reconstruct the solid, the corresponding XRD 

pattern shows again the characteristic peaks of the LDH (Figure 4.9), confirming 

in the present case the reversibility of the thermal transformation carried out at 

350 ºC. Thus, the ZnAl-LDO was then treated with an allantoin solution at pH ≈ 

8-9 (addition of NaOH) to achieve the formation of the allantrec:ZnAl-LDH  

hybrid. As shown in Figure 4.9, the pattern of the resulting hybrid shows a 

characteristic pattern of the LDH but it does not show any displacement of the 

d(00l) reflections towards lower 2 theta angles though the hybrid contains 135 

mEq of allantoin per 100 g of ZnAl-LDH. Therefore, it is clear that the formed 

hybrid material does not correspond to an intercalation compound. 

 

 

Figure 4.8. X-ray diffraction patterns of ZnAl-LDH/CO3
-, the ZnAl-LDO produced by 

calcination of the former at 350 ºC (* peaks of the ZnO wurtzite phase), ZnAl-LDHrec/OH- 

obtained after  reconstruction of the LDO in water at pH ≈ 8-9 and, allantrec: ZnAl-LDH 

obtained by reconstruction of the LDO in presence of an allantoin solution at pH ≈ 8-9. 
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The XRD pattern of the hybrid prepared by ion-exchange method (allntie:ZnAl-

LDH) (Figure 4.10), is very similar to the one of  the hybrid prepared from MgAl-

LDH, except no peaks ascribed to crystalline allantoin are detectable (Table 4.3). 

The allantie:ZnAl-LDH  hybrid incorporates 46 mEq of allantoin per 100 g of 

ZnAl-LDH, value also pretty close to the one of the allantie:MgAl-LDH hybrid. 

Thus, here again, the hybrid formed by ion-exchange reaction of allantoin with 

the ZnAl-LDH containing Cl- ions and interlayer anions, does not correspond to 

an intercalation compound. 

Interestingly, in the XRD diffractogram of the allantcop:ZnAl-LDH hybrid prepared 

by the co-precipitation method (Figure 4.10), it can be observed the (003) and 

(006) reflection peaks shifted towards lower 2θ angles together with other 

characteristic (hkl) peaks of the LDH structure (Table 4.3). From those 00l peaks 

it can be estimated a basal spacing of 1.68 nm which leads to a basal spacing 

increase of 1.20 nm considering a thickness of 0.48 nm for the brucite-like layer 

(Cavani et al., 1991), which confirms in this case the intercalation of allantoin. 

From the CHN analysis of the allantcop:ZnAl-LDH hybrid it is calculated a content 

of 348 mEq of allantoin per 100 g of ZnAl-LDH, which coincides practically with 

the AEC of LDH (≈ 330 mEq per 100g). This finding points out to the presence of 

allantoin anionic species as the counter-ion of the formed LDH solid. Based on 

these data and considering the dimensions of allantoin as 0.40 x 0.61 nm (Figure 

4.11A), it can be proposed two possible intercalation models to explain the 

arrangement of allantoin in the interlayer region of the inorganic solid, with 

intercalated anionic species organizing in a bilayer or in a three-layer between 

the ZnAl-LDH sheets (Figure 4.11B & C). At this point, it is quite complex to 

ascertain the actual organization though the bilayer model seems to be more 

favorable for an easier compensation of charge and interaction with the 

hydroxide layers. Anyway, theoretical calculations would be necessary to 

confirm the real organization of allantoin in the hybrid.  
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Figure 4.9. X-ray diffraction patterns of allantoin, ZnAl-LDH and of the allantie:ZnAl-LDH 
and allantcop:ZnAl-LDH hybrids prepared by ion-exchange and co-precipitation, 

respectively. 

 

Table 4.3. Interplanar distances (dhkl) and 2θ (λ = 1.54 Å) obtained from XRD data of ZnAl-LDH, 

allantie:ZnAl-LDH and allantcop:ZnAl-LDH  hybrids. 

ZnAl-LDH/Cl                       allantie:ZnAl-LDH allantcop:ZnAl-LDH 

2θ (degrees) d (nm) 2θ (degrees) d (nm) hkl 2θ (degrees) d (nm) hkl 

11.49 0.77 11.49 0.77 003 5.23 1.68 003 

23.04 0.38 23.04 0.38 006 10.45 0.84 006 

34.58 0.26 34.58 0.26 012 15.94 0.55 009 

39.05 0.23 39.11 0.23 015 21.27 0.42 0012 

46.44 0.19 46.41 0.19 018 28.56 0.31 0015 

60.26 0.152 60.20 0.152 110 59.40 0.155 110 

61.57 0.150 61.57 0.150 113 59.83 0.154 113 
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Figure 4.10. Schematic dimensions of allantoin molecule (A), schematic arrangement of 
allantoin in bilayer (B) or three-layer (C) in the ZnAl-LDH interlayer. (Adapted from Stimpfling 

et al. (2016a). 

 

As the allantcop:ZnAl-LDH hybrid seems to be the one with the most 

appropriated stoichiometry and it is confirmed the presence of allantoin in the 

interlayer region, this compound was futher analyzed in depth to obtain a more 

complete characterization of the hybrid. From the EDX analysis (Table 4.4) it was 

determined a acontent in Zn much larger than that expected for the formation of 

a LDH with a Zn:Al 2:1 ratio. In fact, the hybrid shows a very low content in Al 

that suggests the precipitated solid could most possibly be a layared single 

hydroxide (LSH) instead of the intended 2:1 ZnAl-LDH. This conclusion is quite 

plausibe considering possible strong interactions between Zn and allantoin, 

which has been already addressed in the literature in relation to the formation of 

allantoin-zinc-based complexes (Margraf, 1974). Based on these data, the model 

previously defined for the intercalation of allantoin in a co-precipitated ZnAl-

LDH would not be valid and additional characterization should be done to 

understand the nature of the allantcop:ZnAl-LDH hybrid. 
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Table 4.4. Relative content of element in ZnAl-LDH and allantcop:ZnAl-LDH  hybrid 

determined from EDX analysis. 

Element ZnAl-LDH (At%) allantcop:ZnAl-LDH  (At%) 

Al 30.8 ± 0.5 8.5 ± 4.5 

Zn 51.5 ± 1.6 40.1 ± 2.0 

Cl 17.6 ± 2.1 0.7 ± 0.1 

N -- 50.6 ± 2.7 

Na -- -- 

 

Firstly, it should be noted that the FTIR spectra of the hybrids based on ZnAl 

hybrids  (Figure 4.12) show differences in the intensity of the bands ascribed to 

allantoin that varies with the content of organic compound in  the hybrid. The 

bands at 1780 and 1600 cm-1 referring to νC=O vibrtion mode of the carbons C3 

and C4in the ring and the ᵟNH2 of the amide, respectively, disappear in all the 

hybrids. The band at 1660 cm-1 is related to the νC=O of the carbonyl of the amide 

(C3) and it is displaced to lower wave numbers in the allantie:ZnAl-LDH and 

allantrec:ZnAl-LDH hybrids, appearing at 1645 cm-1. The spectra of hybrids 

prepared by ion-exchange and reconstruction methods are quite similar 

however, in the allancop:ZnAl-LDH hybrid this last band is shifted to 1640 cm-1, 

confirming a more intesnse interaction between allantoin and the inorganic 

substrate, some how different than in the solids prepared by the other methods. 

A careful analysis of the bands appearing in the low frequency region of the 

spectra of LDH-based materials show differences amongst the samples in the 

bands at 830 and 615 cm-1, assignated to M-O vibration modes (M = Zn and Al), 

and the one at  430 cm- 1, assigned to O-M-O (Zn,-Al) vibration modes, of the 

inorganic solid. These bands are clearly observed in spectra of the ZnAl-LDH/Cl, 

and the allantrec:ZnAl-LDH and allanie:ZnAl-LDH hybrids at the same 

frequencies. However, in the spectrum of allantcop:ZnAl-LDH, the band at 615 

cm-1 appears with a low intensity, and the O-M-O band is shifted to higher wave 

numbers appearing at 460 cm-1.  Additionally, the spectrum of the allantcop:ZnAl-
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LDH hybrid shows a band at 785 cm-1, which could be assigned to a Zn-O 

stretching vibration mode according to the literature, which could be associated 

with the existence of allantoin-Zn interactions as those observed in complexes of 

allantoin with Zn (Xu et al., 2015). This important observation suggests that in 

the synthesis carried out by the co-precipitation method carbonyl groups in the 

allantoin molecule may react with Zn2+ ions to produce a complex (Xu et al., 2015) 

that seems to be further involving in the precipitation of the hydroxide solid.  

This result would explain the facility for incorporating allantoin in the samples 

and the lower amount of Al with respect to the Zn in the formed allantcop:ZnAl-

LDH hybrid (Table 4.4). 

 

 

Figure 4.12. FTIR spectra of the ZnAl-LDH, allantoin, allantrec:ZnAl-LDH, allantie:ZnAl-LDH  
and  allantcop:ZnAl-LDH hybrids. 

 

The TG/DTA results also show differences in the thermal behavior between the 

hybrid prepared by co-precipitation and the ones formed by the other methods 

(Figure 4.13). In the TG curve of the neat ZnAl-LDH it is clearly observed four 

main mass losses. The first one associated with an endothermic event at 42 ᵒC is 

attributed to the elimination of weakly adsorbed water (11 %). The second mass 

loss (7 %), also associated with an endothermic process at 138 ᵒC, is ascribed to 



131 
 

the removal of water from the interlayer of the ZnAl-LDH. Between 173 and 261 

ºC the percentage of mass loss (7 %) is ascribed to the progressive 

dihydroxylation of the LDH and stabilization of oxide phases (Perioli et al., 2008). 

The observed mass losses steps in the allantie:ZnAl-LDH hybrid are very similar 

to that of the ZnAl-LDH except for the absence of the endothermic event at 173ºC 

and a total mass loss of 14 % instead of 7%. This difference in the mass loss could 

be ascribed to the presence of allantoin (45 mEq per 100 g) that is removed in the 

interval of temperatures in which the dihydroxylation of the LDH also takes 

place. However, the TG/DTA curves of the hybrids prepared by the 

reconstruction and co-precipitation methods show very different profiles, 

especially in the process taking place above 200 ᵒC. In the case of the 

allantrec:ZnAl-LDH hybrid it is observed a three mass losses (12%, 11% and 5%) 

between 150 to 650 ºC that account of dihydroxylation of the inorganic solid and 

the decomposition of allantoin, being accompanied by three endothermic events 

at 210, 450 and 580 ᵒC. In the case of the allantcop:ZnAl-LDH  hybrid the TG curve 

is quite different and it is observed a progressive and continuous mass loss from 

practically 200 ºC up to 650 ºC, being detectable various endothermic events at 

35, 85, 294 and 566 ᵒC, attributed to losses of masses of 4, 7, 21 and 16%, 

respectively. Besides, three exothermic processes are observed at 207, 480 and 650 

ᵒC, the most notable being the exothermic process at 650 ᵒC, which may be related 

to the complete removal of allantoin strongly bonded to Zn that leads to the 

formation of zinc oxide with a wurtzite-type structure (De Roy et al., 2006). 
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Figure 4.13. TG (black, solid line) and DTA (red, dashed line) curves of ZnAl-LDH, 
allantie:ZnAl-LDH,  allantrec:ZnAl-LDH and allantcop:ZnAl-LDH hybrids. 

 

Figure 4.14 shows FESEM and TEM images the ZnAl-LDH and the 

allantcop:ZnAl-LDH hybrid. The first shows the characteristic aspect of LDH 

materials with aggregation of particles in typical sandrose structures. In contrast, 

the hybrid seems to be formed by platelets particles that form aggregate in more 

compact porous blocks. TEM images show that in fact the allantcop:ZnAl-LDH 

hybrid (Figure 4.14D) is formed by aggregation of hexagonal platelet 

nanoparticles of typical 20 nm diameter size, much smaller than the ones of the 

ZnAl-LDH (Figure 4.14B). 
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Figure 4.14. FESEM and TEM images of ZnAl-LDH (A-B) and allantcop:ZnAl-LDH hybrid (C-D). 

 

4.4 ALLANTOIN-ZINC SYSTEMS  

According to the literature, allantoin easily forms complexes with different 

metals (Margraf, 1974). Based on these data and taking into account that in the 

process of ZnAl-LDH formation, the preference of allantoin for Zn was observed 

the preparation of the allant:Zn-complex following the protocol described in the 

patent by Margraf, (1974) was explored. The idea is to understand what it is the 

process of interaction of Zn2+ ions and allantoin that leads to the formation of 
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phases reach in Zn when intended the co-precipitation of the ZnAl-LDH in 

presence of allantoin, as it has been observed in the formation of the 

allantcop:ZnAl-LDH hybrid (#section 4.3). Additionally, it was intended the 

precipitation of a Zn layered singly hydroxide in presence of allantoin (allant:Zn-

LSH) to compare its similitudes with the LDH hybrid. The allant:Zn-complex 

prepared according to the protocol described in the patent by Margraf, (1974) 

contains 259 mEq of allantoin per 100 g of Zn-complex and there is no data in the 

literature on its characterization that could be used for comparison in this study. 

