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Abstract

This work proposes a new algorithm for training a re-weighted `2 Support Vector

Machine (SVM), inspired on the re-weighted Lasso algorithm of Candès et al.

and on the equivalence between Lasso and SVM shown recently by Jaggi. In

particular, the margin required for each training vector is set independently,

defining a new weighted SVM model. These weights are selected to be binary,

and they are automatically adapted during the training of the model, resulting

in a variation of the Frank–Wolfe optimization algorithm with essentially the

same computational complexity as the original algorithm.

As shown experimentally, this algorithm is computationally cheaper to ap-

ply since it requires less iterations to converge, and it produces models with a

sparser representation in terms of support vectors and which are more stable

with respect to the selection of the regularization hyper-parameter.
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1. Introduction

Regularization is an essential mechanism in Machine Learning that usually

refers to the set of techniques that attempt to improve the estimates by biasing

them away from their sample-based values towards values that are deemed to be
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more “physically plausible” [1]. In practice, it is often used to avoid over-fitting,

apply some prior knowledge about the problem at hand or induce some desirable

properties over the resulting learning machine. One of these properties is the so

called sparsity, which can be roughly defined as expressing the learning machines

using only a part of the training information. This has advantages in terms of

the interpretability of the model and its manageability, and also preventing the

over-fitting. Two representatives of this type of models are the Support Vector

Machines (SVM; [2]) and the Lasso model [3], based on inducing sparsity at two

different levels. On the one hand, the SVMs are sparse in their representation

in terms of the training patterns, which means that the model is characterized

only by a subsample of the original training dataset. On the other hand, the

Lasso models induce sparsity at the level of the features, in the sense that the

model is defined only as a function of a subset of the inputs, hence performing

an implicit feature selection.

Recently, Jaggi [4] showed an equivalence between the optimization problems

corresponding to a classification `2-SVM and a constrained regression Lasso. As

explored in this work, this connection can be useful to transfer ideas from one

field to the other. In particular, and looking for sparser SVMs, in this paper the

reweighted Lasso approach of Candès et al. [5] is taken as the basis to define first

a weighted `2-SVM, and then to propose a simple way of adjusting iteratively

the weights that leads to a Modified Frank–Wolfe algorithm. This adaptation

of the weights does not add an additional cost to the algorithm. Moreover, as

shown experimentally the proposed approach needs less iterations to converge

than the standard Frank–Wolfe, and the resulting SVMs are sparser and much

more robust with respect to changes in the regularization hyper-parameter,

while retaining a comparable accuracy.

In summary, the contributions of this paper can be stated as follows:

(i) The definition of a new weighted SVM model, inspired by the weighted

Lasso and the connection between Lasso and SVM. This definition can be

further extended to a re-weighted SVM, based on an iterative scheme to
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define the weights.

(ii) The proposal of a modification of the Frank–Wolfe algorithm based on the

re-weighting scheme to train the SVM. This algorithm results in a sparser

SVM model, which coincides with the model obtained using a standard

SVM training algorithm over only an automatically-selected subsample of

the original training data.

(iii) The numerical comparison of the proposed model with the standard SVM

over a number of different datasets. These experiments show that the pro-

posed algorithm requires less iterations while providing a sparser model

which is also more stable against modifications of the regularization pa-

rameter.

The remaining of the paper is organized in the following way. Section 2 sum-

marizes some results regarding the connection of SVM with Lasso. The weighted

and re-weighted SVMs are introduced in Section 3, whereas the proposed mod-

ified Frank–Wolfe algorithm is presented in Section 4. The performance of this

algorithm is tested through some numerical experiments in Section 5, and Sec-

tion 6 ends the paper with some conclusions and pointers to further work.

Notation

N denotes the number of training patterns, and D the number of dimensions.

The data matrix is denoted by X = (x1,x2, . . . ,xN )
ᵀ ∈ RN×D, where each row

correspond to the transpose of a different pattern xi ∈ RD. The corresponding

vector of targets is y ∈ RN , where yi ∈ {−1,+1} denotes the label of the i-th

pattern. The identity matrix of dimension N is denoted by IN ∈ RN×N .

2. Preliminaries

This section covers some preliminary results concerning the Support Vector

Machine (SVM) formulation, its connection with the Lasso model, and the re-

weighted Lasso algorithm, which are included since they are the basis of the

proposed algorithm.
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2.1. SVM Formulation

The following `2-SVM classification model (this model is described for ex-

ample in [6]), crucial in [4], will be used as the starting point of this work:

min
w,ρ,ξ

{
1

2
‖w‖22 − ρ+

C

2

N∑
i=1

ξ2i

}
s.t. wᵀzi ≥ ρ− ξi , (1)

where zi = yixi. Straightforwardly, the corresponding Lagrangian dual problem

can be expressed as:

min
α∈RN

{
αᵀK̂α

}
s.t. 0 ≤ αi ≤ 1,

N∑
i=1

αi = 1 , (2)

where K̂ = ZZᵀ + 1
C IN . A non-linear SVM can be considered simply by sub-

stituting ZZᵀ by the (labelled) kernel matrix K ◦ yyᵀ (where ◦ denotes the

Hadamard or component-wise product).

It should be noticed that the feasible region of Problem (2) is just the prob-

ability simplex, and the objective function is simply a quadratic term.

2.2. Connection between Lasso and SVM

There exists an equivalence between the SVM dual Problem (2) and the

following problem, which corresponds to a constrained Lasso regression model:

min
w∈RD

{
‖Xw − y‖22

}
s.t. ‖w‖1 ≤ 1 , (3)

where in this case the vector y ∈ RN does not need to be binary. In particular, a

problem of the form of Problem (2) can be rewritten in the form of Problem (3)

and vice-versa [4].

This relation is only at the level of the optimization problem, which means

that an `2-SVM model can be trained using the same approach as for training

the Lasso model and the other way around (as done in [7]), but it cannot be

extended to a prediction phase, since the Lasso model is solving a regression

problem, whereas the SVM solves a classification one. Moreover, the number

of dimensions and the number of patterns flip when transforming one problem

into the other. Nevertheless, and as illustrated in this paper, this connection

can be valuable by itself to inspire new ideas.

4



2.3. Re-Weighted Lasso

The re-weighted Lasso (RW-Lasso) was proposed as an approach to approxi-

mate the `0 norm by using the `1 norm and a re-weighting of the coefficients [5].

