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Abstract

We develop a simple two-step algorithm for enclosing Chebyshev expansions
whose cost is linear in terms of the polynomial degree. The algorithm first trans-
forms the expansion from Chebyshev to the Laurent basis and then applies the
interval Horner method. It outperforms the existing eigenvalue-based methods
if the degree is high or the evaluation point is close to the boundaries of the
domain.
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1. Introduction

Let

p(x) =

n∑
k=0

ckTk(x) (1)

be a finite Chebyshev expansion in which

Tk(x) = cos(k cos−1(x))

is the k-th Chebyshev polynomial of the first kind defined on [−1, 1], and ck is the
k-th constant real coefficient. Recently, several techniques are developed in [1] for
validated evaluation of p. We refer the reader to [2, 3, 4] for the basics of interval
arithmetic, in particular the enclosure property, dependency issue, the wrapping
effect, and how directed roundings are employed with floating point arithmetic
to efficiently compute results which are guaranteed to be mathematically correct.
Enclosing Chebyshev expansions has application in computer-assisted existence
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proofs of the spherical t-designs [5], ultra arithmetic, Chebyshev models [6]
and automatic a posteriori forward error analysis of floating point evaluation of
Chebyshev expansions; see [1] and references therein.

In this paper we develop a new algorithm which outperforms the eigenvalue-
based methods explored in [1] if the degree n is high or the evaluation points
x are close to the boundaries of the domain [−1, 1]. The new algorithm has
two main steps: We first employ the inverse Joukoswki map to convert the
problem from the Chebyshev basis into that of Laurent. Then, we apply the
interval Horner method to enclose the polynomial in the new basis. Like most
of the techniques investigated in [1], the number of basic arithmetic operations
involved in the new algorithm is O(n).

The most well-known algorithm for evaluation of the polynomial p in floating
point arithmetic is the Clenshaw recurrence [7] which defines the quantities bk
as: {

bn+2 = bn+1 := 0,
bk := 2xbk+1 − bk+2 + ck, k = n, n− 1, . . . , 0,

(2)

so that p(x) = b0 − b1x. On the other hand, an important category of interval
arithmetic techniques for enclosing Chebyshev expansions include the paral-
lelepiped and Lohner’s QR decomposition methods and two eigenvalue-based
algorithms of [1]. The basic idea behind all of these techniques is to reformulate
the Clenshaw recurrence (2) in terms of the following discrete dynamical system

b̂k = Mb̂k+1 + ĉk (3)

with M ∈ R2×2 and b̂k, b̂k+1, ĉk ∈ R2 where(
bk

bk+1

)
︸ ︷︷ ︸

b̂k

=

(
2x −1
1 0

)
︸ ︷︷ ︸

M

(
bk+1

bk+2

)
︸ ︷︷ ︸

b̂k+1

+

(
ck
0

)
︸ ︷︷ ︸

ĉk

, k = n, . . . , 1, 0.

Unfortunately, the matrix-vector multiplications in (3), when performed in in-
terval arithmetic, cause a severe amount of overestimation called the wrapping
effect [8]. To alleviate these overestimations, the eigenvalue-based methods of
[1] employ the spectral transformation M = V DV −1 where

V =

(
x+ i

√
1− x2 x− i

√
1− x2

1 1

)
, V −1 = −i

2
√
1−x2

(
1 i

√
1− x2 − x

−1 i
√
1− x2 + x

)
,

D =

(
x+ i

√
1− x2 0

0 x− i
√
1− x2

)
. (4)

Then (3) is equivalent to the transformed iteration

b̌k = Db̌k+1 + čk, (5)

where b̌k := V −1b̂k, and čk := V −1ĉk. In practice, interval matrices D ∋ D,
V ∋ V , and IV ∋ V −1 are used so that rounding errors in the computation of
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V , D and V −1 are taken care of. Note that the amount of overestimation, when
performing iterations like (5) and (3) in interval arithmetic, is governed by the
spectral radius of the absolute value of the iteration matrix. As discussed in
[1], the reason the transformed iteration (5) outperforms the original iteration
(3) in interval arithmetic is that ρ(|D|) = 1 for every x ∈ [−1, 1] whereas
1 ≤ ρ(|M |) ≤ 1 +

√
2; see [1, Fig. 3]. On the other hand, it is proved that [1]

κ2(V ) := ∥V −1∥∥V ∥ =


√

1−x
1+x , −1 ≤ x ≤ 0,√
1+x
1−x , 0 ≤ x ≤ 1.

