
Advances in Bi-factor
Exploratory Modelling

Eduardo Garcia-Garzon
Universidad Autónoma de Madrid



Advances in Bi-factor Exploratory
Modelling

Eduardo Garcia-Garzon

Supervisor: Prof F. J. Abad

Dr L. E. Garrido

Department of Social Psychology and Methodology
Universidad Autónoma de Madrid

This dissertation is submitted for the degree of
Doctor of Philosophy

Universidad Autónoma de Madrid June 2020



"Jet derecha 24. En uno, en uno. Break. Blanco, Blanco 56. Set. Hut.. . . "

Christian García Delgado
Enero, 2017.



Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part for
consideration for any other degree or qualification in this, or any other university.

Eduardo Garcia-Garzon
June 2020



Acknowledgements

Once I was told that, if you do things right, acknowledgements become the hardest section to
be written of your PhD thesis. And today, I can honestly admit that such feeling is nothing but
true. In the following pages, I will try to thank everyone who has supported me during these
last four years. I must admit this task is never easy when surrounded by such magnificent
people. And given my absent-minded character, someone might feel excluded from this text
when he or she reads it. Please, take it lightly with me, as these are complicated times. But
to those who made it, here are my deepest heartfelt thanks:

Lo primero, agradecer todo su esfuerzo, atención y cariño a mis dos supervisores, Fran-
cisco José Abad y Luis Eduardo Garrido. Porque me habéis enseñado a no correr, a (intentar)
prestar atención y a ser constante. Aunque llegase un poco sorpresa, siento que estos cuatro
años con vosotros han supuesto una etapa inolvidable de mi vida. Me llevo de cada uno
mucho más de lo que podéis imaginar. Y ahora que doy mis primeros pasos lejos de vosotros,
me doy cuenta de lo mucho que he aprendido en este tiempo. Mi más sincera enhorabuena.
No creo que hubiera podido pedir mejores directores de tesis.

Agradecer también al resto de miembros del grupo de investigación y del laboratorio
17 por el tiempo que hemos pasado juntos. Por todos los buenos ratos en nuestras comidas
semanales y en nuestros viajes por el mundo. Sé que el laboratorio 17 forma uno de los
pilares de la psicometría y la metodología dentro y fuera de nuestro país. Agradeceros la
oportunidad de haberme dejado poner mi granito de arena en el mismo. Me llevo el orgullo y
el cariño de saber que una parte de mí siempre pertenecerá a la UAM.

Y si hablamos de cariño, cómo olvidarme de toda esa gente del Aula PDIF. A María
y Miriam, sois el sol de sur que ha hecho un poco menos oscuro este doctorado. A Jenny,
por mudarte de sitio, aguantarme a tu lado todo este tiempo. Por esas listas de reggaetón
y por todos dramas. Que no se acaben nunca ni unos, ni otros. A Alba, por aguantar mis
idas y venidas. Por hacerlo siempre tener una sonrisa en la cara. Nunca la pierdas. Jamás.
Espero que algún día encuentres tu perchero. A María, por luchar conmigo contra mar, cielo



viii

y tierra. Porque sin ti, no hubiera sobrevivido estos cuatros años. Por tantos momentos de
frustración. Por tantos momentos de alegría. Para Carlos, Lidia, Laura, David, José Ángel, ...
por tanto apoyo, cariño y ánimo que me habéis dado. Para mi, sois todos ya catedráticos y
catedráticas en lo divino y en lo humano. Jamás podría haber escogido mejores compañeros
(que compañeros, ¡amigos!) para pasar estos cuatro años juntos. Aquí os dejo mi último
deseo para el árbol de navidad del Aula PDIF: que lo que ha unido el doctorado, nadie lo
separe ya.

And whether I would ever make a career in academia, it would all thanks to you, Kai!
Your vision not only gave me a chance to discover this world, but encouraged me to continue
with this path for the last 7 years. Your commitment and passion taught me not only to be the
researcher I am today but further shaped the person I have become. There are not enough
words of thanks for all you have done for me. I just hope that someday I will be able to give
you back (even in the form of passionate speeches) a little bit of your patience and love!

To everyone involved Junior Researcher Programme. You guys are amazing! Keep
on rockin’! To make possible that a simple guy from Salamanca was able to meet such
wonderful people. For changing the lifes of countless people. To Matilde, for being such a
positive energy blast, for making me smile day in and day out, for celebrating your new job
as the head of the United Nations. To the Double Dutchs: To Ondrej, to Cormac, to Dawid
and David. For our amazing trips. For the amazing trips to come. For everything we still
have to discover together!

And if I talk about the amazing people that JRP let me know, I have to give huge thanks
to someone who has been always there. Because you don’t know how many times your calls,
texts or Yugo-jokes have saved my day. Lea, you are crazy. Crazily amazing. You are one of
the most incredible persons I have ever met. I do not care if we live half-a-continent away. I
know you are always there. And that’s enough for me to know that we will be there for each
other for many years to come!

To Neve. For almost two years, you made me felt supported and truly loved. We might
have taken different life paths, but I know I would neither be here, nor I would become the
person I am today if it wasn’t for your support. I could not be happier to have shared a part
of my life with you.

Y como no hablar de la otra pasión de mi día a día, Madrid Capitals. Gracias a todos
los que habéis formado parte de esta familia, por hacerme amar este deporte. Por hacerme



ix

entender qué es el esfuerzo, qué significa apretar los dientes, qué es luchar y no tener miedo
a nada. Por hacerme comprender que un jet derecha 22 es más bonito que un dobles gemelos
par derecha verde. Que a esto se juega con fullback o no se juega. Por hacerme entender que
aunque la vida te puede llevar a que un ligamento se convierta en dos, y a que llores de rabia
por perder un campeonato en el último segundo, también puede traerte experiencias increíbles
y gente maravillosa. De esa que haces que vuelvas a entrenar cada día un poquito más fuerte
que el anterior. De esa con la que crees que puedes superar todo. Siempre #TimeToMiau.

Y ya que hablamos de arrimar el hombro, es vuestro turno: Mercedes, Pablo, Iñigo. Por
estar siempre ahí. Por aguantar los días de malhumor y las noches de trabajo y puerta cerrada.
Por cada alegría, por cada tristeza, y por haber fallado miserablemente en mi intento de
cocinaros mis famosas lubinas. Por hacer que vivir en Madrid se haya hecho un poquito más
agradable. Siempre tendréis una casa, un amigo, un colega, allí donde esté.

A Marta, por hacerme querer Madrid. Por enseñarme a poner las tildes a cómo, dónde, y
que este no es esto ni este. Por ver la vida con mirada de niñx y corazón de gigante. Que el
mundo sea cada vez un poco más parecido a ti (¡y sin tilde, eh!) y un poco menos parecido al
resto. Por no querer cambiarme ni hacerme crecer. Y sin embargo, hacerlo.

Si hablamos de amigos, cómo olvidarme de vosotros, cuadrilla de Psicología. Porque
parece mentira que pasan los años, y con vosotros me siento que siempre tengo 20 años.
Que podemos estar lejos, pero nunca separados. Esta tesis va también por vosotros. Que
aceptásteis a un chaval con perilla que se quería comer el mundo, y le quisisteis. A veces
con aciertos aciertos. A veces, con fallos. Por haber hecho que jamás me arrepienta de haber
estudiado esta carrera. Sois maravillosos. ¡Y a de kilómetros de viajes para irnos de botellón
que nos quedan!

A Marina. Porque seguimos todos esperando a que cambies de opinión y digas que sí.

Para Laura. Esta tesis es especialmente para ti. Tú, que siempre has estado a mi lado.
En lo bueno y en lo malo. En lo cercano y en la distancia. Porque sé que el mundo es
muy pequeño para ti. Que me muero por saber que será lo siguiente que hagas. Por seguir
acompañándote en todos tus viajes. Para que sigamos estando siempre ahí el uno para el otro.
Porque me invites de una vez a visitarte a Francia.

A Alberto y Guillermo. A Guillermo y Alberto. Gracias por vuestro apoyo, vuestra
cabeza, vuestro consejo. Por todo lo que hemos vivido ya, y todo lo que nos queda por vivir.



x

Porque ni el municipalismo darwiniano, ni el capitalismo más salvaje, ni la desaparición
de la sociedad occidental podrán hacer que dejemos de arreglar el mundo día tras día, mes
tras mes, año tras año. Por ser los mejores compañeros que alguien podría pedir. Por las
sensaciones de que con vosotros, uno se pasa la vida.

Y si hablamos de amigos, es el momento del GRUPO. A todos y a cada uno de vosotros:
Antonio, Cuky, Javi, Jorge, Jose, Loza y Pablo. Daros las gracias. Sois lo jofifo mejor.
Sois dips. Sois el secreto que ha hecho posible que hoy esté acabando mi doctorado. ¡Y de
que casi no llegue a finalizarlo! Sabiendo que normalmente no dedicamos mucho tiempo a
decirnos cosas bonitas, y que a mi me va este rollo, aprovecho estos agradecimientos para
escribir, desde el corazón, que se os quiere. Y mucho. Y siempre. Incluso a los engendristas.
Sois la suerte de mi vida. Por todo lo que nos queda por recorrer juntos. Por Santa Teresa.
Por saber qué vamos a hacer ahora Ciao ponen reggaetón. Esta tesis, y los lapsus mentales
que pueda haber, son vuestros también.

A Isabel. Porque escribo estas líneas paralizado. De todas las personas, eres para la única
que no tengo palabras. Porque no puedo expresar todo lo que has hecho ya por mi. Y eso dice
más que 20 párrafos explicando cada momento en el que me has recogido, me has aupado, y
me has animado a continuar escribiendo. No podría reflejar todo lo que has hecho por mí ni
en 1000 páginas de agradecimientos. Si hay un final de este camino, es gracias a que tu has
estado a mi lado. Y por saber que este final es únicamente el comienzo de algo más grande.
De algo mejor. Por ello, darte gracias. Que sigamos celebrando meta a meta, triunfo a triunfo.
Pisito de Arganzuela a pisito de Arganzuela. Viaje a Disney a viaje a Disney.

Y ya que las últimas palabras suelen ser las más importantes, quiero reservar el último
párrafo de estos agradecimientos para mi familia. Porque muchas veces parece que sois la
última prioridad, pero en verdad sois la primera. Sois el factor general que ha estado detrás
de mí cada hora, cada día, cada momento de mi vida. No podría haber elegido mejores padre,
madre u hermana. Escribo esto con el corazón un poco encogido (porque para algo somos de
Castilla, y estas cosas se nos atragantan), pero quiero que sepáis que hoy soy más consciente
que nunca de todo lo que habéis hecho por mi. De todo lo que me habéis dado.

Porque hoy me doy cuenta de que durante 30 años, me habéis dado todo.

Esta tesis es lo que puedo devolveros. Es vuestra.

Espero que estéis orgullosos.



Abstract

Bi-factor modelling constitutes today one of the preferred statistical tools in psychological
research. Due to its unique characteristics, the bi-factor model has been reintroduced in
major areas of interest such as psychopathology, personality or intelligence. Accordingly,
our understanding of this model could determine the advancement of our understanding
of many psychological phenomena. Despite considerable efforts to appropriately estimate
these models, available methods present stringent limitations that question their overall
validity and usefulness. This doctoral dissertation aims to provide a detailed account of the
historic development of the bi-factor model, as well as its main applications from both, a
confirmatory and an exploratory approach. Particularly, this dissertation will detail why and
how exploratory bi-factor analysis has emerged as one of the most compelling solutions to
approximate these complex structures under realistic settings. Moreover, the central role
played by the target rotation will be scrutinized, emphasizing the limitations and potential
improvements of current bi-factor target-based rotation methods.

In this context, this doctoral dissertation was ultimately concerned with proposing new
alternatives to conduct bi-factor rotation, understanding their benefits with regards to both,
parameter estimation and secondary statistics of interest. Furthermore, this thesis dissertation
intended to provide free, user-friendly tools aimed for the general public to apply bi-factor
exploratory factor analysis. In detail, these objectives were developed in seven chapters:

In Chapter 2, the Iterative Target Rotation based on a Schmid-Leiman solution (i.e., SLi)
algorithm was introduced. This algorithm improved the original proposal by Reise, Moore
and Maydeu-Olivares (2011) of defining bi-factor target rotation by including Moore, Reise,
Depaoli and Haviland (2015) iterative target rotation scheme. Results from a Monte Carlo
simulation evidenced that SLi improved factor recovery when compared with widespread
methods such as the bi-geomin and the bi-quartimin criteria, the Schmid-Leiman solution or
the non-iterative version of the bi-factor target rotation.

In Chapter 3, the Empirical Iterative Target Rotation based on a Schmid-Leiman solution
(i.e., SLiD) algorithm was presented. This algorithm aimed to improve the SLi algorithm by
including a novel method for the computation of factor-specific, empirically defined cut-off
points for distinguishing non-vanishing and vanishing entries in the target matrix. This
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strategy was based on finding relevant differences in the distribution of normalized, sorted
factor loadings in each group factor. Results from a Monte Carlo simulation demonstrated
the superiority of the SLiD algorithm under realistic conditions (i.e., structures presenting a
mixture of group factors with different average factor loadings altogether with a high number
of cross-loadings).

In Chapter 4, the strategy behind the SLiD algorithm was applied to the study of the
properties of the scores from a novel, brief intelligence test: the Last Twelve matrices of
the Standard Progressive Matrices (SPM-LS). This application demonstrated the usefulness
of the previous strategies to evaluate the assumption of essential unidimensionality as well
as the presence of relevant nuisance factors. The application of the methods developed in
this thesis revealed that while the scores could be considered essentially unidimensional, the
bi-factor model represented the most appropriate measurement model.

In Chapter 5, the consequences of the choice of an exploratory bi-factor rotation were
explored with regards to the estimation of the omega hierarchical statistic. Moreover, in this
Chapter two new bi-factor rotation methods were studied: the Direct Bi-factor and Direct
Schmid-Leiman algorithms. Yet again, results from three different Monte Carlo simulations
evidenced that the SLiD algorithm provided the best results regardless structure under
consideration (i.e., full, rank-deficient bi-factor models or structures without a general factor),
and across a wide range of conditions. Furthermore, it was shown that the application of a
partially or completely specified target rotation determined the quality of omega hierarchical
estimation when examining target-based algorithms. Lastly, the functioning of each algorithm
in eight classical examples was presented to provide a better depiction of the results previously
discussed.

In Chapter 6, the integration of the SLiD in the context of exploratory structural equation
modelling was discussed. A free, user-friendly Shiny application (SLiDApp) was developed
so to facilitate the translation of the estimated SLiD target to Mplus. To illustrate the
usefulness of this application, a step-by-step guide was introduced using a novel bi-factor
examination of the Generic Conspiracionist Belief Scale and its relationship with the Big
Five personality traits.

This doctoral dissertation is concluded with a reflective, critical discussion of the benefits
and limitations of both, the exploratory bi-factor model and the presented methods for
approximating its estimation. In the same spirit, this discussion is focused on presenting
future research directions as well as in providing clear advice to applied researchers and
psychometricians alike. It is hoped that this dissertation would be helpful to disentangle the
benefits and drawbacks of bi-factor modelling, inspiring further research endeavours in this
area.
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Chapter 1

Introduction

1.1 Motivation

The bi-factor model is considered today as one of the principal statistical tools for under-
standing psychological phenomena (Markon, 2019). As of today, the bi-factor model plays
a crucial role in major research areas such as intelligence (Molenaar, 2016), psychopathol-
ogy (Caspi and Moffitt, 2018) or personality (Arias et al., 2018). Despite being proposed
more than 80 years ago Holzinger and Swineford (1937), the bi-factor model1 has remained
largely ignored until its recent "rediscovery" (Reise, 2012). Since then, a growing number
of bi-factor applications has appeared in the literature, mostly due to its theoretical appeal
(Caspi and Moffitt, 2018; Gignac et al., 2017; Markon, 2019), its usefulness for assessing
general factors (Zinbarg and Alden, 2015; Zinbarg et al., 2005), and its attractive combination
of characteristics from the unidimensional and multidimensional factor models (Chen and
Zhang, 2018; Reise, 2012; Reise et al., 2018).

At the same time that the bi-factor model became ubiquitous, psychometricians started to
question the appropriateness of the confirmatory version of this factor model. Thus, there has
been an increasing interest in exploratory factor solutions during the last decade (Asparouhov
and Muthén, 2009; Marsh et al., 2014, 2009). Unsurprisingly, both research trends quickly
converged on the first proposals for conducting bi-factor exploratory factor analysis (Jennrich
and Bentler, 2011, 2012; Reise et al., 2011). However, these approaches remain today largely
unknown (Mansolf and Reise, 2016; Markon, 2019; Reise et al., 2018). In this context, this
thesis dissertation was intended to provide a more insightful, thorough exploration of the
merits and drawbacks of these bi-factor exploratory factor analysis methods.

1Holzinger and Swineford respected the old use of hyphenating the particle "bi" (as in bi-fold). However, as
suggested by the Merrian-Webster dictionary, bi could be used add without a hyphen (as in biannual), so many
authors currently use the term "bifactor" instead.



2 Introduction

1.1.1 Thesis contributions

This thesis dissertation aimed to develop five principal objectives:

1. To delve on the possibilities of the target rotation as a useful tool in the context of
BEFA. Building on the initial works of Reise et al. (2011) and Moore et al. (2015), the
performance of bi-factor target rotation defined using Schmid-Leiman solution was
improved via its iterative application (i.e., the SLi algorithm). This proposal was to
be compared with available methods to conduct bi-factor rotation via Monte Carlo
simulation.

2. To deepen the understanding of how the target matrix definition could foster or hinder
the recovery of a bi-factor exploratory model. Building upon available methods for
defining empirical criteria in target rotation (Asparouhov and Muthén, 2009; Fleming,
2003; Jennrich, 2004a; Lorenzo-seva, 1999), a new method for defining bi-factor target
matrices models was developed and incorporated within the SLi algorithm.

3. To exemplify the benefits of the proposed methods by analyzing empirical datasets
from different areas of interest. Particularly, to explore how BEFA models could help
to evaluate the properties of general factors, unravel the presence of group factors, and
ascertain the detrimental consequences of an incorrect specification of these structures
in general contexts (i.e., SEM). With this objective in mind, the third chapter of this
thesis was devoted to illustrating the usefulness of BEFA models in the context of
intelligence research.

4. To evaluate how BEFA algorithm choice could determinate the quality of the estimation
of relevant secondary statistics such as the omega hierarchical. This statistic was
selected for its prominence in the literature, as it has been repeatedly suggested to be a
crucial indicator of the strength of a general factor and the quality of a bi-factor solution
(Revelle and Condon, 2019; Rodriguez et al., 2015, 2016). Thus, it was of interest
to understand what practical consequences could be expected by the selection of a
particular BEFA estimation method with regards to the omega hierarchical estimation.
Moreover, additional methods for recovering rank-deficient bi-factor models applying
a completely specified target rotation were studied for the first time (Giordano and
Waller, 2019).

5. To understand the utility of the SLiD algorithm in the context of bi-factor exploratory
structural equation modelling (Asparouhov and Muthén, 2009; Marsh et al., 2009).
Unfortunately, as current software for performing bi-factor SEM (i.e., Mplus) do not
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allow researchers to this algorithm, a Shiny to obtain a SLiD-based target matrix was
developed. The usefulness of this approach was illustrated by conducting a novel
bi-factor SEM exploration of the relationship of the Generic Conspiracionist Believes
Scale and the Big Five personality traits.

1.1.2 Thesis Outline

This thesis is organized as follows: Chapter 1: Introduction will cover a brief introduction
to the bi-factor model, the available mathematical definitions of the confirmatory and ex-
ploratory versions of the model and the role of target rotation in recent bi-factor exploratory
factor analysis. The second chapter Chapter 2: Iterations of Partially Specified Target
Matrices: Application to the Bi-factor Case will illustrate the use of the iterative target
rotation based on a Schmid-Leiman solution, comparing this approach to previous algorithms
available via a Monte Carlo simulation. The third chapter Chapter 3: Improving Bi-factor
Exploratory Modelling: Bi-factor Rotation based on Loading Differences, will introduce
a new algorithm to identify relevant group factor loadings in the context of complex bi-
factor models presenting cross-loadings and factors differing in strength. The fourth chapter
Chapter 4: Searching for G: A New Evaluation of SPM-LS Dimensionality will present an
application of BCFA and BEFA models to the validation study of a novel short intelligence
test. The fifth chapter Chapter 5: On Omega Hierarchical estimation: A Comparison of
Exploratory Bi-factor Analysis Algorithms will be focused on assessing the performance of
four different BEFA algorithms with regards to their ability to recover general factor relia-
bility when measured using the omega hierarchical. The sixth chapter Chapter 6: Bi-factor
Exploratory Structural Equation Modelling Done Right: Using the SLiDapp Application
will expand the applicability of the SLiD algorithm to ESEM models, presenting a Shiny
application (SLiDApp) to translate SLiD results from R to Mplus software. Lastly, Chapter 7:
Discussion will introduce a general discussion of the results presented in this thesis alongside
future lines of research in the context of exploratory bi-factor modelling.

This dissertation thesis was supervised by Prof Francisco José Abad and Dr Luis Ed-
uardo Garrido, and supported by the Cátedra de Modelos y Aplicaciones Psicométricos de
la Universidad Autónoma de Madrid-Instituto de Ingeniería del Conocimiento, the Span-
ish Ministry of Economy Projects “Test Adaptativos Informatizados Basados en Nuevos
Modelos Psicométricos” (PSI2013-44300-P) and “Test Adaptativos Informatizados Mul-
tidimensionales: Mejoras en la Calibración y en los Algoritmos de Selección de Items”
(PSI2017-85022-P) and financially supported by a PhD grant from the Programa para la
Formación del Profesorado Universitario 2015 (FPU 15/03246).
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1.2 The bi-factor model

Over a century after being proposed (Spearman, 1904), the common factor model is still
regarded as one of the principal statistical tools for understanding psychological phenomena
(Mulaik, 2010). The common factor model relies on the common cause principle, that
argues that latent2, unobservable factors (i.e., intelligence) are the responsible sources
of co-variation among observable, measurable variables (i.e., test scores). As such, the
common cause principle bridges the assessment of unobservable variables with measures
of co-occurrence between variables directly observable in nature. Thus, the common factor
model is well-suited to play a substantial role in scientific domains like psychology, whose
main objects of interest are, by definition, not directly observable.

The common factor model attributes the co-variation between observable variables to
two different sources: (a) latent variables common to sets of the studied variables; (b)
unique factors for each observable variable (Mulaik, 2010). To do so, the common factor
incorporates three main assumptions (Peeters, 2012; Steiger, 1996):

1. The Partial Correlation-Explanation rationale: The covariance between a set of
observable variables is explained by the presence of underlying latent factors. In
this sense, after conditioning on the latent factors, observable variables should be
statistically independent. This property is also known as the Local Independence
assumption.

2. The Random Noise rationale: Common factors are expected to represent systematic
sources of variance, while unique factors are set to represent the noise. Similar to other
signal-to-noise decomposition models, scores obtained from observable variables will
always present an extent of random error.

3. The True Score rationale: Following the axioms of the classical test theory (Mcdonald,
1999), common factors and unique factors represent true and error score variance,
respectively. The unique factors represent variable-specific and error factors whose
effect is not separable under most conventional versions of the factor model.

These principles can be translated into two simple equations: the so-called fundamental
equation and the fundamental theorem of factor analysis (Eq.6.12 and 6.13; Mulaik, 2010,
p.136). The former defines a set of i, . . . , I realizations from j, . . . ,J random variables as a
linear function of common and unique factor scores defined in P×1 ζ and J ×1 e (in the
case of a single factor model) such that:

2Hereafter, latent variable and common factor have exchangeable meanings.
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YYY =ΛΛΛζ +ΨΨΨe (1.1)

where a J×P ΛΛΛ matrix represent the common factor loading or common factor pattern
matrix (i.e., correlations between common factors and variables) and J× J ΨΨΨ represent the
unique factor loadings or unique factor pattern matrix. In this classical conceptualization of
the common factor model, Y , ζ and e represent random variables, while ΛΛΛ and ΨΨΨ are fixed
(Stegeman, 2016).

Assuming that E(ζ ) = 0, E[e] = 0, E[ζ ζ ′] = IIIP×P, E[ee′] = IIIJ×J , and E[ζ e′] = OOOP×J ,
being E[.] the mathematical expectation, OOO the null matrix, III the identity matrix and ′ the
transpose operator, and a little algebra (Mulaik, 2010, p.136), the unique factor scores matrix
e can be partialized out. Defining ΦΦΦ = ζ ζ ′, the covariance matrix between the observed,
random variables (RRR =YYYYYY ′) can be expressed as:

RRR =ΛΦΛΛΦΛΛΦΛ
′+ΨΨΨ

2 (1.2)

These two equations are the basis of factor analysis. As such, they establish the decom-
position of the observed indicators variance-covariance matrix into its common and unique
factor parts. To understand why the bi-factor model has gained such prominence in recent
years, and how it is different from the traditional unidimensional model, its mathematical
properties must be firstly described in detail.

1.2.1 Mathematical Definition of a Bi-factor Model

As of today, there is not a unique mathematical definition of a bi-factor model. While different
alternatives have been suggested (Holzinger and Swineford, 1937; Yung et al., 1999), none
is yet universally accepted. For the remainder of this doctoral dissertation, the following
definitions will apply. A bi-factor model is a multidimensional common P-factor structure
(i.e., including assumptions reflected in Eq.1.1 and Eq.1.2) defined by the presence of a single
general factor, accounting for common variability between all j, . . . ,J observed variables,
plus an additional number of P−1 group factors which primarily influence particular subsets
of the j, . . . ,J observed variables (Holzinger and Swineford, 1937). These subsets are not
restricted to be non-overlapping, but to satisfy, for identification purposes, that at least two
(in oblique bi-factor models) or three (in orthogonal bi-factor models) observed variables
should present substantial loadings in each group factor (Hayashi and Marcoulides, 2006).
Formally, the bi-factor model can be defined, following Eq.1.2 as:

RRR =ΛΛΛBFΦΛΦΛΦΛ
′
BF +ΨΨΨ

2 (1.3)
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where ΛΛΛBF is, as indicated by the subscript BF, in bi-factor form. ΛΛΛBF can be though of a
block matrix following:

ΛΛΛBF =
[
λG ΛΛΛGRP

]
(1.4)

where λG = λJ×1 represents general factor loadings and ΛΛΛGrp =ΛΛΛJ×(P−1) represent factor
loadings in the group factors. Additionally, the general factor must be orthogonal to other
factors in the structure due to identification constraints (Markon, 2019). Therefore, ΦΦΦ could
be defined as follows:

ΦΦΦ =

[
11×1 OOO1×(P−1)

OOO(P−1)×1 ΦΦΦ(P−1)×(P−1)

]
(1.5)

Noteworthy, the loose structure definition of ΛΛΛ provided in Eq.1.4 corresponds to an
exploratory bi-factor model, where no further restrictions (other than those ensuring its
existence, uniqueness and identifiability) are defined. However, the bi-factor model has
been traditionally understood from a confirmatory perspective, where additional restrictions
are placed: firstly, all P− 1 group factors are restricted to be orthogonal (i.e., ΦΦΦ = IIIP×P).
Secondly, each ΛΛΛGRPj· row presents, at most, a single, non-zero entry. In other words, each j
item loads on a single group factor. Lastly, and in contrast with other common factor models,
whether ΛBF should be full-rank remains an open question, with some scholars generalize
the name "bi-factor" to structures in which ΛΛΛG could be obtained as a linear combination of
ΛΛΛGRP.

The bi-factor model presents two unique features that distinguish it from alternative
multidimensional models: (a) all factors present simultaneous, direct effects on the items;
and (b) group factors explain variance not accounted by the general factor (Reise, 2012). This
first feature is forced by the particular ΛBF definition, while the second is often a consequence
on the extraction method applied plus the specific structure forced in ΦΦΦ. The former allows
to define the bi-factor as a general model, that under a certain set of restrictions (Yung et al.,
1999), could be transformed into a unidimensional, a correlated factor or a higher-order
model (Chen and Zhang, 2018; Gignac, 2008; Markon, 2019; Yung et al., 1999)3. The later
property has fostered the interest in the bi-factor model when investigating the plausibility of
a general (and group factors) in dimensionality, fit and test characteristics’ assessment.

3To bear in mind that the nested relationship between these models could be more complex than expected
under many settings (Asparouhov and Muthén, 2019).
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1.2.2 A Brief Note On Bi-Factor Model Emergence

Due to the recent interest in bi-factor modelling, its story has been well-documented (Gior-
dano and Waller, 2019), so only a brief historical account of the development of this model
would be hereafter presented.

As brilliantly summarized by Mulaik (1986), initial common factor models explored
psychological phenomena such as human intelligence using one common factor (Spearman,
1904). For example, a single factor called g (later identified with the concept of mental
energy by Spearman) was proposed to be responsible for the positive co-variation found in
responses to different intelligence-related tasks. However, the presence of a single general
factor was quickly questioned, with several authors arguing favouring the study of multiple,
correlated common factors (Garnett, 1919; Thomson, 1916). Some authors, including Karl
Holzinger and Francis Swineford, went even further and championed the idea of the existence
of different layers of common factors to explain the presence of multiple correlated factors.
Therefore, the early days of factor analysis saw the emergence of several competing schools of
thoughts with regards to the nature of common factors, and thus, different conceptualizations
of the psychological attributes (Mulaik, 1986).

The bi-factor model was proposed by Holzinger and Swineford in 1937 as a derivation
of the early works regarding Spearmans’ unitary conception of intelligence (i.e., the g
factor; Spearman, 1904). As such, the bi-factor model followed the British school of
thought. This was in contrast with the predominant American multiple-factor intelligence
theory (Swineford, 1941; Thurstone, 1933)4. In this sense, the bi-factor model offered an
opportunity for maintaining the privileged position of a single, general mental ability factor
while accounting for the presence of multiple, minor factors commonly observed at the
time (Holzinger and Swineford, 1937). Nevertheless, as factor analysis research expanded
from British to American universities, the interest in solutions including a general factor
swiftly diminished in favour of the multiple correlated-factor solutions (Thurstone, 1933,
1940, 1947). Despite their efforts (Swineford, 1941), the predominance of Thurstone’s ideas
(Mulaik, 1986, 2018) caused the bi-factor model to be disregarded as an anecdotal extension
of Spearman’s general factor theory (Thurstone, 1947). As a consequence, it was ignored for
more than 70 years in the literature (Reise, 2012).

An important landmark in bi-factor modelling was the publication of the Schmid-Leiman
transformation (i.e., SL; Schmid & Leiman, 1957). The SL transformation constitutes an
approximation to a "bi-factor" model by performing an orthogonal transformation of an
exploratory second-order model. Yet again, the SL orthogonalization was largely overshad-

4Holzinger and Swineford method for computing bi-factor model is discarded today. However, a fantastic
account of their original ideas can be found in Jennrich and Bentler (2011).
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owed in the literature. Unfortunately, the SL transformation contributed to the generalization
of the incorrect idea that the bi-factor and second-order models could be equivalent (Yung
et al., 1999). It was not until the early 90’s that the mathematical distinction between both
types of structures was again clarified in the literature (Jennsen and Weng, 1994; Mcdonald,
1999; Yung et al., 1999). Particularly, the SL solution was revealed to embed a set of hidden
constraints among the vector of general and group factor loadings for items loading in the
same group factors that were not expected to occur under the bi-factor model. Accordingly,
the higher-order was clarified to represent a restricted version of the bi-factor model (Yung
et al., 1999).

After these demonstrations, interest in bi-factor modelling rapidly grew on three main
research areas: (a) to understand the usefulness of bi-factor and second-order models for
exploring new conceptualization of several psychological constructs (Chen et al., 2006; Reise
et al., 2010, 2007); (b) the possibility of substituting the problematic Cronbach’s alpha by
alternative model-based reliability estimates (such as of omega hierarchical; Zinbarg et al.,
2005, 2006); and (c) transcending SL transformation as the principal method for estimating
BEFA models as to expand the role of exploratory factor solutions (Jennrich and Bentler,
2011; Reise et al., 2011). These advances in general factor modelling led to the publication
of The Rediscovery of the Bifactor Measurement Models by Steven P. Reise in 2012. In this
seminal article, Reise brilliantly described the strengths and benefits of bi-factor modelling
while establishing the foundations for the bi-factor model to become a preferred solution in
the factor analysis literature.

1.2.3 The Impact of Bi-factor Models

If Reise intended to stress the usefulness of bi-factor modelling ("the bifactor model [...] pro-
vides a strong foundation for understanding psychological constructs and their measurement",
Reise, 2012, p.695), he was tremendously successful at it. Since this publication appeared
in the literature, interest in bi-factor modelling has exploded (Giordano and Waller, 2019;
Markon, 2019; Zhang et al., 2020)5. Accordingly, the current impact of bi-factor models
in psychological research should not be understated. In a dynamic environment of intense
competition between theories and models for understanding psychological phenomena (Bors-
boom and Wijsen, 2017; Epskamp et al., 2016), the bi-factor model has become ubiquitous in
mainstream psychology research areas such as intelligence, personality or psychopathology
(Markon, 2019; Reise et al., 2018).

5After 2012, the number of publications including a bi-factor model has doubled, at a current rate of near
200 publications per year (Zhang et al., 2020; Figure 1). The citations of the original Schmid-Leiman article
citations also showed a similar pattern (Giordano & Waller, 2019, Supplementary Data, Figure 1 and 2).
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As an example is better than precept, the ongoing discussions surrounding the general
factor of psychopathology (p-factor) could help to illustrate the central role that bi-factor
models play in certain research areas (Caspi and Moffitt, 2018; Hudziak et al., 2007; Moore
et al., 2019; Ronald, 2019; Watt et al., 2019). In this context, the bi-factor model has been
extensively used to justify moving onto a hierarchical taxonomy and conceptualization of
psychopathology. Whether a general factor of psychopathology is finally accepted as a main-
stream theory, the bi-factor model would have played a principal role as the main statistical
tool supporting this approach. The potential consequences of accepting a general factor
of psychopathology should be underscored: (a) it would change our current understanding
regarding how mental disorders appear and evolve; (b) it would request major adjustments on
psychological and psychiatric evaluation, treatment and prevention plans are deployed; (c) it
would alter how national mental health plans are designed and implemented at the population
level; and (d) ultimately, it would dramatically shift the way society and individuals approach
mental health. Consequently, moving from our current diagnostic categories to a general
factor of psychopathology would indeed impact the lives of future generations of patients
and psychologist alike. The consequences can only be thought to be similar to those ob-
served when the general factor g was established as the leading theory for explaining human
intelligence. Unsurprisingly, these considerations have started to be thoughtfully reflected by
major stakeholders in the field (Caspi and Moffitt, 2018; Ronald, 2019).

It is remarkable that while some psychometric applications are expected to have a limited
sphere of influence, others could have major personal and societal implications. It should
be ensured that these high-stake decisions are based on strong theoretical and statistical
foundations. Unfortunately, it might be shocking how little we know today about bi-factor
models (Bonifay et al., 2017). Therefore, and to understand the reasons underlying the
limited current knowledge regarding these models, a brief historical account regarding the
evolution of factor models is presented next.

1.3 Exploratory Factor Models

Factor analysis6 has traditionally been divided into two distinct classes: exploratory and
a confirmatory factor analysis (Mcdonald, 1999; Mulaik, 2010). In the former, the model
is estimated under minimal restrictions. This means that all elements of Eq.1.2 matrices
are unrestricted up to identification constraints. The latter approach constitutes a theory-

6Factor analysis is a multi-step technique, which requires researchers to conduct a dimensionality determi-
nation and to decide on a factor estimation method. The discussion of these steps is beyond the purpose of this
thesis dissertation and will be not discussed here.
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driven approach, where researchers restrict certain parameters of both matrices to understand
whether their prior expectations are supported by the data or not. While the distinction
between the "exploratory" and "confirmatory" factor analysis has been accentuated on the
theoretical implications of each approach, both approaches only represent two different sets
of assumptions within the same, common factor model (Mulaik, 2010). Certain authors
go so far to claim that this distinction is ill-advised (Peeters, 2012). Thus, it is important
to understand the differences between both approaches to comprehend why confirmatory
bi-factor models are being substituted today by their exploratory counterparts (Asparouhov
and Muthén, 2009; Marsh et al., 2014, 2009; Reise et al., 2010).

In Eq.1.1 and Eq.1.2 a set of minimal assumptions for deriving the factor model was
established. However, the factor model is unidentified in such form7. additional restrictions
are necessary for the factor model to be identified and to achieve, at least, a certain degree
of local uniqueness. As a side note, and for clarity, ΛΛΛ, would be used to refer to a generic,
non-bi-factor factor pattern matrix in the next sections. In short, the common factor model
presented in 1.2 presents five main identification issues:

1. Indeterminacy of ΨΨΨ2. Given Eq.1.2, a condition for factor model existence is that
RRR−ΨΨΨ2 (i.e., the reduced correlation matrix with communalities inserted in its diagonal)
is a Gramian matrix with rank equal to ΛΛΛ rank (Elden and Trendafilov, 2017; Steiger,
2002). Unfortunately, conditions for global identification of the factor model have
never been derived (Hayashi and Marcoulides, 2006). This means that given a RRR,
multiple different ΨΨΨ2 can be found for R−ΨR−ΨR−Ψ2 to be Gramian and of rank P (i.e., a
matrix whose number of nonnegative eigenvalues equal its rank and with the remaining
eigenvalues being zero). It is known that given RRR, a factor decomposition is never
identified (and therefore, non-unique) if the number of parameters to be estimated
is higher to the J(J + 1)/2 number of non-redundant elements of RRR (also called the
t-rule). The model is not identified if (J−P)2−J−P < 0 (Anderson and Rubin, 1956;
Bekker, 1997; Peeters, 2012). However, this rule is a necessary, not sufficient condition
for model identification (Hayashi and Marcoulides, 2006). Nevertheless, while having
a large J to P ratio does not ensure that the model is identified, it almost ensures local
identifiability under mild conditions. In this sense, many different rules regarding J
to P ratios have been deduced, including the famous Lederman bound (Ledermann,
1937) or the Bekker and ten Berge bound (Bekker, 1997), among others (Hayashi and
Marcoulides, 2006). Nevertheless, with regards to local identifiability conditions, any

7These identification issues are inherent to the common model and most of them remain unresolved if not
for recent reformulations of the factor model itself (Adachi and Trendafilov, 2018; Elden and Trendafilov, 2017;
Stegeman, 2016).
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orthogonal solution presenting a ΛΛΛ where any column has only two non-zero entries
would result in an unidentified (and non-unique) factor model (Anderson and Rubin,
1956). While J to P ratios could approximate factor model identification, they never
ensure it. Additionally, and given the factor rotation indeterminacy issue (below), the
set of admissible ΛΛΛ solutions must be restricted to those where each column presents
at least three non-zero entries in the orthogonal case and two in the oblique (without
further restrictions).

2. Indeterminacy of ζζζ . One the early and stronger criticisms of the factor model was,
contrarily to initial Spearman’s opinion (Mulaik, 1986), that common and unique
factors could not be uniquely identified (Wilson, 1928)8. This occurs regardless if ΛΛΛ or
ΨΨΨ2 are identified (see Eq. 13.15 to 13.17 in Mulaik, 2010). This indeterminacy implies
that common factors scores could be decomposed into their determinate and indeter-
minate components, where the latter is not identified given a factor solution. Given a
factor decomposition, infinite different ζζζ vectors are admissible for that given factor
solution. Factor scores in ζζζ can only be estimated (Beauducel and Hilger, 2019; Rig-
don et al., 2019) after the decomposition has been obtained. The exploration of factor
indeterminacy and its consequences, which constitute a topic largely neglected in the
literature (Steiger, 1996), has recently gained relevance (Beauducel and Hilger, 2019;
Nicewander, 2019; Rigdon et al., 2019). Additionally, resolving this indeterminacy
has constituted a motivation to develop refined factor analysis-based decompositions
(Adachi and Trendafilov, 2018; Sočan, 2003; Stegeman, 2016).

3. Idendeterminacy the metric of the common factors. The common factor metric
must be decided by the researcher. When identifying the metric of the factor, a preferred
alternative for many years was to fix one ΛΛΛ entry per column to one. While some
authors consider this choice to be inconsequential (Asparouhov and Muthén, 2009),
this issue is still unclear (Steiger, 2002). Nevertheless, it is important to bear in mind
that these choices are justified by mathematical convenience (Loken, 2005).

4. Indeterminacy of location ΦΦΦ and ΛΛΛ. ΛΛΛ and ΦΦΦ column order is neither defined by the
data or model. This problem, akin to label switching issues in mixture models (Peeters,
2012), is of more importance under Bayesian estimation techniques (Fontanella et al.,
2019; Peeters, 2012) than in classical factor analysis estimation, where it can be
resolved via a matrix projection (Korth and Tucker, 1976).

8The 31st volume from Multivariate behavioural Research in its 4th Issue includes some classical texts
regarding factor analysis indeterminacies from authors as Prof James A. Steiger, Prof. William W. Rozeboom,
Prof Roderick P. McDonald or Prof Stanley A. Mulaik, among others, which could not be recommended enough
for interested readers.
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5. Rotational Indeterminacy. Even in the case where ΨΨΨ2 would be determinate and
unique, ΛΛΛ would suffer of rotational indeterminacy if P > 1 (which is always true
in the case of ΛΛΛBF ). Assuming that a factor decomposition is expected to exist (i.e.,
(J−P)2 − J−P ≥ 0) such as in Eq.1.2, then any non-singular rotation matrix V can
always be found such as:

RRR =ΛΦΛΛΦΛΛΦΛ
′+ΨΨΨ

2 = (ΛT )[TΛT )[TΛT )[T−1
Φ(TΦ(TΦ(T−1)′](ΛTΛTΛT )′+ΨΨΨ

2 =ΛΛΛ
∗
ΦΦΦ

′∗
ΛΛΛ
∗+ΨΨΨ

2 (1.6)

with ΛΛ′ΛΛ′
ΛΛ′=Λ∗Λ∗′Λ∗Λ∗′

Λ∗Λ∗′ and Λ∗Λ∗
Λ∗=ΛTΛTΛT (also true for ΦΦΦ and ΦΦΦ∗ matrices), where T is chosen to

each row is unit-norm, so tr(ΦΦΦ) = tr(ΦΦΦ∗), where tr is the trace operator. In other words,
T is selected so T does not change communality values. This rotational indeterminacy
implies that after a factor solution decomposition is found, infinite solutions for ΛΛΛ and
ΦΦΦ exist, all yielding a similar model fit (Mulaik, 2018).

At this point, two different strategies have been suggested to deal with factor rotation
indeterminacy. On one hand, to place a set of minimal restrictions in either ΛΛΛ and ΦΦΦ, such as
the factor model is simultaneously just-identified and become easier to be interpreted. This
process is called "factor rotation" (due to the graphical component in the process; Thurstone,
1933; 1947); alternatively, to place as many restrictions on ΛΛΛ and ΦΦΦ as possible based
on domain knowledge until the factor solution is not only unique but also mathematically
overdetermined. This approach was called confirmatory factor analysis. In the end, to resolve
factor rotation indeterminacy lies indeed in the heart of the distinction between exploratory
and confirmatory factor models9.

1.3.1 Factor Rotation to Simple Structure

It is important to understand how rotational indeterminacy was intrinsically related to the
emergence of CFA techniques (Mulaik, 1986). Following Eq.1.2, if ΦΦΦ would present diagonal
entries of value one corresponding to factor variances, then P constraints are set the model.
Alongsie the definition of independent error variances (i.e., ΨΨΨ2 being restricted to be a
diagonal matrix), a minimal number P(P− 1)/2 restrictions are left to be set in either
ΛΛΛ or non-diagonal ΦΦΦ elements. The first proposal to handle rotation indeterminacy was
to set a minimal set of restrictions for the model to be identified and to take advance of
those restrictions to make the model more interpretable (Thurstone, 1947). This procedure

9An approach strongly supported by this thesis author would be to just avoid the distinction between
exploratory and confirmatory factor models and rather consider these models within the unrestricted-restricted
continuum of factor solutions, as suggested by Ferrando and Lorenzo-Seva (2000) 20 years ago.
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was called factor rotation. Factor rotation is performed via a transformation matrix T.
In the orthogonal case, T is chosen so ΦΦΦ2 = T’T = I, implicitly imposing the necessary
P(P− 1)/2 constraints. In the oblique case, T is chosen so it meets P constraints such
as Diag(ΦΦΦ2) = Diag(TTT−1(TTT−1′)) = I, being Diag the diagonal operator that refers to the
diagonal elements of a matrix. As infinite T exist that will comply with these requirements,
the only decision left is to select one of the possible T from that set (Browne, 2001).

Thurstone (1933, 1947) proposed the concept of the simple structure as a way of selecting
an adequate rotation matrix. The concept of simple structure quickly became one of the
central concepts in factor analysis (Browne, 2001; Ertel, 2011; Mulaik, 2010). Thurstone
comprehended that a researcher could take advantage of the rotation indeterminacy as to
approximate a simplest, more interpretable and reproducible factor solution10. Originally sug-
gested in The Vectors of Mind (Thurstone, 1933), the concept of simple structure represents a
set of rules suggested to help researchers to obtain parsimonious (an thus, interpretable) factor
solutions via a factor rotation. Noteworthy, the simple structure was expected to ensuring
that the factor solution was of theoretical meaning, and not by only defined by statistical
convenience: "[the simple structure concept] was arrived at by psychological considerations
and not by any statistical reasoning" (Thurstone, 1940, p.193). By fostering factor parsimony,
Thurstone saw the concept of simple structure as a method for revealing common factors
with an "objective status not depending on anyone sample of [the] variables of the domain"
(Mulaik, 2010, p.279). Accordingly, the ultimate goal of the simple structure was to ensure
factor replicability across different sets of tests (Catell, 1966; Kaiser, 1958).

The simple structure concept was initially applied to the task of finding simple reference
vectors via a performing graphical factor rotation. Reference vectors were crucial in the early
days of factor analysis, as they enabled early researchers to avoid working with the inverse of
the rotation matrix in the oblique rotation problem. However, issues regarding the translation
between finding a matrix of simple reference vectors and its corresponding simple ΛΛΛ were
notable (Harman, 1967; Mulaik, 2010). Rotation methods using reference structures (called
indirect rotations) were quickly abandoned as Jennrich and Sampson (1966) developed a
method for the direct rotation of ΛΛΛ (i.e., the so-called direct rotation methods). Since then,
simple structures are defined in terms of factor loadings simplicity. Thurstone’s original
rules, expressed in terms of ΛΛΛ simplicity, would be (Browne, 2001):

1. Each row should have at least one zero.

2. For each column, there should be a distinct set of P linearly independent indicators
whose factor loading λ jp are zero.

10Alternative approaches such as restricting ΛΛTΛΛT
ΛΛT or ΛT Ψ−2ΛΛT Ψ−2ΛΛT Ψ−2Λ to be diagonal produce solutions that are

seldom interpretable (Jöreskog, 1977).
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3. For each pair of columns, there should be several indicators whose entries λ jp vanish
in one column but not in the other.

4. For every pair of columns, a large proportion of the indicators should have zero entries
in both columns. This applies to factor problems with four or more common factors.

5. For every pair of columns, there should preferably be only a small number of indicators
with non-vanishing entries in both columns.

Unfortunately, the translation of these rules to mathematical rules is unclear (McDonald,
1984; Yamashita and Adachi, 2019; Yates, 1987)11. Noteworthy, even though most authors
have focused on the fifth rule (Bandalos, 2018), only the first condition is concerned with
model identifiability, with the remaining set to improve factor replicability (Browne, 2001;
Yates, 1987). Either way, since the proposal of the simple structure, countless rotational
strategies were developed to approximate these structures, a lot of times without explicit
rules for their application or without clear advantages over available procedures (Browne,
2001; Fleming, 2012; Jennrich, 2007). As a side note, factor rotation continues being poorly
understood by many researchers and applied based on false premises and software default
options (Browne, 2001; Izquierdo et al., 2014; Sellbom and Tellegen, 2019).

Thurstone’s works became the cornerstone of the American school of factor analysis,
guiding the development of factor analysis research for more than a century12. In this sense,
the rotation problem established itself as of the principal issues in factor analysis research:
"The rotational problem is one of the most important in factor analysis" (Thurstone, 1947,
p.108). Nevertheless, this prominence was at the cost of the study of other indetermina-
cies of factor model (Steiger, 1996). Furthermore, and as Thurstone envisioned, rotation
indeterminacy was meant to be used to researcher’s advantage as to obtain a simple solu-
tion (i.e., the "rotational freedom"; Yamashita & Adachi, 2019). Accordingly, the study
of factor rotation was crucially linked to the estimation of interpretable and reproducible
factor solutions, which was the ultimate objective of factor analysts at the time. The rotation
indeterminacy issue was no longer considered as a pure mathematical, technical issue (i.e.,
ensuring rotational uniqueness) but to be on the spotlight of factor analysis research during
the ensuing decades (Ertel, 2013). In the end, this situation would ultimately result in the
development of confirmatory factor analysis as the final solution to obtain simple structures

11For a modern translation of the rules into objective, mathematical definitions, see Table 1, Yamashita &
Adachi (2019).

12Thurstone’s Multiple Factor Analysis remains today an indispensable work that should be read by any
researcher aspiring to work on this topic. As a tribute, the diagram represented in this doctoral thesis cover was
inspired in the bi-factor representation appearing in Figure 6a (p.188).
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without the burden of factor rotation (Anderson and Rubin, 1956; Asparouhov and Muthén,
2009; Millsap, 2001; Mulaik, 1986).

1.3.2 Simple Structure in Confirmatory Factor Models

Despite their early success (Carroll, 1953), with many different rotation procedures being
proposed in the literature 13, it was quickly acknowledged that mechanic rotations rarely
worked to perfection (Ertel, 2013; Yates, 1987). As such, and better expressed by Howe
(1955) with regards to Carrolls’s Quartimin and other mechanical rotations: "the general
consensus seems to be that at the present time, graphical or other methods calling for human
judgement, are better" (p.46). Particularly, the idea of ΛΛΛ and ΦΦΦ values being dependent upon
rotation choice made many researchers uncomfortable (Catell, 1966; Hurley and Cattell,
1962). In this spirit, even rotation procedures that would imitate the human judgement would
be developed, such as maxplane (Cattell and Muerle, 1960). In the end, the interest shifted
from purely exploratory factor analysis to confirmatory alternatives, namely the target rotation
and the confirmatory factor analysis (Cattell, 1978; Mulaik, 1986). The latter started with
authors argued that "a priori" information should be included in the factor analyst process (as
called in Anderson and Rubin, 1956, p.132). In this context, the works of Howe (1955) and
Anderson and Rubin (1956) clarified a set of necessary, but again not sufficient conditions for
establishing factor solution identification based on imposed additional constraints to those
proposed by the exploratory factor model (Dun, 1973). Those included:

1. ΦΦΦ to be a diagonal matrix, which ensures its positive definitiveness.

2. That a bare minimum of P−1 zeroes should be fixed in each φΛ column.

3. The rank of ΛΛΛp, defined as the matrix retaining rows whose entries have been fixed to
zero in a column p with these zeroes deleted, must be of value p−1 for all p = 1, ...,P
(Theorem 5.7, Anderson & Rubin, 1956).

Thus, fixing ΛΛΛ values to zero was presented as an optimal strategy that made factor
rotation redundant in the factor analysis process. Furthermore, it also made possible to obtain
even simpler structures than those obtained following Thurstone’s approach. In Jöreskog’s
words:

"to resolve the problem of rotation, Thurstone proposed the concept of simple structure
[...]. The general idea of simple structure is that if the factor has real psychological meaning,

13As Mulaik (1986) commented: "resolving the rotation problem became a kind of Holy Grail for factor
analyst to pursue, and many a factor analyst was to make his reputation with a workable analytic scheme of
factor rotation (p.26)".
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many tests will not depend on all the factors. The factor matrix [ΛΛΛ] should have as many zero
coefficients as possible. Such a matrix can be then considered as giving the simplest structure
and presumably the one with most meaningful psychological interpretation" (Jöreskog, 1966,
p.167).

Jöreskog, who worked on target rotation for some time (Mulaik, 1986), made two crucial
contributions that helped to establish the dominance of the confirmatory approaches in factor
analysis: (a) when lacking concise hypothesis regarding which elements should be fixed,
researchers should divide its sample into two halves. The first split should be used to conduct
EFA as a hypothesis-generating mechanism. The second half should be used to test the
hypothesis previously generated (Jöreskog and Lawley, 1968); and (b) that ΛΛΛ elements to
be fixed as zeroes should be selected based on researcher’s hypothesis or theory of interest
(hence, the name of "confirmatory" factor models). The substantive advances in maximum
likelihood estimation techniques in this area facilitated that many researchers quickly adopted
these alternative models (Anderson and Rubin, 1956; Howe, 1955; Jöreskog, 1977; Lawley,
1958). Over time, CFA models were deemed as superior to their exploratory counterparts as
they allowed for inspection of model fit indexes, the application of modification indexes to
free incorrectly fixed parameters (e.g., free non-diagonal elements of ΨΨΨ2) and the possibility
of conducting parameter invariance studies (Asparouhov and Muthén, 2009; Marsh et al.,
2014).

CFA allowed analysts to go beyond the simple structure concept and to approach a new
type of factor solution: the simplest structure14. In the simplest structure case, each item
presents a unique factor loading (i.e., each Λ row presents, at most, a single non-zero entry;
Ertel, 2013; Jennrich, 2018). While some authors suggested caution against the unjustified
use of the simplest structure15, these had little repercussion in the literature. Ultimately,
the combination of confirmatory models following a simplest-structure approach to factor
analysis dominated the field for decades (Asparouhov and Muthén, 2009; Marsh et al., 2014).

1.3.3 Simple Structure in Confirmatory Factor Models

The use of simplest structure in factor analysis has recently come to heavy scrutiny, and its
use, emphatically discouraged (Asparouhov and Muthén, 2009; Guo et al., 2019; Marsh et al.,
2010, 2014, 2009; Xiao et al., 2019). As many authors have argued, it could be foolish to

14The term simplest structure was renamed as "independent clusters structure" in the early 80’s order to
avoid confusion with Thurstone’s original criteria (McDonald, 1984, p.82).

15"We either believe that small coefficients are zero in the population, or we do not. If we do, we should
not get nonzero estimates of the zero coefficients. If we do not, we should not be using a simple structure"
(McDonald, 1984, p.83).
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assume, either by the effect of item content or direction16 that items can act as pure indicators
of a single common factor in a multidimensional structure (Asparouhov and Muthén, 2009).
As argued in the literature (Jennrich, 2004b, 2006), such ideal situation, as denominated by
some classical authors (Holzinger and Swineford, 1937; Howe, 1955; Jöreskog and Lawley,
1968), constitutes nothing but an illusion (Marsh et al., 2019; Morin et al., 2016).

As in any statistical procedure, there is no free-lunch in factor analysis. The enforcement
of a simplest-structure on ΛΛΛ has substantive detrimental consequences if the imposed restric-
tions are not consistent with the data: (a) CFA model fit is severely distorted; (b) the strategy
of modifying a structure following modification indexes implies a research practice prone
to capitalization on chance (Marsh et al., 2019, 2014); (c) bias is introduced not only in the
unconstrained ΛΛΛ parameters but also result in biased ΦΦΦ parameters. Biased ΦΦΦ estimation
could lead to believe that higher-order structures are present when it is not the case or vice
versa; and (d) in the case of CFA being integrated within an SEM model, biased estimation is
translated into erroneous structural parameter estimation (Bandalos, 2018; Reise et al., 2018).
Today, CFA is only considered to be preferable to EFA (due to its higher parsimony) when
the simple structure holds at a population level and the model is correctly specified (Marsh
et al., 2013). Unfortunately, this might never be the case.

In recent years, other types of exploratory or semi-exploratory techniques (i.e., Ex-
ploratory SEM, Bayesian SEM) have been suggested to be superior alternatives to the
CFA-simplest structure-based approach (Guo et al., 2019; Marsh et al., 2019; Xiao et al.,
2019). These techniques combine the benefits of CFA models (namely, fit inspection, in-
variance testing and inclusion of measurement models within structural models) without the
consequences of imposing a simplest factor structure (Asparouhov and Muthén, 2009; Marsh
et al., 2009). Either way, the paramount evidence discouraging the use of these types of
confirmatory approaches in common factor research has ultimately invigorated a newly-found
interest in EFA-based techniques.