The XRD pattern of the allant:Zn-complex (Figure 4.15A) shows a very intense 

reflection peak at 2.56 nm with other broad reflections of much lower intensity, 

suggesting the formation of low crystalline phases that may resemble to LDH 

and LSH hybrids here developed (Figures 4.10 & 4.15A), though it is difficult to 

index the pattern due to low definition of peaks. On the other hand, the allant:Zn-

LSH hybrid was successfully prepared according to the XRD diffractogram 

shown in Figure 4.15A, which can be indexed as indicated in Table 4.5. The 

presence of zinc hydroxides is overruled as none of the peaks of the Zn-NaOH 

solid are observed in the pattern of the allant:Zn-LSH hybrid. From the observed 

(00l) rational reflections values in Table 4.5 it is possible to establish a basal 

spacing increase of 1.28 nm for the allant:Zn-LSH hybrid. Taking into account 

0.40 x 0.61 nm as dimensions of allantoin molecule (Figure 4.10A) it can be 

proposed a model in which allantoin species would be intercalated forming a 

bilayer between the Zn-LSH sheets, which would produce precisely a spacing 

increase of 1.28 nm (Figure 4.15B). 

Curiously, the allant:Zn-LSH hybrid shows a quite similar diffractogram pattern 

than the allantcop:ZnAl-LDH hybrid with just small displacements in the position 

of some of the peaks (Figure 4.15A). This observation suggests that, in the case of 

the allantcop:ZnAl-LDH  hybrid, it was in fact formed a Zn-LSH structure with 

the presence of small amounts of Al ions which would account of the small 

differences between XRD patterns. In that case, the allantcop:ZnAl-LDH hybrid 

should be contemplate as a LSH structure instead of a LDH structure. In fact, the 
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allant:Zn-LSH hybrid incorporates 364 mEq of allantoin per 100 g of Zn-LSH, 

which is also similar to that incorporated in allantcop:ZnAl-LDH hybrid.  

 

 

Figure 4.15. X-ray diffraction patterns of Zn-NaOH, allant:Zn-complex and allant:Zn-LSH 
hybrid (A) and schematic arrangement of allantoin in the Zn-LSH interlayer (B), adapted from 

Latip et al. (2013). 

 

Table 4.5. Assignation of diffraction peaks observed in the diffractogram of the allant:Zn-LSH 
hybrid 

 

allant:Zn-LSH 

hkl 2θ (degrees) d (nm) 

001 5.00 1.76 

002 10.23 0.86 

003 14.80 0.59 

004 20.69 0.43 

005 28.00 0.32 

100 33.30 0.26 

110 59.20 0.155 
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The FTIR spectra of the allant:Zn-complex and the allant:Zn-LSH hybrid (Figure 

4.16) are quite similar to the one of the allantcop:ZnAl-LDH (Figure 4.12) 

previously discussed (#section 4.3). Here again, the interactions of Zn and 

allantoin can be clearly discerned from the analysis of band in the region at lower 

wavenumbers. The band at 761 cm-1 referring to vibrations of the carbon (C=O) 

of the ring in pure allantoin, appears displaced at greater wavenumbers, to 785 

cm-1, in the spectra of the allant:Zn-complex and the allant:Zn-LSH hybrid. The 

band at 1780 cm-1 associated with νasC=O disappears in the allant:Zn-complex 

and allant:Zn-LSH hybrid and the band of allantoin at 816 cm-1 ascribed to the 

ring vibration (ɣ ring) that appears in the allant-Zn/complex at 830 cm-1 is not 

observed in the allan:Zn-LSH hybrid. In addition, similar to what occurs in the 

allantrec:ZnAl-LDH and allantcop:ZnAl-LDH hybrids the intense band at 1184 cm-

1 ascribed to the ring stretching vibrations ν[(R + N3 + C2) +(β C2 + C1]) of 

allantoin molecule (see Table 4.2 ) does not appear in the spectra of the allant:Zn-

complex and allant:Zn-LSH hybrid. In its place two other bands at 1205 and 1176 

cm-1 appear in those spectra, which may be related to changes in the movement 

of the ring in relation to the rest of the molecule, due to the disturbance generated 

by interactions with Zn species as those occurring in the Zn complex. Thus, these 

changes in allantoin bands observed in the FTIR spectra of the allant:Zn-LSH and 

allantcop:ZnAl-LDH hybrids and their similarity with that observed in the 

allant:Zn-complex spectrum, will clearly demonstrate the existence interaction of 

Zn in the precipitated hydroxides with the deprotonated carbonyl group of 

allantoin, in this case related to passing from C=O to C-O- through the keto-enol 

tautomery. 
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Figure 4.16. FTIR spectra of allantoin (allant), allant:Zn-complex and allant:Zn-LSH. 

 

Figure 4.17 shows de TG/DTA curves of the allant:Zn-complex and the allant:Zn-

LSH hybrid. The thermal decomposition of the allant:Zn-complex shows various 

consecutive thermal processes of decomposition and mass losses less differenced 

than in the profile of the allant:Zn-LSH hybrid. The first event occurs at 70 ᵒC 

involving the loss of weakly adsorbed water. Then, the TG-DTA curves show 

several endothermic processes between 180 and 550 ᵒC related to the 

decomposition of allantoin, followed by an exothermic peak at 665 ᵒC in the 

allant:Zn-complex, similar to what happens in the allant:Zn-LSH hybrid but in 

that last case at 615 ºC instead. These differences in the thermal processes may be 

related to the morphology of the material, which is different for both materials, 

being more aggregated in the case of allant:Zn-complex, as seen the FESEM and 

TEM images in Figure 4.18.  
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Figure 4.17. TG (solid line) and DTA (dashed line) curves of allant:Zn-complex and allant:Zn-
LSH hybrid. 

 

Images A and B in Figure 4.18 show the aspect of the allant:Zn-complex where it 

can be appreciated the solid is formed by aggregated particles of probably 

lamellar morphology. The aspect of the allant:Zn-LSH hybrid (Figure 4.18C & D) 

is more homogeneous and from the TEM images it is clearly distinguished the 

presence of platelet nanoparticles of hexagonal morphology and around 20-30 

nm diameter, typical of Zn-based layered hydroxide materials (Altuntasoglu et 

al., 2010). The different aspect of the allant:Zn-LSH hybrid particles compare to 

the allant:Zn-complex ones indicate that both type of materials are different and 

so their properties regarding possible applications may be also different. 
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Figure 4.18. FESEM and TEM images of of allant:Zn-LSH hybrid (A-B) and allant:Zn-complex 
(C-D). 

 

4.5 EVALUATION OF PROPERTIES OF ALLANTOIN-BASED HYBRIDS  

4.5.1 In vitro release of allantoin from allantoin-based hybrids in aqueous 

buffer solution 

As above indicated, one of the potential applications of the developed materials 

is related to the action of allantoin as active component in wound dressings, facial 

masks, etc., therefore a first study of properties of the allantoin-based hybrids is 

the direct release of allantoin from them. Thus, the allantcop:ZnAl-LDH and 

allant:Zn-LSH hybrids together with the allant:Zn-complex were selected for 
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experiments of controlled release in conditions simulating the pH of the skin (pH 

≈ 5.5) using a phosphate-buffer solution, following the protocols described in 

Chapter 2 #section 2.5.2. Figure 4.19 shows the profiles in the release of allantoin 

from the selected materials, which are quite similar for the three systems. In all 

the formulations it is observed a rapid initial release rate, achieving around a 60% 

of release in the first two hours. The small differences between the three systems 

point out to a slightly faster release in case of the allant:Zn-LSH hybrid. After the 

first 2 h of release, a slower kinetics is observed with allantoin release values of 

approximately 77, 85 and 82 % for the allantcop:ZnAl-LDH, allant:Zn-LSH and 

allant:Zn-complex systems, respectively. In a study published by Ke et al. (2016) 

in which allantoin was loaded in composites prepared from porous silica 

nanoparticles and polycaprolactone nanofibers, it was observed an initial release 

of just 5% in the first hours, with approx. 40 % in 100 h. In contrast, in the present 

study it is observed a release of approx. 80 % in the first 8 hours. Taking into 

account that, in these in vitro test experiments the allantoin systems is directly in 

contact with a solution, and that in a real application, involving a dressing tissue 

or a cream in contact with the skin, the moisture will be lower it is expected that 

allantoin will show a much slower release rate and so it could exert at an 

adequate path its healing role sur place. Moreover, in view to applications dealing 

with wound dressing tissues the control in the release could be further improved 

as the allantoin-based systems must be associated with a substrate. In this way, 

the developed systems were also incorporated in various polymeric matrix, as 

described in the next section, in view to confirm their appropriateness for this 

application. 
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Figure 4.19. Studies of allantoin release in the different preparations in a buffer solution at pH 

5.5. 

 

4.5.2 Incorporation of the allantoin-based systems in polymer matrices and 

evaluation of their antimicrobial activity  

For an initial study of antimicrobial activity and to evaluate possible topical 

applications various allantoin-Zn based systems, the allant:Zn-complex and the 

allant:Zn-LSH and allantcop:ZnAl-LDH hybrids, were incorporated in polymer 

matrix of hydroxypropylmethylcellulose (HPMC). Thus, films were prepared by 

the casting method from dispersion of the allantoin-based system in an aqueous 

solution of the biopolymer and slow evaporation of the solvent (see Chapter 2 

#section 2.2.2). To evaluate the antimicrobial activity properties of prepared 

materials, antibacterial tests were performed against bacterial cultures on agar 

plates. For this evaluation we selected two microorganisms: a Gram-positive 

bacterium (Staphylococcus aureus)  and a Gram-negative bacterium (Escherichia 

coli). Staphylococcus aureus is considered an opportunistic human pathogen, a 

spherical bacterium, frequently found in the skin and also in the nostrils in 

healthy people. At the same time, they can cause certain diseases such as acnes, 

cellulitis or even more serious diseases such as pneumonia, endocarditis, etc 

(Harris et al., 2002). On the other hand, Escherichia coli is a seemingly harmless 
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bacillary bacterium normally found in lower gastrointestinal tract. But it can also 

cause serious food poisoning in humans through contaminated food. Together 

with Staphylococcus aureus it is one of the most common and ancient bacteria of 

humanity. For these reasons, both bacteria were selected for the tests with the 

materials prepared in this Thesis. 

Figure 4.20 shows the aspects of films prepared using the HPMC. The film 

prepared with just HPMC shows a perfectly homogenous aspect and has a totally 

transparent appearance. The incorporation of allantoin to the HPMC produced 

films with an inhomogeneous aspects where allantoin is seggregated probably 

due to the low allantoin solubility. If the pH of the allantoin water solution that 

is around 3, was raised till ≈ 7 before incorpoating the HPMC and then prepared 

the allantpH7/HPMC film it is produced a most homogeneous material (Figure 

4.20), though it is still possible to distingue the presence small crystals within the 

polymer matrix. When the film is prepared from dispersions of allant: Zn-LSH in 

HPMC the resulting allant: Zn-LSH/HPMC material is again highly 

homogenous, though the film is quite stiff and little plastic. When the films were 

tested for antimicrobial activity, it was not possible to measure the inhibition halo 

since the films dissolved in the agar plates, probably due to the high 

hydrophilicity of the HPMC. This result indicated that the preparation of 

bionanacomposite systems for this application require to choose a polymeric 

matrix with a higher stability in aqueous environments. 
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Figure 4.20. Images of HPMC films with allantoin and the allant:Zn-LSH hybrid. 

 

Then, to overcome the problem of high hydrophilicity of the HPMC and to make 

possible the evaluation of the inhibition halo, it was explored agar as 

biopolymeric matrix of the bionanocomposite films. The agar-based 

bionanocomposite films were prepared also by the casting method from 

dispersions of the allantoin-based systems in an aqueous solution of the 

biopolymer and slow evaporation of the solvent (see Chapter 2 #section 2.2.2). In 

addition, for comparative purposes the allantoin-based systems were directly 

deposited in Whatman filters to determine their bactericide activity when they 

are not incorporated in the biopolymeric matrix, i.e., they can release species 

freely from the allantoin-based system.  

Figure 4.21 shows images of the antimicrobial study performed, in duplicate, 

using materials prepared from the allantoin-based materials directly 

incorporated in Whatman filters (noted with W), referring to samples labelled 

from 1 to 8, and in the develoed agar bionanocomposite films (noted with A) 

referring to samples labelled from 9 to 16. In Table 4.6 is colleted the 

characteristics, names and abbreviations of the tested materials for easier 
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identification. It should be noted that ZnCl2 was used as a Zn blank, Zn-LSH as 

a allant:Zn-LSH blank, Zn-NaOH as a allant:Zn-complex blank and also allantoin 

alone was checked, to discard/confirm any activity of this molecule. 

