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The number of protein coding genes in the human reference gene sets has stabilized at
slightly more than 20,000 genes in recent years, principally as a result of painstaking
manual curation efforts. Although the three main gene sets, Ensembl/GENCODE, RefSeq,
and UniProtKB, have similar numbers of genes, it is not clear how many of these genes
coincide between the three sets.

Many researchers were surprised by the relatively low numbers of human coding genes and
some have sought other explanations for an assumed human complexity such as alternative
splicing. The alternative splicing of messenger Ribonucleic acid (RNA) is a fundamental
molecular process that regulates eukaryotic gene expression and can generate a wide range
of mature RNA transcripts. Many thousands of alternatively spliced transcripts are routinely
detected in RNA-seq studies, although reliable large-scale mass spectrometry-based
proteomics analyses identify only a small fraction of annotated alternative isoforms. Indeed,
proteomics experiments strongly suggest that most genes have a single main protein isoform.

In this thesis, we present three papers on the functional description of coding genes, and of
the principal and alternative protein isoforms derived from alternative splicing. In the first
publication, we present the updates to the APPRIS Database. APPRIS selects a single
protein isoform, the principal isoform, as the reference for each gene based on protein
structural and functional features and information from cross-species conservation.
Experimental evidence shows that the APPRIS principal isoform almost always coincides
with the main cellular protein isoform. In the paper we detail the expansion of gene sets for
multiple species, refinements in the core methods that make up the annotation pipeline and
the merge of individual Ensembl/GENCODE, RefSeq, and UniProtkKB reference gene sets.
APPRIS now provides a measure of reliability for individual principal isoforms and updates
with each release of the reference sets.

In the second paper, we analyse human protein-coding genes in the three main reference
sets: Ensembl/GENCODE, RefSeq and UniProtkKB. We find that one in eight of these genes
are classified differently in at least one of the reference sets. Evidence from various sources
suggests that many of the 22,210 genes in the union of the three sets are unlikely to code for
functional proteins.

In the final publication, we carried out a reanalysis of a large-scale proteomics study of human
tissues in order to determine to what extent tissue-specific alternative splicing can be
detected at the protein level. We found evidence of significant tissue-specific differences
across more than a third of the splice events that we interrogated. Tissue specific alternative
protein forms were particularly abundant in nervous and muscle tissues. By contrasting the
proteomics evidence with data from a large-scale transcriptomics analysis, we found that
more than 95% of tissue specific events in which proteomics and RNA-seq analyses agree
on tissue-specificity evolved over 400 million years ago. Our results suggest that tissue
specific alternative splicing has played a crucial role in the development of the brain and the
heart in vertebrates.



El nimero de genes humanos que codifican a proteinas dentro de las bases de datos (BD)
de referencia humanos se ha estabilizado en un poco mas de 20,000 genes en los ultimos
afos. Principalmente como resultado de minuciosos esfuerzos de curacion manual. Aunque
las tres BD de referencia, Ensembl/GENCODE, RefSeq y UniProtKB, tienen un namero
similar de genes, no esta claro cuantos de estos genes coinciden entre los tres conjuntos.

El empalme alternativo del acido ribonucleico mensajero (ARN) es un proceso molecular
fundamental que regula la expresion de genes eucariotas y puede generar una amplia gama
de transcripciones de ARN. Aunque muchos miles de transcritos de empalme
alternativamente se detectan de forma rutinaria en los estudios de RNA-seq?, los andlisis de
proteémica basados en espectrometria de masas identifican solo una pequefa fraccién de
isoformas alternativas. De hecho, los experimentos de protedmica sugieren que la mayoria
de los genes tienen una Unica isoforma proteica. En esta tesis presentamos tres articulos
sobre la descripcidn funcional de genes codificantes y de las isoformas proteicas principales
y alternativas derivadas del empalme alternativo.

En la primera publicacién, presentamos las actualizaciones de APPRIS. Algoritmo que
selecciona una Unica isoforma proteica, la isoforma principal, como referencia para cada
gen, en funcion de las caracteristicas estructurales y funcionales de las proteinas y la
informacion de la conservacion entre especies. La evidencia experimental muestra que la
isoforma principal APPRIS casi siempre coincide con la isoforma principal de la célula. En el
articulo detallamos la expansién de las anotaciones para multiples especies, la mejora de
los métodos, y la creacion de una fusion de genes basado en las tres BD de referencia.
Ademas, proporciona una medida de fiabilidad para isoformas principales.

En el segundo articulo, analizamos genes humanos que codifican a proteinas en las tres BD
de referencia: Ensembl/GENCODE, RefSeq y UniProtKB. Encontramos que uno de cada
ocho de estos genes se clasifica de manera diferente en al menos uno de las BD de
referencia. La evidencia de diversas fuentes sugiere que es poco probable que muchos de
los 22,210 genes de los tres conjuntos codifiquen a proteinas funcionales.

En la publicacién final, llevamos a cabo un nuevo andlisis de un estudio proteémico a gran
escala de tejidos humanos con el fin de determinar hasta qué punto se puede detectar el
empalme alternativo especifico de tejido. Encontramos diferencias significativas especificas
de tejido en mas de un tercio de los eventos. Las isoformas de proteinas alternativas eran
particularmente abundantes en los tejidos nerviosos y musculares. Al contrastar la evidencia
de protedmica con datos de transcriptomica, encontramos que mas del 95% de los eventos
especificos de tejidos que coinciden entre ambos andlisis, evolucionaron hace mas de 400
millones de afios. Nuestros resultados sugieren que el empalme alternativo especifico de
tejido ha jugado un papel crucial en el desarrollo del cerebro y el corazon de los vertebrados.

1Siglas en inglés para RNA sequencing



..................................................................................................................... 3
...................................................................................................................... 4

/ (Espafol) INDICE.......cccccccviiiiiiiiiiiiieeeeeeeeeeeeeeeeeeee 5
........................................................................................................... 7
............................................................................................................. 8

The Human Reference GENE Sl .........iiiii i e e e e e e eenees 9
The Gradual Downward Trend of the Human Protein Gene Count ..........cccccevvvveeeee.. 10
Validating Coding Potential..............oouuuiiiiii e 12
AREINALIVE SPIICING ..ttt bes bbb nannanes 13
The SPliCiNg MACRINEIY .....veiiiceeeee e 13
Types of Alternative SPIICING .......cooviiiiiiiiii e e e 15
The Functional Impact of Alternative Splicing at Protein Level .........cccccccvvviiviininnnn. 16
Most Genes Have a Single Main Protein ISOform ..............cccceeeiiiiiiiiiiiciiei e, 17
F ST L] = | 18
Most Alternative Exons Are Not Under Selective Pressure ..........ccccccevvveeveviiniiinnnnnns 20
Detecting Alternatively Spliced Proteins ............coiiiiieiiiiiiiiee e, 21
Tissue Specific Alternative Splicing at the Protein Level ..........ccccooovoiiiiiiiiiiinn, 21
................................................................................................................ 23
.................................................................................................................. 24
................................. 25

APPRIS 2017: principal isoforms for multiple gene Sets. ...........ccccvvviiiiiiiiiiiiiiiiiininns 25
................... 27

APPRIS 2017: Isoformas principales en diversas bases de datos de genes............. 27
..... 34

...................................................................................................................................... 36
Extremos sueltos: casi uno de cada cinco genes humanos auln tiene un estado
(oTo o [11[oF=Toa o] o I o Lo I £=1] U 1] | (o I 36

................................ 53
An analysis of tissue-specific alternative splicing at the protein level ........................ 53
................... 55

de



APPRIS: principal isoforms for multiple gene SetS.............uueuiiiiiiiiiiiiiiiiiiiiiiiiiiieee 81
Loose ends: almost one in five human genes still have unresolved coding status .... 84
An analysis of tissue-specific alternative splicing at the protein level ........................ 87
............................................................................................................ 91
.......................................................................................................... 92



AS
BLAST
BPS
CCDS
cDNA
CDS
CHESS
CNV
DNA
ENCODE
ESE

ESS

EST
GENCODE
GO
GTEXx
hnRNP
indel

ISE

ISS
MRNA
MS/MS
NCBI
NMD
ORF
PED
Pfam

Pl

PPT

PDB

PTB
pre-mRNA
RefSeq
RNA
RNA-seq
snRNP
SS

TIGR
TSL
UniProtKB

Alternative Splicing

Basic Local Alignment Search Tool

Branch Point Sequence

Collaborative Consensus coDing Sequence
complementary DNA

CoDing Sequence

Comprehensive Human Expressed Sequences
Copy Number Variants

DeoxyriboNucleic Acid

ENCyclopedia Of DNA Elements

Exonic Splicing Enhancer

Exonic Splicing Silencer

Expressed Sequence Tag

GENome enCyclopedia Of DNA Elements
Gene Ontology

Genotype-Tissue Expression
heterogeneous nuclear RiboNucleoProtein
insertion/deletion polymorphism

Intronic Splicing Enhancer

Intronic Silencing Silencer

Messenger RNA

tandem mass spectrometry

National Center for Biotechnology Information
Nonsense-Mediated Decay

Open Reading Frame

PEptides from Different experiment

Protein families database

Principal Isoforms

PolyPyrimidine Tract

Protein Data Bank

Polypyrimidine Tract-Binding

precursor Messenger RiboNucleic Acid
The Reference Sequence database
RiboNucleic Acid

RNA sequencing

small nuclear RiboNucleoProtein

Splice Site

The Institute for Genomic Research
Transcript Support Level

Universal Protein Resource KnowledgeBase



The concept of a “gene” is basic to the understanding of genetics and molecular biology. At
the time when the term was coined, it was seen from the phenotypic perspective as a distinct
region, a “locus”, on a chromosome explaining mechanisms of heredity, development, and
physiological function. Later, with the discovery of Deoxyribonucleic acid (DNA) and the
publication of the “Central Dogma” of molecular biology (Crick, 1970), a gene became a
physical entity that is transcribed and finally translated into protein.

In this model a gene is the region of DNA that contains the necessary information for the
expression of a protein or other molecule that ultimately helps in the survival, reproduction
and function of the organism (Figure 1). The transcription of protein-coding genes in
eukaryotes generates a precursor messenger RNA (pre-mRNA) which is converted into
mature messenger RNA (mRNA) ready for translation into protein. Eukaryotes have
elaborated a complex mechanism of modifying their primary RNA transcripts, called
“splicing”. Pre-mRNA transcripts contain intervening sequences, known as introns, which do
not become part of the final MRNA. Regions of pre-mRNA that are retained and ligated for
translation are known as exons (Gilbert, 1978). In the process of mMRNA maturation introns
are selectively excised out and exons are ligated together. The spliced mRNA molecule forms
a continuous protein-coding region ready to be translated into a protein molecule.
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Figure 1. Transcription of protein-coding genes in eukaryotes. Transcription) By this model, the
transcription generates a pre-mRNA with exons and introns. Splicing) Pre-mRNA introns are
removed by the spliceosome (see later), and a mature mRNA is generated. Translation) The mature
MRNA is translated into a protein by the ribosome complex.

However, the question “what constitutes a gene?” has been much debated in recent years
(Brosius, 2009; Gerstein et al., 2007; Gingeras, 2007; Mattick, 2003; Mercer & Mattick, 2013;
Pearson, 2006). When the “completion” of the human genome sequence was announced
(Collins et al., 2003), the gene still was a genomic region with clear structural boundaries.
The current view of transcription is becoming more complicated. In particular, a locus may
generate multiple transcripts due to alternative splicing (AS). Alternative splicing can change
the genotype-phenotype relationship, because it has the potential to generate different
protein isoforms, implying different physiological functions derived from the same gene. This
complexity complicates the work of scientists tasked with describing the human genome. To
this end, Gerstein et al. proposed that “a gene is a union of genomic sequences encoding a
coherent set of potentially overlapping functional products” (Gerstein et al., 2007).



Genome annotation comprises all efforts to assign biological functions, mechanistic and
structural roles, and observations linked to genomic positions to every nucleotide in the
genome. The Encyclopedia of DNA Elements project (ENCODE) (The ENCODE Project
Consortium et al., 2012) was established to annotate the human genome with all possible
functional information.

As part of this project, the GENCODE consortium (Harrow et al., 2012) was formed to identify
and map all protein-coding genes within the ENCODE regions. The GENCODE consortium
is composed of several groups that are dedicated to producing high-accuracy annotations of
evidence-based gene features based on manual curation, computational analyses and
targeted experiments. The consortium initially focused on 1% of the human genome in the
Encyclopedia of DNA Elements pilot project (The ENCODE Project Consortium et al., 2007)
and expanded this to cover the whole genome (The ENCODE Project Consortium et al.,
2012). GENCODE is now part of Ensembl (Zerbino et al., 2018) and their annotations are
regularly released as the Ensembl/GENCODE gene sets. They are also accessible via the
Ensembl and UCSC Genome Browsers (Haeussler et al., 2019).

In addition, there are other large-scale gene annotation projects in progress on the human
genome. The RefSeq project (O’Leary et al., 2016) at the National Center for Biotechnology
Information (NCBI) combines manual and automated processes, and collaboration to
produce a standard set of stable, non-redundant reference sequences.

For each “gene set” or “genebuild” produced, the vast majority of models are based upon
transcript evidence. A recent approach, CHESS (Comprehensive Human Expressed
Sequences) (Pertea et al., 2018), has taken this to an extreme by assembling the gene
models for their catalog of human genes and transcripts entirely from deep RNA sequencing
experiments by the Genotype-Tissue Expression (GTEx) (Lonsdale et al., 2013) project.
CHESS is an entirely automatic annotation project and is not subject to any manual scrutiny.

In 2002, the UniProt Knowledgebase (UniProtKB) (The UniProt Consortium, 2018) was
created. The UniProt Knowledgebase consists of two sections: a section containing
manually-annotated records with information extracted from literature and curator-evaluated
computational analysis, and a section with computationally analyzed records that await full
manual annotation. For the sake of continuity and name recognition, the two sections are
referred to as "UniProtKB/Swiss-Prot" (reviewed, manually annotated) and
"UniProtKB/TrEMBL" (unreviewed, automatically annotated), respectively. UniProtKB protein
sequences are not all based on genomic coordinates and it has been noted that some of the
RefSeqg and UniProtKB sequences are inconsistent with the sequences expected from the
coding regions on the human genome (Farrell et al., 2014; Harte et al., 2012). Although the
differences in the RefSeq mRNA and UniProtKB protein sequences from the reference
genome have been pointed out several times, the cause of this discordance has not been
well characterized (Shirota & Kinoshita, 2016).

The different methods employed by these public resources can result in distinct
representations of genes, transcripts, and proteins. However, the collaborative consensus
coding sequence (CCDS) project (Pruitt et al., 2009) tracks identical coding sequence (CDS)
annotations in RefSeq and Ensembl mouse and human genomes and ensures that they are
consistently represented on the NCBI, Ensembl/GENCODE, and UCSC Genome Browsers
with a stable identifier.



Estimating the number of human genes dates back to the 1940s when the genetic code and
even the structure of DNA were unknown (Figure 2). In 1948, James N. Spuhler estimated
the number of human genes (Spuhler, 1948) based on the chromosomal length occupied by
genes comparing with the fruit fly (then 42,000 genes) and extrapolating the number derived
from X-linked lethal mutations (19,890-30,420 genes). At about that time, Muller (Muller,
1950) estimated the number of human genes between 5,000 to 20,000 genes. In 1964,
Friedrich Vogel (Vogel, 1964) calculated the number of genes dividing the length of the
human genome by the gene-length of 50,000 nucleotides inferred from the length of genes
in Dipteran giant chromosomes (60,000 human genes). Shortly thereafter, Muller revised his
earlier estimate to “not much more than 30,000” genes based on newer data on spontaneous
mutations and frequencies of X-ray induced mutations (Muller, 1966).

In 1990, the U. S. Human Genome Project claimed to have sequenced the human genome
and to have located the suspected 50,000-100,000 human genes without providing any data
or reference for this estimate (U.S. Department of Health and Human Services & Department
of Energy, 1990). The success of sequencing and high-throughput technologies provided
further numbers, including 20,000-40,000 genes implied by the measurement of RNA re-
association kinetics (Benjamin Lewin, 1990), 80,000 genes implied by determining and
extrapolating CpG island coverage (Antequera & Bird, 1993), and 64,000 genes implied by
expressed sequence tag (EST) sequencing followed by clustering and extrapolation (Fields
et al., 1994).

As the release of the first draft of the human genome was approaching, researchers from The
Institute for Genomic Research (TIGR) predicted 110,000 to 134,000 genes made available
in the TIGR Gene Index based on massive expressed sequence tag (EST) (Liang et al.,
2000). In the same journal issue, other researchers predicted 33,630 to 34,700 genes based
on similar EST data (Ewing & Green, 2000) and 28,000-34,000 genes by comparison with
pufferfish (Crollius et al., 2000).
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Figure 2. Estimates of human protein-coding number based on different lines of evidence.
Taken from (Hatje et al., 2019; Southan, 2004) with the addition of more recent papers (Ezkurdia et
al., 2014; Pertea et al., 2018; Pertea & Salzberg, 2010; Southan, 2017).

The publication of the draft human genomes in early 2001 did not stop the speculation about
higher gene numbers, though estimates were close to the ranges predicted 26,588-38,588
genes (Venter et al., 2001) and 30,000-40,000 genes (Lander et al., 2001). Extrapolation of
RT-PCR data of chromosome 22 predicted 41,000-45,000 genes (Das et al.,, 2001) and
mapping of available complementary DNA (cDNA), EST, and protein data combined with
gene predictions suggested 65,000-75,000 genes (Wright, F. A., et al., 2001). Still in 2003,
when the human genome sequence was “finished”, researchers predicted 29,000-36,000
genes based on the extrapolation of a refined annotation of chromosome 22 (Collins et al.,
2003) and up to 40,000 protein-coding genes based on analysis of conserved sequence
elements between human and mouse (Xuan et al., 2003).

With the publication of the final draft of the Human Genome Project (International Human
Genome Sequencing Consortium, 2004), the number of protein-coding genes was revised
downwards again to between 20,000 and 25,000. In 2007, Clamp and co-workers (Clamp et
al., 2007) used evolutionary comparisons to suggest that the most likely figure for the number
of protein-coding genes would be at the lower end of this continuum, just 20,500 genes. The
Clamp analysis suggested that a large number of annotated open reading frames (ORFs)
were not protein coding because they had features resembling non-coding RNA and lacked
evolutionary conservation. The study suggested that there were relatively few novel
mammalian protein-coding genes and that the 24,500 genes annotated in the human gene
catalogue at the time would end up being cut by 4,000.



The number of protein-coding genes annotated in the Ensembl/GENCODE database
(Frankish et al., 2019; Harrow et al., 2006) has also been on a downward trend since its
inception. More than two thousand automatically predicted genes have been removed from
the reference genome as a result of the merge with the manual annotation, often by being
re-annotated as non-coding biotypes. The most recent GENCODE release (GENCODE v35
08/2020) contains 19,954 protein-coding genes. Most recently, CHESS (Pertea et al., 2018),
which is an entirely automatic annotation project, predicted 20,352 protein-coding genes.

Coding genes need to produce functional proteins and the best way to validate whether they
do that is by detecting evidence of the gene product. Manual annotation of protein-coding
genes requires many different sources of evidence (Frankish et al., 2019; Guigé et al., 2006).
The most convincing evidence, experimental verification of cellular protein expression, is
technically challenging to produce. Proteomics technology has improved considerably over
the last decades (Aebersold & Mann, 2003; Mallick & Kuster, 2010), and it has become an
increasingly important tool in genome annotation (Brosch et al., 2011; Deutsch et al., 2015;
Ezkurdia, Valencia, and Tress et al., 2014; Tanner et al., 2007).

The shotgun proteomics approach (Aebersold & Mann, 2003; Gygi et al., 1999; Link et al.,
1999; Washburn et al., 2001) has become the method of choice for identifying and quantifying
proteins in most large-scale studies. This strategy is based on digesting proteins into peptides
followed by peptide sequencing using tandem mass spectrometry (MS/MS) and automated
database searching. Compared with methods of analysis based on extensive protein
separation prior to MS-based identification, such as two-dimensional gels (Gorg et al., 2004),
shotgun proteomics allows higher data throughput and better protein detection sensitivity.
MS/MS experiments has become an increasingly important tool for validating the translation
of protein-coding genes (Brosch et al., 2011; Deutsch et al., 2015; Ezkurdia et al., 2014;
Tanner et al., 2007), and large-scale mass spectroscopy experiments are now the main
source of evidence of alternative splicing at the protein level.

Ezkurdia et al analysed the human genome with seven sets of proteomics data and found
peptide evidence to support 11,840 coding genes (Ezkurdia et al., 2014). The study found
that proteins with annotated protein functional domains, functional residues, homology to
known structures or cross-species conservation were more likely to be detected in the
proteomics experiments than proteins without these features.

Gene family age (the oldest phylogenetic division in which a gene from the same family is
found) and gene age were also related to peptide detection. These ages were calculated
using Ensembl Compara phylogenetic trees (Herrero et al., 2016). Peptides were detected
for 96.4% of genes that evolved in the Fungi-Metazoa clade and did not duplicate (1,136
genes). By contrast, the most recently evolved genes (those with primate gene family age)
and the least conserved genes were much less likely to be detected in proteomics
experiments. Discriminating peptides were found for just 0.9% of the 563 primate-specific
genes and 2% of the 987 genes with a low conservation score in APPRIS (Rodriguez et al.,
2013).



Alternative splicing (AS) is a fundamental molecular process regulating eukaryotic gene
expression that results in a single gene coding for multiple proteins (Black, 2003; A. J. Lopez,
1998; Smith & Valcarcel, 2000). In this process, exons can be included or excluded in
different combinations to create a diverse range of mMRNA transcripts from a single pre-mRNA
(Figure 3). It was first described in the 80’s, when it was discovered that membrane-bound
and secreted antibodies are encoded by the same gene (Alt et al., 1980; Early et al., 1980).

Splicing in general, and AS in particular, is also important for regulation of the levels and
tissue specificity of gene expression and, if disrupted, can lead to disease (Cartegni et al.,
2002; Tazi et al., 2009; Venables, 2004; Wang, G. S. & Cooper, 2007).
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Figure 3. Alternative Splicing. The figure shows the theoretical effect of AS with different
combinations of coding exons producing three different proteins.

The splicing reaction, which forms the central step in the production of mRNAs, involves the
recognition of introns and exons by the splicing machinery. It can be regulated at many
different levels, but most alternative splicing is a result of differential splice-site recognition
by the spliceosome. The spliceosome is a complex composed of five small nuclear RNAs
(U1, U2, U4, U5 and U6) that assemble with proteins to form small nuclear ribonucleoproteins
(snRNPs) (Hoskins et al., 2011; Jurica & Moore, 2003; Staley & Guthrie, 1998).

The spliceosomal machinery (Figure 4) is a coordinated series of RNA—RNA, RNA—protein
and protein—protein interactions (Hoskins & Moore, 2012; Trowitzsch et al., 2009). The
spliceosome recognizes four conserved signals: the exon—intron junctions at the 5" and 3'
ends of introns - the 5" splice site (5' SS) and 3' splice site (3’ SS) -, the branch point sequence
(BPS) located upstream of the 3' SS and the polypyrimidine tract (PPT) located between the



3' SS and the BPS. First, U1 binds to the 5° SS of an exon and U2 binds near BPS just
upstream of the 3’ SS of the adjacent exon (Peled-Zehavi et al., 2001). U2 snRNP is recruited
to the branch region through interactions with the E complex component U2AF (U2 snRNP
auxiliary factor). Later, a tri-snRNP complex, composed of U4/U6/U5, joins in and leads to
the formation of an active complex that catalyzes splicing. Once the splicing is over, the
spliceosome disassembles and all components are recycled for future splicing reactions
(Hnilicova & Stanék, 2011).

Exons and introns also contain short, degenerate binding sites for auxiliary splicing proteins.
These sites (Figure 4) are called exonic splicing enhancers (ESEs), intronic splicing
enhancers (ISEs), exonic splicing silencers (ESSs) and intronic silencing silencers (ISSs).
Splice-site recognition is mediated by proteins that bind specific regulatory sequences, such
as the serine/arginine (SR) proteins, heterogeneous nuclear ribonucleoproteins (hnRNPS),
polypyrimidine tract-binding (PTB) proteins, the TIAL1 RNA-binding protein, Fox proteins and
Nova proteins (Chen & Manley, 2009; Hui, 2009; Licatalosi & Darnell, 2010).
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Figure 4. The Splicing Machinery. Splicing is catalyzed by the spliceosome, which recognizes and
assembles on exon—intron boundaries to catalyze intron processing. A) The four signals that enable
recognition of RNA by the spliceosome are 5'SS, 3’ SS, the BPS and the PPT. B) Several steps in
the process of the splicing machinery with the action of multiple components. C) Exons and introns
contain short, degenerate binding sites for splicing auxiliary proteins.



Exons that are present in all variants within a gene are often referred to as constitutive exons.
In this definition, alternative exons are exons that are not involved in all the variants of a gene.
Although as annotation databases have grown, this definition has come to be somewhat
problematic. The cornucopia of splicing variants for some genes can often be so great that
almost all annotated exons end up defined as alternative.

Systematic analyses of ESTs and microarray data have revealed several types of alternative
splicing (Pan et al., 2008; Wang, E. T. et al., 2008). These events can occur during the
splicing process or as the mRNA is formed from the transcription step of the central dogma
of molecular biology (Figure 5):

(@]

Exon Skipping or Cassette Exon: In this case, exon(s) are included or excluded from
the final gene transcript leading to extended or shortened mature mRNA variants.
Exon skipping accounts for nearly 40% of AS events in higher eukaryotes but is
extremely rare in lower eukaryotes (Alekseyenko et al., 2007; Kim, E. et al., 2007;
Sugnet et al., 2004).

Alternative 5' Splice Site (5’ SS) and 3' Splice Site (3’ SS): Alternative gene splicing
includes joining of different 5' and 3' splice sites. In this kind of splicing, two or more
alternative 5' splice sites compete for joining to two or more alternate 3' splice sites.
Alternative 3' SS and 5' SS selection account for ~18% and ~8% of all AS events in
higher eukaryotes, respectively (Kim, E. et al., 2007; Koren et al., 2007; Sugnet et al.,
2004)

Intron Retention: An event in which an intron is retained in the final transcript. This is
one of the rarest AS events in vertebrates and invertebrates, accounting for less than
5% of known events (Alekseyenko et al., 2007; Kim, E. et al., 2008; Sakabe & de
Souza, 2007; Sugnet et al., 2004). By contrast, intron retention is the most prevalent
type of AS in plants, fungi and protozoa (Kim, E. et al., 2008).

Mutually Exclusive Exons: Another very uncommon splicing event. One of two exons
(or one group out of two exon groups) is retained in MRNAs after splicing, while the
other one is spliced out. Here, two (or more) splicing events are not independent any
more, but are executed or disabled in a coordinated manner.

Alternative Promoters and Alternative polyadenylation: Here transcription either
starts or ends at different points. Alternative promoters are those pre-mRNA
transcripts that have distinct 5' exons composition. Alternative polyadenylation occurs
when distinct polyadenylation sites provide different 3' end points for transcripts. Both
mechanisms can occur in combination with alternative splicing and provide additional
variety in mRNAs derived from a gene (Ast, 2004; Black, 2003; Kim, E. et al., 2008).
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Figure 5. Types of alternative splicing events. There are several different types of alternative
splicing events. In the figure, exons and final transcripts are illustrated as boxes while lines represent
introns. Constitutive exons are shown in blue, and alternatively spliced exons are depicted in green
or purple. Retained introns occur in the absence of splicing, with the intervening intro (black) included
in the final transcript.

The Functional Impact of Alternative Splicing at Protein Level

One of the current priorities of the scientific community is the understanding of cellular
responses specific to tissue, developmental stage or environmental conditions. Alternative
splicing is a mechanism that has the potential to expand the cellular protein repertoire far
beyond the one gene—one protein model (Nilsen & Graveley, 2010; Smith & Valcarcel, 2000)
and has been linked to tissue and developmental differences.