1.4 The Case for the Exploratory Bi-factor Model

It is important to clarify that bi-factor solutions (i.e., Eq.1.3) represent factor structures where
a single factor and several more-or-less simple group factors coexist. The general factor is
the only factor with non-zero entries for all J items. Under confirmatory settings, items are
expected to present substantive loadings in the general factor and a unique group factor (thus,

16For example, the use of mixtures of positive and negative items gives rise to load into unsubstantial method
factors. Another strategy with similar consequences is using items with similar wording so to improve scale
internal consistency.
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items are of complexity 2), with the remaining non-vanishing entries being of exact value
0. However, and as Holzinger & Swineford discovered in their seminal paper (Holzinger
and Swineford, 1937, p.53) such ideal bi-factor solution is often nowhere to be found (Reise
et al., 2018, 2011), and was considered to represent a "hypothetical" case at best (Holzinger
& Swineford, 1937; Table I). In this sense, Mss. Swineford reinforced this idea of non-simple
bi-factor models as useful statistical models, particularly when compared Thurstone’s simple
correlated-factor model (Swineford, 1941).

Due to the increasing interest in bi-factor and exploratory models, several new approaches
towards approximating bi-factor exploratory models have recently emerged (Jennrich and
Bentler, 2011, 2012; Reise et al., 2011). All these initial perspectives presented three main
shared characteristics: (a) they were aimed to overcome the limitations of the first approach
developed (the Schmid-Leiman orthogonalization); (b) they relied on factor rotation as the
mechanism to reveal full-rank bi-factor structures; and (c) they were developed under an
umbrella of a minimal set of definitions, without an articulate theory substantiating what is a
bi-factor model. These initial approaches to bi-factor exploratory are presented below.

1.4.1 The Schmid-Leiman Orthogonalization

The Schmid-Leiman method (i.e., SL; Schmid and Leiman, 1957) was the first approximation
to conduct exploratory bi-factor analysis. An SL solution presents the form defined in Eq.1.3,
but it is obtained by estimating successive higher-order models (i.e., oblique factor solutions)
and a final transformation (i.e., the SL orthogonalization) form17. In detail, and starting
from Eq.1.2, where ΦΦΦ1 refers to the factor-covariance matrix obtained from decomposing
the observed correlation matrix, the first-order (initial) factor-correlation matrix can be
decomposed as:

ΦΦΦ1 =ΛΛΛ2ΦΦΦ2ΛΛΛ
T
2 +ΨΨΨ

2
2 (1.7)

where ΛΛΛ2 is the matrix of second-order factor loadings, ΦΦΦ2 is the second-order factor
correlation matrix and ΨΨΨ2

2 is the matrix of second-order unique factors. If ΦΦΦ2 non-diagonal
values are of relevance, this process could be repeated to obtain third-level factor loadings.
However, in most applications, only a single second-order factor is extracted. Under this
assumption, and that ΦΦΦ2 is a scalar, with λ2 being a P×1 vector. Thus, ΨΨΨ2

2 can be expressed
as:

17For interested researchers, an alternative procedure without requesting obtaining oblique solutions at each
level is presented in Wherry (1959).
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ΨΨΨ2 = [III −Diag(λ2λ
′
2)]

1
2 (1.8)

Considering that λG =ΛΛΛλ2 (the vector of indirect effect of the second order factor onto
the items), and ΛΛΛGRP =ΛΛΛΨΨΨ2 (representing the unique effect of first-order factors onto the
items) can expressed in block form such as:

ΛΛΛSL =
[
λG ΛΛΛGRP

]
(1.9)

which is in similar form of Eq.1.4. Therefore, the reproduced correlation matrix can be
expressed as:

RRR =ΛΛΛSLΛΛΛ
T
SL +ΨΨΨ

2 (1.10)

More importantly, and as explained in detail in (Mansolf and Reise, 2016; Yung et al.,
1999), the SL transformation expects a simple structure at each level (Schmid and Leiman,
1957, p.54)18. This imposition is relevant when understanding the implicit relationship
between λG and ΛΛΛGRP estimated via an SL orthogonalization: for items loading in the same
factor in ΛΛΛ, their factor loadings in λG and ΛΛΛGRP are proportional. This effect, which is the
result of using ΛΛΛ in λG and ΛΛΛGRP computation, results in a series of linear constraints being
observed in the ΛΛΛSL solution: the proportionality constraints.

The proportionality constraints have been substantially discussed in the literature as
(a) any SL-based solution encompasses them, despite not always been directly observable
(Mansolf and Reise, 2016); (b) their presence identifies the generative mechanism from
which the SL solution is obtained, namely the SL orthogonalization of a higher-order solution
into a bi-factor form; and (c) their presence reveals that SL solution is a restricted version
of a bi-factor model where the proportionality constraints are not imposed (Yung et al.,
1999)19, where rank(ΛΛΛSL) = rank(ΛΛΛ) = rank(ΛΛΛBF − 1). Ultimately, ΛΛΛSL parameters will
always represent biased estimates of any full-rank bi-factor model. As such, its overall
usefulness has been traditionally questioned (Jennrich and Bentler, 2011, 2012; Mansolf
and Reise, 2016; Reise et al., 2018, 2010, 2011; Yung et al., 1999). However, as the SL
transformation is not unique (i.e., ΛΛΛ must be rotated in the first-order solution estimation
step), this indeterminacy could be exploited to obtain an SL-solution that represents the close
approximation to an unconstrained bi-factor model (in the least-square sense; Waller, 2017;

18Even though a "simple structure" is never mentioned in the original article, its procedure implicitly assumes
non-overlapping sets of loadings for the group factors.

19As demonstrated by the use of the generalized SL transformation proposed by Yung et al. (1999), an
SL solution is nested within an unrestricted second-order model which, at the same time, is equivalent to the
bi-factor model (Chen and Zhang, 2018).
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Giordano & Waller, 2019). Thus, the debate of whether the SL orthogonalization could
approximate unrestricted bi-factor solutions with a certain degree of accuracy is still an open
question in the literature.

1.4.2 A Brief note on Rank Deficiencies and Bi-factor Models

Before introducing current methods for estimating exploratory bi-factor methods, the distinc-
tion between restricted and unrestricted bi-factor models should be briefly discussed. Firstly,
structures presenting simultaneous direct effects from the general factor on both, the items
and the group factors, are not included considered here (e.g., Structure C, Figure 1, Yung,
Thissen and McLeod, 1999), as additional restrictions should be imposed for this model
to be identified (Eid et al., 2018; Markon, 2019). Such structures will not be discussed in
this thesis dissertation. Thus, for a factor model to be in bi-factor form, it should follow
the definitions provided in Eq.1.4 and Eq.1.5, regardless of the potential constraints present
between sets of factor loadings (Giordano and Waller, 2019; Waller, 2017).

Bi-factor models are often classified based on of their rank, distinguishing between
full (unrestricted) and rank-deficient (restricted) bi-factor models (Giordano and Waller,
2019; Waller, 2017). Such distinction is of relevance as ΛΛΛSL will always be, by definition, a
rank-deficient matrix. Indeed, ΛΛΛSL will always yields a solution with the same rank of ΛΛΛ, not
ΛΛΛBF (Waller, 2017), as λG is indeed spanned in the space-column of ΛΛΛ. Either way, it should
be clarified here that rank-deficiency is only a necessary, but not a sufficient condition, for a
given ΛΛΛ in bi-factor form to be consistent with having being obtained via SL transformation.
The set of deficient-rank solutions allows for solutions consistent and inconsistent with having
being generated from a higher-order model via an SL transformation: If a bi-factor factor
loading matrix is rank-deficient, with λG being derived from ΛΛΛGRP), and the coefficients of
the linear combination being derived from λ2 and ΨΨΨ2, then this bi-factor factor matrix is
consistent with an SL transformation. But any given ΛΛΛBF can be rank deficient as the result
of other circumstances, as alternative sets of coefficients to the so-called proportionality
constraints can be applied to derive ΛΛΛG. Moreover, ΛΛΛBF could be rank-deficient in terms
of two vectors of ΛΛΛGRP being collinear to each other. Rank computation has its limitations
whenever distinguishing if a bi-factor form ΛΛΛ is consistent to have been obtained from an
SL transformation or not. Even though this situation could be a mathematical curiosity
with limited impact in applied settings, as it is challenging to imagine a generative process
underlying different rank-deficient bi-factor models outside the SL transformation.
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1.5 New Methods to approximate Exploratory Bi-factor
Model

Two separate schools of thought intended to substitute the SL transformation as the main
approximation to exploratory bi-factor models. Both strategies revolved towards the use of
bi-factor form rotations: one through designing analytical bi-factor rotation criteria and the
other by applying bi-factor partially specified target rotation.

1.5.1 The bi-factor criteria

In two seminal articles, Jennrich and Bentler (2011, 2012) established the foundations of
bi-factor exploratory modelling. In their research, they adapted two existent well-known
criteria to the orthogonal and oblique bi-factor cases. These criteria were defined as:

B(ΛΛΛBF) = Q(ΛΛΛGRP) (1.11)

where Q stands for a given rotation criterion. For dealing with simple and orthogonal
structures, Jennrich and Bentler adapted the quartimin criteria to the bi-factor case:

B(ΛΛΛBF) = Q(ΛΛΛGRP) =
J

∑
j=1

P

∑
p=1

P

∑
p′=p+1

= λ
2
jpλ

′2
jp (1.12)

and called it bi-quartimin criterion20. With the same spirit than the original criterion,
bi-quartimin is maximized when items have, at most, complexity two (Jennrich and Bentler,
2012). To recover structures presenting items of higher complexity, the authors developed
another widely known criterion, Yates’ geomin (Yates, 1987) as:

B(ΛΛΛBF) = Q(ΛΛΛGRP) =
J

∑
j=1

P

∏
p=1

(λ 2
jp + ε)

1
P (1.13)

where ε corresponds to a rotation fixed arbitrary constant of small value (i.e., .01) which
allows the function to be differentiable. As occurred with bi-quartimin, this criterion was
denominated as bi-geomin. Bi-geomin and bi-quartimin quickly gained popularity, as both
rotations were easy to use and set as default rotation when conducting both, exploratory
bi-factor analysis and ESEM in Mplus (Asparouhov and Muthén, 2009).

20Not to be confused with Carroll’s bi-quartimin criterion (Carroll, 1957).



22 Introduction

1.5.2 The bi-factor specified target rotation

One of the first known attempts to overcome the SL orthogonalization was suggested by
Reise et al. (2010). These authors realized that whereas rank-deficient solutions represented
biased estimations of the true full-rank bi-factor parameters, they were useful to identify the
overall pattern of negligible and vanishing entries of ΛΛΛ. This idea, further extended by Reise
et al. (2011), suggested using the SL to define a "Procrustes" o target rotation in bi-factor
form that would allow estimating a full-rank bi-factor solution. The target rotation (Browne,
1972, 2001; Cureton and Mulaik, 1971) is a widely-known rotation procedure that enables
researchers to incorporate previous information regarding the expected form of the factor
loading matrix into the rotation process. Accordingly, the target rotation has been considered
as a "semi-confirmatory" rotation (Browne, 2001).

The target rotation traditionally aims to provide the best least-squares approximation of
ΛΛΛ to a user-defined target matrix B as follows:

f (BBB) =
J

∑
j=1

P

∑
p=1

w jp(λ jp −b jp)
2 (1.14)

where b jp represents a given entry of the target matrix B and w is an operator that takes
value 1 if the correspondent b element is defined in B and 0 otherwise (Browne, 2001). B
elements are given a "target" value towards which ΛΛΛ entries are orthogonally or obliquely
projected 21 The most common values used for specifying B are one and zero, correspondent
to ΛΛΛ elements to be completely maximized or minimized, respectively. Nevertheless, if
(Browne, 1972) algorithm is applied, not all B entries are requested to be defined: One B
matrix only specifying a partial set of elements to be minimized or maximized can be used
as target matrix22. To decide which entries should be minimized or maximized, a single
cut-off for distinguishing vanishing and relevant factor loadings was often settled (i.e., .30 as
in McDonald, 1999)23. Entries who are lower in value were traditionally fixed to zero, while
entries above it are either fixed to one or freed (not given any target value) depending on
researcher’s preference for a partial or a completely specified target rotation (Browne, 2001).

21The name Procrustes rotation comes from the Greek myth of the same name. Procrustes was a bandit that,
after housing travellers, terrorized them by stretching or amputating their legs so the unfortunate visitor would
fit the iron bed in which they were offered to sleep. Despite Procrustes efforts, and as it often occurs with the
rotation named after him, nobody ever fitted the bed perfectly.

22The partially specified target matrix was, for a time, called the Xerxes method, as suggested by Prof
Raymond B. Catell (Derflinger and Kaiser, 1989). Prof Cattel was inspired by the charts showing the disposition
of the Persian fleet in the Battle of Salamis. Unfortunately, this tradition has been lost in the literature.

23.30 was proposed as a cut-off because as factor loadings represent the correlation coefficients between
items and factors, a .30 factor loading would imply that the factor explains almost 10% of the item variance
(Bandalos, 2018).
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Reise et al. (2011) suggested using a partially specified target rotation based on an initial
SL solution as a valid method for approximating full-rank bi-factor exploratory models. In
this sense, BBF is also constructed in block form such as:

BBBBF =
[
BBBG BBBGRP

]
(1.15)

where BG elements are always freed (as all items are expected to load into the general
factor), and BGRP elements are defined based on an SL solution and a single cut-off point (e.g.,
.15). Thus, a rotation towards BBF is expected to recover a full-rank solution accommodating
a single, general factor plus a simple structure for the group factor loadings. This procedure
was demonstrated to improve factor loading recovery under many circumstances when
compared with an SL solution (Reise et al., 2011).

1.6 Challenges on Exploratory Bi-factor Modeling

As the interest in exploratory raised, the geomin and target criteria started to be more
scrutinized in the literature (Asparouhov and Muthén, 2009; Hattori et al., 2017; Moore
et al., 2015; Myers et al., 2013, 2015). As such, it was only matter of time until the first
studies investigating the performance of the available methods for BEFA (i.e., SL, bi-geomin,
bi-quartimin, SL with target rotation) started to appear in the literature Mansolf and Reise
(2016).

1.6.1 The Fall of the Bi-factor Rotation Criteria

As acknowledged by Jennrich and Bentler, bi-geomin should be preferred to bi-quartimin, as
the simplest bi-factor structure is expected to be violated (Jennrich and Bentler, 2012). Due to
bi-geomin and geomin popularity (Marsh et al., 2014; Morin et al., 2016), both rotation have
been deeply scrutinized in the literature: (a) geomin is considered to fail to recover structures
with three or more factors and items of complexity three or higher (Asparouhov and Muthén,
2009); (b) geomin performance is strongly dependent upon ε choice, with suggestions of
optimal ranging from .50 to .001 values (Hattori et al., 2017). For example, ε is chosen
in Mplus depending upon the number of columns (Asparouhov & Muthén, 2009, p.409,
footnote 6) up to .01 with four or more factors. On the contrary, Browne (2001) suggest ε to
be .01, and to be increased slightly for more than three or four factors. Furthermore, other
authors have found that geomin with a higher ε value (i.e., .50) could outperform traditional
geomin in most settings (Celimli Alkoy, 2017; Marsh et al., 2010, 2009); and (c) geomin and
bi-geomin were considered as highly dependent on starting values and prone to result in local
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minima solutions (Hattori et al., 2017; Mansolf and Reise, 2016). Whereas local minima
could be seen as an opportunity rather than a disadvantage in factor analysis (Rozeboom,
1992), it hinders the application of these methods in applied contexts.

Due to their relevance, bi-geomin local minima issues will be hereafter explained in
greater detail. It is noteworthy that bi-geomin (and bi-quartimin) are minimized solely based
on the simplicity of ΛΛΛGRP (see Eq.12 and Eq.13). As explained in detail in Mansolf and
Reise (2016) or Robertson (2019), the gradient projection algorithm plays a relevant role in
the presence of local minima and collapsed solutions in both rotation criteria. This optimizer
is based on two iterative steps (Jennrich, 2001, 2002, 2004a; Mulaik, 2010), namely a
minimization and a projection step. During the former, the criterion is minimized for Q(ΛΛΛGRP)

using a gradient descent strategy. The latter is crucial, as the resulting transformation matrix
T found in the first step is not expected to be in the admissible set of solutions (as TT’ ̸= I in
the orthogonal rotation case). To ensure its appropriateness, during the projection step the
complete T (including not only ΛΛΛGRP but ΛΛΛG columns) is projected via a Procrustes rotation
into the non-linear manifold of potential admissible solutions. As a consequence, variance
might shift from ΛΛΛGRP to the ΛΛΛG during this step. As such, λG is "implicitly" rotated when
applying bi-geomin and bi-quartimin criteria. Noteworthy, bi-quartimin does not seem to
present local minima issues as stringent as bi-geomin (Mansolf and Reise, 2016; Weide and
Beauducel, 2019), suggesting that the geometry of the criterion itself also plays a role in the
presence of these effects (Hattori et al., 2017).

Lastly, it should be noticed that bi-geomin and bi-quartimin will always result in full-rank
solutions. Under the assumption of the true population model being a higher-order model
transformed via an SL (i.e., where proportionality constraints held true), their solutions can
be either not identified (for example, when rank(ΛΛΛGRP) = 2; Jennrich & Bentler, 2012) or
prone to present Heywood cases due to over-extraction issues (Mansolf and Reise, 2016)
These concerns have led to many researchers to suggest that practitioners should favour the
use of partially specified target rotation (Guo et al., 2019; Marsh et al., 2019).

1.6.2 Questions in Target Rotation

The bi-factor target rotation presented in Reise et al. (2011) offered a suitable alternative
to the bi-factor rotation criteria: (a) it did not pose the technical challenges associated
with bi-geomin and bi-quartimin "implicit" rotation of the general factor; (b) it allowed the
incorporation of previous knowledge in the bi-factor rotation procedure (Browne, 2001);
and (c) it was available in most factor analysis-related software, as the rotated solution can
be obtained based on a singular value decomposition (Cliff, 1966; Schönemann, 1966; ten
Berge, 2006; ten Berge and Nevels, 1977). On the other hand, the adequacy of the target



1.6 Challenges on Exploratory Bi-factor Modeling 25

rotation has been strongly questioned, as its performance depends on the appropriateness
the target matrix defined by the researcher (i.e., the number of location of targets given, the
value of the targets, etc.). The target rotation has been a polarizing method throughout the
literature (Mulaik, 1986). Many scholars have argued that the target rotation could result in
factor patterns concordant with researchers’ expectations regardless of the true nature of the
true item-factor relationships (Harman, 1967; Hurley and Cattell, 1962; Moore et al., 2015;
Mulaik, 2010).24.

On the other hand, other scholars interpret this flexibility as a positive feature, depicting
target rotation as a mechanism for a healthy reintroduction of researchers’ expertise into
factor rotation (alas early-days graphical rotation) after 50 years of abusing of mechanical,
automatic rotations (Mulaik, 2018) or Gorsuch (1983, p.245). Nevertheless, it should be
clarified that target rotation does not constitute a singular, monolithic rotation procedure. It
should be rather understood as a family of related methods sharing a minimization criterion
(resembling similarities to what many authors consider to the geomin case and ε values). In
this sense, there exist many types of target rotations, each defined based on the types and
number of targets applied, and the method applied for finding such targets.

Either way, it was not until recently that the first simulation studies investigating the
consequences of these decisions on target rotation appeared in the literature. These studies
have allowed researchers not only to have a better knowledge of the statistical behaviour of
the target rotation but to expand target rotation with new capabilities to resolve some of its
drawbacks.

Defining Target Rotations

Target rotation has an ample history in psychometrics (Horst, 1941; Jennrich, 2018; Lawley
and Maxwell, 1964; Tucker, 1940), playing a crucial role in the development of many
current rotations (Browne, 2001; Fleming, 2012) and in the emergence of confirmatory factor
analysis (Mulaik, 1986). In this sense, the target rotation was one of the first rotation methods
available (Mosier, 1939) and it has been studied in detail throughout the factor analysis
literature (Horst, 1941; Korth and Tucker, 1976; Tucker, 1944)25. While early rotations were
based on completely specified solutions (rotations where each loading is given a target value),

24Noteworthy, Prof John R. Hurley and Prof Raymond B. Cattell abstained themselves from publishing their
software to compute Procrustes rotation for years to avoid its spread and misuse by other researchers. However,
the excessive number of "quick journal publications, apparently unhindered by editors, of orthogonal simple
structure solutions by Kaiser’s Varimax" (p.260) changed their mind (Hurley and Cattell, 1962).

25As detailed in Jennrich (2007), Mosier’s method provided the best approximation of ΛΛΛ to B not in the
least-squares sense, but in terms of maximizing factor congruence (ten Berge and Nevels, 1977).
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since the early ’70s, the partially specified target rotation methods have being preferred
(Browne, 1972; Meredith, 1977).

Through its history, the target rotation has been tied, even more explicitly than any other
rotation, to the concept of simplicity (Jennrich, 2004b, 2006). For clarity’s sake, simplicity
and complexity have been using indistinguishably throughout the literature. For example, a
row presenting a single non-vanishing value could be understood to be of simplicity = 1 or
complexity = 1. Both mean that a single non-vanishing entry was found in that specific row.
Simplicity has been characterized in terms of item or row-simplicity, defined as the is the
count of existent non-vanishing entries per row or in terms of the column or overall pattern
matrix simplicity.

Item simplicity has been a traditional workhorse of factor rotations (see the fifth rule)26.
Be that as it may, maximize row simplicity is only akin to approximating a simple structure
in the simplest structures case (Fleming, 2012). Under complex structures including several
non-vanishing entries per row (as the bi-factor model), one could expect that a few loadings
to be of high magnitude, but several to be in the mid-range (i.e., cross-loadings). Under
these conditions, it is unclear whether such a structure should be considered as simple or
not (Jennrich, 2004b, 2006). Under realistic conditions, maximizing item simplicity might
not be equivalent to seek for the simplest structure. Lastly, and as reflected by McDonald
(1984): "the simply structure concept has no implication at all for the sizes of elements that
are thought to be nonzero" (p.84). Accordingly, several scholars have argued that factor
rotation objective should be to find as many zeros as possible (Fleming, 2003, 2012). As best
explained by Jennrich (Jennrich, 2004b):

"Perfect simple structure and Thurstone simple structure don’t occur in practice.
They are at best idealizations. Unfortunately, there is not generally accepted
broadly applicable definition of simple structure. It is generally felt, however,
that a loading matrix with many small values and a small number of larger values
is simpler that one with mostly intermediate values. Motivated by this, we will
consider methods that produce small or large loading and hopefully not too many
intermediate loadings" (p.264).

The idea of maximizing the number of zeroes can be traced back to Thurstone’s ideas
on how to approximate the simple structure concept: "A simple structure can be defined

26Kaiser (1958), following Guildford’s criticism of the simple structure concept, developed Varimax not
to approach a simple structure, but factor invariance. As commented in the abstract of his seminal paper: "It
is proposed that the ultimate criterion of a rotational procedure is factorial invariance, not simple structure".
Noteworthy, it is clear to this thesis author that such was Thurstone’s original goal when proposing the idea of
simple structure
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statistically as a factor matrix in which a very large number of zeroes entries appear"
(Thurstone, 1940, p.195). In factor rotation, this problem was posed as the maximization
of the hyperplane count (Catell, 1966; Eber, 1966; Gorsuch, 1983). Hyperplanes represent
the intersection of all factors with a given factor within a structure (Gorsuch, 1983). Items
with near-zero loadings in such hyperplane would present a high number of near-zero entries
in several ΛΛΛ columns, and vice versa. Hyperplane counts are commonly operationalized as
the number of near-zero loadings. Similar to factorial simplicity, it represents a statistic that
could be computed per row, column or for the total number of entries in ΛΛΛ. Noteworthy, the
latter case has been the most common conceptualization of hyperplane count in the literature
(Fleming, 2012; Rozeboom, 1991). Indeed, Thurstone aimed to maximize the hyperplane
count on reference vectors as an indirect manner of finding items with a high number of zero
loadings (Gorsuch, 1983, p.237). Again, since Jennrich and Sampson (1966) innovations,
hyperplane counts were aimed to be estimated directly in ΛΛΛ instead. Unfortunately, the direct
maximization of hyperplane counts could result in suboptimal performance if the location of
the zeroes is not taken into account (Eber, 1966; Fleming, 2003). In the end, most methods
for estimating hyperplane counts are also affected by the magnitude and location of the
non-zero elements (McDonald, 1984).

It is in this context, the target rotation provided a compromise between finding an optimal
number of near-zero elements while taking into account the location of non-zero loadings.
Given its semi-confirmatory nature, the target rotation allows researchers to specify which ΛΛΛ

elements should close to zero (indirectly maximizing the hyperplane count) after the rotation
process (Catell, 1966; Eber, 1966). The remaining question was, precisely, how to decide
which loadings should be counted as zero and which should not in the target matrix. As better
reflected by Hendrickson and White (1964): "The trouble seemed to lie in the definition of
"salient" [loadings] (p.66)".

How to define an optimal target rotation has been a recurrent topic of research in factor
rotation. For a long time, factor analysts have largely rejected the use of universal, theory-
based thresholds for separating relevant and near-zero loadings27 (Cudeck and O’Dell,
1994; Izquierdo et al., 2014), as factor loading magnitude are dependent upon structure
characteristics such as the number of factors extracted, sample size, etc. Nevertheless, a
mid-range value can only be understood in a relative sense (in the context of the range of
loadings for a given factor). In this sense, using a single, fixed cut-off point could result in too
liberal or too stringent cut-offs if factor loadings differ in their average factor loading (which
is often the case). The principal solution to this problem has been defining an "empirical"

27Initial considerations in hyperplane counts considered using ± .10 as the reference cut-off, as in Catell
(1966).
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factor loading salience cut-off based on the estimated factor solution. The best exponent of
this approach might be Promax (Hendrickson and White, 1964). Promax starts by finding an
initial orthogonal rotated solution using Varimax (or any other rotation procedure). This initial
solution is raised to a certain power (i.e., 4) leaving signs unchanged, before constructing a
fully-specified oblique target matrix based on this solution. The combination of an orthogonal
solution to an oblique rotation caused these methods being called orthoblique in the literature.
Since its proposal, Promax has become on the most applied rotation methods, and its found
in mainstream statistical software (i.e., SPSS, R, etc.). However, Promax presents some
technical limitations, such as applying Mosier (1939) rather than Browne (2001) method
(Lorenzo-seva, 1999), and the issue on how to decide which power should be applied.

A third (and a major) breakthrough in this context was the apparition of the Simplimax
rotation (Kiers, 1994). Simplimax aimed to recover the simplest partially specified target
matrix and the optimal target rotation without depending upon an initial solution. Simplimax
provides the "best" simple target matrix for given hyperplane count (Kiers, 1994, p.568) by
minimizing the sum of squares of the H smallest loadings in the solution. Thus, Simplimiax
only requests the optimal hyperplane counts, while the position of these zeroes in the target
are found via a minimization28. Therefore, the only question remaining was how to how
to find the hyperplane count (i.e., H). Kiers suggested using a scree-test to compare the
minimized rotation function values at each different H count, and to decide where a noticeable
increase of the function value might occur. Simplimax has repeatedly demonstrated to be
one of the most flexible rotation methods available to model complex structures (Browne,
2001; Fleming, 2012; Jennrich, 2004b, 2006).

The same year that Simplimax was published in Psychometrika, Trendafilov (1994)
suggested an alternative method to Promax. In this case, the proposal was to substitute the
approximate zeroes used in a target matrix obtained using Promax by exact zeroes via a
vector majorization (Promaj; Trendafilov, 1994); The vector majorization allowed to identify
which loadings should be fixed to zero in the target without requesting the use of any power.
Additionally, vector majorization introduced computing a different cut-off for defining which
loadings should be fixed to zero not only empirically, but for each factor in ΛΛΛ separately (a
similar idea was suggested by (Derflinger and Kaiser, 1989). This idea was incorporated
in the Promin rotation (Lorenzo-seva, 1999; Lorenzo-Seva and Ferrando, 2019a). Promin
aims to find a column-specific cut-off point to decide which items should be fixed to zero
in an oblique partially specified target. Specifically, each cut-off is set to a quarter of a
standard deviation above the mean of factor loadings. Noteworthy, Promin has achieved

28Kiers proposed a second version of Simplimax in which researchers could specify the expected row
complexity (Kiers, 1994, pp.576-577).
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fantastic results when compared with other rotations, and its use is strongly recommended
here (Fleming, 2012). Other relevant mentions of hypercount-based rotations are the Horst-
Harris rotation (Derflinger and Kaiser, 1989), the Hypermax (Fleming, 2012) or the Hyball
rotation (Rozeboom, 1991).

Unfortunately, there are several concerns regarding these approaches, particularly with
regards to how the partially specified target matrices are defined. For example, all reviewed
rotations relied on some arbitrary parameter chosen on authors’ discretion (namely the power
in Promax or the standard deviation modifier applied in Promin). Secondly, these algorithms
did not explicitly account for the trade-offs between factor simplicity and target misspecifi-
cation, where the consequences of fixing a relevant or freeing a near-zero element should
be considered with greater detail. In this sense, most methods are based on conservative
strategies. Even though one might argue that this approach might be suboptimal: In the
case of fixing a relevant cross-loading to zero, the least-square difference between the true
value and the wrong zero value will be translated to the computation of the rotation criterion.
Moreover, the resulted factor loading (after the rotation) would be a biased estimation of its
true value. In the case of mistakenly freeing a near-zero value, the impact of this error would
be rather limited, as its value will not be taken into the criterion computation, and the error
between the true zero value and the rotated loading will be small anyway. If enough correctly
fixed values are present in the structure, its value would remain close to zero in either case (as
rotational freedom exhausts). Strategies based on freeing major cross-loadings while fixing
minor cross-loadings are expected to be adequate when recovering non-bi-factor ESEM
models (Guo et al., 2019). Accordingly, any partially specified target rotation based on an
empirical cut-off should be primarily concerned with avoiding fixing relevant cross-loadings
to zero, rather than ensuring that all near-zero values are correctly fixed to zero.

The flexibility of the target rotation for approximating values to their target values (as in
Promax) has been recently exploited in the context of the partially specified target rotation as
to find simpler solutions (Hendrickson and White, 1964). This idea was developed in detail
by Moore et al. (2015) and Moore (2013) in a process called Iterative Target Rotation: based
on a rational start (e.g., a rotated solution), an initial target matrix is built based on a single
salience fixed cut-off point so to locate near-zero values in the matrix29. Secondly, a first
partially specified target rotation is performed. Next, the rotated pattern is again compared
with the fixed cut-off point to define a new partially specified target matrix, and to perform
a second target rotation. This strategy, which is repeated until the solution converges (i.e.,
two consecutive rotated solutions being equal), results in initial mid-range values being

29Interestingly, in the Appendix of his PhD thesis, Dr Moore developed an alternative empirical criterion for
defining which loadings should be fixed based on factor loadings confidence intervals. To our knowledge, this
idea never came into fruition in an official publication, but it could be interesting to explore in future research.
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minimized, and to outperform other rotations under complex situations (Moore, 2013; Moore
et al., 2015). Additionally, the authors demonstrated this strategy converged in a stable
solution in less than seven iterations in all cases studied, regardless of use the use a rational
start. Moore et al. (2015) illustrated that refining partially rotated target-based solutions, as
expressed not only by Browne (2001), as often recurred, but by many authors throughout the
literature, could serve as a valid scheme for finding simple solutions in many instances.

Completely vs Partially Specified Target Rotation

A researcher interested in applying target rotation is faced with two choices: Firstly, whether
to apply a completely vs a partially specified target rotation (Browne, 2001). Secondly, the
values to be used for the targeted entries of the matrix. Unfortunately, both decisions have
been often diminished to decide between a maximalist completely specified target rotation
(whose targets are either of value one for factor loadings to be maximized or zeroes for
loadings to be minimized) or a partially specified target rotation (where only the former
restriction of zero targets is set). Be that as it may, the reality is that a researcher could decide
to use a completely or partially specified target rotation whose values were different from
zero or one. For example, Guo et al. (2019) showed that changing target values for near-zero
loadings from 0 to .10 improved the estimation of ESEM models under certain circumstances.
The possibilities of these types of target rotations have not been considered in the context of
bi-factor modelling and are not detailed here.

At first, there is little information regarding whether to prefer the completely or partially
specified versions target rotation, whereas the use of the latter has strongly preferred through-
out the history of psychometrics. Nevertheless, the application of completely specified
target rotation has several advantages: (a) the target rotation has a closed-form solution
based on singular value decomposition (Browne, 1972; ten Berge, 2006), avoiding the use of
gradient projection algorithm and its dependency on starting values, the descent step size and
convergence rates (Browne, 1972; Cliff, 1966; Schönemann, 1966); (b) the conditions for
ensuring identifications are already well-known (Gower and Dijksterhuis, 2004; ten Berge,
2006); and (c) there are several methods available for performing the rotation under several
settings, as these methods are often applied in other sciences such as robotics and artificial
vision (Casper and Gower, 2010; Gower and Dijksterhuis, 2004).

Additionally, providing as many elements as possible in the target matrix has been
associated with improved rotation performance (Celimli Alkoy, 2017; Myers et al., 2013,
2014). In detail, as seen in Eq.1.14, the target rotation criterion is defined by W and B.
W is crucial with regards to to criterion computation, as any b jp elements corresponding
to w jp = 0 will not be accounted for in Eq.1.14. Increasing the number of non-missing
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elements (increasing the effective number of elements used to compute the criterion) has
been shown to increase its accuracy, particularly under low communality conditions (Myers
et al., 2013). Recent evidence shows that with sufficient correct fixed values, target rotation
outperforms geomin with regards to accuracy. To be noticed that the former outperforms the
latter with regards to estimation stability (Celimli Alkoy, 2017; Myers et al., 2015). Lastly,
target rotation has been depicted to be resilient to target error (i.e., an error is defined by the
difference between true λ jp −b jp). This robustness is associated with the flexibility of the
least-squares criterion (Myers et al., 2016, p.503). Thus, increasing the information regarding
the factor structure is more relevant than the specific values specified in the target rotation
(Celimli Alkoy, 2017; Myers et al., 2015).

It could be reasonable to assume that a completely specified target rotation would result
in improved performance than any partial target rotation alternative, as it will always convey
more information in B. Unfortunately, whether this is true is yet unknown, as Myers et al.
(2017, 2014) studies presented some relevant limitations. For example, they never included
a completely specified target rotation, whereas being commonly applied by researchers.
Moreover, this type of target rotation has been recently reintroduced in the bi-factor literature
in the form of the Direct Schmid-Leiman and the Direct Bi-factor methods (Giordano and
Waller, 2019; Waller, 2018). In these methods, the rank-deficient bi-factor model which is
closer to a full-rank deficient method (in the least-squares sense) is found as follows: firstly,
a completely specified target matrix is found employing a correlated-factor solution and a
fixed cut-off point (.25) scheme; secondly, this rotation matrix is augmented by appending a
column of zeroes; thirdly, a singular value decomposition-based target rotation is performed
using this rotation matrix and an unrotated solution of the same expected dimensionality
of the final bi-factor model. Either way, the consequences of applying these schemes of
completely specified target rotation are unknown in the literature (see Chapter 5).

The Bi-factor Case

The partially specified target solution has emerged as a compelling method for conducting
BEFA. However, previous target-based BEFA strategies paid little attention to the particular
characteristics of this model. For example, the problematic simultaneous presence of a strong
general and several less relevant group factors within a single factor structure (Rodriguez et al.,
2015, 2016). Additionally, most methods did not explicitly accounted for the unexpected
item complexities of items (i.e., the presence of cross-loadings or pure indicators). While
minor cross-loadings should be expected to occur as in any other factor solution (Marsh
et al., 2014, 2009), the presence of pure indicators is a unique feature of the bi-factor model.
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A pure indicator is defined as an item with complexity one, being the non-vanishing factor
loading located in the general factor loading vector (Chapter 2, 3 and 4).

Pure indicators are commonly found in the bi-factor literature, with examples of these
types of disturbances being found in the Spearman’s Visual Perception Test (Holzinger &
Swineford, p.53), the Twenty Four Psychological Test (Harman, 1967; Jennrich and Bentler,
2011) the Quality of Life Dataset (Abad et al., 2017; Chen et al., 2006), and the Observer
Alexithymia Scale (Jennrich and Bentler, 2012; Reise et al., 2010), among many others.
There are many reasons to believe that pure indicators should be expected to occur in bi-factor
modelling. Firstly, most tests are designed to be either unidimensional or multidimensional
scales. Understandably, items are designed to reflect a general or a particular aspect of
psychological phenomena (not both, as would be desirable in a bi-factor structure). Finding
a set of items which would simultaneously act as markers of a general plus a single group
factor could be quite a challenging task. Secondly, group factors often represent unreliable,
minor sources of variance (Markon, 2019; Rodriguez et al., 2016), which are inherently
harder to estimate than the general factor. Group factors not only account for a residual
variance to the general factor but are also often defined by only a few mid-range factor
loadings (Constantinou and Fonagy, 2019; Markon, 2019; Rodriguez et al., 2016).

Be that as it may, the recovery of true pure indicators is also relevant from another point
of view: bi-factor structures presenting true pure indicators are ensured to be full-rank. Under
the presence of a zero group factor loading, the general factor can no longer be obtained to a
linear combination of the remaining group factor loadings for that group30. Thus, structures
presenting pure indicators are inconsistent with having been generated via a higher-order
model and SL orthogonalization. Therefore, there is an impending necessity of updating and
adapting BEFA target rotation methods to consider the particular features of the bi-factor
model and to substitute the use of fixed cut-off by an empirical cut-off point. The design of
this empirical cut-off point should be guided by the knowledge of the costs associated with
each type of error that could occur in target misspecification. Accordingly, liberal, smaller
empirical cut-off points (where less meaningful cross-loadings are fixed to zero) are expected
to provide good recovery of complex structures such as the bi-factor model.

A useful idea to understand how to find a suitable cut-off point might be the examination
of Sorted Absolute Loading (i.e., SAL) plots to guide decisions in factor rotation (Jennrich,
2007). A SAL plot is a scatterplot revealing the empirical distribution of absolute factor
loadings sorted by magnitude. These plots, similar to Simplimax scree plots for function
values, could help in identifying jumps between vanishing and non-vanishing relevant cross-
loadings. Additionally, and as proposed in Promaj or Promin, empirical cut-off points should

30The mathematical proof is omitted here.
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be defined for each group factor separately. As the bi-factor model is likely to present group
factors differing in their average factor loading, this improvement should be considered
not as a suggestion, but as an obligation for any bi-factor target-rotation-based method.
Furthermore, the inclusion of refinement schemes via iterative target rotation as suggested in
Moore et al. (2015) or Moore (2013) should be strongly encouraged.

The last issue regarding the application of partially specified target rotation is that a
researcher must understand if a particular rotated solution is identified or not. As said before,
for the general (non-bi-factor) case, Anderson and Rubin (1956) rule 1 for identification
establish that, at least, P−1

2 entries must be specified in each B column for orthogonal rotation.
Additionally, the rank of ΛΛΛP, defined as the matrix retaining rows whose entries have been
fixed to zero in a column P with these zeroes deleted, must be of value P−1 for all P= 1, ...,P
(Asparouhov and Muthén, 2009). Additionally, other minor identifiability conditions are
complemented by Peeters (2012). These identification conditions are also pertinent in target
rotation, where instead of requesting zero values in ΛΛΛ, a similar number of fixed values
is requested in B (for a detailed example, see Asparouhov and Muthen, 2009, p.410-411).
Unfortunately, it is easy to see that in bi-factor exploratory models, these conditions are
explicitly violated, as all items are expected to load in the general factor. In other words, as
no value is expected to be fixed for the general factor, all bi-factor partially specified rotations
could result in identification issues 31.

A strategy would be to consider ensuring the identification of the ΛΛΛGRP submatrix as to
approximate identification of the structure. Following this strategy would allow researchers
to get closer to the neighbourhood of identified solutions. An approach similar to the one
presented in Myers et al., (2014, footnote 4), where targeted values are changed based on
the unrotated solution until identifications are met, could be useful in bi-factor applications.
Nevertheless, the aforementioned conditions are only sufficient, but not necessary conditions.
However, the impact of non-identifiability issues on the quality of the rotated solutions is
still debated in the literature. To date, bi-factor identification issues have only been linked to
different characteristics of empirical undetermination. Empirical undetermination implies
that parameters cannot be estimated due to the sample data characteristics (Asparouhov and
Muthén, 2009; Chen and Zhang, 2018).

31ten Berge (2006) identified that a similar problem would occur for the fully-specified target rotation in
the simplest structure bi-factor case (p.205). The issue highlighted by the author might be resolved using a
strategy similar to the last eigenvalue sign determination applied in Kabsch-Umenaya algorithm applied in
shape analysis or other solutions to the more general "Whaba’s problem" in satellite attitude determination
(Crosilla et al., 2019).
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1.7 Bi-factor Models Beyond Factor Loading Recovery

Throughout the previous sections, the evaluation of the different methods for estimating
bi-factor models has been largely focused on how to recover the factor loading matrix (i.e.,
ΛΛΛBF ). Indeed, ΛΛΛBF often represents the parameters of most theoretical and practical interest.
Moreover, any bias introduced in ΛΛΛBF would result in biased parameter estimation in any
other model or computation in which they are included (Reise et al., 2018). Due to its
prominence, distinct approaches towards understanding how well a factor loading pattern is
recovered have been proposed. Most authors favoured using Tucker’s factor congruence, as
defined by (Lorenzo-seva and ten Berge, 2006). Factor congruence, which represents the
cosine of angles between two vectors, provides a standardized similarity measure between
two factors, is easy to interpret (its value range are between ± 1, as in the correlation
coefficient) and constitute one of the most widely applied statistics in factor analysis studies.
Nevertheless, other authors suggest that could be of benefit considering statistics such as the
root mean square, the absolute mean difference, or estimation when assessing factor recovery
(Lorenzo-seva and ten Berge, 2006).

Be that as it might be, one of the strengths of the bi-factor model is the extent that it
provides additional key information to the researchers. This information is one of the reasons
why researchers often prefer the bi-factor model to, for example, the correlated-factors. The
most common studied statistics for the exploratory bi-factor model are (Rodriguez et al.,
2015, 2016):

1. Understanding essential unidimensionality. Researchers are frequently interested
in understanding the extent that a general factor accounts for the estimated common
variance in the structure, and whether the bi-factor model is set to provide relevant
information beyond a unidimensional model. To this end, the preferred statistic in the
literature is The Explained Common Variance (i.e., ECV). The ECV is defined as:

ECV =
∑λ 2

G

∑λ 2
G +(∑ΛΛΛGRP)2 (1.16)

which represents the degree of essential unidimensionality in a bi-factor structure, or
the extent that variance explained to the general factor represents the total modelled
variance in an orthogonal bi-factor structure (Reise, 2012; Reise et al., 2010; Rodriguez
et al., 2015). It should be noticed that the interpretation of ECV values should be
conditional on the value of other relevant statistics (Reise et al., 2013). In their
systematic review, (Rodriguez et al., 2015) found that, in average, reviewed bi-factor
models presented ECV values close to .60, meaning that "the general factor routinely
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accounted for well over half of the common variance" (Rodriguez et al., 2015, p.231). A
complementary statistic to the ECV is the so-called "Parameter Bias", which represent
the difference between
lambdaG when estimating a bi-factor or a unidimensional model (Rodriguez et al.,
2015).

2. Assessing general and group factor scores. An alternative question often encoun-
tered in bi-factor modelling is the extent that total score variance is due to the presence
of a single general factor. In other words, the extent that reliable model-estimated
variance in the total scores is due to the general factor (Reise et al., 2013). This question
is often assessed using the omega hierarchical statistic (i.e. ωH). ωH is defined as:

ωH =
(∑λG)

2

(∑λG)2 +(∑ΛΛΛGRP)2 +∑(1−ΛΛΛi.)
(1.17)

The squared-root of ωH represent the correlation between the general factor and
observed standardized scores. ωH values indicate the extent that individual differences
in the total scores reflect differences in general or group factor sources of variance.
Remarkably, ωH is related to the omega (i.e., ω coefficient). Omega represents the
proportion of variance in total scores that is due to all sources of variances (i.e., general
plus group factors). Indeed, ω is defined as:

ω =
(∑λG)

2 +(∑ΛΛΛGRP)
2

(∑λG)2 +(∑ΛΛΛGRP)2 +∑(1−ΛΛΛi.)
(1.18)

Thus, the difference between ωH and ω is the inclusion of the variance of total scores
that is explained by group factors in the numerator of the equation. ωH has played
a relevant role in bi-factor modelling. ωH has been identified as a relevant statistic,
which has been usually approximated by the SL approach (Zinbarg and Alden, 2015;
Zinbarg et al., 2007).

3. Inspecting latent variables in SEM context. As bi-factor models start playing a sub-
stantive role in structural equation modelling, the consequences of correctly applying
bi-factor models have started to be considered (Reise et al., 2018). In this context,
researchers might be interested in assessing the properties of the estimated factor scores
in the general and group factors. A relevant statistic to this end would be the construct
replicability index (Hancock and Mueller, 2001; Rodriguez et al., 2016). This index,
which is often called H, represents a ratio between explained and unexplained variance
by a given factor. In H, each indicator score is weighted by its factor loading in the
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given factor to maximize the reliability of the total score (Aguirre-Urreta et al., 2018).
For the general factor, H is defined as:

H = (1+(∑
λ 2

G

1−λ 2
G
)−1)−1 (1.19)

where scores over .80 have been suggested as indicators of a factor being well-
represented by a set of items (Ferrando and Lorenzo-Seva, 2017a; Ferrando and
Navarro-González, 2018; Rodriguez et al., 2015). H has some interesting properties,
seen as superior to traditional reliability estimates from a conceptual standpoint, such
as not being affected by the sign of the loadings, always being bounded by the value
of the largest squared factor loading (Hancock and Mueller, 2001). Moreover, H
values are connected with some measures of factor indeterminacy, which has also
been suggested as a useful indicator of factor score estimates’ quality (Ferrando and
Lorenzo-Seva, 2017a; Rodriguez et al., 2015, 2016).

Remarkably, all these statistics are secondary statistics estimated over the bi-factor pattern
matrix. The extent that those loadings are biased (e.g., by approaching a complex structure
using an SL transformation), all the reviewed indicators would be biased too. Unfortunately,
there is scarce literature regarding how the different algorithms and approaches towards
exploratory bi-factor modelling could affect each statistic. Lastly, alternative statistics such
as the Percentage of Uncontaminated Correlations (i.e., PUC; Reise, Scheines, Widaman &
Haviland, 2013) or omega hierarchical subscale are only appropriately defined for confir-
matory bi-factor models, so they are not considered here. In other words, its computation
requires researchers to assume a simple bi-factor structure, where the primary loading of
each item is requested to be defined, and/or cross-loadings are not taken into account when
estimating them. Accordingly, further research is needed to adapt these indicators to the
exploratory case.

1.8 Thesis Contributions and Developments

The ultimate goal of this dissertation project was to advance solutions to the methodological
challenges posed by the estimation of bi-factor exploratory factor models. Particularly, this
thesis will aim to improve available algorithms for performing bi-factor partially specified
target rotation while exploring the consequences of these improvements beyond the estimation
of the factor loadings matrix. In this sense, this dissertation intended to shed light on the
benefits and drawbacks of the different algorithms available, providing creative and novel
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solutions to overcome some of the limitations identified in the literature. This dissertation is
hoped to help to close the gap between psychometricians and practitioners by providing cases
of study and software ready to be used by those researchers without specialized knowledge
in the topic. Lastly, this dissertation was developed with the hope of encouraging other
fellow colleagues to explore the potential impact of research in exploratory methods in factor
analysis, highlighting the potential benefits of exploring new uses and applications of factor
rotation.

1.8.1 Iterations of Partially Specified Target Matrices: Application to
the Bi-factor Case

In Chapter 2, the iterative refinement of the partially specified target rotations will be
investigated. A new algorithm, the Iterative Target Rotation based on the Schmid-Leiman
solution (i.e., SLi) is then proposed. Additionally, this study was complemented by studying
the performance of alternative methods available in the literature, namely bi-quartimin,
bi-geomin, and the classical bi-factor partially specified target rotation based on Schmid-
Leiman.

1.8.2 Improving Bi-factor Exploratory Modelling: Bi-factor Rotation
based on Loading Differences

In Chapter 3, a new strategy for estimating empirical cut-off points for distinguishing near-
zero loadings to be minimized during a partial target rotation will be explored and applied to
the bi-factor case. A new algorithm, the Empirical Iterative Target Rotation based on Schmid-
Leiman solution (i.e., SLiD) is proposed there. This empirical cut-off will be evaluated
in realistic conditions where a high number of cross-loadings are expected, showing good
statistical properties. Additionally, structures including mixtures of strong and weak group
factors are studied in the context of bi-factor models for the first time.

1.8.3 Searching for G: A New Evaluation of SPM-LS Dimensionality

Chapter 4 will present an application of the algorithms presented in Chapters 2 and 3 to
the evaluation of the scores derived from a brief intelligence questionnaire. The use of
the methods developed in previous chapters allowed to obtain evidence of the presence of
additional factors, and the revelation that while this test could be considered to be essentially
unidimensional, the presence of a relevant group factor for the last half of items was observed.
Accordingly, the theoretical and practical consequences of these findings were discussed
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in length. Noteworthy, this study was awarded the 2019 Travel Award from the Journal of
Intelligence.

1.8.4 On General Factor Reliability: A Comparison of Exploratory Bi-
factor Analysis Algorithms

Chapter 5 presents evidence of the consequences of choosing a BEFA algorithm when
estimating the omega hierarchical statistic. Furthermore, two new algorithms, the Direct
Bi-factor and Direct Schmid-Leiman methods, were additionally considered to study the
performance for recovering three types of structures: full-rank bi-factor, second-order (i.e.,
rank-deficient bi-factor models) and a factor model without a general factor. Additionally,
this study provided additional evidence of the functioning of classical methods (bi-geomin,
bi-quartimin and SL) under these novel conditions. This research is complemented by
studying the functioning of each method in several classical bi-factor empirical datasets.

1.8.5 Bi-factor Structural Equation Modelling Done Right: An appli-
cation of the SLiD Algorithm

Chapter 7 will explore the consequences of specifying a correct bi-factor measurement
model within an ESEM model via a novel estimation of a bi-factor structure for the Generic
Conspiracionist Beliefs Scale. In this article a new Shiny application for computing and
SLiD-based target matrix to be applied in Mplus will be presented, so practitioners could
benefit from the application of the modern BEFA algorithms in this context.
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Iteration of Partially Specified Target
Matrices: Application to the Bi-Factor
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ABSTRACT
The current studyproposes a newbi-factor rotationmethod, Schmid-Leimanwith iterative target rota-
tion (SLi), based on the iteration of partially specified target matrices and an initial target constructed
from a Schmid-Leiman (SL) orthogonalization. SLi was expected to ameliorate some of the limitations
of the previously presented SL bi-factor rotations, SL and SL with target rotation (SLt), when the fac-
tor structure either includes cross-loadings, near-zero loadings, or both. AMonte Carlo simulationwas
carried out to test the performance of SLi, SL, SLt, and the two analytic bi-factor rotations, bi-quartimin
and bi-geomin. The results revealed that SLi accurately recovered the bi-factor structures across the
majority of the conditions, and generally outperformed the other rotation methods. SLi provided the
biggest improvements over SL and SLt when the bi-factor structures contained cross-loadings and
pure indicators of the general factor. Additionally, SLi was superior to bi-quartimin and bi-geomin,
which performed inconsistently across the types of factor structures evaluated. Nomethod produced
a good recovery of the bi-factor structures when small samples (N = 200) were combined with low
factor loadings (0.30–0.50) in the specific factors. Thus, it is recommended that larger samples of at
least 500 observations be obtained.

The use of bi-factor analysis has dramatically increased
in the last decade (e.g. Chen, West, & Sousa, 2006; Reise,
2012). One of the reasons for this rise in popularity is the
ability of these models to separate the latent sources of
common variance by their degree of broadness, from the
more general to the more specific. Bi-factor models may
be used to assess the relative strength and potential useful-
ness of first-order and higher order factors for multitiered
constructs (McDonald, 1999; Zinbarg, Revelle, Yovel, &
Li, 2005), as well as to determine the impact of multidi-
mensionality (Reise, Cook, &Moore, 2015). Additionally,
they can be used to estimate the relative strength of gen-
eral and specific factors in the prediction of an external
criterion (Bandalos & Kopp, 2013). In its typical form,
the bi-factor model has one general factor and a num-
ber of specific factors, with the latter explaining com-
mon variance that is non-accounted for by the general
factor.

When there is insufficient prior knowledge for the
domain under investigation, an exploratory approach is
needed to uncover possible bi-factor structures (Jennrich
& Bentler, 2011). Given the specific restrictions of the
bi-factor model, traditional rotation methods (e.g. vari-
max, oblimin) fail to recover this structure, as they are
oriented toward finding simple structures (Reise, Moore,
& Maydeu-Olivares, 2011). In order to overcome this
challenge, three general strategies have been proposed:

CONTACT Francisco J. Abad fjose.abad@uam.es Facultad de Psicología, Universidad Autónoma de Madrid,  Madrid, Spain.

(1) exploratory bi-factor analysis using a Schmid-Leiman
(SL) orthogonalization (Schmid & Leiman, 1957), which
involves a reparameterization of a second-order oblique
exploratory factor analysis solution (Yung, Thissen, &
McLeod, 1999); (2) SL followed by a target rotation
applied to the bi-factor structure (Browne, 2001; Reise
et al., 2011); and (3) analytic bi-factor rotation methods
such as bi-factor quartimin or bi-factor geomin (Jennrich
& Bentler, 2011, 2012).

At the moment there is limited information regarding
the performance of the bi-factor rotation methods cur-
rently available. On the one hand, many of the previous
studies have considered a very specific set of models and
conditions (e.g. Asparouhov & Muthén, 2012). On the
other hand, the three types of rotation methods have nei-
ther been tested under similar conditions, nor directly
compared (e.g. Bandalos &Kopp, 2013; Reise et al., 2015),
making it difficult to ascertain their relative accuracy and
to offer practical guidelines. Furthermore, there is reason
to believe that each of these rotation methods has inher-
ent shortcomings in their formulation that may not make
them optimal to uncover exploratory bi-factor structures.
In light of this, in the current paper we will propose and
test a novel strategy that has not been applied to the bi-
factor case: the iteration of partially specified targetmatri-
ces (Moore, Reise, Depaoli, & Haviland, 2015). We call
this method SL with iterative target rotation (SLi).

©  Taylor & Francis Group, LLC
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A brief review of the properties and known perfor-
mance of the aforementioned rotation methods will be
presented next, followed by the presentation of the newly
proposed bi-factor rotation. In order to better summa-
rize this literature, we will first describe four types of
factor structures that may be considered as theoretically
and practically relevant for this investigation. Following
McDonald (1999, 2000), a factor structure is said to be a
perfect independent cluster (IC) structure if (1) the specific
factors are properly identified (i.e. defined by at least three
items on orthogonal structures or by two items on oblique
structures) and (2) no cross-loadings are observed. If the
former condition is met, but cross-loadings are present
on the structure, McDonald (2000, p. 102) named those
structures as independent cluster basis (ICB) structures. In
addition, there can be bi-factor models with variables that
represent “pure” indicators of the general factor (i.e. items
that have zero loadings on the specific factors) (Mansolf
& Reise, 2016), and these will be called independent clus-
ter pure (ICP) structures. Finally, bi-factor structures that
contain both cross-loadings and pure indicators of the
general factor will be referred to as independent cluster
basis pure (ICBP) structures. The ICBP structures rep-
resent realistic factor structures that are often found by
practitioners, and are being introduced for the first time
in the bi-factor literature in this investigation in order to
highlight the relative strengths of the different rotation
methods.

Bi-factor rotationmethods

Schmid-Leiman rotation (SL)

A brief introduction to the SL transformation (Schmid-
Leiman, 1957) is presented in the following section. How-
ever, readers interested in a complete description of this
procedure and its relationships with the higher order fac-
tor models are referred to Yung, Thissen, and McLeod
(1999).