In particular, this approach was initially designed to approximate the problem

min
w∈RD

{‖w‖0} s.t. y = Xw ,

by minimizing weighted problems of the form:

min
w∈RD

{
D∑
i=1

ti|wi|

}
s.t. y = Xw , (4)

for certain weights ti > 0, i = 1, . . . , D. An iterative approach was proposed,

where the previous coefficients are used to define the weights at the current

iterate:

t
(k)
i =

1

|w(k−1)
i |+ ε

, (5)

what results in the following problem at iteration k:

min
w(k)∈RD

{
D∑
i=1

1

|w(k−1)
i |+ ε

|w(k)
i |

}
s.t. y = Xw(k) .

The idea is that if a coefficient is small, then it could correspond to zero in

the ground-truth model, and hence it should be pushed to zero. On the other

side, if the coefficient is large, it most likely will be different from zero in the

ground-truth model, and hence its penalization should be decreased in order

not to bias its value.

This approach is based on a constrained formulation that does not allow for

training errors, since the resulting model will always satisfy y = Xw. A possible

implementation of the idea of Problem (4) without such a strong assumption is

the following:

min
w∈RD

{
‖Xw − y‖22

}
s.t.

D∑
i=1

ti|wi| ≤ ρ , (6)

where the errors are minimized and the weighted `1 regularizer is included as

a constraint (equivalently, the regularizer could be also added to the objective
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function [8]). The iterative procedure to set the weights can be similar to the

one explained above, for example defining the weights at iteration k as:

t
(k)
i =

c(k)

|w(k−1)
i |+ ε

; c(k) =
ρ∑D

j=1

|w(k−1)
j |

|w(k−1)
j |+ε

≈ ρ

D
,

where the constant c(k) allows the existence of a fixed point, in the sense that

if w(k) = w(k−1) then the constraint of Problem (6) is trivially satisfied.

Although there have been different advances and alternative approaches in

the definition of weighting schemes for sparse recovery (for instance [9]), the

advantage of Problem (4) is that it is focused on the `1 norm, which is the

one that appears in the connection between Lasso and SVM. Moreover, the

particular form of the weighting scheme, be it (5) or a more sophisticated one,

will not be used in the remaining of the paper.

2.4. Towards a Sparser SVM

One important remark regarding the RW-Lasso is that the re-weighting

scheme breaks the equivalence with the SVM explained in Section 2.2, i.e.,

one cannot simply apply the RW-Lasso approach to solve the SVM problem in

order to get more sparsity in the dual representation (i.e. fewer support vectors).

Instead, an analogous scheme will be directly included in the SVM formulation

in the section below.

More specifically, and as shown in Fig. 1, the connection between Lasso and

SVM suggests to apply a weighting scheme also for SVM. In order to set the

weights, an iterative procedure (analogous to the RW-Lasso) seems to be the

natural step, although this would require to solve a complete SVM problem at

each iteration. Finally, an online procedure to determine the weights, that are

adapted directly at the optimization algorithm, will lead to a modification of

the Frank–Wolfe algorithm.

It should be stated that a weighted SVM has been already proposed in [10],

but that model differs from the approach described here. In particular, the

weighing of [10] refers to the primal problem (through different regularization
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State-of-the-art Methods Proposed Methods

Lasso

Weighted

Lasso

Re-Weighted

Lasso

Weighting

Iterative

Weighting

SVM

Weighted

SVM

Re-Weighted

SVM
Modified

Frank–Wolfe

Weighting

Iterative

Weighting

Online

Weighting

Figure 1: Scheme of the relation between the proposed methods and the inspiring Lasso

variants.

parameters associated to each pattern) whereas in this work the weighting refers

directly to the dual problem. As explained in Section 3.1, both models are not

equivalent.

It is also import to notice that there are other SVM formulations that tend

to produce a sparser representation in terms of support vectors, such as the

Linear Programming Support Vector Machines (LPSVMs; [11]), or the 1-norm

Support Vector Machines [12]. Nevertheless, the focus of this work is not to get

the sparsest SVM possible, but to propose a small modification of the training

algorithm that can lead to a sparser (and faster in convergence) model. On the

other side, both the LPSVM and 1-norm SVM are designed as the solution of

other optimization problems, whereas as shown in Section 4.2.3 the approach

proposed here leads to a solution to Problem (1) but posed over a subsample of

the original data. Finally, it would be interesting and a possible line of future

work to check if the proposed modification of the Frank–Wolfe algorithm can

also be translated to the training algorithms of sparser SVMs, such as LPSVMs

and 1-norm SVMs, to get even sparser models.
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3. Weighted and Re-Weighted SVMs

In this section the weighted SVM model is proposed. Furthermore, a re-

weighting scheme to define iteratively the weights is sketched.

3.1. Weighted SVM

In order to transfer the weighting scheme of RW-Lasso to an SVM frame-

work, the most natural idea is to directly change the constraint of Problem (2)

to introduce the scaling factors ti. This results in the following Weighted-SVM

(W-SVM) dual optimization problem:

min
α∈RN

{
αᵀK̂α

}
s.t. 0 ≤ αi,

N∑
i=1

tiαi = 1 , (7)

for a fixed vector of weights t. This modification relates with the primal problem

as stated in the proposition below.

Proposition 1. The W-SVM primal problem corresponding to Problem (7) is:

min
w,ρ,ξ

{
1

2
‖w‖22 − ρ+

C

2

N∑
i=1

ξ2i

}
s.t. wᵀzi ≥ tiρ− ξi . (8)

Proof. The Lagrangian of Problem (8) is:

L(w, ρ, ξ;α) =
1

2
‖w‖22 − ρ+

C

2

N∑
i=1

ξ2i +

N∑
i=1

αi(−wᵀzi + tiρ− ξi) ,

with derivatives with respect to the primal variables:

∂L
∂w

= w − Zα = 0 =⇒ w = Zα ;

∂L
∂ρ

= −1 +

N∑
i=1

tiαi = 0 =⇒
N∑
i=1

tiαi = 1 ;

∂L
∂ξ

= Cξ −α = 0 =⇒ ξ =
1

C
α .

