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Ischemic stroke (IS) is the leading cause of disability in the western world, assuming
a high socio-economic cost. One of the most used strategies in the last decade has
been biomaterials, which have been initially used with a structural support function. They
have been perfected, different compounds have been combined, and they have been
used together with cell therapy or controlled release chemical compounds. This double
function has driven them as potential candidates for the chronic treatment of IS. In fact,
the most developed are in different phases of clinical trial. In this review, we will show
the ischemic scenario and address the most important criteria to achieve a successful
neuroreparation from the point of view of biomaterials. The spontaneous processes that
are activated and how to enhance them is one of the keys that contribute to the success
of the therapeutic approach. In addition, the different routes of administration and how
they affect the design of biomaterials are analyzed. Future perspectives show where this
broad scientific field is heading, which advances every day with the help of technology
and advanced therapies.
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BACKGROUND

Stroke is one of the most important health problems worldwide. Ischemic stroke (IS) constitutes
85–90% of the casuistry among the types of stroke and is the leading cause of disability in people
over 65 years of age worldwide (Ghuman and Modo, 2016). Due to the epidemiological importance
and the big socio-economic expenditure involved, it is priority advance in its prevention, control,
and treatment (Kalaria et al., 2016; Benjamin et al., 2017). The ischemic injury is caused by
an interruption of blood supply in one or more cerebral blood vessels triggering a set of
dynamic processes that affect all brain cells and extracellular matrix (ECM) deteriorating the
“glioneurovascular niche” (Boisserand et al., 2016).

The pathophysiology of IS lies in the restriction or reduction of the supply of oxygen, glucose,
and nutrients in the affected brain area. The ischemic cascade begins while there is arterial
obstruction causing accidental cell death of core cells damaging tissue irreversibly. This process is
accompanied by events of glutamate excitotoxicity, oxidative stress, and neuroinflammation, which
affect the homeostatic functioning of the neurons in the affected tissue. The combination of all of
them induces permanent brain lesions (Taylor et al., 2008; Thundyil and Lim, 2015; Thornton et al.,
2017). However, there are regions near the nucleus or ischemic penumbra (IP) that have had access
to a collateral blood circulation, being able to partially counteract the energy deficit (Fisher and
Albers, 2013; Gavaret et al., 2019).
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This review will briefly address the limitations and
consequences that arise after the stroke, the endogenous
repair mechanisms activated by the brain damage itself, how to
enhance these mechanisms through tissue engineering and the
incorporation of exogenous cells or growth factors.

STROKE STAGE

The pathological picture of IS is aggravated by anatomical and
metabolic limitations of the central nervous system (CNS) itself:
the glucose and glycogen deposits of the brain are only able to
cover the brain’s energy requirements for a brief period and the
selective nature of the barrier hematoencephalic (BBB) limits
the rate of transfer of molecules from the bloodstream to the
brain, restricting access to the necessary substrates for cellular
metabolism (Lipton, 1999; Bang et al., 2009).

Therefore, the time factor is decisive to minimize the extent of
damaged brain tissue around the core. The period in which it is
possible to reduce the impact of IS (therapeutic window) ranges
from re-perfusion to 6–24 h, which is very restricted (Crunkhorn,
2018). The positive feedback mechanism of bioenergetic failure,
oxidative stress, and inflammatory reaction after IS lead
to an adverse microenvironment, incapacitating potentially
recoverable cells, to resume their functions. Consequently, it
causes damage to the ECM, accumulation of extracellular fluid
(Baeten and Akassoglou, 2011), and activation of microglia,
macrophages, and astrocytes (Denes et al., 2007; Lalancette-
Hebert et al., 2007).

Oligodendrocytes and damaged neurons produce a change
in the chemical composition of the extracellular medium that
serves as a chemotactic stimulus for microglia and astrocytes.
Glial cells alter the pH of the medium and produce an exacerbated
inflammatory response by secreting pro-inflammatory cytokines,
tumor necrosis factor (TNF-alpha), and interleukin (IL1)
(Minami et al., 1992; Lambertsen et al., 2005; Dugue and Barone,
2016). Furthermore, they require a long period to phagocyte and
degrade the wastes of dead cells. However, it has been shown
that microglial activation can maintain and support neuronal
survival by secreting anti-inflammatory and neurotrophic factors
(Streit, 2002; Harry et al., 2004). In several studies, it has been
shown that microglia promote neurogenesis, guiding neuroblasts
to the site of injury (Ziv et al., 2006; Fitch and Silver, 2008;
Thored et al., 2009).