The SL method is a multistage procedure. In the first
step, the manifest variable correlation matrix (R) is fac-
tored with an oblique rotation method (e.g. promax,
oblimin, geomin):

R=�0 ��′
0 + �2

0 (1)

where �0 is the loading matrix of the manifest variables
on the first-order factors, � is the first-order factor cor-
relation matrix, and �2

0 is the diagonal matrix of unique
variances for the manifest variables. In a second step, the
higher order factor solution is obtained by factoring the
lower order factor correlation matrix (�):

� =λ1λ
′
1 + �2

1 (2)

where λ1 is a vector with the loadings of the first-order
factors on the second-order factor, and �1 is a diagonal
matrix with the square root of the unique variances for
the first-order factors, which is directly related to λ1:

�1 = [I − diag(λ1λ
′
1)]

1/2 (3)

where diag indicates that only the diagonal elements from
the second-order factor solution are used. Then, the pre-
vious model is parameterized as

R = λgλ
′
g + �s�

′
s + �2

0 (4)

where λg (= �0λ1) and�s (= �0�1) are called SL trans-
formed loadings of the manifest variables on the general
and the residualized first-order factors (i.e. after discount-
ing the effects of the general factor), respectively. In this SL
parameterization, latent factors are orthogonal and load-
ings are linearly dependent.

One limitation of the SLmethod is the assumption that
λg and�s follow only one particular structure. Indeed, all
the effects from the general factor to the manifest vari-
ables are assumed to be indirect. Because of this, Reise
et al. (2015) refer to SL as a “semi-restricted” or hierar-
chical bi-factor model. The more general unrestricted bi-
factor model follows the same Equation (4), but λg and
�s do not follow any specific relationship. These struc-
tures that do not contain linearly-dependent general and
specific factor loadings are known as non-hierarchical bi-
factor structures.

Reise et al. (2011, 2015) analyzed the performance of
SL under IC and ICB population structures. They found
that the “semi-restricted” model produced biased esti-
mates of the factor loadings when proportionality con-
straints were not met in a simple IC structure. In these
cases, loadings on the general factor were either underes-
timated or overestimated depending on the item. In ICB
structures, larger distortions were obtained. For example,
for items with large cross-loadings (e.g. .40) that broke
the proportionality constraints, SL raised an item’s com-
munality, causing an overestimation of the loading on the
general factor, whereas loadings on the specific factors
were underestimated (Reise et al., 2011, 2015).

Schmid-Leimanwith target rotation (SLt)

Despite the expected biases of the SL method, Reise,
Moore, and Haviland (2010) predicted that the impact
of proportionality on real-world data might be negligi-
ble when the goal was only to identify patterns of salient
and non-salient loadings. Following this line of reasoning,
Reise et al. (2011) showed that SL was a good method for
identifying the pattern of trivial and non-trivial loadings
and, thus, SL could be a useful tool for defining a partially
specified pattern matrix for a target rotation (Browne,
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1972, 2001). Target rotation, also called Procrustean rota-
tion, requires a partially specified target pattern matrix
(B) in which zeros indicate that the researcher anticipates
that the item will not have a salient loading on the factor,
while the remaining target values are not specified. The
target rotation minimizes the sum of all the squared dif-
ferences between each specified target value (bij = 0) and
the actual corresponding factor loading (λij).

In the first step of the Reise et al. (2011) procedure, a
cutoff is applied to obtain the target pattern matrix from
the SL loading matrix. For example, if the SL loading is
greater than or equal to .20, that target pattern loading is
marked as an unspecified element, and if the SL loading
is less than .20, that target pattern loading is marked as
a specified zero. In the second step, the target rotation is
applied. Using a cutoff of .15, Reise et al. (2011) showed
that for simple IC structures and sample sizes of 500 or
above, target misspecification occurred in a low percent-
age of cases. Additionally, for conditions where the target
transformation matrix was correctly specified, the recov-
ery rates were reasonable. However, further research has
shown that under ICB structures, cross-loading presence
can impair the performance of SL as a tool for correctly
specifying a bi-factor target matrix (Reise et al., 2015).

Analytic bi-factor rotations (bi-quartimin and
bi-geomin)

Jennrich and Bentler (2011, 2012) developed an analytic
rotation method appropriate for reproducing bi-factor
structures. They proposed to minimize the following cri-
terion that measures the departure from the bi-factor
structure:

B(�) = qmin(�2) =
I∑

i=1

m∑
j=2

m∑
j′= j+1

λ2
i jλ

2
i j′ (5)

where m is the number of factors, I is the total number
of items, and qmin (�2) is the bi-quartimin rotation
criterion, applied to the pattern matrix after excluding
the general factor (�2). When a perfect IC structure
is obtained, qmin (�2) = 0. It follows, therefore, that
the bi-quartimin criterion can only be achieved when all
cross-loadings in a factor model are zero. It must be noted
that B(�) does not depend on the first column of � (i.e.
the general factor), but when B(�) is used for rotation,
all the columns in � are rotated.

Because bi-quartimin rotation attempts to minimize
variable complexity by approximating to structures where
the items have very low or zero cross-loadings on all
of the specific factors, it is a method best suited for IC
structures. Indeed, Asparouhov and Muthén (2012) sim-
ulated IC hierarchical structures under optimal loading

size and different number of indicators per specific fac-
tor, and concluded that exploratory structural equation
models (ESEMs) with bi-quartimin rotation were almost
unbiased. However, bi-quartimin is expected to produce
biased estimations with ICB structures, and initial stud-
ies evaluating its performance in the presence of cross-
loadings have supported this expectation (Bandalos &
Kopp, 2013).

Another analytic approach developed by Jennrich and
Bentler (2012) was the bi-geomin rotation method. In this
case, the criterion minimized is

B(�) = geomin(�2) =
I∑

i=1

m∏
j=2

(
λ2
i j + ε

)1/m

(6)

where ε is a small positive value (i.e. .01) needed to
make the function differentiable (Browne, 2001; Jennrich
& Bentler, 2012).

The bi-geomin rotationmethod requires only one spe-
cific factor loading of zero per item in order to accom-
plish the criterion (i.e. B(�) = 0). Thus, this method
attempts to minimize variable complexity by approximat-
ing to structures that have one zero-element per row in the
patternmatrix of the specific factors. Because of this prop-
erty, Jennrich and Bentler (2012) expected bi-geomin to
have better functioning in the presence of cross-loadings.
In this line, Mansolf and Reise (2016) showed the the-
oretical superiority of bi-geomin to bi-quartimin with
ICB structures, an advantage that is borrowed from the
superior performance of geomin over quartimin with
these structures. Additionally, in a preliminary simulation
study Bandalos and Kopp (2013) found that bi-geomin
rotation provided a good recovery of ICB structures,
whereas bi-quartimin failed to recover the true factor
structure in these conditions. Nevertheless, for IC struc-
tures, higher samples sizes were necessary (e.g. 2,500) in
order for bi-geomin to achieve a correct solution.

There are some additional issues regarding the perfor-
mance of the analytic bi-factor rotations that should be
noted. Firstly, as the general factor is not rotated explic-
itly, both rotation methods are prone to local minima
solutions (Mansolf & Reise, 2016). Indeed, these analytic
bi-factor rotations can be conceptualized as a mixture
of two factor models: a one-factor model defined by the
general factor and an m–1 factor model, where m–1 is
the number of specific factors. Depending on the starting
values, different variance might be shifted to the general
factor, and local minima solutions may be obtained. Also,
Mansolf and Reise (2016) warn that the analytic bi-factor
rotations will tend to shift as much variance onto the
general factor as possible, leading in certain cases to the
collapse of the specific factors (i.e. for smaller loadings
on the specific factors).
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Secondly, analytic bi-factor rotations “break down”
when the SL constraints are met (Mansolf & Reise, 2016).
That is, when there is a perfect linear dependence between
the general and specific factor loadings, a first-order
model of m–1 factors can perfectly represent a bi-factor
structure of m factors, thus making the latter an overfac-
tored or overparameterized model that can produce Hey-
wood cases and other estimation problems. Therefore, the
analytic factor rotations can perform poorly when the SL
constraints nearly hold (Mansolf & Reise, 2016).

Schmid-Leimanwith iterative target rotation (SLi)

Moore et al. (2015) recently proposed, based on Browne
(2001), amethod for exploratory factor rotation grounded
on the iteration of partially specified factor structures
(ITR). In the ITR method, one begins by performing a
standard factor rotation and subsequently defines a par-
tially specified, empirically informed target matrix based
on the results of this rotation. For this task, a pre-specified
loading cutoff criterion (e.g. .20) is established. Then, an
iterative search procedure is used to update the target
matrix until convergence is reached.

The ITR rotation strategy appears to be particularly
useful for data that have a complex structure, such as
those with multiple cross-loadings (Moore et al., 2015).
This is due to the iterative nature of the method, which
has the potential to solve or help ameliorate the problems
of using an initially misspecified target matrix. Indeed,
Moore et al. (2015) analyzed the performance of ITR
with IC and ICB first-order factor structures and found
that ITR always outperformed the “one-shot” classical
rotations (e.g. quartimin), especially when more cross-
loadings were present.

Even though ITR is a promising strategy for factor rota-
tion, it has yet to be applied to the bi-factor case, where a
direct generalization of the method can be made. There-
fore, we propose in the current paper the use of ITR in
conjunction with SL, and call it the SLi method. SLi bi-
factor rotation, which can also be considered as an exten-
sion of Reise et al. (2011), starts with an initial SL rotation
and the obtained rotated matrix is used to specify an ini-
tial target matrix (similar to the SLt method). Then, after
the target rotation is performed, this new rotatedmatrix is
used to build a new updated target matrix, and the target
rotation is again performed. The procedure is repeated in
this fashion until the pattern of specified zeros in the tar-
get matrix corresponds to the non-salient loadings (e.g.
those <.20) in the latest estimated pattern matrix. Due to
its iterative approach, SLi should be less affected than SL
and SLt by the presence of cross-loadings and pure indi-
cators of the general factor. Moreover, it is expected to be
more robust to the issues that particularly affect analytic

bi-factor rotations (e.g. local minima, factor collapse, lin-
ear dependence of the general and specific loadings), as a
result of it being an SL-based method.

Goals of the current study

The present research had two main goals: (1) to evaluate
the performance of the newly proposed bi-factor rotation
method, SLi, and (2) to compare it with the four bi-factor
rotations currently in use, SL, SLt, bi-quartimin, and
bi-geomin. As described earlier, the latter four rotation
methods had not been studied together, and the current
information on their performance was scarce. Further,
each of these methods was known or expected to have
important shortcomings for particular types of factor
structures (see “Bi-factor rotation methods” section), and
there was reason to believe that due to its iterative use
of targets SLi would provide a better and more consis-
tent performance, in particular for the more complex
structures.

In order to achieve the stated goals, a Monte Carlo
simulation study was carried out with the manipulation
of a large set of variables that were known to affect the
performance of the rotation methods. Also, an empiri-
cal application of the five bi-factor rotations with a Qual-
ity of Life data set (Chen et al., 2006) was undertaken.
It should be noted that only bi-factor structures with
orthogonal factors were considered. As argued by Morin,
Arens, and Marsh (2016), these models: (a) ensure inter-
pretable results, and (b) are the most common form of bi-
factor methods, with well-known practical applications
(e.g. omega reliability coefficient).

Method

The current study considered a comprehensive set of fac-
tors and factor levels for the bi-factor models. The follow-
ing seven variables were manipulated using Monte Carlo
methods: (1) sample size (N: 200, 500, 2,000); (2) number
of variables per specific factor (VAR.SF: 4, 5, 6); (3) num-
ber of specific factors (NUM.SF: 4, 5, 6); (4) presence of
cross-loadings on the specific factors (CROSS.SF: no, yes);
(5) factor loadings on the specific factors (LOAD.SF: low,
medium, high); (6) factor loadings on the general factor
(LOAD.GF: low, medium, high); and (7) presence of
pure indicators of the general factor (PURE.GF: no, yes).
Therefore, the simulation was based on a 3 × 3 × 3 × 2
× 3× 3× 2 factorial design, for a total of 972 conditions.

The factor loadings had ranges from .30 to .50 for the
low condition, from .40 to .60 for the medium condition,
and from .50 to .70 for the high loading condition. In
each case, the loadings for the IC structures were gener-
ated with equal increments between loadings under the
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Table . Examples of the factor loadings and communalities simulated according to the type of structure.

Independent cluster (IC) Independent cluster basis (ICB) Independent cluster pure (ICP) Independent cluster basis pure (ICBP)

Item gf sf sf sf sf h gf sf sf sf sf h gf sf sf sf sf h gf sf sf sf sf h

 . . . . . . . . . . . .
 . . . . . . . . . . . .
 . . . . . . . . . . . .
 . . . . . . . . . . . . . .
 . . . . . . . . . . . .
 . . . . . . . . . . . .
 . . . . . . . . . . . .
 . . . . . . . . . . . . . .
 . . . . . . . . . . . .
 . . . . . . . . . . . .
 . . . . . . . . . . . .
 . . . . . . . . . . . . . .
 . . . . . . . . . . . .
 . . . . . . . . . . . .
 . . . . . . . . . . . .
 . . . . . . . . . . . . . .
Avg. . . . .

Note. gf= general factor; sf= specific factor; h = communality; Avg.= average. IC: no cross-loadings on the specific factors and no pure indicators of the general
factor. ICB: cross-loadings but no pure indicators. ICP: pure indicators but no cross-loadings. ICBP: both cross-loadings and pure indicators; Cross-loadings appear
underlined; Near-zero loadings in the specific factors appear in italics.

specified range (e.g. the loadings for a factor containing
three items in the high range condition were .5, .6, and
.7), When cross-loadings were present, the last item for
each specific factor had a cross-loading of .40 in the next
specific factor. In order to hold constant the communality
of the item after adding the cross-loading, a small value
was subtracted from each of the remaining non-zero item
loadings. For the condition with pure indicators of the
general factor, the item in themiddle position of each spe-
cific factor (e.g. item 2 for a 4-item factor, item 3 for a
5-item factor) had a near-zero loading of .01 in its cor-
responding specific factor. Here, the loading of the pure
item in the general factor was increased so as to maintain
the communality equal towhat it was before its loading on
the specific factor was approximated to zero. An example
of population values for the four types of structures sim-
ulated (IC, ICB, ICP, ICBP) is presented in Table 1.

Data generation

For each of the simulated conditions, 50 sample data
matrices were simulated according to the common factor
model procedure. First, the reproduced population cor-
relation matrix (with communalities in the diagonal) was
computed

RR = ���T (7)

where RR is the reproduced population correlation
matrix, � is the population factor loading matrix, and �

is the population factor correlation matrix.
The population correlation matrix RP was then

obtained by inserting unities in the diagonal of RR,
thereby raising the matrix to full rank. The next step was

performing a Cholesky decomposition of RP, such that

RP = UTU (8)

whereU is an upper triangular matrix. The samplematrix
of continuous variables X was subsequently computed

X =ZU (9)

where Z is a matrix of random standard normal deviates
with rows equal to the sample size and columns equal to
the number of variables.

Accuracy criteria

The accuracy of the rotation methods in the recovery
of the population structure was evaluated according to
Tucker’s congruence coefficient (c.c.; Tucker, 1951)

c.c.jj

∑I
i=1 λ̂i jλi j√∑I

i=1 λ̂2
i j

∑I
i=1 λ2

i j

(10)

where λ̂i j is the estimated loading, λi j is the population
loading, I is the total number of items, i is the item num-
ber, and j is the factor number.

The congruence coefficient is an index of similarity
between factors that has boundaries of −1 and 1. A con-
gruence coefficient in the range of .85–.94 corresponds
to a fair similarity between factors, while a coefficient of
.95 or higher indicates a good level of similarity such that
the factors can be considered equal (Lorenzo-Seva, & ten
Berge, 2006). The procedure used to align the estimated
factors with the population factors before computing the
congruence coefficient was as follows.
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Firstly, in each sample, the direction of an estimated
factor was reverted if its average factor loading was neg-
ative, as no true population structure presented negative
factor loadings. Secondly, all the possible factor order
permutations were computed, retaining the solution that
minimized the average absolute deviation between the
estimated and the true solutions. Thirdly, an estimated
factor was reversed in the final solution if its factor con-
gruence coefficient was negative. All factor analyses were
performed in the R environment using the unweighted
least squares estimator. In order to obtain the correlated
factors solution needed for the initial step of the SL
methods a geomin rotation was carried out. The analytic
bi-factor rotations bi-quartimin and bi-geomin were
performed applying the gradient projection algorithm
implemented in the GPArotation package (Bernaards &
Jennrich, 2005). For each sample, the solution selected
for these rotation methods was the one that produced the
lowest discrepancy function from a total of 10 random
starts. In the case of the SLi method, Moore et al. (2015)
reported that ITR rotation converged within 7 iterations;
for the current study, a maximum of 20 iterations were
computed. In addition, loadings lower than .20 were
specified as zeros in the target matrices of the SLt and SLi
methods. Analyses of variance (ANOVAs) were carried
out with the IBM SPSS Statistics v. 20 program. According
to Cohen (1988), partial eta squared (η2

p) effect sizes of
.01 represent small effects, .06 medium effects, and .14 or
more, large effects.

Results

Monte Carlo simulation

An overall assessment of the accuracy of the bi-factor
rotation methods is presented in Table 2, which includes
the average congruence coefficients across the levels of the
independent variables and in total. Additionally, and in
order to better understand the performance of the meth-
ods, separate ANOVAs were computed for each method
where the congruence coefficient was the dependent vari-
able and the manipulated factors were the between-
subjects independent variables. The effect sizes resulting
from theANOVAs are shown inTable 3. To limit the num-
ber of results shown, only those interactions that attained
a large effect size for at least one of the methods were
included in Table 3.

The results in Table 2 show that SLi was the most
accurate and consistent method in recovering the bi-
factor structures. The SLi method produced an overall
congruence coefficient of .968, which was followed by SLt
(c.c. = .961), bi-geomin (c.c. = .946), SL (c.c. = .943),
and lastly, bi-quartimin (c.c. = .900). In addition, SLi

Table . Average congruence coefficients for the rotationmethods
across the manipulated variables.

Variable / Level SL SLt SLi Bi-quartimin Bi-geomin

N
 . . . . .
 . .967 .975 . .955
 .957 .982 .992 . .985

VAR.SF
 . . .959 . .
 . .963 .970 . .
 .963 .976 .976 . .951

NUM.SF
 . .962 .969 . .
 . .962 .969 . .951
 . .959 .967 . .955

CROSS.SF
No .966 .971 .969 .958 .
Yes . .951 .968 . .955

LOAD.SF
Low . . . . .
Medium . .967 .976 . .955
High .959 .979 .987 . .973

LOAD.GF
Low . .950 .958 . .
Medium . .961 .968 . .
High .953 .972 .978 . .960

PURE.GF
No .977 .974 .971 . .
Yes . . .966 . .966

STRUCTURE
IC .984 .971 .968 .953 .
ICB .969 .976 .974 . .
ICP . .972 .971 .963 .964
ICBP . . .961 . .968
TOTAL . .961 .968 . .

Note. N = sample size; VAR.SF = variables per specific factor; NUM.SF =
number of specific factors; CROSS.SF = cross-loadings in the specific factors;
LOAD.SF= loadings in the specific factors; LOAD.GF= loadings in the general
factor; PURE.GF = pure indicators of the general factor; SL = Schmid-Leiman;
SLt= Schmid-Leimanwith target rotation; SLi= Schmid-Leimanwith iterative
target rotation; IC (independent cluster): no cross-loadings and no pure indi-
cators; ICB (independent cluster basis): cross-loadings but no pure indicators;
ICP (independent cluster pure): pure indicators but no cross-loadings; ICBP
(independent cluster basis pure): both cross-loadings and pure indicators.
Congruence coefficients� . appear bolded and underlined.

obtained a congruence coefficient of “good” (�.95) for
17 of the 19 factor levels that were evaluated (89.5%),
thus exhibiting a more consistently accurate performance
than the SLt (78.9%), bi-geomin (52.6%), SL (31.6%), and
bi-quartimin (5.3%) rotation methods. As expected, the
biggest improvements of SLi in comparison to SL and
SLt came with structures that contained cross-loadings
(c.c.[SLi]= .968> c.c.[SLt]= .951> c.c.[SL]= .921) and
pure indicators of the general factor (c.c.[SLi] = .966 >

c.c.[SLt]= .949> c.c.[SL]= .910). Indeed, as Table 3 indi-
cates, whereas these variables had a substantial impact
in the performance of SLt (η2

p [CROSS.SF] = .124; η2
p

[PURE.GF] = .177), and particularly SL (η2
p [CROSS.SF]

= .548; η2
p [PURE.GF]= .725), their effect was very small

for SLi (η2
p [CROSS.SF] = .001; η2

p [PURE.GF] = .012).
In general, all three SL methods were highly affected by
the sample size (.283� η2

p � .431) and the loadings in the
specific factors (.305 � η2

p � .349), but the effect on the
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Table . Univariate analysis of variance (ANOVA) effect sizes for the rotation methods.

Effect type/variables SL SLt SLi Bi-quartimin Bi-geomin

Main effects
N .283 .365 .431 .294 .372
VAR.SF .373 .192 . . .
NUM.SF . . . . .
CROSS.SF .548 . . .688 .
LOAD.SF .332 .305 .349 .438 .246
LOAD.GF . . . . .
PURE.GF .725 .177 . .241 .148

Two-way interactions
VAR.SF× CROSS.SF .220 . . . .
CROSS.SF× PURE.GF .351 .189 . .323 .
N× LOAD.SF .145 .200 .257 . .145
VAR.SF× PURE.GF .296 . . . .

Three-way interactions
VAR.SF× CROSS.SF× PURE.GF .168 . . . .

Note. N = sample size; VAR.SF = variables per specific factor; NUM.SF = number of specific factors; CROSS.SF = cross-loadings in the specific factors; LOAD.SF =
loadings in the specific factors; LOAD.GF = loadings in the general factor; PURE.GF = pure indicators of the general factor; SL = Schmid-Leiman; SLt = Schmid-
Leiman with target rotation; SLi= Schmid-Leiman with iterative target rotation. The dependent variable in the ANOVAs was the congruence coefficient. The effect
size statistic used was partial eta squared. Large effect sizes (� .) appear bolded and underlined. Only interactions with large effect sizes for at least one method
are shown.

number of variables per specific factors was much lower
for SLi (η2

p = .063), in comparison to SL (η2
p = .373) and

SLt (η2
p = .192).

Regarding the performance of the analytic bi-factor
rotations, bi-quartimin produced the worst results
of any other method evaluated. This rotation per-
formed poorly for the majority of the factor levels,
but was especially sensitive to the cross-loading factor
(η2

p = .688), a finding that is line with the theoreti-
cal expectations. Bi-geomin, on the other hand, per-
formed much better than bi-quartimin, particularly
when the factor structures contained cross-loadings
(c.c.[bi-geomin] = .955 >> c.c.[bi-quartimin] =
.842) or pure indicators of the general factor (c.c.[bi-
geomin] = .966 >> c.c.[bi-quartimin] = .878). In fact,
and contrary to the behavior of the other four methods,
bi-geomin actually performed better with cross-loadings
or pure indicators than without them (Table 2). Despite
these results, bi-geomin still produced subpar estimations
with small samples of 200 observations (c.c. = .899) or
with low loadings in the specific factors (c.c. = .910).

As can be seen in Table 3, the rotation methods were
affected by several interactions of the manipulated vari-
ables. The two-way interaction of sample size × loadings
on the specific factors was the most consistently salient
one, producing a large or near-large effect for all of the
methods (.128 � η2

p � .257). The results of this interac-
tion are plotted in Figure 1 and they show that the perfor-
mance of all the methods improved with larger samples,
but that the improvement was greater for lower loadings
in the specific factors. In the case of bi-quartimin and bi-
geomin, the accuracy in the recovery of the factor struc-
tures was particularly poor when small samples of 200
observations were combined with low factor loadings in
the specific factors (c.c. <.85).

An additional interaction that affected particularly
the SL (η2

p = .168) and SLt (η2
p = .104) methods was

the three-way interaction of variables per specific factor
× cross-loadings × pure indicators (Figure 2). The 3
two-way interactions (VAR.SF × CROSS.SF, VAR.SF ×
PURE.GF, and CROSS.SF × PURE.GF) contained in this
three-way interaction all had large or near-large effect
sizes for the aforementioned rotations (.102� η2

p � .351),
so they were analyzed in the context of the higher order
interaction. Also, and in order to better understand the
differences in performance between the methods, the
three-way interaction was plotted for the other three
methods (SLi, bi-quartimin, and bi-geomin), where it
had a small or negligible effect (η2

p � .013). It should be
noted that the two-way interaction of cross-loadings x
pure indicators did produce a large effect for bi-quartimin
(η2

p = .323).
The three-way interaction contained in Figure 2 can

be explained as a function of the two-way interaction of
cross-loading× pure indicators that in turn interacts with
the third factor, number of variables per specific factor.

LOAD.SF
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Figure . Two-way interaction of N x LOAD.SF with congruence
coefficient as dependent variable. Note. N, sample size; LOAD.SF,
loadings on the specific factors; SL, Schmid-Leiman; SLt, SL target;
SLi, SL with iterative target.
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Figure . Box plots corresponding to the three-way interaction of VAR.SF x CROSS.SF x PURE.GFwith congruence coefficient as dependent
variable.Note. VAR.SF, variables per specific factor; CROSS.SF, cross-loadings on the specific factors; PURE.GF, pure indicators of the general
factor; SL, Schmid-Leiman; SLt, SL target; SLi, SLwith iterative target; IC (independent cluster): no cross-loadings andnopure indicators; ICB
(independent cluster basis): cross-loadings but no pure indicators; ICP (independent cluster pure): pure indicators but no cross-loadings;
ICBP (independent cluster basis pure): both cross-loadings and pure indicators. The thick and thin horizontal lines within each box denote
the mean and median. The top and bottom black circles denote the th and th percentiles.

Firstly, the combined levels of cross-loadings (no, yes) and
pure indicators (no, yes) generate the four types of struc-
tures considered in this study (IC, ICB, ICP, and ICBP),
and their two-way interaction can be clearly seen within
each rectangle in Figure 2 for the SL (η2

p = .351), SLt
(η2

p = .189), and bi-quartimin (η2
p = .323) rotations. This

interaction is evidenced by the substantial differences in
accuracy that these rotationmethods produce for the four
types of structures evaluated. In particular, it can be seen
that there was a notably poorer recovery of the ICBP fac-
tor structures for these rotations in comparison to their
recovery of the IC, ICB, and ICP structures. Addition-
ally, in the case of bi-quartimin, there was also a marked
decrease in accuracy for ICB in comparison to the con-
gruence coefficients obtained for IC or ICP. Secondly, the
three-way interaction emerged for the SL (η2

p = .168) and

SLt (η2
p = .104) methods because the differences in accu-

racy in the recovery of the four types of structures were
greatly diminished as the number of variables per specific
factor increased. In contrast, bi-quartimin produced sim-
ilar results for each level of number of variables per spe-
cific factor, which is why the three-way interaction was
not salient for this method (η2

p = .002).
The SLi and bi-geomin methods, on the other hand,

did not produce important interactions between the fac-
tors considered in Figure 2 (η2

p � .024 for the two-way
interactions and η2

p � .013 for the three-way interaction).
This was because their recovery accuracy was fairly simi-
lar for the four types of structures, regardless of the num-
ber of variables per specific factor. The SLi method, in
particular, showed the most stable estimations across the
IC, ICB, ICP, and ICBP structures, as bi-geomin showed
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much greater variability in the congruence coefficients
that it produced for the IC structures.

Quality of life data set

An empirical study was conducted by factor analyzing a
Quality of Life data set (Chen et al., 2006). This Qual-
ity of Life data set encompasses 403 observations and 17
items that are hypothesized to reflect a common general
factor (Quality of Life) and four specific factors (Cogni-
tion, Vitality, Mental Health, and Disease Worry).

There is some controversy regarding the possible bi-
factor structure underlying the Quality of Life data set,
in particular regarding the third specific factor Mental
Health. Using a confirmatory approach, Chen et al. (2006)
concluded that this specific factor could be absorbed by
the general factor and recommended that it be dropped.
In contrast, Jennrich and Bentler (2011) suggested based
on a bi-quartimin rotation that it might be retained as
two of its items produced salient loadings on this specific
factor. For the current study, the five bi-factor rotation
methods under investigation were applied to the Qual-
ity of Life data set by factorizing the covariance matrix
provided in Chen et al. (2006) with the package psych
(Revelle, 2016). In the case of the SLt and SLi meth-
ods, a cutoff of .20 (Jennrich & Bentler, 2011; Moore
et al., 2015) was used to distinguish between salient and
non-salient loadings for the specification of the target
matrices.

The factor loading matrices corresponding to the five
bi-factor rotation methods are shown in Table 4. As evi-
denced by Table 4, the factor loadings for the general fac-
tor (Quality of Life) and the first (Cognition) and fourth
(Disease Worry) specific factors are consistently high,
with no cross-loadings (�.20) for these items in any of
the rotations. Indeed, when congruence coefficients were
computed between each pair of rotationmethods for these
factors, they were extremely high: between .997 and 1.000
for Quality of Life, .983 and 1.000 for Cognition, and
between .972 and 1.000 for Disease Worry. In the case of
the second specific factor (Vitality), the congruence coef-
ficients between the SL, SLt, SLi, and bi-geomin meth-
ods were also especially high (.978 � c.c. � .997); how-
ever, they were somewhat lower for the four pairs that
contained the bi-quartimin rotation (.936 � c.c. � .957).
Interestingly, this factor had the only item (“Feel full of
pep?”) that achieved a cross-loading of at least .20 for any
of the rotations, and the previous simulation results had
shown that bi-quartimin was highly affected by the pres-
ence of cross-loadings.

As with previous factor analyses of this data set, the
greatest differences in factor loadings were obtained
for the third specific factor (Mental Health). Here, the

congruence coefficients between seven pairs of methods
were notably low (.290� c.c.� .685). The only three con-
gruence coefficients that showed good agreement were
between SLt and SLi (c.c. = .958), SLt and bi-geomin
(c.c. = .967), and between SLi and bi-geomin (c.c. =
.995). It is noteworthy in this case that the factor loadings
suggested by SLi and bi-geomin for this specific factor
include three items (“Feel downhearted and blue?,” “Feel
very nervous?,” and “Feel so down in the dumps nothing
could cheer you up?”) that are essentially pure indicators
of the general factor, as they produced negligible loadings
on the specific factor. If indeed the population structure
had these characteristics, the findings would be in line
with the simulation results of this study, which showed
that SLi and bi-geomin were the two most likely methods
to produce accurate recoveries of the factor loadings
when pure indicators were present. If researchers are
interested in reproducing the presented analysis, the
R code necessary for computing the SLi rotation of the
Quality of Life data set can be found in the Supplementary
Materials of this article.

Discussion

For hierarchically structured constructs that operate at
various levels of generality, bi-factor analysis has become
an essentialmodeling technique as a result of its capability
to separate the general and specific variances underlying
the observed data (Brunner, Nagy, &Wilhelm, 2012). Sev-
eral rotationmethods have been proposed for exploratory
bi-factor analysis, including the SL orthogonalization (SL;
Schmid & Leiman, 1957), SLt(SLt; Reise et al., 2011),
and two analytic bi-factor rotations, bi-quartimin and bi-
geomin (Jennrich & Bentler, 2011, 2012). However, at the
moment, there is limited information regarding the per-
formance of these rotations under varying data charac-
teristics and in comparison to each other. Furthermore,
there are concerns regarding the efficacy of these rota-
tions for certain types of factor structures that are based
on their theoretical formulations and the empirical evi-
dence that is available (Bandalos&Kopp, 2013;Mansolf &
Reise, 2016; Reise et al., 2011, 2015). Taking into consider-
ation the issues outlined previously, a new bi-factor rota-
tion was proposed in the current study based the use of
iterative targets in conjunction with an initial SL orthog-
onalization: The SLi method. To test the accuracy of this
new rotation, an extensive simulation study was under-
taken where seven relevant variables were manipulated,
thus permitting an in-depth comparison of the accuracy
of SLi against the other four bi-factor rotations. The most
important findings from this Monte Carlo study will be
discussed next, as well as the results obtained with aQual-
ity of Life data set.
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Main findings

The results pertaining to the SL rotation showed that it
produces the highest levels of accuracy of any method for
IC structures, but that it is much less effective with com-
plex structures, in particular those that combine cross-
loadings with pure indicators of the general factor. These
results are in line with the theoretical expectations, as the
latter structure presents the greatest departure from the
hierarchical model that is the basis for its formulation. In
particular, pure indicators constitute severe violations of
the hierarchical model assumed by SL rotation where the
general and specific factor loadings are linearly depen-
dent or proportional. Previous research had also shown
that SL produces biased estimates of the factor loadings
in the presence of cross-loadings (Reise et al., 2011, 2015).
Additionally, the number of variables per specific factor,
the factor loadings in the specific factors, and the sample
size, affect the performance of SL, which produces sub-
stantially lower levels of accuracy when these variables
have smaller values.

Using a one-shot target rotation with the SLt method
improves the performance of SL slightly for structures
with cross-loadings and more substantially for structures
with pure indicators. In particular, SLt is advantageous for
very complex structures that combine cross-loadings with
pure indicators. It appears, therefore, that SL can be a use-
ful tool to define a partially specified pattern matrix for
target rotation, as suggested by Reise et al. (2010, 2011),
and that using the SLt method can correct some of the
misspecifications that SL produces with these complex
structures. However, the performance of SLt with struc-
tures that combine cross-loadings and pure indicators is
still very variable andmostly below the levels that are con-
sidered to represent a good factorial recovery. This is true,
especially in those cases where there are also a small num-
ber of variables per specific factor. Regarding the other
independent variables, the accuracy of SLt is affected by
the sample size and the loadings in the specific factors in
a similar way as the SL method.

The SLi method was introduced in this study with the
aim of improving the performance provided by SLt with
the more complex structures, and the findings from the
Monte Carlo simulation suggest that indeed it is capable
of accomplishing this goal. The performance of SLi is
nearly identical to that of SLt for the majority of the data
structures, except for themost complex ones that combine
cross-loadings and pure indicators. In these cases, SLi is
much less variable and produces substantially higher lev-
els of accuracy than SLt, in particular when these types of
structures also have a small number of variables per factor.
Therefore, it can be concluded that using iterative targets
is a useful strategy for bi-factor rotation, particularly

when the population structures have diverse departures
from the ICmodel. These findings extend those of Moore
et al. (2015), which had proposed and evaluated the use of
iterative targets with first-order factor models. In general,
the evidence suggests that SLi is the most consistent and
accurate of the bi-factor rotations considered here.

The performances of the two analytic bi-factor rota-
tions, bi-quartimin and bi-geomin, are distinctly dif-
ferent. Bi-quartimin produces good accuracy levels for
structures that contain ICs or that deviate from them only
due to pure indicators of the general factor. However,
its performance is notably poor when cross-loadings are
introduced and even worse when they are combined with
pure indicators. The poor results of bi-quartimin with
cross-loadings are in line with Bandalos and Kopp (2013)
and reflect the major theoretical shortcoming of the
quartimin rotation: it attempts to minimize variable com-
plexity by searching for structures where the items have
very low or zero cross-loadings on all of the factors. Here,
the evidence suggests that when the population structure
deviates from the IC model (as it often does in practice)
the impact on the accuracy of bi-quartimin is extreme.
Bi-geomin, on the other hand, produces a unique pattern
of results that is unlike that of the other methods. With
IC structures bi-geomin obtains its worst accuracy levels,
which are also substantially below the ones of the other
methods evaluated. This result was expected, as the bi-
geomin criterion is minimized for structures that contain
at least one non-zero cross-loading. When cross-loadings
are introduced, the performance of bi-geomin shows a
notable improvement that includes much higher levels
of accuracy than bi-quartimin, in line with Mansolf and
Reise (2016), but that are still considerably lower than
those of the SL-based methods. Surprisingly, bi-geomin
produces its best performance with pure indicators,
achieving its highest accuracy and that of any method for
the most complex structures that combine cross-loadings
and pure indicators. This is a unique finding of this study
that points to the usefulness of this rotation for these
types of structures. Nonetheless, it should be mentioned
that bi-geomin is a method that performs considerably
different across sample sizes, and that is not really suited
for small samples.

From the results of this simulation study it is not pos-
sible to determine if the poor performance of the analytic
rotations for certain factor structures can be attributed in
part to themore correct rotation being contained in a local
minimum rather than the globalminimum (chosen here).
Analytic bi-factor rotations are prone to local minima
solutions because the general factor is not rotated explic-
itly (Mansolf & Reise, 2016). That is, analytic bi-factor
rotations utilize a two-stage process where in the first
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“gradient descent” step only the specific factors are
rotated, excluding the general factor. Then, in the sec-
ond “projection” step the obtained solution is projected in
order to obtain a proper factor loading matrix. Thus, the
general factor is only rotated implicitly (i.e. by projection
to a proper solution). For practical use, it has been sug-
gested that researchers examine the different local min-
ima and global minimum solutions (as there is no math-
ematical reason to prefer one over the other) and to
select themost interpretable one (Asparouhov &Muthén,
2009). However, it is unknown if this process would lead
to actually choosing the more correct or replicable solu-
tion in practice more often or not.

An empirical study based on a Quality of Life data
set (Chen et al., 2006) included in the study appears to
support the results of the Monte Carlo simulation. The
findings related to the congruence of the factor solutions
obtained by the different rotation methods show that for
complex factors (those that appear to have items with
cross-loadings or pure indicators) bi-quartimin and SL
are the methods that have the least agreement with the
others, suggesting that their solutions may not be accu-
rate estimations of the population structure. Additionally,
for these factors the methods with the highest agreement
are SLi and bi-geomin, which in the simulation were the
ones that performed the best for structures that contained
both cross-loadings and pure indicators. For strong fac-
tors that contained items without notable cross-loadings
and that had substantial loadings in both the general fac-
tor and their respective specific factors, all the methods
showed very high agreement with each other.

Limitations

As with any Monte Carlo simulations, the findings of
this study are only generalizable to the conditions that
were analyzed. Some additional limitations, as well as
recommendations for future research, will be addressed
next. First, the factor analyses in this study were carried
out using the unweighted least squares estimator over
Pearson correlations obtained from continuous variables.
More research is needed to understand how the bi-factor
rotations perform with other estimators (e.g. maximum
likelihood, weighted least squares), types of variables (e.g.
ordered-categorical), and measures of association (e.g.
polychoric correlations). Second, all the simulated struc-
tures were balanced, with equal numbers per factor of
variables, cross-loadings, and pure indicators. The study
of unbalanced structures could provide further insight
regarding the accuracy of the bi-factor rotations. Third,
iterative targets were evaluated in conjunction with an
initial SL orthogonalization based on a geomin rotation
for the first-order factor analysis. Additional research

is needed to determine how bi-factor rotations with
iterative targets would perform with an initial target
based on other methods, such as a bi-geomin rotation, or
with a SL orthogonalization based on other oblique rota-
tions like oblimin, which is implemented in the SCHMID
routine of the psych package (Revelle, 2016).

Another issue of importance related to iterative target
rotation is the selection of the factor loading cutoff value
needed to specify the target matrices. In the present study,
a theoretical cutoff value of .20 was used to determine if
a loading was to be considered as salient or non-salient.
At this moment it is unknown how using other cutoff
values would affect the recovery of the bi-factor struc-
tures. A possible alternative to this issue could be the use
of empirically derived cutoff values, like it is done with
promin rotation (Lorenzo-Seva, 1999) or with the stan-
dard error method (Moore, 2013). The combination of
empirical specifications of the target transformation with
empirical cutoff values could ultimately lead to an applica-
tion of target rotation methods that does not require any
additional input from the researcher.

Practical implications

The findings from this study suggest that there are impor-
tant differences in the levels of accuracy with which the
different rotationmethods currently available can recover
exploratory bi-factor structures. In light of this, it is
important for applied researchers to be cognizant of the
methods that can best aid them in uncovering these struc-
tures, those that should be avoided, and the conditions
where none are likely to perform well.

The SLi method, proposed for the first time in this
study, was the most accurate and consistent bi-factor
rotation across the wide range of conditions that were
explored, thus making it one of the methods that can be
recommended for applied research. In contrast, the orig-
inal SL rotation is not recommended due to its notable
poorer performance with structures that deviate from the
IC model. In the case of the SLt method, its performance
was mainly as good as or worse than SL with iterative
targets, making the latter the obvious choice for general
applied use. Regarding the analytic bi-factor rotations, bi-
quartimin is clearly a method that should be avoided due
it is markedly poor accuracy across the majority of factor
structures. Bi-geomin, on the other hand, can be recom-
mended for cases where the researchers expect complex
structures that contain both cross-loadings and pure indi-
cators of the general factor. It should be usedwith caution,
however, because bi-geomin requires larger samples and
tends to perform very poorly when the structures contain
ICs. Finally, no method is likely to produce a good recov-
ery of the bi-factor structures when small samples (N =
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200) are combined with low factor loadings (0.30–0.50)
in the specific factors. If this situation is expected, it is
recommended that larger samples be obtained in order
to offset the detrimental effects of the low item loadings.
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Abstract: Bi-factor exploratory modeling has recently emerged as a promising approach to multidimensional psychological measurement.
However, state-of-the-art methods relying on target rotation require researchers to select an arbitrary cut-off for defining the target matrix.
Unfortunately, the consequences of such choice on factor recovery remain uninvestigated under realistic conditions (e.g., factors differing in
their average loadings). Built upon the iterative target rotation based on Schmid-Leiman algorithm (SLi), a novel method is here introduced
(SLiD). SLiD settles an empirical, factor-specific cut-off based on the first prominent one-lagged difference of sorted squared normalized
factor loadings. SLiD and SLi with arbitrary cut-off (ranging from .05 to .20) performance were evaluated via Monte Carlo simulation
manipulating sample size, number of specific factors, number of indicators, and cross-loading magnitude. Results indicate that SLiD
performed the best for all conditions. For SLi, and due to the presence of minor factors, smaller cut-offs (i.e., .05) outperformed higher ones
(i.e., .20).

Keywords: bi-factor, target rotation, Schmid-Leiman, exploratory factor analysis

Bi-factor models (Holzinger & Swineford, 1937) are
regarded today as crucial tools for evaluating psychological
constructs, as they allow for the inspection of the simultane-
ous direct influence of a general and specific factors over a
set of indicators (Reise, 2012). Although traditionally stud-
ied by means of confirmatory models that conform to a
simplest solution for the specific factors, the suitability of
such proposals has been recently questioned (Morin, Arens,
& Marsh, 2015). This has led to a growing interest on more
realistic exploratory bi-factor models, where each indicator
is expected to be potentially explained by all factors (Abad,
Garcia-Garzon, Garrido, & Barrada, 2017; Mansolf & Reise,
2016; Waller, 2017).

Automated bi-factor target methods have emerged as a
compelling alternative for performing exploratory bi-factor
analysis (Abad et al., 2017). However, these procedures
require researchers to choose a single cut-off to distinguish
which factor loadings are expected to be negligible in the
final rotated solution (Browne, 1972). Unfortunately, the
impact of this decision has not been sufficiently examined
(Myers, Ahn, & Jin, 2013; Myers, Jin, Ahn, Celimli, &
Zopluoglu, 2015). Furthermore, as the application of a
single cut-off could be inappropriate, some authors have

suggested the use of factor-specific cut-offs for achieving
simple solutions (Lorenzo-Seva, 1999; Trendafilov, 1994).

The current study aims to propose a new method for
target specification based on factor loading differences to
empirically determine factor-specific cut-offs. This new
method is applied to the Schmid-Leiman with iterative
target rotation (SLi; Abad et al., 2017). SLi is a bi-factor
rotation algorithm that has been shown to perform more
accurately than both, analytical bi-factor rotations and
non-iterative Schmid-Leiman target rotation (Abad et al.,
2017). The performance of the proposed method, hereafter
SLiD, is therefore tested against that of SLi with a range of
predetermined fixed cut-offs (see Appendix).

The rest of the article is structured as follows. First, the
Schmid-Leiman orthogonalization and the automatic speci-
fication of target matrices are briefly reviewed. Next, an
overview regarding the iterative target rotation procedure
is presented. In the following section, an introduction to
empirical bi-factor target rotation based on loading differ-
ences method is depicted. Subsequently, the results from
an extensive Monte Carlo simulation comparing the accu-
racy of SLiD to that of SLi with arbitrary cut-offs are exam-
ined. Finally, implications for future research are discussed.
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In the remainder of the article, a factor pattern matrix is
said to follow a bi-factor model if and only if a general
factor (i.e., which directly influences most indicators) along
with several specific factors (i.e., which influence distinct
groups of indicators within the same set) are present, where
the latter explains variance residual to the former, and all
factors are orthogonal (Holzinger & Swineford, 1937; Reise,
2012). Noteworthy, an item is always expected to load in
the general and in an unrestricted number of specific
factors. Therefore, cross-loadings arising from an item
reflecting variance from several group factors are to be
expected (Morin et al., 2015), a situation that consti-
tutes a deviation from traditional, simple bi-factor
structures.

The Schmid-Leiman Transformation

Early proposals for conducting exploratory bi-factor analy-
sis relied on the Schmid-Leiman orthogonalization (SL; Sch-
mid & Leiman, 1957), which transforms a hierarchical
solution into a model with the appearance of a bi-factor
model. However, the latter model presents linear depen-
dencies between the general and specific factors loadings
(Mansolf & Reise, 2016). Indeed, Waller (2017) demon-
strates that for any structure defined by three (or more)
common factors, an SL solution is not unique (p. 1), and
it represents a low-rank solution when compared with a
bi-factor structure without such linear constraints.1 Conse-
quently, a SL solution would only provide unbiased esti-
mates when recovering a true structure presenting such
constraints (viz., a hierarchical model; Abad et al., 2017;
Reise, Moore, & Maydeu-Olivares, 2011). Unfortunately,
SL solutions are often considered as full-rank bi-factor
structures and misguidedly applied to compute statistics
such as scale reliability. In Waller’s (2017) words:

“the [SL] model sometimes fools researchers into
believing that the SL transformation yields a higher-
dimensional representation of the lower-order, corre-
lated model. This belief is false” (p. 4).

Two distinct classes of methods for estimating exploratory
bi-factor structures have been proposed. Firstly, Jennrich
and Bentler (2011, 2012) formulated the direct analytical
rotations based on the quartimin and geomin rotations.
Unfortunately, such procedures have been proved to be
either unreliable for recovering complex structures
(bi-quartimin) or prone to present local minima and factor
collapse problems (bi-geomin; Hattori, Zhang, & Preacher,
2017; Mansolf & Reise, 2016). Secondly, the rediscovery of

the target rotation as an alternative for recovering complex
structures has prompted the emergence of bi-factor
exploratory methods based on this rotation.

Automatic Specification of Target
Matrices

A target rotation (also called “Procrustes rotation”) is a
semi-confirmatory procedure intended to approximate a
rotated solution toward a pre-defined factor pattern. To
do so, a target matrix (B), with same dimensions as the
factor loading matrix (Λ), must be defined as follows:
If the value of an entry is expected to be negligible in the
targeted rotated solution, that entry is fixed as zero in B.
Otherwise, the entry is left unspecified (partially specified
target rotation; Browne, 1972). Afterward, the target rota-
tion is performed by minimizing the following loss function:

f Lð Þ ¼
Xm

j¼1

X

i2 Ij

λij � bij
� �2

; ð1Þ

where λij is a loading in the ith row and jth column of Λ, bij
is an entry of the ith row and jth column of B, and I rep-
resents the subscript for fixed target loadings.

Although researchers canmanually specifyB according to
their theoretical expectations, modern approaches rely on
the automatic detection of which loadings should be fixed
as zero in B. Reise et al. (2011) firstly advocated the use of
automated bi-factor target rotations. They argued that even
though solutions obtained by means of a Schmid-Leiman
transformation result in biased estimates, they could provide
the basis for accurately defining partially specified target
matrices. This procedure led to the adequate recovery of
exploratory bi-factor models, especially when cross-loadings
were present in the structure.

Iteration of Partially Specified Bi-Factor
Target Matrices

Moore, Reise, Depaoli, and Haviland (2015) demonstrated
that an iterative target rotation procedure, where each
rotated target solution formed the basis for defining a
new target matrix, led to improved target specification
and that such refinement directly translated into enhanced
rotation accuracy. Abad et al. (2017) showed in an extensive
simulation that SLi, which combines an iterative target rota-
tion with Reise’s et al. (2011) procedure, outperformed the
original non-iterative method as well as both direct analyt-
ical bi-factor rotations.

1 The term “bi-factor” is restricted hereafter to models not presenting the aforementioned constraints between general and specific factor
loadings.
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Unfortunately, all automated target methods hitherto
presented request researchers to decide a single cut-off
for separating expected substantive and negligible factor
loadings. While recommendations for selecting such a
threshold do exist for the general exploratory factor analysis
(EFA) case (between .30 and .50; Izquierdo, Olea, & Abad,
2014), the impact of this choice on rotation performance
has been overlooked in the literature. Ultimately, theoreti-
cal recommendations could be misleading in a given factor
analysis, as a suitable cut-off point may be dependent on
the specific conditions of the factor model estimation (i.e.,
sample size) or could vary across factors when these differ
in their factor loading distributions. Therefore, a set of cut-
offs would yield a correct targeted rotated solution if, and
only if, they correctly identify, for each specific factor sep-
arately, all, and exclusively, the near-zero loadings in the
targeted rotated matrix (i.e., minimizes target rotation crite-
rion; Kiers, 1994). Consequently, a single, fixed cut-off
point would result in misspecification errors when the
strength of the involved factors varies, and the structure
departs from a simple bi-factor model. The study of such
conditions (illustrated below) demonstrated that cut-offs
shall be empirically estimated rather than arbitrary chosen.

Empirical Bi-Factor Target Rotation
Based on Loading Differences

Under a bi-factor solution where all specific factors follow
the simplest structure case, appropriate cut-off points that
lead to a correct target definition might be easily found.
If the model is properly estimated (i.e., adequate sample
size), each specific factor yields a factor loading distribution
with two distinctive groups: a first set of loadings near zero
and another encompassing substantive loadings. Hence,
such appropriate cut-offs will correctly fix to zero in the
target matrix all near-zero loadings.

To ensure better separation between near-zero and
substantive loadings, all factor loadings are traditionally
transformed bymeans of Kaiser’s normalization. This proce-
dure consists in multiplying each Λ row by the inverse of the
square root of the correspondent row communality. Normal-
ization is also usually applied in this field to avoid the fact
that large rows of Λ have more influence in the rotation
criteria than smaller rows (Jennrich, 2004). Additionally,
and to further increase substantive factor loading saliency,
normalized loadings can be squared (Lorenzo-Seva, 1999).
After applying such transformations, the size of each squared
normalized factor loading becomes a function of the item
complexity (i.e., number and magnitude of cross-loadings)
and, for complex items, of its primariness (i.e., if the substan-
tive loading is the primary or a secondary loading). For
instance, for items following a simple population bi-factor

structure, the matrix of squared row-normalized loadings
should be composed by zero and one entries, which would
facilitate setting a correct cut-off. A detailed discussion of
the effects of such transformations can be found in
Lorenzo-Seva (1999) and Browne (2001).

The presence of small cross-loadings in one specific factor,
which is always to be expected (Asparouhov & Muthén,
2009; Morin et al., 2015), introduces a third group of items
whose (squared normalized) factor loadings are somewhere
situated between the near-zero (i.e., for itemsnon-loadingon
the factor) and near-one loadings (i.e., for factorially simple
items only loading in the factor). To be bear in mind that
if, by definition (Equation 1), the rotation criterion only
depends on the specified elements of the target matrix,
wrongly fixing any potentialminor cross-loading in the target
matrix will result in impaired target rotation. Accordingly, an
appropriate cut-off for each specific factor should result in
such cross-loadings also being freed in the target matrix.
Therefore, a statistical criterion to define which (squared
normalized) factor loadings constitute meaningful cross-
loadings is in need. Additionally, the impact of cross-loadings
on cut-off estimation is ameliorated – or worsened – depend-
ing on factor loading primariness. Structures presenting low
magnitude factor loadings will result in less distinctive
groups of near-zero and substantive factor loadings, ulti-
mately hampering cut-off point identification.

Thus, under conditions where cross-loadings and low
average loadings factor are expected, it is implausible that
a single, fixed cut-off point would correctly identify all
elements in the target matrix. Any method applying fixed
cut-offs (i.e., SLi) is therefore anticipated to commit many
misspecification errors and to result in a biased factor solu-
tion. To overcome such limitations, a novel algorithm based
on empirical, factor-specific cut-offs is here introduced:
SLiD. This method, which is regarded as an improvement
of the SLi algorithm as it introduces an empirical cut-off
estimation within that algorithm, is likely to limit misspec-
ification errors in target matrix definition and to result in
improved factor recovery. To illustrate SLiD functioning,
an analysis of a popular bi-factor structure presenting the
aforementioned characteristics (Abad et al., 2017; Chen,
West, & Sousa, 2006) is presented (Table 1).

The proposed SLiD method estimates factor-specific
loading cut-offs based on the distribution of the differences
between the sorted squared normalized factor loadings. To
find this empirical cut-off, SLiD performs several steps
aimed to separate near-zero loadings to be fixed in the tar-
get matrix and meaningful specific loadings to be freed
(note that general factor loadings are always freed, so they
are not evaluated when estimating cut-offs).

Starting froma standardizedSL solution (PanelA,Table 1),
the squared normalized loadings are computed (Panel B,
Table 1). Secondly, squared normalized loadings are sorted
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per factor to detect a “jump” in the sequence (Panel C,
Table 1). A similar strategy was deployed by Jennrich
(2004) to detect the number of near-zero values to be fixed
in a target matrix in a Simplimax rotation (Kiers, 1994) by
visually detecting the first meaningful “jump” in a SAL plot
(sorted absolute loadings plots; Figure 5, Jennrich, 2004).
Thirdly, one-lagged differences are computed (differences

between a factor loading and its immediate predecessor;
Panel D, Table 1). For each specific factor (e.g., SF1), small
one-lagged differences are expected for blocks of homoge-
nous items. For instance, for SF1 close-to-zero one-lagged
differences are found for the group of non-loading items
(i.e., 11, 8, 12, 9, 10, 15, 17, 6, 7, and 16) and for almost all
the group of simple items (i.e., 1, 3, 4, and 5). In contrast,

Table 1. SLiD algorithm first iteration target matrix definition for Chen et al. (2006) data

Panel A: Original SL solution Panel B: Squared normalized
loadings

Panel E: First iteration target
matrix

Item SF1 SF2 SF3 SF4 SF1 SF2 SF3 SF4 SF1 SF2 SF3 SF4

1 .67 .00 .01 �.01 1.00 .00 .00 .00 NA 0 0 0

2 .47 .06 �.01 .04 0.98 .02 .00 .01 NA 0 0 0

3 .64 .01 .01 .02 1.00 .00 .00 .00 NA 0 0 0

4 .67 .00 �.02 �.03 1.00 .00 .00 .00 NA 0 0 0

5 .63 .00 .04 .00 1.00 .00 .00 .00 NA 0 0 0

6 .02 .54 .04 �.03 .00 .99 .01 .00 0 NA 0 0

7 �.01 .38 .04 .07 .00 .96 .01 .03 0 NA 0 0

8 .06 .57 �.04 .06 .01 .97 .00 .01 0 NA 0 0

9 �.03 .39 .15 �.02 .01 .86 .13 .00 0 NA NA 0

10 .02 �.04 .36 .02 .00 .01 .98 .00 0 0 NA 0

11 .05 .00 .31 .08 .02 .00 .92 .06 0 0 NA 0

12 �.03 .06 .33 �.02 .01 .03 .96 .00 0 0 NA 0

13 .24 .01 .17 .09 .61 .00 .31 .09 NA 0 NA 0

14 .13 .05 .27 .01 .18 .03 .79 .00 NA 0 NA 0

15 .03 �.02 .00 .60 .00 .00 .00 1.00 0 0 0 NA

16 .00 .13 .02 .44 .00 .08 .00 0.92 0 0 0 NA

17 �.02 .02 .01 .52 .00 .00 .00 1.00 0 0 0 NA

Average .21 .13 .10 .11 .34 .23 .24 .18

Panel C: Sorted squared normalized loadings Panel D: One-lagged differences distribution

Item SF1 Item SF2 Item SF3 Item SF4 Item SF1 Item SF2 Item SF3 Item SF4

1 1.00 6 .99 10 .98 17 1.00 1 .00 6 .02 10 .02 17 .00

3 1.00 8 .97 12 .96 15 1.00 3 .00 8 .02 12 .04 15 .08

4 1.00 7 .96 11 .92 16 .92 4 .00 7 .09 11 .13 16 .83

5 1.00 9 .86 14 .79 13 .09 5 .02 9 .78 14 .48 13 .02

2 0.98 16 .08 13 .31 11 .06 2 .37 16 .05 13 .18 11 .03

13 .61 12 .03 9 .13 7 .03 13 .43 12 .00 9 .12 7 .02

14 .18 14 .03 7 .01 8 .01 14 .16 14 .01 7 .01 8 .00

11 .02 2 .02 6 .01 2 .01 11 .01 2 .00 6 .00 2 .00

8 .01 10 .01 8 .00 12 .00 8 .00 10 .01 8 .00 12 .00

12 .01 17 .00 5 .00 6 .00 12 .00 17 .00 5 .00 6 .00

9 .01 15 .00 16 .00 10 .00 9 .00 15 .00 16 .00 10 .00

10 .00 13 .00 4 .00 9 .00 10 .00 13 .00 4 .00 9 .00

15 .00 3 .00 2 .00 4 .00 15 .00 3 .00 2 .00 4 .00

17 .00 1 .00 17 .00 14 .00 17 .00 1 .00 17 .00 14 .00

6 .00 4 .00 3 .00 3 .00 6 .00 4 .00 3 .00 3 .00

7 .00 5 .00 1 .00 1 .00 7 .00 5 .00 1 .00 1 .00

16 .00 11 .00 15 .00 5 .00 16 – 11 – 15 – 5 –

Average .06 .06 .06 .06

Notes. SF = specific factor (SF1: Cognition; SF2: Vitality; SF3: Mental health; SF4: Disease worry); Panels divided as item order is changed between Panels B
and C. In Panel A, substantive loadings appear shadowed in strong gray and cross-loadings in light gray. First one-lagged difference above factor difference
average is presented bolded and italicized.