The presence of multiple alternative mRNA transcripts from the same gene is unequivocally
supported by EST and cDNA sequence evidence (Harrow et al., 2012), microarray data
(Sanchez-Pla et al., 2012), and RNA-seq data (Juntawong et al., 2014; Uhlén et al., 2015).
Despite the overwhelming evidence for alternative splicing at the transcript level, there is
limited support for the translation of these alternative transcripts into protein isoforms.
Individual experiments do provide evidence for the expression of isoforms for certain genes
(Kelemen et al., 2013).

Alternative splicing of messenger RNA produces a wide variety of differently spliced RNA

transcripts that may be translated into diverse protein products. Some studies suggest that
16



human coding genes could generate on average more than ten alternative transcripts (Hu et
al., 2015; Pertea et al., 2018). Assuming almost all of these transcripts are translated into
functional alternative splice isoforms, we might expect the overall protein population to
increase 10-fold from 20,000 (the number of human coding genes) to 200,000. This increase
would have profound biological consequences.

Theoretically, all these coding transcripts could be translated into functional protein isoforms,
which could in turn diversify the range of cellular functions. This possible expansion of
function is often suggested to be the reason that humans have so few coding genes (Nilsen
& Graveley, 2010; Smith & Valcarcel, 2000). However, although we have a limited
understanding of the function of a small number of these alternative isoforms (Kelemen et
al., 2013), there is a general lack of knowledge about the functional roles of the vast majority
of annotated splice isoforms. If translated to protein, most annotated splice variants are likely
to produce isoforms with substantially altered 3D structure and drastic changes in biological
function (Melamud & Moult, 2009; Tress et al., 2007).

Initially, it was not clear whether alternative transcripts and proteins are expressed more or
less equally across tissues, whether different transcripts or isoforms were dominant in
different tissues, or whether it would be biologically relevant to designate one transcript or
isoform per gene as dominant and the rest as alternative. Large-scale transcriptomics studies
(Bahar et al., 2011; Djebali et al., 2012; Gonzalez-Porta et al., 2013) showed that genes have
dominant transcripts but with contrasting results. While in some most genes had a single
dominant transcript across all cell lines (Bahar et al., 2011; Gonzalez-Porta et al., 2013), in
others the majority of protein-coding genes had at least two different dominant transcripts
depending on the cell (Djebali et al., 2012).

Proteomics studies strongly suggest that most genes have a single main protein isoform
(Abascal et al., 2015). Abascal et al analysed peptides from eight large-scale data sets
(Deutsch et al., 2015; Ezkurdia et al., 2014; Geiger et al., 2012; Kim, M.-S. S. et al., 2014;
Munoz et al., 2011; Nagaraj et al., 2011; Wilhelm et al., 2014) identifying 12,716 genes but
just 282 alternative splice events. In total, these eight datasets covered over 100 distinct
tissues and cell lines, yet less than 0.4% of the peptides mapped to alternative isoforms.
Almost all peptides mapped to a single isoform per gene.

A related study investigated the relationship between this main proteomics isoform and other
means of determining reference isoforms (Ezkurdia et al., 2015). They found that all methods
for selecting a reference isoform for a gene were better than random - a random selection of
isoforms would have agreed with the main proteomics isoform 46% of the time (Figure 6) —
but that methods based on RNA-seq evidence performed worse than manual annotators and
worse than a method based on protein features and conservation.

Dominant RNA-seq transcripts, expressed five times more than across all tissues or cell lines
(Gonzalez-Porta et al., 2013), agreed with the main proteomics isoform over 77.2% of
comparable genes, while the Highest Connected Isoforms (Li et al.,, 2015), based on
transcript-level expression and interactions in a functional network, coincided with the main
isoform over 78% of genes (Figure 6).

Both these methods performed worse than the strategy of selecting the longest isoform, the
method of choice for selecting a reference isoform in practically all studies and databases



and the basis of UniProtKB display isoforms. Although it has no biological basis, the longest
isoform coincided with the main experimental proteomics isoform across 89.6% of genes.
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Figure 6. Comparison of Main Proteomics Isoform to Other Reference Isoforms. Percentage of

genes in which there was agreement between the reference isoform and the main proteomics isoform
(Ezkurdia et al., 2015; Tress et al., 2017).

The CCDS variants are based on cDNA evidence and agreed on by manual annotators (Pruitt
et al., 2009). For those genes where there was just a single CCDS variant per gene, the
agreement with the main proteomics isoform was much higher at 98.6%. Finally, the APPRIS
database (Rodriguez et al., 2013) predicts principal isoforms based on the preservation of
protein features and cross-species conservation. In the study the main proteomics isoforms
agreed with the principal isoforms selected by APPRIS over 97.8% of genes (Figure 6).

Both single CCDS variants and APPRIS principal isoforms are reliable predictors of the main
cellular isoforms.

APPRIS (Rodriguez et al., 2013, 2015) is a computational system that provides annotations
of alternative splice variants and identifies principal isoforms. The theory behind APPRIS was
developed in 2008 (Tress et al., 2008) and the database was developed over a four year
period within the GENCODE consortium (Frankish et al., 2019; Harrow et al., 2012). APPRIS
annotates alternative gene products with reliable, biologically relevant data.

APPRIS annotates splice isoforms in protein-coding genes with protein structural and

functional features and information from cross-species conservation. Currently the annotation

pipeline comprises six modules (Figure 7). The first four methods are referred to as the “core”
methods in APPRIS:

o Matador3D detects similarity to structural homologs in the PDB (Rose et al., 2017).

o firestar (G. Lopez et al., 2011) predicts functionally important amino acid residues.



o SPADE identifies Pfam functional domains via the PfamScan algorithm (El-Gebali et
al., 2019).

o CORSAIR carries out BLAST (Altschul et al., 1997) searches against vertebrate
protein sequences to determine the number of orthologs that align correctly and
without gaps.

o THUMP makes unanimous predictions of trans-membrane helices from three
predictors (Jones, 2007; Kall et al., 2004; Viklund & Elofsson, 2004).

o CRASH predicts the presence and location of signal peptides using the SignalP and
TargetP programs (Emanuelsson et al., 2000; Petersen et al., 2011).

The pipeline also uses these features to select a single reference isoform for each protein-
coding gene, here termed the principal isoform. This principal isoform has the most
conserved protein features and the most evidence of cross-species conservation. At the
same time isoforms that have lost conserved protein features or do not have cross-species
conservation are flagged as alternative.
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Figure 7. APPRIS pipeline. The inputs to the pipeline are the peptide sequences of the isoforms
(FASTA), and/or the gene information file (GTF) and the cDNA sequences of the transcripts. The
results of the six modules of APPRIS are used to annotate the splice isoforms and the final module
selects the principal isoforms.
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More recently, the APPRIS WebServer and WebServices (Rodriguez et al., 2015) were
developed to provide access to the computational methods implemented in the APPRIS
database and to allow the generation of annotations in a flexible, modular and automatic high
throughput mode.

There are another number of databases that can annotate alternative transcripts with some
of these features. ProSAS (Birzele et al., 2008) provides a unified resource for analyzing
effects of alternative splicing events in the context of human, mouse and rat protein



structures. AS-ALPS (Shionyu et al., 2009) provides information useful for analyzing the
effects of alternative splicing in human and mouse on protein structure, interactions with other
biomolecules and protein interaction networks. ASPicDB (Martelli et al., 2011) generates
annotations for human protein variants through machine learning tools including protein type
(globular and transmembrane), localization, presence of Pfam domains, signal peptides,
GPlanchor propeptides, transmembrane and coiled-coil segments. Finally, tappAS (de La
Fuente et al.,, 2020) facilitates the analysis of alternative splicing and alternative UTR
processing from a functional perspective. Most of the annotations of this framework are at
the transcript level and for both coding and non-coding regions. Annotations at protein level
integrate data from multiple databases and tools.

APPRIS also classifies protein isoforms as either principal or non-principal (Rodriguez et al.,
2013) based on differences in cross-species conservation or biological features. Liu and Lin
expanded on this by splitting coding regions into three distinct categories (Liu & Lin, 2015):
principal isoform-specific (Pl-specific) coding regions, non-principal isoform-specific (NPI-
specific) regions, and overlapping regions (coding sequences that are shared by the principal
and non-principal isoforms). Liu and Lin mapped the variants from the 1000 Genomes Project
(Auton & Salcedo, 2015) onto coding regions and demonstrated that the NPI-specific coding
regions are significantly enriched in amino acid-changing variants particularly those that have
a strong impact on protein function, and have higher derived allele frequencies.

Previous studies have indicated that human alternatively spliced exons are subjected to
relaxed selective pressure or positive selection (Ramensky et al., 2008; Xing & Lee, 2005).
Further investigations supported these results (Tress et al., 2017). Exons from APPRIS
principal isoforms have a substantially lower proportion of high-impact variants than exons
from alternative isoforms (Figure 8). Although alternative sites represent only 5% of all data,
they contribute 29% of the high-impact variants across all allele frequencies and 57% of high-
impact variants for the most common allele frequencies.
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Figure 8. Genome-wide Distribution of Sequence Variants in Principal and Alternative Isoforms
— figure from (Tress et al., 2017). (A) The ratio of non-synonymous to synonymous, and (B) the
proportion of high-impact variants shown for three distinct categories using APPRIS (Rodriguez et al.,



2018). Principal, those protein-coding sites from exons that code for the Principal isoform; Alternative,
those protein-coding sites that fall inside exons belonging exclusively to alternative variants; and
Intersection, those sites that fall inside exons that code for both principal and alternative isoforms.
The variants were subdivided into rare (<0.5%), and common groups for each substitution dataset
according to their derived allele frequencies. Each ratio was calculated for both rare and common
allele frequencies identified from Phase 3 of the 1000 Genomes Project (Auton & Salcedo, 2015).
High-impact variants defined by Variant Effect Predictor (Zerbino et al., 2018) were splice acceptor
variants, splice donor variants, stop gains, stop losses, and frameshift variants.

These results indicate that alternative exons are under weaker purifying selection than the
APPRIS principal isoforms, and suggest that most alternative exons evolve neutrally. The
evidence for purifying selection highlights the importance of principal isoforms and the
evidence that many alternative isoforms are evolving neutrally suggests that they have little
or no functional applicability as proteins.

Some proteomics studies claim to have found substantially more cases of alternative splicing
at the protein level than others. For example, an integrated analysis (Menon et al., 2009)
identified 420 distinct alternative isoforms for the mouse genome, of which 92 did not match
any previously annotated mouse protein sequence. However, at the time, the mouse genome
was not well annotated and the study did not require peptides to identify both constitutive and
alternative splice isoforms. Other studies (Kim, M.-S. S. et al., 2014; Wilhelm et al., 2014) of
the human genome found more evidence for alternative isoforms because they
overestimated the number of reliable peptide identifications (Ezkurdia, Valencia, and Tress
et al., 2014). One analysis (Ly et al., 2014) even chose to infer the expression of different
isoforms based on peptide abundances in an analogous way to the protocols used for
transcript level estimation in RNA-seq studies (Lahens et al., 2014; Steijger et al., 2013). This
last form of identifying alternative protein isoforms is wholly inappropriate in proteomics
studies because of the low peptide coverage typical of these experiments and because of
the non-uniform distribution of the peptides detected.

Other studies generally found lower numbers of alternative protein isoforms, including
experiments using human (Ezkurdia et al., 2012; Tanner et al., 2007), mouse (Brosch et al.,
2011), rat (Low et al., 2013), Drosophila (Tress, Bodenmiller, et al., 2008), Arabidopsis
(Castellana et al., 2008) and Aspergillus flavus (Chang et al., 2010) tissues.

Although most annotated alternative isoforms are not supported by proteomics evidence,
patterns emerge. A high proportion of alternative isoforms are generated by swapping one
homologous exon for another (Abascal et al., 2015; Ezkurdia et al., 2012). Abascal et al
compared human and mouse proteomics experiments and found that almost 60% of the
orthologous splicing events found across both sets of experiments were homologous exons.
The same study found that alternative isoforms generated from homologous exons were
highly conserved, implying that they evolved in the ancestor of jawed vertebrates or earlier,
at least 460 million years ago.

Analysis of the effect of splice events on Pfam functional domains (El-Gebali et al., 2019) has
shown that alternative splicing tends to not affect Pfam domain composition. Only 15% of the
alternative splice events detected by Abascal et al (Abascal et al., 2015) would damage or
cause the loss of a Pfam domain, even though 68% of alternative splice events annotated in
CDS regions would break or cause the loss of one or more Pfam domain.



These results suggest that the most damaging alternative splice events do not produce
isoforms in quantities that are detectable in standard proteomics experiments. This strongly
implies that there is some form of control at the level of translation, or post-translation, that
protects the cell against protein isoforms with damaged domains.

Many studies have noted tissue specificity at the transcript level. One study (Wang, E. T. et
al., 2008) identified over 22,000 tissue-specific alternative transcript events and showed that
47%-65% of alternative events were tissue specific depending on the type of splice event.
Meanwhile, another analysis (Gonzalez-Porta et al., 2013) found that the major transcript
varied according to conditions across more than 60% of coding genes.

The tissue-specific rewiring hypothesis is based on the tissue-specific expression of
alternative transcripts, the loss of functional domains, and the prevalence of disordered
protein regions in alternative isoforms (Colak et al., 2013). In addition, the tissue-specific
splice patterns are not always conserved across species. Merkin et al found that despite the
abundant evidence for tissue specificity of alternative transcripts, patterns of tissue specific
alternative splicing were only conserved in a few tissues between mammalian species and
birds (Merkin et al., 2012), while Reyes et al had similar results across six primate species
(A. Reyes et al., 2013). Both studies postulated that the different usage of exons was behind
the tissue-specific “rewiring” of protein-protein interaction networks hypothesized by other
groups (Buljan et al., 2012; Ghadie et al., 2017) that would be essential for morphological
differences between different species.

Results from the large-scale GTEx consortium found that 84% of the variance between
tissues was due to gene expression rather than alternative splicing (Melé et al., 2015). A re-
analysis of the GTEx data (Alejandro Reyes & Huber, 2018) found that 50% of genes had
tissue-specific transcripts, but that most of the tissue-dependent splicing events would not
affect proteome complexity of the cell since they involved untranslated exons.

Until now, there has been little research carried out into tissue specific alternative splicing at
the protein level. The large-scale proteomics study of 30 human tissues and hematopoietic
cells carried out by Kim et al (Kim, M.-S. S. et al., 2014) remains the best source of tissue
level proteomics data, in part, because it was carried out with replicates. The data from the
Kim experiments has been re-analysed on a number of occasions (Kim, M.-S. S. et al., 2014;
Lau et al., 2019; Wright, J. C. et al., 2016). The original study highlighted distinct isoforms of
FYN protein tyrosine kinase in brain and hematopoietic cells, while Wright et al. suggested
that most tissue-specific alternative splicing was in testis without revealing details. The other
two studies detailed evidence for tissue-specific alternative splicing in just a few genes mostly
localized to the brain and heart tissues (Abascal et al., 2015) or to heart and testis (Lau et
al., 2019).



The human reference gene sets are curated by distinct teams of manual annotators and are
in a certain state of flux with protein coding genes constantly added and reclassified.
Currently, the human gene set is saturated with alternative splice variants, but the numbers
of protein coding transcripts are constantly rising and long-read technologies are predicted
to double the number of annotated coding transcripts.

For many of the genes and transcripts annotated as coding a functional role is unclear. Some
genes annotated as coding may not actually code for proteins and although alternative
splicing has the potential to expand the cellular functional repertoire, there is as yet little
evidence to support this theory.

It would seem to be important to distinguish between those genes and transcripts that have
functional roles and those that do not. Being able to distinguish which transcripts really do
code for functional proteins will allow researchers to determine the real effect of mutations
and concentrate on those isoforms of a gene that are predicted to have important cellular
effects. Hence, the effort has been concentrated on the following objectives:

1. Improve the performance of each of the core modules in APPRIS principal isoform
prediction pipeline.

2. Extend the APPRIS annotations to cover the largest possible number of model species
and add new references gene databases, such as RefSeq and the UniProtKB
proteome. In addition to updating the annotations for the Ensembl / GENCODE genes
of each species stored in the APPRIS database.

3. Bring together the three main human reference databases: Ensembl/GENCODE,
RefSeq, and the UniProtKB proteome, with the aim of improving the annotation of the
overall gene set. Report the principal isoform for this union of reference sets.

4. Contribute data from APPRIS for the three human genome reference gene sets to help
distinguish genes that genuinely code for proteins from potential noncoding genes.

5. Analyze and contrast large-scale proteomics and RNA-seq studies to determine the
importance of tissue-specific alternative splicing at the protein level.

6. Determine to what extent alternative splicing is involved in tissue specific rewiring of
protein-protein interaction networks, or whether it is responsible for species specific
differences.



El conjunto de genes de referencia en el genoma humano es seleccionado por distintos
equipos de anotadores manuales y los genes codificantes a proteina se encuentran en un
cierto estado de cambio, agregandose y reclasificAndose constantemente. Actualmente, el
conjunto de genes humanos se encuentra saturado con variantes de empalme alternativas,
y se predice que las tecnologias de long-read duplicaran el nimero de transcripciones
codificantes.

No esté clara la funcion de muchos de los genes y transcritos anotados como codificantes.
Es posible que algunos genes anotados como codificantes, no codifiquen a proteinas v,
aunque el empalme alternativo tiene el potencial de expandir el repertorio funcional de la
célula, todavia hay poca evidencia para apoyar esta teoria.

Es importante distinguir entre aquellos genes y transcritos que tienen roles funcionales y
aquellos que no. Ser capaz de distinguir qué transcritos codifican realmente a proteinas
funcionales permitira a los investigadores determinar el efecto real de las mutaciones, y, por
tanto, concentrarse en las isoformas de un gen que se prevé que tengan efectos importantes
en la célula. De ahi que el esfuerzo se haya concentrado en los siguientes objetivos:

1. Mejorar el rendimiento de cada uno de los métodos del predictor automatico de
isoformas principales, APPRIS.

2. Extender las anotaciones de APPRIS para cubrir el mayor nimero de especies
modelo y agregar nuevas referencias a bases de datos de genes, como RefSeq y los
proteomas de UniProtKB. Ademas de actualizar las anotaciones para los genes de
Ensembl/GENCODE de cada especie almacenada en la base de datos APPRIS.

3. Unificar las tres bases de datos de referencia humana: Ensembl/GENCODE, RefSeq
y el proteoma UniProtKB, con el objetivo de mejorar la anotacién de los genes
codificantes. Reportar la isoforma principal de esta union de bases de datos de
referencias.

4. Contribuir con datos de APPRIS de las tres bases de datos de referencia del genoma
humano para ayudar a distinguir los genes que realmente codifican a proteinas de los
posibles genes no codificantes.

5. Analizar y contrastar estudios a gran escala de proteémica y de RNA-seq para
determinar la importancia del empalme alternativo especifico de tejido a nivel de
proteina.

6. Determinar hasta qué punto el empalme alternativo esta involucrado en el cableado
especifico de tejido entre interaccién proteina-proteina, o si es responsable de
diferencias especificas de especies.



The APPRIS Database (http://appris-tools.org) was developed to provide annotations of
alternative splice variants (Rodriguez et al., 2013) as part of the GENCODE Consortium
(Harrow et al., 2012). The first version of the APPRIS Database deployed a range of
computational modules to annotate each isoform with protein structural and functional
features, and with data from cross-species alignments.

The main task of APPRIS is to determine a principal splice isoform to represent each gene.
Principal isoforms are the variants that maintain the most conserved protein features (Tress
et al., 2008). Recently we have demonstrated that these principal isoforms also almost
certainly reflect the biological reality of the cell. Independent proteomics evidence
demonstrates that most genes have a single main protein isoform and that this isoform is
usually the APPRIS principal isoform. We found that the main proteomics isoforms and the
APPRIS principal isoforms agreed over 97.8% of comparable genes (Ezkurdia et al., 2015).

In the paper we presented the new developments and the updates since the last release of
APPRIS. We altered the annotation pipeline so that it comprised just six modules:
Matador3D, firestar (G. Lopez et al., 2011), SPADE, CORSAIR, THUMP, and CRASH.
Several new features were incorporated to improve the quality and coverage of the
predictions. In particular, a second version of Matador3D was developed that makes use of
the bit-scores from alignments with PDB (Rose et al., 2017) sequences. Moreover, another
version of SPADE that uses the bit-scores from alignments with Pfam (El-Gebali et al., 2019)
domains was also developed.

APPRIS was originally devised with the Ensembl/GENCODE (Frankish et al., 2019) human
genome in mind. Here, we extended the database to cover ten model species. In addition to
the annotations for mouse, pig, rat, and zebra fish that were already in the database,
chimpanzee, chicken, cow, and Drosophila and C. elegans were incorporated in this
publication. As well as the Ensembl/GENCODE gene sets, APPRIS now also annotates
RefSeq gene sets (O'Leary et al.,, 2016) and the UniProtKB proteomes (The UniProt
Consortium, 2018).

In addition, we created merged gene sets for vertebrate species by cross-referencing the
Ensembl/GENCODE, RefSeq and UniProtKB data sets. The cross-reference sets were
generated with the data-mining tool BioMart (Smedley et al., 2015). APPRIS now produces
a principal isoform for these common reference sets.

APPRIS selects a single CDS variant for each gene as the “PRINCIPAL” isoform based on
the annotated protein features. Since this version of APPRIS, principal isoforms have been
tagged with the numbers 1 to 5, with 1 being the most reliable. APPRIS determines a most
reliable isoform for 75%-95% of annotated protein-coding genes depending on the gene set
and the species.

Another novelty in the paper is that where the APPRIS core modules are unable to choose a
clear principal variant, the database selects a principal isoform from among the “candidate”
isoforms not rejected by the APPRIS core methods. Principal isoforms are selected first via
the CCDS identifier (Pruitt et al., 2009) and then on whether all splice junctions are supported
by at least one non-suspect mMRNA (TSL). CCDS variants are annotated only for the human
and mouse genomes, and TSL only for human. Where CCDS and TSL evidence is not
decisive or available, APPRIS selects the longest of the candidate isoforms and tags it as
PRINCIPAL:5 (P5).


http://appris-tools.org/

The "candidate" variants not chosen as principal are labeled as “ALTERNATIVE”. These
alternative variants are also split into two types, those more likely to be functionally important
because they are conserved in at least three tested non-primate species (ALTERNATIVE:1)
and those that are not (ALTERNATIVE:2). Non-candidate transcripts are not flagged and are
considered as "MINOR" transcripts.

In the human Ensembl/GENCODE gene set, APPRIS determined a PRINCIPAL:1 (P1)
isoform for 76.8% of protein-coding genes and just 1.1% of principal isoforms were the
longest of the candidate isoforms (P5). A total of 71.5% and 74.3% were tagged with a P1
isoform for the RefSeq genes and UniProtKB proteome, respectively. In the mouse
Ensembl/GENCODE genome 82.6% of protein-coding genes were tagged with a P1 isoform.
More than 90% of the genes in the Ensembl annotation of vertebrate species had P1
isoforms, though there are fewer genes with multiple coding transcripts in species outside of
human.

There were a total of 22,207 protein-coding genes in the union of the Ensembl/GENCODE
(release 24), RefSeq (release 107) and UniProtKB (version 201606) human reference sets.
Just 5,132 (23.1%) of these genes have a single CDS variant, while APPRIS determined P1
principal isoforms for 9,204 (41.4%) of the remaining genes.

The APPRIS annotations are updated with each new stable Ensembl/GENCODE release,
and also periodically for the RefSeq and UniProtKB data sets. The databases behind in each
method (PDB, Pfam, non-redundant sequence database, etc.) are also updated to get the
most correct annotations. Apart from the APPRIS WebServer (Rodriguez et al., 2015), the
annotations are available in the Ensembl web server (Zerbino et al., 2018) and UCSC
Genome Browsers (Haeussler et al., 2019).

Michael Tress and Jose Manuel Rodriguez conceived of the presented idea. Jose Manuel
Rodriguez developed the theory and performed the computations including the
Ensembl/RefSeq/UniProtKB comparison. Juan Rodriguez-Rivas developed the second
version of Matador3D. Michael Tress and Jose Manuel Rodriguez verified the analytical
methods. Michael Tress encouraged Jose Manuel Rodriguez to investigate and supervised
the findings of this work. Both Michael Tress and Jose Manuel Rodriguez authors contributed
to the final version of the manuscript. AlImost all authors commented on the manuscript.



La base de datos APPRIS (http://appris-tools.org) se desarroll6 para proporcionar
anotaciones de variantes de empalme alternativas (Rodriguez et al., 2013) como parte del
Consorcio GENCODE (Harrow et al., 2012). La primera version de la base de datos
implementé una gama de mddulos computacionales para anotar cada isoforma con
caracteristicas estructurales y funcionales de proteinas, y con datos de alineaciones entre
especies.

La principal tarea de APPRIS es determinar una isoforma principal que representa cada gen.
Las isoformas principales son las variantes que mantienen las caracteristicas proteicas mas
conservadas (Tress et al., 2008). Recientemente hemos demostrado que estas isoformas
también reflejan, casi con certeza, la realidad biolégica de la célula. Estudios independientes
de proteémica demuestran que la mayoria de los genes tienen una Unica isoforma dominante
y que esta isoforma suele ser la isoforma principal de APPRIS. Encontramos que las
isoformas dominantes de protedmica y las isoformas principales de APPRIS coincidian en
un 97,8% de los genes comparables (Ezkurdia et al., 2015).

En el articulo presentamos los nuevos desarrollos y actualizaciones desde la Gltima version
de APPRIS. Mejoramos los métodos de anotacion: Matador3D, firestar (G. Lopez et al.,
2011), SPADE, CORSAIR, THUMP y CRASH. Se incorporaron varias funciones nuevas para
mejorar la calidad y cobertura de las predicciones. En particular, se desarroll6 una segunda
version de Matador3D que hace uso de los bit-scores del alineador de secuencias contra
PDB (Rose et al., 2017). Ademas, se afiadi6 otra version de SPADE que también utiliza los
bit-scores de las alineaciones contra dominios Pfam (El-Gebali et al., 2019).

APPRIS se disefi6 originalmente para el proyecto del genoma humano Ensembl/GENCODE
(Frankish et al., 2019). Para esta ultima publicacion, ampliamos la base de datos cubriendo
diez especies modelo. Ademas de raton, cerdo, rata y pez cebra que ya estaban en la base
de datos, se incorporaron chimpanceés, pollo, vaca y Drosophilay C. elegans. Ademas de los
genes provenientes de Ensembl/GENCODE, ahora también se anotan los genes de RefSeq
(O’Leary et al., 2016) y los proteomas de UniProtkKB (The UniProt Consortium, 2018).

Ademas, creamos una base de datos de genes combinados para especies de vertebrados
mediante la referencia cruzada entre los genes de Ensembl/GENCODE, RefSeq y
UniProtKB. Las referencias cruzadas se generaron con la herramienta de datos BioMart
(Smedley et al., 2015). APPRIS ahora produce una isoforma principal para estos genes de
referencia comunes.

APPRIS selecciona una unica variante de CDS para cada gen, “PRINCIPAL”, basado en las
caracteristicas anotadas de las proteinas. En esta version, las isoformas principales se han
etiquetado con los numeros del 1 al 5, siendo 1 el mas fiable. APPRIS determina la isoforma
principal con una fiabilidad entre el 75% -95% de los genes codificantes segun la base de
datos de referencia y la especie.

Otra novedad es que, cuando los modulos centrales de APPRIS no pueden elegir una
isoforma principal clara, la base de datos selecciona una isoforma de entre las isoformas
"candidatas”. Las isoformas principales se seleccionan primero a traves del identificador
CCDS (Pruitt et al.,, 2009) y luego si todas las uniones del empalme alternativo estan
respaldadas por al menos un ARNm no sospechoso (TSL). Cuando la evidencia de CCDS y



TSL no es decisiva 0 no esta disponible, APPRIS selecciona la mas larga de las isoformas
candidatas y la etiqueta como PRINCIPAL:5 (P5).

Las variantes "candidatas" que no han sido elegidas como principales, se etiquetan como
"ALTERNATIVE". Estas variantes alternativas se dividen en dos tipos, las que tienen mas
probabilidades de ser funcionalmente importantes porque se conservan en al menos tres
especies fuera de primates (ALTERNATIVE:1) y aquellas que no lo son (ALTERNATIVE:2).
Las isoformas no candidatas se consideran "MINOR".