In addition to the immune response, astrocytes are activated,
modifying their phenotype (reactive astrocytes) to express a
series of inhibitory factors, such as cytokines and chemokines,
converting the damaged area into a region of restricted
transit of molecules and axonal cone growth (Wieloch and
Nikolich, 2006; Fitch and Silver, 2008; Paixão and Klein, 2010).
Besides, reactive astrocytes begin to synthesize large amounts
of chondroitin sulfate proteoglycans, forming a fibrous and
acellular membrane, known as a glial scar, which acts as a
physical barrier (Busch and Silver, 2007; Yoshioka et al., 2010).
This rapid reaction of the microglia and astrocytes has in order
to contain the damage and prevent it from spreading, quickly
sealing the open path.

SPONTANEUS NEUROREPARATION
PROCESS

In the first instance, it is necessary to distinguish between the
concepts of repair and regeneration. The first of these refers to
the replacement of lost cells in damaged tissue with new cells
suitable for the niche; while the second refers to the replacement
of injured tissue with homologous tissue, which does not occur in
the brain (Modo and Badylak, 2019).

After the pathological events, scientific evidence of the
spontaneous activation of endogenous repair processes of
the damaged area in the ischemic brain that function as
compensatory mechanisms has been described (Arvidsson et al.,
2001, 2002; Lindvall and Kokaia, 2015). Among them we can
highlight two, the neurogenesis and angiogenesis processes.

Neurogenesis
Neurogenesis is defined as the process by which new neurons
are formed from precursors, located in specific areas known
as neurogenic niches, from where they migrate, differentiate,
and integrate into their destiny to become functional neurons
(Ohab and Carmichael, 2008). Despite that the subventricular
zone (SVZ) is not the only neurogenic niche in the adult
brain, it is the main source of precursors that reach the
ischemic zone. The transient and spontaneous increase of
parents is produced by a shortening of the cell cycle, beginning
at 2 days and reaching the maximum in 2 weeks after the
beginning of the damage returning to its basal levels at
6 weeks after it (Zhang et al., 2001; Thored et al., 2006;
Zhao et al., 2008).

It has been described that neuroblasts, which physiologically
migrate via the migratory rostral route (MRV) to the olfactory
bulb, are redirected to the injured area (Arvidsson et al.,
2001; Ming and Song, 2005; Ohab and Carmichael, 2008).
Ectopic migration begins 3 or 4 days after damage ischemic
and remains up to 4 months after it. The redirection is
produced by stimuli sent from the ischemic zone through two
routes: through changes in the composition of the cerebrospinal
fluid (CSF) or through the diffusion of signals through the
blood vessels (Christie and Turnley, 2012; Lindvall and Kokaia,
2015). Factors involved in the redirection of neuroblasts, such
as brain-derived neurotrophic factor (BDNF), stromal cell-
derived factor-1 (SDF-1α) and its CSCR4 receptor, monocyte
chemoattractant protein-1 (MCP-1), and metalloprotease (MMP-
9) matrix released by neuroblasts themselves (Thored et al., 2006;
Bagley and Belluscio, 2010).

Angiogenesis
During the IS, some brain areas are supported by access to
collateral flow from pre-existing anastomosis. After ischemic
damage, the reduction in blood flow leads to both acute and
chronic vascular remodeling. This vascular repair process adds to
that of neurogenesis to promote the recovery of damaged tissue
(Thored et al., 2006).

In recent years, the data obtained from magnetic resonances in
experimental models of ischemic damage have revealed vascular
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remodeling processes in both acute and chronic phases. This
process has been observed due to an increase in cerebral
blood volume (CBV) in its late phase induced by spontaneous
stimulation of angiogenesis (Arai et al., 2009; Carmeliet and Jain,
2011; Liu et al., 2014). Cerebral vasculature has been defined
as a key factor in the progress of pathological processes and in
homeostasis. The bidirectional connection between the nervous
system (NS) and the vascular system is strongly established in
the CNS (Xu et al., 2017). On the one hand, the NS depends
on the integration, communication, and functionality of the
different vascular cellular phenotypes for their metabolic and
nutritional support; and in turn, the vascular system requires
nerve innervation for different regulatory mechanisms, such as
vasodilation and vasoconstriction (Uhrin, 2019).