Substituting into the Lagrangian, the following objective function for the dual

problem arises:

1

2
‖Zα‖22−ρ+

C

2C2
‖α‖22−‖Zα‖

2
2+ρ

N∑
i=1

tiαi−
1

C
‖α‖22 = −1

2
‖Zα‖22−

1

2C
‖α‖22 .
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Hence, the resulting dual problem is:

min
α∈RN

{
‖Zα‖22 +

1

C
‖α‖22

}
s.t. 0 ≤ αi,

N∑
i=1

tiαi = 1 ,

which coincides with Problem (7).

Therefore, the effect of increasing the scaling factor ti in the W-SVM dual

formulation is equivalent to increasing the margin required for the i-th pattern

in the primal formulation. Thus, intuitively an increase of ti should facilitate

the i-th pattern to become a support vector. This influence is numerically

illustrated in Fig. 2, where the value of one weight ti is varied to analyse its

influence over the corresponding multiplier αi in a binary classification problem

with N = 100 and D = 2. The other weights are just fixed equal to one, but

before solving the problem all the vector t is normalized so that its maximum is

still equal to one in order to preserve the scale. This experiment is done for three

different values of C (10−3, 1 and 103) and for the weights corresponding to the

maximum, minimum and an intermediate value of the multiplier of the standard

(unweighted) SVM. Clearly ti and αi present a proportional relationship, so the

larger ti is, the larger the obtained multiplier αi becomes (until some point of

saturation), confirming the initial intuition.

As another illustration, Fig. 3 shows a small toy example of three patterns,

which allows to represent the feasible set in two dimensions as the convex

hull of the three vertices. The value of one weight ti is changed in the set

{10−2, 10−1, 1, 101, 102}, whereas the other two weights are kept fixed to 1. As

before, increasing the weight pushes the solution towards the corresponding pat-

tern. Moreover, the last row in Fig. 3 shows the same example but with a three

dimensional representation, so that it is more clear the effect of decreasing t1 in

the feasible set, basically lengthening the triangle and increasing its angle with

respect to the horizontal plane, until the point where the triangle becomes an

unbounded rectangle (t1 = 0) completely vertical. Taking into consideration

that the solution of the unconstrained problem (for C 6= ∞) is the origin, de-

creasing t1 is moving away the first vertex from the unconstrained solution, thus
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Figure 2: Evolution of the SVM coefficient α with respect to the weight t, for C equal to

10−3 (first row), 1 (second row) and 103 (third row), and for the patterns corresponding to the

maximum (first column), an intermediate (second column) and the minimum (third column)

initial value of α.

making less likely to assign a non-zero coefficient to that point unless it really

decreases the objective function.

It is mandatory to state the differences between the W-SVM proposed here

and the previous model proposed in [10]. First of all, the formulations over

which both approach are based are different. But, even if the same starting

SVM model were used, both weighting schemes are essentially different:

• Lapin et al. propose a modification of the primal SVM formulation so

that the cost associated is different for each pattern. This means that the
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Figure 3: Example of the feasible region and the solution for a problem with three patterns,

for different values of the weighting vector t. For each plot, the value of t is shown above in

boldface. The three rows correspond to changes in t1, t2 and t3 respectively, and the weighted

probability simplex is represented as the convex hull of the three vertices. The fourth row

corresponds again to changes in t1 but with a 3-dimensional representation keeping the same

aspect ratio for all the axis, and also including the limit case t1 = 0 where α1 is not upper

bounded. The solution of the constrained optimization problem is shown with a red dot [ ].

loss associated to that pattern is multiplied by a constant.

• The W-SVM proposed here introduces the weights directly into the dual
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problem, what results into a modification of the margin required for each

pattern in the primal problem. Considering again the loss associated to

each pattern, the “insensitivity” zone (the region of predictions that are

associated to a zero loss) is widened or narrowed according to a constant.

Hence, both approaches are fundamentally different, and the effects that they

produce are not equivalent.

3.2. Re-Weighted SVM

Once Problem (7) has been defined, and provided that the scaling factors

seem to influence the sparsity of the solution (as illustrated in Figs. 2 and 3), a

procedure to set the weighting vector t is needed.

In parallelism with the original RW-Lasso, but considering that in this case

the relation between the weight ti and the corresponding optimal multiplier αi

is directly proportional, the following iterative approach, namely Re-Weighted

SVM (RW-SVM), arises naturally:

1. At iteration k, the following W-SVM problem is solved:

α?(k) = arg min
α∈RN

{
αᵀK̂α

}
s.t. 0 ≤ αi,

∑N
i=1 t

(k)
i αi = 1 .

(9)

2. The weighting vector for the next iteration, t(k), is updated as:

t
(k+1)
i = fmon

(
α
?(k)
i

)
,

where fmon : R→ R is some monotone function.

This approach has two main drawbacks. The first one is how to select

the function fmon. This also implies selecting some minimum and maximum

values to which the weights t
(k)
i should saturate, so it is not a trivial task,

and it can greatly influence the behaviour of the model. The second drawback

is that this approach requires to solve Problem (9) at each iteration, which

means training completely a W-SVM model (with a complexity that should
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not differ from that of training a standard SVM) on each iteration, and hence

the overall computational cost can be much larger. Although this is in fact an

affordable drawback if the objective is solely to approach the `0 norm as it was

the case in the original paper of RW-Lasso [5], in the case of the SVM the aim

is to get sparser models in order to reduce their complexity and to improve the

performance specially in large datasets, and hence it does not make sense to

need for this several iterations.

As a workaround, the next section proposes an online modification of the

weights that leads to a simple modification of the training algorithm for SVMs.

4. Modified Frank–Wolfe Algorithm

This section proposes a training algorithm to get sparser SVMs, which is

based on an online modification of the weighting vector t of a W-SVM model. In

particular, the basis of this proposal is the Frank–Wolfe optimization algorithm.

4.1. Frank–Wolfe Algorithm

The Frank–Wolfe algorhtm (FW; [13]) is a first order optimization method

for constrained convex optimization. There are several versions of this algo-

rithm, in particular the basis of this work is the Pairwise Frank–Wolfe [14, 15].

Roughly speaking, it is based on using at each iteration a linear approximation

of the objective function to select one of the vertices as the target towards which

the current estimate of the solution will move (the forward node), and another

vertex as that from which the solution will move away (the away node), and

then updating the solution in the direction that goes from the away node to the

forward one using the optimal step length. At the end, the linear approximation

boils down to selecting the node corresponding to the smallest partial derivative

as the forward node, and that with the largest derivative as the away node.