Para los genes de Ensembl/GENCODE en humano, APPRIS determindé una isoforma
PRINCIPAL:1 (P1) para el 76,8% de los genes codificantes y solo el 1,1% de las isoformas
principales eran determinado por las mas largas (P5). Un total de 71,5% y 74,3% se
etiquetaron con una isoforma P1 para los genes de RefSeq y el proteoma UniProtKB,
respectivamente. En el genoma de raton de Ensembl/GENCODE, el 82,6% de los genes se
marcaron con una isoforma P1.

Un total de 22.207 genes humanos se produjo de la union de Ensembl/GENCODE (version
24), RefSeq (version 107) y UniProtKB (version 201606). Solo 5.132 (23,1%) de estos genes
tienen una Unica variante de CDS, mientras que APPRIS determind las isoformas principales
P1 para 9.204 (41,4%) de los genes restantes.

Las anotaciones de APPRIS se actualizan con cada nueva version estable de Ensembl/
GENCODE, y también periédicamente para las bases de datos RefSeq y UniProtKB. Las
bases de datos detras de cada método también se actualizan para obtener las anotaciones
mas correctas. Las anotaciones de APPRIS, a parte del servidor web (Rodriguez et al.,
2015), estan disponibles en la web de Ensembl (Zerbino et al., 2018) y en UCSC Genome
Browsers (Haeussler et al., 2019).

Michael Tress y Jose Manuel Rodriguez concibieron la idea presentada. JMR desarroll6 la
teoria y realizd los célculos, incluida la comparacion Ensembl/RefSeq/UniProtKB. Juan
Rodriguez-Rivas desarroll6 la segunda version de Matador3D. MT y JMR verificaron los
métodos analiticos. MT animé a JMR a investigar y supervisé los hallazgos de este trabajo.
MT y JMR contribuyeron a la version final del manuscrito. Casi todos los autores comentaron
sobre el manuscrito.
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ABSTRACT

The APPRIS database (http:/appris-tools.org) uses
protein structural and functional features and infor-
mation from cross-species conservation to annotate
splice isoforms in protein-coding genes. APPRIS se-
lects a single protein isoform, the ‘principal’ isoform,
as the reference for each gene based on these an-
notations. A single main splice isoform reflects the
biological reality for most protein coding genes and
APPRIS principal isoforms are the best predictors
of these main proteins isoforms. Here, we present
the updates to the database, new developments that
include the addition of three new species (chim-
panzee, Drosophila melangaster and Caenorhabdi-
tis elegans), the expansion of APPRIS to cover the
RefSeq gene set and the UniProtKB proteome for
six species and refinements in the core methods
that make up the annotation pipeline. In addition AP-
PRIS now provides a measure of reliability for in-
dividual principal isoforms and updates with each
release of the GENCODE/Ensembl and RefSeq refer-
ence sets. The individual GENCODE/Ensembl, Ref-
Seq and UniProtKB reference gene sets for six organ-
isms have been merged to produce common sets of
splice variants.

INTRODUCTION

[t has been estimated that 95% of multi-exon human genes
produce alternatively spliced messenger RNA (1,2) tran-

scripts. These alternative transcripts, if translated, would
generate a range of alternative proteins that are often strik-
ingly different from the constitutive gene product and that
would add to the repertoire of cellular functions (3,4). How-
ever, the cellular role of alternative splicing is a controversial
topic (5-7) and the functional importance of any potential
alternative protein isoforms is an open question (7).

APPRIS (8.9) was developed within the GENCODE (10)
consortium to cope with the challenge of annotating alter-
natively spliced protein-coding transcripts with functional
information. The database employs a series of modules to
map protein structure and functional features and cross-
species conservation to all reference splice isoforms. Un-
like the other maintained databases that annotate alter-
native splice isoforms with functional information (11,12),
APPRIS concentrates only on the most reliably predicted
features, including the presence of Pfam domains (13) and
highly conserved functional residues (14).

Information from APPRIS is fed back to the GENCODE
manual annotators to inform gene models. However, the
main role of APPRIS is the annotation of a main (princi-
pal) isoform for individual coding genes (15). APPRIS se-
lects principal isoforms based on the presence or absence
of evolutionary evidence such as conserved functional and
structural motifs. Principal isoforms are those with the most
preserved structural and functional features and those with
the greatest cross species conservation, while alternative
isoforms often have non-conserved exons and structure or
function features that are damaged or missing (15). AP-
PRIS core modules almost always agree on the principal
isoform.

Historically researchers and annotators have had to re-
sort to choosing the longest annotated CDS as the reference
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variant for individual coding genes (16). We have shown that
this simple solution is not ideal (17) and as databases ex-
pand and more alternative transcripts are annotated the fix
will become less viable. Highest Connected Isoforms (18),
from RNAseq data and from protein—protein interaction
and structural information have been proposed as an an-
swer, but we have shown that these isoforms agree with the
main functional isoform less often than the longest isoforms
(5). The APPRIS principal isoforms are the splice variants
that best represent the gene (17).

Although APPRIS was developed for wuse with
GENCODE/Ensembl annotations (10,19), there are
other manually annotated reference sets, in particular
RefSeq (RefSeqGene) (20) and UniProtKB (16). The Ref-
Seq, GENCODE/Ensembl and UniProtKB annotations
are not identical and many gene models or predicted
proteins are present in one or more reference sets, but not
in others. For that reason we have extended APPRIS to the
RefSeqGene and UniProtKB annotations in the case of
vertebrate genomes (human, mouse, zebra-fish, rat, pig and
chimpanzee). In addition, we have made improvements
to core methods in the APPRIS pipeline, implemented
the UCSC Track Hub to enhance annotation access and
created Docker images to help execute the annotation
pipeline.

THE DATABASE

APPRIS annotates splice isoforms with protein structural
and functional features, and data from cross-species align-
ments. The database uses these features to select a single ref-
erence isoform for each protein-coding gene, here termed
the principal isoform. This principal isoform has the most
conserved protein features and the most evidence of cross-
species conservation. At the same time isoforms that have
lost conserved protein features or do not have cross-species
conservation are flagged as alternative.

Currently the APPRIS annotation pipeline comprises
six modules (9). Matador3D detects similarity to struc-
tural homologs in the PDB (21); firestar (14) predicts func-
tionally important amino acid residues; SPADE identifies
Pfam functional domains via the PfamScan algorithm (13);
CORSAIR carries out BLAST (22) searches against ver-
tebrate protein sequences to determine the number of or-
thologs that align correctly and without gaps; THUMP
makes unanimous predictions of trans-membrane helices
from three predictors (23-25); and CRASH predicts the
presence and location of signal peptides using the SignalP
and TargetP programs (26,27). APPRIS maps protein fea-
tures to all coding transcripts. The databases implied in each
method (PDB, Pfam, non-redundant sequence database,
etc.) are updated periodically to get most correct annota-
tions.

Refinements to core methods

All modules in APPRIS are continually revised against the
GENCODE annotation of the human reference gene set.
As a result we have been able to improve the performance of
each of the core modules in APPRIS. The gold standard set
for principal isoforms are those genes with just one CCDS

variant (consensus coding sequence, 28). Tests have shown
that unique CCDS variants (transcripts annotated consis-
tently by RefSeq and Ensembl/GENCODE manual anno-
tators) and APPRIS principal isoforms are both highly re-
liable predictors of the dominant cellular isoform, so they
should select the same reference isoform for the vast major-
ity of genes.

Comparison between unique CCDS isoforms for each
gene and those selected by the individual APPRIS modules
shows that there is almost complete agreement between the
two, both at the time of the initial database publication (8)
and with the current version of APPRIS. The more recent
APPRIS principal isoforms disagree with the unique CCDS
isoforms less often and with the exception of CORSAIR
(98.92%), all methods have more than 99% agreement with
unique CCDS variants (Supplementary Figure S1).

Reliability scores

Many experiments require every studied gene to have a sin-
gle representative, so APPRIS now automatically selects a
principal isoform for every single coding gene. However, not
all APPRIS principal isoforms are alike. Principal isoforms
are tagged with a score from 1 to 5 depending on the relia-
bility of the selection, with | being the most reliable. ‘PRIN-
CIPAL:1’ isoforms are determined solely using information
from the APPRIS core modules. For those genes where the
modules cannot make a unique selection, APPRIS uses ex-
ternal data such as the CCDS annotation and the GEN-
CODE Consortium Transcript Support Level (29). Where
all else fails, the longest not previously rejected isoform is
selected as the principal (‘PRINCIPAL:5’). Splice variants
rejected as principal isoforms by the APPRIS core modules
are labeled as ‘MINOR’, while those variants not rejected
by the core modules, but rejected using external informa-
tion are labeled as ALTERNATIVE’ (for more details on
the reliability scores see the Supplementary Data).

Additional features

Annotations are stored in a MySQL relational database and
these can be downloaded via the APPRIS web site. The hu-
man and mouse annotations are available through GEN-
CODE, and Ensembl exports APPRIS principal isoforms
of human, mouse, zebra-fish, rat and pig within its web-
site, BioMart data-mining tool and APIL. Furthermore, AP-
PRIS annotations can be visualized in the UCSC Genome
Browser (30) from its own Public Track Hub. In addition,
users can extract APPRIS annotations for specific reference
sets (Ensembl, RefSeqGene, UniProt) via the APPRIS Web-
Server and WebServices (9). All the APPRIS source code
is available in a GitHub public-repository (https://github.
com/appris/appris/) offering a distributed version control.

The APPRIS pipeline is executed on the Linux (Ubuntu)
system but it can be run on Windows, Mac OS X or Unix-
based systems using the Docker image (appris/core) pro-
vided by the software container platform, Docker (http:
/lwww.docker.com). The APPRIS-Docker image is stored
in the public Docker Hub (https://hub.docker.com/).
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Figure 1. Bar-plots with the percentage of genes identified with the final annotations of APPRIS for the human (A) and mouse (B) species house in
database. APPRIS identifies a principal isoform (Pn) for each gene that are tagged with numbers from 1 to 5, with 1 being the most reliable. Isoforms in
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New APPRIS annotations

The APPRIS database has increased in size to cover
six different vertebrate genomes (human, mouse, rat, pig,
zebra-fish, chimpanzee), and two invertebrate genomes
(Drosophila and Caenorhabditis elegans). The human GEN-
CODE gene set (release 24) recognizes 20 250 protein-
coding genes and APPRIS determines a Pl isoform for
76.8% of these genes (see Figure 1A). The mouse GEN-
CODE gene set (release M12) has 22 538 protein-coding
genes and 82.6% are tagged with a P1 isoform (see Figure
1B). More than 90% of the genes in the Ensembl annota-
tion of three vertebrate species (rat, pig, chimpanzee) have
P1 isoforms. The number is higher for these species because
the majority of genes have a unique CDS (see Supplemen-
tary Figure S2).

RefSeqGene and UniProtKB annotations

APPRIS has now been extended to the other main pub-
lic genome annotation, RefSeqGene and to the UniPro-
tKB proteome. RefSeqGene human (release 107) currently
houses 20 066 protein-coding genes, while the UniProtKB
human proteome (release 2016_06) has 21 608 genes. AP-
PRIS identifies a P1 principal isoform for 71.5% of genes in
the RefSeqGene set, and 74.3% of genes in the UniProtKB
proteome (see Figure 2A).

The pipeline of annotations in the RefSeqGene set is
identical to that of GENCODE/Ensembl, but two of the
modules used in the pipeline (Matador3D, and CORSAIR)
have had to be modified for use with the UniProtKB and
Intersection (see below) gene sets because the original ver-
sions of these modules made use of genomic coordinates.

Intersection gene sets

We have also created merged gene sets for vertebrate
species by cross-referencing the GENCODE/Ensembl, Ref-
SeqGene and UniProtKB reference sets. For the human
genome we established a common gene set (Intersection)
with the GENCODE (release 24), RefSeqGene (release 107)
and UniProtKB (version 2016_06) reference sets. The initial
cross-reference was generated with the data-mining tool,
BioMart (31) and from there we re-annotated the cross-
database relationships manually. For the remaining species
we generated common gene sets with the BioMart tool, al-
though these relationships are not yet manually annotated.
The version and the number of genes for each reference set
are shown in Supplementary Table S1.

There were a total of 22 207 protein-coding genes in the
human intersection reference set composed of GENCODE
(release 24), RefSeqGene (release 107) and UniProtK B (ver-
sion 2016_06) genes. Just 5132 (23.1%) of these genes have a
single CDS variant, while APPRIS determined P1 principal
isoforms for 9204 (41.4%) of the genes (see Figure 1A).

The merged Intersection gene set allows us to identify
principal isoforms missing in the individual gene sets. For
example the principal isoform from the merged set for
GRIFIN is annotated in GENCODE (ENST00000614228)
and UniProtKB (A4D1Z8), but not in RefSeqGene (See
Figure 2). This principal isoform is chosen because it maps

better to known 3D structures, has an unbroken Pfam do-
main and has orthologous sequences in vertebrate species.
In contrast, the domain in the RefSeqGene isoforms is
broken and neither isoform has cross-species conserva-
tion. The 8-residue insertion in the two RefSeqGene vari-
ants breaks a Pfam functional domain (Figure 2B) and
3D structure (Figure 2C). The C-terminal extension in the
GENCODE/Ensembl/UniProtKB principal isoform (but
not in the RefSeqGene variants) is also established in mam-
mals (see Supplementary Figure S3).

DISCUSSION

APPRIS annotate alternatively spliced protein isoforms
with protein structural and functional information and
cross-species conservation using a range of computational
prediction methods. It also selects one of these isoforms to
be the representative protein sequence for each coding gene.

We have shown that a single representative protein reflects
the biological reality of the cell: most coding genes have a
single dominant protein isoform (5,7,17) and this seems to
be true regardless of cell type (17). This dominant protein
isoform is almost always the APPRIS principal isoform:
APPRIS principal isoforms overwhelmingly coincide with
the manually annotated unique CCDS variants and with
the main isoforms detected in large-scale proteomics exper-
iments (17). In fact where dominant isoforms could be de-
termined for all three methods, the agreement was 99.5%
(17). Further corroboration of the importance of APPRIS
principal isoforms comes from large-scale genetic variation
studies, which show that exons from principal isoforms are
under purifying selection. By way of contrast alternative ex-
ons are under neutral selection (5,32).

APPRIS principal isoforms have a wide range of uses.
Designating a single alternative splice variant as principal is
an important technical issue and is a critical first step for any
genome-wide analysis. Large-scale analyses are highly de-
pendent on the quality of input data; so principal isoforms
should improve the reliability of these experiments. Deter-
mining whether an exon belongs to a principal or alterna-
tive variant is key in biomedical studies. APPRIS principal
isoforms can also be useful when working with individual
genes; since it is not always clear which splice isoform (or
isoforms) is functionally important.

APPRIS principal isoforms and annotations are freely
accessible to all via the APPRIS web page, via the APPRIS
WebServices (9), and the Ensembl reference annotations for
individual species.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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Here, we expanded on a previous analysis (Ezkurdia et al., 2014) to evaluate protein-coding
genes from the three main human reference gene sets, Ensembl/GENCODE, RefSeq and
UniProtKB. In the versions used in the analysis, RefSeq (v107) annotated 20,450 coding
genes, and Ensembl/GENCODE (v24/e83) contained 20,266 coding genes. The UniProtKB
proteome (June 2016), which is based around proteins rather than genes, mapped to 21,212
coding genes. There were 19,446 genes annotated as coding in the intersection of the three
sets. Beyond the intersection of the three reference databases, 851 genes were supported
by two of the three reference sets and 1,903 genes were annotated in just one of the three
reference sets. In total, the manual curation of the three reference sets found 22,210 protein-
coding genes.

We defined a set of 16 features that we had previously shown were good indicators of
misannotated coding genes and used these to separate “potential non-coding” (PNC) genes
from likely coding (LC) genes. 4,234 of the 22,210 coding genes annotated in the union of
the three sets were tagged with at least one of the potential non-coding features, including
almost all genes outside the intersection of the three reference sets and including 2,278
(11%) of Ensembl/GENCODE coding genes. Even within the intersection of the three sets
1,471 genes, 7.6% of genes agreed on by all three reference sets, were tagged as PNC.

To test the hypothesis that many of the genes outside of the intersection may not code for
proteins under normal cellular conditions, we analyzed the experimental expression of
potential non-coding genes using available experimental transcriptomics, proteomic and
antibody binding data and compared this to the data for likely coding genes.

We downloaded RNA expression data from the Human Protein Atlas (Uhlén et al, 2015). The
Human Protein Atlas details RNA-seq experiments carried out on 36 tissues using
Ensembl/GENCODE. We binned genes by maximum expression and by number of tissues
and compared the tissue distributions of LC genes and PNC genes. We found considerably
more evidence for the transcript expression of LC genes. In fact, while 73.5% of LC genes
had a maximum TPM (transcript per million) of 20 or more, just 24.3% of PNC genes reached
this level of transcription.

For protein expression, we collected peptides to identify gene products from the human
PeptideAtlas (Desiere, 2006) proteomics database. In addition, we downloaded antibody-
specific information to validate tissue-specific protein expression from the Human Protein
Atlas (Uhlén et al., 2015). For genes annotated by GENCODE we detected a higher
proportion of peptides for the genes in the likely coding set (13,360 of 17,988, 74.3%). PNC
genes had little peptide support (just 142 of 2,278, 6.2%). Additionally, antibodies produced
similar results. LC genes were detected in higher numbers with antibodies (9,896 of 17,988
genes, 55%) than genes in the potential non-coding set (79 of the 2,278 genes, 3.5%).

We also evaluated detected peptides for those genes that had RNA-seq expression in at
least 10 tissues with a minimum of 10 TPM. Considering just those genes with this level of
RNA-seq expression, we detected peptides for 85.6% of LC genes. Even for these well
expressed genes, we detected peptides for just 19.4% of those PNC genes annotated in all
three sets, and just 6.1% of PNC genes annotated in two or fewer sets.



Moreover, we compared rates of genetic variation for genes with potential non-coding
features and for LC genes using data from the 1,000 Genomes Project (Altshuler et al., 2012).
We calculated the percentage of high-impact variants and the ratio of non-synonymous to
synonymous variants for rare and common allele frequencies. Whole genome copy number
variation (CNV) maps were also downloaded from five different publications (Abyzov et al.,
2015; Handsaker et al., 2015; Sudmant, Mallick, et al., 2015; Sudmant, Rausch, et al., 2015;
Zarrei et al., 2015).

For LC genes, the percentage of high impact variants was 1.88 at rare allele frequencies
against 0.61 for common alleles. PNC genes had proportionally more high impact variants;
for those PNC genes annotated in all three sets 3.72% of mutations at rare allele frequencies
and 2.16% of those at common allele frequencies were high impact mutations. PNC genes
also had higher synonymous to non-synonymous ratios with little difference between
common and rare allele frequencies, while LC genes had lower synonymous to non-
synonymous at common allele frequencies than at rare allele frequencies, as would be
expected if they were under selective pressure.

All these results suggest that many of the 4,234 genes that are annotated as coding in at
least one of the reference databases but tagged as potential non-coding in our study. In fact,
these annotated coding genes may be pseudogenes, non-coding genes or other artifacts
rather than code for functional proteins.

Michael Tress and Federico Abascal conceived and planned the presented idea. Federico
Abascal generated the human genetic variation data. David Juan provided the gene family
data. Irwin Jungreis provided the PhyloCSF data. Laura Martinez generated the potential
non-coding gene pipeline. Maria Rigau provided the CNV data. Jose Manuel Rodriguez
generated the combined RefSeq, UniProtKB and Ensembl/GENCODE reference set and
provided the data from APPRIS. Michael Tress conceived, designed, analysed and
interpreted the data. MT and FA were involved in drafting and revising the manuscript. DJ,
1J, IMR and MR were involved in revising the manuscript.



En este estudio, ampliamos un analisis anterior (Ezkurdia et al., 2014) para evaluar que
genes en humano codifican a proteinas basado en la unién de las bases de datos de
referencia, Ensembl/GENCODE, RefSeq y el proteoma de UniProtKB. En las versiones
usadas en este analisis, RefSeq (v107) anot6 20.450 genes y Ensembl/GENCODE (v24/e83)
contenia 20.266 genes. El proteoma UniProtKB (junio 2016), que se basa en proteinas en
lugar de genes, mapeaba a 21.212 genes. Habia 19.446 genes anotados como codificantes
en la interseccion de los tres conjuntos. Mas alla de la interseccion, 851 genes estaban
respaldados por dos de los tres conjuntos y 1.903 estaban anotados en uno solo de los
conjuntos. En total, y después de una validacion manual, se encontré6 22.210 genes
codificantes a proteinas.

Definimos un conjunto de 16 caracteristicas que previamente habiamos demostrado que
eran buenos indicadores de genes codificantes mal anotados, y los usamos para separar los
genes “potencialmente no codificantes” (PNC) de los genes “probablemente codificantes”
(LC, likely coding). 4.234 de los 22.210 genes se etiquetaron con al menos una de las
posibles caracteristicas no codificantes y 2.278 (11%) genes provenientes de
Ensembl/GENCODE. Incluso dentro de la interseccion de las tres bases de datos, se
etiquetaron 1.471 genes como PNC. Esto es el 7,6% de los genes acordados por los tres
conjuntos de referencia.

Para probar la hipétesis de que muchos de los genes fuera de la interseccion pueden no
codificar proteinas en condiciones celulares normales, analizamos la expresion de estos
genes utilizando datos de experimentos protedmicos, de anticuerpos y transcriptomicos, y lo
comparamos con los genes codificantes probables.

Descargamos datos de expresion de ARN del Human Proteome Atlas (Uhlén et al, 2015).
Estos datos provenian de experimentos RNA-seq llevados a cabo en 36 tejidos. Agrupamos
los genes por expresibn maxima y por numero de tejidos, y comparamos las distribuciones
de los tejidos entre genes LC y genes PNC. Encontramos una evidencia considerablemente
mayor de la expresién en genes LC. De hecho, el 73,5% de los genes probablemente
codificantes tenian un TPM maximo (transcripcion por millon) de 20 o mas, frente a solo el
24,3% de los genes PNC.

Para la expresion de proteinas, recolectamos péptidos provenientes de la base de datos de
protedmica, PeptideAtlas (Desiere, 2006). Ademas, descargamos del Human Proteome
Atlas (Uhlén et al., 2015) informacion especifica de anticuerpos para validar la expresion de
proteinas especificas en tejido. Para genes anotados por Ensembl/GENCODE detectamos
una mayor proporcion de péptidos para los genes LC (13.360 de 17.988, 74,3%). Los genes
PNC tenian poco soporte de péptidos (solo 142 de 2.278, 6.2%). Por otro lado, los
anticuerpos produjeron resultados similares. Se detectaron mayor nimero de anticuerpos en
los genes LC (9.896 de 17.988 genes, 55%) que los genes PNC (79 de los 2.278 genes,
3,5%).

También detectamos péptidos para aquellos genes que tienen expresion de RNA-seq en al
menos 10 tejidos con un minimo de 10 TPM. Considerando sé6lo aquellos genes con este
nivel de expresion en RNA-seq, detectamos péptidos para el 85,6% de los genes LC. Sin
embargo, detectamos péptidos para solo el 19,4% de los genes PNC anotados en los tres



conjuntos, y para el 6,1% de los genes PNC anotados en dos o menos conjuntos de
referencia.

Ademdés, comparamos las tasas de variacién genética de genes PNC con las tasas de
variacion genética provenientes del Proyecto 1,000 Genomas (Altshuler et al., 2012).
Calculamos el porcentaje de variantes de alto impacto y la proporcion de variantes no
sinbnimas y sindénimas en frecuencias alélicas raras y comunes. También se descargaron
mapas de variacion del ndmero de copias (CNV) del genoma completo de cinco
publicaciones diferentes (Abyzov et al., 2015; Handsaker et al., 2015; Sudmant, Mallick, et
al., 2015; Sudmant, Rausch, et al., 2015 ; Zarrei et al., 2015).

Para los genes LC, el porcentaje de variantes de alto impacto fue 1,88 en frecuencias de
alelos raros contra 0,61 para los alelos comunes. Los genes PNC tenian proporcionalmente
mas variantes de alto impacto (anotados en las tres bases de datos), el 3,72% de las
mutaciones en frecuencias alélicas raras y el 2,16% de aquellas en frecuencias alélicas
comunes. Los genes PNC también tenian proporciones de sin6bnimos y no sinénimos mas
altas con poca diferencia entre las frecuencias alélicas comunes y raras, mientras que los
genes LC tenian menos sinGnimos o no sinénimos en las frecuencias de los alelos comunes
gue en las frecuencias de los alelos raros, como seria de esperar si estuvieran bajo
selectividad presion.

Todos estos resultados sugieren que muchos de los 4.234 genes que estan anotados como
codificantes a proteina, en al menos una de las bases de datos de referencia, las llegamos
a etiquetar como potenciales no codificantes. De hecho, el 19,1% de todos los genes
codificantes anotados pueden ser pseudogenes, genes no codificantes o artefactos en lugar
de codificar proteinas funcionales.

Michael Tress y Federico Abascal concibieron y planificaron la idea presentada. Federico
Abascal generd los datos de variacion genética humana. David Juan proporcioné los datos
de la familia genética. Irwin Jungreis proporcioné los datos de PhyloCSF. Laura Martinez
genero el flujo de trabajo para obtener los genes PNC. Maria Rigau proporciond los datos de
la CNV. José Manuel Rodriguez generd la combinacion/uniéon de las bases de datos de
referencia RefSeq, UniProtKB y Ensembl/GENCODE y proporciond las anotaciones de
APPRIS. Michael Tress concibié, disefi6, analizo6 e interpreté los datos. MT y FA participaron
en la redaccion y revisién del manuscrito. DJ, IJ, IMR y MR patrticiparon en la revision del
manuscrito.
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ABSTRACT

Seventeen years after the sequencing of the human
genome, the human proteome is still under revision.
One in eight of the 22 210 coding genes listed by the
Ensembl/GENCODE, RefSeq and UniProtKB refer-
ence databases are annotated differently across the
three sets. We have carried out an in-depth investiga-
tion on the 2764 genes classified as coding by one or
more sets of manual curators and not coding by oth-
ers. Data from large-scale genetic variation analyses
suggests that most are not under protein-like puri-
fying selection and so are unlikely to code for func-
tional proteins. A further 1470 genes annotated as
coding in all three reference sets have characteristics
that are typical of non-coding genes or pseudogenes.
These potential non-coding genes also appear to be
undergoing neutral evolution and have considerably
less supporting transcript and protein evidence than
other coding genes. We believe that the three refer-
ence databases currently overestimate the number
of human coding genes by at least 2000, complicat-
ing and adding noise to large-scale biomedical ex-
periments. Determining which potential non-coding
genes do not code for proteins is a difficult but vitally
important task since the human reference proteome
is a fundamental pillar of most basic research and
supports almost all large-scale biomedical projects.

INTRODUCTION

Before the human genome was sequenced, most researchers
estimated that human protein coding gene numbers would
be between 25 000 and 40 000 (1), with some estimates closer

to 100 000 genes (2,3). However, the accumulation of exper-
imental data has progressively brought this estimate down.
The “finished’ version of the human genome revised the es-
timates to between 20 000 and 25 000 coding genes (4).

The gradual downward trend of the human protein gene
count has been mirrored in the reference human gene set.
The annotation of human coding genes began with the En-
sembl project (5) and the initial release included more than
24 000 coding genes. This number soon decreased to 22 000
as the genome assembly improved and automatic predic-
tions were refined (6). Until recently there were still gene
loci in the reference set defined as coding based on the ini-
tial automatic predictions, and a number of these had little
support as coding genes beyond their initial prediction. Af-
ter the merge with the GENCODE manual annotations (7)
in 2009, 1004 poorly supported automatic annotation mod-
els were removed from the Ensembl annotation set.

These refinements and intensive manual annota-
tion have brought the number of annotated protein
coding genes down to slightly over 20 000 genes
in the Ensembl/GENCODE (7,8) reference, and in-
deed the three maintained manual reference databases,
Ensembl/GENCODE, RefSeq (9) and UniProtKB (10),
have converged on similar numbers of protein coding genes
[f1000research: doi: 10.12688/f1000research.11119.1], a
number that is in line with the prediction by Clamp et al.
using evolutionary comparisons (11).