 

Table 4.6. Identification labells of the various samples evaluated in the antimicrobial 

study showed in Figure 4.21. 

Number Sample Number Sample 

1  allant@W    9 allant@A 

2  Zn@W  10 Zn@A 

3  ZnAl-LDH@W  11 ZnAl-LDH@A     

4  allantcop:ZnAl-LDH-@W 12 allantcop:ZnAl-LDH@A 

5  Zn-LSH@W 13 Zn-LSH@A 

6  allant:Zn-complex@W  14 allant:Zn-complex@A 

7  Zn-NaOH@W  15 Zn-NaOH@A 

8  allant:Zn-LSH/W 16 allant:Zn-LSH@A 
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Figure 4.21. Images showing the evolution in the growth of the microbial population 

after 24 hours of Staphylococcus aureus (A) and Escherichia coli (B) colonies. The materials 

corresponding to each nunber are detailed in Table 4.6. The central sample carrying the 

antibiotic azithromycin is used as a positive control. 
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As detailed in the Chapter 2 #section 2.5.2, the bacteria growth on agar plates 

were observed after 24 h of incubation at 37 ᵒC. The materials tested in the agar 

plates containing the E. Coli bacteria showed no inhibition halo. This result was 

observed for both type of samples, the systems directly embebed into the 

Whatman filter (1-8) and on the allantoin-Zn systems incorporated in the agar 

films (9-16). In contrast, in tests with the S.aureus bacteria, inhibition halos are 

observed in various of the samples, being oberved certain differences that 

depends if the active phase was directly deposited in the support (W samples) or 

if it was integrated within the polymeric matrix of the support (A samples), the 

lastest showing all inibition halos. However in the W series, samples 1, 3, 4, 5 and 

6 do not exhibit inhibition halos, while samples 2, 5, 7 and 8, the ones containing 

ZnCl2 (Zn), Zn-LSH , Zn-NaOH and allant:Zn-LSH hybrid, respectively, show 

inhibition halos though smaller tha the ones of the equivalent system 

incorporated in the agar film.  

Anayzing the results in Figure 4.21 with more detail it should be noted that for 

both tested bacteria, the pure allantoin (samples 1 and 9) does not show any 

inhibition halo, which is an expected result considering that allantoin does not 

have bactericidal properties. The antibacterial effect of Zn2+ is  proven by the halo 

displayed by samples containing ZnCl2 (2 and 10) as the ions can be released 

directly to the medium, the observed differences of efficiency being related to the 

different release from each support. The ZnAl-LDH system (samples 3 and 11) 

do not show inhibition halo, which may be related to the fact the Zn  ions are well 

stabilized in the LDH structure and so they cannot diffuse easily to the culture 

medium. In the case of the allantcop:ZnAl-LDH hybrid it is again observed 

activity in the case of the material incorporating the hybrid in the biopolymer 

matrix (sample 12), indicating that in this case the Zn present in the hydroxide is 

more available than in the neat LDH. The results with the allant:Zn-LSH hybrid 

are more satisfying as it is possible to observe the formation of halos when 

directly supporte in the Whatman substrate (sample 8) as well as incorporated in 

the agar matrix (sample 16), being again more efective the biopolymer film 

substrate. Moreover, the inhibition halos are greater than the ones observed in 
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the equivalent samples involving the use of the allant:Zn-complex and Zn-NaOH 

(samples 6, 7, 14 and 15),  proving so the allant:Zn-LSH hybrids could be of 

interest for applications involving the use of the complex patented by Margraf, 

(1974). 

To better study the amount of Zn2+ released in the systems prepared in this work, 

various suspensions in water of the allantoin-Zn systems (allant:Zn-complex, Zn-

complex, allantcop:ZnAl-LDH, allant:Zn-LSH) and a Zn-LSH (used as blank) were 

prepared incorporating in all the cases the necessary amount of solid for 

containing 8.5 mg of Zn2+. These suspensions were kept at 37 ᵒC for 48 hours in 

closed recipient so that the suspension did not evaporate. Then the supernatant 

was analyzed by XTRF. The results shown in the Table 4.7 clearly indicate that 

the allant:Zn-LSH hybrid and the allant:Zn-complex are the two materials that 

release the largest amount of Zn2+ ions in water. Though this experiment show 

very similar release of Zn2+ ions from both systems, the antibacterial tests show 

a higher efficiency of the allant:Zn-LSH system, which is relevant for further 

applications of the developed materials. 

 

Table 4.7 Amount in mg of Zn+2 released in water. 

Samples Zn+2 released (mg) 

allant:Zn-complex 0.66 

Zn-complex 0.78 

allantcop:ZnAl-LDH 0.10 

allant:Zn-LSH 0.80 

Zn-LSH 0.27 

 

 

Due to the good antibamicrobial results obtained mainly with the allant:Zn-LSH 

hybrid it will be intersting to study other supports most commonly used in the 

preparation of films for topical application. Recently, our group has reported the 
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preparation of bionanocomposite systems based on the combination of cellulose 

nanofibers (CNF), sepiolite and halloysite clays were used to produce stable films 

for release of silicic acid and ibuprofen of potential interest in wound dressing 

tissue applications (Lisuzzo et al., 2019). Nanocellulose is of great interest in the 

development of biomedical materials, mainly when using CNF obtained from 

bacteria, due to its low cost, biodegradability, biocompatibility, good mechanical 

properties, availability, sustainability and low cytotoxicity (Jorfi and Foster, 

2015b; Bacakova et al., 2019). Nanocellulose, in general, has proven over the years 

as a good candidate for applications in wound healing, and skin tissue 

engineering (Bacakova et al., 2019). In addition, there are studies that showed a 

remarkable conformability to several body measurers, maintaining an adequate 

water balance and significantly reducing the pain in the wounds (Petersen and 

Gatenholm, 2011; Fu et al., 2013; Jorfi and Foster, 2015b). For instance, histological 

studies will exhibit significant tissue regeneration, hair formation and cell 

proliferation superior to conventional materials such as Vaseline gauze and 

Algisite M (Petersen and Gatenholm, 2011; Fu et al., 2013; Jorfi and Foster, 2015b). 

In this way, it has been here explored the preparation of nanocellulose films 

containing allantoin and the allant:Zn-LSH hybrid. Figure 4.22 shows the aspect 

of various films formed from cellulose nanofibers. The pure nanocellulose film is 

transparent and homogeneous. However, when allantoin is added to the CNF 

matrix, the result is very similar to that found in films based on HPMC, with the 

formation of small crystals of allantoin (Figure 4.22). Here again, the allant:Zn-

LSH hybrid can be more easily dispersed in a hydrogel of CNF allowing the 

preparation of homogeneous films, apparently with a good distribution of the 

hybrid within the nanocellulose matrix (Figure 4.22). In this case, the produced 

allant:Zn-LSH/CNF bionanocomposite film is more flexible and has some 

adhesiveness when it comes in contact with skin humidity compared to the agar-

based films, which make very promising the system for the intended application 

as wound-healing tissues. Further work regarding a systematic characterization, 

from mechanical properties to evaluation of antimicrobial activity, as well as 
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optimization of the content in the active component is still required to complete 

the study.  

 

 

Figure 4.22. Images of CNF-based films prepared with the biopolymer alone and with allantoin 
and the allant:Zn-LSH hybrid. 

 

4.7 CONCLUDING REMARKS 

This chapter reports a study related to the association of allantoin with inorganic 

solids, including layered double hydroxides of brucite-type structure (LDH) or 

layered single hydroxides (LSH), starting from different salts and metals. 

Allantoin is a compound of natural and also synthetic origin widely used as a 

component of numerous cosmetic and pharmaceutical formulations due to its 

healing, soothing and keratolytic properties. The incorporation of allantoin in the 

Mg-Al LDH prepared by the co-precipitation and by ion-exchange method is not 

evident through XRD analysis. However, an amount of allantoin approximately 

equivalent to half of the ACE of LDH (330 mEq/100 g) for the co-precipitation 

(142 mEq/100 g) and lower for the ion-exchange (50 mEq/100 g) produced 
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materials, is deduced from the characterization results performed by CHN 

elemental analysis. The co-precipitation protocol has been effective in the 

preparation of the Zn-Al LDH in the presence of allantoin, proving that the solid 

formed contains an amount of allantoin similar to the LDH anionic exchange 

capacity. Elementary chemical analysis CHN allows to calculate a content of 348 

mEq of allantoin /100 g of ZnAl-HDL. However, by EDX analysis it is confirmed 

that this material contains mainly Zn and very little amount of Al, so that the 

expected LDH structure with a Zn:Al 2: 1 ratio is not formed, but the resulting 

material seems to be closer to a layered single hydroxide (LSH) stoichiometry 

instead. Based on this result it has prepared a new material using the same LDH 

preparation conditions but without Al, obtaining in this case a layered material 

with a large amount of associated allantoin that remains in the interlayer region 

of the precipitated Zn-LSH structure. The release properties of these materials in 

a phosphate saline solution were also studied simulating the pH of the skin (≈ 

5.5). All the materials have proven efficient in the release of allantoin; however, 

the LSH-based material exhibits a slightly faster initial release and almost 

releases 100% allantoin after 8 hours. Likewise, the incorporation of these hybrid 

allantoin systems in a agar polymer matrix or directly embedded in Whatman 

filters was carried out in order to evaluate their activity against cultures of two 

bacteria, a Gram-positive bacterium (Staphylococcus aureus) and a Gram-negative 

bacterium (Escherichia coli) on agar plates. In these studies, no halo of inhibition 

was seen for any material tested on agar plates containing Escherichia coli. On the 

other hand, various of the materials tested with the Staphylococcus aureus bacteria, 

have proven to be effective against this microorganism, being the best results 

obtained for those containing the allant:Zn-LSH hybrid, which presented a 

greater halo of inhibition compared to any of the other active systems, even better 

than those based on the patented Zn-allantoin complex. In this study, it has been 

seen that the incorporation of allantoin in a Zn-based LSH will improve the 

properties of the final material, by benefiting from the use of Zn as an 

antibacterial agent. In view to its possible application as wound dressings, 

allantoin and the LSH system were also incorporated into two cellulose-based 
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polymeric matrices, HPMC and CNF. In this study, the cellulose nanofibers 

matrix has proven to be more effective, since it produces more flexible 

bionanocomposite films, unlike the HPMC films that are more brittle. As CNF 

has a good capacity to absorb water and it has adhesive properties when it comes 

in contact with the skin, this type of bionanocomposite systems could be of 

interest in view to further development of effective wound dressing tissues. 

Another important point is that the incorporation of allantoin in an inorganic 

solid improves its stability and allows to form homogeneous films, avoiding the 

crystallization and segregation that take place when the drug is directly 

incorporated in the various tested polymers. The allantoin:Zn-LSH hybrid 

presents advantages both in the release of allantoin in in vitro test, and in 

antibacterial activity carried out on agar plates, compared to materials based on 

Zn-allantoin found in the literature, with suggest a high potential for their 

possible application as wound dressings, in cosmetic uses or in dermatological 

treatments. 

 

 

 

 

 

 

 

 

 

 

 

 



153 
 

 

CHAPTER 5 

 

BIONANOCOMPOSITES BASED ON LAYERED 

DOUBLE HYDROXIDE-SEPIOLITE HYBRID 

NANOARCHITECTURES FOR CONTROLLED 

RELEASE SYSTEMS OF HERBICIDES 

This chapter focuses on the exploration and development of hybrid nanoarchitectures based on a 

magnesium-aluminium layered double hydroxide (LDH) supported on sepiolite, taking 

advantage of the properties that both materials possess as nanoarchitectures to incorporate an 

anionic herbicide, 2-methyl-4-chlorophenoxylacetic acid (MCPA) and to apply them as controlled 

release systems. For this purpose, the incorporation of MCPA was first studied in LDH/sepiolite 

nanoarchitectures by ion-exchange and then explored the preparation of the hybrid 

nanoarchitectures by direct co-precipitation of the LDH in a medium containing sepiolite and the 

herbicide. Besides, MCPA-LDH hybrid materials and the hybrid nanoarchitectures were 

incorporated into an alginate-zein matrix to produce bionanocomposite materials conformed as 

beads for evaluation in controlled delivery of MCPA. The main objective is to compare the 

characteristics of various type materials and propose a system that allows a more sustainable 

management of the herbicide. The results of the in vitro release proved to be efficient and applicable 

to a controlled release from the bionanocomposite system based on the nanoarchitecture hybrid of 

MCPA. 

