
UNIVERSIDAD AUTÓNOMA DE MADRID
ESCUELA POLITÉNICA SUPERIOR

Máster Universitario en Investigación e Innovación en Inteligencia Computacional y
Sistemas Interactivos

TRABAJO DE FIN DE MÁSTER

Estrategias de calentamiento en bandidos
multi-brazo para recomendación

Author: Esther López Ramos
Advisor: Pablo Castells Azpilicueta

febrero 2021

All rights reserved.

No reproduction in any form of this book, in whole or in part
(except for brief quotation in critical articles or reviews),
may be made without written authorization from the publisher.

© 17 de junio de 2019 by UNIVERSIDAD AUTÓNOMA DE MADRID
Francisco Tomás y Valiente, no 1
Madrid, 28049
Spain

Esther López Ramos
Estrategias de calentamiento en bandidos multi-brazo para recomendación

Esther López Ramos

PRINTED IN SPAIN

Resumen

Los sistemas de recomendación se han convertido en los últimos años en una pieza esencial de

múltiples plataformas online como servicios en streaming o comercios electrónicos ya que permiten

a los usuarios encontrar artículos que les puedan resultar de interés ofreciéndoles una experiencia

personalizada. El problema de la recomendación cuenta con muchas líneas de investigación abiertas,

entre ellas la que abordamos en este trabajo: el arranque en frío.

El problema del arranque en frío en el contexto de los sistemas de recomendación se refiere a la

situación en la que un sistema no cuenta con la suficiente información para proporcionar buenas su-

gerencias a los usuarios. Suele deberse a tres motivos principales: el usuario al que se le recomienda

es nuevo en el sistema y por tanto no se conocen sus gustos, algunos de los artículos que se reco-

miendan han sido añadidos recientemente y no cuentan con reseñas de los usuarios, o el sistema es

completamente nuevo y no hay información alguna sobre los usuarios y los artículos.

Las técnicas más clásicas que se aplican a los sistemas de recomendación provienen del ámbito

de la Inteligencia artificial y proponen la recomendación como un proceso estático en el que se le

ofrecen al usuario una serie de sugerencias y este las valora. No obstante resulta más conveniente

entender la recomendación como un ciclo de interacción constante entre el usuario y el sistema en el

que cada vez que el usuario puntúa un artículo, el sistema lo utiliza para aprender sobre él. En este

sentido se plantea sacrificar el acierto del sistema a corto plazo para obtener información sobre el

usuario y mejorar el acierto a largo plazo. Se debe establecer por tanto un balance entre la exploración

(recomendaciones no óptimas para obtener conocimiento) y la explotación (recomendaciones óptimas

para maximizar el acierto). Las técnicas conocidas como bandidos multi-brazo se utilizan para lograr

ese balance entre exploración y explotación y son las que proponemos en este trabajo para abordar el

problema del arranque en frío.

Partiendo de la hipótesis de que una exploración en las primeras épocas del ciclo de la reco-

mendación puede ayudar a mejorar el acierto en las épocas más tardías, se ha dividido el bucle de

recomendación en dos etapas: la de calentamiento, en la que se persigue una mayor exploración para

obtener la máxima información posible sobre el usuario; y la de explotación, en la que se aprovecha

el conocimiento adquirido para maximizar el acierto. Para estas dos fases se han combinado distintas

estrategias de recomendación, entre las que consideramos tanto algoritmos de bandidos multi-brazo

como algoritmos clásicos. Se han evaluado de manera offline sobre tres conjuntos de datos: CM100K

(música), MovieLens1M (películas) y Twitter. Se ha estudiado también cómo influye un mayor tiempo

de calentamiento sobre la fase de explotación. Los resultados muestran que en dos de los conjuntos

de datos (MovieLens y Twitter) las estrategias clásicas obtienen un mayor rendimiento en términos del

recall durante la fase de explotación tras una fase de calentamiento mayoritariamente exploratoria.

iii

Palabras clave

Aprendizaje por refuerzo, sistemas de recomendación, bandidos multi-brazo, problema de arranque en

frío

iv

Abstract

Recommender systems have become an essential piece of multiple online platforms such as streaming

services and e-commerce in the last years as they provide users with articles they may find interesting

and thus granting them a personalised experience. The recommendation problem has many opened

investigation lines. One of them is the topic we tackle in this work: the cold-start problem.

In the context of recommender systems the cold-start problem refers to the situation in which a

system does not have enough information to give proper suggestions to the user. The cold-start problem

often occurs because of the following three main reasons: the user to be recommended is new to the

system and thus there is no information about its likes, some of the items that are recommended have

been recently added to the system and they do not have users’ reviews, or the system is completely

new and there is no information about the users nor the items.

Classical recommendation techniques come from Machine learning and they understand recom-

mendation as an static process in which the system provides suggestions to the user and the last rates

them. It is more convenient to understand recommendation as a cycle of constant interaction between

the user and the system and every time a user rates an item, the system uses it to learn from the

user. In that sense we can sacrifice immediate reward in order to earn information about the user and

improve long term reward. This schema establishes a balance between exploration (non-optimal re-

commendations to learn about the user) and exploitation (optimal recommendations to maximise the

reward). Techniques known as multi-armed bandits are used to get that balance between exploration

and exploitation and we propose them to tackle cold-start problem.

Our hypothesis is that an exploration in the first epochs of the recommendation cycle can lead to

an improvement in the reward during the latest epochs. To test this hypothesis we divide the recom-

mendation loop in two phases: the warm-up, in which we follow a more exploratory approach to get

as much information as possible; and exploitation, in which the system uses the knowledge acquired

during the warm-up to maximise the reward. For this two phases we combine different recommendation

strategies, among which we consider both multi-armed bandits and classic algorithms. We evaluate

them offline in three datasets: CM100K (music), MovieLens1M (films) and Twitter. We also study how

the warm-up duration affects the exploitation phase. Results show that in two dataset (MovieLens and

Twitter) classical algorithms perform better during the exploitation phase in terms of recall after a mainly

exploratory warm-up phase.

v

Keywords

Reinforcement learning, recommender systems, multi-armed bandits, cold-start problem

vi

Table of Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Goals . 2

1.3 Methodology . 2

1.4 Document structure . 3

2 State of the art 5

2.1 Recommender systems . 5

2.2 Collaborative filtering algorithms . 7

2.3 Reinforcement learning and multi-armed bandits . 8

2.4 The cold-start problem . 10

2.4.1 New item . 11

2.4.2 New user . 11

2.4.3 New system . 12

3 Problem description and algorithms 13

3.1 Problem description . 13

3.1.1 Recommendation as an iterative process . 14

3.2 Algorithms . 15

3.2.1 Non-personalised algorithms . 15

3.2.2 Collaborative filtering algorithms . 16

3.2.3 Multi-armed bandit algorithms . 18

4 Experiments 25

4.1 Experimental Methodology . 25

4.1.1 Experiment description . 25

4.1.2 Evaluation . 25

4.1.3 Datasets . 26

4.2 CrowdFlower . 27

4.2.1 Non-personalised exploit . 27

4.2.2 Multi-armed bandit exploit . 29

4.2.3 Collaborative filtering exploit . 31

4.2.4 Final comparison and wrap-up . 32

4.3 MovieLens . 33

4.3.1 Non-personalised exploit . 33

vii

4.3.2 Multi-armed bandit exploit . 35

4.3.3 Collaborative filtering exploit . 37

4.3.4 Final comparison and wrap-up . 37

4.4 Twitter . 39

4.4.1 Non-personalised exploit . 40

4.4.2 Multi-armed bandit exploit . 40

4.4.3 Collaborative filtering exploit . 43

4.4.4 Final comparison and wrap-up . 45

5 Conclusions 47

5.1 Summary and contributions . 47

5.2 Future work . 48

Bibliography 53

viii

Lists

List of equations

3.1 Función puntuación o rating de un item . 13

3.2 Estimación para la recompensa de un ítem . 14

3.3 Average . 16

3.4 Popularity . 16

3.5 User-based KNN . 17

3.6 Item-based KNN. 17

3.7 ε-Greedy . 19

3.8 Inicialización optimista/pesimista . 19

3.9 UCB . 19

3.10 Thompson Sampling . 22

3.11 Update of hits and misses in KNN-bandit algorithm . 23

3.12 Item choosing in KNN-bandit algorithm . 23

4.1 Recall . 26

List of figures

2.1 Diagram of the behaviour of a recommender system . 6

2.2 Diagram of the behaviour of a recommender system with a reinforcement learning pers-

pective . 9

3.1 Matrix Factorization decomposition . 18

3.2 UCB evolution for two different items . 21

3.3 Thompson Sampling evolution for two different items . 22

4.1 Results of non-personalised algorithms in the exploitation phase for CM100K dataset . 28

4.2 Results of bandits algorithms in the exploitation phase for CM100K dataset 30

4.3 Results of collaborative filtering algorithms in the exploitation phase for CM100K dataset 31

4.4 Comparison of the best combinations of warm-up and exploitation for CM100K dataset 32

4.5 Recall at the end of the warm-up phase for CM100K dataset . 33

4.6 Results of non-personalised algorithms in the exploitation phase for MovieLens1M da-

taset . 34

ix

4.7 Results of bandits algorithms in the exploitation phase for MovieLens1M dataset 36

4.8 Results of collaborative filtering algorithms in the exploitation phase for MovieLens1M

dataset . 38

4.9 Comparison of the best combinations of warm-up and exploitation for MovieLens1M

dataset . 38

4.10 Recall at the end of the warm-up phase for MovieLens1M dataset 39

4.11 Results of non-personalised algorithms in the exploitation phase for Twitter dataset . . . 41

4.12 Results of bandits algorithms in the exploitation phase for Twitter dataset 42

4.13 Results of collaborative filtering algorithms in the exploitation phase for Twitter dataset 44

4.14 Comparison of the best combinations of warm-up and exploitation for Twitter dataset . . 45

4.15 Recall at the end of the warm-up phase for Twitter dataset . 46

List of tables

3.1 Association between recommender system and multi-armed bandits 14

4.1 Datasets description . 27

x

1
Introduction

Recommender Systems can be found today in multiple online applications. They bring value to both

customers and owners of a specific platform. They help customers discover new items available in the

system giving them a better and personalised experience. They also help item vendors as they promote

items to the customer otherwise they would not have known. However when a user is new to the system,

a new item is added or even when the system has just been created, we experiment what is called the

cold start problem. In such scenarios the system lacks enough information about the users or items and

how they link to each other to start providing quality recommendations to the users. In this work we will

explore multi-armed bandits strategies to address the cold-start problem in Recommender Systems.

1.1. Motivation

Cold-start is a common concern in Recommender Systems because the effectiveness of most state

of the art algorithms relies on having enough information about the items and users. The cold-start

problem is still an open question for the research community with several different proposed solutions,

so closing the gap between the problem and a good method to mitigate it would potentially impact the

field positively.

Furthermore, the use of multi-armed bandits strategies is a relatively new approach to solve the

cold-start problem with a much room for improvement and growing interest. Multi-armed bandits are a

classic probability theory problem with a clear formalisation and a vast theoretical background [Sutton

and Barto, 2018]. We believe multi-armed bandits are convenient for solving cold-start problem because

they can start recommending items to the users from scratch, without any previous knowledge about

the system, as they continuously learn from the users interactions and update their knowledge. Multi-

armed bandits try to find a balance between exploitation and exploration, which is a recurrent problem in

computer science and has many applications in the field of information retrieval, for example A/B testing

[Scott, 2015,Hill et al., 2017], so the study of multi-armed bandits strategies has many connections with

other areas in the field.

1

Introduction

1.2. Goals

We define the main goal of studying the effect of warm-up, i.e. the phase in which the recommender

system focuses on learning about the users and their likes rather than maximising the number of suc-

cessful recommendations, in the comparison of bandits algorithms to each other and to other classical

algorithms, both non-personalised and collaborative filtering algorithms. To do such task we are going

to define the following three different variables to explore:

• Warm-up duration. The goal is to study which algorithms adapt better to less time of warm-

up. We are assuming a new system with no previous information of the items nor the users

and we want to determine which algorithms are able to perform better recommendations with

minimum warm-up time.