Cerebral angiogenesis is closely regulated by mediating
angiogenic factors and the local microenvironment. Recently,
these factors have been shown to play an essential role in
endothelial cell migration, cell identity, and growth and the
regulation of BBB; being involved, in addition, in the alignment
of vessels-nerves and nerves-artery in the brain (Arai et al.,
2009; Carmeliet and Jain, 2011; Liu et al., 2014). Among these
angiogenic factors, the following stand out: (i) the endothelial
growth factor (VEGF) that stimulates angiogenesis through
VEGF-2 receptors; (ii) the netrins that act as bifunctional signals
of attractant or repellent guidance depending on the receptors
expressed by the different cell types; (iii) fibroblast growth factor
(FGF) that maintains vascular integrity; and (iv) platelet-derived
growth factor (PDGF) that is crucial for the maturation and
functioning of blood vessels (Carmeliet and Jain, 2011).

Therefore, the angiogenesis process has been postulated as a
key restorative mechanism in the response to an ischemic event
that participates in functional recovery.

Despite the spontaneous stimulation of neurogenesis and
angiogenesis triggered by the body itself to restore the damaged
area, there are very few precursors that manage to reach
the target; and even less, to mature and repopulate the area
(Arvidsson et al., 2002). This failure may be due to the
inflammatory environment (Kahle and Bix, 2013), to the deficit of
functional connections, and the necessary trophic support (Ming
and Song, 2015). Therefore, the recovery of neural function
depends, for the most part, of the ability of nearby unaffected
neurons to generate new synapses, which is known as neuronal
plasticity (Wieloch and Nikolich, 2006; Paixão and Klein, 2010).

POWERING NEUROREPAIR PROCESS

The chronification of gliosis and inflammation in the twilight
zone makes endogenous repair strategies difficult (Wieloch and
Nikolich, 2006). This is the perfect time to establish strategies
that enhance and complement endogenous repair mechanisms
in order to partially rebuild the tissue damaged and restore
neurological function (Arai et al., 2009; Fisher and Albers, 2013;
Liu et al., 2014; Thundyil and Lim, 2015). The development
of tissue engineering in the brain with ischemic injury has
positioned itself as a great promise to overcome these limitations
and replace tissue loss (Modo and Badylak, 2019).

Why Use Biomaterials?
Ischemic brain injury causes a reduction in brain volume
(atrophy) that includes the elimination of ECM (Moreau et al.,
2012). This is a current challenge for the effective treatment
of stroke. Therefore, a support structure such as bioscaffolds
is required. Biomaterials are natural or synthetic 3D polymer
networks (natural or synthetic ED polymer networks) that
provide a suitable environment for cells to survive, proliferate,
and differentiate, facilitating the formation of ECM (Ghuman
et al., 2016) and for cells to be able to restore their function. These
two facts are keys to neurorestoration.

The first biomaterial utility is to offer structural support in
an injury that leads to loss of parenchyma, thus facilitating
the invasion of the different support molecules and the new
endogenous cells. This support allows these to overcome the
glial scar generated and penetrate the lesion (Meng et al., 2014;
Modo et al., 2018).

As for its second utility, in addition to supporting the physical
migration of cells, it is also necessary that inductive signals
from the biomaterial be produced to initiate migration and
cell invasion. Therefore, biomaterials are being widely used as
controlled releases of drugs, cells, and exogenous molecules. The
advantage of this fact is that they are carriers of the bioactive
molecules up to the therapeutic target, being able to control the
rate of release (Massensini et al., 2015).

In addition, biomaterials can act as a protective barrier
for these molecules against the adverse microenvironment that
exists in ischemic tissue. This protection supposes an increase
of the effectiveness of the treatment in the target, although
it is not eternal, since when the biomaterial degrades, its
protection ceases.

Criteria to Take Into Account to Define
Your Design
It is important to consider the chemical and mechanical
properties that the biomaterial presents, since the success of its
functionality and the fate of the transplanted bioactive molecules
will depend on them.

Biocompatibility
The first issue to highlight is that it is biologically accepted by
the host tissue, producing a minimal immune and inflammatory
response and that, in addition, it is able to maintain its benefits
during its useful life (Mitragotri and Lahann, 2009; Wang,
2013).The long-term biocompatibility of the material with the
Host tissue marks the effectiveness of implantation. The degree
of astrocyte and microglial reaction that may appear around the
biomaterial is used in in vivo studies to terminate the degree of
biocompatibility (Fournier et al., 2003).

Biodegradation
The degradation rate of biomaterials is one of its most important
chemical properties, since it allows the release of the bioactive
molecules it contains and the structural remodeling of the neural
network. There are different formats of presentation of the
biomaterial according to the polymerization process used; for
example, hydrogels are usually designed for slow degradation,

Frontiers in Neuroscience | www.frontiersin.org 3 May 2020 | Volume 14 | Article 431

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00431 May 10, 2020 Time: 19:17 # 4

Esteban-Garcia et al. Biohybrids in Stroke

helping or favoring exogenous cells to develop their own ECM
(Mano et al., 2007). However, the higher their biodegradation
rate, the more likely it is that a rejection reaction will occur.
Therefore, it is convenient to find a balance between degradation
rate and functionality (Perez-Garnes, 2015).