This general algorithm can be used in many different contexts, and in par-

ticular it has been successfully applied to the training of SVMs [16, 17, 18].

Specifically, for the case of Problem (2), the following definitions and results are

employed.
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Let f denote the (scaled) objective function of Problem (2) (or Problem (7)),

with gradient and partial derivatives:

f(α) =
1

2
αᵀK̂α ; (10)

∇f(α) = K̂α ;

∂f

∂αi
(α) = k̂ᵀ

iα , (11)

where k̂ᵀ
i is the i-th row of K̂. Let d denote the direction in which the current

solution will be updated. The optimal step-size can be computed by solving the

problem:

min
γ
{f(α + γd)} , (12)

and truncating the optimal step, if needed, in order to remain in the convex hull

of the nodes, i.e., to satisfy the constraints of Problem (2) (or, equivalently, of

Problem (7)). Straightforwardly, Problem (12) can be solved simply taking the

derivative with respect to γ and making it equal to zero:

∂f

∂γ
(α + γd) = dᵀK̂(α + γd) = 0

=⇒ γ = −dᵀK̂α

dᵀK̂d
.

It should be noticed that K̂α is the gradient of f at the point α, and thus

there is no need to compute it again (indeed, the gradient times the direction

is minus the FW gap, that can be used as a convergence indicator). Moreover,

if the direction d =
∑
i∈U diei is sparse, then K̂d =

∑
i∈U dik̂i only requires to

compute the columns of the kernel matrix corresponding to the set of updated

variables U . In particular, in the Pairwise FW only the columns of the forward

and away nodes are used to determine γ and to keep the gradient updated.

The whole procedure for applying FW to the SVM training is summarized

in Alg. 1.

4.2. Modified Frank–Wolfe Algorithm

The idea of the proposed Modified Frank–Wolfe (M-FW) is to modify the

weights ti, i.e., the margin required for each training pattern, directly on each
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Algorithm 1 Pairwise Frank–Wolfe algorithm for SVM.

1 procedure TrainSVM(K̂, ε) I • Kernel K̂ ∈ RN×N .

• Precision ε ∈ R.
Initialization.

2 set i0 ∈ {1, . . . , N} I Initial vertex.

3 α← ei0 I Initial point.

4 g← k̂i0 I Initial gradient.

5 repeat I Main Loop.

Update of Coefficients.

6 s← arg mini gi I Select forward node.

7 v ← arg maxi gi I Select away node.

8 d← es − ev I Build update direction.

9 δ ← −g · d I FW gap.

10 γ ← min{max{δ/(dᵀK̂d), 0}, αv} I Compute step length.

11 α← α + γd I Point update.

12 g← g + γk̂s − γk̂v I Gradient update.

13 until δ ≤ ε I Stopping criterion.

14 end procedure

inner iteration of the algorithm, hence with an overall cost similar to that of

the original FW. In particular, and since according to Figs. 2 and 3 the re-

lation between each weight and the resulting coefficient seems to be directly

proportional, an incremental procedure with binary weights is defined, leading

to a new training algorithm for SVM. Specifically, the training vectors will be

divided into two groups, the working vectors, with a weight ti = 1, and the idle

vectors, with a weight ti = 0. The proposed M-FW will start with only one

initial working vector, and at each iteration, the idle vector with the smaller

negative gradient (if there is any) will be added to the working set. After that,

the coefficients of the working vectors will be updated by using a standard FW

pair-wise step.

The intuition behind this algorithm is the following. The standard FW algo-

rithm applied to the SVM training will activate (make non-zero) the coefficient

of a certain vector if its partial derivative is better (smaller) than that of the

already active coefficients, i.e., if that vector is “less bad” than the others. On

the other side, the M-FW will only add a coefficient to the working set if its
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partial derivative is negative (hence, that coefficient would also be activated

without the simplex constraint), i.e., the vector has to be somehow “good” by

itself.

In what follows, the M-FW algorithm is described in more detail.

4.2.1. Preliminaries

The set of working vectors is denoted by W = {i | 1 ≤ i ≤ N, ti = 1}, and

that of idle vectors as W̄ = {i | 1 ≤ i ≤ N, ti = 0}. The dual problem becomes:

min
α∈RN

{
αᵀK̂α

}
s.t. 0 ≤ αi,

∑
i∈W

αi = 1 .

Thus, the coefficients for the points in W have to belong to the probability

simplex of dimension |W|, whereas the coefficients for W̄ only have a non-

negative constraint.

4.2.2. Algorithm

The proposed M-FW algorithm to train an SVM is summarized in Alg. 2.

This algorithm is very similar to Alg. 1, except for the initialization and control

of the working set in Lines 3 and 7 to 14, the search for the forward and away

nodes of Lines 15 and 16 (which is done only over the working set) and the

stopping criterion of Line 22 (which requires both that the dual gap is small

enough and that no new vertices have been activated).

4.2.3. Convergence

Regarding the convergence of the M-FW algorithm, the following theorem

states that this algorithm will provide a model that is equivalent to a standard

SVM model trained only over a subsample1 of the training patterns.

Theorem 1. Algorithm 2 converges to a certain vector α? ∈ RN . In particular:

1Due to its sparse nature, an SVM is expressed only in terms of the support vectors.

Nevertheless, the proposed M-FW provides an SVM trained over a subsample of the training

set, although not all the vectors of this subsample have to become support vectors.
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Algorithm 2 Modified Frank–Wolfe algorithm for SVM.

1 procedure TrainSVMM-FW(K̂, ε) I • Kernel K̂ ∈ RN×N .

• Precision ε ∈ R.
Initialization.

2 set i0 ∈ {1, . . . , N} I Initial vertex.

3 W ← {i0} I Initial working set.

4 α← ei0 I Initial point.

5 g← k̂i0 I Initial gradient.

6 repeat I Main Loop.

Activation of Coefficients.

7 if |W| < N then

8 bchng ← false I Flag for changes.

9 u← arg mini∈W̄ gi I Select node.

10 if gu < 0 then

11 W ←W ∪ {u} I Activate node.

12 bchng ← true I Mark change.

13 end if

14 end if

Update of Working Coefficients.

15 s← arg mini∈W gi I Select forward node.

16 v ← arg maxi∈W gi I Select away node.

17 d← es − ev I Build update direction.

18 δ ← −g · d I FW gap.

19 γ ← min{max{δ/(dᵀK̂d), 0}, αv} I Compute step length.