• Warm-up strategy. We are going to explore whether multi-armed bandits strategies are useful

for the warm-up of a recommender system in terms of the amount of relevant information they

are able to gather during the warm-up phase. To do so we are going to analyse how the

exploitation phase evolves after the chosen strategy for the warm-up and we are going to

compare multi-armed bandits strategies to the non-personalised algorithms in the warm-up

phase.

• Post warm-up strategy. For three different domains where recommender systems can be ap-

plied (music, films and social networks) we want to determine which is the best strategy after

the warm-up has finished, whether is still multi-armed bandits, non-personalised or collabora-

tive filtering algorithms.

We are going to design several offline experiments in which we will vary the three variables defined

above to determine which is the best combination of them for every use case scenario (music, films and

social networks).

1.3. Methodology

In my BSc degree dissertation [López Ramos et al., 2019] I analysed multi-armed bandits algorithms

for recommender systems in depth, and explore the best configuration of its parameters for the three

different domains mentioned in section 1.2. As a continuation of that analysis in this work I explore one

of the applications of multi-armed bandits to recommender systems, aiming at solving the cold-start

problem. To do so,I firstly study the main publications in the literature of recommender systems, multi

armed-bandits and cold-start problem. After that, I use the recommender systems software developed

by the IR group [Vargas et al., 2016] to build a framework which performs both warm-up and exploitation

phases in a given dataset. Once that framework is ready, I prepare three datasets for the experiments

and run them offline, simulating an iterative recommendation process. Lastly, I analyse the results of

2 Estrategias de calentamiento en bandidos multi-brazo para recomendación

1.4. Document structure

the experiments and document them.

1.4. Document structure

This document is divided in three chapters, described below:

• In chapter 1, introduction, I explain the motivation of this work, as well as the main goals I

will pursue. There is also an explanation of the methodology I followed to achive such goals.

• In chapter 2, state of the art, I summarise the most relevant studies related to this work,

starting from recommender systems in general, and then specifying more about collaborative

filtering strategies. I will also present the area of reinforcement learning focusing in multi-

armed bandits strategies. Finally I will describe the cold-start problem and the most relevant

approaches the scientific community have adopted to solve it.

• In chapter 3, problem description and algorithms, I first formalise the task of interactive re-

commendation, establishing an equivalence between the elements of a recommender sys-

tems and the elements of the multi-armed bandit problem. Then I briefly explain the algorithms

I will use later in the experiments focusing in how they perform the recommendations.

• For three different use cases (music, films and social networks) I performed offline experi-

ments to determine which configuration of the three variables mentioned in section 1.2 works

better for each use case. In chapter 4, experiments, I present the results of those experiments.

• In chapter 5, conclusions, I summarise the results of the offline experiments and present

some topics we can still explore in the future as a continuation of this work.

Esther López Ramos 3

2
State of the art

This chapter focuses on giving context to the problems we are tackling in this work. First, in section

2.1 we describe the problem of recommendation and the main types of recommendation as well as

the types of evaluation. In section 2.2 we introduce collaborative filtering algorithms as an example of

classic recommendation techniques. In section 2.3 we introduce the paradigm of reinforcement learning

and its main lines of research focusing on multi-armed bandits and how we can deal with the task of

recommendation from a reinforcement learning perspective. In section 2.4 we introduce the cold-start

problem and its types and the main solutions in the literature.

2.1. Recommender systems

The main goal of a recommender system [Ricci et al., 2011] is to improve user experience by suggesting

different products available in an online platform. In the last years popularity of recommender systems

has increased a lot due to the multiple online services available such as e-commerce platforms, social

networks or streaming platforms.

We can define two basic sets in a recommender system: the user set, denoted by U , and the item

set, denoted by I. With these two set, the main task of the recommender system is to provide a subset

of items, called ranking, to a user ordered descending by a chosen criteria, which often corresponds

with an estimation of how useful or interesting the user would find the item. With this recommendation

schema the user can easily discover new items.

We can find two different types of recommendations in the literature, explained below:

1. Personalised recommendation. It takes user preferences into account when computing

the ranking. This results in a different ranking for each user. To do so, every time a user

interacts with an item in the system, it stores a numeric value called rating, where the higher

the rating the more the user is interested in it. The idea behind the recommendations is to

predict the rating of the items that a user has not rated yet and then use that prediction to

sort the items descending and present the top n to the user. There are several approaches

5

State of the art

to achive personalised recommendation in the literature, the most common ones being co-

llaborative filtering [Ricci et al., 2011, chap. 3] and content-based filtering [Ricci et al.,

2011, chap. 4]. In content-based approaches, the recommender uses item features to com-

pute a similarity function and recommends those unknown items that are most similar to the

items the user liked in the past. In collaborative filtering, the system uses past user ratings

to compute a simmilarity with other users and recommends the items that the most similar

users liked but the user to be recommended does not know. As we are going to face the

cold-start problem for some collaborative filtering algorithms, in section 2.2, there is a more

detailed explanation of this methods.

2. Non-personalised recommendation. Unlike the personalised recommendation, this type

of recommendation shows the same ranking to all users without taking into account their

past interaction with the items. It may seem trivial but it is specially convenient for the cold-

start user problem, that is, when a user is new to the system. Usually it takes past raitings

from all users to identify the most popular items in the system.

Figure 2.1 schematically shows the behaviour of a recommender system.

Figure 2.1: Diagram of the behaviour of a recommender system

To assess the efectivity of a recommender sytem there are two types of evaluation: offline and online

evaluation.

In the offline evaluation, inspired by Machine Learning (ML) supervised learning techniques, we

take the user set U and the item set I and some known interactions, called the rating set R. The set

of ratings R is divided in two separate sets: the training Rtrain and testing Rtest sets. The system uses

Rtrain to learn, that is, to present the tuples (u, i, r(u, i)), where (u, i) ∈ U×I ⊂ Rtrain and r(u, i) ∈ R
to the chosen algorithm so that it can learn the users likes. The rest of pairs (u, i) not present in Rtrain

are the ones that the recommender algorithm has to predict the value of r(u, i) for. We will denote

this prediction as r̂(u, i) from now on. With these predictions, the algorithm is evaluated using Rtest as

6 Estrategias de calentamiento en bandidos multi-brazo para recomendación

2.2. Collaborative filtering algorithms

follows: we take the value of r(u, i) from those pairs (u, i) ∈ Rtest and compare it with the estimation

r̂(u, i) of the recommender algorithm using different metrics such as precision or recall [Ricci et al.,

2011]. When a pair (u, i) is not present in Rtest we can ignore this rating for the chosen metric as we

do not know the real value or we can assume the real value of r(u, i) to be zero (the user u does not

like the item i), and consider it in the chosen metric.

Online evaluation is more complicated to perform but it gives more realistic results as it evaluates

the recommender algorithm in a production environment. To do so, it needs a reliable platform with

enough users, items and interactions so that the results significantly represent the peformance of the

system. Furthermore, testing a new algorithm can negatively impact the experience of the users, so

to avoid this the traffic of the system is usually divided into the number of different variations of the

algorithm that we are going to try plus the current production version. This is scheme is referred in the

literature as A/B testing [Kohavi and Longbotham, 2017].

Usually these two types of evaluation are combined together to get a better evaluation of the per-

formance of the algorithm. First, we use offline evaluation techniques and compare offline metrics with

the offline results of the current algorithm in production. If these metrics improve the metrics of the

current algorithm, then an online evaluation experiment is conducted to compare both algorithms in the

production environment.

2.2. Collaborative filtering algorithms

Collaborative filtering algorithms are a group of personalised algorithms that use past interactions of the

users with the items to build the ranking. Among these techniques there are two different approaches:

the neighbourhood approach and the latent factor models [Ricci et al., 2011, chap. 3].

The neighbourhood approach uses past user ratings to compute a similarity function. This simi-

larity measure can be defined over the items (item-based approach) or over the users (user-based

approach). In the item-based approach the system recommends the unknown items (items that the

user has not rated yet) that are most similar to those that the user has already liked. In the user-based

approach, the system determine the most similar users to a given user and recommend the top rated

items by these users (unknown by the user to be recommended). The most common model of this type

of recommendation is the K-Nearest Neighbours (KNN) which can be both user-based or item-based.

As we will study how the different warm-up strategies affect the user-based KNN algorithm, we will

describe this model in chapter 3.

In the latent factor approach, the systems uses past ratings from users to items to represent both

item and users in the same vector space as latent factors. The goal of this techniques is to extract

some abstract features of both items and users. These features are usually computed by representing

the user to item ratings as a matrix and then factorising it. Of these kind of algorithms we will study the

Esther López Ramos 7

State of the art

Matrix Factorization algorithm in the context of the warm-up problem so we will deeper describe this

algorithm in chapter 3.

Both types of collaborative filtering described above need a training phase, where some known

ratings are presented to the recommender system and it learns them so that it can produce future

recommendations. The cold-start problem which we are tackling in this work appears when there are

not enough known ratings for the training of the recommender. In the experiments of chapter 4, we will

assume a new system with no previous knowledge of the interactions of users with the items and we

will consider the recommendation as a interactive cyclic process where every feedback the system gets

from the user is instantly incorporated in its knowledge base, so we will skip the training step and study

different warm-up strategies instead. More details of this cyclic interactive view of the recommendation

can be found in section 2.3 and details about the cold-start problem in section 2.4.

2.3. Reinforcement learning and multi-armed bandits

Inside the field of machine learning, reinforcement learning is a paradigm that formalise the natural idea

of an agent that learns by interacting with its environment. Every time the agent performs and action,

this action yields a positive or a negative response. This response allows the agent to learn.

Classic machine learning algorithms focus on maximising cumulative reward. In reinforcement lear-

ning, that goal is still considered but changing the way to reach it by finding a balance between ex-

ploration and exploitation. In the reinforcement learning context, exploration implies that the agent

makes an action whose consequences are unknown sacrificing the reward with the goal of learning.

Meanwhile exploitation means taking the known optimal action to get an immediate reward.

The agent interacts with the environment in discrete steps by choosing an action among all possible

ones. Every interaction with the environment yields a reward and changes the state of the agent. Usually

the agent is able to observe the whole environment, however in some contexts only partial information

about the environment is available. This process of continuous interaction with the environment usually

lasts for a long period of time and thus a sacrifice of immediate reward is assumed so that a better long

time cumulative reward is achieved.

In recommender systems there is a constant interaction between the user and the items and thus

between the user and the ranking that the recommender system builds. In this context, the interac-

tive process of reinforcement learning is very convenient for the recommender systems because the

feedback from the user is the input of the system to improve future recommendations. Traditional ap-

proaches of recommender algorithms consider a static approach where the system is trained with some

known ratings and then the unknown ratings are predicted. With a reinforcement learning perspective,

the recommendation becomes cyclic and the immediate hit in the recommendations is sacrificed with

the goal of improving long term recommendations. In the context of reinforcement learning, the process

8 Estrategias de calentamiento en bandidos multi-brazo para recomendación

2.3. Reinforcement learning and multi-armed bandits

described in figure 2.1 is transformed following figure 2.2.

Figure 2.2: Diagram of the behaviour of a recommender system with a reinforcement learning perspective

In this work we will focus on the cold-start problem applying reinforcement learning techniques. In

the cold-start problem (more details on section 2.4), the system does not have enough information

about the users, the items or both. To mitigate this problem usually some systems directly ask to the

user about their preferences, but it is not possible to show all items available in the system to the user.

The balance between exploration and exploitation that reinforcement learning presents, can be useful

for solving this scenario.

There are two main lines of research in the field of reinforcement learning: Markov decision proces-

ses (MDP) [Shani et al., 2005] and multi-armed bandits (MAB) [Sutton and Barto, 2018].

A Markov decision process (MDP) is a tuple (S,A, P,R) where S is a finite set of states, A is a

finite set of actions, P is a probability function that given two states s1, s2 ∈ S, and an action a ∈ A,

it assigns a probability to transit from state s1 to state s2 by performing the action a, and R is the

reward associated with the transition from state s1 to s2 by the action a. In the context of recommender

systems, each state represents the information that the system has at a time, each action corresponds

with recomending an item and thus the reward associated with the transition means the hit or miss of the

recommendation. Both the probability function P and the rewards R are known each time the system

chooses an action. The goal of the agent (recommender system) is to maximise cumulative reward, and

to do so, it observes its environment and chooses an action (recommends an item) and it transitions

to another state with a reward. This process is repeated and the successive actions are aggregated.