 

5.1 INITIAL CONSIDERATIONS 

   5.2 MCPA-LAYERED DOUBLE HYDROXIDE HYBRIDS 

                       5.3 MCPA-LDH/SEPIOLITE HYBRID NANOARCHITECTURES  

5.4 BIONANOCOMPOSITE SYSTEMS 

5.5  CONCLUDING  
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5.1 INITIAL CONSIDERATIONS 

In recent years there has been a great growth in the development of inorganic-

inorganic heterostructured materials also now called nanoarchitectonic materials 

or just nanoarchitectures, that allow, to take advantage of the properties of both 

assembled components. The building up of certain nanoarchitectonics 

contemplates the assembly of components in interaction at their interface which 

can modify their properties, adding more potential for the development of new 

functional materials (Aono et al., 2012; Khan et al., 2017; Komiyama et al., 2017; 

Ariga et al., 2019). Based on this context, various nanoarchitectures were 

developed based on layered clays over the years, from classical pillared clays 

(Brindley and Sempels, 1977; Gil et al., 2008; Gil et al., 2010) and porous clay 

heterostructures (PCH) (Galarneau et al., 1995, 1997) to more innovative 

materials that include the assembly of diverse types of nanoparticles and other 

species to clays of different origin and morphology (Ruiz-Hitzky et al., 2012; 

Ruiz-Hitzky and Aranda, 2014; Aranda et al., 2015; Aranda and Ruiz-Hitzky, 

2018) as explained in more detail in Chapter 2 #section 2.2.3. 

Based on these premises, on this Thesis new hybrid nanoarchitectures were 

prepared taking advantage of the anion exchange properties of MgAl-

LDH/sepiolite nanoarchitectures and also it was developed a new methodology 

that allows they formation in one-step processes by co-precipitation of the MgAl-

LDH in a dispersion of sepiolite in water in which it  was also present the organic 

specie to incorporate. The current aim is to ascertain if it is possible to develop 

organic-inorganic hybrid materials using LDH-sepiolite nanoarchitectured 

materials, as the presence of an organic counterpart could be of interest for 

introducing additional functionalities. In this way, we have explored in this 

study the incorporation of anionic species, the 2-methyl-4-chlorophenoxyacetic 

acid (MCPA) herbicide in its ionic form (Figure 1C), as it is expected its easy 

association with the LDH intercalated for neutralizing the charge of the double 

hydroxide. Thus, hybrid nanoarchitectures were prepared profiting from the 

anion exchange properties of a MgAl-LDH/sepiolite (Figure 1D) and also by co-

precipitation of the MgAl-LDH in the presence of an aqueous dispersion of 
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sepiolite in which MCPA was also present (Figure 1E). Differences in 

composition, structure and release behavior in the developed hybrid 

nanoarchitectures prepared by the two methods were examined and analyzed. 

In view to apply these materials in agriculture, the efficiency of formulations 

based on the hybrid nanoarchitectures was explored in in vitro tests of MCPA 

release, confirming the improvement of retention properties and so their 

potential interest in applications related to controlled herbicide delivery. For a 

better control in the MCPA release, the hybrid nanoarchitectures were also 

associated with mixtures of alginate-zein biopolymers to produce 

bionaocmposite beads that may improve retention properties and so, procure 

sustainable release for longer periods of time. 
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Figure 5. 1. Schematic representations of sepiolite (A) and layered double hydroxide (B) 

structures, molecular formula of the 2-methyl-4-chlorophenoxyacetic acid (MCPA) herbicide 

(C). Schemes of the synthesis process follow for the preparation of hybrid MCPA-

LDH/sepiolite nanoarchitectures by ion-exchange (D) and by one-step co-precipitation (E) 

methods. 

 

5. 2 LAYERED DOUBLE HYDROXIDE-MCPA HYBRIDS 

 

5.2.1 MCPA-LDH hybrid prepared by the ion-exchange and co-precipitation 

methods 

 The LDH of the general formula [Mg2Al3(OH)6]Cl.xH2O] was  synthesized by 

co-precipitation method as described in detailed in Chapter 2 #section 2.2.3. The 

XRD pattern (Figure 5. 2)  of this LDH shows the characteristic reflections of the 

inorganic solid structure with the most intense diffraction peak at approximately 
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11.35º in 2 theta angle that corresponds to the d003 (003) reflection.  Additionally, 

(006), (012), (015), (018), (110) and (113) reflections of the LDH structure can be 

also observed in the diffractogram (Miyata, 1977; Bish, 1980; Meyn et al., 1990; 

Rives, 2001). Considering the (00l) reflection peaks it can be deduced a basal 

spacing of 0.77 nm, and as the thickness of the brucite layer is approximately 0.48 

nm then a basal space increase of 0.29 nm  confirms the presence of Cl- anion in 

the interlayer region (Constantino and Pinnavaia, 1995). The intercalation of 

MCPA in hybrids prepared by ion-exchange and co-precipitation methods is 

evidenced by the displacement of the (00l) reflections towards lower 2 theta 

angle, giving rise to basal spacing of 2.15 and 2.32 nm for the MCPAie-LDH and 

MCPA-LDH hybrid materials, respectively. Values that give rise to a basal 

spacing increase of around 1.67 and 1.84 nm, suggesting that the MCPA is 

intercalated forming a bilayer between the LDH sheets, similarly to that observed 

in other studies (Lakraimi et al., 2000; Inacio et al., 2001; Cardoso and Valim, 

2006). Considering the short time required for the preparation of the hybrids by 

the co-precipitation method, 24 h instead of 72 h, that one seems advantageous 

over ion-exchange protocols to produce the MCPA-based hybrids. In addition, 

from the CHN elemental chemical analysis it was deduce a content of 278 mEq 

and 303 mEq of MCPA per 100 g LDH for the MCPAie-LDH and MCPA-LDH 

hybrids, respectively. Actually, the amount of MCPA per 100 g LDH 

incorporated by the co-precipitation method almost fulfills the ion-exchange 

capacity of this 2:1 MgAl-LDH, which ranges from approx.  330 mEq per 100 g of 

LDH (Badreddine et al., 1998; Inacio et al., 2001; Pavlovic et al., 2005; Cardoso et 

al., 2006; Bruna et al., 2009; Alromeed et al., 2015b). 
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Figure 5. 2. XRD patterns of MgAl-LDH and the MCPAie-LDH and MCPA-LDH hybrids 
prepared by ion-exchange and co-precipitation, respectively. 

 

The interactions between the LDH and the MCPA herbicide in the hybrids were 

studied by infrared spectroscopy (Figure 5. 3). The intense bands at 3460 cm-1 and 

1630 cm-1 that appears in the spectra of the neat LDH and also the hybrids  

correspond to the valence vibrations of hydroxyl groups and the bending 

vibration of water δ(H2O), respectively (Badreddine et al., 1998; Lakraimi et al., 

2000). The bands observed in the LDH in the low frequency region of the 

spectrum correspond to the reticular vibration modes and can be attributed to 

the M-O (758 and 665 cm-1) and O-M-O (435 cm-1) vibrations where “M” refers to 

Mg or Al (Miyata, 1977; Cavani et al., 1991; Badreddine et al., 1998; Houri et al., 

1999; Lakraimi et al., 2000; Pavlovic et al., 2005). Despite the precautions taken 

during the synthesis of the materials, a small contamination by CO3-2 can be 

considered in the solid due to the apparition of the characteristic vibration band 

at 1360 cm-1 (Miyata, 1975). 

The FTIR spectrum of the MCPA shows bands at 1495 and 1430 cm-1 

corresponding to the vibrations of the aromatic ring C=C, bands at 1300 and 1080 

cm-1 assigned to the asymmetric and symmetric stretching vibration of C-O-C, 
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respectively,  and bands at 1740 cm-1 corresponding to the νC=O of carboxyl group 

(Pavlovic et al., 2005; Cardoso et al., 2006). 

In the MCPAie-LDH and MCPA-LDH hybrids the intercalation is confirmed due 

to the disappearance of the νC=O band 1740 cm-1 and the presence of a broad band 

at 1610 cm-1 that can be assigned to the asymmetric stretching vibration of the 

ionized COO- groups. Next to it, a weaker band about 1490 cm-1 corresponding 

to the νC=O of the COO- group corroborates that MCPA is incorporated between 

the LDH layers in its anionic form. In addition, other bands appearing at 2925 

cm-1, which can be attributed to the aliphatic C-H stretching vibrations of the 

herbicide, and at around 1245 and 1080 cm-1, which can be assigned to the phenyl-

alkyl ether groups present in MCPA, are also observed in the spectrum of the 

hybrid materials (Figure 5. 3)  (Lakraimi et al., 2000; Inacio et al., 2001; Pavlovic 

et al., 2005; Cardoso et al., 2006; Bruna et al., 2009). In addition, bands at around 

1360 and 1365 cm-1 in the starting LDH and in the MCPAie-LDH, point out to a 

possible a little  contamination by carbonate ions during the preparation of the 

materials (Miyata, 1975).  

 

 

Figure 5. 3. FTIR spectra of MgAl-LDH, MCPA, and the MCPA-LDH and 

MCPAie-LDH hybrids. 
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The morphology of the neat LDH and that of the MCPA-LDH and MCPAie-LDH 

hybrid materials was analyzed by field emission scanning eletron microscopy 

(FESEM) and electron transmission microscopy (TEM) (Figure 5. 4 ). Figure 5. 4A 

shows that LDH flat nanoparticles an agglomerated as a sandrose structure 

(Leroux et al., 2004), with a particle size of around 100 nm. According to Figure 

5. 4B & E, the incorporation of MCPA into MgAl-LDH, by ion-exchange and co-

precipitation, gives rise to a more spongy morphology, where the nanopaticles 

seem to be less aglomerated, with a particle size around 100 nm. The TEM images 

(Figure 5. 4B, D & F) show that of the morphology of all the LDH materials are 

firmed by flat round disc particles some of them almost of hexagonal form typical 

of hydrotalcite materials (Costantino et al., 1998; Okamoto et al., 2007). Particle 

size is in all the samples in the nanometric scale with diameter typically around 

100 nm. 

 

 

Figure 5. 4. FESEM (upper row) and TEM (bottom row) images of the MgAl-LDH(A, B), 

MCPAie-LDH (C, D) and MCPA-LDH (E, F) (co-precipitation) hybrids. 
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5.3 MCPA:LDH/SEPIOLITE HYBRID NANOARCHITECTURES 

5.3.1. LDH/sepiolite nanoarchitectures prepared by the co-precipitation 

method 

The preparation of HDL/sepiolite (LDH/Sep) nanoarchitectures is based on a 

method developed and patented by Ruiz Hitzky et al. (2008) where the LDH is 

prepared by co-precipitation of the LDH in the presence of sepiolite, with some 

adaptations according to the needs of the current study. Thus, LDH with formula 

[Mg3Al2(OH)6]Cl·xH2O was prepared in the presence of a dispersion of sepiolite 

at pH ≈ 9, as described in Chapter 2 #section 2.2.3. In order to study the materials 

systematically, nanoarchitectures with different LDH/sepiolite ratios were 

prepared. Thus, the amount of reagents used for the formation of LDH was 

varied and sepiolite was fixed in order to ready the formation of LDH/sepiolite 

nanoarchitecture with 2:1, 1:1, 0.5:1 and 0.3:1 LDH:sepiolite proportions. Once 

formed, the nanoarchitectures were recovered by centrifugation and submitted 

to a thermal treatment at 60 or 150ᵒC to produce their consolidation (Chapter 2 

#section 2.2.3). Table 5. 1 shows the yield of LDH formed with respect to the one 

expected in the formation of the various nanoarchitectures, which in all the cases 

is around 90%.  

 

Table 5. 1. Yield of MgAl-LDH and nanoarchitectures prepared based on LDH:sepiolite. 

Sample  Yield (%) 

MgAl-LDH  93.38 

LDH/Sep2:1 91.01 

LDH/Sep1:1 90.00 

LDH/Sep0.5:1 91.45 

LDH/Sep0.3:1 93.13 
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The resulting LDH/sepiolite nanoarchitectures, were initially characterized by 

X-ray diffraction (Figure 5. 5) to confirm the presence of the LDH. In the 

nanoarchitectures, at least the (003) reflection peak of the LDH is observed, being 

determined from them a basal spacing d003 = 0.77 nm in all the cases. 

Additionally, the peaks ascribed to (110) and (113) characteristic reflections of the 

LDH are also observed at 0.152 and 0.150 nm, respectively together with other 

reflection peaks assigned to sepiolite, being clearly visible the one at d110 = 1.21 

nm corresponding to the characteristic (110) reflection(Gómez-Avilés et al., 2016). 

By comparing the patterns of different nanoarchitectures, it is also observed that 

the peak ascribed to the (003) reflection of the LDH increases in intensity with 

respect to the (110) peak of sepiolite as the amount of LDH in the 

nanoarchitecture increases, similarly to that  found by Gómez-Avilés et al., (2016) 

and Tian et al., (2016) in the formation of other nanoarchitectures based on LDH 

supported on sepiolite. 