20 α← α + γd I Point update.

21 g← g + γk̂s − γk̂v I Gradient update.

22 until δ ≤ ε and not bchng I Stopping criterion.

23 end procedure

(i) The working set converges to a set W?.

(ii) The components of α? corresponding to W? conform the solution of the

standard SVM Problem (2) posed over the subset W? of the set of training

patterns. The remaining components α?i , for i /∈ W?, are equal to zero.

Proof.

(i) Let W(k) denote the working set at iteration k. At iteration k + 1, the

set W(k+1) will be either equal to W(k) or equal to W(k) ∪ {u} for some
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u /∈ W(k). Hence, W(k) ⊆ W(k+1) for all k. Moreover, W(k) is always a

subset of the whole set of training vectors T = {1, · · · , N}, i.e. W(k) ⊆ T

for all k. Since {W(k)} is a monotone nondecreasing sequence of subsets

of a finite set T , then W(k) ↑ W? ⊆ T , as proved next. Let {k1, . . . , kN ′}

be those iterations in which the working set grows, W(ki) ⊂ W(ki+1).

Obviously, the number of such N ′ iterations is finite with N ′ ≤ N since

no more than N elements can be added to the working set. Therefore,

∀k ≥ kN ′ , W(k) =W(k′N ) =W? ⊆ T .

(ii) Provided that W(k) ⊆ W? for all k, then for i /∈ W? the corresponding

coefficients will never be updated (they cannot be selected in Lines 15

and 16 of Alg. 2), so they would conserve their initial value, i.e. α
(k)
i = 0

for all i /∈ W? and for all k.

With respect to the convergence of α
(k)
i for i ∈ W?, it suffices to consider

the iterations after the convergence of the working set, k ≥ kN ′ . Let

α
(k)
W? ∈ RN ′ be the vector composed by the coefficients of the working

patterns. Using (10) and since the coefficients of idle vectors are equal to

zero (proved above):

f
(
α(k)

)
=

N∑
i=1

N∑
j=1

k̂ijα
(k)
i α

(k)
j =

∑
i∈W?

∑
j∈W?

k̂ijα
(k)
i α

(k)
j = fW?

(
α

(k)
W?

)
,

where fW? denotes the objective function of Problem (2) posed only over

the subsetW? of the original training set. A similar result can be obtained

for the components of the gradient using (11):

∂f

∂αi

(
α(k)

)
=

N∑
j=1

k̂ijα
(k)
j =

N∑
j∈W?

k̂ijα
(k)
j =

∂fW?

∂αi

(
α

(k)
W?

)
.

Therefore, once the working set has converged both the objective function

and the partial derivatives of the working set computed in Alg. 2 are equal

to those computed in Alg. 1 when this algorithm is applied only over the

vectors of the working set. Hence, in the remaining iterations M-FW

reduces to the standard FW algorithm but considering only the vertices
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Dataset Tr. Size Te. Size Dim. Maj. Class (%)

ijcnn 49 990 91 701 22 90.4

mgamma 13 020 6 000 10 64.8

australian 621 69 14 55.5

breast 615 68 10 65.0

diabetes 692 76 8 65.1

german 900 100 24 70.0

heart 243 27 13 55.6

ionosphere 316 35 34 64.1

iris 135 15 4 66.7

mushrooms 7 312 812 112 51.8

sonar 188 20 60 53.4

miniboone 100 000 29 596 50 71.8

Table 1: Description of the datasets.

in W?, which converges to the solution of Problem (2) over the subset

W? [15].

It is worth mentioning that, although the proposed M-FW algorithm con-

verges to an SVM model trained over a subsample W? of the training data,

this subsample will (as shown in Section 5) depend on the initial point of the

algorithm.

5. Experiments

In this section the proposed M-FW algorithm will be compared with the

standard FW algorithm over several classification tasks. In particular, the bi-

nary datasets that will be used for the experiments are described in Table 1,

which includes the size of the training and test sets, the number of dimensions

and the percentage of the majority class (as a baseline accuracy). All of them

belong to the LibSVM repository [19] except for mgamma and miniboone, which

belong to the UCI repository [20].

19



5.1. Preliminary Experiments

The first experiments will be focused on the first two datasets of Table 1,

namely ijcnn and mgamma, which are the largest ones except for miniboone.

5.1.1. Set-Up

The standard SVM model trained using FW (SVM) and the model resulting

from the proposed M-FW algorithm (denoted by SVMM-FW, which as shown in

Theorem 1 is just an SVM trained over a subsampleW? of the original training

set) will be compared in terms of their accuracies, the number of support vectors

and the number of iterations needed to achieve the convergence during the

training algorithm. Two different kernels will be used, the linear and the RBF

(or Gaussian) ones. With respect to the hyper-parameters of the models, the

value of both C and the bandwidth σ (in the case of the RBF kernel) will be

obtained through 10-fold Cross Validation (CV) for mgamma, whereas for the

largest dataset ijcnn only C will be tuned, and σ will be fixed as σ = 1 in the

RBF kernel (this value is similar to the one used for the winner of the IJCNN

competition [21]). Once the hyper-parameters are tuned, both models will be

used to predict over the test sets. The stopping criterion used is ε = 10−5.

5.1.2. Results

The test results are summarized in Table 2. Looking first at the accuracies,

both models SVM and SVMM-FW are practically equivalent in three of the four

experiments, where the differences are insignificant, whereas for ijcnn with

the linear kernel the accuracy is higher in the case of SVMM-FW. Regarding the

number of support vectors, SVMM-FW gets sparser models for ijcnn with linear

kernel and mgamma with RBF kernel, whereas for the other two experiments both

models get a comparable sparsity. Finally, and with respect to the convergence

of the training algorithms, SVMM-FW shows an advantage when dealing with linear

kernels, whereas for the RBF ones both approaches are practically equivalent.

It should be noticed that, for these larger datasets, only one execution is

done per dataset and kernel, and hence it is difficult to get solid conclusions.
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Data K.
Accuracy (%) Number SVs Number Iters.

SVM SVMM-FW SVM SVMM-FW SVM SVMM-FW

ijcnn
{lin 92.17 93.20 2.01e+4 8.00e+3 5.39e+4 1.75e+4

rbf 98.83 98.81 4.99e+3 4.98e+3 3.31e+4 3.38e+4

mgamma
{lin 78.22 78.26 1.19e+4 1.04e+4 1.68e+5 7.03e+4

rbf 87.94 87.98 8.25e+3 7.46e+3 3.10e+4 3.06e+4

Table 2: Test results for the larger datasets.