The problem is solved by giving the sequence of actions that produces the biggest possible reward.

Article [Shani et al., 2005] proposes a policy iteration algorithm to solve de MDP. In this algorithm each

possible solution is a policy which assigns each state an action. There are two phases in the algorithm.

Esther López Ramos 9

State of the art

In the first phase every policy is evaluated which represents the exploratory side of the reinforcement

learning paradigm. In the second phase, the exploitation, the system chooses the best policy from step

one and tries to improve it. Both steps are iterated until convergence.

Multi-armed bandit problem is inspired by a gambler in front of some slot machines who has

to choose at each time which machine to play in order to get the best possible reward. In a formal

definition [Sutton and Barto, 2018, chap. 2], an agent has to choose between a set of actions known as

arms. Every time the agent chooses an action it yields a number known as the reward which the agent

does not know until it chooses the arm. The value associated with an arm is not the same every time

the agent plays that arm but it follows a probability distribution. The problem of multi-armed bandits is

solved by giving the sequence of arms that the agent must play to get the best possible reward, which

translates to finding the arm whose distribution of reward has the highest mean. All of the proposed

solutions to multi-armed bandit problem are an approximation and they focus on finding a balance

between exploration and exploitation. In this context, exploitation means choosing the arm that the

agents believes to be the best at the time, while exploration consists on choosing another different arm

to gain some knowledge about the chosen action. The most popular algorithms to solve the multi-armed

bandit problems are ε-Greedy [Sutton and Barto, 2018, chap. 2], Upper Confidence Bound (UCB) [Auer

et al., 2002] and Thompson Sampling [Chapelle and Li, 2011], which we will further discuss in section

3.2.

All the described elements from a multi-armed bandits problem (agent, arms and rewards) must be

translated to the elements of a recommender system (users, items and ratings). Most of the times in

the literature each item is associated with an arm, so playing an arm means recommending an item as

the basic action of a recommender system is to recommend. The reward of an action is the rating that

the user gives to the recommended item. In section 3.1 there is further details on the equivalence of

recommender system and multi-armed bandits elements. In the multi-armed bandits problem there are

no elements similar to the users of a recommender system. But as the goal of the user is to provide

feedback to the system by evaluating its recommendations, we will consider the user as the element

which gives context to the bandit. The main difference between the MDP and the multi-armed bandits

is that in MDP there are a set of states which represent the information that the agent has at each

time while in the multi-armed bandit problem the agent does not have a state. However there are some

approaches called context multi-armed bandits [Sutton and Barto, 2018, chap. 2] that consider some

features of both the agent and the system. So taking the user feedback as the context means that we

will be applying context multi-armed bandits to the field of the recommender systems.

2.4. The cold-start problem

As mentioned in section 2.1, a recommender system needs information about the users, the items and

their interactions (ratings) to perform the recommendations, specially in personalised algorithms. There

10 Estrategias de calentamiento en bandidos multi-brazo para recomendación

2.4. The cold-start problem

are some situations in which the recommender systems lacks enough information to choose the items

to recommend to the users, this is what we call the cold-start problem. There are three main situations

where the cold-start problem happens: a new item, a new user or a new recommender system. We will

explain these three situations in subsections 2.4.1, 2.4.2 and 2.4.3 and the main approaches to solve

them in the literature.

2.4.1. New item

When an item is new to the system it has no ratings from any user. As we have seen in section 2.2,

collaborative filtering algorithms rely on previous ratings from users to compute a similarity between the

users. Then, with this similarity function and the past ratings, they can infer the rating over the items that

a user has not rated yet. As this new item has no ratings, collaborative filtering algorithms cannot do

this inference for this specific item. We can also consider the cold-start problem when an item has very

few ratings. In this case, collaborative filtering algorithms can infer the unknown ratings but the resulting

ratings would not be realistic.

One of the main approaches to solve this problem in the literature is the use of content-based al-

gorithms [Rohani et al., 2014]. These algorithms use properties or features from the items that are

independent to the users. They use the previous ratings from a user to find which items are similar to

those that this user has liked in the past using machine learning techniques like classifiers [Lika et al.,

2014] or clustering [Puthiya Parambath and Chawla, 2020].

Although these techniques have proven to mitigate the cold start problem in the previously mentio-

ned studies, they have some drawbacks. Content-based algorithms tend to over-specialise on the user

preferences as they recommend items that have similar features to those which that user liked. This

leads to a poor recommendation, not introducing novel content to the user [Pereira and Varma, 2016].

They also rely on the items features which are not available in all contexts.

2.4.2. New user

When a user is new, the recommender system has to suggest items without any knowledge, as the

user has not interacted with any item yet. This scenario affects both collaborative filtering and content

based algorithms. In the case of collaborative filtering, as this user has not rated any item, algorithms

cannot establish a similarity with other users and thus they cannot infer any rating. In the case of con-

tent based algorithms, they cannot choose items similar to those that the user likes because they have

no preferences from the user.

Esther López Ramos 11

State of the art

Recommender systems play a key role when a user is new to the system because they can help

them discover the items available, so dealing with the cold-start user problem is important to provide

users a better experience. Some studies in the literature propose directly querying the user to learn

their likes [Sun et al., 2013]. These techniques can negatively affect the user experience and the rated

items could be not representative of the user current likes. Other authors suggest a simmilar approach

to content-based algorithms establishing a user profile using external features like demographic data

[Safoury and Salah, 2013]. However this information may not be available or may not be related to the

user preferences. Other approaches include using non-personalised methods like showing the user the

most popular items in the system but this can lead to a bias in the most popular items not introducing

variability in the recommendations [Rashid et al., 2008].

2.4.3. New system

This is the most challenging scenario as it means the whole system is new so it has no information

about the users, items and their interactions. It combines both scenarios of new user and new item si-

multaneously. This is the scenario we will address in this work, as we are going to assume no previous

information about the users nor the items of any kind.

We will compare different approaches using non-personalised recommenders and multi-armed ban-

dits to solve the new system cold-start problem. More details on this proposed solution can be found in

chapters 3 and 4.

12 Estrategias de calentamiento en bandidos multi-brazo para recomendación

3
Problem description and algorithms

This chapter presents the methodology we followed to adapt multi-armed bandits algorithms to the

context of recommendation. There are two sections in this chapter. In section 3.1 we describe the cold-

start problem and translate the recommender task as a multi-armed bandit problem. In section 3.2 we

describe the non-personalised, collaborative filtering an multi-armed bandits algorithms we are going to

evaluate during the exploitation phase in the case of collaborative filtering and during the warm-up and

exploitation phases for non-personalised and multi-armed bandits in the experiments of chapter 4.

3.1. Problem description

In this study, we propose multi-armed bandits as a solution for cold-start problem (see section 2.4 for

more details). Multi-armed bandits are very convenient for this task because they do not need previous

information about users preferences, because recommendations can begin with an exploratory phase

to get knowledge about the system and then continue with an exploit phase. There are many domains

where we can apply multi-armed bandits so, before describing the experiments we conducted, we are

going to formulate the task of recommendation as a multi-armed bandit problem.

As described in chapter 2 a recommender system consists of a set of users, denoted by U and a set of

items, denoted by I. For each pair (u, i) where u ∈ U and i ∈ I we define the function rating, r, as in

equation 3.1.

r : R ⊂ U × I → {0, 1}

(u, i)→ r(u, i) =

1 if u likes i

0 otherwise

(3.1)

where R is the set of ratings, that is, pairs (u, i) where r(u, i) is known. The task of the recommender

system is to determine those ratings that are unknown by estimating them. From now on we will denote

this estimation by r̂(u, i).

As the basic action for a recommender system is to choose an item, in most of the algorithms we

13

Problem description and algorithms

have decided to consider each arm of the bandit as an item, except from the KNN-bandit, where the

bandits are the users to be chosen as neighbours (more details on section 3.2.3). The immediate reward

associated to an arm will be the value of the rating r(u, i). As a consequence, the value associated to

each arm will be the estimation r̂(u, i). The user represents the context in the multi-armed bandit

problem and it will have two basic functions: it will provide feedback each time an arm is chosen and

will determine which arms the system cannot choose anymore, as we introduce the restriction that we

can recommend the user an item once.

Table 3.1 shows a summary of the association between the elements of a recommender system

and the elements of the multi-armed bandits problem.

Recommender system Multi-armed bandit

item arm

average rating value of an arm

rating reward

user context

Table 3.1: Association between recommender system and multi-armed bandits

Usually recommender systems return a set of k items ordered by the estimated relevance as a

ranking for each user [Ricci et al., 2011]. Although is possible to return a ranking using multi-armed

bandtis strategies [Zhao et al., 2013], in the literature the most common approach is to recommend and

item each iteration, which aligns better with the multi-armed bandit paradigm [Wang et al., 2018].

3.1.1. Recommendation as an iterative process

With multi-armed bandits the recommendation becomes an interactive and continuous task. In this

process, the user asks the system for a recommendation, the systems answers with an item and in

exchange it gets a positive or negative rating back from the user which the system uses to update

its knowledge. If the user does not answer to the recommended item, the system also registers that

interaction to avoid recommending the item in the future and thus not negatively affecting the user

experience, but the information about the item is not updated.

As we previously mentioned in section 2.1 sometimes the system begins with a set of ratings (the

training set), which in multi-armed bandits algorithms is used to initialise the value of each arm (item)

(r̂(i)) to the mean of the ratings given by all users who have rated this item. As in this project we are

studying cold-start problem, we will not have a training set and thus we will initialise this value to 0. Each

time the system recommends an item to the user and the user answers with a rating, we will update the

value of r̂(i) according to equation 3.2. As it is an iterative process, the value of an item changes every

epoch so we need the parameter t to capture that temporariness.

14 Estrategias de calentamiento en bandidos multi-brazo para recomendación

3.2. Algorithms
r̂t(i) =

αt(i)

αt(i) + βt(i)
=

∑
u∈Ût(i)

r(u, i)

|Ût(i)|
r̂0(i) = 0

(3.2)

where Ût(i) = {uk : (uk, i) chosen for k ≤ t}, is the set of users to which the system has recommen-

ded the item i until epoch t. Equation 3.2 estimates the value associated with an item by dividing the

hits (αt(i)) by the total of times the item was chosen, i.e. the sum of hits and misses (αt(i) + βt(i)).

Algorithm 3.1 shows the process we have followed to recommend an item to a selected user and

update the information of the bandit.

input : u ∈ U user to be recommended, I item set, R rating set

1 i← select_arm(u);

2 r← get_reward(u, i, R);

3 update_arm(i, r);

Algorithm 3.1: Algoritmo general de recomendación con bandidos

The chosen multi-armed bandit algorithm determines the policy to select the item or arm. The arm

is updated by the formula 3.2.

3.2. Algorithms

In this section we will present the algorithms that we will combine in chapter 4 during the warm-up

and exploitation phase. To do so we will divide this section in two subsections. In subsection 3.2.2 we

explain the chosen collaborative filtering approaches K-Nearest Neighbours (KNN) and Matrix Factori-

zation (MF) while in subsection 3.2.3 we will describe multi-armed bandits algorithms: ε-greedy, Upper

Confidence Bound (UCB), Thompson Sampling and KNN Bandit.

3.2.1. Non-personalised algorithms

As we previously described in section 2.1 non-personalised algorithms offer the same recommendation

to all users because the value they assign to each item does not depend on the user that requests the

recommendation. Non-personalised approaches are often used during the warm-up of a recommender

system to start knowing about the user likes. In this subsection we briefly explain the random, average

and popularity approaches as we are going to compare them to the rest of algorithms in the experiments

chapter 4.

Esther López Ramos 15

Problem description and algorithms

Random

The random approach is the most simple recommendation we could choose. Every time a user request

an item the systems selects a random item between all possible excluding those items that the system

has previously recommended to the user (beacause we do not recommend the same item twice to the

same user) or those items that the user has rated before. It is equivalent to the 0-greedy algorithm, i.e.

take ε = 0 in equation 3.7 for the ε-greedy algorithm. It is often used as the baseline for the rest of the

algorithms to evaluate as we consider the random approach to be the worst a recommended system

can perform.