However, the human gene sets are in certain state of flux
with coding genes being added and reclassified with each
new release, and it is important to note that these 20 000
plus coding genes are not the same in each database. Indeed,
as we show in this paper, the number of annotated coding
genes in the union of the three reference sets exceeds 22 000.

The task of manually inspecting >20 000 annotated cod-
ing genes is enormous and the process has taken many
years (7). Manual annotators have to accomplish two dif-
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ficult tasks, detecting the remaining hard-to-find coding
genes, and separating bona fide coding genes from misan-
notated pseudogenes and non-coding genes. Curators de-
termine the status of the gene models based on transcript
(ESTs and mRNAs) and protein data (from the main pro-
tein databases) available for each gene (12). Protein-coding
potential depends first on whether an open reading frame
(ORF) can be defined. However, the definition of ORFs is
complicated by the fact that many noncoding transcripts
may contain long ORFs by chance, particularly in GC-
rich regions (11). In order to get round this problem, an-
notators also require some sort of protein evidence, such
as whether the locus has sequence similarity to orthologues
from other species, whether the resulting gene product con-
tains Pfam functional domains (13), or whether experimen-
tal data is available from published papers, large-scale inter-
action studies (14) or mass spectrometry experiments (15).

Genes and transcripts may change their status between
releases as annotators adjust the annotation to the available
evidence. A gene’s status is updated based on the available
evidence and this evidence can change over time. For ex-
ample GENCODE manual annotators recently decided to
reclassify as non-coding approximately 200 ‘orphan’ pro-
tein coding genes [GENCODE blog, https://gencodegenes.
wordpress.com, April 2018]. Most of these genes were early
in silico predictions.

A number of studies have put an estimation on the num-
ber of human coding genes, including several that have es-
timated the number to be close to or below 20 000 (11,16
18). Two of the more comprehensive studies into the coding
complement of the human genome, Clamp et al. (11) and
Church et al. (17), were carried out before GENCODE and
other groups began the systematic manual reannotation of
the genes in the human gene set. Both analyses assumed that
most novel genes, defined as genes that arose from scratch
in the primate lineage, are not protein coding. According
to the Clamp analysis, the vast majority of novel ORFs did
not have evolutionary conservation and had features that
resembled non-coding RNA rather than coding genes. After
discarding these orphan DNA sequences, as well as genes
that appeared to be transposons, pseudogenes, and other
miscellaneous artefacts, the authors ended up with a gene
count of 20 500, roughly 4000 fewer than were annotated
at that time. Church et al. carried out a comparison be-
tween the human and the mouse genomes and found that
there were very few truly novel human genes, and that al-
most all protein-coding genes gained in the mammalian lin-
eage were generated from whole gene duplications. They es-
timated that the number of protein coding genes was <20
000.

Many of the genes tagged as non-coding in these two
analyses have since been removed from the reference set af-
ter manual annotation, though a number of genes identi-
fied in both studies as orphans or pseudogenes are never-
theless still annotated as protein coding, including the pre-
dicted pseudogenes DHFRLI, which has experimental evi-
dence for a protein, and HIGD2 B, which does not.

In 2014, we predicted that the human genome was likely
to have just 19 000 protein coding genes based on the iden-
tification of 2001 ‘potential non-coding’ genes (18). GEN-
CODE manual annotators have since withdrawn or reclas-
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sified almost half of these genes from the human refer-
ence set. Most recently Southan [f1000research: doi: 10.
12688/f1000research.11119.1] contrasted gene numbers in
the three manually annotated reference sets with those of
the HUGO Gene Nomenclature Committee [HGNC, (19)],
noting the differences in coding gene counts and showing
that UniProtKB proteins missing in RefSeq and Ensembl
were enriched for elements classified by HGNC as endoge-
nous retrovirus, long non-coding RNA or pseudogene.

Here, we expand our previous analysis to incorpo-
rate an analysis of the RefSeq and UniProtKB pro-
teomes. We find that these two references databases and
Ensembl/GENCODE annotate 22 210 genes as coding but
only agree on 86% of the genes they annotate. In order to
determine whether all 22 210 genes will code for proteins we
contrasted the experimental evidence for genes annotated as
coding in all three reference sets with those that are classi-
fied differently.

MATERIALS AND METHODS

Comparison of Ensembl/GENCODE, RefSeq and UniPro-
tKB gene sets

We merged the coding genes in the three main versions of
the reference human proteome, the Ensembl/GENCODE
reference set (GENCODE v24, which is the equivalent of
Ensembl 83), the RefSeq gene set (RefSeq 107) and the
UniProtKB proteome (UniProtKB June 2016).

The UniProtKB reference proteome contained more
than 70 612 SwissProt (reviewed) and TrEMBL (non-
reviewed) entries. In order to compare UniProtKB with
RefSeq and Ensembl/GENCODE, we merged these entries
where possible by gene name. In UniProtKB genes can have
more than one entry and UniProtKB entries may have more
than one gene. After the initial merge the many orphan tran-
scripts were merged first by their associated Ensembl identi-
fier and then by hand where possible. This set of UniProtKB
genes were then merged with the RefSeq and Ensembl genes
using Ensembl’s BioMart, UniProtKB’s mapping tools and
the HGNC gene names provided by the three reference sets.
We carried out a painstaking manual reannotation of the
more than 2700 genes where HGNC gene names, BioMart
and UniProtK B correspondences did not agree.

Finally, for the 2764 genes not classified as coding in all
the three reference databases we manually cross-referenced
their status in the reference sets in which they were not an-
notated as coding.

Possible non-coding features

We have shown that a number of protein features, such as
gene family age and cross-species conservation, are corre-
lated with the detection of peptides in mass spectrometry
experiments (18). These features can also be used to predict
whether peptides will be detected in proteomics experiments
and to flag protein-coding genes as potentially non-coding.
The features are listed below.

0202 UoIBI\ GZ UO Jash (DIND) SeJe|noseAcipler) sauoioeblisaAu] ap [euoloeN o1ua) Aq 69zZ/705/020./7 L/9vAornsqe-a|oiie/Jeu/wos dnoolwapese//:sdny woly papeojumod



7072 Nucleic Acids Research, 2018, Vol. 46, No. 14

UniProtKB uncertain, predicted, homology and missing evi-
dence codes

Protein evidence codes are taken from the UniProtKB
database. UniProtKB carries out manual annotation of pro-
teins and human proteins in particular are well annotated
and a large majority are annotated with the highest evidence
score ‘protein evidence’. The other four evidence codes in
decreasing order are: ‘Transcript evidence’, ‘Homology’,
‘Predicted” and ‘Uncertain’.

Where there was more than one UniProtKB entry associ-
ated to an Ensembl/ GENCODE gene we chose the UniPro-
tKB entry with the highest ranked evidence to represent
the gene. Genes annotated with ‘Homology’, ‘Predicted’ or
‘Uncertain’ evidence, and those genes for which we could
not detect any evidence code at all, had very little evidence
of protein expression; the four features between them cov-
ered 1599 genes and we found peptide evidence for 52.

UniProtKB cautions

UniProtKB appends cautions to many of their protein en-
tries. Several of these cast doubt on whether they are ex-
pressed as proteins. We did not select all UniProtKB cau-
tions, just those that suggested that the gene might be non-
coding, non-functional or a pseudogene. The two most
common cautions were: ‘Product of a dubious gene predic-
tion’, ‘Could be the product of a pseudogene’. There were
86 genes tagged with these cautions. We found peptide evi-
dence for just three of these genes.

GENCODE

We took the translated GENCODE sequences as the coding
gene set. The 20,266 genes in this set included not just pro-
tein coding genes, but also immunoglobulin receptors, non-
sense mediated decay (NMD) transcripts and polymorphic
pseudogenes. 13 148 of the coding genes are also annotated
with non-coding transcripts, but these were not analysed.

Polymorphic pseudogenes

Polymorphic pseudogenes are loci that are pseudogenes in
the reference genome that are intact in other individuals,
and may represent coding genes that are undergoing a pro-
cess of pseudogenization. There are 58 polymorphic pseu-
dogenes in the reference gene set, of which 43 are olfactory
receptors. It is particularly difficult to determine whether
olfactory receptors are pseudogenes or code for functional
proteins (20). We find peptide evidence for two of these
polymorphic pseudogenes, GBA3 and PNLIPRP2. Unlike
most genes annotated with the polymorphic pseudogene
tag, these two genes were annotated with both coding and
polymorphic pseudogene transcripts.

Nonsense-mediated decay genes

A number of genes in the reference gene set only have NMD
and non-coding transcripts. There were 204 genes anno-
tated just with NMD and/or non-coding transcripts in the
GENCODE v24 reference set. As might be expected, we did
not find peptides for any of these genes.

Read-through transcripts

Read-through genes are genes in which all coding or NMD
transcripts are tagged as read-through transcripts. There are
also genes that have a mix of read-through and coding tran-
scripts, though these are gradually being cleaned up. Read-
through transcripts usually occur when a transcript skips
the 3" exon and reads through to exons from the neighbour-
ing gene (which is usually coding but may be non-coding
or pseudogene too). If translated, read-through transcripts
would produce fusion proteins.

Read-through variants are annotated as part of the hu-
man coding gene set for technical reasons. While it is possi-
ble that the splicing together of two neighbouring genes is
one way for proteins to gain new domains (21), it appears
that very few of these read-through transcripts produce pro-
teins at detectable levels. While we found peptide evidence
for one of these genes (/QCJ-SCHIPI), there is enough ev-
idence to suggest that it may actually be a single gene rather
than two separate genes with read-through transcripts

Because read-through transcripts and proteins overlap
with transcripts and proteins from known coding genes,
these transcripts introduce a number of technical prob-
lems to genome-scale analysis. For example we had to map
the spectra from the MS analyses to the GENCODE v24
database twice, once including the read-through proteins
and once excluding them.

The numbers of read-through genes in the coding gene set
is ever increasing. There were 470 read-through genes anno-
tated either by GENCODE or in the Ensembl description.

Ensembl

Pseudogenes, non-functional genes, non-coding genes,
antisense [opposite strand genes, miscellaneous RNA. We
manually curated genes with tags from the Ensembl gene
descriptions. Genes that were annotated as ‘pseudogene’,
‘read-through’, ‘non-coding’, ‘non-functional’, ‘antisense’,
‘opposite strand” and ‘long non-coding RNA’ were tagged
as potentially non-coding. There were 131 genes described
as pseudogenes by Ensembl, 70 were olfactory receptors.
We found peptide evidence for 4 of these genes. Another
93 genes were described as ‘non-functional’, ‘antisense’ or
‘opposite strand’. We found peptide evidence for 6 of these
genes. Finally 6 genes were described as ‘non-coding’ or
‘long non-coding RNA’. We found peptides for three of
these genes.

Primate gene family. These were genes from families that
evolved in the primate lineage according to our analysis of
data from Ensembl Compara (22). The primate lineage was
here defined as all strata more recent than the boroeuthe-
ria class. Gene birth dating was carried out used the phy-
logenetic reconstructions of Ensembl Compara v84. We es-
timated a gene family age and an individual gene age for
all coding genes annotated in GENCODE v24. The anal-
ysis was identical to that carried out in the previous pa-
per (18), which itself was based on earlier study of gene
ages (23) and is detailed below. Ensembl Compara v84 is
constructed from genes from 70 different species; here we
focused on phylostrata that represented the last common
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ancestors of Homo sapiens and that had at least 5x cov-
erage. Inconsistencies between gene trees and species phy-
logeny have been described for the Euarchontoglires phy-
lostratum (24,25), so this was collapsed into the Euthe-
rian level. Human coding genes were classified in the fol-
lowing age classes: Fungi/Metazoa, Bilateria, Chordata,
Vertebrata, Euteleostomi, Sarcopterygii, Tetrapoda, Am-
niota, Mammalia, Theria, Eutheria, Boreoeutheria, Pri-
mates, Simiiformes, Catarrhini, Hominoidea, Hominidae,
HomoPanGorilla and H. sapiens. In the analysis, all classes
from Boreoeutheria to H. sapiens formed the ‘Primate’
class. The Sarcopterygii class was later clustered with Eu-
teleostomi class because it contained few genes.

Compara classifies speciation and duplication nodes in
family trees by the phylogenetic level in which the event took
place (26) and our pipeline uses this information to define
the gene family age and the gene age of each coding gene.
Gene family age is the phylostratum at the root of the family
tree (the earliest common ancestor that has a member of the
gene family) while gene age is the phylostratum in which the
genomic event leading to an extant gene takes place. For
singleton genes the family gene age is always the same as
the gene age, for duplicated genes the gene age represents
the species in which the last duplication took place. Only
duplication events with a consistency score (27) >0.3 were
considered in the gene age analysis. Nodes with zero scores
were trimmed out of the analysis. Duplication nodes with
consistencies between () and 0.3 were labelled as ‘unclear’
and gene age was not assigned.

To our surprise we found more primate family genes in
this study (700) than in our previous study (563). We found
protein evidence for just 27 primate family genes.

Curiously there are sixteen coding genes that Compara
tags as novel (non-duplicated) human genes in GENCODE
v24. All are single exon genes predicted by Ensembl auto-
matic prediction programs (e.g. see Supplementary Figure
S1). None of these novel human genes have their coding sta-
tus supported in any other reference set or any by peptide
or antibody evidence.

PhyloCSF Score. We used exon-based PhyloCSF scores
(27) to represent a measure of conservation for each gene.
PhyloCSF was run using the 58 mammals parameters and
the ‘mle’ and ‘bls’ option on the coding portion of each
exon, trimmed to codon boundaries and excluding the fi-
nal stop codon. Alignments were extracted from the 100-
vertebrate MULTIZ hg38 alignment, with species restricted
to the 58 placental mammals.

The conservation score was the PhyloCSF score of the
highest scoring exon, counting only exons at least 42 bases
in length and for which the relative branch length of the lo-
cal alignment reported by PhyloCSF’s ‘bls’ option was at
least 0.1, since PhyloCSF scores are unreliable if there is in-
sufficient branch length. Genes having no exons satisfying
these conditions were flagged as having exons that were too
short or with too few relatives to return a PhyloCSF score.

Genes with a maximum PhyloCSF exon score of less than
—16 or genes that had a relative branch length of less than
0.1 were flagged as having a poor PhyloCSF score. We found
peptide evidence in PeptideAtlas for 28 of the 453 genes with
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poor branch length and 2 of the 132 genes with a maximum
PhyloCSF exon score of less than —16.

APPRIS. All Ensembl genes are annotated with protein
data in the APPRIS database (28). APPRIS annotates
the following protein-based features: homology to proteins
with known structure is mapped onto variants using HH-
search (29); functionally important residues and protein
functional domain mapping comes from firestar (30) and
pfamscan (31); trans-membrane helices are mapped using
three separate trans-membrane predictors (32-34) and sig-
nal peptides are predicted by SignalP (35). A module of AP-
PRIS calculates a measure of conservation by mapping ver-
tebrate orthologues present in the protein databases. While
APPRIS calculates features for all annotated coding vari-
ants, we took the mapping from the principal isoforms for
each gene.

Protein features were calculated for all genes. Genes that
did not have functional information, structural information
or conservation in formation were tagged as potential non-
coding when they had a PhyloCSF score below 2. There
were just 17 genes with no protein information but with pep-
tide evidence in our analysis.

Transcript expression from Human Protein Atlas. We
downloaded data from the RNAseq experiments carried
out for the Human Protein Atlas (36). The Human Protein
Atlas RNAseq experiments were carried out on 36 tissues
using Ensembl v83 (equivalent to GENCODE v24). For
each gene, we counted the number of tissues in which the
expression level was measured to be at least 1 transcript per
million (TPM). Genes were binned by the number of tissues
in which they were detected with at least | TPM.

Peptide data from PeptideAtlas. We downloaded all pep-
tides identified in the January 2016 build of the human Pep-
tideAtlas (15), in total 1 166 164 peptides. 880 101 peptides
(75.5%) were semi-tryptic with respect to the GENCODE
v24 human reference set, even though trypsin is used to
cleave the proteins in the vast majority of proteomics ex-
periments. We have previously found that semi-tryptic pep-
tides are considerably less reliable than tryptic peptides (18),
though most of these peptides were by-products of wholly
tryptic peptides.

Including semi-tryptic peptides would have identified 711
more genes, 13.5% of which would have been potential non-
coding genes. Less than 1% of the genes identified with tryp-
tic peptides were potential non-coding genes. There is no
reason why semi-tryptic peptides should identify 10 times
as many potential non-coding genes than tryptic peptides,
so semi-tryptic peptides were excluded on the grounds of
accuracy.

We also eliminated peptides shorter than nine residues
and peptides that mapped to more than one gene. Finally,
we eliminated nested peptides; where two peptides had the
same sequence but one was shorter than the other, we elim-
inated the shorter peptide. We mapped the remaining 153
913 peptides to the genes in GENCODE v24. At least two
peptides had to map to each gene in order to identify it.

Obtaining and filtering of CNV maps. Whole genome copy
number variation (CNV) maps were downloaded from
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five different publications (37-41). In order to homoge-
nize the different maps, we selected autosomal and not pri-
vate CNVs. Additionally, we removed CNVs marked as low
quality from Handsaker et a/. (40) and all the variants from
two of the individuals (NA07346 and NA11918) because we
were not confident about their genotype. From the maps in
Zarrel et al., (39) we selected the stringent map that con-
sidered CNVs that appeared in at least two individuals and
in two studies. Homozygous whole gene losses were calcu-
lated for all maps except for Abyzov et al., (41) which did
not specify the copy number of the deletions.

Genetic variation. We compared rates of genetic variation
for genes with potential non-coding features against the
genetic variation rates for likely coding genes using data
from 2504 individuals in phase 3 of the 1000 Genomes
Project (42). We remapped these variants from GRCh37
to GRCh38 using dbSNP v149 (43). Most of the variants
could be mapped from GRCh37 to 38 by using dbSNP iden-
tifiers (rsIDs). The exceptions were 186 854 variants with no
rsID in dbSNP v149, and 256,769 variants for which the ref-
erence base has changed between GRCh37 and GRCh38.
The rest of the variants (99.47%; 84 358 257/84 801 880)
were successfully mapped. When available, ancestral allele
information from the 1000 Genomes Project was used to
translate allele frequencies into derived allele frequencies.

We ran VEP (variant_effect_predictor.pl, (44)) v84 using
either the Ensembl v84 cache (for Ensembl/GENCODE)
or a cache built locally using gene annotations from Ref-
Seq v107 to predict the effects of variants. We calculated
the percentage of high-impact variants and the ratio of non-
synonymous to synonymous variants for rare and common
allele frequencies. High impact variants were splice accep-
tor, splice donor, stop gain and stop loss variants. Common
alleles were those with an allele frequency higher than 0.005
(equivalent to >25 allele counts in autosomes), while rare
alleles were those with an allele frequency <0.005.

Only variant effects corresponding to the APPRIS princi-
pal isoform (28) of each coding gene were considered. Vari-
ants were considered only for strictly defined protein coding
genes, not for the immunoglobulin and t-cell receptor frag-
ment genes to exclude the possibility of positive selection.

RESULTS
Coding genes in the three main reference sets

We compared the coding genes in the three main versions
of the human proteome, the merged Ensembl/GENCODE
reference set, the RefSeq gene set and the UniProtKB
proteome. The comparison was based on GENCODE
v24 (Ensembl 83), UniProtKB June 2016, and RefSeq
107. RefSeq 107 annotates 20 450 coding genes, and
the Ensembl/GENCODE merge contains 20,266 coding
genes. The UniProtKB proteome is based around proteins
rather than genes. UniProtKB June 2016 proteins mapped
to 21 212 coding genes.

In total the three reference sets annotate 22 210 protein-
coding genes. There are a maximum of 19 446 genes an-
notated as coding in the intersection of the three sets
(Figure 1). This is a maximum because boundaries are
disputed for a small number of genes. There are eight

All Reference Coding Genes

Antisense — 8.8% Antisense — 30.6%
Pseudogene — 39% Pseudogene — 19.4%
Read-through — 0% Read-through — 0.6%

UniProtKB RefSeq

Antisense — 13.9%
Pseudogene — 14.6%
Read-through - 51.9% Ensembl/GENCODE

Figure 1. The overlap between Ensembl/GENCODE, RefSeq and
UniProtKB genes. The number of genes classified as coding in each of
the three reference databases and the intersection between them. The
number of genes in the intersection of A is variable because RefSeq and
Ensembl/GENCODE disagree on gene boundaries for a number of genes.
For three subsets of genes, we show the percentage of coding genes anno-
tated as antisense, pscudogenc or read-through in another database.

cases where Ensembl/GENCODE has two genes but Ref-
Seq annotates one gene and sixteen cases where sin-
gle Ensembl/GENCODE genes are annotated as multiple
genes in RefSeq (PTPRQ is three RefSeq coding genes and
only one in Ensembl/GENCODE). If all 24 genes were sin-
gle genes rather than being split, there would be 19 421 cod-
ing genes common to the three reference sets. Beyond the
intersection of the three reference databases, 8§51 genes are
supported by two of the three reference sets and 1903 genes
are annotated in just one of the three reference sets.

Ensembl/GENCODE has the fewest unique coding
genes (105). This is for technical reasons. Most genes
annotated by Ensembl/GENCODE are automatically in-
cluded in UniProtKB. Given the near automatic transmis-
sion of coding genes between Ensembl/GENCODE and
the UniProtKB proteome, the 690 genes annotated as cod-
ing by Ensembl/GENCODE and UniProtK B might also be
regarded as singleton coding genes.

Almost a quarter of coding genes not present in all three
reference sets are annotated as pseudogenes by manual an-
notators from other databases (Supplementary Table S1)
and this rises to 39% of coding genes annotated in UniPro-
tKB only (Figure 1). Potential ‘antisense’ genes, non-coding
genes on the opposite strand to protein-coding loci, form
the second largest group of differently annotated genes; 17%
of coding genes not annotated in all three sets and 31% of
genes classified as coding in RefSeq only are antisense. More
than 50% of genes that are coding in Ensembl/GENCODE
and UniProtKB but not in RefSeq are read-through genes.
Read-through genes (genes made up entirely of transcripts
that skip the last exon of one coding gene to read through
to exons from the neighbouring gene or pseudogene) are
currently annotated as coding by both the RefSeq and

0202 YoIB\ GZ U Jasn (DIND) SesejnoseAoipie) sauoioeblisaAu| ap [euoioeN 04ua) Aq §9Z/70G/0.0./L/9y10BASqe-8|dIUe/Jeu/Woo dno olwapese//:sdny Wwoly papeojumoq



Ensembl/GENCODE annotations even though there is lit-
tle indication that they code for proteins.

Each reference set has its own biases and idiosyncrasies.
UniProtKB annotates 26 retroviral genes and a large num-
ber of T-cell receptor and immunoglobulin genes as part of
the human reference proteome and include 84 genes that are
part of alternative loci in the haploid assembly. RefSeq an-
notates 44 genes as sense overlapping (i.e. the locus of the
gene overlaps with a known protein coding gene in the same
sense), while Ensembl/GENCODE has 41 genes that are
exact duplicates of annotated coding genes due to techni-
cal problems with the merge between GENCODE and En-
sembl (Supplementary Table S1).

Are there 22 210 coding genes in the human genome?

There is a remarkable discrepancy between the number of
genes classified as coding by all three reference sets and the
number of genes classified as coding by at least one of the
individual reference sets; 14.4% more genes are classified as
coding in the union of the three reference sets than in the
intersection. How many of these 2764 extra genes annotated
by just one or two of the reference databases are protein
coding?

UniProtKB annotation

Genes classified as coding solely by UniProtKB are unique
in that they do not come with reference coordinates. In-
deed many UniProtKB proteins are annotated as unplaced
because the annotators do not know where in the genome
the gene is found. However, the UniProtKB database pro-
vides an evidence scale for their manual annotations, rang-
ing from the most reliable (‘supported by protein evidence’)
to the most dubious (‘uncertain’). We used these classifica-
tions to compare genes classified as coding by UniProtKB.
For each gene, we took the protein with the most reliable
evidence as the representative.

The evidence codes of genes classified as coding in the
coding gene subsets (UniProtKB and RefSeq, UniPro-
tKB and Ensembl/GENCODE and solely UniProtKB) are
clearly distinct from those classified as coding in all three
reference databases (Supplementary Figure S2). More than
80% of the genes classified as coding across all three refer-
ence databases are annotated with the highest UniProtKB
evidence score, ‘supported by protein evidence’. Outside of
this intersection the proportion of genes supported by pro-
tein evidence is much smaller; those genes annotated by
UniProtK B only have the next highest level of confirmation
with just 19% of proteins supported by protein evidence,
and three quarters of these are immunoglobulin genes, T-
cell receptors, viral proteins and proteins from alternative
loci that are not in the reference genome-based databases.
By contrast >50% of the coding genes unique to UniPro-
tKB are supported by the ‘uncertain’ evidence code, while
over half the genes classified as coding by UniProtKB and
RefSeq are supported by transcript evidence alone, and
more than two thirds of genes that are classified as coding
by UniProtKB and Ensembl/GENCODE are annotated as
being supported by ‘predicted’ evidence. Genes annotated
as coding in just one or two reference databases clearly have
much weaker evidence in UniProtKB.
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Table 1. The 16 potential non-coding features used to select the 2278 po-
tential non-coding genes

No.
Genes Detected
Features G24 in MS
No protein features [A] 586 17
Primate gene [C] 700 27
Pseudogene [E] 131 4
Non-functional [E] 74 6
Antisense/Opposite Strand [E] 19 3
Non-coding [E] 6 3
Read-through gene [G] 467 1
Nonsense mediated decay [G] 204 0
Polymorphic pseudogene [G] 56 2
PhyloCSF branch length [M] 453 28
PhyloCSF maximum [M] 132 2
Predicted evidence [U] 853 12
Homology evidence [U] 613 39
No evidence code [U] 101 0
Caution note [U] 86 3
Uncertain evidence [U] 32 1

The abbreviations show the source of each annotation: A — APPRIS, C-
Ensembl Compara, E — Ensembl annotations, G — GENCODE annota-
tions, M - MIT, U — UniProtKB annotations.

Potential non-coding features

In a previous work we flagged 2001 coding genes from the
GENCODE vI12 gene set as potentially non-coding (18)
based on a set of features that were more typical of non-
coding genes than coding genes (potential non-coding fea-
tures). These features were all associated with extremely
poor detection rates in mass spectrometry analyses. Man-
ual annotators have since reclassified 908 of these genes as
pseudogenes or non-coding RNA. Since genes annotated as
coding in just one or two reference sets have less evidence in
UniProtKB, it seems logical that many of these genes will
also be enriched potential non-coding features.

Using the Ensembl/GENCODE coding genes we de-
fined a set of potential non-coding features. The features
included the weakest three UniProtKB evidence codes and
manually added caution notes from the UniProtKB man-
ual annotators, read-through, nonsense mediated decay and
polymorphic pseudogenes tags from the GENCODE man-
ual annotation, labels indicating pseudogene or non-coding
gene from the Ensembl database and four measures of con-
servation, poor PhyloCSF (21) maximum score and rela-
tive branch length (which indicates that evolutionary cod-
ing potential within placental mammals is low), absence of
conserved protein structure, function or conservation ac-
cording to the APPRIS (28) database and those genes that
have evolved within the primate clade according to Ensembl
Compara (22).

The 16 potential non-coding features, the numbers of
genes that were tagged with each feature and the number
of these genes that had peptide evidence from large-scale
proteomics analyses are listed in Table 1 and the features
themselves are detailed in the Materials and Methods sec-
tion.

A total of 2278 Ensembl/GENCODE coding genes were
tagged with at least one of the 16 potential non-coding fea-
tures. These genes were labelled as ‘potential non-coding
genes’. The remaining 17 988 coding genes are referred to
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as the ‘likely coding gene’ set in this analysis. The corre-
spondence between the potential coding genes tagged in
Ensembl/GENCODE and in GENCODE v12 is shown in
Supplementary Figure S3.

Potential non-coding genes are not distributed evenly
between the intersection of three reference sets and the
Ensembl/GENCODE gene subsets (Ensembl/GENCODE
and UniProtKB, Ensembl/GENCODE and RefSeq, and
Ensembl/GENCODE alone). While there were 1471 poten-
tial non-coding genes in the intersection of the three sets,
this was just 7.6% of the genes. By contrast potential non-
coding genes made up 96.5% of the genes (808 of 837) in the
Ensembl/GENCODE gene subsets (Supplementary Figure
S4).