Functionality
The functionality of the scaffold is defined by its composition, the
place of implantation, the route of administration, the fate of the
exogenous cells that house and/or the release of the drug, which
is achieved through its chemical and mechanical properties.

Composition
Synthetic
One of the most outstanding advantages of synthetic biomaterials
is the possibility of obtaining a homogeneous batch production,
that is to say, precisely elaborating certain physical-chemical
properties (Busscher et al., 2012; Rimondini et al., 2015; Ghuman
and Modo, 2016). Uniform manufacturing translates into greater
control of their degradation rate, being optimal candidates
to be carriers of drugs or small molecules with controlled
release after administration. Ultimately, this advantage results
in the reduction of the variability in the immune response
generated in the host.

Synthetic biomaterials have been widely used for other
pathologies but taking into account the characteristics of the
brain as host tissue, and its slow rate of degradation; have
not been the best candidates to treat the stroke. However, the
most widely used synthetic compounds have been polymers of
polylactide (PL), polyglycol (PG), polycaprolactone (PCL), and
co-polymers of lactide and glycolide (PLGA). This last compound
has been used in nanoparticles form, which has positioned it as
one of the best synthetic biomaterials to carry substances even
in the brain. A recent paper is the one published by Jeong et al.
(2019), who encapsulated erythropoietin in PLGA nanoparticles
and cholic acid, because it crosses the blood–brain barrier among
other advantages.

The formation of bioscaffold can be carried out, by loading the
molecules of interest at the site of the lesion itself or by previously
cross-linking with the material itself (Yang et al., 2006; Wong
et al., 2007; Dash and Konkimalla, 2012).

Another synthetic polymer commonly used is polyethylene
glycol (PEG), resistant to protein degradation. A recent study has
been published using PEG conjugated urokinase nanogels (PEG-
UK) demonstrating that administration of PEG-UK outside the
usual therapeutic window could still exert protective effects
in permanent middle cerebral artery occlusion (pMCAO) rats
through maintenance of integrity of BBB and the inhibition of
apoptosis and excito-neurotoxicity (Cui et al., 2020). Authors, as
Balasubramanian et al. (2020), have recently published a study
based on silicone nanoparticles, with the aim of promoting
the migration of endogenous neuroblasts in post-stroke. This
type of component has been less used, but it is not less
valid and beneficial.

Other studies inspired by natural platelets (PLTs) and their
role in targeting adhesion to the damaged blood vessel during
thrombus formation have fabricated a biomimetic nanocarrier

comprising a PLT membrane envelope loaded with l-arginine
and γ-Fe2O3 magnetic nanoparticles (PAMNs) for thrombus-
targeted delivery of l-arginine and in situ generation of nitric
oxide (NO); for the early treatment of IS (Li et al., 2020).

Because the cells are not able to adhere directly to it,
recent studies have used combinations of natural compounds
such as hyaluronic acid (HA) or gelatin, thus optimizing their
characteristics (Sharma et al., 2015; D’souza and Shegokar, 2016).
However, synthetic biomaterials have a limited capacity to induce
endogenous repair responses, so their majority use has been for
prostheses and implants (Koupaei et al., 2015; Yuan et al., 2019).

Natural
Unlike synthetic biomaterials, natural biomaterials
are compounds present in the ECM, which increases
biocompatibility with the host tissue and the restoration of
the adverse microenvironment. The ECM of the nervous tissue
constitutes 20% of the cerebral parenchyma and, its functions
are directly related to the maintenance of the structure and the
cellular signaling (Stabenfeldt et al., 2006; Reing et al., 2009). The
objective of the natural scaffolds is to implant in the damaged
tissue an ECM “transient or permanent substitute” that facilitates
cell growth to form, again, the three-dimensional structure of the
tissue to be repaired (Crapo et al., 2012).

The most widespread natural compounds for application
in the restoration of tissue defects and improvements in
the adverse microenvironment are fibrin, HA-methylcellulose,
chitosan, and collagen (Hopkins et al., 2013; Medelin et al., 2018;
Osama et al., 2018).

The combination of hyaluronic acid + methyl cellulose
(HAMC) has been used for the first time by Gupta et al. (2006)
and has been widely used in models of stroke, spinal cord
injury, and retinal degeneration (Ho et al., 2019). One of the
last published articles has been a study developed by Tuladhar
et al. (2020), where they have used this HAMC combination as
a vehicle to release cyclosporine and erythropoietin, to promote
functional recovery in stroke.