Average

In the average algorithm the system computes the average rating from all the ratings an item has

received according to equation 3.3. The system uses this values to sort the items to build the ranking

for the user. As we are recommending a single item, we recommend the item that maximises the value

of equation 3.3. This approach is equivalent to the 1-greedy algorithm, i.e. take ε = 1 in equation 3.7.

r̂(u, i) = r̂(i) =

∑
u∈Ui

r(u, i)

|Ui|
(3.3)

where Ui = {u ∈ U |(u, i) ∈ R}, i.e. the subset of users that have rated the item i.

Popularity

In the popularity approach, the recommender system sorts the items decreasingly by the number of

positive ratings each item has received. This is similar to the average approach but without normalising

the number of positive ratings by the total of ratings received by the item (see equation 3.4). The value

of r̂(u, i) in this approach is not an approximation of r(u, i) because without the normalisation the value

computed by the popularity algorithm can be arbitrarily big and not in [0, 1] interval.

r̂(u, i) = r̂(i) =
∑
u∈Ui

r(u, i) (3.4)

where Ui = {u ∈ U |(u, i) ∈ R}, i.e. the subset of users that have rated the item i.

3.2.2. Collaborative filtering algorithms

Collaborative filtering algorithms offer personalised recommendation to the user based on the previous

ratings that the users gave. In this section we will describe the K-Nearest Neighbour and Matrix Fac-

torization methods which are the collaborative filtering algorithms we will explore in the experiments

chapter 4.

16 Estrategias de calentamiento en bandidos multi-brazo para recomendación

3.2. Algorithms

K-Nearest neighbours

The idea behind the K-Nearest Neighbours (KNN) [Ricci et al., 2011, chap. 2.3] algorithm in recom-

mender systems is that similar uses prefer similar items. In a recommender system, each user has

rated a set of items and we want to find out what other items that the user has not rated yet could like.

If we want to recommend the item i to the user u we can proceed by two different approaches listed

below:

1. In the user-based approach, the system finds the top k most similar users to u according

to a similarity function. This is what we call the neighbourhood of u, N (u). Then every user

v ∈ N (u) “votes” for the item i using the rating that v has previously given to i (if it exists,

if not we consider it as 0) weighted by the similarity between u and v. This schema gives

an estimation or prediction of the rating that u would potentially give to the item i, what we

previously denoted as r̂(u, i). Then all the items that can be recommended to u are sorted

by these estimations and presented to the user as a ranking. Equation 3.5 describes how to

predict the rating given to i by u.

r̂(u, i) =

∑
v∈Nk(u)

sim(u, v)r(v, i)∑
v∈Nk(u)

|sim(u, v)|
(3.5)

2. In the item-based approach, instead of finding the neighbourhood of u, the system com-

putes the neighbourhood of i, Nk(i) i.e. the top k items most similar to i. Then the system

takes the ratings that u has given to the neighbours of i weighted by the similarity of i with

its neighbours to estimate the rating that u would give to the item i. As in the user based

approach, the items are ranked according to these estimations. Equation 3.6 describes how

to compute the estimated rating from u to i.

r̂(u, i) =

∑
j∈Nk(i)

sim(i, j)r(u, j)∑
j∈Nk(i)

|sim(i, j)|
(3.6)

In equations 3.5 and 3.6, r(a, b) denotes the value of the rating that the user a has given to the item

b. The function sim is the similarity between the users in equation 3.5 or the items in equation 3.6. There

are different similarity functions in the literature, the most common ones being cosine similarity [Ricci

et al., 2011, page 124, eq. 4.4] and Pearson correlation [Ricci et al., 2011, page 230, eq. 7.5].

In our formulation of cyclic and interactive recommendation we will not produce a ranking for the

user u but we will recommend the item i that maximises the estimation of r̂(u, i).

Esther López Ramos 17

Problem description and algorithms

Matrix Factorization

Matrix Factorization models (MF) [Ricci et al., 2011, chap. 3.3] aim at finding latent features using the

ratings from the users to the items. In this context the ratings are represented as a matrix and this

matrix is decomposed in two lower density matrices. Once this decomposition is done, every user u

is associated with a vector qu ∈ Rk and every item i is associated with a vector qu ∈ Rk (where k

is the chosen number of latent factors. Intuitively if a user has a high value in a chosen latent factor

that means that she would be interested in the items that also have a high value in the same latent

factor. One the representation of the users and items as vectors is computed, we use the dot product

to estimate the rating from user u to item i: r̂(u, i) = qTu pi. Figure 3.1 schematically represents how the

rating matrix decomposes to the user latent factor matrix and the item latent factor matrix.

Figure 3.1: Matrix Factorization decomposition of the rating matrix in two lower density matrices. The rows of matrix U are

the representation of users in the latent factor subspace while the columns of matrix I are the representation of the items in

the latent factor subspace.

The key question in MF algorithms is how to decompose the rating matrix. A Singular Value De-

composition (SVD) is undefined in this context because the rating matrix is not square and it is very

sparse which means that there are a lot of missing ratings. Furthermore, the rating matrix is huge so

it is computationally expensive to get the SVD. Other methods have been proposed to learn the latent

factors such as solving the least squares problem [Paterek, 2007].

3.2.3. Multi-armed bandit algorithms

There are a lot of multi-armed bandits algorithms that can be adapted to the recommender task we are

tackling in this work. The main difference between these strategies is how they balance exploration and

exploitation.

In this subsection we will describe the algorithms of ε-Greedy, Upper Confidence Bound (UCB)

and Thompson Sampling as non-personalised bandits algorithms because they consider the same

18 Estrategias de calentamiento en bandidos multi-brazo para recomendación

3.2. Algorithms

value of each arm for all users. To get personalised recommendations each item or arm should keep a

different value for every user. There are in the literature some examples of personalised bandits [Zhao

et al., 2013,Wang et al., 2018,Kawale et al., 2015,Gentile et al., 2014,Li et al., 2010], however we will

consider the KNN-bandit as our example of personalised multi-armed bandit recommendation.

ε-Greedy

In ε-greedy algorithm [Sutton and Barto, 2018] the balance between exploration and exploitation is

very simple: we fix a real number ε ∈ [0, 1] and with probability ε the system uniformly chooses a

random item or arm and with probability 1−ε the system chooses the item that has maximum r̂(i). The

exploration side of the algorithm correspond with the random choosing while the exploitation consists

on choosing the most popular item to the system knowledge. We summarise this behaviour in equation

3.7.

it =

i ∈ I uniformly random , 1− ε

argmax
i∈I

[r̂t(i)], ε
(3.7)

The value of r̂0(i) (see equation 3.2) is initialised to 0 for every item. We can choose different values

to initialise this constant such as choosing an initial number of hits α0 and misses β0 and compute the

ratio between the hits and the sum of the hits and misses as in equation 3.8.

r̂0(i) =
α0

α0 + β0
(3.8)

We call this type of initialisation optimistic when the number of hits is greater than the number of

misses α0 > β0 and pessimistic when the number of misses is greater than the number of hits α0 < β0.

However as in this project we are evaluating the performance of multi-armed bandits algorithms in the

cold-start problem, we will not explore the optimistic or pessimistic initialisation. More details of this type

of initialisation can be found in [López Ramos et al., 2019, chap. 4.3].

Upper Confidence Bound

To do a balance between exploration and exploitation, the UCB algorithm [Auer et al., 2002] takes the

popularity based recommendation or greedy approach as the exploitation part of the algorithm and it

adds an exploratory term. Every epoch the algorithm select the items that maximises 3.9.

it = argmax
i∈I

[
r̂t(i) +

√
γ ln(t)

αt(i) + βt(i)

]
(3.9)

As we said before, the first term of the equation 3.9 is the value of each arm which in this context of

recommender systems corresponds with the reward estimation of an item.

The second term is the exploratory part of the recommendation and without this term the UCB

Esther López Ramos 19

Problem description and algorithms

algorithm would be a greedy and trivial approach. This term is often called uncertainty. The γ parameter

is a constant that the higher it is set, the more importance the algorithm gives to the uncertainty. We

can see in the numerator the variable t which is the current iteration of the algorithm. The logarithm

smooths this variable. In the denominator there is the sum of the hits and misses of the item i, which

is the total number of times i was selected until epoch t. The more i is recommended, the higher this

aggregation is and thus the lesser is the uncertainty. This fits with the intuitive idea of uncertainty:

the more we recommend an item, the more certain we are of the value of r̂t(i). In the first epochs

of the recommendation loop, the value of the uncertainty is higher and similar to all the items so the

UCB algorithm tends to a more exploratory behaviour in the first iterations. An item that has not been

recommended as much as the other items tends to have a higher value of the uncertainty (because the

numerator is the same for all the items) and this allows the algorithm to explore this items.

At the start of the recommendation loop, when t = 0, the value of the uncertainty is undefined and

thus the UCB algorithm needs an initialisation. This initialisation consists on recommending all the items

at least once to get either a hit or a miss and set the value of the uncertainty. After the initialisation t = |I|
because we have performed as much epochs as items, r̂t(i) would be 1 or 0 depending on whether we

hit or not the recommendation and the same for αt(i) and βt(i).

Figure 3.2 shows the evolution of UCB algorithm for two different items at the beginning of the

recommendation loop, when half of the epochs are reached and at the end of the recommendation.

Thompson Sampling

In the multi-armed bandit paradigm the gambler must determine the arm that yields the best reward

as soon as possible. A complete greedy approach would always choose the arm with the highest ob-

served value. Multi-armed bandits add an exploratory part to that greedy approach which captures the

uncertainty of the value of each arm. In the ε-greedy approach we have seen that this exploration is

very simple and it just adds a rate for a random selection. In UCB, the uncertainty term is added to

the value of each arm so the less explored items (arms) that have a higher uncertainty are selected

more until the system is more certain about the value. In Thompson Sampling [Chapelle and Li, 2011]

the uncertainty is captured by introducing a distribution on the value associated to each item. This dis-

tribution is computed based on the current knowledge of the system of the hit and misses in the past

recommendations. Each item or arm has its own distribution and the system samples a value for every

item using its distribution and then chooses the item with the highes sampled value.

In equation 3.1, r can only be either 0 or 1 so we can assume that r follows a Bernoulli distribution

with parameter pi, i.e. it acts like a coin with pi probability of head. When an item is recommended

t times the system counts how many time it has hit the recommendation αt(i) (or how many times

the value of r was 1), and how many times it failed the recommendations βt(i) (or how many times

r = 0). We describe parameter pi as a Beta distribution with parameters αt(i) and βt(i) which is the

20 Estrategias de calentamiento en bandidos multi-brazo para recomendación

3.2. Algorithms

Figure 3.2: UCB evolution for two different items. The red dot represents the value of r̂t(i), the exploitative side of the

algorithm. The blue dots are the sum of r̂t(i) and the uncertainty so the algorithm chooses the item that maximises the blue

value each iteration. Initially every item has the value of the red dot fixed to 0. Initially the value of the uncertainty is very

similar to all the items and it is the result of the initialisation, so the first recommendations are random. When the algorithm

progresses the uncertainty value decreases for the most popular items and thus the red and blue dots get closer. We can

see that the second item is more popular than the first one not only because the value of r̂t(i) is higher, but because the

blue and the red dots are closer for this item than for the first one.

Esther López Ramos 21

Problem description and algorithms

conjugate distribution of the Bernoulli. The more an item is recommended, the higher is the value of

αt(i) + βt(i) and thus the Beta distribution stretches more around its mean, r̂t(i) =
αt(i)

αt(i)+βt(i)
, which

intuitively means that the system is more certain about the value of the mean rating for each item. Each

epoch the algorithm selects the item according equation 3.10.

it = argmax
i∈I

[x← B(αt(i) + α0, βt(i) + β0)] (3.10)

B(a, b) represents the Beta distribution with parameters a, b and “←” means choosing a random

number. We will initialise the parameters of the Beta distribution to 1 and initially all the distribution will

be uniform. We can also choose an initial number of hits α0 and misses β0 and perform an optimistic

initialisation (α0 > β0) or a pesimistic initialisation (α0 < β0).

Figure 3.3 shows the behaviour of the Thompson Sampling algorithm for two different items at the

beginning, half and end of the recommendation loop.