The fact that almost all the genes outside the intersec-
tion of the three reference sets have potential non-coding
features suggests that many of them may not code for pro-
teins under normal cellular conditions. As a first step to test-
ing this hypothesis we analyzed the experimental expression
of potential non-coding genes using available experimental
transcriptomics, proteomic and antibody binding data and
compared this to likely coding genes.

Transcript evidence

We downloaded RNA expression data from the Human
Protein Atlas. The Human Protein Atlas details RNAseq
experiments carried out on 36 tissues using Ensembl83
(equivalent to GENCODE v24). For each gene we looked at
the maximum expression in any one tissue and counted the
number of tissues in which expression was at least 1 tran-
script per million (TPM). We binned genes by maximum
expression and by number of tissues and compared the tis-
sue distributions of likely coding genes and potential non-
coding genes in both the intersection and subsets of coding
genes annotated in Ensembl/GENCODE, but not in both
other reference sets.

There was considerably more evidence for the expres-
sion of likely coding genes: 73.5% of likely coding genes
had a maximum TPM of 20 or more against just 24.3%
of potential non-coding genes (Figure 2). In fact 52.9%
of potential non-coding genes had a maximum TPM of
fewer than 5. The median expression level for potential non-
coding genes was just 4.1 TPM, compared to 43.4 TPM in
the likely coding set. Potential non-coding genes from the
Ensembl/GENCODE coding subsets have a very similar
distribution to potential non-coding genes from the inter-
section of the three sets. There were too few likely coding
genes in the Ensembl/GENCODE coding subsets (29) to
show in the graphic.

Likely coding genes also have entirely different tissue-
specific characteristics from potential non-coding genes.
While likely coding genes tend to be expressed in detectable
quantities over most tissues (62.7% of these genes are de-
tected in at least 30 tissues), the majority of potential non-
coding genes are found in few tissues (Supplementary Fig-
ure S5). More than two thirds of potential non-coding genes
(66.5%) have detectable expression in five or fewer tissues.

The skewed tissue-distribution of both sets of possible
non-coding genes (Supplementary Figure S5) might suggest
that these genes are more tissue-specific, and it is true that a
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Figure 2. Maximum transcript expression of potential non-coding genes
and likely coding genes. The percentage of genes in seven different max-
imum TPM bins. Maximum TPM comes from the 36 tissues of the Hu-
man Protein Atlas RNAseq experiments. Tissue distribution shown for
the likely coding genes (LCG Intersection) as well as potential non-coding
genes annotated by all three reference sets (PNC Intersection) and by just
one or two sets of annotators (PNC Subsets).

higher proportion of potential non-coding genes are olfac-
tory receptors and would be expected to be expressed in lim-
ited tissues. However, potential non-coding genes still have
much lower expression levels even when olfactory recep-
tors are removed (Supplementary Figure S6). Most poten-
tial non-coding genes had a maximum expression of fewer
than 5 TPM, so differences in tissue expression might also
be a reflection of generally low expression levels in which
the 1 TPM threshold is crossed only in few tissues.

Protein expression

We carried out two analyses to identify gene products, an
analysis of the collected peptides from the PeptideAtlas pro-
teomics database and an investigation of the antibody infor-
mation housed in the Human Protein Atlas.

We culled peptides from the PeptideAtlas database (Jan-
uary 2016), which contains 238 402 discriminating tryptic
peptides. We required protein detection to be supported by
two or more distinct uniquely-mapping, non-nested peptide
sequences of at least 9 amino acids as suggested by Human
Proteome Project consortium (45).

We detected at least two non-nested peptides for 13 360 of
the 17 988 likely coding genes (74.3%). By way of contrast
genes with potential non-coding features had extremely low
levels of peptide detection [Table 1]. In total we detected
peptides for just 142 of the 2278 potential non-coding genes
(6.2%). Less than 1% of the genes identified by PeptideAtlas
were potential non-coding genes.

Human Protein Atlas antibodies

The Human Protein Atlas has been developed to val-
idate tissue-specific protein expression. We downloaded
antibody-specific protein expression information from nor-
mal tissues from the Human Protein Atlas (Version 16, Jan-
uary 2016). We excluded expression data for antibodies that
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identified more than one gene and identifications tagged as
‘uncertain’.

The remaining antibodies detected a higher proportion
of protein expression for the genes in the likely coding set
(9896 of 17 988 genes, 55%) than for the genes in the po-
tential non-coding set (just 79 of the 2278 genes, 3.5%).
Potential non-coding genes that were validated by Human
Protein Atlas antibodies included primate genes STATH
(statherin), HTN3 (histatin-3) and SCT (secretin), all of
which code for secreted proteins.

Genes detected by PeptideAtlas peptides and Human
Protein Atlas antibodies are shown in Supplementary Fig-
ure S7. 8794 genes were detected in both analyses, only 46
of which were potential non-coding genes (0.52%). At the
same time 2101 of the 5681 genes not detected in either anal-
ysis (37%) were potential non-coding genes.

There is quite clearly less evidence for the expression
of potential non-coding genes both at the transcript and
protein level. Chi-squared tests show that expression pat-
terns of potential non-coding genes are significantly differ-
ent from those of likely coding genes in all three sets of ex-
perimental observations.

Potential non-coding genes even have even less protein
evidence than one would expect from the RNAseq levels.
Peptides can be found in PeptideAtlas for 92% of likely cod-
ing genes that have RNAseq expression of at least I TPM
in all 36 Human Protein Atlas tissues (Figure 3), but the
peptide support falls to just 25% for potential non-coding
genes. A similar pattern can be seen when genes are binned
by maximum TPM across all 36 Human Protein Atlas tis-
sues. Proportionally we found 5-10 times more likely coding
genes than potential non-coding genes (Figure 3) in each
bin. Even in the most widely expressed genes, which we de-
fined those genes that are expressed in at least 10 tissues
with a minimum of 10 TPM, there is still much more peptide
evidence for likely coding genes than potential non-coding
genes. We detected peptides for 85.6% of likely coding genes,
19.4% of potential non-coding genes annotated by all three
reference sets and just 6.1% of potential non-coding genes
annotated in two or fewer sets (Figure 3).

Genetic variation

Human genetic variation can be used to shed light on
whether or not potential non-coding genes code for pro-
teins. The rate of copy number variation and the propor-
tion of damaging high impact variants can provide clues to
the functional relevance of coding (or non-coding) genes.
Because of the effects of purifying selection coding genes
should have substantially lower non-synonymous to syn-
onymous variant ratios than non-coding genes that are mis-
annotated as coding.

Copy number variation

We downloaded genome copy number variations (CNV)
maps from five different publications (37-41). The CNVs
were mapped to the GRCh37 build of the human genome,
so we compared rates of gene gain and loss in the subset
of Ensembl/GENCODE genes that were also annotated
GENCODE v12. We also looked at CNVs in those GEN-
CODE vI12 genes that have since been removed from the
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Figure 3. The relation between peptides in proteomics experiments and
transcript expression. (A) The percentage of genes for which peptides are
detected in PeptideAtlas across nine different bins. The bins are based on
the number of tissues in which the transcripts are detected with a TPM
of >1 in the Human Protein Atlas RNAseq experiments. (B) The percent-
age of genes for which peptides are detected in PeptideAtlas divided across
seven bins of maximum TPM for each gene taken from the 36 tissues of the
Human Protein Atlas RNAseq experiments. (C) The percentage of genes
for which peptides are detected for those genes that have RNAseq expres-
sion in at least 10 tissues with a TPM of 10 or more. In cach case the per-
centage of genes for the likely coding genes (LCG Intersection, blue bars)
as well as potential non-coding genes annotated by all three reference sets
(PNC Intersection, yellow) and by just one or two sets of annotators (PNC
Subsets, green).

coding reference set and reclassified as non-coding, pseu-
dogene or artefact.

The rate of gene loss and homozygous gene loss through
CNVs for each set are shown in Figure 4. Potential non-
coding genes from Ensembl/GENCODE have more than
five times as much gene gain as likely coding genes and
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Figure 4. Whole gene gains and losses for likely coding and potential non-
coding gene in GENCODE v12. The percentage of genes that have under-
gone gene gain/loss (purple), whole gene gain (orange), whole gene loss
(red) or homozygous gene loss (blue) in at least one of the five different
analyses. Potential non-coding genes present in both GENCODE v12 and
v24 undergo a similar proportion of gene gain and loss to GENCODE v12
genes that have since been reclassified as not coding.

almost five times as much genes loss. The distribution of
CNVs in potential non-coding genes is similar to that of
GENCODE v12 genes that are no longer classified as cod-
ing, though potential non-coding genes have even more ev-
idence of gene loss.

Genetic variation within the human population

The patterns from the CNV study suggest that potential
non-coding genes are under weaker selection than likely
coding genes. To further characterize the strength of selec-
tion we analysed the patterns of genetic variation in the hu-
man population using data from 2504 individuals in phase
3 of the 1000 Genomes Project (42). For the calculation we
separated variants by allele frequency: common alleles were
those with an allele count of more than 25, equivalent to an
allele frequency of 0.005, while rare alleles were those with
an allele count of fewer than 25. Variant effects were de-
termined using the main protein isoform to represent each
GENCODE v24 coding gene (28).

The percentage of high-impact variants and the ratio
of non-synonymous to synonymous variants for rare and
common allele frequencies were calculated using the results
from VEP (44). For the large-scale comparison high impact
variants included splice acceptor, splice donor, stop gain,
stop loss, but not indel variants. This is because indels are
generally validated only with higher allele counts and are
therefore almost always overrepresented in common alleles.

If purifying selection is preventing high impact or mis-
sense substitutions, these variants should be depleted from
higher allele frequencies. Hence, differences in the patterns
of high-impact and missense substitutions between rare and
common alleles can be used to determine whether there is
purifying selection or neutral evolution in large sets of pro-
tein coding genes. We have used this method previously to
show that the majority of alternative exons are not under-
going purifying selection (46,47).

The percentage of high impact variants at rare allele fre-
quencies is 1.88% for likely coding genes and this drops to
0.61% for common alleles. Within the likely coding gene set
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Figure 5. Genomic variation in likely coding genes and possible non-
coding genes. Percentage high impact variants (yellow) and non-
synonymous/synonymous ratios (blue) for known coding genes (likely
coding genes with peptide evidence, see text) and for possible non-coding
genes (PNC) from the intersection of the three sets (Intersect) or anno-
tated by two or fewer reference sets (Subsets). Read-through genes were
removed when calculating variants because they always overlap known
coding genes. The darker colours show the values for common variants
and the lighter shades show the values for rare variants. 95% confidence
intervals are shown.

there are genes undergoing positive selection and there may
even be genes that are not functionally important within
this set. When we filter out immune system genes from the
likely coding gene set and calculate high impact variants
just for those genes that we detect peptides for, the differ-
ence is even starker: 1.6% for rare allele frequencies and
just 0.36% for common allele frequencies (Figure 5). Likely
coding genes with peptide support also have a much lower
non-synonymous to synonymous ratio in common alleles,
as would be expected for protein-coding genes evolving un-
der negative selection.

By way of contrast potential non-coding genes annotated
in all three sets have proportionally more high impact vari-
ants (3.72% at rare allele frequencies and 2.16% at common
allele frequencies) and non-synonymous to synonymous ra-
tios (2.33 for rare allele frequencies and 2.03 for common
allele frequencies), and the results for potential non-coding
genes annotated as coding in just one or two sets are similar
(Figure 5). The fact that potential non-coding genes have a
much higher proportion of high impact variants and greater
non-synonymous to synonymous ratios than likely coding
genes, suggests that many potential non-coding genes are
unlikely to code for functionally important proteins.

With the genes annotated in Ensembl/GENCODE and
RefSeq it is possible to generate human population data
for all subsets of genes in Figure 1 with the exception of
those genes annotated as coding only by UniProtKB. The
percentage of high-impact variants and the ratio of non-
synonymous to synonymous variants for these subsets are
shown in Supplementary Figure S8. The contrast between
genes classified as coding in all three reference databases
and those in two or fewer sets is clear. Genes classified as
coding in just one or two sets have much higher rates of
high impact variants than genes classified as coding across
all three databases. There are also no significant differences
in non-synonymous to synonymous ratios between rare and
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common allele frequencies in any set of genes that are clas-
sified differently across the three reference sets.

The genetic variation for individual potential non-coding
features sheds some light on which of the potential non-
coding genes are more likely to code for functional pro-
teins. With the exception of read-through genes (most read-
through genes are two known coding genes joined together)
all features have genetic variant distributions that are very
different from likely coding genes (Supplementary Figure
S9). Primate genes, genes with ‘predicted” UniProtKB ev-
idence and genes with poor PhyloCSF scores have much
higher non-synonymous to synonymous ratios and percent-
ages of high impact variants than likely coding genes. How-
ever, the non-synonymous to synonymous ratios are lower
for common allele frequencies and the differences between
rare and common allele frequencies are significant. This
suggests that a certain number of genes in these three cate-
gories may be functionally important protein-coding genes.

By contrast there are no significant differences in non-
synonymous to synonymous ratios between rare and com-
mon allele frequencies for genes tagged with the potential
non-coding features ‘pseudogene’, ‘uncertain’ UniProtKB
evidence and ‘UniProtKB caution’, which suggests that a
large majority of these genes are undergoing neutral evolu-
tion and are not functionally important.

Another subset of genes with high rates of damaging
mutations and little differences between rare and common
allele frequency non-synonymous to synonymous ratios
are those genes populated entirely by automatically pre-
dicted transcript models. There were more than 800 genes
predicted automatically in RefSeq and more than 200 in
Ensembl/GENCODE. In sets of automatically predicted
genes non-synonymous to synonymous ratios are practi-
cally identical for rare and common allele frequencies (Sup-
plementary Figure S10), suggesting that most of these genes
are also subject to neutral evolution.

Genes with high rates of missense variants

Genetic variation data is useful for pinpointing probable
neutral evolution in large cohorts of genes, but the sparse-
ness of the variants means that it is difficult to make con-
clusions about most individual genes. A number of cod-
ing genes do have remarkably high rates of missense and
damaging variants though. We looked at the 15 genes with
the highest proportion of non-synonymous variants (min-
imum 30 common allele variants). Nine were HLA histo-
compatibility antigens (Figure 6), which is not surprising
since these genes are known to have many missense vari-
ants. Two of the other six genes might also be expected
to have higher levels of missense variants because of their
likely function. MICA (MHC class I polypeptide-related se-
quence A) a self-recognising antigen from the major his-
tocompatibility complex class I locus and has more than
50 known alleles, several of which are truncating. Similarly,
BTNL?2 (Butyrophilin-like protein 2) is a known polymor-
phic locus bordering the major histocompatibility complex
class IT and class I1I regions.

The remaining four genes (Figure 6) are CRIPAK,
PRAMEF2, PRR2] and OR2TS.
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PRAMEF2 and OR2TS are likely to be pseudogenes; ol-
factory receptors are highly duplicated and many of these
duplications may be pseudogenes, while PRAMEF2 has 22
almost identical paralogues, none of which is supported by
protein evidence. PRR21 (Putative proline-rich protein 21)
is a single exon gene, which was annotated as ‘uncertain’ by
UniProtKB but has since been removed from the UniPro-
tKB proteome. It has an orthologue in chimpanzee, but
little other supporting evidence and no evidence of tran-
script expression. CRIPAK (Cysteine-rich PAK1 inhibitor)
was described in a 2006 paper (48) in which CRIPAK con-
structs appeared to bind and block PAK] activity. It was
described as having 13 zinc finger domains, but the zinc
finger domains are not real domains, merely degenerate
cysteine-rich repeats (Supplementary Figure S11). Mean-
while CRIPAK is primate-specific and has practically no
cross-species conservation at all, as can be seen from the
partial alignment of the few orthologous sequences that can
be found in UniProtKB (Figure 6). Although transcript ex-
pression is ubiquitous, there is no evidence for its expression
as protein. Curiously it has the same expression pattern as
the upstream coding gene, UV SSA (Supplementary Figure
S11). CRIPAK is highly unlikely to be a coding gene and
has been reclassified by GENCODE annotators.

Annotation of coding genes based on conflicting evidence

Manual annotators determine the status of genes based on
the balance of the available evidence. For most genes, the
available evidence is in agreement and the designation of
coding or non-coding status is fairly straightforward. How-
ever for those genes that might be considered edge cases at
the boundary between coding and non-coding, the evidence
can often be contradictory.

There are a number of genes in the potential non-coding
gene set that are supported by published studies, but that
have little other evidence to support their translation to
protein in normal tissues. One example is CRIPAK (see
above), annotated as coding based on a single published
study. At the other end of the spectrum is ARMS2, a gene
that evolved in the primate clade from an L2 transposon.
Since 4 RMS?2 has been linked to macular degeneration, it
has >200 publications, many of which are association stud-
ies. The exact role of ARMS2 in macular degeneration is
not clear. Experiments carried out with a plasmid-induced
protein show that if 4 RMS2 were expressed in retinal cells,
it would be secreted via an unconventional route (49).

Ensembl/GENCODE and UniProtKB annotate DLEU!
(deleted in leukaemia 1) as encoding a short protein as well
as 33 non-coding transcripts (Supplementary Figure S12).
RefSeq annotate the DLEUI as non-coding. DLEUI was
added to UniProtKB in 1997, and in 2007 it was annotated
as having ‘protein evidence’ because it appeared to inter-
act with other proteins in large-scale protein-protein inter-
action experiments (50). There is little other evidence that
DLEUI codes for a protein. There is no proper proteomics
evidence, very poor cross species conservation, practically
no conservation of the reading frame (12) and coding ex-
ons of DLEUI overlap with a SINE (MIRD) element.
While UniProtK B annotators use evidence from large-scale
protein-protein interaction experiments to label proteins
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Figure 6. Genes with the highest proportion of high impact and non-synonymous variants. In (A), the percentage of high impact variants (yellow) and
non-synonymous/synonymous ratios (blue) for the 15 genes with the highest rate of common non-synonymous variants. Minimum 30 common variants
per gene. The darker colors show the values for common variants and the lighter shades show the values for rare variants. In (B), the alignment between

human CRIPAK gene product and primate homologues annotated as CRIPAK in UniProtKB. There is very little evidence of conservation.

with the evidence code, ‘protein evidence’, evidence from
large-scale protein-protein interaction experiments is not
always sufficient to confirm protein-coding status. Large-
scale interaction experiments construct proteins artificially
and use these artificially generated proteins to see if they
stick to other proteins. Proteins are generally sticky, even
artificial ones, so binding between artificial constructs and
real proteins is possible. While a great many of the detected
in vitro interactions may also take place in vivo, a num-
ber will not. DLEUI is almost certainly a non-coding gene

rather than a coding gene and will be reclassified as non-
coding by Ensembl/GENCODE manual annotators.
There are many potential non-coding genes annotated
with ‘protein evidence’ because of protein-protein interac-
tion studies. These include DRICH1 (which has a dN/dS
above 1 between human and primates and a higher non-
synonymous/synonymous ratio for common allele frequen-
cies), FAM218A (which has very little evidence of homo-
logues, even in primates), PRR20C (which has a dN/dS
above | and homologues in primates only) and RP/I-
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511P7.5 (which appears to be a pseudogene at the 3" end
of ZNF755).

Some genes within the likely coding gene set also have
conflicting evidence for their coding capability. Polo-like ki-
nase 5 (PLKS) is detailed in Supplementary Figure S13.
Glycine receptor subunit alpha-4 (GLRA4) is interesting
because it is one of a number of coding genes that have
human-specific stop codons. Glycine receptors are ligand-
gated chloride channels and are highly conserved (chicken
and mouse GLRA4 are 94% identical over all but the first 40
residues). A mutation in the human version of GLRA4 gen-
erates a protein that is truncated 39 amino acids from the
C-terminus of the protein, removing the C-terminal trans-
membrane helix (Figure 7). This would almost certainly
destabilize any pore, and would probably have considerable
effect on the function.

The genetic variation for the four human glycine recep-
tor genes is shown in Figure 7 along with data for GLRA4
from the Exac experiment (51). The family members with
intact structure ( GLRA1, GLRA2 and GLRA3) have no
high impact mutations and the non-synonymous to synony-
mous ratio is higher for rare alleles than for common alle-
lesIn contrast, 3% of common alleles variants in GLRA4
are high impact and the non-synonymous to synonymous
ratios are high for both rare and common alleles. The varia-
tion data suggest that GLRA4 is not under selective pressure
and is likely to be a unitary pseudogene.

The propagation of erroneous annotations

GVQOWI and GVQW?2 are short primate-specific genes with
poor conservation (Supplementary Figure S14) that are
classified as coding in all three reference databases, but that
are tagged as potential non-coding in our study. GVOW1I
originated from an Alu SINE element, while GVQW2 was
annotated as coding recently. Pfam domains (13) are of-
ten used to help distinguish coding genes from non-coding
genes and both genes seem to have been annotated as cod-
ing based on the presence of the domain GVQW.

Pfam annotators have recently removed the transposon-
derived GVQW domain from the database as part of a re-
vision of Pfam families because they no longer believe it is
a true protein family. Unfortunately, when domains are re-
moved from Pfam, there are no mechanisms to revise genes
that were validated as coding based on these Pfam domains.

The now defunct domain seems to have been instrumen-
tal in the prediction of 1178 novel human coding genes
by the CHESS database [BioRxiv: https://doi.org/10.1101/
332825]. These novel predictions were based on RNAseq
evidence and similarity to known proteins. More than half
of these novel genes were similar to one of just nine UniPro-
tKB proteins (eight human and one chimp). The alignment
of the nine proteins (Supplementary Figure S15) shows that
they are all closely related.

Two of these proteins came from GVQWI and GVQOW2.
Although GVQWI and GVQW?2 are in the process of be-
ing reclassified by GENCODE, they are still present in
the UniProtKB and RefSeq reference sets. GVOWI and
GVQW?2 are transposon-based, so it is reasonable to assume
that all nine sequences are derived from Alu sequences (in-
deed isoforms from both CI160rf89 and C90rf85 are among
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Figure 7. GLRA4 loss of trans-membrane helix and genetic variation. (A)
The cryo-EM structure of the GLRA! kinase domain from Danio rerio
(PDB code: 3JAD), which is 80% sequence identical to human GLRA4.
In GLRA4, the premature stop codon would lead to the loss of the dark
orange trans-membrane helices in the figure (one of which is marked with
a red arrow). From the point of view of the pore, this would mean the
loss of five of the twenty helices, albeit the helices which are furthest
away from the inside of the pore. This would almost certainly destabi-
lize the pore, and would probably have considerable effect on the func-
tion. It would also leave the C-terminals of the protein on the cytoplas-
mic side instead of the extra-cellular side. (B) The percentage of high im-
pact variants (yellow) and non-synonymous/synonymous ratios (blue) for
the GLRA gene family. The percentage of high impact variants and non-
synonymous/synonymous ratios for GLRA4 from Exac are marked as
"Exac”. The darker colors show the values for common variants and the
lighter shades show the values for rare variants. GLRA4 does not have the
same variation pattern as the other four genes.
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the nine proteins) and are therefore erroneously annotated
as coding. This in turn suggests that the novel sequences in
CHESS predicted as coding because of their similarity to
the nine proteins (more than half of the novel coding genes
in CHESS) will also be transposon-related.

Clearly, misannotating genes as protein coding can have
important downstream effects on a wide range of databases
that depend on reliable predictions of coding genes. The
CHESS database’s prediction of hundreds of new coding
genes based on a defunct, transposon-linked Pfam domain
underscores how easily misclassifications can proliferate.

A number of other dead Pfam domains may have been
used to help validate the potential non-coding genes, for ex-
ample C190rf48 and Clorf145. We also ran the Pfam-based
tool Antifam (52) to check whether any genes had similar-
ity to known non-coding domains and we found evidence
for two more genes, AC079355.1 and AC118758.1, which
mapped to the same ‘spurious ORF’ domain. Both coding
genes are automatic predictions.

DISCUSSION

There are >22 000 genes annotated as coding across
the Ensembl/GENCODE, RefSeq and UniProtKB human
proteomes. While manual annotators agree on >19 000
genes, one in eight of these genes are classified differently
in at least one of the reference sets. Evidence from various
sources suggests that many of the genes classified differently
across the three reference sets are unlikely to code for es-
sential proteins; these genes have poor UniProtKB evidence
scores, a higher proportion of the most damaging germline
variants and non-synonymous to synonymous substitution
ratios that suggest many are under neutral selection.

To study differences between these genes and genes
annotated as coding in all three reference sets we de-
fined a set of 16 potential non-coding features from the
Ensembl/GENCODE reference set. More than 11% of
Ensembl/GENCODE coding genes had at least one poten-
tial non-coding feature and there were profound differences
between these genes and the remaining 89% of genes. Only
a handful of potential non-coding genes had reliable pro-
teomics or antibody evidence, most had significantly lower
transcript expression and their transcripts were detected in
very few tissues. Non-coding genes are known to have much
lower levels of expression than coding genes (53), so the fact
that so many potential non-coding genes had low or negli-
gible RNAseq expression levels supports the possibility that
many will not code for proteins.

Data from genetic variation studies showed that potential
non-coding genes had many more copy number variants,
a much higher rate of potentially damaging variants, and
larger non-synonymous to synonymous substitution ratios.
The pattern of variants suggested that many of these genes
are under neutral selection. Since neutral selection is not
typical of coding genes, this reinforces the likelihood that
many potential non-coding genes will not code for func-
tional proteins.

There are 4234 coding genes that could be considered po-
tentially non-coding across the three reference sets. These
genes are either annotated differently across the three refer-
ence sets or were flagged as potential non-coding (Supple-

mentary Figure S4). If the majority do not code for proteins,
as the genetic variation patterns suggest, the number of cod-
ing genes will be much closer to the 19 446 genes common
to the three reference sets than to the 22 210 genes in the
union of those sets. However, it is still early to speculate on
the precise number of coding genes because it is impossi-
ble to know how many potential non-coding genes will be
reclassified by manual annotators, and because there is a
steady trickle of new coding genes being annotated (54).

Human population variation data shows that two types
of genes in particular appeared not under selection pressure
and were therefore unlikely to code for functional proteins.
The first are automatic gene predictions, genes in which all
gene models are predicted, which make up approximately
1% of Ensembl/GENCODE coding genes and more than
4% of RefSeq coding genes. Our results suggest that these
genes are adding little to the human reference annotation.
The second group of genes are likely pseudogenes. Pseudo-
genes form the largest group of non-coding annotations and
are especially difficult to distinguish from coding genes but
have the clearest evidence for neutral selection of all the po-
tential non-coding features. Likely pseudogenes are partic-
ularly prevalent in the UniProtKB unique subset.

Pseudogenes highlight the difficulties that manual anno-
tators face when interpreting the available data (55). Most
pseudogenes derive from protein coding genes, either by
duplication or retrotransposition, and as a result often
have large intact ORFs and protein-like features. In addi-
tion recent duplications usually have few obviously delete-
rious mutations, making the distinction between coding and
pseudogene even more difficult. The Ubiquitin carboxyl-
terminal hydrolase 17 family has 26 close to identical mem-
bers, but while non-synonymous to synonymous ratios sug-
gest that most or all are pseudogenes, they are all annotated
as coding because there is no clear way of discriminating be-
tween them.

Experimental evidence is often ambiguous for many
pseudogenes. Negative evidence (evidence to show that a
gene does not code for proteins) does not exist, antibod-
ies are rarely sufficiently specific to distinguish similar pro-
teins and proteomics experiments can easily confuse sim-
ilar peptides because of single-amino acid variations or
post-translational modifications. Indeed, a number of the
potential non-coding genes detected in the proteomics ex-
periments may be false positive identifications. For exam-
ple PeptideAtlas validates two peptides for potential non-
coding gene FO538757.2. The two peptides identified for
FO0538757.2 are just one amino acid different from the
equivalent peptides from WASHI, a likely coding gene. In-
deed UniProtKB annotates both these single amino acid
differences as known WASHI sequence conflicts. It is more
than probable that the peptides we detected for FO538757.2
really came from WASHI. Here we should point out that
although some identifications will be false positives, many
potential non-coding genes, such as SEMGI1 and SEMG2,
sperm-specific potential non-coding genes with a primate
origin, were identified with strong peptide evidence.