Therefore, the eigenvector matrix V is numerically ill-conditioned for x ≈ ±1.
This makes entries of the interval matrix IV wide; see e.g., [9] and [10, p.
346]. Consequently, the computed enclosure for p(x) becomes wide. Hence,
as discussed in [1], one cannot expect the transformed iteration (5) to give
very narrow enclosures at x ≈ ±1. So, here is the question: can we develop a
transformation of (3) that takes advantage of the fact that ρ(|D|) = 1 while
avoiding multiplications by the eigenvector matrix V and its inverse? It turns
out that the following method is what we are looking for.

2. The Laurent-Horner method

The Joukowski map x := J(z) = 1
2 (z + 1

z ) is a popular conformal map
in approximation theory and complex analysis. It transforms origin-centered
circles to ellipses with foci at {−1, 1} which are known as Bernstein ellipses.
In particular, it maps the unit circle to the unit interval [−1, 1]. Since J(z) =
J(z−1), there is a 2-to-1 correspondence between z on the unit circle and x on
the real interval [−1, 1]. In other words, the quadratic equation corresponding
to the map has two solutions z = x ± i

√
1− x2. Notice that these are the

eigenvalues of M in (3) as can be observed from the spectral decomposition (4).
Another basic fact that is important for the development of the new method

is that the k-th Chebyshev polynomial is the real part of the function zk on the
unit circle [11], i.e.,

Tk(x) =
zk + z−k

2
=

zk + z̄k

2
,

where z̄ denotes the complex conjugate. Hence, the Chebyshev expansion (1)
can be converted to the following Laurent polynomial

p(x) =
1

2

n∑
k=0

ck(z
k + z−k) = real

( n∑
k=0

ckz
k
)
. (6)

To take care of rounding errors in the conversion from x to z, we compute an
interval z containing the exact value of z.

The second step of our enclosure method simply applies the Horner’s rule
in interval arithmetic to (6); see e.g., [12]. The interval Horner method is a
straightforward extension of the standard Horner’s nested multiplication form
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to interval arithmetic and can be used to enclose the range of polynomials with
a linear complexity in terms of its degree.

While both the existing eigenvalue-based methods and the Laurent-Horner
method inherit possible ill-conditioning of the transformation from x to z,
computations in the Laurent-Horner method do not involve the matrices V
and V −1. Therefore, the new method might be considered as an eigenvector-
avoiding “spectral” transformation of (3) and can be expected to outperform
the eigenvalue-based methods of [1] especially at x ≈ ±1.

3. Numerical experiments

To compare the new algorithm with the older ones, we illustrate the time
needed (in seconds) together with radp(x); the radius of the computed enclo-
sures. The radii are employed also for obtaining the average number of correct
digits for enclosures over all points x computed as mean(− log10

(
radp(x)

)
).

Our numerical results are generated using INTLAB [13].
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Figure 1: Radius of enclosures for a degree 9150 interval polynomial at 1000 intervals. Only
50 points are depicted to make the curves easier to distinguish.

We consider a Chebyshev expansion of degree 9150 corresponding to the
random smooth function randfun(0.0007) [14] where its real coefficients are
inflated to be intervals of a radius of about 2 × 10−15. The same Chebyshev
expansion is used in Example 6.6 of [1]. We compute enclosures for the value
of the interval polynomial at 1000 random intervals x whose radii are again
of the order of 10−15. Figures 1 and 2 contain our results for six methods.
Here, ICA-eig and ICA-eig-err denote the two eigenvalue-based methods of
[1] which rely on (4) and (5). Also, d-cos-acos and d-div-con denote two
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Figure 2: Average number of correct digits (left) and computing time (right) of different
methods for bounding the range of a Chebyshev expansion of degree 9150 at 1000 points.

direct methods which typically give narrow enclosures for low-degree Chebyshev
expansions. Moreover, bary refers to the extension of barycentric formula to
interval arithmetic.

It was shown in [1] that in the case of high-degree Chebyshev expansions,
ICA-eig and ICA-eig-err typically give narrowest enclosures among the vec-
torized techniques. Nevertheless, we observe that in this example the Laurent-
Horner method not only outperforms those techniques with respect to speed,
but also computes narrowest enclosures among all the techniques.

In a second variant of the above experiment, narrowest-possible enclosures
for ck and x are used instead of those with a width of order 10−15. This time,
the most accurate methods on average are ICA-eig-err and Laurent-Horner,
while ICA-eig-err is three times slower than the Laurent-Horner.

Let us end this paper with a note concerning the conversion from real to
complex interval arithmetic in the new method as well as in ICA-eig and
ICA-eig-err. The conversion has a speed penalty observed for the three slower
methods in Figure 2 (right). However, moving to the complex plane, while avoid-
ing wrappings caused by the eignevector transformations are the main reasons
the new method gives the narrowest enclosures. Avoiding these multiplications
also makes the new method the fastest among those that use complex arith-
metic. Note also that INTLAB employs midpoint-radius representation in its
implementation of complex as well as real machine interval arithmetic [15].
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