 

 

Figure 5. 5. XRD patterns of LDH, sepiolite and LDH/Sep nanoarchitectures prepared to 
contain different LDH:clay ratio. 
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The FESEM images (Figure 5. 6)  of the different of LDH/Sep nanoarchitectures 

show the growth of LDH on the surface of the sepiolite fibers. As the LDH present 

in the nanoarchitectures increases and the fibers became further covered by 

nanoparticles of the hydroxide more compacted materials are produced. 

 

Figure 5. 6. FESEM images of sepiolite (A), and the LDH/Sep 2:1 (B), LDH/Sep 1:1 (C) and 
LDH/Sep 0.5:1 (D) nanoarchitectures. 

 

The chemical interactions between the nanoparticles assembled in the 

nanoarchitectures can be corroborated by infrared spectroscopy analyzing the 

spectral zone where appears the characteristic stretching OH vibration of the Si-

OH and Mg-OH groups of sepiolite structure at approximately 3720 and 3680 cm-

1, respectively, in pure sepiolite (Figure 5. 7A) (Ahlrichs, 1975). Thus, these two 

bands are observed in all the prepared systems (Figure 5. 7A), but with significant 

difference that account of the interactions. The νSi-OH band at 3720 cm-1, appears 

with much lower intensity in the LDH/Sep nanoarchitectures thermally treated 
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at 60 or 150 °C, which confirms the existence of chemical interactions between 

the Si-OH on the surface of the sepiolite and the LDH particles. A similar 

behavior was observed in other materials adsorbed on sepiolite, as for instance 

thioflavine-T (Casal et al., 2001), sacran biopolymer (Alcântara et al., 2014) and 

ZnO nanoparticles (Akkari et al., 2016) perturbing the band till practically no 

being observable in certain cases. In the LDH/Sep nanoarchitectures the 

existence of hydrogen interactions between the silanol groups of the silicate and 

the LDH particles, also provoked the shift of this band to lower frequencies and 

then it becomes practically imperceptible overlapped by other bands appearing 

in that region.  

 

 

Figure 5. 7. FTIR of the spectra 3740 to 3660 cm-1 region of pure sepiolite and LDH/Sep 
nanoarchitectures prepared in proportions of 1:1 and 0.5:1 consolidated at 60 and 150 ᵒC.  

 

The chemical interactions between the LDH and sepiolite in the 

nanoarchitectures prepared by the co-precipitation method was also 

corroborated by 29Si MAS NMR spectroscopy. The 29Si NMR spectrum of 

sepiolite in Figure 5. 8 shows the presence of three Q3 signals corresponding  to 

Si atoms located within the structure and a Q2 signal associated with Si atoms of 

the silanol groups at the external surface of sepiolite fibers  (de la Caillerie and 

Fripiat, 1992). As previously reported by Gómez-Avilés et al. (2016), those three 
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characteristic Q3 signals are observed in the spectra of the LDH/sepiolite 

nanoarchitectures at around -92.5, -95 and -98.4 ppm, together with a new Q3 

signal that appears at -96.6 ppm. The Q2 signal (Figure 5. 8) associated with the 

silanol groups decrease in intensity till become practically undetectable as the 

LDH content increase and the fibers become more and more covered by LDH 

nanoparticles. Thus, the new Q3 signal can be univocally associated with a new 

type of Si environment coming from the condensation of the OH of silanol groups 

on the surface of the sepiolite fibers with hydroxyl groups of the co-precipitated 

LDH particles. This result was also observed in the formation of other 

nanoarchitectures based on sepiolite (Belver et al., 2013; Gómez-Avilés et al., 

2013, 2016), confirming that so that in the materials here developed the LDH are 

chemically bounded  though the silanol groups that cover the silicate fibers. 

Moreover, from the results of the current work it seems that the temperature of 

consolidation step is not as critical in the formation of the nanoarchitectures as 

there are not significant differences in the spectra of the nanoarchitectures 

consolidated at 60 and 150ºC. 

 

 

Figure 5.8. 29Si MAS NMR spectra of sepiolite (a) and the LDH/Sep0.5:1_60C (b), 
LDH/Sep0.5:1_150C (c), LDH/Sep1:1_60C (d) and LDH/Sep1:1_150C (e) nanoarchitectures. 
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5.3.2 MCPAie-LDH /sepiolite hybrid nanoarchitectures prepared by the ion-

exchange method 

The preparation of hybrid nanoarchitectures LDH/Sep based on the association 

of the 2-methyl-4-chlorophenoxylacetic acid herbicide was first achieved by ionic 

exchange of MCPA anions with the chloride ions present in previously prepared 

LDH/Sep nanoarchitectures with different LDH:sepolite ratio (Figure 1D). The 

XRD patterns (Figure 5. 9) of the nanoarchitectures before and after the ion-

exchange reaction, showed the presence of the most intense characteristics peaks 

of pure sand LDH structures. Moreover, differences in the position of the (003) 

reflection peak of the LDH in the pristine nanoarchitectures and most of the 

hybrid nanoarchitectures confirm the intercalation of MCPA in the LDH. 

Therefore, the reflection (003) of the starting LDH with a basal spacing of 0.77 nm 

shifts to lower 2θ angles, resulting in a basal spacing of 2.15 nm in the hybrid 

nanoarchitectures, coincident with that observed in the MCPAie:LDH hybrid 

(#section 5.2). 

 

 

Figure 5. 9. XRD patterns of individual components (sepiolite, LDH, and MCPA), MCPAie-LDH 
intercalation compound and the neat LDH/Sep and MCPAie-LDH/Sep hybrid 

nanoarchitectures. 
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FTIR spectra of the hybrid nanoarchitecturas (Figure 5. 10) confirm the presence 

of bands attributed to the organic component in all of them, although, as in the 

intercalation compound MCPAie-LDH, the existence of interactions with the 

inorganic substrate modified the position of the bands. This especially affects the 

very intense bands at 1748 and 1707 cm-1 assigned to the C=O vibration modes of 

the carboxylic group of the MCPA molecule, which was not observed in the 

spectra of MCPAie-LDH neither in those of the MCPAie-LDH/Sep1:1_150C 

hybrids (Figure 5. 10). They should move towards a lower wavelength being so 

expected at around 1610 cm-1 the symmetric and asymmetric stretching vibration 

of ionized COO- groups since the carboxylic group must be present as a 

carboxylate (Alromeed et al., 2015b). In fact, the spectra of the hybrid 

nanoarchitectures show a large band in the region of 1630-1600 cm-1 region due 

to the overlapping of such bands with the one ascribed to HOH vibration modes 

of water molecules adsorbed on inorganic solids, LDH and sepiolite, that appear 

around 1630 cm-1. 

 

Figure 5.10. FTIR spectra of individual components (sepiolite, LDH, and MCPA), MCPAie-LDH 
intercalation compound and the neat LDH/Sep and MCPAie-LDH/Sep hybrid 

nanoarchitectures. 
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The presence of MCPA in the nanoarchitectures was confirmed by CHN 

elemental chemical analysis, values show in Table 5. 2 where MCPA content is 

expressed in relation to the amount of LDH present in the nanoarchitectures. The 

expected anion exchange capacity (AEC) of the LDH is around 330 mEq/100 g 

LDH and taking into account the content in MCPA in the MCPAie-LDH 

intercalation compound the calculated amount of MCPA in the hybrid 

nanoarchitectures suggests the ion-exchange process varies depending of the 

sample. The content of MCPA in the MCPAie-LDH/Sep1:1_150C hybrid 

nanoarchitecture is similar to that of the MCPAie-LDH hybrid, however the 

expected content for a complete ion-exchange is only reacheed in 

nanoarchitectures with lower LDH:ratio as it is the case of the  MCPAie-

LDH/Sep0.5:1_150C sample. This effect could be ascribed to a lower degree of 

agglomeration of the LDH particles grown on the sepiolite fibers in the 

nanoarchitecture with lower content in LDH, which may favor a faster ion-

exchange reaction, being possible to complete the process in the adopted 

experimental conditions. In fact, when the sepiolite fibers are less covered by 

LDH nanoparticles, as in MCPAie-LDH/Sep0.3:1_150C, the amount of MCPA 

overpassed the ion-exchange capacity of the LDH. This can be explained by the 

fact that sepiolite fiber are not completely cover by LDH nanoparticles and so 

MCPA anions may be adsorbed on the surface of sepiolite, the hydrogen atoms 

of the silanol groups acting as new points for MCPA anions adsorption. 

 

Table 5. 2. Amount of MCPA adsorbed in the hybrid nanoarchitectures by the ion-exchange 

method. 

Sample LDH/Sep 

real ratio 

MCPA-LDH/Sep 

real ratio 

mEq of MCPA/100 g 

of LDH 

MCPAie-LDH -- -- 278 

MCPAie-LDH/Sep1:1_150C 0.94:1 0.90:1 269 

MCPAie-LDH/Sep0.5:1_150C 0.47:1 0.45:1 325 

MCPAie-LDH/Sep0.3:1_150C 0.28:1 0.27:1 452 
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Figure 5.11 shows images obtained by FESEM and TEM of various 

MCPAie:LDH/Sep hybrid nanoarchitectures. From the FESEM images, it is 

clearly observed how sepiolite fibers appear covered and compacted after the co-

precipitation process to produce the corresponding nanoarchitecture. The aspect 

of the as prepared material and the one recovered after the intercalation of MCPA 

in the LDH component does not vary significantly. This fact is confirmed by TEM 

(Figure 5. 11C & D), where it is possible to distinguish the presence of small flat 

particles attached to the fibers in both nanoarchitectures. These images also 

confirm that the ion-exchange treatment is in fact a topotactic intercalation 

process that does not affect the nature of the LDH/sepiolite nanoarchitecture, 

confirming also the stability of this type of materials.  In fact, the content of LDH 

in the nanoarchitecture practically is the same often the ion-exchange reaction 

(Table 5. 2). 
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Figure 5.11. FESEM images of LDH/Sep1:1_150C (A), and MCPAie-LDH/Sep1:1_150C (B) 

nanoarchitectures; and TEM images of the LDH/Sep1:1_150C nanoarchitecture before (C) and 

after (D) the ion-exchange treatment with MCPA. 

 

5.3.3. MCPA-LDH /sepiolite hybrid nanoarchitectures prepared by the co-

precipitation method 

In a second study, it was sought to prepare hybrid nanoarchitectures in a single 

step through the co-precipitation method, which involves the preparation of the 

LDH in the presence of sepiolite and the herbicide MCPA in an aqueous 

dispersion (Chapter 2 #section 2.2.3). XRD patterns of the resulting hybrid 

nanoarchitectures (Figure 5.12) confirmed that in all cases the MCPA is 

intercalated in the interlayer space of the co-precipitated LDH, as indicated by 

the presence of the (003) reflection peak characteristic of the LDH structure at 2 
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angle around 4.5 degrees. From that reflection, basal spacing values of 2.32 nm 

in the LDH present in the hybrid nanoarchitectures are deduced, which is similar 

to the value determined in MCPA-LDH intercalation compounds prepared by 

the co-precipitation method. The structure of sepiolite is maintained in all 

samples, independent of the proportion of LDH, while the most intense peak of 

the LDH decreased in intensity at the same time that the proportion of 

LDH/sepiolite is lowered. In addition, the (110) and (113) peaks characteristic of 

LDH solids are observed in all the nanoarchitectures formed, confirming the 

formation of the LDH structure for all the studied LDH:sepiolite ratios.  

  

 

Figure 5.12. XRD patterns of MgAl-LDH, MCPA-LDH and the hybrid nanoarchitectures 
prepare by co-precipitation of the LDH in the presence of sepiolite and MCPA at a different 

LDH:sepiolite theoretical ratio (X:1). 

 

The amount of adsorbed MCPA varies with the LDH:sepiolite ratio in the hybrid 

nanoarchitectures, unexpectedly with large amounts of MCPA retained as the 

amount of LDH is reduced (Table 5. 3). Moreover, it seems that the presence of 

large amounts of MCPA is reflected in lower yield in the production of assembled 

LDH particles in the nanoarchitecture, which can be reduced to a half for 

nanoarchitectures with a 0.5:1 LDH:sepiolite theoretical composition. In most of 
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the prepared hybrid nanoarchitectures, the amount of MCPA exceeds the anionic 

exchange capacity of the LDH (≈ 330 mEq/100 g), which suggests that a part of 

the MCPA is adsorbed by other mechanism, perhaps on the external surface of 

the sepiolite clay or in interaction with the clay and the LDH particles. In 

previous studies it has been reported that sepiolite does not absorb large amounts 

of this herbicide (Atçay and Yurdakoç, 2000). Figure 5. 13 displays the adsorption 

isotherm of MCPA on sepiolite, showing that the maximum adsorbed amount of 

MCPA varies and does not reach a clear plateau but it is possible to adsorb upto 

100 mg of MCPA per g of sepiolite. However, we have observed that larger 

adsorption of MCPA on sepiolite could take place in the presence of Mg2+ and 

Al3+ ions at pH values below those required for the precipitation of the LDH 

(Table 5. 3). Table 5. 3 summarizes the mixtures of sepiolite, MCPA and the Mg 

and Al salts, in the same proportions than the hybrid nanoarchitectures, which 

were prepared to determine the uptake of MCPA on sepiolite under these 

conditions. The materials were kept under stirring for approximately 18 hours. 