In most cases, they have been used in combination with
exogenous cells that enhance endogenous repair mechanisms
(Moshayedi and Carmichael, 2013). One of the latest articles
published by Fernandez-Serra et al. (2020) is based on a fibroin
biomaterial with the same objective, that of recovering post-
stroke function, this time encapsulating mesenchymal stem
cells. Other compounds, such as alginate, have been used in
microspheres (Cui et al., 2013) or recently, to encapsulate cells
in combination with synthetic compounds (Islam et al., 2018).

Two of the most abundant compounds in ECM are collagen
and HA, which is why their use in biomedicine has been
extended in the last decade. Collagen has mechanical resistance
and immunogeneity, and fragments derived from active collagen
contribute to biological activities such as growth, differentiation,
and cell migration, which has facilitated its use in various studies
with rodent models in the form of hydrogel (Cross et al., 2010).
In the study conducted by Yu et al. (2010) demonstrated in
an ischemic mouse model, an increase in cell survival, synapse
formation, and an improvement in neural function by implanting
a collagen hydrogel combined with neural stem cells (NSCs).
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TABLE 1 | Summary of natural and synthetic components of biomaterial.

References Biomaterial Composition Experimental model Main findings

Meng et al., 2014
Synthetic Synthetic fibronectin

peptide (PRARIY)
Middle cerebral artery
occlusion (MCAo) in
Sprague–Dawley (SD) rats

- Reduction of infarction
size
- Significantly functional
outcome
- Decrease in apoptosis

Modo et al., 2018 Synthetic Human neural stem cells
(HNSCs) on vascular
endotelial growth factor
(VEGF)- releasing PLGA
microparticles

MCAo in SD rats - Attraction of endothelial
cells from the host,
establishing a
neovasculature
interspersed with NSCs

Wong et al., 2007 Synthetic Poly (ε-Caprolactone) and
PLGA polymer

Acute traumatic brain injury
(TBI) in SD rats

- Decrease in astrocytic
activation
- Promotes neural ingrowth
- Prevention of the
enlargement of the defect

Medelin et al., 2018 Synthetic Chitlac (A derivative of
chitosan)

Primary culture of
hippocampal neurons of
postnatal (P2–P3) SD rats

- Induces growth and
synapse formation in vitro

Ju et al., 2014 Synthetic Hyaluronic acid (HA)
hydrogel + PLGA
microspheres containing
VEGF and Angiopoietin-1
(Ang-1)

MCAo in C57BL/6J mice - High rate in angiogenesis
- Behavioral improvement
- Formation a suitable niche
for neural restoration

Jeong et al., 2019 Synthetic Cholic acid-coated poly
lactic-co-glycolic acid
(PLGA) nanoparticles
loaded with EPO
(EPO-CA-NPs)

Middle carotid artery
occlusion and reperfusion
(MCAO/R) technique in rats

-Able to cross the BBB
- Reduction in the extent of
the infarct volume and
cellular apoptosis
- Better performance on
sensorimotor phenotype
than EPO alone

Cui et al., 2020 Synthetic Polyethylene glycol
conjugated urokinase
nanogels (PEG-UK)

Permanent MCAO
(pMCAO) in adult male SD
rats

- Amelioration of the
severity of neurological
deficits
- Decrease in the infiltration
of inflammatory cells and
the concentration of
interleukin 1β (IL-1β) and
tumor necrosis factor-α
(TNF-α) in the brain
parenchyma
- Inhibition of apoptosis and
excito-neurotoxicity

Li et al., 2020 Synthetic Natural platelet (PLT)
membrane envelope
loaded with l-arginine and
γ-Fe2O3 magnetic
nanoparticles (PAMNs)

Photochemical cortical
ischemic stroke in C57BL/6
mice

- Rapid targeting to
ischemic stroke lesions
- Promotes vasodilation to
disrupt the PLT aggregation
- Recovery of blood flow

Ghuman et al., 2016 Natural Extracellular matrix (ECM)
purified from porcine urinary
bladder (collagen,
fibronectin, decorin,
laminin)

MCAo in SD rats - Promotes host cell
infiltration
- Retention of the hydrogel
within the cavity of the
lesion
- Antiinflammatory
properties

Meng et al., 2014 Natural High-molecular weight HA
(HMW-HA) hydrogel

4 × 2 × 2 mm3 cortical
lesión created in SD rats

- Reduction in glial scar
thickness
- Decrease in astrogliosis
marker GFAP

Meng et al., 2014 Natural Laminin-incorporated HA
(LN-HA) hydrogel

Cortical defects induced
mechanically in SD rats

- Support cell infiltration
and angiogenesis
- Inhibit the formation of the
glial scar
- Promotes neurite
regrowth