Figure 3.3: Thompson Sampling evolution for two different items. Initially both items start with an uniform distribuition of their

respective average reward. In the half plot we can see that item 2 is more popular than item 1 not only beacause the Beta

distribution is centered around a higher value but also beacause the distribution is stretcher. This behaviour is reinforced in

the end plot.

K-Nearest Neighbours Bandit

The K-Nearest Neighbours Bandit (KNN-Bandit) [Sanz-Cruzado et al., 2019] is the only chosen multi-

armed bandit algorithm that performs personalised recommendations. This algorithm is based on the

collaborative filtering K-Nearest Neighbours (subsection 3.2.2) algorithm. Unlike the other bandit stra-

22 Estrategias de calentamiento en bandidos multi-brazo para recomendación

3.2. Algorithms

tegies we described before (ε-greedy, UCB and Thompson Sampling) in KNN-bandit the arms to be

chosen by the agent are not the items to be recommended but the users. When a user u ask for a

recommendation, the KNN-bandit algorithm selects another user v as the neighbour of u like in KNN

algorithm but following a multi-armed bandit approach, i.e. balancing exploration and exploitation. Once

the system has selected the neighbour v, it recommends the item that v likes the most. The chosen

multi-armed bandit algorithm to select the neighbour is Thompson Sampling so for each user we have

to determine how to update the α, number of hits, and β, number of misses, of the algorithm. Equation

3.11 shows how the Thompson Sampling parameters are updated.αt(u, v) = αt−1(u, v) + r(v, i) ∗ r(u, i)

βt(u, v) = βt−1(u, v) + r(v, i) ∗ (1− r(u, i))
(3.11)

where i is the item selected by the neighbour v. Intuitively, we add a hit when both u and v liked the item

i and a miss when either u or v or both disliked the item i. As this is a personalised recommendation

the system needs to store the values of the hits and misses for every pair of users but only once as it is

symmetrical.

This schema of choosing a single neighbour can be generalised to k neighbours by choosing the top

k users that maximise the values drawn from the Beta distribution in the Thompson Sampling algorithm,

the neighbourhood of u, Nu. Then each neighbour votes for its favourite item by weighting it with the

Thompson Sampling value as in equation 3.12.

it = argmax
i∈I

[xu,v ∗ r(v, i)|v ∈ Nu] (3.12)

where Nu is the top k neighbours of u and xu,v are the values drawn from the Beta distribution in the

Thompson Sampling algorithm xu,v ← B(αt(u, v), βt(u, v)).

Esther López Ramos 23

4
Experiments

4.1. Experimental Methodology

4.1.1. Experiment description

The main question we are going to answer in this work is “given a context where we want to use a

recommender system, which is the best configuration of the system in terms of warm-up algorithm,

exploitation algorithm and warm-up duration?” So we define three different variables we explore in the

following experiments: warm-up algorithm, exploitation algorithm and warm-up time. To find the best

configuration we proceed as follows: for a fixed exploitation algorithm, we vary the warm-up algorithm

and evaluate how warm-up affects the exploitation phase for different durations of the warm-up. We

aevaluate this process in three different datasets of three different domains to determine which confi-

guration is best for each domain.

4.1.2. Evaluation

The ideal way of conducting this kind of experiments would be to do an online A/B test in a real produc-

tion environment to evaluate how the different configurations of the recommender system would affect

customers. However, as we do not have such a platform we proceed with offline evaluations.

As we want to explore how changing the warm-up algorithm and its duration affects the performance

of the recommender system, we will assume the recommender system starts with no previous know-

ledge about the users and the items. We will acknowledge the nature of the recommendation as an

iterative process, and we will divide this process in two phases:

1. Warm-up. For this phase we choose a recommender algorithm and a duration in terms

of number of epochs. We run the algorithm iteratively until we meet the number of epochs

chosen and we save the (user, item, rating) tuples discovered in this phase. If the algorithm

chooses a pair (user, item) which is not present in the dataset, we will ignore it. After this

phase we will have a subset T ⊂ I × U ×R which we will call train set from now on.

25

Experiments

2. Exploitation. We choose another algorithm for this phase (which can be the same as

the previous one). This algorithm “learns” from the discovered tuples in the train set T . We

will also run this algorithm iteratively, but this time until the whole dataset is discovered by

the exploitation algorithm. Each time the system makes a recommendation, we compute

recall which we define in equation 4.1. Recall computes the ratio between number of ratings

discovered at time t and the total number of ratings to be discovered.

recall(t) =

∑t
k=1 r(uk, ik)

|{(u, i) : r(u, i) = 1, u ∈ U, i ∈ I}|
(4.1)

where uk, ik is the pair (user, item) chosen for recommendation at the k-th epoch (i.e. ik is

recommended to uk at epoch k).

Algorithm 4.1 details the general process we follow in the experiments.

input : U user set, I item set, R ratings set, Aw warm-up algorithm, Ae exploitation algorithm, N warm-up epoch

output: recall acumulado

1 recall← 0;

2 K ← ∅;
3 for epoch ∈ {1 · · ·N} do
4 u← select_random_user();

5 i← recommend_item(Aw, u);

6 r← get_reward(u, i, R);

7 update_knowledge(K, u, i, r);

8 remove_rating(R, u, i);

9 end
10 while R 6= ∅ do
11 u← select_random_user();

12 i← recommend_item(Ae, u);

13 r← get_reward(u, i, R);

14 update_knowledge(K, u, i, r);

15 recall← update_recall(i, r);

16 remove_rating(R, u, i);

17 end

Algorithm 4.1: Warm-up and exploitation for recommendation using multi-armed bandits

4.1.3. Datasets

To conduct the experiments we have selected three different public datasets from different domains. As

we are using binary ratings, we have to define a threshold to transform numeric ratings to binary. The

datasets are as follows.

1. CM100K [Cañamares and Castells, 2018] contains 103.584 anonymous ratings of 1.054

songs. Items with 1 or 2 rating have been treated as 0, that is, the user didn’t like the song,

while 3 and 4 ratings have been considered as 1 (the user liked the song).

26 Estrategias de calentamiento en bandidos multi-brazo para recomendación

4.2. CrowdFlower

2. MovieLens1M [Harper and Konstan., 2015] contains 1.000.209 anonymous ratings of 3

900 films from 6 400 MovieLens system users [movielens, 1997]. Ratings are in a scale of

5 stars so we considered 1 to 3 starts as 0 and ratings from 4 to 5 as 1.

3. Twitter: the dataset [Sanz-Cruzado and Castells, 2018] contains a set of interactions (re-

tweets and mentions) reflected in the last 200 tweets from 10000 users. In Twitter we can

recommend both users and tweets. We have chosen to recommend users based on the

interactions. In this new scenario, the items to recommend are the users of the system, so

we have to introduce a restriction: if one user u2 follows another user u1 but u1 doesn’t

reciprocally follow u2 we are not going to recommend u1 to follow u2 back, as it is a very

trivial and redundant recommendation. In this dataset there is no 0 rating value because a

Twitter user cannot rate negatively another user or tweet.

Table 4.1 summarises the information of the users, items and ratings of the three datasets.

Dataset Number of users Number of items Number of ratings

CM100K 1.000 1.054 103.584

MovieLens1M 6.400 3.900 1.000.209

Twitter 5.000 5.000 43.444

Table 4.1: Summary of the three datasets used for the offline experiments

4.2. CrowdFlower

In this section we will present the results we got after applying the process detailed in algorithm 4.1 to

the CM100K dataset. As we mentioned in section 4.1 there are three variables we want to explore in

this experiment: the warm-up algorithm, the exploit algorithm and the warm-up size. We will divide this

section in three subsections based on the type of the exploitation algorithms. In subsection 4.2.1 we

will explore non-personalised algorithms for exploit (random, popularity, average) in subsection 4.2.2

multi-armed bandit algorithms and in subsection 4.2.3 collaborative filtering algorithms.

4.2.1. Non-personalised exploit

Figure 4.1 shows the results of using non-personalised algorithms (random, average and popularity)

during the exploitation phase for the CM100K dataset. For each algorithm we can see a set of three

plots for three different warm-up durations: 5 %, 10 % and 15 %. To help results visualisation, we have

plotted the difference of the recall curve obtained after the chosen warm-up and the recall curve of the

exploitation algorithm without warm-up (from now on we will call this curve the “baseline”). Each line

represents a different warm-up strategy for the same exploitation algorithm.

Esther López Ramos 27

Experiments

Figure 4.1: Results of non-personalised algorithms in the exploitation phase for CM100K dataset. For the exploitation with

both random and average the warm-up phase does not seem to affect the exploitation phase, as there are a lot of noise in

the recall curves. For the exploitation with popularity the different warm-up strategies yield different results. The most positive

ones are UCB, random and KNN-bandit, as we can see a higher recall when we use these strategies. This indicates that for

the first recommendations is worth doing some exploration to determine the most popular and then continue with a greedier

approach.

28 Estrategias de calentamiento en bandidos multi-brazo para recomendación

4.2. CrowdFlower

We can see that for both exploitation algorithms random and average there is much noise in the

recall curves and the differences in recall with respect to the baseline are too small (about 0,01 for

random in all warm-up durations and less than 0,01 for average in all durations). This indicates that the

warm-up phase is not affecting the exploitation phase. In the case of a random exploitation, this was

expected because in every iteration it chooses a random item regardless of the user and the previous

knowledge. In the case of average, as it is the optimal non-personalised strategy for the CM100K

dataset [Cañamares and Castells, 2018], it is difficult for a different warm-up strategy to improve optimal

results, so they only introduce noise in the recall.

For the popularity exploitation plots we can see a difference in the recall curves depending on the

chosen algorithm for the warm-up, the best ones being UCB, random and KNN-bandit for all durations of

warm-up. We can see that UCB and random recall curves behave similarly. This can be due to the fact

that with few epochs, the exploratory term of UCB is dominant with respect to the exploitative term, so

the algorithm acts randomly. This would also explain why both UCB and random warm-up work better

than the other strategies for popularity exploitation, because popularity acts greedily, i.e. it finds the best

item according to its current knowledge and recommends it until it cannot be recommended anymore

(because the same item cannot be recommended to the same user twice), so choosing an algorithm

that scores frequently would exhaust the best items in the warm-up phase and therefore popularity

would perform worse during the exploitation phase.

4.2.2. Multi-armed bandit exploit

Figure 4.2 shows the results of using bandit algorithms during the exploitation phase for the CM100K

dataset as in figure 4.1.

For UCB we can see similar results to those that we got in figure 4.1 for random and average, there

is a lot of noise in the recall curves, especially for 5 % and 10 % warm-up. For 15 % warm-up we can see

an improvement in the recall curves with popularity, average and ε-greedy as the warm-up algorithms.

For both ε-greedy and Thompson Sampling we observe that using random, UCB and KNN-bandit

in the warm-up phase leads to a better recall curves during the exploitation phase.

For KNN-bandit the behaviour is far different than the other bandits algorithms. With 5 % warm-up,

UCB improves the exploitation recall, while with 10 % and 15 % warm-up we do not really see an im-

provement in recall.

Esther López Ramos 29

Experiments

Figure 4.2: Results of bandits algorithms in the exploitation phase for CM100K dataset. For ε-greedy the warm-up with UCB,

random and KNN-bandit lead to a better results, which indicates again that it is positive to begin the recommendation with

more exploration. For UCB there are a lot of noise in the recall curves and we cannot conclude that the warm-up affects the

exploitation. For Thompson Sampling the results are similar to ε-greedy, with a better result in the exploitation when there is

a lot of exploration in the warm-up. For KNN-bandits the results are very different from the other exploitation strategies, with

no improvement in the exploitation recall with 10 % and 15 % warm-up.

30 Estrategias de calentamiento en bandidos multi-brazo para recomendación

4.2. CrowdFlower

4.2.3. Collaborative filtering exploit

In figure 4.1 we plotted the results of using collaborative filtering algorithms during the exploitation

phase for the CM100K dataset as in figure 4.1.

Figure 4.3: Results of collaborative filtering algorithms in the exploitation phase for CM100K dataset. For the exploit with

KNN, the only warm-up algorithms that produce a positive impact are UCB and random, but this improvement is less than

the one we got with other exploitation strategies (0.02 for UCB compared to 0.05 with ε-greedy in figure 4.2). For Matrix

Factorization we can see that the recall improves with more warm-up time, so we can conclude that the warm-up phase is

positive for this algorithm.