The solid was recovered by centrifugation, washed 3 times with water and dried 

in an oven at 60 °C. The amount of adsorbed MCPA was determined by CHN 

and expressed as amount of MCPA per 100 grams of total material (not referred 

to the amount of sepiolite or salts added). In this case, the amount of MCPA 

incorporated by the effect of co-adsorption of MCPA with the Mg and Al salts is 

about 5 times higher than that obtained by the direct adsorption from MCPA 

solution and it does not seem to be dependent on the MCPA:salts ratio present 

in the solution. This co-adsorption of MCPA not intercalated in the LDH could 

be the reason of the higher content on MCPAin some of the prepared hybrid 

nanoarchitectures. 

The hybrid nanoarchitectures were consolidated at 150 ºC as in the protocol 

reported by Gómez-Avilés et al. (Gómez-Avilés et al., 2016), and at a lower 

temperature as well, 60 ºC in this case, to assure no degradation of the organic 

species present in them. Both thermal treatments resulted in similar materials, 

showing that lower temperatures could be used if the method was applied to 

prepare hybrid nanoarchitectures involving less stable organic species. 



173 
 

Table 5. 3.  LDH yield, experimental LDH/Sep ratio and amount of MCPA incorporated in the 

MCPA:LDH/sepiolite hybrid nanoarchitectures prepared by the co-precipitation method. 

Sample LDH yield 

(%) 

LDH/Sep 

real ratio 

mEq MCPA per  

100 g LDH 

MCPA-LDH 89.7 -- 303 

MCPA-LDH/Sep2:1_60C 84.0 1.68:1 336 

MCPA-LDH/Sep2:1_150C 82.0 1.64:1 356 

MCPA-LDH/Sep1:1_60C 81.0 0.81:1 385 

MCPA-LDH/Sep1:1_150C 78.0 0.78:1 421 

MCPA-LDH/Sep0.5:1_60C 78.0 0.39:1 433 

MCPA-LDH/Sep0.5:1_150C 77.0 0.38:1 445 

MCPA-LDH/Sep0.3:1_60C 54.4 0.19:1 1266 

MCPA-LDH/Sep0.3:1_150C 41.4 0.18:1 1180 

 

 

 

Figure 5. 13. Adsorption isotherm 23 ᵒC of MCPA from water solutions in sepiolite. 
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Table 5. 4. Amount of MCPA adsorbed on sepiolite in the presence of Mg2+ and Al3+ ions (metal 

chlorides). 

Samples g MCPA per 100g of material mEq MCPA per 100g of material 

Sep/MgAl-MCPA1:1  59.3 295.3 

Sep/MgAl-MCPA0.5:1  54.7 272.5 

Sep/MgAl-MCPA0.3:1  44.8 222.9 

 

The interactions of the MCPA herbicide with the LDH inorganic host in both the 

MCPA-LDH hybrid and in the MCPA-LDH/Sep hybrid nanoarchitectures 

prepared by the co-precipitation method were studied by infrared spectroscopy 

(Figure 5. 14). The spectra obtained in KBr diluted samples (Figure 5. 14A) show 

the presence of the main characteristic bands of MCPA, confirming the presence 

of the herbicide in all the prepared materials. The absence of the characteristic 

C=O stretching vibration mode of protonated carboxylic groups in MCPA 

molecule that appears as a double band at 1745 and 1710 cm-1 in the pure MCPA 

suggest the presence of the herbicide as anionic species in the MCPA-LDH hybrid 

and in the hybrid nanoarchitectures as well. This is confirmed by the presence of 

a strong absorption band at approximately 1610  cm-1 that can be assigned to the 

asymmetric stretching vibration of the ionized COO- groups, which may be 

overlapping with the 1630 cm-1 band of H-O-H vibration modes of water 

molecules present in the inorganic solids (Casal et al., 2001; Pavlovic et al., 2005; 

Cardoso et al., 2006; Bruna et al., 2009; Alromeed et al., 2015b). The bands that 

appear in the low frequency region of the spectrum of hybrid nanoarchitectures 

are related to vibration modes of the two inorganic solids present in them.  

The FTIR spectra (Figure 5. 14B) of sepiolite and the hybrid nanoarchitecture 

obtained in pure sample was used to confirm the existence of chemical 

interaction between sepiolite and the formed LDH. Thus,  it was analyzed the 

3800 to 3600 cm-1 region  where bands ascribed to Si-OH and Mg-OH vibration 

modes of sepiolite appear (Ahlrichs, 1975). The band attributed to the OH 

vibration of the Mg-OH groups is observed in the hybrid nanoarchitectures with 

apparently the same intensity. In contrast, the intensity of the band at 3720 cm-1 
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related to the O-H vibration modes of silanol groups is attenuated in the hybrid 

nanoarchitectures, indicating that part of them are in close interaction with other 

species (Casal et al., 2001; Alcântara et al., 2014; Akkari et al., 2016; Marwa Akkari 

et al., 2016). In the hybrid nanoarchitectures this perturbation can be again 

ascribed to hydrogen interactions between the silanol groups of the external 

surface of the sepiolite fibers and the grown LDH particles, inducing a shift of 

that IR band towards lower frequencies. This interaction is supported by the fact 

that the band practically becomes imperceptible in the MCPA-LDH/Sep hybrid 

nanoarchitectures when increase the temperature using for the consolidation of 

the nanoarchitecture (Figure 5. 14B) and also when the LDH content with respect 

to sepiolite increases and so LDH particles may be completely covering the 

sepiolite fibers. In addition, when comparing the FTIR of LDH/Sep of 

nanoarchitectures (Figure 5.6) with those of MCPA-LDH/Sep hybrid 

nanoarchitectures of the same LDH:sepiolite ratio (Figure 5. 14B), it is observed 

a greater decrease in the intensity of the 3720 cm-1 band for the later probably due 

to the presence of MCPA species also in interaction with Si-OH groups of 

sepiolite that were not banded to LDH nanoparticle. This interpretation is in 

agreement with the fact that a larger amount of MCPA, overpassing the AEC of 

the LDH, is present in the hybrid nanoarchitecture prepared with the lowest 

LDH:sepiolite ratio.  
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Figure 5. 14. FTIR spectra (4000 to 400 cm-1 region) of (a) MCPA, (b) LDH, (c) MCPA-
LDH/Sep0.5:1_60 and (d) MCPA-LDH/Sep2:1_60 hybrid nanoarchitectures and (e) pristine 

sepiolite obtained in sample diluted in KBr (A) and FTIR spectra (3740 to 3660 cm-1 region) of 
various MCPA-LDH/Sepiolite hybrid nanoarchitectures prepared by co-precipitation obtained 

in pure sample (B). 

 

The FESEM images of the MCPA-LDH/Sep hybrid nanoarchitectures (Figure 5. 

15) confirm that sepiolite fibers are covered by LDH nanoparticles, being more 

agglomerated in the hybrid nanoarchitecture containing the higher amount of 

LDH. In those materials with lower content in LDH, the layered solid grows as 

particles of smaller size and TEM images clearly confirm that they remain 

attached to the silicate fibers (figure 5. 15).  
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Figure 5. 15. FESEM images of MCPA-LDH/Sep2:1_150C (A), MCPA-LDH/Sep0.5:1_60C (B), 

MCPA-LDH/Sep0.5:1_150C (C) hybrid nanoarchitectures and TEM image of the (D) MCPA-

LDH/Sep0.5:1_60C hybrid nanoarchitecture. 

 

5.4 BIONANOCOMPOSITE SYSTEMS 

The MCPA:LDH/sepiolite hybrid nanoarchitectures prepared for application in 

herbicide release systems were dispersed in an alginate/zein matrix resulting in 

the formation of bionanocomposite systems that were processed as beads by 

dripping in a 5% CaCl2 solution. Based on a previous work with these 

biopolymers blends (Alcântara et al., 2010b; Aranda et al., 2012), the 

bionanocomposites produced in this study contain 17% zein with respect to total 

biopolymers. The  MCPA-LDH/Sep 0.5:1_60C nanoarchitecture was chosen as 

reservoir of the MCPA it is the one with the larger amount of herbicide 
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intercalated into the LDH component and so ALG-Z@MCPA:LDH/Sep0.5:1_60C 

beads were prepared for the release experiments. The bionanocomposite material 

was evaluated for its encapsulation efficiency, which resulted in 51.2%, an 

expected result based on previous studies for bionanocomposite beads based on 

this combination of biopolymers (Alcântara et al., 2010b). This encapsulation 

corresponds to 0.17 mg per gram of biopolymers. 

Figure 5. 16A show an image of one alginate-zein@MCPA-LDH/Sep bead 

obtained with an optical microscope where the actual size of the microsphere, 

approximately 2000 um, can be determined. Figure 5. 16B shows the surface of 

the bead observed by FESEM, while the cross-section of the bead is shown in 

figure 5. 16C. Both FESEM images reveal a rough morphology, but the material 

is homogeneous and without agglomerates, which indicates good interaction 

between both biopolymers, in addition to a good dispersion of the 

nanoarchitecture particles within the biopolymeric formed by the alginate and 

zein blend. 

 

 

Figure 5. 16. Optical microscopy image of the alginate-zein@MCPA-LDH/Sep (A) 
bionanocomposite bead and FESEM images of the surface (B) and a cross section (C) of the 

bionanocomposite bead. 

 

The interaction between alginate and zein were studied using FTIR spectroscopy, 

which confirms the existence of molecular interactions between biopolymers. 

The spectrum of the pristine alginate shows bands at 3435, 1615, 1415 and 1035 

cm-1 that can be attributed to the νOH (H2O y OH), νasCO (-COO-), νsCO (-COO-) y 

mailto:ALG-Z@MCPA:LDH/Sep0.5:1_60C
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νasCO (C-O-C) vibrations, respectively (Figure 5. 17) (Pongjanyakul and 

Puttipipatkhachorn, 2007; Ivancic et al., 2016). The FTIR spectrum of zein is 

characterized by the presence of a band at 3350 cm-1 which is assigned to the NH 

vibration mode of the amide A groups of the protein (Figure 5. 17). The bands at 

1660 and 1530 cm-1 are attributed to the νCO vibrations of C=O of amide I and νCN 

of the C-N-H bond of amide II of peptide groups, respectively. The amide band 

I is essentially associated with the stretching vibration mode of the carbonyl 

group (C=O), although it also receives a contribution from the C-N stretching 

vibration and the C-C-N deformation vibrations. However, the amide II band is 

mainly due to the N-H bending vibration mode, with contribution of the N-H 

plane, the C-N and C-C stretching vibrations (Miyazawa et al., 1956; Ozcalik and 

Tihminlioglu, 2013; Alcântara et al., 2016). In the FTIR spectrum of the ALG-

Z@MCPA:LDH/Sep0.5:1_60C bionanocomposite, the band at 1660 cm-1, 

characteristic of the νCO (amide I) vibrations of zein appears to be overlapped by 

the band at 1615 cm-1 characteristic of alginate, being them observed as a single a 

relatively large band centered at 1635 cm-1 (Figure 5. 17).   In fact, this band is 

asymmetric, suggesting that, it includes a band at low frequency, related to the 

amide component I, and a high frequency associated with the amide component 

II, which is an indication that an aggregate bound through hydrogen interaction 

is formed. Similar results of interactions between the alginate carboxylate groups 

associated with protonated amino groups of the protein were found in a previous 

study in which both biopolymers were blended for incorporating ibuprofen 

(Alcântara et al., 2010) Furthermore, it is not possible to identify bands referring 

to the nanoarchitectures which is due to its low content compared to the total of 

the biopolymers mass in the bionanocomposite. 
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Figure 5. 17. FTIR spectra of zein, alginate and ALG-Z@MCPA-LDH/Sep0.5:1_60C 
bionanocomposite. 

 

5.4.1. In vitro release of MCPA in water 

The release of MCPA from various hybrid nanoarchitectures was evaluated in in 

vitro tests in deionized water (approx. pH 5.5), simulating conditions of the 

rainwater. The kinetics of the release depends on the nanoarchitecture 

composition (Figure 5. 18A & B). The MCPA-LDH hybrid showed the slowest 

release of MCPA, with around 35% lixiviated from the inorganic host after 8 h, 

similar values than those found when released from the MCPAie-LDH hybrid 

(Alcântara et al., 2013). In contrast the MCPAie-LDH/Sep1:1_150C hybrid 

nanoarchitecture, where the MCPA was incorporated by ion-exchange, showed 

a very rapid release, with practically 75% of the MCPA leached in the first 8 

hours. This result clearly confirms that the presence of the LDH as small 

nanoparticles attached to the fibrous clay may favor a rapid release of the 

intercalated species. In the hybrid nanoarchitectures with analogous 

LDH:sepiolite ratio but prepared by the co-precipitation method the release is 

slower, showing the slowest kinetics the nanoarchitecture consolidated at 60 ºC. 