Hence, it can be interesting to analyse the performance of the models during

the CV phase, as done below.

5.1.3. Robustness w.r.t. Hyper-Parameter C

The evolution with respect to the parameter C of the accuracy, the number

of support vectors and the number of training iterations is shown in Fig. 4 for

both SVM and the proposed SVMM-FW. For the RBF kernel, the curves correspond

to the optimum value of σ for SVM. Observing the plots of the accuracy, SVMM-FW

turns out to be much more stable than SVM, getting an accuracy almost optimal

and larger than that of SVM in a wide range of values of C. Moreover, this

accuracy is achieved with a smaller number of support vectors and with less

training iterations. At some point, when the value of C is large enough, both

SVM and SVMM-FW perform the same since all the support vectors of SVM also

become working vectors during the training of SVMM-FW, and both algorithms

FW and M-FW provide the same model.

A possible explanation for the stability of the accuracy of SVMM-FW is its

inherent regularization, in the sense that requiring a negative gradient entry in

order to add a working vector prevents the model from using all the vectors

as support vectors, even if the regularization parameter C is small. Further-

more, the stability of SVMM-FW suggests to fix C beforehand in order to get

rid of a tuning parameter. This option will be explored in the next bunch of

experiments.
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(a) Linear kernel for ijcnn.
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(b) RBF kernel for ijcnn.
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(c) Linear kernel for mgamma.
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(d) RBF kernel for mgamma.

Figure 4: Evolution of the validation results for ijcnn and mgamma, using both the linear

and the RBF kernel for the optimum σ of SVM, both for the standard SVM and the proposed

SVMM-FW. The striped regions represent the range between minimum and maximum for the 10

partitions, whereas the lines in the middle represent the average values.
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5.2. Exhaustive Experiments

In the following experiments, the smaller 9 datasets of the second block of

Table 1 will be used to compare exhaustively three models: SVM, the proposed

SVMM-FW, and an alternative SVMM-FW model with a fixed regularization param-

eter (denoted as SVMM-FW
FP ), in particular C = 1 (normalized).

5.2.1. Set-Up

As in the previous experiments, the hyper-parameters will be obtained using

10-fold CV (except for SVMM-FW
FP , where C is fixed and only σ will be tuned for

the RBF kernel). The stopping criterion is again ε = 10−5. Once trained, the

models will be compared over the test set.

Furthermore, in order to study the significance of the differences between

the models, the whole procedure, including the CV and the test phase, will

be repeated 10 times for different training/test partitions of the data (with a

proportion 90 %/10 %).

5.2.2. Results

The results are detailed in Table 3, which includes for each of the three

models the mean and standard deviation of the accuracy, the number of support

vectors and the number of training iterations over the 10 partitions. The colours

represent the rank of the models for each dataset and kernel, where the same

rank is used if there is no significant difference between the models2.

The results are averaged as a summary in Table 4, where they are included as

a percentage with respect to the reference SVM. This table shows that SVMM-FW

allows to reduce the number of support vectors, and of training iterations, to a

30.1 % and a 26.5 %, whereas the accuracy only drops to a 99.8 %. Moreover,

using the SVMM-FW
FP approach allows to avoid tuning C, while reducing the support

vectors and iterations to a 26.0 % and a 8.0 %, with a drop of the accuracy to

only the 99.7 % of the SVM accuracy.

2Using a Wilcoxon signed rank test for zero median, with a significance level of 5%.
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Data K. SVM SVMM-FW SVMM-FW
FP

Accuracy (%)