(Continued)
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TABLE 1 | Continued

References Biomaterial Composition Experimental model Main findings

Crapo et al., 2012 Natural ECM purified from porcine
tissues (collagen,
fibronectin, decorin,
laminin)

PC12 cell line - Stimulation of cell
proliferation

Osama et al., 2018 Natural Silk hydrogel (4%
w/v) + mesenchymal stem
cells (MSCs)

MCAo in SD rats - Good space conformity in
the ischemia cavity

Moshayedi and Carmichael,
2013

Natural Hyaluronan-heparin-
collagen hydrogel + neural
progenitor cells (NPCs)

Photothrombotic ischemia
in C57BL/6 mice

- Improvement of NPCs
survival into the infarct
cavity after stroke

Islam et al., 2018 Natural Alginate-collagen
microspheres containing
fibroblast growth factor 2
(FGF-2)

Zebrafish embryos - Increase in therapeutic
angiogenesis

Yu et al., 2010 Natural Collagen type I + neural
stem cells (NSCs)

MCAo in Wistar rats - Survival of the NSCs
engrafts
- Synapsis formation
- Differentiation of NSCs

Zhong et al., 2010 Natural Hyaluronan-heparin-
collagen
hydrogel + NPCs

Cortical photothrombotic
stroke in C57BL/6J mice

- Improvement in NPCs
survival in vitro and into the
infarct cavity (in vivo)

Sanchez-Rojas et al., 2019 Natural HA + adipose stem cells
(ASCs)

Middle cerebral artery
thrombosis with FeCl3 in
athymic mice

- Increase in cell
proliferation and
neurogenesis at
subventricular zone (SVZ)
- Angiogenesis and less
inflammatory reaction to the
graft

Tuladhar et al., 2020 Natural Hydrogel drug depot,
comprised of hyaluronan
and methylcellulose
(HAMC) containing
cyclosporine and
erythropoietin (CsA + EPO)

Endothelin-1 stroke in male
SD rats and male
Long-Evans rats

- Long term stability in the
brain
- Cyclosporine increased
plasticity in the striatum
while erythropoietin
stimulated endogenous
NSPCs

Fernandez-Serra et al.,
2020

Natural Silk fibroin
hydrogels-encapsulated
MSCs

MCAo in adult male CD-1
mice

- Promotes the survival of
intracerebrally implanted
MSCs
- Improvement of functional
outcomes over time in the
model of cortical stroke

The other natural compound, with similar characteristics,
found in the ECM of the CNS is HA. The enzymes responsible for
their formation, and therefore, their size and molecular weight
are hyaluronan synthases (HAS) (Brecht et al., 1986; Weigel
et al., 1997), these are found in the cell membrane of fibroblasts,
keratinocytes, chondrocytes, and specialized connective tissue
cells. The molecular weight of HA is directly related to its
biological functions; specifically, HA of ≥60 kDa is attributed
with non-stick properties for cells (Brecht et al., 1986). These
allow astrocytes to be kept in a non-reactive state and inhibit
the formation of glial scar (Lin et al., 2009; Khaing et al., 2011).
In addition, their anti-inflammatory properties and their support
for cell survival have been demonstrated (Jiang et al., 2014). In
an in vivo study of mouse model with occlusion of the middle
cerebral artery occlusion (MCAO), in which an HA hydrogel with
bioactive molecules (VEGF or angiopoietin-1) was implanted,

observed good biocompatibility with brain tissue and increased
angiogenesis around the implanted hydrogel (Ju et al., 2014).
In this line, other authors have combined an HA hydrogel
with exogenous cells, neural progenitor cell (NPCs) (Zhong
et al., 2010), or adipose-derived stem cells (ASCs) (Sanchez-
Rojas et al., 2019), observing a lower infiltration of reactive cells
in the biomaterial and an increase in neural precursors in the
area of the lesion.

In Table 1 shows a scheme with the main synthetic,
natural, and mixed biomaterial compositions have been
described in this review.