Methodology (2019), 15(2), 45–55 �2019 Hogrefe Publishing

48 E. Garcia-Garzon et al., Bi-Factor Rotation Based on Loading Differences

 $
{p

ro
to

co
l}

://
ec

on
te

nt
.h

og
re

fe
.c

om
/d

oi
/p

df
/1

0.
10

27
/1

61
4-

22
41

/a
00

01
63

 -
 E

du
ar

do
 G

ar
ci

a-
G

ar
zo

n 
<

ed
ua

rd
o.

ga
rc

ia
g@

ua
m

.e
s>

 -
 S

at
ur

da
y,

 J
ul

y 
27

, 2
01

9 
12

:1
4:

13
 A

M
 -

 I
P 

A
dd

re
ss

:8
3.

34
.1

01
.7

3 

59



the higher one-lagged differences represent some “jumps”
in the distribution of loadings (i.e., .16, .43, and .37). The first
“jump” reveals a potential candidate for representing the
separation of the last near-zero loading (i.e., .02) and the first
substantive loading (i.e., .18).

We propose the average lagged difference as criterion to
identify which items represent the boundary between such
groups (in italics, last row in Panel D, Table 1; e.g., for SF1,
.06), setting the first one-lagged difference in the sorted
distribution with a value higher than the criterion as the
first “jump” (bolded and italicized values in Panel D,
Table 1; e.g., for SF1, .16). The rationale behind is that the
number of “jumps” should be necessarily a small propor-
tion of the one-lagged differences. Lastly, for each factor,
the cut-off is settled to the factor loading corresponding
to the lower endpoint of the interval represented by this dif-
ference (Panel E, Table 1; e.g., for SF1, item 11). In Table 1
example, when compared previously applied cut-offs such
as .15 (Reise et al., 2011) or .20 (Abad et al., 2017), SLiD
found three additional small cross-loadings to be addition-
ally freed in the target matrix (Panel E, Table 1).

It is anticipated that the SLiD method will find, for each
specific factor, an accurate cut-off regardless of the distri-
bution of the loading differences across factors. Unfortu-
nately, SLiD would not produce a satisfactory solution if a
non-identified solution is to be produced (e.g., if at
least (j � 1)/2 targets in each column are not fixed; Aspar-
ouhov & Muthén (2009); condition C1 to C3 adapted to
orthogonal structures in Peeters, 2012). Therefore, SLiD
evaluates if Peeters (2012) conditions C1 to C3 are met in
the target matrix (in a similar fashion to Mplus target rota-
tion; Asparouhov & Muthén, 2009; Myers et al., 2013). If
any of such conditions are not met, the smallest non-fixed
loading of the sorted normalized factor loading distribution
would be fixed in the target rotation. Due to space con-
strains, readers are remitted to original sources for a more
detailed explanation of mentioned factor identification
conditions.

To conclude, the objective of this article is three folded:
first, to investigate for the first time the effect of applying
arbitrary cut-offs on bi-factor target rotation, second, to
understand the properties of the new proposed algorithm
for exploratory bi-factor modeling (SLiD), and third, to
compare the performance of SLiD and SLi under a set of
realistic conditions by means of a Monte Carlo simulation.

Method

Simulation Design

AMonte Carlo study was designed to compare SLiD against
the SLi target rotation using arbitrary cut-offs. For SLi, four

cut-off points were examined (.05, .10, .15, and .20), cover-
ing the range previously considered in bi-factor exploratory
research (Abad et al., 2017; Reise, Moore, & Haviland,
2010; Waller, 2017). Each rotation is hereafter referred to
as SLi followed by the applied cut-off point.

Several variables were manipulated in the following
Monte Carlo simulation (Table 2): sample size (N), number
of variables per specific factor (VAR.SF), number of specific
factors (NUM.SF), and cross-loading size (CROSS.SD),
yielding 3 � 3 � 2 � 3 = 54 fully crossed conditions. Pop-
ulation bi-factor structures were simulated as follows:
(a) General factor loadings ranged from .575 to .625 in
equal increments and were randomly sorted and (b) for
each structure, specific factors were simulated varying in
the average loading size (high, medium, and low); specifi-
cally, loadings ranged in equal increments from .575 to
.625 (first or first two factors, depending upon NUM.SF),
from .425 to .475 (central or two central factors), and from
.275 to .325 (last or last two factors).

For each structure, the first two items in each factor were
set as markers (all their cross-loadings were fixed to zero).
For the remaining indicators, cross-loadings were drawn
from a normal distribution with a mean of 0 and a standard
deviation of .05 (low condition: 95% of cross-loadings ran-
ged between ±.098), .10 (medium condition: 95% of cross-
loadings ranged between ±.196), and .15 (high condition:
95% of cross-loadings ranged between ±.294). This proce-
dure, also found in Meade (2008), simulated cross-loadings
distributions that are consistent with those commonly
found in the literature (Bollmann, Heene, & Küchenhoff,
2015). If either the population correlation matrix was not
positive semi-definite (i.e., minimum eigenvalue � 0) or
the item communalities were higher than .90, all simulated
cross-loadings were replaced. Simulated average item
communalities across conditions depended upon number
of factors simulated and cross-loading size, ranging
from .580 (i.e., NUM.SF = 3; CROSS.SD = .05) to .732
(i.e., NUM.SF = 6; CROSS.SD = .15).

Table 2. Manipulated factors included in the Monte Carlo study

Factor Levels

Sample size (N) Low (n = 500);

Medium (n = 1,000);

High (n = 2,000).

Indicators per specific Low (4);

factor (VAR.SF) Medium (6);

High (12).

Number of specific factors (NUM.SF) Low (3);

High (6).

Cross-loading average Low (M = 0.00, SD = 0.05);

size (CROSS.SD) Medium (M = 0.00, SD = 0.10);

High (M = 0.00, SD = 0.15).
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Data Generation

A total of 800 sample data matrices were simulated for
each condition. First, for each replication, the cross-
loadings were generated. Then, the population correlation
matrix, obtained by inserting unities in the diagonal of
the reproduced correlation matrix, was used to generate a
matrix of random standard normal observed variables with
dimensions of sample size (N) per number of specific
variables (VAR.SF) with the function rmvnorm (mvnorm
package; Gentz et al., 2017; R Development Core Team,
2017).

Rotation Methods

Scripts in R (R Development Core Team, 2017) were
applied to obtain the rotated solutions. The SLi solutions
were computed using the SLi function in Abad et al.
(2017), while the SLiD code is provided in the Electronic
Supplementary Material, ESM 1. In all the cases, the
unweighted least squares estimator was used for factor
extraction (psych package; Revelle, 2017).

Accuracy Criteria

Accuracy was assessed by means of Tucker’s congruence
coefficient (cc; Tucker, 1951), which measures similarity
between two vectors. The cc values are bounded between
�1 and 1, where values ranging from .85 to .94 are consid-
ered as fair and values over .95 reflect that the two factors
should be considered equal (Lorenzo-Seva & ten Berge,
2006).

To accurately compute cc values, estimated factors must
be accordingly aligned with their correspondent population
factor. Firstly, an estimated factor was reverted if the sum
of factor loadings was negative. Secondly, cc was computed
for every possible factor permutation, retaining the solution
that minimized the average deviation between that solution
and the population matrix.

To compare cc means across conditions, analyses of
variance were performed using the jamovi program
0.8.1.13 (jamovi Project, 2018). Partial eta squared (ηp

2)
effect sizes were reported, where ηp

2 > .01, ηp
2 > .06, and

ηp
2 > .14 were considered as small, medium, and large

effects, respectively (Cohen, 1988). Additionally, to depict
how each distinctive factor was recovered (i.e., general
factor and specific factors with high, medium, and low aver-
age factor loadings), the percentage of samples across
conditions showing fair (i.e., cc � .85) and good (i.e.,
cc � .95) recovery were computed for the different rotation
methods.

Results

Mean cc for each rotation procedure and simulated
condition are depicted in Table 3. Firstly, SLiD was the
preferred method in all conditions, consistently producing
the highest cc for all levels considered. Secondly, SLi with
a fixed cut-off point showed an inadequate overall perfor-
mance, with mean cc values decreasing as cut-offs
increased. In this line, it is noteworthy that SLi.20 only
reached a fair recovery (cc� .85) for onemarginal condition
(cc = .887 with low cross-loadings). In general, for all meth-
ods increasing either the sample size or the number of vari-
ables per specific factor resulted in increased factor recovery
(except for SLi.20), while increasing the number of factors
or the cross-loading size decreased their accuracy.

Table 4 provides the analysis of variance (ANOVA) effect
sizes for the SLiD and SLi with arbitrary cut-off point meth-
ods.Allmethodspresentedamedium-to-large two-way inter-
action involving Cross-Loading Size � Number of Factors
(NUM.SF � CROSS.SD), implying that the negative effect
of cross-loadings was reduced in small structures (e.g., cc
decrease for NUM.SF = 3; SLi.05 = .12; cc decrease for
NUM.SF = 6; SLi.05 = .23). The interaction effect size
diminished as the cut-off for SLi increased (SLi.05 ηp

2 =
.307; SLi.10 ηp

2 = .290; SLi.15 ηp
2 = .251; SLi.20 ηp

2 = .209),
being SLiD the most robust method (SLiD ηp

2 = .066).
Lastly, no method was strongly affected by either
sample size (.007 � ηp

2 � .020) or the number of variables
per factor (.003� ηp

2� .098).
Previous results were concerned with the mean cc values

for each complete structure (i.e., averaging over factors of
different average loading size), which could provide a lim-
ited view of the performance of the rotation methods.
When analyzing the percentage of replicates that were
satisfactorily recovered across conditions (Table 5, upper
panel), SLiD performed better than SLi with any fixed
cut-off when recovering all types of factors. The largest dis-
crepancies were found for cc > .95 with factors composed of
high loadings (�λ = .60; difference � 40%). Nevertheless,
results illustrated that not all factors were equally recovered
and that each factor appropriate cut-off was dependent
upon factor loading magnitude. Regarding general, high,
and medium size factors, all arbitrary cut-offs performed
similarly well (average cc difference = .001), where increas-
ing the cut-off point somewhat improved the recovery for
these factors.

However, the opposite effect was found when analyzing
the factors with low magnitude loadings. As the cut-off
increased, the SLi performance was greatly diminished
(cc differences: SLi.05 and SL.10 = .049; SLi.05 and
SL.15 = .076; SLi.05 and SL.20 = .212). It is noteworthy that
even though SLiD still outperformed all SLi methods for
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factors that had low loadings, it still struggled to adequately
recover these factors (SLiD low cc = .829).

Despite the overall results, it should be noted that SLi
with a fixed cut-off point provides a good recovery under
optimal conditions (i.e., CROSS.SD = .05; Table 5, lower
panel). All SLi methods with arbitrary cut-offs satisfactorily
recovered the general, the high, and the medium loading
size factors (i.e., all average cc � .85), benefitting again
from applying higher cut-offs. Once more, SLi methods
with arbitrary cut-offs failed to recover the low loadings
factors, especially when applying higher cut-offs (SLi.15 cc
low loadings = .775; SLi.20 cc low loadings = .641).

Discussion

Almost 80 years after their appearance, bi-factor models
have become a major research topic in the psychometric
literature. This article presented, for the first time, evidence
of the consequences of using arbitrary cut-off points for
exploratory bi-factor target rotation. Furthermore, a new
algorithm for the empirical estimation of accurate cut-offs
under realistic conditions was introduced in this study. This
new proposal was evaluated by means of an extensive
Monte Carlo simulation against alternative methods apply-
ing fixed cut-offs.

Main Findings

The Use of Fixed Cut-Off Points
Recommendations found in the EFA literature (i.e., .30–.50;
Izquierdo et al., 2014) were not satisfactorily translated into
exploratory bi-factor analysis. Due to item variance parti-
tion specified in the bi-factor model, specific factor loadings
could be expected to be lower than in other EFA applica-
tions, entailing the necessity of adapting factor saliency
thresholds. According to our expectations, lower cut-offs
benefited factor recovery when applying bi-factor target
rotation. However, it was demonstrated that the impact of
the arbitrary cut-off point was dependent upon the factor
loading distribution, where higher cut-offs were signifi-
cantly more affected by the presence of a factor with lower
substantive loadings. Remarkably, factors with either high-
or medium-sized loadings were recovered with similar
accuracy by all fixed cut-offs evaluated and with a precision
similar to previous studies (if similar conditions were eval-
uated; Table 5, lower panel). Furthermore, the inclusion of
a low average factor loadings in combination with the pres-
ence of several cross-loadings caused a substantial decrease
in the overall accuracy for SLi with higher cut-off points
(Table 5), particularly if compared with its performance
reported in a previous study (Abad et al., 2017). Lastly, it
should be acknowledged that, as also reported in earlier
research, simple bi-factor structures, with none to a few
low magnitude cross-loadings and high to medium average
loadings factors, are expected to be correctly recovered by
all methods, including SLi with high cut-off points (Abad
et al., 2017; Table 2). Nevertheless, in realistic settings
when structures are expected to either present specific
factors with low average factor loadings, items with strong
cross-loadings, or its combination, SLiD should be
preferred.

Empirical Estimation of Cut-Off Points
The proposed method based on loading differences
(SLiD), which was used in conjunction with SLi rotation,

Table 3. Marginal mean factor recovery for the SLi with arbitrary
cut-off points and SLiD algorithms

Variable/Level SLiD SLi.05 SLi.10 SLi.15 SLi.20

N

500 .920 .845 .842 .835 .817

1,000 .927 .851 .849 .843 .821

2,000 .930 .858 .857 .851 .829

VAR.SF

Low (4) .911 .834 .834 .834 .827

Medium (8) .930 .855 .851 .844 .822

High (12) .936 .866 .861 .851 .819

NUM.SF

Low (3) .930 .886 .881 .868 .835

High (6) .921 .817 .817 .818 .810

CROSS.SD

Low (.05) .965 .934 .931 .921 .887

Medium (.10) .932 .858 .855 .851 .831

High (.15) .880 .762 .760 .757 .749

Average .926 .851 .849 .843 .826

Notes. N = sample size; VAR.SF = variables per specific factor; NUM.SF =
number of specific factors; CROSS.SD = standard deviation for cross-
loading simulation. Congruence coefficients � .85 appear shadowed in
gray. Best cc for each condition appears bolded and italicized.

Table 4. Univariate analysis of variance (ANOVA) effect sizes for SLi
with arbitrary cut-off points and SLiD

Effect type/Variables SLiD SLi.05 SLi.10 SLi.15 SLi.20

Main effects

N .014 .020 .020 .017 .007

VAR.SF .095 .098 .061 .018 .003

NUM.SF .051 .538 .462 .297 .102

CROSS.SD .519 .771 .737 .646 .454

Two-way interactions

NUM.SF � CROSS.SD .066 .307 .290 .251 .209

Notes. N = sample size; VAR.SF = number of variables per specific factor.
NUM.SF = number of specific factors; CROSS.SD = cross-loading standard
deviation. The dependent variable in the ANOVAs was the congruence
coefficient. Only medium (η2p > .06) or larger effects are presented, with
large (η2p > .14) effects shadowed in gray.
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was defined as an iterative, factor-specific, empirically
estimated, automatic algorithm for defining partially speci-
fied target rotations based on an initial SL solution. SLiD
objective is to find the first cross-loading in the sorted
squared normalized factor loading distribution and to fix
values below such value in the target matrix. Additionally,
and to the authors’ knowledge, this is the first target
rotation algorithm deploying a criterion based on sorted,
one-lagged differences obtained from the empirical factor
loading distribution.

Results evidenced that when compared to SLi with arbi-
trary cut-offs, this method improved factor recovery for all
the studied conditions. Far from perfect, the performance
of SLiD was greatly diminished under the presence of high
size cross-loadings, especially when recovering factors with
low substantive loadings (Table 5). However, such a result
may be due to the SLi algorithm itself (and not related to
the method for defining the target matrix), as explained
next.

The Pitfall of the SLi Algorithm
When inspecting replicates that were not adequately recov-
ered, it was observed that factor collapse occurred in sev-
eral cases and that the higher the magnitude of these
cross-loadings, the more aggravated the problem was.
Indeed, factor collapse could be deemed as the conse-
quence of a non-uniqueness problem of the simulated
bi-factor structures (Green & Yang, 2018). If by chance,
or due the presence of cross-loadings (combined with the
presence of factors differing in their average factor load-
ings), the reproduced correlation matrix presents a true
dimensionality approximated to the one of a hierarchical
solution (dimensionality equals the number of specific

factors, not the number of specific factors + one as in the
bi-factor case), SLi solutions could result in factor-collapsed
solutions (which would be in accordance with the true
dimensionality; Mansolf & Reise, 2016). Additionally, these
collapsed solutions could also be consistent with col-
lapsed population, non-simulated, bi-factor structures that
also approximate such reproduced correlation matrices.
Unfortunately, no trustworthy method for evaluating the
uniqueness of a simulated bi-factor structure or to preclude
factor collapse on the basis of a simulated reproduced
correlation matrix prior to factor rotation has been devel-
oped yet.

Furthermore, all SLi-based algorithms apply a partially
specified target rotation where all general factor loadings,
and only some of the specific factor loadings, are freed in
the target matrix. This leads to the general factor to absorb
as much variance as possible. Therefore, if researchers aim
to obtain solutions not presenting collapse, applying an SL
transformation would be a viable option in some cases
(i.e., as the SL solution would provide a good fit to the data).
Alternatively, unreported analyses confirmed that factor
collapse could be prevented in some specific cases by
applying a totally specified target rotation in SLiD. Such
target matrix additionally fixes a value (typically ±1) for
expected substantive values in the target matrix (Browne,
2001), so that all elements in the target rotation are given
a target value. However, there is no free lunch in target
rotation: In a totally specified target rotation, two kinds of
errors could simultaneously occur, as factor loadings are
either being shrunk to zero or enlarged toward ±1. The
latter cannot occur in partially specified matrices, as the
only distances to be minimized are those with respect to
targets of zero. Unfortunately, the effect of applying each

Table 5. Proportion of replicates with mean cc higher than .85 and .95 for SLiD and SLi across all conditions (upper panel) and for low cross-
loading condition (lower panel)

Mean cc cc > .85 cc > .95

Factor SLiD SLi.05 SLi.10 SLi.15 SLi.20 SLiD
(%)

SLi.05
(%)

SLi.10
(%)

SLi.15
(%)

SLi.20
(%)

SLiD
(%)

SLi.05
(%)

SLi.10
(%)

SLi.15
(%)

SLi.20
(%)

All CROSS.SD conditions

General .991 .990 .990 .991 .992 100 100 100 100 100 99 99 99 99 99

High .966 .893 .896 .898 .900 99 76 77 79 79 82 42 45 47 47

Medium .921 .827 .828 .827 .824 89 53 54 55 55 47 17 18 19 19

Low .829 .740 .691 .664 .528 54 28 27 25 18 13 3 3 1 1

CROSS.SD = .05

General 1.00 .998 .999 .998 .998 100 100 100 100 100 100 100 100 100 100

High .990 .969 .972 .973 .973 100 100 100 100 100 100 95 98 99 99

Medium .970 .936 .939 .940 .940 98 97 97 98 97 95 44 48 49 50

Low .901 .836 .812 .775 .641 88 63 62 57 40 31 8 7 7 7

Notes. SLiD: Schmid-Leiman Iterative Bi-factor Difference-based Target Rotation. In case of NUM.SF=6 structures, high, medium, and low loadings factors
represent the average of the two factors with such characteristics, respectively. Mean cc below .85 is presented bolded and italicized. Conditions with cells
with less than 50% appear shadowed in gray.
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type of target rotation to bi-factor structures remains
uninvestigated.

Limitations and Future Directions

Firstly, the current findings are limited to the conditions
studied in the simulation, where the aim of the selected
conditions was to reproduce realistic models covering a
wide range of complex structures. Secondly, neither the
impact of over and under factor extraction, nor items
loading only in either the general or the specific factors
were considered. Lastly, only bi-factor structures with
orthogonal specific factors were simulated. Though alterna-
tive bi-factor structures with oblique specific factors can be
fitted, their interpretation is still a matter of controversy.

Interest in both bi-factor structures and target rotation
methods has dramatically increased over the last decade.
Today, the distinctions and equivalences between explora-
tory hierarchical and exploratory bi-factor structures have
been substantively clarified (Mansolf & Reise, 2016; Waller,
2017). Additionally, while the target rotation has become
one of the most compelling alternatives for studying com-
plex structures, its generalized application is still upheld
by some unresolved limitations: (a) how to identify the best
number of elements to be fixed in the target matrix. The
comparison of SLiD with alternative methods for objective
empirical cut-off estimation (such as Promin; Lorenzo-Seva,
1999) shall be a priority of future research efforts; (b) once
the correct number of elements to be fixed in B is known,
how to deal with optimal solutions prone to local minima
problems (as occurs in Simplimax); and (c) how to guaran-
tee unique bi-factor structures and identified rotated
solutions. While factor identification has received less
attention than other topics in the literature, it should not
be disregarded when applying target rotations.

Additionally, to ensure the predictive validity of an
empirical procedure such as SLiD, a split-half cross-
validation, similar to the one found in FACTOR (Ferrando
& Lorenzo-Seva, 2017), can be applied as follows2:
(a) firstly, divide the sample into two random subsets;
(b) apply SLiD to the first sample to obtain an empirical,
iteratively refined target matrix; (c) apply this target in a
non-iterative fashion to an unrotated solution found in the
second subset; (d) if step b and step c solutions are similar,
researchers can be more confident regarding the validity of
the target applied by SLiD. Researchers should ensure,
however, that both subsets are of sufficient sample size
for both solutions to be properly estimated. Moreover, if
researchers are interested in assessing the accuracy of such

a procedure, a bootstrapping strategy could be of employed
(Raykov & Little, 1999).

Lastly, alternativemethods based on target rotations have
been recently proposed (BIFAD; Waller, 2017). However,
the BIFAD method, which applies a totally specified target
rotation, is also based on using arbitrary cut-off points.
Future research should address how a loadings difference
method for defining a totally specified target in the BIFAD
algorithm would perform and compare it with the recom-
mendations for defining arbitrary cut-off points, which the
authors are currently investigating (Waller, 2017, p. 12).

Electronic Supplementary Material

The electronic supplementary material is available with the
online version of the article at https://doi.org/10.1027/
1614-2241/a000163

ESM 1. Code (.RAR)
This R Script file contains the SLiD algorithm code, as well
as the necessary auxiliary functions to run the SLi function.
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Appendix

Table A1. Algorithm 1: Schmid-Leiman Iterative Bi-factor Difference-
based Target Rotation (SLiD)

1. Start compute a Schmid-Leiman solution.

2. repeat

3. for factor loading matrix.

4. if factor column is a specific factor.

5. define target rotation matrix based on sorted squared
normalized factor loading differences

6. if conditions C1 to C3 defined in Peeters (2012) are met:

the smallest non-fixed element of sorted normalized factor
loading vector is fixed in the target matrix

7. else all entries are freed in the target rotation matrix.

8. end if

9. perform partially specified target rotation using gradient projection
algorithm.

10. end for

11. until convergence criterion achieved (equal target matrix in two
consecutive solutions).
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SPM-LS Dimensionality
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Abstract: There has been increased interest in assessing the quality and usefulness of short versions
of the Raven’s Progressive Matrices. A recent proposal, composed of the last twelve matrices of the
Standard Progressive Matrices (SPM-LS), has been depicted as a valid measure of g. Nonetheless, the
results provided in the initial validation questioned the assumption of essential unidimensionality
for SPM-LS scores. We tested this hypothesis through two different statistical techniques. Firstly, we
applied exploratory graph analysis to assess SPM-LS dimensionality. Secondly, exploratory bi-factor
modelling was employed to understand the extent that potential specific factors represent significant
sources of variance after a general factor has been considered. Results evidenced that if modelled
appropriately, SPM-LS scores are essentially unidimensional, and that constitute a reliable measure of
g. However, an additional specific factor was systematically identified for the last six items of the test.
The implications of such findings for future work on the SPM-LS are discussed.

Keywords: Raven matrices; Standard Progressive Matrices test; dimensionality; bi-factor; parallel
analysis; target rotation; exploratory graph analysis

1. Introduction

The Standard Progressive Matrices (i.e., SPM [1]), in any of its forms, constitutes one of the most
applied tests for measuring general intelligence (g). Due to its considerable length (60 items), there
has been a growing interest in developing short versions of this test. Unfortunately, the available
short versions—such as the Advanced Progressive Matrices tests (i.e., APM)—present substantial
shortcomings [2]. Consequently, [2] proposed the SPM-LS, a new short version of the SPM test based on
its last, most-difficult 12 matrices of this test. These items consist of non-verbal stimuli where each item
presents a single correct answer and seven distractors. In its recent validation, the SPM-LS scores were
analysed using exploratory and confirmatory factor analyses as well as item response theory models
as follows: After concluding that the SPM-LS scores were sufficiently unidimensional, individual
responses were modelled with the 1 to 4 parameter logistic models. Additionally, a three-parameter
nested logistic model was applied to recover relevant information from responses to the different
distractors. Remarkably, the original authors concluded that the SPM-LS was a superior alternative to
the APM test ([2]; p.113), and encouraged other researchers to re-analyse this dataset by making it
publicly available and by opening a call for papers on the matter in the Journal of Intelligence.

As part of this call, this investigation will re-evaluate [2] claim of SPM-LS being essentially
unidimensional. This claim is vital to understand if SPM-LS represents a valid measure of g and
represent a necessary assumption for many of the following analysis presented by the original authors.
As [2] acknowledged that “SPM-LS may not be a purely unidimensional measure” (p.114), we decided
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to analyse SPM-LS dimensionality by expanding the original approaches with the application of
network-based exploratory analysis and bi-factor modelling.

1.1. On the Progressive Matrices Dimensionality

Few consensuses are more extended in the intelligence literature than the belief that the SPM
test [1] represents a consistent measure of general intelligence (g; Panel A, Figure 1). Even though this
claim has received overwhelming support in the literature [3–5], other authors have considered general
intelligence to be a broader construct to be measured with different tasks and item formats [6]. Be that
as it may, support for strict unidimensionality has historically been equivocal for short SMP versions
such as the APM test. As early as 1981, some authors found evidence of an orthogonal two-factor
model [7,8] were among the first authors to suggest that a nuisance factor, corresponding to a “speed
factor”, could be found for APM scores (Panel C, Figure 1). [3] found that the two-factor proposed
in [2] fitted the data better than the single factor model if the inter-factor correlation was estimated.
Nevertheless, the high magnitude of this correlation (i.e., 0.89; Panel B, Figure 1; [3]), in conjunction
with the inspection of fit statistics, was taken as evidence in favour of a unidimensional model. Since
then, other authors on the field have supported [3] conclusions [4,5].
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during EFA target rotation.

Recent applications of bi-factor modelling offered new insights regarding the dimensionality of
the APM, as well as the role of potential secondary factors (Panel E, Figure 1). As the bi-factor model
simultaneously estimates a general plus several orthogonal specific factors [9], it provides a clear
separation of such different sources of variation. Noteworthy, as specific factors only account for a
variance that is residual to the general factor [10], the bi-factor model can shed light about APM scores
being affected by other sources of variation in addition to g. Indeed, APM scores do not represent a
perfect measure of g and that alternative tests (such as Arithmetic Applications from the Weschler
Adult Intelligence Scale included in the Minnesota Study of Twins Reared Apart [11]) were more
strongly loaded by g in some specific datasets [12]. Moreover, approximately 50% of the APM true
variance could be related to g, with 10% belonging to specific factors, and as much as 25% related to
test specific variance [12]. Confirmatory bi-factor models (i.e., BCFA) also presented a better fit to
the data than the unidimensional model in alternative applications such as the Coloured Progressive
Matrices test (an adaptation of the APM test to children from five to 11 years old; [13]).

69



J. Intell. 2019, 7, 14 3 of 18

Most recently, the presence of additional dimensions accounting for speed factors (as well as other
effects such as item position) in APM scores [14] has been linked to specific learning types [15] as well
as developmental differences [16]. In either case, such evidence reflects these factors possibly being of
theoretical interest. Nevertheless, the presence and nature of these additional factors in APM scores is
still a matter of contention.

1.2. Modern Approaches Towards Dimensionality Assessment

Most authors have generally based their decisions regarding the unidimensionality of the SPM
scores either by applying eigenvalue-based dimensionality assessment methods (i.e., parallel analysis),
by comparing fit statistics from CFA models (i.e., comparing the Comparative Fit Index) or by
inspecting general factor reliability (i.e., Cronbach’s α). Unfortunately, these three strategies have
substantial shortcomings: Firstly, parallel analysis could hide relevant sources of variation while
overestimating the presence of a single factor [17]. Also, its estimation is substantially affected by
the response patterns when analysing tetrachoric and polychoric correlation matrices under limited
sample size [18]. Secondly, CFA models could hide severe misspecification issues and result in biased
parameter estimation [19,20]. Accordingly, CFA model-based reliability estimations could also be
highly biased [21]. Thus, exploratory structures should be preferred in many cases [18,19]. We aim
to resolve these issues by complementing these analyses with a new technique for dimensionality
assessment (EGA) and the novel investigation of different exploratory factor models for the SPM-LS test.

1.2.1. Parallel Analysis

Parallel analysis is one of the main tools for dimensionality assessment [17,22,23]. Either when
based on principal component or factor analysis solutions, parallel analysis has repeatedly been
shown to optimally detect the true underlying unidimensionality in simulation studies [23–25].
However, parallel analysis is also fallible [18,23], with different conditions affecting each version of
this procedure [17,22]. Principal component factor analysis is more reliable than the factor analysis
alternative for structures with a small number of factors and binary data [17,22]. Unfortunately, it tends
to wrongly suggest a single component to be retained if high factor correlations are present (as expected
to occur in SPM-LS; [3]). On the other hand, factor analysis-based parallel analysis could be misleading
if factors are not well defined (i.e., factor loadings < 0.40; [17]), which is indeed a plausible scenario
for SPM-LS scores based on [12] depiction of APM variance partition. Additionally, either method
presents difficulties in recovering the true dimensionality if samples < 500 are analysed (the size of [2]
dataset; [17,26]). Finally, binary and categorical items presenting highly unbalanced categories (e.g.,
where the correct response represents 80–90% of the observed responses) could strongly affect parallel
analysis performance [18,27,28].

1.2.2. Exploratory Graph Analysis

Exploratory Graph Analysis (EGA) is a statistical procedure that assesses latent dimensionality by
exploring the unique relationships across pairs of variables (rather than the inter-item shared variance,
as in common factor analysis; [29]). To do so, a sparse Gaussian Graphical Model is estimated (i.e.,
GGM) over the K precision matrix. K is the inverse of the inter-item variance-covariance matrix (i.e.,
K = Σ−1; [30]) and it contains the partial correlations across pairs of observed variables. The sparse
GMM is estimated by applying a penalization function (a common method is to select the GMM which
minimises the extended Bayesian Information Criterion). After the GLASSO GMM is estimated, a
walktrap clustering algorithm is applied to detect the optimal number of clusters in the network and
to assign each item to a single dimension [21]. This algorithm, namely the combination of GLASSO
GMM and walktrap clustering, has received the name of EGA. Although alternative versions of EGA
exist, such as EGA with the triangulated maximally filtered graph approach (EGAtmfg), the former is
preferred when high correlations between factors are expected (being the case for SPM-LS) [21].

70 Searching for G: A New Evaluation of SPM-LS Dimensionality



J. Intell. 2019, 7, 14 4 of 18

EGA has been successfully applied to investigating the dimensionality of constructs such as
personality [31], intelligence [32], and demonstrated to be as effective as parallel analysis when
recovering true dimensionality under dichotomous data [17]. Nonetheless, EGA should be able to
detect the number of underlying dimensions equal to or better than parallel analysis, even under
suboptimal conditions (limited sample size; [17]). EGA is not presented as a substitute for techniques
such as parallel analysis, but rather as a complementary tool to be studied in combination with
them [17]. Accordingly, if parallel analysis results in indications of multidimensionality, researchers
could benefit from exploring new techniques based on network analyses [30].

1.2.3. Exploratory Bi-factor Modelling

A review of the SPM literature has shown that two main factors models have been of interest:
a unidimensional [2,4] and a multidimensional (bi-dimensional) solution [8]. Thus, it is legitimate
to question to what extent specific sources of variance detected by parallel analysis or EGA could
provide additional, meaningful information beyond g. In this sense, the bi-factor model should be
the model to be evaluated [32,33]. The bi-factor model has been depicted as the best-suited model
for assessing variance partition, to examine whether a structure is sufficiently unidimensional, and
to measure the incremental value of potential specific factors [21,32,33]. When assessing estimated
general factor strength, factor reliability should be compared using the omega hierarchical statistic
(ωH) [21,32]. Additionally, and to test the hypothesis of sufficient unidimensionality, the Explained
Common Variance (i.e., ECV) and the Percentage of Uncontaminated Variances (PUC) should be
compared altogether with ωH for confirmatory models [34,35]1.

All model-based statistics are computed from a standardised factor analysis solution [32,36].
Therefore, it is necessary to ensure a proper estimation of the underlying bi-factor model in order
to obtain unbiased reliability and ECV estimates. Given the difficulties for CFA models to recover
complex structures (such as the bi-factor model) under realistic conditions (when cross-loadings are
expected to occur; [19]), the bi-factor CFA models are often expected to produce biased parameter
estimation [33]. In this context, exploratory alternatives such as EFA or Exploratory Structural Equation
Modeling (i.e., ESEM) are becoming more and more widespread [37,38]. As these techniques offer
model fit assessment while not imposing restrictions on the factor pattern matrix, they provide the
modelling advantages of CFA while improving parameter estimation [18,39].

Exploratory bi-factor analysis (BEFA; Panel D, Figure 1) is a widely applied, compelling alternative
to confirmatory bi-factor models [40]. The unique distinction between a BCFA and BEFA is that the
latter allows the presence of cross-loadings for all specific factors [36] while maintaining the remaining
characteristics (i.e., orthogonality between all factors). As each specific factor is still expected to be
loaded by at least three indicators, variance partition, as well as the remaining BCFA characteristics, are
present in a BEFA model [35]. However, how to approximate BEFA models is still a matter of debate.
One of the most promising alternatives is via bi-factor target rotation, a technique applied in the
BIFAD [10], the PEBI [41], or the SL-based iterative target rotation (SLi and SLiD algorithms; [36,38]).

In bi-factor target rotation, factor loadings to be minimised in the rotation procedure (i.e., items
expected to have near-zero magnitude in the rotated loading matrix) are identified by giving them
a zero value in the target matrix. As a convention, as general factor loadings are always freed (as
each loading is expected to have a substantial load on this factor). The main issue then is to identify
which loadings should be freed in the target rotation for the specific loadings. Conveniently, empirical
cut-off points such as promin [42] or the procedure applied in SLiD algorithm [36] are able to select
which loadings to be fixed based on each factor ’s loadings distribution, and to prevent researchers

1 Specific factor omega hierarchical and PUC are only computable for confirmatory solutions. Estimating such statistics
in exploratory models would require researchers to decide which items or correlations are being considered by the
specific factors.
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from deciding on applying inappropriate fixed cut-off points (such as fixing all λ < 0.20; [36]). As
an example, SLiD has been demonstrated to accurately recover bi-factor models in conditions under
realistic conditions (i.e., cross-loadings or specific loadings of near-zero value), and to outperform
more well-known methods such as the Schmid-Leiman orthogonalization, and the family of analytic
rotations [43,44]. Promin-based algorithms (i.e., PEBI) has also been depicted as a compelling alternative
and an improvement over alternative algorithms such as BIFAD [42]. Additionally, as the use of
empirically defined target rotation is expected to improve parameter estimation, the estimation of
general omega hierarchical, ECV and other model-based reliability estimates is also anticipated to
be improved.

1.3. SPM-LS Dimensionality

SPM-LS dimensionality was evaluated by using a combination of parallel analysis, EFA and
CFA results [2]. However, due to the limited sample size and the unbalanced responses patterns,
parallel analysis results presented by the authors should be examined with caution. As the authors
acknowledged, SPM-LS data presented some strong ceiling effects, when “10.4% of the sample had a
perfect score of 12” [2] (p.114). This situation could have resulted in suboptimal performance of parallel
analysis. In the results section, the authors declared that up to five factors should be retained via factor
analysis parallel analysis. Additionally, and due to the large ratio of the first to second eigenvalue
(5.92 to 0.97), evidence of a robust general factor was said to be found [2]. However, as factor analysis
parallel analysis could be more unreliable than its principal-component alternative for the study at
hand (due to limited sample size and the binary nature of the data), the results of both techniques
should have been taken into consideration (e.g., when computing ratios of eigenvalues).

The authors additionally reported that no evidence of relevant specific factors was identified, as
factor pattern loadings on unreported solutions including two to five factors were not in line with any
theoretical expectation (i.e., “were uninterpretable”; [2], p. 112). However, the authors did not report the
structures tested, or if models combining general and specific sources of variation (i.e., bi-factor) were
estimated. Lastly, as global fit indexes suggested an adequate fit for the unidimensional model (i.e., even
though RMSEA was as high as 0.079) and the general factor was considered as reliable (ωH = 0.86), the
authors concluded that the SPM-LS scores could be considered essentially unidimensional [2] (p.112).
In this investigation, this claim will be revisited by a more nuanced inspection of SPM-LS scores by
applying traditional methods (exploratory and confirmatory unidimensional and bi-dimensional factor
models) as well as two recently developed methods for assessing and validating multidimensional
scales (EGA and bi-factor exploratory modelling).

2. Materials and Methods

2.1. Instrument and Data

The SPM-LS scores are those made publicly available by [2] for this special edition. In detail, the
sample is composed of the answers of 499 undergraduate students who responded to the SPM-LS.
The SPM-LS consists of the last 12 matrices the Standard Progressive Matrices [1] (i.e., those of
greatest difficulty). Noteworthy, even though these items could be considered as polytomous, and
essential information could be retrieved if they were treated as such [2], it is common to score them
as dichotomous items: either a respondent identified the correct answer or not according to the item
key provided by the authors. Accordingly, the tetrachoric correlation matrix was here studied. In this
application, respondents had no time limit to complete the 12 items and were encouraged to respond
to each item. Accordingly, no missing data were observed.

2.2. Statistical Analysis Plan

The following analysis will be performed to inspect the factor structure of the SPM-LS: Firstly, the
dimensionality of the SPM-LS will be assessed applying both, principal component and factor analysis
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parallel analysis. Secondly, these results will be contrasted with those of EGA. If the SPM-LS is regarded
as multidimensional, the hypothesis of essential unidimensionality will be tested by inspecting a
series of unidimensional, exploratory and confirmatory bi-dimensional and bi-factor models (Figure 1).
These models would be compared in terms of model fit, factor pattern results, ωH and ECV, and
PUC values (when possible). To estimate BEFA models, a bi-factor target rotation would be defined
from bi-dimensional EFA solution, using the empirical cut-off point definition algorithm included in
SLiD [36] and the promin cut-off estimation [42].

Most analyses were conducted in R 3.5.2. [45] in a reproducible manner using the rmarkdown [46]
and the papaja [47] packages. The correlation matrix was obtained using the cor_auto () function in
the qgraph package [48], which provided similar results to the tetrachoric () function from the psych
package [49]. Principal component and factor analysis were conducted using the fa.parallel () function
in the psych package [49]. EGA was applied using the EGA package [50]. EFA and CFA models
were computed using the lavaan package [51]. Cronbach’s α and omega estimates were computed
from the reliability () function from the semTools package [52] following current recommendations on
the field [53]. EFA models were rotated using oblique target rotation using the gradient projection
algorithm included in the GPArotation package [54]. Bi-factor target was defined using the promin
rotation [42] and the algorithm included in the SLiD [36]. The bi-dimensional EFA model was computed
using minimum residual as the extraction method and target rotation towards the expected EGA
solution. ESEM models for estimating bi-dimensional EFA and bi-factor EFA models with a free
residual correlation were fitted in Mplus 7.3. Scripts for reproducing all analyses (i.e., main text,
Appendices A and B results) can be found as Supplementary Data.

3. Results

3.1. Descriptive Analysis

A characteristic of the SPM-LS is that the chosen items represent the most difficult items from the
SPM. However, the proportion of correct responses did not monotonically decrease as a function of
item position (Figure 2), as it could be somewhat expected. The first six items (SMP1 to SMP6) had high
correct proportions of correct responses (0.76 < pcorrect < 0.91; where pcorrect is the observed proportion
of correct answers) and were identified to present similar rates of unbalanced response patterns. On
the other hand, the last three less than half of the responses collected were correct items (SPM10:
pcorrect = 0.39; SPM11: pcorrect = 0.36 and SPM12: pcorrect = 0.32). As said before, these unbalanced
response patterns could lead to significant estimation errors in the tetrachoric correlation estimation.
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A visual inspection of the tetrachoric correlation matrix (Figure 3) revealed an unusually high
correlation between items (r SPM4 – SPM15 = 0.91), which was substantially larger than the ensuing
correlation in terms of magnitude (r SPM5 – SPM16 = 0.77). In detail, 79.8% of individuals who correctly
responded SPM4, also were correct for SPM5. Moreover, 11.8% of respondents who failed SPM4, also
failed SPM5. Thus, there was only 8.4% of respondents who failed/gave a correct answer or gave
a correct answer/failed SPM4-SPM5, respectively. A visual inspection of the tetrachoric correlation
heatmap revealed two distinct blocks of inter-item correlations: The first one between items SMP1 to
SPM6, and the second one between items SPM7 to SMP11. Therefore, Figure 3 is indicative of two
distinct sources of multidimensionality. Due to the limited sample size, and the highly unbalanced
response patterns for items such as SPM2, SPM11, and SPM12, it is noteworthy that the tetrachoric
correlations between these items could be affected by significant estimation errors.
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3.2. Dimensionality Assessment.

We exactly replicated the results provided by [2] when computing parallel analysis over the
tetrachoric correlation matrix (using maximum likelihood)2 (Left panel, Figure 4; also Figure 1 in [2]).
The number of factors to be retained was 5, with eigenvalues of 5.92, 0.93, 0.36, 0.18, and 0.10
(simulated eigenvalues of.52, 0.21. 0.16, 0.12, 0.07). The number of components to be retained was
2, with eigenvalues as of 6.36 and 1.60 (simulated eigenvalues of 1.26 and 1.20). Noteworthy, it was
observed that the authors conducted this analysis over the tetrachoric correlation matrix, obtaining the
eigenvalues to be compared against those extracted by generating random normal data. However, this
strategy is considered highly inadequate [18]. A better strategy when analyzing tetrachoric correlations
is to obtain the random eigenvalues by resampling from the observed data. Accordingly, we repeated
the analysis with this specification (Right panel, Figure 4). Factor and principal component factor
analysis suggested to retain two and three factors/components, respectively: factor analysis parallel
analysis showed eigenvalues of 3.43, 0.73 and 0.33 (with resampled eigenvalues of 0.54, 0.20 and 0.15)
while principal components PA resulted in eigenvalues of 4.09, 1.51 for the original components (with
resampled components of 1.26 and 1.19).

2 Using other extraction methods (i.e., ordinary least squares) led to similar conclusions regarding the underlying dimensionality,
but for weighted and generalized least squares, which suggested to retain three factors and two components.
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with residual item covariances [55]. Both techniques of parallel analysis agreed in this re-analysis that 

Figure 4. Parallel analysis results: (a) Original Principal component and parallel factor analysis with
eigenvalue simulated from random normal data; (b) Principal component and parallel factor analysis
correct eigenvalues obtained from resampling from original data.

Nevertheless, both parallel analysis techniques are suggesting the SPM-LS be multidimensional.
The discrepancy between both methods (suggestions of three factors vs two components to be retained)
could be due factor analysis-based parallel analysis being more affected by the limited sample size
analysed. EGA agreed with principal component parallel analysis and identified two underlying
dimensions (Figure 5), one composed of items one to six and the other of items seven to twelve.
Moreover, EGA results confirmed that the highest observed partial correlation was observed for the
pair SPM4–SPM5. This partial correlation indicates that, after controlling for all the other variables,
these items were strongly conditionally dependent.
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Figure 5. Exploratory Graph Analysis of SPM-LS data. Dimensions and items associated are presented
in different colours. Positive partial correlations are depicted in green, with negative partial correlations
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Therefore, and after inspecting the tetrachoric correlation matrix and observing the dependence
between SPM4–SPM5 items, it was decided to reanalyse SPM-LS dimensionality after aggregating
these items. Item parcelling (i.e., aggregating items) have been shown as a valid alternative to deal with
residual item covariances [55]. Both techniques of parallel analysis agreed in this re-analysis that two
factors should be retained. EGA also resulted in two factors being identified, with a similar distribution
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than in Figure 5. Therefore, robust evidence from both, parallel analysis and EGA, supported the
hypothesis of SPM-LS being bi-dimensional (either when treating the original set of items, or the
reduced version combining items SPM4 and SPM5). Analysis details and results of this analysis are
presented in Appendix A.

3.3. Factor Modelling

The standardised factor solutions for all estimated models are shown in Table 1. Likewise, the fit
indices for all estimated models are presented in Table 2. For the sake of comparison, similar models
not estimating the residual correlation between SPM4–SPM5 were also computed. Standardised factor
loadings and model fit indices of these models without including this residual correlation are presented
in Appendix B.

Table 1. Standardized factor loadings for all model tested.

Unidim. Unidim.M. BID.EFA BID.CFA BEFA BCFA

Item G G S1 S2 S1 S2 G S1 G S

SPM1 0.47 0.48 0.59 −0.08 0.50 0.00 0.54 −0.12 0.50 0.00
SPM2 0.72 0.74 0.93 −0.15 0.76 0.00 0.82 −0.22 0.77 0.00
SPM3 0.72 0.73 0.88 −0.09 0.76 0.00 0.81 −0.16 0.76 0.00
SPM4 0.92 0.84 0.55 0.41 0.89 0.00 0.81 0.25 0.88 0.00
SPM5 0.94 0.87 0.67 0.30 0.91 0.00 0.86 0.15 0.91 0.00
SPM6 0.81 0.83 0.75 0.17 0.85 0.00 0.85 0.05 0.85 0.00
SPM7 0.66 0.67 0.30 0.47 0.00 0.71 0.60 0.33 0.62 0.30
SPM8 0.70 0.71 0.23 0.58 0.00 0.75 0.61 0.42 0.62 0.40
SPM9 0.61 0.61 0.20 0.50 0.00 0.65 0.53 0.36 0.52 0.39

SPM10 0.79 0.80 0.43 0.48 0.00 0.85 0.74 0.32 0.76 0.27
SPM11 0.62 0.63 −0.04 0.75 0.00 0.66 0.44 0.58 0.44 0.63
SPM12 0.53 0.54 −0.38 1.00 0.00 0.57 0.28 0.80 0.31 0.73
ϕ - - 0.56 0.82 0.00 0.00

SPM4-SPM5 - 0.69 0.70 0.56 0.70 0.57
1 Unidim = Unidimensional model. Unidim.M. = Unidimensional model with SPM4-SPM5 residual correlation
estimated. BID.EFA = Bi-dimensional exploratory factor analysis. BID.CFA = Bi-dimensional confirmatory factor
analysis. BEFA = Bi-factor exploratory factor analysis. BCFA = Bi-factor confirmatory factor analysis. All loadings
over 0.30 are presented bolded. ϕ= Inter-factor correlation. SPM4–SPM5 = Residual covariance between SPM4-SPM5
items. G = General Factor. S1= First specific factor. S2 = Second specific factor. Factor loadings with values > 0.30
appear bolded.

Table 2. Model fit indices for all tested models.

Np df X2 p CFI TLI RMSEA SRMR

Unidim. 24 54 221.75 0.00 0.95 0.93 0.08 (0.07–0.09) 0.11
Unidim.M. 25 53 205.88 0.00 0.95 0.94 0.08 (0.07–0.08) 0.11

BID.EFA/BEFA. 36 42 80.50 0.00 0.99 0.98 0.04 (0.03–0.06) 0.06
BID.CFA 26 52 160.69 0.00 0.96 0.96 0.07 (0.05–0.08) 0.09

BCFA 31 47 113.72 0.00 0.98 0.97 0.05 (0.04, 0.07) 0.07
1 Unidim = Unidimensional model. Unidim.M. = Unidimensional model with SPM4–SPM5 residual correlation
estimated. BID.EFA = Bi-dimensional exploratory factor analysis. BID.CFA = Bi-dimensional confirmatory factor
analysis. BEFA = Bi-factor exploratory factor analysis. BCFA = Bi-factor confirmatory factor analysis. Np = Estimated
number of parameters. Df = degrees of freedom. 2 = Chi-square statistic. P = p-value associated with 2 test of fit.
CFI = Comparative fit index. TLI = Tucker-Lewis index. RMSEA = Root Mean Square Error of Approximation
(with 95% confidence interval in parenthesis). SRMS = Standardized Root Mean Square Residual. Best fit indices
presented bolded and underlined. Model fit indices for the best fitting model appear bolded.

3.3.1. Unidimensional Model

We first replicated the original results with regards to the CFA unidimensional model [2]. We
found the same model fit indices (CFI = 0.95, TLI = 0.93, RMSEA = 0.08, SRMS = 0.11). Cronbach’s
α = 0.92 and ωHG = 0.83 also matched those reported. For this model, the high RMSEA and SRMR
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values suggest questionable fit. Estimating the correlation between SPM4–SPM5 resulted in improved
model fit (CFI = 0.95, TLI = 0.94, RMSEA = 0.08, SRMS = 0.11). As expected, the SPM4–SPMP5
correlation was high and positive (ψ = 0.69). Accordingly, the remaining presented models will
include the estimation of the residual correlation between both items. Additionally, this unidimensional
model showed adequate reliability (Cronbach’s α = 0.92; ωHG = 0.86).

3.3.2. Bi-Dimensional Model

Two bi-dimensional structures were computed. Firstly, an exploratory bi-dimensional model was
fitted in order to understand if EFA results supported the idea of a bi-dimensional SPM-LS structure.
Secondly, such an EFA structure was tested as a confirmatory model to understand the role of potential
cross-loadings present on the data. EFA model fit indexes revealed that this structure provided an
excellent fit to the data (CFI = 0.99, TLI = 0.98, RMSEA = 0.04, SRMS = 0.06), improving model fit with
respect to the unidimensional case. Additionally, a lower inter-factor correlation of (ϕ ≈ 0.56) was
obtained3. The SPM4–SPM5 correlation of this residual correlation (ψ = 0.70) was similar to the one
observed in the unidimensional model.

The confirmatory bi-dimensional (CFI = 0.96, TLI = 0.96, RMSEA = 0.06, SRMS = 0.09) presented a
better model fit than the unidimensional model, but worse than its exploratory counterpart. Fixing all
cross-loadings to zero led to observe a larger factor correlation (ϕ = 0.82), larger SPM4–SPM5 loadings
(λSPM4 = 0.89,λSPM5 = 0.91), and a diminished residual correlation between them (ψ = 0.56).
In this case, both factors were considered as reliable if measured by Cronbach’s α standards (factor
1 = 0.91, factor 2 = 0.85), and close to acceptable reliability when inspecting ωHS (factor 1 = 0.75 factor
2 = 0.70). In conclusion, a bi-dimensional model (either by EFA/CFA based) improved model fit over
the unidimensional structure. As indicated by the substantial inter-factor correlation observed in all
models, a general factor could play a substantial role in SPM-LS structure. This hypothesis will be
explored next via bi-factor modelling.

3.3.3. Bi-Factor Model

Two bi-factor models were tested: a BEFA model fitted using bi-factor target rotation and a
BCFA model restricting cross-loadings to zero. Either using the algorithm included in SLiD [36]
or a promin-based cut-off [42] resulted in items SPM7 to SPM12 being freed in the specific factor.
Noteworthy, as rotation does not affect model fit [29], fit indices for this model were those of the
exploratory bi-dimensional structure. The BEFA model (Table 1) presented three main characteristics: (a)
The rotation procedure recovered orthogonal factors (even if oblique target rotation was applied), which
aligns with the expectations of the bi-factor model; (b) Although the general factor was well-defined
(all loadings over λG > 0.30), SPM11 and SPM12 presented higher loadings on the specific factor
(λSSPM11 = 0.58,λSSPM12 = 0.80) than in the general factor (λgSPM11 = 0.44,λGSPM12 = 0.29); (c) the
residual correlation between SPM4 and SPM5 was similar to the one observed for the unidimensional
model (ψ = 0.70). With regards to BEFA general factor reliability, it was considered as adequate
(ωHG = 0.80; ECV = 0.74).

The BCFA model showed the best fit indexes from all confirmatory models (Table 2; CFI = 0.98,
TLI = 0.97, RMSEA = 0.05, SRMS = 0.07). Both factors were well-defined (all loadings λ > 0.30) with
SPM4–SPM5 general loadings being stronger than in the BEFA model (as they were inflated due their
cross-loadings being fixed to zero). SPM4–SPM5 residual correlation was similar to the one observed
in the confirmatory bi-dimensional model (ψ = 0.57). Overall, general factor reliability was also
adequate (ωHG = 0.75; ECV = 0.80). Additionally, the associated PUC was (132− 42)/132 = 0.68.
Under the presence of PUC < 0.80, researchers are recommended that ωH > 0.70 and ECV > 0.60

3 Using alternative oblique rotations (i.e., oblimin, promax, geomin) resulted in factor structures with a similar distribution of
loadings and size. Main differences were small in magnitude, and mostly affected the inter-factor correlation size.
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be used as benchmarks for considering essential unidimensionality [34]. Therefore, while the BCFA
provided an adequate approximation towards SPM-LS multidimensionality, the presence of a strong,
reliable general factor also favours that SPM-LS scores be considered as essentially unidimensional.
Lastly, the specific factor reliability (ωHS = 0.31) was in the range of values commonly observed on
bi-factor modelling [32,33].

4. Discussion

The SPM-LS (Standard Progressive Matrices–Last Series) has been recently proposed as an
improved short version of the SPM test [2]. The SPM-LS was treated as an essentially unidimensional
measure of g, with better psychometric properties than alternative tests such as the Advanced
Progressive Matrices test (i.e., APM). On these grounds, [2] proceeded to fit a series of IRT models to
study the benefits of studying the nominal responses in the test, acknowledging that mixed results from
EFA and CFA results could suggest SPM-LS not being a strictly unidimensional measure. The authors
further recommended investigators to conduct additional research on this matter. We aimed to shed
light on SPM-LS dimensionality using improving the dimensionality techniques applied (comparing
parallel analysis with exploratory graphic analysis results) and by providing a thoughtful exploration
of unidimensional, bi-dimensional and bi-factor SPM-LS structures.

The main result of this study is that SPM-LS can be considered as essentially unidimensional
measurement of intelligence if appropriately treated. Reliability and unidimensionality indices obtained
from a bi-dimensional bi-factor model provided strong evidence of this conclusion. Notwithstanding
the evidence of essential unidimensionality, it is also true that a non-ignorable, nuisance factor
associated with the last six indicators of the SPM-LS was systematically found, either when applying
parallel analysis, EGA, or factor modelling. An additional residual covariation between SPM4–SPM5
was also observed. This circumstance that should be discussed in more detail: Firstly, such a high
residual correlation between both items might be due to significant estimation error in the tetrachoric
matrix, altogether with the limited sample size. If so, future research employing different, larger
samples should be able to identify a substantially smaller covariation between these items. Secondly,
the relationship between SPM4 and SPM5 in terms of content and rules used for resolving these items
should be inspected in further detail in order to decide if the information provided by both items is
truly distinct or redundant.