australia
{lin 85.65 ± 4.4 86.09 ± 4.2 85.65 ± 4.1

rbf 85.94 ± 4.5 85.36 ± 4.1 85.22 ± 4.1

breast
{lin 96.92 ± 1.8 96.49 ± 1.7 96.49 ± 2.1

rbf 96.63 ± 2.1 96.49 ± 1.9 96.78 ± 1.7

diabetes
{lin 77.35 ± 3.9 78.52 ± 3.0 76.57 ± 4.4

rbf 77.48 ± 3.2 77.09 ± 3.3 75.92 ± 4.6

german
{lin 76.70 ± 3.3 76.60 ± 4.1 76.70 ± 4.8

rbf 76.70 ± 5.2 76.30 ± 4.2 76.00 ± 4.9

heart
{lin 82.59 ± 6.5 83.33 ± 7.3 84.44 ± 7.2

rbf 83.33 ± 8.2 83.33 ± 6.6 84.44 ± 7.6

ionospher
{lin 82.65 ± 6.9 82.65 ± 6.9 81.79 ± 7.7

rbf 92.61 ± 6.4 91.19 ± 6.3 92.03 ± 5.7

iris
{lin 100.00 ± 0.0 100.00 ± 0.0 100.00 ± 0.0

rbf 100.00 ± 0.0 99.33 ± 2.1 99.33 ± 2.1

mushrooms
{lin 100.00 ± 0.0 100.00 ± 0.0 100.00 ± 0.0

rbf 100.00 ± 0.0 100.00 ± 0.0 100.00 ± 0.0

sonar
{lin 72.60 ± 7.3 70.21 ± 8.4 71.67 ± 10.5

rbf 87.00 ± 4.6 88.50 ± 6.4 87.00 ± 5.1

Number SVs

australia
{lin 5.94e+2 ± 5.8e+1 4.40e+2 ± 8.6e+1 2.01e+2 ± 6.6

rbf 5.14e+2 ± 7.8e+1 4.45e+2 ± 9.0e+1 2.14e+2 ± 5.1e+1

breast
{lin 1.35e+2 ± 1.5e+1 7.23e+1 ± 1.9e+1 5.52e+1 ± 2.4

rbf 2.93e+2 ± 1.1e+2 5.56e+1 ± 1.7e+1 5.62e+1 ± 9.4

diabetes
{lin 6.37e+2 ± 2.8e+1 5.01e+2 ± 1.1e+2 3.61e+2 ± 8.1

rbf 6.06e+2 ± 2.1e+1 4.94e+2 ± 1.2e+2 3.73e+2 ± 2.1e+1

german
{lin 8.04e+2 ± 1.5e+1 6.18e+2 ± 1.2e+2 5.21e+2 ± 9.5

rbf 7.88e+2 ± 3.8e+1 7.01e+2 ± 1.1e+2 4.82e+2 ± 2.4e+1

heart
{lin 2.18e+2 ± 2.8e+1 1.01e+2 ± 4.1 1.02e+2 ± 4.8

rbf 1.92e+2 ± 3.1e+1 1.27e+2 ± 1.6e+1 1.28e+2 ± 2.4e+1

ionospher
{lin 2.10e+2 ± 1.9e+1 2.02e+2 ± 2.7e+1 1.40e+2 ± 7.4

rbf 1.72e+2 ± 3.4e+1 8.19e+1 ± 2.3e+1 7.20e+1 ± 7.4

iris
{lin 9.91e+1 ± 1.8e+1 2.60 ± 1.9 2.60 ± 1.9

rbf 1.35e+2 ± 0.0 2.70 ± 4.8e−1 2.70 ± 4.8e−1

mushrooms
{lin 8.45e+2 ± 1.5e+2 1.12e+2 ± 2.1e+1 1.40e+2 ± 8.7

rbf 7.31e+3 ± 5.2e−1 2.74e+1 ± 2.0 2.72e+1 ± 1.8

sonar
{lin 1.04e+2 ± 3.6e+1 1.12e+2 ± 2.5e+1 1.36e+2 ± 3.7

rbf 1.44e+2 ± 2.9e+1 6.50e+1 ± 1.0e+1 7.10e+1 ± 8.6

Number Iters.

australia
{lin 2.65e+4 ± 5.6e+4 9.98e+4 ± 9.9e+4 6.41e+2 ± 1.6e+1

rbf 1.26e+4 ± 1.2e+4 1.74e+4 ± 1.4e+4 7.40e+2 ± 1.2e+2

breast
{lin 2.06e+4 ± 6.1e+4 8.93e+2 ± 7.6e+2 1.90e+2 ± 1.0e+1

rbf 3.09e+3 ± 7.5e+3 2.56e+3 ± 7.3e+3 2.29e+2 ± 3.8e+1

diabetes
{lin 1.42e+4 ± 3.1e+4 9.35e+3 ± 1.6e+4 1.16e+3 ± 5.9e+1

rbf 1.11e+4 ± 9.6e+3 9.33e+3 ± 1.0e+4 1.39e+3 ± 1.8e+2

german
{lin 7.51e+4 ± 1.6e+5 6.51e+4 ± 1.6e+5 2.02e+3 ± 3.2e+1

rbf 7.90e+3 ± 8.4e+3 7.82e+3 ± 5.2e+3 1.38e+3 ± 7.5e+1

heart
{lin 3.14e+4 ± 9.6e+4 5.81e+2 ± 1.5e+2 3.80e+2 ± 1.9e+1

rbf 1.66e+4 ± 1.6e+4 5.26e+2 ± 1.7e+2 3.90e+2 ± 7.7e+1

ionospher
{lin 9.98e+4 ± 1.0e+5 9.36e+4 ± 1.1e+5 8.91e+2 ± 4.8e+1

rbf 1.24e+3 ± 6.2e+2 8.07e+2 ± 8.0e+2 2.16e+2 ± 2.8e+1

iris
{lin 2.63e+2 ± 6.3e+1 5.40 ± 1.1e+1 5.40 ± 1.1e+1

rbf 1.22e+3 ± 0.0 2.86e+1 ± 1.8e+1 1.67e+1 ± 1.0e+1

mushrooms
{lin 7.49e+3 ± 1.6e+3 6.98e+2 ± 1.3e+2 5.21e+2 ± 2.6e+1

rbf 5.61e+4 ± 3.1e+3 2.85e+2 ± 2.7e+1 1.61e+2 ± 1.4e+1

sonar
{lin 4.36e+4 ± 4.2e+4 2.22e+4 ± 3.2e+4 2.66e+3 ± 1.1e+2

rbf 9.67e+2 ± 6.0e+2 2.65e+2 ± 1.7e+2 1.96e+2 ± 2.3e+1

Table 3: Test results for the exhaustive experiments (10 repetitions). The colour indicates

the rank (the darker, the better).
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SVM SVMM-FW SVMM-FW
FP

Accuracy 100.00 99.80 99.67

Number SVs 100.00 30.12 25.95

Number Iters. 100.00 26.45 7.98

Table 4: Geometric mean of the test results as a percentage with respect to SVM for the

exhaustive experiments.

5.3. Evolution over a Large Dataset

This section shows the evolution of the training algorithms over a larger

dataset, namely the miniboone shown in Table 1, for the three approaches

SVM, SVMM-FW, and SVMM-FW
FP .

5.3.1. Set-Up

In this experiment the only kernel used is the RBF one. In order to set

the hyper-parameters C and σ, 10-fold CV is applied over a small subsample of

5 000 patterns. Although this approach can seem quite simplistic, it provides

good enough parameters for the convergence comparison, which is the goal of

this experiment. In the case of SVMM-FW
FP , C is fixed as C = 1, and the optimal

σ of SVM is directly used instead of tuning it, so that no validation is done for

this model.

Once C and σ are selected, the models are trained over the whole training set

during 40 000 iterations. During this process, intermediate models are extracted

every 5 000 iterations, simulating different selections of the stopping criterion ε.

These intermediate models (trained using 5 000, 10 000, 15 000... iterations) are

used to predict over the test set, and thus they allow to analyse the evolution

of the test accuracy as a function of the number of training iterations.

5.3.2. Results

The results are shown in Fig. 5, which includes the evolution of the number

of support vectors and the test accuracy.

It can be observed that the standard SVM starts with the higher accuracy,

but it is rapidly matched by SVMM-FW
FP , and later by SVMM-FW. Nevertheless, all

25



SVM SVMM-FW SVMM-FW
FP

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

0 1 2 3 4
0

1

2

3

4

Iteration (104)

N
um

be
r

of
SV

s
(1

0
4
)

Figure 5: Evolution of the training for miniboone with RBF kernel, for the standard SVM,

the proposed SVMM-FW and the parameter free SVMM-FW
FP . The accuracy corresponds to the test

set.

of the models get finally a comparable and stable accuracy, and they reach it at

approximately the same number of iterations (around 15 000).