The increase in genetic variation data (42,51) should pro-
vide valuable support for manual annotators in this sense,
though genetic diversity is not infinite and it will not be
suitable for all genes. Most bona fide coding genes should
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have very few high impact variants in common alleles and
should have non-synonymous to synonymous ratios that
are lower for common allele than they are for rare alleles.
We have used genetic variation data to flag a number of
possible pseudogenes that were not caught by our potential
non-coding features (for example PLKS5, GLRA4).

Over the years since the human genome sequence was re-
leased (4) rigorous manual annotation has brought us con-
siderably closer to a final catalogue of human coding genes
and annotators agree for more than 85% of coding genes.
The final 12% of genes, those with the most conflicting evi-
dence, will be more difficult to classify. One useful source of
information to discriminate coding from non-coding genes
makes use of the recent increase in the number of annotated
mammalian genomes (27). With time and with more exten-
sive data, large-scale genetic variation studies could also be
a powerful tool to aid in the annotation of coding genes.

In order to flag potential non-coding genes we have built
a pipeline that updates with the Ensembl/GENCODE ref-
erence set. This approach is a highly practical means of in-
forming the curation of the human genome. The set of hu-
man coding genes needs to be as complete as possible for
biomedical experiments, but inevitably some genes will be
misannotated as coding. Once a gene has entered a refer-
ence set it may be propagated in large-scale databases and
its coding potential may end up being validated via circular
annotation. Detecting errors, retracing steps and rescinding
the coding status of a gene once it is annotated as coding
is a difficult process, so a system to catch and label genes
that have conflicting or insufficient coding support is use-
ful. The pipeline will be used to help pinpoint potential non-
coding genes in the Ensembl/GENCODE human reference
set. However, the approach could be made available for use
by other annotation initiatives and could be extended to the
annotation of other species. In fact, a pipeline has already
been developed for the mouse reference set. Future releases
of these analyses will be made publicly available.

Manual curators from the three main reference databases
will investigate and debate the coding potential of these po-
tential non-coding genes. It is important to note that while
many potential non-coding genes will be reclassified, those
that have evidence of coding capability will be maintained
in the reference set. In addition a number of genes with con-
flicting evidence or insufficient evidence to determine cod-
ing status one way or another are also likely to be remain
in the reference set. It may be possible to flag this second
set of genes as potentially non-coding or pseudogene, while
maintaining them as coding in the reference set.

Even if just half of these the potential non-coding genes
we have highlighted turn out to be non-coding, this would
clearly have a substantial impact on a range of fields. In
particular, overestimating the number of coding genes in-
evitably complicates large-scale biomedical experiments, es-
pecially those that involve the mapping of disease-related
variations to human genes. The more potential non-coding
genes that are classified as coding as part of any analytical
process, the noisier the results.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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The alternative splicing of messenger RNA is a process that results in a single gene coding
for multiple proteins (Pan et al., 2008; Wang, E. T. et al., 2008). In this process, exons can
be included or excluded in combination to create a diverse range of mRNA transcripts (Nilsen
& Graveley, 2010). Moreover, studies have described the role that alternative splicing plays
in tissue differentiation at transcript level (Merkin et al., 2012; Wang, E. T. et al., 2008).

Here we carried out an analysis of a large-scale proteomics study (Kim, M.-S. S. et al., 2014)
that comprised 30 human tissues and hematopoietic cells, and compared that with the results
of a large-scale RNA-seq analysis carried out by the Human Protein Atlas (Uhlén et al., 2015).
The RNA-seq analysis was performed on 36 different tissues and covers similar tissues to
the Kim et al. analysis, though this analysis did not investigate fetal tissues or blood cells. We
compared the two large-scale experiments by concentrating on the tissues present in both
sets of experiments and by grouping the tissues by type.

As a first step we used the peptides identified in the Kim et al. analysis to define the set of
alternative splice events that would be used in the analysis. We required that each side of a
splice event was supported by a minimum of three peptides from different experiments
(PEDs). Although we initially searched for tissue specificity using the tissues from the
proteomics experiment, much of the analysis was carried out with the 30 tissues pooled into
10 groups of related tissues. This was done to amplify any signal. In order to compare both
proteomics and transcriptomics analysis, we also grouped tissues from the large-scale RNA-
seq analysis into 12 groups.

We were able to define a set of 255 alternative splicing events (ASE255) that came from 217
genes and in total 95 of these events had evidence for either tissue or group-specific splicing
(37.3%) at protein level. From the transcriptomics analysis, we were able to map sufficient
RNA-seq reads to both sides of the splicing event for 248 of the 255 events. There was
evidence for tissue group-specific differences in transcript expression for a total of 159 of
these 248 events (62.9%).

More than 50% of events that had significant differences in group-specific splicing at protein
level were in nervous tissues (frontal cortex, fetal brain, spinal cord and retina) followed by
muscle (almost 30%). Moreover, when we compared the groups of tissues between the
proteomics analysis and transcriptomics analysis, the correlation between supporting PEDs
and supporting reads was highest in nervous (0.799) and muscle (0.748) tissues and lowest
in reproductive tissues (0.413).

We calculated disorder for all regions that differed between the main and alternative isoforms,
and for both regions involved in the swap in the case of insertions/deletions (indels). However,
there was no indication that disorder was related to tissue specificity either at the protein
level, where 37.7% of tissue specific alternative regions were disordered against 48.1% of
non-tissue specific regions, or at the transcript level.

We classified the ASE255 set according to two different criteria, the mechanism of the splicing
process (transcript level) and the effect the splice event has on the resulting proteins (protein
level). Then, we classified the effect at proteomics level, tissue-specific and non-specific
events were more or less proportionally distributed within each even type. Homologous exon
substitutions made up a third of all events with tissue-specific differences, with a Fisher exact



test of 0.0062 (against indels). By way of contrast, Micro-indel splice events had significantly
fewer non-tissue specific events (Fisher exact test of 0.0018 against indels).

We also manually curated the relative age of the ASE255 set based on cross-species
evidence. Manually curated event ages were defined as primate-derived, as from the
eutheria/theria clades, as from the tetrapoda clade and as “ancient” (evolved before the
sarcopterygii clade, more than 400 million years ago). More than half of the alternative events
in the set evolved more than 400 million years ago and only 7.8% of the alternative events
derived from the primate clade. Tissue-specific splice events were even more conserved.
Almost three quarters (73.7%) of events with evidence of tissue specificity at the proteomics
level evolved more than 400 million years ago and none of the tissue specific events were of
primate-derived.

Tissue specificity at the transcript level also seemed to be associated with the conservation
of splice events. Events that were tissue-specific in the transcriptomics analysis were older
than events without significant tissue-specific. Remarkably, more than 95% of tissue specific
events in which there is agreement between proteomics and RNA-seq analyses evolved prior
to the ancestors of lobe-finned fish.

In order to compare the conservation of splice events against the whole genome we also
estimated the relative age of alternative exons (defined by the APPRIS database). We found
that 76% of alternative exons in the human genome appeared in the primate clade, within the
last 90 million years, while just 5.7% were more than 400 million years old.

Finally, we calculated the significantly enriched GO terms for those genes with tissue-specific
alternative splicing events. We found a strong relation between cytoskeleton-related genes,
tissue specificity and conservation. Cytoskeleton genes with events that were tissue-specific
at the proteomics level had a much higher proportion (82.1%) of events that evolved before
or during the vertebrate clade.

Michael Tress conceived of the presented idea. Jose Manuel worked out almost all of the
technical details, and performed the numerical calculations. Tomas di Domenico carried out
the RNA-seq search and the search and post-processing of proteomics data. Fernando Pozo
post-processed the RNA-seq data. Michael Tress encouraged Jose Manuel Rodriguez to
investigate and supervised the findings of this work. Michael Tress and Jose Manuel
Rodriguez wrote the manuscript. Jests Véazquez and Fernando Pozo provided critical
feedback and helped shape the manuscript.



El empalme alternativo del ARN mensajero es un proceso que da como resultado un Unico
gen que codifica a multiples proteinas (Pan et al., 2008; Wang, E. T. et al., 2008). En este
proceso, los exones se pueden combinar para crear una amplia gama de transcripciones de
ARNm (Nilsen y Graveley, 2010). Ademas, estudios han descrito el papel que juega el
empalme alternativo en la diferenciacion de tejidos a nivel de transcripcion (Merkin et al.,
2012; Wang, E. T. et al., 2008).

En este trabajo, llevamos a cabo un analisis de un estudio de prote6mica a gran escala (M.-
SS Kim et al., 2014) compuesto por 30 tejidos humanos y células hematopoyéticas, y lo
comparamos con los resultados de un andlisis de RNA-seq publicado por Human Protein
Atlas (Uhlén et al., 2015). El analisis de RNA-seq se realiz6 en 36 tejidos diferentes y cubre
tejidos similares al andlisis de Kim et al. Comparamos los dos estudios centrandonos en los
tejidos presentes en ambos experimentos y agrupando los tejidos por tipo.

Como primer paso utilizamos los péptidos identificados en el analisis de Kim et al. para definir
el conjunto de eventos de empalme alternativos que se utilizarian. Requerimos que cada
lado del evento estuviera respaldado por un minimo de tres péptidos de diferentes
experimentos (PED). Aunque inicialmente buscamos la especificidad utilizando tejido, gran
parte del analisis se llevé a cabo con los 30 tejidos agrupados en 10 grupos de tejidos
relacionados. Esto se hizo para amplificar cualquier sefial. Para comparar el analisis
protedmico y transcriptomico, también agrupamos los tejidos del analisis de RNA-seq en 12
grupos.

Pudimos definir a nivel de proteina un conjunto de 255 eventos de empalme alternativo
(ASEZ255) que provenian de 217 genes y en total 95 de estos eventos tenian evidencia de
especificidad de tejido o de grupo (37,3%). A partir del analisis transcriptomico, 248 de los
255 eventos mapearon con suficientes lecturas RNA-seq a ambos lados del evento de
empalme. Hubo evidencia de especificidad de grupos de tejidos en la expresion de la
transcripcion para un total de 159 de estos 248 eventos (62,9%).

Mas del 50% de los eventos a nivel de proteina, tuvieron diferencias significativas en la
especificidad del grupo de tejido que se produjeron en nervio; seguidos por musculo con casi
el 30%. Ademas, cuando comparamos los grupos de tejidos entre el analisis proteémico y el
andlisis transcriptomico, la correlacion entre los PED vy las lecturas RNA-seq fue mayor en
los tejidos nerviosos (0,799) y musculares (0,748) y mas baja en los tejidos reproductivos
(0,413).

Calculamos el desorden para todas las regiones que difirieron entre las isoformas principal
y alternativa, y para ambas regiones involucradas en el intercambio de indels
(inserciones/deleciones). Sin embargo, no hubo indicios de que el trastorno estuviera
relacionado con la especificidad de tejido ni a nivel de proteina, donde el 37,7% de las
regiones alternativas especificas de tejido estaban desordenadas, ni a nivel de transcripcion,
con un 48,1%.

Clasificamos el conjunto ASE255 de acuerdo con dos criterios diferentes, el mecanismo del
splicing (nivel de transcripcidn) y el efecto que tiene el evento de splicing en las proteinas
resultantes (nivel de proteina). Luego, clasificamos el efecto a nivel proteémico. Los eventos
especificos de tejido, y los no especificos, se distribuyeron mas o menos proporcionalmente



dentro de cada tipo. Las sustituciones de exones homaologos constituyeron un tercio de todos
los eventos con diferencias especificas de tejido, haciendo una prueba Fisher de 0,0062
(contra indels). Por el contrario, los eventos de empalme de Micro-indel tuvieron
significativamente menos eventos no especificos de tejido (prueba Fisher de 0,0018 contra
indels).

También seleccionamos manualmente la edad relativa del conjunto ASE255 en funcion de
la conservacion en especies. Las clasificaciones de las edades se definieron como derivadas
de primates, a partir de los eutheria/theria, a partir tetrdpoda y “antiguas” (antes de
sarcopterygii, mas de 400 millones de afios). Mas de la mitad de los eventos alternativos en
ASE255 evolucionaron hace mas de 400 millones de afios y solo el 7,8% de los eventos
alternativos derivaron de los primates. Los eventos de empalme especificos de tejido
estaban mas conservados. El 73,7% de los eventos con evidencia de especificidad de tejido
a nivel proteémico evolucionaron hace mas de 400 millones de afios y ninguno de este tipo
de eventos fue derivado de primates. La especificidad del tejido a nivel de transcripcion
también parecid estar asociada con la conservacion. Los eventos especificos de tejido en el
analisis transcriptdmico fueron mas antiguos que los eventos sin tejido especificos.
Sorprendentemente, mas del 95% de los eventos especificos de tejido en los que existe un
acuerdo entre la protedmicay los analisis de RNA-seq evolucionaron antes que los ancestros
de los peces con aletas lobuladas.

Para comparar la conservaciéon de los eventos de empalme con todo el genoma, también
estimamos la edad relativa de los exones alternativos (definidos por APPRIS). Descubrimos
que el 76% de los exones alternativos en el genoma humano aparecieron en primates, en
los ultimos 90 millones de afios, mientras que solo el 5,7% tenian mas de 400 millones de
anos.

Finalmente, calculamos los términos GO de los genes significativamente enriquecidos.
Encontramos una fuerte relacion entre los genes relacionados con el citoesqueleto, la
especificidad del tejido y la conservacion. Los genes del citoesqueleto con eventos que eran
especificos de tejido a nivel protedmico, tenian una proporcién mucho mayor (82,1%) de
eventos que evolucionaron antes o durante los vertebrados.

Michael Tress concibio la idea presentada. José Manuel Rodriguez resolvid casi todos los
detalles técnicos y realizé los calculos numéricos. Tomas di Domenico llevé a cabo la
busqueda de RNA-seq y la blusqueda y posprocesamiento de datos protedmicos. Fernando
Pozo proceso los datos de RNA-seq. MT animé a JMR a investigar y superviso los hallazgos
de este trabajo. MT y JMR redactaron el manuscrito. Jesus Vazquez y FP brindaron
comentarios criticos y ayudaron a dar forma al manuscrito.
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Abstract

The role of alternative splicing is one of the great unanswered questions in cellular biology.
There is strong evidence for alternative splicing at the transcript level, and transcriptomics
experiments show that many splice events are tissue specific. It has been suggested that
alternative splicing evolved in order to remodel tissue-specific protein-protein networks.
Here we investigated the evidence for tissue-specific splicing among splice isoforms
detected in a large-scale proteomics analysis. Although the data supporting alternative
splicing is limited at the protein level, clear patterns emerged among the small numbers of
alternative splice events that we could detect in the proteomics data. More than a third of
these splice events were tissue-specific and most were ancient: over 35% of splice events
that were tissue-specific in both proteomics and RNAseq analyses evolved prior to the
ancestors of lobe-finned fish, at least 400 million years ago. By way of contrast, three in four
alternative exons in the human gene set arose in the primate lineage, so our results cannot
be extrapolated to the whole genome. Tissue-specific alternative protein forms in the proteo-
mics analysis were particularly abundant in nervous and muscle tissues and their genes had
roles related to the cytoskeleton and either the structure of muscle fibres or cell-cell connec-
tions. Our results suggest that this conserved tissue-specific alternative splicing may have
played a role in the development of the vertebrate brain and heart.

Author summary

We manually curated a set of 255 splice events detected in a large-scale tissue-based prote-
omics experiment and found that more than a third had evidence of significant tissue-spe-
cific differences. Events that were significantly tissue-specific at the protein level were
highly conserved; almost 75% evolved over 400 million years ago. The tissues in which we
found most evidence for tissue-specific splicing were nervous tissues and cardiac tissues.
Genes with tissue-specific events in these two tissues had functions related to important
cellular structures in brain and heart tissues. These splice events may have been essential
for the development of vertebrate heart and muscle. However, our data set may not be
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representative of alternative exons as a whole. We found that most tissue specific splicing
was strongly conserved, but just 5% of annotated alternative exons in the human gene set
are ancient. More than three quarters of alternative exons are primate-derived. Although
the analysis does not provide a definitive answer to the question of the functional role of
alternative splicing, our results do indicate that alternative splice variants may have played
a significant part in the evolution of brain and heart tissues in vertebrates.

Introduction

Almost all multi-exon genes are able to undergo alternative splicing [1,2] via a range of mecha-
nisms which include exon skipping, alternative splice site usage and alternative promoter and
poly-A usage. This is reflected in the human reference set; at present human coding genes are
annotated with an average of four distinct gene products [3]. Recent studies suggest that
human coding genes generate on average more than ten alternative transcripts [4,5]. Assum-
ing that all, or almost all of these transcripts are translated into functional alternative splice iso-
forms, we would expect the overall protein population to increase 10-fold from 20,000 (the
number of human coding genes) to 200,000. This increase alone would have profound biologi-
cal consequences. However, most proteins do not work in isolation but interact with other
proteins, often as part of large complexes. If we take into account all the possible interactions
of these distinct proteins [6], we would be likely to see an exponential increase in the number
of cellular functions.

There has been much investigation at the transcript level to try to elucidate a role for alter-
native splicing and there is some indication that it may play a role in tissue differentiation.
Approximately two thirds of alternative splice events have been shown to have tissue-specific
differences. Wang ef al [1] identified over 22,000 tissue-specific alternative transcript events
and showed that between 47 and 65% of alternative events were tissue-specific depending on
the type of splice event, while Gonzalez-Porta et al [7] found that the major transcript varied
according to conditions across more than 60% of coding genes.

However, it seems that not all tissue-specific splice patterns are conserved across species.
Merkin ef al [2] found that despite the abundant evidence for tissue specificity of alternative
transcripts the patterns of tissue-specific alternative splicing were only conserved in a few tis-
sues between mammalian species and birds. Reyes et al. analysed tissue-specific splicing at the
transcript level across six primate species [8]. They found that only a small number of exons
had conserved splicing patterns. These exons with conserved patterns were enriched in
untranslated regions and the protein coding regions were enriched in disordered regions.
Meanwhile most tissue-specific alternative exons differed in their usage between species. They
postulated that the different usage of exons was behind the tissue-specific “rewiring” of pro-
tein-protein interaction networks postulated by many groups [9,10] that would be essential for
morphological differences between different species.

More recently, results from the large-scale GTEx consortium found that 84% of the vari-
ance between tissues was due to gene expression rather than alternative splicing [11] with the
strong suggestion that at least a certain proportion of tissue-specific alternative splicing is sto-
chastic [11]. A re-analysis of the GTEx data [12] found that 50% of genes had tissue-specific
transcripts, but that most tissue-dependent splicing events would not affect proteome com-
plexity of the cell since they involved untranslated exons.

Little research has been carried out into tissue-specific alternative splicing at the protein
level. Examples of protein level tissue specificity have been highlighted in analyses of individual

PLOS Computational Biology | https:/doi.org/10.1371/journal.pchi. 1008287 October 5, 2020

2/24




PLOS COMPUTATIONAL BIOLOGY Tissue-specific splice isoforms

research papers [13,14], but there are no large-scale analyses of tissue specificity at the protein
level. One reason for this is that proteomics experiments detect many fewer alternative iso-
forms than would be expected [15,16], It is not clear why it is so hard to detect alternative pro-
tein isoforms. Although most alternative transcripts seem to be processed by the ribosome
[17], it has been shown that transcript level differences between species decrease post-transla-
tion [18]. Alternative isoforms that are not detected in proteomics experiments could be
expressed in quantities too low for mass spectrometry detection, or in fewer tissues, they could
have a shorter cellular half-life, or ribosome control mechanisms [19] could reduce their
translation.

In vitro experiments have suggested that most alternative isoforms would lose or change
more than 50% of their binding partners [6] relative to the main protein isoform [15,20]. Such
gross changes in interaction partners suggest that most alternative isoforms would be more
than just minor variants of the main isoforms. However, it is difficult to know to what extent
such in vitro experiments are representative of the cellular proteome.

The large-scale proteomics study of 30 human tissues and hematopoietic cells carried out
by Kim et al [21] remains the best source of tissue level proteomics data, in part because it was
carried out with replicates. The data from the Kim experiments has been analysed on a number
of occasions [22-24], however no study has investigated tissue-specific splicing of alternative
isoforms in detail. The original study highlighted distinct isoforms of FYN protein tyrosine
kinase in brain and haematopoietic cells [21], while Wright ef al suggested that most tissue-
specific alternative splicing was in testis without revealing details [22]. The other two studies
detailed evidence for tissue-specific alternative splicing in just a few genes mostly localised to
brain and heart tissues [23] or to heart and testis [24].

Here we carried out an in-depth study of tissue-specific alternative splicing in tissues from
the Kim et al proteomics experiments and contrasted it with data from a large-scale transcrip-
tomics analysis. We find that there is strong evidence for tissue-specific splicing at the protein
level in a minority of genes, and that these tissue-specific protein isoforms are generally found
in muscle or nervous tissues. Almost three quarters of tissue-specific splice events detected at
the protein level are conserved all the way back to jawed vertebrates.

Results

Proteomics evidence for alternative splicing

We first used the peptides identified in the proteomics experiment to define the set of alterna-
tive splice events that would be used in the analysis. For this set we required that each side of a
splice event be supported by a minimum of three PEDs (peptides from different experiments,

see Materials and Methods section). Since each side of a splicing event is different, we defined
the two sides as either “main” and “alternative”. The main side of each splicing event is the
side supported by most PEDs (in the case of the proteomics experiments), or most RN Aseq
reads (in the case of the transcriptomics experiments). From the peptide data we were able to
define a set of 255 alternative splicing events that came from 217 genes (see S1 Table). This
dataset (ASE255) was used for all subsequent analyses.

Evidence for tissue-specific splicing in proteomics experiments

Initially we searched for evidence of both tissue-specific and group-specific differences at the
protein level for the ASE255 set. For each tissue or tissue group we compared the distribution
of PEDs for the main and alternative sides of each splice event, and also between the events
and the rest of the protein. When we compared expression at the tissue level only, 51 events
had significant differences in expression in at least one of the 30 tissues. When tissues were
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grouped, we found significantly different levels of expression for 87 splice events. In total 95 of
the 255 events had evidence for either tissue or group-specific splicing (37.3%), while there
were 43 events with significant differences at both tissue and group level.

At the level of individual tissues, frontal cortex (17 tissue-specific events, S1 Fig) had the
highest evidence of significant tissue-specific splicing. Fetal and adult heart tissues also had
more than ten splice events with evidence for significant tissue-specific splicing at the protein
level. When tissues were combined into groups, nervous tissues (frontal cortex, fetal brain, spi-
nal cord and retina) had the highest level of tissue-specific alternative splicing (Fig 1). In fact,
more than 50% of the 87 events that had significant differences in group-specific splicing were
group-specific in nervous tissues (Fig 1).

Tissue specificity by event type

We classified the 255 splice events in the ASE255 set according to two different criteria, the
mechanism of the splicing process and the effect the splice event has on the resulting proteins.
We divided the splicing mechanisms into six types, skipped exons, mutually exclusively spliced
exons, alternative 5 splice sites, alternative 3’ splice sites, alternative promoters and alternative
poly-A. Skipped exons were most numerous (93 events) with alternative 3’ splice sites a distant
second (37 events).

We divided the effect the splicing has on the protein into seven groups. Firstly, deletions
and insertions for which we had peptides for each side of the event were pooled as “Indels”
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Fig 1. Tissue-specific alternative splicing events at the proteomics level. The percentage of significant tissue-specific
alternative splicing events across the 10 proteomics tissue groups. The number of experiments for each tissue group is
shown in the x-axis labels.

https://doi.org/10.1371/journal.pcbi.1008287.g001
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since we did not know which was the alternative isoform. Meanwhile smaller indels, those that
were smaller than four amino acid residues, were pooled as “Micro-Indels”. Some of these
mini-indels were produced by micro-exons, but most were generated by NAGNAG splicing
[25]. If the substitutions were homologous [26], we pooled them in a different “Homologous
Substitution” category because we have found that these exons often behave differently to
most substitutions [16,23]. The remaining substitutions were tagged by their position in the
protein sequence (C-terminal, N-terminal or internal), while protein isoforms that did not
share any amino acid sequences were pooled into a seventh group (“Two Proteins”). A total of
104 events were classified as Indels. Almost three quarters of the indels were generated from
skipped exons. There were just 5 events in the “Internal Substitution” category and 4 in the
“Two Protein” category.

We calculated the proportion of each type of event among events with evidence of tissue
specificity from the proteomics experiments and also among events that did not have evidence
of protein-level tissue specificity. Two types of splicing mechanisms generated considerably
more tissue specific events than non-tissue specific events (mutually exclusive exon and alter-
native poly A}, while two mechanisms (alternative 5 splice sites and alternative 3’ splice sites)
produced a substantially lower proportion of tissue specific isoforms (Fig 2A).

When classified by the effect at the protein level, tissue-specific and non-specific events
were more or less proportionally distributed within each class (Fig 2B), but two types of events
had distributions that were significantly different from the others. Homologous substitution
events were enriched among tissue-specific events. Homologous exon substitutions made up a
third of all events with tissue-specific differences, with a Fisher exact test of 0.0062 (against
indels). By way of contrast Micro-indel category splice events had significantly fewer non-tis-
sue specific events (Fisher exact test of 0.0018 against indels). More than half of the events in
the Micro-indel category were formed via alternative 3’ splice sites.

Half of the homologous swaps were produced from mutually exclusive exons, while the
other half were produced from alternative Poly A and alternative promoters. The proportion
of tissue specific events among non-homologous alternative Poly A events (all of which are C-
terminal substitutions) and non-homologous alternative promoter events (all N-terminal sub-
stitutions) decreases considerably once the homologous substitution events have been
removed. This suggests that sequence homology was more important than the mechanism of
action of the splicing process in the gain of tissue specific splicing.

Disorder and tissue specificity

Protein disorder has been strongly linked to alternative splicing [27] and to tissue-specific splic-
ing in general [9]. We analysed the proportion of events with disorder in the ASE255 set and
found that alternative exons in the set of splice events were enriched in disorder. A total of
43.6% of alternative exons were predicted to be disordered against 32.8% of the genes that made
up the ASE255 set. However, there was no indication that disorder was related to tissue specific-
ity either at the protein level, where 37.7% of tissue specific alternative regions were disordered
against 48.1% of non-tissue specific regions, or at the transcript level (52 Fig). Tissue specific
skipped (cassette) exons are also depleted in predicted disordered regions in this set (52 Fig).

Most tissue-specific splicing occurs in ancient splice events

We manually curated the relative age of each of the 255 splicing events based on cross species
evidence. Manually curated event ages were defined as primate-derived (up to approximately
75 million years old), as evolved during the eutheria/theria clades (between 75 and 160 million
years ago), as evolved during the tetrapoda clade (evolved after sarcopterygii, between 160 and
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Fig 2. Tissue-specific expression at the proteomics level by type of splice event. (A) The breakdown of events by alternative
splicing mechanism and tissue speciﬁcity, or lack of. The proportion of the 95 events that are tissue or group specific events
are in orange. The proportions of event types among the 160 non-tissue specific events are shown in grey. (B) The relative
proportions of tissue specificity of different protein level events. The proportion of the 95 tissue or group specific events that
make up each event type is shown in yellow. The proportions of event types among the 160 non-tissue specific events are
shown in light blue. All event types are defined in the main text.

https://doi.org/10.1371/journal.pcbi.1008287.9002
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400 million years ago) and as ancient (evolved before the sarcopterygii clade, more than 400
million years ago).

In order to compare the results against the whole genome we also estimated the relative age
of alternative exons. Alternative exons were defined from their annotations in the APPRIS data-
base and we analysed just those exons that had a minimum of 42 bases (see Materials and Methods
section). This automatic estimation of alternative exon age is an approximation, but it does provide
an idea of the relative proportions of the four age groups among alternative exons in the genome.
We found that 76% of alternative exons in the human genome appeared in the primate clade,
within the last 90 million years, while just 5.7% were more than 400 million years old (Fig 3).