For user-based KNN we have a similar behaviour to what we got with KNN-bandit in figure 4.2. For

15 % warm-up, we can see that Thompson Sampling gives the better recall at the start of the exploitation

phase but it drastically drops in the next epochs. As we are using a fixed test dataset we can explain this

behaviour as follows: Thompson Sampling is the algorithm that performs better without any previous

knowledge (we also showed this in [López Ramos et al., 2019, page 30]), so it is the algorithm that

discovers most positive ratings in the warm-up phase. However when we get to the exploitation phase,

as the test dataset is fixed, it is difficult for the exploitation algorithms to hit, because there are a lot

of negative ratings left. We can hypothesise that this behaviour could not necessarily happen in a real

environment since there are new items and users continuously being added to the system.

For matrix factorization we see a positive impact of the warm-up phase in all cases, the best strate-

Esther López Ramos 31

Experiments

gies being random, UCB and KNN-bandit.

4.2.4. Final comparison and wrap-up

The recall curves in figures 4.1, 4.2 and 4.3 are relative to the algorithm used in the exploitation phase as

we are subtracting the recall of the baseline to them. In order to fairly compare the different strategies

we have to join all of them in a single plot with the same baseline. In figure 4.4 we show the best

curves for each exploitation algorithm for all the chosen warm-up sizes and we have subtracted the

recall of the random curve to help visualise the differences. Each curve represents a pair [warm-up

algorithm]+[exploitation algorithm] with this same notation in the legend.

Figure 4.4: Comparison of the best combinations of warm-up and exploitation for CM100K dataset. For the CM100K dataset,

the average algorithm is the one that has the best result in terms of recall. Some algorithms like ε-greedy and Thompson

Sampling improve with more warm-up time. This improvement occurs with random and UCB (which in the first epochs of

recommendation has a similar behaviour than random with most of recommendations being exploratory) so we can conclude

that with more exploration on the first recommendations and more exploitation after leads to a positive impact on recall.

We can see that the best strategy for the CM100K dataset is by far the average algorithm. In this

algorithm we do not really see an improvement on its performance with more warm-up time. The KNN

recall follows the same behaviour.

This is not the case for the ε-greedy algorithm, where we can see its performance improves with

more warm-up size. We can see this improvement in ε-greedy occurs with random warm-up so we

can interpret this as it is positive for the algorithm to “sacrifise” the hit in the first epochs by doing

exploratory random choices and then use this knowledge to improve the performance of the algorithm

by doing more exploitation than exploration.

The rest of the exploitation algorithms behave similar to ε-greedy, but with less improvement with

more warm-up.

Figure 4.5 compares the values of recall at the end of the warm-up phase for all the algorithms

studied. The purpose of this figure is to know which algorithm hitted the most during the warm-up

phase regardless of the impact during the exploitation phase.

32 Estrategias de calentamiento en bandidos multi-brazo para recomendación

4.3. MovieLens

Figure 4.5: Recall at the end of the warm-up phase for CM100K dataset. The top three algorithms during the warm-up

phase are Thompson Sampling, ε-greedy and average. For 5 % warm-up duration Thompson Sampling is the best one,

however for 10 % warm-up, ε-greedy beats it. For 15 % duration, Thompson Sampling becomes the best algorithm during

the warm-up phase and Matrix Factorization improves beating the average algorithm.

We can conclude that for the CM100K algorithm the best approach is the average algorithm and as

we have seen in section 4.2.1 for this algorithm the warm-up does not improve the exploitation phase.

During the warm-up phase the average algorithm was in the top three algorithms for 5 % and 10 %

warm-up duration and it was the forth best for 15 % warm-up. However if we want to quickly start the

system and maximise the recall during the warm-up phase, the best algorithm to do so is Thompson

Sampling.

4.3. MovieLens

In this section, as in section 4.2, we present the results of applying different warm-up strategies to the

MovieLens1M dataset. This section has three different subsections which correspond with the type of

algorithms used for the exploitation phase. In subsection 4.3.1 we show the results of the exploitation

with non-personalised algorithms (random, average and popularity), in section 4.3.2 with multi-armed

bandits algorithms (ε-greedy, UCB, Thompson Sampling and KNN-bandit) and in section 4.3.3 with co-

llaborative filtering algorithms. Finally in section 4.3.4 we compare the results of the best combinations

of the past sections and extract conclusions of the experiment.

4.3.1. Non-personalised exploit

Figure 4.6 shows the recall curves of non-personalised algorithms during the exploitation phase after

the warm-up ended for three different warm-up duration (5 %, 10 % and 15 % of total ratings in the

dataset). Each colour represents a warm-up strategy.

Although the random approach is not a good strategy for the exploitation phase, its plots give an

Esther López Ramos 33

Experiments

Figure 4.6: Results of non-personalised algorithms in the exploitation phase for MovieLens1M dataset. The random plots

help evaluate which algorithm performed better during the warm-up phase because the recall at the start of this plots is the

recall at the end of the warm-up phase. In the popularity plots we can see that the random warm-up is the strategy that gives

the best recall curve for all the warm-up sizes. For the average plots, again the random warm-up is the one that performed

better but with less difference with the other warm-up strategies. This indicates that more exploration in the first stages of

the recommender system help improve the performance of the exploitation algorithms.

34 Estrategias de calentamiento en bandidos multi-brazo para recomendación

4.3. MovieLens

insight on what are the strategies that performed better during the warm-up phase because at the

start of these plots we can see how the warm-up phase ended. For 5 % warm-up, we can see that the

Thompson Sampling algorithm is the one that starts with the highest recall, for 10 % the best algorithm

for the warm-up was ε-greedy and for 15 % the best was KNN-bandit. These plots start with the recall

at the end of the warm-up phase and then monotonically decrease because the random strategy is not

going to improve the warm-up algorithms.

For the exploitation with the popularity algorithm the random warm-up is the strategy that yields the

best recall curve, followed closely by the KNN-bandit algorithm. The rest of the warm-up strategies does

not seem to improve the recall of the popularity algorithm during the exploitation phase. This strengt-

hens the idea that for the warm-up phase is better to use more exploratory strategies and during the

exploitation phase more greedy approaches (the popularity algorithm is the greediest possible strategy,

as it always recommends the most popular item to all the users).

The average plots are very similar to what we got in figure 4.1 for the average algorithm: the warm-

up does not seem to affect the exploitation phase as there are a lot of noise in the curves. However

once we increase the warm-up duration we can see an improvement in the recall curves, specially for

the random warm-up. As the random algorithm fails a lot because it does not account the information

learnt in past recommendations, it discards those unpopular items during the warm-up phase and thus

during the exploitation phase the average algorithm performs better.

4.3.2. Multi-armed bandit exploit

Figure 4.7 shows the recall curves during the exploitation phase using multi-armed bandits algorithms.

Again each curve represent a different warm-up strategy with the same exploitation algorithm.

In the ε-greedy exploitation, we observe that the warm-up algorithm that improves the baseline

recall the most is the KNN-bandit for all warm-up sizes. However this improvement is not as significant

as other that we got in the past plots (about +0,05 with respect to the baseline for ε-greedy compared

to +0,2 for the popularity exploitation in figure 4.6). Most of the warm-up strategies helped improve the

recall during the exploitation phase, specially in the first epochs of the exploitation, except the UCB

warm-up which underperformed the baseline with a decrease of more than 0,15 in the recall.

For the UCB plots, we observed that almost all the warm-up strategies improved the exploitation re-

call and this improvement continues with more warm-up time, changin from about +0,02 recall with 5 %

warm-up to +0,05 for 15 % warm-up. As we proved in [López Ramos et al., 2019], the UCB algorithm

is not a good strategy for the MovieLens1M dataset, so another algorithm during the warm-up phase

helps the system to produce more useful recommendations than the UCB algorithm. However when

the system reaches 15 million epochs of recommendatios, there is a drastic decrease in the recall. This

can indicate that the UCB algorithm performs better in the last epochs of the recommendation, when

Esther López Ramos 35

Experiments

Figure 4.7: Results of bandits algorithms in the exploitation phase for MovieLens1M dataset. In the ε-greedy plots, the

KNN-bandit algorithm is the warm-up strategy that helps the exploitation phase the most, but this improvement is not as

big as others we got for non-personalised exploitations in figure 4.6. As UCB is not the best strategy for the MovieLens

dataset [López Ramos et al., 2019], almost every warm-up strategy improves the performance of the recommender during

the exploitation phase. For Thompson Sampling, the random warm-up is the strategy that improves the exploitation the most,

indicating that more exploration in the first epochs is positive for the later performance of the recommender. The situation

we observe for the KNN-bandit algorithm is much different from the other bandit algorithms, with a drastic drop in the recall

in the first epochs of the exploitation for all chosen warm-up algorithms.

36 Estrategias de calentamiento en bandidos multi-brazo para recomendación

4.3. MovieLens

the system has much more information about the user and the items, so maybe with more warm-up

than 15 % we can obtain a good performance with the UCB algorithm.

The Thompson Sampling plots are very simmilar to the ones that we got in figure 4.6 for popularity.

The random and the KNN-bandit warm-ups are the ones that help the best the Thompson Sampling

algorithm during the exploitation phase. This reiterates that in the first epochs of the recommendation

is worth doing more exploitation to help improve the performace of the algorithms in the next epochs.

The behaviour of the recall curves for the KNN-bandit exploits are very different from the other ex-

ploitation strategies. For all the warm-up strategies we see a high decrease in the recall at the beginning

of the exploitation phase and then a drastic increase. More warm-up time does not solve this problem

because in the 10 % and 15 % warm-up plots we can see that this decrease becomes worse. Some of

the warm-up strategies (random and UCB) improve the baseline recall after this decrease but we can

assume that this improvement (about +0,02) is not worth after the drastic decrease (more than −0,06)

for the KNN-bandit algorithm.

4.3.3. Collaborative filtering exploit

Figure 4.8 shows the results for the KNN and Matrix Factorization algorithms during the exploitation

phase. Each line represents the difference of the recall for each chosen warm-up algorithm and the

recall of the baseline algorithm, which is the KNN or Matrix Factorization without warm-up i.e., the

same collaborative filtering algorithm during the warm-up phase.

For KNN, all the chosen warm-up strategies improved the exploitation recall in the first epochs

of the exploitation phase, however only random, KNN-bandit and UCB maintained this improvement

during the rest of the exploitation while in the other algorithms the recall dropped and underperformed

the baseline. Although in the first epochs the random warm-up is the best strategy, the UCB warm-up

helps the KNN algorithm to perform better during the rest recommendation cycles.

For the Matrix Factorization the behaviour is similar to the KNN case. The exploitation with random,

KNN and UCB in the warm-up phase produces the best recall curves. For the rest of the warm-up

strategies, the warm-up does not help improve the exploitation recall.

4.3.4. Final comparison and wrap-up

In figure 4.9 we compared the best strategies from figures 4.6, 4.7 and 4.8 in the same plot, but this

time instead of subtracting the baseline recall, we subtracted the random recall to help visualise the

curves.

For the MovieLens1M dataset the algorithms that performed the best during the exploitation phase

are the collaborative filtering (Matrix Factorization and KNN), Thompson Sampling and popularity. When

Esther López Ramos 37

Experiments

Figure 4.8: Results of collaborative filtering algorithms in the exploitation phase for MovieLens1M dataset. Both sets of plots

shows similar results for the same warm-up strategies. In the KNN plots, we can see a big increase in the first epochs for all

the warm-up strategies, however only UCB, KNN-bandit and random maintain this improvement with respect to the baseline

in the succesive epochs. For Matrix Factorization again random, UCB and KNN-bandit are the best warm-up strategies. The

rest of the warm-up algorithms worsen the exploitation recall.

Figure 4.9: Comparison of the best combinations of warm-up and exploitation for MovieLens1M dataset. In the Movie-

Lens1M dataset the best strategies are the collaborative filtering ones (KNN and Matrix Factorization) followed closely by

Thompson Sampling and popularity. With more warm-up we can see more differences between the top recall curves: while

in the 5 % plot, the top 4 curves are very close to each other, in the 15 % plot the performance of the collaborative filtering

algorithms improved more than Thompson Sampling and popularity.