A similar trend was observed when comparing the release from co-precipitated 

hybrid nanoarchitectures of other compositions consolidated at 60 and 150 ºC 

mailto:ALG-Z@MCPA-LDH/Sep0.5:1_60C
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(Figure 5. 18A & B). There is not yet a clear explanation of this behavior that 

perhaps could be ascribed to the different degree of hydration or to the presence 

of OH- species in the systems consolidated at lower temperature, which 

determines a different mechanism of attack of H+ to produce the degradation of 

the LDH, and so the release of entrapped MCPA. As the LDH proportion in the 

hybrid nanoarchitecture varies, a fastest kinetics is observed with the lowest 

content in LDH (Figure 18A & Figure 18B). This behavior is probably related to 

the fact that size and aggregation state of the LDH nanoparticles increase with 

the LDH content in the nanoarchitecture, lowering the kinetics of the process. 

The release reached after 8 h of contact with water varies with values of around 

50% in nanoarchitectures consolidated at 60 ºC (e.g., 43 and 51% for the 1:1 and 

0.5:1 LDH/Sep nanoarchitectures, respectively) to around 70% in the ones 

consolidated at 150 ºC (e.g, 73% MCPA-LDH/Sep1.1_150C)  (Figure 18A & 18B). 

After 8 hours the release evolves differently towards a steady state and after 48 h 

only the MCPA-LDH/Sep0.5:1_60C system provided a complete release of 

MCPA. These results confirm that the release of the herbicide from the hybrid 

nanoarchitectures may be tuned by selecting the specific composition and 

characteristics of the system, which makes them of interest for agricultural 

purposes.  

 

 

Figure 5. 18. In vitro release of MCPA from the hybrid formulations in bidistilled water (pH 
around 5.5) 
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Given that the amount of initial release of MCPA in all the formulations is quite 

high, the encapsulation of the hybrid nanoarchitectures in a protective 

biopolymer matrix was proposed to afford a better control in the release of the 

herbicide. In a previous study (Alcântara et al., 2013) it was reported that a 

mixture of alginate and zein biopolymers incorporating the MCPAie-LDH hybrid 

was able to reduce the initial release of MCPA by approximately 10 to 15% in the 

first 8 hours. In the present study, the MCPA-LDH/Sep0.5:1_60C 

nanoarchitecture was selected to prepare the bionanocomposite system, as it 

releases 100% of the herbicide at the end of 48 hours. In the ALG-Z@MCPA-

LDH/Sep0.5:1_60C bionanocomposite beads, the hydrophilicity of alginate is 

reduced by the presence of zein, contributing to increase the control in the 

herbicide release. Figure 5.19 shows that the release of MCPA from the ALG-

Z@MCPA-LDH/Sep system gives rise to a slower release in the first 8 hours than 

the non-encapsulated systems, reaching approx. 40% in 48 hours. After 8 days 

the ALG-Z@MCPA-LDH/Sep0.5:1_60C formulation reaches a release of MCPA 

close to the 70% due to the presence of the biopolymer matrix. This result 

suggests that the bionanocomposite may reach 100% of MCPA release in about 

two weeks. 

 

 

Figure 5. 19. In vitro release in water of MCPA from in different formulations (A) and release of 
the bionanocomposite systems in 8 days (B). 

 

mailto:ALG-Z@MCPA-LDH/Sep0.5:1_60C
mailto:ALG-Z@MCPA-LDH/Sep0.5:1_60C
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5.4.2. Soil column experiments 

The objective of the soil column experiments was to track the behavior of the 

pesticide alone and its formulations within a soil column profile under conditions 

similar to those found in Mediterranean regions. Pure MCPA and the MCPA 

incorporated in the different formulations were selected to compare the 

effectiveness of these materials in a controlled release (pure MCPA, MCPA-LDH, 

MCPA-LDH/Sep0.5:1_60C and ALG-Z@MCPA-LDH/Sep0.5:1_60C). In the 

course of these experiments, the volume of water added was approximately 

equivalent to the pore volume of the columns.  After 24 hours of contact with the 

soil column, the supernatant was collected and analyzed in order to determine 

the amount of herbicide that passed through the entire depth of the soil column 

(Figure 5. 20). Practically 80% of the MCPA in the formulation of the pure MCPA 

was recovered after passing through the 16 cm of the soil column, while the 

formulations where the MCPA is incorporated in a MgAl-LDH matrix or in the 

MgAl-LDH/Sep nanoarchitecture is recovered at the end 5 to 12% of the 

pesticide. The formulation involving the alginate and zein matrix practically did 

not present leaching of the herbicide, being identified traces of less than 1% of 

the pesticide at the end of the 24 hours. This means that a large part of the 

herbicide incorporated in the LDH and hybrid nanoarchitectures, but mainly in 

the bionanocomposite system, is still in the carrier, in the upper part of the soil 

and that is available to act for a longer time against the weeds. 
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Figure 5. 20. Percentage of MCPA collected after passing through the segments of the soil 
column. Vertical bars indicate standard errors. 

 

5.6 CONCLUDING REMARKS 

This work reports two procedures that allow the preparation of hybrid 

LDH/sepiolite nanoarchitectured materials by association of the herbicide 

MCPA, profiting from the intercalation properties of the inorganic layered 

component. The stability of the prepared LDH/sepiolite nanoarchitecures allows 

the ion-exchange reaction of interlayer anions by the anionic MCPA species. 

Moreover, it has been proven that is possible to produce hybrid MCPA-

LDH/sepiolite nanoarchitectures in a single step by co-precipitation of the LDH 

in presence of the clay and organic compound. This last approach allows the 

incorporation of higher amounts of MCPA than the ion-exchange reaction, with 

the additional advantage of being less time consuming. FTIR and 29Si NMR 

spectroscopic analysis corroborated that the LDH particles in the co-precipitated 

hybrid nanoarchitecture are chemically linked to the silanol groups that cover 

the silicate fibers, producing stable systems even using consolidation 

temperatures as low as 60 ºC. In order to prove a potential application of the 

developed hybrid nanoarchitectures, they have been in vitro tested as systems for 

controlled release of the incorporated organic species, in this case the herbicide 

MCPA. In vitro tests carried out in bidistilled water showed that the herbicide 
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release kinetics depended on the nanoarchitecture composition and the method 

of preparation, showing slower release rates those materials with higher content 

in LDH. The herbicide could be completely released from the hybrid 

nanoarchitectures, confirming their suitability for the controlled release of 

pesticides in the agricultural area. In order to have better control in the release 

process the hybrid nanoarchitectures can be encapsulated in a protective 

biopolymer matrix, like alginate-zein, which delays the complete release up to 

several weeks. In the release tests in soil columns it has been possible to observe 

the same release behavior as in the water tests. With these results it has been seen 

that a high percentage of the herbicide is in the carrier, available in the upper part 

of the soil, being able to act even for several days in the weeds and at the same 

time avoiding contamination at more depths of the soil. Moreover, the presence 

of sepiolite in the hybrid nanoarchitectures could be profited to associate other 

active species to the formulation, profiting from the high capacity of this clay to 

adsorb numerous types of molecules. Finally, it is worthy to mention that the 

reported MCPA-LDH/sepiolite hybrid nanoarchitectures prepared by co-

precipitation is a first example of LDH/sepiolite hybrid nanoarchitectures, and 

so, the obtained results open the way to a new methodology for the production 

of other hybrid systems incorporating diverse organic and polymeric anionic 

species associated with nanometric LDH particles and sepiolite for controlled 

drug delivery uses and other applications. 
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CHAPTER 6 

 

CONCLUSIONS 

 

This Thesis demonstrated the successful preparation of controlled delivery 

systems based on the incorporation of bioactive species in inorganic layered 

solids and further encapsulation in biopolymer matrices, which allow control in 

the liberation and facilitate specific conformation of the resulting 

bionanocomposites, such as in the form of beads or films, to procure an easy use 

for specific release of pharmaceuticals and pesticides in biomedical and 

agricultural applications, respectively.  

• Metformin, the most common oral drug for treatment of type II diabetes, 

has been successfully intercalated in layered silicates of the smectite clay minerals 

group. Cationic metformin, dissociated from the commercial metformin 

hydrochloride product in aqueous solution, spontaneously intercalates into 

smectites by an ion-exchange mechanism, replacing the interlayer cations and, 

depending on the characteristics of the clay, being possible to have it also retained 

by just adsorption of metformin hydrochloride on the external surface of the clay. 

The Wyoming montmorillonite evaluated in this study allows the incorporation 

of metformin up to 3 times its exchange capacity, though the species adsorbed at 

the external surface can be easily removed by just washing with water, remaining 

only the intercalated metformin stabilized by electrostatic interaction as 

interlayer ions that compensate the CEC of the clay. The extension of the 

preparation method to synthetic hectorite of small particle size, such as Laponite® 

XLG commonly used in cosmetics and pharmaceutics, shows that in spite of 

using aqueous solutions that contain metformin three times fold the CEC of the 
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clay, only an amount equivalent to the CEC can be retained, being intercalated as 

compensating interlayer cations, confirming also the possibility to produce clay-

metformin hybrids for production in large scale as that required in real 

applications. Computational studies confirm the experimental results, indicating 

an energetically favorable cation exchange reaction with MF forming a 

monolayer in the interlayer space of both clays, and more favorable adsorption 

energy values for the process taking place in hectorite rather than in 

montmorillonite, which points out that structural and compositional 

dissimilarities of the involved clay will affect the final characteristic of the hybrid. 

In vitro test of metformin release from the clay-metformin hybrids shows a quite 

rapid liberation at low pH as that in the stomach, overruling the use of the 

developed hybrids as controlled drug delivery systems for metformin. The 

incorporation of the hybrid in a biopolymer matrix of chitosan or pectin allows 

the conformation of beads that can be further coated to produce 

pectin@chitosan/clay-metformin and pectin@chitosan@pectin/clay-metformin 

core-shell beads that allow a better controlled release kinetics, being more 

effective systems for a sustainable release of metformin compared to those based 

on clay-metformin hybrids or in the incorporation of metformin hydrochloride 

directly in a biopolymer matrix (e.g., chitosan, pectin, pectin@chitosan core-shell 

beads…). In vitro release test simulating the sequence of pH changes and 

residence time of the drug passing through the gastrointestinal tract show that 

the pectin@chitosan@pectin/clay-metformin core-shell beads shows a more 

controlled release than the pectin@chitosan/clay-metformin core-shell beads, 

with the additional advantage that the former have an encapsulation efficiency 

of almost 90% versus a maximum of 60% in the latter. The designed 

bionanocomposite core-shell systems take advantage of the functionalities of all 

their components as the external pectin coating procures stability and low release 

at the pH conditions of the stomach, the chitosan affords mucoadhesive 

properties to improve absorption at the intestine, and the clay acts as a protective 

substrate that creates a reservoir of metformin, and possibly could also act as an 

antidiarrheal agent for reducing other side effects of metformin accumulation in 
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the intestinal tract, all of them together increasing the residence time of 

metformin in the body and preventing practically 50 to 60% from being 

eliminated in the first hours. The proposed bionanocomposite core-shell beads 

system has shown very promising results for the controlled release of metformin, 

but it could be further explored using other oral drug treatments for other 

diseases where the properties of the bionanocomposite system could be used to 

afford both a controlled and located release. 

 

• Various materials based on the association of allantoin, a molecule of great 

versatility for uses in cosmetics and pharmaceutics but difficult to become 

stabilized with other components, with layered hydroxides were explored with 

the aim to produce controlled release systems for potential topical application in 

skin disease treatments. Incorporation of allantoin in a 2:1 MgAl layered double 

hydroxides (LDH) was intended by ion-exchange reaction in the presence of an 

aqueous solution of allantoin, and by precipitation of the LDH in the presence of 

the molecule, observing that though the final hybrids contain allantoin, it is in a 

quite small amount in the solid resulting from the ion-exchange reaction, with 

practically the same amount of Cl- ions that the parent LDH. In contrast, larger 

amounts of allantoin are found in the co-precipitated solid , with less content in 

Cl- ions, but the XRD patterns do not shown the presence of an intercalated phase, 

confirming the formed hybrid is not an intercalation compound though it allows 

the stabilization of allantoin. The co-precipitation of a 2:1 ZnAl LDH in the 

presence of allantoin results in a hybrid that contains larger amount of allantoin, 

which coincides practically with the ion-exchange capacity of the inorganic solid. 