By way of contrast to annotated alternative exons, alternative splice events detected in pro-
teomics experiments were considerably more conserved: more than half of the alternative
events in the ASE255 set evolved more than 400 million years ago and only 7.8% of the alterna-
tive events in the ASE255 set derived from the primate clade. We have previously shown that
proteins from ancient gene families are more likely to be detected in proteomics experiments
[28] and that there is little reliable proteomics evidence for primate-derived coding genes
[28,29]. Hence, it is not surprising that we also found most evidence for ancient splice events
and little evidence of alternative splicing events derived from the primate clade.

Not only was the set of alternative events detected at the protein level enriched in ancient
events, but tissue-specific splice events were even more conserved. Almost three quarters
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Fig 3. The age of alternative exons versus subsets of splicing events detected in proteomics experiments. “Exons (whole genome)” are all alternative exons in the
human genome, “ASE255 set”is the set of 255 alternative splicing events detected in the proteomics analysis, “Tissue-specific (proteomics)” are the 95 events that have
significant tissue or group-specific differences at the protein level and “Not tissue specific” are the 161 events that do not have tissue-specific enrichment in proteomics
experiments.

https://doi.org/10.1371/journal.pcbi.1008287.g003
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(73.7%) of events with evidence of tissue specificity at the proteomics level evolved more than
400 million years ago (Fig 4). At the same time there is no evidence at all for tissue-specific
splicing of primate-derived splice events at the protein level (Fig 4). Tissue-specific alternative
splicing events detectable at the proteomics level are highly conserved.

Functional relevance of tissue-specific splicing

We have previously found that alternative splice variants detected in proteomics experiments
are enriched in functions related to the cytoskeleton [16]. We find similar results with the
alternative splice events used in this analysis. This is not entirely surprising since proteomics
analyses tend to be enriched in the most abundant proteins, including ribosome proteins and
actin cytoskeleton-related proteins, and depleted in integral membrane proteins [30].

The top ten highest scoring GO terms for the 217 genes in the ASE255 set as a whole were
all cytoskeleton-related and included cell-cell adherens junction (Benjamini-Hochberg adjusted
q-value of 2.7E-08), Z-disc (6.8E-10), structural constituent of muscle (5.4E-10), focal adhesion
(1.7E-07), and actin filament binding (1.5E-07). See S2 Table for more details. A total of 111 of
the 217 ASE255 genes were labelled with terms related to the cytoskeleton. There was a strong
relation between cytoskeleton-related genes, tissue specificity and conservation. Cytoskeleton
genes with events that were tissue-specific at the proteomics level had a much higher propor-
tion (82.1%) of events that evolved before or during the vertebrate clade (see S3 Fig). In fact,
events in cytoskeleton genes were significantly more likely to be tissue specific (Fisher exact
test, 0.0004) than non-cytoskeleton genes.

We also analysed the two subsets of events that had the most evidence of group-specific
splicing at the protein level (Fig 1): those events with group-specific splicing at the protein
level in nervous tissues (43 events from 37 genes) and those events with group-specific splicing
at the protein level in muscle tissues (24 events, 18 genes). While the results were similar to the
results for the ASE255 set, there were specific differences.

Terms for the nervous tissues specific events were related to adhesion, morphology and cel-
lular communications and included cadherin binding involved in cell-cell adhesion” (0.002),
cell-cell adherens junction (0.004), stress fiber (1.1E-04) and plasma membrane (4E-04), whereas
terms for the events specific to muscle tissues were enriched in those terms more related to
muscle, such as Z-disc (3.2E-05), structural constituent of muscle (2.3E-09), actin filament orga-
nization (3.2E-04) and muscle thin filament tropomyosin (5.7E-04). There was one term in
common in the top 10 significantly enriched GO terms, actin filament binding. Tissue-specific
splicing in the two sets of genes seemed to be related to cytoskeleton organization of the spe-
cific tissues. See S2 Table for more details.

Comparison to tissue-specific splicing at the transcript level

We were able to map sufficient RNAseq reads to both sides of the splicing event for 248 of the
255 events. According to the criteria we used in our analysis (a difference of at least 1 standard
deviation in expression levels between alternative events) there was evidence for group-specific
differences in expression for a total of 159 of the 248 events (62.9%). This concurs with what
has already been found by numerous groups; approximately two thirds of alternative splicing
events are strongly tissue-specific at the transcript level [1].

The tissue group with the most evidence for group-specific expression for the events in the
ASE255 set was digestive tissues (see S4 Fig), but nervous tissues, reproductive tissues, fat and
muscle tissues also had high levels of group-specific expression at the transcript level. There
was little evidence of tissue specificity at the transcript level among the 248 transcript level
events we analysed in either liver or endocrine tissues.
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Fig 4. The group-specific splicing event in FYN. (A) Group-specific distribution of reads that support each side of the
FYN splice junction (main, alternative) and those that support the common protein sequence (intersect) coloured by
standard deviation from the mean; the darker the colour, the greater the positive standard deviation. The main
transcript has more than one standard deviation of reads than the alternative for immune system tissues and the
alternative transcript has more than one standard deviation of reads than the main transcript in nervous tissues. (B)
The distribution of the PEDs from the proteomics experiments for the alternative and main isoforms (“Alt” and
“Main”) and those that map to the remainder of the common amino acid sequence (“Intersect”). The numbers of
PEDs that belong to each group are shown in brackets. Fisher tests show that the alternative side of the event is
significantly enriched in peptides from nervous tissues, just as in the RN Aseq experiment. The main side of the event is
significantly enriched in peptides from blood cells. Although both sides of the event are enriched in different tissue
groups, FYN does not count twice towards the total of 99 cases in the PGE99 set because the main side of the event is
enriched in blood cells.

https://doi.org/10.1371/journal .pchi.1008287.q004
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Coincidence of tissue-specific splicing at protein and transcript level

In order to make a direct comparison between the proteomics and transcriptomics data set, we
had to generate a set of paired events from the splice events in the ASE255 set. For the compar-
ison we required that the event was enriched in any of the tissue groups apart from blood. The
tissue groups that we included had to be present in both proteomics and RNAseq analysis and
the hematopoietic cells analysed in the Kim ef al experiments [21] did not have a comparable
tissue in the Uhlen ef al analysis [31].

For the comparison we only considered those events in which one side of the event (main
or alternative) was significantly enriched at the protein level in at least one of the grouped tis-
sues. We left out events that were only significant at the tissue level and events in which the
peptide evidence for the event was depleted rather than enriched. If an event was significantly
enriched in more than one tissue group, we counted each tissue in which it was enriched as a
distinct case. In total there were 99 cases of proteomics group-specific enrichment in which
either the main or alternative side of a splice event was significantly enriched in a tissue group.
An example is shown in Fig 4. The 99 cases came from 76 distinct events and are referred to
here as the PGE99 set.

Reassuringly, we found that two thirds (66) of the protein level enrichments were also
enriched in the same tissue group at the transcript level. The proportion of events significantly
enriched at both the protein and transcript level differed substantially between tissue groups
(Fig 5A). Many of the events enriched in muscle and nervous tissues at the transcript level
were also enriched at the protein level; 32 of 78 splice events enriched at the transcript level in
nervous tissues and 21 of 48 events enriched in muscle tissues were significantly enriched at
the protein level. However, the same was not true of the other tissue groups. Only 7 of the 85
events enriched in digestive tissues and just 3 of 71 events enriched in reproductive tissues in
the transcriptomics experiments were significantly enriched in the same tissues in proteomics
experiments. There was significant enrichment for one event in both protein and transcript
analyses in liver (ACOX1), one significantly enriched in respiratory tissues (NEBL) and one
significantly enriched in urinary tissues (TPM4).

The higher proportions of events enriched at both transcript and protein-level in muscle
and nervous tissues were statistically significant. Fisher’s exact tests showed significant differ-
ences between nervous and placenta (p-value = 0.0005), nervous and digestive (p-
value < 0.00001), nervous and reproductive (p-value < 0.00001}, and even nervous and respi-
ratory (p-value = 0.0495) and nervous and urinary tissues (p-value = 0.0272). The comparisons
between muscle tissues and digestive, placenta, reproductive, respiratory and urinary tissues
were similarly statistically significant.

In all but three of the 66 cases of significant enrichment in the same tissue at both the protein
and transcript level the event could be traced back to a common ancestor with fish. Tissue speci-
ficity at the transcript level also seemed to be associated with conservation of splice events (Fig
5B). Events that were tissue-specific in the transcriptomics analysis were older than events without
significant tissue-specific splicing (Fig 5B).The proportion of ancient (> 400 million years old)
splice events that were tissue enriched at the transcript level was also significantly greater than the
proportion of ancient splice events that were not tissue specific (Fisher exact test < 0.00001).

Event age and tissue groups

To analyse why there was considerably more coincidence between protein level and transcript
level tissue specific splicing in nervous and muscle tissues than in reproductive and digestive
tissues we defined the sides of each significantly enriched transcript level event as either
enriched (the side of the event with significantly more transcript evidence) or depleted.
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Fig 5. Comparison of RNA-level tissue-specific events. (A) The number of transcript-level enriched events also
enriched at the protein level. Each bar shows the number of transcript-level tissue group enriched events that are
enriched in the same tissue group in proteomics experiments. Enriched events were compared over the 9 tissue groups
that coincided in both transcriptomics and proteomics experiments. The number of events that were tissue-specific in
the transcriptomics experiments for each group is shown in brackets. (B) The age of the events enriched in RNAseq
studies in the five most populated tissue groups and those not enriched at all (None). At the RNAseq level more of the
muscle and nervous tissue enriched events are ancient than those in any other tissue. Results shown for tissues with a
minimum of 48 tissue-specific enriched events.

https:/doi.org/10.1371/journal.pcbi.1008287.g005
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With the two sides of each event defined we were able to sum the PEDs that supported each
side of digestive, muscle, nervous and reproductive tissue specific events (S5 Fig). We found
that there were significantly more PEDs for the transcript-enriched side of events than the
depleted side in all four tissues (Fisher’s exact tests: digestive 0.00001, muscle 0.0, nervous 0.0,
reproductive 0.0007),

We calculated the percentages of supporting PEDs for the enriched and depleted sides of
each individual event and generated scatter plots for each of the tissues (Fig 6). Most events
had proportionally more supporting PEDs for the enriched side of the splice event than the
depleted side in all four tissue groups. Where muscle and nervous tissues differed was that the
PEDs that support the enriched side of the event were often highly enriched. Many of the
points in muscle and nervous tissues fall a long way from the diagonal representing equal pro-
portions of supporting PEDs (Fig 6) and the enriched side is supported by 100% of the PEDs
in many events that are enriched in these tissues. By contrast none of the enriched sides of
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Fig 6. Scatter plot of the percentages of PEDs supporting transcript level enrichment. The figure shows scatter plots of the percentage of PEDs that support the
selected tissue for the side of the event that is enriched in that tissue group in the transcriptomics experiments (X-axis) versus the percentage of PEDs that support the
selected tissue for the side of the event depleted in the transcriptomics experiments (Y-axis). The diagonal line shows where the percentage of PEDs that support the
side of the event that is enriched in the transcriptomics experiments is identical to the percentage of PEDs that support the side of the event that is depleted in that tissue
group in the transcriptomics experiments. Events that have proportionally more PEDs on the transcript-enriched side of the event (those that agree with the
transcriptomics evidence) ought to be below the line. Tissues shown are A. Nervous B. Muscle C. Digestive and D. Reproductive.

hitps://doi.org/10.1371/journal.pcbi.1008287.g006
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events in reproductive or digestive tissues is supported by more than 70% of total PEDs. The
proteomics evidence suggests that many transcript-enriched events in digestive and reproduc-
tive tissues may also be enriched at the proteomics level, but the enrichment is often minimal,
as seen by the clustering around the diagonal in these two tissues (Fig 6).

The data also suggests there may be a higher proportion of noisy splicing at the transcript
level in reproductive tissues than in the other tested tissues, although it is difficult to draw firm
conclusions from tissues which include testis. In more than a third (35.6%) of events that are
reproductive-enriched at the transcript level there is as much or more evidence for the
depleted side of the event at the protein level as there is for the enriched side. The 31 events
that were tissue-specific at the transcript level in reproductive tissues that evolved most
recently (since the split with fish) are not as a whole significantly enriched at the protein level

(S6 Fig).

Is there correlation between proteomics and transcriptomic data at the
event level?

Since we had already calculated the percentage of PEDs that supported both sides of tissue spe-
cific splice events, we also calculated the percentage of RNAseq reads that supported splice
events that were tissue specific in digestive, muscle, nervous and reproductive tissues. We
determined the correlation between the percentage of PEDs and the percentage of RN Aseq
reads that supported each side of a splice event. Here there were also substantial differences
between digestive, muscle, nervous and reproductive tissues here (Fig 7). The correlation
between supporting PEDs and supporting reads was highest in nervous (0.799) and muscle
(0.748) tissues and lowest in reproductive tissues (0.413). Plots of supporting reads against sup-
porting PEDs are available for the four tissues (S5 Fig).

We used the whole of the ASE255 set to determine the correlation for each tissue by age of
splice event (Fig 7). When comparing supporting PEDs and reads over all splice events the
correlation will in part be due to gene expression rather than alternative splicing because we
are including events that are not significantly tissue specific. This explains much of the high
correlation among theria-derived events in reproductive tissues, for example. Despite this, it is
clear that the correlation between proteomics and transcriptomics support is considerably
worse for those splice events that arose in the primate clade. Correlation coefficients for pri-
mate-derived events (which make up more than three quarters of annotated alternative exons
in the human gene set) ranged from 0.003 (in muscle) to 0.319 (digestive tissues).

Caveats

There are a number of caveats to the comparison of proteomics and tissue level alternative
splicing. Firstly, the analysis was carried out on a small number of alternative splicing events.
This was inevitable because even large-scale mass spectrometry-based proteomics experiments
detect few alternative isoforms reliably [15]. Secondly, even though we analysed those splice
events with the most proteomics support, the relatively low numbers of discriminating pep-
tides for each event limits statistical power and makes it harder to identify tissue specificity. A
deeper exploration at the protein level is likely to show that there are tissue-specific differences
for some events that we are not detecting.

Thirdly, the comparison between the proteomics and transcriptomics experiments was
handicapped by the fact that the experiments were not paired (experiments did not come from
the same individuals). Finally, we were only able to interrogate 9 tissue groups, and it is likely
that other groups may also display further tissue-specific alternative splicing. For example,
there was also substantial evidence for tissue-specific alternative splicing at the protein level in
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https://doi.org/10.1371/journal.pcbi.1008287.g007

blood and at the transcript level in fat. Within these 9 tissue groups it was also harder to detect
tissue-specific splicing at the protein level in tissue groups with fewer replicate experiments
(placenta, endocrine and lung tissues).
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Given the nature of proteomics experiments and the minimum requirement for three
PEDs, we cannot demonstrate that any splice event is nof tissue or tissue group specific, or
even cell type specific. The lack of coverage and/or the different make up of tissues does play a
role in the differences between the results at the transcript and protein level. For example,
events in ABI2, and ATPI B4 were enriched in brain tissue in the transcriptomics analysis and
we identified multiple discriminating PSM for isoforms of in frontal cortex, but in both cases
the differences were not significant at the protein level due to the lack of peptide coverage.
Events in six genes, FMNI1, RAPIGAP, NECTIN1, IDE3B, FRMD5 and ATP2B3, that had
apparent tissue specific differences at the protein level (two had PEDs in frontal cortex, one
was apparently enriched in retina, one in fetal heart, one in adult heart, and one in pancreas)
were left out of the analysis because one side of each event only had 2 PEDs. All eight of these
events could be traced back to a common ancestor with fish.

Conclusions

Transcript level studies consistently show that the majority of alternatively spliced exons are
tissue specific. In this analysis we also find substantial tissue-specific alternative splicing also
exists at the protein level. Just over a third of the 255 splice events validated in our proteomics
analysis are significantly tissue specific.

Manual curation of the protein level tissue-specific splice events detected in our analysis
found that almost three quarters had homologues in fish. No tissue specific splice event was
primate-derived. This is in sharp contrast to the alternative exons in the human gene set, more
than three quarters of which arose in the primate clade. Reyes ef al found similar differences in
tissue specific splice patterns: while a minority of conserved exons had large amplitude tissue-
specific differences, exons with little variations in tissue specific usage were not conserved
between species [8].

The stark differences in conservation between tissue specific splice events with evidence at
the protein level and alternative exons in the human gene set mean that our results cannot be
extrapolated to the whole genome. The lack of detectable tissue-specific splicing among
recently evolved splice events suggests that primate-derived splice events are likely to have dif-
ferent tissue-specific behaviour and many may have low amplitude tissue differences, if they
have any at all. The weak link between protein level tissue-specificity and recent splice events
suggests that tissue-specific alternative splicing is unlikely to generate important species-spe-
cific differences.

The theory that alternative splicing might be responsible for large-scale tissue-specific pro-
tein-protein interaction networks [9,32] is based in part on evidence for tissue specific splic-
ing, and in part on evidence that alternative exons are enriched in predicted disorder. While
we find that alternative exons with evidence of translation are more disordered than would be
expected, we find contrasting results for tissue specific splicing events. The set of protein level
tissue specific splice events actually have proportionally fewer disordered regions than non-tis-
sue specific splice events.

There is some overlap between our data set and the exons used in these two analyses. For
example, BINI, illustrated in the Ellis et al study [32], is part of our ASE255 set. However, our
set is highly enriched in exons that evolved during or prior to the vertebrate clade and more
recently evolved splice events are significantly enriched in predicted disordered regions (S2
Fig). Recently evolved splice events have significantly more disordered regions than those that
evolved more than 400 million years ago (Fisher exact test value < 0.00001). Although tissue
specific alternative splicing is likely to affect protein-protein interactions, our study suggests
that the role of disorder may not be as important as has been suggested.
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Most protein level tissue enrichment at the protein level occurred in either muscle or ner-
vous tissues. By way of contrast to other analyses [22,24], which found considerable evidence
of tissue-specific splicing in testis at the protein level, we detected little evidence for tissue-spe-
cific splicing at the protein level in testis or in grouped reproductive tissues as a whole. Very
few events were significantly enriched at the protein level in reproductive tissues and more
than a third of the 71 events enriched at the transcript level were actually depleted at the pro-
tein level.

Nervous and cardiac tissues have been shown to have an important number of conserved
tissue-specific splice events [33,34]. Our protein-level results are in agreement with an analysis
of transcript level splicing signatures across multiple vertebrate species [2], which found that
brain and heart/muscle tissues had strong conserved splicing signatures, while remaining tis-
sues clustered by species rather than by tissue.

Functional analysis showed that protein level tissue-specific events were significantly
enriched in genes annotated with functional terms related to the cytoskeleton. Genes with sig-
nificant tissue-specific alternative splicing in muscle tissues (principally heart) were related to
the composition and function of muscle and the Z-discs in the sarcomere, while genes with
significant tissue-specific alternative splicing in nervous tissues were related to cytoskeletal
connections and cell-cell contacts.

The importance of tissue-specific alternative splicing in two specialised tissues like brain
and heart, the clear evidence of deep conservation, and the functional terms that are associated
with the cytoskeleton and cellular differentiation paints a picture in which tissue-specific alter-
native splicing has been decisive in the development of nervous and muscle tissues. Our results
are supported by previous data that document that tissue-specific splicing plays an important
role in the development of brain and heart tissues [35-37].

In this study we have identified many functional alternative isoforms along with the tissues
in which they are most expressed. The challenge is to determine exact functional roles for
those isoforms where none is known. The gene NEBL, for example, has two main isoforms
that differ in their N-terminals, the longer is called nebulette and the shorter LASP2. We find
that nebulette is expressed exclusively in cardiac tissues, while LASP2 is found most often in
nervous and urinary tissues and not in muscle tissues. Although the role of nebulette in bind-
ing Z-disc associated desmin filaments in cardiac tissues has been known for several years
[38], LASP2 has only recently been shown to play a crucial role in post-synaptic development
in the brain [39]. In order to further the investigation into the roles of these undoubtedly
important alternative isoforms, we have listed many of the tissue specific alternative isoforms
analysed in this study on the APPRIS web site [20].

Material and methods
Human reference genome

This study was based on the annotations in v27 of the GENCODE human reference gene set.
The manual annotations in GENCODE v27 [3] are equivalent to Ensembl 90 and were pro-
duced in June 2017. The GENCODE v27 gene set had 19,881 protein coding genes.

Proteomics analysis

We reanalysed the data from the Kim ef al [21] proteomics experiments. The data comprised
spectra from high-resolution Fourier-transform mass spectrometry experiments of 30 histo-
logically normal human samples, including 17 adult tissues, 7 foetal tissues and 6 purified pri-
mary haematopoietic cells. In total there were 79 usable experiments, 18 covering fetal tissues
and 61 covering adult tissues and haematopoietic cells. All tissues had at least two replicate
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experiments, though the number of replicates varied. Adult heart had five replicates, for
example.

Spectra from each experiment were downloaded from ProteomeXchange [40] and were
searched against the GENCODE v27 human reference proteome, a decoy database [41] and a
list of common contaminants, using the COMET search engine [42]. COMET allowed fixed
post-translational modifications of methionine. The peptide spectrum matches (PSMs) from
COMET were post-processed with Percolator [43]. We were more interested in reducing false
positives than in increasing coverage, so we selected those PSMs that had a posterior error
probability (PEP) lower than 0.001. PEP values of less than 0.001 in our analysis equated to
PSM q-values of less than 0.0001. In addition, peptides were also limited to those that were
fully tryptic, had no more than a single missed cleavage and had a length between 7 and 40 res-
idues. Peptides that mapped to more than one gene were also discarded. With these rules in
place we identified at least 2 PSM for 11,065 coding genes in the GENCODE v27 reference set.

Although we searched for tissue specificity using the 30 distinct tissues in the Kim ef al anal-
ysis, much of the analysis was based on pooling the 30 tissues and hematopoietic cells into 10
groups of related tissues. This was done to amplify any signal. The proteomics tissue groups
are detailed in S3 Table.

Alternative splicing analysis

We analysed the tissue specificity of splice events rather than the tissue specificity of entire
transcripts and splice isoforms because RN Aseq reads and peptides are too short to cover
more than short regions of sequence. Transcript reconstruction methods can be used to pre-
dict alternative transcript levels, but these methods are inaccurate [44] and there is no equiva-
lent method for proteomics data.

In order to analyse splice events it is necessary to introduce the idea that splice events have
two sides. Discriminating peptides and RN Aseq reads will map to one side or the other of a
splice event. For example, in the case of an indel one side of the event will be an insertion and
the other a deletion, while there will be two different amino acid sequences at the protein level
in the case of substitutions. We distinguished each side of the event as the main (the side of the
event with most protein evidence) or alternative.

Analysis of the proteomics data allowed us to detect the presence or absence of peptides in
distinct tissue-based experiments. Given the format of the experiments we were analysing
(label-free experiments, replicates for all tissues) we chose to count the number of experiments
in which splice event distinguishing peptides were detected. Each peptide was associated with
a peptide-experiment detections (PEDs) count, which represented the number of experiments
in which a peptide was detected. A peptide that was identified in every single experiment
would therefore have 79 PEDs; peptides identified in a single experiment would be associated
with just one PED. For the analysis we required that each side of a splicing event (main and
alternative) was supported by a minimum of three PEDs (Fig 8A). This threshold was applied
because it is not possible to detect the significance of tissue specificity for events supported by
fewer than three PEDs.

Protein level tissue specificity calculations

To carry out tissue-specific analysis at the protein level we annotated one side of each splice
event as belonging to the main isoform, the side of the event with the most supporting PEDs,
while the other side of the event was determined to belong to an alternative isoform. For each
event, PEDs that supported each gene were separated into three types (Fig 8B), those that sup-
ported the side of the splice event with most evidence (that would give rise to the main
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Fig 8. Group-specific splicing in gene TORIAIPI. (A) We found peptide evidence for a single primate-derived splice event for TORIAIPI. This NAGNAG splicing
event resulted in the loss/gain of a single amino acid. The discriminating peptides we detected are highlighted. (B) The distribution of the PEDs for the discriminating
peptides (“Alt” and “Main”) and the remaining peptides that mapped to TOR1AIP1, but that did not distinguish one isoform from the other (“Intersect”). The number of
PEDs in each set is shown in brackets. Fisher tests show that the distributions of PEDs between the Main and Alt peptides are not significantly different over any of the
ten tissue groups. (C) The group-specific distribution of reads that support each side of the splice junction (main, alt) and those that support remaining common protein
sequence (intersect) coloured by standard deviation from the mean; the darker the colour, the greater the positive standard deviation. There is more than one standard
deviation between the reads for the digestive and reproductive groups, so the TORIAIPI event is determined to be group specific at the transcript level for these tissue

groups.

https://doi.org/10.1371/journal.pcbi.1008287.g008

isoform), those that supported the other side of the splice event (the alternative isoform) and
those that did not discriminate between the main isoform and the alternative isoform (the
intersect).

We used the PEDs to calculate three sets of contingency tables for Fisher’s exact tests,
always comparing one tissue or group against the rest of tissues or groups. Fisher’s exact tests
were carried out for all tissues between main isoform and alternative isoform, main isoform
and intersect, and alternative isoform and intersect.

Transcript expression data

We downloaded data from the large-scale RN Aseq analysis carried out by the Human Protein
Atlas [31]. The RNAseq analysis was performed on 36 different tissues. It covers similar tissues
to the Kim et al. analysis, though this analysis did not investigate fetal tissues or blood cells (83
Table). We aligned the RNAseq data to GENCODE v27 using STAR 2.6 [45], forcing end-to-
end read alignments to avoid unwanted alignments to repetitive regions. The maximum num-
ber of multiple alignments allowed was 50 and the rest of parameters were set by default.

We grouped tissues from the Human Protein Atlas analysis into 12 groups, where possible
using just those tissues analysed in the proteomics experiments. Transcriptomics analysis
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tissue groupings are shown in §3 Table. Tissues not interrogated in the proteomics experi-
ments (such as skeletal muscle and duodenumy} were left out of the groupings. There were
three groups that did not appear in the proteomics analysis (skin, fat and immune system} and
one proteomics analysis group that did not have an equivalent in the transcriptomics analysis
(blood}.

For the 255 splice events in the protein level alternative splicing set, we summed the reads
into three groups in the same way that we did for the peptides, those reads that distinguished
either the alternative or the main side of the splicing event and those that did not distinguish
either side of the event. We calculated the mean number of reads across all the tissue groups
for each gene and used the mean to calculate standard deviations for each set of reads that
mapped to each peptide (Fig 1C). Events were counted as tissue group specific when the reads
that mapped to one side of the splice event (equivalent to the main protein isoform or the alter-
native splice isoform) were at least one standard deviation higher than the other side of the
splice event. Heat maps for the splice events in the ASE255 set are shown in 87 Fig.

Alternative exon age

We calculated the age of the splice events in the ASE255 set manually by searching for support-
ing evidence in the UniProtKB database. We carried out BLAST [46] searches against verte-
brate sequences with the residues that made up each side of the event and manually noted the
presence or absence of the required sequence. If the event was shorter than 20 amino acid resi-
dues, we added flanking amino acids so that the search sequence was at least 20 amino acids
long. We complemented BLAST searches with multiple alignments of vertebrate sequences.

To analyse the age of events in the genome as a whole, we calculated cross-species conserva-
tion scores for the alternative exons in the human reference set. Alternative exons were defined
at the genome level using the APPRIS database [20]. APPRIS selects a representative protein
isoform as the principal isoform for every coding gene. APPRIS determines principal isoforms
based on protein structural and functional information and a score representing cross-species
conservation and we have demonstrated that a single main isoform is the reality for the major-
ity of coding genes and that APPRIS is the best predictor of this main isoform [7]. Alternative
isoforms were all isoforms that were not tagged as principal. Alternative exons were those that
did not overlap at all with exons that produced principal isoforms.

Ideally we would also calculate exon age manually, but this is not feasible at the genome
level. Instead we calculated exon age from the cross-species conservation of the amino acid
sequence corresponding to each exon. Cross-species conservation was calculated from BLAST
searches against a protein database. We limited our analysis to alternative exons with a mini-
mum of 42 bases to reduce the error rate.