38 Estrategias de calentamiento en bandidos multi-brazo para recomendación

4.4. Twitter

we increase the warm-up duration, we observe an increase in the recall of the collaborative filtering

algorithms, whose recall lines separate from the other two (Thompson Sampling and popularity) top

strategies. As we saw in figure 4.8 the warm-up positively impacts the recall during the exploitation

phase, specially for the KNN algorithm (more than +0,1 recall with respect to the baseline). So we have

proven that in the first epochs of the recommendation we should adopt an exploratory strategy (like

random) and then change the algorithm to a more classic one (like collaborative filtering) to maximise

the hit of the recommendations.

Figure 4.10 shows the value of recall after the warm-up phase for all the algorithms studied.

Figure 4.10: Recall at the end of the warm-up phase for MovieLens1M dataset. For 5 % warm-up Matrix Factorization (MF),

Thompson Sampling and average are the best strategies in terms of recall. For 10 % and 15 % warm-up MF and Thompson

Sampling distance from the rest algorithms.

We can conclude that both collaborative filtering approaches (KNN and MF) are the algorithms that

perform best for the MovieLens1M dataset. For these algorithm we saw an increase on the exploitation

recall with random, UCB and KNN-bandit as the warm-up algorithms and this increase is higher with

more warm-up duration. With 15 % warm-up KNN-bandit was the third best algorithm after the warm-up

phase ended in terms of recall so KNN-bandit is a good strategy to start the system with and then

change it to a collaborative filtering approach to improve the recall in the long term.

4.4. Twitter

In this section we show the results of different combinations of warm-up and exploitation strategies

for Twitter dataset. Unlike the other two datasets, CM100K and MovieLens, in Twitter dataset we re-

commend contacts so we must apply a new restriction: if a user u follows another user v we do not

recommend v to follow u back. Section 4.4.1 shows the results of applying non-personalised approa-

ches (random, average and popularity) in the exploitation phase, section 4.4.2 multi-armed bandits

algorithms (ε-greedy, UCB, Thompson Sampling and KNN-bandit) and section 4.4.3 collaborative filte-

ring algorithms (KNN and Matrix Factorization).

Esther López Ramos 39

Experiments

4.4.1. Non-personalised exploit

Figure 4.11 shows the recall curves of non-personalised algorithms (random, popularity and average)

during the exploitation phase for the Twitter dataset. Each curve represent the same algorithm in the

exploitation phase with a different warm-up strategy.

For the random exploitation we can see that for the 5 % and 10 % warm-up the recall curves have

a drastic increase in the recall at the beginning of the plots and then the recall progressively decrea-

ses. For the 15 % curves there is no significant improvement in recall and we see a lot of noise. The

maximum recall decreases with more warm-up duration from about 0,02 in the 5 % warm-up to 0,008 in

the 15 % warm-up. The random approach recommends an item randomly regardless of the knowledge

collected during the warm-up phase so, as we have the restriction that an item cannot be recommended

to the same user more than once, the strategies that perform best during the warm-up phase exhaust

the most popular items during the warm-up phase leaving the worst items to be picked by the random

approach with a higher probability during the exploitation phase.

In the popularity exploit the warm-up strategies that improves the recall the most are the UCB,

random and KNN-bandit algorithms. All the rest of warm-up strategies improve the recall curves but

less than the three mentioned before. For the random warm-up we can see that with more warm-up

duration the recall during the exploitation phase improves. As the popularity algorithm recommends

the item with more positive ratings, the random warm-up helps discard those items that has the least

number of interactions (because an item that has already been recommended to an user cannot be

recommended to the same user again). For both the UCB and KNN-bandit warm-up with more warm-

up duration the recall decreases.

The average plots are very similar to what we observed in CM100K (figure 4.1) and in MovieLens1M

datasets (figure 4.6): the warm-up does not affect the performance during the exploitation phase be-

cause the recall curves are very noisy.

4.4.2. Multi-armed bandit exploit

Figure 4.12 shows the results of using multi-armed bandits algorithm during the exploitation phase

for the Twitter dataset. As in previous figures, each line represents the recall after different warm-up

strategies with the same exploitation algorithm.

In the ε-greedy plots we can see that the KNN-bandit, UCB and random are the warm-up strategies

that improve the most the recall during the exploitation phase. The rest of the recall curves are below

the baseline (ε-greedy without warm-up) meaning these strategies are not a good approach for the

warm-up of the ε-greedy algorithm. With more warm-up duration we can see that the recall decreases

specially for UCB whose recall curve is below the baseline in both 10 % and 15 % warm-up duration.

40 Estrategias de calentamiento en bandidos multi-brazo para recomendación

4.4. Twitter

Figure 4.11: Results of non-personalised algorithms in the exploitation phase for Twitter dataset. As in the previous datasets

(CM100K and MovieLens1M) the only exploitation algorithm that is affected by the warm-up is the popularity. In the popularity

plots we can see that the warm-up strategies that perform best are the UCB, random and KNN-bandit algorithms. These

recall curves improves with more warm-up duration only for the random warm-up and it decreases for the UCB and KNN-

bandit warm-ups. For the random and average plots we observe a lot of noise in the curves so we can conclude that the

warm-up does not affect these exploitation strategies.

Esther López Ramos 41

Experiments

Figure 4.12: Results of bandits algorithms in the exploitation phase for Twitter dataset. For ε-greedy and Thompson Sam-

pling we see that the warm-up strategies that yield the best recall are UCB, random and KNN-bandit. The rest of the warm-

up strategies maintain or worsen the baseline recall (exploitation algorithm without warm-up). For UCB and KNN-bandit the

results is much different. In Thompson Sampling the recall increases with more warm-up duration while in ε-greedy the

opposite happens. In the case of UCB all warm-up strategies increase the recall during the exploitation phase, inverting the

behaviour of the previously mentioned algorithms. For KNN-bandit only the random and UCB strategies improve the recall

in the exploitation phase with a period of worse recall in the first epochs of the exploitation, specially in the UCB warm-up.

In this plots we can see that more warm-up duration improves the performance during the exploitation phase.

42 Estrategias de calentamiento en bandidos multi-brazo para recomendación

4.4. Twitter

The UCB algorithm in its first epochs act exploratory as random does in all the iterations. This means

that the ε-greedy algorithm benefits form an exploratory warm-up in the first epochs but it is not a good

idea to extend this exploratory behaviour beyond the 5 % warm-up because this causes the recall to

drop.

In the UCB plots we observe the opposite behaviour as ε-greedy, the UCB (baseline), random and

KNN-bandit are the warm-up approaches that achieve the least recall during the exploitation phase.

The rest of the algorithm impact the recall similarly. With more warm-up duration the recall during the

exploitation phase keeps improving. As we discussed in section 3.2.3, the UCB algorithm needs some

epochs to initialise the value of the uncertainty at the beginning of the recommendation loop. This

initialisation can be be replaced by the warm-up phase with better result as shown by the UCB plots.

For Thompson Sampling the results are similar to ε-greedy. The best warm-up strategies are again

the random, UCB and KNN-bandit algorithms. This time the other warm-up strategies (average, popu-

larity and ε-greedy) do not negatively affect the recall during the exploitation phase but are similar to

the baseline (Thompson Sampling without warm-up). This time, unlike what happened with ε-greedy,

the recall improves with more warm-up duration and the recall after UCB warm-up stays above the ba-

seline. We conclude that Thompson Sampling is another algorithm that benefits from a first exploratory

phase and this phase can extend above the 15 % of the epochs.

In the KNN-bandit plots the best warm-up strategies are random and UCB while the rest of the

algorithms are below the baseline recall. For UCB at the beginning of the exploitation phase we observe

a decrease in the recall, but after this drop the recall grows much faster. This drop in the recall becomes

less drastic with more warm-up duration so we could explore if warm-up beyond the 15 % helps even

more the exploitation recall.

4.4.3. Collaborative filtering exploit

In figure 4.13 we plotted the results of collaborative filtering algorithms (KNN and MF) during the exploi-

tation phase after the warm-up. Each curve corresponds to a different warm-up stratey.

In the KNN plots, we see that the warm-up approaches that improve the exploitation recall the most

are UCB, random and KNN-bandit. This situation varies a lot depending on the warm-up duration.

For 5 % warm-up only the UCB algorithm achieves an improvement during the exploitation phase and

this improvement is less than 0,02 with respect to the baseline. For 10 % and 15 % all random, UCB

and KNN-bandit improve the exploitation recall and this improvement gets to +0,15 with respect to

the baseline. We can also observe a drop in the recall curves after the warm-up with UCB in the 5 %

and 10 % plots that disappears with 15 % plots. We conclude that the KNN algorithm benefits a lot from

exploratory warm-up strategies. The rest of the warm-up algorithms performed worse than the baseline.

In the MF plots, again random, UCB and KNN-bandits are the only approaches that help improving

Esther López Ramos 43

Experiments

Figure 4.13: Results of collaborative filtering algorithms in the exploitation phase for Twitter dataset. For KNN, the best

warm-up strategies are UCB, KNN-bandit and random. However for 5 % warm-up we can see an improvement in the recall

only with UCB and this improvement occurs after a drop in the recall during the first epochs. For MF the same algorithms

(random, UCB and KNN-bandit) are the ones that improve the exploitation recall the most. In this case there is not a drop in

the exploitation recall in the first iterations. For both exploitation strategies, the rest of the warm-up approaches (popularity,

average, ε-greedy and Thompson Sampling) impacted the exploitation recall negatively.

44 Estrategias de calentamiento en bandidos multi-brazo para recomendación

4.4. Twitter

exploitation phase. The recall keeps improving with more warm-up duration but less than the previous

KNN plots: from +0,02 to +0,15 in the KNN exploitation and from +0,1 to +0,2 in the MF exploitation.

4.4.4. Final comparison and wrap-up

Figure 4.14 shows the best strategies from figures 4.11, 4.12 and 4.13. To help compare the recall

curves we subtracted the random recall to all of the rest algorithms. Each line represent a combination

of [warm-up algorithm]+[exploitation algorithm] (notation in the legend) and show the recall only during

the exploitation phase.

Figure 4.14: Comparison of the best combinations of warm-up and exploitation for Twitter dataset. For 5 % warm-up the

best algorithm is the Matrix Factorization, however with more warm-up we can see that the KNN beats the MF algorithm in

the first epochs of the exploitation. For the Twitter dataset again the collaborative filtering approaches win but are followed

closely by the Thompson Sampling and popularity algorithms.

As in MovieLens dataset (figure 4.9), for Twitter dataset the collaborative filtering approaches are

the ones that yield the best results during the exploitation phase. For 5 % warm-up we can see that

the best approach is the Matrix Factorization algorithm, however with more warm-up duration the KNN

algorithm beats the Matrix Factorization in the firsts epochs of the exploitation phase. Although UCB is

most of the times the best strategy during the warm-up phase, during the exploitation phase is the worst

one. For popularity and ε-greedy, in the 5 % warm-up plots we can see that these strategies are close

to the collaborative filtering, however with more warm-up duration the collaborative filtering algorithms

improve a lot more than popularity and ε-greedy, which improve little with more warm-up duration.

Figure 4.15 shows the value of recall after the warm-up phase for all the algorithms studied in the

Twitter dataset.

We can conclude that for the Twitter dataset the collaborative filtering strategies are the best ones

for the exploitation phase and this algorithms benefits for the warm-up with multi-armed bandit UCB

strategy. UCB was also the algorithm that performed best during the warm-up phase, so a good strategy

for twitter dataset would be to start the system using UCB and then changing it to a collaborative filtering

approach.

Esther López Ramos 45

Experiments

Figure 4.15: Recall at the end of the warm-up phase for Twitter dataset. For all the warm-up duration the best algorithm

during the warm-up phase was UCB.

46 Estrategias de calentamiento en bandidos multi-brazo para recomendación

5
Conclusions

In this chapter we conclude the document by presenting in the first place in section 5.1 a summary

of the tasks covered in this project and its contributions and last in section 5.2 a list of extensions to

improve the developed work.