This material shows the presence of XRD peaks that can be associated with a new 

intercalated phase, but where the content in Al is very low to confirm the formed 

phase is the intended 2:1 ZnAl LDH. The co-precipitation in presence of just Zn2+ 

leads to the formation of a Zn layered simple hydroxide (LSH) where allantoin 

species remain intercalated and coordinated to some of the Zn atoms in the solid, 

probably stabilized as in certain Zn-allantoin coordination compounds reported 

in various patented works, constituting the first report of a intercalated 
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compound of allantoin. Comparison of allantoin release from the prepared co-

precipitated ZnAl-LDH hybrid, the Zn-LSH hybrid and the Zn-allantoin complex 

in conditions simulating the pH of the skin (buffer solution of pH ≈ 5.5) shows 

that the intercalation compound is the most efficient system. The incorporation 

of these three Zn-allantoin systems in biopolymers (e.g., agar, HPMC, 

nanocellulose,…) allows the formation of bionanocomposite films that could be 

used for the sustained release of allantoin, and may show also bactericide 

properties (e.g., against  Gram-negative bacteria such as Staphylococcus aureus), 

though optimization of the resulting bionanocomposites is still required in order 

to procure films of good stability, convenient mechanical properties and 

appropriate doses of the allantoin-hybrid in order to reach a suitable allantoin 

release system for topical uses in skin disease treatments and other applications. 

• Nanoarchitectured materials where 2:1 Mg-Al LDH nanoparticles remain 

assembled to sepiolite nanofibers were used as inorganic hosts of anionic species 

of the herbicide know as 2-methyl-4-chlorophenoxyacetic acid (MCPA), which 

were associated by ion-exchange reaction with interlayer anions of the LDH 

already assembled to sepiolite or by co-precipitation of the LDH in the presence 

of sepiolite and the herbicide to produce directly in one step the hybrid 

nanoarchitecture. The use of a single-step co-precipitation method to produce 

hybrid LDH/sepiolite nanoarchitectures was applied for the first time in this 

study, and it shows the possibility to incorporate larger amounts of the organic 

species than with the use of ion-exchange reactions in already formed 

LDH/sepiolite material, being possible to prepare also nanoarchitectures with 

variable LDH:sepiolite ratio. The in vitro release tests of MCPA from these 

materials in deionized water (approx. pH 5.5), simulating conditions of the 

rainwater, shows that the release kinetics depend on the proportion of 

components in the hybrid nanoarchitecture, which could be of interest in view of 

tuning a slower or faster release system for a given application. The hybrid 

nanoarchitecures could be used as reservoir of MCPA as well and included in a 

biopolymer matrix to produce the controlled delivery system. In this way, 

bionanocomposite beads prepared with a mixture of alginate and zein allow a 
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controlled release for up to days. Tests performed on soil columns show that the 

alginate-zein bionanocomposite system prevents the leaching of the herbicide 

deeper into the soil and thus contamination of the soil at greater depths, which 

could be relevant in view to use this type of bionacomposite systems for 

application in agriculture. A further advantage of the LDH/sepiolite 

nanoarchitectures not explored in this Thesis addresses the use of the sepiolite 

fibers to associate other active species in the formulation, taking advantage of the 

high capacity of this clay to adsorb numerous types of molecules. 
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CAPÍTULO 6 

 

CONCLUSIONES 

 

Esta Tesis demostró la preparación exitosa de sistemas de entrega controlados 

basados en la incorporación de especies bioactivas en sólidos inorgánicos 

lamelares y una mayor encapsulación en matrices de biopolímeros, que permiten 

el control en la liberación y facilitan la conformación específica de los compuestos 

bionanocomposites resultantes, como en forma de beads o películas, para obtener 

un uso fácil para la liberación específica de productos farmacéuticos y pesticidas 

en aplicaciones biomédicas y agrícolas, respectivamente. 

• La metformina, es el fármaco oral más común para el tratamiento de la 

diabetes tipo II, que se ha intercalado con éxito en silicatos lamelares del grupo 

de minerales de arcilla de las esmectitas. La metformina catiónica, disociada del 

producto comercial de hidrocloruro de metformina en solución acuosa, se 

intercala espontáneamente en esmectitas mediante un mecanismo de 

intercambio iónico, reemplazando los cationes de la capa intermedia y, 

dependiendo de las características de la arcilla, es posible que también se retenga 

mediante la simple adsorción de clorhidrato de metformina en la superficie 

externa de la arcilla. La montmorillonita de Wyoming evaluada en este estudio 

permite la incorporación de metformina hasta 3 veces su capacidad de 

intercambio, aunque las especies adsorbidas en la superficie externa pueden 

eliminarse fácilmente con solo lavarlas con agua, quedando solo la metformina 

intercalada estabilizada por interacción electrostática como iones entre capas que 

compensan el CEC de la arcilla. La extensión del método de preparación a 

hectorita sintética de pequeño tamaño de partícula, como Laponite® XLG 

comúnmente utilizada en cosmética y farmacia, muestra que a pesar de usar 

soluciones acuosas que contienen metformina tres veces el CEC de la arcilla, solo 
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una cantidad equivalente se puede retener el CEC, intercalando como cationes 

compensadores en la capa interlaminar, confirmando también la posibilidad de 

producir híbridos de arcilla-metformina para la producción a gran escala como 

se requiere en aplicaciones reales. Los estudios computacionales confirman los 

resultados experimentales, indicando una reacción de intercambio catiónico 

energéticamente favorable con metformina formando una monocapa en el 

espacio interlaminar de ambas arcillas, y valores de energía de adsorción más 

favorables para el proceso que tiene lugar en hectorita en lugar de en 

montmorillonita, lo que indica que la estructura y las diferencias de composición 

de la arcilla involucrada afectarán la característica final del híbrido. La prueba in 

vitro de la liberación de metformina de los híbridos arcilla-metformina muestra 

una liberación bastante rápida a pH bajo como en el estómago, anulando el uso 

de los híbridos desarrollados como sistemas controlados de administración de 

fármacos para metformina. La incorporación del híbrido en una matriz de 

biopolímero de quitosano o pectina permite la conformación de perlas que 

pueden recubrirse para producir pectina@quitosano/arcilla-metformina y 

pectina@quitosano@pectina/arcilla-metformina beads que permiten una mejor 

cinética de liberación controlada, siendo sistemas más efectivos para una 

liberación sostenible de metformina en comparación con aquellos basados en 

híbridos de arcilla-metformina o en la incorporación de clorhidrato de 

metformina directamente en una matriz de biopolímero (p. ej., quitosano, 

pectina, pectina@quitosano beads... ). Las pruebas de liberación in vitro que 

simulan la secuencia de cambios de pH y el tiempo de residencia del fármaco que 

pasa a través del tracto gastrointestinal muestran que los beads de 

pectina@quitosana@pectina/arcilla-metformina muestran una liberación más 

controlada que los beads de pectina@quitosano/arcilla-metformina, con la 

ventaja adicional de que las primeras tienen una eficiencia de encapsulación de 

casi 90% frente a un máximo de 60% en las últimas. Los sistemas 

bionanocomposites diseñados aprovechan las funcionalidades de todos sus 

componentes, ya que el revestimiento externo de pectina proporciona estabilidad 

y baja liberación a las condiciones de pH del estómago, el quitosano ofrece 
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propiedades mucoadhesivas para mejorar la absorción en el intestino y la arcilla 

actúa como un sustrato protector que crea un reservorio de metformina, y 

posiblemente también podría actuar como un agente antidiarreico para reducir 

otros efectos secundarios de la acumulación de metformina en el tracto intestinal. 

Todos juntos aumentan el tiempo de residencia de metformina en el cuerpo y 

evitan que se elimine prácticamente del 50 al 60% en las primeras horas. El 

sistema propuesto de bionanocomposites ha mostrado resultados muy 

prometedores para la liberación controlada de metformina, pero podría 

explorarse más a fondo utilizando otros tratamientos con medicamentos orales 

para otras enfermedades. 

 

•  Se exploraron diversos materiales basados en la asociación de alantoína, 

una molécula de gran versatilidad para usos en cosmética y farmacia, pero difícil 

de estabilizar con otros componentes, con hidróxidos lamelares, con el objetivo 

de producir sistemas de liberación controlada para una posible aplicación tópica 

en enfermedades de la piel. La incorporación de alantoína en un hidróxido doble 

laminar de MgAl 2:1 (LDH) se pretendía por reacción de intercambio iónico en 

presencia de una solución acuosa de alantoína, y por co-precipitación del LDH 

en presencia de la molécula, aunque que los híbridos finales contienen alantoína, 

está en una cantidad bastante pequeña en el sólido resultante de la reacción de 

intercambio iónico, con prácticamente la misma cantidad de iones cloruros que 

el LDH original. En contraste, se encuentran grandes cantidades de alantoína en 

hibrido del método de co-precipitación, con menos contenido en iones cloruros, 

pero los patrones de DRX no muestran la presencia de una fase intercalada, lo 

que confirma que el híbrido formado no es un compuesto de intercalación, 

aunque permite la estabilización de la alantoína. La coprecipitación de una LDH 

ZnAl 2: 1 en presencia de alantoína da como resultado un híbrido que contiene 

una mayor cantidad de alantoína, que coincide prácticamente con la capacidad 

de intercambio iónico del sólido inorgánico. Este material muestra la presencia 

de picos de XRD que pueden asociarse con una nueva fase intercalada, pero 

donde el contenido en Al es muy bajo para confirmar la fase formada de LDH 
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ZnAl 2: 1 prevista. La coprecipitación en presencia de solo Zn2+ conduce a la 

formación de un hidróxido simple laminar de Zn (LSH) donde las especies de 

alantoína permanecen intercaladas y coordinadas con algunos de los átomos de 

Zn en el sólido, probablemente estabilizados como en ciertos compuestos de 

coordinación de Zn-alantoína reportados en varios trabajos patentados, que 

constituyen el primer informe de un compuesto intercalado de alantoína. La 

comparación de la liberación de alantoína del híbrido ZnAl-LDH co-precipitado 

preparado, el híbrido Zn-LSH y el complejo Zn-alantoína en condiciones que 

simulan el pH de la piel (solución tampón de pH ≈ 5.5) muestra que el compuesto 

de intercalación es el sistema más eficiente. La incorporación de estos tres 

sistemas de Zn-alantoína en biopolímeros (p. Ej., Agar, HPMC, nanocelulosa, ...) 

permite la formación de películas de bionanocompsosites que podrían usarse para 

la liberación sostenida de alantoína, y pueden mostrar también propiedades 

bactericidas (p. Ej., contra Gram -bacterias negativas como Staphylococcus aureus), 

aunque todavía se requiere la optimización de los compuestos bionanocomposites 

resultantes para obtener películas de buena estabilidad, propiedades mecánicas 

convenientes y dosis apropiadas del híbrido de alantoína para alcanzar un 

sistema de liberación de alantoína adecuado para usos tópicos en tratamientos 

para enfermedades de la piel y otras aplicaciones. 

 

•  Los materiales nanoarquitecturados donde las nanopartículas 2:1 de Mg-

Al LDH permanecen ensambladas en nanofibras de sepiolita se usaron como 

huéspedes inorgánicos de especies aniónicas del herbicida conocido como ácido 

2-metil-4-clorofenoxiacético (MCPA), que se asociaron por reacción de 

intercambio iónico con aniones entre las láminas del LDH ya ensamblados en 

sepiolita o por co-precipitación de LDH en presencia de sepiolita y herbicida, 

produciendo directamente en un solo paso la nanoarquitectura híbrida. El uso de 

un método de co-precipitación de un solo paso para producir nanoarquitecturas 

híbridas de LDH/sepiolita se aplicó por primera vez en este estudio, y muestra 

la posibilidad de incorporar mayores cantidades de especies orgánicas que con 

el uso de reacciones de intercambio iónico en material LDH/sepiolita ya 
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formado, siendo posible preparar también nanoarquitecturas con una relación 

LDH:sepiolita variable. Las pruebas de liberación in vitro de MCPA de estos 

materiales en agua desionizada (aprox. PH 5.5), que simulan las condiciones del 

agua de lluvia, muestran que la cinética de liberación depende de la proporción 

de componentes en la nanoarquitectura híbrida, lo que podría ser de interés en 

vista de ajustar un sistema de liberación más lento o más rápido para una 

aplicación determinada. Las nanoarquitecturas híbridas también podrían usarse 

como reservorio de MCPA e incluirse en una matriz de biopolímeros para 

producir el sistema de suministro controlado. De esta manera, los beads de 

bionanocomposites preparadas con una mezcla de alginato y zeína permiten una 

liberación controlada durante hasta días. Las pruebas realizadas en columnas de 

suelo muestran que los sistemas de bionanocomposites de alginato-zeína evitan la 

lixiviación del herbicida más profundamente en el suelo y, por lo tanto, la 

contaminación del suelo a mayores profundidades, lo que podría ser relevante 

para utilizar este tipo de sistemas bionanocomposites para su aplicación en la 

agricultura.  Una ventaja adicional de las nanoarquitecturas LDH/sepiolita, no 

exploradas en esta Tesis, aborda el uso de las fibras de sepiolita para asociar otras 

especies activas en la formulación, aprovechando la alta capacidad de esta arcilla 

para adsorber numerosos tipos de moléculas. 
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