Searches were carried out in two ways. Firstly, we searched for similarity to the translated
exon itself, and secondly, we searched for similarity to the translation of the exon joined to the
neighbouring exon (in the case 3’ and 5’ exon substitutions), or the exon plus both flanking
exons (in the case of inserted or substituted exons). For searches with both sets of exons we
recorded the species of those homologous sequences that had fewer than four residue inser-
tions. The most distant homologue in each search was taken to represent the predicted age of
the exon. The final exon age was the minimum of the predicted ages in the two analyses (the
single exon and multiple exon calculations).

Disorder predictions

We downloaded the IUPred2 disorder predictor [47] to make predictions for disorder for the
splice isoforms in the ASE255 set. We calculated long disorder for all regions that differed
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between the main and alternative isoforms. For indels we calculated disorder for the insertion,
for substitutions we calculated disorder for both regions involved in the swap and took the
region with the highest proportion of disorder as the representative score for that event. Events
that were four or fewer amino acids in length were left out of the analysis. IUPred defines a dis-
ordered residue as having a score of 0.5. We defined a region as disordered if more than half of
the amino acid residues scored more than 0.5.

GO term calculations

We used DAVID [48] to calculate the significantly enriched GO terms within the genes we
detect alternative splicing for, within those genes that had tissue-specific alternative splicing in
nervous tissue in both proteomics and transcriptomics experiments, and within those genes
that had tissue-specific alternative splicing in muscle tissue in both proteomics and transcrip-
tomics experiments. As a background we used the 10,485 genes that we detected in the Kim

et al experiments that had at least two distinct non-overlapping peptides. This was to remove
in-built biases of the proteomics experiments and to limit to those genes for which it was mini-
mally possible to detect two distinct splice isoforms.

Supporting information

S1 Fig. Significant tissue specific alternative splicing cases in proteomics tissues. The count
of the number of times we recorded tissue specific differences at the protein level in each of the
30 tissues.

(PDF)

S2 Fig. Predicted order and disorder for alternative exons. Mean order and disorder pre-
dicted by IUPred for various subsets. Profein TS are those events that are tissue specific at the
protein level. Transcript TS are those events that are tissue specific at the transcript level. Cas-
sette TS are skipped exon events that are tissue-specific at the protein level. Protein Not are
those events that are not tissue specific at the protein level. Transcript Not are those events that
are not tissue specific at the transcript level. Cassette TS are skipped exon events that are not
tissue specific at the protein level. Ancient are those events that manual curation has shown to
evolve more than 400 million years ago. Recent are all other events.

(PDF)

S$3 Fig. The relative ages of splice events in cytoskeleton-related genes. The number of
events with evidence in four different clades (vertebra to primates) separated into four groups
by whether or not they were present in cytoskeleton-related genes (“Cytoskeleton” and “Other
genes”), and whether or not the event was found to be significantly tissue specific at the protein
level (“TS” or “Not”). There was a significantly higher proportion of vertebrate-derived events
among the tissue specific events in cytoskeleton-related genes (Fisher’s exact tests: 0.0093 vs
Other genes TS, less than 0.00001 for the other two non-tissue specific groups).

(PDF)

$4 Fig. The number of events that were tissue-specific in each of the 12 transcriptomics tis-
sue groups.
(PDF)

S5 Fig. Correlation between supporting PEDs and supporting reads. For each enriched/
depleted event in the corresponding tissue the chart shows the percentage of reads support one
side of the event that are detected in the corresponding tissue, plotted against the percentage of
all PEDs for the same side of the event detected in proteomics experiments for that tissue.
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Results are shown just for those events that are enriched/depleted in transcriptomics experi-
ments in (A) digestive, (B) muscle, (C) nervous and (D) reproductive tissues.
(PDF)

S$6 Fig. Percentage of PEDs supporting the transcript level enrichment. The figure shows
the percentage of supporting PEDs for the four tested tissue groups (digestive, muscle, nervous
and reproductive) from events are enriched (or depleted) in these groups in transcriptomics
experiments. The percentage of supporting PEDs among all PEDs detected are shown for the
sides of the events that are enriched in transcriptomics experiments (dark red) and for the
sides of the events depleted in transcriptomics experiments (light blue). The percentage of
PEDs are shown over all events enriched in transcriptomics experiments (A}, over the subsets
of events enriched in transcriptomics experiments that evolved after the split from fish (Tetra-
poda) and over those that evolved after the split from monotremes (Theria). The number of
events enriched in transcriptomics experiments and in each subset is shown in the x-axis.
Asterisks above the bars show where the number of PEDs supporting the enriched side of the
events were significantly different from the number of PEDs on the depleted sides of the events
as would be expected if the events were group specific as a whole.

(PDF)

S$7 Fig. Heatmaps with the standard deviation for the AS events. The darker the colour, the
greater the standard deviation. We calculated the mean number of reads across all the tissue
groups for each gene (infersect) and used the mean to calculate standard deviations for each set
of reads that mapped to each event. Events were counted as tissue group specific when the
reads that mapped to the main or alternative (aif) side of the splice event were at least one stan-
dard deviation higher than the other side of the splice event.

(PDF)

S1 Table. The ASE255 set.
(XLSX)

$2 Table. GO terms for tissue specific events.
(XLSX)

$3 Table. List of groups of tissues in proteomics and RNA-seq experiments. Human Body
Map tissue proteomics experiments collected in tissue groups (tab 1) and Human Protein
Atlas tissue transcriptomics experiments collected in tissue groups (tab 2).

(XLSX)
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Many experiments and large-scale analyses require a single representative for each gene.
The standard method for selecting a representative is to choose the longest isoform, but the
longest isoform is not always the main isoform. APPRIS automatically selects a principal
isoform for coding genes based on the available biological information. APPRIS deploys a
range of computational methods to annotate alternative isoforms with protein 3D structure
information, functionally important residues, Pfam domains, signal peptides and
transmembrane helices, and a score for the cross-species conservation of each transcript
model. These high-quality annotations are used to select the principal isoform.

The motivation behind APPRIS is the observation that most alternative isoforms either lack
regions of conserved structure or function, or have exons that are evolving at measurably
different rates compared with their principal counterparts (Tress et al., 2008). APPRIS selects
as a principal isoform the isoform with the most conserved protein features and most
evidence of cross-species conservation, while those isoforms with unusual, missing or non-
conserved protein features are flagged as alternative.

Results from our group and others (Ezkurdia et al., 2012, 2015; Sheynkman et al., 2013;
Tress et al., 2017) suggest that many genes have a single, clearly definable dominant protein
isoform and that the alternative isoforms are either expressed less frequently, in limited
tissues or in unique developmental stages, or have a much shorter half-life. The dominant
protein isoform is almost always the APPRIS principal isoform: APPRIS principal isoforms
overwhelmingly coincide with the manually annotated unique CCDS variants and with the
main isoforms detected in large-scale proteomics experiments (Ezkurdia et al., 2015). Further
corroboration of the importance of APPRIS principal isoforms comes from large-scale genetic
variation studies, which show that exons from principal isoforms are under purifying selection,
while alternative exons appear to be evolving neutrally (Liu & Lin, 2015; Tress et al., 2017).

The principal isoform is the most representative isoform for each coding gene. However, not
all APPRIS principal isoforms are alike. Principal isoforms are tagged with a score from 1 to
5 depending on the reliability of the selection, with 1 being the most reliable and 5 being the
method of last resort, selecting the longest remaining candidate isoform. APPRIS determines
a most reliable isoform for 75%-95% of protein-coding genes annotated depending on the
gene set and the species. In the case of human, the current version of the APPRIS database
determines a principal isoform without resorting to sequence length in 99% of protein-coding
genes, compared to the previous version that identified a principal isoform for 85% of the
human protein-coding genes.

The reliability of each APPRIS module is continually revised using the Ensembl/GENCODE
human reference gene set. We determined that the gold standard set for principal isoforms
are those genes with just one CCDS variant because the agreement between the main
experimental isoforms and unique CCDS variants was 98.6% across those genes that had a
single CCDS isoform (Ezkurdia et al., 2015; Tress et al., 2017). Since the first published
version of APPRIS, there has been a steady increase in the agreement between the unique
CCDS variants and the APPRIS principal isoforms (and of course the results from the
individual methods).

One example that displays the recent improvements in the APPRIS methods and the principal
isoform decisions is the ASIC4 gene. Acid-sensing ion channel 4 is a cation channel with an



affinity for sodium. This gene has two variants (ASIC4-201 and ASIC4-202). Both isoforms
map to many 3D structures (e.g. 3134), but ASIC4-201 has a deletion that by homology to
ASIC1 would remove part of the thumb region, a region crucial to the regulation of the ion
channel (see Figure 9). Although the Pfam domain (ASC) is broken in both isoforms, the
ASIC4-201 isoform with the deletion would have an extra gap. In previous versions of
APPRIS, Matador3D and SPADE disagreed over which isoform was most likely to be the
principal isoform because the Pfam domain was broken in both isoforms. The new version of
SPADE recognizes the extra break in the ASC domain caused by the deletion in ASIC4-201
and selects ASIC4-202 as the main isoform. Since both Matador3D and SPADE now agree
on the isoform that most represents the conserved protein features, ASIC4-202 is now
selected as the principal isoform.
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Figure 9. The deletion in ASIC4-201 mapped onto the structure of chicken ASIC1. The region
deleted is in orange. Caesium cations shown in red. The deletion would lead to the complete refolding
of the “thumb” region of the protein, a region that is important for the regulation of the ASIC1 ion
channel (Hanukoglu, 2017). The image was generated using Pymol (The PyMOL Molecular Graphics
System, Version 2.0 Schrédinger, LLC) based on PDB structure 3134, chicken ASICL1.

APPRIS principal isoforms have a wide range of uses, from the determination of principal
and alternative isoforms for genes in individual research projects, to the determination of
principal and alternative exons for use in genome-wide analysis of variants. Clarifying which
splice isoform (or isoforms) is functionally relevant is important for understanding biological
systems and the effect of mutations (Abascal et al., 2016). Indeed, we have found that just
0.6% of ClinVar (Landrum et al., 2018) pathogenic mutations supported by publications map
to exons defined as alternative by APPRIS. Even then the phenotypic effect of half of these
mutations is likely to be a result of interference with principal transcript splice sites rather than
an effect on the predicted alternative isoform (unpublished results).

APPRIS is also providing a wealth of data that are being used in ongoing projects to further
investigate the role and importance of AS, such as the analysis of tissue-specific AS
(Rodriguez et al., 2020), the labelling of potential non-coding genes (Abascal et al., 2018),
the prediction of functional alternative isoforms (unpublished results).

Before this publication, the APPRIS database covered five Ensembl species (human, mouse,
rat, pig and zebra fish). With the publication, we extended the database to three more
species: one vertebrate (chimpanzee) and two invertebrate genomes (Drosophila and
Caenorhabditis elegans). However, APPRIS is continually expanding based on the needs of
the scientific community, and now APPRIS has two more vertebrate species: chicken and



DISCUSSION

cow. The chicken genome was a request from the large-scale Bird 10,000 Genomes Project
(Zhang, 2015).

The extension of APPRIS annotations to the RefSeq gene sets and UniProtKB proteomes, a
part of Ensembl/GENCODE, is very useful for investigators and genome research. We have
also created merged gene sets for vertebrate species by cross-referencing the
Ensembl/GENCODE, RefSeq and UniProtKB reference sets. We established a common
gene set (Intersection).

The merged gene set, Intersection, allows us to identify isoforms missing in the individual
gene sets. This information is fed back to manual annotators to inform gene models. For
example, the principal isoform from the Intersection set for the gene GRIFIN is annotated in
Ensembl/GENCODE (ENST00000614228) and UniProtKB (A4D1Z8), but not in RefSeq
(Figure 10). The principal isoform has annotation evidence from cross-species alignments
and the C-terminal extension in the Ensembl/GENCODE and UniProtKB (but not in the
RefSeq variants) is also established in mammals. In addition, the principal isoform maps
better to known 3D structures, and has an unbroken Pfam domain.
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Figure 10. APPRIS annotations for gene GRIFIN - figure from (Rodriguez et al., 2018). (A)
APPRIS results for the three protein-coding variants composed of Ensembl/GENCODE, RefSeq and
UniProtKB. APPRIS identifies the same isoform ENST00000614228 (Ensembl) and A4D1Z8
(UniProtKB) as the principal isoform (highlighted in green). A selection based on the 3D structure, the
functional domains and the conservation in related species. (B) Alignment for a section of the Pfam
galectin family of proteins. The red arrow shows where 8-extra residues in the RefSeq variants would
disrupt a region of the functional domain of GRIFIN. (C) The 3D structure of 4LBJ that has identity
with variants ENST00000614228+A4D1Z8. The red arrow shows where the 8-extra residues would
break the structure.
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The initial step to merge the three human reference sets Ensembl/GENCODE, RefSeq and
UniProtKB was based on a process developed for APPRIS. Afterwards, we carried out an
extensive manual selection to integrate the three data sets. The manual curation produced a
combined set of 22,210 protein-encoding genes. At the same time, 19,446 genes were
annotated in the intersection of the three sets, which meant that one in eight protein-coding
genes were classified differently in at least one of the reference sets (Figure 11).

All Reference Coding Genes

Antisense — 8.8% Antisense — 30.6%
Pseudogene - 39% Pseudogene — 19.4%
Read-through — 0% Read-through — 0.6%

UniProtKB RefSeq
Antisense — 13.9%
Pseudogene — 14.6%
Read-through — 51.9% Ensembl/GENCODE

Figure 11. The overlap between Ensembl/GENCODE, RefSeq and UniProtKB genes - figure
from (Abascal et al., 2018). The diagram shows the number of coding genes for each reference
database and the intersection between them. The number of genes in the intersection of the three
sets is variable because RefSeq and Ensembl/GENCODE disagree on gene boundaries for a number
of genes. The figure also shows the percentage of annotated coding genes classified as antisense
and pseudogene in other databases, or known to be based on read-through transcripts for coding
genes unigue to one reference set.

Those genes that are not classified as coding in all three reference sets have a range of
alternative classifications (Table 1). For example, 51.9% of the genes annotated as coding in
Ensembl/GENCODE and UniProtKB but not in RefSeq are read-through genes (Figure 11).
Read-through genes, genes that are composed of transcripts that skip the last coding exon
to read through to exons from neighboring genes or pseudogenes, are currently classified as
coding by the RefSeq and Ensembl/GENCODE annotations even though there is little
evidence they encode proteins. Potential "antisense" genes, non-coding genes on the
opposite strand of protein-coding loci, account for 30.6% of genes classified as coding in the
RefSeq unique subset.

Genes that are classified as pseudogenes in other reference sets make up 39% of the genes
that are coding in UniProtKB alone (Figure 11). These genes have homology to known
protein-coding genes but contain a frameshift and/or stop codon(s), which disrupt the ORF
and most arise through duplication followed by loss of function. These genes are especially
difficult to distinguish from coding genes. Distinguishing whether a locus should be a



pseudogene or protein coding gene is often complicated and changing predictions to coding
genes involves investigating variation of haplotypes, underlying genome assembly errors and
using extremely stringent mapping options to confidentially (Bruford et al., 2015).

Ensembl RefSeq UniProtKB Ensembl - Ensembl- RefSeq -

Single  Single Single RefSeq UniProtKB UniProtKB

Antisense 7 260 84 96 22
Dupli
up |c.ate A1 5 1
(technical)
IG/TR genes 6 120 33 16
LncRNA 141 126 1 47
Other ncRNA 39 40 23 7
Sense overlapping 44
Pseudogene 2 165 373 101 39
Read-through 38 5 7 358 1
Retroviral gene 26
Sense intronic 2 31 16
Alt genome
. 6 84
sequence
Not in reference 9 160 104 78 3
Total 105 851 957 42 690 119

Table 1. The annotations of genes not classified as coding in all three sets. The table shows the
classification for those genes classified as coding by just one or two reference sets. Genes annotated,
but not in the reference set are tagged as “Alt genome sequence”. Genes that are not present in other
reference sets are labelled as “Not in reference”.

In the paper we defined a set of 16 potential non-coding features. A total of 2,278 (11%)
Ensembl/GENCODE coding genes were tagged with at least one of the potential non-coding
features. This included almost all the genes outside of the intersection of the three reference
sets. This suggests that many or even most of the “coding” genes outside of the intersection
may not code for cellular proteins.

In order to compare the potential non-coding (PNC) genes with genes that are likely to be
coding, we analyzed experimental transcriptomics, proteomic and antibody binding data. Few
potential non-coding genes had reliable proteomics or antibody evidence and they also had
less transcript support. In fact, PNC genes had significantly lower transcript expression and
were detected in very few tissues. Since non-coding genes are known to have much lower
levels of expression (Derrien et al., 2012), the low or negligible RNA-seq expression levels is
further evidence for the suggestion that many PNC genes will not code for proteins.

Genetic variation data is a good indicator of selective pressure. Most coding genes should
have very few high impact variants in common alleles and should have non-synonymous to
synonymous ratios that are lower for common alleles than they are for rare alleles. We found
that PNC genes had a much higher proportion of high impact variants and greater non-
synonymous to synonymous ratios than likely coding genes (Figure 12).



The higher proportions of high impact variants among PNC genes and the similarity in non-
synonymous to synonymous ratios in both common alleles and rare alleles suggests that
many of these genes are not under purifying selection. Since neutral selection is not
characteristic of coding genes, this implies the suggestion that many PNC genes are unlikely
to code for functional proteins. Those PNC genes annotated by two or fewer reference sets
(Subsets) had worse ratios than the PNC from the intersection of the three sets (Intersect).
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Figure 12. Genomic variation in likely coding genes and possible noncoding genes - figure
from (Abascal et al., 2018). Percentage high impact variants (yellow) and nonsynonymous/
synonymous ratios (blue) for known coding genes (likely coding genes), for possible non-coding
genes in the intersection of the three sets (PNC Intersect) and for those PNC genes classified as
coding by just one or two reference sets. Read-through genes were removed when calculating
variants. The darker colours show the values for common variants and the lighter shades show the
values for rare variants.

Although we predicted that many of the PNC genes will not code for proteins, the
determination of whether a gene is coding or not is complicated and ambiguous. Even what
should be unequivocal coding evidence itself may not always be what it seems. Antibody
experiments are not specific enough to distinguish similar proteins, and proteomics
experiments can easily confuse similar peptides due to single amino acid variations or post-
translational modifications. In fact, after the publication of the paper we sent a dozen antibody
identifications of PNC to the Human Protein Atlas to discover which were most likely to be
real. The Human Protein Atlas told us that none of the identifications should be regarded as
high confidence.

To complicate matters further, while positive evidence for coding potential is often hard to
validate, support for non-genes does not exist: it is impossible to prove that a gene can never
code for a protein. In the end classification as non-coding, pseudogene, artifact or coding is
usually decided by manual curators on the balance of all the available evidence.

The distinct methods of curation in RefSeq, UniProt and Ensembl/GENCODE means that
there are likely to be many disagreements between the annotators over the genes that are
annotated differently in the three reference sets. However, as a result of our paper the three
annotation groups are now working more closely together.



If most of the genes not classified as coding across the three reference sets do not code for
proteins, the number of coding genes will be much closer to the 19,446 genes common to
the sets. However, it is still early to speculate on the exact number of coding genes because
it is impossible to know how many new coding genes may appear (Wright, J. C. et al., 2016).

With the publication of the "finished" version of the Human Genome Project (International
Human Genome Sequencing Consortium, 2004), the number of coding genes decreased
between 20,000 and 25,000. The most recent version of GENCODE (GENCODE v35
08/2020) contains 19,954 genes. Rigorous manual annotation has brought us considerably
closer to a final catalog of human coding genes, where the annotators coincide in more than
85% of the coding genes.

Studies have shown consistently that most alternatively spliced exons are tissue specific at
the transcript level. In this analysis, we also found substantial tissue-specific alternative
splicing at protein level. Given the relatively low coverage of proteomics experiments, it
should be more difficult to detect tissue specific isoforms, yet we found that just over a third
of the 255 splice events validated in our proteomics analysis are significantly tissue specific.
Tissue specific alternative protein forms were particularly abundant in nervous and muscle
tissues (see Figure 13).

Both nervous and muscle tissues have previously been shown to have an important number
of conserved tissue specific splice events (Kalsotra et al., 2008; Vuong et al., 2016). Our
protein-level results are in agreement with an analysis of transcript level splicing signatures
across multiple vertebrate species (Merkin et al., 2012), which found that brain and
heart/muscle tissues had strong conserved splicing signatures, while remaining tissues
clustered by species rather than by tissue.
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Figure 13. Correlation between PED and RNA-seq read support - figure from (Rodriguez et al.,
2020). (A) Correlation between percentage PED and read support for those splice events enriched in
grouped digestive, muscle, nervous and reproductive tissues at the transcript level. (B) Correlation
between percentage PED and read support for splice events grouped by event age.

We found that although many events enriched in reproductive and digestive tissues at the
transcript level were also enriched at the protein level, these differences were almost never
statistically significant. In contrast to other analyses (Lau et al., 2019; Wright, J. C. et al.,
2016), which found considerable evidence of tissue-specific splicing in testis at the protein
level, we found that very few events were significantly enriched at protein level and more than
a third of the events enriched at the transcript level were actually depleted at the protein level.

Although we detected substantial evidence of tissue specific alternative splicing at the protein
level, there was evidence to suggest that the high number of tissue specific isoforms might
be specific to the set of highly expressed splice isoforms in this paper. Alternative splice
events detected in proteomics experiments were considerably more conserved than those in
the genome as a whole: more than half of the alternative events in the 255 alternative splicing
events evolved more than 400 million years ago and only 7.8% of the alternative events in
our set derived from the primate clade (Figure 14). Ezkurdia et al. previously showed that
proteins from ancient gene families are more likely to be detected in proteomics experiments
(Ezkurdia et al., 2014) and that there is little reliable proteomics evidence for primate-derived
coding genes (Abascal et al., 2018; Ezkurdia et al., 2014). Hence, it is not surprising that we
also found most evidence for ancient splice events and little evidence of alternative splicing
events derived from the primate clade.
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Figure 14. The age of alternative exons versus subsets of splicing events detected in
proteomics experiments - figure from (Rodriguez et al., 2020). "Exons (whole genome)” — all
alternative exons in the human genome, ‘ASE255 set“ — initial data set with the 255 alternative
splicing events detected in the proteomics analysis, “Tissue-specific (proteomics)” - events that have
significant tissue or group-specific differences at the protein level and “Not tissue specific” — events
without tissue-specific enrichment in proteomics experiments.

However, not only was the set of alternative events detected at the protein level enriched in
ancient events, but tissue-specific splice events were even more conserved. Almost three
guarters of events with evidence of tissue specificity at the proteomics level evolved more
than 400 million years ago. No tissue specific splice event was primate-derived. This is in
sharp contrast to the alternative exons in the human gene set, more than three quarters of
which arose in the primate clade. Reyes et al found similar differences in tissue specific splice
patterns: while a minority of conserved exons had large amplitude tissue-specific differences,
exons with little variations in tissue specific usage were not conserved between species (A.
Reyes et al., 2013).

The stark differences in conservation between tissue specific splice events with evidence at
the protein level and alternative exons in the human gene set mean that our results cannot
be extrapolated to the whole genome. The lack of detectable tissue-specific splicing among
recently evolved splice events suggests that primate-derived splice events are likely to have
different tissue-specific behaviour and many may have low amplitude tissue differences, if
they have any at all. This weak link between protein level tissue-specificity and recently
evolved splice events makes it unlikely that important species-specific differences arose from
tissue-specific alternative splicing.

The theory that alternative splicing might be responsible for large-scale tissue-specific
protein-protein interaction networks (Buljan et al., 2012; Ellis et al., 2012) is based in part on
evidence for tissue specific splicing, and in part on evidence that alternative exons are
enriched in predicted disorder (Romero et al., 2006). We analysed the proportion of events
with disorder in the ASE255 set and found that alternative exons in the set of splice events



were enriched in disorder. However, there was no indication that disorder was related to
tissue specificity either at the protein level or transcript level.

The functional analysis showed again that alternative splicing at the protein level is highly
enriched in terms related to the cytoskeleton (Ezkurdia et al., 2012). Among genes with
nervous and muscle tissue specific alternative splicing, there were clear differences between
the functional terms enriched in these two subsets of genes. Genes with significant tissue
specific alternative splicing in muscle tissues (principally heart) were related to the
composition and function of muscle and the Z-discs in the sarcomere, while genes with
significant tissue specific alternative splicing in nervous tissues were related to cytoskeletal
connections and cell-cell contacts.

The importance of tissue specific alternative splicing in two specialised tissues like brain and
heart, the clear evidence of deep conservation, and the functional terms that are associated
with the cytoskeleton and cellular differentiation paints a picture in which tissue specific
alternative splicing has been important in the development of nervous and muscle tissues.
Our results are supported by previous data that document that tissue-specific splicing plays
an important role in the development of brain and heart tissues (Jacko et al., 2018; Kalsotra
& Cooper, 2011, Lara-Pezzi et al., 2013).

The challenge now is to determine exact functional roles for those isoforms where none is
known. The gene NEBL, for example, has two main isoforms that differ in the N-terminal; the
longer is called nebulette and the shorter LASP2. We find that nebulette is expressed
exclusively in cardiac tissues, while LASP2 is found most often in nervous and urinary tissues
and not in muscle tissues. Although the role of nebulette in binding Z-disc associated desmin
filaments in cardiac tissues has been known for several years (Hernandez et al., 2016),
LASP2 has only recently been shown to play a crucial role in post-synaptic development in
the brain (Myers et al., 2020). In order to further the investigation into the roles of these
undoubtedly important alternative isoforms, we have listed many of the tissue specific
alternative isoforms analysed in this study on the APPRIS web site (Rodriguez et al., 2018).



. The three human reference gene sets currently overestimate the number of human
coding genes, complicating and adding noise to genome research and large-scale
biomedical experiments. We find that one in eight of these genes are classified
differently in at least one of the reference sets. The set of human coding genes needs
to be as complete and consistent as possible for basic research and large-scale
projects.

. The designation of a single representative protein reflects in most cases the biological
reality of the cell and this also seems to be true regardless of cell type. This dominant
protein isoform is almost always the APPRIS principal isoform, which highlights the
importance of extending APPRIS principal isoforms to all model species and to RefSeq
and UniProtKB gene sets. The selection of a principal isoform is a critical first step for
any genome-wide analysis.

. Although the data supporting alternative splicing is limited at the protein level, we
found that over 95% of splice events that were tissue-specific in both proteomics and
RNA-seq analyses evolved at least 400 million years ago.

. Tissue-specific alternative protein isoforms in the proteomics analysis were abundant
in nervous and muscle tissues and their genes had functions related to either the
structure of muscle fibres or cell-cell connections. Our results suggest that tissue
specific alternative splicing may have played a crucial role in the development of the
brain and the heart in vertebrates.



1.

3.

Actualmente, las tres bases de datos de referencia de genes humanos sobreestiman
el numero de genes codificantes, lo que complica y agrega ruido a la investigacion del
genoma y experimentos biomédicos a gran escala. Encontramos que uno de cada
ocho de estos genes se clasifica de manera diferente en al menos una de las bases
de datos de referencia. El conjunto de genes codificantes debe ser lo mas completo
y congruente posible para la investigacion basica y para los proyectos a gran escala.

La designacion de una Unica proteina representativa refleja, en la mayoria de los
casos, la realidad biologica de la célula; y esto también parece ser cierto
independientemente del tipo de célula. Esta isoforma de proteina dominante es casi
siempre la isoforma principal de APPRIS, lo que resalta la importancia de extender
las isoformas principales de APPRIS a todas las especies modelo y a los conjuntos
de genes de RefSeq y UniProtKB. La seleccion de una isoforma principal es un primer
paso fundamental para cualquier analisis genémico.

Aungue los datos que respaldan el empalme alternativo son limitados a nivel de
proteina, encontramos que mas del 95% de los eventos de empalme que eran
especificos de tejido tanto en proteémica como en analisis de RNA-seq,
evolucionaron hace al menos 400 millones de afos.

Las isoformas alternativas de proteinas especificas de tejido en el analisis proted6mico
eran abundantes en los tejidos nerviosos y musculares, y sus genes tenian funciones
relacionadas con la estructura de las fibras musculares o con las conexiones célula-
célula. Nuestros resultados sugieren que el empalme alternativo especifico de tejido
puede haber jugado un papel crucial en el desarrollo del cerebro y el corazén en los
vertebrados.
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