The main difference can be seen in the evolution of the number of support

vectors. In the first iterations, all the models introduce a new support vector

at each iteration, but first SVMM-FW
FP and second SVMM-FW saturate this number

presenting a final almost flat phase. On the contrary, although SVM reduces

slightly the rate of growth of the number of support vectors, it continues adding

more patterns to the solution during the whole training. This means that, if the

stopping criterion is not carefully chosen for SVM, this model will use much more

support vectors than needed, with the corresponding increase in its complexity.

On the other side, SVMM-FW and SVMM-FW
FP (both models trained with M-FW)

limit successfully the number of support vectors, providing sparser models with

the same accuracy as SVM.

As a remark, it should be noticed that for SVMM-FW
FP no validation phase was

needed, since C is fixed beforehand, and for σ the optimal of SVM was used.
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This suggests again that SVMM-FW
FP can be applied successfully with C = 1 and

only tuning σ if the RBF kernel is to be used.

5.4. Dependence on the Initialization

Another aspect of the proposed algorithm is its dependence on the initial-

ization. Whereas the standard SVM is trained by solving a convex optimization

problem with unique solution in the non-degenerate case, the proposed method

summarized in Alg. 2 starts with an initial working vector that influences the

resulting model, since it will determine the final subset of working vectors W?.

5.4.1. Set-Up

A comparison of the models obtained using different initial working vectors

will be done to study the variability due to the initialization. In particular, for

all 9 smaller datasets of Table 1 and in this case only for the linear kernel with

the parameters obtained in Section 5.2 (no CV process is repeated), one model

per possible initial point will be trained, so that at the end there will be as

many models as training patterns for each partition.

5.4.2. Results

A first measure for the dependence on the initialization are the differences

between the sets of support vectors of the models. Table 5 shows in the sec-

ond column the average overlap between these sets of support vectors for every

pair of models with different initializations, quantified as the percentage of sup-

port vectors that are shared on both models over the total number of support

vectors3. The two easiest datasets, iris and mushrooms, show the smallest

overlaps (around 30 %) and hence the highest dependence on the initialization.

This is not surprising, since for example in the iris dataset there are many

hyperplanes that separate both classes perfectly. The remaining datasets show

3In particular, there are N(N − 1)/2 measures per each one of the 10 repetitions, since

there are N different possible initializations (as many as training patterns).
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Data
SVs Overlap (%) Accuracy (%)

SVMM-FW Ini. SVM SVMM-FW SVMM-FW Ini.

austra 95.69± 4.9 85.65± 4.4 86.09± 4.2 86.06± 3.9

breast 83.96± 4.2 96.92± 1.8 96.49± 1.7 96.45± 1.7

diabet 97.26± 2.2 77.35± 3.9 78.52± 3.0 77.69± 3.6

german 92.24± 4.8 76.70± 3.3 76.60± 4.1 76.86± 3.7

heart 81.44± 3.1 82.59± 6.5 83.33± 7.3 82.87± 7.6

ionosp 97.66± 3.5 82.65± 6.9 82.65± 6.9 83.16± 6.4

iris 30.99± 25.0 100.00± 0.0 100.00± 0.0 99.66± 1.5

mushro 32.61± 5.2 100.00± 0.0 100.00± 0.0 100.00± 0.0

sonar 96.69± 2.3 72.60± 7.3 70.21± 8.4 70.47± 8.7

Table 5: Results for the initialization dependence, including the overlap of the different sets

of support vectors for SVMM-FW, and the accuracies of SVM, SVMM-FW and SVMM-FW considering

all possible initializations.

an overlap above 80 %, and there are 4 datasets above 95 %. Therefore, the

influence on the initialization will depend strongly on the particular dataset.

Nevertheless, looking at the accuracies included in Table 5, and specifically

comparing the results of SVMM-FW when considering only one or all the possible

initializations (columns 4 and 5), it seems that there is no noticeable difference

between them. In particular, and reducing the table to a single measure, the

average error is 86.05 % for SVM, 85.99 % for SVMM-FW and 85.91 % for SVMM-FW

considering all the initializations.

Moreover, as an additional experiment Fig. 6 shows the results of an extra 10-

fold CV for the heart dataset with linear kernel, including the results of SVMM-FW

with all the possible initializations. It can observed that SVMM-FW performs

basically the same in average when changing the initial vector, in terms of all

three the accuracy, the number of support vectors and the number of iterations,

although obviously the distance between minimum and maximum value for each

C (striped region in the plots) increases since more experiments are included.

Therefore, it can be concluded that, although the proposed method can de-

pend strongly on the initialization for some datasets, it seems that the resulting

models are comparable in terms of accuracy, number of support vectors and
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Figure 6: Evolution of the validation results for heart with linear kernel, for the standard

SVM, the proposed SVMM-FW and SVMM-FW considering all possible initializations. The striped

regions represent the range between minimum and maximum for the 10 partitions (10 times

the number of training patterns when considering all the possible initializations), whereas the

lines in the middle represent the average values.

required training iterations. On the other side, it should be noticed that trying

to establish a methodology to initialize in a clever way the algorithm would

probably need of a considerable overhead, since the computational advantage of

Frank–Wolfe and related methods is that they compute the gradient incremen-

tally because the changes only affect a few coordinates. A comparison between

all the possible initial vertices, leaving aside heuristics, would require the use of

the whole kernel matrix, what could be prohibitive for large datasets.
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6. Conclusions

The connection between Lasso and Support Vector Machines (SVMs) has

been used to propose an algorithmic improvement in the Frank–Wolfe (FW)

algorithm used to train the SVM. This modification is based on the re-weighted

Lasso to enforce more sparsity, and computationally it just requires an addi-

tional conditional check at each iteration, so that the overall complexity of the

algorithm remains the same. The convergence analysis of this Modified Frank–

Wolfe (M-FW) algorithm shows that it provides exactly the same SVM model

that one would obtain applying the original FW algorithm only over a subsam-

ple of the training set. Several numerical experiments have shown that M-FW

leads to models comparable in terms of accuracy, but with a sparser dual rep-

resentation, requiring less iterations to be trained, and much more robust with

respect to the regularization parameter, up to the extent of allowing to fix this

parameter beforehand, thus avoiding its validation.

Possible lines of extension of this work are to explore other SVM formu-

lations, for example based on the `1 loss, which should allow for even more

sparsity. The M-FW algorithm could also be applied to the training of other

machine learning models such as non-negative Lasso, or even to general opti-

mization problems that permit a certain relaxation of the original formulation.
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