CHOOSING ADMINISTRATION ROUTE

The anatomical limitations of the CNS, such as the skull and
the BHE, restrict the passage of molecules and their accessibility.
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It is necessary to take these particularities into account to
determine which route of administration is ideal for each
treatment (Bible et al., 2009a). In addition, the chosen route
will define the biomaterial format. For example, some brain
areas of interest can be found at great depth, covered with
functional tissue that should not be altered. In these situations,
it is convenient to use the intracerebral route to guarantee the
correct implantation in the therapeutic target (Bible et al., 2009b;
Ullah et al., 2017). For this route, it is necessary to use cannulas,
in the cases of solid biomaterials or Hamilton syringes for the
administration of nanoparticles (Ullah et al., 2017), microspheres
(Bible et al., 2012), liquid neurospheres or hydrogels, which are
administered before polymerization. This last pharmaceutical
form has acquired great interest in in vivo studies, due to its
easy and minimally invasive administration. It is inoculated by a
Hamilton and polymerized, approximately, 8 min later; offering
a structural 3D network for endogenous cells (Tate et al., 2001).

In the case that the therapeutic target is in the orbitofrontal
cortex, the intranasal route is the one that offers the most
advantages, due to the excellent conditions of the nasal mucosa
for its absorption and the direct connection with the ethmoid
bone. Currently, there are more and more studies in which
biomaterials are used in neurospheres through this route, due to
their effectiveness, safety, and speed (Yongjun et al., 2011; Wei
et al., 2013; Yan-hua et al., 2015).

Also, it is possible to administer these low molecular weight
nanocomposites through the intravenous route; however, it has
been shown that the dose that reaches the cerebral target is
insufficient, and therefore, it is necessary to increase the dose and
find adverse effects (Tosi et al., 2019).

ENHANCING CELLULAR ATTRACTION
BY CELL THERAPY AND TROPHIC
FACTORS

At present, many studies use the combination of cell therapy
or bioactive molecules and biomaterial to improve its invasion
and colonization in the host tissue. In addition, the use of these
types of exogenous cells or bioactive molecules has been shown
to have an effect per se on damaged tissue (Lam et al., 2014;
Sanchez-Rojas et al., 2019).

Despite the inflammatory reaction produced in the tissue that
inevitably occurs when implanted, it has been shown that the
effect of transplantation stimulates endogenous neural precursors
through chemoattractant signals, promotes neuroprotection, and
modulates neuroinflammation (Orive et al., 2009; Dibajnia and
Morshead, 2013). As has been shown, stem cells do not integrate
into the tissue, so their use is restricted to their trophic potential
for 2 or 3 weeks (Modo and Badylak, 2019). Other authors opt
for the encapsulation of trophic factors directly, such as VEGF
or BDNF (Bible et al., 2012; Guan et al., 2012; George et al.,
2018). Both strategies have the common objective of promoting
neuroreparation processes (Erba et al., 2010).

After an ischemic event, the glial scar formed isolates the
lesion from the rest of the parenchyma. In the study conducted
by Zhou et al. (2015) showed that the administration of

TABLE 2 | Summary of advantages and disadvantages of the proposed
strategies.

Strategy Advantages Disadvantages

Synthetic
biomaterial (PL),
(PG), (PCL), (PGLA)

Degrading rate control
Homogeneous production
Reducing variability in
immune response

Limited ability to induce
endogenous repair
responses

Synthetic
biomaterial
combined with
natural compounds

Resistance to protein
degradation
Optimizing repair features

Hydrophobicity superficial

Collagen
biomaterial

Contributing to growth,
differentiation, and cell
migration

Immunogeneity
Low mechanical resistance

Alginate biomaterial Biodegradable
Hypoallergenic

Combined with synthetic
compounds for greater
consistency

Hyaluronic acid
biomaterial

Anti-inflammatory
properties
Support for cell survival
biocompatibility
Non-stick properties

Easily degradable
Possible formation of
fibrosis

Biomaterial
combined with
exogenous cells

Less infiltration of reactive
cells into the biomaterial
Increase in neural
precursors, modulates
neuroinflammation,
promotes neuroprotection

Possible neoplastic
formation
Cells do not integrate into
the tissue

Biomaterial
combined with
bioactive molecules

Promoting neuroreparation
processes
Improves invasion and
colonization of host tissue

Its use is restricted to
2–3 weeks

ASCs significantly suppressed the expression of the ionized
calcium binding adaptor molecule 1 (Iba1) marker and glial
fibrillary acidic protein (GFAP) marker compared to the control
group. On the other hand, focal cavitation produced after the
ischemic event is also a handicap for the effective treatment of
stroke. Therefore, the use of biomaterials combined with cell
therapy facilitates the establishment of a line of communication
between the healthy parenchyma-biomaterial-lesion and favors
the microenvironment (Martínez-Ramos et al., 2012; Pérez-
Garnes et al., 2014).