This study evidence dimensionality assessment is a complex task which often requires convergent
evidence from different sources and statistical techniques (as suggested in the case of parallel analysis
and EGA; [17]). Moreover, being overconfident about model fit indices could be misleading when
selecting an appropriate solution. Model fit should always be complemented with alternative indices
(such as ωH, ECV or PUC) when possible [34]. Lastly, caution should be exercised when interpreting
high inter-factor correlations in confirmatory models as evidence of unidimensionality, as these
correlations could be inflated if relevant cross-loadings are being omitted. As an example, the
inter-factor correlation was substantially larger for the bi-dimensional confirmatory structure that
for its exploratory counterpart. To avoid such situations, we recommend researchers to confront
results from both exploratory and confirmatory versions of the models to be investigated. If relevant
cross-loadings to be potentially fixed are identified, we agree with previous authors that exploratory
models should be prioritized [19,20].

Lastly, the result of applying bi-factor modelling was clear: We found evidence of a robust and
reliable g factor (which resulted in our conclusion of SPM-LS scores being essentially unidimensional
by current benchmarks [34]), plus an additional nuisance factor related with the last six items. While
the interpretation of this latter factor could be somewhat controversial, it cannot be associated with a
speed factor as in previous applications of similar tests [7,56] (as respondents had no time limit to reply
to the matrices). An alternative explication is that such a factor would be related to guessing strategy
or a difficulty component. Noteworthy, the first six items were (almost uniformly) correctly responded
(with a proportion of correct responses near to 0.80), with the last six items presented a decreasing
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proportion of right answered (as evidenced in Figure 2). Under these conditions, it is known that
parallel analysis is set to fail and that exploratory factor analysis under tetrachoric correlations could
result in reflecting a difficulty factor [57,58]. Alternatively, the idea of guessing strategies being a
relevant aspect of SPM-LS data was strongly supported by the original authors [2], as they showed
that a three-parameter IRT model (incorporating a pseudo-guessing parameter) fitted the data better
than alternative models. In this sense, and as pointed out by a reviewer, statistical artefacts of similar
nature could be observed when applying factor analysis to a tetrachoric correlation matrix obtained
from data generated from a three-parameter IRT model. Therefore, additional research on this matter
should be granted in future SPM-LS applications. Thus, evidence suggests that guessing could play
a substantive role with regards to general intelligence estimation. Even though we expanded these
findings by identifying that guessing could also affect dimensionality assessment, future research
should focus on re-assessing SPM-LS dimensionality under the assumption of data being generated
from the three-parameter nested logistic model, as it has been shown to improve the effectiveness
of parallel analysis [58]. Lastly, specific item position and item difficulty effects should aim to be
separately studied (as they are confounded in the current SPM-LS form). Additionally, structural
models aimed to measure each specific effect should also be encouraged to be applied [14].

Overall, the consequences of the presented findings are two-folded: firstly, even though researchers
could treat SPM-LS as essentially unidimensional, this does not preclude them to not use the better
measurement model (i.e., the bi-factor form) in their statistical analyses, especially if included within
an SEM framework. Failing to take the influence of the second factor into account could lead to
inflating or deflated regression coefficient and other types of measurement error propagation [39].
As an example, in our results, the variance explained by the second factor is of 0.17. If we assume a
criterion Y, measured with reliability of one and a perfect positive relationship with the nuisance factor,
the expected value for the estimated correlation between our nuisance factor and Y would be estimated
as 0.41 (considering the attenuation by reliability described in [59]). Even though such distorting effect
represents a worst-case scenario, where expected attenuation effects are anticipated to be smaller (as
either criterion reliability or true relationship between criterion or specific factor would be not perfect),
they should not be disregarded as negligible [59].

An attenuation of this magnitude could impact the evaluation of SPM-LS scores criterion and
incremental validity (the expected increment of the determination coefficient might range from zero
to 0.17). Note that our analysis identifies a source of performance variance. The effects might be
even more substantial for a group with larger variance in the secondary factor. Consequently, despite
the essential unidimensionality of the measure, the consequences of taking or not this second factor
into account must be weighted in future research endeavours, including additional intelligence and
ability measures.

Secondly, and from a theoretical point of view, researchers should not automatically disregard
such secondary factors, as they could be tied to relevant individual differences of the test-takers [15,16].
On the contrary, more research is needed for us to have a better understating of the nature of this
nuisance factor, and the extent that it could represent valuable information of the examinees.

5. Conclusions

The SPM-LS has been suggested to be a valid, reliable alternative version of the Standard
Progressive Matrices test, presenting superior psychometric properties to alternatives such as the
Advanced Progressive Matrices test. In this research, we provided a detailed study of the essential
unidimensionality claimed by the original authors by utilising applying modern dimensionality
techniques and bi-factor modelling. Our results suggest that, if appropriately treated, SPM-LS scores
can be considered as such. Nevertheless, an additional factor relevant to the last six items was identified.
Additionally, we recommend evaluating further the presence of this factor in additional, larger sample
sizes presenting more balanced responses to the SPM-LS test.
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Appendix A

In this Appendix A, the SPM-LS dimensionality will be re-analysed by including a parcel created
by aggerating SPM4-SPM5 items. This decision was taken based on the high dependence observed
between items SPM4–SPM5 (i.e., tetrachoric correlation of 0.91; high partial correlation detected in
EGA) Thus, we will follow the same steps performed in the primary analysis. Firstly, we reproduce the
tetrachoric-polychoric correlation analysed in these analyses. As expected, most correlations between
items and the combined item (i.e., SPM4-5) were like the original (Table A1).

Table A1. Tetrachoric/polychoric correlation matrix with SPM4 and SPM5 combined.

1 2 3 4–5 6 7 8 9 10 11 12

SPM1 1
SPM2 0.59 1
SPM3 0.47 0.69 1

SPM4-5 0.40 0.67 0.54 1
SPM6 0.44 0.62 0.73 0.72 1
SPM7 0.23 0.48 0.38 0.62 0.48 1
SPM8 0.32 0.40 0.41 0.60 0.51 0.53 1
SPM9 0.13 0.36 0.48 0.41 0.47 0.49 0.55 1

SPM10 0.28 0.46 0.63 0.77 0.61 0.48 0.49 0.46 1
SPM11 0.25 0.25 0.31 0.42 0.42 0.42 0.44 0.49 0.59 1
SPM12 0.13 0.06 0.04 0.43 0.29 0.41 0.52 0.37 0.45 0.61 1
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We performed principal components, and factor analysis parallel analysis with eigenvalues
resampled from the original data over this correlation matrices. Both techniques agreed to indicate
that the structure was bi-dimensional (Figure A2). The value of the original components was 3.70 and
1.47 (with resampled components of 1.24 and 1.17), and the value of the original factor was 3.01 and
0.69 (with resampled eigenvalues of 0.64 and 0.19).

EGA agreed with parallel analysis results and concluded that two dimensions are underlying
the SPM-LS scores if SPM4 and SPM5 items were combined. Thus, there was robust evidence of the
bi-dimensional nature of the data after controlling for the dependency between SPM4 and SPM5 items.
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Table A2. Standardised factor loadings for all model tested.

Unidim. BID.EFA BID.CFA BEFA BCFA

Item G S1 S2 S1 S2 G S1 G S

SPM1 0.47 0.58 −0.04 0.50 0.00 0.55 −0.10 0.51 0.00
SPM2 0.72 0.90 −0.10 0.76 0.00 0.84 −0.17 0.77 0.00
SPM3 0.74 0.87 −0.04 0.77 0.00 0.84 −0.13 0.79 0.00

SPM4-5 0.85 0.55 0.43 0.90 0.00 0.82 0.28 0.90 0.00
SPM6 0.82 0.70 0.22 0.86 0.00 0.84 0.10 0.85 0.00
SPM7 0.67 0.26 0.51 0.00 0.70 0.57 0.36 0.60 0.31
SPM8 0.71 0.20 0.60 0.00 0.74 0.58 0.45 0.61 0.41
SPM9 0.62 0.19 0.52 0.00 0.65 0.52 0.38 0.52 0.40

SPM10 0.80 0.40 0.51 0.00 0.84 0.72 0.35 0.75 0.29
SPM11 0.64 −0.04 0.75 0.00 0.67 0.43 0.59 0.45 0.61
SPM12 0.54 −0.39 1.00 0.00 0.57 0.23 0.82 0.29 0.76
ϕ - 0.54 0.81 0.00 0.00

1 Unidim = Unidimensional model. Unidim.M. = Unidimensional model with SPM4-SPM5 residual correlation
estimated. BID.EFA = Bi-dimensional exploratory factor analysis. BID.CFA = Bi-dimensional confirmatory factor
analysis. BEFA = Bi-factor exploratory factor analysis. BCFA = Bi-factor confirmatory factor analysis. All loadings
over 0.30 are presented bolded. ϕ= Inter-factor correlation. SPM4-SPM5 = Residual covariance between SPM4-SPM5
items. G = General Factor. S1= First specific factor. S2 = Second specific factor. Factor loadings with values > 0.30
appear bolded.
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Table A3. Model fit indices for all tested models.

Np df X2 p CFI TLI RMSEA SRMR

Unidim. 23 44 192.04 0.00 0.93 0.91 0.08 (0.07–0.09) 0.11
BID.EFA/BEFA. 33 34 68.45 0.00 0.98 0.97 0.05 (0.03–0.06) 0.05

BID.CFA 24 43 145.71 0.00 0.95 0.94 0.07 (0.06–0.08) 0.09
BCFA 29 38 110.79 0.00 0.97 0.96 0.06 (0.04–0.07) 0.07

1 Unidim = Unidimensional model. Unidim.M. = Unidimensional model with SPM4-SPM5 residual correlation
estimated. BID.EFA = Bi-dimensional exploratory factor analysis. BID.CFA = Bi-dimensional confirmatory factor
analysis. BEFA = Bi-factor exploratory factor analysis. BCFA = Bi-factor confirmatory factor analysis. Np = Estimated
number of parameters. Df = degrees of freedom. 2 = Chi-square statistic. P = p-value associated with 2 test of fit.
CFI = Comparative fit index. TLI= Tucker-Lewis index. RMSEA = Root Mean Square Error of Approximation
(with 95% confidence interval in parenthesis). SRMS = Standardized Root Mean Square Residual. Best fit indices
presented bolded and underlined. Model fit indices for the best fitting model appear bolded.

Lastly, and in the case to be of interest, standardised factor loadings and model fit indices are
provided. Noteworthy, results were similar to other models presented in this article but provided a
sustainably worse fit to the data. In the exploratory models, SPM4-5 showed lower factor loadings in
the S1 (model BID.EFA) or G (model BEFA), and higher cross-loadings on the alternative factors. In the
confirmatory models, SPM4-5 loadings were also closer to 0.90 than in the main text results. Overall,
resulting structures were mostly similar to those analysed in the result section of the article.

Appendix B

In Appendix B, standardised factor loadings (Table A4) and model fit indices (Table A5) are
provided for models without the residual correlation SPM4-SPM5.

Table A4. Standardised factor loadings for all model tested.

Unidim. BID.EFA BID.CFA BEFA BCFA

Item G S1 S2 S1 S2 G S1 G S

SPM1 0.47 0.59 −0.09 0.50 0.00 0.53 −0.13 0.50 0.00
SPM2 0.72 0.93 −0.18 0.75 0.00 0.81 −0.23 0.76 0.00
SPM3 0.72 0.87 −0.10 0.75 0.00 0.80 −0.16 0.76 0.00
SPM4 0.92 0.65 0.38 0.94 0.00 0.90 0.22 0.93 0.00
SPM5 0.94 0.74 0.30 0.95 0.00 0.94 0.16 0.96 0.00
SPM6 0.81 0.73 0.15 0.84 0.00 0.83 0.04 0.84 0.00
SPM7 0.66 0.30 0.47 0.00 0.71 0.59 0.33 0.61 0.31
SPM8 0.70 0.23 0.57 0.00 0.75 0.60 0.42 0.61 0.41
SPM9 0.60 0.20 0.50 0.00 0.64 0.52 0.36 0.51 0.40
SPM10 0.79 0.43 0.47 0.00 0.84 0.73 0.31 0.75 0.30
SPM11 0.62 -0.05 0.75 0.00 0.66 0.44 0.58 0.44 0.64
SPM12 0.53 −0.36 0.99 0.00 0.57 0.28 0.80 0.31 0.72

ϕ - 0.57 0.80 0.00 0.00
1 Unidim = Unidimensional model. Unidim.M. = Unidimensional model with SPM4-SPM5 residual correlation
estimated. BID.EFA = Bi-dimensional exploratory factor analysis. BID.CFA = Bi-dimensional confirmatory factor
analysis. BEFA = Bi-factor exploratory factor analysis. BCFA = Bi-factor confirmatory factor analysis. All loadings
over 0.30 are presented bolded. Phi = Inter-factor correlation. SPM4-SPM5 = Residual covariance between
SPM4-SPM5 items. G = General Factor. S1= First specific factor. S2 = Second specific factor. Factor loadings with
values > 0.30 appear bolded.
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Table A5. Model fit indices for all tested models.

Np df X2 p CFI TLI RMSEA SRMR

Unidim. 24 54 221.75 0.00 0.94 0.93 0.08 (0.08–0.09) 0.11
BID.EFA/BEFA. 35 43 97.21 0.00 0.98 0.97 0.05 (0.04–0.06) 0.06

BID.CFA 25 53 163.39 0.00 0.96 0.96 0.07 (0.05–0.07) 0.09
BCFA 30 48 117.65 0.00 0.98 0.97 0.05 (0.04–0.07) 0.07

1 Unidim = Unidimensional model. Unidim.M. = Unidimensional model with SPM4-SPM5 residual correlation
estimated. BID.EFA = Bi-dimensional exploratory factor analysis. BID.CFA = Bi-dimensional confirmatory factor
analysis. BEFA = Bi-factor exploratory factor analysis. BCFA = Bi-factor confirmatory factor analysis. Np = Estimated
number of parameters. Df = degrees of freedom. 2 = Chi-square statistic. P = p-value associated with 2 test of fit.
CFI = Comparative fit index. TLI= Tucker-Lewis index. RMSEA = Root Mean Square Error of Approximation
(with 95% confidence interval in parenthesis). SRMS = Standardized Root Mean Square Residual. Best fit indices
presented bolded and underlined. Model fit indices for the best fitting model appear bolded.
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ABSTRACT
As general factor modeling continues to grow in popularity, researchers have become inter-
ested in assessing how reliable general factor scores are. Even though omega hierarchical esti-
mation has been suggested as a useful tool in this context, little is known about how to
approximate it using modern bi-factor exploratory factor analysis methods. This study is the
first to compare how omega hierarchical estimates were recovered by six alternative algo-
rithms: Bi-quartimin, bi-geomin, Schmid-Leiman (SL), empirical iterative empirical target rota-
tion based on an initial SL solution (SLiD), direct SL (DSL), and direct bi-factor (DBF). The
algorithms were tested in three Monte-Carlo simulations including bi-factor and second-order
structures and presenting complexities such as cross-loadings or pure indicators of the gen-
eral factor and structures without a general factor. Results showed that SLiD provided the
best approximation to omega hierarchical under most conditions. Overall, neither SL, bi-quar-
timin, nor bi-geomin produced an overall satisfactory recovery of omega hierarchical. Lastly,
the performance of DSL and DBF depended upon the average discrepancy between the load-
ings of the general and the group factors. The re-analysis of eight classical datasets further
illustrated how algorithm selection could influence judgments regarding omega hierarchical.

KEYWORDS
Bi-factor; reliability; omega;
omega hierarchical;
Schmid-Leiman

Introduction

The presence of general factors has been widely dis-
cussed in areas such as intelligence (Mansolf & Reise,
2016), personality (Revelle & Wilt, 2013), and psycho-
pathology (Caspi & Moffitt, 2018). Due to its theoretical
appeal, researchers in these areas have been interested in
how to properly evaluate the presence of these general
factors (Rodriguez et al., 2016a, 2016b). Accordingly,
researchers have turned their attention to how to
adequately estimate the reliability of such structures
(Revelle & Condon, 2018, 2019; Revelle & Wilt, 2013).

As classical reliability indices such as Cronbach’s
alpha rely on untenable assumptions in most general
factor modeling applications (Zinbarg et al., 2006),
model-based reliability has gained in popularity. A
statistic receiving considerable attention in the general
factor modeling literature is the omega hierarchical
coefficient (McDonald, 1999; Revelle & Zinbarg,
2009). Omega hierarchical, which was originally pro-
posed by McDonald (1999), represents the ratio of
variance accounted for by a single general factor to
the test variance. Omega hierarchical has also been

recommended as a tool to evaluate the presence of gen-
eral factors (Revelle & Wilt, 2013) and the psychometric
properties of summed or average scores (Rodriguez
et al., 2016b). As previously noted, omega hierarchical
can only be computed after a factor model including
a general factor has been estimated. A natural option
in this context is the bi-factor model (Holzinger &
Swineford, 1937), as it provides a direct estimation of
the contributions of general and group factors underly-
ing the data (Rodriguez et al., 2016a, 2016b). As
criticisms of bi-factor confirmatory models have gained
traction (Morin et al., 2016), recent interest in bi-factor
exploratory factor analysis (BEFA) has arisen. A com-
mon practice is to approximate BEFA models by
employing the Schmid-Leiman transformation (SL;
Schmid & Leiman, 1957; see also Revelle & Zinbarg,
2009; Rodriguez et al., 2016a, 2016b; Zinbarg & Alden,
2015). However, SL has been shown to underperform
when recovering true bi-factor parameters under certain
conditions (e.g., when pure indicators are present; Abad
et al., 2017; Garcia-Garzon et al., 2019). Alternatively,
two distinct families of algorithms have recently been
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proposed to conduct BEFA. On the one hand, there are
BEFA methods based on the adaptation of existent rota-
tion criteria to the specific bi-factor case, bi-quartimin
(Jennrich & Bentler, 2011) and bi-geomin (Jennrich &
Bentler, 2012), and on the other, BEFA algorithms
applying a bi-factor target rotation: Iterative empirical
target rotation based on an initial SL solution (i.e., SLiD;
Garcia-Garzon et al., 2019) and the Direct Schmid-
Leiman (i.e., DSL) and Direct Bi-Factor (i.e., DBF) algo-
rithms (Waller, 2018). While most of these algorithms
have been compared with regard to their precision in
recovering factor model parameters (Abad et al., 2017;
Garcia-Garzon et al., 2019; Giordano & Waller, 2019),
the usefulness of these methods in the context of model-
based reliability estimates remains unexplored.

This study aims to fill this gap in knowledge by
comparing the performance of the BEFA algorithms
mentioned above (SL, SLiD, bi-geomin, bi-quartimin,
DSL, and DBF) in the estimation of the omega hier-
archical in bi-factor and second-order structures via
three Monte Carlo simulations and the re-analysis of
eight classical datasets. The rest of the article will be
organized as follows: First, omega hierarchical and its
relationship with bi-factor modeling will be intro-
duced. Second, a brief account of the rationale behind
the bi-geomin, bi-quartimin, SLiD, and DSL-DBF
algorithms will be presented. Third, the results of a
Monte Carlo simulation study of bi-factor and
second-order structures, as well as the empirical data-
sets, will be displayed. Lastly, we will discuss the mer-
its and drawbacks of each method.

For the remainder of the article, the following defi-
nitions will apply: A factor pattern matrix is said to
follow a bi-factor model if and only if a general factor
(i.e., a factor directly influencing i¼ 1, … , p indica-
tors in a set of items) along with several potential
group factors exists (i.e., with j¼ 2, … , k factors dir-
ectly influencing i¼ 1, … , pj subgroups of the p indi-
cators), where the latter explain variance that is
residual to the former and all factors and items’
unique variances are orthogonal (Holzinger &
Swineford, 1937). Additionally, general conditions for
factor model identification shall hold, and the rank of
such pattern matrices shall not be less than the total
number of factors involved.

A bi-factor model where each item is only influ-
enced by a general and a single group factor (resem-
bling the concept of simple structure) is said to follow
an independent cluster structure (IC; McDonald,
1999). A bi-factor model composed of items that are
loaded by a general and two or more group factors
(i.e., presenting cross-loadings) is said to conform to

an independent cluster basis structure (ICB). If an IC
structure presents one or more items that are not
loaded by any group factor (i.e., pure indicators of the
general factor), it is labeled an independent cluster
pure structure (ICP). Factor pattern matrices combin-
ing items presenting cross-loadings and items that are
pure indicators within the same group factor are
denominated independent cluster basis pure struc-
tures (ICBP).

General factor model-based reliability

Recent controversies over the existence of general fac-
tors have arisen in areas such as intelligence (Mansolf
& Reise, 2016), psychopathology (Caspi & Moffitt,
2018), and personality (Revelle & Wilt, 2013). As
researchers’ interest in general factor modeling has
steadily grown, methodologists have questioned cur-
rent practices used to determine whether general fac-
tors do in fact underlie a given set of items (Reise
et al., 2018; Rodriguez et al., 2016a). Therefore, a
common situation arises where, after fitting a general
factor model to the data, researchers are concerned
with assessing the extent to which a general factor
accounts for total test variance (McNeish, 2018; Yang
& Green, 2015).

It is a well-established fact that traditional reliabil-
ity estimators such as Cronbach’s alpha yield biased
reliability estimates unless a set of unrealistic, strin-
gent assumptions are met (Cronbach, 1951; Zinbarg
et al., 2006). Consequently, total score reliability is
currently approached using model-based reliability
estimators such as omega (McNeish, 2018; Rodriguez
et al., 2016a). However, in general factor modeling, a
statistic receiving great attention has been the omega
hierarchical, which represents the ratio of variance
accounted for by a single general factor to test vari-
ance. Omega hierarchical estimation requires research-
ers to fit a multidimensional factor model including a
general factor (Reise et al., 2018). A common choice
for this factor model is the bi-factor model (Holzinger
& Swineford, 1937). Compared with other alternatives,
the bi-factor model provides a straightforward compu-
tation of the direct contributions of general and group
factors as sources of variance (Rodriguez et al., 2016b).
Following McDonald (1999), a test’s variance can be
decomposed into the sum of the general factor true
variance, the true joint variance due to all group factors,
and the error variance:

r2X ¼
Xp

i¼1
kig

� �2
þ
Xk

j¼2

Xp

i¼1
kij

� �2
þ

Xp

i¼1
hi

(1)
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where latent factors are assumed to be standardized,
r2X is the test variance, kig is the loading for the i-th
indicator on the first, general factor, kij is the loading
for the i-th indicator included in the domain on the j-
th group factor, and hi is the i-th item uniqueness.
According to Bentler (2009), the model-based implied
variance (r̂2

X) could be a more efficient estimator of
the population test variance than the observed sample
counterpart (VX). Thus, this approach will hereafter
be followed. Noteworthy, other authors favor the use
of the original definition of omega and opt to apply
the observed test variance instead (Revelle & Condon,
2019). Either way, this decision could be inconsequen-
tial if the factor model fits the data adequately. When
the proportion of interest is the ratio between the true
variance uniquely attributed to a general factor and
the total test implied variance, it is computed as:

xH ¼
ðPp

i¼1
kigÞ2

ðPp

i¼1
kigÞ2 þ

Pk
j¼2ð

Pp

i¼1
kijÞ2 þ ðPp

i¼1
hiÞ

(2)

which is termed omega hierarchical (xH; Rodriguez et
al., 2016b). Even though some cutoffs for omega hier-
archical have been proposed, such as considering that
omega values over .80 indicate that “total scores could
be essentially unidimensional, in the sense that the
vast majority of reliable variance is attributed to a sin-
gle common source [the general factor]” (Rodriguez
et al., 2016b, p. 225), researchers should be aware that
the appropriateness of this cutoff is still a matter of
debate in the literature. Thus, its use will be avoided
in this article.

Omega hierarchical has been widely praised as a
useful statistic for evaluating general factor import-
ance (Revelle & Wilt, 2013; Zinbarg & Alden, 2015),
among other uses. Accordingly, it constitutes a central
statistic in general factor modeling and is extensively
reported in the literature (Rodriguez et al., 2016b).
Even though the properties of the omega hierarchical
have been critically discussed in the literature
(Hancock & Mueller, 2011; Raykov & Marcoulides,
2019), omega hierarchical is often preferred to other
alternatives when a bi-factor model is involved
(Savalei & Reise, 2019). In particular, if researchers
are interested in the total score reliability, applying
alternative statistics such as omega total (i.e., xt)
could be more suitable (Revelle & Condon, 2019). In
contrast with omega hierarchical, omega total repre-
sents the ratio of variance accounted for by all com-
mon factors (i.e., general plus group factors) to test
variance (Revelle & Condon, 2019).

Bi-factor exploratory factor analysis and
reliability

Omega hierarchical depends on the quality of the esti-
mation of the underlying general factor model.
Consequently, negatively biased general factor load-
ings would result in a negatively biased omega hier-
archical reliability, and vice versa. As Monte Carlo
studies have shown that confirmatory bi-factor model-
ing (i.e., BCFA) resulted in biased estimation when
the model is not correctly specified (e.g., true cross-
loadings are unmodeled; Morin et al., 2016), many
researchers have favored the application of exploratory
alternatives (i.e., BEFA). To date, most common
approaches to BEFA models in the reliability literature
are based on the SL transformation (Rodriguez et al.
2016a, 2016b; Zinbarg et al., 2007; Zinbarg et al.,
2006). However, an SL solution is a low-rank approxi-
mation for a bi-factor structure that imposes specific
linear dependencies between sets of general and group
factor loadings (Waller, 2018). As the imposition of
such constraints does not hold in a majority of situa-
tions, SL solutions are expected to incorrectly recover
the underlying factor loadings (Abad et al., 2017;
Garcia-Garzon et al.,2019; Jennrich & Bentler, 2011;
Mansolf & Reise, 2016). However, the impact of the
distortions introduced by approximating a bi-factor
model by means of an SL solution is controversial.
For example, SL has been shown to produce adequate
solutions when approximating simple bi-factor models
(e.g., structures not including pure markers of the
general factor; Figures 15–16 in Supplementary Data;
Giordano & Waller, 2019). Either way, the specific
effect of applying SL in omega hierarchical estimation
remains uninvestigated. To stress that pure indicators
play a relevant role in bi-factor modeling, as their
presence enforces that proportionality constraints are
not being met for items loading in the same group
factor in which the pure indicator is observed. Thus,
rank-deficient algorithms could struggle to adequately
recover structures presenting such deviations of the
simple structure solution. Regardless of the unknown
nature of their origin, pure indicators have been
repeatedly observed throughout the exploratory bi-fac-
tor literature, as in the Quality of Life Dataset (Chen,
West & Sousa, 2006; Abad et al., 2017; Jennrich &
Bentler, 2011), the Observer Alexithymia Scale (Reise
et al., 2010; Jennrich & Bentler, 2012) or the Revised
NEO Personality Inventory (Chen et al., 2012;
Robertson, 2019). Thus, exploring the effects of pure
indicators could help to reveal the extent that their
presence affects the recovery of the bi-factor model
under different conditions.
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Alternatively, several modern algorithms for con-
ducting BEFA have recently been proposed. These pro-
posals may be divided into two broad families: First,
two different algorithms adapting previously existent
rotation criteria to recover IC (bi-quartimin) or ICB
(i.e., bi-geomin) bi-factor models; and second, methods

based on approximating a bi-factor exploratory model
via a partially specified (i.e., empirical iterative target
rotation based on Schmid-Leiman; Garcia-Garzon
et al., 2019) or completely specified target rotation (i.e.,
the Direct Schmid-Leiman and Direct Bi-Factor algo-
rithm; Giordano & Waller, 2019; Waller, 2018).

Figure 1. Omega hierarchical MAE boxplots corresponding to the two-way interactions of CROSS.GRF x NUM.GRF (upper row) and
PURE.GF x SIZE.GF for bi-factor models. NUM.GRF¼ number of group factors; CROSS.GRF¼ Cross-loading presence;
SIZE.GF¼General factor average factor loading; MAE¼Mean absolute error; SL¼ Schmid-Leiman orthogonalization;
SLiD¼ Iterative Empirical Target Rotation based on an initial Schmid-Leiman solution; DSL¼Direct Schmid-Leiman. DBF¼Direct
Bi-factor.
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Modern approaches to bi-factor exploratory
factor analysis

Bi-geomin and bi-quartimin criteria

Jennrich and Bentler (2011, 2012) developed two bi-
factor rotations widely applied in the literature. First,
bi-quartimin was proposed to recover simple IC struc-
tures successfully (Jennrich & Bentler, 2011)

B Kð Þ ¼ quartimin K2ð Þ ¼
Xp

i¼1

Xk

j¼2

Xk

j'¼jþ1
k2ijk

2
ij'

(3)

Later, the same authors introduced the adaptation
of the geomin criterion to the bi-factor case in order
to better approximate ICB structures (bi-geomin;
Jennrich & Bentler, 2012)

B Kð Þ ¼ geomin K2ð Þ ¼
Xp

i¼1

Yk

j¼2
ðk2ij þ eÞ1=m

(4)

where e represents a small quantity (i.e., .01) that
serves to make the function differentiable (Hattori
et al., 2017).

A characteristic of both bi-factor rotation criteria is
that their value is computed when rotating the group
factors to a simple solution (Eqs. 3 and 4; also see
Jennrich & Bentler, 2011). However, there is no guar-
antee that the general factor loadings will be in the

manifold of acceptable solutions after this step. To
ensure the appropriateness of the final solution, the
complete structure (including general factor loadings)
is projected into this manifold in a second (projec-
tion) step. Unfortunately, this procedure renders bi-
geomin and bi-quartimin prone to shifting the vari-
ance contained in one of the group factors to the gen-
eral factor and to produce factor collapse (Mansolf &
Reise, 2016). Other authors have also found these
methods to overestimate general factor loadings
(Revelle & Wilt, 2013, p. 495). Lastly, bi-geomin is
expected to be more accurate than bi-quartimin for
complex structures (i.e., ICBP; Abad et al., 2017), but
not for simpler structures (ICB; Figure 2; Giordano &
Waller, 2019).

Bi-factor rotation via target rotation

Following a different strategy, the SLiD and the DSL-
DBF algorithms are based on the flexibility of the tar-
get rotation to approximate factor solutions with a
pre-defined pattern model. In both algorithms, once a
target matrix following a bi-factor pattern is found, a
final solution is obtained by rotating a factor loading
matrix (of the same dimensions as the bi-factor
model) toward the bi-factor target matrix. The main
differences lie in how each method defines such a bi-
factor target matrix.

Figure 2. Omega hierarchical MAE boxplots corresponding to the two-way interaction of NUM.GRF x SIZE.GF for second-order
models. NUM.GRF¼ number of group factors; SIZE.GF¼General factor average factor loading; MAE¼Mean absolute error;
SL¼ Schmid-Leiman orthogonalization; SLiD¼ Iterative Empirical Target Rotation based on an initial Schmid-Leiman solution;
DSL¼Direct Schmid-Leiman. DBF¼Direct Bi-factor.
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The SLiD algorithm (Garcia-Garzon et al., 2019)
presents three main characteristics: a) It estimates a
partially specified target matrix (Browne, 2001). In
this target matrix, elements expected to be negligible
in the final rotated solution are given a target value of
zero, so the final value of the correspondent loading is
minimized during the rotation step. The remaining
elements are not constrained (i.e., not considered
when performing the rotation); b) Loadings to be
minimized are identified by estimating an appropriate
empirical cutoff point for each group factor separately,
as illustrated in Appendix 1 using the Thurstone 9
mental test dataset (discussed in McDonald, 1999):
First, squared, Kaiser-row normalized factor loadings
for the specific factor loadings obtained from an SL
solution are computed (Panel B, Table A1). Second,
for each group factor, these transformed loadings are
sorted by increasing value (Panel C, Table A1). Third,
one-lagged loadings differences (i.e., the difference
between each loading and its predecessor) are
obtained (Panel D, Table A1). Lastly, the cutoff is set
as the loading that falls immediately below the first
difference that is greater than the average difference
between all consecutive sorted loadings for that factor
(illustrated in Panel C, Table A1). Thus, this cutoff
aims to avoid wrongly setting to zero a target element
when a relevant cross-loading is present, as occurs for
the “Pedigree” item; c) SLiD, based on Moore et al.
(2015), improves the obtained solution using an itera-
tive refinement of the target matrix (Abad
et al., 2017).

SLiD has been shown to recover IC, ICB, ICP, and
ICBP structures presenting multiple cross-loadings
and weak factors (Garcia-Garzon et al., 2019).
Moreover, it outperformed SLi, a predecessor using a
similar algorithm flow that applied fixed cutoff points.
Notably, to the extent that SLi has been evidenced to
outperform bi-geomin and bi-quartimin (Abad et al.,
2017; Giordano & Waller, 2019), SLiD is also expected
to provide a better reliability estimation than those
methods. Lastly, as SLiD led to factor collapse in
some instances, it is hypothesized that minor positive
omega hierarchical bias might occur.

The DSL (i.e., Direct Schmid-Leiman) and DBF
(i.e., Direct Bi-Factor) algorithms (Waller, 2018) differ
from SLiD in each of the three characteristics previ-
ously examined: (a) Both DSL and DBF apply a com-
pletely specified target rotation where all elements of
the target matrix are given a value toward which load-
ings are maximized or minimized. In this kind of tar-
get, elements associated with expected negligible
factor loadings are also fixed to zero, whereas the

remaining ones are set to one. Consequently, the rota-
tion criterion depends on all elements of the target
matrix; (b) to decide which loadings should be given
a value of zero, all elements of an initial correlated-
factor solution of a dimension less than the expected
bi-factor model are compared with a single fixed cut-
off point (e.g., .25). Additionally, a column vector of
ones is added to the target matrix so that its dimen-
sionality is similar to that of the final solution. The
difference between DSL and DBF lies in the former
rotating the original correlated factors solution plus
an additional column vector of zeroes, whereas the
latter rotates a correlated factors solution of the
expected bi-factor dimensionality. Accordingly, DSL
will result in a limited-rank solution (similarly to SL),
while DBF will estimate a full-rank solution (i.e., a bi-
factor model). Lastly, both algorithms compute a sin-
gle iteration target rotation by means of orthogonal
projection, as defined in Sch€onemann (1966). DSL has
been shown to provide the optimal (in a least-square
sense) rank-deficient approximation to a bi-factor
structure if the true target given is known (Waller,
2018). Based on previous studies, DSL is expected to
provide adequate results when applied to recover
either type of structure (i.e., full or deficient rank sol-
utions), and to outperform DBF under many condi-
tions (Giordano & Waller, 2019).

Unfortunately, DSL, DBF, and SLiD have never
been previously compared in the literature. It could
be hypothesized that applying a completely specified
target rotation would introduce error in the rotation
process to such an extent that the true factor loadings
differ from the given value specified in the target
matrix. As loadings corresponding to freed non-zero
targets are maximized to be as close as possible to
one, cross-loadings or pure indicators (or other incor-
rect loadings targeted as one) could see their values
inflated in the final solution. However, DSL has been
shown to outperform SLi (an ancestor of SLiD using
fixed cutoff points) under structures without pure
markers of the general factor (Giordano & Waller,
2019). Accordingly, even though DSL might outper-
form SLiD when recovering full or limited rank struc-
tures if substantial deviations of proportionality
constraints do not occur (e.g., when pure indicators of
the general factor are present), further research is
needed. Moreover, it is crucial to bear in mind that
the translation of errors in factor loading recovery to
omega hierarchical bias would depend on the number,
location, and magnitude of these deviations.

In conclusion, this article has two main objectives:
a) to understand the extent to which the studied
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algorithms can correctly recover model-based reliabil-
ity; and b) to evaluate the functioning of each method
when recovering bi-factor population structures with
differing levels of complexity (i.e., IC, ICB, ICP, or
ICBP). Additionally, we aim to investigate whether
algorithms producing full rank (i.e., bi-geomin, bi-
quartimin, SLiD, and DBF) or low-rank (i.e., SL and
DSL) solutions perform better when recovering omega
hierarchical from a matching dimensionality.
Additionally, we aim to understand the extent to
which each algorithm could misguide researchers into
believing that a general factor is present when there is
none. These results are of particular interest regarding
how the selection of the BEFA algorithm could influ-
ence the debates over whether a general factor is feas-
ible in areas such as psychopathology (Caspi &
Moffitt, 2018) or personality (Revelle & Wilt, 2013).
Accordingly, three different Monte Carlo simulation
studies were conducted to study each type of structure
(i.e., bi-factor, second-order, or structures without
general factor).

Study 1: Bi-factor structures

Method

Data simulations and parameter estimations were per-
formed in R 3.6.0 (R Core Team, 2019), with analyses
of variance (ANOVA) conducted in Jamovi 1.0.0.0
(Jamovi Project, 2019).

Manipulated factors
Several variables commonly manipulated in the factor
analysis literature were manipulated, namely:

� Sample size (SAMPLE): low ¼ 150, medium ¼
500, high ¼ 1000.

� Number of group factors (NUM.GRF): low ¼ 3,
high ¼ 6.

� Number of variables per group factor (VAR.GRF):
low ¼ 4, high ¼ 8.

� Cross-loadings on the group factors (CROSS.GRF):
no or yes.

� Pure indicators of the general factor (PURE.GF):
no or yes.

� General factor loading size (SIZE.GF): low ¼ .30,
medium ¼ .45, high ¼ .60.

The group factor loading size was not manipulated
but varied across each group factor. Specifically, the
number of group factors was divided into thirds, with
each third presenting a different average loading size
(low: k ¼ .30; medium: k ¼ .45; high: k ¼ .60).

Factor loadings for the general and group factors were
defined within a ± .10 range (e.g., general factor load-
ings for SIZE.GF¼ high ranged from .50 to .70). We
note that manipulating the general factor size implies
manipulating the magnitude of omega hierarchical.

For conditions including cross-loadings
(CROSS.GRF ¼ yes), an additional factor loading of
.30 was added for the item with the highest group
loading of each group factor in the following group
factor. Item communality was held constant for these
items by subtracting a small amount from its remain-
ing factor loadings, except for the indicators of the
low loading factor(s). For these items, such an amount
was subtracted from the general factor. For conditions
including a pure indicator (PURE.GF ¼ yes), the mid-
dle item of each group factor was substituted by a fac-
tor loading of .01. Item communality was held
constant by increasing the corresponding general fac-
tor loading. Thus, true omega hierarchical values
would be decreased when introducing cross-loadings
and increased when introducing pure indicators. As
conditions were fully crossed, a total of 2� 2 � 2� 2
� 2� 3¼ 144 conditions were studied. Additionally,
the combination of cross-loadings (CROSS.GRF) and
pure indicators (PURE.GF) led to the structure typ-
ology (STRUCTURE) previously mentioned: IC, ICB,
ICP, and ICBP. This taxonomy has been shown to be
useful when studying differences across methods
(Abad et al., 2017).

Data simulation

A total of 100 sample correlation matrices were simu-
lated for each condition. For each replication, general
factor loadings were first randomly sorted to avoid
proportionality constraint effects. The population cor-
relation matrices were specified from these population
factor-loading matrices by inserting unities in the
diagonal of the reproduced population correlation
matrix—afterwards, sample scores matrices of
SAMPLE�NUM.GRF�VAR.GRF dimensions were
obtained from random standard normal deviates
simulated with the package mvtnorm (Genz et al.,
2017). For all solutions, group factors were aligned
with their corresponding population factor structure
following the least-squares criterion using the faAlign
function (Waller, 2019).

Statistical analyses

Six BEFA algorithms were scrutinized: Bi-quartimin,
bi-geomin, SL, SLiD, DSL, and DBF. The SL and SLiD
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algorithms were computed using the code in Garcia-
Garzon et al. (2019). The initial correlated factor solu-
tion for SL was obtained using oblimin rotation
(c¼ 0). DSL and DBF algorithms were computed
using the fungible package (Waller, 2019), with the
default cutoff point of .25 for the target matrix defin-
ition. The correlated factor solution was obtained
using the same rotation as in SL. Bi-quartimin was
computed using the routine defined within the

GPArotation package (Bernaards & Jennrich, 2005).
An orthogonal bi-geomin criterion was defined (code
available on request) with e ¼ .01 (following recom-
mendations in Hattori et al., 2017) and applied using
the GForth routine within the GPArotation package
(Bernaards & Jennrich, 2005). All algorithms based on
GPArotation (SLiD, bi-geomin, and bi-quartimin)
were fitted using 100 different orthogonal random
starts and 5000 maximum iterations. In all cases, fac-
tor estimation was conducted using the unweighted
least squares estimator (ULS).

Lastly, ANOVAs were conducted to determine
which conditions most affected the recovery of omega
hierarchical. From these analyses, the partial eta
squared (g2p) effect sizes were reported following
Cohen’s (1988) guidelines such that effect sizes of
g2p > :01, g2p > .06, and g2p > .14 were considered
small, medium, and large effects, respectively.

Dependent variables

Omega hierarchical was computed for all population
structures and solutions estimated. Two different
main measures of accuracy were explored, the mean
absolute error (MAE) and the mean bias error (MBE).
Both represent the difference between the estimated

Table 1. Marginal omega hierarchical mean absolute error
(MAE) and mean bias error (MBE) for each method for bi-fac-
tor structures.
Variable / Level Bi-geomin Bi-quartimin SL SLiD DSL DBF

SAMPLE
150 .088 .109 .118 .061 .094 .096

(.085) (.104) (�.112) (�.007) (�.003) (.006)
500 .067 .089 .073 .033 .089 .090

(.067) (.085) (�.069) (.007) (.009) (.015)
1000 .061 .079 .058 .025 .087 .089

(.061) (.077) (�.054) (.008) (.010) (.015)
NUM.GRF
3 .108 .122 .062 .055 .103 .105

(.107) (.117) (�.052) (.011) (.004) (.013)
6 .036 .062 .104 .024 .077 .078

(.035) (.061) (�.104) (�.004) (.007) (.011)
VAR.GRF
4 .077 .096 .085 .048 .095 .097

(.075) (.092) (�.076) (.008) (.007) (.002)
8 .067 .088 .083 .031 .085 .087

(.067) (.089) (�.081) (�.002) (.018) (.022)
CROSS.GRF
No .050 .045 .081 .035 .079 .080

(.048) (.039) (�.080) (�.006) (�.005) (.000)
Yes .094 .138 .085 .044 .101 .103

(.093) (.138) (�.077) (.012) (.016) (.024)
PURE.GF
No .093 .109 .068 .045 .100 .104

(.091) (.107) (�.059) (.013) (.050) (.056)
Yes .052 .075 .098 .034 .080 .080

(.050) (.070) (�.097) (�.007) (�.039) (�.033)
SIZE.GF
Low .100 .127 .095 .060 .116 .123

(.097) (.121) (�.086) (�.007) (.111) (.120)
Medium .076 .097 .090 .040 .048 .049

(.075) (.097) (�.086) (.008) (.012) (.018)
High .041 .052 .063 .019 .106 .102

(.041) (.051) (�.063) (.008) (�.106) (�.102)
STRUCTURE
IC .064 .059 .068 .039 .084 .088

(.063) (.055) (�.066) (.000) (.039) (.043)
ICB .121 .159 .069 .051 .116 .120

(.120) (.159) (�.052) (.025) (.062) (.070)
ICP .036 .032 .093 .030 .074 .072

(.034) (.034) (�.093) (�.013) (�.079) (�.043)
ICBP .067 .118 .103 .038 .086 .087

(.066) (.117) (�.103) (�.000) (�.030) (�.022)
AVERAGE .072 .092 .083 .040 .090 .092

(.071) (.089) (�.078) (.003) (.005) (.012)

Note. SAMPLE¼ sample size; NUM.GRF¼ number of group factors;
VAR.GRF¼ number of indicators per group factor; CROSS.GRF¼ Cross-
loading presence; PURE.GF¼ Pure indicator presence; SIZE.GF¼General
factor average factor loading; IC¼ Independent Cluster;
ICB¼ Independent Cluster Basis; ICP¼ Independent Cluster with Pure
Indicators; ICBP¼ Independent Cluster Basis with Pure Indicators;
SL¼ Schmid-Leiman orthogonalization; SLiD¼ Iterative Empirical Target
Rotation based on an initial Schmid-Leiman solution; DSL¼Direct
Schmid-Leiman. DBF¼Direct Bi-factor. MBE values appear under brack-
ets. Conditions with MAE � .05 appear shadowed in gray. Lowest MAE
for each condition appears bolded.

Table 2. Univariate Analysis of Variance (ANOVA) effect sizes
for the mean absolute error (MAE) across methods for bi-fac-
tor structures.
Effect Type / Variables Bi-geomin Bi-quartimin SL SLiD DSL DBF

Study 1: Bi-factor models
SAMPLE .101 .105 .350 .127 .012 .014
NUM.GRF .518 .394 .270 .130 .202 .213
VAR.GRF .019 .013 .000 .042 .031 .034
CROSS.GRF .282 .612 .005 .014 .148 .161
PURE.GF .261 .177 .161 .017 .148 .168
SIZE.GF .323 .412 .151 .148 .569 .579
NUM.GRF � CROSS.GRF .159 .173 .010 .007 .001 .002
SIZE.GF� PURE.GF .037 .020 .007 .001 .640 .633
Study 2. Second-order models
SAMPLE .053 .271 .530 .101 .134 .123
NUM.GRF .525 .234 .241 .133 .344 .335
VAR.GRF .003 .005 .001 .034 .024 .005
SIZE.SOF .184 .089 .028 .084 .638 .628
NUM.GRF � SIZE. SOF .083 .005 .003 .009 .179 .142
Study 3: No general factor
SAMPLE .001 .028 .007 .056 .002 .075
NUM.GRF .583 .161 .215 .118 .590 .525
VAR.GRF .117 .002 .000 .068 .753 .700
CROSS.GRF .046 .365 .142 .059 .073 .051

Note. SAMPLE¼ sample size; NUM.GRF¼ number of group factors;
VAR.GRF¼ number of indicators per group factor; CROSS.GRF¼ Cross-
loading presence; PURE.GF¼ Pure indicator presence; SIZE.GF¼General
factor average factor loading; SIZE.SOF¼ Second-order general factor
average factor loading; SL¼ Schmid-Leiman orthogonalization;
SLiD¼ Iterative Empirical Target Rotation based on an initial Schmid-
Leiman solution; DSL¼Direct Schmid-Leiman. DBF¼Direct Bi-factor.
The dependent variable in the ANOVAs was omega hierarchical MAE. All
main effects and interactions presenting a large effect (g2p>.14) are
shown, with large (g2p >.14) effects in gray shadow.
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and the population omega hierarchical values averaged
across replicates within the same condition. The for-
mer considers differences in absolute value to avoid
error suppression if differences of opposite signs
within the same condition are averaged. Therefore, it
is insensitive to the direction of the differences. The
latter (i.e., MBE) represents the opposite situation,
with differences computed considering the sign of the
omega hierarchical values. Consequently, MAE was
preferred to understand factors behind estimation
errors, and MBE to explore potential patterns of
omega hierarchical due to under- and overestimation
for each method. As a heuristic, MAE and MBE rates
over .05 were considered substantial. As recom-
mended by a reviewer, the root mean square error
(RMSE) of estimation was also explored. The RMSE
considers the square root of mean differences of
squared errors between population and estimated sol-
utions per condition. As MAE and RMSE results were
in the same direction, marginal RMSE rates are
included in Appendix 2.

Results

Marginal MAE and MBE values are reported in Table
1. Invalid solutions (i.e., non-convergent or Heywood
cases) rates ranged from .04% (SL and SLiD) to .76%
(bi-geomin) of the cases. DSL and DBF provided a
valid solution in all cases. Overall, the results suggest
that: a) SLiD was the most accurate method under
most conditions; b) Pure indicators had a positive
effect on omega hierarchical recovery for all methods
but SL; c) Increased general factor size was beneficial
for all methods but DSL and DBF; d) No algorithm
provided an adequate recovery (MAE < .05) under
conditions of small samples, low numbers of factors,
low general factor sizes, or ICB structures.

In general, SLiD was the most accurate algorithm
(MAE [SLID] ¼ .040). SLiD showed its best perform-
ance for structures presenting a strong general factor
or including pure indicators (i.e., MAE < .05). Even
when SLiD provided a subpar performance under cer-
tain conditions (e.g., MAE [SAMPLE ¼ 150] ¼ .061),
it continued outperforming all alternative methods.
For SLiD, MBE rates were substantially lower than
MAE, positive, and close to zero, suggesting that this
algorithm provided an unbiased estimation under
most conditions (MBE [SLiD] ¼ .003).

On the contrary, SL did not produce an adequate
performance under any condition (i.e., MAE [SL] <

.05). As expected, pure indicators severely affected SL.
Notably, SL was the only method to present a

systematic negative bias in general (MBE [SL] ¼
�.078) and across all conditions. DSL and DBF pre-
sented a similar functioning (with largest MAE differ-
ence between DSL-DBF: [SIZE.GF¼ Low] ¼ .007]),
where the latter almost never outperformed the for-
mer. Remarkably, both algorithms recovered struc-
tures with medium-sized general factors
approximately as well as SLiD but failed to provide an
adequate omega estimation otherwise. MBE results
highlighted that under alternative SIZE.GF conditions,
both methods substantially overestimated/underesti-
mated omega hierarchical when a low/high general
factor was present, respectively.

Lastly, the results support previous hypotheses
regarding the functioning of bi-quartimin and bi-geo-
min. First, bi-quartimin presented a worse overall per-
formance than bi-geomin (MAE ([bi-quartimin] ¼
.092; MAE [bi-geomin] ¼ .072). Second, both meth-
ods’ performance was substantially hampered by the
presence of cross-loadings, particularly if no pure
indicators were present (i.e., ICB structures). Lastly,
MBE results suggest that both methods routinely over-
estimated omega hierarchical values across all condi-
tions (MBE ([bi-quartimin] ¼ .071; MBE [bi-geomin]
¼ .089).

As reflected in Table 2, SLiD was shown to be the
most robust method (i.e., its performance was the
least affected by the manipulated variables).
Nevertheless, the general factor size was a relevant
condition for all methods (g2p [SIZE.GF] ¼ .148 � g2p
� .579), where increasing general factor size was
beneficial for all methods but DSL and DBF (Table 2).
Additionally, all methods presented a medium to
strong effect of the number of factors (g2p
[NUM.GRF] ¼.130 � g2p � .518), where increasing
the number of factors boosted recovery for all meth-
ods but SL (as shown in Table 2). The presence of
pure indicators strongly affected all methods (g2p
[PURE.GF] ¼ .148 � g2p � .261) except SLiD (g2p
[PURE.GF] ¼ .017), such that their presence
improved omega hierarchical recovery for all methods
but SL (Table 2).

Two relevant interactions were noted. In the case
of bi-geomin and bi-quartimin, the estimation of
structures with three factors exacerbated the negative
effect of cross-loadings (bi-quartimin: g2p [NUM.GRF
� CROSS. SF] ¼ .173 bi-geomin: g2p [NUM.SF �
CROSS. SF] ¼ .159; Top row; Figure 1; Table 2). For
DSL and DBF, a strong interaction between general
factor size and the presence of pure indicators was
observed (DSL: g2p [PURE.GF � SIZE.GF] ¼ .640;
DBF: g2p [PURE.GF � SIZE.GF] ¼ .633; Bottom row;
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Figure 1). Specifically, while the presence of pure indi-
cators improved omega recovery if the general factor
was low, it hampered omega estimation when the gen-
eral factor size was high. Lastly, as reflected in Figure
1, it was remarkable that SLiD and DBF/DSL pre-
sented the largest and lowest variability in their esti-
mation. This noticeable number of undesirable
solutions in the former algorithm is further explored
in the Discussion section.

Study 2: Second-order structures

Method

Manipulated factors. A total of four relevant variables
were manipulated in Study 2:

� Sample size (SAMPLE): low ¼ 150, medium ¼
500, high ¼ 1000.

� Number of group factors (NUM.GRF): low ¼ 3,
high ¼ 6.

� Number of variables per group factor (VAR.GRF):
low ¼ 4, high ¼ 8.

� Second-order factor loading size (SIZE.SOF): low
¼ .55, medium ¼ .70, high ¼ .80.

As can be seen, the sample size, number of group
factors, and number of variables per group factor con-
ditions were the same as those of Study 1. However,
neither cross-loadings nor pure indicators were inves-
tigated. Second-order structures were simulated to
ensure that the SIZE.SOF conditions were analogous
to the SIZE.GF conditions of Study 1. Also, as in
Study 1, each third of the group (first-order) factors
presented a different average loading size (low: k ¼
.40; medium: k ¼ .55; high: k ¼ .70). Factor loadings
on the group factors were defined within a ± .10
range, while loadings on the second-order factor were
all of equal magnitude within conditions.

Once the second-order structures were generated,
the function sim.hierarchical from the psych package
(Revelle, 2018) was used to generate population cor-
relation matrices, with population omega hierarchical
values obtained from a Schmid-Leiman transform-
ation. Such SL solutions are ensured to reproduce
population correlation matrices with MAE ¼ 0. The
data simulation, statistical analysis, and dependent
variable specifications were those of Study 1. RMSE
results are again presented in Appendix 2.

Results

Marginal MAE values are reported in Table 3. Invalid
solutions (i.e., non-convergent or Heywood cases)
rates ranged from .01% (bi-geomin and bi-quartimin)
to 2.03% (SLiD) of the cases. DSL and DBF provided
a valid solution in all cases. Surprisingly, SLiD recov-
ered omega hierarchical better than any alternative
method (MAE [SLiD] ¼ .047), with alternative meth-
ods providing a similar overall performance (e.g.,
.072�MAE � :077 for the remaining methods).
Overall, all the manipulated variables produced similar
effects to those observed for bi-factor solutions, with
notable exceptions commented on below.

Even though SL outperformed alternative algo-
rithms when the number of factors was low (MAE
[NUM.GRF ¼ 3] ¼ .054), it systematically resulted in
negative bias for all conditions (MBE [SL] ¼ �.069).
For second-order structures, bi-quartimin slightly out-
performed bi-geomin (MAE [Bi-quartimin] ¼ .072;
MAE [Bi-geomin] ¼ .077). However, such an effect
could be associated with the lack of cross-loadings or
pure indicators in the simulated second-order models.
As observed in Study 1, both methods: a) Failed to
show an adequate recovery of omega hierarchical in a

Table 3. Marginal omega hierarchical mean absolute error
(MAE) and mean bias error (MBE) across each method for
second-order models.
Variable / Level Bi-geomin Bi-quartimin SL SLiD DSL DBF

SAMPLE
150 .088 .105 .122 .066 .079 .082

(.084) (.099) (�.116) (�.020) (.033) (.039)
500 .073 .065 .061 .041 .070 .071

(.072) (.061) (�.058) (.011) (.030) (.035)
1000 .070 .049 .038 .034 .068 .069

(.070) (.046) (�.035) (.007) (.021) (.032)
NUM.GRF
3 .112 .093 .054 .063 .082 .085

(.110) (.088) (�.046) (.007) (.029) (.040)
6 .043 .051 .091 .031 .063 .064

(.040) (.049) (�.091) (�.008) (.027) (.031)
VAR.GRF
4 .079 .070 .075 .055 .070 .073

(.078) (.099) (�.046) (.007) (.029) (.040)
8 .075 .075 .072 .039 .074 .073

(.073) (.071) (�.070) (�.003) (.028) (.032)
SIZE.SOF
Low .097 .087 .066 .064 .138 .146

(.092) (.076) (�.056) (�.014) (.138) (.146)
Medium .075 .073 .074 .043 .013 .019

(.074) (.072) (�.072) (.006) (.009) (.017)
High .059 .058 .079 .034 .065 .057

(.059) (.058) (�.079) (.006) (�.065) (�.057)
AVERAGE .077 .072 .073 .047 .072 .074

(.075) (.068) (�.069) (.001) . (028) (.035)

Note. SAMPLE¼ sample size; VAR.GRF¼ number of indicators per group
factor; NUM.GRF¼ number of group factors; SIZE.SOF¼ Second-order
general factor average factor loading; SL¼ Schmid-Leiman orthogonali-
zation; SLiD¼ Iterative Empirical Target Rotation based on an initial
Schmid-Leiman solution; DSL¼Direct Schmid-Leiman. DBF¼Direct Bi-
factor. MBE values appear under brackets. Conditions with MAE � .05
appear shadowed in gray. Lowest MAE for each condition
appears bolded.
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majority of occasions; and b) resulted in positively
biased estimation of omega hierarchical under all con-
ditions (MBE [Bi-quartimin] ¼ .075; MBE [Bi-geo-
min] ¼ .078). Lastly, DSL and DBF presented similar
functioning in Studies 1 and 2. Depending on whether
the general factor was low/high in magnitude, DSL
overestimated/underestimated omega hierarchical,
respectively. As before, DBF performance was similar
to or worse than that of DSL for almost all conditions.
Nevertheless, DSL showed the best recovery of omega
hierarchical if the general factor was of medium size
(MAE [SIZE.GF¼Medium] ¼ .013).