5.1. Summary and contributions

In this work we have studied the cold-start problem in recommender systems and we have studied multi-

armed bandits algorithms to tackle it. As multi-armed bandit algorithms we have chosen ε-greedy, Upper

Confidence Bounds and Thompson Sampling, which perform non-personalised recommendation, and

KNN-bandit, which is based in the collaborative filtering algorithm K-Nearest Neighbours and thus it

provides personalised recommendations.

We have consider the recommendation task as an iterative process with a constant interaction

between the user and the system. To study the cold start problem, we have divided the recommendation

loop in two different stages: the warm-up phase and the exploitation phase. During the warm-up phase

the system starts with no previous knowledge about the users nor the items and it focuses on learning

as much information as possible by recommending items to the users and observing their responses.

On the exploitation phase, the system gathers all the information acquired during the warm-up phase

and focuses on trying to hit the recommendations. In this context of warm-up and exploitation we have

combined different recommendation strategies for the two phases. As warm-up strategies we have used

both multi-armed bandits algorithms and classical non-personalised approaches (random, average and

popularity). In the exploitation phase we added collaborative filtering algorithms to the latter.

To evaluate the performance of the combination of the chosen warm-up and exploitation algorithms

we have conducted offline experiments, varying the warm-up duration from 5 %, 10 % and 15 % of the

total of ratings considered. For those experiments we have taken three datasets form different domains

CM100K (music), MovieLens1M (films) and Twitter (social network) and emulated the recommendation

loop. The recall curves show that the warm-up strategies that improve the most the exploitation pha-

se are random, UCB and KNN-bandit. The random approach is purely exploratory and UCB is more

47

Conclusions

exploratory in its first epochs. So we can conclude that a more exploratory warm-up leads to a better

performance in the long term during the exploitation phase. For CM100K dataset the best strategy by

far during the exploitation phase was the average approach, which was not affected by the warm-up

(+0,01 recall in the best case with respect to the average algorithm without the warm-up phase). For

MovieLens1M and Twitter, collaborative filtering algorithms (Matrix Factorization and KNN) were the

ones that performed better during the exploitation phase. Both algorithms benefited from the warm-up

phase and the exploitation recall increased with more warm-up duration. In MovieLens1M the exploita-

tion with KNN improved from +0,1 recall with respect to the baseline (KNN with no warm-up) with 5 %

warm-up to +0,15 with 15 % warm-up, the exploitation with Matrix Factorization improved from +0,05

with 5 % warm-up to +0,1 with 15 % warm-up. In Twitter dataset the KNN algorithm improved from

+0,02 recall with 5 % warm-up to +0,15 with 15 % warm-up and Matrix Factorization from +0,1 with

5 % warm-up to +0,15 with 15 % warm-up.

Although the most exploratory strategies are the ones that improved the most the performance of the

algorithms during the exploitation phase, if the system owner is interested in hitting the recommenda-

tions as soon as possible it would be best to choose another strategy. To study this we have compared

the recall after the warm-up phase finished. The results show that for CM100K, Thompson Sampling

and ε-greedy are the algorithms that hit the most during the warm-up phase, for MovieLens1M the best

are Thompson Sampling and Matrix Facotirzation and for Twitter, the best algorithm during the warm-up

phase was UCB. So we can conclude that Thompson Sampling easily and quickly adapts to the context.

5.2. Future work

In this work we have used offline experiments simulating the recommendation loop in order to test

which are the best algorithms combinations for the warm-up and exploitation phases. Although offline

evaluation is a fast way to check an hypothesis, its results may not correspond with the results of a real

environment. In this context of simulating the recommendation loop, we are using a limited set of ratings

given by the users to check if the recommendation was a hit. In the case of an unknown user, item pair,

we ignore the recommendation and do not compute it in the recall curve. In a real environment such

situation of an unknown rating would not happen if the user answers to every recommendation, so the

results may differ to what we got with an offline evaluation.

In this project we have evaluated the warm-up problem when the system is new, but we have not

tackled the new user or new item cold-start problems. This scenarios are difficult to evaluate in an offline

experiment and we would need an online experimentation platform to test them.

The results of the recall curves represent a single execution of the recommendation loop. These

results may differ with different simulations due to the non-deterministic character of some of the algo-

rithms. We should run several executions of the recommendation loop and compute the mean of the

48 Estrategias de calentamiento en bandidos multi-brazo para recomendación

5.2. Future work

recall curve and get confidence intervals for each point in order to validate the results.

Most of the tested algorithms have hyper-parameters which we have not tunned in this work. Tuning

the hyper-parameters can lead to different results improving or worsen the recall curves and changing

the optimal combination of warm-up and exploitation strategies.

Esther López Ramos 49

Bibliography

[Auer et al., 2002] Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis of the multi-

armed bandit problem. Machine learning, 47(2-3):235–256.

[Cañamares and Castells, 2018] Cañamares, R. and Castells, P. (2018). Should I Follow the Crowd?

A Probabilistic Analysis of the Effectiveness of Popularity in Recommender Systems. In 41st Annual

International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR

2018), pages 415–424, Ann Arbor, Michigan, USA.

[Chapelle and Li, 2011] Chapelle, O. and Li, L. (2011). An empirical evaluation of thompson sampling.

In 25th Conference on Neural Information Processing Systems (NIPS 2011), pages 2249–2257,

Granada, Spain.

[Gentile et al., 2014] Gentile, C., Li, S., and Zappella, G. (2014). Online clustering of bandits. In 31st

International Conference on Machine Learning (ICML 2014), pages 757–765, Beijing, China.

[Harper and Konstan., 2015] Harper, F. M. and Konstan., J. A. (2015). The MovieLens Datasets: His-

tory and Context. ACM Transactions on Interactive Intelligent Systems (TiiS) 5, 4, Article 19.

[Hill et al., 2017] Hill, D. N., Nassif, H., Liu, Y., Iyer, A., and Vishwanathan, S. (2017). An efficient bandit

algorithm for realtime multivariate optimization. In 23rd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (KDD 2017), pages 1813–1821, Halifax, NS, Canada,.

[Kawale et al., 2015] Kawale, J., Bui, H. H., Kveton, B., Tran-Thanh, L., and Chawla, S. (2015). Efficient

Thompson Sampling for Online Matrix-Factorization Recommendation. In Cortes, C., Lawrence,

N. D., Lee, D. D., Sugiyama, M., and Garnett, R., editors, Advances in Neural Information Processing

Systems 28, pages 1297–1305. Curran Associates, Inc.

[Kohavi and Longbotham, 2017] Kohavi, R. and Longbotham, R. (2017). Online Controlled Experi-

ments and A/B Testing, pages 922–929.

[Li et al., 2010] Li, L., Chu, W., Langford, J., and Schapire, R. E. (2010). A contextual-bandit approach

to personalized news article recommendation. In 19th international conference on World wide web

(WWW 2010), pages 661–670, Raleigh, North Carolina, USA.

[Lika et al., 2014] Lika, B., Kolomvatsos, K., and Hadjiefthymiades, S. (2014). Facing the cold start

problem in recommender systems. Expert Systems with Applications, 41(4, Part 2):2065 – 2073.

[López Ramos et al., 2019] López Ramos, E., Sanz-Cruzado Puig, J., and Castells, P. (2019). Bandi-

dos multi-brazo en sistemas de recomendación. UAM. Departamento de Ingeniería Informática.

[movielens, 1997] movielens (1997). Sitio web MovieLens.

[Paterek, 2007] Paterek, A. (2007). Improving regularized singular value decomposition for collaborati-

ve filtering. In Proceedings of KDD cup and workshop, volume 2007, pages 5–8.

[Pereira and Varma, 2016] Pereira, N. and Varma, S. (2016). Survey on content based recommenda-

tion system.

http://www.movielens.org/

Bibliography

[Puthiya Parambath and Chawla, 2020] Puthiya Parambath, S. A. and Chawla, S. (2020). Simple and

effective neural-free soft-cluster embeddings for item cold-start recommendations. Data Mining and

Knowledge Discovery.

[Rashid et al., 2008] Rashid, A. M., Karypis, G., and Riedl, J. (2008). Learning preferences of new

users in recommender systems: an information theoretic approach. Acm Sigkdd Explorations News-

letter, 10(2):90–100.

[Ricci et al., 2011] Ricci, F., Rokach, L., Shapira, B., and Kantor, P. B. (2011). Recommender systems

handbook. Springer, New York; London.

[Rohani et al., 2014] Rohani, V. A., Kasirun, Z. M., Kumar, S., and Shamshirband, S. (2014). An Ef-

fective Recommender Algorithm for Cold-Start Problem in Academic Social Networks. Mathematical

Problems in Engineering, 2014.

[Safoury and Salah, 2013] Safoury, L. and Salah, A. (2013). Exploiting user demographic attributes

for solving cold-start problem in recommender system. Lecture Notes on Software Engineering,

1(3):303–307.

[Sanz-Cruzado and Castells, 2018] Sanz-Cruzado, J. and Castells, P. (2018). Contact recommenda-

tions in social networks. In Berkovsky, S., Cantador, I., and Tikk, D., editors, Collaborative Recom-

mendations: Algorithms, Practical Challenges and Applications, pages 519–570. World Scientific Pu-

blishing.

[Sanz-Cruzado et al., 2019] Sanz-Cruzado, J., Castells, P., and López, E. (2019). A simple multi-armed

nearest-neighbor bandit for interactive recommendation. In Proceedings of the 13th ACM Conferen-

ce on Recommender Systems, RecSys ’19, page 358–362, New York, NY, USA. Association for

Computing Machinery.

[Scott, 2015] Scott, S. L. (2015). Multi-armed bandit experiments in the online service economy. Ap-

plied Stochastic Models in Business and Industry, 31(1):37–45.

[Shani et al., 2005] Shani, G., Heckerman, D., and Brafman, R. I. (2005). An mdp-based recommender

system. pages 453–460, Edmonton, Alberta, Canada.

[Sun et al., 2013] Sun, M., Li, F., Lee, J., Zhou, K., Lebanon, G., and Zha, H. (2013). Learning multiple-

question decision trees for cold-start recommendation. In Proceedings of the Sixth ACM International

Conference on Web Search and Data Mining, WSDM ’13, New York, NY, USA. Association for Com-

puting Machinery.

[Sutton and Barto, 2018] Sutton, R. and Barto, A. (2018). Reinforcement learning: An introduction (2nd

ed). MIT Press, Cambridge, MA, USA.

[Vargas et al., 2016] Vargas, S., Sanz-Cruzado, J., Rossetti, M., and Ezzat, M. (2016). RankSys: Java

8 Recommender Systems framework for novelty, diversity and much more.

[Wang et al., 2018] Wang, Q., Zeng, C., Zhou, W., Li, T., Iyengar, S. S., Shwartz, L., and Grabarnik, G.

(2018). Online interactive collaborative filtering using multi-armed bandit with dependent arms. IEEE

Transactions on Knowledge and Data Engineering.

[Zhao et al., 2013] Zhao, X., Zhang, W., and Wang, J. (2013). Interactive collaborative filtering. In

52 Estrategias de calentamiento en bandidos multi-brazo para recomendación

https://github.com/RankSys/RankSys
https://github.com/RankSys/RankSys

Bibliography

Proceedings of the 22nd ACM international conference on Conference on information; knowledge

management, CIKM ’13, pages 1411–1420, New York, NY, USA. ACM.

Esther López Ramos 53

	Introduction
	Motivation
	Goals
	Methodology
	Document structure

	State of the art
	Recommender systems
	Collaborative filtering algorithms
	Reinforcement learning and multi-armed bandits
	The cold-start problem
	New item
	New user
	New system

	Problem description and algorithms
	Problem description
	Recommendation as an iterative process

	Algorithms
	Non-personalised algorithms
	Collaborative filtering algorithms
	Multi-armed bandit algorithms

	Experiments
	Experimental Methodology
	Experiment description
	Evaluation
	Datasets

	CrowdFlower
	Non-personalised exploit
	Multi-armed bandit exploit
	Collaborative filtering exploit
	Final comparison and wrap-up

	MovieLens
	Non-personalised exploit
	Multi-armed bandit exploit
	Collaborative filtering exploit
	Final comparison and wrap-up

	Twitter
	Non-personalised exploit
	Multi-armed bandit exploit
	Collaborative filtering exploit
	Final comparison and wrap-up

	Conclusions
	Summary and contributions
	Future work

	Bibliography