As already mentioned, the chemical properties of the
biomaterial affect its mechanical properties and therefore,
the bioactive molecules or exogenous cells that are inside.
The stiffness of biomaterials affects cell proliferation and
differentiation in vivo (De Santis et al., 2011). Biomaterials
with intermediate stiffness have been shown to improve
cell proliferation (Leipzing and Shoichet, 2009). In this line,
mesenchymal stem cells respond differently in gels of different
viscosity (Engler et al., 2006). Therefore, it is important to
choose the biomaterial format depending on what you want
to combine with.

Other considerations to take into account for clinical
translation are safety and efficacy. The implementation
in the SNC entails safety specifications so that the least
number of adverse effects occur. Delivery directed to
the target to avoid tissue displacement or the generation
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of cavitation is of paramount importance. On the other hand,
when performing the intracranial implant, it is necessary to
control the speed and intracranial pressure since they could
cause bleeding and an exacerbated inflammatory response. In
addition, the use of exogenous cells or bioactive molecules
produces a proliferative response, so it is necessary to
control that no neoplastic growths occur (Eckert et al., 2013;
Xu et al., 2017).

Table 2 shows a brief summary with the advantages
and disadvantages of the different strategies that have been
described in this review.

FUTURE PERSPECTIVES/NEXT STEPS

Scientific advances place exosomes or extracellular vesicles as the
new candidates to be used to improve their colonization and
integration into tissue. These molecules are much smaller than
a cell and have a key role in intercellular communication. These
characteristics are sufficient to develop biomaterials in which to
encapsulate them, with the advantage not only of being able to
encapsulate a high number of exosomes in each microsphere, but
to avoid the adverse reactions associated with the stem cells since,
at least so far, has been described to have tumorigenic capacity
(Chen and Chopp, 2018).

In addition, research is continuing how to deliver
neurospheres or nanoparticles to deep and distal areas of the
cerebral parenchyma from the intranasal route. Apparently, it is
a route of minimally invasive administration that allows direct
access to the brain, avoiding the anatomical limitations of the
CNS. However, so far, no remains of these biomaterials have
been found farther from the orbitofrontal cortex. Perhaps there
is an intracerebral circulation that we still do not know today
(Shah et al., 2015).

One of the great challenges is in bioprinting. Currently, very
advanced 3D printer technology is being developed that has
great advantages, such as homogenizing lots of biomaterials. It
is possible to manufacture or print many biomaterials of small
dimensions with precision and, in addition, all are exactly the
same. It is also possible to make homogeneous mixtures of a
drug in the biomaterial thread, instead of encapsulating it. The
advantage of this method is the control over the mixture, being
possible different concentrations of drug in the same biomaterial,
or even of several compounds that are degraded simultaneously
or staggered. The pharmaceutical forms are being reinvented. On
cell therapy, printers have been developed that directly print the
cells of interest in a certain position. This technology requires
a high degree of sterility and its price is still very expensive.
However, there is no doubt that the future is in these techniques
(Norotte et al., 2009; Hsieh and Hsu, 2015).

Personalized medicine will be imposed in the future given the
variability of brain damage and diseases; and biomaterials can
adapt to this new approach. An exclusive design for a specific
lesion is possible, with a volume of affection, a location, and very
specific particularities.

What is already a certainty today is the safety of many of
the components of biomaterials and cells (for example, adipose
cells) supported by biomaterials in animals (Zhao et al., 2019;
Kupikowska-Stobba and Lewińska, 2020; Otake et al., 2020).
These results led us to argue that the gap between animals and
humans in this context will be closed soon. Indeed, recent clinical
trials have been conducted in Phase IIb to support the use of
restorative cells plus natural biomaterials (alginate encapsulates)
in neurodegenerative conditions (e.g., Parkinson’s disease) that
achieve promising results (Snow et al., 2019).

CONCLUSION

Despite the advances in the design, development and
manufacture of biomaterials to favor neural restoration and the
microenvironment, it is still a great challenge today. Minimally
invasive techniques are sought to release cells, trophic factors, or
drugs that potentiate spontaneous neuro-restaurant mechanisms.
At the same time, it is sought that the biomaterial arrives and/or
remains on the therapeutic target; and to be kept there during
its degradation causing the least possible inflammatory reaction.
Also, that it is colonized by endogenous cells, facilitating access to
support cells to the center of the lesion and crossing the glial scar.

Combinations of biomaterials made of natural and synthetic
compounds offer the advantages that both provide. And with the
development of new forms such as microspheres, nanoparticles,
liquid hydrogels that polymerize within a few seconds, or solids
offer many possibilities for personalized treatments.

The objective and function to be achieved, the route of
administration, and the limitations that exist to design a
successful biomaterial must be defined.
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