As in Study 1, SLiD was the most robust algorithm
(see Table 2). The number of factors was decisive for
all methods (g2p [NUM.GRF] ¼.133 � g2p � .525). As
with bi-factor structures, increasing the number of
factors reduced MAE for all methods but SL.
Contrary to Study 1, SIZE.SOF only presented a
strong effect for bi-geomin, DSL, and DBF (g2p
[SIZE.GF] ¼ .184 � g2p � .638). Lastly, the sample
size was mostly relevant for bi-quartimin and SL (g2p
[SAMPLE] ¼ .271 � g2p � .530). Additionally, a two-
way interaction between the number of group factors
and second-order factor size was observed for DSL
and DBF (DSL: g2p [NUM.GRF � SIZE.SOF] ¼ .179;
DBF: g2p [NUM.GRF � SIZE.SOF] ¼ .142; Figure 2),
where structures with three factors were more incor-
rectly estimated when the general factor was either
low or high. As also reflected in Figure 2, SLiD pre-
sented several outliers corresponding to inadequate
solutions. Again, DSL and DBF resulted in the most
consistent estimation across all methods.

Study 3: Structures without a general factor

Method

Manipulated factors
In this Monte Carlo study, a new simulation with a
no-general-factor condition was studied. That is, all
general factor loadings were zero, reproducing a con-
dition where no general factor exists. A total of four
relevant variables were manipulated in the same man-
ner as Study 1:

� Sample size (SAMPLE): low ¼ 150, medium ¼
500, high ¼ 1000.

� Number of group factors (NUM.GRF): low ¼ 3,
high ¼ 6.

� Number of variables per group factor (VAR.GRF):
low ¼ 4, high ¼ 8.

� Cross-loadings on the group factors (CROSS.GRF):
no or yes.

Pure indicators of the general factor were not
introduced in this study, as no variables loaded on the
general factor. The data simulation, statistical analyses,
and dependent variable specifications were those of
Study 1. RMSE results are again presented in
Appendix 2. As the true omega hierarchical was zero
in all cases and the numerator in Eq. 2 was always
positive, MAE and MBE were equivalent in this study.

Results

MAE results are presented in Table 4 (with MAE and
MBE values equal, given that true omega hierarchical
is zero under all conditions). Low invalid solutions
rates (i.e., non-convergent or Heywood cases) were
observed for all methods but DSL and DBF: .01% for
bi-geomin and bi-quartimin; .02% for SL; .05% for
SLiD). Overall, no algorithm provided an overall
accurate recovery of omega hierarchical recovery
when no general factor was present. Even though
SLiD presented adequate performance under certain
conditions (e.g., large sample size, many group fac-
tors), its performance was on the whole unsatisfactory
(MAE[SLiD] ¼ .064). Nevertheless, the performance
of SLiD was still considerably better than the alterna-
tives, which produced large (MAE[SL] ¼ .138) to
extremely large (MAE[DBF] ¼ .516) levels of overall
error. SL overestimated omega hierarchical under all
conditions (best performance: MAE
[NUM.GRF¼ Low] ¼ .093). Of the remaining algo-
rithms, only bi-quartimin under the no cross-loading
condition resulted in MAE rates under .10 (MAE

Table 4. Marginal omega hierarchical mean absolute error
(MAE) across each method for models without a gen-
eral factor.
Variable / Level Bi-geomin Bi-quartimin SL SLiD DSL DBF

SAMPLE
150 .257 .214 .149 .092 .499 .528
500 .255 .172 .136 .054 .497 .513
1000 .250 .162 .131 .047 .496 .509
NUM.GRF
3 .348 .241 .093 .094 .462 .486
6 .160 .124 .184 .035 .533 .547
VAR.GRF
4 .225 .188 .137 .086 .446 .472
8 .283 .177 .140 .043 .549 .560
CROSS.GRF
No .236 .082 .104 .045 .486 .510
Yes .271 .284 .174 .085 .506 .523
AVERAGE .254 .183 .138 .064 .497 .516

Note. SAMPLE¼ sample size; NUM.GRF¼ number of group factors;
VAR.GRF¼ number of indicators per group factor; CROSS.GRF¼ Cross-
loading presence; SL¼ Schmid-Leiman orthogonalization;
SLiD¼ Iterative Empirical Target Rotation based on an initial Schmid-
Leiman solution; DSL¼Direct Schmid-Leiman. DBF¼Direct Bi-factor.
MAE and MBE values are equal given that true omega hierarchical is
zero in all conditions. -. Conditions with MAE � .05 appear shadowed
in gray. Lowest MAE for each condition appears bolded.
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[CROSS.GRF¼No] ¼ .082). Bi-geomin, DSL, and
DBF resulted in a severe overestimation of the non-
present general factor under all marginal condi-
tions studied.

The number of factors was revealed to be a highly
influential factor when recovering omega hierarchical
in no-general factor structures for all methods studied
(g2p [NUM.GRF] ¼ .161 � g2p � .590) except SLiD (g2p
[SIZE.GF] ¼ .118), for which it produced a medium-
size effect (see Table 2). For bi-geomin, bi-quartimin,
SL, and SLiD, increasing the number of factors
reduced omega overestimation, while the opposite was
true for DSL and DBF. Moreover, the presence of
cross-loadings was particularly detrimental for bi-
quartimin (g2p [CROSS.GRF¼ yes] ¼ .365) and SL (g2p
[CROSS.GRF¼ yes] ¼ .142). Lastly, increasing the
number of variables negatively impacted the estima-
tion of omega hierarchical for DSL (g2p [VAR.GRF] ¼
.753) and DBF (g2p [VAR.GRF] ¼ .700).

An analysis of eight examples

The performance of each algorithm was further com-
pared over a set of eight datasets traditionally consid-
ered to follow a bi-factor (first seven datasets) or
second-order structure (last example): Thurstone’s
nine mental tests (discussed in McDonald, 1999);
Thurstone and Bechtold’s 17 mental tests (Bechtoldt,
1961); Holzinger and Swineford’s 14 tests (Holzinger
& Swineford, 1937); Brigham’s nine tests (Thurstone,
1933); Harman’s 24 mental tests (Harman, 1967);
Reise, Morizot, and Hays’ Consumer Assessment of
Health Care Providers and Systems dataset (Reise
et al., 2007); Chen, West, and Souza’s Quality of Life
dataset (Chen et al., 2006); and the Jensen and Weng
(1994) dataset. The first five datasets represent cogni-
tive tests for which omega hierarchical has been previ-
ously explored by means of the Schmid-Leiman

transformation (Revelle & Wilt, 2013). The next two
datasets were selected to characterize bi-factor assess-
ments outside of cognitive testing. Additionally, the
recovery of the Quality of Life Dataset for bi-geomin,
bi-quartimin, SL procedure, and SLi-based methods
has been previously discussed in the literature (Abad
et al., 2017). Lastly, the Jensen and Weng (1994) set is
a well-known artificial dataset (presenting a true xH

¼ .69) constructed to illustrate a second-order IC
model similar to those simulated in Study 2. All data-
sets are available in the psych package (Revelle, 2018).
Code to reproduce these analyses is available in the
Supplementary Data.

Table 5 presents the omega hierarchical estimation
for each studied method. In summary, when com-
pared with either SL or SLiD and for all cases under
study, DSL and DBF tended to produce similar or
lower omega hierarchical estimates. Conversely, bi-
quartimin and bi-geomin consistently provided omega
hierarchical estimates that were higher than any other
method. Therefore, results from the analysis of these
seven empirical datasets appear to mirror those
obtained from Study 1. As a side note, and when
compared with SL, SLiD tended to present similar or
larger estimations of omega hierarchical, mainly when
SL resulted in low-reliability estimates (e.g., the
Harman/Holzinger dataset: SL ¼ .66; SLiD ¼ .79).
The effect of SL presenting lower general factor load-
ings has also been exemplified elsewhere for the
Quality of Life dataset (Abad et al., 2017), as well as
for alternative ICBP and ICB constructed examples
(Table 2; Mansolf & Reise, 2016). When considering
the only second-order structure studied (Jensen &
Weng, 1994), SL correctly recovered the true xH (.69),
with SLiD moderately overestimating (.72) and DSL-
DBF considerably underestimating (.60) the true
omega hierarchical value, respectively. This dataset
illustrates that under certain conditions (low number
of factors, simple second-order model), SL can yield a
correct solution.

Discussion

General factor modeling constitutes today a growing
area of research. As bi-factor modeling has become
standard practice in psychological assessment, model-
based reliability estimators have also grown in popu-
larity, with omega hierarchical playing a primary role
in scale validation (Viladrich et al., 2017; Zinbarg &
Alden, 2015). While omega hierarchical is commonly
approached by either confirmatory modeling or the
application of the SL transformation (Revelle &

Table 5. Estimated Omega hierarchical for all studied algo-
rithms for seven classic bi-factor examples and a second-
order structure.

Structure Bi-geomin Bi-quartimin SL SLiD DSL DBF

Thurstone (3) ICB .83 .82 .74 .77 .66 .66
Thurstone/Bechtoldt (6) ICB .80 .81 .72 .78 .80 .80
Holzinger & Swineford (4) ICBP .81 .83 .64 .79 .68 .69
Brigham/Thurstone (3) ICBP .90 .89 .85 .80 .58 .59
Harman/Holzinger (5) ICBP .87 .88 .66 .78 .63 .64
Reise, Morizot & Hays (5) ICB .87 .88 .82 .84 .77 .77
Chen, West & Souza (4) ICBP .85 .86 .78 .84 .76 .76
Jensen & Weng (3) � IC .73 .72 .69 .72 .60 .60
AVERAGE .83 .84 .74 .79 .68 .68

Note. � Second-order structure. SL¼ Schmid-Leiman orthogonalization;
SLiD¼ Iterative Empirical Target Rotation based on an initial Schmid-
Leiman solution; DSL¼Direct Schmid-Leiman. DBF¼Direct Bi-factor.
DSL and DBF algorithms computed with default cutoff point (.25).
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Zinbarg, 2009; Zinbarg & Alden, 2015; Zinbarg et al.,
2007, 2006), these strategies present substantial limita-
tions when pure indicators (and other deviations of a
simple structure) are present (Abad et al., 2017;
Garcia-Garzon et al., 2019).

Accordingly, appropriate methods for directly esti-
mating exploratory bi-factor models (BEFA) have
recently been proposed in the literature: bi-geomin
and bi-quartimin (Jennrich & Bentler, 2011, 2012),
SLiD (Abad et al., 2017), and DSL and DBF (Waller,
2018). However, their usefulness for estimating omega
hierarchical had heretofore remained unexplored. This
study is the first to present evidence regarding how
modern BEFA methods approximate omega hierarch-
ical through three simulation studies and the re-ana-
lysis of eight empirical datasets.

Main remarks

First and foremost, SLiD showed the most accurate
estimation of omega hierarchical across most studied
conditions and structures types (either bi-factor or
second-order structures). As expected, SL resulted in
unsatisfactory omega hierarchical estimation for all bi-
factor models studied. Moreover, SL only recovered
omega hierarchical accurately for second-order models
and under certain conditions (i.e., simple structures
with a low number of factors, as also exemplified in
the Jensen and Weng (1994) dataset). More notably,
SL resulted in negative bias estimation under almost
all conditions studied, which will be explained in
detail below. DSL and DBF presented an adequate
performance under one set of conditions: When the
average general factor loadings matched those of the
group factors (i.e., medium general factor size). Lastly,
bi-geomin and bi-quartimin resulted in positively
biased estimation of omega hierarchical on all occa-
sions, with the latter presenting a stronger bias than
the former in bi-factor models, and the reverse is true
for second-order models.

These results also evidence that omega hierarchical
recovery is strongly tied to the type of structure simu-
lated, the number of factors, and the general factor
size. Overall, reliability estimation benefited from
larger sample sizes, a higher number of factors (but
not for SL), and more items per factor. Unfortunately,
no method provided a reliable recovery of omega
under low sample sizes, a low number of factors, or
small general factor size. In this sense, it is more chal-
lenging to accurately recover lower omega hierarchical
values than higher ones. Nonetheless, the problems in
recovering weak factors in bi-factor modeling have

been previously shown in the literature (Garcia-
Garzon et al., 2019).

Moreover, the results of Study 3 highlight the fact
that the mindless application of BEFA in a case where
a general factor does not exist could result in obtain-
ing bi-factor structures with spurious, non-reliable
general factors. To clarify that as xH is bounded
below by zero, xH must always be positively biased
under this condition. Nevertheless, even though that
effect was especially pronounced for DSL and DBF
algorithms, no alternative method systematically per-
formed well. Only SLiD (and then under limited cir-
cumstances such as high sample size or a high
number of factors) provided a satisfactory recovery of
omega hierarchical if no general factor existed. In this
sense, researchers should consider following Morin
et al.’s (2016) guidelines for conducting bi-factor
modeling in the context of bi-factor exploratory struc-
tural equation modeling: a) Comparing the plausibility
of confirmatory and exploratory first-order correlated-
factor solutions; and b) comparing this first-order
solution against bi-factor and second-order solutions
following confirmatory and exploratory approaches.
As suggested by the authors, “this second step should
be only conducted when substantive theory and the
results of the first step suggest that this second source
of construct-relevant multidimensionality might be
present in the instrument” (Morin et al., 2016,
p. 135).

Lastly, general factor size, sample size, or the num-
ber of group factors had a similar impact on the dif-
ferent BEFA methods under bi-factor or second-order
structures. These results suggest that BEFA algorithms
resulting in full-rank (i.e., SLiD) or deficient-rank sol-
utions (i.e., DSL) could provide approximate omega
hierarchical accurately under certain conditions (spe-
cific for each algorithm), regardless of the true under-
lying structure (as also evidenced by Giordano &
Waller, 2019).

On BEFA methods for estimating general factor
reliability

The SLiD algorithm
From the existent alternatives for performing direct
BEFA estimation, the SLiD method was shown to be
the most robust algorithm, consistently outperforming
every other procedure. This study suggests that SLiD
is exceptionally accurate when recovering omega hier-
archical in either bi-factor or second-order structures,
especially those including pure indicators of the gen-
eral factor, regardless of the presence of cross-
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loadings. Also, SLiD was the only algorithm to pro-
vide correct (i.e., near-zero) omega hierarchical esti-
mates under certain conditions when no general
factor was present. Lastly, it should be noted that on a
number of occasions, SLiD led to solutions showing a
distorted factor pattern (reflected in outliers presents
in Figure 1 and 2 for SLiD). Particularly, certain items
(often those loading onto the weaker group factor)
showed an erroneous factor pattern combining near-
zero and inflated loadings along with several cross-
loadings in the other group factors. Given previous
warnings regarding potential factor collapse issues for
SLiD (Garcia-Garzon et al., 2019; Robertson, 2019)
and SLi (Giordano & Waller, 2019), researchers apply-
ing SLiD must conduct a careful examination of the
estimated solutions in order to detect and discard pos-
sible distorted solutions.

Schmid-Leiman
As expected, Schmid-Leiman did not provide an
adequate estimation of omega hierarchical for bi-fac-
tor models. Nevertheless, it is also true that SL pre-
sented the second-best performance after SLiD in
multiple occasions, particularly when sample sizes
were large or when the number of factors was low.
The SL performance for second-order structures was
more surprising, as SL continued to present a system-
atic negative bias for these structures. A detailed
examination of the estimated factor loading structures
revealed that SL omega hierarchical recovery was
closely tied to the estimation of the first-order correl-
ation matrix. When a general factor was present (even
if it was of low strength), SL underestimated the first-
order factor correlation matrix and its corresponding
second-order factor loadings vector. As this underesti-
mation was systematic, the numerator in the equation
for omega (i.e., the squared sum of general factor
loadings) was diminished and omega hierarchical thus
underestimated. Only when a general factor was not
present (and the true first-order factor correlation
matrix was an identity matrix) did the opposite occur
and SL overestimated the true omega hierarchical.
Thus, researchers must be aware that small deviations
in this first-order correlation matrix can severely
impact the quality of the general factor estimation for
SL. In this sense, even though oblimin was chosen
because it was reported to satisfactorily recover the
inter-factor correlation matrix in previous studies
(Schmitt & Sass, 2011), the effects of applying differ-
ent rotation criteria in SL are not always straightfor-
ward (Mansolf & Reise, 2016). Future research should

address the role and effect of different first-order rota-
tion criteria in SL estimation.

The DSL and DBF algorithms. DSL and DBF pre-
sented a subpar performance recovering omega hier-
archical except when the average general factor size
was of a magnitude similar to the average group fac-
tor loadings (i.e., k ¼ .45). Such behavior and the
similar results observed for DSL and DBF can be dir-
ectly attributed to the use of completely specified tar-
get rotation. Regardless of the underlying model to be
estimated, this type of target will aim to maximize a
few targeted factor loadings (with are given target val-
ues of ones), with the remaining elements set as ele-
ments to be minimized (and given targets of zeroes).
In this type of target, when factor loadings differ in
their true value (e.g., imagine a simple target aiming
to maximize two loadings of .60 and .30), and as com-
munality must remain constant for the transformation
matrix to be a proper rotation matrix, targeted values
will tend to a common high value. In the case where
the actual general factor loadings are more substantial
than their correspondent group factor loading(s) (as
in SIZE.GF¼High condition), using a completely
specified target rotation would always result in an
increase of the latter in the expense of the former, or
vice versa.

Nevertheless, it is crucial to bear in mind that the
consequences of the aforementioned errors could be
vastly different depending on which aspects of the fac-
tor solution are explored. For example, based on
Giordano and Waller’s (2019) results, DSL and DBF
are expected to provide an accurate estimation of fac-
tor solutions and to function as well as SLiD for sim-
ple (i.e., without pure indicators) bi-factor structures.
However, due to the systematic nature of the devia-
tions introduced by the complete target rotation (as
all targeted values have values of either one or zero),
statistics based on ratios of loadings and other factor
solution estimates (i.e., such as omega hierarchical)
would be more severely impacted. This tradeoff could
be highly relevant, as different researchers focus on
different aspects of their analyses, and this issue
should be explored deeply in the future.

Bi-quartimin and bi-geomin. The results confirmed
two main hypotheses regarding bi-quartimin and bi-
geomin rotations: First, the latter tends to outperform
the former, particularly if cross-loadings or pure indi-
cators are present. Second, both algorithms yield a
severe overestimation of omega hierarchical values. As
discussed previously, both methods tended to
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accommodate cross-loadings and other disturbances
by moving variance from the group to the general fac-
tor (Mansolf & Reise, 2016), explaining the observed
overestimation. As bi-quartimin is largely outper-
formed by bi-geomin due to the latter’s ability to
accommodate item complexity (as seen in Table 1 or
in Abad et al., 2017, Table 2), it is of special interest
to discuss this rotation method at greater length. Even
though the geomin criterion has been praised in the
literature (Mansolf & Reise, 2016), its application is
far from simple, requiring researchers to be aware of
its unique characteristics: (a) geomin (and bi-geomin
by extension) is not a unique, single criterion, but a
family of criteria dependent on the epsilon parameter
(Hattori et al., 2017); (b) geomin often requires that
researchers manually explore several local minima sol-
utions to ensure that they find the simplest structure
(Hattori et al., 2017; Mansolf & Reise, 2016); and c)
under the bi-factor model, and when combined with
the gradient projection algorithm, factor collapse
occurrence has been routinely observed (Mansolf &
Reise, 2016; Robertson, 2019), with limited informa-
tion in the literature regarding under which condi-
tions this is most likely to occur. Thus, practitioners
should be aware of its limitations and provide suffi-
cient justification for its application (i.e., how the
epsilon parameter was decided, how local minima sol-
utions were explored).

Limitations and future directions

The findings of this study only pertain to the condi-
tions under study, and readers should proceed with
caution when extending these results to alternative sit-
uations. In this study, only bi-factor structures with
orthogonal factors were studied. The interpretation of
oblique bi-factor structures is still controversial (Reise
et al., 2018), and therefore remains unexplored.
Furthermore, the effect of having factors varying in
the number of indicators within the same structure
was not considered here but is of interest in
applied settings.

A significant limitation is that this article did not
present evidence relative to how BEFA algorithms
would perform with regards to the estimation of the
reliability of scores from group factors (i.e., omega
hierarchical subscale). The reason for this decision is
that, to the best of our knowledge, no procedure for
estimating the reliability of such scores in exploratory
settings has yet been developed. Even though the
omega hierarchical subscale has been successfully
examined in the context of confirmatory models or

the SL solution (Rodriguez et al., 2016b), translating a
similar evaluation to assess the studied structures
would involve a decision on which loadings are to be
taken into account when computing each group factor
variance. Therefore, it would involve either some kind
of quasi-confirmatory approach within BEFA or
applying cutoff points to define loading significance
(which is known to be a questionable decision;
Garcia-Garzon et al., 2019). Readers engaged in this
approach might benefit from exploring these quasi-
confirmatory models. The most common approach to
these quasi-confirmatory models is to assign each
item to the specific factor on which they load the
highest and compute each omega hierarchical subscale
using this solution. This approach is applied by the
functions omegaSem and omega in the psych package
(Revelle, 2018). As noted by a reviewer, omega hier-
archical values would tend to be higher for these solu-
tions than for the exploratory counterparts.
Nevertheless, the relationship between omega hier-
archical estimated from fully or semi-exploratory
approaches should be investigated in future research.

Lastly, researchers have often been interested in
additional aspects of the BEFA model apart from gen-
eral factor score reliability. Among them, the main
preoccupation is to evaluate the departure of such a
model from a unidimensional model. The primary
statistic applied in this context is the explained com-
mon variance (i.e., ECV; Rodriguez et al., 2016b), or
the ratio between variance due to the general factor
and the total common variance. This statistic was not
evaluated due to two considerations: (a) ECV limita-
tions as an indicator of the presence of a general fac-
tor (Revelle & Wilt, 2013); and (b) its relationship
with omega hierarchical has been previously demon-
strated to be mediated by the percentage of uncon-
taminated correlations (PUC; Reise et al., 2013).
Unfortunately, and similarly to the case regarding
omega hierarchical subscale, PUC has not yet been
extended to BEFA models. Therefore, future research
to advance our understanding in these areas
is encouraged.

In conclusion, this article has shown how the selec-
tion of an appropriate BEFA algorithm could have a
severe impact on a researcher’s view on assessing
whether a general factor sufficiently explains the test
variance. This information could be crucial for
researchers to evaluate claims regarding how reliable
general factors genuinely are in a given field or test,
especially if models are fitted using different algo-
rithms and techniques. If researchers are interested in
investigating BEFA models themselves, we
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recommend that applied researchers consider the
application of the SLiD algorithm, as it is the most
reliable of the techniques we examined over the
broadest range of conditions and structures.
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Appendix 1

Table A1. SLiD algorithm first iteration target matrix definition for Thurstone 9 mental tests.
Panel A: Original SL solution Panel B: Squared normalized loadings Panel E: First iteration target matrix

Item GF GRF.1 GRF.2 GRF.3 GF GRF.1 GRF.2 GRF.3 GF GRF.1 GRF.2 GRF.3

Sen. .71 .57 �.02 .03 – 1.00 .00 .00 NA NA 0 0
Voc. .73 .55 .04 �.02 – .99 .01 .00 NA NA 0 0
Com. .68 .52 .03 .00 – 1.00 .00 .00 NA NA 0 0
Fir. .65 .00 .56 .00 – .00 1.00 .00 NA 0 NA 0
Wor. .62 �.01 .49 .08 – .00 .98 .02 NA 0 NA 0
Suf. .56 .11 .41 �.06 – .07 .91 .02 NA 0 NA 0
Ser. .59 .02 �.01 .61 – .00 .00 1.00 NA 0 0 NA
Ped. .58 .23 �.03 .34 – .32 .01 .68 NA NA 0 NA
Gro. .54 �.04 .13 .46 – .01 .08 .92 NA 0 0 NA
Average .22 .18 .16 .38 .33 .29

Panel C: Sorted squared normalized loadings* Panel D: One-lagged differences distribution*

Item GRF1 Item GRF2 Item GRF3 Item GRF1 Item GRF2 Item GRF3

Sen. 1.00 Fir. 1.00 Ser. 1.00 Sen. .00 Fir. .02 Ser. .08
Voc. 1.00 Wor. .98 Gro. .92 Voc. .00 Wor. .06 Gro. .24
Com. .99 Suf. .91 Ped. .68 Com. .68 Suf. .83 Ped. .65
Ped. .32 Gro. .08 Wor. .02 Ped. .25 Gro. .07 Wor. .00
Suf. .07 Voc. .01 Suf. .02 Suf. .06 Voc. .00 Suf. .02
Gro. .01 Ped. .01 Sen. .00 Gro. .01 Ped. .00 Sen. .00
Ser. .00 Com. .00 Voc. .00 Ser. .00 Com. .00 Voc. .00
Wor. .00 Sen. .00 Fir. .00 Wor. .00 Sen. .00 Fir. .00
Fir. .00 Ser. .00 Sen. .00 Fir. – Ser. – Sen. –
Average .13 .12 .13

Note: Sen. = Sentences. Voc. = Vocabulary. Com. = Sentence completion. Fir. = First letters. Wor. = Four letter words. Suf.= Suffixes. Ser. = Letter series.
Ped. = Pedigrees. Gro.= Letter group. GF = General Factor. GRF = Group Factor. Panels divided as item order is changed between Panels B and C.
Substantive loadings appear shadowed in strong gray and cross-loadings in light gray. First one-lagged difference above factor difference average is
presented bolded and underlined. * GF not presented in the Panel.
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Appendix 2

Table A2. Marginal omega hierarchical root squared mean
error (RMSE) each method in bi-factor structures.
Variable/level Bi-geomin Bi-quartimin SL SLiD DSL DBF

SAMPLE
150 .097 .117 .127 .079 .098 .100
500 .072 .097 .079 .042 .091 .093
1000 .061 .084 .062 .032 .089 .091
NUM.GRF
3 .115 .130 .072 .071 .106 .109
6 .041 .066 .107 .031 .079 .080
VAR.GRF
4 .083 .102 .091 .061 .099 .100
8 .072 .093 .088 .041 .081 .088
CROSS.GRF
No .056 .053 .087 .045 .081 .082
Yes .100 .143 .092 .056 .104 .107
PURE.GF
No .099 .116 .075 .057 .102 .105
Yes .057 .080 .104 .045 .084 .084
SIZE.GF
Low .108 .137 .105 .078 .119 .126
Medium .081 .102 .096 .051 .052 .053
High .044 .055 .067 .024 .108 .104
STRUCTURE
IC .070 .067 .074 .050 .086 .089
ICB .128 .165 .075 .063 .118 .122
ICP .041 .038 .099 .041 .077 .075
ICBP .073 .121 .109 .049 .091 .092
AVERAGE .078 .098 .089 .051 .093 .094

Note. SAMPLE¼ sample size; NUM.GRF¼ number of group factors;
VAR.GRF¼ number of indicators per group factor; CROSS.GRF¼ Cross-
loading presence; PURE.GF¼ Pure indicator presence; SIZE.GF¼General
factor average factor loading; IC¼ Independent Cluster;
ICB¼ Independent Cluster Basis; ICP¼ Independent Cluster with Pure
Indicators; ICBP¼ Independent Cluster Basis with Pure Indicators;
SL¼ Schmid-Leiman orthogonalization; SLiD¼ Iterative Empirical Target
Rotation based on an initial Schmid-Leiman solution; DSL¼Direct
Schmid-Leiman. DBF¼Direct Bi-factor. MBE values appear under brack-
ets. Conditions with MAE � .05 appear shadowed in gray. Lowest MAE
for each condition appears bolded.

Table A3. Marginal omega hierarchical root squared mean
error (RMSE) across each method for second-order models.
Variable / Level Bi-geomin Bi-quartimin SL SLiD DSL DBF

SAMPLE
150 .098 .114 .132 .086 .082 .085
500 .075 .072 .067 .050 .070 .073
1000 .074 .055 .044 .043 .068 .073
NUM.GRF
3 .118 .104 .065 .080 .084 .087
6 .048 .056 .096 .039 .064 .065
VAR.GRF
4 .082 .083 .082 .069 .072 .076
8 .084 .077 .079 .050 .075 .076
SIZE.SOF
Low .106 .100 .075 .082 .137 .147
Medium .080 .079 .082 .055 .016 .022
High .063 .062 .085 .042 .067 .059
AVERAGE .83 .080 .081 .060 .074 .076

Note. SAMPLE¼ sample size; NUM.GRF¼ number of group factors;
VAR.GRF¼ number of indicators per group factor; SIZE.SOF¼ Second-
order general factor average factor loading; SL¼ Schmid-Leiman ortho-
gonalization; SLiD¼ Iterative Empirical Target Rotation based on an ini-
tial Schmid-Leiman solution; DSL¼Direct Schmid-Leiman. DBF¼Direct
Bi-factor. MBE values appear under brackets. Conditions with MAE � .05
appear shadowed in gray. Lowest MAE for each condition
appears bolded.

Table A4. Marginal omega hierarchical root mean squared
error (RMSE) across methods for factor structures without a
general factor.
Variable/Level Bi-geomin Bi-quartimin SL SLiD DSL DBF

SAMPLE
150 .277 .271 .177 .133 .501 .529
500 .264 .210 .160 .088 .497 .513
1000 .261 .195 .152 .077 .496 .509
NUM.GRF
3 .360 .288 .213 .142 .463 .487
6 .175 .162 .114 .057 .534 .547
VAR.GRF
4 .242 .233 .160 .122 .447 .474
8 .293 .218 .167 .077 .549 .561
CROSS.GRF
No .250 .124 .134 .078 .490 .511
Yes .263 .326 .192 .120 .506 .524
AVERAGE .267 .225 .163 .099 .498 .517

Note. SAMPLE¼ sample size; NUM.GRF¼ number of group factors;
VAR.GRF¼ number of indicators per group factor; CROSS.GRF¼ Cross-
loading presence; PURE.GF¼ Pure indicator presence; IC¼ Independent
Cluster; ICB¼ Independent Cluster Basis; ICP¼ Independent Cluster with
Pure Indicators; ICBP¼ Independent Cluster Basis with Pure Indicators;
SL¼ Schmid-Leiman orthogonalization; SLiD¼ Iterative Empirical Target
Rotation based on an initial Schmid-Leiman solution; DSL¼Direct
Schmid-Leiman. DBF¼Direct Bi-factor. MBE values appear under brack-
ets. Conditions with MAE � .05 appear shadowed in gray. Lowest MAE
for each condition appears bolded.
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Chapter 6

Bi-factor Exploratory Structural
Equation Modelling Done Right

This study is currently submitted to Psicothema. The following pages include the latest
version of this article. This article was co-authored with Nieto, M.D. (Universidad de
Nebrija, Spain), Garrido, L.E. (Pontificia Universidad Católica Madre y Maestra, Dominican
Republic) and Abad, F.J. (Universidad Autónoma de Madrid, Spain).
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Abstract

Background: Due to its flexibility and superior statistical properties, bi-factor Exploratory
Structural Equation Modeling (ESEM) has become a preferred tool in psychometrics. Unfor-
tunately, most recent methods for approximating these structures, such as the SLiD algorithm,
are not available in the principal software for conducting ESEM (i.e., Mplus). To resolve this
issue, a novel, user-friendly Shiny application for integrating the SLiD algorithm in bi-factor
ESEM estimation in Mplus is presented. Thus, a two-stage framework for conducting SLiD-
based bi-factor ESEM in Mplus was developed. Method: This approach is presented in a
step-by-step guide for applied researchers, showing the utility of the developed SLiDApp
application. Using data from the Open-Source Psychometrics Project (N = 2495), we conduct
a bi-factor ESEM exploration of the Generic Conspiracist Beliefs Scale. We studied whether
bi-factor modelling was appropriate and if both, general and group factors, were related to
each personality traits. Results: It was further exemplified how the SLiD algorithm provided
unique information regarding its factor structure and structural parameters. Conclusions:
The results illustrated the usefulness and validity of SLiD-based bi-factor ESEM, and how
the proposed Shiny app could facilitate the use of these methods for applied researchers.

Keywords: bi-factor, exploratory structural equation modelling, factor analysis; rotation,
Schmid-Leiman.
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Resumen

Antecedentes: Debido a sus propiedades estadísticas, los modelos bi-factoriales de ecuaciones
estructurales exploratorias (bi-factor ESEM) son una herramienta clave en psicometría.
Desafortunadamente, las últimas alternativas para su estimación no se encuentran disponibles
en el software principal usado para su estimación (i.e., Mplus). Para solucionar este problema,
se presenta una aplicación Shiny (SLiDApp) que permite integrar los resultados del algoritmo
SLiD en un modelo bi-fctor ESEM estimado en Mplus. Así, se diseñó una estrategia de
dos pasos para estimar modelos bi-factor ESEM basados en SLiD. Método: Este enfoque
se ilustra mediante una guía paso por paso que muestra cómo usar la aplicación diseñada
para este fin. Se realizó un modelo bi-factor ESEM basado en SLiD de la Escala de
Creencias Conspirativas Genéricas usando una muestra del Open-Source Psychometrics
Project (N = 2495). Se analizó la relación de los factores generales y de grupo con los cinco
factores de personalidad. Resultados:. Los resultados mostraron cómo el algoritmo SLiD
proveía de información única acerca de la estructura factorial y los parámetros estructurales.
Conclusiones: Este estudio demostró la utilidad tanto de los modelos bi-factoriales ESEM
basados en SLiD cómo de la app propuesta. Asimismo se espera que esta aplicación facilite
el uso de este tipo de métodos por parte de investigadores aplicados.

Palabras clave: bi-factor, modelos de ecuaciones estructurales exploratorias, análisis
factorial; rotación, Schmid-Leiman.



110 Bi-factor Exploratory Structural Equation Modelling Done Right

The bi-factor model plays today a crucial role in the advancement of psychological theory
(Reise, Bonifay, Haviland, 2017) with major applications in personality and intelligence
(Garcia-Garzon, Abad, Garrido, 2019a; Primi, da Silva, Rodrigues, Muniz, Almeida, 2013).
Bi-factor models represent a convenient set of factor models that allows the simultaneous
estimation of a general factor (common to all items) alongside with several group factors (un-
derlying to specific sets of items; Reise, Bonifay, Haviland, 2017). As such, bi-factor models
have been recently introduced in the context of Exploratory Structural Equation Modeling
(i.e., ESEM; Gomes, Almeida, Núñez, 2017). ESEM has recently gained popularity as it
has been shown to improve parameter estimation when compared with traditional structural
equation modelling (Guo et al., 2019; Marsh, Guo, Dicke, Parker, Craven, 2019).

The principal ESEM feature is the introduction of Exploratory Factor Analysis (i.e., EFA)
measurement models within a SEM model while retaining global and local fit inspection
and the ability to include residual correlations in the measurement model (Nieto et al., 2017;
Asparouhov Muthén, 2009; Garrido et al., 2018). Accordingly, a decisive step in ESEM is,
as in any EFA-based model, the choice of an appropriate rotation method (Izquierdo, Olea,
Abad, 2014). Such a decision might be of more relevance in this context, as any estimation
bias present in the measurement model propagates to other parameters in the model (Guo et
al., 2019; Reise et al., 2017).

With regards to bi-factor modelling, several rotation alternatives are currently available
(Abad, Garcia-Garzon, Garrido, Barrada, 2017; Asparouhov Muthén, 2009; Garcia-Garzon,
Abad, Garrido, 2019b; Giordano Waller, 2019; Lorenzo-Seva Ferrando, 2018). In this
sense, this article is designed to introduce the use of one of the current state-of-the-art
bi-factor rotation methods within ESEM: the Empirical Iterative Target Rotation based on a
Schmid-Leiman solution (Garcia-Garzon et al., 2019b). As this method is only available in
R software and ESEM is primarily conducted using Mplus (Muthén Muthén, 2017), a novel
friendly-user Shiny application was develop to integrate both softwares (called SLiDApp).
Its utility is illustrated by a step-by-step guide and an empirical bi-factor ESEM analysis of
the Generic Conspiracy Belief Scale (GCBS; Brotherton et al., 2013).

The SLiD Algorithm

As interest in bi-factor exploratory factor analysis (i.e., BEFA) has dramatically grown
over the last decade, many articles have been concerned with studying their application
within ESEM (Asparouhov Muthén, 2009). The principal software to conduct ESEM is
Mplus (Muthén Muthén, 2017), which offers three approaches towards estimating BEFA
models in this context: bi-quartimin, bi-geomin (Jennrich Bentler, 2011, 2012) and the
non-iterative target rotation (Reise, Moore, Maydeu-Olivares, 2011). Unfortunately, it is
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well known in the BEFA literature that these approaches present stringent limitations and fail
to provide accurate parameter estimation under most realistic conditions (Abad et al., 2017;
Garcia-Garzon, Abad Garrido, in press; Giordano Waller, 2019).

Accordingly, several alternatives have recently appeared in the literature: the Direct
Schmid-Leiman, the Direct Bi-factor (Giordano Waller, 2019), the Pure Exploratory Bi-
factor Analysis (PEBI; Lorenzo-Seva Ferrando, 2018) and the Empirical Iterative Target
Rotation based in a Schmid-Leiman Solution (i.e., SLiD; Garcia-Garzon, Abad, Garrido,
2019b).

Amongst those, the SLiD algorithm presents a unique combination of features (Garcia-
Garzon, Abad, Garrido, 2019b). The SLiD algorithm has been shown to result in both,
improved parameter estimation when compared with alternative algorithms (Garcia-Garzon,
Abad Garrido, 2019b) and unbiased estimation of general factor reliability under many
circumstances (Garcia-Garzon, Abad Garrido, in press). The SLiD algorithm approximates
a simple exploratory bi-factor model in four main steps: (a) First, an initial Schmid-Leiman
model is estimated, which is known to represent a biased estimation of the bi-factor model
of interest (Reise, Moore Maydeu-Olivares, 2011); (b) Second, the initial Schmid-Leiman
solution is used to define a partially specified target matrix using an empirical, factor-specific
cut-off point based on loadings’ differences (as detailed in Garcia-Garzon, Abad Garrido.,
2019b); (c) An initial, tentative exploratory bi-factor solution is computed employing a target
rotation using the empirically defined target matrix; (d) The estimated bi-factor solution
is subsequently refined through repeating steps b and c until convergence (i.e., the target
rotation becomes stationary within iterations); (e) Finally, the refined structure is modified so
to approximate the identification conditions defined in Asparouhov and Muthén (2009).

An additional benefit of the SLiD algorithm is that it is freely available in open-source
software such as R, which facilitates its integration into alternative platforms and applications.
Unfortunately, as said before, the SLiD algorithm is not available in Mplus (Muthén Muthén,
2017), which is the preferred software to conduct ESEM. Thus, as of today, practitioners
wishing to apply a bi-factor ESEM face an uncomfortable situation: (a) to conduct this
analysis using a detrimental rotation method such as bi-geomin (the default option in Mplus),
which would lead to biased, incorrect results; (b) to pre-estimate the measurement models
using R using the SLiD algorithm and to translate the rotated factor solutions as fixed
parameters in a traditional structural equation model; (c) a two-step framework for computing
state-of-the-art bi-factor ESEM, where a refined target bi-factor rotation matrix is estimated
in R using the SLiD algorithm and is subsequently used in Mplus to perform ESEM (as
in Garcia-Garzon et al., 2019a). Unfortunately, researchers interested in this latter option
would be required to be familiarized with both, R and Mplus software. Thus, to bridge the
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gap between both software, and provide users with an easy pathway to apply this two-step
framework to perform SLiD-based ESEM, a novel Shiny app was developed.

SLiDApp: Implementing Modern BEFA in ESEM Models

As previously acknowledged in this journal, methodological innovations such as the SLiD
algorithm are only useful to the extent that they are implemented in software available to the
general public (Calderón-Garrido, Navarro-González, Lorenzo-Seva, Ferrando-Piera, 2019).
To this end, in recent years Shiny-based web applications are gaining popularity (e.g., Nieto,
Garrido, Golino, Shi, Abad, 2019). Shiny is an R package that allows developing interactive
web tools (Chan, Cheng, Allaire, Xie, McPherson, 2019). This article will introduce the
SLiDapp (https://slidapp.shinyapps.io/SLid_app/), a user-friendly Shiny application that
provide the refined bi-factor target resulting from the SLiD algorithm in a format ready to be
introduced in Mplus and applied within an ESEM context (Figure 1).

- PLEASE INSERT FIGURE 1 HERE –

The different steps to use the app and its features are illustrated in Figure 1. These steps
are further illustrated in the Instructions panel within the application. The first step is to select
a file in TXT or DAT format including variables to be analyzed. The next steps are concerned
with file characteristics, such as whether variables names are included in the header (step 2)
or the separator character applied (step 1). If the data-set contains missing values, the user
must specify how they are coded in the input box shown in step 4 (multiple missing values
are accepted). Afterwards, step 5 consists of loading the dataset to the SLiDapp using the
"Load Data" option. The user can preview the loaded data using the Data Preview box (step
6) or by clicking in Display data (step 7).

To start the analysis, the researcher must specify the number of group factors to be
extracted (step 8). In this case, a SLiD solution requires at least two group factors to be
estimated. After deciding on the model dimensionality, the "Run SLid" option will be now
clickable to run the SLiD algorithm (step 9). A progress bar will be shown while SLiD
finishes the computation of the target matrix (step 10). Finally, the estimated solution will be
printed on the app interface, and ready to be copied (step 11) and/or inserted in a Mplus input
file. Interested users can save the estimated target matrix in their computers by indicating
a name for the resulting file (step 12) and clicking on the "Download" option (step 13).
Furthermore, users can download the SLiD output in CSV format if interested (step 14).
The output produced by the app contains the ANALYSIS and MODEL sections of a Mplus
input file. Furthermore, it controls that each line does not exceed 90 characters (a Mplus

https://slidapp.shinyapps.io/SLid_app/
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restriction). Thus, users only need to add the appropriate code regarding the structural part of
the estimated model and to adapt the code of the remaining sections (i.e., DATA, VARIABLE
and OUTPUT) in the input and output file (see Supplementary data for a reproducible
example using the GBCS data).

The SLiD algorithm is run automatically using either polychoric or Pearson’s correlation
based on the number of categories detected in the variables, applying the unweighted least-
squares extraction method and the oblimin rotation when estimating the initial Schmid-
Leiman solution. The utility of this Shiny app is illustrated below by conducting a SLiD
based bi-factor ESEM to the Generic Conspiracist Belief Scale (GCBS; Brotherton, French,
Pickering, 2013). This example would investigate both, whether a bi-factor model holds for
the GCBS and the relationship between the general and group factors and personality traits
derived from the big five models (Goreis Voracek, 2019). To illustrate the complete process
of computing a bi-factor ESEM model, dimensionality assessment and factor structure choice
are also presented below.

The utility of this Shiny app is illustrated below by conducting a SLiD based bi-factor
ESEM to the Generic Conspiracy Belief Scale (GCBS; Brotherton, French, Pickering, 2013).
This example would investigate both, whether a bi-factor model holds for the GCBS and
the relationship between the general and group factors and personality traits derived from
the big five model (Goreis Voracek, 2019). To illustrate the complete process of computing
a bi-factor ESEM model, dimensionality assessment and factor structure choice are also
presented below.

Method

The GCBS (Brotherton et al., 2013) represents the primary assessment tool in research
areas such as inquiring beliefs in fake news, beliefs in conspiracy theories and new forms
of information consumption. Accordingly, it has more than 33 research applications in the
last five years (Goreis Voracek, 2019; Hollander, 2018). In this area, there is an increasing
controversy surrounding whether conspiracy beliefs are correlated with individual aspects
such as personality traits (for a detailed review, see Goreis Voracek, 2019). While some
authors have suggested that higher tendency to believe in conspiracies theories are linked with
lower agreeableness and emotional stability and higher openness to experience (Brotherton
et al., 2013; Goreis Voracek, 2019), other argued that such effects were equivocal, to say at
least (Goreis Voracek, 2019).

There are many reasons to believe that the literature surrounding GCBS could benefit
from an exploration of bi-factor ESEM. Firstly, even though the GCBS was developed
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as a multidimensional 15-item tool assessing five different conspiracy believes domains
(Brotherton et al., 2013), it has been primarily applied as a unidimensional scale assessing
a general, conspiracist ideation factor (Hollander, 2018; Swami et al., 2017). Despite the
theoretical support for the idea of a general conspiracy ideation factor (Goertzel, 2013;
Swami et al., 2017; Wood, Douglas, Sutton, 2012), evidence showed that unidimensional
(or even two-dimensional) GCBS models presented substantive fit issues (Brotherton et al.,
2013; Swami et al., 2017). Thus, the latent GCBS structure is still a matter of debate in the
literature (Swami et al., 2017). In this sense, a bi-factor model could help to understand the
extent that GCBS represents an essentially unidimensional tool and whether the group scales
reflect any relevant information additional to this general factor (Reise, Bonifay, Haviland,
2017; Rodriguez, Reise, Haviland, 2016).

Participants

Using data from the Open-Source Psychometric Project (www.openpsychometrics.org), re-
sponses of 2495 individuals who responded online to the GCBS, the ten-item personality
inventory (i.e., TIPI; Gosling, Rentfrow, Swann, 2003) and several demographic items were
analyzed. The sample was gender-balanced (females represented 49.0% of the sample),
consisted of young aged (M = 27.63, SD = 13.36), higher-educated (36.9% completed
university-level studies), English-native speakers (75.2% of participants). Thirteen respon-
dents were removed from the sample due to having response times over 30 minutes (response
times over two minutes per item).

Instruments

The GCBS is a short, 15-item scale that assesses five generic conspiracy domains: government
malfeasance, extraterrestrial cover-up, malevolent global conspiracies, personal well-being,
and control of information. All items are measured on a five-point Likert Scale to evaluate
the veracity of given sentences (i.e., “Evidence of alien contact is being concealed from the
public”) ranging from 1 (“definitely not true”) to 5 (“definitely true”). The complete item
descriptions are offered in the original manuscript (Table A1; Brotherton et al., 2013).

The TIPI is a brief personality measure which assesses the Big Five personality model
(including extraversion, openness to experience, agreeableness, conscientiousness, and
emotional stability traits), asking individuals to rate themselves with regards to five positive
and five negative adjectives applying a Likert scale ranging from 1 (“Disagree strongly”) to
7 (“Agree strongly”). After reversing responses to negative items, each personality trait is
measured as the average of the two corresponding items.

www.openpsychometrics.org
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Data Analysis

A complete factor-analysis study was conducted to illustrate all the necessary steps appropri-
ate for conducting bi-factor ESEM. Firstly, GCBS dimensionality was estimated employing
parallel analysis (Garrido, Abad, Ponsoda, 2013). Afterwards, unidimensional, confirmatory
and exploratory versions of the five correlated factors and confirmatory and exploratory
bi-factor models with five group factors were analyzed. Secondly, several bi-factor rotation
methods were tested, namely the bi-geomin, bi-quartimin, a theory-driven partially specified
target rotation, and a SLiD-based target rotation. The quality and reliability of each solution
were assessed through omega hierarchical (i.e., H), the expected common variance (i.e.,
ECV), and the replicability index (i.e., H-index) following Rodriguez, Reise, and Haviland
(2016) guidelines. Lastly, a bi-factor ESEM model using the SLiD-based target rotation
was conducted to estimate the relationship between the different GCBS factors and TIPI
personality traits. In these analyses, the SLiD-based target was estimated using the Shiny app.
All subsequent analyses were performed using the weighted least-squares with mean and
variance correction (WLSMV) in Mplus 7 (Muthén Muthén, 2007). Parallel analysis and
bi-factor indices were computed in R 3.6.2 (R Core Team, 2019) using the psych package
1.9.12. (Revelle, 2019). Due to data characteristics (i.e., few items per factor and expected
high inter-factor correlations) analysis was conducted over the reduced polychoric correlation
matrix using the mean eigenvalue rule to decide the number of appropriate factors (Golino et
al., 2020).

Results

GCBS Exploratory Factor Analysis

Even though parallel analysis indicated that five factors should be retained (empirical eigen-
values were 8.30, .83, .40, .14, .08 and .02, and average resampled eigenvalues were .36, .12,
.11, .08, .06 and .05), the relative size of the first eigenvalue indicates that a dominant dimen-
sion might be present. Thus, this dimensionality assessment suggested a combination of a
strong single factor altogether with additional minor factors consistent with the hypothesis of
a bi-factor model being appropriate for GCBS.

Five different GCBS measurement models were compared in terms of data fit (Table 1),
from which an EFA model with 5 factors fitted the data the best. RMSEA was observed
to notably differ between CFA and EFA models, which could be attributed to differences
of magnitude in the inter-factor correlation matrices. Under these circumstances, the latter
was favoured. An exploratory version of the latter model showed an adequate fit to the data



116 Bi-factor Exploratory Structural Equation Modelling Done Right

(CFI > .99; TLI > .99; RMSEA < .05), but presented a complex factor pattern (i.e., with
7 out of 15 items presenting cross-loadings larger than .20 in absolute value). The high
inter-factor correlations, with 5 out of 10 inter-factor correlations having values over .60,
indicate substantive overlap over the five correlated factors. Thus, it was decided to explore
the fit of bi-factor models combining a general factor plus five additional group factors.

- PLEASE INSERT TABLE 1 HERE –

A Comparison of BEFA Algorithms

Several BEFA solutions were explored, namely a bi-quartimin, bi-geomin, a model rotated
using partial target rotation towards the theoretical structure, and a SLiD-based rotation
solution (Table 2). Substantive differences across models were found with regards to group
factor loadings pattern: Firstly, from Mplus rotation criteria, bi-geomin produced the simplest
solution. Unfortunately, items 9, 5 and 14 only presented substantive loadings (larger than
|.20|) in the general factor in this solution, leaving the personal well-being factor defined by
a single item (Item 4). Secondly, the theoretical target did not perform any better than this
model. Thirdly, the only solution properly recovering the personal well-being factor was
SLiD (see Figure 1 for the specified target matrix), with items 9 and 14 substantially loading
on it. As SLiD was the structure with a stronger resemblance to the theoretical expectation, it
was subsequently retained as the model to be used in ESEM analyses. Noteworthy, all models
supported the presence of a reliable general factor (ωH , ECV and H-index: bi-quartimin
.91/.74/.95; bi-geomin = .92/.76/.95; theory-based target = .91/.75/.95; SLiD = .92./.76/.95).

- PLEASE INSERT TABLE 2 HERE –

The SLiD-Based Bi-factor ESEM Model

After deciding on a bi-factor measurement model, the SLiD-based target matrix was applied
within an ESEM framework in Mplus via to the Shiny app. In this model, we explored the
relationships between the GCBS factors and the Big Five personality traits utilizing ESEM
(Figure 2).

- PLEASE INSERT FIGURE 2 HERE –

The standardized regression parameter and the explained variance (R2) for each personal-
ity factor are presented in Table 3. The model fitted the data excellently (CFA = 1.000; TLI >
.99; RMSEA < .02; Table 2). This ESEM model revealed distinct patterns of relationships for
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each GCBS factor involved, such as the general factor being the only factor significantly (and
positively) related with openness (β = .105, p < .001) and negatively related with both agree-
ableness (β = -.058, p < .001) and emotional stability (β = -.076, p < .001). Nevertheless,
the observed relationships presented small predictive power (.013 < R2 < .038). Thus, even
though the results from the bi-factor ESEM results aligned with some theoretical predictions,
they largely supported previous conclusions suggesting that the relationships between the
GCBS factors and personality traits are, at best, weak (Goreis Voracek, 2019).

- PLEASE INSERT TABLE 3 HERE –

Finally, it should be highlighted that whether another bi-factor rotation had been chosen,
these results would have been substantially different. Table A1 (Appendix 1) shows the
regression parameters from ESEM models obtained with bi-quartimin, bi-geomin, and the
theory-based target rotation. Notable disagreements between methods were found among
methods, particularly, but not limited, to the personal well-being and control of information
group factors. For example, the relationship between conscientiousness and personal well-
being was observed to be significantly positive bi-quartimin, non-significant for bi-geomin
and the theory target and significantly positive for and the SLiD-based target. In the case
of control of information, SLiD provided was the only method to not found any significant
relationship between personality traits and GCBS factors. Thus, these results reflect that the
bi-factor rotation critically determined the nature and direction of the estimated structural
parameters.

Discussion

Bi-factor ESEM models constitute today a decisive tool for latent variable modelling. As such,
many researchers who have become interested in these models in the literature find themselves
limited to certain bi-factor rotation methods as these models are primarily estimated using
Mplus. Despite their popularity, software default methods are not always appropriate, and
ultimately impair the advancement of good analytical practices in the context of factor
analysis (Izquierdo et al., 2014).

To improve this situation, this research aimed to provide readers with the necessary tools
for applying modern bi-factor estimation utilizing the SLiD algorithm within ESEM. We
exemplified how to perform this analysis by illustrating the use of a Shiny application and
a novel bi-factor ESEM exploration of the relationship between the Generic Conspiracist
Beliefs Scale and the big five personality traits. Results evidenced the relationships between
GCBS factors and personality traits were dependent upon the choice of the bi-factor rotation
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methods. Moreover, despite supporting latest findings in the GCBS literature (Goreis
Voracek, 2019), it is our understanding that such scale would ultimately benefit from being
re-constructed following current directions in the field (Muñiz Fonseca-Pedrero, 2019).

Lastly, this study was not without limitations. For example, as of today, the Shiny app
does not allow users to choose an estimation method or initial rotation method for SLiD.
However, future versions of the app will expand these capabilities. Moreover, it should be
acknowledged that other relevant bi-factor rotation methods, such as the Pure Exploratory
Bi-factor Analyses, were not explored here (as they are only available in specialized software;
FACTOR; Ferrando Lorenzo-Seva, 2017; Lorenzo-Seva Ferrando, 2018).

With bi-factor ESEM being posed to play a substantial role in future psychological
research, we consider of importance to ensure that interested researchers can use state-of-the-
art methods regardless of their programming skills. With the same humble spirit that other
colleagues have previously expressed in this journal (Calderón Garrido et al., 2019), it could
only be hoped that by facilitating the use of these modern methods via a user-friendly, free
Shiny app, we have contributed to foster critical thinking and good researcher practices in
the context of factor analysis.



 

 

Figure 1. The interface of the Shiny application for computing a SLiD-based target matrix. 
The different steps for using the app are highlighted and circled in red.  
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Table 1. 

Model fit indices for confirmatory and exploratory models estimated. 

 𝝌𝟐 df p CFI TLI RMSEA 
Unidim. 6760.73 90 .000 .922 .909 .172 (.169 - .176) 
CFA 5 factors 
correlated 

1018.30 80 .000 .989 .986 .069 (.065 - .072) 

EFA 5 factors 
correlated 

192.56 40 .000 .998 .995 .039 (.034 - .045) 

CFA bi-factor 1158.64 75 .000 .987 .982 .076 (.072 - .080) 
EFA bi-factor 61.67 30 .001 1.000 .999 .021 (.013 - .028) 
ESEM 115.85 75 .002 1.000 .999 .015 (.009 - .020) 

 
Note. Unidim. = Unidimensional model; 𝛸 = Chi-square statistic; df = degrees of freedom; 
p= p-value associated with 𝛸  test of fit; CFI = Comparative fit index; TLI= Tucker-
Lewis index; RMSEA = Root Mean Square Error of Approximation (with 95% confidence 
interval in parenthesis); CFA = Confirmatory Factor Analysis; EFA = Exploratory Factor 
Analysis; ESEM = Exploratory Structural Equation Model. Best fit indices presented 
bolded and underlined. ESEM model presented in italics. 
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Figure 3. The Bi-factor ESEM model for between the Generic Conspiracist Beliefs 
Scale scores and personality traits. Items are represented from q1 to 15. GCI: 
General Conspiracist Ideation. GM: Government Malfeasance; MG: Malevolent 
Global Conspiracies; ET: Extraterrestrial Cover-up; PW: Personal well-being; CI: 
Control of Information; O = Openness; C = Conscientiousness; E = Extraversion; 
A = Agreeableness; ES = Emotional Stability. 
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Table 3. 

Standardized regression coefficients between big five personality traits and CGBS 
scale. 

 GCI GM MG ET PW CI R2 
Openness .106 .006 .037 .002 .072 -.067 .022 
Conscientiousness .020 -.107 -.018 .063 -.138 .052 .038 
Extraversion .036 -.059 .033 .078 -.033 .028 .013 
Agreeableness -.058 -.051 .079 -.009 -.036 .012 .014 
Emotional  -.076 .011 -.078 .107 -.064 .082 .034 
Stability        

Note. GCI: GCI: General Conspiracist Ideation. GM: Government Malfeasance; 
MG: Malevolent Global Conspiracies; ET: Extraterrestrial Cover-up; PW: 
Personal well-being; CI: Control of Information. SLiD: Empirical Iterative 
Target Rotation based in a Schmid-Leiman Solution. Significant regression 
parameters (at .01 level) presented bolded and shadowed in grey. 
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Appendix 1 
Table A1. 

Standardized regression coefficients between big five personality traits and GCBS 
scale for different bi-factor rotation methods. 

GCBS Personaliy Trait Bi-quartmin Bi-geomin 
Theory 
Target 

SLiD-based 

GCI Openness .095 .096 .094 .106 
 Conscientiousness .016 .020 .030 .020 
 Extraversion .042 .047 .049 .036 
 Agreeableness -.056 -.054 -.049 -.058 
 Emotional Stability -.054 -.056 -.058 -.076 

GM Openness .044 .033 .036 .006 
 Conscientiousness -.093 -.094 -.115 -.107 
 Extraversion -.071 -.076 -.077 -.059 
 Agreeableness -.047 -.057 -.065 -.051 
 Emotional Stability -.047 -.039 -.038 .011 

MG Openness .024 .024 .048 .037 
 Conscientiousness .060 .057 -.028 -.018 
 Extraversion .007 .064 .020 .033 
 Agreeableness -.008 -.012 .075 .079 
 Emotional Stability .070 .071 -.096 -.078 

ET Openness .048 .048 .024 .002 
 Conscientiousness -.013 -.020 .047 .063 
 Extraversion .028 .021 .062 .078 
 Agreeableness .082 .078 -.017 -.009 
 Emotional Stability -.100 -.099 .076 .107 

PW Openness .008 .014 .021 .072 
 Conscientiousness .094 .084 .065 -.138 
 Extraversion .001 -.005 -.014 -.033 
 Agreeableness .013 .011 .006 -.036 
 Emotional Stability -.086 -.055 -.059 -.064 

CI Openness .095 .095 .094 -.067 
 Conscientiousness -.131 -.134 -.129 .052 
 Extraversion -.018 -.018 -.012 .028 
 Agreeableness -.039 -.036 -.034 .012 
 Emotional Stability -.109 -.108 -.104 .082 

Note. GCI: Generic Conspiracist Ideation. GM: Government Malfeasance; MG: 
Malevolent Global Conspiracies; ET: Extraterrestrial Cover-up; PW: Personal well-
being; CI: Control of Information. SLiD: Empirical Iterative Target Rotation based in 
a Schmid-Leiman Solution. Significant regression parameters (at .01 level) presented 
bolded. 
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Chapter 7

General discussion

7.1 Main Results

The bi-factor model has emerged as one of the most influential statistical tools in psychologi-
cal research (Markon, 2019; Reise et al., 2018). Unfortunately, the bi-factor model is not only
poorly understood (Bonifay et al., 2017; Markon, 2019), but also commonly applied within a
detrimental confirmatory factor analysis approach (Reise et al., 2018, 2011). This doctoral
dissertation has been dedicated to the unique challenges associated with approximating the
bi-factor model from an exploratory perspective. Particularly, this thesis considered the
target rotation as the principal tool for conducting bi-factor exploratory factor rotation. Thus,
this doctoral dissertation was focused on developing new target-based rotation algorithms
to improve the estimation of exploratory bi-factor models. These algorithms successfully
recovered complex bi-factor exploratory factor models under several conditions when ex-
plored using Monte Carlo methods and empirical datasets. Moreover, by presenting these
algorithms within a unified framework (the SLi family of rotations), it is expected that future
contributions and collaborations in this area are set to be continued1.

In detail, Chapters 2 and 3 were devoted to the introduction of the SLi and SLiD algo-
rithms as state-of-the-art tools for conducting bi-factor exploratory factor analysis. Chapter
4 presented an application of these methods to the evaluation of the factor structure of the
Last Twelve matrices of the Standard Progressive Matrices test (i.e., SPM-LS). Chapter 5
included a detailed evaluation of how choosing between different algorithms could ultimately
impact the quality of omega hierarchical estimation. Lastly, in Chapter 6, an application
was developed so easily translate the SLiD estimated target from R to Mplus. Its use and

1A first example is an extensive correspondence established with Dr Stephen Robertson during his studies
on factor collapse in bi-factor models. In this note, I would like to express my deepest gratitude for sharing his
knowledge and enthusiasm during the past years.
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utility were exemplified by presenting a novel bi-factor ESEM exploration of the relationship
between the Generic Conspiracionist Belief Scale scores and personality traits.

To conclude, it should be acknowledged that this doctoral dissertation intended to shed
light on some of the most controversial topics surrounding exploratory bi-factor models. In
addition to the comparison of algorithms and the novelty of some of the strategies presented
in this thesis, previous chapters also included noteworthy findings that should not be forgotten:
novel bi-factor taxonomies and conceptualizations, new approximations towards identifying
substantive effects on bi-factor model recovery and the presentation of relevant advances in
how the target rotation should be conducted. For the sake of clarity, the main results of each
Chapter are hereafter presented.

7.1.1 Main Results from Chapter 2

Chapter 2 illustrated how the iterative application of the partially specified target rotation, as
included in the SLi algorithm, represented substantial benefits when conducting bi-factor
exploratory factor analysis. This conclusion was supported by evidence obtained from Monte
Carlo methods and the examination of an empirical example. The simulation presented a set
of comprehensive conditions, including different sample sizes, different number of group
factors, different number of indicators per factor and two types of disturbances of the simplest
bi-factor model (namely, cross-loadings and true-near zero loadings on the group factors).
SLi was shown to outperform other algorithms under most conditions, including structures
where group factor structure presented a cross-loadings, or, more importantly, pure indicators.
Accordingly, researchers were recommended to use the SLi algorithm.

This study also explored the performance of other available algorithms: bi-quartimin,
bi-geomin, SL and non-iterative SL target rotation: Bi-quartimin failed when cross-loadings
were present. SL did never provided accurate recovery of bi-factor models presenting pure
indicators of the general factor. Bi-geomin showed the best performance when a combination
of cross-loadings and near-zero loadings were present in the structure. Lastly, no method
performed correctly under small sample sizes (i.e., N = 200) and when group factors had
small average factor loadings (i.e., between .30 and .50).

It should be highlighted that this research was one of the first studies comparing the
performance of different bi-factor rotation methods using Monte Carlo simulations. As
such, it has been already cited 13 times in the literature as of April 2020, and the conditions
studied there inspired posterior studies in the field (Giordano and Waller, 2019; Lorenzo-seva
and Ferrando, 2018; Robertson, 2019). Additionally, this article presented a terminology
inspired in Mcdonald (1999) for distinguishing bi-factor structures including pure indicators:
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the independent cluster pure structures (i.e., ICP) and the independent cluster basis pure
structures (i.e., ICBP).

7.1.2 Main Results from Chapter 3

Chapter 3 introduced the logic underlying the Empirical Iterative Target Rotation based on a
Schmid-Leiman solution algorithm (i.e., SLiD). This Chapter detailed how this algorithm
adapted different strategies from the target rotation literature to develop a novel empirical
method for establishing factor-specific cut-offs. This method was based on finding jumps
in the sorted absolute distribution of loadings’ differences for each factor. Ultimately, and
contrarily to other cut-offs methods available in the literature, it was explained why the SLiD
algorithm did not explicitly aim to maximize the hyperplane count for each factor but to
avoid incorrectly fixing substantive cross-loadings to zero in the final partially specified
target matrix.

The SLiD algorithm was compared to the original SLi algorithm employing a set of
different single, fixed cut-off point (from .05 to .20 in .05 jumps). To provide a deeper
depiction of these algorithms functioning, a Monte Carlo simulation was designed. The
simulated structures were intended to reproduce realistic conditions where: (a) an extensive
number of cross-loadings simulated from normal distributions of different variance were
included for each factor in the structure; and (b) a mixture of strong, middle and weak
group factors (i.e., group factor differing in their average substantive factor loadings) were
present within the same bi-factor structure. Additionally, independent variables considered
in Chapter 2 were included in the simulation, alongside with the reanalysis of the empirical
example considered in that study.

Results showed that SLiD outperformed SLi with a single, fixed cut-off points. Moreover,
SLiD allowed the correct recovery of factors showing a high number of substantial cross-
loadings under hindering conditions. Accordingly, researchers were suggested to avoid
deciding for a fixed cut-off point and to opt for applying the SLiD algorithm, which was
shown to outperform another alternative under most circumstances, albeit examining the
quality of the estimated solution. For a few conditions, SLiD could result in factor collapse
and unstable performance. This result was concordant with the simulation scheme applied,
where many minor cross-loadings were present in the structures with weak group factors.
Lastly, it was observed that group factors with low average factor loadings were not correctly
recovered, particularly if larger cross-loadings were present. Thus, no method was able to
recover the original structure under such detrimental conditions.
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7.1.3 Main Results from Chapter 4

Chapter 4 illustrated the usefulness of the methods investigated in Chapter 2 and 3 in the
context of an intelligence test, the Last Twelve matrices of the Standard Progressive Matrices
(i.e., SPM-LS). In this case, the assumption of essential unidimensionality, crucial in the
statistical methods applied in the original validation of the test, was thoroughly tested. Even
though traditional and modern dimensionality assessment methods (i.e., parallel analysis
and exploratory graph analysis) suggested the presence of relevant sources of variability,
the application of modern bi-factor exploratory techniques revealed that SPM-LS scores
could be considered as essentially unidimensional. However, results also evidenced that an
additional factor emerged for the last six items. Therefore, even though SPM-LS scores
could be used as valid measures of individual differences in general intelligence, the correct
bi-factor measurement model (including the group factor for the last six items) should be
considered in certain contexts due to its better fit to the data.

7.1.4 Main Results from Chapter 5

Chapter 5 provided a detailed comparison of different bi-factor rotation algorithms when
estimating the omega hierarchical statistic. In this study, two new methods were examined:
the Direct Schmid-Leiman and the Direct Bi-factor methods (Giordano and Waller, 2019;
Waller, 2017). All methods were tested over three different Monte Carlo simulations in-
vestigating the omega hierarchical recovery under full-rank bi-factor models, second-order
models (transformed employing the SL orthogonalization) and a final simulation studying
how algorithms would behave when no general factor was present in the structure. Addition-
ally, several accuracy statistics were considered, namely the mean absolute error (i.e., MAE),
mean bias error (i.e., MBE) and the root mean square error (i.e., RMSE). Lastly, it should be
highlighted that in addition to conditions studied in Chapter 2, the average factor loading of
the general factor was manipulated in the first two simulations. Lastly, each algorithm was
further evaluated based on the analysis of eight classical datasets presenting full-rank and
rank-deficient bi-factor models.

Results suggested that the SLiD algorithm provided the best approximation to omega
hierarchical under a majority of conditions and regardless of the type of structure under
consideration (full, rank-deficient or no-general factor). However, not even SLiD could
provide good recovery of omega hierarchical values under low sample sizes (i.e., N = 150),
a low number of factors (i.e., 3) or a small general factor magnitude (i.e., .30). Thus,
researchers were warned against trusting omega hierarchical estimates under these conditions.
SL, bi-geomin and bi-quartimin did not provide an adequate recovery of omega hierarchical.



7.1 Main Results 129

Particularly, bi-quartimin and bi-geomin tend to overestimate omega hierarchical, while SL
resulted in the opposite behaviour. This result implies that these methods tend to overestimate
and underestimate general factor loadings, respectively. While bi-geomin and bi-quartimin
general factor overestimation is a well-known effect, SL underestimation was observed for
the first time. Such underestimation was attributed to the underestimation of the first-order
correlation matrix. Either way, further research must be ensued to explore the ramifications
of this finding.

The study of the Direct Schmid-Leiman and the Direct Bi-factor methods revealed
that methods based on a completely specified target rotation (based on targets of ones and
zeroes) are dependent upon the existence of discrepancies between the average targeted factor
loadings of the factors involved in the bi-factor structure. When factors are of similar strength,
a fully defined target rotation would provide an unbiased estimation of factor loadings. If
factors differ in their average targeted factor loading, rotated factor loadings will be biased
towards the common average of the targeted loadings. Furthermore, the small but systematic
deviations introduced in the general factor loadings by such effect biased omega hierarchical
estimation (regardless of the overall quality of the estimation of these loadings). This study
provided evidence that the relationship between the quality of factor loadings estimation
and the recovery of secondary statistics is not as straightforward as many researchers could
think. Good factor loading recovery could not ensure a correct estimation of these secondary
statistics if systematic bias is present. To the author’s knowledge, this is a novel result never
explicitly stated in the literature with regards to the use of completely and partially specified
target rotations.

7.1.5 Main Results from Chapter 6

Chapter 6 was devoted to present the utility of the SLiD algorithm in the context of exploratory
structural equation modelling (i.e., ESEM). ESEM are an expansion of traditional SEM to
accommodate exploratory measurement models (Marsh et al., 2014, 2009), outperforming
the traditional confirmatory alternatives under many realistic conditions (Asparouhov and
Muthén, 2009; Guo et al., 2019; Marsh et al., 2019). In this context, bi-factor ESEM models
have gained attention in the literature (Morin et al., 2016). Unfortunately, the principal
software for conducting ESEM (Mplus) only enable users to apply bi-geomin, bi-quartimin or
simple target rotation when estimating exploratory bi-factor models. In this chapter, a tutorial
on how to perform a SLiD-based bi-factor ESEM was provided, illustrating the features of a
novel Shiny application developed to translate the SLiD-based target rotations into a Mplus
script. This process was exemplified in a novel investigation regarding the structure of the
Generic Conspiracionist Believes Scale and its relationships with personality traits. Results
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showed that SLiD was able to recover unique features of the data when compared to other
algorithms. Moreover, it was hoped that by conducting a step-by-step demonstration on how
to perform SLiD-based bi-factor ESEM, applied researchers interesting interested in this
topic would greatly benefit from using the presented free Shiny app.

7.2 Future Directions and Limitations

7.2.1 The Nature of the Bi-factor Model

First and foremost, it is important to emphasize that, as of today, we have just begun to
comprehend the statistical properties of the bi-factor model. Twenty years after the seminal
paper by Yung et al. (1999), and a decade after its rediscovery (Reise et al., 2012), there are
still plenty of questions surrounding the bi-factor model that remain unresolved (Bonifay
et al., 2017; Markon, 2019).

And the first, and most important question yet to be answered is: What is a bi-factor
model? Unfortunately, we do not know it yet. In most cases, a bi-factor model is a tag

given to any factor pattern defining a general plus several group factors in which a simple
structure is expected to hold. As such, recent articles consider SL solutions to be some sort
of a rank-deficient bi-factor model (Waller, 2018; Giordiano & Waller, 2019). Nevertheless,
as explained in Chapter 1, this decision could be questionable as not all rank-deficient bi-
factor models are consistent with the result of an SL transformation. It might be worthy to
distinguish between rank-deficient solutions that are consistent with having being generated
from a transformed higher-order model (regardless if they have been obtained employing the
SL transformation or any other method) and those which are not. Moreover, the higher-order
model and the use of SL transformation as an approach to obtain solutions consistent with
the higher-order model should be distinguished in detail. As noted by Gignac (2016): "The
higher-order model is a model, for example, as it can be specified and tested statistically for
plausibility. The Schmid-Leiman transformation, however, cannot be specified and/or tested
for plausibility. It is simply used to calculate indirect effects" (p. 58, footnote 1).

Another relevant debate is whether bi-factor models should be included in the family of
hierarchical models (Markon, 2019). Truth is that understanding higher-order and bi-factor
models within a common framework could be useful to highlight their similarities and
differences (Yung et al., 1999), particularly when researchers are interested in assessing the
reasonableness of the constraints implied by each model. In this context, some authors have
referred to the higher-order and the bi-factor model as indirect and direct hierarchical models,
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respectively (Gignac, 2008, 2016). This nomenclature stresses the theoretical implications of
each model and the presence of direct or mediated effects of the general factor onto the items.
However, some authors have challenged this classification: "[about the bi-factor model] Note
that this is not a hierarchical model, because g (which is necessarily saturated in all of the
variables) does not depend on the variables’ loadings on the group factors" (Jennsen & Weng,
1994, p.245). Noteworthy, this debate should not be taken lightly, as the consideration (or
not) of the bi-factor model as a hierarchical model could affect its consideration as a plausible
measurement model within certain areas of research (i.e., intelligence or psychopathology).
Either way, it is beyond doubt that the literature would benefit from agreeing on a unique
terminology for referring to bi-factor, second-order, and similar models including one (or
more) general factors.

Lastly, some authors have strongly argued that researchers must explicitly specify how
the group factor represent subordinate facets of the general factor. To this end, the bi-factor
S-1 model was proposed by Eid et al. (2016, 2018). In this model, a set of items (all loading
onto the same group factor) act as pure indicators of the general factor. By using the S-1
bi-factor model, the researcher ensures that the general factor represents variance of the facet
removed (which acts a reference facet). Moreover, the use of the oblique S-1 factor model
could prevent identifiability issues in bi-factor estimation (Eid et al., 2018). This interesting
perspective should be explored in greater detail in the future.

7.2.2 Questions in Exploratory Bi-factor Model

As Reise et al. (2018) indicated, there still exist several misconceptions surrounding the
bi-factor model: (a) its confirmatory nature; (b) its inability to accommodate disturbances
of the simple structure; and (c) the requirement of orthogonal group factors. In this thesis,
the first two questions have been addressed and discussed in length. Regarding the latter,
and to expand on the matter, it is important to recall that oblique factor solutions should
generally be preferred to orthogonal ones, as they enable the recovery of simple solutions in
the pattern matrix while providing evidence for the relationship between factors (Browne,
2001). To this end, Jennrich and Bentler (2012) developed bi-geomin for estimating oblique
bi-factor models. The oblique bi-factor model might be observed in the presence of method
factors (for example, when acquiescence or wording effects are present), or when bi-factor
models are applied within the context of multitrait-multimethod or multi-rater analysis (Eid
et al., 2018), among other instances (Lorenzo-seva and Ferrando, 2018). Thus, there might
be contexts where the oblique bi-factor model could be of merit.

However, researchers should be cautious when applying oblique bi-factor modelling.
Firstly, the question of which rotation should be preferred when estimating factor correlations
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does not have a clear response. Not even in the general, non-bifactor case: while some
authors favour geomin (Celimli Alkoy, 2017), recent advances in target rotation remain
largely unexplored (Zhang et al., 2018a). Noteworthy, a comparison of these methods in the
context of bi-factor models has yet to be presented. Secondly, the accuracy and stability of
factor correlations estimation could be particularly inefficient in the bi-factor case, resulting
in difficulties with regards to their convergence and the replicability of these models. Thirdly,
and more importantly, the introduction of oblique group factors prevents researchers from
interpreting bi-factor models as in the orthogonal case. In the traditional bi-factor model,
group factors are specified to reflect unique sources of residual variance to the general factor,
which is no longer true if group factors correlate. In Reise et al. (2018) words: "By no
means does this imply that estimating bi-factor models with correlated group factors are not
complicated or that solutions are readily interpretable; they are not" (p.684, footnote 3). This
scepticism could underlie why oblique bi-factor models have received little attention so far
in the literature.

Lastly, it should be highlighted that all reviewed bi-factor models presents an additional
sacrosanct restriction, unavoidable even in exploratory bi-factor modelling: the orthogonality
assumption between the general and group factors (Eid et al., 2016; Markon, 2019). Such
restriction is required for the model to be identified and estimable (Markon, 2019): "General-
specific factor [group factor] correlations are likely to be inadmissible regardless of the
scenario" (p.12.10). Accordingly, fully unrestricted bi-factor models (where the general
factor present direct effects on both, items and group factors), as in Yung et al. (1999),
could be considered more of a mathematical curiosity than a suitable model to be applied in
real-world settings. But, as today’s limitations could represent tomorrow’s opportunities, the
extent that these models could be approached should be explored in the future.

7.2.3 The Expanded Bi-factor Model

The bi-factor model has been recently extended to accommodate the presence of different
variance sources beyond one general factor and one substantive group factor per item: (a)
The two-tier factor models, which presents an additional general factor (Cai, 2010; Cai et al.,
2011); and (b) the tri-factor model, where each item presents a substantive loading onto
several group factors (Bauer et al., 2013; Jeon et al., 2018). In this context, the amalgam
of complex bi-factor models that could be derived in the near future might only grow
exponentially. Nevertheless, researchers should proceed with extreme caution when applying
these models, understanding their unique benefits, drawbacks and theoretical interpretation.
It is also important to bear in mind that the higher the complexity, the higher the number of
restrictions needed for the model to be identified (and the higher the chances that some of
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these restrictions do not hold). Due to their highly structured nature, these models are based
on confirmatory approaches, where the researcher is often required to impose key constrains
for ensuring their convergence (i.e., in a two-tier model, general factors can correlate between
them, but not with group factor indicators; Cai, 2010). Thus, these alternative models might
benefit from being considered from an exploratory (unrestricted) perspective. Lastly, it is
still to be seen how to integrate these models within the aforementioned taxonomies applied
in bi-factor modelling.

7.2.4 The Plausibility of the Bi-factor Model

One of the main appeals of the bi-factor model is that it allows researchers to evaluate
the presence of a general factor which presents direct effects on the items. This doctoral
dissertation (Chapter 5) focused on studying omega hierarchical as a tool for such a task. This
index currently plays a crucial role when researchers understand the quality of the total scores
derived from a bi-factor model. As such, it is routinely reported in most bi-factor publications.
For example, omega hierarchical has been a focal point of the debate regarding whether a
general factor of personality is reasonable or not (Arias et al., 2018; Revelle and Wilt, 2013).
Omega hierarchical, as well as other secondary statistics (including the explained common
variance or the H-index), are only expected to grow in importance as bi-factor models are
applied in more research contexts (Chen and Zhang, 2018; Reise et al., 2018; Rodriguez
et al., 2016).

However, a note of caution should be sounded here regarding the use of general factor
modelling in contexts where their theoretical status is, to say at least, dubious (Borsboom
et al., 2003; van Bork et al., 2017; van der Maas et al., 2006). Researchers must understand
that under common circumstances found in psychological testing, where the positive manifold
hypothesis2 is expected to hold, a general factor could be observed regardless of the true
generative mechanism of the observed correlations (Borsboom and Wijsen, 2017). Indeed,
extracting a general factor from a set of positive correlation is only a necessary, but not
sufficient proof of its "existence", as established by Perron-Frobenius theorem: under a
covariance matrix of positive entries, there exists a positive eigenvalue (of largest value)
corresponding to a single positive eigenvector whose entries are all positive3. In this sense,
extracting a general factor provides little to none information of the true cause of the positive
variance-covariance matrix. Unfortunately, while the Perron-Frobenius theorem has been

2The positive manifold hypothesis, which refers to psychological tests being invariably positively correlated,
was discussed since the early days (Spearman, 1904; van der Maas et al., 2006).

3For its adaptation to the single and hierarchical simplest structure factor analysis, see Theorems 1 and 2 in
Krijnen (2004).
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used to justify the unfalsifiability of the common factor model (van Bork et al., 2017), Borg
(2018) showed that only holds if the dimensionality of the common space is, at most, two.
Under larger common spaces, the positive manifold is no longer a sufficient, but a necessary
condition for a general factor (a factor with all positive and substantial loadings) to occur.

Either way, these considerations should act as warning signals that any substantial
decision based on general factor modelling (and bi-factor models, particularly) should be
based on a strong statistical and theoretical foundations, and not to solely rely on the
results of factor analysis (or other correlation-based methods). As Thurstone reflected: “The
exploratory nature of factor analysis is often not understood. Factor analysis has its principal
usefulness at the border of science” (Thurstone, 1947, p.56)4. Indeed, pretending that factor
analysis to go beyond these frontiers could be a rather unfruitful and rather overoptimistic
task. Unfortunately, Thurstone’s cautionary tale with regards to exploratory factor analysis
was lost in decades of mechanical application of this statistical technique 5.

The evaluation of group factors is well behind that of the general factor, particularly in
exploratory bi-factor modelling. Therefore, it is imperative to develop appropriate alternatives
of indices such as omega hierarchical for group factors in exploratory bi-factor research,
particularly given the challenges observed in the estimation, interpretation and evaluation of
group factor loadings and scores (Bonifay et al., 2017; Markon, 2019; Reise et al., 2013).
As of today, there exist rightful concerns about whether group factors have a significant
role in bi-factor modelling as well as the nature of the variance they account for (Bonifay
et al., 2017; Sellbom and Tellegen, 2019). By definition, in (orthogonal) bi-factor modelling
groups factor reflect variance sources residual and distinct from the general factor. However,
this assumption is questioned on many applications of the bi-factor model. As a result, the
evaluation of the relationship between general and group factors is a challenging task with no
simple solution so far (Eid et al., 2018; Markon, 2019). Nevertheless, without improving this
aspect, the discriminant and convergent validity of the bi-factor model could be compromised.

Obtaining reliable estimations of the group factors parameters is also quite problematic.
Group factors are often defined by just a few indicators presenting an amalgam of factor
loadings of different magnitude. This situation results in group factors scores being unstable
and unreliable. In their systematic review, Rodriguez et al. (2015) found that while the general

4Thurstone demonstrated many of its advances on factor analysis using physical quantities, such as cylinders
shapes or the famous box measurements problems. Unfortunately, such a tradition is nowadays lost. Such
drift has driven factor analysis from its mathematical roots to more direct applications, sometimes without the
necessary comprehension of its statistical properties under standardized conditions.

5Noteworthy, other prominent authors were far less careful when explaining the limitations of exploratory
factor analysis: "[...] the existence of distinct nebulae of variables in the correlational configurations from
natural data is no more an accident than the existence of nebulae or the Milky Way in the sky. Laws of nature
brought such structures about in both cases." (Cattell, 1978, p.105)
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factor was represented with an average of almost 20 items, group factors were estimated
using an average of only 7 items. Additionally, while the average omega hierarchical was
.80, while average omega hierarchical subscale was as low as .27. Similar indices have also
been observed in of psychopathology scales (Constantinou and Fonagy, 2019). Thus, the
question of the usefulness of the group factors beyond general factor scores has been debated
in the literature (Bonifay et al., 2017; Rodriguez et al., 2016).

Additionally, the estimation of group factors could be diminished by a more subtle conse-
quence of the presence of general factor: the tendency for the general factor (in a bi-factor
model) to accommodate meaningless patterns of responses (Reise et al., 2016; Watt et al.,
2019). This situation reveals that a general factor will absorb both, substantial and unsub-
stantial common variance, regardless of the researcher’s intention or model specification.
For example, under the presence of a strong method’s factor underlying a majority of items
of a given scale (e.g., acquiescence), it is unclear what the general factor would stand for.
While this situation opens bi-factor models to be of utility when controlling for such method
factors, it also raises questions regarding what does the general factor represents when these
method artefacts cannot be explicitly controlled. Similarly, the bi-factor model has been
argued to present a better data fit than alternative models in many instances where it should
not be the case (Bonifay and Cai, 2017; Canivez, 2016; Cucina and Byle, 2017; Murray and
Johnson, 2013; Rodriguez et al., 2016). The reasons underlying that propensity to present
better fit has been connected with the rank restrictions present in other models such as the
higher-order model (Gignac, 2016; Molenaar, 2016; Yang et al., 2017) and the (questionable)
ability for the bi-factor model to accommodate implausible data patterns. The extent these
issues continue to occur in exploratory bi-factor models constitutes an intriguing future line
of work.

7.2.5 Challenges in Factor Rotation

The results presented in this doctoral dissertation have supported the application of the
iterative partially specified target rotation as a reliable method for approximating complex
structures such as the bi-factor model. One of the principal results of this dissertation
was the development of the SLiD algorithm: a novel method for finding suitable factor-
specific, empirical cut-off points for defining the target matrix, and that resulted in improved
factor recovery when compared with traditional schemes of using single cut-off points.
Unfortunately, while there exist several different approaches towards finding empirically-
defined partially specified target rotation, namely Promaj (Trendafilov, 1994) or Promin
(Lorenzo-seva, 1999; Lorenzo-Seva and Ferrando, 2019a), to mention a few, these have
been scarcely compared in the factor rotation literature, not to say in the context of bi-
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factor exploratory factor analysis. To say that during the latest stages of this dissertation,
a new algorithm called Pure Exploratory Bifactor Modelling (i.e., PEBI) was proposed
in the literature (Lorenzo-seva and Ferrando, 2018). In short, this algorithm employs a
Promin-based cut-off point definition to distinguish between near-zero and relevant value
in the target matrix. PEBI is a promising approach that expands the capabilities of partially
specified target rotation methods to the oblique group factor and the single group factor case.
Readers are encouraged to test the PEBI algorithm (as well as the other unique capabilities)
of the fantastic and free FACTOR program for conducting factor analysis (Ferrando and
Lorenzo-Seva, 2017b), which I cannot personally recommend enough.

Target rotation is an exciting area of research within psychometrics. Its mathematical
simplicity, coupled with its ability to recover factor structures under diminished conditions
(Browne, 2001; Fleming, 2012), ensures that it will continue playing a substantive role in
the estimation of complex factor structures inside and outside the bi-factor case (Guo et al.,
2019; Marsh et al., 2019). As of today, target rotation could be expected to constitute the
cornerstone of future exploratory approaches towards more complex factor structures (such
as two-tier or tri-factor models). Several expansions of traditional target methods have been
discussed in the literature with limited success, and are waiting for interested researchers to
be applied within or outside the bi-factor context: from understanding the consequences of
specifying targets into other parts of the factor model (Zhang et al., 2018b), to the application
of bootstrapping techniques to understand the stability of the rotation estimation (Paunonen,
1997) or to develop novel schemes for target rotation refinement (Lorenzo-seva and Ferrando,
2018). But before advancing on new any new area of target rotation, more attention should
be drawn to the comparison of the most widely used target methods: the completely specified
and the partially specified target rotation. As the decision of choosing one way or the
other could shape future research in the area, the benefits and drawbacks must be carefully
examined in both, future simulation and empirical studies.

Lastly, it should be kept in mind that the target rotation is nothing but a small portion
of a wider array of mathematical models falling into the Generalized Procrustean Analysis
umbrella (Crosilla et al., 2019). Noteworthy, while some of the most relevant advances on
target rotation have been produced in psychometrics, key contributions have been produced
in areas as shape analysis, computer vision, etc. (Gower and Dijksterhuis, 2004). As the
connection between these research areas has been rather scarce, some of the problems
observed in factor rotation might have been addressed in their literature. As an example,
the large number of alternatives for conducting partially specified target rotation available
in Crosilla et al. (2019, p.20), and their benefit remain largely unknown by our research
community.
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The interest in exploratory solutions is fostering advances in factor rotation, with many
alternative approaches being published in major journal and publication outlets. Even though
some authors might believe that this old topic is largely resolved in psychometrics (Mulaik,
1986), there are many areas of improvement: (a) to gain a deeper understanding of the avail-
able minimization methods, such as gradient projection algorithm functioning. For example,
by confirming its statistical behaviour when compared with other optimization algorithms
(Weide and Beauducel, 2019). In this sense, little is known regarding the sensibility of
different parameters fixed in this algorithm (the learning rate, etc.). As an example, the use of
random oblique transformation matrices (instead of orthogonal ones, as suggested by Mulaik,
2010, p.363) has been confirmed in (unreported) analysis performed by the author of this
dissertation to have a substantial impact on the minimization process; (b) to explore different
minimization algorithms so to improve rotation estimation in complex criteria (as bi-geomin)
or to compare the use of closed-form solutions in target rotation vs the solution found by
the gradient projection algorithm; (c) the use of rotations not focused on finding a simple
structure concept or hyperplane count. For example, Jennrich (2004b, 2006) proposal of the
Component-Loss Criteria, which aims to minimize the absolute value of a given loading,
constitute an interesting approach that should be explored in future bi-factor research. On
the contrary, understanding rotations such as Varimin (Ertel, 2013), which aim to maximize
complexity, would allow researchers to understand the limits of the rotation procedures; and
(d) to ensure the identification of the rotated solutions by employing strategies based on the
use of the Fisher information matrix (Asparouhov and Muthén, 2009) or similar.

Lastly, factor rotation might be seen its last days as we currently know it. Similar
to the transition from indirect to direct rotation methods, a plethora of new methods for
conducting these analyses are gaining traction in mainstream psychometrics. Firstly, Bayesian
approaches, which rely on the use of small-variance priors in a semi-confirmatory fashion
are being strongly considered as an alternative to simple structure-based rotation methods
(Asparouhov and Muthén, 2009). However, it is yet unclear which method should be
preferable under which conditions, particularly given the sensibility of these Bayesian
methods to misspecification problems (Guo et al., 2019; Marsh et al., 2009; Xiao et al., 2019).
Be that as it may, at the end of the day both approaches could benefit from each other and to
be complementary (Moore et al., 2015). Secondly, and based on the widespread application
of machine learning methods, the first estimation on parameter regularization6 have started
to appear in the field (Scharf and Nestler, 2019b; Yamamoto et al., 2017). This approach,
which again represents another perspective on removing factor indeterminacy, has several

6For interested readers, Jennrich’s Component Loss Rotation is inherently related with regularization
methods proposed in factor analysis (Scharf and Nestler, 2019a).
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benefits, such as having penalization as a parameter to be estimated, and to protect researchers
from overfitting (Goretzko et al., 2019; Scharf and Nestler, 2019b). Regularization could
represent a perspective worthy of future exploration. Lastly, there has been some interesting
reformulations of the factor model itself, aimed to supersede some of the limitations present
in the original proposal by overcoming some of the reviewed indeterminacies (Adachi and
Trendafilov, 2018, 2019; Sočan, 2003; Stegeman, 2016).

7.3 Conclusion

This doctoral dissertation should be concluded with the same spirit that it was started, and
that is by providing a critical view of one of the most influential advances in psychometrics
history: the bi-factor model. As of today, it should surprise nobody that the bi-factor model
constitutes an indispensable model within the factor analyst toolbox. As such, the bi-factor
model is expected to continue growing in relevance, playing an undeniable role in shaping
the future of major areas of psychological science. Thus, its strengths and limitations must
be ensured to be correctly understood if we aim to have a pertinent use of this statistical tool.
At heart, this doctoral dissertation was devoted to delving in our knowledge of this model.
And by doing so, it is hoped not only to have realized limited but meaningful contributions
in the field but to have inspired others to continue inquiring on the nature and contributions
of the bi-factor model.



References

Abad, F. J., Garcia-Garzon, E., Garrido, L. E., and Barrada, J. R. (2017). Iteration of Partially
Specified Target Matrices: Application to the Bi-Factor Case. Multivariate Behavioral
Research, 52(4):416–429.

Adachi, K. and Trendafilov, N. T. (2018). Some Mathematical Properties of the Matrix
Decomposition Solution in Factor Analysis. Psychometrika, 83(2):407–424.

Adachi, K. and Trendafilov, N. T. (2019). Some inequalities contrasting principal component
and factor analyses solutions. Japanese Journal of Statistics and Data Science, 2(1):31–47.

Aguirre-Urreta, M. I., Rönkkö, M., and McIntosh, C. N. (2018). A Cautionary Note on the
Finite Sample Behavior of Maximal Reliability. Psychological Methods, 24(2):236–252.

Anderson, T. W. and Rubin, H. (1956). Statistical Inference in Factor Analysis. In Proceed-
ings of the Third Berkeley Simposium on Mathematical Statistics and Probability, Volume
5: Contributions to Econometrics, Industrial Research, and Psychometry, pages 111–150,
Berkeley, California. University of California Press.

Arias, V. B., Jenaro, C., and Ponce, F. P. (2018). Testing the Generality of the General Factor
of Personality: An Exploratory Bifactor Approach. Personality and Individual Differences,
129:17–23.

Asparouhov, T. and Muthén, B. (2009). Exploratory Structural Equation Modeling. Structural
Equation Modeling: A Multidisciplinary Journal, 16(3):397–438.

Asparouhov, T. and Muthén, B. (2019). Nesting and Equivalence Testing for Structural
Equation Models. Structural Equation Modeling, 26(2):302–309.

Bandalos, D. H. (2018). Measurement Theory and Applications for the Social Sciences.
Guilford Press, Boca Raton, FL.

Bauer, D. J., Howard, A. D., Baldasaro, R. E., Curran, P. J., Hussong, A. M., Chassing, L.,
and Zucker, R. A. (2013). A Tri-Factor Model for Integrating Rating Across Multiple
Informants. Psychological Methods, 18(4):475–493.

Beauducel, A. and Hilger, N. (2019). Score Predictor Factor Analysis: Reproducing Observed
Covariances by Means of Factor Score Predictors. Frontiers in Psychology, 10(1895).

Bekker, P. A. (1997). Generic Global Indentification in Factor Analysis. Linear Algebra and
its Applications, 264:255–263.



140 References

Bonifay, W. and Cai, L. (2017). On the Complexity of Item Response Theory Models.
Multivariate Behavioral Research, 52(4):465–484.

Bonifay, W., Lane, S. P., and Reise, S. P. (2017). Three Concerns With Applying a Bifactor
Model as a Structure of Psychopathology. Clinical Psychological Science, 5(1):184–186.

Borg, I. (2018). A Note on the Positive Manifold Hypothesis. Personality and Individual
Differences, 134(1):13–15.

Borsboom, D., Mellenbergh, G. J., and Van Heerden, J. (2003). The Theoretical Status of
Latent Variables. Psychological Review, 110(2):203–219.

Borsboom, D. and Wijsen, L. D. (2017). Psychology’s atomic bomb. Assessment in
Education: Principles, Policy and Practice, 24(3):440–446.

Browne, M. W. (1972). Orthogonal Rotation to a Partially Specified Target. British Journal
of Mathematical and Statistical Psychology, 25:115–120.

Browne, M. W. (2001). An Overview of Analytic Rotation in Exploratory Factor Analysis.
Multivariate Behavioral Research, 36(1):111–150.

Cai, L. (2010). A Two-Tier Full-Information Item Factor Analysis Model with Applications.
Psychometrika, 75(4):581–612.

Cai, L., Yang, J. S., and Hansen, M. (2011). Generalized Full-Information Item Bifactor
Analysis. Psychological Methods, 16(3):221–248.

Canivez, G. L. (2016). Bifactor Modeling in Test Construction Validation of Multifactored
Tests: Implications for Understanding Multidimensional Constructs and Test Interpretation.
In Schweizer, K. and DiStefano, editors, Principles and methods of test construction:
Standards and recent advancements, pages 247–271. Hogrefe, Gottingen, Germany.

Carroll, J. B. (1953). An Analytical Solution for Approximating Simple Structure in Factor
Analysis. Psychometrika, 18(1):22–38.

Carroll, J. B. (1957). Biquartimin Criterion for Rotation to Oblique Simple Structure in
Factor Analysis. Science, 126(3283):1114–1115.

Casper, A. and Gower, J. (2010). A General Approach to Handling Misssing Values in
Procrustes Analysis. Advances in Data Analysis and Classification, 4(4):223–237.

Caspi, A. and Moffitt, T. E. (2018). All for one and one for all: Mental disorders in one
dimension. American Journal of Psychiatry, 175(9):831–844.

Catell, R. B. (1966). The Data Box: Its Ordering of Total Resources in Terms of Possible
Relational Systems. In Catell, R. B., editor, Handbook of Multivariate Experimental
Psychology. Rand-McNally, Chicago, first edition edition.

Cattell, R. B. (1978). The Scientific Use of Factor Analysis in Behavioral and Life Sciences.
Plenum, New York.

Cattell, R. B. and Muerle, J. H. (1960). The "Maxplane" Program for Factor Rotation to
Oblique Simple Structure. Educational and Psychological Measurement, 20(3):569–590.



References 141

Celimli Alkoy, S. (2017). A Comparison of Geomin versus Target Rotation Criteria in
Exploratory Factor Analysis with Correlated Factors and Large and Complex Pattern
Matrices. PhD thesis, University of Miami.

Chen, F. F., West, S. G., and Sousa, K. (2006). A Comparison of Bifactor and Second-Order
Models of Quality of Life Fang. Multivariate Behavioral Research, 41(2):147–163.

Chen, F. F. and Zhang, Z. (2018). Bifactor Models in Psychometric Test Development. In
Irwing, P., Booth, T., and Hughes, D. J., editors, The Wiley Handbook of Psychometric
Testing: A Multidisciplinary Reference on Survey, Scale and Test Development. John Wiley
& Sons, Ltd.

Cliff, N. (1966). Orthogonal Rotation to Congruence. Psychometrika, 31(1):33–42.

Constantinou, M. P. and Fonagy, P. (2019). Evaluating Bifactor Models of Psychopathology
Using Model-Based Reliability Indices.

Crosilla, F., Beinat, A., Fusiello, A., Maset, E., and Visintini, D. (2019). Advances Procrustes
Analysis Models in Photogrammetric Computer Vision. Springer Nature Switzerland AG,
Cham, Switzerland.

Cucina, J. and Byle, K. (2017). The Bifactor Model Fits Better Than the Higher-Order
Model in More Than 90% of Comparisons for Mental Abilities Test Batteries. Journal of
Intelligence, 5(3):27.

Cudeck, R. and O’Dell, L. L. (1994). Applications of Standard Error Estimates in Unrestricted
Factor Analysis: Significance Tests for Factor Loadings and Correlations. Psychological
Bulletin, 115(3):475–487.

Cureton, E. E. and Mulaik, S. A. (1971). On Simple Structure and the Solution to Thurstone’s
Invariant Box Problem. Multivariate Behavioral Research, 6(4):375–387.

Derflinger, G. and Kaiser, H. F. (1989). Method Horst-Hilsch (HH) for the Transformation
Problem in Exploratory Factor Analysis. Psychological Reports, 65(1):211–220.

Dun, J. E. (1973). A Note on a Sufficiency Condition for Uniqueness of a Restricted Factor
Matrix. Psychometrika, 38(1):141–143.

Eber, H. W. (1966). Toward Oblique Simple Structure: Maxplane. Multivariate Behavioral
Research, 1(1):112–125.

Eid, M., Geiser, C., Koch, T., and Heene, M. (2016). Anomalous Results in G-factor Models:
Explanations and Alternatives. Psychological Methods, 22(3):541–562.

Eid, M., Krumm, S., Koch, T., and Schulze, J. (2018). Bifactor Models for Predicting Criteria
by General and Specific Factors: Problems of Nonidentifiability and Alternative Solutions.
Journal of Intelligence, 6(3):42.

Elden, L. and Trendafilov, N. T. (2017). Towards Determinate Exploratory Factor Analysis.

Epskamp, S., Maris, G. K. J., Waldorp, L. J., and Borsboom, D. (2016). Network Psychomet-
rics. PhD thesis, University of Amsterdam.



142 References

Ertel, S. (2011). Exploratory factor analysis revealing complex structure. Personality and
Individual Differences, 50(2):196–200.

Ertel, S. (2013). Factor Analysis: Healing an Ailing Model. Universitätsverlag Göttingen,
Göttingen.

Ferrando, P. J. and Lorenzo-Seva, U. (2000). Unrestricted versus restricted factor analysis
of multidimensional test items: some aspects of the problem and some suggestions.
Psicológica, 21:301–323.

Ferrando, P. J. and Lorenzo-Seva, U. (2017a). Assessing the Quality and Appropriateness
of Factor Solutions and Factor Score Estimates in Exploratory Item Factor Analysis.
Educational and Psychological Measurement, 78(5):762–780.

Ferrando, P. J. and Lorenzo-Seva, U. (2017b). Program FACTOR at 10: Origins, Development
and Future Directions. Psicothema, 29(2):236–240.

Ferrando, P. J. and Navarro-González, D. (2018). Assessing the quality and usefulness of
factor-analytic applications to personality measures: A study with the statistical anxiety
scale. Personality and Individual Differences, 123:81–86.

Fleming, J. S. (2003). Computing Measures of Simplictiy of fit for Loadings in Factor-
Analytially Derived Scales. Behavior Research Methods, 34(4):520–524.

Fleming, J. S. (2012). The Case for Hyperplane Fitting Rotations in Factor Analysis: A
Comparative Study of Simple Structure. Journal of Data Science, 10:419–439.

Fontanella, L., Fontanella, S., Valentini, P., and Trendafilov, N. T. (2019). Simple Structure
Detection Through Bayesian Exploratory Multidimensional IRT Models. Multivariate
Behavioral Research, 54(1):100–112.

Garnett, J. C. M. (1919). On Certain Independent Factors in Mental Measurements. Proceed-
ings of the Royal Society of London, 96(A):91–111.

Gignac, G. E. (2008). Higher-order models versus direct hierarchical models: g as superordi-
nate or breadth factor? Psychology Science, 50(1):21–43.

Gignac, G. E. (2016). The Higher-Order Model Imposes a Proportionality Constraint: That
is why the Bifactor Model Tends to Fit Better. Intelligence, 55:57–68.

Gignac, G. E., Reynolds, M. R., and Kovacs, K. (2017). Digit Span Subscale Scores May
Be Insufficiently Reliable for Clinical Interpretation: Distinguishing Between Stratified
Coefficient Alpha and Omega Hierarchical. Assessment, 26(8).

Giordano, C. and Waller, N. G. (2019). Recovering Bifactor Models: A Comparison of
Seven Methods. Psychological Methods, pages 1–14.

Goretzko, D., Pham, T. T. H., and Buhner, M. (2019). Exploratory Factor Analysis: Current
use, Methodological Developments and Recommendations for Good Practice. Current
Psychology.

Gorsuch, R. L. (1983). Factor Analysis. Lawrence Erlbaum, Hillsdale, N.J., 2nd edition
edition.



References 143

Gower, J. C. and Dijksterhuis, G. B. (2004). Procrustes Problem. Oxford University Press.

Guo, J., Marsh, H. W., Parker, P. D., Dicke, T., Ludtke, O., and Diallo, T. M. O. (2019). A
Systematic Evaluation and Comparison Between Exploratory Structural Equation Mod-
elling and Bayesian Structural Equation Modelling. Structural Equation Modeling: A
Multidisciplinary Journal, 26(4):529–556.

Hancock, G. R. and Mueller, R. O. (2001). Rethinking Construct Reliability Within Latent
Variable Systems. In Cudeck, R., Toit, D., and Soerbom, D., editors, Structural equation
modeling: Present and future- A festschrift in honor of Karl Jöreskog, pages 195–216.
Scientific Software International, Lincolnwood.

Harman, H. H. (1967). Modern Factor Analysis (2d ed.). University of Chicago Press,
Chicago.

Hattori, M., Zhang, G., and Preacher, K. J. (2017). Multiple Local Solutions and Geomin
Rotation. Multivariate Behavioral Research, 52(6):720–731.

Hayashi, K. and Marcoulides, G. A. (2006). Examining Identification Issues in Factor
Analysis. Structural Equation Modeling: A Multidisciplinary Journal, 13(4):631–345.

Hendrickson, A. E. and White, P. O. (1964). PROMAX: A Quick Method for Rotation to
Oblique Simple Structure. British Journal of Mathematical and Statistical Psychology,
17:65–70.

Holzinger, K. J. and Swineford, F. (1937). The Bi-factor Method. Psychometrika, 2(1):41–54.

Horst, P. (1941). A Non-Graphical Method for Transforming an Arbitrary Factor Matrix into
a Simple Structure Factor Matrix. Psychometrika, 6(2):79–99.

Howe, W. G. (1955). Some Contributions to Factor Analysis. Oak Ridge National Laboray-
ory.

Hudziak, J., Achenbach, T., Althoff, R., and Pine, D. (2007). A Dimensional Approach
to Developmental Psychopathology. International Journal of Methods in Psychiatric
Research, 16(S1):S16–S23.

Hurley, J. R. and Cattell, R. B. (1962). The Procrustes Program: Producing Direct rotation to
Test a Hypothesized Factor Structure. Behavioral Science, 7(2):258–262.

Izquierdo, I., Olea, J., and Abad, F. J. (2014). Exploratory Factor Analysis in Validation
Studies: Uses and Recommendations. Psicothema, 26(3):395–400.

Jennrich, R. I. (2001). A Simple General Procedure for Orthogonal Rotation. Psychometrika,
66(2):289–306.

Jennrich, R. I. (2002). A Simple General Method for Oblique Rotation. Psychometrika,
67(1):7–19.

Jennrich, R. I. (2004a). Derivative free gradient projection algorithms for rotation. Psy-
chometrika, 69(3):475–480.



144 References

Jennrich, R. I. (2004b). Rotation to Simple Loadings Using Component Loss Functions: The
Orthogonal Case. Psychometrika, 69(2):257–273.

Jennrich, R. I. (2006). Rotation to Simple Loadings Using Component Loss Functions: The
Oblique Case. Psychometrika, 71(1):173–191.

Jennrich, R. I. (2007). Rotation Algorithms: From Beginning to End. In Lee, S., editor,
Handbook of Latent Variable and Related Models, pages 45–63. Elsevier B.V.

Jennrich, R. I. (2018). Rotation. In Irwing, P., Booth, T., and Hughes, D. J., editors, The
Wiley Handbook of Psychometric Testing: A Multidisciplinary Reference on Survey, Scale
and Test Development. John Wiley & Sons, Ltd.

Jennrich, R. I. and Bentler, P. M. (2011). Exploratory Bi-Factor Analysis. Psychometrika,
76(4):537–549.

Jennrich, R. I. and Bentler, P. M. (2012). Exploratory Bi-factor Analysis: The Oblique Case.
Psychometrika, 77(3):442–454.

Jennrich, R. I. and Sampson, P. F. (1966). Rotation for Simple Loadings. Psychometrika,
31(3):313–323.

Jennsen, A. R. and Weng, L. L. (1994). What is a Good g? Intelligence, 18(3):231–258.

Jeon, M., Rijmen, F., and Rabe-Hesketh, S. (2018). CFA Models with Factor and Multiple
Sets of Secondary Factors. Psychometrika, 83(4):785–808.

Jöreskog, K. G. and Lawley, D. N. (1968). New Methods in Maximum Likelihood Factor
Analysis. British Journal of Mathematical and Statistical Psychology, 21:85–96.

Jöreskog, K. G. (1977). Factor Analysis by Least-Squares and Maximum Likelihood Methods.
In Enslein, K., Ralston, A., and Wilf, H., editors, Mathematical Methods for Digital
Computers, pages 125–153. John Wiley & Sons, Ltd.

Kaiser, H. F. (1958). The Varimax Criterion for Analytic Rotation in Factor Analysis.
Psychometrika, 23(3):187–200.

Kiers, H. A. L. (1994). Simplimax: Oblique Rotation to an Optimal Target with Simple
Structure. Psychometrika, 59(4):567–579.

Korth, B. and Tucker, L. R. (1976). Procrustes Matching by Congruence Coefficients.
Psychometrika, 41(4):531–535.

Krijnen, W. P. (2004). Positive Loadings and Factor Correlations Form Positive Covariance
Matrices. Psychometrika, 69(4):655–660.

Lawley, D. N. (1958). Estimation in Factor Analysis Under Various Initial Assumptions.
British Journal of Mathematical and Statistical Psychology, 11:1–12.

Lawley, D. N. and Maxwell, E. (1964). Factor Transformation Methods. British Journal of
Mathematical and Statistical Psychology, 17:97–103.



References 145

Ledermann, W. (1937). On the Rank of the Reduced Correlational Matrixin Multiple-Factor
Analysis. Psychometrika, 2(2):85– 93.

Loken, E. (2005). Identification Constraints and Inference in Factor Models. Structural
Equation Modeling: A Multidisciplinary Journal, 12(2):232–244.

Lorenzo-seva, U. (1999). Promin: A Method for Oblique Factor Rotation. Multivariate
Behavioral Research, 34(3):347–365.

Lorenzo-seva, U. and Ferrando, P. J. (2018). A General Approach for Fitting Pure Exploratory
Bifactor Models. Multivariate Behavioral Research, 54(1):15–30.

Lorenzo-Seva, U. and Ferrando, P. J. (2019a). Robust Promin: a Method for Diagonally
Weighted Factor Rotation. Liberabit, 25:99 – 106.

Lorenzo-Seva, U. and Ferrando, P. J. (2019b). Unrestricted factor analysis of multidimen-
sional test items based on an objectively refined target matrix. Behavior Research Methods,
52:116–130.

Lorenzo-seva, U. and ten Berge, J. M. F. (2006). Tucker ’ s Congruence Coefficient as a
Meaningful Index of Factor Similarity. Methodology, 2(2):57–64.

Mansolf, M. and Reise, S. P. (2016). Exploratory Bifactor Analysis: The Schmid-Leiman
Orthogonalization and Jennrich-Bentler Analytic Rotations. Multivariate Behavioral
Research, 51(5):698–717.

Markon, K. E. (2019). Bifactor and Hierarchical Models: Specification, Inference, and
Interpretation. Annual Review of Clinical Psychology, 15:51–69.

Marsh, H. W., Guo, J., Dicke, T., Parker, P. D., and Craven, R. G. (2019). Confirmatory Factor
Analysis (CFA), Exploratory Structural Equation Modelling (ESEM), and Set-ESEM:
Optimal Balance Between Goodness of Fit and Parsimony. Multivariate Behavioral
Research, 26(4):529–556.

Marsh, H. W., Ludtke, O., Muthen, B. O., Asparouhov, T., Morin, A. J. S., and Trautwein,
U. (2010). A New Look at the Big-Five Factor Structure through Exploratory Structural
Equation Modeling. Psychological Assessment, 22:471–491.

Marsh, H. W., Ludtke, O., Nagengast, B., Morin, A. J. S., and Von Davider, M. (2013).
Why Item Parcels are (almost) never appropriate: Two Wrongs do not Make a Right-
Camouflaging Misspecification with Item Parcels in CFA models. Psychological Methods,
18:257–284.

Marsh, H. W., Morin, A. J. S., Parker, P. D., and Kaur, G. (2014). Exploratory Structural
Equation Modeling: An Integration of the Best Features of Exploratory and Confirmatory
Factor Analysis. Annual Review of Clinical Psychology, 10:85–110.

Marsh, H. W., Muthén, B., Asparouhov, T., Lüdtke, O., Robitzsch, A., Morin, A. J. S., and
Trautwein, U. (2009). Exploratory Structural Equation Modeling, Integrating CFA and
EFA: Application to Students ’ Evaluations of University Teaching. Structural Equation
Modeling: A Multidisciplinary Journal, 16(3):439–476.



146 References

McDonald, R. P. (1984). Factor Analysis and Related Methods. CRC Press, Boca Raton, FL.

Mcdonald, R. P. (1999). Test Theory: A Unified Treatment. Lawrence Erlbaum, Mahwah,
N.J.

Meredith, W. (1977). On Weighted Procrustes and Hyperplane Fitting in Factor Analytic
Rotation. Psychometrika, 42(4):491–522.

Millsap, R. E. (2001). When Trivial Constraints Are Not Trivial: The Choice of Unique-
ness Constraints in Confirmatory Factor Analysis. Structural Equation Modeling: A
Multidisciplinary Journal, 8(1):1–17.

Molenaar, D. (2016). On the Distortion of Model Fit in Comparing the Bifactor Model and
the Higher-Order Factor Model. Intelligence, 57:60–63.

Moore, T. M. (2013). Iteration of Target Matrices In Exploratory Factor Analysis. PhD
thesis, University of California.

Moore, T. M., Calkins, M. E., Satterthwaite, T. D., Roalf, D. R., Rosen, A. F., Gur, R. C., and
Gur, R. E. (2019). Development of a Computerized Adaptive Screening Tool for Overall
Psychopathology. Journal of Psychiatric Research, 16:26–33.

Moore, T. M., Reise, S. P., Depaoli, S., and Haviland, M. G. (2015). Iteration of Partially
Specified Target Matrices: Applications in Exploratory and Bayesian Confirmatory Factor
Analysis. Multivariate Behavioral Research, 50(2):149–161.

Morin, A. J. S., Arens, A. K., and Marsh, H. W. (2016). A Bifactor Exploratory Structural
Equation Modeling Framework for the Identifciation of Distinct Sources of Construct-
Relevant Psychometric Multidimensionality. Structural Equation Modeling: A Multidisci-
plinary Journal, 23(1):116–139.

Mosier, C. I. (1939). Determining a Simple Structure when Loadings for Certain Tests are
Known. Psychometrika, 4:149–162.

Mulaik, S. A. (1986). Factor Analysis and Psychometrika: Major Developments. Psychome-
trika, 51(1):23–33.

Mulaik, S. A. (2010). Foundations of Factor Analysis. 2nd Edition. CRC Press, New York,
NY.

Mulaik, S. A. (2018). Identifying and Analyzing Scales Fundamentals of Common Factor
Analysis. In Irwing, P., Booth, T., and Hughes, D. J., editors, The Wiley Handbook of Psy-
chometric Testing: A Multidisciplinary Reference on Survey, Scale and Test Development.
John Wiley & Sons, Ltd.

Murray, A. J. and Johnson, W. (2013). The Limitations of Model Fit in Comparing the
Bi-Factor versus Higher-Order Models of Human Cognitive Ability Structure. Intelligence,
41(2013):407–422.

Myers, N. D., Ahn, S., and Jin, Y. (2013). Rotation to a Partially Specified Target Matrix
in Exploratory Factor Analysis: How Many Targets? Structural Equation Modeling: A
Multidisciplinary Journal, 20(1):131–147.



References 147

Myers, N. D., Ahn, S., Lu, M., Celimli, S., and Zopluoglu, C. (2017). Reordering and
Reflecting Factors for Simulation Studies With Exploratory Factor Analysis. Structural
Equation Modeling: A Multidisciplinary Journal, 24(1):112–128.

Myers, N. D., Jin, Y., Ahn, S., Celimli, S., and Zopluoglu, C. (2015). Rotation to a partially
specified target matrix in exploratory factor analysis in practice. Behavior Research
Methods, 47(2):494–505.

Myers, N. D., Martin, J., Ntoumanis, N., Celimli, S., and Bartholomew, K. (2014). Ex-
ploratory Bi-factor Analysis in Sport, Exercise, and Performance Psychology: A Substan-
tive Methodological Synergy. Sport, Exercise, and Performance Psychology, 3(4):258–272.

Nicewander, A. W. (2019). A Perspective of the Mathematical and Psychometric Aspects of
Factor Indeterminacy. Multivariate Behavioral Research, pages 1–14.

Paunonen, S. V. (1997). On Chance and Factor Congruence Following Orthogonal Procrustes
Rotation. Educational and Psychological Measurement, 57(1):33–59.

Peeters, C. F. W. (2012). Bayesian Exploratory and Confirmatory Factor Analysis Perspec-
tives on Constrained-Model Selection. PhD thesis, Dept. of Methodology and Statistics,
Utrecht University.

Reise, S. P. (2012). The Rediscovery of Bifactor Measurement Models. Multivariate
Behavioral Research, 47(5):667–696.

Reise, S. P., Bonifay, W., and Haviland, M. G. (2013). Scoring and Modeling Psychological
Measures in the Presence of Multidimensionality. Journal of Personality Assessment,
95(2):129–140.

Reise, S. P., Bonifay, W., and Haviland, M. G. (2018). Evaluating Scales Bifactor Modelling
and the Evaluation of Scale Scores. In Irwing, P., Booth, T., and Hughes, D. J., editors,
The Wiley Handbook of Psychometric Testing: A Multidisciplinary Reference on Survey,
Scale and Test Development, chapter 22, pages 677–708. John Wiley & Sons, Ltd., first
edition edition.

Reise, S. P., Kim, D. S., Mansolf, M., and Widaman, K. F. (2016). Is the Bifactor Model
a Better Model or Is It Just Better at Modeling Implausible Responses? Application of
Iteratively Reweighted Least Squares to the Rosember Self-Esteem Scale. Multivariate
Behavioral Research, 51(1):818–838.

Reise, S. P., Moore, T. M., and Haviland, M. G. (2010). Bifactor Models and Rotations:
Exploring the Extent to Which Multidimensional Data Yield Univocal Scale Scores.
Journal of Personality Assessment, 92(6):544–559.

Reise, S. P., Moore, T. M., and Maydeu-Olivares, A. (2011). Target Rotations and Assessing
the Impact of Model Violations on the Parameters of Unidimensional Item Response
Theory Models. Educational and Psychological Measurement, 71(4):684–711.

Reise, S. P., Morizot, J., and Hays, R. D. (2007). The role of the Bifactor Model in Resolving
Dimensionality Issues in Health Outcomes Measures. Quality of Life Research, 16:19–31.



148 References

Reise, S. P., Scheines, R., Widaman, K. F., and Haviland, M. G. (2012). Multidimensionality
and Structural Coefficient Bias in Structural Equation Modeling: A Bifactor Perspective.
Educational and Psychological Measurement, 73(1):5–26.

Revelle, W. and Condon, D. M. (2019). Reliability from alpha to omega: A tutorial.
Psychological Assessment, 31(12):1395–1411.

Revelle, W. and Wilt, J. (2013). The general factor of personality: A general critique. Journal
of Research in Personality, 47(5):493–504.

Rigdon, E. E., Becker, J.-M., and Sarstedt, M. (2019). Factor Indeterminacy as Metrological
Uncertainty: Implications for Advancing Psychological Measurement. Multivariate
Behavioral Research, 54(3):429–443.

Robertson, S. (2019). Bifactor Models and Factor Collapse: A Monte Carlo Study. PhD
thesis, Clemson University.

Rodriguez, A., Reise, S. P., and Haviland, M. G. (2015). Evaluating Bifactor Models:
Calculating and Interpreting Statistical Indices. Psychological Methods, 21(2):137–150.

Rodriguez, A., Reise, S. P., and Haviland, M. G. (2016). Applying Bifactor Statistical
Indices in the Evaluation of Psychological Measures. Journal of Personality Assessment,
98(3):223–237.

Ronald, A. (2019). Editorial: The Psychopathology P Factor: Will it Revolutionise the
Science and Practice of Child and Adolescent Psychiatry. Journal of Child Psychology
and Psychiatry, 60(5):497–499.

Rozeboom, W. W. (1991). Hyball: A Method for Subspace-Constrained Factor Rotation.
Multivariate Behavioral Research, 26(1):163–177.

Rozeboom, W. W. (1992). The Glory of Suboptimal Factor Rotation: Why Local Minima in
Analytic Optimization of Simple Structure are More Blessing Than Curse. Multivariate
Behavioral Research, 27(4):585–599.

Scharf, F. and Nestler, S. (2019a). A Comparison of Simple Structure Rotation Criteria in
Temporal Exploratory Factor Analysis for Event-Related Data Potential. Methodology,
15:43–60.

Scharf, F. and Nestler, S. (2019b). Should Regularization Replace Simple Structuer Rotation
in Exploratory Factor Analysis. Structural Equation Modeling: A Multidisciplinary
Journal, 26(4):576–590.

Schönemann, P. H. (1966). A Generalized Solution of the Orthogonal Procrustes Problem.
Psychometrika, 31(1):1–10.

Sellbom, M. and Tellegen, A. (2019). Factor Analysis in Psychological Assessment Research:
Common Pitfalls and Recommendations. Psychological Assessment, pages 1–14.
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Appendix B

Resumen

El modelo bi-factorial se ha convertido en uno de los principales modelos estadísticos dentro
de la investigación en psicología. Gracias a sus características únicas, el modelo bi-factorial
ha sido redescubierto en las principales áreas de investigación en psicología: el estudio de la
psicopatología, personalidad o inteligencia. Así, nuestro conocimiento sobre este modelo
puede determinar futuros avances clave en la investigación de los fenómenos psicológicos
mencionados. Pese a los importantes esfuerzos realizados para estimar estos modelos
bi-factoriales de una manera fiable, los métodos de los que disponemos en la actualidad
presentan severas limitaciones que ponen en cuestión su validez y utilidad.

Esta tesis doctoral revisará tanto el desarrollo matemático e histórico del modelo bi-
factorial como sus principales aplicaciones desde perspectivas confirmatorias y exploratorias.
Así, la tesis se centrará en el modelo bi-factorial exploratorio al considerarse en la actualidad
la opción más adecuada para aproximar dicho modelo en las condiciones más habituales de
su aplicación. Adicionalmente, la tesis buscará aclarar el rol central que ha desempeñado la
rotación target en la aproximación de los modelos bi-factoriales exploratorios, destacando las
limitaciones y potenciales áreas de mejoras de los métodos actuales. Esta tesis doctoral tiene
como objetivo desarrollar nuevos algoritmos de rotación bi-factorial que permitan mejorar la
estimación de parámetros y otros estadísticos de interés en estos modelos (fiabilidad, etc.).
Adicionalmente, se buscará ofrecer herramientas de libre acceso para facilitar el uso de los
métodos desarrollados y la aproximación al análisis bi-factorial exploratorio por parte de
investigadores especializados. En detalle, estos objetivos se desarrollaron en siete capítulos.

En el Capítulo 2 se introdujo la Rotación Target Iterativa basada en una solución de
Schmid-Leiman (i.e., SLi). Este algoritmo mejoraba la propuesta original de Reise, Moore
and Maydeu-Olviares (2011) de definir una matriz de rotación target basada en Schmid-
Leiman mediante la aplicación del algoritmo de rotación iterativa de Moore, Reise, Depaoli
and Haviland (2016). Los resultados de un estudio Monte Carlo demostraron que SLi
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resultaba en una mejor recuperación de la estructura bi-factorial cuando se comparaba con
otros métodos tales como bi-geomin, bi-quartimin, la solución original de Schmid-Leiman o
la rotación target basada en Schmid-Leiman no iterativa.

En el Capítulo 3 se presentó la Rotación Target Empírica Iterativa basada en una solución
de Schmid-Leiman (i.e., SLiD). Este algoritmo actualizaba SLi mediante la introducción de
un nuevo método para calcular puntos de corte específicos para cada factor en la definición
de la matriz target. Esta estrategia se basaba en encontrar saltos relevantes en la distribución
de diferencias de los pesos factoriales normalizados y ordenados de cada factor de grupo.
Los resultados de un estudio Monte Carlo demostraron la superioridad del algoritmo SLiD
frente a SLi en condiciones realistas: estructuras bi-factoriales que incluían una mezcla de
factores de grupo con diferentes pesos medios y que presentaban un número alto de pesos
cruzados.

En el Capítulo 4 se aplicó la estrategia subyacente al algoritmo SLiD al estudio de las
puntuaciones de un instrumento breve para medir inteligencia: las últimas doce matrices
de las Matrices Progresivas del Raven (SPM-LS). Esta aplicación demostró la utilidad de
ese enfoque para evaluar tanto el supuesto de unidimensionalidad así como la presencia
de factores menores. Gracias a la aplicación de los métodos desarrollados previamente, se
demostró que el modelo bi-factorial representaba el modelo de medida más adecuado en
dicho contexto.

En el Capítulo 5 se exploraron las consecuencias que tenía la elección de un algoritmo
bi-factorial exploratorio en la estimación del estadístico omega jerárquico. Además, en este
estudio se incluyeron dos nuevos algoritmos: Direct Bi-factor y Direct Schmid-Leiman. De
nuevo, los resultados de tres simulaciones Monte Carlo evidenciaron que el algoritmo SLiD
favoreció una mejor estimación de omega jerárquico a través de una multitud de estructuras
(i.e., un modelo bi-factorial de rango completo o deficiente, o estructuras sin factor general).
Adicionalmente, se demostró que la elección del tipo de rotación target (parcial o totalmente
especificada) determinaba la calidad de la estimación de omega jerárquico en los algoritmos
basados en la rotación target. Por último, se ejemplificó el funcionamiento de todos los
algoritmos en ocho ejemplos empíricos clásicos de la literatura del área.

En el Capítulo 6 se integró el algoritmo SLiD dentro del contexto de los modelos de
ecuaciones estructurales exploratorias. Sin embargo, como este algoritmo no se encuentra
todavía disponible en el principal software para realizar estos análisis (Mplus), se desarrolló
una aplicación web Shiny libre y fácil de usar (SLiDApp) para que los usuarios trasladasen la
matriz de rotación estimada por SLiD a Mplus. Para facilitar su uso, se desarrolló una guía
paso a paso con indicaciones de uso de esta aplicación que incluía un análisis de ecuaciones
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exploratorias bi-factoriales para estudiar la relación entre creencias en teorías conspirativas y
rasgos de personalidad.

Esta tesis doctoral concluye con una discusión crítica y reflexiva de los méritos e incon-
venientes del modelo bi-factorial exploratorio y de los métodos existentes para su estimación.
De este modo se buscan enfatizar tanto las futuras líneas de investigación como consejos para
aplicar estos modelos dirigidos a la comunidad de investigadores en psicología. Por ello se
espera que la tesis doctoral sea útil para desentrañar las ventajas y las limitaciones actuales
de los modelos bi-factoriales, así como que sirva de inspiración para futuras investigaciones.
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Discusión General

C.1 Resultados Principales

El modelo bi-factorial se ha convertido en uno de los principales modelos estadísticos dentro
de la investigación en psicología (Markon, 2019). Pese a ello, el modelo bi-factorial es
todavía pobremente entendido (Bonifay et al., 2017; Markon, 2019). Así, sigue siendo
comúnmente aplicado desde una perspectiva confirmatoria que resulta inadecuada en la
mayoría de contextos de investigación (Reise et al., 2018, 2011). Esta tesis doctoral ha
sido dedicada a resolver las dificultades asociadas a la aproximación exploratoria de estos
modelos. Para ello, se realizó una revisión y discusión detallada de su historia y su asociación
con los conceptos de estructura simple y rotación factorial. Adicionalmente, se describió el
rol prominente de la rotación target en la aproximación del modelo bi-factorial exploratorio
(Browne, 2001; Fleming, 2012). Ya sea por su simplicidad matemática así como su habilidad
para recuperar estructuras factoriales complejas, la rotación target está posicionada para
seguir desempeñando un papel importante en futuras aproximaciones a modelos factoriales
complejos dentro y fuera de caso bi-factorial (Guo et al., 2019; Marsh et al., 2019). Por
lo tanto, esta tesis se centró en desarrollar nuevos métodos que permitan perfeccionar la
aproximación de los modelos bi-factoriales exploratorios usando este tipo de rotación. Esta
tesis doctoral ha buscado que mediante la presentación de los avances conseguidos dentro de
un marco unificado (la familia SLi de rotaciones) se haya favorecido la posibilidad de que
existan colaboraciones futuras para su desarrollo1.

En detalle, los Capítulos 2 y 3 de la tesis fueron dedicados a la introducir los algoritmos
SLi y SLiD como herramientas clave para la estimación de modelos bi-factoriales explorato-

1Un primer ejemplo fue la extensiva correspondencia con el Dr. Stephen Robertson durante sus estudios
relativos al colapso factorial en modelos bi-factoriales. Desde esta nota, agradecerle personalmente por
compartir su conocimiento y entusiasmo por el tema durante estos años.
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rios. El Capítulo 4 demostró su aplicación a la evaluación de la estructura factorial del test de
las doce ultimas matrices de las matrices progresivas de Raven (i.e., SPM-LS). Además, dada
la relevancia de omega jerárquico como estadístico de referencia en el área, el Capítulo 5
introdujo una detallada evaluación de cómo la elección del algoritmo de rotación bi-factorial
podría afectar la calidad de su estimación. Por último, en el Capítulo 6 se evaluaron los
diferentes métodos de rotación dentro del contexto de los modelos ESEM. Para ello, se
desarrolló y ejemplificó el uso de SLiDApp, una aplicación que permitía trasladar de manera
sencilla la rotación bi-factorial calculada en SLiD de R a Mpluspara su uso en este tipo de
modelos estructurales.

Para concluir, cabe destacar que esta tesis doctoral ha intentado clarificar algunos de los
puntos más controvertidos de la literatura relativa a los modelos bi-factoriales. Además de
proveer una comparación detallada de los diferentes algoritmos disponibles para estimar
los modelos bi-factoriales de manera exploratoria, esta tesis ha generado otros resultados
de interés que no deberían ser pasados por alto: nuevas taxonomías y conceptualizaciones
de los modelos bi-factoriales, aproximaciones alternativas para medir la recuperación de
estos modelos y una nueva estrategia para la definición de la rotación target parcialmente
especificada. Para clarificar estos puntos, los resultados principales de cada capítulo son
detallados a continuación.

C.1.1 Capítulo 2: Principales Resultados

En el Capítulo 2 se ilustró cómo la aplicación iterativa de la rotación target parcialmente
especificada mediante el algoritmo SLi tenía un efecto beneficioso en la recuperación de los
modelos bi-factoriales exploratorios. Esta conclusión se basó en los resultados obtenidos
tanto en una simulación Monte Carlo como en el análisis de un ejemplo empírico. La
simulación presentaba un extenso conjunto de condiciones, incluyendo manipulaciones del
tamaño muestral, el número de factores de grupo, el número de indicadores por factor y
la simplicidad de la estructura bi-factorial. Particularmente, la simplicidad se manipuló
mediante la simulación de pesos cruzados e ítems sin carga factorial en el factor de grupo
dentro de la estructura factorial. Los resultados mostraron que SLi presentaba un mejor
rendimiento que otros métodos en las condiciones más realistas de aplicación: cuando los
factores de grupos incluían pesos cruzados o, de manera más relevante, ítems puros del
factor general. Por ello, se recomendó su uso general para estimar estructuras bi-factoriales
exploratorias. En este Capítulo se estudiaron además otros algoritmos de rotación bi-factorial:
bi-quartimin, bi-geomin, SL y la rotación target parcialmente especificada basada en SL no
iterativa. Los resultados mostraron que bi-quartimin no resultaba en una recuperación ante la
presencia de pesos cruzados, que SL nunca recuperaba correctamente estructuras incluyendo
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indicadores puros del factor general y que bi-geomin mostraba la mejor recuperación de
todos los métodos para las estructuras con un mayor grado de complejidad. Por último, se
observó que ningún método proveía una buena recuperación factorial bajo tamaño muestrales
pequeños (i.e., N = 200) o si los factores de grupos tenían pesos factoriales medios de
magnitud baja (i.e., entre 0,30 y 0,50).

Esta investigación fue uno de los primeros estudios que realizó una comparación directa
del funcionamiento de diferentes algoritmos de rotación bi-factorial usando métodos Monte
Carlo. Así, no solo ha sido citado más de trece veces en la literatura (febrero, 2020), sino
que las condiciones aquí estudiadas han sido usadas como base de otros muchos estudios en
el área (Giordano and Waller, 2019; Lorenzo-Seva and Ferrando, 2019b; Robertson, 2019).
Adicionalmente, este estudio introdujo una terminología nueva en el campo, inspirada en
Mcdonald (1999) para distinguir la complejidad de una estructura bi-factorial cuando existen
ítems puros: estructuras de clústeres independientes con indicadores puros (i.e., ICP) y
estructuras de base de clústeres independientes con ítems puros (i.e., ICBP).

C.1.2 Capítulo 3: Resultados Principales

El Capítulo 3 presentó el algoritmo de rotación target empírica e iterativa basada en una
solución de Schmid-Leiman (i.e., SLiD). Así, este capítulo incluía una descripción del nuevo
método desarrollado para establecer puntos de corte empíricos basados en encontrar saltos
en la distribución de diferencias entre pesos factoriales consecutivos para cada factor de
grupo. Asimismo, y a diferencia de otros métodos similares, este Capítulo detallaba como
esta estrategia se basaba en evitar fijar incorrectamente un peso cruzado relevante a cero
frente a la maximización directa del número total de elementos a fijar en la matriz target.

El algoritmo SLiD se comparó con el algoritmo SLi que usaba diferentes puntos de cortes
únicos para definir la matriz target (i.e., desde 0,05 a 0,20 a saltos de magnitud de 0,05).
Se diseñó una simulación Monte Carlo para comparar estos algoritmos. Las estructuras
simuladas buscaban reproducir condiciones realistas de investigación donde: (a) se incluían
un número extensivo de pesos cruzados simulados para cada factor de grupo en base una
distribución normal con tres amplitudes diferentes; y (b) existía una mezcla de factores de
grupos fuertes, medios y débiles (i.e., factores de grupos que difieren en la magnitud de
peso factorial medio). Adicionalmente, otras variables estudiadas en el Capítulo 2 fueron
tomadas en consideración en esta simulación. El análisis de estos algoritmos concluyó con
un reanálisis del ejemplo empírico incluido en ese estudio.

Los resultados reflejaron que el algoritmo SLiD resultaba en una mejor recuperación
factorial que el algoritmo SLi (independientemente del punto de corte fijo que se usase).
Particularmente, SLiD mostró una correcta recuperación de los factores de grupo con un
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alto número de pesos cruzados. En paralelo, se demostró que el algoritmo SLiD resultaba,
en un número pequeño de condiciones, en colapso factorial y recuperación inadecuada
de la estructura. Este resultado era consistente con la simulación, donde las estructuras
incluían en cada factor de grupo un número alto de pesos cruzados de pequeña magnitud.
Así, la adecuación del uso de SLi o un punto de corte determinado parecía depender de
las condiciones de aplicación. Al final, se recomendaba a los investigadores que evitasen
tomar decisiones inadecuadas y utilizasen el algoritmo SLiD, ya que mostraba tener un mejor
comportamiento estadístico en una mayoría de condiciones, revisando siempre la calidad
de las soluciones estimadas. Por último, se observó que los factores de grupo con un peso
medio de baja magnitud eran difícilmente recuperables, particularmente si presentaban pesos
cruzados de mayor magnitud.

C.1.3 Capítulo 4: Resultados Principales

El Capítulo 4 buscaba ilustrar a utilidad de los métodos diseñados en los Capítulos 2 y
3 en el contexto de la validación de una escala breve de inteligencia, las doce ultimas
matrices de las Matrices Progresivas del Raven (i.e., SPM-LS). En este caso, se examinó al
detalle el supuesto de unidimensionalidad de esta escala, crucial para las técnicas estadísticas
aplicadas en el contexto original de la validación. Aunque tanto los métodos modernos como
tradicionales de medición de la dimensionalidad (i.e., análisis paralelo y análisis gráfico
exploratorio) revelaron fuentes de variabilidad adicionales al factor general, los resultados del
bi-factorial apoyaron que las puntuaciones del SPM-LS se pudieran considerar esencialmente
unidimensionales. Sin embargo, se identificó un factor menor correspondiente a los seis
últimos ítems del test. Así, aunque las puntuaciones totales del SPM-LS puedan ser usadas
como medidas válidas de diferencias individuales en inteligencia general, el modelo correcto
de medida de carácter bi-factorial (que incluía dicho factor menor) debería ser considerado
en aquellas situaciones donde, por ejemplo, el ajuste a los datos deba prevalecer frente a
otros criterios.

C.1.4 Capítulo 5: Resultados Principales

El Capítulo 5 se dedicó a realizar una comparación detallada de los algoritmos de rotación bi-
factorial con respecto a la recuperación del estadístico de omega jerárquico. En este estudio
se incluyeron, por primera vez, dos nuevos algoritmos a la comparativa: Direct Schmid-
Leiman y Direct Bi-factor (Giordano and Waller, 2019; Waller, 2017). Todos los métodos
fueron comparados en tres simulaciones Monte Carlo investigando la recuperación de omega
jerárquico para modelos bi-factoriales de rango completo, modelos jerárquicos transformados
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mediante la ortogonalización de SL y una simulación final incluyendo estructuras sin un
factor general. Adicionalmente, la recuperación de omega se estudió mediante el error medio
absoluto (i.e., MAE), el sesgo medio (i.e., MBE) y la raíz cuadrada del error medio cuadrático
(i.e., RMSE). Por último, y a diferencia de lo que ocurría en el Capítulo 2, se modificó la
magnitud del peso medio del factor general para estudiar su efecto en la recuperación de
omega jerárquico.

Los resultados mostraron que el algoritmo SLiD proveía la mejor estimación de omega
jerárquico en una mayoría de condiciones y estructuras. Sin embargo, ni siquiera SLiD pudo
mostrar una buena recuperación de este estadístico bajo muestras pequeñas (i.e., N = 150),
un número pequeño de factores (i.e.., 3) o si el factor general tenía un peso factorial medio
de baja magnitud (i.e., 0,30). Consecuentemente, se recomendó a los investigadores que
desconfiasen de cualquier estimación de omega jerárquico bajo estas condiciones. SL, bi-
quartimin y bi-geomin no recuperaron omega jerárquico de manera adecuada, ya que tendían
a sobreestimar su valor. Mientras que SL resultó infraestimó omega jerárquico, bi-geomin y
bi-quartimin sobreestimaron dicho estadístico. En este sentido, la infraestimación de SL se
atribuyó, por primera vez, a una estimación incorrecta de la matriz de correlaciones de primer
orden sobre la que extrae el factor general. Por último, el funcionamiento de los algoritmos
se evaluó usando ocho ejemplos clásicos de la literatura bi-factorial y de los modelos de
segundo orden.

El estudio de los métodos Direct Schmid-Leiman y Direct Bi-factor reveló algunos
aspectos interesantes de cómo funcionan los métodos basados en una rotación target com-
pletamente especificada: la calidad de la rotación depende de la existencia de discrepancias
entre la media de los pesos factoriales de los factores de la estructura bi-factorial. Cuando
los factores tienen pesos factoriales homogéneos, una rotación target completamente es-
pecificada resultará en una estimación insesgada de los pesos de la misma, y, por ende,
de omega jerárquico. Por otro lado, en el momento en que factores difieran en su peso
factorial medio, los pesos rotados estarán sesgados hacia la media de los pesos que han
sido especificados dados un valor target de uno (i.e., han sido maximizados). Además, se
encontró que este efecto tenía graves consecuencias en la estimación de omega jerárquico,
ya que las pequeñas y sistemáticas desviaciones provocadas en el factor general por estos
métodos tenían un alto impacto en el valor de omega jerárquico (independientemente de la
calidad de la recuperación general de los pesos factoriales). Los resultados informaron que
la relación entre estimar correctamente los pesos factoriales y el sesgo en la estimación de
estadísticos secundarios calculados en función de estas soluciones no es tan simple como
pudiera parecer. La presencia de desviaciones sistemáticas es más relevante para el segundo
caso que para el primero. Así, asegurar una buena recuperación de la estructura factorial
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podría ser una condición necesaria, pero no suficiente, para la correcta estimación de este tipo
de estadísticos. Dicho resultado novedoso representa un avance importante no contemplado
hasta ahora de manera explícita en la literatura relativa a la comparación de métodos target
completa y parcialmente especificados. Por último, el funcionamiento de estos algoritmos se
ejemplificó con el análisis de ocho datasets clásicos de la literatura bi-factorial.

C.1.5 Capítulo 6: Resultados Principales

El Capítulo 6 se dedicó a ilustrar la utilidad del algoritmo SLiD en el contexto de los modelos
de ecuaciones estructurales exploratorias (i.e., ESEM). ESEM permite expandir los modelos
de ecuaciones estructurales tradicionales para acomodar modelos de medición exploratorios
(Marsh et al., 2014, 2009), y que han demostrado superar a otras alternativas tradicionales
en multitud de condiciones (Asparouhov and Muthén, 2009; Guo et al., 2019; Marsh et al.,
2019). Así, los modelos ESEM bi-factoriales han atraído una importante atención en la
literatura (Morin et al., 2016). Desafortunadamente, el principal software para estimar ESEM
(i.e., Mplus) únicamente ofrece bi-geomin, bi-quartimin o la rotación target no iterativa
como métodos disponibles para aproximar estructuras bi-factoriales exploratorias. En este
capítulo se ilustró como llevar a cabo un análisis ESEM bi-factorial usando SLiD gracias a
una aplicación Shiny (i.e., SLiDApp) desarrollada para tal efecto. Esta aplicación permitía
estimar una matriz target basada en SLiD y trasladarla para su uso en un modelo ESEM
en Mplus. Este proceso se ejemplificó paso a paso mediante un análisis ESEM bi-factorial
de la relación entre las puntuaciones en el Test General de Creencias Conspirativas y los
cinco factores de personalidad. Los resultados mostraron que, como se esperaba, SLiD
permitió recuperar aspectos únicos de los datos cuando en comparación con otros algoritmos.
Asimismo, se esperó que gracias a la guía ofrecida para realizar ESEM bi-factorial basado en
SLiD, futuros investigadores interesados en modelos bi-factoriales ESEM se beneficien del
uso de la aplicación Shiny diseñada.

C.2 Futuras Direcciones y Limitaciones

C.2.1 La Naturaleza del Modelo bi-factorial

Es necesario comenzar esta sección enfatizando que, en la actualidad, todavía desconocemos
una gran parte de las propiedades estadísticas del modelo bi-factorial. Pese a que han
pasado de una década desde su "redescubrimiento" (Reise et al., 2012), existen hoy todavía
un número importante de preguntas sin resolver relativas a este modelo (Bonifay et al.,
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2017; Markon, 2019). Y la primera y más importante de todas ellas es...¿qué es un modelo
bi-factorial?

Desafortunadamente, todavía no podemos responder a dicha pregunta con seguridad. En
una mayoría de ocasiones, el modelo bi-factorial es una etiqueta que se da a toda matriz de
pesos factoriales que incluye un factor general y varios factores de grupos (que se espera que
conformen un patrón de estructura simple). Así, artículos recientes incluyen las soluciones
SL como una subclase de modelos bi-factoriales de rango deficiente (Waller, 2018; Giordiano
& Waller, 2019). Sin embargo, y como se explica en el Capítulo 1, esta decisión puede
ser, cuanto menos, cuestionable: no todas las estructuras bi-factor de rango deficientes son
consistentes con una transformación de tipo SL. Por lo tanto, merecería la pena distinguir
entre soluciones de rango deficiente que son consistentes con un modelo generativo de una
solución de segundo orden (independientemente de si son obtenidas mediante la ortogo-
nalización de SL u otro método) y soluciones de rango deficiente que no son consistentes
con dicho modelo jerárquico. Además, cabe recalcar que la literatura se beneficiaría de una
mayor distinción entre el modelo de segundo orden y el uso de la transformación de SL como
un método para convertir las soluciones en estructuras "bi-factoriales". Como decía Gignac
(2016): "El modelo jerárquico es un modelo que, por ejemplo, puede ser especificado y cuya
plausibilidad puede ser comprobada estadísticamente. La transformación de Schmid-Leiman,
sin embargo, no puede ser especificada ni su plausibilidad, comprobada. Simplemente es un
método usado para calcular efectos indirectos" (p.58, nota al pie 1).

Otro debate relacionado es si los modelos bi-factoriales forman parte de la familia de
modelos jerárquicos o no (Markon, 2019). Cómo Yung et al. (1999) demostraron, es útil
encajar ambos tipos de modelos dentro de un marco unificado para entender sus similitudes
y diferencias, particularmente cuando los investigadores están interesados en evaluar las
restricciones estadísticas implícitas en cada uno. Así, muchos autores han optado por
referirse al modelo jerárquico y al bi-factorial como modelos jerárquicos indirectos y directos,
respectivamente (Gignac, 2008, 2016). Esta distinción pone el acento en las implicaciones
teóricas de cada modelo y en la presencia de los efectos directos o mediados del factor
general a los ítems en cada caso. Sin embargo, no existe un acuerdo unánime sobre el uso de
dicha taxonomía: "[sobre el modelo bi-factorial] Es necesario destacar que no es un modelo
jerárquico, ya que g (que necesariamente pesa en todos los ítems) no depende de los pesos
de las variables en los factores de grupos" (Jennsen & Weng, 1994, p.245). Este debate,
aunque técnico, no debe ser tomado a la ligera. La consideración del modelo bi-factorial
como parte de la familia de modelos jerárquicos puede afectar a su consideración como un
modelo de medida aceptable (i.e., consistente con la teoría) en ciertas áreas de investigación
(i.e., inteligencia o psicopatología). En cualquier caso, lo que está fuera de toda duda es que
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la literatura en el campo se beneficiaría de manera significativa del uso de una terminología
consistente y única para referirse al modelo bi-factorial, al modelo de segundo orden y a
otros modelos que incluyan uno o varios factores generales.

Por último, es necesario destacar que otros autores han argumentado que la relación
subordinada entre los factores de grupo y el factor general debería hacerse explícita en este
tipo de modelos. Para ello, el modelo bi-factorial S-1 ha sido propuesto (Eid et al., 2016,
2018). El modelo S-1 incluye un grupo de ítems, correspondientes al mismo factor de grupo,
que actúan como indicadores puros del factor general. De esta manera, el factor general pasa
a representar varianza específica al contenido del factor de grupo que desaparece (que pasa a
ser una faceta de referencia). El modelo S-1 representa una nueva e interesante perspectiva
que debería ser explorada en detalle en futuras aplicaciones.

C.2.2 Preguntas sin Resolver en el Modelo Bi-factorial Exploratorio

Tal y como Reise et al. (2018) reflejaron, existen en la actualidad varios mitos relativos al
modelo bi-factorial. Entre ellos, su naturaleza exclusivamente confirmatoria, la necesidad de
que represente una estructura simple y, por último, el hecho de que los factores de grupos
tengan que ser obligatoriamente ortogonales entre sí. En esta tesis se han discutido las dos
primeras cuestiones con detalle. Respecto a la tercera, es importante destacar que en análisis
factorial, las soluciones oblicuas deben ser preferidas a las ortogonales, ya que permiten
la recuperación de la estructura simple en caso de que los factores estén correlacionados,
además de proporcionar información adicional valiosa al investigador (Browne, 2001). En
este sentido, Jennrich and Bentler (2012) desarrollaron bi-geomin oblicuo para estimar
estructuras bi-factoriales con correlaciones entre los factores de grupos. Estos modelos
pueden observarse, por ejemplo, cuando existan factores de método (como resultado de los
efectos de la aquiescencia o efectos de contenido) o cuando los modelos de bi-factor se
apliquen en el contexto del análisis multirasgo-multimétodo o interjueces (Eid et al., 2018),
entre otros casos. Además, el uso del modelo de factor S-1 oblicuo podría evitar problemas
de identificación (Lorenzo-Seva and Ferrando, 2019b). Así pues, los modelos bi-factoriales
oblicuos podrían ser de interés en determinados contextos.

No obstante, los investigadores deben ser cautelosos al aplicar este tipo de modelos
oblicuos. En primer lugar, ni siquiera en el caso del análisis factorial general se ha dado
una respuesta clara a la pregunta de qué rotación debe utilizarse para estimar correctamente
la matriz de correlaciones entre factores. Mientras que algunos autores son partidarios
de la rotación geomin (Celimli Alkoy, 2017), recientes avances en la rotación target para
modelos oblicuos (Zhang et al., 2018a) no han sido explorados en profundidad como para ser
descartados. Además, señalar que aún no se ha presentado una comparación de estos métodos
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en el contexto de los modelos de factores bi-factoriales. En segundo lugar, asegurar una
estimación de calidad de las correlaciones factoriales en el caso bi-factorial no es una tarea
sencilla (Lorenzo-Seva and Ferrando, 2019b), ya que frecuentemente da lugar a dificultades
en cuanto a su convergencia y a la posibilidad de replicar dichos modelos. En tercer lugar, y
de manera más relevante, la introducción de factores de grupo oblicuos hace imposible que
los investigadores puedan interpretar los modelos de bi-factor de la misma manera que en
el caso ortogonal. En el modelo bi-factorial ortogonal, los factores de grupo se especifican
para reflejar variación residual única al factor general, lo que ya no es cierto si los factores
de grupo correlacionan entre sí. En palabras de Reise et al. (2018) "[respecto a los modelos
bi-factoriales oblicuos] Esto no implica de ninguna manera que la estimación de los modelos
de bi-factor con factores de grupo correlacionados no sea complicada o que las soluciones
sean fácilmente interpretables; no lo son " (pág. 684, nota al pie 3). Tal escepticismo podría
ser la razón por la cual los modelos bi-factoriales oblicuos han recibido tan poca atención
hasta ahora en la literatura bi-factorial.

Por último, hay que destacar que todos los modelos bi-factoriales revisados presentan una
restricción adicional necesaria, presente incluso en los modelos bi-factoriales exploratorios
oblicuos: la ortogonalidad entre los factores generales y de grupo (Eid et al., 2016; Markon,
2019). Esta restricción es necesaria para que el modelo esté identificado y sea estimable
(Markon, 2019): "Es probable que las correlaciones entre los factores específicos [i.e.,
factores de grupo] y el factor general sean inadmisibles independientemente del escenario"
(p.12.10). En consecuencia, los modelos bi-factoriales sin restricciones, donde el factor
general presenta efectos directos sobre los ítems y los factores de grupo (Yung et al., 1999),
podrían considerarse más como una curiosidad matemática que un modelo adecuado para ser
aplicado en el mundo real. Sin embargo, como las limitaciones de hoy podrían representar
las oportunidades de mañana, el uso y la aproximación a estos modelos debería ser explorada
en profundidad en investigaciones futuras.

C.2.3 El Modelo Bi-factorial Expandido

El modelo bi-factorial clásico se ha visto ampliado recientemente para dar cabida a la
presencia de fuentes alternativas de variación más allá de un factor general y un factor de
grupo sustantivo: (a) los modelos de factores de dos niveles, que presentan un factor general
adicional (Cai, 2010; Cai et al., 2011); y (b) el modelo de tri-factorial, donde cada ítem
pesa en varios factores de grupo sustantivos simultáneamente (Bauer et al., 2013; Jeon et al.,
2018). Así, todo apunta a que la amalgama de modelos bi-factoriales alternativos que podrían
derivarse en un futuro cercano únicamente podría crecer exponencialmente. El desarrollo de
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nuevos modelos alternativos constituye un campo de investigación activo que está ganando
adeptos rápidamente.

Sin embargo, los investigadores deben proceder con extrema cautela al aplicar modelos
bi-factoriales complejos, comprendiendo sus limitaciones, inconvenientes y cuál es la in-
terpretación específica y teórica de cada modelo. Curiosamente, aún está por verse cómo
integrar estos modelos dentro de las taxonomías de modelos bi-factoriales y jerárquicos
previamente mencionadas. Por último, es importante tener presente que cuanto mayor sea la
complejidad de un modelo, mayor será el número de restricciones necesarias para identifi-
carlo, y mayores serán las posibilidades de que esas restricciones sean incorrectas en una
muestra dada. Debido a su naturaleza altamente estructurada, estos modelos se basan en
enfoques confirmatorios en los que a menudo se exige al investigador que imponga restric-
ciones clave para asegurar su estimación (i.e., en un modelo de dos niveles, los factores
generales pueden correlacionarse entre sí, pero no con los indicadores de factores de grupo;
Cai, 2010). Así pues, dichos modelos alternativos podrían beneficiarse de ser considerados
desde una perspectiva exploratoria, de tal modo que los investigadores puedan entender si
estas herramientas son realmente adecuados a sus datos o no.

C.2.4 La Plausibilidad del Modelo Bi-factorial

Uno de los principales beneficios del modelo bi-factorial es que permite a los investigadores
comprender la verosimilitud de la presencia de un factor general subyacente a los datos.
Como tal, esta tesis doctoral (Capítulo 5) se centró en el estudio del estadístico omega
jerárquico. Este índice desempeña actualmente un papel crucial para comprender la calidad
de las puntuaciones totales derivadas de un modelo bi-factorial. Así, omega jerárquico
es rutinariamente reportado en la mayoría de las publicaciones que incluyen un modelo
bi-factorial. Por ejemplo, este estadístico ha sido un punto focal del debate sobre si un
factor general de la personalidad es razonable o no (Arias et al., 2018; Revelle and Wilt,
2013). Por lo tanto, es esperable que este tipo de estadísticos secundarios (incluyendo otros
como la varianza común explicada o el índice H) solo crezcan en importancia en el futuro a
medida que los modelos bi-factoriales sean aplicados en una mayor cantidad de contextos de
investigación (Chen and Zhang, 2018; Reise et al., 2018; Rodriguez et al., 2016).

Lamentablemente, la evaluación de los factores de grupo está muy por detrás de la del
factor general, tanto en términos de sofisticación como de calidad de los índices disponibles.
Así, es imperativo desarrollar una alternativa apropiada a dichos índices para los factores de
grupo en la investigación en los modelos bi-factoriales exploratorios, particularmente dados
los desafíos observados en la estimación, interpretación y evaluación de los pesos factoriales
y puntuaciones asociadas a estos factores (Bonifay et al., 2017; Markon, 2019; Reise et al.,
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2013). En la actualidad, existen preocupaciones legítimas tanto sobre el papel que los factores
de grupo juegan dentro de los modelos bi-factores como sobre el significado de la varianza
que explican (Bonifay et al., 2017; Sellbom and Tellegen, 2019). Por ejemplo, en un modelo
bi-factor ortogonal, por definición, un factor de grupo refleja una fuente de varianza residual
única y distinta del factor general. Sin embargo, en muchas ocasiones existen serias dudas
teóricas y empíricas de la veracidad de este supuesto. Desafortunadamente, la evaluación de
la relación entre los factores generales y los de grupo es todavía una tarea desafiante (Eid
et al., 2018; Markon, 2019). Sin embargo, sin avances significativos en dicho aspecto, la
validez discriminante y convergente del modelo bi-factorial podría verse comprometida.

En cualquier caso, obtener estimaciones fiables de los parámetros de los factores de grupo
no es una tarea sencilla. Los factores de grupo suelen definirse con un número pequeño de
ítems que presentan una amalgama de pesos factoriales de diferente magnitud. Esta situación
hace que las puntuaciones de los factores de grupo sean inestables y poco fiables. En su
revisión sistemática, Rodriguez et al. (2015) encontraron que mientras que el factor general
estaba, de media, representado con casi 20 ítems, los factores de grupo se estimaron usando
un promedio de 7 ítems. Además, mientras que el promedio del omega jerárquico era de 0,80,
el promedio del omega jerárquico subescala (i.e., omega jerárquico calculado para el factor
de grupo) era de únicamente 0,27. Evidencia similar se ha encontrado en otras revisiones
centradas en las escalas de psicopatología (Constantinou and Fonagy, 2019). Así, la cuestión
de la utilidad de los factores de grupo más allá de las puntuaciones factoriales generales se
ha debatido en la literatura (Bonifay et al., 2017; Rodriguez et al., 2016).

Además, la estimación de los factores de grupo podría verse dificultada por una conse-
cuencia más sutil de la presencia del factor general: la tendencia de dicho factor (dentro de
un modelo bi-factorial) a acomodar patrones de respuestas sin sentido (Reise et al., 2016;
Watt et al., 2019). Así, se tiene evidencia de que un factor general tiende a absorber una
varianza común tanto sustancial como no sustancial independientemente de la intención del
investigador. Por ejemplo, la presencia de un fuerte factor del método subyacente a una
mayoría de ítems de una escala (p.or ejemplo, un factor de aquiescencia) podría alterar el
significado del factor general encontrado. Si bien esta situación abre la posibilidad de que
los modelos bi-factoriales sean útiles para controlar los factores de esos métodos, también
plantea interrogantes sobre lo que representa el factor general cuando los mismos se pueden
controlar explícitamente. De manera similar, se ha argumentado que el modelo bi-factorial
tiende a presentar un mejor ajuste que modelos alternativos en ocasiones donde no debería
ser así (Bonifay and Cai, 2017; Canivez, 2016; Cucina and Byle, 2017; Murray and Johnson,
2013; Rodriguez et al., 2016). Las razones de dicho efecto podrían estar relacionadas con
las restricciones de rango presentes en modelos alternativos como el modelo de segundo
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orden (Gignac, 2016; Molenaar, 2016; Yang et al., 2017) y la propia (cuestionable) capacidad
del modelo bi-factorial para acomodar patrones de datos inverosímiles. Dado que dichas
cuestiones siguen sin resolverse, constituyen atractivas líneas de trabajo.

En este punto, se debe realizar una recomendación de precaución respecto al uso general-
izado de modelos que incluyen un factor general en contextos donde su estatus teórico es, por
decir cuanto menos, dudoso (Borsboom et al., 2003; van Bork et al., 2017; van der Maas et al.,
2006). Los investigadores deben entender que, bajo las circunstancias comunes encontradas
en evaluación psicológica, la hipótesis de la "variedad positiva"2 tiende a observarse. La
hipótesis de la variedad positiva se refiere al hecho de que los test e ítems que reflejan
variables psicológicas tienden a correlacionar de manera positiva independientemente de las
características de la aplicación. Este sorprendente hecho fue discutido desde los primeros
días del análisis factorial, incluso por el mismo Spearman (Spearman, 1904; van der Maas
et al., 2006).

La consecuencia de la presencia de la variedad positiva es que un investigador podría ob-
servar un factor general con pesos sustantivos y positivos independientemente del verdadero
mecanismo generador de dichas correlaciones. En efecto, extraer un factor general de un
conjunto de correlaciones positivas es únicamente una prueba necesaria, pero no suficiente,
de su existencia, como lo demuestra el conocido teorema de Perron-Frobenius: para una
matriz de varianzas-covarianzas cuyas entradas sean positivas siempre existe un único auto-
valor real y positivo que corresponde a un autovector de valores positivos. Además, el valor
absoluto de este autovalor es el mayor entre todos los autovalores de la matriz 3. En otras
palabras, bajo una matriz de varianzas-covarianzas positivas, siempre se va a encontrar un
factor con pesos factoriales positivos, independientemente de qué genere dichas correlaciones
positivas. A pesar de que el teorema de Perron-Frobenius se ha utilizado para justificar falta
de falsabilidad del modelo factorial general (van Bork et al., 2017), Borg (2018) mostró
que la variedad positiva asegura encontrar un factor general de estas características si la
dimensionalidad del espacio común es, como mucho, dos. Bajo espacios comunes más
grandes, la variedad positiva deja por lo tanto de ser una condición suficiente y pasa a ser
una condición necesaria para que se produzca un factor general con las cargas positivas y
sustanciales.

Al final, estas consideraciones técnicas deben servir de advertencia para toda decisión en
la que se evalúe el uso de factores general se base en fundamentos estadísticos y teóricos
sólidos, y no exclusivamente en los resultados de un determinado análisis factorial. En

2En castellano, y más precisamente en topología matemática, se denomina variedad a cualquier espacio
hipotético geométrico de n dimensiones.

3para su adaptación al análisis del factor de estructura simple único y jerárquico, véase los Teoremas 1 y 2
en Krijnen (2004).
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palabras del propio Thurstone (1947): "A menudo no se comprende la naturaleza exploratoria
del análisis factorial. El análisis factorial tiene su principal utilidad en la frontera de la
ciencia" (p.56)4.De hecho, pretender que el análisis factorial vaya más allá de estas fronteras
no solo podría ser una tarea poco fructífera y excesívamente optimista 5.

C.2.5 Nuevos Retos en Rotación Factorial

Los resultados de esta tesis doctoral han apoyado firmemente la consideración de la rotación
target iterativa parcialmente especificada como un método fiable para aproximar estructuras
como el modelo bi-factorial. Como tal, un resultado principal de esta disertación ha sido el
desarrollo del algoritmo SLiD, que incluía un método novedoso para encontrar puntos de
corte empíricos y específicos para definir la matriz target. Se demostró que este nuevo método
resultaba en una mejor recuperación factorial en comparación con los esquemas tradicionales
de utilización de puntos de corte únicos. Desafortunadamente, aunque existen varios enfoques
diferentes para realizar una rotación target empírica parcialmente especificada, tales como
Promaj (Trendafilov, 1994) o Promin (Lorenzo-seva, 1999; Lorenzo-Seva and Ferrando,
2019a), por mencionar unos pocos, estos han sido escasamente comparados en la literatura
general, y aún de manera más limitada en el contexto del análisis bi-factorial exploratorio.
En este punto, es necesario destacar que durante las últimas etapas de esta tesis se publicó
un nuevo algoritmo para estimar modelos bi-factoriales llamado PEBI (Lorenzo-Seva and
Ferrando, 2019b). El algoritmo emplea una definición de punto de corte basada en Promin
para distinguir entre los pesos sustantivos y cercanos a cero en la matriz target. PEBI es un
enfoque prometedor alternativo a SLiD, y que amplía las capacidades de los métodos de
rotación target parcialmente especificada al caso de factores de grupo oblicuos o de único
factor de grupo. Únicamente cabe aquí animar a los lectores a probar PEBI (así como las
otras fantásticas opciones) que se encuentran disponible en el fantástico programa FACTOR
(Ferrando and Lorenzo-Seva, 2017b). El autor de esta tesis recomienda encarecidamente a
los lectores interesados su uso y consideración.

La rotación target es un área de investigación apasionante dentro de la psicometría.
Así, cabe esperar que la rotación target constituya la piedra angular de futuros enfoques
exploratorios para aproximar estructuras factoriales complejas (como los modelos de dos o

4Thurstone demostró varios de sus avances en análisis factorial exploratorio utilizando medidas físicas
de cilindros o cajas. Desafortunadamente, dicha tradición se ha perdido. Este cambio ejemplifica como el
trasfondo del análisis factorial ha pasado de las matemáticas a campos de aplicación directa. Eso sí, muchas
veces sin la necesaria compresión de las propiedades estadísticas del mismo para su aplicación generalizada

5Algunos autores relevantes mostraron una actitud menos cauta al hablar de las posbilidades del análisis
factorial: "[...] la existencia de distintos grupos de variables en las configuraciones correlacionales de datos
empíricos no representa un accidente más allá de la existencia de diferentes nébulas o la Vía Láctea en el cielo.
Las leyes de la naturaleza han generado dichas estructuras en ambos casos." (Cattell, 1978, p.105)
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tres factores). Aun así, los nuevos desarrollos que permiten ampliar los métodos de rotación
target a nuevas estructuras han tenido un éxito limitado. Por lo tanto, se encuentran a la espera
de que los investigadores interesados los estudien en detalle (dentro o fuera del contexto
de los modelos bi-factorial): desde las consecuencias de la especificación y uso de targets
en otras partes del modelo factorial (Zhang et al., 2018b) hasta la aplicación de técnicas
de bootstrapping para comprender la estabilidad de la estimación de la rotación (Paunonen,
1997) así como para desarrollar nuevos esquemas para el refinamiento de la rotación de los
objetivos (Lorenzo-seva and Ferrando, 2018). Pero, antes de avanzar en cualquier nueva
área de aplicación de la rotación target se debe prestar una atención más detallada a la
comparación de los métodos target ya disponibles y ampliamente utilizados: la rotación
target completamente y la parcialmente especificada. Dado que la decisión de favorecer una
u otra forma podría determinar las futuras líneas de investigación en la materia, las ventajas e
inconvenientes deben ser examinadas de manera más cuidadosa en estudios de simulación y
los empíricos.

Por último, hay que tener en cuenta que la rotación target no es más que una pequeña
porción de un conjunto más amplio de modelos matemáticos que forman parte de la familia
del análisis procrusteano generalizado (Crosilla et al., 2019). Así, si bien algunos de los
avances más importantes en materia de rotación de objetivos se han realizado en el ámbito
de la psicometría, también se han producido contribuciones fundamentales en campos de
investigación como el análisis de geométrico de formas, la visión por computadora, etc.
(Gower and Dijksterhuis, 2004). Como la conexión entre dichas áreas de investigación ha
sido bastante escasa. Como ejemplo, el gran número de alternativas para llevar a cabo la
rotación de objetivos parcialmente especificados disponibles en Crosilla (2019; p.20) siguen
siendo en gran medida ignorados por nuestra comunidad de investigación.

El interés en las soluciones exploratorias está fomentando los importantes avances que
vemos hoy en rotación factorial, donde nuevos enfoques siguen siendo propuestos en las
principales revistas y publicaciones del campo. Aunque algunos autores podrían creer que
este tema está en gran parte resuelto (Mulaik, 1986), existen todavía muchas áreas de mejora y
de investigación. Primero, comprender mejor el funcionamiento del Algoritmo de Proyección
de Gradiente. Por ejemplo, confirmando su comportamiento estadístico cuando se compara
con otros algoritmos de optimización (Weide and Beauducel, 2019). En este sentido, se sabe
poco sobre la sensibilidad de los diferentes parámetros fijados en dicho algoritmo (la tasa de
aprendizaje, etc.). Por ejemplo, el uso de matrices de transformación oblicua aleatoria (en
lugar de ortogonales, como sugiere Mulaik, 2010, pág. 363) se ha confirmado que tiene un
impacto sustancial en el proceso de minimización en análisis no reportados en estos capítulos
pero realizados por el autor de esta tesis doctoral. Segundo, explorar algoritmos alternativos
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de minimización que permitan mejorar la estimación de la rotación en criterios complejos
(como el bi-geomin). O para comparar el uso de soluciones algebraicas en la rotación target
frente a la solución encontrada por el algoritmo GPA. Tercero, desarrollar rotaciones no
centradas en la búsqueda de estructuras simples o la minimización directa o indirecta del
número de hiperplanos. Por ejemplo, la propuesta de Jennrich (2004b, 2006) del Criterio
de Pérdida de Componentes, que tiene por objeto reducir al mínimo el valor absoluto de un
peso factorial determinado sin una referencia directa a los pesos de su fila o su columna,
constituye una alternativa interesante que debería explorarse en futuras investigaciones sobre
los modelos bi-factoriales. Por el contrario, entender las rotaciones como Varimin (Ertel,
2013), que tienen como objetivo maximizar la complejidad, permitiría a los investigadores
entender los límites de los procedimientos de rotación. Cuarto, asegurar la identificación de
las soluciones rotadas mediante el empleo de estrategias basadas en el uso de la matriz de
información de Fisher (Asparouhov and Muthén, 2009) o similar.

Por último, la rotación factorial podría estar contemplando sus últimos días cómo método
principal para identificar una solución factorial y asegurar su simplicidad, al menos en su
forma actual. De manera similar a lo acaecido con la transición de los métodos de rotación
indirecta a los métodos de rotación directa, una plétora de nuevos métodos alternativos
para llevar a cabo estos análisis está ganando terreno en la psicometría convencional. En
primer lugar, los enfoques bayesianos basados en el uso de distribuciones previas de pequeña
amplitud de manera semiconfirmatoria se están considerando con fuerza como una alternativa
a los métodos de rotación para aproximar estructuras complejas (Asparouhov and Muthén,
2009). Sin embargo, aún no está claro qué método debería ser preferible en qué condi-
ciones, particularmente dada la sensibilidad de la aproximación bayesiana a los problemas
de especificación errónea (Guo et al., 2019; Marsh et al., 2009; Xiao et al., 2019). Además,
ambos enfoques podrían beneficiarse el uno del otro, e incluso llegar a considerarse como
complementarios (Moore et al., 2015). En segundo lugar, nuevos métodos de aprendizaje
automático basados en la regularización de parámetros 6 han comenzado a aparecer en el
campo (Scharf and Nestler, 2019b; Yamamoto et al., 2017). Este enfoque, que de nuevo
representa otra perspectiva para resolver el problema de la indeterminación rotacional, tiene
varios beneficios, como que la penalización sea un parámetro a estimar o evitar los efectos
del sobreajuste. De este modo, la regularización podría representar una perspectiva digna de
ser explorada en el futuro. Por último, ha habido algunas reformulaciones verdaderamente in-
teresantes del propio modelo factorial per se, destinadas a superar algunas de las limitaciones

6Para los lectores interesados, la rotación de la pérdida de componentes de Jennrich está intrínsecamente
relacionada con los métodos de regularización propuestos para llevar a cabo análisis factorial exploratorio
Scharf and Nestler (2019a).
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presentes en la propuesta original, y considerar algunas de las indeterminaciones revisadas
en esta tesis (Adachi and Trendafilov, 2018, 2019; Sočan, 2003; Stegeman, 2016).

C.3 Conclusiones

Esta tesis doctoral debe concluirse con el mismo espíritu con el que se inició, que es aportar
una visión crítica de uno de los avances más influyentes de la historia de la psicometría: el
modelo bi-factorial. A día de hoy, no debería sorprender a nadie que el modelo bi-factorial
constituya un modelo imprescindible dentro de la caja de herramientas de los psicómetras
y analistas de datos en psicología. Como tal, se espera que el modelo bi-factorial continúe
creciendo en importancia, desempeñando un papel innegable en la configuración del futuro
de las principales áreas de la ciencia psicológica. Por lo tanto, es necesario asegurarse de
sus puntos fuertes y sus limitaciones se comprenden adecuadamente si se quiere hacer un
uso pertinente de esta herramienta estadística. En el fondo, la tesis doctoral se dedicó a
profundizar en nuestro conocimiento de este modelo. Y al hacerlo, se espera no solo haber
realizado contribuciones limitadas pero significativas en dicho campo, sino también haber
inspirado a otros a seguir investigando sobre la naturaleza y las contribuciones del modelo
bi-factorial.
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